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What's New in SAS/STAT 9 and 9.1

Overview

This release brings several new procedures to SAS/STAT software. The MI and
MIANALYZE procedures implement the multiple imputation strategy for missing
data. Experimental in Releases 8.1 and 8.2, these procedures are now production.
The ROBUSTREG procedure analyzes data that may include outliers; it provides sta-
ble results in their presence. The TPHREG procedure is a test release of the PHREG
procedure that incorporates the CLASS statement.

Power and sample size computations also become available in SAS 9.1. New proce-
dures POWER and GLMPOWER provide these computations for a number of analy-
ses, and the Power and Sample Size Application surfaces them through a point-and-
click interface.

SAS 9.1 introduces two new procedures for the analysis of survey data. The
SURVEYFREQ procedure produces one-waynteay frequency and crosstabula-

tion tables for data collected from surveys. These tables include estimates of totals
and proportions (overall, row percentages, column percentages) and the correspond-
ing standard errors. The SURVEYLOGISTIC procedure performs logistic regression
for survey data, and it can also fit links such as the cumulative logit, generalized logit,
probit, and complementary log-log functions. Both of these procedures incorporate
complex survey sample designs, including designs with stratification, clustering, and
unequal weighting, in their computations.

In addition, this release includes numerous enhancements to existing procedures.
For example, conditional logistic regression is available in the LOGISTIC procedure
through the new STRATA statement, and scoring of data sets is available through
the new SCORE statement. The GLM procedure now provides the ability to form
classification groups using the full formatted length of the CLASS variable levels.
In addition, the SURVIVAL statement in the LIFETEST procedure enables you to
create confidence bands (also known as simultaneous confidence intervals) for the
survivor functionS(t) and to specify a transformation for computing the confidence
bands and the pointwise confidence intervals.

More information about the changes and enhancements to SAS/STAT software fol-
lows. Features new in SAS 9.1 are indicated with a 9.1 icon; other features were
available with SAS 9. Details can be found in the documentation for the individual
procedures.
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Parallelization

Selected functionalities in the GLM, LOESS, REG, and ROBUSTREG procedures
have been multithreaded to exploit hardware with multiple CPUs. Refer to Cohen
(2002) for more details.

Statistical Graphics Using ODS

A number of SAS/STAT procedures are using an experimental extension to the Output
Delivery System (ODS) that enables them to create statistical graphics automati-
cally. The facility is invoked when you include an ODS GRAPHICS statement be-
fore your procedure statements. Graphics are then created automatically, or when
you specify procedure options for graphics. Procedures taking advantage of ODS
graphics are the ANOVA, CORRESP, GAM, GENMOD, GLM, KDE, LIFETEST,
LOESS, LOGISTIC, MI, MIXED, PHREG, PLS, PRINCOMP, PRINQUAL, REG,
ROBUSTREG, and TPSLINE procedures. The plots produced and the corresponding
options are described in the documentation for the individual procedures.

CATMOD Procedure

Memory handling has been improved in the CATMOD procedure. The
PARAM=REFERENCE option has been added to the MODEL statement and
produces reference cell parameterization. Other new options include the ITPRINT,
DESIGN, and PROFILE|POPPROFILE options in the PROC statement.

DISTANCE Procedure

The new DISTANCE procedure computes various measures of distance, dissimilar-
ity, or similarity between the observations (rows) of a SAS data set. These proxim-
ity measures are stored as a lower triangular matrix or a square matrix in an output
data set (depending on the SHAPE= option) that can then be used as input to the
CLUSTER, MDS, and MODECLUS procedures. The input data set may contain
numeric or character variables, or both, depending on which proximity measure is
used. PROC DISTANCE also provides various nonparametric and parametric meth-
ods for standardizing variables. Distance matrices are used frequently in data mining,
genomics, marketing, financial analysis, management science, education, chemistry,
psychology, biology, and various other fields.

FACTOR Procedure

The NOPROMAXNORM option turns off the default row normalization of the pre-
rotated factor pattern, which is used in computing the promax target matrix.

You can now produce standard errors and confidence limits with the METHOD=ML
option for the PROMAX factor solutions. You can obtain the standard errors with
the SE option, control the coverage displays with the COVER= option, and set the
coverage level with the ALPHA= option.
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FREQ Procedure

The BDT option includes Tarone’s adjustment in the Breslow-Day test for homogene-
ity of odds ratios. Refer to Agresti (1996) and Tarone (1985).

The ZEROS option in the WEIGHT statement includes zero-weight observations in
the analysis. (By default, PROC FREQ does not process zero-weight observations.)
With the ZEROS option, PROC FREQ displays zero-weight levels in crosstabulation
and frequency tables. For one-way tables, the ZEROS option includes zero-weight
levels in chi-square tests and binomial statistics. For multiway tables, the ZEROS
option includes zero-weight levels in kappa statistics.

The CROSSLIST option displays crosstabulation tables in ODS column format.
Unlike the default crosstabulation table, the CROSSLIST table has a table definition
that you can customize with PROC TEMPLATE. The NLEVELS option provides a
table with the number of levels for all TABLES statement variables.

The FREQ procedure now produces exact confidence limits for the common | 9.1
ratio and related tests.

GENMOD Procedure

The GENMOD procedure now forms classification groups using the full formatted
length of the CLASS variable levels. Several new full-rank CLASS variable parame-
terizations are now available: polynomial, orthogonal polynomial, effect, orthogonal
effect, reference, orthogonal reference, ordinal, and orthogonal ordinal. The default
parameterization remains the same less-than-full-rank parameterization used in pre-
vious releases.

Zero is now a valid value for the negative binomial dispersion parameter correspond-
ing to the Poisson distribution. If a fixed value of zero is specified, a score test for
overdispersion (Cameron and Trivedi 1998) is computed.

As an experimental feature, PROC GENMOD now provides model assessmentt 9.1 1
on aggregates of residuals.

GLM Procedure

The GLM procedure now forms classification groups using the full formatted length
of the CLASS variable levels.

In addition, you can compute exagtvalues for three of the four multivari-
ate tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root)
and an improvedF-approximation for the fourth (Pillai’'s Trace). The default
MSTAT=FAPPROX in the MANOVA and REPEATED statements produces mul-
tivariate tests using approximations based on fhedistribution. Specifying
MSTAT=EXACT computes exacp-values for three of the four tests (Wilks’
Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root) and an improved
F-approximation for the fourth (Pillai’s Trace).
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GLMPOWER Procedure

9.1 The GLMPOWER procedure performs prospective analyses for linear models, with
a variety of goals:

e determining the sample size required to obtain a significant result with adequate
probability (power)

e characterizing the power of a study to detect a meaningful effect

e conducting what-if analyses to assess sensitivity of the power or required sam-
ple size to other factors

You specify the design and the cell means using an exemplary data set, a data set of ar-
tificial values constructed to represent the intended sampling design and the surmised
response means in the underlying population. You specify the model and contrasts
using MODEL and CONTRAST statements similar to those in the GLM procedure.
You specify the remaining parameters with the POWER statement, which is similar
to analysis statements in the new POWER procedure.

KDE Procedure

9.1 The new UNIVAR and BIVAR statements provide improved syntax. The BIVAR
statement lists variables in the input data set for which bivariate kernel density esti-
mates are to be computed. The UNIVAR statement lists variables in the input data
set for which univariate kernel density estimates are to be computed.

LIFETEST Procedure

The new SURVIVAL statement enables you to create confidence bands (also known
as simultaneous confidence intervals) for the survivor funcfign) and to specify

a transformation for computing the confidence bands and the pointwise confidence
intervals. It contains the following options.

e The OUT= option names the output SAS data set that contains survival esti-
mates as in the OUTSURV= option in the PROC LIFETEST statement.

e The CONFTYPE-= option specifies the transformation appliegit9 to obtain
the pointwise confidence intervals and the confidence bands. Four transforms
are available: the arcsine-square root transform, the complementary log-log
transform, the logarithmic transform, and the logit transform.

¢ The CONFBAND-= option specifies the confidence bands to add to the OUT=
data set. You can choose the equal precision confidence bands (Nair 1984), or
the Hall-Wellner bands (Hall and Wellner 1980), or both.

e The BANDMAX= option specifies the maximum time for the confidence
bands.

e The BANDMIN= option specifies the minimum time for the confidence bands.
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e The STDERR option adds the column of standard error of the estimated sur-
vivor function to the OUT= data set.

e The ALPHA= option sets the confidence level for pointwise confidence inter-
vals as well as the confidence bands.

The LIFETEST procedure now provides additional tests for comparing two or . 9.1
samples of survival data, including the Tarone-Ware test, Peto-Peto test, modified
Peto-Peto test, and the Fleming-Harring@nfamily of tests. Trend tests for ordered
alternatives can be requested. Also available are stratified tests for comparing survival
function while adjusting for prognostic factors that affect the event rates.

LOESS Procedure

The LOESS procedure now performs DF computations using a sparse method 9.1 1
appropriate. In addition, the DFMETHOD=APPROX option is available.

LOGISTIC Procedure

The new SCORE statement enables you to score new data sets and compute fit statis-
tics and ROC curves without refitting the model. Information for a fitted model can

be saved to a SAS data set with the OUTMODEL-= option, while the INMODEL=
option inputs the model information required for the scoring.

The new STRATA statement enables you to perform conditional logistic regression
on highly stratified data using the method of Gail, Lubin, and Rubenstein (1981). The
OFFSET option is now enabled for logistic regression.

The LOGISTIC procedure now forms classification groups using the full formatted
length of the CLASS variable levels.

Several new CLASS parameterizations are available: ordinal, orthogonal effect, or-
thogonal reference, and orthogonal ordinal.

You can now output the design matrix using the new OUTDESIGN= option.

The definition of concordance has been changed to make it more meaningful for
ordinal models. The new definition is consistent with that used in previous releases
for the binary response model.

Enhancements for the exact computations include 9.1

e improved performance
e Monte Carlo method
e mid-p confidence intervals

For an exact conditional analysis, specifying the STRATA statement performs an
efficient stratified analysis. The method of Mehta, Patel, and Senchaudhuri (1992),
which is more efficient than the Hirji, Tsiatis, and Mehta (1989) algorithm for many
problems, is now available with the METHOD=NETWORK option.
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What's New in SAS/STAT 9 and 9.1

MI Procedure

The INITIAL= option in the EM statement sets the initial estimates for the EM al-
gorithm. Either the means and covariances from complete cases or the means and
standard deviations from available cases can be used as the initial estimates for the
EM algorithm. You can also specify the correlations for the initial estimates from
available cases.

For data sets with monotone missingness, the REGPMM option in the MONOTONE
statement uses the predictive mean matching method to impute a value randomly
from a set of observed values whose predicted values are closest to the predicted
value for the missing value from the simulated regression model.

You can specify more than one method in the MONOTONE statement, and for each
imputed variable, the covariates can be specified separately.

The DETAILS option in the MONOTONE statement requests the display of the
model parameters used for each imputation.

The experimental CLASS statement is now available to specify categorical variables.
These classification variables are used either as covariates for imputed variables or as
imputed variables for data sets with monotone missing patterns.

The experimental options LOGISTIC and DISCRIM in the MONOTONE statement
impute missing categorical variables by logistic and discriminant methods, respec-
tively.

MIANALYZE Procedure

You can now specify the PARMS= data set without specifying either the COVB=
or XPXI= option when the data set contains the standard errors for the parameter
estimates.

The DATA= option includes data sets that contain both parameter estimates and their
associated standard errors in each observation of the data set.

The BCOV, WCOV, and TCOV options control the display of the between-
imputation, within-imputation, and total covariance matrices.

A TEST statement tests linear hypotheses about the paraméiek3 = c. For

each TEST statement, the procedure combines the estimate and associated standard
error for each linear component ( a rowlo8). It can also combine the estimates and
associated covariance matrix for all linear components.

The MODELEFFECTS statement lists the effects in the data set to be analyzed. Each
effect is a variable or a combination of variables, and is specified with a special no-
tation using variable names and operators. The STDERR statement lists the standard
errors associated with the effects in the MODELEFFECTS statement when both pa-
rameter estimates and standard errors are saved as variables in the same DATA= data
set.



PHREG Procedure ¢+ 9

The experimental CLASS statement specifies categorical variables. PROC
MIANALYZE reads and combines parameter estimates and covariance matrices for
parameters with CLASS variables.

MIXED Procedure

The MIXED procedure now supports geometrically anisotropic covariance struct 9.1
and covariance models in the Matern class. The LCOMPONENTS option in the
MODEL statement produces one degree of freedom tests for fixed effects that corre-
spond to individual estimable functions for Type |, Il, and Il effects.

The experimental RESIDUAL option of the MODEL statement computes Pears 9.1
type and (internally) studentized residuals. The experimental INFLUENCE option
in the MODEL statement computes influence diagnostics by noniterative or iterative
methods. Experimental ODS graphics display the results for both of these options.

NPAR1IWAY Procedure

The new D option provides the one-sidéd+ and D— statistics for the asymptotic
two-sample Kolmogorov-Smirnov test, in addition to the two-sidedtatistic given

by the EDF option. The KS option in the EXACT statement gives exact tests for the
Kolmogorov-SmirnovD+, D—, and D for two-sample problems.

PHREG Procedure

The new WEIGHT statement enables you to specify case weights when you are us-
ing the BRESLOW or EFRON method for handling ties. Robust sandwich variance
estimators of Binder (1992) are computed for the estimated regression parameters.
You can specify the option NORMALIZE to normalize the weights so that they add
up the actual sample size.

Two options have been added to the TEST statement. AVERAGE and E. The
AVERAGE option enables you to compute a combined estimate of all the effects in
the given TEST statement. This option gives you an easy way to carry out inferences
of the common value of (say) the treatment effects had they been assumed equal.
The E option specifies that the linear coefficients and constants be printed. When the
AVERAGE option is specified along with the E option, the optimal weights of the
average effect are also printed in the same tables as the coefficients.

The recurrence algorithm of Gail, Lubin, and Rubinstein (1981) for computing the
exact discrete partial likelihood and its partial derivatives has been modified to use the
logarithmic scale. This enables a much larger number of ties to be handled without
the numeric problems of overflowing and underflowing.

You can use the PHREG procedure to fit the rate/mean model for the recurrent e 9.1 5
data and obtain prediction of the cumulative mean function for a given pattern of fixed
covariates.
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As an experimental feature, the PHREG procedure now can produce model assess-
ments based on cumulative residuals.

POWER Procedure

9.1 The POWER procedure performs prospective analyses for a variety of goals such as
the following:

e determining the sample size required to get a significant result with adequate
probability (power)

e characterizing the power of a study to detect a meaningful effect

e conducting what-if analyses to assess sensitivity of the power or required sam-
ple size to other factors

This procedure covers a variety of statistical analyses sudhests, equivalence
tests, and confidence intervals for means; exact binomial, chi-square, Fisher’s exact,
and McNemar tests for proportions; multiple regression and correlation; one-way
analysis of variance; and rank tests for comparing survival curves.

The POWER procedure is one of several tools available in SAS/STAT software for
power and sample size analysis. PROC GLMPOWER covers more complex linear
models, and the Power and Sample Size Application provides a user interface and
implements many of the analyses supported in the procedures.

Power and Sample Size Application

The Power and Sample Size Application (PSS) is an interface that provides power and
sample size computations. The application includes tasks for determining sample size
and power for a variety of statistical analyses, includibgsts, ANOVA, proportions,
equivalence testing, linear models, survival analysis, and table statistics. The appli-
cation provides multiple input parameter options, stores results in a project format,
displays power curves, and produces appropriate narratives for the results. Note that
this application is included with SAS/STAT software but needs to be installed from
the Mid Tier CD.

ROBUSTREG Procedure

9.1 The ROBUSTREG procedure provides resistant (stable) results in the presence of
outliers by limiting the influence of outliers. In statistical applications of outlier de-
tection and robust regression, the methods most commonly used today are Huber
(1973) M estimation, high breakdown value estimation, and combinations of these
two methods. The ROBUSTREG procedure provides four such methods: M estima-
tion, LTS estimation, S estimation, and MM estimation. With these four methods, the
ROBUSTREG procedure acts as an integrated tool for outlier detection and robust
regression with various contaminated data. The ROBUSTREG procedure is scalable
such that it can be used for applications in data cleansing and data mining.
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SURVEYFREQ Procedure

The SURVEYFREQ procedure produces one-way-tway frequency and crosstabu-

lation tables for survey data. These tables include estimates of totals and proportions
(overall, row percentages, column percentages) and the corresponding standard er-
rors. Like the other survey procedures, PROC SURVEYFREQ computes these vari-
ance estimates based on the sample design used to obtain the survey data. The design
can be a complex sample survey design with stratification, clustering, and unequal
weighting. PROC SURVEYFREQ also provides design-based tests of association
between variables.

SURVEYLOGISTIC Procedure

The SURVEYLOGISTIC procedure performs logistic regression on data that € 9.1
from a survey sampling scheme. PROC SURVEYLOGISTIC incorporates com-
plex survey sample designs, including designs with stratification, clustering, and
unequal weighting, in its estimation process. Variances of the regression param-
eters and odds ratios are computed using a Taylor expansion approximation. The
SURVEYLOGISTIC procedure is similar in syntax to the LOGISTIC procedure, and

it can fit link functions such as the logit, cumulative logit, generalized logit, pro-
bit, and complementary log-log functions. Maximum likelihood estimation of the
regression coefficients is carried out with either the Fisher-scoring algorithm or the
Newton-Raphson algorithm.

SURVEYMEANS Procedure

The STACKING option requests the procedure to produce the output data sets using
a stacking table structure, which was the default in earlier releases. The new default
is to produce a rectangular table structure in the output data sets. The STACKING
option affects the Domain, Ratio, Statistics, and Stratalnfo tables.

One-sided confidence limits are now available for descriptive statistics. 9.1

SURVEYREG Procedure

The SURVEYREG procedure now provides the ability to form classification groups
using the full formatted length of the CLASS variable levels, instead of just the first
16 characters of the levels. The ANOVA option in the MODEL statement requests
that the ANOVA table be included in the output.
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SURVEYSELECT Procedure

The OUTALL option produces an output data set that includes all observations
from the DATA= input data set, both those observations selected for the sample
and those observations not selected. With the OUTALL option, the OUT= data set
contains a variabl&elected that indicates whether or not the observation was se-
lected. The OUTALL option is available for equal probability selection methods
(METHOD=SRS, URS, SYS, and SEQ).

The SELECTALL option includes all stratum observations in the sample when
the stratum sample size exceeds the number of observations in the stratum. The
SELECTALL option is available for without-replacement selection methods
(METHOD=SRS, SYS, SEQ, PPS, and RPBaMPFORD). It is not available for
with-replacement or with-minimum-replacement methods, or for those PPS methods
that select two units per stratum.

9.1 The OUTSEED option includes the initial seed for each stratum in the output data
set. Additionally, you can input initial seeds by strata with the SEED=SAS-data-set
option.

TPHREG Procedure

The experimental TPHREG procedure adds the CLASS statement to the PHREG
procedure. The CLASS statement enables you to specify categorical variables (also
known as CLASS variables) as explanatory variables. Explanatory effects for the

model, including covariates, main effects, interactions, and nested effects, can be
specified in the same way as in the GLM procedure. The CLASS statement supports
less-than-full-rank parameterization as well as various full-rank parameterizations

such as reference coding and effect coding. Other CLASS statement features that
are found in PROC LOGISTIC, such as specifying specific categories as reference
levels, are also available.

The TPHREG procedure also enables you to specify CONTRAST statements for test-
ing customized hypotheses concerning the regression parameters. Each CONTRAST
statement also provides estimation of individual rows of contrasts, which is particu-
larly useful in comparing the hazards between the categories of a CLASS explanatory
variable.

TPSPLINE Procedure

9.1 The COEF option in the OUTPUT statement enables you to output coefficients of the
fitted function.
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TRANSREG Procedure

The TRANSREG procedure has new transformation options for centering and
standardizing variables, CENTER and Z, before the transformations. The new
EXKNOTS= option specifies exterior knots for SPLINE and MSPLINE transforma-
tions and BSPLINE expansions.

The new algorithm option INDIVIDUAL with METHOD=MORALS fits each model
for each dependent variable individually and independently of the other dependent
variables.

With hypothesis tests, the TRANSREG procedure now produces a table with the
number of observations, and, when there are CLASS variables, a class level informa-
tion table.
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Chapter 1
Introduction

Overview of SAS/STAT Software

SAS/STAT software provides comprehensive statistical tools for a wide range of sta-
tistical analyses, including analysis of variance, categorical data analysis, cluster
analysis, multiple imputation, multivariate analysis, nonparametric analysis, power
and sample size computations, psychometric analysis, regression, survey data analy-
sis, and survival analysis. A few examples include nonlinear mixed models, general-
ized linear models, correspondence analysis, and robust regression. The software is
constantly being updated to reflect new methodology.

In addition to over sixty procedures for statistical analysis, SAS/STAT software also
includes the Market Research Application (MRA), a point-and-click interface to com-
monly used techniques in market research. The Analyst Application provides conve-
nient access to some of the more commonly used statistical analyses in SAS/STAT
software including analysis of variance, regression, logistic regression, mixed mod-
els, survival analysis, and some multivariate techniques. Also, the new Power and
Sample Size Application (PSS) is an interface to power and sample size computa-
tions. These applications are documented separately.

About This Book

Since SAS/STAT software is a part of the SAS System, this book assumes that you
are familiar with Base SAS software and with the bo&4&S Language Reference:
Dictionary, SAS Language Reference: Concepty] theSAS Procedures Guidét

also assumes that you are familiar with basic SAS System concepts such as creating
SAS data sets with the DATA step and manipulating SAS data sets with the proce-
dures in Base SAS software (for example, the PRINT and SORT procedures).

Chapter Organization

This book is organized as follows.

“What's New in SAS/STAT 9 and 9.1provides information about the changes and
enhancements to SAS/STAT software in SAS 9 and SAS 9.1. It describes several new
procedures as well as numerous new features. SAS 9.1 features are indicated by a 9.1
icon in the margins of these pages.

Chapter 1this chapter, provides an overview of SAS/STAT software and summarizes
related information, products, and services. The next twelve chapters provide some
introduction to the broad areas covered by SAS/STAT software.

Chapter 14, “Using the Output Delivery Systengkplains the fundamentals of us-
ing the Output Delivery System (ODS) to manage your SAS out@hapter 15,
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“Statistical Graphics Using ODS,describes the experimental extension to ODS that
enables a number of statistical procedures to create statistical graphics as easily as
tables.

Subsequent chapters describe the SAS procedures that make up SAS/STAT software.
These chapters appear in alphabetical order by procedure name and are organized as
follows:

e The “Overview” section provides a brief description of the analysis provided
by the procedure.

e The “Getting Started” section provides a quick introduction to the procedure
through a simple example.

e The “Syntax” section describes the SAS statements and options that control the
procedure.

e The “Details” section discusses methodology and miscellaneous details, such
as ODS tables and ODS graphics.
e The “Examples” section contains examples using the procedure.

e The “References” section contains references for the methodology and for ex-
amples of the procedure.

Following the chapters on the SAS/STAT procedumsgpendix A, “Special SAS
Data Sets,'documents the special SAS data sets associated with SAS/STAT proce-
dures.

Typographical Conventions

This book uses several type styles for presenting information. The following list
explains the meaning of the typographical conventions used in this book:

roman is the standard type style used for most text.

UPPERCASE ROMAN s used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However, you can
enter these elements in your own SAS programs in lowercase, up-
percase, or a mixture of the two.

UPPERCASE BOLD is used in the “Syntax” sections’ initial lists of SAS state-
ments and options.

oblique is used for user-supplied values for options in the syntax defini-
tions. In the text, these values are writtentalic.

helvetica is used for the names of variables and data sets when they appear
in the text.

bold is used to refer to matrices and vectors.

italic is used for terms that are defined in the text, for emphasis, and for

references to publications.

monospace is used for example code. In most cases, this book uses lowercase
type for SAS code.
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Options Used in Examples

Output of Examples

Most of the output shown in this book is produced with the following SAS System
options:

options linesize=80 pagesize=200 nonumber nodate;

The template STATDOC.TPL is used to create the HTML output that appears in the
online documentation. A style template controls stylistic HTML elements such as
colors, fonts, and presentation attributes. The style template is specified in the ODS
HTML statement as follows:

ODS HTML style=statdoc;

If you run the examples, you may get slightly different output. This is a function of
the SAS System options used and the precision used by your computer for floating-
point calculations.

Graphics Options

Some of the graphical output displayed in the examples is generated with the experi-
mental ODS graphics system. Other examples use SAS/GRAPH software, including
the GOPTIONS statement and PROC GPLOT. The rest of this section provides infor-
mation on the specific set of options and symbol statements used to generate graphical
output using SAS/GRAPH software.

The code you see in the examples creates the color graphics that appear in the online
version of this book. A slightly different set of options and statements is used to
create the black-and-white graphics that appear in the printed version of the book.

If you run the examples, you may get slightly different results. This may occur be-
cause not all graphic options for color devices translate directly to black-and-white
output formats. For complete information on SAS/GRAPH software and graphics
options, refer t6AS/GRAPH Software: Reference

The following GOPTIONS statement is used to create the online (color) version of
the graphic output.

filename GSASFILE '<file-specification>’

goptions gsfname=GSASFILE  gsfmode =replace

fileonly

transparency dev = gif
ftext = Swiss Ifactor = 1

htext = 4.0pct htitle = 4.5pct
hsize = 5.625in vsize = 3.5in
noborder cback = white
horigin = 0Oin vorigin = 0in ;
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The following GOPTIONS statement is used to create the black-and-white version of
the graphic output, which appears in the printed version of the manual.

filename GSASFILE '<file-specification>’ ;

goptions gsfname=GSASFILE  gsfmode =replace
gaccess = sasgaedt fileonly

dev = pslepsf

ftext = swiss Ifactor = 1

htext = 3.0pct htitle = 3.5pct
hsize = 5.625in vsize = 3.5in
border cback = white
horigin = 0Oin vorigin = 0in ;

In most of the online examples, the plot symbols are specified as follows:

symboll value=dot color=white height=3.5pct;

The SYMBOLn statements used in online examples order the symbol colors as fol-
lows: white, yellow, cyan, green, orange, blue, and black.

In the examples appearing in the printed manual, symbol statements specify
COLOR=BLACK and order the plot symbols as follows: dot, square, triangle, circle,
plus, x, diamond, and star.

The %PLOTIT Macro

Examples that use the %PLOTIT macro are generated by defining a special macro
variable to specify graphics options. S&gpendix B, “Using the %PLOTIT Macro,”
for details on the options specified in these examples.

Where to Turn for More Information

This section describes other sources of information about SAS/STAT software.

Accessing the SAS/STAT Sample Library

The SAS/STAT sample library includes many examples that illustrate the use of
SAS/STAT software, including the examples used in this documentation. To access
these sample programs, select thelp pull-down menu and then sele@etting
Started with SAS Software From theContentslist, choosd_earning to Use SAS

and therSample SAS Programs Select theSAS/STAT product.
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Online Documentation

This documentation is available online with the SAS System. If you are using the
SAS windowing environment with pull-down menus, you can sef%$ Help and
Documentationfrom theHelp menu. Under th€ontentstab selecBAS/STAT and

then selecBAS/STAT User’s Guidefrom the list of available topics.

Alternatively, you can typdelp STAT in the command line. Note that you can use
the online facility to search the documentation. You can also access the documenta-
tion from the SAS Web site. Go wupport.sas.comand selecDocumentation for

more detail.

SAS Institute Technical Support Services

As with all SAS Institute products, the SAS Institute Technical Support staff is avail-
able to respond to problems and answer technical questions regarding the use of
SAS/STAT software.

Related SAS Software

Many features not found in SAS/STAT software are available in other parts of the SAS
System. If you don't find something you need in SAS/STAT software, try looking for
the feature in the following SAS software products.

Base SAS Software

The features provided by SAS/STAT software are in addition to the features provided
by Base SAS software. Many data management and reporting capabilities you will
need are part of Base SAS software. RefeB#&5 Language Reference: Concepts
SAS Language Reference: Dictionaand theSAS Procedures Guider documen-
tation of Base SAS software.

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS
System. The DATA step provides a powerful general purpose programming language
that enables you to perform all kinds of data processing tasks. The DATA step is
documented iIIBAS Language Reference: Concepts

Base SAS Procedures

Base SAS software includes many useful SAS procedures. Base SAS procedures
are documented in thBAS Procedures Guid& he following is a list of Base SAS
procedures you may find useful:

CORR compute correlations
RANK compute rankings or order statistics
STANDARD standardize variables to a fixed mean and variance

MEANS compute descriptive statistics and summarizing or collapsing data
over cross sections
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TABULATE print descriptive statistics in tabular format
UNIVARIATE compute descriptive statistics

SAS/ETS Software

SAS/ETS software provides SAS procedures for econometrics and time series anal-
ysis. It includes capabilities for forecasting, systems modeling and simulation, sea-

sonal adjustment, and financial analysis and reporting. In addition, SAS/ETS soft-

ware includes an interactive time series forecasting system.

SAS/GRAPH Software

SAS/GRAPH software includes procedures that create two- and three-dimensional
high-resolution color graphics plots and charts. You can generate output that graphs
the relationship of data values to one another, enhance existing graphs, or simply
create graphics output that is not tied to data.

SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming lan-
guage (Interactive Matrix Language) in a dynamic, interactive environment. The
fundamental object of the language is a data matrix. You can use SAS/IML soft-
ware interactively (at the statement level) to see results immediately, or you can store
statements in a module and execute them later. The programming is dynamic be-
cause necessary activities such as memory allocation and dimensioning of matrices
are done automatically. SAS/IML software is of interest to users of SAS/STAT soft-
ware because it enables you to program your methods in the SAS System.

SAS/INSIGHT Software

SAS/INSIGHT software is a highly interactive tool for data analysis. You can ex-
plore data through a variety of interactive graphs including bar charts, scatter plots,
box plots, and three-dimensional rotating plots. You can examine distributions and
perform parametric and nonparametric regression, analyze general linear models and
generalized linear models, examine correlation matrixes, and perform principal com-
ponent analyses. Any changes you make to your data show immediately in all graphs
and analyses. You can also configure SAS/INSIGHT software to produce graphs and
analyses tailored to the way you work.

SAS/INSIGHT software may be of interest to users of SAS/STAT software for inter-
active graphical viewing of data, editing data, exploratory data analysis, and checking
distributional assumptions.
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SAS/OR Software

SAS/OR software provides SAS procedures for operations research and project plan-
ning and includes a point-and-click interface to project management. Its capabilities
include the following:

e solving transportation problems

e linear, integer, and mixed-integer programming
e nonlinear programming

e scheduling projects

e plotting Gantt charts

e drawing network diagrams

¢ solving optimal assignment problems

e network flow programming

SAS/OR software may be of interest to users of SAS/STAT software for its mathe-
matical programming features. In particular, the NLP procedure in SAS/OR software
solves nonlinear programming problems, and it can be used for constrained and un-
constrained maximization of user-defined likelihood functions.

SAS/QC Software

SAS/QC software provides a variety of procedures for statistical quality control and
quality improvement. SAS/QC software includes procedures for

e Shewhart control charts

e cumulative sum control charts
e moving average control charts
e process capability analysis

e Ishikawa diagrams

e Pareto charts

e experimental design

SAS/QC software also includes the ADX interface for experimental design.
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Chapter 2

Introduction to Regression
Procedures

Overview

This chapter reviews SAS/STAT software procedures that are used for regression
analysis: CATMOD, GLM, LIFEREG, LOESS, LOGISTIC, NLIN, ORTHOREG,
PLS, PROBIT, ROBUSTREG, REG, RSREG, and TRANSREG. The REG procedure
provides the most general analysis capabilities; the other procedures give more spe-
cialized analyses. This chapter also briefly mentions several procedures in SAS/ETS
software.

Introduction

Many SAS/STAT procedures, each with special features, perform regression analysis.
The following procedures perform at least one type of regression analysis:

CATMOD analyzes data that can be represented by a contingency table.
PROC CATMOD fits linear models to functions of response fre-
guencies, and it can be used for linear and logistic regression. See
Chapter 4, “Introduction to Categorical Data Analysis Procedures,”
and Chapter 22, “The CATMOD Procedure for more informa-
tion.

GENMOD fits generalized linear models. PROC GENMOD is especially
suited for responses with discrete outcomes, and it performs logis-
tic regression and Poisson regression as well as fitting Generalized
Estimating Equations for repeated measures data. Chegpter
4, “Introduction to Categorical Data Analysis Proceduresyid
Chapter 31, “The GENMOD Procedurefér more information.

GLM uses the method of least squares to fit general linear models. In
addition to many other analyses, PROC GLM can perform sim-
ple, multiple, polynomial, and weighted regression. PROC GLM
has many of the same input/output capabilities as PROC REG,
but it does not provide as many diagnostic tools or allow inter-
active changes in the model or data. SF®pter 3, “Introduction
to Analysis-of-Variance ProceduresgndChapter 32, “The GLM
Procedure,”for more information.

LIFEREG fits parametric models to failure-time data that may be right cen-
sored. These types of models are commonly used in survival analy-
sis. Sed€Chapter 9, “Introduction to Survival Analysis Procedures,”
and Chapter 39, “The LIFEREG Procedurefor more informa-
tion.
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LOESS fits nonparametric models using a local regression method. PROC
LOESS is suitable for modeling regression surfaces where the un-
derlying parametric form is unknown and where robustness in the
presence of ouliers is required. S€hapter 41, “The LOESS
Procedure,”for more information.

LOGISTIC fits logistic models for binomial and ordinal outcomes. PROC
LOGISTIC provides a wide variety of model-building methods
and computes numerous regression diagnostics. Gespter
4, “Introduction to Categorical Data Analysis Proceduresfid
Chapter 42, “The LOGISTIC Procedurefdr more information.

NLIN builds nonlinear regression models. Several different iterative
methods are available. Sé&hapter 50, “The NLIN Procedure,”
for more information.

ORTHOREG  performs regression using the Gentleman-Givens computational
method. For ill-conditioned data, PROC ORTHOREG can produce
more accurate parameter estimates than other procedures such as
PROC GLM and PROC REG. Sétapter 53, “The ORTHOREG
Procedure,”for more information.

PLS performs partial least squares regression, principal components re-
gression, and reduced rank regression, with cross validation for the
number of components. Sé&thapter 56, “The PLS Procedure,”
for more information.

PROBIT performs probit regression as well as logistic regression and ordi-
nal logistic regression. The PROBIT procedure is useful when the
dependent variable is either dichotomous or polychotomous and
the independent variables are continuous. Skepter 60, “The
PROBIT Procedure,for more information.

REG performs linear regression with many diagnostic capabilities, se-
lects models using one of nine methods, produces scatter plots of
raw data and statistics, highlights scatter plots to identify particular
observations, and allows interactive changes in both the regression
model and the data used to fit the model. Sdmpter 61, “The
REG Procedure,for more information.

ROBUSTREG performs robust regression using Huber M estimation and high
breakdown value estimation. PROC ROBUSTREG is suitable
for detecting outliers and providing resistant (stable) results in
the presence of outliers. Séghapter 62, “The ROBUSTREG
Procedure,”for more information.

RSREG builds quadratic response-surface regression models. PROC
RSREG analyzes the fitted response surface to determine the
factor levels of optimum response and performs a ridge analysis to
search for the region of optimum response. Seeapter 63, “The
RSREG Procedure,for more information.

TRANSREG  fits univariate and multivariate linear models, optionally with
spline and other nonlinear transformations. Models include or-
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dinary regression and ANOVA, multiple and multivariate regres-
sion, metric and honmetric conjoint analysis, metric and nonmetric
vector and ideal point preference mapping, redundancy analy-
sis, canonical correlation, and response surface regression. See
Chapter 75, “The TRANSREG Procedurd@r more information.

Several SAS/ETS procedures also perform regression. The following procedures are
documented in th8AS/ETS User’s Guide

AUTOREG implements regression models using time-series data where the er-
rors are autocorrelated. Refer2@ for more details.

PDLREG performs regression analysis with polynomial distributed lags.
Refer to?? for more details.

SYSLIN handles linear simultaneous systems of equations, such as econo-
metric models. Refer t8? for more details.

MODEL handles nonlinear simultaneous systems of equations, such as
econometric models. Refer & for more details.

Introductory Example

Regression analysis is the analysis of the relationship between one variable and an-
other set of variables. The relationship is expressed as an equation that predicts a
response variabléalso called alependent variabler criterion) from a function of
regressor variablegalso calledndependent variables, predictors, explanatory vari-
ables, factorspr carriers) and parameters The parameters are adjusted so that a
measure of fit is optimized. For example, the equation forth@®bservation might

be

yi = Bo + Brxi + €

wherey; is the response variable; is a regressor variablg) and3; are unknown
parameters to be estimated, ands an error term.

