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What’s New in SAS/STAT 9 and 9.1
Overview

This release brings several new procedures to SAS/STAT software. The MI and
MIANALYZE procedures implement the multiple imputation strategy for missing
data. Experimental in Releases 8.1 and 8.2, these procedures are now production.
The ROBUSTREG procedure analyzes data that may include outliers; it provides sta-
ble results in their presence. The TPHREG procedure is a test release of the PHREG
procedure that incorporates the CLASS statement.

Power and sample size computations also become available in SAS 9.1. New proce-
dures POWER and GLMPOWER provide these computations for a number of analy-
ses, and the Power and Sample Size Application surfaces them through a point-and-
click interface.

SAS 9.1 introduces two new procedures for the analysis of survey data. The
SURVEYFREQ procedure produces one-way ton-way frequency and crosstabula-
tion tables for data collected from surveys. These tables include estimates of totals
and proportions (overall, row percentages, column percentages) and the correspond-
ing standard errors. The SURVEYLOGISTIC procedure performs logistic regression
for survey data, and it can also fit links such as the cumulative logit, generalized logit,
probit, and complementary log-log functions. Both of these procedures incorporate
complex survey sample designs, including designs with stratification, clustering, and
unequal weighting, in their computations.

In addition, this release includes numerous enhancements to existing procedures.
For example, conditional logistic regression is available in the LOGISTIC procedure
through the new STRATA statement, and scoring of data sets is available through
the new SCORE statement. The GLM procedure now provides the ability to form
classification groups using the full formatted length of the CLASS variable levels.
In addition, the SURVIVAL statement in the LIFETEST procedure enables you to
create confidence bands (also known as simultaneous confidence intervals) for the
survivor functionS(t) and to specify a transformation for computing the confidence
bands and the pointwise confidence intervals.

More information about the changes and enhancements to SAS/STAT software fol-
lows. Features new in SAS 9.1 are indicated with a 9.1 icon; other features were
available with SAS 9. Details can be found in the documentation for the individual
procedures.
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Parallelization

Selected functionalities in the GLM, LOESS, REG, and ROBUSTREG procedures
have been multithreaded to exploit hardware with multiple CPUs. Refer to Cohen
(2002) for more details.

Statistical Graphics Using ODS

A number of SAS/STAT procedures are using an experimental extension to the Output
Delivery System (ODS) that enables them to create statistical graphics automati-
cally. The facility is invoked when you include an ODS GRAPHICS statement be-
fore your procedure statements. Graphics are then created automatically, or when
you specify procedure options for graphics. Procedures taking advantage of ODS
graphics are the ANOVA, CORRESP, GAM, GENMOD, GLM, KDE, LIFETEST,
LOESS, LOGISTIC, MI, MIXED, PHREG, PLS, PRINCOMP, PRINQUAL, REG,
ROBUSTREG, and TPSLINE procedures. The plots produced and the corresponding
options are described in the documentation for the individual procedures.

CATMOD Procedure

Memory handling has been improved in the CATMOD procedure. The9.1
PARAM=REFERENCE option has been added to the MODEL statement and
produces reference cell parameterization. Other new options include the ITPRINT,
DESIGN, and PROFILE|POPPROFILE options in the PROC statement.

DISTANCE Procedure

The new DISTANCE procedure computes various measures of distance, dissimilar-9.1
ity, or similarity between the observations (rows) of a SAS data set. These proxim-
ity measures are stored as a lower triangular matrix or a square matrix in an output
data set (depending on the SHAPE= option) that can then be used as input to the
CLUSTER, MDS, and MODECLUS procedures. The input data set may contain
numeric or character variables, or both, depending on which proximity measure is
used. PROC DISTANCE also provides various nonparametric and parametric meth-
ods for standardizing variables. Distance matrices are used frequently in data mining,
genomics, marketing, financial analysis, management science, education, chemistry,
psychology, biology, and various other fields.

FACTOR Procedure

The NOPROMAXNORM option turns off the default row normalization of the pre-
rotated factor pattern, which is used in computing the promax target matrix.

You can now produce standard errors and confidence limits with the METHOD=ML
option for the PROMAX factor solutions. You can obtain the standard errors with
the SE option, control the coverage displays with the COVER= option, and set the
coverage level with the ALPHA= option.
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FREQ Procedure

The BDT option includes Tarone’s adjustment in the Breslow-Day test for homogene-
ity of odds ratios. Refer to Agresti (1996) and Tarone (1985).

The ZEROS option in the WEIGHT statement includes zero-weight observations in
the analysis. (By default, PROC FREQ does not process zero-weight observations.)
With the ZEROS option, PROC FREQ displays zero-weight levels in crosstabulation
and frequency tables. For one-way tables, the ZEROS option includes zero-weight
levels in chi-square tests and binomial statistics. For multiway tables, the ZEROS
option includes zero-weight levels in kappa statistics.

The CROSSLIST option displays crosstabulation tables in ODS column format.
Unlike the default crosstabulation table, the CROSSLIST table has a table definition
that you can customize with PROC TEMPLATE. The NLEVELS option provides a
table with the number of levels for all TABLES statement variables.

The FREQ procedure now produces exact confidence limits for the common odds9.1
ratio and related tests.

GENMOD Procedure

The GENMOD procedure now forms classification groups using the full formatted
length of the CLASS variable levels. Several new full-rank CLASS variable parame-
terizations are now available: polynomial, orthogonal polynomial, effect, orthogonal
effect, reference, orthogonal reference, ordinal, and orthogonal ordinal. The default
parameterization remains the same less-than-full-rank parameterization used in pre-
vious releases.

Zero is now a valid value for the negative binomial dispersion parameter correspond-
ing to the Poisson distribution. If a fixed value of zero is specified, a score test for
overdispersion (Cameron and Trivedi 1998) is computed.

As an experimental feature, PROC GENMOD now provides model assessment based9.1
on aggregates of residuals.

GLM Procedure

The GLM procedure now forms classification groups using the full formatted length
of the CLASS variable levels.

In addition, you can compute exactp-values for three of the four multivari-
ate tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root)
and an improvedF -approximation for the fourth (Pillai’s Trace). The default
MSTAT=FAPPROX in the MANOVA and REPEATED statements produces mul-
tivariate tests using approximations based on theF distribution. Specifying
MSTAT=EXACT computes exactp-values for three of the four tests (Wilks’
Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root) and an improved
F -approximation for the fourth (Pillai’s Trace).
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GLMPOWER Procedure

The GLMPOWER procedure performs prospective analyses for linear models, with9.1
a variety of goals:

• determining the sample size required to obtain a significant result with adequate
probability (power)

• characterizing the power of a study to detect a meaningful effect

• conducting what-if analyses to assess sensitivity of the power or required sam-
ple size to other factors

You specify the design and the cell means using an exemplary data set, a data set of ar-
tificial values constructed to represent the intended sampling design and the surmised
response means in the underlying population. You specify the model and contrasts
using MODEL and CONTRAST statements similar to those in the GLM procedure.
You specify the remaining parameters with the POWER statement, which is similar
to analysis statements in the new POWER procedure.

KDE Procedure

The new UNIVAR and BIVAR statements provide improved syntax. The BIVAR9.1
statement lists variables in the input data set for which bivariate kernel density esti-
mates are to be computed. The UNIVAR statement lists variables in the input data
set for which univariate kernel density estimates are to be computed.

LIFETEST Procedure

The new SURVIVAL statement enables you to create confidence bands (also known
as simultaneous confidence intervals) for the survivor functionS(t) and to specify
a transformation for computing the confidence bands and the pointwise confidence
intervals. It contains the following options.

• The OUT= option names the output SAS data set that contains survival esti-
mates as in the OUTSURV= option in the PROC LIFETEST statement.

• The CONFTYPE= option specifies the transformation applied toS(t) to obtain
the pointwise confidence intervals and the confidence bands. Four transforms
are available: the arcsine-square root transform, the complementary log-log
transform, the logarithmic transform, and the logit transform.

• The CONFBAND= option specifies the confidence bands to add to the OUT=
data set. You can choose the equal precision confidence bands (Nair 1984), or
the Hall-Wellner bands (Hall and Wellner 1980), or both.

• The BANDMAX= option specifies the maximum time for the confidence
bands.

• The BANDMIN= option specifies the minimum time for the confidence bands.
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• The STDERR option adds the column of standard error of the estimated sur-
vivor function to the OUT= data set.

• The ALPHA= option sets the confidence level for pointwise confidence inter-
vals as well as the confidence bands.

The LIFETEST procedure now provides additional tests for comparing two or more9.1
samples of survival data, including the Tarone-Ware test, Peto-Peto test, modified
Peto-Peto test, and the Fleming-HarringtonGρ family of tests. Trend tests for ordered
alternatives can be requested. Also available are stratified tests for comparing survival
function while adjusting for prognostic factors that affect the event rates.

LOESS Procedure
The LOESS procedure now performs DF computations using a sparse method when9.1
appropriate. In addition, the DFMETHOD=APPROX option is available.

LOGISTIC Procedure
The new SCORE statement enables you to score new data sets and compute fit statis-
tics and ROC curves without refitting the model. Information for a fitted model can
be saved to a SAS data set with the OUTMODEL= option, while the INMODEL=
option inputs the model information required for the scoring.

The new STRATA statement enables you to perform conditional logistic regression
on highly stratified data using the method of Gail, Lubin, and Rubenstein (1981). The
OFFSET option is now enabled for logistic regression.

The LOGISTIC procedure now forms classification groups using the full formatted
length of the CLASS variable levels.

Several new CLASS parameterizations are available: ordinal, orthogonal effect, or-
thogonal reference, and orthogonal ordinal.

You can now output the design matrix using the new OUTDESIGN= option.

The definition of concordance has been changed to make it more meaningful for
ordinal models. The new definition is consistent with that used in previous releases
for the binary response model.

Enhancements for the exact computations include 9.1

• improved performance

• Monte Carlo method

• mid-p confidence intervals

For an exact conditional analysis, specifying the STRATA statement performs an
efficient stratified analysis. The method of Mehta, Patel, and Senchaudhuri (1992),
which is more efficient than the Hirji, Tsiatis, and Mehta (1989) algorithm for many
problems, is now available with the METHOD=NETWORK option.
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MI Procedure

The INITIAL= option in the EM statement sets the initial estimates for the EM al-
gorithm. Either the means and covariances from complete cases or the means and
standard deviations from available cases can be used as the initial estimates for the
EM algorithm. You can also specify the correlations for the initial estimates from
available cases.

For data sets with monotone missingness, the REGPMM option in the MONOTONE9.1
statement uses the predictive mean matching method to impute a value randomly
from a set of observed values whose predicted values are closest to the predicted
value for the missing value from the simulated regression model.

You can specify more than one method in the MONOTONE statement, and for each
imputed variable, the covariates can be specified separately.

The DETAILS option in the MONOTONE statement requests the display of the
model parameters used for each imputation.

The experimental CLASS statement is now available to specify categorical variables.
These classification variables are used either as covariates for imputed variables or as
imputed variables for data sets with monotone missing patterns.

The experimental options LOGISTIC and DISCRIM in the MONOTONE statement
impute missing categorical variables by logistic and discriminant methods, respec-
tively.

MIANALYZE Procedure

You can now specify the PARMS= data set without specifying either the COVB=
or XPXI= option when the data set contains the standard errors for the parameter
estimates.

The DATA= option includes data sets that contain both parameter estimates and their
associated standard errors in each observation of the data set.

The BCOV, WCOV, and TCOV options control the display of the between-
imputation, within-imputation, and total covariance matrices.

A TEST statement tests linear hypotheses about the parameters,H0:Lβ = c. For
each TEST statement, the procedure combines the estimate and associated standard
error for each linear component ( a row ofLβ). It can also combine the estimates and
associated covariance matrix for all linear components.

The MODELEFFECTS statement lists the effects in the data set to be analyzed. Each
effect is a variable or a combination of variables, and is specified with a special no-
tation using variable names and operators. The STDERR statement lists the standard
errors associated with the effects in the MODELEFFECTS statement when both pa-
rameter estimates and standard errors are saved as variables in the same DATA= data
set.
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The experimental CLASS statement specifies categorical variables. PROC
MIANALYZE reads and combines parameter estimates and covariance matrices for
parameters with CLASS variables.

MIXED Procedure

The MIXED procedure now supports geometrically anisotropic covariance structures9.1
and covariance models in the Matern class. The LCOMPONENTS option in the
MODEL statement produces one degree of freedom tests for fixed effects that corre-
spond to individual estimable functions for Type I, II, and III effects.

The experimental RESIDUAL option of the MODEL statement computes Pearson-9.1
type and (internally) studentized residuals. The experimental INFLUENCE option
in the MODEL statement computes influence diagnostics by noniterative or iterative
methods. Experimental ODS graphics display the results for both of these options.

NPAR1WAY Procedure

The new D option provides the one-sidedD+ andD− statistics for the asymptotic
two-sample Kolmogorov-Smirnov test, in addition to the two-sidedD statistic given
by the EDF option. The KS option in the EXACT statement gives exact tests for the
Kolmogorov-SmirnovD+, D−, andD for two-sample problems.

PHREG Procedure

The new WEIGHT statement enables you to specify case weights when you are us-
ing the BRESLOW or EFRON method for handling ties. Robust sandwich variance
estimators of Binder (1992) are computed for the estimated regression parameters.
You can specify the option NORMALIZE to normalize the weights so that they add
up the actual sample size.

Two options have been added to the TEST statement: AVERAGE and E. The
AVERAGE option enables you to compute a combined estimate of all the effects in
the given TEST statement. This option gives you an easy way to carry out inferences
of the common value of (say) the treatment effects had they been assumed equal.
The E option specifies that the linear coefficients and constants be printed. When the
AVERAGE option is specified along with the E option, the optimal weights of the
average effect are also printed in the same tables as the coefficients.

The recurrence algorithm of Gail, Lubin, and Rubinstein (1981) for computing the
exact discrete partial likelihood and its partial derivatives has been modified to use the
logarithmic scale. This enables a much larger number of ties to be handled without
the numeric problems of overflowing and underflowing.

You can use the PHREG procedure to fit the rate/mean model for the recurrent events9.1
data and obtain prediction of the cumulative mean function for a given pattern of fixed
covariates.
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As an experimental feature, the PHREG procedure now can produce model assess-
ments based on cumulative residuals.

POWER Procedure

The POWER procedure performs prospective analyses for a variety of goals such as9.1
the following:

• determining the sample size required to get a significant result with adequate
probability (power)

• characterizing the power of a study to detect a meaningful effect

• conducting what-if analyses to assess sensitivity of the power or required sam-
ple size to other factors

This procedure covers a variety of statistical analyses such ast tests, equivalence
tests, and confidence intervals for means; exact binomial, chi-square, Fisher’s exact,
and McNemar tests for proportions; multiple regression and correlation; one-way
analysis of variance; and rank tests for comparing survival curves.

The POWER procedure is one of several tools available in SAS/STAT software for
power and sample size analysis. PROC GLMPOWER covers more complex linear
models, and the Power and Sample Size Application provides a user interface and
implements many of the analyses supported in the procedures.

Power and Sample Size Application

The Power and Sample Size Application (PSS) is an interface that provides power and
sample size computations. The application includes tasks for determining sample size
and power for a variety of statistical analyses, includingt-tests, ANOVA, proportions,
equivalence testing, linear models, survival analysis, and table statistics. The appli-
cation provides multiple input parameter options, stores results in a project format,
displays power curves, and produces appropriate narratives for the results. Note that
this application is included with SAS/STAT software but needs to be installed from
the Mid Tier CD.

ROBUSTREG Procedure

The ROBUSTREG procedure provides resistant (stable) results in the presence of9.1
outliers by limiting the influence of outliers. In statistical applications of outlier de-
tection and robust regression, the methods most commonly used today are Huber
(1973) M estimation, high breakdown value estimation, and combinations of these
two methods. The ROBUSTREG procedure provides four such methods: M estima-
tion, LTS estimation, S estimation, and MM estimation. With these four methods, the
ROBUSTREG procedure acts as an integrated tool for outlier detection and robust
regression with various contaminated data. The ROBUSTREG procedure is scalable
such that it can be used for applications in data cleansing and data mining.
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SURVEYFREQ Procedure

The SURVEYFREQ procedure produces one-way ton-way frequency and crosstabu- 9.1
lation tables for survey data. These tables include estimates of totals and proportions
(overall, row percentages, column percentages) and the corresponding standard er-
rors. Like the other survey procedures, PROC SURVEYFREQ computes these vari-
ance estimates based on the sample design used to obtain the survey data. The design
can be a complex sample survey design with stratification, clustering, and unequal
weighting. PROC SURVEYFREQ also provides design-based tests of association
between variables.

SURVEYLOGISTIC Procedure

The SURVEYLOGISTIC procedure performs logistic regression on data that arise9.1
from a survey sampling scheme. PROC SURVEYLOGISTIC incorporates com-
plex survey sample designs, including designs with stratification, clustering, and
unequal weighting, in its estimation process. Variances of the regression param-
eters and odds ratios are computed using a Taylor expansion approximation. The
SURVEYLOGISTIC procedure is similar in syntax to the LOGISTIC procedure, and
it can fit link functions such as the logit, cumulative logit, generalized logit, pro-
bit, and complementary log-log functions. Maximum likelihood estimation of the
regression coefficients is carried out with either the Fisher-scoring algorithm or the
Newton-Raphson algorithm.

SURVEYMEANS Procedure

The STACKING option requests the procedure to produce the output data sets using
a stacking table structure, which was the default in earlier releases. The new default
is to produce a rectangular table structure in the output data sets. The STACKING
option affects the Domain, Ratio, Statistics, and StrataInfo tables.

One-sided confidence limits are now available for descriptive statistics. 9.1

SURVEYREG Procedure

The SURVEYREG procedure now provides the ability to form classification groups
using the full formatted length of the CLASS variable levels, instead of just the first
16 characters of the levels. The ANOVA option in the MODEL statement requests
that the ANOVA table be included in the output.
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SURVEYSELECT Procedure

The OUTALL option produces an output data set that includes all observations
from the DATA= input data set, both those observations selected for the sample
and those observations not selected. With the OUTALL option, the OUT= data set
contains a variableSelected that indicates whether or not the observation was se-
lected. The OUTALL option is available for equal probability selection methods
(METHOD=SRS, URS, SYS, and SEQ).

The SELECTALL option includes all stratum observations in the sample when
the stratum sample size exceeds the number of observations in the stratum. The
SELECTALL option is available for without-replacement selection methods
(METHOD=SRS, SYS, SEQ, PPS, and PPS–SAMPFORD). It is not available for
with-replacement or with-minimum-replacement methods, or for those PPS methods
that select two units per stratum.

The OUTSEED option includes the initial seed for each stratum in the output data9.1
set. Additionally, you can input initial seeds by strata with the SEED=SAS-data-set
option.

TPHREG Procedure

The experimental TPHREG procedure adds the CLASS statement to the PHREG
procedure. The CLASS statement enables you to specify categorical variables (also
known as CLASS variables) as explanatory variables. Explanatory effects for the
model, including covariates, main effects, interactions, and nested effects, can be
specified in the same way as in the GLM procedure. The CLASS statement supports
less-than-full-rank parameterization as well as various full-rank parameterizations
such as reference coding and effect coding. Other CLASS statement features that
are found in PROC LOGISTIC, such as specifying specific categories as reference
levels, are also available.

The TPHREG procedure also enables you to specify CONTRAST statements for test-
ing customized hypotheses concerning the regression parameters. Each CONTRAST
statement also provides estimation of individual rows of contrasts, which is particu-
larly useful in comparing the hazards between the categories of a CLASS explanatory
variable.

TPSPLINE Procedure

The COEF option in the OUTPUT statement enables you to output coefficients of the9.1
fitted function.
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TRANSREG Procedure

The TRANSREG procedure has new transformation options for centering and
standardizing variables, CENTER and Z, before the transformations. The new
EXKNOTS= option specifies exterior knots for SPLINE and MSPLINE transforma-
tions and BSPLINE expansions.

The new algorithm option INDIVIDUAL with METHOD=MORALS fits each model
for each dependent variable individually and independently of the other dependent
variables.

With hypothesis tests, the TRANSREG procedure now produces a table with the
number of observations, and, when there are CLASS variables, a class level informa-
tion table.
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Chapter 1
Introduction
Overview of SAS/STAT Software

SAS/STAT software provides comprehensive statistical tools for a wide range of sta-
tistical analyses, including analysis of variance, categorical data analysis, cluster
analysis, multiple imputation, multivariate analysis, nonparametric analysis, power
and sample size computations, psychometric analysis, regression, survey data analy-
sis, and survival analysis. A few examples include nonlinear mixed models, general-
ized linear models, correspondence analysis, and robust regression. The software is
constantly being updated to reflect new methodology.

In addition to over sixty procedures for statistical analysis, SAS/STAT software also
includes the Market Research Application (MRA), a point-and-click interface to com-
monly used techniques in market research. The Analyst Application provides conve-
nient access to some of the more commonly used statistical analyses in SAS/STAT
software including analysis of variance, regression, logistic regression, mixed mod-
els, survival analysis, and some multivariate techniques. Also, the new Power and
Sample Size Application (PSS) is an interface to power and sample size computa-
tions. These applications are documented separately.

About This Book

Since SAS/STAT software is a part of the SAS System, this book assumes that you
are familiar with Base SAS software and with the booksSAS Language Reference:
Dictionary, SAS Language Reference: Concepts,and theSAS Procedures Guide. It
also assumes that you are familiar with basic SAS System concepts such as creating
SAS data sets with the DATA step and manipulating SAS data sets with the proce-
dures in Base SAS software (for example, the PRINT and SORT procedures).

Chapter Organization

This book is organized as follows.

“What’s New in SAS/STAT 9 and 9.1”provides information about the changes and
enhancements to SAS/STAT software in SAS 9 and SAS 9.1. It describes several new
procedures as well as numerous new features. SAS 9.1 features are indicated by a 9.1
icon in the margins of these pages.

Chapter 1, this chapter, provides an overview of SAS/STAT software and summarizes
related information, products, and services. The next twelve chapters provide some
introduction to the broad areas covered by SAS/STAT software.

Chapter 14, “Using the Output Delivery System,”explains the fundamentals of us-
ing the Output Delivery System (ODS) to manage your SAS output.Chapter 15,
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“Statistical Graphics Using ODS,”describes the experimental extension to ODS that
enables a number of statistical procedures to create statistical graphics as easily as
tables.

Subsequent chapters describe the SAS procedures that make up SAS/STAT software.
These chapters appear in alphabetical order by procedure name and are organized as
follows:

• The “Overview” section provides a brief description of the analysis provided
by the procedure.

• The “Getting Started” section provides a quick introduction to the procedure
through a simple example.

• The “Syntax” section describes the SAS statements and options that control the
procedure.

• The “Details” section discusses methodology and miscellaneous details, such
as ODS tables and ODS graphics.

• The “Examples” section contains examples using the procedure.

• The “References” section contains references for the methodology and for ex-
amples of the procedure.

Following the chapters on the SAS/STAT procedures,Appendix A, “Special SAS
Data Sets,”documents the special SAS data sets associated with SAS/STAT proce-
dures.

Typographical Conventions
This book uses several type styles for presenting information. The following list
explains the meaning of the typographical conventions used in this book:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However, you can
enter these elements in your own SAS programs in lowercase, up-
percase, or a mixture of the two.

UPPERCASE BOLD is used in the “Syntax” sections’ initial lists of SAS state-
ments and options.

oblique is used for user-supplied values for options in the syntax defini-
tions. In the text, these values are written initalic.

helvetica is used for the names of variables and data sets when they appear
in the text.

bold is used to refer to matrices and vectors.

italic is used for terms that are defined in the text, for emphasis, and for
references to publications.

monospace is used for example code. In most cases, this book uses lowercase
type for SAS code.



Options Used in Examples � 19

Options Used in Examples

Output of Examples

Most of the output shown in this book is produced with the following SAS System
options:

options linesize=80 pagesize=200 nonumber nodate;

The template STATDOC.TPL is used to create the HTML output that appears in the
online documentation. A style template controls stylistic HTML elements such as
colors, fonts, and presentation attributes. The style template is specified in the ODS
HTML statement as follows:

ODS HTML style=statdoc;

If you run the examples, you may get slightly different output. This is a function of
the SAS System options used and the precision used by your computer for floating-
point calculations.

Graphics Options

Some of the graphical output displayed in the examples is generated with the experi-
mental ODS graphics system. Other examples use SAS/GRAPH software, including
the GOPTIONS statement and PROC GPLOT. The rest of this section provides infor-
mation on the specific set of options and symbol statements used to generate graphical
output using SAS/GRAPH software.

The code you see in the examples creates the color graphics that appear in the online
version of this book. A slightly different set of options and statements is used to
create the black-and-white graphics that appear in the printed version of the book.

If you run the examples, you may get slightly different results. This may occur be-
cause not all graphic options for color devices translate directly to black-and-white
output formats. For complete information on SAS/GRAPH software and graphics
options, refer toSAS/GRAPH Software: Reference.