You might use regression analysis to find out how well you can predict a child’s
weight if you know that child’s height. Suppose you collect your data by measuring
heights and weights of 19 school children. You want to estimate the intesgeotd

the slopes; of a line described by the equation

Weight= (3 + 31Height+ €

where

Weight is the response variable.
8o, 51 are the unknown parameters.
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Height is the regressor variable.
€ is the unknown error.

The data are included in the following program. The results are displayéidjume
2.1andFigure 2.2

data class;
input Name $ Height Weight Age;
datalines;

Alfred 69.0 112.5 14
Alice 56.5 84.0 13
Barbara 65.3 98.0 13
Carol 62.8 1025 14
Henry 63.5 102.5 14
James 57.3 83.0 12
Jane 59.8 845 12
Janet 62.5 112.5 15
Jeffrey 62.5 84.0 13
John 59.0 995 12
Joyce 51.3 505 11
Judy 64.3 90.0 14
Louise 56.3 77.0 12
Mary 66.5 112.0 15
Philip 72.0 150.0 16
Robert 64.8 128.0 12
Ronald 67.0 133.0 15
Thomas 575 85.0 11
William 66.5 112.0 15

symboll v=dot c=blue height=3.5pct;
proc reg;

model Weight=Height;

plot Weight*Height/cframe=ligr;
run;
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The REG Procedure
Model: MODEL1
Dependent Variable: Weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 7193.24912 7193.24912 57.08 <.0001
Error 17 2142.48772 126.02869
Corrected Total 18 9335.73684
Root MSE 11.22625 R-Square 0.7705
Dependent Mean 100.02632 Adj R-Sq 0.7570
Coeff Var 11.22330
Parameter Estimates
Parameter Standard
Variable DF Estimate Error t Value Pr > |t
Intercept 1 -143.02692 32.27459 -4.43 0.0004
Height 1 3.89903 0.51609 7.55 <.0001
Figure 2.1. Regression for Weight and Height Data
Weight = —143.03 +3.899 Height
160 - N
19
o
Rsq
140 - 7 07705
° AdjRsq
° 0.7570
| RMSE
120 11.226
° ) °
g .
§ 100 ° °
=
[
o P o °
80 o
60 -
®
40
\ \ \ \ \ \ \ \ \ \
50.0 525 55.0 575 60.0 62.5 65.0 67.5 70.0 725
Height
Figure 2.2. Regression for Weight and Height Data
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Estimates of3, and 3, for these data ary = —143.0 andb; = 3.9, so the line is
described by the equation

Weight= —143.0 + 3.9 x Height

Regression is often used in an exploratory fashion to look for empirical relationships,
such as the relationship betwekleight and Weight. In this example Height is

not the cause dfVeight. You would need a controlled experiment to confirm scien-
tifically the relationship. See thH&€€omments on Interpreting Regression Statistics”
section on page 42 for more information.

The method most commonly used to estimate the parameters is to minimize the sum
of squares of the differences between the actual response value and the value pre-
dicted by the equation. The estimates are caléabt-squares estimateand the
criterion value is called therror sum of squares

n

SSE= Z (yz — bo — b1$i)2

=1

whereby andb; are the estimates @k andj, that minimize SSE.

For a general discussion of the theory of least-squares estimation of linear models
and its application to regression and analysis of variance, refer to one of the ap-
plied regression texts, including Draper and Smith (1981), Daniel and Wood (1980),

Johnston (1972), and Weisberg (1985).

SAS/STAT regression procedures produce the following information for a typical
regression analysis.

parameter estimates using the least-squares criterion

estimates of the variance of the error term

e estimates of the variance or standard deviation of the sampling distribution of
the parameter estimates

tests of hypotheses about the parameters

SAS/STAT regression procedures can produce many other specialized diagnostic
statistics, including

¢ collinearity diagnostics to measure how strongly regressors are related to other
regressors and how this affects the stability and variance of the estimates (REG)

¢ influence diagnostics to measure how each individual observation contributes
to determining the parameter estimates, the SSE, and the fitted values
(LOGISTIC, REG, RSREG)

¢ lack-of-fit diagnostics that measure the lack of fit of the regression model by
comparing the error variance estimate to another pure error variance that is not
dependent on the form of the model (CATMOD, PROBIT, RSREG)
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e diagnostic scatter plots that check the fit of the model and highlighted scatter
plots that identify particular observations or groups of observations (REG)

e predicted and residual values, and confidence intervals for the mean and for an
individual value (GLM, LOGISTIC, REG)

e time-series diagnostics for equally spaced time-series data that measure how
much errors may be related across neighboring observations. These diagnostics
can also measure functional goodness of fit for data sorted by regressor or
response variables (REG, SAS/ETS procedures).

General Regression: The REG Procedure

The REG procedure is a general-purpose procedure for regression that

¢ handles multiple regression models
e provides nine model-selection methods

¢ allows interactive changes both in the model and in the data used to fit the
model

¢ allows linear equality restrictions on parameters
¢ tests linear hypotheses and multivariate hypotheses

e produces collinearity diagnostics, influence diagnostics, and partial regression
leverage plots

e saves estimates, predicted values, residuals, confidence limits, and other diag-
nostic statistics in output SAS data sets

e generates plots of data and of various statistics

e “paints” or highlights scatter plots to identify particular observations or groups
of observations

e uses, optionally, correlations or crossproducts for input

Model-selection Methods in PROC REG

The nine methods of model selection implemented in PROC REG are

NONE no selection. This method is the default and uses the full model
given in the MODEL statement to fit the linear regression.

FORWARD forward selection. This method starts with no variables in the
model and adds variables one by one to the model. At each step,
the variable added is the one that maximizes the fit of the model.
You can also specify groups of variables to treat as a unit during
the selection process. An option enables you to specify the crite-
rion for inclusion.

BACKWARD backward elimination. This method starts with a full model and
eliminates variables one by one from the model. At each step, the
variable with the smallest contribution to the model is deleted. You



34 + Chapter 2. Introduction to Regression Procedures

STEPWISE

MAXR

MINR

RSQUARE

CP

ADJRSQ

can also specify groups of variables to treat as a unit during the
selection process. An option enables you to specify the criterion
for exclusion.

stepwise regression, forward and backward. This method is a mod-
ification of the forward-selection method in that variables already
in the model do not necessarily stay there. You can also spec-
ify groups of variables to treat as a unit during the selection pro-
cess. Again, options enable you to specify criteria for entry into
the model and for remaining in the model.

maximum R? improvement. This method tries to find the best

one-variable model, the best two-variable model, and so on.
The MAXR method differs from the STEPWISE method in that

many more models are evaluated with MAXR, which consid-

ers all switches before making any switch. The STEPWISE
method may remove the “worst” variable without considering what
the “best” remaining variable might accomplish, whereas MAXR

would consider what the “best” remaining variable might accom-
plish. Consequently, MAXR typically takes much longer to run

than STEPWISE.

minimum R? improvement. This method closely resembles
MAXR, but the switch chosen is the one that produces the smallest
increase ink2.

finds a specified number of models having the higlig’sin each
of a range of model sizes.

finds a specified number of models with the lowestwithin a
range of model sizes.

finds a specified number of models having the highest adju2ted
within a range of model sizes.

Nonlinear Regression: The NLIN Procedure

The NLIN procedure implements iterative methods that attempt to find least-squares
estimates for nonlinear models. The default method is Gauss-Newton, although sev-
eral other methods, such as Newton and Marquardt, are available. You must specify
parameter names, starting values, and expressions for the model. All necessary ana-
lytical derivatives are calculated automatically for you. Grid search is also available
to select starting values for the parameters. Since nonlinear models are often diffi-
cult to estimate, PROC NLIN may not always find the globally optimal least-squares

estimates.
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Response Surface Regression: The RSREG Procedure

The RSREG procedure fits a quadratic response-surface model, which is useful in
searching for factor values that optimize a response. The following features in PROC
RSREG make it preferable to other regression procedures for analyzing response
surfaces:

automatic generation of quadratic effects
a lack-of-fit test

solutions for critical values of the surface

eigenvalues of the associated quadratic form

a ridge analysis to search for the direction of optimum response

Partial Least Squares Regression: The PLS Procedure

The PLS procedure fits models using any one of a number of linear predictive meth-
ods, includingpartial least square$PLS). Ordinary least-squares regression, as im-
plemented in SAS/STAT procedures such as PROC GLM and PROC REG, has the
single goal of minimizing sample response prediction error, seeking linear functions
of the predictors that explain as much variation in each response as possible. The
techniques implemented in the PLS procedure have the additional goal of accounting
for variation in the predictors, under the assumption that directions in the predictor
space that are well sampled should provide better predictiondarobservations
when the predictors are highly correlated. All of the techniques implemented in the
PLS procedure work by extracting successive linear combinations of the predictors,
calledfactors (also calledcomponent®r latent vectory, which optimally address

one or both of these two goals—explaining response variation and explaining pre-
dictor variation. In particular, the method of partial least squares balances the two
objectives, seeking for factors that explain both response and predictor variation.

Regression for lll-conditioned Data: The ORTHOREG
Procedure

The ORTHOREG procedure performs linear least-squares regression using the
Gentleman-Givens computational method, and it can produce more accurate parame-
ter estimates for ill-conditioned data. PROC GLM and PROC REG produce very ac-
curate estimates for most problems. However, if you have very ill-conditioned data,
consider using the ORTHOREG procedure. The collinearity diagnostics in PROC
REG can help you to determine whether PROC ORTHOREG would be useful.



36

.

Chapter 2. Introduction to Regression Procedures

Local Regression: The LOESS Procedure

The LOESS procedure implements a nonparametric method for estimating regression
surfaces pioneered by Cleveland, Devlin, and Grosse (1988). The LOESS procedure
allows great flexibility because no assumptions about the parametric form of the re-
gression surface are needed. Furthermore, the LOESS procedure is suitable when
there are outliers in the data and a robust fitting method is necessary.

Robust Regression: The ROBUSTREG Procedure

The ROBUSTREG procedure implements algorithms to detect outliers and provide
resistant (stable) results in the presence of outliers. The ROBUSTREG procedure
provides four such methods: M estimation, LTS estimation, S estimation, and MM
estimation.

e M estimation was introduced by Huber (1973), and it is the simplest approach

both computationally and theoretically. Although it is not robust with respect
to leverage points, it is still used extensively in analyzing data for which it can
be assumed that the contamination is mainly in the response direction.

Least Trimmed Squares (LTS) estimation is a high breakdown value method
introduced by Rousseeuw (1984). The breakdown value is a measure of the
proportion of contamination that an estimation method can withstand and still

maintain its robustness.

S estimation is a high breakdown value method introduced by Rousseeuw and
Yohai (1984). With the same breakdown value, it has a higher statistical effi-
ciency than LTS estimation.

MM estimation, introduced by Yohai (1987), combines high breakdown value
estimation and M estimation. It has both the high breakdown property and a
higher statistical efficiency than S estimation.

Logistic Regression: The LOGISTIC Procedure

The LOGISTIC procedure fits logistic models, in which the response can be either
dichotomous or polychotomous. Stepwise model selection is available. You can
request regression diagnostics, and predicted and residual values.

Regression with Transformations: The TRANSREG

Procedure

The TRANSREG procedure can fit many standard linear models. In addition, PROC
TRANSREG can find nonlinear transformations of data and fit a linear model to the
transformed variables. This is in contrast to PROC REG and PROC GLM, which

fit linear models to data, or PROC NLIN, which fits nonlinear models to data. The

TRANSREG procedure fits many types of linear models, including

e ordinary regression and ANOVA
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e metric and nonmetric conjoint analysis

e Mmetric and nonmetric vector and ideal point preference mapping

e simple, multiple, and multivariate regression with variable transformations
e redundancy analysis with variable transformations

e canonical correlation analysis with variable transformations

e response surface regression with variable transformations

Regression Using the GLM, CATMOD, LOGISTIC, PROBIT,
and LIFEREG Procedures

The GLM procedure fits general linear models to data, and it can perform regression,
analysis of variance, analysis of covariance, and many other analyses. The following
features for regression distinguish PROC GLM from other regression procedures:

¢ direct specification of polynomial effects

e ease of specifying categorical effects (PROC GLM automatically generates
dummy variables for class variables)

Most of the statistics based on predicted and residual values that are available in
PROC REG are also available in PROC GLM. However, PROC GLM does not pro-
duce collinearity diagnostics, influence diagnostics, or scatter plots. In addition,
PROC GLM allows only one model and fits the full model.

SeeChapter 3, “Introduction to Analysis-of-Variance Procedureaid Chapter 32,
“The GLM Procedure,”for more details.

The CATMOD procedure can perform linear regression and logistic regression of re-
sponse functions for data that can be represented in a contingency tableh&eer

4, “Introduction to Categorical Data Analysis Proceduresafid Chapter 22, “The
CATMOD Procedure,”for more details.

The LOGISTIC and PROBIT procedures can perform logistic and ordinal lo-
gistic regression. Se€hapter 4, “Introduction to Categorical Data Analysis
Procedures,” Chapter 42, “The LOGISTIC Procedure,and Chapter 60, “The
PROBIT Procedure,for additional details.

The LIFEREG procedure is useful in fitting equations to data that may be right-
censored. Se€hapter 9, “Introduction to Survival Analysis Proceduresghd
Chapter 39, “The LIFEREG Procedurefér more details.

Interactive Features in the CATMOD, GLM, and REG
Procedures

The CATMOD, GLM, and REG procedures do not stop after processing a RUN state-
ment. More statements can be submitted as a continuation of the previous statements.
Many new features in these procedures are useful to request after you have reviewed
the results from previous statements. The procedures stop if a DATA step or another
procedure is requested or if a QUIT statement is submitted.
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Statistical Background

The rest of this chapter outlines the way many SAS/STAT regression procedures cal-
culate various regression quantities. Exceptions and further details are documented
with individual procedures.

Linear Models

In matrix algebra notation, a linear model is written as
y=XB+e¢€

whereX is then x k design matrix (rows are observations and columns are the
regressors)3 is thek x 1 vector of unknown parameters, aads then x 1 vector

of unknown errors. The first column & is usually a vector of 1s used in estimating
the intercept term.

The statistical theory of linear models is based on strict classical assumptions. Ideally,
the response is measured with all the factors controlled in an experimentally deter-
mined environment. If you cannot control the factors experimentally, some tests must
be interpreted as being conditional on the observed values of the regressors.

Other assumptions are that

o the form of the model is correct (all important explanatory variables have been
included)

e regressor variables are measured without error
e the expected value of the errors is zero

e the variance of the error (and thus the dependent variable) fat'ttubserva-
tion is o2 /w;, wherew; is a known weight factor. Usuallyy; = 1 for all 7 and
thuso? is the common, constant variance.

o the errors are uncorrelated across observations

When hypotheses are tested, the additional assumption is made that the errors are
normally distributed.

Statistical Model

If the model satisfies all the necessary assumptions, the least-squares estimates are the
best linear unbiased estimates (BLUE). In other words, the estimates have minimum
variance among the class of estimators that are unbiased and are linear functions of
the responses. If the additional assumption that the error term is normally distributed

is also satisfied, then

¢ the statistics that are computed have the proper sampling distributions for hy-
pothesis testing
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e parameter estimates are normally distributed

e various sums of squares are distributed proportional to chi-square, at least un-
der proper hypotheses

e ratios of estimates to standard errors are distributed as Student®r certain
hypotheses

e appropriate ratios of sums of squares are distributed’ asmder certain hy-
potheses

When regression analysis is used to model data that do not meet the assumptions,
the results should be interpreted in a cautious, exploratory fashion. The significance
probabilities under these circumstances are unreliable.

Box (1966) and Mosteller and Tukey (1977, chaps. 12 and 13) discuss the problems
that are encountered with regression data, especially when the data are not under
experimental control.

Parameter Estimates and Associated Statistics

Parameter estimates are formed using least-squares criteria by solving the normal
eguations

(X'WX)b = X'Wy

for the parameter estimatds wherelV is a diagonal matrix with the observed
weights on the diagonal, yielding

b= (X'WX) ' X'Wy

Assume for the present th&t 1 X has full column rank (this assumption is relaxed
later). The variance of the erref is estimated by the mean square error

SSE 1
2
— MSE = § —x;
S n— — x;b

wherex; is theith row of regressors. The parameter estimates are unbiased:

Eb) = B
E(82) = o2

The covariance matrix of the estimates is

VAR(b) = (X'WX) 152
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The estimate of the covariance matrix is obtained by replagingith its estimate,
s2, in the formula preceding:

COVB = (X'WX)ts?

The correlations of the estimates are derived by scaling to 1s on the diagonal.

Let

S = diag((X'WX)1)2
CORRB = S(X'WX)'S

Standard errors of the estimates are computed using the equation
STDERR®;) = / (X'WX);,!s2

where(X'WX);;! is theith diagonal element ofX'WX)~!. The ratio

b;
= STDERRY;)
is distributed as Studentisunder the hypothesis that is zero. Regression pro-
cedures display theratio and the significance probability, which is the probability
under the hypothesis; = 0 of a larger absoluté value than was actually obtained.
When the probability is less than some small level, the event is considered so unlikely
that the hypothesis is rejected.

Type | SS and Type Il SS measure the contribution of a variable to the reduction
in SSE. Type | SS measure the reduction in SSE as that variable is entered into the
model in sequence. Type Il SS are the increment in SSE that results from removing
the variable from the full model. Type Il SS are equivalent to the Type Ill and Type
IV SS reported in the GLM procedure. If Type Il SS are used in the numerator of an
F test, the test is equivalent to théest for the hypothesis that the parameter is zero.

In polynomial models, Type | SS measure the contribution of each polynomial term
after it is orthogonalized to the previous terms in the model. The four types of SS are
described irChapter 11, “The Four Types of Estimable Functions.”

Standardized estimates are defined as the estimates that result when all variables are
standardized to a mean of 0 and a variance of 1. Standardized estimates are com-
puted by multiplying the original estimates by the sample standard deviation of the
regressor variable and dividing by the sample standard deviation of the dependent
variable.

R? is an indicator of how much of the variation in the data is explained by the model.
It is defined as

SSE

2
=1- 2=
R TSS
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where SSE is the sum of squares for error and TSS is the corrected total sum of
squares. The Adjuste®? statistic is an alternative t®? that is adjusted for the
number of parameters in the model. This is calculated as

ADIRSQ=1- """ (1 p?)

wheren is the number of observations used to fit the mogeis the number of
parameters in the model (including the intercept), aisdl if the model includes an
intercept term, and O otherwise.

Tolerances and variance inflation factors measure the strength of interrelationships
among the regressor variables in the model. If all variables are orthogonal to each
other, both tolerance and variance inflation are 1. If a variable is very closely re-
lated to other variables, the tolerance goes to 0 and the variance inflation gets very
large. Tolerance (TOL) is 1 minus tti? that results from the regression of the other
variables in the model on that regressor. Variance inflation (VIF) is the diagonal of
(X'WX)~Lif (X'WX) is scaled to correlation form. The statistics are related as

1
VIFfﬁ

Models Not of Full Rank

If the model is not full rank, then a generalized inverse can be used to solve the normal
equations to minimize the SSE:

b= (X'WX) X'Wy

However, these estimates are not unique since there are an infinite number of so-
lutions using different generalized inverses. PROC REG and other regression pro-
cedures choose a nonzero solution for all variables that are linearly independent of
previous variables and a zero solution for other variables. This corresponds to using a
generalized inverse in the normal equations, and the expected values of the estimates
are the Hermite normal form &’WX multiplied by the true parameters:

E() = (X'WX)" (X'WX)B

Degrees of freedom for the zeroed estimates are reported as zero. The hypotheses
that are not testable haveests displayed as missing. The message that the model is
not full rank includes a display of the relations that exist in the matrix.
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Comments on Interpreting Regression Statistics

In most applications, regression models are merely useful approximations. Reality is
often so complicated that you cannot know what the true model is. You may have to
choose a model more on the basis of what variables can be measured and what kinds
of models can be estimated than on a rigorous theory that explains how the universe
really works. However, even in cases where theory is lacking, a regression model
may be an excellent predictor of the response if the model is carefully formulated
from a large sample. The interpretation of statistics such as parameter estimates may
nevertheless be highly problematical.

Statisticians usually use the word “prediction” in a technical selResictionin this

sense does not refer to “predicting the future” (statisticians callftiiatasting but

rather to guessing the response from the values of the regressors in an observation
taken under the same circumstances as the sample from which the regression equa-
tion was estimated. If you developed a regression model for predicting consumer
preferences in 1958, it may not give very good predictions in 1988 no matter how
well it did in 1958. If it is the future you want to predict, your model must include
whatever relevant factors may change over time. If the process you are studying does
in fact change over time, you must take observations at several, perhaps many, dif-
ferent times. Analysis of such data is the province of SAS/ETS procedures such as
AUTOREG and STATESPACE. Refer to tI8AS/ETS User’s Guider more infor-

mation on these procedures.

The comments in the rest of this section are directed toward linear least-squares re-
gression. Nonlinear regression and non-least-squares regression often introduce fur-
ther complications. For more detailed discussions of the interpretation of regression
statistics, see Darlington (1968), Mosteller and Tukey (1977), Weisberg (1985), and
Younger (1979).

Interpreting Parameter Estimates from a Controlled Experiment

Parameter estimates are easiest to interpret in a controlled experiment in which the
regressors are manipulated independently of each other. In a well-designed experi-
ment, such as a randomized factorial design with replications in each cell, you can
use lack-of-fit tests and estimates of the standard error of prediction to determine
whether the model describes the experimental process with adequate precision. If so,
a regression coefficient estimates the amount by which the mean response changes
when the regressor is changed by one unit while all the other regressors are un-
changed. However, if the model involves interactions or polynomial terms, it may
not be possible to interpret individual regression coefficients. For example, if the
equation includes both linear and quadratic terms for a given variable, you cannot
physically change the value of the linear term without also changing the value of the
gquadratic term. Sometimes it may be possible to recode the regressors, for example
by using orthogonal polynomials, to make the interpretation easier.

If the nonstatistical aspects of the experiment are also treated with sufficient care
(including such things as use of placebos and double blinds), then you can state con-
clusions in causal terms; that is, this change in a regressor causes that change in the
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response. Causality can never be inferred from statistical results alone or from an
observational study.

If the model that you fit is not the true model, then the parameter estimates may
depend strongly on the particular values of the regressors used in the experiment. For
example, if the response is actually a quadratic function of a regressor but you fit a
linear function, the estimated slope may be a large negative value if you use only
small values of the regressor, a large positive value if you use only large values of
the regressor, or near zero if you use both large and small regressor values. When
you report the results of an experiment, it is important to include the values of the
regressors. Itis also important to avoid extrapolating the regression equation outside
the range of regressors in the sample.

Interpreting Parameter Estimates from an Observational Study

In an observational study, parameter estimates can be interpreted as the expected
difference in response of two observations that differ by one unit on the regressor
in question and that have the same values for all other regressors. You cannot make
inferences about “changes” in an observational study since you have not actually
changed anything. It may not be possible even in principle to change one regressor
independently of all the others. Neither can you draw conclusions about causality
without experimental manipulation.

If you conduct an observational study and if you do not know the true form of the
model, interpretation of parameter estimates becomes even more convoluted. A coef-
ficient must then be interpreted as an average over the sampled population of expected
differences in response of observations that differ by one unit on only one regressor.
The considerations that are discussed under controlled experiments for which the true
model is not known also apply.

Comparing Parameter Estimates

Two coefficients in the same model can be directly compared only if the regressors
are measured in the same units. You can make any coefficient large or small just
by changing the units. If you convert a regressor from feet to miles, the parameter
estimate is multiplied by 5280.

Sometimes standardized regression coefficients are used to compare the effects of
regressors measured in different units. Standardizing the variables effectively makes
the standard deviation the unit of measurement. This makes sense only if the standard
deviation is a meaningful quantity, which usually is the case only if the observations
are sampled from a well-defined population. In a controlled experiment, the standard
deviation of a regressor depends on the values of the regressor selected by the exper-
imenter. Thus, you can make a standardized regression coefficient large by using a
large range of values for the regressor.

In some applications you may be able to compare regression coefficients in terms of
the practical range of variation of a regressor. Suppose that each independent vari-
able in an industrial process can be set to values only within a certain range. You can
rescale the variables so that the smallest possible value is zero and the largest possi-
ble value is one. Then the unit of measurement for each regressor is the maximum
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possible range of the regressor, and the parameter estimates are comparable in that
sense. Another possibility is to scale the regressors in terms of the cost of setting a
regressor to a particular value, so comparisons can be made in monetary terms.

Correlated Regressors

In an experiment, you can often select values for the regressors such that the re-

gressors are orthogonal (not correlated with each other). Orthogonal designs have

enormous advantages in interpretation. With orthogonal regressors, the parameter es-
timate for a given regressor does not depend on which other regressors are included in
the model, although other statistics such as standard errogsealdes may change.

If the regressors are correlated, it becomes difficult to disentangle the effects of one
regressor from another, and the parameter estimates may be highly dependent on
which regressors are used in the model. Two correlated regressors may be nonsignif-
icant when tested separately but highly significant when considered together. If two
regressors have a correlation of 1.0, it is impossible to separate their effects.

It may be possible to recode correlated regressors to make interpretation easier. For
example, ifX andY are highly correlated, they could be replaced in a linear regres-
sion by X +Y andX — Y without changing the fit of the model or statistics for other
regressors.

Errors in the Regressors

If there is error in the measurements of the regressors, the parameter estimates must
be interpreted with respect to the measured values of the regressors, not the true
values. A regressor may be statistically nonsignificant when measured with error
even though it would have been highly significant if measured accurately.

Probability Values (p-values)

Probability values-values) do not necessarily measure the importance of a regres-
sor. An important regressor can have a large (nonsignifigavdjue if the sample is
small, if the regressor is measured over a narrow range, if there are large measure-
ment errors, or if another closely related regressor is included in the equation. An
unimportant regressor can have a very smalélue in a large sample. Computing a
confidence interval for a parameter estimate gives you more useful information than
just looking at thep-value, but confidence intervals do not solve problems of mea-
surement errors in the regressors or highly correlated regressors.

Thep-values are always approximations. The assumptions required to compute exact
p-values are never satisfied in practice.

Interpreting R?2

R? is usually defined as the proportion of variance of the response that is predictable
from (that can be explained by) the regressor variables. It may be easier to interpret
V1 — R?, which is approximately the factor by which the standard error of prediction

is reduced by the introduction of the regressor variables.

R? is easiest to interpret when the observations, including the values of both the
regressors and response, are randomly sampled from a well-defined population.
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Nonrandom sampling can greatly distdtt. For example, excessively large val-
ues of R? can be obtained by omitting from the sample observations with regressor
values near the mean.

In a controlled experiment?? depends on the values chosen for the regressors. A
wide range of regressor values generally yields a laffethan a narrow range. In
comparing the results of two experiments on the same variables but with different
ranges for the regressors, you should look at the standard error of prediction (root
mean square error) rather thaA.

Whether a giver?? value is considered to be large or small depends on the context
of the particular study. A social scientist might considerRinof 0.30 to be large,
while a physicist might consider 0.98 to be small.

You can always get ai®? arbitrarily close to 1.0 by including a large number of
completely unrelated regressors in the equation. If the number of regressors is close
to the sample sizeR? is very biased. In such cases, the adjus®dand related
statistics discussed by Darlington (1968) are less misleading.

If you fit many different models and choose the model with the larggstall the
statistics are biased and the&alues for the parameter estimates are not valid. Caution
must be taken with the interpretation 8 for models with no intercept term. As

a general rule, no-intercept models should be fit only when theoretical justification
exists and the data appear to fit a no-intercept framework. i@ those cases is
measuring something different (refer to Kvalseth 1985).

Incorrect Data Values

All regression statistics can be seriously distorted by a single incorrect data value.
A decimal point in the wrong place can completely change the parameter estimates,
R?, and other statistics. It is important to check your data for outliers and influential
observations. The diagnostics in PROC REG are particularly useful in this regard.

Predicted and Residual Values

After the model has been fit, predicted and residual values are usually calculated and
output. The predicted values are calculated from the estimated regression equation;
the residuals are calculated as actual minus predicted. Some procedures can calculate
standard errors of residuals, predicted mean values, and individual predicted values.

Consider theith observation wherg; is the row of regressord; is the vector of
parameter estimates, astlis the mean squared error.

Let
hi = wix;(X'WX) %! (the leverage)

whereX is the design matrix for the observed datais an arbitrary regressor vector
(possibly but not necessarily a row Xf), 1 is a diagonal matrix with the observed
weights on the diagonal, and is the weight corresponding tq.
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Then

7i = x;b (the predicted mean value)
STDERRY;) = +/h;s?/w; (the standard error of the predicted mean)

The standard error of the individual (future) predicted vajues
STDERRYy;) = /(1 + h;)s?/w;

If the predictor vectok; corresponds to an observation in the analysis data, then the
residual for that observation is defined as

RESID, = y; — x;b (the residual)
STDERRRESID) = +/(1— h;)s?/w; (the standard error of the residual)

The ratio of the residual to its standard error, calledsttuelentized residuais some-
times shown as

RESID
STDERRRESID)

STUDENT; =

There are two kinds of confidence intervals for predicted values. One type of con-
fidence interval is an interval for the mean value of the response. The other type,
sometimes called arediction or forecasting intervalis an interval for the actual
value of a response, which is the mean value plus error.

For example, you can construct for thilh observation a confidence interval that
contains the true mean value of the response with probalbilityv. The upper and
lower limits of the confidence interval for the mean value are

LowerM = x;b— ta/QV hi32/wi
UpperM = x;b +t,/9\/ his?/w;

wheret,, /; is the tabulated statistic with degrees of freedom equal to the degrees of
freedom for the mean squared error.

The limits for the confidence interval for an actual individual response are

Lowerl = x;b —tq/0\/(1+ hi)s?/w;
Upperl = x;b+ ta/Q\/ (1 + hi)52/wi
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Influential observations are those that, according to various criteria, appear to have
a large influence on the parameter estimates. One measure of influence, £Dpok’s
measures the change to the estimates that results from deleting each observation:

1 STDERRj) \?
COOKD = ~STUDENT?
k (STDERRRESID))

wherek is the number of parameters in the model (including the intercept). For more
information, refer to Cook (1977, 1979).

Thepredicted residualor observation is defined as the residual for thil observa-
tion that results from dropping thiéh observation from the parameter estimates. The
sum of squares of predicted residual errors is calledPRESS statistic

RESID,
1—hy

PRESIOQ =

PRESS = ) w,PRESIT
=1

Testing Linear Hypotheses

The general form of a linear hypothesis for the parameters is
HO : L,B =C

whereLis ¢ x k, Bisk x 1, andc is ¢ x 1. To test this hypothesis, the linear function
is taken with respect to the parameter estimates:

Lb—-c
This has variance
Var(Lb — ¢) = LVar(b)L/ = L(X'WX) L/¢?

whereb is the estimate 08.

A quadratic form called theum of squares due to the hypothesisalculated:
SSLb —c) = (Lb — ¢)/(L(X'WX)"L)"}(Lb — c)
If you assume that this is testable, the SS can be used as a numeratoF'detite

_ SSLb-c)/q

F
52

This is compared with a#’ distribution withq anddfe degrees of freedom, where
df e is the degrees of freedom for residual error.
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Multivariate Tests

Multivariate hypotheses involve several dependent variables in the form
Hy: LM =d

whereL is a linear function on the regressor sigkis a matrix of parameterd\I is

a linear function on the dependent side, ahid a matrix of constants. The special

case (handled by PROC REG) in which the constants are the same for each dependent
variable is written

(LB—cj)M =0

wherec is a column vector of constants aj a row vector of 1s. The special case
in which the constants are 0 is

LAM =0

These multivariate tests are covered in detail in Morrison (1976); Timm (1975);
Mardia, Kent, and Bibby (1979); Bock (1975); and other works citecCirapter
5, “Introduction to Multivariate Procedures.”

To test this hypothesis, construct two matricHsandE, that correspond to the nu-
merator and denominator of a univaridigest:

H = M(LB-¢j)(LX'WX) L) }LB - cj)M
E = M (YWY -B'X'WX)B) M

Four test statistics, based on the eigenvaluds ofH or (E+ H)‘lH, are formed.
Let )\; be the ordered eigenvalues Bf 'H (if the inverse exists), and l&t be the
ordered eigenvalues ¢E + H)"'H. It happens thaf; = \;/(1 + \;) and\; =
&/(1— &), and it turns out that; = +/&; is theith canonical correlation.

Let p be the rank of H + E), which is less than or equal to the number of columns
of M. Let g be the rank ofL(X’'WX)~L’. Letv be the error degrees of freedom
ands = min(p, q). Letm = (|p — ¢| — 1)/2, and leth = (v — p — 1)/2. Then the
following statistics test the multivariate hypothesis in various ways, and their p-values
can be approximated ¥ distributions. Note that in the special case that the rank of
H is 1, all of theseF statistics will be the same and the corresponding p-values will
in fact be exact, since in this case the hypothesis is really univariate.
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Wilks’ Lambda

then

1—AYt rt—24
AVt g

is approximatelyF', where

, o ,_Pzatl
2
, - Pi—2
4
. { B i 2 —5>0
1 otherwise

The degrees of freedom gve andrt —2u. The distribution is exact ifain(p, ¢) < 2.
(Refer to Rao 1973, p. 556.)

Pillai’'s Trace

If

V =trace HH+E) ') =) - ii/\‘ => &
i=1 ¢ i=1

then

_2n+s+1 A%
S 2m4s+1 s—V

is approximatelyF’ with s(2m + s + 1) ands(2n + s + 1) degrees of freedom.

Hotelling-Lawley Trace

If

n n

-
!
=
o
8
=
=
!
3/
I
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then forn > 0

F=(U/ce)((4+ (pg+2)/(b—1))/(pq))

is approximatelyF” with pg and4 + (pq + 2)/(b — 1) degrees of freedom, where
b= (p+2n)(g+2n)/(2(2n+1)(n — 1)) andec = (2 + (pg +2)/(b — 1))/(2n);
while forn <0

_ 2(sn+1)U
Cs22m s+ 1)

is approximatelyF' with s(2m + s + 1) and2(sn + 1) degrees of freedom.

Roy’s Maximum Root

then

v—r+q
r

F=0

wherer = max(p,q) is an upper bound o’ that yields a lower bound on the
significance level. Degrees of freedom ar®r the numerator and — r + ¢ for the
denominator.

Tables of critical values for these statistics are found in Pillai (1960).

Exact Multivariate Tests

Beginning with release 9.0 of SAS/STAT software, if you specify the
MSTAT=EXACT option on the appropriate statemerng;values for three of

the four tests are computed exactly (Wilks’ Lambda, the Hotelling-Lawley Trace,
and Roy’s Greatest Root), and thevalues for the fourth (Pillai's trace) are based

on anfF-approximation that is more accurate (but occasionally slightly more liberal)
than the default. The exagtvalues for Roy’'s Greatest Root give an especially
dramatic improvement, since in this case f@pproximation only provides a lower
bound for thep-value. If you use thd’-basedp-value for this test in the usual way,
declaring a test significant 5 < 0.05, then your decisions may be very liberal.
For example, instead of the nominal 5% Type | error rate, such a procedure can
easily have an actual Type | error rate in excess of 30%. By contrast, basing such a
procedure on the exaptvalues will result in the appropriate 5% Type | error rate,
under the usual regression assumptions.

The exacp-values are based on the following sources:



Note that although the MSTAT=EXAC?P-value for Pillai’s Trace is still approxi-

Wilks’ Lambda: Lee (1972), Davis (1979)
Pillai's Trace: Muller (1998)
Hotelling-Lawley Trace: Davis (1970), Davis (1980)

Roy’s Greatest Root: Davis (1972), Pillai and Flury (1984)
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mate, it has “substantially greater accuracy” than the default approximation (Muller

1998).

Since most of the MSTAT=EXACT-values are not based on tliedistribution,

the columns in the multivariate tests table corresponding to this approximation—in
particular, theF' value and the numerator and denominator degrees of freedom—

are no longer displayed, and the column containingstialues is labeled “P Value”

instead of “Pr > F". Thus, for example, suppose you use the following PROC ANOVA
code to perform a multivariate analysis of an archaeological data set:

2.070
2.074
2.090
2.093
2.125
2.146
2.054
2.088
2.093
2.114

1.580
1.602
1.613
1.613
1.663
1.681
1.580
1.602
1.643
1.643

data Skulls;
input Loc $20. Basal Occ Max;

datalines;

Minas Graes, Brazil 2.068
Minas Graes, Brazil 2.068
Minas Graes, Brazil 2.090
Minas Graes, Brazil 2.097
Minas Graes, Brazil 2.117
Minas Graes, Brazil 2.140
Matto Grosso, Brazil 2.045
Matto Grosso, Brazil 2.076
Matto Grosso, Brazil 2.090
Matto Grosso, Brazil 2.111
Santa Cruz, Bolivia 2.093

Santa
Santa

Cruz, Bolivia 2.100
Cruz, Bolivia 2.104

proc anova data=Skulls;
class Loc;
model Basal Occ Max
manova h=Loc;
ods select MultStat;

run;

The default multivariate tests, based on f@pproximations, are shown Figure

2.3

2.098
2.106
2.101

= Loc

1.653
1.623
1.653

/ nouni;
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The ANOVA Procedure
Multivariate Analysis of Variance

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc
E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value F Value Num DF Den DF Pr>F
Wilks' Lambda 0.60143661 0.77 6 16 0.6032
Pillai’'s Trace 0.44702843 0.86 6 18 0.5397
Hotelling-Lawley Trace 0.58210348 0.75 6 9.0909 0.6272
Roy’s Greatest Root 0.35530890 1.07 3 9 0.4109

NOTE: F Statistic for Roy’'s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Figure 2.3. Default Multivariate Tests

If you specify MSTAT=EXACT on the MANOVA statement

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc / mstat=exact;
ods select MultStat;
run;

then the displayed output is the much simpler table showtigare 2.4

The ANOVA Procedure
Multivariate Analysis of Variance

MANOVA Tests for the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc
E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value P-Value
Wilks’ Lambda 0.60143661 0.6032
Pillai's Trace 0.44702843 0.5521
Hotelling-Lawley Trace 0.58210348 0.6337
Roy’s Greatest Root 0.35530890 0.7641

Figure 2.4. Multivariate Tests with MSTAT=EXACT

Notice that thep-value for Roy’s Greatest Root is substantially larger in the new table,
and correspondingly more in line with tipevalues for the other tests.

If you reference the underlying ODS output object for the table of multivariate statis-
tics, it is important to note that its structure does not depend on the value of the
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MSTAT= specification. In particular, it always contains columns corresponding to
both the default MSTAT=FAPPROX and the MSTAT=EXACT tests. Moreover, since
the MSTAT=FAPPROX tests are relatively cheap to compute, the columns corre-
sponding to them are always filled in, even though they are not displayed when you
specify MSTAT=EXACT. On the other hand, for MSTAT=FAPPROX (which is the
default), the column of exagtvalues contains missing values, and is not displayed.
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Chapter 3

Introduction to Analysis-of-Variance
Procedures

Overview

This chapter reviews the SAS/STAT software procedures that are used for anal-
ysis of variance: GLM, ANOVA, CATMOD, MIXED, NESTED, NPAR1WAY,
TRANSREG, TTEST, and VARCOMP. Also discussed are SAS/STAT and SAS/QC
software procedures for constructing analysis of variance designs: PLAN, FACTEX,
and OPTEX.

The flagship analysis-of-variance procedure is the GLM procedure, which handles
most standard problems. The following are descriptions of PROC GLM and other
procedures that are used for more specialized situations:

ANOVA performs analysis of variance, multivariate analysis of variance,
and repeated measures analysis of variancedtanceddesigns.
PROC ANOVA also performs several multiple comparison tests.

CATMOD fits linear models and performs analysis of variance and repeated
measures analysis of variance for categorical responses.

GENMOD fits generalized linear models and performs analysis of variance in
the generalized linear models framework. The methods are partic-
ularly suited for discrete response outcomes.

GLM performs analysis of variance, regression, analysis of covariance,
repeated measures analysis, and multivariate analysis of variance.
PROC GLM produces several diagnostic measures, performs tests
for random effects, provides contrasts and estimates for customized
hypothesis tests, performs several multiple comparison tests, and
provides tests for means adjusted for covariates.

MIXED performs mixed-model analysis of variance and repeated measures
analysis of variance via covariance structure modeling. Using
likelihood-based or method-of-moment estimates, PROC MIXED
constructs statistical tests and intervals, allows customized con-
trasts and estimates, and computes empirical Bayes predictions.

NESTED performs analysis of variance and analysis of covariance for purely
nested random models.

NPAR1WAY performs nonparametric one-way analysis of rank scores.
TTEST compares the means of two groups of observations.
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TRANSREG fits univariate and multivariate linear models, optionally with
spline and other nonlinear transformations.

VARCOMP estimates variance components for random or mixed models.

The following section presents an overview of some of the fundamental features of
analysis of variance. Subsequent sections describe how this analysis is performed
with procedures in SAS/STAT software. For more detail, see the chapters for the
individual procedures. Additional sources are described iriRederences’section

on page 67.

Statistical Details for Analysis of Variance

Definitions

Analysis of variancANOVA) is a technique for analyzing experimental data in
which one or moregesponsdor dependenor simply Y) variables are measured un-

der various conditions identified by one or more classification variables. The com-
binations of levels for the classification variables form the cells of the experimental
design for the data. For example, an experiment may measure weight change (the
dependent variable) for men and women who participated in three different weight-
loss programs. The six cells of the design are formed by the six combinations of sex
(men, women) and program (A, B, C).

In an analysis of variance, the variation in the response is separated into variation at-
tributable to differences between the classification variables and variation attributable
to random error. An analysis of variance constructs tests to determine the significance
of the classification effects. A typical goal in an analysis of variance is to compare
means of the response variable for various combinations of the classification vari-
ables.

An analysis of variance may be written as a linear model. Analysis of variance pro-
cedures in SAS/STAT software use the model to predict the response for each ob-
servation. The difference between the actual and predicted responseaésitheal

error. Most of the procedures fit model parameters that minimize the sum of squares
of residual errors. Thus, the method is calledst squares regressioihe variance

due to the random erras?, is estimated by the mean squared error (MSE?Qr

Fixed and Random Effects

The explanatory classification variables in an ANOVA design may represent fixed or
random effects. The levels of a classification variable for a fixed effect give all the
levels of interest, while the levels of a classification variable for a random effect are
typically a subset of levels selected from a population of levels. The following are
examples.

¢ Inalarge drug trial, the levels that correspond to types of drugs are usually con-
sidered to comprise a fixed effect, but the levels corresponding to the various
clinics where the drugs are administered comprise a random effect.
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¢ In agricultural experiments, it is common to declare locations (or plots) as ran-
dom because the levels are chosen randomly from a large population of loca-
tions and you assume fertility to vary normally across locations.

¢ In repeated-measures experiments with people or animals as subjects, subjects
are declared random because they are selected from the larger population to
which you want to generalize.

A typical assumption is that random effects have values drawn from a normally dis-
tributed random process with mean zero and common variance. Effects are declared
random when the levels are randomly selected from a large population of possible
levels. Inferences are made using only a few levels but can be generalized across the
whole population of random effects levels.

The consequence of having random effects in your model is that some observations
are no longer uncorrelated but instead have a covariance that depends on the variance
of the random effect. In fact, a more general approach to random effect models is to
model the covariance between observations.

Tests of Effects

Analysis of variance tests are constructed by comparing independent mean squares.
To test a particular null hypothesis, you compute the ratio of two mean squares that
have the same expected value under that hypothesis; if the ratio is much larger than 1,
then that constitutes significant evidence against the null. In particular, in an analysis-
of-variance model with fixed effects only, the expected value of each mean square has
two components: quadratic functions of fixed parameters and random variation. For
example, for a fixed effect called A, the expected value of its mean square is

E(MS(A)) = Q(8) + o2

Under the null hypothesis of no A effect, the fixed portiondQEf the expected

mean square is zero. This mean square is then compared to another mean square, say
MS(E), that is independent of the first and has expected vajueThe ratio of the

two mean squares

~ MS(A)
~ MS(E)

has theF distribution under the null hypothesis. When the null hypothesis is false, the
numerator term has a larger expected value, but the expected value of the denominator
remains the same. Thus, largevalues lead to rejection of the null hypothesis. The
probability of getting anf’ value at least as large as the one observed given that the
null hypothesis is true is called thegnificance probability valu¢or the p-value).

A p-value of less than 0.05, for example, indicates that data matheal A effect

will yield F values as large as the one observed less than 5% of the time. This is
usually considered moderate evidence that tieeereal A effect. Smallep-values
constitute even stronger evidence. Largeralues indicate that the effect of interest

is less than random noise. In this case, you can conclude either that there is no effect
at all or that you do not have enough data to detect the differences being tested.
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General Linear Models

An analysis-of-variance model can be written as a linear model, which is an equation
that predicts the response as a linear function of parameters and design variables. In
general,

yi = Bovoi + frxri + -+ BTk +6 1=1,2,...,n

wherey; is the response for thih observation3, are unknown parameters to be
estimated, and;; are design variables. Design variables for analysis of variance are
indicator variables; that is, they are always either 1.

The simplest model is to fit a single mean to all observations. In this case there is
only one parametefjy, and one design variabley;, which always has the value of
1

i = Bozoi + €
= Bo+e

The least-squares estimator@fis the mean of thg;. This simple model underlies

all more complex models, and all larger models are compared to this simple mean
model. In writing the parameterization of a linear mod#l,s usually referred to as
theintercept

A one-way model is written by introducing an indicator variable for each level of the
classification variable. Suppose that a variable A has four levels, with two observa-
tions per level. The indicator variables are created as follows:

>
N
>
w
>
=

Intercept Al

1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1

The linear model for this example is
yi = Bo + B1AL; + B2 A2; + B3A3; + B4 A4;
To construct crossed and nested effects, you can simply multiply out all combinations

of the main-effect columns. This is described in detail$pecification of Effects”
in Chapter 32, “The GLM Procedure.”
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Linear Hypotheses

When models are expressed in the framework of linear models, hypothesis tests are
expressed in terms of a linear function of the parameters. For example, you may want
to test thats — 3 = 0. In general, the coefficients for linear hypotheses are some
set ofLs:

Hy: LofBo + L1+ -+ LB =0

Several of these linear functions can be combined to make one joint test. These tests
can be expressed in one matrix equation:

Hy:LB =0

For each linear hypothesis, a sum of squares (SS) due to that hypothesis can be con-
structed. These sums of squares can be calculated either as a quadratic form of the
estimates

SSLA = 0) = (Lb)(L(X'X) L)~ }(Lb)

or, equivalently, as the increase in sums of squares for error (SSE) for the model
constrained by the null hypothesis

SSLS = 0) = SSE(constrained) SSE(full)

This SS is then divided by appropriate degrees of freedom and used as a humerator
of an F statistic.

Analysis of Variance for Fixed Effect Models

PROC GLM for General Linear Models

The GLM procedure is the flagship tool for analysis of variance in SAS/STAT soft-
ware. It performs analysis of variance by using least squares regression to fit gen-
eral linear models, as described in the secti®aneral Linear Modelsbn page 62.
Among the statistical methods available in PROC GLM are regression, analysis of
variance, analysis of covariance, multivariate analysis of variance, and partial corre-
lation.

While PROC GLM can handle most common analysis of variance problems, other
procedures are more efficient or have more features than PROC GLM for certain
specialized analyses, or they can handle specialized models that PROC GLM cannot.
Much of the rest of this chapter is concerned with comparing PROC GLM to other
procedures.
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PROC ANOVA for Balanced Designs

When you design an experiment, you choose how many experimental units to assign
to each combination of levels (or cells) in the classification. In order to achieve good
statistical properties and simplify the computations, you typically attempt to assign
the same number of units to every cell in the design. Such designs arelzieded
designs

In SAS/STAT software, you can use the ANOVA procedure to perform analysis of
variance for balanced data. The ANOVA procedure performs computations for anal-
ysis of variance that assume the balanced nature of the data. These computations are
simpler and more efficient than the corresponding general computations performed
by PROC GLM. Note that PROC ANOVA can be applied to certain designs that are
not balanced in the strict sense of equal numbers of observations for all cells. These
additional designs include all one-way models, regardless of how unbalanced the cell
counts are, as well as Latin squares, which do not have data in all cells. In general,
however, the ANOVA procedure is recommended only for balanced tHatau use
ANOVA to analyze a design that is not balanced, you must assume responsibil-

ity for the validity of the output. You are responsible for recognizing incorrect
results, which may include negative values reported for the sums of squares. If you
are not certain that your data fit into a balanced design, then you probably need the
framework of general linear models in the GLM procedure.

Comparing Group Means with PROC ANOVA and PROC GLM

When you have more than two means to comparel'aast in PROC ANOVA or
PROC GLM tells you whether the means are significantly different from each other,
but it does not tell you which means differ from which other means.

If you have specific comparisons in mind, you can use the CONTRAST statement in
PROC GLM to make these comparisons. However, if you make many comparisons
using some given significance leveél({5, for example), you are more likely to make

a type 1 error (incorrectly rejecting a hypothesis that the means are equal) simply
because you have more chances to make the error.

Multiple comparison methods give you more detailed information about the differ-
ences among the means and enable you to control error rates for a multitude of com-
parisons. A variety of multiple comparison methods are available with the MEANS
statement in both the ANOVA and GLM procedures, as well as the LSMEANS state-
ment in the GLM and MIXED procedures. These are described in detaiurtiple
Comparisonsin Chapter 32, “The GLM Procedure.”

PROC TTEST for Comparing Two Groups

If you want to perform an analysis of variance and have only one classification vari-
able with two levels, you can use PROC TTEST. In this special case, the results gen-
erated by PROC TTEST are equivalent to the results generated by PROC ANOVA or
PROC GLM.

In addition to testing for differences between two groups, PROC TTEST performs a
test for unequal variances. You can use PROC TTEST with balanced or unbalanced
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groups. The PROC NPAR1WAY procedure performs nonparametric analogues to
tests. Se&hapter 12, “Introduction to Nonparametric Analysidgr an overview
andChapter 5Zor details on PROC NPAR1WAY.

Analysis of Variance for Mixed and Random
Effect Models

Just as PROC GLM is the flagship procedure for fixed-effect linear models, the
MIXED procedure is the flagship procedure for random- and mixed-effect linear
models. PROC MIXED fits a variety of mixed linear models to data and enables you
to use these fitted models to make statistical inferences about the data. The default fit-
ting method maximizes the restricted likelihood of the data under the assumption that
the data are normally distributed and any missing data are missing at random. This
general framework accommodates many common correlated-data methods, including
variance component models and repeated measures analyses.

A few other procedures in SAS/STAT software offer limited mixed-linear-model ca-
pabilities. PROC GLM fits some random-effects and repeated-measures models, al-
though its methods are based on method-of-moments estimation and a portion of the
output applies only to the fixed-effects model. PROC NESTED fits special nested
designs and may be useful for large data sets because of its customized algorithms.
PROC VARCOMP estimates variance components models, but all of its methods are
now available in PROC MIXED. PROC LATTICE fits special balanced lattice de-
signs, but, again, the same models are available in PROC MIXED. In general, PROC
MIXED is recommended for nearly all of your linear mixed-model applications.

PROC NLMIXED handles models in which the fixed or random effects enter non-
linearly. It requires that you specify a conditional distribution of the data given
the random effects, with available distributions including the normal, binomial, and
Poisson. You can alternatively code your own distribution with SAS programming
statements. Under a normality assumption for the random effects, PROC NLMIXED
performs maximum likelihood estimation via adaptive Gaussian quadrature and a
dual quasi-Newton optimization algorithm. Besides standard maximum likelihood
results, you can obtain empirical Bayes predictions of the random effects and es-
timates of arbitrary functions of the parameters with delta-method standard errors.
PROC NLMIXED has a wide variety of applications, two of the most common being
nonlinear growth curves and overdispersed binomial data.

Analysis of Variance for Categorical Data and
Generalized Linear Models

A categorical variableis defined as one that can assume only a limited number of
values. For example, a person’s sex is a categorical variable that can assume one of
two values. Variables with levels that simply name a group are said to be measured on
anominal scale Categorical variables can also be measured usirgdinal scale

which means that the levels of the variable are ordered in some way. For example,
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responses to an opinion poll are usually measured on an ordinal scale, with levels
ranging from “strongly disagree” to “no opinion” to “strongly agree.”

For two categorical variables, one measured on an ordinal scale and one measured on
a nominal scale, you may assign scores to the levels of the ordinal variable and test
whether the mean scores for the different levels of the nominal variable are signifi-
cantly different. This process is analogous to performing an analysis of variance on
continuous data, which can be performed by PROC CATMOD. If there amminal
variables, rather thah then PROC CATMOD can do anway analysis of variance

of the mean scores.

For two categorical variables measured on a nominal scale, you can test whether the
distribution of the first variable is significantly different for the levels of the second
variable. This process is an analysis of variance of proportions, rather than means,
and can be performed by PROC CATMOD. The corresponditvgay analysis of
variance can also be performed by PROC CATMOD.

SeeChapter 4, “Introduction to Categorical Data Analysis ProcedurasdChapter
22, “The CATMOD Procedure,’for more information.

The GENMOD procedure uses maximum likelihood estimation to fit generalized lin-
ear models. This family includes models for categorical data such as logistic, probit,
and complementary log-log regression for binomial data and Poisson regression for
count data, as well as continuous models such as ordinary linear regression, gamma
and inverse Gaussian regression models. PROC GENMOD performs analysis of vari-
ance through likelihood ratio and Wald tests of fixed effects in generalized linear
models, and provides contrasts and estimates for customized hypothesis tests. It per-
forms analysis of repeated measures data with generalized estimating equation (GEE)
methods.

SeeChapter 4, “Introduction to Categorical Data Analysis ProcedurasdChapter
31, “The GENMOD Procedure,for more information.

Nonparametric Analysis of Variance

Analysis of variance is sensitive to the distribution of the error term. If the error
term is not normally distributed, the statistics based on normality can be misleading.
The traditional test statistics are callpdrametric testbecause they depend on the
specification of a certain probability distribution except for a set of free parameters.
Parametric tests are said to depend on distributional assumptions. Nonparametric
methods perform the tests without making any strict distributional assumptions. Even
if the data are distributed normally, nonparametric methods are often almost as pow-
erful as parametric methods.

Most nonparametric methods are based on taking the ranks of a variable and ana-
lyzing these ranks (or transformations of them) instead of the original values. The
NPAR1WAY procedure performs a nonparametric one-way analysis of variance.
Other nonparametric tests can be performed by taking ranks of the data (using
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the RANK procedure) and using a regular parametric procedure (such as GLM or
ANOVA) to perform the analysis. Some of these techniques are outlined in the de-
scription of PROC RANK in theSAS Procedures Guidind in Conover and Iman
(1981).

Constructing Analysis of Variance Designs

Analysis of variance is most often used for data from designed experiments. You
can use the PLAN procedure to construct designs for many experiments. For exam-
ple, PROC PLAN constructs designs for completely randomized experiments, ran-
domized blocks, Latin squares, factorial experiments, and balanced incomplete block
designs.

Randomization, or randomly assigning experimental units to cells in a design and
to treatments within a cell, is another important aspect of experimental design. For
either a new or an existing design, you can use PROC PLAN to randomize the exper-
imental plan.

Additional features for design of experiments are available in SAS/QC software. The
FACTEX and OPTEX procedures can construct a wide variety of designs, including
factorials, fractional factorials, and D-optimal or A-optimal designs. These proce-
dures, as well as the ADX Interface, provide features for randomizing and replicating
designs; saving the design in an output data set; and interactively changing the de-
sign by changing its size, use of blocking, or the search strategies used. For more
information, se6&SAS/QC Software: Reference
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Chapter 4

Introduction to Categorical Data
Analysis Procedures

Overview

Several procedures in SAS/STAT software can be used for the analysis of categorical

data:

CATMOD fits linear models to functions of categorical data, facilitating such
analyses as regression, analysis of variance, linear modeling, log-
linear modeling, logistic regression, and repeated measures anal-
ysis. Maximum likelihood estimation is used for the analysis of
logits and generalized logits, and weighted least squares analysis
is used for fitting models to other response functions. lterative pro-
portional fitting (IPF), which avoids the need for parameter esti-
mation, is available for fitting hierarchical log-linear models when
there is a single population.

CORRESP performs simple and multiple correspondence analyses, using a

contingency table, Burt table, binary table, or raw categorical
data as input. For more on PROC CORRESP, Ghapter 5,
“Introduction to Multivariate Procedures,and Chapter 24, “The
CORRESP Procedure.”

FREQ builds frequency tables or contingency tables and can produce nu-
merous statistics. For one-way frequency tables, it can perform
tests for equal proportions, specified proportions, or the binomial
proportion. For contingency tables, it can compute various tests
and measures of association and agreement including chi-square
statistics, odds ratios, correlation statistics, Fisher’s exact test for
any size two-way table, kappa, and trend tests. In addition, it
performs stratified analysis, computing Cochran-Mantel-Haenszel
statistics and estimates of the common relative risk. Exaetlues
and confidence intervals are available for various test statistics and
measures.

GENMOD fits generalized linear models with maximum-likelihood methods.
This family includes logistic, probit, and complementary log-log
regression models for binomial data, Poisson and negative bino-
mial regression models for count data, and multinomial models for
ordinal response data. It performs likelihood ratio and Wald tests
for type I, type lll, and user-defined contrasts. It analyzes repeated
measures data with generalized estimating equation (GEE) meth-
ods.
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LOGISTIC fits linear logistic regression models for discrete response data with
maximume-likelihood methods. It provides four variable selection
methods and computes regression diagnostics. It can also per-
form stratified conditional logistic regression analysis for binary
response data and exact conditional regression analysis for binary
and nominal response data. The logit link function in the logis-
tic regression models can be replaced by the probit function or the
complementary log-log function.

PROBIT fits models with probit, logit, or complementary log-log links for
guantal assay or other discrete event data. It is mainly designed
for dose-response analysis with a natural response rate. It com-
putes the fiducial limits for the dose variable and provides various
graphical displays for the analysis.

Other procedures that perform analyses for categorical data are the TRANSREG
and PRINQUAL procedures. PROC PRINQUAL is summarizedCimapter 5,
“Introduction to Multivariate Procedures,and PROC TRANSREG is summarized

in Chapter 2, “Introduction to Regression Procedures.”

A categorical variableis defined as one that can assume only a limited number of
discrete values. The measurement scale for such a variable is unrestricted. It can be
nominal which means that the observed levels are not ordered. It camdbeal,

which means that the observed levels are ordered in some way. Or it Gatetyal,

which means that the observed levels are ordered and numeric and that any interval
of one unit on the scale of measurement represents the same amount, regardless of
its location on the scale. One example of a categorical variable is litter size; another
is the number of times a subject has been married. A variable that lies on a nominal
scale is sometimes calledqaalitativeor classification variable

Categorical data result from observations on multiple subjects where one or more
categorical variables are observed for each subject. If there is only one categorical
variable, then the data are generally representedifgiaency tablewhich lists each
observed value of the variable and its frequency of occurrence.

If there are two or more categorical variables, then a subjpovBile is defined as

the subject’s observed values for each of the variables. Such categorical data can be
represented by a frequency table that lists each observed profile and its frequency of
occurrence.

If there are exactly two categorical variables, then the data are often represented by
a two-dimensionatontingency tablewhich has one row for each level of variable 1

and one column for each level of variable 2. The intersections of rows and columns,
calledcells correspond to variable profiles, and each cell contains the frequency of
occurrence of the corresponding profile.

If there are more than two categorical variables, then the data can be represented by
a multidimensional contingency tabléerhere are two commonly used methods for
displaying such tables, and both require that the variables be divided into two sets.
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In the first method, one set contains a row variable and a column variable for a two-
dimensional contingency table, and the second set contains all of the other variables.
The variables in the second set are used to form a set of profiles. Thus, the data
are represented as a series of two-dimensional contingency tables, one for each pro-
file. This is the data representation used by PROC FREQ. For example, if you re-
quest tables for RACE*SEX*AGE*INCOME, the FREQ procedure represents the
data as a series of contingency tables: the row variable is AGE, the column variable
is INCOME, and the combinations of levels of RACE and SEX form a set of profiles.

In the second method, one set contains the independent variables, and the other set
contains the dependent variables. Profiles based on the independent variables are
calledpopulation profileswhereas those based on the dependent variables are called
response profiles A two-dimensional contingency table is then formed, with one
row for each population profile and one column for each response profile. Since any
subject can have only one population profile and one response profile, the contingency
table is uniquely defined. This is the data representation used by PROC CATMOD.

Sampling Frameworks and Distribution
Assumptions

This section discusses the sampling frameworks and distribution assumptions for the
CATMOD and FREQ procedures.

Simple Random Sampling: One Population

Suppose you take a simple random sample of 100 people and ask each person the
following question: Of the three colors red, blue, and green, which is your favorite?
You then tabulate the results in a frequency table as showabie 4.1

Table 4.1. One-Way Frequency Table

Favorite Color
Red Blue Green Total
Frequency 52 31 17 10d
Proportion 0.52 0.31 0.17 1.00

In the population you are sampling, you assume there is an unknown probability that
a population member, selected at random, would choose any given color. In order to
estimate that probability, you use the sample proportion

n;
J
pj ==
J n

wheren; is the frequency of thgth response and is the total frequency.

Because of the random variation inherent in any random sample, the frequencies
have a probability distribution representing their relative frequency of occurrence in
a hypothetical series of samples. For a simple random sample, the distribution of
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frequencies for a frequency table with three levels is as follows. The probability that
the first frequency isq, the second frequencyiis, and the third isi3 = n—n; —ns,
is given by

|
n: ny__no__ns3

Pr(ni, no,ng) = Ty Ty

niy !n2!n3!

wherer; is the true probability of observing thigh response level in the population.

This distribution, called thenultinomial distribution can be generalized to any num-
ber of response levels. The special case of two response levels is calléddheal
distribution

Simple random sampling is the type of sampling required by PROC CATMOD when
there is one population. PROC CATMOD uses the multinomial distribution to esti-
mate a probability vector and its covariance matrix. If the sample size is sufficiently
large, then the probability vector is approximately normally distributed as a result of
central limit theory. PROC CATMOD uses this result to compute appropriate test
statistics for the specified statistical model.

Stratified Simple Random Sampling: Multiple Populations

Suppose you take two simple random samples, 50 men and 50 women, and ask the
same question as before. You are now sampling two different populations that may
have different response probabilities. The data can be tabulated as shdainlén

4.2

Table 4.2. Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total
Male 30 10 10 50
Female| 20 10 20 50
Total 50 20 30 100

Note that the row marginal totals (50, 50) of the contingency table are fixed by the
sampling design, but the column marginal totals (50, 20, 30) are random. There
are six probabilities of interest for this table, and they are estimated by the sample
proportions

i

pij = =

ng

wheren,;; denotes the frequency for thith population and thgth response, and;
is the total frequency for théth population. For this contingency table, the sample
proportions are shown ifable 4.3
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Table 4.3. Table of Sample Proportions by Sex

Favorite Color
Sex Red Blue Green Total
Male | 0.60| 0.20 | 0.20 | 1.00
Female| 0.40| 0.20| 0.40 | 1.00

The probability distribution of the six frequencies is f@duct multinomial distri-
bution
nii,ni2 ni3 _n21,.Mm22 __N23

nlnglmyy T g T s a3
Pr(ni1, ni2, n13, na1, na2, nos) =

ni !nlg!mg!ngl !77,22!7123!

wherem;; is the true probability of observing thith response level in th&h pop-
ulation. The product multinomial distribution is simply the product of two or more
individual multinomial distributions since the populations are independent. This dis-
tribution can be generalized to any number of populations and response levels.

Stratified simple random sampling is the type of sampling required by PROC
CATMOD when there is more than one population. PROC CATMOD uses the prod-
uct multinomial distribution to estimate a probability vector and its covariance matrix.

If the sample sizes are sufficiently large, then the probability vector is approximately
normally distributed as a result of central limit theory, and PROC CATMOD uses
this result to compute appropriate test statistics for the specified statistical model.
The statistics are known as Wald statistics, and they are approximately distributed as
chi-square when the null hypothesis is true.

Observational Data: Analyzing the Entire Population

Sometimes the observed data do not come from a random sample but instead rep-
resent a complete set of observations on some population. For example, suppose a
class of 100 students is classified according to sex and favorite color. The results are

shown inTable 4.4

In this case, you could argue that all of the frequencies are fixed since the entire
population is observed; therefore, there is no sampling error. On the other hand,
you could hypothesize that the observed table has only fixed marginals and that the
cell frequencies represent one realization of a conceptual process of assigning color
preferences to individuals. The assignment process is open to hypothesis, which
means that you can hypothesize restrictions on the joint probabilities.

Table 4.4. Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total
Male 16 | 21 20 57
Female| 12 20 11 43
Total 28 41 31 100




76

.

Chapter 4. Introduction to Categorical Data Analysis Procedures

The usual hypothesis (sometimes callfaddomneskis that the distribution of the
column variable (Favorite Color) does not depend on the row variable (Sex). This
implies that, for each row of the table, the assignment process corresponds to a sim-
ple random sample (without replacement) from the finite population represented by
the column marginal totals (or by the column marginal subtotals that remain after
sampling other rows). The hypothesis of randomness induces a probability distribu-
tion on the frequencies in the table; it is called Hypergeometric distributian

If the same row and column variables are observed for each of several populations,
then the probability distribution of all the frequencies can be calledrthkiple hy-
pergeometric distributionEach population is called stratum and an analysis that
draws information from each stratum and then summarizes across them is called a
stratified analysigor ablocked analysi®r amatched analys)s PROC FREQ does

such a stratified analysis, computing test statistics and measures of association.

In general, the populations are formed on the basis of cross-classifications of inde-
pendent variables. Stratified analysis is a method of adjusting for the effect of these
variables without being forced to estimate parameters for them.

The multiple hypergeometric distribution is the one used by PROC FREQ for the
computation of Cochran-Mantel-Haenszel statistics. These statistics are in the class
of randomization model test statistjoghich require minimal assumptions for their
validity. PROC FREQ uses the multiple hypergeometric distribution to compute the
mean and the covariance matrix of a function vector in order to measure the deviation
between the observed and expected frequencies with respect to a particular type of
alternative hypothesis. If the cell frequencies are sufficiently large, then the function
vector is approximately normally distributed as a result of central limit theory, and
FREQ uses this result to compute a quadratic form that has a chi-square distribution
when the null hypothesis is true.

Randomized Experiments

Consider aandomized experimeirt which patients are assigned to one of two treat-
ment groups according to a randomization process that allocates 50 patients to each
group. After a specified period of time, each patient’s status (cured or uncured) is
recorded. Suppose the data showmable 4.5give the results of the experiment. The

null hypothesis is that the two treatments are equally effective. Under this hypothesis,
treatment is a randomly assigned label that has no effect on the cure rate of the pa-
tients. But this implies that each row of the table represents a simple random sample
from the finite population whose cure rate is described by the column marginal to-
tals. Therefore, the column marginals (58, 42) are fixed under the hypothesis. Since
the row marginals (50, 50) are fixed by the allocation process, the hypergeometric
distribution is induced on the cell frequencies. Randomized experiments can also be
specified in a stratified framework, and Cochran-Mantel-Haenszel statistics can be
computed relative to the corresponding multiple hypergeometric distribution.
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Table 4.5. Two-Way Contingency Table: Treatment by Status

Status
Treatment Cured Uncured Total
1 36 14 50
2 22 28 50
Total 58 42 100

Relaxation of Sampling Assumptions

As indicated previously, the CATMOD procedure assumes that the data are from a
stratified simple random sample, so it uses the product multinomial distribution. If
the data are not from such a sample, then in many cases it is still possible to use PROC
CATMOD by arguing that each row of the contingency tadbbesrepresent a simple
random sample from some hypothetical population. The extent to which the infer-
ences are generalizable depends on the extent to which the hypothetical population is
perceived to resemble the target population.

Similarly, the Cochran-Mantel-Haenszel statistics use the multiple hypergeometric
distribution, which requires fixed row and column marginal totals in each contingency
table. If the sampling process does not yield a table with fixed margins, then it is
usually possible to fix the margins through conditioning arguments similar to the ones
used by Fisher when he developed the Exact Test for2 tables. In other words, if

you want fixed marginal totals, you can generally make your analysis conditional on
those observed totals.

For more information on sampling models for categorical data, see Bishop, Fienberg,
and Holland (1975, Chapter 13).

Comparison of FREQ and CATMOD Procedures

PROC FREQ is used primarily to investigate the relationship between two variables;
any confounding variables are taken into account by stratification rather than by pa-
rameter estimation. PROC CATMOD is used to investigate the relationship among
many variables, all of which are integrated into a parametric model.

When PROC CATMOD estimates the covariance matrix of the frequencies, it as-
sumes that the frequencies were obtained by a stratified simple random sampling
procedure. However, PROC CATMOD can also analyze input data that consist of a
function vector and a covariance matrix. Therefore, if the sampling procedure is dif-
ferent, you can estimate the covariance matrix of the frequencies in the appropriate
manner before submitting the data to PROC CATMOD.

For the FREQ procedure, Fisher's Exact Test and Cochran-Mantel-Haenszel statistics
are based on the hypergeometric distribution, which corresponds to fixed marginal
totals. However, by conditioning arguments, these tests are generally applicable to
a wide range of sampling procedures. Similarly, the Pearson and likelihood-ratio
chi-square statistics can be derived under a variety of sampling situations.
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PROC FREQ can do some traditional nonparametric analysis (such as the Kruskal-
Wallis test and Spearman’s correlation) since it can generate rank scores internally.
Fisher’'s Exact Test and the Cochran-Mantel-Haenszel statistics are also inherently
nonparametric. However, the main vehicle for nonparametric analyses in the SAS
System is the NPAR1WAY procedure.

A large sample size is required for the validity of the chi-square distributions, the stan-
dard errors, and the covariance matrices for both PROC FREQ and PROC CATMOD.

If sample size is a problem, then PROC FREQ has the advantage with its CMH statis-
tics because it does not use any degrees of freedom to estimate parameters for con-
founding variables. In addition, PROC FREQ can compute exaetiues for any
two-way table, provided that the sample size is sufficiently small in relation to the
size of the table. It can also produce exastalues for many tests, including the test

of binomial proportions, the Cochran-Armitage test for trend, and the Jonckheere-
Terpstra test for ordered differences among classes.

See the chapters on the FREQ and CATMOD procedures for more information. In
addition, some well-known texts that deal with analyzing categorical data are listed
in the “References” section of this chapter.

Comparison of CATMOD, GENMOD, LOGISTIC,

and PROBIT Procedures

The CATMOD, GENMOD, LOGISTIC, and PROBIT procedures can all be used
for statistical modeling of categorical data. The CATMOD procedure provides max-
imum likelihood estimation for logistic regression, including the analysis of logits
for dichotomous outcomes and the analysis of generalized logits for polychotomous
outcomes. It provides weighted least squares estimation of many other response func-
tions, such as means, cumulative logits, and proportions, and you can also compute
and analyze other response functions that can be formed from the proportions corre-
sponding to the rows of a contingency table. In addition, a user can input and analyze
a set of response functions and user-supplied covariance matrix with weighted least
squares. With the CATMOD procedure, by default, all explanatory (independent)
variables are treated as classification variables.

The GENMOD procedure is also a general statistical modeling tool which fits gener-
alized linear models to data: it fits several useful models to categorical data includ-
ing logistic regression, the proportional odds model, and Poisson regression. The
GENMOD procedure also provides a facility for fitting generalized estimating equa-
tions to correlated response data that are categorical, such as repeated dichotomous
outcomes. The GENMOD procedure fits models using maximum likelihood estima-
tion, and you include classification variables in your models with a CLASS statement.
PROC GENMOD can perform type | and type lll tests, and it provides predicted val-
ues and residuals.

The LOGISTIC procedure is specifically designed for logistic regression. It performs
the usual logistic regression analysis for dichotomous outcomes and it fits the propor-
tional odds model and the generalized logit model for ordinal and nominal outcomes,
respectively, by the method of maximum likelihood. With the CLASS statement, you
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can include independent CLASS variables in the model. This procedure has capa-
bilities for a variety of model-building techniques, including stepwise, forward, and
backward selection. It computes predicted values, the receiver operating characteris-
tics (ROC) curve and the area beneath the curve, and a number of regression diagnos-
tics. It can create output data sets containing these values and other statistics. PROC
LOGISTIC can perform a conditional logistic regression analysis (matched-set and
case-controlled) for binary response data. For small data sets, PROC LOGISTIC can
perform the exact conditional logistic analysis of Hirji, Mehta, and Patel (1987) and
Mehta, Patel, and Senchaudhuri (1992).