The following GOPTIONS statement is used to create the online (color) version of
the graphic output.

filename GSASFILE ’<file-specification>’ ;

goptions gsfname=GSASFILE gsfmode =replace
fileonly
transparency dev = gif
ftext = swiss lfactor = 1
htext = 4.0pct htitle = 4.5pct
hsize = 5.625in vsize = 3.5in
noborder cback = white
horigin = 0in vorigin = 0in ;
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The following GOPTIONS statement is used to create the black-and-white version of
the graphic output, which appears in the printed version of the manual.

filename GSASFILE ’<file-specification>’ ;

goptions gsfname=GSASFILE gsfmode =replace
gaccess = sasgaedt fileonly
dev = pslepsf
ftext = swiss lfactor = 1
htext = 3.0pct htitle = 3.5pct
hsize = 5.625in vsize = 3.5in
border cback = white
horigin = 0in vorigin = 0in ;

In most of the online examples, the plot symbols are specified as follows:

symbol1 value=dot color=white height=3.5pct;

The SYMBOLn statements used in online examples order the symbol colors as fol-
lows: white, yellow, cyan, green, orange, blue, and black.

In the examples appearing in the printed manual, symbol statements specify
COLOR=BLACK and order the plot symbols as follows: dot, square, triangle, circle,
plus, x, diamond, and star.

The %PLOTIT Macro

Examples that use the %PLOTIT macro are generated by defining a special macro
variable to specify graphics options. SeeAppendix B, “Using the %PLOTIT Macro,”
for details on the options specified in these examples.

Where to Turn for More Information

This section describes other sources of information about SAS/STAT software.

Accessing the SAS/STAT Sample Library

The SAS/STAT sample library includes many examples that illustrate the use of
SAS/STAT software, including the examples used in this documentation. To access
these sample programs, select theHelp pull-down menu and then selectGetting
Started with SAS Software. From theContents list, chooseLearning to Use SAS
and thenSample SAS Programs. Select theSAS/STAT product.



Base SAS Software � 21

Online Documentation
This documentation is available online with the SAS System. If you are using the
SAS windowing environment with pull-down menus, you can selectSAS Help and
Documentationfrom theHelp menu. Under theContentstab selectSAS/STATand
then selectSAS/STAT User’s Guidefrom the list of available topics.

Alternatively, you can typehelp STAT in the command line. Note that you can use
the online facility to search the documentation. You can also access the documenta-
tion from the SAS Web site. Go tosupport.sas.comand selectDocumentation for
more detail.

SAS Institute Technical Support Services
As with all SAS Institute products, the SAS Institute Technical Support staff is avail-
able to respond to problems and answer technical questions regarding the use of
SAS/STAT software.

Related SAS Software
Many features not found in SAS/STAT software are available in other parts of the SAS
System. If you don’t find something you need in SAS/STAT software, try looking for
the feature in the following SAS software products.

Base SAS Software
The features provided by SAS/STAT software are in addition to the features provided
by Base SAS software. Many data management and reporting capabilities you will
need are part of Base SAS software. Refer toSAS Language Reference: Concepts,
SAS Language Reference: Dictionary, and theSAS Procedures Guidefor documen-
tation of Base SAS software.

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS
System. The DATA step provides a powerful general purpose programming language
that enables you to perform all kinds of data processing tasks. The DATA step is
documented inSAS Language Reference: Concepts.

Base SAS Procedures

Base SAS software includes many useful SAS procedures. Base SAS procedures
are documented in theSAS Procedures Guide. The following is a list of Base SAS
procedures you may find useful:

CORR compute correlations

RANK compute rankings or order statistics

STANDARD standardize variables to a fixed mean and variance

MEANS compute descriptive statistics and summarizing or collapsing data
over cross sections
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TABULATE print descriptive statistics in tabular format

UNIVARIATE compute descriptive statistics

SAS/ETS Software

SAS/ETS software provides SAS procedures for econometrics and time series anal-
ysis. It includes capabilities for forecasting, systems modeling and simulation, sea-
sonal adjustment, and financial analysis and reporting. In addition, SAS/ETS soft-
ware includes an interactive time series forecasting system.

SAS/GRAPH Software

SAS/GRAPH software includes procedures that create two- and three-dimensional
high-resolution color graphics plots and charts. You can generate output that graphs
the relationship of data values to one another, enhance existing graphs, or simply
create graphics output that is not tied to data.

SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming lan-
guage (Interactive Matrix Language) in a dynamic, interactive environment. The
fundamental object of the language is a data matrix. You can use SAS/IML soft-
ware interactively (at the statement level) to see results immediately, or you can store
statements in a module and execute them later. The programming is dynamic be-
cause necessary activities such as memory allocation and dimensioning of matrices
are done automatically. SAS/IML software is of interest to users of SAS/STAT soft-
ware because it enables you to program your methods in the SAS System.

SAS/INSIGHT Software

SAS/INSIGHT software is a highly interactive tool for data analysis. You can ex-
plore data through a variety of interactive graphs including bar charts, scatter plots,
box plots, and three-dimensional rotating plots. You can examine distributions and
perform parametric and nonparametric regression, analyze general linear models and
generalized linear models, examine correlation matrixes, and perform principal com-
ponent analyses. Any changes you make to your data show immediately in all graphs
and analyses. You can also configure SAS/INSIGHT software to produce graphs and
analyses tailored to the way you work.

SAS/INSIGHT software may be of interest to users of SAS/STAT software for inter-
active graphical viewing of data, editing data, exploratory data analysis, and checking
distributional assumptions.
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SAS/OR Software

SAS/OR software provides SAS procedures for operations research and project plan-
ning and includes a point-and-click interface to project management. Its capabilities
include the following:

• solving transportation problems

• linear, integer, and mixed-integer programming

• nonlinear programming

• scheduling projects

• plotting Gantt charts

• drawing network diagrams

• solving optimal assignment problems

• network flow programming

SAS/OR software may be of interest to users of SAS/STAT software for its mathe-
matical programming features. In particular, the NLP procedure in SAS/OR software
solves nonlinear programming problems, and it can be used for constrained and un-
constrained maximization of user-defined likelihood functions.

SAS/QC Software

SAS/QC software provides a variety of procedures for statistical quality control and
quality improvement. SAS/QC software includes procedures for

• Shewhart control charts

• cumulative sum control charts

• moving average control charts

• process capability analysis

• Ishikawa diagrams

• Pareto charts

• experimental design

SAS/QC software also includes the ADX interface for experimental design.
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Chapter 2
Introduction to Regression

Procedures
Overview

This chapter reviews SAS/STAT software procedures that are used for regression
analysis: CATMOD, GLM, LIFEREG, LOESS, LOGISTIC, NLIN, ORTHOREG,
PLS, PROBIT, ROBUSTREG, REG, RSREG, and TRANSREG. The REG procedure
provides the most general analysis capabilities; the other procedures give more spe-
cialized analyses. This chapter also briefly mentions several procedures in SAS/ETS
software.

Introduction

Many SAS/STAT procedures, each with special features, perform regression analysis.
The following procedures perform at least one type of regression analysis:

CATMOD analyzes data that can be represented by a contingency table.
PROC CATMOD fits linear models to functions of response fre-
quencies, and it can be used for linear and logistic regression. See
Chapter 4, “Introduction to Categorical Data Analysis Procedures,”
andChapter 22, “The CATMOD Procedure,”for more informa-
tion.

GENMOD fits generalized linear models. PROC GENMOD is especially
suited for responses with discrete outcomes, and it performs logis-
tic regression and Poisson regression as well as fitting Generalized
Estimating Equations for repeated measures data. SeeChapter
4, “Introduction to Categorical Data Analysis Procedures,”and
Chapter 31, “The GENMOD Procedure,”for more information.

GLM uses the method of least squares to fit general linear models. In
addition to many other analyses, PROC GLM can perform sim-
ple, multiple, polynomial, and weighted regression. PROC GLM
has many of the same input/output capabilities as PROC REG,
but it does not provide as many diagnostic tools or allow inter-
active changes in the model or data. SeeChapter 3, “Introduction
to Analysis-of-Variance Procedures,”andChapter 32, “The GLM
Procedure,”for more information.

LIFEREG fits parametric models to failure-time data that may be right cen-
sored. These types of models are commonly used in survival analy-
sis. SeeChapter 9, “Introduction to Survival Analysis Procedures,”
andChapter 39, “The LIFEREG Procedure,”for more informa-
tion.
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LOESS fits nonparametric models using a local regression method. PROC
LOESS is suitable for modeling regression surfaces where the un-
derlying parametric form is unknown and where robustness in the
presence of ouliers is required. SeeChapter 41, “The LOESS
Procedure,”for more information.

LOGISTIC fits logistic models for binomial and ordinal outcomes. PROC
LOGISTIC provides a wide variety of model-building methods
and computes numerous regression diagnostics. SeeChapter
4, “Introduction to Categorical Data Analysis Procedures,”and
Chapter 42, “The LOGISTIC Procedure,”for more information.

NLIN builds nonlinear regression models. Several different iterative
methods are available. SeeChapter 50, “The NLIN Procedure,”
for more information.

ORTHOREG performs regression using the Gentleman-Givens computational
method. For ill-conditioned data, PROC ORTHOREG can produce
more accurate parameter estimates than other procedures such as
PROC GLM and PROC REG. SeeChapter 53, “The ORTHOREG
Procedure,”for more information.

PLS performs partial least squares regression, principal components re-
gression, and reduced rank regression, with cross validation for the
number of components. SeeChapter 56, “The PLS Procedure,”
for more information.

PROBIT performs probit regression as well as logistic regression and ordi-
nal logistic regression. The PROBIT procedure is useful when the
dependent variable is either dichotomous or polychotomous and
the independent variables are continuous. SeeChapter 60, “The
PROBIT Procedure,”for more information.

REG performs linear regression with many diagnostic capabilities, se-
lects models using one of nine methods, produces scatter plots of
raw data and statistics, highlights scatter plots to identify particular
observations, and allows interactive changes in both the regression
model and the data used to fit the model. SeeChapter 61, “The
REG Procedure,”for more information.

ROBUSTREG performs robust regression using Huber M estimation and high
breakdown value estimation. PROC ROBUSTREG is suitable
for detecting outliers and providing resistant (stable) results in
the presence of outliers. SeeChapter 62, “The ROBUSTREG
Procedure,”for more information.

RSREG builds quadratic response-surface regression models. PROC
RSREG analyzes the fitted response surface to determine the
factor levels of optimum response and performs a ridge analysis to
search for the region of optimum response. SeeChapter 63, “The
RSREG Procedure,”for more information.

TRANSREG fits univariate and multivariate linear models, optionally with
spline and other nonlinear transformations. Models include or-



Introductory Example � 29

dinary regression and ANOVA, multiple and multivariate regres-
sion, metric and nonmetric conjoint analysis, metric and nonmetric
vector and ideal point preference mapping, redundancy analy-
sis, canonical correlation, and response surface regression. See
Chapter 75, “The TRANSREG Procedure,”for more information.

Several SAS/ETS procedures also perform regression. The following procedures are
documented in theSAS/ETS User’s Guide.

AUTOREG implements regression models using time-series data where the er-
rors are autocorrelated. Refer to?? for more details.

PDLREG performs regression analysis with polynomial distributed lags.
Refer to?? for more details.

SYSLIN handles linear simultaneous systems of equations, such as econo-
metric models. Refer to?? for more details.

MODEL handles nonlinear simultaneous systems of equations, such as
econometric models. Refer to?? for more details.

Introductory Example

Regression analysis is the analysis of the relationship between one variable and an-
other set of variables. The relationship is expressed as an equation that predicts a
response variable(also called adependent variableor criterion) from a function of
regressor variables(also calledindependent variables, predictors, explanatory vari-
ables, factors,or carriers) andparameters. The parameters are adjusted so that a
measure of fit is optimized. For example, the equation for theith observation might
be

yi = β0 + β1xi + εi

whereyi is the response variable,xi is a regressor variable,β0 andβ1 are unknown
parameters to be estimated, andεi is an error term.

You might use regression analysis to find out how well you can predict a child’s
weight if you know that child’s height. Suppose you collect your data by measuring
heights and weights of 19 school children. You want to estimate the interceptβ0 and
the slopeβ1 of a line described by the equation

Weight= β0 + β1Height+ ε

where

Weight is the response variable.

β0, β1 are the unknown parameters.
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Height is the regressor variable.

ε is the unknown error.

The data are included in the following program. The results are displayed inFigure
2.1andFigure 2.2.

data class;
input Name $ Height Weight Age;
datalines;

Alfred 69.0 112.5 14
Alice 56.5 84.0 13
Barbara 65.3 98.0 13
Carol 62.8 102.5 14
Henry 63.5 102.5 14
James 57.3 83.0 12
Jane 59.8 84.5 12
Janet 62.5 112.5 15
Jeffrey 62.5 84.0 13
John 59.0 99.5 12
Joyce 51.3 50.5 11
Judy 64.3 90.0 14
Louise 56.3 77.0 12
Mary 66.5 112.0 15
Philip 72.0 150.0 16
Robert 64.8 128.0 12
Ronald 67.0 133.0 15
Thomas 57.5 85.0 11
William 66.5 112.0 15
;
symbol1 v=dot c=blue height=3.5pct;
proc reg;

model Weight=Height;
plot Weight*Height/cframe=ligr;

run;
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The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001
Error 17 2142.48772 126.02869
Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705
Dependent Mean 100.02632 Adj R-Sq 0.7570
Coeff Var 11.22330

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004
Height 1 3.89903 0.51609 7.55 <.0001

Figure 2.1. Regression for Weight and Height Data

Figure 2.2. Regression for Weight and Height Data
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Estimates ofβ0 andβ1 for these data areb0 = −143.0 andb1 = 3.9, so the line is
described by the equation

Weight= −143.0 + 3.9 ∗ Height

Regression is often used in an exploratory fashion to look for empirical relationships,
such as the relationship betweenHeight and Weight. In this example,Height is
not the cause ofWeight. You would need a controlled experiment to confirm scien-
tifically the relationship. See the“Comments on Interpreting Regression Statistics”
section on page 42 for more information.

The method most commonly used to estimate the parameters is to minimize the sum
of squares of the differences between the actual response value and the value pre-
dicted by the equation. The estimates are calledleast-squares estimates, and the
criterion value is called theerror sum of squares

SSE=
n∑

i=1

(yi − b0 − b1xi)
2

whereb0 andb1 are the estimates ofβ0 andβ1 that minimize SSE.

For a general discussion of the theory of least-squares estimation of linear models
and its application to regression and analysis of variance, refer to one of the ap-
plied regression texts, including Draper and Smith (1981), Daniel and Wood (1980),
Johnston (1972), and Weisberg (1985).

SAS/STAT regression procedures produce the following information for a typical
regression analysis.

• parameter estimates using the least-squares criterion

• estimates of the variance of the error term

• estimates of the variance or standard deviation of the sampling distribution of
the parameter estimates

• tests of hypotheses about the parameters

SAS/STAT regression procedures can produce many other specialized diagnostic
statistics, including

• collinearity diagnostics to measure how strongly regressors are related to other
regressors and how this affects the stability and variance of the estimates (REG)

• influence diagnostics to measure how each individual observation contributes
to determining the parameter estimates, the SSE, and the fitted values
(LOGISTIC, REG, RSREG)

• lack-of-fit diagnostics that measure the lack of fit of the regression model by
comparing the error variance estimate to another pure error variance that is not
dependent on the form of the model (CATMOD, PROBIT, RSREG)
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• diagnostic scatter plots that check the fit of the model and highlighted scatter
plots that identify particular observations or groups of observations (REG)

• predicted and residual values, and confidence intervals for the mean and for an
individual value (GLM, LOGISTIC, REG)

• time-series diagnostics for equally spaced time-series data that measure how
much errors may be related across neighboring observations. These diagnostics
can also measure functional goodness of fit for data sorted by regressor or
response variables (REG, SAS/ETS procedures).

General Regression: The REG Procedure

The REG procedure is a general-purpose procedure for regression that

• handles multiple regression models

• provides nine model-selection methods

• allows interactive changes both in the model and in the data used to fit the
model

• allows linear equality restrictions on parameters

• tests linear hypotheses and multivariate hypotheses

• produces collinearity diagnostics, influence diagnostics, and partial regression
leverage plots

• saves estimates, predicted values, residuals, confidence limits, and other diag-
nostic statistics in output SAS data sets

• generates plots of data and of various statistics

• “paints” or highlights scatter plots to identify particular observations or groups
of observations

• uses, optionally, correlations or crossproducts for input

Model-selection Methods in PROC REG

The nine methods of model selection implemented in PROC REG are

NONE no selection. This method is the default and uses the full model
given in the MODEL statement to fit the linear regression.

FORWARD forward selection. This method starts with no variables in the
model and adds variables one by one to the model. At each step,
the variable added is the one that maximizes the fit of the model.
You can also specify groups of variables to treat as a unit during
the selection process. An option enables you to specify the crite-
rion for inclusion.

BACKWARD backward elimination. This method starts with a full model and
eliminates variables one by one from the model. At each step, the
variable with the smallest contribution to the model is deleted. You



34 � Chapter 2. Introduction to Regression Procedures

can also specify groups of variables to treat as a unit during the
selection process. An option enables you to specify the criterion
for exclusion.

STEPWISE stepwise regression, forward and backward. This method is a mod-
ification of the forward-selection method in that variables already
in the model do not necessarily stay there. You can also spec-
ify groups of variables to treat as a unit during the selection pro-
cess. Again, options enable you to specify criteria for entry into
the model and for remaining in the model.

MAXR maximumR2 improvement. This method tries to find the best
one-variable model, the best two-variable model, and so on.
The MAXR method differs from the STEPWISE method in that
many more models are evaluated with MAXR, which consid-
ers all switches before making any switch. The STEPWISE
method may remove the “worst” variable without considering what
the “best” remaining variable might accomplish, whereas MAXR
would consider what the “best” remaining variable might accom-
plish. Consequently, MAXR typically takes much longer to run
than STEPWISE.

MINR minimum R2 improvement. This method closely resembles
MAXR, but the switch chosen is the one that produces the smallest
increase inR2.

RSQUARE finds a specified number of models having the highestR2 in each
of a range of model sizes.

CP finds a specified number of models with the lowestCp within a
range of model sizes.

ADJRSQ finds a specified number of models having the highest adjustedR2

within a range of model sizes.

Nonlinear Regression: The NLIN Procedure

The NLIN procedure implements iterative methods that attempt to find least-squares
estimates for nonlinear models. The default method is Gauss-Newton, although sev-
eral other methods, such as Newton and Marquardt, are available. You must specify
parameter names, starting values, and expressions for the model. All necessary ana-
lytical derivatives are calculated automatically for you. Grid search is also available
to select starting values for the parameters. Since nonlinear models are often diffi-
cult to estimate, PROC NLIN may not always find the globally optimal least-squares
estimates.
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Response Surface Regression: The RSREG Procedure

The RSREG procedure fits a quadratic response-surface model, which is useful in
searching for factor values that optimize a response. The following features in PROC
RSREG make it preferable to other regression procedures for analyzing response
surfaces:

• automatic generation of quadratic effects

• a lack-of-fit test

• solutions for critical values of the surface

• eigenvalues of the associated quadratic form

• a ridge analysis to search for the direction of optimum response

Partial Least Squares Regression: The PLS Procedure

The PLS procedure fits models using any one of a number of linear predictive meth-
ods, includingpartial least squares(PLS). Ordinary least-squares regression, as im-
plemented in SAS/STAT procedures such as PROC GLM and PROC REG, has the
single goal of minimizing sample response prediction error, seeking linear functions
of the predictors that explain as much variation in each response as possible. The
techniques implemented in the PLS procedure have the additional goal of accounting
for variation in the predictors, under the assumption that directions in the predictor
space that are well sampled should provide better prediction fornew observations
when the predictors are highly correlated. All of the techniques implemented in the
PLS procedure work by extracting successive linear combinations of the predictors,
called factors (also calledcomponentsor latent vectors), which optimally address
one or both of these two goals—explaining response variation and explaining pre-
dictor variation. In particular, the method of partial least squares balances the two
objectives, seeking for factors that explain both response and predictor variation.

Regression for Ill-conditioned Data: The ORTHOREG
Procedure

The ORTHOREG procedure performs linear least-squares regression using the
Gentleman-Givens computational method, and it can produce more accurate parame-
ter estimates for ill-conditioned data. PROC GLM and PROC REG produce very ac-
curate estimates for most problems. However, if you have very ill-conditioned data,
consider using the ORTHOREG procedure. The collinearity diagnostics in PROC
REG can help you to determine whether PROC ORTHOREG would be useful.
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Local Regression: The LOESS Procedure

The LOESS procedure implements a nonparametric method for estimating regression
surfaces pioneered by Cleveland, Devlin, and Grosse (1988). The LOESS procedure
allows great flexibility because no assumptions about the parametric form of the re-
gression surface are needed. Furthermore, the LOESS procedure is suitable when
there are outliers in the data and a robust fitting method is necessary.

Robust Regression: The ROBUSTREG Procedure

The ROBUSTREG procedure implements algorithms to detect outliers and provide
resistant (stable) results in the presence of outliers. The ROBUSTREG procedure
provides four such methods: M estimation, LTS estimation, S estimation, and MM
estimation.

• M estimation was introduced by Huber (1973), and it is the simplest approach
both computationally and theoretically. Although it is not robust with respect
to leverage points, it is still used extensively in analyzing data for which it can
be assumed that the contamination is mainly in the response direction.

• Least Trimmed Squares (LTS) estimation is a high breakdown value method
introduced by Rousseeuw (1984). The breakdown value is a measure of the
proportion of contamination that an estimation method can withstand and still
maintain its robustness.

• S estimation is a high breakdown value method introduced by Rousseeuw and
Yohai (1984). With the same breakdown value, it has a higher statistical effi-
ciency than LTS estimation.

• MM estimation, introduced by Yohai (1987), combines high breakdown value
estimation and M estimation. It has both the high breakdown property and a
higher statistical efficiency than S estimation.

Logistic Regression: The LOGISTIC Procedure

The LOGISTIC procedure fits logistic models, in which the response can be either
dichotomous or polychotomous. Stepwise model selection is available. You can
request regression diagnostics, and predicted and residual values.

Regression with Transformations: The TRANSREG
Procedure

The TRANSREG procedure can fit many standard linear models. In addition, PROC
TRANSREG can find nonlinear transformations of data and fit a linear model to the
transformed variables. This is in contrast to PROC REG and PROC GLM, which
fit linear models to data, or PROC NLIN, which fits nonlinear models to data. The
TRANSREG procedure fits many types of linear models, including

• ordinary regression and ANOVA
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• metric and nonmetric conjoint analysis

• metric and nonmetric vector and ideal point preference mapping

• simple, multiple, and multivariate regression with variable transformations

• redundancy analysis with variable transformations

• canonical correlation analysis with variable transformations

• response surface regression with variable transformations

Regression Using the GLM, CATMOD, LOGISTIC, PROBIT,
and LIFEREG Procedures

The GLM procedure fits general linear models to data, and it can perform regression,
analysis of variance, analysis of covariance, and many other analyses. The following
features for regression distinguish PROC GLM from other regression procedures:

• direct specification of polynomial effects

• ease of specifying categorical effects (PROC GLM automatically generates
dummy variables for class variables)

Most of the statistics based on predicted and residual values that are available in
PROC REG are also available in PROC GLM. However, PROC GLM does not pro-
duce collinearity diagnostics, influence diagnostics, or scatter plots. In addition,
PROC GLM allows only one model and fits the full model.

SeeChapter 3, “Introduction to Analysis-of-Variance Procedures,”andChapter 32,
“The GLM Procedure,”for more details.

The CATMOD procedure can perform linear regression and logistic regression of re-
sponse functions for data that can be represented in a contingency table. SeeChapter
4, “Introduction to Categorical Data Analysis Procedures,”andChapter 22, “The
CATMOD Procedure,”for more details.

The LOGISTIC and PROBIT procedures can perform logistic and ordinal lo-
gistic regression. SeeChapter 4, “Introduction to Categorical Data Analysis
Procedures,” Chapter 42, “The LOGISTIC Procedure,”and Chapter 60, “The
PROBIT Procedure,”for additional details.

The LIFEREG procedure is useful in fitting equations to data that may be right-
censored. SeeChapter 9, “Introduction to Survival Analysis Procedures,”and
Chapter 39, “The LIFEREG Procedure,”for more details.

Interactive Features in the CATMOD, GLM, and REG
Procedures

The CATMOD, GLM, and REG procedures do not stop after processing a RUN state-
ment. More statements can be submitted as a continuation of the previous statements.
Many new features in these procedures are useful to request after you have reviewed
the results from previous statements. The procedures stop if a DATA step or another
procedure is requested or if a QUIT statement is submitted.
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Statistical Background

The rest of this chapter outlines the way many SAS/STAT regression procedures cal-
culate various regression quantities. Exceptions and further details are documented
with individual procedures.

Linear Models

In matrix algebra notation, a linear model is written as

y = Xβ + ε

whereX is the n × k design matrix (rows are observations and columns are the
regressors),β is thek × 1 vector of unknown parameters, andε is then × 1 vector
of unknown errors. The first column ofX is usually a vector of 1s used in estimating
the intercept term.

The statistical theory of linear models is based on strict classical assumptions. Ideally,
the response is measured with all the factors controlled in an experimentally deter-
mined environment. If you cannot control the factors experimentally, some tests must
be interpreted as being conditional on the observed values of the regressors.