The PROBIT procedure is designed for quantal assay or other discrete event data. In
additional to performing the logistic regression analysis, it can estimate the threshold
response rate. PROC PROBIT can also estimate the values of independent variables
that yield a desired response. With the CLASS statement, you can include CLASS
variables in the model. PROC PROBIT allows only the less-than-full-rank parame-
terization for the CLASS variables.

Stokes, Davis, and Koch (2000) provide substantial discussion of these procedures,
particularly the use of the FREQ, LOGISTIC, GENMOD, and CATMOD procedures
for statistical modeling.

Logistic Regression
Dichotomous Response

You have many choices of performing logistic regression in the SAS System. The
CATMOD, GENMOD, LOGISTIC, and PROBIT procedures fit the usual logistic
regression model.

PROC LOGISTIC provides the capability of model-building, and performs condi-
tional logistic regression analysis for case-control studies and exact conditional lo-
gistic regression analysis. You may choose to use it for these reasons.

PROC CATMOD may not be efficient when there are continous independent vari-
ables with large numbers of different values. For a continuous variable with a very
limited number of values, PROC CATMOD may be useful. You list the continuous
variables in the DIRECT statement.

The LOGISTIC, GENMOD, and PROBIT procedures can analyze summarized data
by enabling you to input the numbers of events and trials; the ratio of events to tri-
als must be between 0 and 1. PROC PROBIT enables you to estimate the natural
response rate and compute fiducial limits for the dose variable.

Ordinal Response

PROC LOGISTIC fits the proportional odds model to the ordinal response data by
default. PROC PROBIT fits this model if you specify the logistic distribution, and
PROC GENMOD fits the same model if you specify the CLOGIT link and the multi-
nomial distribution.
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Nominal Response

When the response variable is nominal, there is no concept of ordering of the re-
sponse values. PROC CATMOD fits a logistic model to response functions called
generalized logitsPROC LOGISTIC fits the generalized logit model if you specify
the GLOGIT link.

Parameterization

There are some differences in the way that models are parameterized, which means
that you might get different parameter estimates if you were to perform logistic re-
gression in each of these procedures.

e Parameter estimates from the procedures may differ in sign, depending on the
ordering of response levels, which you can change if you want.

e The parameter estimates associated with a categorical independent variable
may differ among the procedures, since the estimates depend on the coding
of the indicator variables in the design matrix. By default, the design matrix
column produced by PROC CATMOD for a binary independent variable is
coded using the values 1 anrd . The same column produced by the CLASS
statement of PROC PROBIT is coded using 1 and 0. PROC CATMOD uses
the deviation from the mean coding, which is a full-rank parameterization, and
PROC PROBIT uses the less-than-full-rank coding. As a result, the parameter
estimate printed by PROC CATMOD is one-half of the estimate produced by
PROC PROBIT. Both PROC GENMOD and PROC LOGISTIC allow either a
full-rank parameterization or the less-than-full-rank parameterization. See the
“Details” sections in the chapters on the CATMOD, GENMOD, LOGISTIC,
and PROBIT procedures for more information on the generation of the design
matrices used by these procedures.

e The maximum-likelihood algorithm used differs among the procedures. PROC
LOGISTIC uses the Fisher’s scoring method by default, while PROC PROBIT,
PROC GENMOD, and PROC CATMOD use the Newton-Raphson method.
The parameter estimates should be the same for all three procedures, and the
standard errors should be the same for the logistic model. For the normal and
extreme-value (Gompertz) distributions in PROC PROBIT, which correspond
to the probit and cloglog links, respectively, in PROC GENMOD and PROC
LOGISTIC, the standard errors may differ. In general, tests computed using the
standard errors from the Newton-Raphson method will be more conservative.

e The LOGISTIC, GENMOD, and PROBIT procedures can be used to fit
a cumulative regression model for ordinal response data using maximum-
likelihood estimation. PROC LOGISTIC and PROC GENMOD use a different
parameterization from that of PROC PROBIT, which results in different inter-
cept parameters. Estimates of the slope parameters, however, should be the
same for both procedures. The estimated standard errors of the slope estimates
are slightly different between the two procedures because of the different com-
putational algorithms used as default.
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Chapter 5

Introduction to Multivariate
Procedures

Overview

The procedures discussed in this chapter investigate relationships among variables
without designating some as independent and others as dependent. Principal compo-
nent analysis and common factor analysis examine relationships within a single set
of variables, whereas canonical correlation looks at the relationship between two sets
of variables. The following is a brief description of SAS/STAT multivariate proce-
dures:

CORRESP performs simple and multiple correspondence analyses, using a
contingency table, Burt table, binary table, or raw categorical data
as input. Correspondence analysis is a weighted form of principal
component analysis that is appropriate for frequency data.

PRINCOMP performs a principal component analysis and outputs standardized
or unstandardized principal component scores.

PRINQUAL performs a principal component analysis of qualitative data and
multidimensional preference analysis.

FACTOR performs principal component and common factor analyses with
rotations and outputs component scores or estimates of common
factor scores.

CANCORR performs a canonical correlation analysis and outputs canonical
variable scores.

Many other SAS/STAT procedures can also analyze multivariate data, for example,
the CATMOD, GLM, REG, CALIS, and TRANSREG procedures as well as the pro-
cedures for clustering and discriminant analysis.

The purpose oprincipal component analysidRao 1964) is to derive a small num-

ber of linear combinations (principal components) of a set of variables that retain as
much of the information in the original variables as possible. Often a small number
of principal components can be used in place of the original variables for plotting,
regression, clustering, and so on. Principal component analysis can also be viewed
as an attempt to uncover approximate linear dependencies among variables.

The purpose oEommon factor analysi@viulaik 1972) is to explain the correlations

or covariances among a set of variables in terms of a limited number of unobservable,
latent variables. The latent variables are not generally computable as linear combi-
nations of the original variables. In common factor analysis, it is assumed that the
variables are linearly related if not for uncorrelated random erronajue variation
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in each variable; both the linear relations and the amount of unique variation can be
estimated.

Principal component and common factor analysis are often followed by rotation of
the components or factorfRotationis the application of a nonsingular linear trans-
formation to components or common factors to aid interpretation.

The purpose otanonical correlation analysi$Mardia, Kent, and Bibby 1979) is

to explain or summarize the relationship between two sets of variables by finding a
small number of linear combinations from each set of variables that have the highest
possible between-set correlations. Plots of the canonical variables can be useful in
examining multivariate dependencies. If one of the two sets of variables consists of
dummy variables generated from a classification variable, the canonical correlation
is equivalent to canonical discriminant analysis (§#&pter 21, “The CANDISC
Procedure,). If both sets of variables are dummy variables, canonical correlation is
equivalent to simple correspondence analysis.

The purpose oforrespondence analysidebart, Morineau, and Warwick 1984;
Greenacre 1984; Nishisato 1980) is to summarize the associations between a set of
categorical variables in a small number of dimensions. Correspondence analysis com-
putes scores on each dimension for each row and column category in a contingency
table. Plots of these scores show the relationships among the categories.

The PRINQUAL procedure obtains linear and nonlinear transformations of variables
using the method of alternating least squares (Young 1981) to optimize properties
of the transformed variables’ covariance or correlation matrix. PROC PRINQUAL
nonlinearly transforms variables, improving their fit to a principal component model.
The name, PRINQUAL, for principal components of qualitative data, comes from
the special case analysis of fitting a principal component model to nominal and
ordinal scale of measurement variables (Young, Takane, and de Leeuw 1978).
However, PROC PRINQUAL also has facilities for smoothly transforming contin-
uous variables. All of PROC PRINQUAL's transformations are also available in the
TRANSREG procedure, which fits regression models with nonlinear transformations.
PROC PRINQUAL can also perform metric and nonmetric multidimensional prefer-
ence (MDPREF) analyses (Carroll 1972). The PRINQUAL procedure produces very
little displayed output; the results are available in an output data set.

Comparison of the PRINCOMP and FACTOR

Procedures

Although PROC FACTOR can be used for common factor analysis, the default
method is principal components. PROC FACTOR produces the same results as PROC
PRINCOMP except that scoring coefficients from PROC FACTOR are normalized to
give principal component scores with unit variance, whereas PROC PRINCOMP by
default produces principal component scores with variance equal to the correspond-
ing eigenvalue. PROC PRINCOMP can also compute scores standardized to unit
variance.
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PROC PRINCOMP has the following advantages over PROC FACTOR:

e PROC PRINCOMRP is slightly faster if a small number of components is re-
guested.

e PROC PRINCOMP can analyze somewhat larger problems in a fixed amount
of memory.

e PROC PRINCOMP can output scores from an analysis of a partial correlation
or covariance matrix.

e PROC PRINCOMP is simpler to use.

PROC FACTOR has the following advantages over PROC PRINCOMP for principal
component analysis:

e PROC FACTOR produces more output, including the scree (eigenvalue) plot,
pattern matrix, and residual correlations.

e PROC FACTOR does rotations.

If you want to perform a common factor analysis, you must use PROC FACTOR

instead of PROC PRINCOMP. Principal component analysis should never be used
if a common factor solution is desired (Dziuban and Harris 1973; Lee and Comrey
1979).

Comparison of the PRINCOMP and PRINQUAL
Procedures

The PRINCOMP procedure performs principal component analysis. The
PRINQUAL procedure finds linear and nonlinear transformations of variables
to optimize properties of the transformed variables’ covariance or correlation matrix.
One property is the sum of the firgt eigenvalues, which is a measure of the fit
of a principal component model with components. Use PROC PRINQUAL to
find nonlinear transformations of your variables or to perform a multidimensional
preference analysis. Use PROC PRINCOMP to fit a principal component model to
your data or to PROC PRINQUAL's output data set. PROC PRINCOMP produces a
report of the principal component analysis and output data sets. PROC PRINQUAL
produces only an output data set and an iteration history table.
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Comparison of the PRINCOMP and CORRESP
Procedures

As summarized previously, PROC PRINCOMP performs a principal component
analysis of interval-scaled data. PROC CORRESP performs correspondence anal-
ysis, which is a weighted form of principal component analysis that is appropriate for
frequency data. If your data are categorical, use PROC CORRESP instead of PROC
PRINCOMP. Both procedures produce an output data set that can be used with the
%PLOTIT macro. The plots produced from the PROC CORRESP output data set
graphically show relationships among the categories of the categorical variables.

Comparison of the PRINQUAL and CORRESP
Procedures

Both PROC PRINQUAL and PROC CORRESP can be used to summarize associ-
ations among variables measured on a nominal scale. PROC PRINQUAL searches
for a single nonlinear transformation of the original scoring of each nominal variable
that optimizes some aspect of the covariance matrix of the transformed variables.
For example, PROC PRINQUAL could be used to find scorings that maximize the
fit of a principal component model with one component. PROC CORRESP uses the
crosstabulations of nominal variables, not covariances, and produces multiple scores
for each category of each nominal variable. The main conceptual difference between
PROC PRINQUAL and PROC CORRESP is that PROC PRINQUAL assumes that
the categories of a nominal variable correspond to values of a single underlying inter-
val variable, whereas PROC CORRESP assumes that there are multiple underlying
interval variables and therefore uses different category scores for each dimension of
the correspondence analysis. PROC CORRESP scores on the first dimension match
the single set of PROC PRINQUAL scores (with appropriate standardizations for
both analyses).

Comparison of the TRANSREG and PRINQUAL
Procedures

Both the TRANSREG and PRINQUAL procedures are data transformation proce-
dures that have many of the same transformations. These procedures can either di-
rectly perform the specified transformation (such as taking the logarithm of the vari-
able) or search for an optimal transformation (such as a spline with a specified number
of knots). Both procedures can use an iterative, alternating-least-squares analysis.
Both procedures create an output data set that can be used as input to other proce-
dures. PROC PRINQUAL displays very little output, whereas PROC TRANSREG
displays many results. PROC TRANSREG has two sets of variables, usually de-
pendent and independent, and it fits linear models such as ordinary regression and
ANOVA, multiple and multivariate regression, metric and nonmetric conjoint anal-
ysis, metric and nonmetric vector and ideal point preference mapping, redundancy
analysis, canonical correlation, and response surface regression. In contrast, PROC
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PRINQUAL has one set of variables, fits a principal component model or multidimen-
sional preference analysis, and can also optimize other properties of a correlation or
covariance matrix. PROC TRANSREG performs hypothesis testing and can be used
to code experimental designs prior to their use in other analyses.

SeeChapter 2, “Introduction to Regression Procedurefgi more comparisons of
the TRANSREG and REG procedures.
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Chapter 6

Introduction to Discriminant
Procedures

Overview

The SAS procedures for discriminant analysis treat data with one classification vari-
able and several quantitative variables. The purpose of discriminant analysis can be
to find one or more of the following:

e a mathematical rule, atiscriminant functionfor guessing to which class an
observation belongs, based on knowledge of the quantitative variables only

e a set of linear combinations of the quantitative variables that best reveals the
differences among the classes

e asubset of the quantitative variables that best reveals the differences among the

classes

The SAS discriminant procedures are as follows:

DISCRIM

CANDISC

STEPDISC

computes various discriminant functions for classifying observa-
tions. Linear or quadratic discriminant functions can be used for
data with approximately multivariate normal within-class distribu-
tions. Nonparametric methods can be used without making any
assumptions about these distributions.

performs a canonical analysis to find linear combinations of the
quantitative variables that best summarize the differences among
the classes.

uses forward selection, backward elimination, or stepwise selection
to try to find a subset of quantitative variables that best reveals
differences among the classes.

Background

The termdiscriminant analysigFisher 1936; Cooley and Lohnes 1971; Tatsuoka
1971, Kshirsagar 1972; Lachenbruch 1975, 1979; Gnanadesikan 1977; Klecka 1980;
Hand 1981,1982; Silverman, 1986) refers to several different types of analysis.
Classificatory discriminant analysis is used to classify observations into two or more
known groups on the basis of one or more quantitative variables. Classification can be
done by either a parametric method or a nonparametric method in the DISCRIM pro-
cedure. A parametric method is appropriate only for approximately normal within-
class distributions. The method generates either a linear discriminant function (the
within-class covariance matrices are assumed to be equal) or a quadratic discriminant
function (the within-class covariance matrices are assumed to be unequal).



94

.

Chapter 6. Introduction to Discriminant Procedures

When the distribution within each group is not assumed to have any specific dis-
tribution or is assumed to have a distribution different from the multivariate nor-
mal distribution, nonparametric methods can be used to derive classification criteria.
These methods include the kernel method and nearest-neighbor methods. The kernel
method uses uniform, normal, Epanechnikov, biweight, or triweight kernels in esti-
mating the group-specific density at each observation. The within-group covariance
matrices or the pooled covariance matrix can be used to scale the data.

The performance of a discriminant function can be evaluated by estimating error rates
(probabilities of misclassification). Error count estimates and posterior probability

error rate estimates can be evaluated with PROC DISCRIM. When the input data set
is an ordinary SAS data set, the error rates can also be estimated by cross validation.

In multivariate statistical applications, the data collected are largely from distribu-
tions different from the normal distribution. Various forms of nonnormality can arise,
such as qualitative variables or variables with underlying continuous but nonnormal
distributions. If the multivariate normality assumption is violated, the use of para-
metric discriminant analysis may not be appropriate. When a parametric classifica-
tion criterion (linear or quadratic discriminant function) is derived from a nonnormal
population, the resulting error rate estimates may be biased.

If your quantitative variables are not normally distributed, or if you want to clas-
sify observations on the basis of categorical variables, you should consider using the
CATMOD or LOGISTIC procedure to fit a categorical linear model with the classifi-
cation variable as the dependent variable. Press and Wilson (1978) compare logistic
regression and parametric discriminant analysis and conclude that logistic regression
is preferable to parametric discriminant analysis in cases for which the variables do
not have multivariate normal distributions within classes. However, if you do have
normal within-class distributions, logistic regression is less efficient than parametric
discriminant analysis. Efron (1975) shows that with two normal populations having
a common covariance matrix, logistic regression is between one half and two thirds
as effective as the linear discriminant function in achieving asymptotically the same
error rate.

Do not confuse discriminant analysis with cluster analysis. All varieties of discrim-
inant analysis require prior knowledge of the classes, usually in the form of a sam-
ple from each class. In cluster analysis, the data do not include information on class
membership; the purpose is to construct a classificationC&apter 7, “Introduction

to Clustering Procedures.”

Canonical discriminant analysis is a dimension-reduction technique related to prin-
cipal components and canonical correlation, and it can be performed by both the
CANDISC and DISCRIM procedures. A discriminant criterion is always derived

in PROC DISCRIM. If you want canonical discriminant analysis without the use of

a discriminant criterion, you should use PROC CANDISC. Stepwise discriminant
analysis is a variable-selection technique implemented by the STEPDISC procedure.
After selecting a subset of variables with PROC STEPDISC, use any of the other dis-
criminant procedures to obtain more detailed analyses. PROC CANDISC and PROC
STEPDISC perform hypothesis tests that require the within-class distributions to be
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approximately normal, but these procedures can be used descriptively with nonnor-
mal data.

Another alternative to discriminant analysis is to perform a series of univariate one-
way ANOVAs. All three discriminant procedures provide summaries of the univariate
ANOVAs. The advantage of the multivariate approach is that two or more classes that

overlap considerably when each variable is viewed separately may be more distinct
when examined from a multivariate point of view.

Example: Contrasting Univariate and Multivariate Analyses

Consider the two classes indicated by ‘H’ and ‘O’ kigure 6.1 The results are
shown inFigure 6.2

data random;

drop n;

Group = 'H’

don =1 to 20;
X =45 + 2 * normal(57391);
Y = X + .5 + normal(57391);
output;

end;

Group = 'O’

do n =1 to 20;
X =

6.25 + 2 * normal(57391);
Y = X - 1 + normal(57391);
output;

end;

run;

symboll v="H' c=blue;
symbol2 v="O" c=yellow;
proc gplot;

plot Y*X=Group / cframe=ligr nolegend;
run;

proc candisc anova;
class Group;
var X Y,

run;
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Figure 6.1. Groups for Contrasting Univariate and Multivariate Analyses

The CANDISC Procedure

Observations 40 DF Total 39
Variables 2 DF Within Classes 38
Classes 2 DF Between Classes 1

Class Level Information

Variable
Group Name Frequency Weight Proportion
H H 20 20.0000 0.500000
0] o} 20 20.0000 0.500000

Figure 6.2. Contrasting Univariate and Multivariate Analyses
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The CANDISC Procedure

Univariate Test Statistics

F Statistics, Num DF=1, Den DF=38
Total Pooled Between
Standard Standard Standard R-Square
Variable Deviation Deviation Deviation R-Square [/ (1-RSq) F Value Pr > F
X 2.1776 2.1498 0.6820 0.0503 0.0530 2.01 0.1641
Y 2.4215 2.4486 0.2047 0.0037 0.0037 0.14 0.7105

Average R-Square
Unweighted 0.0269868
Weighted by Variance 0.0245201
Multivariate Statistics and Exact F Statistics

S=1 M=0 N=17.5

Statistic Value F Value Num DF Den DF Pr>F
Wilks’ Lambda 0.64203704 10.31 2 37 0.0003
Pillai's Trace 0.35796296 10.31 2 37 0.0003
Hotelling-Lawley Trace 0.55754252 10.31 2 37 0.0003
Roy’'s Greatest Root 0.55754252 10.31 2 37 0.0003

The CANDISC Procedure

Adjusted Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.598300 0.589467 0.102808 0.357963

Eigenvalues of Inv(E)*H
= CanRsg/(1-CanRsq)

Eigenvalue Difference Proportion Cumulative
1 0.5575 1.0000 1.0000

Test of HO: The canonical correlations in the
current row and all that follow are zero

Likelihood Approximate
Ratio F Value Num DF Den DF Pr > F

1 0.64203704 10.31 2 37 0.0003

NOTE: The F statistic is exact.
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The CANDISC Procedure

Total Canonical Structure

Variable Canl
X -0.374883
Y 0.101206

Between Canonical Structure

Variable Canl
X -1.000000
Y 1.000000

Pooled Within Canonical Structure

Variable Canl
X -0.308237
Y 0.081243

The CANDISC Procedure

Total-Sample Standardized Canonical Coefficients

Variable Canl
X -2.625596855
Y 2.446680169

Pooled Within-Class Standardized Canonical Coefficients

Variable Canl
X -2.592150014
Y 2.474116072

Raw Canonical Coefficients

Variable Canl
X -1.205756217
Y 1.010412967

Class Means on Canonical Variables
Group Canl

H 0.7277811475
O - 7277811475
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The univariat&k?s are very small, 0.0503 fof and 0.0037 folY, and neither variable
shows a significant difference between the classes at the 0.10 level.

The multivariate test for differences between the classes is significant at the 0.0003
level. Thus, the multivariate analysis has found a highly significant difference,
whereas the univariate analyses failed to achieve even the 0.10 level. The Raw
Canonical Coefficients for the first canonical varialilanl, show that the classes
differ most widely on the linear combination -1.20575624# 1.010412967% or
approximatelyY - 1.2 X. TheR? betweenCan1l and the class variable is 0.357963

as given by the Squared Canonical Correlation, which is much higher than either
univariateR?.

In this example, the variables are highly correlated within classes. If the within-class
correlation were smaller, there would be greater agreement between the univariate
and multivariate analyses.
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Chapter 7
Introduction to Clustering Procedures

Overview

You can use SAS clustering procedures to cluster the observations or the variables
in a SAS data set. Both hierarchical and disjoint clusters can be obtained. Only nu-
meric variables can be analyzed directly by the procedures, although the DISTANCE
procedure can compute a distance matrix using character or numeric variables.

The purpose of cluster analysis is to place objects into groups or clusters suggested by
the data, not defined a priori, such that objects in a given cluster tend to be similar to
each other in some sense, and objects in different clusters tend to be dissimilar. You
can also use cluster analysis for summarizing data rather than for finding “natural” or
“real” clusters; this use of clustering is sometimes catlexdection(Everitt 1980).

Any generalization about cluster analysis must be vague because a vast number of
clustering methods have been developed in several different fields, with different def-
initions of clusters and similarity among objects. The variety of clustering techniques
is reflected by the variety of terms used for cluster analysis: botryology, classification,
clumping, competitive learning, morphometrics, nosography, nosology, numerical
taxonomy, partitioning, Q-analysis, systematics, taximetrics, taxonorics, typology,
unsupervised pattern recognition, vector quantization, and winner-take-all learning.
Good (1977) has also suggested aciniformics and agminatics.

Several types of clusters are possible:

¢ Disjoint clusters place each object in one and only one cluster.

e Hierarchical clusters are organized so that one cluster may be entirely con-
tained within another cluster, but no other kind of overlap between clusters is
allowed.

e Overlapping clusters can be constrained to limit the number of objects that
belong simultaneously to two clusters, or they can be unconstrained, allowing
any degree of overlap in cluster membership.

e Fuzzy clusters are defined by a probability or grade of membership of each ob-
jectin each cluster. Fuzzy clusters can be disjoint, hierarchical, or overlapping.
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The data representations of objects to be clustered also take many forms. The most
common are

e a square distance or similarity matrix, in which both rows and columns corre-
spond to the objects to be clustered. A correlation matrix is an example of a
similarity matrix.

e a coordinate matrix, in which the rows are observations and the columns are
variables, as in the usual SAS multivariate data set. The observations, the vari-
ables, or both may be clustered.

The SAS procedures for clustering are oriented toward disjoint or hierarchical clus-
ters from coordinate data, distance data, or a correlation or covariance matrix. The
following procedures are used for clustering:

CLUSTER performs hierarchical clustering of observations using eleven ag-
glomerative methods applied to coordinate data or distance data.

FASTCLUS finds disjoint clusters of observations using-aneans method ap-
plied to coordinate data. PROC FASTCLUS is especially suitable
for large data sets.

MODECLUS finds disjoint clusters of observations with coordinate or distance
data using nonparametric density estimation. It can also perform
approximate nonparametric significance tests for the number of
clusters.

VARCLUS performs both hierarchical and disjoint clustering of variables by
oblique multiple-group component analysis.

TREE draws tree diagrams, also callddndrogramsor phenogramsus-
ing output from the CLUSTER or VARCLUS procedures. PROC
TREE can also create a data set indicating cluster membership at
any specified level of the cluster tree.

The following procedures are useful for processing data prior to the actual cluster
analysis:

ACECLUS attempts to estimate the pooled within-cluster covariance matrix
from coordinate data without knowledge of the number or the
membership of the clusters (Art, Gnanadesikan, and Kettenring
1982). PROC ACECLUS outputs a data set containing canonical
variable scores to be used in the cluster analysis proper.

DISTANCE computes various measures of distance, dissimilarity, or similar-
ity between the observations (rows) of a SAS data set. PROC
DISTANCE also provides various nonparametric and parametric
methods for standardizing variables. Different variables can be
standardized with different methods.

PRINCOMP performs a principal component analysis and outputs principal
component scores.
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STDIZE standardizes variables using any of a variety of location and scale
measures, including mean and standard deviation, minimum and
range, median and absolute deviation from the median, vanous
estimators ancd estimators, and some scale estimators designed
specifically for cluster analysis.

Massart and Kaufman (1983) is the best elementary introduction to cluster analysis.
Other important texts are Anderberg (1973), Sneath and Sokal (1973), Duran and
Odell (1974), Hartigan (1975), Titterington, Smith, and Makov (1985), McLachlan
and Basford (1988), and Kaufmann and Rousseeuw (1990). Hartigan (1975) and
Spath (1980) give humerous FORTRAN programs for clustering. Any prospective
user of cluster analysis should study the Monte Carlo results of Milligan (1980),
Milligan and Cooper (1985), and Cooper and Milligan (1984). Important references
on the statistical aspects of clustering include MacQueen (1967), Wolfe (1970), Scott
and Symons (1971), Hartigan (1977; 1978; 1981; 1985), Symons (1981), Everitt
(1981), Sarle (1983), Bock (1985), and Thode et al. (1988). Bayesian methods
have important advantages over maximum likelihood; refer to Binder (1978; 1981),
Banfield and Raftery (1993), and Bensmail et al, (1997). For fuzzy clustering, refer
to Bezdek (1981) and Bezdek and Pal (1992). The signal-processing perspective is
provided by Gersho and Gray (1992). Refer to Blashfield and Aldenderfer (1978) for
a discussion of the fragmented state of the literature on cluster analysis.

Clustering Variables

Factor rotation is often used to cluster variables, but the resulting clusters are fuzzy. It
is preferable to use PROC VARCLUS if you want hard (nonfuzzy), disjoint clusters.
Factor rotation is better if you want to be able to find overlapping clusters. It is
often a good idea to try both PROC VARCLUS and PROC FACTOR with an oblique
rotation, compare the amount of variance explained by each, and see how fuzzy the
factor loadings are and whether there seem to be overlapping clusters.

You can use PROC VARCLUS to harden a fuzzy factor rotation; use PROC FACTOR
to create an output data set containing scoring coefficients and initialize PROC
VARCLUS with this data set:

proc factor rotate=promax score outstat=fact;
run;

proc varclus initial=input proportion=0;
run;

You can use any rotation method instead of the PROMAX method. The SCORE
and OUTSTAT= options are necessary in the PROC FACTOR statement. PROC
VARCLUS reads the correlation matrix from the data set created by PROC FACTOR.
The INITIAL=INPUT option tells PROC VARCLUS to read initial scoring coeffi-
cients from the data set. The option PROPORTION=0 keeps PROC VARCLUS from
splitting any of the clusters.
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Clustering Observations

PROC CLUSTER is easier to use than PROC FASTCLUS because one run produces
results from one cluster up to as many as you like. You must run PROC FASTCLUS
once for each number of clusters.

The time required by PROC FASTCLUS is roughly proportional to the number of
observations, whereas the time required by PROC CLUSTER with most methods
varies with the square or cube of the number of observations. Therefore, you can use
PROC FASTCLUS with much larger data sets than PROC CLUSTER.

If you want to hierarchically cluster a data set that is too large to use with PROC
CLUSTER directly, you can have PROC FASTCLUS produce, for example, 50 clus-
ters, and let PROC CLUSTER analyze these 50 clusters instead of the entire data set.
The MEAN= data set produced by PROC FASTCLUS contains two special variables:

e The variable_FREQ_ gives the number of observations in the cluster.

e The variable_RMSSTD_ gives the root-mean-square across variables of the
cluster standard deviations.

These variables are automatically used by PROC CLUSTER to give the correct re-
sults when clustering clusters. For example, you could specify Ward’s minimum
variance method (Ward 1963),

proc fastclus maxclusters=50 mean=temp;
var X y z;
run;

proc cluster method=ward outtree=tree;
var X y z;
run;

or Wong’s hybrid method (Wong 1982):

proc fastclus maxclusters=50 mean=temp;
var X y z;
run;

proc cluster method=density hybrid outtree=tree;

var X y z;
run;

More detailed examples are given@mapter 23, “The CLUSTER Procedure.”
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Characteristics of Methods for Clustering
Observations

Many simulation studies comparing various methods of cluster analysis have been
performed. In these studies, artificial data sets containing known clusters are pro-
duced using pseudo-random-number generators. The data sets are analyzed by a
variety of clustering methods, and the degree to which each clustering method recov-
ers the known cluster structure is evaluated. Refer to Milligan (1981) for a review

of such studies. In most of these studies, the clustering method with the best overall
performance has been either average linkage or Ward’s minimum variance method.
The method with the poorest overall performance has almost invariably been single
linkage. However, in many respects, the results of simulation studies are inconsistent
and confusing.

When you attempt to evaluate clustering methods, it is essential to realize that
most methods are biased toward finding clusters possessing certain characteristics
related to size (number of members), shape, or dispersion. Methods based on the
least-squares criterion (Sarle 1982), such-aseans and Ward’s minimum variance
method, tend to find clusters with roughly the same number of observations in each
cluster. Average linkage is somewhat biased toward finding clusters of equal variance.
Many clustering methods tend to produce compact, roughly hyperspherical clusters
and are incapable of detecting clusters with highly elongated or irregular shapes. The
methods with the least bias are those based on nonparametric density estimation such
as single linkage and density linkage.

Most simulation studies have generated compact (often multivariate normal) clusters
of roughly equal size or dispersion. Such studies naturally favor average linkage
and Ward's method over most other hierarchical methods, especially single linkage.
It would be easy, however, to design a study using elongated or irregular clusters
in which single linkage would perform much better than average linkage or Ward’s
method (see some of the following examples). Even studies that compare clustering
methods using “realistic” data may unfairly favor particular methods. For example,
in all the data sets used by Mezzich and Solomon (1980), the clusters established by
field experts are of equal size. When interpreting simulation or other comparative
studies, you must, therefore, decide whether the artificially generated clusters in the
study resemble the clusters you suspect may exist in your data in terms of size, shape,
and dispersion. If, like many people doing exploratory cluster analysis, you have no
idea what kinds of clusters to expect, you should include at least one of the relatively
unbiased methods, such as density linkage, in your analysis.

The rest of this section consists of a series of examples that illustrate the performance
of various clustering methods under various conditions. The first, and simplest ex-
ample, shows a case of well-separated clusters. The other examples show cases of
poorly separated clusters, clusters of unequal size, parallel elongated clusters, and
nonconvex clusters.
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Well-Separated Clusters

If the population clusters are sufficiently well separated, almost any clustering method
performs well, as demonstrated in the following example using single linkage. In this
and subsequent examples, the output from the clustering procedures is not shown,
but cluster membership is displayed in scatter plots. The following SAS statements
produceFigure 7.1

data compact;
keep x v;
n=50; scale=1,;
mx=0; my=0; link generate;
mx=8; my=0; link generate;
mx=4; my=8; link generate;
stop;
generate:
do i=1 to n;
x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;
end;
return;
run;

proc cluster data=compact outtree=tree
method=single noprint;
run;

proc tree noprint out=out n=3;

Copy X Yy,
run;

legendl frame cframe=ligr cborder=black
position=center value=(justify=center);
axisl minor=none label=(angle=90 rotate=0);
axis2 minor=none;
proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
titte 'Single Linkage Cluster Analysis’;
titte2 'of Data Containing Well-Separated,
Compact Clusters’;
run;
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Single Linkage Cluster Analysis
of Data Containing Well—Separated, Compact Clusters

CLUSTER e o o | 0o o 2 A A A3

Figure 7.1. Data Containing Well-Separated, Compact Clusters: PROC
CLUSTER with METHOD=SINGLE and PROC GPLOT

Poorly Separated Clusters

To see how various clustering methods differ, you must examine a more difficult
problem than that of the previous example.

The following data set is similar to the first except that the three clusters are much
closer together. This example demonstrates the use of PROC FASTCLUS and five
hierarchical methods available in PROC CLUSTER. To help you compare methods,
this example plots true, generated clusters. Also included is a bubble plot of the
density estimates obtained in conjunction with two-stage density linkage in PROC
CLUSTER. The following SAS statements produggure 7.2

data closer;
keep x y c;
n=50; scale=1,
mx=0; my=0; c=3; link generate;
mx=3; my=0; c=1; link generate;
mx=1; my=2; c=2; link generate;
stop;
generate:
do i=1 to n;
x=rannor(9)*scale+mx;
y=rannor(9)*scale+my;
output;
end;
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return;
run;

title 'True Clusters for Data Containing Poorly Separated,
Compact Clusters’;
proc gplot;
plot y*x=c/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;

run;
True Clusters for Data Containing Poorly Separated, Compact Clusters
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Figure 7.2. Data Containing Poorly Separated, Compact Clusters: Plot of True

Clusters
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The following statements use the FASTCLUS procedure to find three clusters and
the GPLOT procedure to plot the clusters. Since the GPLOT step is repeated sev-
eral times in this example, it is contained in the PLOTCLUS macro. The following
statements produdegure 7.3

%macro plotclus;
legendl frame cframe=ligr cborder=black
position=center value=(justify=center);
axisl minor=none label=(angle=90 rotate=0);
axis2 minor=none;
proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
run;
%mend plotclus;

proc fastclus data=closer out=out maxc=3 noprint;
var x y;
titte 'FASTCLUS Analysis’;
titte2 'of Data Containing Poorly Separated,
Compact Clusters’;

run;
%plotclus;
FASTCLUS Analysis
of Data Containing Poorly Separated, Compact Clusters
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Figure 7.3. Data Containing Poorly Separated, Compact Clusters: PROC
FASTCLUS
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The following SAS statements produEgure 7.4

proc cluster data=closer outtree=tree method=ward noprint;
var X y;
run;

proc tree noprint out=out n=3;
copy X'y,
titte 'Ward”s Minimum Variance Cluster Analysis’;
title2 'of Data Containing Poorly Separated,
Compact Clusters’;

run;
%plotclus;
Ward's Minimum Variance Cluster Analysis
of Data Containing Poorly Separated, Compact Clusters
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Figure 7.4. Data Containing Poorly Separated, Compact Clusters: PROC

CLUSTER with METHOD=WARD
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The following SAS statements produEgure 7.5

proc cluster data=closer outtree=tree method=average noprint;
var X y;
run;

proc tree noprint out=out n=3 dock=5;
copy Xy,
titte 'Average Linkage Cluster Analysis’;
titte2 'of Data Containing Poorly Separated,
Compact Clusters’;

run;
%plotclus;
Average Linkage Cluster Analysis
of Data Containing Poorly Separated, Compact Clusters
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Figure 7.5. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=AVERAGE
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The following SAS statements produEgure 7.6

proc cluster data=closer outtree=tree
method=centroid noprint;
var X y;
run;

proc tree noprint out=out n=3 dock=5;
copy X'y,
title 'Centroid Cluster Analysis’;
titte2 'of Data Containing Poorly Separated,
Compact Clusters’;

run;
%plotclus;
Centroid Cluster Analysis
of Data Containing Poorly Separated, Compact Clusters
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Figure 7.6. Data Containing Poorly Separated, Compact Clusters: PROC

CLUSTER with METHOD=CENTROID
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The following SAS statements produgeyure 7.7
proc cluster data=closer outtree=tree
method=twostage k=10 noprint;
var X ;
run;
proc tree noprint out=out n=3;
copy x y _dens_;
titte 'Two-Stage Density Linkage Cluster Analysis’;
title2 'of Data Containing Poorly Separated,
Compact Clusters’;
run;
%plotclus;
proc gplot;
bubble y*x=_dens_/frame cframe=ligr
vaxis=axisl haxis=axis2;
titte 'Estimated Densities’;
titte2 ‘for Data Containing Poorly Separated,
Compact Clusters’;
run;
Two—Stage Density Linkage Cluster Analysis
of Data Containing Poorly Separated, Compact Clusters
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Figure 7.7. Data Containing Poorly Separated, Compact Clusters: PROC

CLUSTER with METHOD=TWOSTAGE
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Estimated Densities
for Data Containing Poorly Separated, Compact Clusters
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In two-stage density linkage, each cluster is a region surrounding a local maximum
of the estimated probability density function. If you think of the estimated density
function as a landscape with mountains and valleys, each mountain is a cluster, and
the boundaries between clusters are placed near the bottoms of the valleys.



Poorly Separated Clusters

The following SAS statements produEgure 7.8

proc cluster data=closer outtree=tree
method=single noprint;
var X ;
run;

proc tree data=tree noprint out=out n=3 dock=5;
copy Xy,
title 'Single Linkage Cluster Analysis’;
title2 'of Data Containing Poorly Separated,
Compact Clusters’;
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run;
%plotclus;
Single Linkage Cluster Analysis
of Data Containing Poorly Separated, Compact Clusters
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Figure 7.8. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=SINGLE

The two least-squares methods, PROC FASTCLUS and Ward’s, yield the most uni-

form cluster sizes and the best recovery of the true clusters. This result is expected
since these two methods are biased toward recovering compact clusters of equal size.
With average linkage, the lower-left cluster is too large; with the centroid method, the
lower-right cluster is too large; and with two-stage density linkage, the top cluster is
too large. The single linkage analysis resembles average linkage except for the large
number of outliers resulting from the DOCK= option in the PROC TREE statement;

the outliers are plotted as dots (missing values).
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Multinormal Clusters of Unequal Size and Dispersion

In this example, there are three multinormal clusters that differ in size and disper-
sion. PROC FASTCLUS and five of the hierarchical methods available in PROC
CLUSTER are used. To help you compare methods, the true, generated clusters are
plotted. The following SAS statements produGgure 7.9

data unequal;
keep x vy c;
mx=1; my=0; n=20; scale=.5; c=1; link generate;
mx=6; my=0; n=80; scale=2.; c=3; link generate;
mx=3; my=4; n=40; scale=1.; c=2; link generate;
stop;
generate:
do i=1 to n;
x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;
end;
return;
run;

title 'True Clusters for Data Containing Multinormal
Clusters’;
titte2 'of Unequal Size’;
proc gplot;
plot y*x=c/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
run;
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True Clusters for Data Containing Multinormal Clusters
of Unequal Size
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Figure 7.9.

Data Containing Generated Clusters of Unequal Size
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The following statements use the FASTCLUS procedure to find three clusters and the
PLOTCLUS macro to plot the clusters. The statements pro#igige 7.10

proc fastclus data=unequal out=out maxc=3 noprint;
var X v,
titte '"FASTCLUS Analysis’;
titte2 'of Data Containing Compact Clusters of
Unequal Size’;

run;
%plotclus;
FASTCLUS Analysis
of Data Containing Compact Clusters of Unequal Size
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Figure 7.10. Data Containing Compact Clusters of Unequal Size: PROC
FASTCLUS
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The following SAS statements produEgure 7.11

proc cluster data=unequal outtree=tree
method=ward noprint;
var X ;
run;

proc tree noprint out=out n=3;
copy Xy,
titte 'Ward”s Minimum Variance Cluster Analysis’;
title2 'of Data Containing Compact Clusters of
Unequal Size’;

L
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run;
%plotclus;
Ward's Minimum Variance Cluster Analysis
of Data Containing Compact Clusters of Unequal Size
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Figure 7.11. Data Containing Compact Clusters of Unequal Size: PROC

CLUSTER with METHOD=WARD
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The following SAS statements produEgure 7.12

proc cluster data=unequal outtree=tree method=average
noprint;
var X y;
run;

proc tree noprint out=out n=3 dock=5;
copy X'y,
title 'Average Linkage Cluster Analysis’;
titte2 'of Data Containing Compact Clusters of
Unequal Size’;
run;

%plotclus;

Average Linkage Cluster Analysis
of Data Containing Compact Clusters of Unequal Size
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Figure 7.12. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=AVERAGE
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The following SAS statements produEgure 7.13

proc cluster data=unequal outtree=tree
method=centroid noprint;
var X ;
run;

proc tree noprint out=out n=3 dock=5;
copy Xy,
title 'Centroid Cluster Analysis’;
title2 'of Data Containing Compact Clusters of
Unequal Size’;
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run;
%plotclus;
Centroid Cluster Analysis
of Data Containing Compact Clusters of Unequal Size
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Figure 7.13. Data Containing Compact Clusters of Unequal Size: PROC

CLUSTER with METHOD=CENTROID
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The following SAS statements produEgyure 7.14

proc cluster data=unequal outtree=tree method=twostage
k=10 noprint;
var x vy;
run;

proc tree noprint out=out n=3;
copy x y _dens_;
title 'Two-Stage Density Linkage Cluster Analysis’;
titte2 'of Data Containing Compact Clusters of
Unequal Size’;
run;

%plotclus;

proc gplot;
bubble y*x=_dens_/frame cframe=ligr
vaxis=axisl haxis=axis2 ;
title 'Estimated Densities’;
title2 'for Data Containing Compact Clusters of
Unequal Size’;
run;
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Two—Stage Density Linkage Cluster Analysis
of Data Containing Compact Clusters of Unequal Size
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Figure 7.14. Data Containing Compact Clusters of Unequal Size: PROC
g

CLUSTER with METHOD=TWOSTAGE
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The following SAS statements produEgure 7.15

proc cluster data=unequal outtree=tree
method=single noprint;
var X y;
run;

proc tree data=tree noprint out=out n=3 dock=5;
copy X'y,
title 'Single Linkage Cluster Analysis’;
titte2 'of Data Containing Compact Clusters of
Unequal Size’;

run;
%plotclus;
Single Linkage Cluster Analysis
of Data Containing Compact Clusters of Unequal Size
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Figure 7.15. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=SINGLE

In the PROC FASTCLUS analysis, the smallest cluster, in the bottom left of the plot,
has stolen members from the other two clusters, and the upper-left cluster has also
acquired some observations that rightfully belong to the larger, lower-right cluster.
With Ward’s method, the upper-left cluster is separated correctly, but the lower-left
cluster has taken a large bite out of the lower-right cluster. For both of these methods,
the clustering errors are in accord with the biases of the methods to produce clusters
of equal size. In the average linkage analysis, both the upper- and lower-left clus-
ters have encroached on the lower-right cluster, thereby making the variances more
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nearly equal than in the true clusters. The centroid method, which lacks the size and
dispersion biases of the previous methods, obtains an essentially correct partition.

Two-stage density linkage does almost as well even though the compact shapes of
these clusters favor the traditional methods. Single linkage also produces excellent
results.

Elongated Multinormal Clusters

In this example, the data are sampled from two highly elongated multinormal dis-
tributions with equal covariance matrices. The following SAS statements produce
Figure 7.16

data elongate;
keep x vy;
ma=8; mb=0; link generate;
ma=6; mb=8; link generate;
stop;
generate:
do i=1 to 50;
a=rannor(7)*6+ma;
b=rannor(7)+mb;
x=a-b;
y=a+b;
output;
end;
return;
run;

proc fastclus data=elongate out=out maxc=2 noprint;
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendi;
titte 'FASTCLUS Analysis’;
titte2 'of Data Containing Parallel Elongated Clusters’;
run;

Notice that PROC FASTCLUS found two clusters, as requested by the MAXC= op-
tion. However, it attempted to form spherical clusters, which are obviously inappro-
priate for this data.
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FASTCLUS Analysis
of Data Containing Parallel Elongated Clusters
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Figure 7.16. Data Containing Parallel Elongated Clusters: PROC FASTCLUS
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The following SAS statements produEgure 7.17

proc cluster data=elongate outtree=tree
method=average noprint;
run;

proc tree noprint out=out n=2 dock=5;

copy X'y,
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
titte 'Average Linkage Cluster Analysis’;
titte2 'of Data Containing Parallel Elongated Clusters’;

run;
Average Linkage Cluster Analysis
of Data Containing Parallel Elongated Clusters
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Figure 7.17. Data Containing Parallel Elongated Clusters: PROC CLUSTER with
METHOD=AVERAGE
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The following SAS statements produEgure 7.18

proc cluster data=elongate outtree=tree
method=twostage k=10 noprint;
run;

proc tree noprint out=out n=2;

copy Xy,
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
titte 'Two-Stage Density Linkage Cluster Analysis’;
title2 'of Data Containing Parallel Elongated Clusters’;

run;
Two—Stage Density Linkage Cluster Analysis
of Data Containing Parallel Elongated Clusters
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Figure 7.18. Data Containing Parallel Elongated Clusters: PROC CLUSTER with

METHOD=TWOSTAGE

PROC FASTCLUS and average linkage fail miserably. Ward’s method and the cen-
troid method, not shown, produce almost the same results. Two-stage density link-

age, however, recovers the correct clusters. Single linkage, not shown, finds the same

clusters as two-stage density linkage except for some outliers.

In this example, the population clusters have equal covariance matrices. If the within-

cluster covariances are known, the data can be transformed to make the clusters spher-

ical so that any of the clustering methods can find the correct clusters. But when
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you are doing a cluster analysis, you do not know what the true clusters are, so you
cannot calculate the within-cluster covariance matrix. Nevertheless, it is sometimes
possible to estimate the within-cluster covariance matrix without knowing the clus-
ter membership or even the number of clusters, using an approach invented by Art,
Gnanadesikan, and Kettenring (1982). A method for obtaining such an estimate is
available in the ACECLUS procedure.

In the following analysis, PROC ACECLUS transforms the variables X and Y into
canonical variables CAN1 and CAN2. The latter are plotted and then used in a cluster
analysis by Ward’'s method. The clusters are then plotted with the original variables
X and Y. The following SAS statements produegure 7.19

proc aceclus data=elongate out=ace p=.1;

var X y;

titte 'TACECLUS Analysis’;

titte2 'of Data Containing Parallel Elongated Clusters’;
run;

proc gplot;
plot can2*canl/frame cframe=ligr;
titte 'Data Containing Parallel Elongated Clusters’;
title2 'After Transformation by PROC ACECLUS’;
run;
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ACECLUS Analysis
of Data Containing Parallel Elongated Clusters

The ACECLUS Procedure
Observations 100 Proportion 0.1000
Variables 2 Converge 0.00100

Means and Standard Deviations

Standard
Variable Mean Deviation
X 2.6406 8.3494
y 10.6488 6.8420

COV: Total Sample Covariances

X y
X 69.71314819 24.24268934
y 24.24268934 46.81324861
Threshold = 0.328478

Iteration History

Pairs
RMS Distance Within Convergence
Iteration Distance Cutoff Cutoff Measure
1 2.000 0.657 672.0 0.673685
2 9.382 3.082 716.0 0.006963
3 9.339 3.068 760.0 0.008362
4 9.437 3.100 824.0 0.009656
5 9.359 3.074 889.0 0.010269
6 9.267 3.044 955.0 0.011276
7 9.208 3.025 999.0 0.009230
8 9.230 3.032 1052.0 0.011394
9 9.226 3.030 1091.0 0.007924
10 9.173 3.013 1121.0 0.007993

WARNING: Iteration limit exceeded.

Figure 7.19. Data Containing Parallel Elongated Clusters: PROC ACECLUS
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ACECLUS Analysis
of Data Containing Parallel Elongated Clusters

The ACECLUS Procedure
ACE: Approximate Covariance Estimate Within Clusters
X y
X 9.299329632 8.215362614
y 8.215362614 8.937753936

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative
1 36.7091 33.1672 0.9120 0.9120
2 3.5420 0.0880 1.0000

Eigenvectors (Raw Canonical Coefficients)

Canl Can2
X -.748392 0.109547
y 0.736349 0.230272

Standardized Canonical Coefficients
Canl Can2

X -6.24866 0.91466
y 5.03812 1.57553
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Data Containing Parallel Elongated Clusters
After Transformation by PROC ACECLUS
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Figure 7.20. Data Containing Parallel Elongated Clusters After Transformation by

PROC ACECLUS
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The following SAS statements produEgure 7.21

proc cluster data=ace outtree=tree method=ward noprint;
var canl can2;
copy X'y,

run;

proc tree noprint out=out n=2;

Copy X Yy,
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl,;
titte 'Ward”s Minimum Variance Cluster Analysis’;
title2 'of Data Containing Parallel Elongated Clusters’;
titte3 'After Transformation by PROC ACECLUS’;

run;
Ward's Minimum Variance Cluster Analysis
of Data Containing Parallel Elongated Clusters
After Transformation by PROC ACECLUS
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Figure 7.21. Transformed Data Containing Parallel Elongated Clusters: PROC
CLUSTER with METHOD=WARD

Nonconvex Clusters

If the population clusters have very different covariance matrices, using PROC
ACECLUS is of no avail. Although methods exist for estimating multinormal clus-

ters with unequal covariance matrices (Wolfe 1970; Symons 1981, Everitt and Hand
1981, Titterington, Smith, and Makov 1985; McLachlan and Basford 1988, these
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methods tend to have serious problems with initialization and may converge to degen-
erate solutions. For unequal covariance matrices or radically nonnormal distributions,
the best approach to cluster analysis is through nonparametric density estimation, as
in density linkage. The next example illustrates population clusters with nonconvex
density contours. The following SAS statements prodtigere 7.22

data noncon;
keep X v;
do i=1 to 100;
a=i*.0628319;
x=cos(a)+(i>50)+rannor(7)*.1;
y=sin(a)+(i>50)*.3+rannor(7)*.1;
output;
end;
run;

proc fastclus data=noncon out=out maxc=2 noprint;
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
titte 'FASTCLUS Analysis’;
titte2 'of Data Containing Nonconvex Clusters’;
run;

FASTCLUS Analysis
of Data Containing Nonconvex Clusters
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Figure 7.22. Data Containing Nonconvex Clusters: PROC FASTCLUS
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The following SAS statements produEgure 7.23

proc cluster data=noncon outtree=tree
method=centroid noprint;
run;

proc tree noprint out=out n=2 dock=5;

copy X'y,
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
titte 'Centroid Cluster Analysis’;
titte2 'of Data Containing Nonconvex Clusters’;
run;
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Centroid Cluster Analysis
of Data Containing Nonconvex Clusters
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Figure 7.23. Data Containing Nonconvex Clusters: PROC CLUSTER with
METHOD=CENTROID
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The following SAS statements produEgyure 7.24

proc cluster data=noncon outtree=tree
method=twostage k=10 noprint;
run;

proc tree noprint out=out n=2;

copy Xy,
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr
vaxis=axisl haxis=axis2 legend=legendl;
titte 'Two-Stage Density Linkage Cluster Analysis’;
title2 'of Data Containing Nonconvex Clusters’;

run;
Two—Stage Density Linkage Cluster Analysis
of Data Containing Nonconvex Clusters
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Figure 7.24. Data Containing Nonconvex Clusters: PROC CLUSTER with
METHOD=TWOSTAGE

Ward’s method and average linkage, not shown, do better than PROC FASTCLUS but
not as well as the centroid method. Two-stage density linkage recovers the correct
clusters, as does single linkage, which is not shown.

The preceding examples are intended merely to illustrate some of the properties of
clustering methods in common use. If you intend to perform a cluster analysis, you
should consult more systematic and rigorous studies of the properties of clustering
methods, such as Milligan (1980).
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The Number of Clusters

There are no completely satisfactory methods for determining the number of popu-
lation clusters for any type of cluster analysis (Everitt 1979; Hartigan 1985; Bock
1985).

If your purpose in clustering is dissection, that is, to summarize the data without
trying to uncover real clusters, it may suffice to lookZt for each variable and
pooled over all variables. Plots & against the number of clusters are useful.

Itis always a good idea to look at your data graphically. If you have only two or three
variables, use PROC GPLOT to make scatter plots identifying the clusters. With more
variables, use PROC CANDISC to compute canonical variables for plotting.

Ordinary significance tests, such as analysis of varidndests, are not valid for
testing differences between clusters. Since clustering methods attempt to maximize
the separation between clusters, the assumptions of the usual significance tests, para-
metric or nonparametric, are drastically violated. For example, if you take a sam-
ple of 100 observations from a single univariate normal distribution, have PROC
FASTCLUS divide it into two clusters, and runt éest between the clusters, you usu-

ally obtain ap-value of less than 0.0001. For the same reason, methods that purport
to test for clusters against the null hypothesis that objects are assigned randomly to
clusters (such as McClain and Rao 1975; Klastorin 1983) are useless.

Most valid tests for clusters either have intractable sampling distributions or involve
null hypotheses for which rejection is uninformative. For clustering methods based
on distance matrices, a popular null hypothesis is that all permutations of the values
in the distance matrix are equally likely (Ling 1973; Hubert 1974). Using this null
hypothesis, you can do a permutation test or a rank test. The trouble with the permu-
tation hypothesis is that, with any real data, the null hypothesis is implausible even if
the data do not contain clusters. Rejecting the null hypothesis does not provide any
useful information (Hubert and Baker 1977).

Another common null hypothesis is that the data are a random sample from a
multivariate normal distribution (Wolfe 1970, 1978; Duda and Hart 1973; Lee
1979). The multivariate normal null hypothesis arises naturally in normal mix-
ture models (Titterington, Smith, and Makov 1985; McLachlan and Basford
1988). Unfortunately, the likelihood ratio test statistic does not have the usual
asymptotic chi-squared distribution because the regularity conditions do not hold.
Approximations to the asymptotic distribution of the likelihood ratio have been sug-
gested (Wolfe 1978), but the adequacy of these approximations is debatable (Everitt
1981; Thode, Mendell, and Finch 1988). For small samples, bootstrapping seems
preferable (McLachlan and Basford 1988). Bayesian inference provides a promising
alternative to likelihood ratio tests for the number of mixture components for both
normal mixtures and other types of distributions (Binder 1978, 1981; Banfield and
Raftery 1993; Bensmail et al. 1997).

The multivariate normal null hypothesis is better than the permutation null hypoth-
esis, but it is not satisfactory because there is typically a high probability of rejec-
tion if the data are sampled from a distribution with lower kurtosis than a normal
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distribution, such as a uniform distribution. The tables in Englemann and Hartigan
(1969), for example, generally lead to rejection of the null hypothesis when the data
are sampled from a uniform distribution. Hawkins, Muller, and ten Krooden (1982,
pp. 337-340) discuss a highly conservative Bonferroni method for hypothesis test-
ing. The conservativeness of this approach may compensate to some extent for the
liberalness exhibited by tests based on normal distributions when the population is
uniform.

Perhaps a better null hypothesis is that the data are sampled from a uniform distribu-
tion (Hartigan 1978; Arnold 1979; Sarle 1983). The uniform null hypothesis leads to
conservative error rates when the data are sampled from a strongly unimodal distri-
bution such as the normal. However, in two or more dimensions and depending on
the test statistic, the results can be very sensitive to the shape of the region of sup-
port of the uniform distribution. Sarle (1983) suggests using a hyperbox with sides
proportional in length to the singular values of the centered coordinate matrix.

Given that the uniform distribution provides an appropriate null hypothesis, there
are still serious difficulties in obtaining sampling distributions. Some asymptotic

results are available (Hartigan 1978, 1985; Pollard 1981; Bock 1985) for the within-
cluster sum of squares, the criterion that PROC FASTCLUS and Ward’s minimum
variance method attempt to optimize. No distributional theory for finite sample sizes
has yet appeared. Currently, the only practical way to obtain sampling distributions
for realistic sample sizes is by computer simulation.

Arnold (1979) used simulation to derive tables of the distribution of a criterion based
on the determinant of the within-cluster sum of squares maWV¥. Both nor-

mal and uniform null distributions were used. Having obtained clusters with either
PROC FASTCLUS or PROC CLUSTER, you can compute Arnold’s criterion with
the ANOVA or CANDISC procedure. Arnold’s tables provide a conservative test be-
cause PROC FASTCLUS and PROC CLUSTER attempt to minimize the trddé of
rather than the determinant. Marriott (1971, 1975) also provides useful information
on|W| as a criterion for the number of clusters.

Sarle (1983) used extensive simulations to develop the cubic clustering criterion
(CCC), which can be used for crude hypothesis testing and estimating the number
of population clusters. The CCC is based on the assumption that a uniform distribu-
tion on a hyperrectangle will be divided into clusters shaped roughly like hypercubes.
In large samples that can be divided into the appropriate number of hypercubes, this
assumption gives very accurate results. In other cases the approximation is generally
conservative. For details about the interpretation of the CCC, consult Sarle (1983).

Milligan and Cooper (1985) and Cooper and Milligan (1988) compared thirty meth-
ods for estimating the number of population clusters using four hierarchical cluster-
ing methods. The three criteria that performed best in these simulation studies with a
high degree of error in the data were a pse@dstatistic developed by Calinski and
Harabasz (1974), a statistic referred to/a&)/J.(1) by Duda and Hart (1973) that

can be transformed into a pseutfcstatistic, and the cubic clustering criterion. The
pseudal’ statistic and the CCC are displayed by PROC FASTCLUS; these two statis-
tics and the pseudt statistic, which can be applied only to hierarchical methods,
are displayed by PROC CLUSTER. It may be advisable to look for consensus among
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the three statistics, that is, local peaks of the CCC and pséustatistic combined

with a small value of the pseudd statistic and a larger pseudbfor the next cluster
fusion. It must be emphasized that these criteria are appropriate only for compact or
slightly elongated clusters, preferably clusters that are roughly multivariate normal.

Recent research has tended to de-emphasize mixture models in favor of nonparamet-
ric models in which clusters correspond to modes in the probability density function.
Hartigan and Hartigan (1985) and Hartigan (1985) developed a test of unimodality
versus bimodality in the univariate case.

Nonparametric tests for the number of clusters can also be based on nonparametric
density estimates. This approach requires much weaker assumptions than mixture
models, namely, that the observations are sampled independently and that the distri-
bution can be estimated nonparametrically. Silverman (1986) describes a bootstrap
test for the number of modes using a Gaussian kernel density estimate, but problems
have been reported with this method under the uniform null distribution. Further
developments in nonparametric methods are given by Mueller and Sawitzki (1991),
Minnotte (1992), and Polonik (1993). All of these methods suffer from heavy com-
putational requirements.

One useful descriptive approach to the number-of-clusters problem is provided by
Wong and Schaack (1982), based ohtla-nearest-neighbor density estimate. The
kth-nearest-neighbor clustering method developed by Wong and Lane (1983) is ap-
plied with varying values ok. Each value of: yields an estimate of the number of
modal clusters. If the estimated number of modal clusters is constant for a wide range
of k values, there is strong evidence of at least that many modes in the population. A
plot of the estimated number of modes againsan be highly informative. Attempts

to derive a formal hypothesis test from this diagnostic plot have met with difficulties,
but a simulation approach similar to Silverman’s (1986) does seem to work (Girman
1994). The simulation, of course, requires considerable computer time.

Sarle and Kuo (1993) document a less expensive approximate nonparametric test for
the number of clusters that has been implemented in the MODECLUS procedure.
This test sacrifices statistical efficiency for computational efficiency. The method for
conducting significance tests is described in the chapter on the MODECLUS proce-
dure. This method has the following useful features:

¢ No distributional assumptions are required.

e The choice of smoothing parameter is not critical since you can try any number
of different values.

e The data can be coordinates or distances.

e Time and space requirements for the significance tests are no worse than those
for obtaining the clusters.

e The power is high enough to be useful for practical purposes.

The method for computing thevalues is based on a series of plausible approxima-
tions. There are as yet no rigorous proofs that the method is infallible. Neither are
there any asymptotic results. However, simulations for sample sizes ranging from
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20 to 2000 indicate that thevalues are almost always conservative. The only case
discovered so far in which the-values are liberal is a uniform distribution in one
dimension for which the simulated error rates exceed the nominal significance level
only slightly for a limited range of sample sizes.
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Chapter 8

Introduction to Scoring,
Standardization, and Ranking
Procedures

Overview

Several SAS/STAT procedures are utilities that produce an output data set with new
variables that are transformations of data in the input data set. SAS/STAT software
includes four of these procedures. The RANK procedure produces rank scores across
observations, the SCORE procedure constructs functions across the variables, and the
STANDARD and STDIZE procedures transform each variable individually.

RANK

SCORE

STANDARD

STDIZE

ranks the observations of each numeric variable from low to high
and outputs ranks or rank scores. For a complete discussion of the
RANK procedure, refer to thBAS Procedures Guide

constructs new variables that are linear combinations of old vari-

ables according to a scoring data set. This procedure is used with
the FACTOR procedure and other procedures that output scoring
coefficients.

standardizes variables to a given mean and standard deviation. For
a complete discussion of PROC STANDARD, refer to ®AaS
Procedures Guide

standardizes variables by subtracting a location measure and divid-
ing by a scale measure. A variety of location and scale measures
are provided. Such measures include the mean, median, Huber’s
estimate, Tukey's biweight estimate, and Andrew’s wave estimate.
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Chapter 9

Introduction to Survival Analysis
Procedures

Overview

Data that measure lifetime or the length of time until the occurrence of an event are
calledlifetime, failure timepr survivaldata. For example, variables of interest might

be the lifetime of diesel engines, the length of time a person stayed on a job, or the
survival time for heart transplant patients. Such data have special considerations that
must be incorporated into any analysis.

Background

Survival data consist of a response (event time, failure time, or survival time) variable
that measures the duration of time until a specified event occurs and possibly a set of
independent variables thought to be associated with the failure time variable. These
independent variables (concomitant variables, covariates, or prognostic factors) can
be either discrete, such as sex or race, or continuous, such as age or temperature. The
system that gives rise to the event of interest can be biological, as for most medical
data, or physical, as for engineering data. The purpose of survival analysis is to model
the underlying distribution of the failure time variable and to assess the dependence
of the failure time variable on the independent variables.

An intrinsic characteristic of survival data is the possibility for censoring of obser-
vations, that is, the actual time until the event is not observed. Such censoring can
arise from withdrawal from the experiment or termination of the experiment. Because
the response is usually a duration, some of the possible events may not yet have oc-
curred when the period for data collection has terminated. For example, clinical trials
are conducted over a finite period of time with staggered entry of patients. That is,
patients enter a clinical trial over time and thus the length of follow-up varies by in-
dividuals; consequently, the time to the event may not be ascertained on all patients
in the study. Additionally, some of the responses may be lost to follow-up (for exam-
ple, a participant may move or refuse to continue to participate) before termination of
data collection. In either case, only a lower bound on the failure time of the censored
observations is known. These observations are said tighecensored Thus, an
additional variable is incorporated into the analysis indicating which responses are
observed event times and which are censored times. More generally, the failure time
may only be known to be smaller than a given vallgdt censoreylor known to be

within a given interval ifiterval censorell There are numerous possible censoring
schemes that arise in survival analysis. The monograpfdnjdala(1983 discusses
several related types of censoring situations, and the teialyfleisch and Prentice
(1980 also discusses several censoring schemes. Data with censored observations
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cannot be analyzed by ignoring the censored observations because, among other con-
siderations, the longer-lived individuals are generally more likely to be censored. The
method of analysis must take the censoring into account and correctly use the cen-
sored observations as well as the uncensored observations.

Another characteristic of survival data is that the response cannot be negative. This
suggests that a transformation of the survival time such as a log transformation may
be necessary or that specialized methods may be more appropriate than those that
assume a normal distribution for the error term. It is especially important to check
any underlying assumptions as a part of the analysis because some of the models used
are very sensitive to these assumptions.

Survival Analysis Procedures

There are three SAS procedures for analyzing survival data: LIFEREG, LIFETEST
and PHREG. PROC LIFEREG is a parametric regression procedure for modeling the
distribution of survival time with a set of concomitant variables. PROC LIFETEST
is a nonparametric procedure for estimating the survivor function, comparing the
underlying survival curves of two or more samples, and testing the association of
survival time with other variables. PROC PHREG is a semiparametric procedure that
fits the Cox proportional hazards model.

The LIFEREG Procedure

The LIFEREG procedure fits parametric accelerated failure time models to survival
data that may be left, right, or interval censored. The parametric model is of the form

y=xB+o¢

wherey is usually the log of the failure time variabtejs a vector of covariate values,

3 is a vector of unknown regression parameterss an unknown scale parameter,
ande is an error term. The baseline distribution of the error term can be specified as
one of several possible distributions, including, but not limited to, the log normal, log
logistic, and Weibull distributions. Several texts that discuss these parametric models
areKalbfleisch and Prentic€l980, Lawless(1982), andNelson(1990.

The LIFETEST Procedure

The LIFETEST procedure computes nonparametric estimates of the survival distri-
bution function. You can request either the product-lirdigjflan and Meiefl 958

or the life-table (actuarial) estimate of the distribution. The text€by and Oakes
(19849 andKalbfleisch and Prenticel980 provide good discussions of the product-
limit estimator, and the texts byee (1992 andElandt-Johnson and Johns@®80
include detailed discussions of the life-table estimator. PROC LIFETEST computes
nonparametric tests to compare the survival curves of two or more groups. The pro-
cedure also computes rank tests of association of the survival time variable with other
concomitant variables as givenltalbfleisch and Prentic€98Q Chapter 6).
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The PHREG Procedure

The PHREG procedure fits the proportional hazards modéloof(1972 1979 to
survival data that may be right censored. The Cox model is a semiparametric model
in which the hazard function of the survival time is given by

A(t;x) = Ao(t)eP*®)

where)\(t) is an unspecified baseline hazard functig(y,) is a vector of covariate
values, possibly time-dependent, ahd a vector of unknown regression parameters.
The model is referred to as a semiparametric model since part of the model involves
the unspecified baseline function over time (which is infinite dimensional) and the
other part involves a finite number of regression parameters. Several texts that discuss
the Cox regression models atellett (1994, Cox and Oake£l984), Kalbfleisch and
Prentice(1980, andLawless(1982.

Survival Analysis with SAS/STAT Procedures

The typical goal in survival analysis is to characterize the distribution of the survival
time for a given population, to compare the survival distributions among different
groups, or to study the relationship between the survival time and some concomitant
variables.

A first step in the analysis of a set of survival data is to use PROC LIFETEST to
compute and plot the estimate of the distribution of the survival time. In many appli-
cations, there will often be several survival curves to compare. For example, you want
to compare the survival experiences of patients who receive different treatments for
their disease. The association between covariates and the survival time variable can
be investigated by computing estimates of the survival distribution function within
strata defined by the covariates. In particular, if the proportional hazards model is ap-
propriate, the estimates of the log(-I&4{RVIVAL)) plotted against the loG(ME)
variable should give approximately parallel lines, whSkéRVIVAL is the survival
distribution estimate an@IME is the failure time variable. Additionally, these lines
should be approximately straight if the Weibull model is appropriate.

Statistics that test for association between failure time and covariates can be used to
select covariates for further investigation. The LIFETEST procedure computes linear
rank statistics using either Wilcoxon or log-rank scores. These statistics and their
estimated covariance matrix can be used with the REG procedure with the option
METHOD=RSQUARE to find the subset of variables that produce the largest joint
test statistic for association. An example of this method of variable selection is given
in the “Examples” section dEhapter 40, “The LIFETEST Procedure.”

Another approach to examine the relationship between the concomitant variables and
survival time is through a regression model in which the survival time has a distri-
bution that depends on the concomitant variables. The regression coefficients may
be interpreted as describing the direction and strength of the relationship of each ex-
planatory variable on the effect of the survival time.
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In many biological systems, the Cox model may be a reasonable description of the
relationship between the distribution of the survival time and the prognostic factors.
You use PROC PHREG to fit the Cox regression model. The regression coefficient
is interpreted as the increase of the log hazard ratio resulting in the increase of one
unit in the covariate. However, the underlying hazard function is left unspecified
and, as in any other model, the results can be misleading if the proportional hazards
assumptions do not hold.

Accelerated failure time models are popular for survival data of physical systems. In
many cases, the underlying survival distribution is known empirically. You use PROC
LIFEREG to fit these parametric models. Also, PROC LIFEREG can accommodate
data with interval-censored observations, which are not allowed in PROC PHREG.

A common technique for checking the validity of a regression model is to embed it
in a larger model and use the likelihood ratio test to check whether the reduction to
the actual model is valid. Other techniques include examining the residuals. Both
PROC LIFEREG and PROC PHREG produce predicted values, residuals, and other
computed values that can be used to assess the model adequacy.
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Chapter 10

Introduction to Survey Sampling and
Analysis Procedures

Overview

This chapter introduces the SAS/STAT procedures for survey sampling and describes
how you can use these procedures to analyze survey data.

Researchers often use sample survey methodology to obtain information about a large
population by selecting and measuring a sample from that population. Due to vari-
ability among items, researchers apply scientific probability-based designs to select
the sample. This reduces the risk of a distorted view of the population and allows
statistically valid inferences to be made from the sample. Refer to Lohr (1999),
Kalton (1983), Cochran (1977), and Kish (1965) for more information on statisti-
cal sampling and analysis of complex survey data. To select probability-based ran-
dom samples from a study population, you can use the SURVEYSELECT procedure,
which provides a variety of methods for probability sampling. To analyze sample sur-
vey data, you can use the SURVEYMEANS, SURVEYFREQ, SURVEYREG, and
SURVEYLOGISTIC procedures, which incorporate the sample design into the anal-
yses.

Many SAS/STAT procedures, such as the MEANS, FREQ, GLM and LOGISTIC
procedures, can compute sample means, produce crosstabulation tables, and estimate
regression relationships. However, in most of these procedures, statistical inference
is based on the assumption that the sample is drawn from an infinite population by
simple random sampling. If the sample is in fact selected from a finite population
using a complex survey design, these procedures generally do not calculate the esti-
mates and their variances according to the design actually used. Using analyses that
are not appropriate for your sample design can lead to incorrect statistical inferences.

The SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC
procedures do properly analyze complex survey data, taking into account the sam-
ple design. These procedures can be used for multistage designs or for single-stage
designs, with or without stratification, and with or without unequal weighting. The
procedures use the Taylor expansion method to estimate sampling errors of estimators
based on complex sample designs. This method is appropriate for all designs where
the first-stage sample is selected with replacement, or where the first-stage sampling
fraction is small, as it often is in practice.

The following table briefly describes the sampling and analysis procedures in
SAS/STAT software.
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Table 10.1. Sampling and Analysis Procedures in SAS/STAT Software

SURVEYSELECT

Sampling Methods

simple random sampling

unrestricted random sampling (with replacement)

systematic

sequential

selection probability proportional to size (PPS)
with and without replacement

PPS systematic

PPS for two units per stratum

sequential PPS with minimum replacement

SURVEYMEANS

Statistics

estimates of population means and totals
estimates of population proportions
standard errors

confidence limits

hypothesis tests

domain analyses

ratio estimates

SURVEYFREQ

Analyses

one-way frequency tables

two-way and multiway crosstabulation tables
estimates of population totals and proportions
standard errors

confidence limits

tests of goodness-of-fit

tests of independence

SURVEYREG

Analyses

linear regression model fitting
regression coefficients
covariance matrices
hypothesis tests

confidence limits

estimable functions

contrasts

SURVEYLOGISTIC

Analyses

cumulative logit regression model fitting

logit, complementary log-log, and probit link functior
generalized logit regression model fitting
regression coefficients

covariance matrices

NS
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Table 10.1. (continued)

hypothesis tests
model diagnostics
odds ratios
confidence limits
estimable functions
contrasts

The Survey Procedures

The SURVEYSELECT procedure provides methods for probability sample selection.
The SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC
procedures provide statistical analyses for sample survey data. The following sections

contain brief descriptions of these procedures. See the chapters on these procedures
for more detailed information.

PROC SURVEYSELECT

The SURVEYSELECT procedure provides a variety of methods for selecting
probability-based random samples. The procedure can select a simple random sample
or a sample according to a complex multistage sample design that includes stratifi-
cation, clustering, and unequal probabilities of selection. With probability sampling,
each unit in the survey population has a known, positive probability of selection.
This property of probability sampling avoids selection bias and enables you to use
statistical theory to make valid inferences from the sample to the survey population.

PROC SURVEYSELECT provides methods for both equal probability sampling and

sampling with probability proportional to size (PPS). In PPS sampling, a unit’s se-

lection probability is proportional to its size measure. PPS sampling is often used
in cluster sampling, where you select clusters (groups of sampling units) of varying

size in the first stage of selection. Available PPS methods include without replace-
ment, with replacement, systematic, and sequential with minimum replacement. The
procedure can apply these methods for stratified and replicated sample designs.