Other assumptions are that

• the form of the model is correct (all important explanatory variables have been
included)

• regressor variables are measured without error

• the expected value of the errors is zero

• the variance of the error (and thus the dependent variable) for theith observa-
tion isσ2/wi, wherewi is a known weight factor. Usually,wi = 1 for all i and
thusσ2 is the common, constant variance.

• the errors are uncorrelated across observations

When hypotheses are tested, the additional assumption is made that the errors are
normally distributed.

Statistical Model

If the model satisfies all the necessary assumptions, the least-squares estimates are the
best linear unbiased estimates (BLUE). In other words, the estimates have minimum
variance among the class of estimators that are unbiased and are linear functions of
the responses. If the additional assumption that the error term is normally distributed
is also satisfied, then

• the statistics that are computed have the proper sampling distributions for hy-
pothesis testing
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• parameter estimates are normally distributed

• various sums of squares are distributed proportional to chi-square, at least un-
der proper hypotheses

• ratios of estimates to standard errors are distributed as Student’st under certain
hypotheses

• appropriate ratios of sums of squares are distributed asF under certain hy-
potheses

When regression analysis is used to model data that do not meet the assumptions,
the results should be interpreted in a cautious, exploratory fashion. The significance
probabilities under these circumstances are unreliable.

Box (1966) and Mosteller and Tukey (1977, chaps. 12 and 13) discuss the problems
that are encountered with regression data, especially when the data are not under
experimental control.

Parameter Estimates and Associated Statistics

Parameter estimates are formed using least-squares criteria by solving the normal
equations

(X′WX)b = X′Wy

for the parameter estimatesb, whereW is a diagonal matrix with the observed
weights on the diagonal, yielding

b = (X′WX)−1X′Wy

Assume for the present thatX′WX has full column rankk (this assumption is relaxed
later). The variance of the errorσ2 is estimated by the mean square error

s2 = MSE =
SSE
n− k

=
1

n− k

n∑
i=1

wi (yi − xib)2

wherexi is theith row of regressors. The parameter estimates are unbiased:

E(b) = β

E(s2) = σ2

The covariance matrix of the estimates is

VAR(b) = (X′WX)−1σ2
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The estimate of the covariance matrix is obtained by replacingσ2 with its estimate,
s2, in the formula preceding:

COVB = (X′WX)−1s2

The correlations of the estimates are derived by scaling to 1s on the diagonal.

Let

S = diag
(
(X′WX)−1

)− 1
2

CORRB = S
(
X′WX

)−1 S

Standard errors of the estimates are computed using the equation

STDERR(bi) =
√

(X′WX)−1
ii s2

where(X′WX)−1
ii is theith diagonal element of(X′WX)−1. The ratio

t =
bi

STDERR(bi)

is distributed as Student’st under the hypothesis thatβi is zero. Regression pro-
cedures display thet ratio and the significance probability, which is the probability
under the hypothesisβi = 0 of a larger absolutet value than was actually obtained.
When the probability is less than some small level, the event is considered so unlikely
that the hypothesis is rejected.

Type I SS and Type II SS measure the contribution of a variable to the reduction
in SSE. Type I SS measure the reduction in SSE as that variable is entered into the
model in sequence. Type II SS are the increment in SSE that results from removing
the variable from the full model. Type II SS are equivalent to the Type III and Type
IV SS reported in the GLM procedure. If Type II SS are used in the numerator of an
F test, the test is equivalent to thet test for the hypothesis that the parameter is zero.
In polynomial models, Type I SS measure the contribution of each polynomial term
after it is orthogonalized to the previous terms in the model. The four types of SS are
described inChapter 11, “The Four Types of Estimable Functions.”

Standardized estimates are defined as the estimates that result when all variables are
standardized to a mean of 0 and a variance of 1. Standardized estimates are com-
puted by multiplying the original estimates by the sample standard deviation of the
regressor variable and dividing by the sample standard deviation of the dependent
variable.

R2 is an indicator of how much of the variation in the data is explained by the model.
It is defined as

R2 = 1− SSE
TSS
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where SSE is the sum of squares for error and TSS is the corrected total sum of
squares. The AdjustedR2 statistic is an alternative toR2 that is adjusted for the
number of parameters in the model. This is calculated as

ADJRSQ= 1− n− i

n− p

(
1−R2

)
wheren is the number of observations used to fit the model,p is the number of
parameters in the model (including the intercept), andi is 1 if the model includes an
intercept term, and 0 otherwise.

Tolerances and variance inflation factors measure the strength of interrelationships
among the regressor variables in the model. If all variables are orthogonal to each
other, both tolerance and variance inflation are 1. If a variable is very closely re-
lated to other variables, the tolerance goes to 0 and the variance inflation gets very
large. Tolerance (TOL) is 1 minus theR2 that results from the regression of the other
variables in the model on that regressor. Variance inflation (VIF) is the diagonal of
(X′WX)−1 if (X′WX) is scaled to correlation form. The statistics are related as

VIF =
1

TOL

Models Not of Full Rank

If the model is not full rank, then a generalized inverse can be used to solve the normal
equations to minimize the SSE:

b = (X′WX)−X′Wy

However, these estimates are not unique since there are an infinite number of so-
lutions using different generalized inverses. PROC REG and other regression pro-
cedures choose a nonzero solution for all variables that are linearly independent of
previous variables and a zero solution for other variables. This corresponds to using a
generalized inverse in the normal equations, and the expected values of the estimates
are the Hermite normal form ofX′WX multiplied by the true parameters:

E(b) = (X′WX)−(X′WX)β

Degrees of freedom for the zeroed estimates are reported as zero. The hypotheses
that are not testable havet tests displayed as missing. The message that the model is
not full rank includes a display of the relations that exist in the matrix.
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Comments on Interpreting Regression Statistics

In most applications, regression models are merely useful approximations. Reality is
often so complicated that you cannot know what the true model is. You may have to
choose a model more on the basis of what variables can be measured and what kinds
of models can be estimated than on a rigorous theory that explains how the universe
really works. However, even in cases where theory is lacking, a regression model
may be an excellent predictor of the response if the model is carefully formulated
from a large sample. The interpretation of statistics such as parameter estimates may
nevertheless be highly problematical.

Statisticians usually use the word “prediction” in a technical sense.Predictionin this
sense does not refer to “predicting the future” (statisticians call thatforecasting) but
rather to guessing the response from the values of the regressors in an observation
taken under the same circumstances as the sample from which the regression equa-
tion was estimated. If you developed a regression model for predicting consumer
preferences in 1958, it may not give very good predictions in 1988 no matter how
well it did in 1958. If it is the future you want to predict, your model must include
whatever relevant factors may change over time. If the process you are studying does
in fact change over time, you must take observations at several, perhaps many, dif-
ferent times. Analysis of such data is the province of SAS/ETS procedures such as
AUTOREG and STATESPACE. Refer to theSAS/ETS User’s Guidefor more infor-
mation on these procedures.

The comments in the rest of this section are directed toward linear least-squares re-
gression. Nonlinear regression and non-least-squares regression often introduce fur-
ther complications. For more detailed discussions of the interpretation of regression
statistics, see Darlington (1968), Mosteller and Tukey (1977), Weisberg (1985), and
Younger (1979).

Interpreting Parameter Estimates from a Controlled Experiment

Parameter estimates are easiest to interpret in a controlled experiment in which the
regressors are manipulated independently of each other. In a well-designed experi-
ment, such as a randomized factorial design with replications in each cell, you can
use lack-of-fit tests and estimates of the standard error of prediction to determine
whether the model describes the experimental process with adequate precision. If so,
a regression coefficient estimates the amount by which the mean response changes
when the regressor is changed by one unit while all the other regressors are un-
changed. However, if the model involves interactions or polynomial terms, it may
not be possible to interpret individual regression coefficients. For example, if the
equation includes both linear and quadratic terms for a given variable, you cannot
physically change the value of the linear term without also changing the value of the
quadratic term. Sometimes it may be possible to recode the regressors, for example
by using orthogonal polynomials, to make the interpretation easier.

If the nonstatistical aspects of the experiment are also treated with sufficient care
(including such things as use of placebos and double blinds), then you can state con-
clusions in causal terms; that is, this change in a regressor causes that change in the
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response. Causality can never be inferred from statistical results alone or from an
observational study.

If the model that you fit is not the true model, then the parameter estimates may
depend strongly on the particular values of the regressors used in the experiment. For
example, if the response is actually a quadratic function of a regressor but you fit a
linear function, the estimated slope may be a large negative value if you use only
small values of the regressor, a large positive value if you use only large values of
the regressor, or near zero if you use both large and small regressor values. When
you report the results of an experiment, it is important to include the values of the
regressors. It is also important to avoid extrapolating the regression equation outside
the range of regressors in the sample.

Interpreting Parameter Estimates from an Observational Study

In an observational study, parameter estimates can be interpreted as the expected
difference in response of two observations that differ by one unit on the regressor
in question and that have the same values for all other regressors. You cannot make
inferences about “changes” in an observational study since you have not actually
changed anything. It may not be possible even in principle to change one regressor
independently of all the others. Neither can you draw conclusions about causality
without experimental manipulation.

If you conduct an observational study and if you do not know the true form of the
model, interpretation of parameter estimates becomes even more convoluted. A coef-
ficient must then be interpreted as an average over the sampled population of expected
differences in response of observations that differ by one unit on only one regressor.
The considerations that are discussed under controlled experiments for which the true
model is not known also apply.

Comparing Parameter Estimates

Two coefficients in the same model can be directly compared only if the regressors
are measured in the same units. You can make any coefficient large or small just
by changing the units. If you convert a regressor from feet to miles, the parameter
estimate is multiplied by 5280.

Sometimes standardized regression coefficients are used to compare the effects of
regressors measured in different units. Standardizing the variables effectively makes
the standard deviation the unit of measurement. This makes sense only if the standard
deviation is a meaningful quantity, which usually is the case only if the observations
are sampled from a well-defined population. In a controlled experiment, the standard
deviation of a regressor depends on the values of the regressor selected by the exper-
imenter. Thus, you can make a standardized regression coefficient large by using a
large range of values for the regressor.

In some applications you may be able to compare regression coefficients in terms of
the practical range of variation of a regressor. Suppose that each independent vari-
able in an industrial process can be set to values only within a certain range. You can
rescale the variables so that the smallest possible value is zero and the largest possi-
ble value is one. Then the unit of measurement for each regressor is the maximum
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possible range of the regressor, and the parameter estimates are comparable in that
sense. Another possibility is to scale the regressors in terms of the cost of setting a
regressor to a particular value, so comparisons can be made in monetary terms.

Correlated Regressors

In an experiment, you can often select values for the regressors such that the re-
gressors are orthogonal (not correlated with each other). Orthogonal designs have
enormous advantages in interpretation. With orthogonal regressors, the parameter es-
timate for a given regressor does not depend on which other regressors are included in
the model, although other statistics such as standard errors andp-values may change.

If the regressors are correlated, it becomes difficult to disentangle the effects of one
regressor from another, and the parameter estimates may be highly dependent on
which regressors are used in the model. Two correlated regressors may be nonsignif-
icant when tested separately but highly significant when considered together. If two
regressors have a correlation of 1.0, it is impossible to separate their effects.

It may be possible to recode correlated regressors to make interpretation easier. For
example, ifX andY are highly correlated, they could be replaced in a linear regres-
sion byX +Y andX−Y without changing the fit of the model or statistics for other
regressors.

Errors in the Regressors

If there is error in the measurements of the regressors, the parameter estimates must
be interpreted with respect to the measured values of the regressors, not the true
values. A regressor may be statistically nonsignificant when measured with error
even though it would have been highly significant if measured accurately.

Probability Values (p-values)

Probability values (p-values) do not necessarily measure the importance of a regres-
sor. An important regressor can have a large (nonsignificant)p-value if the sample is
small, if the regressor is measured over a narrow range, if there are large measure-
ment errors, or if another closely related regressor is included in the equation. An
unimportant regressor can have a very smallp-value in a large sample. Computing a
confidence interval for a parameter estimate gives you more useful information than
just looking at thep-value, but confidence intervals do not solve problems of mea-
surement errors in the regressors or highly correlated regressors.

Thep-values are always approximations. The assumptions required to compute exact
p-values are never satisfied in practice.

Interpreting R2

R2 is usually defined as the proportion of variance of the response that is predictable
from (that can be explained by) the regressor variables. It may be easier to interpret√

1−R2, which is approximately the factor by which the standard error of prediction
is reduced by the introduction of the regressor variables.

R2 is easiest to interpret when the observations, including the values of both the
regressors and response, are randomly sampled from a well-defined population.
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Nonrandom sampling can greatly distortR2. For example, excessively large val-
ues ofR2 can be obtained by omitting from the sample observations with regressor
values near the mean.

In a controlled experiment,R2 depends on the values chosen for the regressors. A
wide range of regressor values generally yields a largerR2 than a narrow range. In
comparing the results of two experiments on the same variables but with different
ranges for the regressors, you should look at the standard error of prediction (root
mean square error) rather thanR2.

Whether a givenR2 value is considered to be large or small depends on the context
of the particular study. A social scientist might consider anR2 of 0.30 to be large,
while a physicist might consider 0.98 to be small.

You can always get anR2 arbitrarily close to 1.0 by including a large number of
completely unrelated regressors in the equation. If the number of regressors is close
to the sample size,R2 is very biased. In such cases, the adjustedR2 and related
statistics discussed by Darlington (1968) are less misleading.

If you fit many different models and choose the model with the largestR2, all the
statistics are biased and thep-values for the parameter estimates are not valid. Caution
must be taken with the interpretation ofR2 for models with no intercept term. As
a general rule, no-intercept models should be fit only when theoretical justification
exists and the data appear to fit a no-intercept framework. TheR2 in those cases is
measuring something different (refer to Kvalseth 1985).

Incorrect Data Values

All regression statistics can be seriously distorted by a single incorrect data value.
A decimal point in the wrong place can completely change the parameter estimates,
R2, and other statistics. It is important to check your data for outliers and influential
observations. The diagnostics in PROC REG are particularly useful in this regard.

Predicted and Residual Values

After the model has been fit, predicted and residual values are usually calculated and
output. The predicted values are calculated from the estimated regression equation;
the residuals are calculated as actual minus predicted. Some procedures can calculate
standard errors of residuals, predicted mean values, and individual predicted values.

Consider theith observation wherexi is the row of regressors,b is the vector of
parameter estimates, ands2 is the mean squared error.

Let

hi = wixi(X′WX)−1x′
i (the leverage)

whereX is the design matrix for the observed data,xi is an arbitrary regressor vector
(possibly but not necessarily a row ofX), W is a diagonal matrix with the observed
weights on the diagonal, andwi is the weight corresponding toxi.
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Then

ŷi = xib (the predicted mean value)

STDERR(ŷi) =
√

his2/wi (the standard error of the predicted mean)

The standard error of the individual (future) predicted valueyi is

STDERR(yi) =
√

(1 + hi)s2/wi

If the predictor vectorxi corresponds to an observation in the analysis data, then the
residual for that observation is defined as

RESIDi = yi − xib (the residual)

STDERR(RESIDi) =
√

(1− hi)s2/wi (the standard error of the residual)

The ratio of the residual to its standard error, called thestudentized residual, is some-
times shown as

STUDENTi =
RESIDi

STDERR(RESIDi)

There are two kinds of confidence intervals for predicted values. One type of con-
fidence interval is an interval for the mean value of the response. The other type,
sometimes called aprediction or forecasting interval, is an interval for the actual
value of a response, which is the mean value plus error.

For example, you can construct for theith observation a confidence interval that
contains the true mean value of the response with probability1 − α. The upper and
lower limits of the confidence interval for the mean value are

LowerM = xib− tα/2

√
his2/wi

UpperM = xib + tα/2

√
his2/wi

wheretα/2 is the tabulatedt statistic with degrees of freedom equal to the degrees of
freedom for the mean squared error.

The limits for the confidence interval for an actual individual response are

LowerI = xib− tα/2

√
(1 + hi)s2/wi

UpperI = xib + tα/2

√
(1 + hi)s2/wi
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Influential observations are those that, according to various criteria, appear to have
a large influence on the parameter estimates. One measure of influence, Cook’sD,
measures the change to the estimates that results from deleting each observation:

COOKD =
1
k

STUDENT2

(
STDERR(ŷ)

STDERR(RESID)

)2

wherek is the number of parameters in the model (including the intercept). For more
information, refer to Cook (1977, 1979).

Thepredicted residualfor observationi is defined as the residual for theith observa-
tion that results from dropping theith observation from the parameter estimates. The
sum of squares of predicted residual errors is called thePRESS statistic:

PRESIDi =
RESIDi

1− hi

PRESS =
n∑

i=1

wiPRESID2
i

Testing Linear Hypotheses

The general form of a linear hypothesis for the parameters is

H0 : Lβ = c

whereL is q×k, β is k×1, andc is q×1. To test this hypothesis, the linear function
is taken with respect to the parameter estimates:

Lb− c

This has variance

Var(Lb− c) = LVar(b)L′ = L(X′WX)−L′σ2

whereb is the estimate ofβ.

A quadratic form called thesum of squares due to the hypothesisis calculated:

SS(Lb− c) = (Lb− c)′(L(X′WX)−L′)−1(Lb− c)

If you assume that this is testable, the SS can be used as a numerator of theF test:

F =
SS(Lb− c)/q

s2

This is compared with anF distribution withq anddfe degrees of freedom, where
dfe is the degrees of freedom for residual error.
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Multivariate Tests

Multivariate hypotheses involve several dependent variables in the form

H0 : LβM = d

whereL is a linear function on the regressor side,β is a matrix of parameters,M is
a linear function on the dependent side, andd is a matrix of constants. The special
case (handled by PROC REG) in which the constants are the same for each dependent
variable is written

(Lβ − cj)M = 0

wherec is a column vector of constants andj is a row vector of 1s. The special case
in which the constants are 0 is

LβM = 0

These multivariate tests are covered in detail in Morrison (1976); Timm (1975);
Mardia, Kent, and Bibby (1979); Bock (1975); and other works cited inChapter
5, “Introduction to Multivariate Procedures.”

To test this hypothesis, construct two matrices,H andE, that correspond to the nu-
merator and denominator of a univariateF test:

H = M′(LB− cj)′(L(X′WX)−L′)−1(LB− cj)M
E = M′ (Y′WY −B′(X′WX)B

)
M

Four test statistics, based on the eigenvalues ofE−1H or (E + H)−1H, are formed.
Let λi be the ordered eigenvalues ofE−1H (if the inverse exists), and letξi be the
ordered eigenvalues of(E + H)−1H. It happens thatξi = λi/(1 + λi) andλi =
ξi/(1− ξi), and it turns out thatρi =

√
ξi is theith canonical correlation.

Let p be the rank of(H + E), which is less than or equal to the number of columns
of M. Let q be the rank ofL(X′WX)−L′. Let v be the error degrees of freedom
ands = min(p, q). Let m = (|p − q| − 1)/2, and letn = (v − p − 1)/2. Then the
following statistics test the multivariate hypothesis in various ways, and their p-values
can be approximated byF distributions. Note that in the special case that the rank of
H is 1, all of theseF statistics will be the same and the corresponding p-values will
in fact be exact, since in this case the hypothesis is really univariate.
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Wilks’ Lambda

If

Λ =
det(E)

det(H + E)
=

n∏
i=1

1
1 + λi

=
n∏

i=1

(1− ξi)

then

F =
1− Λ1/t

Λ1/t
· rt− 2u

pq

is approximatelyF , where

r = v − p− q + 1
2

u =
pq − 2

4

t =

{ √
p2q2−4

p2+q2−5
if p2 + q2 − 5 > 0

1 otherwise

The degrees of freedom arepq andrt−2u. The distribution is exact ifmin(p, q) ≤ 2.
(Refer to Rao 1973, p. 556.)

Pillai’s Trace

If

V = trace
(
H(H + E)−1

)
=

n∑
i=1

λi

1 + λi
=

n∑
i=1

ξi

then

F =
2n + s + 1
2m + s + 1

· V
s−V

is approximatelyF with s(2m + s + 1) ands(2n + s + 1) degrees of freedom.

Hotelling-Lawley Trace

If

U = trace
(
E−1H

)
=

n∑
i=1

λi =
n∑

i=1

ξi

1− ξi
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then forn > 0

F = (U/c)((4 + (pq + 2)/(b− 1))/(pq))

is approximatelyF with pq and4 + (pq + 2)/(b − 1) degrees of freedom, where
b = (p + 2n)(q + 2n)/(2(2n + 1)(n − 1)) andc = (2 + (pq + 2)/(b − 1))/(2n);
while for n ≤ 0

F =
2(sn + 1)U

s2(2m + s + 1)

is approximatelyF with s(2m + s + 1) and2(sn + 1) degrees of freedom.

Roy’s Maximum Root

If

Θ = λ1

then

F = Θ
v − r + q

r

wherer = max(p, q) is an upper bound onF that yields a lower bound on the
significance level. Degrees of freedom arer for the numerator andv − r + q for the
denominator.

Tables of critical values for these statistics are found in Pillai (1960).

Exact Multivariate Tests

Beginning with release 9.0 of SAS/STAT software, if you specify the
MSTAT=EXACT option on the appropriate statement,p-values for three of
the four tests are computed exactly (Wilks’ Lambda, the Hotelling-Lawley Trace,
and Roy’s Greatest Root), and thep-values for the fourth (Pillai’s trace) are based
on anF -approximation that is more accurate (but occasionally slightly more liberal)
than the default. The exactp-values for Roy’s Greatest Root give an especially
dramatic improvement, since in this case theF -approximation only provides a lower
bound for thep-value. If you use theF -basedp-value for this test in the usual way,
declaring a test significant ifp < 0.05, then your decisions may be very liberal.
For example, instead of the nominal 5% Type I error rate, such a procedure can
easily have an actual Type I error rate in excess of 30%. By contrast, basing such a
procedure on the exactp-values will result in the appropriate 5% Type I error rate,
under the usual regression assumptions.

The exactp-values are based on the following sources:
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• Wilks’ Lambda: Lee (1972), Davis (1979)

• Pillai’s Trace: Muller (1998)

• Hotelling-Lawley Trace: Davis (1970), Davis (1980)

• Roy’s Greatest Root:Davis (1972), Pillai and Flury (1984)

Note that although the MSTAT=EXACTp-value for Pillai’s Trace is still approxi-
mate, it has “substantially greater accuracy” than the default approximation (Muller
1998).

Since most of the MSTAT=EXACTp-values are not based on theF -distribution,
the columns in the multivariate tests table corresponding to this approximation—in
particular, theF value and the numerator and denominator degrees of freedom—
are no longer displayed, and the column containing thep-values is labeled “P Value”
instead of “Pr > F”. Thus, for example, suppose you use the following PROC ANOVA
code to perform a multivariate analysis of an archaeological data set:

data Skulls;
input Loc $20. Basal Occ Max;

datalines;
Minas Graes, Brazil 2.068 2.070 1.580
Minas Graes, Brazil 2.068 2.074 1.602
Minas Graes, Brazil 2.090 2.090 1.613
Minas Graes, Brazil 2.097 2.093 1.613
Minas Graes, Brazil 2.117 2.125 1.663
Minas Graes, Brazil 2.140 2.146 1.681
Matto Grosso, Brazil 2.045 2.054 1.580
Matto Grosso, Brazil 2.076 2.088 1.602
Matto Grosso, Brazil 2.090 2.093 1.643
Matto Grosso, Brazil 2.111 2.114 1.643
Santa Cruz, Bolivia 2.093 2.098 1.653
Santa Cruz, Bolivia 2.100 2.106 1.623
Santa Cruz, Bolivia 2.104 2.101 1.653
;

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc;
ods select MultStat;

run;

The default multivariate tests, based on theF -approximations, are shown inFigure
2.3.
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The ANOVA Procedure
Multivariate Analysis of Variance

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall Loc Effect

H = Anova SSCP Matrix for Loc
E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.60143661 0.77 6 16 0.6032
Pillai’s Trace 0.44702843 0.86 6 18 0.5397
Hotelling-Lawley Trace 0.58210348 0.75 6 9.0909 0.6272
Roy’s Greatest Root 0.35530890 1.07 3 9 0.4109

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Figure 2.3. Default Multivariate Tests

If you specify MSTAT=EXACT on the MANOVA statement

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc / mstat=exact;
ods select MultStat;

run;

then the displayed output is the much simpler table shown inFigure 2.4.

The ANOVA Procedure
Multivariate Analysis of Variance

MANOVA Tests for the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc

E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value P-Value

Wilks’ Lambda 0.60143661 0.6032
Pillai’s Trace 0.44702843 0.5521
Hotelling-Lawley Trace 0.58210348 0.6337
Roy’s Greatest Root 0.35530890 0.7641

Figure 2.4. Multivariate Tests with MSTAT=EXACT

Notice that thep-value for Roy’s Greatest Root is substantially larger in the new table,
and correspondingly more in line with thep-values for the other tests.