PROC SURVEYMEANS

The SURVEYMEANS procedure produces estimates of population means and totals

from sample survey data. You can use PROC SURVEYMEANS to compute the
following statistics:

e estimates of population means, with corresponding standard errotdests

e estimates of population totals, with corresponding standard deviations and
tests

e estimates of proportions for categorical variables, with standard errors and
tests

e ratio estimates of population means and proportions, and their standard errors
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e confidence limits for population means, totals, and proportions
e data summary information

It is common practice to compute statistics for subpopulations or domains, in addition
to computing statistics for the entire study population. Formation of these subpopula-
tions may be unrelated to the sample design, so the domain sample sizes may actually
be random variablesDomain analysidakes into account this variability, using the
entire sample when estimating the variance of domain estimates. This is also known
as subgroup analysis, subpopulation analysis, or subdomain analysis. For more in-
formation on domain analysis, refer to Lohr (1999) and Cochran (1977).

You can use the SURVEYMEANS procedure to perform domain analysis to compute
the following statistics:

e domain (subpopulation) estimates of means, with corresponding standard er-
rors and tests

e domain (subpopulation) estimates of totals, with corresponding standard devi-
ations and tests

e proportion estimates within domains for categorical variables, with standard
errors and tests

o confidence limits for domain statistics

PROC SURVEYFREQ

The SURVEYFREQ procedure produces one-wag-tgay frequency and crosstab-
ulation tables from sample survey data. These tables include estimates of population
totals, population proportions (overall proportions, and also row and column propor-
tions), and corresponding standard errors. Confidence limits, coefficients of variation,
and design effects are also available. The procedure also provides a variety of options
to customize your table display.

For one-way frequency tables, PROC SURVEYFREQ provides Rao-Scott chi-square
goodness-of-fit tests, which are adjusted for the sample design. You can test a null
hypothesis of equal proportions for a one-way frequency table, or you can input
other null hypothesis proportions for the test. For two-way frequency tables, PROC
SURVEYFREQ provides design-adjusted tests of independence, or no association,
between the row and column variables. These tests include the Rao-Scott chi-square
test, the Rao-Scott likelihood-ratio test, the Wald chi-square test, and the Wald log-
linear chi-square test.
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PROC SURVEYREG

The SURVEYREG procedure fits linear models for survey data and computes regres-
sion coefficients and their variance-covariance matrix. The procedure allows you to
specify classification effects using the same syntax as in the GLM procedure. The
procedure also provides hypothesis tests for the model effects, for any specified es-
timable linear functions of the model parameters, and for custom hypothesis tests for
linear combinations of the regression parameters. The procedure also computes the
confidence limits of the parameter estimates and their linear estimable functions.

PROC SURVEYLOGISTIC

The SURVEYLOGISTIC procedure investigates the relationship between discrete
responses and a set of explanatory variables for survey data. The procedure fits
linear logistic regression models for discrete response survey data by the method
of maximum likelihood, incorporating the sample design into the analysis. The
SURVEYLOGISTIC procedure enables you to use categorical classification variables
(also known as CLASS variables) as explanatory variables in an explanatory model,
using the familiar syntax for main effects and interactions employed in the GLM and
LOGISTIC procedures.

The following link functions are available for regression in PROC
SURVEYLOGISTIC: the cumulative logit function (CLOGIT), the generalized
logit function (GLOGIT), the probit function (PROBIT), and the complementary
log-log function (CLOGLOG). The procedure performs maximum likelihood
estimation of the regression coefficients with either the Fisher-scoring algorithm or
the Newton-Raphson algorithm. Variances of the regression parameters and the odds
ratios are computed with a Taylor expansion approximation; refer to Binder (1983)
and Morel (1989).

Survey Design Specification

Survey sampling is the process of selecting a probability-based sample from a finite
population according to a sample design. You then collect data from these selected
units and use them to estimate characteristics of the entire population.

A sample desigencompasses the rules and operations by which you select sampling
units from the population and the computation of sample statistics, which are esti-
mates of the population values of interest. The objective of your survey often deter-
mines appropriate sample designs and valid data collection methodology. A complex
sample design can include stratification, clustering, multiple stages of selection, and
unequal weighting. The survey procedures can be used for single-stage designs or
for multistage designs, with or without stratification, and with or without unequal
weighting.

To analyze your survey data with the SURVEYMEANS, SURVEYFREQ,
SURVEYREG, and SURVEYLOGISTIC procedures, you need to specify sample
design information to the procedures. This information includes design strata,
clusters, and sampling weights. All the survey analysis procedures use the same
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syntax for specifying sample design information. You provide sample design
information with the STRATA, CLUSTER, and WEIGHT statements, and with the
RATE= or TOTAL= option in the PROC statement.

When there are clusters, or PSUs, in the sample design, the procedures estimate
variance from the variance among PSUs, as described in the sébhoiance
Estimation”on page 166. For a multistage sample design, the variance estimation
method depends only on the first stage of the sample design. So, the required input
includes only first-stage cluster (PSU) and first-stage stratum identification. You do
not need to input design information about any additional stages of sampling.

The following sections provide brief descriptions of basic sample design concepts
and terminology used in the survey procedures. Refer to Lohr (1999), Kalton (1983),
Cochran (1977), and Kish (1965).

Population

Populationrefers to the target population or group of individuals of interest for study.
Often, the primary objective is to estimate certain characteristics of this population,
calledpopulation valuesA sampling uniis an element or an individual in the target
population. A sample is a subset of the population that is selected for the study.

Before you use the survey procedures, you should have a well-defined target popula-
tion, sampling units, and an appropriate sample design.

In order to select a sample according to your sample design, you need to have a
list of sampling units in the population. This is calledsampling frame PROC
SURVEYSELECT selects a sample using this sampling frame.

Stratification

Stratified samplingnvolves selecting samples independently within strata, which are
nonoverlapping subgroups of the survey population. Stratification controls the distri-
bution of the sample size in the strata. It is widely used to meet a variety of survey
objectives. For example, with stratification you can ensure adequate sample sizes
for subgroups of interest, including small subgroups, or you can use stratification to
improve the precision of overall estimates. To improve precision, units within strata
should be as homogeneous as possible for the characteristics of interest.

Clustering

Cluster samplingnvolves selecting clusters, which are groups of sampling units. For
example, clusters may be schools, hospitals, or geographical areas, and sampling
units may be students, patients, or citizens. Cluster sampling can provide efficiency
in frame construction and other survey operations. However, it can also result in a
loss in precision of your estimates, compared to a nonclustered sample of the same
size. To minimize this effect, units within clusters should be as heterogeneous as
possible for the characteristics of interest.
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Multistage Sampling

In multistage samplingyou select an initial or first-stage sample based on groups of
elements in the population, callpdmary sampling uniter PSUs

Then you create a second-stage sample by drawing a subsample from each selected
PSU in the first-stage sample. By repeating this operation, you can select a higher-
stage sample. If you include all the elements from a selected primary sampling unit,
then the two-stage sample is a cluster sample.

Sampling Weights

Sampling weightsor survey weightsare positive values associated with each unit in
your sample. Ideally, the weight of a sampling unit should be the “frequency” that
the sampling unit represents in the target population.

Often, sampling weights are the reciprocals of the selection probabilities for the sam-
pling units. When you use PROC SURVEYSELECT, the procedure generates the
sampling weight component for each stage of the design, and you can multiply these
sampling weight components to obtain the final sampling weights. Sometimes, sam-
pling weights also include nonresponse adjustments, post-sampling stratification, or
regression adjustments using supplemental information.

When the sampling units have unequal weights, you must provide the weights to the
survey analysis procedures. If you do not specify sampling weights, the procedures
use equal weights in the analyses.

Population Totals and Sampling Rates

The ratio of the sample size (the number of sampling units in the sam@eyl the
population size (the total number of sampling units in the target populalioig
written as

n
I=x

This ratio is called thesampling rateor thesampling fraction If you select a sam-
ple without replacement, the extra efficiency compared to selecting a sample with
replacement can be measured byfthiée population correctiortfpc) factor,(1 — f).

If your analysis includes a finite population correction factor, you can input either
the sampling rate or the population total. Otherwise, the procedures do not use the
fpc when computing variance estimates. For fairly small sampling fractions, it is
appropriate to ignore this correction. Refer to Cochran (1977) and Kish (1965).

As discussed in the following sectiOMariance Estimation,for a multistage sample
design, the variance estimation method depends only on the first stage of the sample
design. Therefore, if you are specifying the sampling rate, you should inpfitgtie

stage sampling ratewhich is the ratio of the number of PSUs in the sample to the
total number of PSUs in the target population.
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Variance Estimation

The SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC
procedures use the Taylor expansion method to estimate sampling errors of estima-
tors based on complex sample designs. This method is appropriate for all designs
where the first-stage sample is selected with replacement, or where the first-stage
sampling fraction is small, as it often is in practice. The Taylor expansion method
obtains a linear approximation for the estimator and then uses the variance estimate
for this approximation to estimate the variance of the estimate itself (Fuller 1975,
Woodruff 1971). When there are clusters, or primary sampling units (PSUs), in the
sample design, the procedures estimate the variance from the variation among the
PSUs. When the design is stratified, the procedures pool stratum variance estimates
to compute the overall variance estimate.

For a multistage sample design, the variance estimation method depends only on
the first stage of the sample design. So, the required input includes only first-stage
cluster (PSU) and first-stage stratum identification. You do not need to input design

information about any additional stages of sampling.

For more information on variance estimation for sample survey data, refer to Lohr
(1999), Srndal, Swenson, and Wretman (1992), Lee, Forthoffer, and Lorimor
(1989), Wolter (1985), Cochran (1977), Kish (1965), and Hansen, Hurwitz, and
Madow (1953).

In addition to the traditional Taylor expansion method, other methods for vari-
ance estimation for survey data include balanced repeated replication and jack-
knife repeated replication. These methods usually give similar, satisfactory re-
sults (Sirndal, Swenson, and Wretman 1992; Wolter 1985); the SURVEYMEANS,
SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC procedures currently pro-
vide only the Taylor expansion method.

See Chapter 70, “The SURVEYMEANS Procedure,” Chapter 68, “The
SURVEYFREQ Procedure,” Chapter 71, “The SURVEYREG Procedure,”
andChapter 69, “The SURVEYLOGISTIC Procedurddr complete details.

Example

This section demonstrates how you can use the survey procedures to select a
probability-based sample and then analyze the survey data to make inferences about
the population. The analyses includes descriptive statistics and regression analysis.
This example is a survey of income and expenditures for a group of households in
North Carolina and South Carolina. The goals of the survey are to

e estimate total income and total basic living expenses

¢ investigate the linear relationship between income and living expenses
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Sample Selection

To select a sample with PROC SURVEYSELECT, you input a SAS data set that
contains the sampling frame or list of units from which the sample is to be selected.
You also specify the selection method, the desired sample size or sampling rate, and
other selection parameters.

In this example, the sample design is a stratified simple random sample design,
with households as the sampling units. The sampling frame (the list of the group
of the households) is stratified Btate and Region. Within strata, households

are selected by simple random sampling. Using this design, the following PROC
SURVEYSELECT statements select a probability sample of households from the
HHSample data set:

proc surveyselect data=HHSample out=Sample
method=srs n=(3, 5, 3, 6, 2);
strata State Region;
run;

The STRATA statement names the stratification varialdtge and Region. In

the PROC SURVEYSELECT statement, the DATA= option hames the SAS data set
HHSample as the input data set (the sampling frame) from which to select the sam-
ple. The OUT= option stores the sample in the SAS data set n&aegble. The
METHOD=SRS option specifies simple random sampling as the sample selection
method. The N= option specifies the stratum sample sizes.

The SURVEYSELECT procedure then selects a stratified random sample of house-
holds and produces the output dataSample, which contains the selected house-
holds together with their selection probabilities and sampling weights. The data set
Sample also contains the sampling unit identification variallleand the stratifica-

tion variablesState andRegion from the data sédHSample.

Survey Data Analysis

You can use the SURVEYMEANS and SURVEYREG procedures to estimate pop-
ulation values and to perform regression analyses for survey data. The following
example briefly shows the capabilities of each procedure. Gemter 70, “The
SURVEYMEANS Procedure,”and Chapter 71, “The SURVEYREG Procedure,”
for more detailed information.

To estimate the total income and expenditure in the population from the sample, you
specify the input data set containing the sample, the statistics to be computed, the
variables to be analyzed, and any stratification variables. The statements to compute
the descriptive statistics are as follows:

proc surveymeans data=Sample sum clm;
var Income Expense;
strata State Region;
weight Weight;

run;
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The PROC SURVEYMEANS statement invokes the procedure, specifies the input
data set, and requests estimates of population totals and their standard deviations for
the analysis variables (SUM), as well as confidence limits for the estimates (CLM).

The VAR statement specifies the two analysis variablespme and Expense.

The STRATA statement identifieState and Region as the stratification variables

in the sample design. The WEIGHT statement specifies the sampling weight variable
Weight.

You can also use the SURVEYREG procedure to perform regression analysis for
sample survey data. Suppose that, in order to explore the relationship between the to-
tal income and the total basic living expenses of a household in the survey population,
you choose the following linear model to describe the relationship:

Expense= « + (3 * Income+ error

The following statements fit this linear model:

proc surveyreg data=Sample;
strata State Region ;
model Expense = Income;
weight Weight;

run;

In the PROC SURVEYREG statement, the DATA= option specifies the input sample
survey data aSample. The STRATA statement identifies the stratification variables
asState andRegion. The MODEL statement specifies the model, wikpense

as the dependent variable almtome as the independent variable. The WEIGHT
statement specifies the sampling weight varidukbght.
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Chapter 11

The Four Types of Estimable
Functions

Overview

The GLM procedure and many other SAS/STAT procedures label the tests and Sums
of Squares (SS) associated with the various effects in the model as Type |, Type II,
Type lll, and Type IV. These four types of hypotheses may not always be sufficient
for a statistician to perform all desired hypothesis tests, but they should suffice for the
vast majority of analyses. This chapter explains the hypotheses tested by each of the
four types of SS. For additional discussion, see Freund, Littell, and Spector (1991) or
Milliken and Johnson (1984).

Estimability
For linear models such as
Y =X3+¢€

with E(Y) = X, a primary analytical goal is to estimate or test for the significance
of certain linear combinations of the elementg3dofThis is accomplished by comput-
ing linear combinations of the observ&. An unbiased linear estimate of a specific
linear function of the individualis, sayLg3, is a linear combination of th& s that
has an expected value bf3. Hence, the following definition:

A linear combination of the parametdig3 is estimable if and only if a
linear combination of th&’s exists that has expected valug.

Any linear combination of th&’s, for instanc&Y, will have expectatio®’(KY ) =
KX 3. Thus, the expected value of any linear combination of¥tsas equal to that
same linear combination of the rows Xfmultiplied by 3. Therefore,

L3 is estimable if and only if there is a linear combination of the rows
of X that is equal taL.—that is, if and only if there is & such that
L = KX.

Thus, the rows oKX form a generating set from which any estimahlean be con-
structed. Since the row space Xfis the same as the row spaceXfX, the rows
of X’X also form a generating set from which all estimabkecan be constructed.
Similarly, the rows of X’X)~X'X also form a generating set fér.
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Therefore, ifL. can be written as a linear combination of the rowsXaf X’X, or
(X'X)~X’X, thenLg is estimable.

Once an estimablé& has been formedl.3 can be estimated by computidgp,
whereb = (X’X)~X"Y. From the general theory of linear models, the unbiased
estimatorLb is, in fact, thebestlinear unbiased estimator &f3 in the sense of
having minimum variance as well as maximum likelihood when the residuals are
normal. To test the hypothesis thBi3 = 0, compute SSHy: LG = 0) =
(Lb)'(L(X’X)~L/)~'Lb and form anF test using the appropriate error term.

General Form of an Estimable Function

This section demonstrates a shorthand technique for displaying the generating set for
any estimabld.. Suppose

1100

1 1 0 0 u
1010 A
X=1101 0| 3dB=] 4

100 1 As
100 1]

X is a generating set fdr, but so is the smaller set
1 1.0 0
X*=]11 010
1 0 0 1

X* is formed fromX by deleting duplicate rows.

Since all estimabldis must be linear functions of the rows Xf* for L3 to be es-
timable, anL for a single-degree-of-freedom estimate can be represented symboli-
cally as

L1x(1100)+L2x(1010)+L3x(1001)
or

L = (L1+ L2+ L3, L1, L2, L3)

For this examplel.3 is estimable if and only if the first element kfis equal to the
sum of the other elements &for if

LB=(L14+ L2+ L3) x u+ L1 x Ay + L2 x Ay + L3 x A3

is estimable for any values @fl, L2, andLL3.

If other generating sets fdi are represented symbolically, the symbolic notation
looks different. However, the inherent nature of the rules is the same. For example,
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if row operations are performed @* to produce an identity matrix in the fir3tx 3
submatrix of the resulting matrix

thenX** is also a generating set fér. An estimablel. generated fronX** can be
represented symbolically as

L= (L1, L2, L3, L1 — L2 — L3)

Note that, again, the first elementbfis equal to the sum of the other elements.

With multiple generating sets available, the question arises as to which one is the best
to represenL symbolically. Clearly, a generating set containing a minimum of rows
(of full row rank) and a maximum of zero elements is desirable. The generalized
inverse ofX’X computed by the GLM procedure has the property (&&iX )~ X’'X

usually contains numerous zeros. For this reason, PROC GLM uses the nonzero rows
of (X’X)~X'X to represenkL. symbolically.

If the generating set represented symbolically is of full row rank, the number of sym-
bols (L1, L2,...) represents the maximum rank of any testable hypothesis (in other
words, the maximum number of linearly independent rows forlamyatrix that can

be constructed). By letting each symbol in turn take on the value of 1 while the others
are set to 0, the original generating set can be reconstructed.

Introduction to Reduction Notation

Reduction notation can be used to represent differences in Sums of Squares for two
models. The notatio(u, A, B, C) denotes the complete main effects model for
effectsA, B, andC. The notation

R(A | . B,C)

denotes the difference between the model SS for the complete main effects model
containingA, B, andC and the model SS for the reduced model containing @hly
andC.

In other words, this notation represents the differences in Model SS produced by
proc gim;
class a b c;

model y=a b c;
run;

and
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proc glm;
class b c;
model y=b c;
run;

As another example, consider a regression equation with four independent variables.
The notationR(3s, 84|01, B2) denotes the differences in Model SS between

y = Bo+ iz + oz + B33 + faxs + €

and

Yy = Po+ B1x1 + Poxs + €

With PROC REG, this is the difference in Model SS for the models produced by
model y=x1 x2 x3 x4;
and

model y=x1 x2;

Examples
A One-Way Classification Model

For the model
Y=pu+A;+e 1=1,2,3
the general form of estimable functioh® is (from the previous example)
LB=L1xpu+L2x A1 +L3x Ay + (L1 —L2—L3) x As
Thus,
L= (L1,L2,L3,L1 — L2 — L3)
Tests involving only the parametess, A, andAs must have ail of the form
L= (0,L2,L3,—L2 — L3)
Since the precedind. involves only two symbols, hypotheses with at most two

degrees-of-freedom can be constructed. For exampld,det= 1 and .3 = 0;
thenletl.2 =0andL3 = 1:

010 —1
L[001—1}
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The precedind. can be used to test the hypothesis that= A, = As. For this
example, anyl. with two linearly independent rows with column 1 equal to zero
produces the same Sum of Squares. For example, a pooled linear quadratic

01 0 -1

L=191 2 1

gives the same SS. In fact, for ahyof full row rank and any nonsingular matriX
of conformable dimensions,

S Hy: LB = 0) = S Hy: KLB = 0)

A Three-Factor Main Effects Model

Consider a three-factor main effects model involving the CLASS variablds, and
C, as shown imable 11.1

Table 11.1. Three-Factor Main Effects Model

Obs A B C
1 1 2 1
2 1 1 2
3 2 1 3
4 2 2 2
5 2 2 2

The general form of an estimable function is showiiatle 11.2

Table 11.2. General Form of an Estimable Function for Three-Factor Main Effects

Model

Parameter Coefficient

1 (Intercept) L1
Al L2
A2 L1—-L1L2
B1 L4
B2 L1-14
C1 L6
C2 L1+L2—-14—-2x%x1L6
C3 —L2+ L4+ L6

Since only four symbolsi(1, L2, L4, andL6) are involved, any testable hypothesis
will have at most four degrees of freedom. If you formIamatrix with four linearly
independent rows according to the preceding rules, then

SSHo: LB = 0) = R(u, A, B, C)

In a main effects model, the usual hypothesis of interest for a main effect is the equal-
ity of all the parameters. In this example, it is not possible to test such a hypothesis
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because of confounding. One way to proceed is to construct a maximum rank hy-
pothesis (MRH) involving only the parameters of the main effect in question. This
can be done using the general form of estimable functions. Note the following:

e To get an MRH involving only the parameters 4f the coefficients oL asso-
ciated withu, B1, B2, C1, C2, andC3 must be equated to zero. Starting at
the top of the general form, Iétl = 0, thenZ4 = 0, thenL6 = 0. If C2 and
C3 are not to be involved, theh2 must also be zero. Thusll — A2 is not
estimable; that is, the MRH involving only thé parameters has zero rank and
R(A|u,B,C)=0.

e To obtain the MRH involving only thé? parameters, let1 = L2 = L6 = 0.
But then to remove’2 andC'3 from the comparison/,.4 must also be set to 0.
Thus,B1 — B2 is not estimable an®(B | u, A, C) = 0.

e To obtain the MRH involving only thé€' parameters, lek1 = L2 = L4 = 0.
Thus, the MRH involving onlyC' parameters is

Cl-2xC2+C3=K (foranyK)
or any multiple of the left-hand side equal& Furthermore,
SSHy: C1-2xC2+C3=0)=R(C|u, A B)

A Multiple Regression Model
Suppose

E(Y):ﬁo+ﬁlXX1+ﬂ2XX2—|—53XX3

If the X’X matrix is of full rank, the general form of estimable functions is as shown
in Table 11.3

Table 11.3. General Form of Estimable Functions for a Multiple Regression Model
When X’X Matrix Is of Full Rank

Parameter Coefficient
Bo L1
B L2
B2 L3
33 L4

To test, for example, the hypothesis thiat = 0, let L1 = L2 = L4 = 0 and
let L3 = 1. Then SSLB = 0) = R(f2 | bo,(1,03). In the full-rank case, all
parameters, as well as any linear combination of parameters, are estimable.

Suppose, however, th&3 = 2 x X1 + 3 x X2. The general form of estimable
functions is shown ifmable 11.4
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Table 11.4. General Form of Estimable Functions for a Multiple Regression Model
When X’X Matrix Is Not of Full Rank

Parameter Coefficient
Bo L1
B L2
B2 L3
03 2x L2+3x L3

For this example, it is possible to telly: Gy = 0. However,31, (32, andgs are not
jointly estimable; that is,

R(B1 | Bo, B2,83) = 0
R(B2 | Bo,1,33) = 0
R(ﬁ:ﬁ | ﬁ07ﬁ17ﬁ2) =0

Using Symbolic Notation

The preceding examples demonstrate the ability to manipulate the symbolic repre-
sentation of a generating set. Note that any operations performed on the symbolic
notation have corresponding row operations that are performed on the generating set
itself.

Estimable Functions

Type | SS and Estimable Functions

The Type | SS and the associated hypotheses they test are by-products of the modified
sweep operator used to compute a generalized inverX¢Xfand a solution to the
normal equations. For the modB(Y) = X1 x Bl + X2 x B2+ X3 x B3, the

Type | SS for each effect correspond to

Effect Type | SS

Bl R(B1)
B2 R(B2|B1)
B3 R(B3|B1, B2)

The Type | SS are model-order dependenteach effect is adjusted only for the
preceding effects in the model.

There are numerous ways to obtain a Type | hypothesis niatidgx each effect. One
way is to form theX’X matrix and then reducX’X to an upper triangular matrix
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by row operations, skipping over any rows with a zero diagonal. The nonzero rows
of the resulting matrix associated withl provide anL such that

SSHy: LB =0) = R(B1)

The nonzero rows of the resulting matrix associated Withprovide anL such that
SSHy: LB =0) = R(B2|B1)

The last set of nonzero rows (associated witB) provide anL such that
SSHy: LB = 0) = R(B3|B1, B2)

Another more formalized representation of Type | generating set8forB32, and
B3, respectively, is

G = ( XiXy | XiXp | XiX3 )
Go = (0 | X,)MyXy | X,MoX; )
Gy = (0 | 0 | X,MyXy )

where
M, = I—X1(X’1X1)7X/1
and

My = My — M; Xy (XM X)) X,M,

Using the Type | generating s€X, (for example), if anL is formed from linear
combinations of the rows d&, such thafL is of full row rank and of the same row
rank asGq, then S$H, : L3 = 0) = R(B2|B1).

In the GLM procedure, the Type | estimable functions displayed symbolically when
the E1 option is requested are

G = (X|X;) G

Gl = (X{/M;X5) Go

Gl = (X{M2X3) G3

As can be seen from the nature of the generatingGet$s2, andGs, only the Type |
estimable functions foB3 are guaranteed not to involve tliH and B2 parameters.
The Type | hypothesis foB2 can (and usually does) involvB3 parameters. The
Type | hypothesis foB1 usually involvesB2 and B3 parameters.

There are, however, a number of models for which the Type | hypotheses are consid-
ered appropriate. These are
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e balanced ANOVA models specified in proper sequence (that is, interactions do
not precede main effects in the MODEL statement and so forth)

e purely nested models (specified in the proper sequence)
¢ polynomial regression models (in the proper sequence).

Type Il SS and Estimable Functions

For main effects models and regression models, the general form of estimable func-
tions can be manipulated to provide tests of hypotheses involving only the parameters
of the effect in question. The same result can also be obtained by entering each effect
in turn as the last effect in the model and obtaining the Type | SS for that effect. These
are theType Il SSUsing a modified reversible sweep operator, it is possible to obtain
the Type Il SS without actually rerunning the model.

Thus, theType Il SS correspond to the R notation in which each effect is adjusted
for all other effects possible For a regression model such as

E(Y)=X1x Bl+X2x B2+ X3 x B3

the Type Il SS correspond to

Effect Type Il SS
B1 R(B1| B2,B3)
B2 R(B2| B1, B3)
B3 R(B3| B1,B2)

For a main effects model4; B, andC as classification variables), the Type Il SS
correspond to

Effect Type Il SS

A R(A|B,0)
B R(B| A, Q)
C R(C'| A, B)

As the discussion in the secti6A Three-Factor Main Effects Modelbn page 177
indicates, for regression and main effects models the Type Il SS provide an MRH for
each effect that does not involve the parameters of the other effects.

For models involving interactions and nested effects, in the absence of a priori para-
metric restrictions, it is not possible to obtain a test of a hypothesis for a main effect
free of parameters of higher-level effects with which the main effect is involved.

It is reasonable to assume, then, that any test of a hypothesis concerning an effect
should involve the parameters of that effect and only those other parameters with
which that effect is involved.
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Contained Effect
Given two effectsF'l andF'2, F'1 is said to becontained inF'2 provided that

e both effects involve the same continuous variables (if any)

e F'2 has more CLASS variables than ddés, and if F'1 has CLASS variables,
they all appear irF'2

Note that the interaction effegtis contained in all pure CLASS effects, but it is not
contained in any effect involving a continuous variable. No effect is contained by

Type Il, Type lll, and Type IV estimable functions rely on this definition, and they
all have one thing in common: the estimable functions involving an efidcalso
involve the parameters of all effects that contéim, and they do not involve the
parameters of effects that do not contain (other thanF'1).

Hypothesis Matrix for Type Il Estimable Functions

The Type Il estimable functions for an effeEtl have anL (before reduction to full
row rank) of the following form:

e All columns of L associated with effects not containitl (exceptF'1) are
zero.

e The submatrix oL associated with effedi'l is (X, MX;) ™ (X]MX;).

e Each of the remaining submatriceslofissociated with an effe¢t2 that con-
tainsF1is (X{MX;) (X]MX3).

In these submatrices,

Xy = the columns oiX whose associated effects do not cont&in
X4 the columns oiX associated withi'1.

X the columns oiX associated with afi'2 effect that containg'1.
M = I-X,(X,Xo) X}

For the model” = A B A x B, the Type Il SS correspond to
R(A|p,B), R(B|u,A), R(AxB|p,A,B)

for effectsA, B, andA * B, respectively. For the mod&l = A B(A) C(A B), the
Type Il SS correspond to

R(A[p), R(B(A)[p,A), R(C(AB)|p, A, B(A))

for effects A, B(A) andC(AB), respectively. For the modél = X X x X, the
Type 1l SS correspond to

R(X |y, X * X) and R(X X | p, X)

for X andX x X, respectively.
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Example of Type Il Estimable Functions

For a2 x 2 factorial with w observations per cell, the general form of estimable
functions is shown infable 11.5 Any nonzero values fof.2, L4, and L6 can be
used to construcL vectors for computing the Type Il SS fof, B, and A x B,

respectively.

Table 11.5. General Form of Estimable Functions for 2 x 2 Factorial
Effect Coefficient

n L1

Al L2

A2 L1—-12

B1 L4

B2 L1-14
AB11 L6

AB12 L2 - L6
AB21 L4 — L6
AB22 L1—- L2

— L4+ L6

For a balanced x 2 factorial with the same number of observations in every cell, the
Type Il estimable functions are shownTable 11.6

Table 11.6. Type Il Estimable Functions for Balanced 2 x 2 Factorial

Coefficients for Effect
Effect A B AxB
1 0 0 0
Al L2 0 0
A2 —L2 0 0
B1 0 L4 0
B2 0 —L4 0
AB11 0.5% L2 0.5 L4 L6
AB12 0.5% L2 —0.5% L4 —L6
AB21 —0.5%x L2 0.5 L4 —L6
AB22 —0.5% L2 —0.5% L4 L6

For an unbalanced x 2 factorial (with two observations in every cell except the
AB22 cell, which contains only one observation), the general form of estimable
functions is the same as if it were balanced since the same effects are still estimable.
However, the Type Il estimable functions fdrand B are not the same as they were

for the balanced design. The Type Il estimable functions for this unbalaheef
factorial are shown iffable 11.7
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Table 11.7. Type Il Estimable Functions for Unbalanced 2 x 2 Factorial

Coefficients for Effect
Effect A B Ax B
7 0 0 0
Al L2 0 0
A2 12 0 0
B1 0 L4 0
B2 0 —14 0
AB11 0.6 % L2 0.6 x L4 L6
AB12 0.4% L2 —0.6 x L4 —L6
AB21 —0.6 % L2 0.4* L4 —L6
AB22 —0.4% L2 —0.4% L4 L6

By comparing the hypothesis being tested in the balanced case to the hypothesis be-
ing tested in the unbalanced case for effe€tand B, you can note that the Type Il
hypotheses ford and B are dependent on the cell frequencies in the design. For un-
balanced designs in which the cell frequencies are not proportional to the background
population, the Type Il hypotheses for effects that are contained in other effects are
of questionable merit.

However, if an effect is not contained in any other effect, the Type Il hypothesis for
that effect is an MRH that does not involve any parameters except those associated
with the effect in question.

Thus, Type Il SS are appropriate for

any balanced model

any main effects model

any pure regression model

an effect not contained in any other effect (regardless of the model)

In addition to the preceding, the Type Il SS is generally accepted by most statisticians
for purely nested models.

Type Ill and IV SS and Estimable Functions

When an effect is contained in another effect, the Type Il hypotheses for that effect
are dependent on the cell frequencies. The philosophy behind both the Type Il and
Type IV hypotheses is that the hypotheses tested for any given effect should be the
same for all designs with the same general form of estimable functions.

To demonstrate this concept, recall the hypotheses being tested by the Type Il SS in
the balance® x 2 factorial shown inTable 11.6 Those hypotheses are precisely
the ones that the Type lll and Type IV hypotheses employ foR ail 2 factorials

that have at least one observation per cell. The Type Il and Type IV hypotheses for
a design without missing cells usually differ from the hypothesis employed for the
same design with missing cells since the general form of estimable functions usually
differs.



Type lll and IV SS and Estimable Functions ¢ 185

Type Il Estimable Functions

Type 1l hypotheses are constructed by working directly with the general form of
estimable functions. The following steps are used to construct a hypothesis for an
effect F'1:

1. For every effect in the model exceptl and those effects that containil,
equate the coefficients in the general form of estimable functions to zero.

If £'1is not contained in any other effect, this step defines the Type Il hypothe-
sis (as well as the Type Il and Type IV hypotheses} 1fis contained in other
effects, go on to step 2. (See the sectidype Il SS and Estimable Functions”
on page 181 for a definition of when effe€t is contained in another effect.)

2. If necessary, equate new symbols to compound expressions Hilthck in
order to obtain the simplest form for ttiél coefficients.

3. Equate all symbolic coefficients outside of thé block to a linear function of
the symbols in thé"'1 block in order to make thé&'1 hypothesis orthogonal to
hypotheses associated with effects that conkalin

By once again observing the Type Il hypotheses being tested in the balancéd
factorial, it is possible to verify that tha and A x B hypotheses are orthogonal and
also that theB and A x B hypotheses are orthogonal. This principle of orthogonality
between an effect and any effect that contains it holds for all balanced designs. Thus,
construction of Type Il hypotheses for any design is a logical extension of a process
that is used for balanced designs.

The Type Il hypotheses are precisely the hypotheses being tested by programs that
reparameterize using the usual assumptions (for example, all parameters for an effect
summing to zero). When no missing cells exist in a factorial model, Type lll SS
coincide with Yates’ weighted squares-of-means technique. When cells are missing
in factorial models, the Type Il SS coincide with those discussed in Harvey (1960)
and Henderson (1953).

The following steps illustrate the construction of Type Ill estimable functions for a
2 x 2 factorial with no missing cells.

To obtain theAd x B interaction hypothesis, start with the general form and equate the
coefficients for effectg, A, andB to zero, as shown ifable 11.8

Table 11.8. Type Il Hypothesis for A x B Interaction

Effect General Form L1=12=1L4=0
7 L1 0
Al L2 0
A2 L1 - 12 0
B1 L4 0
B2 L1-14 0
AB11 L6 L6
AB12 L2 - L6 —L6
AB21 L4 — L6 —L6
AB22 L1-12—-L4+ 16 L6




186 ¢ Chapter 11. The Four Types of Estimable Functions

The last column iMable 11.8&epresents the form of the MRH fot x B.

To obtain the Type Il hypothesis fat, first start with the general form and equate the
coefficients for effects and B to zero (letL1 = L4 = 0). NextletL6 = K*L2, and

find the value of K that makes the A hypothesis orthogonal to the A*B hypothesis. In
this case, K=0.5. Each of these steps is showrainle 11.9

In Table 11.9 the fourth column (undef.6 = K x L2) represents the form of all
estimable functions not involving, B1, or B2. The prime difference between the
Type Il and Type lll hypotheses fot is the wayK is determined. Type Il chooses
K as a function of the cell frequencies, whereas Type Il chodSesich that the
estimable functions foA are orthogonal to the estimable functions fox B.

Table 11.9. Type Il Hypothesis for A

Effect General Form L1=14=0 L6 = K % L2 K =05
1 L1 0 0 0
Al L2 L2 L2 L2
A2 L1-1L2 —L2 —L2 —L2
B1 L4 0 0 0
B2 L1—-14 0 0 0
AB11 L6 L6 K x L2 0.5 L2
AB12 L2 — L6 L2 — L6 (1-K)x*L2 0.5 % L2
AB21 L4 — L6 —L6 —~K % L2 —0.5* L2
AB22 L1—-12—-L4+ L6 —L2+ L6 (K —1)x L2 —0.5* L2

An example of Type Il estimable functions in3ax 3 factorial with unequal cell
frequencies and missing diagonals is giveratle 11.1Q(N; throughNg represent
the nonzero cell frequencies).