If you reference the underlying ODS output object for the table of multivariate statis-
tics, it is important to note that its structure does not depend on the value of the
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MSTAT= specification. In particular, it always contains columns corresponding to
both the default MSTAT=FAPPROX and the MSTAT=EXACT tests. Moreover, since
the MSTAT=FAPPROX tests are relatively cheap to compute, the columns corre-
sponding to them are always filled in, even though they are not displayed when you
specify MSTAT=EXACT. On the other hand, for MSTAT=FAPPROX (which is the
default), the column of exactp-values contains missing values, and is not displayed.
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Chapter 3
Introduction to Analysis-of-Variance

Procedures
Overview

This chapter reviews the SAS/STAT software procedures that are used for anal-
ysis of variance: GLM, ANOVA, CATMOD, MIXED, NESTED, NPAR1WAY,
TRANSREG, TTEST, and VARCOMP. Also discussed are SAS/STAT and SAS/QC
software procedures for constructing analysis of variance designs: PLAN, FACTEX,
and OPTEX.

The flagship analysis-of-variance procedure is the GLM procedure, which handles
most standard problems. The following are descriptions of PROC GLM and other
procedures that are used for more specialized situations:

ANOVA performs analysis of variance, multivariate analysis of variance,
and repeated measures analysis of variance forbalanceddesigns.
PROC ANOVA also performs several multiple comparison tests.

CATMOD fits linear models and performs analysis of variance and repeated
measures analysis of variance for categorical responses.

GENMOD fits generalized linear models and performs analysis of variance in
the generalized linear models framework. The methods are partic-
ularly suited for discrete response outcomes.

GLM performs analysis of variance, regression, analysis of covariance,
repeated measures analysis, and multivariate analysis of variance.
PROC GLM produces several diagnostic measures, performs tests
for random effects, provides contrasts and estimates for customized
hypothesis tests, performs several multiple comparison tests, and
provides tests for means adjusted for covariates.

MIXED performs mixed-model analysis of variance and repeated measures
analysis of variance via covariance structure modeling. Using
likelihood-based or method-of-moment estimates, PROC MIXED
constructs statistical tests and intervals, allows customized con-
trasts and estimates, and computes empirical Bayes predictions.

NESTED performs analysis of variance and analysis of covariance for purely
nested random models.

NPAR1WAY performs nonparametric one-way analysis of rank scores.

TTEST compares the means of two groups of observations.
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TRANSREG fits univariate and multivariate linear models, optionally with
spline and other nonlinear transformations.

VARCOMP estimates variance components for random or mixed models.

The following section presents an overview of some of the fundamental features of
analysis of variance. Subsequent sections describe how this analysis is performed
with procedures in SAS/STAT software. For more detail, see the chapters for the
individual procedures. Additional sources are described in the“References”section
on page 67.

Statistical Details for Analysis of Variance

Definitions

Analysis of variance(ANOVA) is a technique for analyzing experimental data in
which one or moreresponse(or dependentor simply Y) variables are measured un-
der various conditions identified by one or more classification variables. The com-
binations of levels for the classification variables form the cells of the experimental
design for the data. For example, an experiment may measure weight change (the
dependent variable) for men and women who participated in three different weight-
loss programs. The six cells of the design are formed by the six combinations of sex
(men, women) and program (A, B, C).

In an analysis of variance, the variation in the response is separated into variation at-
tributable to differences between the classification variables and variation attributable
to random error. An analysis of variance constructs tests to determine the significance
of the classification effects. A typical goal in an analysis of variance is to compare
means of the response variable for various combinations of the classification vari-
ables.

An analysis of variance may be written as a linear model. Analysis of variance pro-
cedures in SAS/STAT software use the model to predict the response for each ob-
servation. The difference between the actual and predicted response is theresidual
error. Most of the procedures fit model parameters that minimize the sum of squares
of residual errors. Thus, the method is calledleast squares regression. The variance
due to the random error,σ2, is estimated by the mean squared error (MSE ors2).

Fixed and Random Effects

The explanatory classification variables in an ANOVA design may represent fixed or
random effects. The levels of a classification variable for a fixed effect give all the
levels of interest, while the levels of a classification variable for a random effect are
typically a subset of levels selected from a population of levels. The following are
examples.

• In a large drug trial, the levels that correspond to types of drugs are usually con-
sidered to comprise a fixed effect, but the levels corresponding to the various
clinics where the drugs are administered comprise a random effect.
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• In agricultural experiments, it is common to declare locations (or plots) as ran-
dom because the levels are chosen randomly from a large population of loca-
tions and you assume fertility to vary normally across locations.

• In repeated-measures experiments with people or animals as subjects, subjects
are declared random because they are selected from the larger population to
which you want to generalize.

A typical assumption is that random effects have values drawn from a normally dis-
tributed random process with mean zero and common variance. Effects are declared
random when the levels are randomly selected from a large population of possible
levels. Inferences are made using only a few levels but can be generalized across the
whole population of random effects levels.

The consequence of having random effects in your model is that some observations
are no longer uncorrelated but instead have a covariance that depends on the variance
of the random effect. In fact, a more general approach to random effect models is to
model the covariance between observations.

Tests of Effects

Analysis of variance tests are constructed by comparing independent mean squares.
To test a particular null hypothesis, you compute the ratio of two mean squares that
have the same expected value under that hypothesis; if the ratio is much larger than 1,
then that constitutes significant evidence against the null. In particular, in an analysis-
of-variance model with fixed effects only, the expected value of each mean square has
two components: quadratic functions of fixed parameters and random variation. For
example, for a fixed effect called A, the expected value of its mean square is

E(MS(A)) = Q(β) + σ2
e

Under the null hypothesis of no A effect, the fixed portion Q(β) of the expected
mean square is zero. This mean square is then compared to another mean square, say
MS(E), that is independent of the first and has expected valueσ2

e . The ratio of the
two mean squares

F =
MS(A)
MS(E)

has theF distribution under the null hypothesis. When the null hypothesis is false, the
numerator term has a larger expected value, but the expected value of the denominator
remains the same. Thus, largeF values lead to rejection of the null hypothesis. The
probability of getting anF value at least as large as the one observed given that the
null hypothesis is true is called thesignificance probability value(or thep-value).
A p-value of less than 0.05, for example, indicates that data withno real A effect
will yield F values as large as the one observed less than 5% of the time. This is
usually considered moderate evidence that thereis a real A effect. Smallerp-values
constitute even stronger evidence. Largerp-values indicate that the effect of interest
is less than random noise. In this case, you can conclude either that there is no effect
at all or that you do not have enough data to detect the differences being tested.
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General Linear Models

An analysis-of-variance model can be written as a linear model, which is an equation
that predicts the response as a linear function of parameters and design variables. In
general,

yi = β0x0i + β1x1i + · · · + βkxki + εi i = 1, 2, . . . , n

whereyi is the response for theith observation,βk are unknown parameters to be
estimated, andxij are design variables. Design variables for analysis of variance are
indicator variables; that is, they are always either0 or 1.

The simplest model is to fit a single mean to all observations. In this case there is
only one parameter,β0, and one design variable,x0i, which always has the value of
1:

yi = β0x0i + εi

= β0 + εi

The least-squares estimator ofβ0 is the mean of theyi. This simple model underlies
all more complex models, and all larger models are compared to this simple mean
model. In writing the parameterization of a linear model,β0 is usually referred to as
the intercept.

A one-way model is written by introducing an indicator variable for each level of the
classification variable. Suppose that a variable A has four levels, with two observa-
tions per level. The indicator variables are created as follows:

Intercept A1 A2 A3 A4
1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1

The linear model for this example is

yi = β0 + β1A1i + β2A2i + β3A3i + β4A4i

To construct crossed and nested effects, you can simply multiply out all combinations
of the main-effect columns. This is described in detail in“Specification of Effects”
in Chapter 32, “The GLM Procedure.”
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Linear Hypotheses

When models are expressed in the framework of linear models, hypothesis tests are
expressed in terms of a linear function of the parameters. For example, you may want
to test thatβ2 − β3 = 0. In general, the coefficients for linear hypotheses are some
set ofLs:

H0:L0β0 + L1β1 + · · · + Lkβk = 0

Several of these linear functions can be combined to make one joint test. These tests
can be expressed in one matrix equation:

H0:Lβ = 0

For each linear hypothesis, a sum of squares (SS) due to that hypothesis can be con-
structed. These sums of squares can be calculated either as a quadratic form of the
estimates

SS(Lβ = 0) = (Lb)′(L(X′X)−L′)−1(Lb)

or, equivalently, as the increase in sums of squares for error (SSE) for the model
constrained by the null hypothesis

SS(Lβ = 0) = SSE(constrained)− SSE(full)

This SS is then divided by appropriate degrees of freedom and used as a numerator
of anF statistic.

Analysis of Variance for Fixed Effect Models

PROC GLM for General Linear Models

The GLM procedure is the flagship tool for analysis of variance in SAS/STAT soft-
ware. It performs analysis of variance by using least squares regression to fit gen-
eral linear models, as described in the section“General Linear Models”on page 62.
Among the statistical methods available in PROC GLM are regression, analysis of
variance, analysis of covariance, multivariate analysis of variance, and partial corre-
lation.

While PROC GLM can handle most common analysis of variance problems, other
procedures are more efficient or have more features than PROC GLM for certain
specialized analyses, or they can handle specialized models that PROC GLM cannot.
Much of the rest of this chapter is concerned with comparing PROC GLM to other
procedures.
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PROC ANOVA for Balanced Designs
When you design an experiment, you choose how many experimental units to assign
to each combination of levels (or cells) in the classification. In order to achieve good
statistical properties and simplify the computations, you typically attempt to assign
the same number of units to every cell in the design. Such designs are calledbalanced
designs.

In SAS/STAT software, you can use the ANOVA procedure to perform analysis of
variance for balanced data. The ANOVA procedure performs computations for anal-
ysis of variance that assume the balanced nature of the data. These computations are
simpler and more efficient than the corresponding general computations performed
by PROC GLM. Note that PROC ANOVA can be applied to certain designs that are
not balanced in the strict sense of equal numbers of observations for all cells. These
additional designs include all one-way models, regardless of how unbalanced the cell
counts are, as well as Latin squares, which do not have data in all cells. In general,
however, the ANOVA procedure is recommended only for balanced data.If you use
ANOVA to analyze a design that is not balanced, you must assume responsibil-
ity for the validity of the output. You are responsible for recognizing incorrect
results, which may include negative values reported for the sums of squares. If you
are not certain that your data fit into a balanced design, then you probably need the
framework of general linear models in the GLM procedure.

Comparing Group Means with PROC ANOVA and PROC GLM
When you have more than two means to compare, anF test in PROC ANOVA or
PROC GLM tells you whether the means are significantly different from each other,
but it does not tell you which means differ from which other means.

If you have specific comparisons in mind, you can use the CONTRAST statement in
PROC GLM to make these comparisons. However, if you make many comparisons
using some given significance level (0.05, for example), you are more likely to make
a type 1 error (incorrectly rejecting a hypothesis that the means are equal) simply
because you have more chances to make the error.

Multiple comparison methods give you more detailed information about the differ-
ences among the means and enable you to control error rates for a multitude of com-
parisons. A variety of multiple comparison methods are available with the MEANS
statement in both the ANOVA and GLM procedures, as well as the LSMEANS state-
ment in the GLM and MIXED procedures. These are described in detail in“Multiple
Comparisons”in Chapter 32, “The GLM Procedure.”

PROC TTEST for Comparing Two Groups
If you want to perform an analysis of variance and have only one classification vari-
able with two levels, you can use PROC TTEST. In this special case, the results gen-
erated by PROC TTEST are equivalent to the results generated by PROC ANOVA or
PROC GLM.

In addition to testing for differences between two groups, PROC TTEST performs a
test for unequal variances. You can use PROC TTEST with balanced or unbalanced
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groups. The PROC NPAR1WAY procedure performs nonparametric analogues tot
tests. SeeChapter 12, “Introduction to Nonparametric Analysis,”for an overview
andChapter 52for details on PROC NPAR1WAY.

Analysis of Variance for Mixed and Random
Effect Models

Just as PROC GLM is the flagship procedure for fixed-effect linear models, the
MIXED procedure is the flagship procedure for random- and mixed-effect linear
models. PROC MIXED fits a variety of mixed linear models to data and enables you
to use these fitted models to make statistical inferences about the data. The default fit-
ting method maximizes the restricted likelihood of the data under the assumption that
the data are normally distributed and any missing data are missing at random. This
general framework accommodates many common correlated-data methods, including
variance component models and repeated measures analyses.

A few other procedures in SAS/STAT software offer limited mixed-linear-model ca-
pabilities. PROC GLM fits some random-effects and repeated-measures models, al-
though its methods are based on method-of-moments estimation and a portion of the
output applies only to the fixed-effects model. PROC NESTED fits special nested
designs and may be useful for large data sets because of its customized algorithms.
PROC VARCOMP estimates variance components models, but all of its methods are
now available in PROC MIXED. PROC LATTICE fits special balanced lattice de-
signs, but, again, the same models are available in PROC MIXED. In general, PROC
MIXED is recommended for nearly all of your linear mixed-model applications.

PROC NLMIXED handles models in which the fixed or random effects enter non-
linearly. It requires that you specify a conditional distribution of the data given
the random effects, with available distributions including the normal, binomial, and
Poisson. You can alternatively code your own distribution with SAS programming
statements. Under a normality assumption for the random effects, PROC NLMIXED
performs maximum likelihood estimation via adaptive Gaussian quadrature and a
dual quasi-Newton optimization algorithm. Besides standard maximum likelihood
results, you can obtain empirical Bayes predictions of the random effects and es-
timates of arbitrary functions of the parameters with delta-method standard errors.
PROC NLMIXED has a wide variety of applications, two of the most common being
nonlinear growth curves and overdispersed binomial data.

Analysis of Variance for Categorical Data and
Generalized Linear Models

A categorical variableis defined as one that can assume only a limited number of
values. For example, a person’s sex is a categorical variable that can assume one of
two values. Variables with levels that simply name a group are said to be measured on
a nominal scale. Categorical variables can also be measured using anordinal scale,
which means that the levels of the variable are ordered in some way. For example,
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responses to an opinion poll are usually measured on an ordinal scale, with levels
ranging from “strongly disagree” to “no opinion” to “strongly agree.”

For two categorical variables, one measured on an ordinal scale and one measured on
a nominal scale, you may assign scores to the levels of the ordinal variable and test
whether the mean scores for the different levels of the nominal variable are signifi-
cantly different. This process is analogous to performing an analysis of variance on
continuous data, which can be performed by PROC CATMOD. If there aren nominal
variables, rather than1, then PROC CATMOD can do ann-way analysis of variance
of the mean scores.

For two categorical variables measured on a nominal scale, you can test whether the
distribution of the first variable is significantly different for the levels of the second
variable. This process is an analysis of variance of proportions, rather than means,
and can be performed by PROC CATMOD. The correspondingn-way analysis of
variance can also be performed by PROC CATMOD.

SeeChapter 4, “Introduction to Categorical Data Analysis Procedures,”andChapter
22, “The CATMOD Procedure,”for more information.

The GENMOD procedure uses maximum likelihood estimation to fit generalized lin-
ear models. This family includes models for categorical data such as logistic, probit,
and complementary log-log regression for binomial data and Poisson regression for
count data, as well as continuous models such as ordinary linear regression, gamma
and inverse Gaussian regression models. PROC GENMOD performs analysis of vari-
ance through likelihood ratio and Wald tests of fixed effects in generalized linear
models, and provides contrasts and estimates for customized hypothesis tests. It per-
forms analysis of repeated measures data with generalized estimating equation (GEE)
methods.

SeeChapter 4, “Introduction to Categorical Data Analysis Procedures,”andChapter
31, “The GENMOD Procedure,”for more information.

Nonparametric Analysis of Variance

Analysis of variance is sensitive to the distribution of the error term. If the error
term is not normally distributed, the statistics based on normality can be misleading.
The traditional test statistics are calledparametric testsbecause they depend on the
specification of a certain probability distribution except for a set of free parameters.
Parametric tests are said to depend on distributional assumptions. Nonparametric
methods perform the tests without making any strict distributional assumptions. Even
if the data are distributed normally, nonparametric methods are often almost as pow-
erful as parametric methods.

Most nonparametric methods are based on taking the ranks of a variable and ana-
lyzing these ranks (or transformations of them) instead of the original values. The
NPAR1WAY procedure performs a nonparametric one-way analysis of variance.
Other nonparametric tests can be performed by taking ranks of the data (using
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the RANK procedure) and using a regular parametric procedure (such as GLM or
ANOVA) to perform the analysis. Some of these techniques are outlined in the de-
scription of PROC RANK in theSAS Procedures Guideand in Conover and Iman
(1981).

Constructing Analysis of Variance Designs

Analysis of variance is most often used for data from designed experiments. You
can use the PLAN procedure to construct designs for many experiments. For exam-
ple, PROC PLAN constructs designs for completely randomized experiments, ran-
domized blocks, Latin squares, factorial experiments, and balanced incomplete block
designs.

Randomization, or randomly assigning experimental units to cells in a design and
to treatments within a cell, is another important aspect of experimental design. For
either a new or an existing design, you can use PROC PLAN to randomize the exper-
imental plan.

Additional features for design of experiments are available in SAS/QC software. The
FACTEX and OPTEX procedures can construct a wide variety of designs, including
factorials, fractional factorials, and D-optimal or A-optimal designs. These proce-
dures, as well as the ADX Interface, provide features for randomizing and replicating
designs; saving the design in an output data set; and interactively changing the de-
sign by changing its size, use of blocking, or the search strategies used. For more
information, seeSAS/QC Software: Reference.
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Chapter 4
Introduction to Categorical Data

Analysis Procedures

Overview

Several procedures in SAS/STAT software can be used for the analysis of categorical
data:

CATMOD fits linear models to functions of categorical data, facilitating such
analyses as regression, analysis of variance, linear modeling, log-
linear modeling, logistic regression, and repeated measures anal-
ysis. Maximum likelihood estimation is used for the analysis of
logits and generalized logits, and weighted least squares analysis
is used for fitting models to other response functions. Iterative pro-
portional fitting (IPF), which avoids the need for parameter esti-
mation, is available for fitting hierarchical log-linear models when
there is a single population.

CORRESP performs simple and multiple correspondence analyses, using a
contingency table, Burt table, binary table, or raw categorical
data as input. For more on PROC CORRESP, seeChapter 5,
“Introduction to Multivariate Procedures,”andChapter 24, “The
CORRESP Procedure.”

FREQ builds frequency tables or contingency tables and can produce nu-
merous statistics. For one-way frequency tables, it can perform
tests for equal proportions, specified proportions, or the binomial
proportion. For contingency tables, it can compute various tests
and measures of association and agreement including chi-square
statistics, odds ratios, correlation statistics, Fisher’s exact test for
any size two-way table, kappa, and trend tests. In addition, it
performs stratified analysis, computing Cochran-Mantel-Haenszel
statistics and estimates of the common relative risk. Exactp-values
and confidence intervals are available for various test statistics and
measures.

GENMOD fits generalized linear models with maximum-likelihood methods.
This family includes logistic, probit, and complementary log-log
regression models for binomial data, Poisson and negative bino-
mial regression models for count data, and multinomial models for
ordinal response data. It performs likelihood ratio and Wald tests
for type I, type III, and user-defined contrasts. It analyzes repeated
measures data with generalized estimating equation (GEE) meth-
ods.
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LOGISTIC fits linear logistic regression models for discrete response data with
maximum-likelihood methods. It provides four variable selection
methods and computes regression diagnostics. It can also per-
form stratified conditional logistic regression analysis for binary
response data and exact conditional regression analysis for binary
and nominal response data. The logit link function in the logis-
tic regression models can be replaced by the probit function or the
complementary log-log function.

PROBIT fits models with probit, logit, or complementary log-log links for
quantal assay or other discrete event data. It is mainly designed
for dose-response analysis with a natural response rate. It com-
putes the fiducial limits for the dose variable and provides various
graphical displays for the analysis.

Other procedures that perform analyses for categorical data are the TRANSREG
and PRINQUAL procedures. PROC PRINQUAL is summarized inChapter 5,
“Introduction to Multivariate Procedures,”and PROC TRANSREG is summarized
in Chapter 2, “Introduction to Regression Procedures.”

A categorical variableis defined as one that can assume only a limited number of
discrete values. The measurement scale for such a variable is unrestricted. It can be
nominal, which means that the observed levels are not ordered. It can beordinal,
which means that the observed levels are ordered in some way. Or it can beinterval,
which means that the observed levels are ordered and numeric and that any interval
of one unit on the scale of measurement represents the same amount, regardless of
its location on the scale. One example of a categorical variable is litter size; another
is the number of times a subject has been married. A variable that lies on a nominal
scale is sometimes called aqualitativeor classification variable.

Categorical data result from observations on multiple subjects where one or more
categorical variables are observed for each subject. If there is only one categorical
variable, then the data are generally represented by afrequency table, which lists each
observed value of the variable and its frequency of occurrence.

If there are two or more categorical variables, then a subject’sprofile is defined as
the subject’s observed values for each of the variables. Such categorical data can be
represented by a frequency table that lists each observed profile and its frequency of
occurrence.

If there are exactly two categorical variables, then the data are often represented by
a two-dimensionalcontingency table, which has one row for each level of variable 1
and one column for each level of variable 2. The intersections of rows and columns,
calledcells, correspond to variable profiles, and each cell contains the frequency of
occurrence of the corresponding profile.

If there are more than two categorical variables, then the data can be represented by
a multidimensional contingency table. There are two commonly used methods for
displaying such tables, and both require that the variables be divided into two sets.
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In the first method, one set contains a row variable and a column variable for a two-
dimensional contingency table, and the second set contains all of the other variables.
The variables in the second set are used to form a set of profiles. Thus, the data
are represented as a series of two-dimensional contingency tables, one for each pro-
file. This is the data representation used by PROC FREQ. For example, if you re-
quest tables for RACE*SEX*AGE*INCOME, the FREQ procedure represents the
data as a series of contingency tables: the row variable is AGE, the column variable
is INCOME, and the combinations of levels of RACE and SEX form a set of profiles.

In the second method, one set contains the independent variables, and the other set
contains the dependent variables. Profiles based on the independent variables are
calledpopulation profiles, whereas those based on the dependent variables are called
response profiles. A two-dimensional contingency table is then formed, with one
row for each population profile and one column for each response profile. Since any
subject can have only one population profile and one response profile, the contingency
table is uniquely defined. This is the data representation used by PROC CATMOD.

Sampling Frameworks and Distribution
Assumptions

This section discusses the sampling frameworks and distribution assumptions for the
CATMOD and FREQ procedures.

Simple Random Sampling: One Population

Suppose you take a simple random sample of 100 people and ask each person the
following question: Of the three colors red, blue, and green, which is your favorite?
You then tabulate the results in a frequency table as shown inTable 4.1.

Table 4.1. One-Way Frequency Table

Favorite Color
Red Blue Green Total

Frequency 52 31 17 100
Proportion 0.52 0.31 0.17 1.00

In the population you are sampling, you assume there is an unknown probability that
a population member, selected at random, would choose any given color. In order to
estimate that probability, you use the sample proportion

pj =
nj

n

wherenj is the frequency of thejth response andn is the total frequency.

Because of the random variation inherent in any random sample, the frequencies
have a probability distribution representing their relative frequency of occurrence in
a hypothetical series of samples. For a simple random sample, the distribution of
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frequencies for a frequency table with three levels is as follows. The probability that
the first frequency isn1, the second frequency isn2, and the third isn3 = n−n1−n2,
is given by

Pr(n1, n2, n3) =
n!

n1!n2!n3!
πn1

1 πn2
2 πn3

3

whereπj is the true probability of observing thejth response level in the population.

This distribution, called themultinomial distribution, can be generalized to any num-
ber of response levels. The special case of two response levels is called thebinomial
distribution.

Simple random sampling is the type of sampling required by PROC CATMOD when
there is one population. PROC CATMOD uses the multinomial distribution to esti-
mate a probability vector and its covariance matrix. If the sample size is sufficiently
large, then the probability vector is approximately normally distributed as a result of
central limit theory. PROC CATMOD uses this result to compute appropriate test
statistics for the specified statistical model.

Stratified Simple Random Sampling: Multiple Populations

Suppose you take two simple random samples, 50 men and 50 women, and ask the
same question as before. You are now sampling two different populations that may
have different response probabilities. The data can be tabulated as shown inTable
4.2.

Table 4.2. Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total

Male 30 10 10 50
Female 20 10 20 50
Total 50 20 30 100

Note that the row marginal totals (50, 50) of the contingency table are fixed by the
sampling design, but the column marginal totals (50, 20, 30) are random. There
are six probabilities of interest for this table, and they are estimated by the sample
proportions

pij =
nij

ni

wherenij denotes the frequency for theith population and thejth response, andni

is the total frequency for theith population. For this contingency table, the sample
proportions are shown inTable 4.3.
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Table 4.3. Table of Sample Proportions by Sex

Favorite Color
Sex Red Blue Green Total

Male 0.60 0.20 0. 20 1.00
Female 0.40 0. 20 0.40 1.00

The probability distribution of the six frequencies is theproduct multinomial distri-
bution

Pr(n11, n12, n13, n21, n22, n23) =
n1!n2!πn11

11 πn12
12 πn13

13 πn21
21 πn22

22 πn23
23

n11!n12!n13!n21!n22!n23!

whereπij is the true probability of observing thejth response level in theith pop-
ulation. The product multinomial distribution is simply the product of two or more
individual multinomial distributions since the populations are independent. This dis-
tribution can be generalized to any number of populations and response levels.

Stratified simple random sampling is the type of sampling required by PROC
CATMOD when there is more than one population. PROC CATMOD uses the prod-
uct multinomial distribution to estimate a probability vector and its covariance matrix.
If the sample sizes are sufficiently large, then the probability vector is approximately
normally distributed as a result of central limit theory, and PROC CATMOD uses
this result to compute appropriate test statistics for the specified statistical model.
The statistics are known as Wald statistics, and they are approximately distributed as
chi-square when the null hypothesis is true.

Observational Data: Analyzing the Entire Population

Sometimes the observed data do not come from a random sample but instead rep-
resent a complete set of observations on some population. For example, suppose a
class of 100 students is classified according to sex and favorite color. The results are
shown inTable 4.4.

In this case, you could argue that all of the frequencies are fixed since the entire
population is observed; therefore, there is no sampling error. On the other hand,
you could hypothesize that the observed table has only fixed marginals and that the
cell frequencies represent one realization of a conceptual process of assigning color
preferences to individuals. The assignment process is open to hypothesis, which
means that you can hypothesize restrictions on the joint probabilities.

Table 4.4. Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total

Male 16 21 20 57
Female 12 20 11 43
Total 28 41 31 100
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The usual hypothesis (sometimes calledrandomness) is that the distribution of the
column variable (Favorite Color) does not depend on the row variable (Sex). This
implies that, for each row of the table, the assignment process corresponds to a sim-
ple random sample (without replacement) from the finite population represented by
the column marginal totals (or by the column marginal subtotals that remain after
sampling other rows). The hypothesis of randomness induces a probability distribu-
tion on the frequencies in the table; it is called thehypergeometric distribution.

If the same row and column variables are observed for each of several populations,
then the probability distribution of all the frequencies can be called themultiple hy-
pergeometric distribution.Each population is called astratum, and an analysis that
draws information from each stratum and then summarizes across them is called a
stratified analysis(or ablocked analysisor amatched analysis). PROC FREQ does
such a stratified analysis, computing test statistics and measures of association.

In general, the populations are formed on the basis of cross-classifications of inde-
pendent variables. Stratified analysis is a method of adjusting for the effect of these
variables without being forced to estimate parameters for them.

The multiple hypergeometric distribution is the one used by PROC FREQ for the
computation of Cochran-Mantel-Haenszel statistics. These statistics are in the class
of randomization model test statistics, which require minimal assumptions for their
validity. PROC FREQ uses the multiple hypergeometric distribution to compute the
mean and the covariance matrix of a function vector in order to measure the deviation
between the observed and expected frequencies with respect to a particular type of
alternative hypothesis. If the cell frequencies are sufficiently large, then the function
vector is approximately normally distributed as a result of central limit theory, and
FREQ uses this result to compute a quadratic form that has a chi-square distribution
when the null hypothesis is true.

Randomized Experiments

Consider arandomized experimentin which patients are assigned to one of two treat-
ment groups according to a randomization process that allocates 50 patients to each
group. After a specified period of time, each patient’s status (cured or uncured) is
recorded. Suppose the data shown inTable 4.5give the results of the experiment. The
null hypothesis is that the two treatments are equally effective. Under this hypothesis,
treatment is a randomly assigned label that has no effect on the cure rate of the pa-
tients. But this implies that each row of the table represents a simple random sample
from the finite population whose cure rate is described by the column marginal to-
tals. Therefore, the column marginals (58, 42) are fixed under the hypothesis. Since
the row marginals (50, 50) are fixed by the allocation process, the hypergeometric
distribution is induced on the cell frequencies. Randomized experiments can also be
specified in a stratified framework, and Cochran-Mantel-Haenszel statistics can be
computed relative to the corresponding multiple hypergeometric distribution.



Comparison of FREQ and CATMOD Procedures � 77

Table 4.5. Two-Way Contingency Table: Treatment by Status

Status
Treatment Cured Uncured Total

1 36 14 50
2 22 28 50

Total 58 42 100

Relaxation of Sampling Assumptions

As indicated previously, the CATMOD procedure assumes that the data are from a
stratified simple random sample, so it uses the product multinomial distribution. If
the data are not from such a sample, then in many cases it is still possible to use PROC
CATMOD by arguing that each row of the contingency tabledoesrepresent a simple
random sample from some hypothetical population. The extent to which the infer-
ences are generalizable depends on the extent to which the hypothetical population is
perceived to resemble the target population.

Similarly, the Cochran-Mantel-Haenszel statistics use the multiple hypergeometric
distribution, which requires fixed row and column marginal totals in each contingency
table. If the sampling process does not yield a table with fixed margins, then it is
usually possible to fix the margins through conditioning arguments similar to the ones
used by Fisher when he developed the Exact Test for2× 2 tables. In other words, if
you want fixed marginal totals, you can generally make your analysis conditional on
those observed totals.

For more information on sampling models for categorical data, see Bishop, Fienberg,
and Holland (1975, Chapter 13).

Comparison of FREQ and CATMOD Procedures

PROC FREQ is used primarily to investigate the relationship between two variables;
any confounding variables are taken into account by stratification rather than by pa-
rameter estimation. PROC CATMOD is used to investigate the relationship among
many variables, all of which are integrated into a parametric model.

When PROC CATMOD estimates the covariance matrix of the frequencies, it as-
sumes that the frequencies were obtained by a stratified simple random sampling
procedure. However, PROC CATMOD can also analyze input data that consist of a
function vector and a covariance matrix. Therefore, if the sampling procedure is dif-
ferent, you can estimate the covariance matrix of the frequencies in the appropriate
manner before submitting the data to PROC CATMOD.

For the FREQ procedure, Fisher’s Exact Test and Cochran-Mantel-Haenszel statistics
are based on the hypergeometric distribution, which corresponds to fixed marginal
totals. However, by conditioning arguments, these tests are generally applicable to
a wide range of sampling procedures. Similarly, the Pearson and likelihood-ratio
chi-square statistics can be derived under a variety of sampling situations.
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PROC FREQ can do some traditional nonparametric analysis (such as the Kruskal-
Wallis test and Spearman’s correlation) since it can generate rank scores internally.
Fisher’s Exact Test and the Cochran-Mantel-Haenszel statistics are also inherently
nonparametric. However, the main vehicle for nonparametric analyses in the SAS
System is the NPAR1WAY procedure.

A large sample size is required for the validity of the chi-square distributions, the stan-
dard errors, and the covariance matrices for both PROC FREQ and PROC CATMOD.
If sample size is a problem, then PROC FREQ has the advantage with its CMH statis-
tics because it does not use any degrees of freedom to estimate parameters for con-
founding variables. In addition, PROC FREQ can compute exactp-values for any
two-way table, provided that the sample size is sufficiently small in relation to the
size of the table. It can also produce exactp-values for many tests, including the test
of binomial proportions, the Cochran-Armitage test for trend, and the Jonckheere-
Terpstra test for ordered differences among classes.

See the chapters on the FREQ and CATMOD procedures for more information. In
addition, some well-known texts that deal with analyzing categorical data are listed
in the “References” section of this chapter.

Comparison of CATMOD, GENMOD, LOGISTIC,
and PROBIT Procedures

The CATMOD, GENMOD, LOGISTIC, and PROBIT procedures can all be used
for statistical modeling of categorical data. The CATMOD procedure provides max-
imum likelihood estimation for logistic regression, including the analysis of logits
for dichotomous outcomes and the analysis of generalized logits for polychotomous
outcomes. It provides weighted least squares estimation of many other response func-
tions, such as means, cumulative logits, and proportions, and you can also compute
and analyze other response functions that can be formed from the proportions corre-
sponding to the rows of a contingency table. In addition, a user can input and analyze
a set of response functions and user-supplied covariance matrix with weighted least
squares. With the CATMOD procedure, by default, all explanatory (independent)
variables are treated as classification variables.

The GENMOD procedure is also a general statistical modeling tool which fits gener-
alized linear models to data: it fits several useful models to categorical data includ-
ing logistic regression, the proportional odds model, and Poisson regression. The
GENMOD procedure also provides a facility for fitting generalized estimating equa-
tions to correlated response data that are categorical, such as repeated dichotomous
outcomes. The GENMOD procedure fits models using maximum likelihood estima-
tion, and you include classification variables in your models with a CLASS statement.
PROC GENMOD can perform type I and type III tests, and it provides predicted val-
ues and residuals.

The LOGISTIC procedure is specifically designed for logistic regression. It performs
the usual logistic regression analysis for dichotomous outcomes and it fits the propor-
tional odds model and the generalized logit model for ordinal and nominal outcomes,
respectively, by the method of maximum likelihood. With the CLASS statement, you
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can include independent CLASS variables in the model. This procedure has capa-
bilities for a variety of model-building techniques, including stepwise, forward, and
backward selection. It computes predicted values, the receiver operating characteris-
tics (ROC) curve and the area beneath the curve, and a number of regression diagnos-
tics. It can create output data sets containing these values and other statistics. PROC
LOGISTIC can perform a conditional logistic regression analysis (matched-set and
case-controlled) for binary response data. For small data sets, PROC LOGISTIC can
perform the exact conditional logistic analysis of Hirji, Mehta, and Patel (1987) and
Mehta, Patel, and Senchaudhuri (1992).

The PROBIT procedure is designed for quantal assay or other discrete event data. In
additional to performing the logistic regression analysis, it can estimate the threshold
response rate. PROC PROBIT can also estimate the values of independent variables
that yield a desired response. With the CLASS statement, you can include CLASS
variables in the model. PROC PROBIT allows only the less-than-full-rank parame-
terization for the CLASS variables.

Stokes, Davis, and Koch (2000) provide substantial discussion of these procedures,
particularly the use of the FREQ, LOGISTIC, GENMOD, and CATMOD procedures
for statistical modeling.

Logistic Regression

Dichotomous Response

You have many choices of performing logistic regression in the SAS System. The
CATMOD, GENMOD, LOGISTIC, and PROBIT procedures fit the usual logistic
regression model.

PROC LOGISTIC provides the capability of model-building, and performs condi-
tional logistic regression analysis for case-control studies and exact conditional lo-
gistic regression analysis. You may choose to use it for these reasons.

PROC CATMOD may not be efficient when there are continous independent vari-
ables with large numbers of different values. For a continuous variable with a very
limited number of values, PROC CATMOD may be useful. You list the continuous
variables in the DIRECT statement.

The LOGISTIC, GENMOD, and PROBIT procedures can analyze summarized data
by enabling you to input the numbers of events and trials; the ratio of events to tri-
als must be between 0 and 1. PROC PROBIT enables you to estimate the natural
response rate and compute fiducial limits for the dose variable.

Ordinal Response

PROC LOGISTIC fits the proportional odds model to the ordinal response data by
default. PROC PROBIT fits this model if you specify the logistic distribution, and
PROC GENMOD fits the same model if you specify the CLOGIT link and the multi-
nomial distribution.
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Nominal Response

When the response variable is nominal, there is no concept of ordering of the re-
sponse values. PROC CATMOD fits a logistic model to response functions called
generalized logits. PROC LOGISTIC fits the generalized logit model if you specify
the GLOGIT link.

Parameterization

There are some differences in the way that models are parameterized, which means
that you might get different parameter estimates if you were to perform logistic re-
gression in each of these procedures.

• Parameter estimates from the procedures may differ in sign, depending on the
ordering of response levels, which you can change if you want.

• The parameter estimates associated with a categorical independent variable
may differ among the procedures, since the estimates depend on the coding
of the indicator variables in the design matrix. By default, the design matrix
column produced by PROC CATMOD for a binary independent variable is
coded using the values 1 and−1 . The same column produced by the CLASS
statement of PROC PROBIT is coded using 1 and 0. PROC CATMOD uses
the deviation from the mean coding, which is a full-rank parameterization, and
PROC PROBIT uses the less-than-full-rank coding. As a result, the parameter
estimate printed by PROC CATMOD is one-half of the estimate produced by
PROC PROBIT. Both PROC GENMOD and PROC LOGISTIC allow either a
full-rank parameterization or the less-than-full-rank parameterization. See the
“Details” sections in the chapters on the CATMOD, GENMOD, LOGISTIC,
and PROBIT procedures for more information on the generation of the design
matrices used by these procedures.

• The maximum-likelihood algorithm used differs among the procedures. PROC
LOGISTIC uses the Fisher’s scoring method by default, while PROC PROBIT,
PROC GENMOD, and PROC CATMOD use the Newton-Raphson method.
The parameter estimates should be the same for all three procedures, and the
standard errors should be the same for the logistic model. For the normal and
extreme-value (Gompertz) distributions in PROC PROBIT, which correspond
to the probit and cloglog links, respectively, in PROC GENMOD and PROC
LOGISTIC, the standard errors may differ. In general, tests computed using the
standard errors from the Newton-Raphson method will be more conservative.

• The LOGISTIC, GENMOD, and PROBIT procedures can be used to fit
a cumulative regression model for ordinal response data using maximum-
likelihood estimation. PROC LOGISTIC and PROC GENMOD use a different
parameterization from that of PROC PROBIT, which results in different inter-
cept parameters. Estimates of the slope parameters, however, should be the
same for both procedures. The estimated standard errors of the slope estimates
are slightly different between the two procedures because of the different com-
putational algorithms used as default.
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Chapter 5
Introduction to Multivariate

Procedures
Overview

The procedures discussed in this chapter investigate relationships among variables
without designating some as independent and others as dependent. Principal compo-
nent analysis and common factor analysis examine relationships within a single set
of variables, whereas canonical correlation looks at the relationship between two sets
of variables. The following is a brief description of SAS/STAT multivariate proce-
dures:

CORRESP performs simple and multiple correspondence analyses, using a
contingency table, Burt table, binary table, or raw categorical data
as input. Correspondence analysis is a weighted form of principal
component analysis that is appropriate for frequency data.

PRINCOMP performs a principal component analysis and outputs standardized
or unstandardized principal component scores.

PRINQUAL performs a principal component analysis of qualitative data and
multidimensional preference analysis.

FACTOR performs principal component and common factor analyses with
rotations and outputs component scores or estimates of common
factor scores.

CANCORR performs a canonical correlation analysis and outputs canonical
variable scores.

Many other SAS/STAT procedures can also analyze multivariate data, for example,
the CATMOD, GLM, REG, CALIS, and TRANSREG procedures as well as the pro-
cedures for clustering and discriminant analysis.

The purpose ofprincipal component analysis(Rao 1964) is to derive a small num-
ber of linear combinations (principal components) of a set of variables that retain as
much of the information in the original variables as possible. Often a small number
of principal components can be used in place of the original variables for plotting,
regression, clustering, and so on. Principal component analysis can also be viewed
as an attempt to uncover approximate linear dependencies among variables.

The purpose ofcommon factor analysis(Mulaik 1972) is to explain the correlations
or covariances among a set of variables in terms of a limited number of unobservable,
latent variables. The latent variables are not generally computable as linear combi-
nations of the original variables. In common factor analysis, it is assumed that the
variables are linearly related if not for uncorrelated random error orunique variation
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in each variable; both the linear relations and the amount of unique variation can be
estimated.

Principal component and common factor analysis are often followed by rotation of
the components or factors.Rotationis the application of a nonsingular linear trans-
formation to components or common factors to aid interpretation.

The purpose ofcanonical correlation analysis(Mardia, Kent, and Bibby 1979) is
to explain or summarize the relationship between two sets of variables by finding a
small number of linear combinations from each set of variables that have the highest
possible between-set correlations. Plots of the canonical variables can be useful in
examining multivariate dependencies. If one of the two sets of variables consists of
dummy variables generated from a classification variable, the canonical correlation
is equivalent to canonical discriminant analysis (seeChapter 21, “The CANDISC
Procedure,”). If both sets of variables are dummy variables, canonical correlation is
equivalent to simple correspondence analysis.

The purpose ofcorrespondence analysis(Lebart, Morineau, and Warwick 1984;
Greenacre 1984; Nishisato 1980) is to summarize the associations between a set of
categorical variables in a small number of dimensions. Correspondence analysis com-
putes scores on each dimension for each row and column category in a contingency
table. Plots of these scores show the relationships among the categories.

The PRINQUAL procedure obtains linear and nonlinear transformations of variables
using the method of alternating least squares (Young 1981) to optimize properties
of the transformed variables’ covariance or correlation matrix. PROC PRINQUAL
nonlinearly transforms variables, improving their fit to a principal component model.
The name, PRINQUAL, for principal components of qualitative data, comes from
the special case analysis of fitting a principal component model to nominal and
ordinal scale of measurement variables (Young, Takane, and de Leeuw 1978).
However, PROC PRINQUAL also has facilities for smoothly transforming contin-
uous variables. All of PROC PRINQUAL’s transformations are also available in the
TRANSREG procedure, which fits regression models with nonlinear transformations.
PROC PRINQUAL can also perform metric and nonmetric multidimensional prefer-
ence (MDPREF) analyses (Carroll 1972). The PRINQUAL procedure produces very
little displayed output; the results are available in an output data set.

Comparison of the PRINCOMP and FACTOR
Procedures

Although PROC FACTOR can be used for common factor analysis, the default
method is principal components. PROC FACTOR produces the same results as PROC
PRINCOMP except that scoring coefficients from PROC FACTOR are normalized to
give principal component scores with unit variance, whereas PROC PRINCOMP by
default produces principal component scores with variance equal to the correspond-
ing eigenvalue. PROC PRINCOMP can also compute scores standardized to unit
variance.
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PROC PRINCOMP has the following advantages over PROC FACTOR:

• PROC PRINCOMP is slightly faster if a small number of components is re-
quested.

• PROC PRINCOMP can analyze somewhat larger problems in a fixed amount
of memory.

• PROC PRINCOMP can output scores from an analysis of a partial correlation
or covariance matrix.

• PROC PRINCOMP is simpler to use.

PROC FACTOR has the following advantages over PROC PRINCOMP for principal
component analysis:

• PROC FACTOR produces more output, including the scree (eigenvalue) plot,
pattern matrix, and residual correlations.

• PROC FACTOR does rotations.

If you want to perform a common factor analysis, you must use PROC FACTOR
instead of PROC PRINCOMP. Principal component analysis should never be used
if a common factor solution is desired (Dziuban and Harris 1973; Lee and Comrey
1979).

Comparison of the PRINCOMP and PRINQUAL
Procedures

The PRINCOMP procedure performs principal component analysis. The
PRINQUAL procedure finds linear and nonlinear transformations of variables
to optimize properties of the transformed variables’ covariance or correlation matrix.
One property is the sum of the firstn eigenvalues, which is a measure of the fit
of a principal component model withn components. Use PROC PRINQUAL to
find nonlinear transformations of your variables or to perform a multidimensional
preference analysis. Use PROC PRINCOMP to fit a principal component model to
your data or to PROC PRINQUAL’s output data set. PROC PRINCOMP produces a
report of the principal component analysis and output data sets. PROC PRINQUAL
produces only an output data set and an iteration history table.
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Comparison of the PRINCOMP and CORRESP
Procedures

As summarized previously, PROC PRINCOMP performs a principal component
analysis of interval-scaled data. PROC CORRESP performs correspondence anal-
ysis, which is a weighted form of principal component analysis that is appropriate for
frequency data. If your data are categorical, use PROC CORRESP instead of PROC
PRINCOMP. Both procedures produce an output data set that can be used with the
%PLOTIT macro. The plots produced from the PROC CORRESP output data set
graphically show relationships among the categories of the categorical variables.

Comparison of the PRINQUAL and CORRESP
Procedures

Both PROC PRINQUAL and PROC CORRESP can be used to summarize associ-
ations among variables measured on a nominal scale. PROC PRINQUAL searches
for a single nonlinear transformation of the original scoring of each nominal variable
that optimizes some aspect of the covariance matrix of the transformed variables.
For example, PROC PRINQUAL could be used to find scorings that maximize the
fit of a principal component model with one component. PROC CORRESP uses the
crosstabulations of nominal variables, not covariances, and produces multiple scores
for each category of each nominal variable. The main conceptual difference between
PROC PRINQUAL and PROC CORRESP is that PROC PRINQUAL assumes that
the categories of a nominal variable correspond to values of a single underlying inter-
val variable, whereas PROC CORRESP assumes that there are multiple underlying
interval variables and therefore uses different category scores for each dimension of
the correspondence analysis. PROC CORRESP scores on the first dimension match
the single set of PROC PRINQUAL scores (with appropriate standardizations for
both analyses).

Comparison of the TRANSREG and PRINQUAL
Procedures

Both the TRANSREG and PRINQUAL procedures are data transformation proce-
dures that have many of the same transformations. These procedures can either di-
rectly perform the specified transformation (such as taking the logarithm of the vari-
able) or search for an optimal transformation (such as a spline with a specified number
of knots). Both procedures can use an iterative, alternating-least-squares analysis.
Both procedures create an output data set that can be used as input to other proce-
dures. PROC PRINQUAL displays very little output, whereas PROC TRANSREG
displays many results. PROC TRANSREG has two sets of variables, usually de-
pendent and independent, and it fits linear models such as ordinary regression and
ANOVA, multiple and multivariate regression, metric and nonmetric conjoint anal-
ysis, metric and nonmetric vector and ideal point preference mapping, redundancy
analysis, canonical correlation, and response surface regression. In contrast, PROC
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PRINQUAL has one set of variables, fits a principal component model or multidimen-
sional preference analysis, and can also optimize other properties of a correlation or
covariance matrix. PROC TRANSREG performs hypothesis testing and can be used
to code experimental designs prior to their use in other analyses.

SeeChapter 2, “Introduction to Regression Procedures,”for more comparisons of
the TRANSREG and REG procedures.
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Chapter 6
Introduction to Discriminant

Procedures
Overview

The SAS procedures for discriminant analysis treat data with one classification vari-
able and several quantitative variables. The purpose of discriminant analysis can be
to find one or more of the following:

• a mathematical rule, ordiscriminant function, for guessing to which class an
observation belongs, based on knowledge of the quantitative variables only

• a set of linear combinations of the quantitative variables that best reveals the
differences among the classes

• a subset of the quantitative variables that best reveals the differences among the
classes

The SAS discriminant procedures are as follows:

DISCRIM computes various discriminant functions for classifying observa-
tions. Linear or quadratic discriminant functions can be used for
data with approximately multivariate normal within-class distribu-
tions. Nonparametric methods can be used without making any
assumptions about these distributions.

CANDISC performs a canonical analysis to find linear combinations of the
quantitative variables that best summarize the differences among
the classes.

STEPDISC uses forward selection, backward elimination, or stepwise selection
to try to find a subset of quantitative variables that best reveals
differences among the classes.

Background

The termdiscriminant analysis(Fisher 1936; Cooley and Lohnes 1971; Tatsuoka
1971; Kshirsagar 1972; Lachenbruch 1975, 1979; Gnanadesikan 1977; Klecka 1980;
Hand 1981,1982; Silverman, 1986) refers to several different types of analysis.
Classificatory discriminant analysis is used to classify observations into two or more
known groups on the basis of one or more quantitative variables. Classification can be
done by either a parametric method or a nonparametric method in the DISCRIM pro-
cedure. A parametric method is appropriate only for approximately normal within-
class distributions. The method generates either a linear discriminant function (the
within-class covariance matrices are assumed to be equal) or a quadratic discriminant
function (the within-class covariance matrices are assumed to be unequal).
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When the distribution within each group is not assumed to have any specific dis-
tribution or is assumed to have a distribution different from the multivariate nor-
mal distribution, nonparametric methods can be used to derive classification criteria.
These methods include the kernel method and nearest-neighbor methods. The kernel
method uses uniform, normal, Epanechnikov, biweight, or triweight kernels in esti-
mating the group-specific density at each observation. The within-group covariance
matrices or the pooled covariance matrix can be used to scale the data.

The performance of a discriminant function can be evaluated by estimating error rates
(probabilities of misclassification). Error count estimates and posterior probability
error rate estimates can be evaluated with PROC DISCRIM. When the input data set
is an ordinary SAS data set, the error rates can also be estimated by cross validation.

In multivariate statistical applications, the data collected are largely from distribu-
tions different from the normal distribution. Various forms of nonnormality can arise,
such as qualitative variables or variables with underlying continuous but nonnormal
distributions. If the multivariate normality assumption is violated, the use of para-
metric discriminant analysis may not be appropriate. When a parametric classifica-
tion criterion (linear or quadratic discriminant function) is derived from a nonnormal
population, the resulting error rate estimates may be biased.

If your quantitative variables are not normally distributed, or if you want to clas-
sify observations on the basis of categorical variables, you should consider using the
CATMOD or LOGISTIC procedure to fit a categorical linear model with the classifi-
cation variable as the dependent variable. Press and Wilson (1978) compare logistic
regression and parametric discriminant analysis and conclude that logistic regression
is preferable to parametric discriminant analysis in cases for which the variables do
not have multivariate normal distributions within classes. However, if you do have
normal within-class distributions, logistic regression is less efficient than parametric
discriminant analysis. Efron (1975) shows that with two normal populations having
a common covariance matrix, logistic regression is between one half and two thirds
as effective as the linear discriminant function in achieving asymptotically the same
error rate.

Do not confuse discriminant analysis with cluster analysis. All varieties of discrim-
inant analysis require prior knowledge of the classes, usually in the form of a sam-
ple from each class. In cluster analysis, the data do not include information on class
membership; the purpose is to construct a classification. SeeChapter 7, “Introduction
to Clustering Procedures.”