Table 11.10. A 3 x 3 Factorial Design with Unequal Cell Frequencies and Missing

Diagonals
B
1 2 3
1 N1 | No
A 2| Ns Ny
3| N5 | Ng

For any nonzero values @¥; throughNg, the Type lll estimable functions for each
effect are shown ifable 11.11
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Table 11.11. Type lll Estimable Functions for 3 x 3 Factorial Design with Unequal
Cell Frequencies and Missing Diagonals

Effect A B AxB
1 0 0 0
Al L2 0 0
A2 L3 0 0
A3 —L2— L3 0 0
B1 0 L5 0
B2 0 L6 0
B3 0 —L5— L6 0
AB12 0.667 x L2 + 0.333 % L3 0.333 % L5 + 0.667 * L6 L8
AB13 0.333 x L2 — 0.333 % L3 —0.333 % L5 — 0.667 x L6 —L8
AB21 0.333 x L2 + 0.667 * L3 0.667 x L5 + 0.333 x L6 —L8
AB23 —0.333 % L2+ 0.333 % L3 —0.667 % L5 — 0.333 % L6 L8
AB31 —0.333 % L2 — 0.667 x L3 0.333 % L5 — 0.333 % L6 L8
AB32 —0.667 « L2 —0.333 x L3 —0.333 % L5 4+ 0.333 x L6 —L8

Type IV Estimable Functions

By once again looking at the Type Il hypotheses being tested in the balaraSdc-

torial (seeTable 11.9, you can see another characteristic of the hypotheses employed
for balanced designs: the coefficients of lower-order effects are averaged across each
higher-level effect involving the same subscripts. For example, iMthgpothesis,

the coefficients ofAB11 and AB12 are equal to one-half the coefficient 4f, and

the coefficients oA B21 and A B22 are equal to one-half the coefficient.42. With

this in mind then, the basic concept used to construct Type IV hypotheses is that the
coefficients of any effect, sal/1, are distributed equitably across higher-level effects
that containF'1. When missing cells occur, this same general philosophy is adhered
to, but care must be taken in the way the distributive concept is applied.

Construction of Type IV hypotheses begins as does the construction of the Type Il
hypotheses. That is, for an effeEtl, equate to zero all coefficients in the general
form that do not belong td'1 or to any other effect containing'l. If F'1 is not
contained in any other effect, then the Type IV hypothesis (and Type Il and Ill) has
been found. IfF'1 is contained in other effects, then simplify, if necessary, the coef-
ficients associated with'l so that they are all free coefficients or functions of other
free coefficients in thé'1 block.

To illustrate the method of resolving the free coefficients outside offthénlock,
suppose that you are interested in the estimable functions for an dfimutl thatA

is contained inAB, AC, andABC'. (In other words, the main effects in the model
areA, B, andC.)

With missing cells, the coefficients of intermediate effects (here theydd&eand
AC) do not always have an equal distribution of the lower-order coefficients, so the
coefficients of the highest-order effects are determined first (herediBi€’). Once
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the highest-order coefficients are determined, the coefficients of intermediate effects
are automatically determined.

The following process is performed for each free coefficiend af turn. The result-
ing symbolic vectors are then added together to give the Type IV estimable functions
for A.

1. Select a free coefficient of, and set all other free coefficients dfto zero.

2. If any of the levels ofdA have zero as a coefficient, equate all of the coefficients
of higher-level effects involving that level of to zero. This step alone usually
resolves most of the free coefficients remaining.

3. Check to see if any higher-level coefficients are now zero when the coefficient
of the associated level of is not zero. If this situation occurs, the Type IV
estimable functions foA are not unique.

4. For each level ofd in turn, if the A coefficient for that level is nonzero, count
the number of times that level occurs in the higher-level effect. Then equate
each of the higher-level coefficients to the coefficient of that level dfvided
by the count.

An example of &3 x 3 factorial with four missing cells/{; through N5 represent
positive cell frequencies) is shownTiable 11.12

Table 11.12. 3 x 3 Factorial Design with Four Missing Cells

B
1 2 3

1[Ny [ Ny

A 2Ny | N,
3 N;

The Type IV estimable functions are shownTiable 11.13
Table 11.13. Type IV Estimable Functions for 3 x 3 Factorial Design with Four

Missing Cells

Effect A B AxB
I 0 0 0
Al —L3 0 0
A2 L3 0 0
A3 0 0 0
B1 0 L5 0
B2 0 —L5 0
B3 0 0 0

ABI11 —0.5* L3 0.5 L5 L8

AB12 —0.5% L3 —0.5% L5 —L8

AB21 0.5 L3 0.5* L5 —L8

AB22 0.5 L3 —0.5% L5 L8

AB33 0 0 0
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A Comparison of Type Il and Type IV Hypotheses

For the vast majority of designs, Type Il and Type IV hypotheses for a given effect
are the same. Specifically, they are the same for any diffethat is not contained in

other effects for any design (with or without missing cells). For factorial designs with

no missing cells, the Type lll and Type IV hypotheses coincide for all effects. When
there are missing cells, the hypotheses can differ. By using the GLM procedure, you
can study the differences in the hypotheses and then decide on the appropriateness of
the hypotheses for a particular model.

The Type Il hypotheses for three-factor and higher completely nested designs with
unequalNs in the lowest level differ from the Type Il hypotheses; however, the Type
IV hypotheses do correspond to the Type Il hypotheses in this case.

When missing cells occur in a design, the Type IV hypotheses may not be unique. If
this occurs in PROC GLM, you are notified, and you may need to consider defining
your own specific comparisons.
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Introduction to Nonparametric
Analysis

Overview

In statistical inference, or hypothesis testing, the traditional tests are paltathet-

ric testsbecause they depend on the specification of a probability distribution (such
as the normal) except for a set of free parameters. Parametric tests are said to depend
on distributional assumptiondNonparametric testson the other hand, do not re-

quire any strict distributional assumptions. Even if the data are distributed normally,
nonparametric methods are often almost as powerful as parametric methods.

Many nonparametric methods analyze the ranks of a variable rather than the original

values. Procedures such as PROC NPAR1WAY calculate the ranks for you and then

perform appropriate nonparametric tests. However, there are some situations in which

you use a procedure such as PROC RANK to calculate ranks and then use another
procedure to perform the appropriate test. See the sé€iotaining Ranks’on page

198 for details.

Although the NPAR1WAY procedure is specifically targeted for nonparametric anal-
ysis, many other procedures also perform nonparametric analyses. Some general
references on nonparametrics include Hollander and Wolfe (1999), Conover (1999),
Gibbons and Chakraborti (1992), Hettmansperger (1984), Randles and Wolfe (1979),
and Lehmann (1975).

Testing for Normality

Many parametric tests assume an underlying normal distribution for the population.
If your data do not meet this assumption, you may prefer to use a nonparametric
analysis.

Base SAS software provides several tests for normality in the UNIVARIATE pro-
cedure. Depending on your sample size, PROC UNIVARIATE performs the
Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darling, and Cramér-von Mises
tests. For more on PROC UNIVARIATE, refer to tBase SAS 9.1 Procedures Guide

Comparing Distributions

To test the hypothesis that two or more groups of observations have identical distribu-
tions, use the NPAR1IWAY procedure, which provides empirical distribution function
(EDF) statistics. The procedure calculates the Kolmogorov-Smirnov test, the the
Cramér-von Mises test, and, when the data are classified into only two samples, the
Kuiper test. Exacp-values are available for the two-sample Kolmogorov-Smirnov
test. To obtain these tests, use the EDF option in the PROC NPAR1WAY statement.
For details, se€hapter 52, “The NPAR1WAY Procedure.”
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One-Sample Tests

Base SAS software provides two one-sample tests in the UNIVARIATE procedure:
a sign test and the Wilcoxon signed rank test. Both tests are designed for situations
where you want to make an inference about the location (median) of a population. For
example, suppose you want to test whether the median resting pulse rate of marathon
runners differs from a specified value.

By default, both of these tests examine the hypothesis that the median of the popula-
tion from which the sample is drawn is equal to a specified value, which is zero by
default. The Wilcoxon signed rank test requires that the distribution be symmetric;
the sign test does not require this assumption. These tests can also be used for the
case of two related samples; see the secttmmparing Two Independent Samples”

for more information.

The two tests are automatically provided by the UNIVARIATE procedure. For de-
tails, formulas, and examples, refer to the chapter on the UNIVARIATE procedure in
theBase SAS 9.1 Procedures Guide

Two-Sample Tests

This section describes tests appropriate for two independent samples (for example,
two groups of subjects given different treatments) and for two related samples (for
example, before-and-after measurements on a single group of subjects). Related sam-
ples are also referred to as paired samples or matched pairs.

Comparing Two Independent Samples

SAS/STAT software provides several nonparametric tests for location and scale dif-
ferences.

When you perform these tests, your data should consist of a random sample of obser-
vations from two different populations. Your goal is either to compare the location
parameters (medians) or the scale parameters of the two populations. For example,
suppose your data consist of the number of days in the hospital for two groups of
patients: those who received a standard surgical procedure and those who received a
new, experimental surgical procedure. These patients are a random sample from the
population of patients who have received the two types of surgery. Your goal is to
decide whether the median hospital stays differ for the two populations.

Tests in the NPAR1WAY Procedure

The NPAR1WAY procedure provides the following location tests: Wilcoxon rank
sum test (Mann-Whitney U test), Median test, Savage test, and Van der Waerden
test. Also note that the Wilcoxon rank sum test can be obtained from the FREQ
procedure. In addition, PROC NPAR1WAY produces the following tests for scale
differences: Siegel-Tukey test, Ansari-Bradley test, Klotz test, and Mood test. PROC
NPAR1WAY also provides tests using the input data observations as scores, enabling
you to produce a wide variety of tests. You can construct any scores with the DATA
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step, and then PROC NPAR1WAY computes the corresponding linear rank test. You
can also directly analyze the raw data this way, producing the permutation test known
as Pitman’s test.

When data are sparse, skewed, or heavily tied, the usual asymptotic tests may not be
appropriate. In these situations, exact tests may be suitable for analyzing your data.
The NPAR1WAY procedure can produce exgetalues for all of the two-sample

tests for location and scale differences.

Chapter 52, “The NPAR1WAY Procedurepgrovides detailed statistical formulas for
these statistics, as well as examples of their use.

Tests in the FREQ Procedure

This procedure provides a test for comparing the location of two groups and for test-
ing for independence between two variables.

The situation in which you want to compare the location of two groups of observa-
tions corresponds to a table with two rows. In this case, the asymptotic Wilcoxon
rank sum test can be obtained by using SCORES=RANK in the TABLES statement
and by looking at either of the following:

e the Mantel-Haenszel statistic in the list of tests for no association. This is
labeled as “Mantel Haenszel Chi-Square” and PROC FREQ displays the statis-
tic, the degrees of freedom, and {r@alue. To obtain this statistic, specify the
CHISQ option in the TABLES statement.

e the CMH statistic 2 in the section on Cochran-Mantel-Haenszel statistics.
PROC FREQ displays the statistic, the degrees of freedom, anghthkie.
To obtain this statistic, specify the CMH2 option in the TABLES statement.

When you test for independence, the question being answered is whether the two
variables of interest are related in some way. For example, you might want to know

if student scores on a standard test are related to whether students attended a pub-
lic or private school. One way to think of this situation is to consider the data as a
two-way table; the hypothesis of interest is whether the rows and columns are inde-
pendent. In the preceding example, the groups of students would form the two rows,
and the scores would form the columns. The special case of a two-category response
(Pass/Fall) leads tozx 2 table; the case of more than two categories for the response
(A/BIC/DIF) leads to & x c table, where: is the number of response categories.

For testing whether two variables are independent, PROC FREQ provides Fisher’s
exact test. For @ x 2 table, PROC FREQ automatically provides Fisher's exact test
when you specify the CHISQ option in the TABLES statement. Fbka: table, use

the FISHER option in the EXACT statement to obtain the test.

SeeChapter 29, “The FREQ Procedurdgr details, formulas, and examples of these
tests.
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Comparing Two Related Samples

SAS/STAT software provides the following nonparametric tests for comparing the
locations of two related samples:

e Wilcoxon signed rank test
e sign test
e McNemar's test

The first two tests are available in the UNIVARIATE procedure, and the last test is
available in the FREQ procedure. When you perform these tests, your data should
consist of pairs of measurements for a random sample from a single population. For
example, suppose your data consist of SAT scores for students before and after at-
tending a course on how to prepare for the SAT. The pairs of measurements are the
scores before and after the course, and the students should be a random sample of
students who attended the course. Your goal in analysis is to decide if the median
change in scores is significantly different from zero.

Tests in the UNIVARIATE Procedure

By default, PROC UNIVARIATE performs a Wilcoxon signed rank test and a sign
test. To use these tests on two related samples, perform the following steps:

1. In the DATA step, create a new variable that contains the differences between
the two related variables.

2. Run PROC UNIVARIATE, using the new variable in the VAR statement.

For discussion of the tests, formulas, and examples, refer to the chapter on the
UNIVARIATE procedure in theBase SAS 9.1 Procedures Guide

Tests in the FREQ Procedure

The FREQ procedure can be used to obtain McNemar's test, which is simply another
special case of a Cochran-Mantel-Haenszel statistic (and also of the sign test). The
AGREE option in the TABLES statement produces this tes2foe tables, and exact
p-values are also available for this test. S#®@pter 29, “The FREQ Procedurdgdr

more information.

Tests for k Samples

Comparing k Independent Samples

One goal in comparing independent samples is to determine whether the location
parameters (medians) of the populations are different. Another goal is to determine
whether the scale parameters for the populations are different. For example, suppose
new employees are randomly assigned to one of three training programs. At the end
of the program, the employees receive a standard test that gives a rating score of their
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job ability. The goal of analysis is to compare the median scores for the three groups
and decide whether the differences are real or due to chance alone.

To comparé: independent samples, either the NPAR1IWAY or the FREQ procedure
provides a Kruskal-Wallis test. PROC NPAR1WAY also provides the Savage, me-
dian, and Van der Waerden tests. In addition, PROC NPAR1WAY produces the fol-
lowing tests for scale differences: Siegel-Tukey test, Ansari-Bradley test, Klotz test,
and Mood test. Note that you can obtain exaetlues for all of these tests.

In addition, you can specify the SCORES=DATA option to use the input data obser-
vations as scores. This enables you to produce a very wide variety of tests. You can
construct any scores using the DATA step, and then PROC NPAR1WAY computes
the corresponding linear rank and one-way ANOVA tests. You can also analyze the
raw data with the SCORES=DATA option; for two-sample data, this permutation test
is known as Pitman'’s test.

SeeChapter 52, “The NPAR1WAY Procedurefbr details, formulas, and examples.

To produce a Kruskal-Wallis test in the FREQ procedure, use SCORES=RANK and
the CMH2 option in the TABLES statement. Then, look at the second Cochran-
Mantel-Haenszel statistic (labeled “Row Mean Scores Differ”) to obtain the Kruskal-
Wallis test. The FREQ procedure also provides the Jonckheere-Terpstra test, which
is more powerful than the Kruskal-Wallis test for comparihgsamples against
ordered alternatives. The exact test is also available. In addition, you can ob-
tain a ridit analysis, developed by Bross (1958), by specifying SCORES=RIDIT
or SCORES=MODRIDIT in the TABLES statement in the FREQ procedure. See
Chapter 29, “The FREQ Proceduref@r more information.

Comparing k Dependent Samples

Friedman’s test enables you to compare the locations of three or more dependent
samples. You can obtain Friedman’s Chi-square with the FREQ procedure by using
the CMH2 option and SCORES=RANK and looking at the second CMH statistic in
the output. For an example, s€@apter 29, “The FREQ ProcedureThis chapter

also contains formulas and other details on the CMH statistics. For a discussion of
how to use the RANK and GLM procedures to obtain Friedman'’s test, refer to Ipe
(1987).

Measures of Correlation and Associated Tests

The CORR procedure in Base SAS software provides several nonparametric mea-
sures of association and associated tests. It computes Spearman’s rank-order cor-
relation, Kendall's taw, and Hoeffding’s measure of dependence, and it provides
tests for each of these statistics. PROC CORR also computes Spearman’s partial
rank-order correlation and Kendall's partial taufinally, PROC CORR computes
Cronbach’s coefficient alpha for raw and standardized variables. This statistic can be
used to estimate the reliability coefficient. For a general discussion of correlations,
formulas, interpretation, and examples, refer to the chapter on the CORR procedure
in theBase SAS 9.1 Procedures Guide
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The FREQ procedure also provides some nonparametric measures of association:
gamma, Kendall's tal; Stuart's taue, Somer'sD, and the Spearman rank corre-
lation. The output includes the measure, the asymptotic standard error, confidence
limits, and the asymptotic test that the measure equals zero. For the Spearman rank
correlation, you can optionally request an exasfalue that the correlation is equal

to zero. For more information, s&hapter 29, “The FREQ Procedure.”

Obtaining Ranks

The primary procedure for obtaining ranks is the RANK procedure in Base SAS
software. Note that the PRINQUAL and TRANSREG procedures also provide rank
transformations. With all three of these procedures, you can create an output data set
and use it as input to another SAS/STAT procedure or to the IML procedure. Refer
to theBase SAS 9.1 Procedures Guideinformation on the RANK procedure, and

see the chapters in this book for information on the PRINQUAL and TRANSREG
procedures.

In addition, you can specify SCORES=RANK in the TABLES statement in the FREQ
procedure. PROC FREQ then uses ranks to perform the analyses requested and gen-
erates nonparametric analyses.

For more discussion of using the rank transform, refer to Iman and Conover (1979),
Conover and Iman (1981), Hora and Conover (1984), Iman, Hora, and Conover
(1984), Hora and Iman (1988), and Iman (1988).

Kernel Density Estimation

The KDE procedure performs either univariate or bivariate kernel density estima-
tion. Statisticaldensity estimatioinvolves approximating a hypothesized probabil-
ity density function from observed datiéernel density estimatiois a honparametric
technique for density estimation in which a known density function (the kernel) is
averaged across the observed data points to create a smooth approximation.

PROC KDE uses a Gaussian density as the kernel, and its assumed variance de-
termines the smoothness of the resulting estimate. PROC KDE outputs the kernel
density estimate to a SAS data set, which you can then use with other procedures for
plotting or analysis. PROC KDE also computes a variety of common statistics, in-
cluding estimates of the percentiles of the hypothesized probability density function.

For more information, se€hapter 36, “The KDE Procedure.”
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Chapter 13

Introduction to Structural Equations
with Latent Variables

Overview

You can use the CALIS procedure for analysis of covariance structures, fitting sys-
tems of linear structural equations, and path analysis. These terms are more or less
interchangeable, but they emphasize different aspects of the analysis. The analysis
of covariance structures refers to the formulation of a model for the variances and
covariances among a set of variables and the fitting of the model to an observed co-
variance matrix. In linear structural equations, the model is formulated as a system
of equations relating several random variables with assumptions about the variances
and covariances of the random variables. In path analysis, the model is formulated
as a path diagram, in which arrows connecting variables represent (co)variances and
regression coefficients. Path models and linear structural equation models can be con-
verted to models of the covariance matrix and can, therefore, be fitted by the methods
of covariance structure analysis. All of these methods allow the use of hypothetical
latent variables or measurement errors in the models.

Loehlin (1987) provides an excellent introduction to latent variable models using path
diagrams and structural equations. A more advanced treatment of structural equation
models with latent variables is given by Bollen (1989). Fuller (1987) provides a
highly technical statistical treatment of measurement-error models.

Comparison of the CALIS and SYSLIN
Procedures

The SYSLIN procedure in the SAS/ETS product can also fit certain kinds of path
models and linear structural equation models. PROC CALIS differs from PROC
SYSLIN in that PROC CALIS allows more generality in the use of latent variables in
the models. Latent variables are unobserved, hypothetical variables, as distinct from
manifest variables, which are the observed data. PROC SYSLIN allows at most one
latent variable, the error term, in each equation. PROC CALIS allows several latent
variables to appear in an equation—in fact, all the variables in an equation can be
latent as long as there are other equations that relate the latent variables to manifest
variables.

Both the CALIS and SYSLIN procedures enable you to specify a model as a sys-
tem of linear equations. When there are several equations, a given variable may be
a dependent variable in one equation and an independent variable in other equations.
Therefore, additional terminology is heeded to describe unambiguously the roles of
variables in the system. Variables with values that are determined jointly and si-
multaneously by the system of equations are cadlediogenous variable¥/ariables
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with values that are determined outside the system, that is, in a manner separate from
the process described by the system of equations, are called exogenous variables. The
purpose of the system of equations is to explain the variation of each endogenous vari-
able in terms of exogenous variables or other endogenous variables or both. Refer to
Loehlin (1987, p. 4) for further discussion of endogenous and exogenous variables.
In the econometric literature, error and disturbance terms are usually distinguished
from exogenous variables, but in systems with more than one latent variable in an
equation, the distinction is not always clear.

In PROC SYSLIN, endogenous variables are identified by the ENDOGENOUS state-
ment. When you specify structural equations in PROC CALIS, endogenous variables
are assumed to be those that appear on the left-hand sides of the equations; a given
variable may appear on the left-hand side of at most one equation.

PROC SYSLIN provides many methods of estimation, some of which are applica-
ble only in special cases. For example, ordinary least-squares estimates are suitable
in certain kinds of systems but may be statistically biased and inconsistent in other
kinds. PROC CALIS provides three methods of estimation that can be used with
most models. Both the CALIS and SYSLIN procedures can do maximum likelihood
estimation, which PROC CALIS calls ML and PROC SYSLIN calls FIML. PROC
SYSLIN can be much faster than PROC CALIS in those special cases for which it
provides computationally efficient estimation methods. However, PROC CALIS has

a variety of sophisticated algorithms for maximum likelihood estimation that may be
much faster than FIML in PROC SYSLIN.

PROC CALIS can impose a wider variety of constraints on the parameters, including
nonlinear constraints, than can PROC SYSLIN. For example, PROC CALIS can con-
strain error variances or covariances to equal specified constants, or it can constrain
two error variances to have a specified ratio.

Model Specification

PROC CALIS provides several ways to specify a model. Structural equations can
be transcribed directly in the LINEQS statement. A path diagram can be described
in the RAM statement. You can specify a first-order factor model in the FACTOR
and MATRIX statements. Higher-order factor models and other complicated models
can be expressed in the COSAN and MATRIX statements. For most applications,
the LINEQS and RAM statements are easiest to use; the choice between these two
statements is a matter of personal preference.

You can save a model specification in an OUTRAM= data set, which can then be
used with the INRAM= option to specify the model in a subsequent analysis.
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Estimation Methods

The CALIS procedure provides five methods of estimation specified by the
METHOD= option:

DWLS diagonally weighted least squares

ULS unweighted least squares

GLS normal theory generalized least squares

ML maximum likelihood for multivariate normal distributions
WLS weighted least squares for arbitrary distributions

Each estimation method is based on finding parameter estimates that minimize a
badness-of-fit function, which measures the difference between the observed sam-
ple covariance matrix and the predicted covariance matrix, given the model and the
parameter estimates. See the sectestimation Methods’on page 574 irChapter

19, “The CALIS Procedure,for formulas, or refer to Loehlin (1987, pp. 54-62) and
Bollen (1989, pp. 104-123) for further discussion.

The default is METHOD=ML, which is the most popular method for applications.
The option METHOD=GLS usually produces very similar results to METHOD=ML.
Asymptotically, ML and GLS are the same. Both methods assume a multivari-
ate normal distribution in the population. The WLS method with default weight
matrix, which is equivalent to the asymptotically distribution free (ADF) method,
yields asymptotically normal estimates regardless of the distribution in the popula-
tion. When the multivariate normal assumption is in doubt, especially if they have
high kurtosis, you should seriously consider the WLS method. When a correlation
matrix is analyzed, only the WLS may produce correct standard error estimates.
However, in order to use the WLS method with the expected statistical properties,
sample size must be large. Several thousands may be a minimum requirement.

The ULS and DWLS methods yield reasonable estimates under less restrictive as-
sumptions. You can apply these methods to normal or nonnormal situations, or to
covariance or correlation matrices. The drawback is that the statistical qualities of
the estimates seem to be unknown. For this reason, PROC CALIS does not provide
standard errors or test statistics with these two methods.

You cannot use METHOD=ML if the observed covariance matrix is singular. You
could either remove variables involved in the linear dependencies or use less restric-
tive estimation methods like ULS. Specifying METHOD=GLS assumes that the pre-
dicted covariance matrix is nonsingular. If GLS fails because of a singular predicted
covariance matrix, you need to examine whether the model specification leads to the
singularity. If so, modify the model specification to eliminate the problem. If not,
you probably need to use other estimation methods.

You should remove outliers and try to transform variables that are skewed or heavy-
tailed. This applies to all estimation methods, since all the estimation methods depend
on the sample covariance matrix, and the sample covariance matrix is a poor estimator
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for distributions with high kurtosis (Bollen 1989, pp. 415-418; Huber 1981; Hampel
et al. 1986). PROC CALIS displays estimates of univariate and multivariate kurto-
sis (Bollen 1989, pp. 418-425) if you specify the KURTOSIS option in the PROC
CALIS statement.

Statistical Inference

When you specify the ML, GLS, or WLS estimation with appropriate models, PROC
CALIS can compute

e a chi-square goodness-of-fit test of the specified model versus the alterna-
tive that the data are from a population with unconstrained covariance matrix
(Loehlin 1987, pp. 62—64; Bollen 1989, pp. 110, 115, 263—-269)

e approximate standard errors of the parameter estimates (Bollen 1989, pp. 109,
114, 286), displayed with the STDERR option

e various modification indices, requested via the MODIFICATION or MOD op-
tion, that give the approximate change in the chi-square statistic that would
result from removing constraints on the parameters or constraining additional
parameters to zero (Bollen 1989, pp. 293—-303)

If you have two models such that one model results from imposing constraints on
the parameters of the other, you can test the constrained model against the more
general model by fitting both models with PROC CALIS. If the constrained model

is correct, the difference between the chi-square goodness-of-fit statistics for the two
models has an approximate chi-square distribution with degrees of freedom equal to
the difference between the degrees of freedom for the two models (Loehlin 1987, pp.
62—-67; Bollen 1989, pp. 291-292).

All of the test statistics and standard errors computed under ML and GLS depend on
the assumption of multivariate normality. Normality is a much more important re-
quirement for data with random independent variables than it is for fixed independent
variables. If the independent variables are random, distributions with high kurtosis
tend to give liberal tests and excessively small standard errors, while low kurtosis
tends to produce the opposite effects (Bollen 1989, pp. 266—267, 415-432).

All test statistics and standard errors computed by PROC CALIS are based on asymp-
totic theory and should not be trusted in small samples. There are no firm guidelines
on how large a sample must be for the asymptotic theory to apply with reasonable ac-
curacy. Some simulation studies have indicated that problems are likely to occur with
sample sizes less than 100 (Loehlin 1987, pp. 60-61; Bollen 1989, pp. 267-268).
Extrapolating from experience with multiple regression would suggest that the sam-
ple size should be at least 5 to 20 times the number of parameters to be estimated
in order to get reliable and interpretable results. The WLS method may even require
that the sample size be over several thousands.

The asymptotic theory requires that the parameter estimates be in the interior of the
parameter space. If you do an analysis with inequality constraints and one or more
constraints are active at the solution (for example, if you constrain a variance to be
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nonnegative and the estimate turns out to be zero), the chi-square test and standard
errors may not provide good approximations to the actual sampling distributions.

For modeling correlation structures, the only theoretically correct method is the WLS
method with the default ASYCOV=CORR option. For other methods, standard error
estimates for modeling correlation structures may be inaccurate even for sample sizes
as large as 400. The chi-square statistic is generally the same regardless of which
matrix is analyzed, provided that the model involves no scale-dependent constraints.
However, if the purpose is to obtain reasonable parameter estimates for the correlation
structures only, then you may find other estimation methods useful as well.

If you fit a model to a correlation matrix and the model constrains one or more ele-
ments of the predicted matrix to equal 1.0, the degrees of freedom of the chi-square
statistic must be reduced by the number of such constraints. PROC CALIS attempts
to determine which diagonal elements of the predicted correlation matrix are con-
strained to a constant, but it may fail to detect such constraints in complicated mod-
els, particularly when programming statements are used. If this happens, you should
add parameters to the model to release the constraints on the diagonal elements.

Goodness-of-fit Statistics

In addition to the chi-square test, there are many other statistics for assessing the
goodness of fit of the predicted correlation or covariance matrix to the observed ma-
trix.

Akaike’s (1987) information criterion (AIC) and Schwarz’s (1978) Bayesian criterion
(SBC) are useful for comparing models with different numbers of parameters—the
model with the smallest value of AIC or SBC is considered best. Based on both
theoretical considerations and various simulation studies, SBC seems to work better,
since AIC tends to select models with too many parameters when the sample size is
large.

There are many descriptive measures of goodness of fit that are scaled to range ap-
proximately from zero to one: the goodness of fit index (GFI) and GFI adjusted
for degrees of freedom (AGFI) (Jéreskog and S6rbom 1988), centrality (McDonald
1989), and the parsimonious fit index (James, Mulaik, and Brett 1982). Bentler and
Bonett (1980) and Bollen (1986) have proposed measures for comparing the good-
ness of fit of one model with another in a descriptive rather than inferential sense.

The root mean squared error approximation (RMSEA) proposed by Steiger and Lind
(1980) does not assume a true model being fitting to the data. It measures the dis-
crepancy between the fitted model and the covariance matrix in the population. For
samples, RMSEA and confidence intervals can be estimated. Statistical tests for de-
termining whether the population RMSEA' fall below certain specified values are
available (Browne and Cudeck 1993). In the same vein, Browne and Cudeck (1993)
propose the expected cross validation index (ECVI) that measures how good a model
is for predicting future sample covariances. Point estimate and confidence intervals
for ECVI are also developed.
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None of these measures of goodness of fit are related to the goodness of prediction
of the structural equations. Goodness of fit is assessed by comparing the observed
correlation or covariance matrix with the matrix computed from the model and pa-
rameter estimates. Goodness of prediction is assessed by comparing the actual values
of the endogenous variables with their predicted values, usually in terms of root mean
squared error or proportion of variance accounted fon)( For latent endogenous
variables, root mean squared error d@rdcan be estimated from the fitted model.

Optimization Methods

PROC CALIS uses a variety of nonlinear optimization algorithms for computing pa-
rameter estimates. These algorithms are very complicated and do not always work.
PROC CALIS will generally inform you when the computations fail, usually by dis-
playing an error message about the iteration limit being exceeded. When this hap-
pens, you may be able to correct the problem simply by increasing the iteration limit
(MAXITER= and MAXFUNC=). However, it is often more effective to change the
optimization method (OMETHOD=) or initial values. For more details, see the sec-
tion “Use of Optimization Techniquesdn page 664 irChapter 19, “The CALIS
Procedure,”and refer to Bollen (1989, pp. 254—-256).

PROC CALIS may sometimes converge to a local optimum rather than the global
optimum. To gain some protection against local optima, you can run the analysis
several times with different initial estimates. The RANDOM= option in the PROC
CALIS statement is useful for generating a variety of initial estimates.

Specifying Structural Equation Models

Consider fitting a linear equation to two observed varialffeand X. Simple linear
regression uses the model of a particular form, labeled for purposes of discussion, as
Model Form A.

Model Form A

Y = a+BX+Ey

wherea and § are coefficients to be estimated afg is an error term. If the val-

ues of X are fixed, the values df’y are assumed to be independent and identically
distributed realizations of a normally distributed random variable with mean zero and
variance Varfy). If X is a random variableX and Ey are assumed to have a bi-
variate normal distribution with zero correlation and variances Xagnd VarEy ),
respectively. Under either set of assumptions, the usual formulas hold for the esti-
mates of the coefficients and their standard errors Geapter 2, “Introduction to
Regression Procedures,”

In the REG or SYSLIN procedure, you would fit a simple linear regression model
with a MODEL statement listing only the names of the manifest variables:
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proc reg;
model y=x;
run;

You can also fit this model with PROC CALIS, but you must explicitly specify the
names of the parameters and the error terms (except for the intercept, which is as-
sumed to be present in each equation). The linear equation is given in the LINEQS
statement, and the error variance is specified in the STD statement.

proc calis cov;
linegs y=beta x + ex;
std ex=vex;

run;

The parameters are the regression coeffidietd and the varianceex of the error
termex. You do not need to type an * betwebata andx to indicate the multiplica-
tion of the variable by the coefficient.

The LINEQS statement uses the convention that the names of error terms begin with
the letter E, disturbances (errors terms for latent variables) in equations begin with D,
and other latent variables begin with F for “factor.” Names of variables in the input
SAS data set can, of course, begin with any letter.

If you leave out the name of a coefficient, the value of the coefficient is assumed to
be 1. If you leave out the name of a variance, the variance is assumed to be 0. So if
you tried to write the model the same way you would in PROC REG, for example,

proc calis cov;
linegs y=x;

you would be fitting a model that says is equal toX plus an intercept, with no
error.

The COQV option is used because PROC CALIS, like PROC FACTOR, analyzes the
correlation matrix by default, yielding standardized regression coefficients. The COV
option causes the covariance matrix to be analyzed, producing raw regression coeffi-
cients. Se€hapter 2, “Introduction to Regression Procedurdsy’a discussion of

the interpretation of raw and standardized regression coefficients.

Since the analysis of covariance structures is based on modeling the covariance ma-
trix and the covariance matrix contains no information about means, PROC CALIS
neglects the intercept parameter by default. To estimate the intercept, change the
CQV option to UCQV, which analyzes the uncorrected covariance matrix, and use
the AUGMENT option, which adds a row and column for the intercept, called
INTERCEPT, to the matrix being analyzed. The model can then be specified as

proc calis ucov augment;
linegs y=alpha intercept + beta x + ex;
std ex=vex;

run;
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In the LINEQS statemenintercept represents a variable with a constant value of 1;
hence, the coefficieratipha is the intercept parameter.

Other commonly used options in the PROC CALIS statement include

MODIFICATION to display model modification indices
RESIDUAL to display residual correlations or covariances

STDERR to display approximate standard errors
TOTEFF to display total effects

For ordinary unconstrained regression models, there is no reason to use PROC CALIS
instead of PROC REG. But suppose that the observed varighdesl X are contam-
inated by error, and you want to estimate the linear relationship between their true,
error-free scores. The model can be written in several forms. A model of Form B is

as follows.
Model Form B
Y = a+p(Fx+ Ey
X = Fx+FEx
COV(F)(,E)() = COV(Fx,Ey) = COV(Ex,Ey) =0

This model has two error term&y and E'y, as well as another latent variaklg
representing the true value corresponding to the manifest vatkblehe true value
corresponding td” does not appear explicitly in this form of the model.

The assumption in Model Form B is that the error terms and the latent vafiable

are jointly uncorrelated is of critical importance. This assumption must be justified
on substantive grounds such as the physical properties of the measurement process.
If this assumption is violated, the estimators may be severely biased and inconsistent.

You can express Model Form B in PROC CALIS as follows:

proc calis cov;
lineqs y=beta fx + ey,
x=fx + ex;
std fx=vfx,
ey=vey,
ex=vex;
run;

You must specify a variance for each of the latent variables in this model using the
STD statement. You can specify either a name, in which case the variance is con-
sidered a parameter to be estimated, or a number, in which case the variance is con-
strained to equal that numeric value. In general, you must specify a variance for each
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latent exogenous variable in the model, including error and disturbance terms. The

variance of a manifest exogenous variable is set equal to its sample variance by de-
fault. The variances of endogenous variables are predicted from the model and are
not parameters. Covariances involving latent exogenous variables are assumed to be
zero by default. Covariances between manifest exogenous variables are set equal to

the sample covariances by default.

Fuller (1987, pp. 18-19) analyzes a data set from Voss (1969) involving corn yields
(Y) and available soil nitrogenX) for which there is a prior estimate of the mea-

surement error for soil nitrogen Vdr() of 57. You can fit Model Form B with this
constraint using the following SAS statements.

data corn(type=cov);
input _type_ $ _name_ $ y Xx;
datalines;

n 11 11

mean . 97.4545 70.6364

cov vy 87.6727 .

cov x 104.8818 304.8545

proc calis data=corn cov stderr;
linegs y=beta fx + ey,
x=fx + ex;
std ex=57,
fx=vix,
ey=vey;
run;

In the STD statement, the varianceef is given as the constant value 57. PROC

CALIS produces the following estimates.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

y = 0.4232%x + 1.0000 ey
Std Err 0.1658 beta

t Value 2.5520

X = 1.0000 fx + 1.0000 ex

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
fx vix 247.85450 136.33508 1.82
ey vey 43.29105 23.92488 1.81

ex 57.00000

Figure 13.1. Measurement Error Model for Corn Data
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PROC CALIS also displays information about the initial estimates that can be useful
if there are optimization problems. If there are no optimization problems, the initial
estimates are usually not of interest; they are not reproduced in the examples in this
chapter.
You can write an equivalent model (labeled here as Model Form C) using a latent
variableFy to represent the true value corresponding’to

Model Form C

Y = Fy+ Ey
X = Fx+ FEx
Fy = a+f(Fx
Cov(Fx,Ex) = Cov(Fx,Ex) = Cov(Ex,Ey) = 0

The first two of the three equations express the observed variables in terms of a true
score plus error; these equations are called the measurement model. The third equa-
tion, expressing the relationship between the latent true-score variables, is called the
structural or causal model. The decomposition of a model into a measurement model
and a structural model (Keesling 1972; Wiley 1973; Joreskog 1973) has been pop-
ularized by the program LISREL (Joreskog and Sérbom 1988). The statements for
fitting this model are

proc calis cov;
linegs y=fy + ey,
x=fx + ex,
fy=beta fx;
std fx=vfx,
ey=vey,
eX=Vex;
run;

You do not need to include the variance Bf in the STD statement because the
variance ofFy- is determined by the structural model in terms of the variandéxgf
that is, Vary)=32 Var(Fx).