Canonical discriminant analysis is a dimension-reduction technique related to prin-
cipal components and canonical correlation, and it can be performed by both the
CANDISC and DISCRIM procedures. A discriminant criterion is always derived
in PROC DISCRIM. If you want canonical discriminant analysis without the use of
a discriminant criterion, you should use PROC CANDISC. Stepwise discriminant
analysis is a variable-selection technique implemented by the STEPDISC procedure.
After selecting a subset of variables with PROC STEPDISC, use any of the other dis-
criminant procedures to obtain more detailed analyses. PROC CANDISC and PROC
STEPDISC perform hypothesis tests that require the within-class distributions to be
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approximately normal, but these procedures can be used descriptively with nonnor-
mal data.

Another alternative to discriminant analysis is to perform a series of univariate one-
way ANOVAs. All three discriminant procedures provide summaries of the univariate
ANOVAs. The advantage of the multivariate approach is that two or more classes that
overlap considerably when each variable is viewed separately may be more distinct
when examined from a multivariate point of view.

Example: Contrasting Univariate and Multivariate Analyses

Consider the two classes indicated by ‘H’ and ‘O’ inFigure 6.1. The results are
shown inFigure 6.2.

data random;
drop n;

Group = ’H’;
do n = 1 to 20;

X = 4.5 + 2 * normal(57391);
Y = X + .5 + normal(57391);
output;

end;

Group = ’O’;
do n = 1 to 20;

X = 6.25 + 2 * normal(57391);
Y = X - 1 + normal(57391);
output;

end;

run;

symbol1 v=’H’ c=blue;
symbol2 v=’O’ c=yellow;
proc gplot;

plot Y*X=Group / cframe=ligr nolegend;
run;

proc candisc anova;
class Group;
var X Y;

run;
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Figure 6.1. Groups for Contrasting Univariate and Multivariate Analyses

The CANDISC Procedure

Observations 40 DF Total 39
Variables 2 DF Within Classes 38
Classes 2 DF Between Classes 1

Class Level Information

Variable
Group Name Frequency Weight Proportion

H H 20 20.0000 0.500000
O O 20 20.0000 0.500000

Figure 6.2. Contrasting Univariate and Multivariate Analyses
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The CANDISC Procedure

Univariate Test Statistics

F Statistics, Num DF=1, Den DF=38

Total Pooled Between
Standard Standard Standard R-Square

Variable Deviation Deviation Deviation R-Square / (1-RSq) F Value Pr > F

X 2.1776 2.1498 0.6820 0.0503 0.0530 2.01 0.1641
Y 2.4215 2.4486 0.2047 0.0037 0.0037 0.14 0.7105

Average R-Square

Unweighted 0.0269868
Weighted by Variance 0.0245201

Multivariate Statistics and Exact F Statistics

S=1 M=0 N=17.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.64203704 10.31 2 37 0.0003
Pillai’s Trace 0.35796296 10.31 2 37 0.0003
Hotelling-Lawley Trace 0.55754252 10.31 2 37 0.0003
Roy’s Greatest Root 0.55754252 10.31 2 37 0.0003

The CANDISC Procedure

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.598300 0.589467 0.102808 0.357963

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Eigenvalue Difference Proportion Cumulative

1 0.5575 1.0000 1.0000

Test of H0: The canonical correlations in the
current row and all that follow are zero

Likelihood Approximate
Ratio F Value Num DF Den DF Pr > F

1 0.64203704 10.31 2 37 0.0003

NOTE: The F statistic is exact.
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The CANDISC Procedure

Total Canonical Structure

Variable Can1

X -0.374883
Y 0.101206

Between Canonical Structure

Variable Can1

X -1.000000
Y 1.000000

Pooled Within Canonical Structure

Variable Can1

X -0.308237
Y 0.081243

The CANDISC Procedure

Total-Sample Standardized Canonical Coefficients

Variable Can1

X -2.625596855
Y 2.446680169

Pooled Within-Class Standardized Canonical Coefficients

Variable Can1

X -2.592150014
Y 2.474116072

Raw Canonical Coefficients

Variable Can1

X -1.205756217
Y 1.010412967

Class Means on Canonical Variables

Group Can1

H 0.7277811475
O -.7277811475
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The univariateR2s are very small, 0.0503 forX and 0.0037 forY, and neither variable
shows a significant difference between the classes at the 0.10 level.

The multivariate test for differences between the classes is significant at the 0.0003
level. Thus, the multivariate analysis has found a highly significant difference,
whereas the univariate analyses failed to achieve even the 0.10 level. The Raw
Canonical Coefficients for the first canonical variable,Can1, show that the classes
differ most widely on the linear combination -1.205756217X + 1.010412967Y or
approximatelyY - 1.2 X. TheR2 betweenCan1 and the class variable is 0.357963
as given by the Squared Canonical Correlation, which is much higher than either
univariateR2.

In this example, the variables are highly correlated within classes. If the within-class
correlation were smaller, there would be greater agreement between the univariate
and multivariate analyses.
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Chapter 7
Introduction to Clustering Procedures

Overview

You can use SAS clustering procedures to cluster the observations or the variables
in a SAS data set. Both hierarchical and disjoint clusters can be obtained. Only nu-
meric variables can be analyzed directly by the procedures, although the DISTANCE
procedure can compute a distance matrix using character or numeric variables.

The purpose of cluster analysis is to place objects into groups or clusters suggested by
the data, not defined a priori, such that objects in a given cluster tend to be similar to
each other in some sense, and objects in different clusters tend to be dissimilar. You
can also use cluster analysis for summarizing data rather than for finding “natural” or
“real” clusters; this use of clustering is sometimes calleddissection(Everitt 1980).

Any generalization about cluster analysis must be vague because a vast number of
clustering methods have been developed in several different fields, with different def-
initions of clusters and similarity among objects. The variety of clustering techniques
is reflected by the variety of terms used for cluster analysis: botryology, classification,
clumping, competitive learning, morphometrics, nosography, nosology, numerical
taxonomy, partitioning, Q-analysis, systematics, taximetrics, taxonorics, typology,
unsupervised pattern recognition, vector quantization, and winner-take-all learning.
Good (1977) has also suggested aciniformics and agminatics.

Several types of clusters are possible:

• Disjoint clusters place each object in one and only one cluster.

• Hierarchical clusters are organized so that one cluster may be entirely con-
tained within another cluster, but no other kind of overlap between clusters is
allowed.

• Overlapping clusters can be constrained to limit the number of objects that
belong simultaneously to two clusters, or they can be unconstrained, allowing
any degree of overlap in cluster membership.

• Fuzzy clusters are defined by a probability or grade of membership of each ob-
ject in each cluster. Fuzzy clusters can be disjoint, hierarchical, or overlapping.
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The data representations of objects to be clustered also take many forms. The most
common are

• a square distance or similarity matrix, in which both rows and columns corre-
spond to the objects to be clustered. A correlation matrix is an example of a
similarity matrix.

• a coordinate matrix, in which the rows are observations and the columns are
variables, as in the usual SAS multivariate data set. The observations, the vari-
ables, or both may be clustered.

The SAS procedures for clustering are oriented toward disjoint or hierarchical clus-
ters from coordinate data, distance data, or a correlation or covariance matrix. The
following procedures are used for clustering:

CLUSTER performs hierarchical clustering of observations using eleven ag-
glomerative methods applied to coordinate data or distance data.

FASTCLUS finds disjoint clusters of observations using ak-means method ap-
plied to coordinate data. PROC FASTCLUS is especially suitable
for large data sets.

MODECLUS finds disjoint clusters of observations with coordinate or distance
data using nonparametric density estimation. It can also perform
approximate nonparametric significance tests for the number of
clusters.

VARCLUS performs both hierarchical and disjoint clustering of variables by
oblique multiple-group component analysis.

TREE draws tree diagrams, also calleddendrogramsor phenograms, us-
ing output from the CLUSTER or VARCLUS procedures. PROC
TREE can also create a data set indicating cluster membership at
any specified level of the cluster tree.

The following procedures are useful for processing data prior to the actual cluster
analysis:

ACECLUS attempts to estimate the pooled within-cluster covariance matrix
from coordinate data without knowledge of the number or the
membership of the clusters (Art, Gnanadesikan, and Kettenring
1982). PROC ACECLUS outputs a data set containing canonical
variable scores to be used in the cluster analysis proper.

DISTANCE computes various measures of distance, dissimilarity, or similar-
ity between the observations (rows) of a SAS data set. PROC
DISTANCE also provides various nonparametric and parametric
methods for standardizing variables. Different variables can be
standardized with different methods.

PRINCOMP performs a principal component analysis and outputs principal
component scores.
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STDIZE standardizes variables using any of a variety of location and scale
measures, including mean and standard deviation, minimum and
range, median and absolute deviation from the median, variousm
estimators anda estimators, and some scale estimators designed
specifically for cluster analysis.

Massart and Kaufman (1983) is the best elementary introduction to cluster analysis.
Other important texts are Anderberg (1973), Sneath and Sokal (1973), Duran and
Odell (1974), Hartigan (1975), Titterington, Smith, and Makov (1985), McLachlan
and Basford (1988), and Kaufmann and Rousseeuw (1990). Hartigan (1975) and
Spath (1980) give numerous FORTRAN programs for clustering. Any prospective
user of cluster analysis should study the Monte Carlo results of Milligan (1980),
Milligan and Cooper (1985), and Cooper and Milligan (1984). Important references
on the statistical aspects of clustering include MacQueen (1967), Wolfe (1970), Scott
and Symons (1971), Hartigan (1977; 1978; 1981; 1985), Symons (1981), Everitt
(1981), Sarle (1983), Bock (1985), and Thode et al. (1988). Bayesian methods
have important advantages over maximum likelihood; refer to Binder (1978; 1981),
Banfield and Raftery (1993), and Bensmail et al, (1997). For fuzzy clustering, refer
to Bezdek (1981) and Bezdek and Pal (1992). The signal-processing perspective is
provided by Gersho and Gray (1992). Refer to Blashfield and Aldenderfer (1978) for
a discussion of the fragmented state of the literature on cluster analysis.

Clustering Variables

Factor rotation is often used to cluster variables, but the resulting clusters are fuzzy. It
is preferable to use PROC VARCLUS if you want hard (nonfuzzy), disjoint clusters.
Factor rotation is better if you want to be able to find overlapping clusters. It is
often a good idea to try both PROC VARCLUS and PROC FACTOR with an oblique
rotation, compare the amount of variance explained by each, and see how fuzzy the
factor loadings are and whether there seem to be overlapping clusters.

You can use PROC VARCLUS to harden a fuzzy factor rotation; use PROC FACTOR
to create an output data set containing scoring coefficients and initialize PROC
VARCLUS with this data set:

proc factor rotate=promax score outstat=fact;
run;

proc varclus initial=input proportion=0;
run;

You can use any rotation method instead of the PROMAX method. The SCORE
and OUTSTAT= options are necessary in the PROC FACTOR statement. PROC
VARCLUS reads the correlation matrix from the data set created by PROC FACTOR.
The INITIAL=INPUT option tells PROC VARCLUS to read initial scoring coeffi-
cients from the data set. The option PROPORTION=0 keeps PROC VARCLUS from
splitting any of the clusters.
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Clustering Observations

PROC CLUSTER is easier to use than PROC FASTCLUS because one run produces
results from one cluster up to as many as you like. You must run PROC FASTCLUS
once for each number of clusters.

The time required by PROC FASTCLUS is roughly proportional to the number of
observations, whereas the time required by PROC CLUSTER with most methods
varies with the square or cube of the number of observations. Therefore, you can use
PROC FASTCLUS with much larger data sets than PROC CLUSTER.

If you want to hierarchically cluster a data set that is too large to use with PROC
CLUSTER directly, you can have PROC FASTCLUS produce, for example, 50 clus-
ters, and let PROC CLUSTER analyze these 50 clusters instead of the entire data set.
The MEAN= data set produced by PROC FASTCLUS contains two special variables:

• The variable–FREQ– gives the number of observations in the cluster.

• The variable–RMSSTD– gives the root-mean-square across variables of the
cluster standard deviations.

These variables are automatically used by PROC CLUSTER to give the correct re-
sults when clustering clusters. For example, you could specify Ward’s minimum
variance method (Ward 1963),

proc fastclus maxclusters=50 mean=temp;
var x y z;

run;

proc cluster method=ward outtree=tree;
var x y z;

run;

or Wong’s hybrid method (Wong 1982):

proc fastclus maxclusters=50 mean=temp;
var x y z;

run;

proc cluster method=density hybrid outtree=tree;
var x y z;

run;

More detailed examples are given inChapter 23, “The CLUSTER Procedure.”
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Characteristics of Methods for Clustering
Observations

Many simulation studies comparing various methods of cluster analysis have been
performed. In these studies, artificial data sets containing known clusters are pro-
duced using pseudo-random-number generators. The data sets are analyzed by a
variety of clustering methods, and the degree to which each clustering method recov-
ers the known cluster structure is evaluated. Refer to Milligan (1981) for a review
of such studies. In most of these studies, the clustering method with the best overall
performance has been either average linkage or Ward’s minimum variance method.
The method with the poorest overall performance has almost invariably been single
linkage. However, in many respects, the results of simulation studies are inconsistent
and confusing.

When you attempt to evaluate clustering methods, it is essential to realize that
most methods are biased toward finding clusters possessing certain characteristics
related to size (number of members), shape, or dispersion. Methods based on the
least-squares criterion (Sarle 1982), such ask-means and Ward’s minimum variance
method, tend to find clusters with roughly the same number of observations in each
cluster. Average linkage is somewhat biased toward finding clusters of equal variance.
Many clustering methods tend to produce compact, roughly hyperspherical clusters
and are incapable of detecting clusters with highly elongated or irregular shapes. The
methods with the least bias are those based on nonparametric density estimation such
as single linkage and density linkage.

Most simulation studies have generated compact (often multivariate normal) clusters
of roughly equal size or dispersion. Such studies naturally favor average linkage
and Ward’s method over most other hierarchical methods, especially single linkage.
It would be easy, however, to design a study using elongated or irregular clusters
in which single linkage would perform much better than average linkage or Ward’s
method (see some of the following examples). Even studies that compare clustering
methods using “realistic” data may unfairly favor particular methods. For example,
in all the data sets used by Mezzich and Solomon (1980), the clusters established by
field experts are of equal size. When interpreting simulation or other comparative
studies, you must, therefore, decide whether the artificially generated clusters in the
study resemble the clusters you suspect may exist in your data in terms of size, shape,
and dispersion. If, like many people doing exploratory cluster analysis, you have no
idea what kinds of clusters to expect, you should include at least one of the relatively
unbiased methods, such as density linkage, in your analysis.

The rest of this section consists of a series of examples that illustrate the performance
of various clustering methods under various conditions. The first, and simplest ex-
ample, shows a case of well-separated clusters. The other examples show cases of
poorly separated clusters, clusters of unequal size, parallel elongated clusters, and
nonconvex clusters.
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Well-Separated Clusters

If the population clusters are sufficiently well separated, almost any clustering method
performs well, as demonstrated in the following example using single linkage. In this
and subsequent examples, the output from the clustering procedures is not shown,
but cluster membership is displayed in scatter plots. The following SAS statements
produceFigure 7.1:

data compact;
keep x y;
n=50; scale=1;
mx=0; my=0; link generate;
mx=8; my=0; link generate;
mx=4; my=8; link generate;
stop;

generate:
do i=1 to n;

x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;

end;
return;

run;

proc cluster data=compact outtree=tree
method=single noprint;

run;

proc tree noprint out=out n=3;
copy x y;

run;

legend1 frame cframe=ligr cborder=black
position=center value=(justify=center);

axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
proc gplot;

plot y*x=cluster/frame cframe=ligr
vaxis=axis1 haxis=axis2 legend=legend1;

title ’Single Linkage Cluster Analysis’;
title2 ’of Data Containing Well-Separated,

Compact Clusters’;
run;
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Figure 7.1. Data Containing Well-Separated, Compact Clusters: PROC
CLUSTER with METHOD=SINGLE and PROC GPLOT

Poorly Separated Clusters

To see how various clustering methods differ, you must examine a more difficult
problem than that of the previous example.

The following data set is similar to the first except that the three clusters are much
closer together. This example demonstrates the use of PROC FASTCLUS and five
hierarchical methods available in PROC CLUSTER. To help you compare methods,
this example plots true, generated clusters. Also included is a bubble plot of the
density estimates obtained in conjunction with two-stage density linkage in PROC
CLUSTER. The following SAS statements produceFigure 7.2:

data closer;
keep x y c;
n=50; scale=1;
mx=0; my=0; c=3; link generate;
mx=3; my=0; c=1; link generate;
mx=1; my=2; c=2; link generate;
stop;

generate:
do i=1 to n;

x=rannor(9)*scale+mx;
y=rannor(9)*scale+my;
output;

end;
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return;
run;

title ’True Clusters for Data Containing Poorly Separated,
Compact Clusters’;

proc gplot;
plot y*x=c/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
run;

Figure 7.2. Data Containing Poorly Separated, Compact Clusters: Plot of True
Clusters
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The following statements use the FASTCLUS procedure to find three clusters and
the GPLOT procedure to plot the clusters. Since the GPLOT step is repeated sev-
eral times in this example, it is contained in the PLOTCLUS macro. The following
statements produceFigure 7.3.

%macro plotclus;
legend1 frame cframe=ligr cborder=black

position=center value=(justify=center);
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
proc gplot;

plot y*x=cluster/frame cframe=ligr
vaxis=axis1 haxis=axis2 legend=legend1;

run;
%mend plotclus;

proc fastclus data=closer out=out maxc=3 noprint;
var x y;
title ’FASTCLUS Analysis’;
title2 ’of Data Containing Poorly Separated,

Compact Clusters’;
run;
%plotclus;

Figure 7.3. Data Containing Poorly Separated, Compact Clusters: PROC
FASTCLUS
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The following SAS statements produceFigure 7.4:

proc cluster data=closer outtree=tree method=ward noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y;
title ’Ward’’s Minimum Variance Cluster Analysis’;
title2 ’of Data Containing Poorly Separated,

Compact Clusters’;
run;

%plotclus;

Figure 7.4. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=WARD
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The following SAS statements produceFigure 7.5:

proc cluster data=closer outtree=tree method=average noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title ’Average Linkage Cluster Analysis’;
title2 ’of Data Containing Poorly Separated,

Compact Clusters’;
run;

%plotclus;

Figure 7.5. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=AVERAGE
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The following SAS statements produceFigure 7.6:

proc cluster data=closer outtree=tree
method=centroid noprint;

var x y;
run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title ’Centroid Cluster Analysis’;
title2 ’of Data Containing Poorly Separated,

Compact Clusters’;
run;

%plotclus;

Figure 7.6. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=CENTROID
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The following SAS statements produceFigure 7.7:

proc cluster data=closer outtree=tree
method=twostage k=10 noprint;

var x y;
run;

proc tree noprint out=out n=3;
copy x y _dens_;
title ’Two-Stage Density Linkage Cluster Analysis’;
title2 ’of Data Containing Poorly Separated,

Compact Clusters’;
run;

%plotclus;

proc gplot;
bubble y*x=_dens_/frame cframe=ligr

vaxis=axis1 haxis=axis2;
title ’Estimated Densities’;
title2 ’for Data Containing Poorly Separated,

Compact Clusters’;
run;

Figure 7.7. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=TWOSTAGE
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In two-stage density linkage, each cluster is a region surrounding a local maximum
of the estimated probability density function. If you think of the estimated density
function as a landscape with mountains and valleys, each mountain is a cluster, and
the boundaries between clusters are placed near the bottoms of the valleys.
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The following SAS statements produceFigure 7.8:

proc cluster data=closer outtree=tree
method=single noprint;

var x y;
run;

proc tree data=tree noprint out=out n=3 dock=5;
copy x y;
title ’Single Linkage Cluster Analysis’;
title2 ’of Data Containing Poorly Separated,

Compact Clusters’;
run;

%plotclus;

Figure 7.8. Data Containing Poorly Separated, Compact Clusters: PROC
CLUSTER with METHOD=SINGLE

The two least-squares methods, PROC FASTCLUS and Ward’s, yield the most uni-
form cluster sizes and the best recovery of the true clusters. This result is expected
since these two methods are biased toward recovering compact clusters of equal size.
With average linkage, the lower-left cluster is too large; with the centroid method, the
lower-right cluster is too large; and with two-stage density linkage, the top cluster is
too large. The single linkage analysis resembles average linkage except for the large
number of outliers resulting from the DOCK= option in the PROC TREE statement;
the outliers are plotted as dots (missing values).
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Multinormal Clusters of Unequal Size and Dispersion

In this example, there are three multinormal clusters that differ in size and disper-
sion. PROC FASTCLUS and five of the hierarchical methods available in PROC
CLUSTER are used. To help you compare methods, the true, generated clusters are
plotted. The following SAS statements produceFigure 7.9:

data unequal;
keep x y c;
mx=1; my=0; n=20; scale=.5; c=1; link generate;
mx=6; my=0; n=80; scale=2.; c=3; link generate;
mx=3; my=4; n=40; scale=1.; c=2; link generate;
stop;

generate:
do i=1 to n;

x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;

end;
return;

run;

title ’True Clusters for Data Containing Multinormal
Clusters’;

title2 ’of Unequal Size’;
proc gplot;

plot y*x=c/frame cframe=ligr
vaxis=axis1 haxis=axis2 legend=legend1;

run;
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Figure 7.9. Data Containing Generated Clusters of Unequal Size
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The following statements use the FASTCLUS procedure to find three clusters and the
PLOTCLUS macro to plot the clusters. The statements produceFigure 7.10.

proc fastclus data=unequal out=out maxc=3 noprint;
var x y;
title ’FASTCLUS Analysis’;
title2 ’of Data Containing Compact Clusters of

Unequal Size’;
run;

%plotclus;

Figure 7.10. Data Containing Compact Clusters of Unequal Size: PROC
FASTCLUS
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The following SAS statements produceFigure 7.11:

proc cluster data=unequal outtree=tree
method=ward noprint;

var x y;
run;

proc tree noprint out=out n=3;
copy x y;
title ’Ward’’s Minimum Variance Cluster Analysis’;
title2 ’of Data Containing Compact Clusters of

Unequal Size’;
run;

%plotclus;

Figure 7.11. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=WARD



122 � Chapter 7. Introduction to Clustering Procedures

The following SAS statements produceFigure 7.12:

proc cluster data=unequal outtree=tree method=average
noprint;

var x y;
run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title ’Average Linkage Cluster Analysis’;
title2 ’of Data Containing Compact Clusters of

Unequal Size’;
run;

%plotclus;

Figure 7.12. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=AVERAGE
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The following SAS statements produceFigure 7.13:

proc cluster data=unequal outtree=tree
method=centroid noprint;

var x y;
run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title ’Centroid Cluster Analysis’;
title2 ’of Data Containing Compact Clusters of

Unequal Size’;
run;

%plotclus;

Figure 7.13. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=CENTROID
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The following SAS statements produceFigure 7.14:

proc cluster data=unequal outtree=tree method=twostage
k=10 noprint;

var x y;
run;

proc tree noprint out=out n=3;
copy x y _dens_;
title ’Two-Stage Density Linkage Cluster Analysis’;
title2 ’of Data Containing Compact Clusters of

Unequal Size’;
run;

%plotclus;

proc gplot;
bubble y*x=_dens_/frame cframe=ligr

vaxis=axis1 haxis=axis2 ;
title ’Estimated Densities’;
title2 ’for Data Containing Compact Clusters of

Unequal Size’;
run;
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Figure 7.14. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=TWOSTAGE
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The following SAS statements produceFigure 7.15:

proc cluster data=unequal outtree=tree
method=single noprint;

var x y;
run;

proc tree data=tree noprint out=out n=3 dock=5;
copy x y;
title ’Single Linkage Cluster Analysis’;
title2 ’of Data Containing Compact Clusters of

Unequal Size’;
run;

%plotclus;

Figure 7.15. Data Containing Compact Clusters of Unequal Size: PROC
CLUSTER with METHOD=SINGLE

In the PROC FASTCLUS analysis, the smallest cluster, in the bottom left of the plot,
has stolen members from the other two clusters, and the upper-left cluster has also
acquired some observations that rightfully belong to the larger, lower-right cluster.
With Ward’s method, the upper-left cluster is separated correctly, but the lower-left
cluster has taken a large bite out of the lower-right cluster. For both of these methods,
the clustering errors are in accord with the biases of the methods to produce clusters
of equal size. In the average linkage analysis, both the upper- and lower-left clus-
ters have encroached on the lower-right cluster, thereby making the variances more
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nearly equal than in the true clusters. The centroid method, which lacks the size and
dispersion biases of the previous methods, obtains an essentially correct partition.

Two-stage density linkage does almost as well even though the compact shapes of
these clusters favor the traditional methods. Single linkage also produces excellent
results.

Elongated Multinormal Clusters

In this example, the data are sampled from two highly elongated multinormal dis-
tributions with equal covariance matrices. The following SAS statements produce
Figure 7.16:

data elongate;
keep x y;
ma=8; mb=0; link generate;
ma=6; mb=8; link generate;
stop;

generate:
do i=1 to 50;

a=rannor(7)*6+ma;
b=rannor(7)+mb;
x=a-b;
y=a+b;
output;

end;
return;

run;

proc fastclus data=elongate out=out maxc=2 noprint;
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’FASTCLUS Analysis’;
title2 ’of Data Containing Parallel Elongated Clusters’;

run;

Notice that PROC FASTCLUS found two clusters, as requested by the MAXC= op-
tion. However, it attempted to form spherical clusters, which are obviously inappro-
priate for this data.
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Figure 7.16. Data Containing Parallel Elongated Clusters: PROC FASTCLUS
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The following SAS statements produceFigure 7.17:

proc cluster data=elongate outtree=tree
method=average noprint;

run;

proc tree noprint out=out n=2 dock=5;
copy x y;

run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’Average Linkage Cluster Analysis’;
title2 ’of Data Containing Parallel Elongated Clusters’;

run;

Figure 7.17. Data Containing Parallel Elongated Clusters: PROC CLUSTER with
METHOD=AVERAGE
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The following SAS statements produceFigure 7.18:

proc cluster data=elongate outtree=tree
method=twostage k=10 noprint;

run;

proc tree noprint out=out n=2;
copy x y;

run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’Two-Stage Density Linkage Cluster Analysis’;
title2 ’of Data Containing Parallel Elongated Clusters’;

run;

Figure 7.18. Data Containing Parallel Elongated Clusters: PROC CLUSTER with
METHOD=TWOSTAGE

PROC FASTCLUS and average linkage fail miserably. Ward’s method and the cen-
troid method, not shown, produce almost the same results. Two-stage density link-
age, however, recovers the correct clusters. Single linkage, not shown, finds the same
clusters as two-stage density linkage except for some outliers.

In this example, the population clusters have equal covariance matrices. If the within-
cluster covariances are known, the data can be transformed to make the clusters spher-
ical so that any of the clustering methods can find the correct clusters. But when
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you are doing a cluster analysis, you do not know what the true clusters are, so you
cannot calculate the within-cluster covariance matrix. Nevertheless, it is sometimes
possible to estimate the within-cluster covariance matrix without knowing the clus-
ter membership or even the number of clusters, using an approach invented by Art,
Gnanadesikan, and Kettenring (1982). A method for obtaining such an estimate is
available in the ACECLUS procedure.

In the following analysis, PROC ACECLUS transforms the variables X and Y into
canonical variables CAN1 and CAN2. The latter are plotted and then used in a cluster
analysis by Ward’s method. The clusters are then plotted with the original variables
X and Y. The following SAS statements produceFigure 7.19:

proc aceclus data=elongate out=ace p=.1;
var x y;
title ’ACECLUS Analysis’;
title2 ’of Data Containing Parallel Elongated Clusters’;

run;

proc gplot;
plot can2*can1/frame cframe=ligr;
title ’Data Containing Parallel Elongated Clusters’;
title2 ’After Transformation by PROC ACECLUS’;

run;
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ACECLUS Analysis
of Data Containing Parallel Elongated Clusters

The ACECLUS Procedure

Observations 100 Proportion 0.1000
Variables 2 Converge 0.00100

Means and Standard Deviations
Standard

Variable Mean Deviation

x 2.6406 8.3494
y 10.6488 6.8420

COV: Total Sample Covariances

x y

x 69.71314819 24.24268934
y 24.24268934 46.81324861

Threshold = 0.328478

Iteration History

Pairs
RMS Distance Within Convergence

Iteration Distance Cutoff Cutoff Measure
------------------------------------------------------------

1 2.000 0.657 672.0 0.673685
2 9.382 3.082 716.0 0.006963
3 9.339 3.068 760.0 0.008362
4 9.437 3.100 824.0 0.009656
5 9.359 3.074 889.0 0.010269
6 9.267 3.044 955.0 0.011276
7 9.208 3.025 999.0 0.009230
8 9.230 3.032 1052.0 0.011394
9 9.226 3.030 1091.0 0.007924

10 9.173 3.013 1121.0 0.007993

WARNING: Iteration limit exceeded.

Figure 7.19. Data Containing Parallel Elongated Clusters: PROC ACECLUS
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ACECLUS Analysis
of Data Containing Parallel Elongated Clusters

The ACECLUS Procedure

ACE: Approximate Covariance Estimate Within Clusters

x y

x 9.299329632 8.215362614
y 8.215362614 8.937753936

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 36.7091 33.1672 0.9120 0.9120
2 3.5420 0.0880 1.0000

Eigenvectors (Raw Canonical Coefficients)

Can1 Can2

x -.748392 0.109547
y 0.736349 0.230272

Standardized Canonical Coefficients

Can1 Can2

x -6.24866 0.91466
y 5.03812 1.57553



134 � Chapter 7. Introduction to Clustering Procedures

Figure 7.20. Data Containing Parallel Elongated Clusters After Transformation by
PROC ACECLUS
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The following SAS statements produceFigure 7.21:

proc cluster data=ace outtree=tree method=ward noprint;
var can1 can2;
copy x y;

run;

proc tree noprint out=out n=2;
copy x y;

run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’Ward’’s Minimum Variance Cluster Analysis’;
title2 ’of Data Containing Parallel Elongated Clusters’;
title3 ’After Transformation by PROC ACECLUS’;

run;

Figure 7.21. Transformed Data Containing Parallel Elongated Clusters: PROC
CLUSTER with METHOD=WARD

Nonconvex Clusters

If the population clusters have very different covariance matrices, using PROC
ACECLUS is of no avail. Although methods exist for estimating multinormal clus-
ters with unequal covariance matrices (Wolfe 1970; Symons 1981; Everitt and Hand
1981; Titterington, Smith, and Makov 1985; McLachlan and Basford 1988, these
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methods tend to have serious problems with initialization and may converge to degen-
erate solutions. For unequal covariance matrices or radically nonnormal distributions,
the best approach to cluster analysis is through nonparametric density estimation, as
in density linkage. The next example illustrates population clusters with nonconvex
density contours. The following SAS statements produceFigure 7.22.

data noncon;
keep x y;
do i=1 to 100;

a=i*.0628319;
x=cos(a)+(i>50)+rannor(7)*.1;
y=sin(a)+(i>50)*.3+rannor(7)*.1;
output;

end;
run;

proc fastclus data=noncon out=out maxc=2 noprint;
run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’FASTCLUS Analysis’;
title2 ’of Data Containing Nonconvex Clusters’;

run;

Figure 7.22. Data Containing Nonconvex Clusters: PROC FASTCLUS



Nonconvex Clusters � 137

The following SAS statements produceFigure 7.23.

proc cluster data=noncon outtree=tree
method=centroid noprint;

run;

proc tree noprint out=out n=2 dock=5;
copy x y;

run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’Centroid Cluster Analysis’;
title2 ’of Data Containing Nonconvex Clusters’;

run;

Figure 7.23. Data Containing Nonconvex Clusters: PROC CLUSTER with
METHOD=CENTROID
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The following SAS statements produceFigure 7.24.

proc cluster data=noncon outtree=tree
method=twostage k=10 noprint;

run;

proc tree noprint out=out n=2;
copy x y;

run;

proc gplot;
plot y*x=cluster/frame cframe=ligr

vaxis=axis1 haxis=axis2 legend=legend1;
title ’Two-Stage Density Linkage Cluster Analysis’;
title2 ’of Data Containing Nonconvex Clusters’;

run;

Figure 7.24. Data Containing Nonconvex Clusters: PROC CLUSTER with
METHOD=TWOSTAGE

Ward’s method and average linkage, not shown, do better than PROC FASTCLUS but
not as well as the centroid method. Two-stage density linkage recovers the correct
clusters, as does single linkage, which is not shown.

The preceding examples are intended merely to illustrate some of the properties of
clustering methods in common use. If you intend to perform a cluster analysis, you
should consult more systematic and rigorous studies of the properties of clustering
methods, such as Milligan (1980).
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The Number of Clusters

There are no completely satisfactory methods for determining the number of popu-
lation clusters for any type of cluster analysis (Everitt 1979; Hartigan 1985; Bock
1985).

If your purpose in clustering is dissection, that is, to summarize the data without
trying to uncover real clusters, it may suffice to look atR2 for each variable and
pooled over all variables. Plots ofR2 against the number of clusters are useful.

It is always a good idea to look at your data graphically. If you have only two or three
variables, use PROC GPLOT to make scatter plots identifying the clusters. With more
variables, use PROC CANDISC to compute canonical variables for plotting.

Ordinary significance tests, such as analysis of varianceF tests, are not valid for
testing differences between clusters. Since clustering methods attempt to maximize
the separation between clusters, the assumptions of the usual significance tests, para-
metric or nonparametric, are drastically violated. For example, if you take a sam-
ple of 100 observations from a single univariate normal distribution, have PROC
FASTCLUS divide it into two clusters, and run at test between the clusters, you usu-
ally obtain ap-value of less than 0.0001. For the same reason, methods that purport
to test for clusters against the null hypothesis that objects are assigned randomly to
clusters (such as McClain and Rao 1975; Klastorin 1983) are useless.

Most valid tests for clusters either have intractable sampling distributions or involve
null hypotheses for which rejection is uninformative. For clustering methods based
on distance matrices, a popular null hypothesis is that all permutations of the values
in the distance matrix are equally likely (Ling 1973; Hubert 1974). Using this null
hypothesis, you can do a permutation test or a rank test. The trouble with the permu-
tation hypothesis is that, with any real data, the null hypothesis is implausible even if
the data do not contain clusters. Rejecting the null hypothesis does not provide any
useful information (Hubert and Baker 1977).

Another common null hypothesis is that the data are a random sample from a
multivariate normal distribution (Wolfe 1970, 1978; Duda and Hart 1973; Lee
1979). The multivariate normal null hypothesis arises naturally in normal mix-
ture models (Titterington, Smith, and Makov 1985; McLachlan and Basford
1988). Unfortunately, the likelihood ratio test statistic does not have the usual
asymptotic chi-squared distribution because the regularity conditions do not hold.
Approximations to the asymptotic distribution of the likelihood ratio have been sug-
gested (Wolfe 1978), but the adequacy of these approximations is debatable (Everitt
1981; Thode, Mendell, and Finch 1988). For small samples, bootstrapping seems
preferable (McLachlan and Basford 1988). Bayesian inference provides a promising
alternative to likelihood ratio tests for the number of mixture components for both
normal mixtures and other types of distributions (Binder 1978, 1981; Banfield and
Raftery 1993; Bensmail et al. 1997).

The multivariate normal null hypothesis is better than the permutation null hypoth-
esis, but it is not satisfactory because there is typically a high probability of rejec-
tion if the data are sampled from a distribution with lower kurtosis than a normal
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distribution, such as a uniform distribution. The tables in Englemann and Hartigan
(1969), for example, generally lead to rejection of the null hypothesis when the data
are sampled from a uniform distribution. Hawkins, Muller, and ten Krooden (1982,
pp. 337–340) discuss a highly conservative Bonferroni method for hypothesis test-
ing. The conservativeness of this approach may compensate to some extent for the
liberalness exhibited by tests based on normal distributions when the population is
uniform.

Perhaps a better null hypothesis is that the data are sampled from a uniform distribu-
tion (Hartigan 1978; Arnold 1979; Sarle 1983). The uniform null hypothesis leads to
conservative error rates when the data are sampled from a strongly unimodal distri-
bution such as the normal. However, in two or more dimensions and depending on
the test statistic, the results can be very sensitive to the shape of the region of sup-
port of the uniform distribution. Sarle (1983) suggests using a hyperbox with sides
proportional in length to the singular values of the centered coordinate matrix.

Given that the uniform distribution provides an appropriate null hypothesis, there
are still serious difficulties in obtaining sampling distributions. Some asymptotic
results are available (Hartigan 1978, 1985; Pollard 1981; Bock 1985) for the within-
cluster sum of squares, the criterion that PROC FASTCLUS and Ward’s minimum
variance method attempt to optimize. No distributional theory for finite sample sizes
has yet appeared. Currently, the only practical way to obtain sampling distributions
for realistic sample sizes is by computer simulation.

Arnold (1979) used simulation to derive tables of the distribution of a criterion based
on the determinant of the within-cluster sum of squares matrix|W|. Both nor-
mal and uniform null distributions were used. Having obtained clusters with either
PROC FASTCLUS or PROC CLUSTER, you can compute Arnold’s criterion with
the ANOVA or CANDISC procedure. Arnold’s tables provide a conservative test be-
cause PROC FASTCLUS and PROC CLUSTER attempt to minimize the trace ofW
rather than the determinant. Marriott (1971, 1975) also provides useful information
on |W| as a criterion for the number of clusters.

Sarle (1983) used extensive simulations to develop the cubic clustering criterion
(CCC), which can be used for crude hypothesis testing and estimating the number
of population clusters. The CCC is based on the assumption that a uniform distribu-
tion on a hyperrectangle will be divided into clusters shaped roughly like hypercubes.
In large samples that can be divided into the appropriate number of hypercubes, this
assumption gives very accurate results. In other cases the approximation is generally
conservative. For details about the interpretation of the CCC, consult Sarle (1983).

Milligan and Cooper (1985) and Cooper and Milligan (1988) compared thirty meth-
ods for estimating the number of population clusters using four hierarchical cluster-
ing methods. The three criteria that performed best in these simulation studies with a
high degree of error in the data were a pseudoF statistic developed by Calinski and
Harabasz (1974), a statistic referred to asJe(2)/Je(1) by Duda and Hart (1973) that
can be transformed into a pseudot2 statistic, and the cubic clustering criterion. The
pseudoF statistic and the CCC are displayed by PROC FASTCLUS; these two statis-
tics and the pseudot2 statistic, which can be applied only to hierarchical methods,
are displayed by PROC CLUSTER. It may be advisable to look for consensus among
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the three statistics, that is, local peaks of the CCC and pseudoF statistic combined
with a small value of the pseudot2 statistic and a larger pseudot2 for the next cluster
fusion. It must be emphasized that these criteria are appropriate only for compact or
slightly elongated clusters, preferably clusters that are roughly multivariate normal.

Recent research has tended to de-emphasize mixture models in favor of nonparamet-
ric models in which clusters correspond to modes in the probability density function.
Hartigan and Hartigan (1985) and Hartigan (1985) developed a test of unimodality
versus bimodality in the univariate case.

Nonparametric tests for the number of clusters can also be based on nonparametric
density estimates. This approach requires much weaker assumptions than mixture
models, namely, that the observations are sampled independently and that the distri-
bution can be estimated nonparametrically. Silverman (1986) describes a bootstrap
test for the number of modes using a Gaussian kernel density estimate, but problems
have been reported with this method under the uniform null distribution. Further
developments in nonparametric methods are given by Mueller and Sawitzki (1991),
Minnotte (1992), and Polonik (1993). All of these methods suffer from heavy com-
putational requirements.

One useful descriptive approach to the number-of-clusters problem is provided by
Wong and Schaack (1982), based on akth-nearest-neighbor density estimate. The
kth-nearest-neighbor clustering method developed by Wong and Lane (1983) is ap-
plied with varying values ofk. Each value ofk yields an estimate of the number of
modal clusters. If the estimated number of modal clusters is constant for a wide range
of k values, there is strong evidence of at least that many modes in the population. A
plot of the estimated number of modes againstk can be highly informative. Attempts
to derive a formal hypothesis test from this diagnostic plot have met with difficulties,
but a simulation approach similar to Silverman’s (1986) does seem to work (Girman
1994). The simulation, of course, requires considerable computer time.

Sarle and Kuo (1993) document a less expensive approximate nonparametric test for
the number of clusters that has been implemented in the MODECLUS procedure.
This test sacrifices statistical efficiency for computational efficiency. The method for
conducting significance tests is described in the chapter on the MODECLUS proce-
dure. This method has the following useful features:

• No distributional assumptions are required.

• The choice of smoothing parameter is not critical since you can try any number
of different values.

• The data can be coordinates or distances.

• Time and space requirements for the significance tests are no worse than those
for obtaining the clusters.

• The power is high enough to be useful for practical purposes.

The method for computing thep-values is based on a series of plausible approxima-
tions. There are as yet no rigorous proofs that the method is infallible. Neither are
there any asymptotic results. However, simulations for sample sizes ranging from
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20 to 2000 indicate that thep-values are almost always conservative. The only case
discovered so far in which thep-values are liberal is a uniform distribution in one
dimension for which the simulated error rates exceed the nominal significance level
only slightly for a limited range of sample sizes.
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Chapter 8
Introduction to Scoring,

Standardization, and Ranking
Procedures

Overview

Several SAS/STAT procedures are utilities that produce an output data set with new
variables that are transformations of data in the input data set. SAS/STAT software
includes four of these procedures. The RANK procedure produces rank scores across
observations, the SCORE procedure constructs functions across the variables, and the
STANDARD and STDIZE procedures transform each variable individually.

RANK ranks the observations of each numeric variable from low to high
and outputs ranks or rank scores. For a complete discussion of the
RANK procedure, refer to theSAS Procedures Guide.

SCORE constructs new variables that are linear combinations of old vari-
ables according to a scoring data set. This procedure is used with
the FACTOR procedure and other procedures that output scoring
coefficients.

STANDARD standardizes variables to a given mean and standard deviation. For
a complete discussion of PROC STANDARD, refer to theSAS
Procedures Guide.

STDIZE standardizes variables by subtracting a location measure and divid-
ing by a scale measure. A variety of location and scale measures
are provided. Such measures include the mean, median, Huber’s
estimate, Tukey’s biweight estimate, and Andrew’s wave estimate.
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Chapter 9
Introduction to Survival Analysis

Procedures
Overview

Data that measure lifetime or the length of time until the occurrence of an event are
calledlifetime, failure time,or survivaldata. For example, variables of interest might
be the lifetime of diesel engines, the length of time a person stayed on a job, or the
survival time for heart transplant patients. Such data have special considerations that
must be incorporated into any analysis.

Background

Survival data consist of a response (event time, failure time, or survival time) variable
that measures the duration of time until a specified event occurs and possibly a set of
independent variables thought to be associated with the failure time variable. These
independent variables (concomitant variables, covariates, or prognostic factors) can
be either discrete, such as sex or race, or continuous, such as age or temperature. The
system that gives rise to the event of interest can be biological, as for most medical
data, or physical, as for engineering data. The purpose of survival analysis is to model
the underlying distribution of the failure time variable and to assess the dependence
of the failure time variable on the independent variables.

An intrinsic characteristic of survival data is the possibility for censoring of obser-
vations, that is, the actual time until the event is not observed. Such censoring can
arise from withdrawal from the experiment or termination of the experiment. Because
the response is usually a duration, some of the possible events may not yet have oc-
curred when the period for data collection has terminated. For example, clinical trials
are conducted over a finite period of time with staggered entry of patients. That is,
patients enter a clinical trial over time and thus the length of follow-up varies by in-
dividuals; consequently, the time to the event may not be ascertained on all patients
in the study. Additionally, some of the responses may be lost to follow-up (for exam-
ple, a participant may move or refuse to continue to participate) before termination of
data collection. In either case, only a lower bound on the failure time of the censored
observations is known. These observations are said to beright censored. Thus, an
additional variable is incorporated into the analysis indicating which responses are
observed event times and which are censored times. More generally, the failure time
may only be known to be smaller than a given value (left censored) or known to be
within a given interval (interval censored). There are numerous possible censoring
schemes that arise in survival analysis. The monograph byMaddala(1983) discusses
several related types of censoring situations, and the text byKalbfleisch and Prentice
(1980) also discusses several censoring schemes. Data with censored observations
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cannot be analyzed by ignoring the censored observations because, among other con-
siderations, the longer-lived individuals are generally more likely to be censored. The
method of analysis must take the censoring into account and correctly use the cen-
sored observations as well as the uncensored observations.

Another characteristic of survival data is that the response cannot be negative. This
suggests that a transformation of the survival time such as a log transformation may
be necessary or that specialized methods may be more appropriate than those that
assume a normal distribution for the error term. It is especially important to check
any underlying assumptions as a part of the analysis because some of the models used
are very sensitive to these assumptions.

Survival Analysis Procedures

There are three SAS procedures for analyzing survival data: LIFEREG, LIFETEST
and PHREG. PROC LIFEREG is a parametric regression procedure for modeling the
distribution of survival time with a set of concomitant variables. PROC LIFETEST
is a nonparametric procedure for estimating the survivor function, comparing the
underlying survival curves of two or more samples, and testing the association of
survival time with other variables. PROC PHREG is a semiparametric procedure that
fits the Cox proportional hazards model.

The LIFEREG Procedure

The LIFEREG procedure fits parametric accelerated failure time models to survival
data that may be left, right, or interval censored. The parametric model is of the form

y = x′β + σε

wherey is usually the log of the failure time variable,x is a vector of covariate values,
β is a vector of unknown regression parameters,σ is an unknown scale parameter,
andε is an error term. The baseline distribution of the error term can be specified as
one of several possible distributions, including, but not limited to, the log normal, log
logistic, and Weibull distributions. Several texts that discuss these parametric models
areKalbfleisch and Prentice(1980), Lawless(1982), andNelson(1990).

The LIFETEST Procedure

The LIFETEST procedure computes nonparametric estimates of the survival distri-
bution function. You can request either the product-limit (Kaplan and Meier1958)
or the life-table (actuarial) estimate of the distribution. The texts byCox and Oakes
(1984) andKalbfleisch and Prentice(1980) provide good discussions of the product-
limit estimator, and the texts byLee(1992) andElandt-Johnson and Johnson(1980)
include detailed discussions of the life-table estimator. PROC LIFETEST computes
nonparametric tests to compare the survival curves of two or more groups. The pro-
cedure also computes rank tests of association of the survival time variable with other
concomitant variables as given inKalbfleisch and Prentice(1980, Chapter 6).
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The PHREG Procedure

The PHREG procedure fits the proportional hazards model ofCox (1972; 1975) to
survival data that may be right censored. The Cox model is a semiparametric model
in which the hazard function of the survival time is given by

λ(t;x) = λ0(t)eβ′x(t)

whereλ0(t) is an unspecified baseline hazard function,x(t) is a vector of covariate
values, possibly time-dependent, andβ is a vector of unknown regression parameters.
The model is referred to as a semiparametric model since part of the model involves
the unspecified baseline function over time (which is infinite dimensional) and the
other part involves a finite number of regression parameters. Several texts that discuss
the Cox regression models areCollett (1994), Cox and Oakes(1984), Kalbfleisch and
Prentice(1980), andLawless(1982).

Survival Analysis with SAS/STAT Procedures

The typical goal in survival analysis is to characterize the distribution of the survival
time for a given population, to compare the survival distributions among different
groups, or to study the relationship between the survival time and some concomitant
variables.

A first step in the analysis of a set of survival data is to use PROC LIFETEST to
compute and plot the estimate of the distribution of the survival time. In many appli-
cations, there will often be several survival curves to compare. For example, you want
to compare the survival experiences of patients who receive different treatments for
their disease. The association between covariates and the survival time variable can
be investigated by computing estimates of the survival distribution function within
strata defined by the covariates. In particular, if the proportional hazards model is ap-
propriate, the estimates of the log(-log(SURVIVAL)) plotted against the log(TIME)
variable should give approximately parallel lines, whereSURVIVAL is the survival
distribution estimate andTIME is the failure time variable. Additionally, these lines
should be approximately straight if the Weibull model is appropriate.

Statistics that test for association between failure time and covariates can be used to
select covariates for further investigation. The LIFETEST procedure computes linear
rank statistics using either Wilcoxon or log-rank scores. These statistics and their
estimated covariance matrix can be used with the REG procedure with the option
METHOD=RSQUARE to find the subset of variables that produce the largest joint
test statistic for association. An example of this method of variable selection is given
in the “Examples” section ofChapter 40, “The LIFETEST Procedure.”

Another approach to examine the relationship between the concomitant variables and
survival time is through a regression model in which the survival time has a distri-
bution that depends on the concomitant variables. The regression coefficients may
be interpreted as describing the direction and strength of the relationship of each ex-
planatory variable on the effect of the survival time.
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In many biological systems, the Cox model may be a reasonable description of the
relationship between the distribution of the survival time and the prognostic factors.
You use PROC PHREG to fit the Cox regression model. The regression coefficient
is interpreted as the increase of the log hazard ratio resulting in the increase of one
unit in the covariate. However, the underlying hazard function is left unspecified
and, as in any other model, the results can be misleading if the proportional hazards
assumptions do not hold.

Accelerated failure time models are popular for survival data of physical systems. In
many cases, the underlying survival distribution is known empirically. You use PROC
LIFEREG to fit these parametric models. Also, PROC LIFEREG can accommodate
data with interval-censored observations, which are not allowed in PROC PHREG.

A common technique for checking the validity of a regression model is to embed it
in a larger model and use the likelihood ratio test to check whether the reduction to
the actual model is valid. Other techniques include examining the residuals. Both
PROC LIFEREG and PROC PHREG produce predicted values, residuals, and other
computed values that can be used to assess the model adequacy.
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Chapter 10
Introduction to Survey Sampling and

Analysis Procedures

Overview

This chapter introduces the SAS/STAT procedures for survey sampling and describes
how you can use these procedures to analyze survey data.