Correlations involving endogenous variables are derived from the model. For exam-
ple, the structural equation in Model Form C implies thatand F'y are correlated
unlesss is zero. In all of the models discussed so far, the latent exogenous variables
are assumed to be jointly uncorrelated. For example, in Model ForBfyCEx, and

Fx are assumed to be uncorrelated. If you want to specify a model in wijichnd

Ex, say, are correlated, you can use the COV statement to specify the numeric value
of the covariance CoHy, Fx) betweenFy and E'x, or you can specify a hame to
make the covariance a parameter to be estimated. For example,
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proc calis cov;
lineqs y=fy + ey,
x=fx + ex,
fy=beta fx;
std fy=vfy,
fx=vfx,
ey=vey,
EeX=VeX;
COV ey ex=ceyex;
run;

This COV statement specifies that the covariance betwgemndex is a parameter
namedceyex. All covariances that are not listed in the COV statement and that are
not determined by the model are assumed to be zero. If the model contained two or
more manifest exogenous variables, their covariances would be set to the observed
sample values by default.

Identification of Models

Unfortunately, if you try to fit models of Form B or Form C without additional
constraints, you cannot obtain unique estimates of the parameters. These models
have four parameters (one coefficient and three variances). The covariance matrix
of the observed variables and X has only three elements that are free to vary,
since Covl’,X)=Cov(X,Y). The covariance structure can, therefore, be expressed
as three equations in four unknown parameters. Since there are fewer equations than
unknowns, there are many different sets of values for the parameters that provide a
solution for the equations. Such a model is said to be underidentified.

If the number of parameters equals the number of free elements in the covariance ma-
trix, then there may exist a unigue set of parameter estimates that exactly reproduce
the observed covariance matrix. In this case, the model is said to be just identified or
saturated.

If the number of parameters is less than the number of free elements in the covariance
matrix, there may exist no set of parameter estimates that reproduces the observed co-
variance matrix. In this case, the model is said to be overidentified. Various statistical
criteria, such as maximum likelihood, can be used to choose parameter estimates that
approximately reproduce the observed covariance matrix. If you use ML, GLS, or
WLS estimation, PROC CALIS can perform a statistical test of the goodness of fit of
the model under the certain statistical assumptions.

If the model is just identified or overidentified, it is said to be identified. If you
use ML, GLS, or WLS estimation for an identified model, PROC CALIS can com-
pute approximate standard errors for the parameter estimates. For underidentified
models, PROC CALIS obtains approximate standard errors by imposing additional
constraints resulting from the use of a generalized inverse of the Hessian matrix.

You cannot guarantee that a model is identified simply by counting the parameters.
For example, for any latent variable, you must specify a numeric value for the vari-
ance, or for some covariance involving the variable, or for a coefficient of the variable
in at least one equation. Otherwise, the scale of the latent variable is indeterminate,
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and the model will be underidentified regardless of the number of parameters and
the size of the covariance matrix. As another example, an exploratory factor analysis
with two or more common factors is always underidentified because you can rotate
the common factors without affecting the fit of the model.

PROC CALIS can usually detect an underidentified model by computing the approx-
imate covariance matrix of the parameter estimates and checking whether any esti-
mate is linearly related to other estimates (Bollen 1989, pp. 248-250), in which case
PROC CALIS displays equations showing the linear relationships among the esti-
mates. Another way to obtain empirical evidence regarding the identification of a
model is to run the analysis several times with different initial estimates to see if the
same final estimates are obtained.

Bollen (1989) provides detailed discussions of conditions for identification in a vari-
ety of models.

The following example is inspired by Fuller (1987, pp. 40—-41). The hypothetical data
are counts of two types of cells, cells forming rosettes and nucleated cells, in spleen
samples. It is reasonable to assume that counts have a Poisson distribution; hence,
the square roots of the counts should have a constant error variance of 0.25.

You can use PROC CALIS to fit a model of Form C to the square roots of the counts
without constraints on the parameters, as displayed in following statements. The
option OMETHOD=QUANEW is used in the PROC CALIS statement because in
this case it produces more rapid convergence than the default optimization method.

data spleen;

input rosette nucleate;
sqrtrose=sqrt(rosette);
sgrtnucl=sqgrt(nucleate);
datalines;
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proc calis data=spleen cov omethod=quanew;
lineqs sqrtrose=factrose + err_rose,
sgrtnucl=factnucl + err_nucl,
factrose=beta factnucl,
std err_rose=v_rose,
err_nucl=v_nucl,
factnucl=v_factnu;
run;

This model is underidentified. PROC CALIS displays the following warning:

WARNING: Problem not identified: More parameters to estimate ( 4 )
than given values in data matrix ( 3 ).

and diagnoses the indeterminacy as follows:

NOTE: Hessian matrix is not full rank. Not all parameters are identified.
Some parameter estimates are linearly related to other parameter
estimates as shown in the following equations:

v_nucl = -10.554977 - 0.036438 * beta + 1.00000 * v_factnu
+ 0.149564 * v_rose

The constraint that the error variances equal 0.25 can be imposed by modifying the
STD statement:

proc calis data=spleen cov stderr;
lineqs sqrtrose=factrose + err_rose,
sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl;
std err_rose=.25,
err_nucl=.25,
factnucl=v_factnu;
run;
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The resulting parameter estimates are displayédgare 13.2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

factrose = 0.4034*factnucl
Std Err 0.0508 beta
t Value 7.9439

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
factnucl v_factnu 10.45846 4.56608 2.29
err_rose 0.25000
err_nucl 0.25000

Figure 13.2. Spleen Data: Parameter Estimates for Overidentified Model

This model is overidentified and the chi-square goodness-of-fit test yigldsake
of 0.0219, as displayed iigure 13.3

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.4775
Goodness of Fit Index (GFI) 0.7274
GFl Adjusted for Degrees of Freedom (AGFI) 0.1821
Root Mean Square Residual (RMR) 0.1785
Parsimonious GFI (Mulaik, 1989) 0.7274
Chi-Square 5.2522
Chi-Square DF 1
Pr > Chi-Square 0.0219
Independence Model Chi-Square 13.273
Independence Model Chi-Square DF 1
RMSEA Estimate 0.6217
RMSEA 90% Lower Confidence Limit 0.1899
RMSEA 90% Upper Confidence Limit 1.1869
ECVI Estimate 0.9775
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 2.2444
Probability of Close Fit 0.0237
Bentler's Comparative Fit Index 0.6535
Normal Theory Reweighted LS Chi-Square 9.5588
Akaike’s Information Criterion 3.2522
Bozdogan's (1987) CAIC 1.7673
Schwarz’s Bayesian Criterion 2.7673
McDonald’s (1989) Centrality 0.8376
Bentler & Bonett's (1980) Non-normed Index 0.6535
Bentler & Bonett's (1980) NFI 0.6043
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6043
Z-Test of Wilson & Hilferty (1931) 2.0375
Bollen (1986) Normed Index Rhol 0.6043
Bollen (1988) Non-normed Index Delta2 0.6535
Hoelter's (1983) Critical N 10

Figure 13.3. Spleen Data: Fit Statistics for Overidentified Model

The sample size is so small that fhialue should not be taken to be accurate, but to
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get a smalp-value with such a small sample indicates it is possible that the model is
seriously deficient. The deficiency could be due to any of the following:

e The error variances are not both equal to 0.25.

e The error terms are correlated with each other or with the true scores.
e The observations are not independent.

e There is a disturbance in the linear relation betwietrose andfactnucl.
e The relation betweefactrose andfactnucl is not linear.

e The actual distributions are not adequately approximated by the multivariate
normal distribution.

A simple and plausible modification to the model is to add a “disturbance term” or
“error in the equation” to the structural model, as follows.

proc calis data=spleen cov stderr;
lineqs sqrtrose=factrose + err_rose,
sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl + disturb;
std err_rose=.25,
err_nucl=.25,
factnucl=v_factnu,
disturb=v_dist;
run;

The following parameter estimates are produced.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

factrose = 0.3907*factnucl + 1.0000 disturb
Std Err 0.0771 beta
t Value 5.0692

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
factnucl v_factnu 10.50458 4.58577 2.29
err_rose 0.25000
err_nucl 0.25000
disturb  v_dist 0.38153 0.28556 1.34

Figure 13.4.

This model is just identified, so there are no degrees of freedom for the chi-square

goodness-of-fit test.

Spleen Data: Parameter Estimated for Just Identified Model
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Path Diagrams and the RAM Model

Complicated models are often easier to understand when they are expressed as path
diagrams. One advantage of path diagrams over equations is that variances and co-
variances can be shown directly in the path diagram. Loehlin (1987) provides a de-
tailed discussion of path diagrams.

It is customary to write the names of manifest variables in rectangles and names of
latent variables in ovals. The coefficients in each equation are indicated by draw-
ing arrows from the independent variables to the dependent variable. Covariances
between exogenous variables are drawn as two-headed arrows. The variance of an
exogenous variable can be displayed as a two-headed arrow with both heads pointing
to the exogenous variable, since the variance of a variable is the covariance of the
variable with itself. Here is a path diagram for the spleen data, explicitly showing all
latent variables and variances of exogenous variables.
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Figure 13.5. Path Diagram: Spleen

There is an easier way to draw the path diagram based on McArdle’s reticular action
model (RAM) (McArdle and McDonald 1984). McArdle uses the convention that a
two-headed arrow that points to an endogenous variable actually refers to the error
or disturbance term associated with that variable. A two-headed arrow with both
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heads pointing to the same endogenous variable represents the error or disturbance
variance for the equation that determines the endogenous variable; there is no need to
draw a separate oval for the error or disturbance term. Similarly, a two-headed arrow
connecting two endogenous variables represents the covariance between the error of
disturbance terms associated with the endogenous variables. The RAM conventions
allow the previous path diagram to be simplified, as follows.

.25 .25
1: SORTROSE 2: SQRTNUCL

Tl.O Tl.O

V_DIST V_FACTNU
Figure 13.6. Path Diagram: Spleen

The RAM statement in PROC CALIS provides a simple way to transcribe a path
diagram based on the reticular action model. Assign the integers 1,.2t@the
variables in the order in which they appear in the SAS data set or in the VAR state-
ment, if you use one. Assign subsequent consecutive integers to the latent variables
displayed explicitly in the path diagram (excluding the error and disturbance terms
implied by two-headed arrows) in any order. Each arrow in the path diagram can
then be identified by two numbers indicating the variables connected by the path.
The RAM statement consists of a list of descriptions of all the arrows in the path
diagram. The descriptions are separated by commas. Each arrow description consists
of three or four numbers and, optionally, a name in the following order:

1. The number of heads the arrow has.

2. The number of the variable the arrow points to, or either variable if the arrow
is two-headed.

3. The number of the variable the arrow comes from, or the other variable if the
arrow is two-headed.

4. The value of the coefficient or (co)variance that the arrow represents.

5. A name if the arrow represents a parameter to be estimated, in which case the
previous number is taken to be the initial estimate of the parameter. Omit the
name if the arrow represents a constant. If you specify a name, the fourth
number may be omitted.
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The model for the spleen data can be specified with the RAM statement, as follows:

~

* 1 sqrtrose */

* 2 sqgrtnucl ¥/

* 3 factrose */

* 4 factnucl */

proc calis data=spleen cov stderr method=ml outram=splrami;
var sgrtrose sqrtnucl;

~ —~ —

ram 1 1 3 1, /* sqrtrose <- factrose */
1241, [* sqrtnucl <- factnucl */
1 3 4 beta, /* factrose <- factnucl */
211 .25 [* error variance for sqrtrose */
2 22 .25, [* error variance for sqrtnucl */
2 3 3 v_dist, [* disturbance variance for factrose */
2 4 4 v factnu; [* variance of factnucl */

run;

The resulting output in RAM form is displayed igure 13.7

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- --- Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 F1 3. 1.00000

1 2 sqrtnucl 2 F2 4 . 1.00000

1 2 F1 3 F2 4 beta 0.39074 0.07708 5.07
1 3 E1 1 E1 1. 0.25000

1 3 E2 2 E2 2. 0.25000

1 3 D1 3 D1 3 v_dist 0.38153 0.28556 1.34
1 3 D2 4 D2 4 v_factnu 10.50458 4.58577 2.29

Figure 13.7. Spleen Data: RAM Model

You can request an output data set containing the model specification by using the
OUTRAM= option in the PROC CALIS statement. Names for the latent variables
can be specified in a VNAMES statement.
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proc calis data=spleen cov stderr method=ml outram=splrami;
var sqrtrose sqrtnucl;
vnames 1 factrose factnucl,
2 err_rose err_nucl disturb factnucl;

ram 1 1 3 1, [* sqgrtrose <- factrose */

1241, [* sqgrtnucl <- factnucl */
1 3 4 beta, [* factrose <- factnucl */
211 .25 /* error variance for sqrtrose */
2 2 2 .25 /* error variance for sqrtnucl */
2 3 3 v_dist, [* disturbance variance for factrose */
2 4 4 v factnu; [* variance of factnucl */

run;

proc print;

run;

The RAM output is displayed iRigure 13.8

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- --- Column--- Parameter Estimate Error t Value

sqrtrose 1 factrose 3 . 1.00000

sqrtnucl 2 factnucl 4 1.00000

factrose 3 factnucl 4 beta 0.39074 0.07708 5.07
err_rose 1 err_rose 1 0.25000

err_nucl 2 err_nucl 2. 0.25000

disturb 3 disturb 3 v_dist 0.38153 0.28556 1.34
factnucl 4 factnucl 4 v_factnu 10.50458 4.58577 2.29
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Figure 13.8. Spleen Data: RAM Model with Names for Latent Variables

The OUTRAM= data set contains the RAM model as you specified it in the RAM
statement, but it contains the final parameter estimates and standard errors instead of
the initial values.
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Obs _TYPE_ _NAME_ _MATNR_ _ROW_ _CoL_ _ESTIM_ _STDERR_
1 MODEL _IDE_ 1 2 4 1.0000 0.00000
2 MODEL A 2 4 4 6.0000 2.00000
3 MODEL P 3 4 4 3.0000 0.00000
4 VARNAME sqrtrose 2 1
5 VARNAME sqrtnucl 2 2
6 VARNAME factrose 2 3
7 VARNAME factnucl 2 4
8 VARNAME err_rose 3 1
9 VARNAME err_nucl 3 2

10 VARNAME disturb 3 3

11 VARNAME factnucl 3 4

12 METHOD ML . . . .

13 STAT N . . . 12.0000

14 STAT FIT . . . 0.0000

15 STAT GFI . . . 1.0000

16 STAT AGFI . . . .

17 STAT RMR . . . 0.0000

18 STAT PGFI . . . 0.0000

19 STAT NPARM . . . 3.0000

20 STAT DF . . . 0.0000

21 STAT N_ACT . . . 0.0000

22 STAT CHISQUAR . . . 0.0000

23 STAT P_CHISQ . . . 0.0000

24 STAT CHISQNUL . . . 13.2732

25 STAT RMSEAEST . . . 0.0000

26 STAT RMSEALOB

27 STAT RMSEAUPB

28 STAT P_CLOSFT . . .

29 STAT ECVI_EST . . . 0.7500

30 STAT ECVI_LOB .

31 STAT ECVI_UPB . . . .

32 STAT COMPFITI . . . 1.0000

33 STAT ADJCHISQ

34 STAT P_ACHISQ . . . .

35 STAT RLSCHISQ . . . 0.0000

36 STAT AlC . . . 0.0000

37 STAT CAIC . . . 0.0000

38 STAT SBC . . . 0.0000

39 STAT CENTRALI . . . 1.0000

40 STAT BB_NONOR . . . .

41 STAT BB_NORMD . . . 1.0000

42 STAT PARSIMON . . . 0.0000

43 STAT ZTESTWH

44 STAT BOL_RHO1 . . . .

45 STAT BOL_DEL2 . . . 1.0000

46 STAT CNHOELT . . . .

47 ESTIM 2 1 3 1.0000 0.00000
48 ESTIM 2 2 4 1.0000 0.00000
49 ESTIM beta 2 3 4 0.3907 0.07708
50 ESTIM 3 1 1 0.2500 0.00000
51 ESTIM 3 2 2 0.2500 0.00000
52 ESTIM v_dist 3 3 3 0.3815 0.28556
53 ESTIM v_factnu 3 4 4 10.5046 4.58577

Figure 13.9. Spleen Data: OUTRAM= Data Set with Final Parameter Estimates

This data set can be used as input to another run of PROC CALIS with the INRAM=
option in the PROC CALIS statement. For example, if the iteration limit is exceeded,
you can use the RAM data set to start a new run that begins with the final estimates
from the last run. Or you can change the data set to add or remove constraints or
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modify the model in various other ways. The easiest way to change a RAM data set
is to use the FSEDIT procedure, but you can also use a DATA step. For example, you
could set the variance of the disturbance term to zero, effectively removing the distur-
bance from the equation, by removing the parameter nandést in the _NAME_
variable and setting the value of the estimate to zero in B8 TIM_ variable:

data splram2(type=ram);

set splraml;
if _name_='v_dist’ then
do;
_hame_=" 7,
_estim_=0;
end;
run;

proc calis data=spleen inram=splram2 cov stderr;
run;

The resulting RAM output is displayed Figure 13.10

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- --- Column--- Parameter  Estimate Error t Value
1 2 sgrtrose 1 factrose 3 . 1.00000
1 2 sgrtnucl 2 factnucl 4 1.00000
1 2 factrose 3 factnucl 4 beta 0.40340 0.05078 7.94
1 3 err_rose 1 err_rose 1. 0.25000
1 3 err_nucl 2 err_nucl 2 0.25000
1 3 disturb 3 disturb 3. 0
1 3 factnucl 4 factnucl 4 v_factnu 10.45846 4.56608 2.29

Figure 13.10. Spleen Data: RAM Model with INRAM= Data Set
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Some Measurement Models

Psychometric test theory involves many kinds of models relating scores on psycho-
logical and educational tests to latent variables representing intelligence or various
underlying abilities. The following example uses data on four vocabulary tests from
Lord (1957). TestdV and X have 15 items each and are administered with very
liberal time limits. Testsy” and Z have 75 items and are administered under time
pressure. The covariance matrix is read by the following DATA step:

data lord(type=cov);
input _type_ $ _name_ $ w X y z;
datalines;

n . 649

cov w 86.3979

cov x 57.7751 86.2632

cov y 56.8651 59.3177 97.2850

cov z 58.8986 59.6683 73.8201 97.8192

The psychometric model of interest states taand X are determined by a single
common factoFyy x, andY andZ are determined by a single common fackgr.

The two common factors are expected to have a positive correlation, and it is desired
to estimate this correlation. It is convenient to assume that the common factors have
unit variance, so their correlation will be equal to their covariance. The error terms
for all the manifest variables are assumed to be uncorrelated with each other and with
the common factors. The model (labeled here as Model Form D) is as follows.

Model Form D

W = pwlwx + Ew
X = BxFwx+ Ex
Y = pyFyz+ LBy
Z = BzFyz+ Ez

Var(Fywx) = Var(Fyz) =1

Cov(Fwx,Fyz) = p
Cov(Ew,Ex) = Cov(Ew,FEy)= CovEw,Ez)=CovEx,FEy)

I
0

OV(Ex,Ez) = COV(Ey,Ez) = COV(Ew,FW)()
OV(Ew,Fyz) = COV(E)(,FW)() = COV(Ex,Fyz)
OV(Ey,FW)() = COV(Ey,Fyz) = COV(Ez,FW)()
= COV(Ez,Fyz) =0

(I
0O 0
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The corresponding path diagram is as follows.

VEW VEX VEY VEL
1w 2: X 3Y 4: 7
BETAW BETAX BETAY BETAZ

5: FWX

1.0 RHO 1.0
Figure 13.11. Path Diagram: Lord

This path diagram can be converted to a RAM model as follows:

[* 1=w 2=x 3=y 4=z 5=fwx 6=fyz */
titte 'H4: unconstrained’;
proc calis data=lord cov;

ram 1 betaw,

1 betax,

betay,
betaz,
vew,

NNNNNNDNPREPRE
o uaprwWNEPMWNPRE
OO0 UNNWNE OO O O

<

D

x

run;

L
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Here are the major results.

H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation
Fit Function 0.0011
Goodness of Fit Index (GFI) 0.9995
GFl Adjusted for Degrees of Freedom (AGFI) 0.9946
Root Mean Square Residual (RMR) 0.2720
Parsimonious GFI (Mulaik, 1989) 0.1666
Chi-Square 0.7030
Chi-Square DF 1
Pr > Chi-Square 0.4018
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0974
ECVI Estimate 0.0291
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0391
Probability of Close Fit 0.6854
Bentler's Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 0.7026
Akaike’s Information Criterion -1.2970
Bozdogan's (1987) CAIC -6.7725
Schwarz’s Bayesian Criterion -5.7725
McDonald’s (1989) Centrality 1.0002
Bentler & Bonett's (1980) Non-normed Index 1.0012
Bentler & Bonett's (1980) NFI 0.9995
James, Mulaik, & Brett (1982) Parsimonious NFI 0.1666
Z-Test of Wilson & Hilferty (1931) 0.2363
Bollen (1986) Normed Index Rhol 0.9971
Bollen (1988) Non-normed Index Delta2 1.0002
Hoelter's (1983) Critical N 3543

Figure 13.12. Lord Data: Major Results for RAM Model, Hypothesis H4
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H4: unconstrained
Covariance Structure Analysis: Maximum Likelihood Estimation
RAM Estimates
Standard
Term Matrix --Row-- -Column- Parameter Estimate Error t Value
1 2w 1 R 5 betaw 7.50066 0.32339 23.19
1 2 X 2 F1 5 betax 7.70266 0.32063 24.02
1 2y 3 F2 6 betay 8.50947 0.32694 26.03
1 2 z 4 F2 6 betaz 8.67505 0.32560 26.64
1 3 El1 1 E1 1 vew 30.13796 2.47037 12.20
1 3 E2 2 E2 2 vex 26.93217 2.43065 11.08
1 3 E3 3 E3 3 vey 24.87396 2.35986 10.54
1 3 E4 4 E4 4 vez 22.56264 2.35028 9.60
1 3 D1 5 D1 5 . 1.00000
1 3 D2 6 D1 5 rho 0.89855 0.01865 48.18
1 3 D2 6 D2 6 . 1.00000

Figure 13.12. (continued)

The same analysis can be performed with the LINEQS statement. Subsequent anal-
yses are illustrated with the LINEQS statement rather than the RAM statement be-
cause it is slightly easier to understand the constraints as written in the LINEQS
statement without constantly referring to the path diagram. The LINEQS and RAM
statements may yield slightly different results due to the inexactness of the numerical
optimization; the discrepancies can be reduced by specifying a more stringent conver-
gence criterion such as GCONV=1E-4 or GCONV=1E-6. It is convenient to create
an OUTRAM= data set for use in fitting other models with additional constraints.

titte 'H4: unconstrained’;
proc calis data=lord cov outram=ram4;
lineqs w=betaw fwx + ew,
x=betax fwx + ex,
y=betay fyz + ey,
z=betaz fyz + ez
std fwx fyz=1,
EW eX ey ez=Vew Vex vey Vez;
cov fwx fyz=rho;
run;
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The LINEQS displayed output is as follows.

H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.5007*fwx + 1.0000 ew
Std Err 0.3234 betaw

t Value 23.1939

X = 7.7027*fwx + 1.0000 ex
Std Err 0.3206 betax

t Value 24.0235

y = 8.5095*fyz + 1.0000 ey
Std Err 0.3269 betay

t Value 26.0273

z = 8.6751*fyz + 1.0000 ez
Std Err 0.3256 betaz

t Value 26.6430

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
fwx 1.00000
fyz 1.00000
ew vew 30.13796 2.47037 12.20
ex vex 26.93217 2.43065 11.08
ey vey 24.87396 2.35986 10.54
ez vez 22.56264 2.35028 9.60

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value
fwx fyz rho 0.89855 0.01865 48.18

Figure 13.13. Lord Data: Using LINEQS Statement for RAM Model, Hypothesis

H4
In an analysis of these data by Jéreskog and Sérbom (1979, pp. 54-56; Loehlin 1987,
pp. 84-87), four hypotheses are considered:

H1: p = 1,
pw = Bx, Var(Ew) = Var(Ex),
By = Bz, Var(BEy) = Var(Eyz)

Hy: same ad{;: exceptp is unconstrained
H32 p = 1
Hy: Model Form D without any additional constraints
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The hypothesidis says that there is really just one common factor instead of two;
in the terminology of test theory}/, X, Y, andZ are said to be congeneric. The
hypothesisH» says thai? and X have the same true-scores and have equal error
variance; such tests are said to be parallel. The hypoth&siso requirey” andZ

to be parallel. The hypothesi$; says thal¥ and X are parallel testsy” andZ are
parallel tests, and all four tests are congeneric.

It is most convenient to fit the models in the opposite order from that in which they
are numbered. The previous analysis fit the modeHgpand created an OUTRAM=

data set calledam4. The hypothesig?; can be fitted directly or by modifying the

ram4 data set. Sincél; differs from H, only in thatp is constrained to equal 1, the
ram4 data set can be modified by finding the observation for whiNWME_="rho’

and changing the variableNAME_ to a blank value (meaning that the observation
represents a constant rather than a parameter to be fitted) and setting the variable
_ESTIM_ to the value 1. Both of the following analyses produce the same results:

title 'H3: W, X, Y, and Z are congeneric’
proc calis data=lord cov;
lineqgs w=betaw f + ew,
x=betax f + ex,
y=betay f + ey,
z=betaz f + ez
std f=1,
EW ex ey ez=vew vex vey vez;
run;

data ram3(type=ram);

set ram4;
if _name_=rho’ then
do;
_hame_="’;
_estim_=1,
end;
run;

proc calis data=lord inram=ram3 cov;
run;
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The resulting output from either of these analyses is display&eime 13.14

H3: W, X, Y, and Z are congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0559
Goodness of Fit Index (GFI) 0.9714
GFl Adjusted for Degrees of Freedom (AGFI) 0.8570
Root Mean Square Residual (RMR) 2.4636
Parsimonious GFI (Mulaik, 1989) 0.3238
Chi-Square 36.2095
Chi-Square DF 2
Pr > Chi-Square <.0001
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.1625
RMSEA 90% Lower Confidence Limit 0.1187
RMSEA 90% Upper Confidence Limit 0.2108
ECVI Estimate 0.0808
ECVI 90% Lower Confidence Limit 0.0561
ECVI 90% Upper Confidence Limit 0.1170
Probability of Close Fit 0.0000
Bentler's Comparative Fit Index 0.9766
Normal Theory Reweighted LS Chi-Square 38.1432
Akaike’s Information Criterion 32.2095
Bozdogan's (1987) CAIC 21.2586
Schwarz’s Bayesian Criterion 23.2586
McDonald’s (1989) Centrality 0.9740
Bentler & Bonett's (1980) Non-normed Index 0.9297
Bentler & Bonett's (1980) NFI 0.9753
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3251
Z-Test of Wilson & Hilferty (1931) 5.2108
Bollen (1986) Normed Index Rhol 0.9259
Bollen (1988) Non-normed Index Delta2 0.9766
Hoelter's (1983) Critical N 109

Figure 13.14. Lord Data: Major Results for Hypothesis H3
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H3: W, X, Y, and Z are congeneric

Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.1047*fwx + 1.0000 ew
Std Err 0.3218 betaw

t Value 22.0802

X = 7.2691*fwx + 1.0000 ex
Std Err 0.3183 betax

t Value 22.8397

y = 8.3735*yz + 1.0000 ey
Std Err 0.3254 betay

t Value 25.7316

z = 8.5106*fyz + 1.0000 ez
Std Err 0.3241 betaz

t Value 26.2598

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
fwx 1.00000
fyz 1.00000
ew vew 35.92087 2.41466 14.88
ex vex 33.42397 2.31038 14.47
ey vey 27.16980 2.24619 12.10
ez vez 25.38948 2.20839 11.50

Figure 13.14. (continued)

The hypothesidi; requires that several pairs of parameters be constrained to have
equal estimates. With PROC CALIS, you can impose this constraint by giving the
same name to parameters that are constrained to be equal. This can be done directly
in the LINEQS and STD statements or by using PROC FSEDIT or a DATA step to
change the values in tham4 data set:

titte '"H2: W and X parallel, Y and Z parallel’;
proc calis data=lord cov;
lineqs w=betawx fwx + ew,
x=betawx fwx + ex,
y=betayz fyz + ey,
z=betayz fyz + ez
std fwx fyz=1,
EW eX ey ez=VewX VEWX VeyzZ Veyz;
cov fwx fyz=rho;
run;
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data ram2(type=ram);
set ram4,
if _name_='betaw’ then _name_='betawx’;
if _name_='betax’ then _name_='betawx’;
if _name_='betay’ then _name_='betayz’;
if _name_='betaz’ then _name_='betayz’;
if _name_='vew’ then _name_='vewx’;
if _name_='vex’ then _name_='vewx’;
if _name_='vey’ then _name_='veyz’;
if _name_='vez’ then _name_='veyz’;
run;

proc calis data=lord inram=ram2 cov;
run;

The resulting output from either of these analyses is display&thure 13.15

H2: W and X parallel, Y and Z parallel
The CALIS Procedure

Covariance Structure Analysis: Maximum Likelihood Estimation
Fit Function 0.0030
Goodness of Fit Index (GFI) 0.9985
GFl Adjusted for Degrees of Freedom (AGFI) 0.9970
Root Mean Square Residual (RMR) 0.6983
Parsimonious GFI (Mulaik, 1989) 0.8321
Chi-Square 1.9335
Chi-Square DF 5
Pr > Chi-Square 0.8583
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0293
ECVI Estimate 0.0185
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0276
Probability of Close Fit 0.9936
Bentler's Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 1.9568
Akaike’s Information Criterion -8.0665
Bozdogan's (1987) CAIC -35.4436
Schwarz’s Bayesian Criterion -30.4436
McDonald’s (1989) Centrality 1.0024
Bentler & Bonett's (1980) Non-normed Index 1.0025
Bentler & Bonett's (1980) NFI 0.9987
James, Mulaik, & Brett (1982) Parsimonious NFI 0.8322
Z-Test of Wilson & Hilferty (1931) -1.0768
Bollen (1986) Normed Index Rhol 0.9984
Bollen (1988) Non-normed Index Delta2 1.0021
Hoelter's (1983) Critical N 3712

Figure 13.15. Lord Data: Major Results for Hypothesis H2
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H2: W and X parallel, Y and Z parallel

Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.6010*fwx + 1.0000 ew
Std Err 0.2684 betawx

t Value 28.3158

X = 7.6010*fwx + 1.0000 ex
Std Err 0.2684 betawx

t Value 28.3158

y = 8.5919*fyz + 1.0000 ey
Std Err 0.2797 betayz

t Value 30.7215

z = 8.5919%yz + 1.0000 ez
Std Err 0.2797 betayz

t Value 30.7215

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
fwx 1.00000
fyz 1.00000
ew vewx 28.55545 1.58641 18.00
ex vewx 28.55545 1.58641 18.00
ey veyz 23.73200 1.31844 18.00
ez veyz 23.73200 1.31844 18.00

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value
fwx fyz rho 0.89864 0.01865 48.18

Figure 13.15. (continued)

The hypothesig?; requires one more constraint in addition to thosé/in

title 'H1: W and X parallel, Y and Z parallel, all congeneric’;
proc calis data=lord cov;

run;

linegs w=betawx f + ew,

x=betawx f + ex,
y=betayz f + ey,
z=betayz f + ez;

std =1,

ew ex ey ez=vewx Vewx Vveyz veyz,
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data raml(type=ram);

set ram2,;
if _name_='rho’ then
do;
_name_=" ’;
_estim_=1;
end;
run;

proc calis data=lord inram=raml cov;
run;

The resulting output from either of these analyses is display&tiure 13.16

H1: W and X parallel, Y and Z parallel, all congeneric

The CALIS Procedure

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function

Goodness of Fit Index (GFI)

GFI Adjusted for Degrees of Freedom (AGFI)
Root Mean Square Residual (RMR)
Parsimonious GFI (Mulaik, 1989)

Chi-Square

Chi-Square DF

Pr > Chi-Square

Independence Model Chi-Square
Independence Model Chi-Square DF
RMSEA Estimate

RMSEA 90% Lower Confidence Limit
RMSEA 90% Upper Confidence Limit

ECVI Estimate

ECVI 90% Lower Confidence Limit

ECVI 90% Upper Confidence Limit
Probability of Close Fit

Bentler's Comparative Fit Index

Normal Theory Reweighted LS Chi-Square
Akaike’s Information Criterion

Bozdogan's (1987) CAIC

Schwarz’s Bayesian Criterion

McDonald’s (1989) Centrality

Bentler & Bonett's (1980) Non-normed Index
Bentler & Bonett's (1980) NFI

James, Mulaik, & Brett (1982) Parsimonious NFI
Z-Test of Wilson & Hilferty (1931)

Bollen (1986) Normed Index Rhol

Bollen (1988) Non-normed Index Delta2
Hoelter's (1983) Critical N

0.0576
0.9705
0.9509
2.5430
0.9705
37.3337
6
<.0001
1466.6
6
0.0898
0.0635
0.1184
0.0701
0.0458
0.1059
0.0076
0.9785
39.3380
25.3337
-7.5189
-1.5189
0.9761
0.9785
0.9745
0.9745
4.5535
0.9745
0.9785
220

Figure 13.16. Lord Data: Major Results for Hypothesis H1
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H1: W and X parallel, Y and Z parallel, all congeneric

Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.1862*fwx + 1.0000 ew
Std Err 0.2660 betawx

t Value 27.0180

X = 7.1862*fwx + 1.0000 ex
Std Err 0.2660 betawx

t Value 27.0180

y = 8.4420*fyz + 1.0000 ey
Std Err 0.2800 betayz

t Value 30.1494

z = 8.4420%fyz + 1.0000 ez
Std Err 0.2800 betayz

t Value 30.1494

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value
fwx 1.00000
fyz 1.00000
ew vewx 34.68865 1.64634 21.07
ex Vewx 34.68865 1.64634 21.07
ey veyz 26.28513 1.39955 18.78
ez veyz 26.28513 1.39955 18.78

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value

fwx  fyz 1.00000

Figure 13.16. (continued)

The goodness-of-fit tests for the four hypotheses are summarized in the following
table.

Number of Degrees of
Hypothesis Parameters 2 Freedom p-value p
H,y 4 37.33 6 0.0000 1.0
Ho 5 1.93 5 0.8583 0.8986
Hj 8 36.21 2 0.0000 1.0
Hy 9 0.70 1 0.4018 0.8986

The hypotheseél; and Hs, which positp = 1, can be rejected. HypothesHs and

H, seem to be consistent with the available data. SiHgeas obtained by adding

four constraints tdHy, you can testH, versusH, by computing the differences of

the chi-square statistics and their degrees of freedom, yielding a chi-square of 1.23
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with four degrees of freedom, which is obviously not significant. So hypotHésis
is consistent with the available data.

The estimates op for H, and H4 are almost identical, about 0.90, indicating that

the speeded and unspeeded tests are measuring almost the same latent variable, even
though the hypotheses that stated they measured exactly the same latent variable are
rejected.

A Combined Measurement-Structural Model
with Reciprocal Influence and

Correlated Residuals

To illustrate a more complex model, this example uses some well-known data from

Haller and Butterworth (1960). Various models and analyses of these data are given
by Duncan, Haller, and Portes (1968), Joreskog and Soérbom (1988), and Loehlin
(1987).

The study is concerned with the career aspirations of high-school students and how
these aspirations are affected by close friends. The data are collected from 442
seventeen-year-old boys in Michigan. There are 329 boys in the sample who named
another boy in the sample as a best friend. The observations to be analyzed consist
of the data from these 329 boys paired with the data from their best friends.

The method of data collection introduces two statistical problems. First, restricting
the analysis to boys whose best friends are in the original sample causes the reduced
sample to be biased. Second, since the data from a given boy may appear in two or
more observations, the observations are not independent. Therefore, any statistical
conclusions should be considered tentative. It is difficult to accurately assess the
effects of the dependence of th