Researchers often use sample survey methodology to obtain information about a large
population by selecting and measuring a sample from that population. Due to vari-
ability among items, researchers apply scientific probability-based designs to select
the sample. This reduces the risk of a distorted view of the population and allows
statistically valid inferences to be made from the sample. Refer to Lohr (1999),
Kalton (1983), Cochran (1977), and Kish (1965) for more information on statisti-
cal sampling and analysis of complex survey data. To select probability-based ran-
dom samples from a study population, you can use the SURVEYSELECT procedure,
which provides a variety of methods for probability sampling. To analyze sample sur-
vey data, you can use the SURVEYMEANS, SURVEYFREQ, SURVEYREG, and
SURVEYLOGISTIC procedures, which incorporate the sample design into the anal-
yses.

Many SAS/STAT procedures, such as the MEANS, FREQ, GLM and LOGISTIC
procedures, can compute sample means, produce crosstabulation tables, and estimate
regression relationships. However, in most of these procedures, statistical inference
is based on the assumption that the sample is drawn from an infinite population by
simple random sampling. If the sample is in fact selected from a finite population
using a complex survey design, these procedures generally do not calculate the esti-
mates and their variances according to the design actually used. Using analyses that
are not appropriate for your sample design can lead to incorrect statistical inferences.

The SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC
procedures do properly analyze complex survey data, taking into account the sam-
ple design. These procedures can be used for multistage designs or for single-stage
designs, with or without stratification, and with or without unequal weighting. The
procedures use the Taylor expansion method to estimate sampling errors of estimators
based on complex sample designs. This method is appropriate for all designs where
the first-stage sample is selected with replacement, or where the first-stage sampling
fraction is small, as it often is in practice.

The following table briefly describes the sampling and analysis procedures in
SAS/STAT software.
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Table 10.1. Sampling and Analysis Procedures in SAS/STAT Software

SURVEYSELECT

Sampling Methods simple random sampling
unrestricted random sampling (with replacement)
systematic
sequential
selection probability proportional to size (PPS)

with and without replacement
PPS systematic
PPS for two units per stratum
sequential PPS with minimum replacement

SURVEYMEANS

Statistics estimates of population means and totals
estimates of population proportions
standard errors
confidence limits
hypothesis tests
domain analyses
ratio estimates

SURVEYFREQ

Analyses one-way frequency tables
two-way and multiway crosstabulation tables
estimates of population totals and proportions
standard errors
confidence limits
tests of goodness-of-fit
tests of independence

SURVEYREG

Analyses linear regression model fitting
regression coefficients
covariance matrices
hypothesis tests
confidence limits
estimable functions
contrasts

SURVEYLOGISTIC

Analyses cumulative logit regression model fitting
logit, complementary log-log, and probit link functions
generalized logit regression model fitting
regression coefficients
covariance matrices
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Table 10.1. (continued)

hypothesis tests
model diagnostics
odds ratios
confidence limits
estimable functions
contrasts

The Survey Procedures

The SURVEYSELECT procedure provides methods for probability sample selection.
The SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC
procedures provide statistical analyses for sample survey data. The following sections
contain brief descriptions of these procedures. See the chapters on these procedures
for more detailed information.

PROC SURVEYSELECT

The SURVEYSELECT procedure provides a variety of methods for selecting
probability-based random samples. The procedure can select a simple random sample
or a sample according to a complex multistage sample design that includes stratifi-
cation, clustering, and unequal probabilities of selection. With probability sampling,
each unit in the survey population has a known, positive probability of selection.
This property of probability sampling avoids selection bias and enables you to use
statistical theory to make valid inferences from the sample to the survey population.

PROC SURVEYSELECT provides methods for both equal probability sampling and
sampling with probability proportional to size (PPS). In PPS sampling, a unit’s se-
lection probability is proportional to its size measure. PPS sampling is often used
in cluster sampling, where you select clusters (groups of sampling units) of varying
size in the first stage of selection. Available PPS methods include without replace-
ment, with replacement, systematic, and sequential with minimum replacement. The
procedure can apply these methods for stratified and replicated sample designs.

PROC SURVEYMEANS

The SURVEYMEANS procedure produces estimates of population means and totals
from sample survey data. You can use PROC SURVEYMEANS to compute the
following statistics:

• estimates of population means, with corresponding standard errors andt tests

• estimates of population totals, with corresponding standard deviations andt
tests

• estimates of proportions for categorical variables, with standard errors andt
tests

• ratio estimates of population means and proportions, and their standard errors
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• confidence limits for population means, totals, and proportions

• data summary information

It is common practice to compute statistics for subpopulations or domains, in addition
to computing statistics for the entire study population. Formation of these subpopula-
tions may be unrelated to the sample design, so the domain sample sizes may actually
be random variables.Domain analysistakes into account this variability, using the
entire sample when estimating the variance of domain estimates. This is also known
as subgroup analysis, subpopulation analysis, or subdomain analysis. For more in-
formation on domain analysis, refer to Lohr (1999) and Cochran (1977).

You can use the SURVEYMEANS procedure to perform domain analysis to compute
the following statistics:

• domain (subpopulation) estimates of means, with corresponding standard er-
rors andt tests

• domain (subpopulation) estimates of totals, with corresponding standard devi-
ations andt tests

• proportion estimates within domains for categorical variables, with standard
errors andt tests

• confidence limits for domain statistics

PROC SURVEYFREQ

The SURVEYFREQ procedure produces one-way ton-way frequency and crosstab-
ulation tables from sample survey data. These tables include estimates of population
totals, population proportions (overall proportions, and also row and column propor-
tions), and corresponding standard errors. Confidence limits, coefficients of variation,
and design effects are also available. The procedure also provides a variety of options
to customize your table display.

For one-way frequency tables, PROC SURVEYFREQ provides Rao-Scott chi-square
goodness-of-fit tests, which are adjusted for the sample design. You can test a null
hypothesis of equal proportions for a one-way frequency table, or you can input
other null hypothesis proportions for the test. For two-way frequency tables, PROC
SURVEYFREQ provides design-adjusted tests of independence, or no association,
between the row and column variables. These tests include the Rao-Scott chi-square
test, the Rao-Scott likelihood-ratio test, the Wald chi-square test, and the Wald log-
linear chi-square test.
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PROC SURVEYREG

The SURVEYREG procedure fits linear models for survey data and computes regres-
sion coefficients and their variance-covariance matrix. The procedure allows you to
specify classification effects using the same syntax as in the GLM procedure. The
procedure also provides hypothesis tests for the model effects, for any specified es-
timable linear functions of the model parameters, and for custom hypothesis tests for
linear combinations of the regression parameters. The procedure also computes the
confidence limits of the parameter estimates and their linear estimable functions.

PROC SURVEYLOGISTIC

The SURVEYLOGISTIC procedure investigates the relationship between discrete
responses and a set of explanatory variables for survey data. The procedure fits
linear logistic regression models for discrete response survey data by the method
of maximum likelihood, incorporating the sample design into the analysis. The
SURVEYLOGISTIC procedure enables you to use categorical classification variables
(also known as CLASS variables) as explanatory variables in an explanatory model,
using the familiar syntax for main effects and interactions employed in the GLM and
LOGISTIC procedures.

The following link functions are available for regression in PROC
SURVEYLOGISTIC: the cumulative logit function (CLOGIT), the generalized
logit function (GLOGIT), the probit function (PROBIT), and the complementary
log-log function (CLOGLOG). The procedure performs maximum likelihood
estimation of the regression coefficients with either the Fisher-scoring algorithm or
the Newton-Raphson algorithm. Variances of the regression parameters and the odds
ratios are computed with a Taylor expansion approximation; refer to Binder (1983)
and Morel (1989).

Survey Design Specification

Survey sampling is the process of selecting a probability-based sample from a finite
population according to a sample design. You then collect data from these selected
units and use them to estimate characteristics of the entire population.

A sample designencompasses the rules and operations by which you select sampling
units from the population and the computation of sample statistics, which are esti-
mates of the population values of interest. The objective of your survey often deter-
mines appropriate sample designs and valid data collection methodology. A complex
sample design can include stratification, clustering, multiple stages of selection, and
unequal weighting. The survey procedures can be used for single-stage designs or
for multistage designs, with or without stratification, and with or without unequal
weighting.

To analyze your survey data with the SURVEYMEANS, SURVEYFREQ,
SURVEYREG, and SURVEYLOGISTIC procedures, you need to specify sample
design information to the procedures. This information includes design strata,
clusters, and sampling weights. All the survey analysis procedures use the same
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syntax for specifying sample design information. You provide sample design
information with the STRATA, CLUSTER, and WEIGHT statements, and with the
RATE= or TOTAL= option in the PROC statement.

When there are clusters, or PSUs, in the sample design, the procedures estimate
variance from the variance among PSUs, as described in the section“Variance
Estimation”on page 166. For a multistage sample design, the variance estimation
method depends only on the first stage of the sample design. So, the required input
includes only first-stage cluster (PSU) and first-stage stratum identification. You do
not need to input design information about any additional stages of sampling.

The following sections provide brief descriptions of basic sample design concepts
and terminology used in the survey procedures. Refer to Lohr (1999), Kalton (1983),
Cochran (1977), and Kish (1965).

Population

Populationrefers to the target population or group of individuals of interest for study.
Often, the primary objective is to estimate certain characteristics of this population,
calledpopulation values. A sampling unitis an element or an individual in the target
population. A sample is a subset of the population that is selected for the study.

Before you use the survey procedures, you should have a well-defined target popula-
tion, sampling units, and an appropriate sample design.

In order to select a sample according to your sample design, you need to have a
list of sampling units in the population. This is called asampling frame. PROC
SURVEYSELECT selects a sample using this sampling frame.

Stratification

Stratified samplinginvolves selecting samples independently within strata, which are
nonoverlapping subgroups of the survey population. Stratification controls the distri-
bution of the sample size in the strata. It is widely used to meet a variety of survey
objectives. For example, with stratification you can ensure adequate sample sizes
for subgroups of interest, including small subgroups, or you can use stratification to
improve the precision of overall estimates. To improve precision, units within strata
should be as homogeneous as possible for the characteristics of interest.

Clustering

Cluster samplinginvolves selecting clusters, which are groups of sampling units. For
example, clusters may be schools, hospitals, or geographical areas, and sampling
units may be students, patients, or citizens. Cluster sampling can provide efficiency
in frame construction and other survey operations. However, it can also result in a
loss in precision of your estimates, compared to a nonclustered sample of the same
size. To minimize this effect, units within clusters should be as heterogeneous as
possible for the characteristics of interest.
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Multistage Sampling

In multistage sampling, you select an initial or first-stage sample based on groups of
elements in the population, calledprimary sampling unitsor PSUs.

Then you create a second-stage sample by drawing a subsample from each selected
PSU in the first-stage sample. By repeating this operation, you can select a higher-
stage sample. If you include all the elements from a selected primary sampling unit,
then the two-stage sample is a cluster sample.

Sampling Weights

Sampling weights, or survey weights, are positive values associated with each unit in
your sample. Ideally, the weight of a sampling unit should be the “frequency” that
the sampling unit represents in the target population.

Often, sampling weights are the reciprocals of the selection probabilities for the sam-
pling units. When you use PROC SURVEYSELECT, the procedure generates the
sampling weight component for each stage of the design, and you can multiply these
sampling weight components to obtain the final sampling weights. Sometimes, sam-
pling weights also include nonresponse adjustments, post-sampling stratification, or
regression adjustments using supplemental information.

When the sampling units have unequal weights, you must provide the weights to the
survey analysis procedures. If you do not specify sampling weights, the procedures
use equal weights in the analyses.

Population Totals and Sampling Rates

The ratio of the sample size (the number of sampling units in the sample)n and the
population size (the total number of sampling units in the target population)N is
written as

f =
n

N

This ratio is called thesampling rateor thesampling fraction. If you select a sam-
ple without replacement, the extra efficiency compared to selecting a sample with
replacement can be measured by thefinite population correction(fpc) factor,(1−f).

If your analysis includes a finite population correction factor, you can input either
the sampling rate or the population total. Otherwise, the procedures do not use the
fpc when computing variance estimates. For fairly small sampling fractions, it is
appropriate to ignore this correction. Refer to Cochran (1977) and Kish (1965).

As discussed in the following section“Variance Estimation,”for a multistage sample
design, the variance estimation method depends only on the first stage of the sample
design. Therefore, if you are specifying the sampling rate, you should input thefirst-
stage sampling rate, which is the ratio of the number of PSUs in the sample to the
total number of PSUs in the target population.
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Variance Estimation

The SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC
procedures use the Taylor expansion method to estimate sampling errors of estima-
tors based on complex sample designs. This method is appropriate for all designs
where the first-stage sample is selected with replacement, or where the first-stage
sampling fraction is small, as it often is in practice. The Taylor expansion method
obtains a linear approximation for the estimator and then uses the variance estimate
for this approximation to estimate the variance of the estimate itself (Fuller 1975,
Woodruff 1971). When there are clusters, or primary sampling units (PSUs), in the
sample design, the procedures estimate the variance from the variation among the
PSUs. When the design is stratified, the procedures pool stratum variance estimates
to compute the overall variance estimate.

For a multistage sample design, the variance estimation method depends only on
the first stage of the sample design. So, the required input includes only first-stage
cluster (PSU) and first-stage stratum identification. You do not need to input design
information about any additional stages of sampling.

For more information on variance estimation for sample survey data, refer to Lohr
(1999), S̈arndal, Swenson, and Wretman (1992), Lee, Forthoffer, and Lorimor
(1989), Wolter (1985), Cochran (1977), Kish (1965), and Hansen, Hurwitz, and
Madow (1953).

In addition to the traditional Taylor expansion method, other methods for vari-
ance estimation for survey data include balanced repeated replication and jack-
knife repeated replication. These methods usually give similar, satisfactory re-
sults (S̈arndal, Swenson, and Wretman 1992; Wolter 1985); the SURVEYMEANS,
SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC procedures currently pro-
vide only the Taylor expansion method.

See Chapter 70, “The SURVEYMEANS Procedure,” Chapter 68, “The
SURVEYFREQ Procedure,” Chapter 71, “The SURVEYREG Procedure,”
andChapter 69, “The SURVEYLOGISTIC Procedure,”for complete details.

Example

This section demonstrates how you can use the survey procedures to select a
probability-based sample and then analyze the survey data to make inferences about
the population. The analyses includes descriptive statistics and regression analysis.
This example is a survey of income and expenditures for a group of households in
North Carolina and South Carolina. The goals of the survey are to

• estimate total income and total basic living expenses

• investigate the linear relationship between income and living expenses
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Sample Selection

To select a sample with PROC SURVEYSELECT, you input a SAS data set that
contains the sampling frame or list of units from which the sample is to be selected.
You also specify the selection method, the desired sample size or sampling rate, and
other selection parameters.

In this example, the sample design is a stratified simple random sample design,
with households as the sampling units. The sampling frame (the list of the group
of the households) is stratified byState and Region. Within strata, households
are selected by simple random sampling. Using this design, the following PROC
SURVEYSELECT statements select a probability sample of households from the
HHSample data set:

proc surveyselect data=HHSample out=Sample
method=srs n=(3, 5, 3, 6, 2);

strata State Region;
run;

The STRATA statement names the stratification variablesState and Region. In
the PROC SURVEYSELECT statement, the DATA= option names the SAS data set
HHSample as the input data set (the sampling frame) from which to select the sam-
ple. The OUT= option stores the sample in the SAS data set namedSample. The
METHOD=SRS option specifies simple random sampling as the sample selection
method. The N= option specifies the stratum sample sizes.

The SURVEYSELECT procedure then selects a stratified random sample of house-
holds and produces the output data setSample, which contains the selected house-
holds together with their selection probabilities and sampling weights. The data set
Sample also contains the sampling unit identification variableId and the stratifica-
tion variablesState andRegion from the data setHHSample.

Survey Data Analysis

You can use the SURVEYMEANS and SURVEYREG procedures to estimate pop-
ulation values and to perform regression analyses for survey data. The following
example briefly shows the capabilities of each procedure. SeeChapter 70, “The
SURVEYMEANS Procedure,” and Chapter 71, “The SURVEYREG Procedure,”
for more detailed information.

To estimate the total income and expenditure in the population from the sample, you
specify the input data set containing the sample, the statistics to be computed, the
variables to be analyzed, and any stratification variables. The statements to compute
the descriptive statistics are as follows:

proc surveymeans data=Sample sum clm;
var Income Expense;
strata State Region;
weight Weight;

run;
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The PROC SURVEYMEANS statement invokes the procedure, specifies the input
data set, and requests estimates of population totals and their standard deviations for
the analysis variables (SUM), as well as confidence limits for the estimates (CLM).

The VAR statement specifies the two analysis variables,Income and Expense.
The STRATA statement identifiesState andRegion as the stratification variables
in the sample design. The WEIGHT statement specifies the sampling weight variable
Weight.

You can also use the SURVEYREG procedure to perform regression analysis for
sample survey data. Suppose that, in order to explore the relationship between the to-
tal income and the total basic living expenses of a household in the survey population,
you choose the following linear model to describe the relationship:

Expense= α + β ∗ Income+ error

The following statements fit this linear model:

proc surveyreg data=Sample;
strata State Region ;
model Expense = Income;
weight Weight;

run;

In the PROC SURVEYREG statement, the DATA= option specifies the input sample
survey data asSample. The STRATA statement identifies the stratification variables
asState andRegion. The MODEL statement specifies the model, withExpense
as the dependent variable andIncome as the independent variable. The WEIGHT
statement specifies the sampling weight variableWeight.
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Chapter 11
The Four Types of Estimable

Functions
Overview

The GLM procedure and many other SAS/STAT procedures label the tests and Sums
of Squares (SS) associated with the various effects in the model as Type I, Type II,
Type III, and Type IV. These four types of hypotheses may not always be sufficient
for a statistician to perform all desired hypothesis tests, but they should suffice for the
vast majority of analyses. This chapter explains the hypotheses tested by each of the
four types of SS. For additional discussion, see Freund, Littell, and Spector (1991) or
Milliken and Johnson (1984).

Estimability

For linear models such as

Y = Xβ + ε

with E(Y) = Xβ, a primary analytical goal is to estimate or test for the significance
of certain linear combinations of the elements ofβ. This is accomplished by comput-
ing linear combinations of the observedYs. An unbiased linear estimate of a specific
linear function of the individualβs, sayLβ, is a linear combination of theYs that
has an expected value ofLβ. Hence, the following definition:

A linear combination of the parametersLβ is estimable if and only if a
linear combination of theYs exists that has expected valueLβ.

Any linear combination of theYs, for instanceKY, will have expectationE(KY) =
KXβ. Thus, the expected value of any linear combination of theYs is equal to that
same linear combination of the rows ofX multiplied byβ. Therefore,

Lβ is estimable if and only if there is a linear combination of the rows
of X that is equal toL—that is, if and only if there is aK such that
L = KX.

Thus, the rows ofX form a generating set from which any estimableL can be con-
structed. Since the row space ofX is the same as the row space ofX′X, the rows
of X′X also form a generating set from which all estimableLs can be constructed.
Similarly, the rows of(X′X)−X′X also form a generating set forL.
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Therefore, ifL can be written as a linear combination of the rows ofX, X′X, or
(X′X)−X′X, thenLβ is estimable.

Once an estimableL has been formed,Lβ can be estimated by computingLb,
whereb = (X′X)−X′Y. From the general theory of linear models, the unbiased
estimatorLb is, in fact, thebest linear unbiased estimator ofLβ in the sense of
having minimum variance as well as maximum likelihood when the residuals are
normal. To test the hypothesis thatLβ = 0, compute SS(H0: Lβ = 0) =
(Lb)′(L(X′X)−L′)−1Lb and form anF test using the appropriate error term.

General Form of an Estimable Function

This section demonstrates a shorthand technique for displaying the generating set for
any estimableL. Suppose

X =



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 and β =


µ
A1

A2

A3



X is a generating set forL, but so is the smaller set

X∗ =

 1 1 0 0
1 0 1 0
1 0 0 1


X∗ is formed fromX by deleting duplicate rows.

Since all estimableLs must be linear functions of the rows ofX∗ for Lβ to be es-
timable, anL for a single-degree-of-freedom estimate can be represented symboli-
cally as

L1× (1 1 0 0) + L2× (1 0 1 0) + L3× (1 0 0 1)

or

L = (L1 + L2 + L3, L1, L2, L3)

For this example,Lβ is estimable if and only if the first element ofL is equal to the
sum of the other elements ofL or if

Lβ = (L1 + L2 + L3)× µ + L1×A1 + L2×A2 + L3×A3

is estimable for any values ofL1, L2, andL3.

If other generating sets forL are represented symbolically, the symbolic notation
looks different. However, the inherent nature of the rules is the same. For example,
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if row operations are performed onX∗ to produce an identity matrix in the first3× 3
submatrix of the resulting matrix

X∗∗ =

 1 0 0 1
0 1 0 −1
0 0 1 −1


thenX∗∗ is also a generating set forL. An estimableL generated fromX∗∗ can be
represented symbolically as

L = (L1, L2, L3, L1− L2− L3)

Note that, again, the first element ofL is equal to the sum of the other elements.

With multiple generating sets available, the question arises as to which one is the best
to representL symbolically. Clearly, a generating set containing a minimum of rows
(of full row rank) and a maximum of zero elements is desirable. The generalized
inverse ofX′X computed by the GLM procedure has the property that(X′X)−X′X
usually contains numerous zeros. For this reason, PROC GLM uses the nonzero rows
of (X′X)−X′X to representL symbolically.

If the generating set represented symbolically is of full row rank, the number of sym-
bols(L1, L2, . . .) represents the maximum rank of any testable hypothesis (in other
words, the maximum number of linearly independent rows for anyL matrix that can
be constructed). By letting each symbol in turn take on the value of 1 while the others
are set to 0, the original generating set can be reconstructed.

Introduction to Reduction Notation

Reduction notation can be used to represent differences in Sums of Squares for two
models. The notationR(µ,A,B, C) denotes the complete main effects model for
effectsA, B, andC. The notation

R(A | µ,B,C)

denotes the difference between the model SS for the complete main effects model
containingA, B, andC and the model SS for the reduced model containing onlyB
andC.

In other words, this notation represents the differences in Model SS produced by

proc glm;
class a b c;
model y=a b c;

run;

and
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proc glm;
class b c;
model y=b c;

run;

As another example, consider a regression equation with four independent variables.
The notationR(β3, β4|β1, β2) denotes the differences in Model SS between

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

and

y = β0 + β1x1 + β2x2 + ε

With PROC REG, this is the difference in Model SS for the models produced by

model y=x1 x2 x3 x4;

and

model y=x1 x2;

Examples

A One-Way Classification Model

For the model

Y = µ + Ai + ε i = 1, 2, 3

the general form of estimable functionsLb is (from the previous example)

Lβ = L1× µ + L2×A1 + L3×A2 + (L1− L2− L3)×A3

Thus,

L = (L1, L2, L3, L1− L2− L3)

Tests involving only the parametersA1, A2, andA3 must have anL of the form

L = (0, L2, L3,−L2− L3)

Since the precedingL involves only two symbols, hypotheses with at most two
degrees-of-freedom can be constructed. For example, letL2 = 1 and L3 = 0;
then letL2 = 0 andL3 = 1:

L =
[

0 1 0 −1
0 0 1 −1

]
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The precedingL can be used to test the hypothesis thatA1 = A2 = A3. For this
example, anyL with two linearly independent rows with column 1 equal to zero
produces the same Sum of Squares. For example, a pooled linear quadratic

L =
[

0 1 0 −1
0 1 −2 1

]
gives the same SS. In fact, for anyL of full row rank and any nonsingular matrixK
of conformable dimensions,

SS(H0: Lβ = 0) = SS(H0: KLβ = 0)

A Three-Factor Main Effects Model

Consider a three-factor main effects model involving the CLASS variablesA, B, and
C, as shown inTable 11.1.

Table 11.1. Three-Factor Main Effects Model

Obs A B C
1 1 2 1
2 1 1 2
3 2 1 3
4 2 2 2
5 2 2 2

The general form of an estimable function is shown inTable 11.2.

Table 11.2. General Form of an Estimable Function for Three-Factor Main Effects
Model

Parameter Coefficient
µ (Intercept) L1

A1 L2
A2 L1− L2
B1 L4
B2 L1− L4
C1 L6
C2 L1 + L2− L4− 2× L6
C3 −L2 + L4 + L6

Since only four symbols (L1, L2, L4, andL6) are involved, any testable hypothesis
will have at most four degrees of freedom. If you form anL matrix with four linearly
independent rows according to the preceding rules, then

SS(H0: Lβ = 0) = R(µ,A,B, C)

In a main effects model, the usual hypothesis of interest for a main effect is the equal-
ity of all the parameters. In this example, it is not possible to test such a hypothesis
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because of confounding. One way to proceed is to construct a maximum rank hy-
pothesis (MRH) involving only the parameters of the main effect in question. This
can be done using the general form of estimable functions. Note the following:

• To get an MRH involving only the parameters ofA, the coefficients ofL asso-
ciated withµ, B1, B2, C1, C2, andC3 must be equated to zero. Starting at
the top of the general form, letL1 = 0, thenL4 = 0, thenL6 = 0. If C2 and
C3 are not to be involved, thenL2 must also be zero. Thus,A1 − A2 is not
estimable; that is, the MRH involving only theA parameters has zero rank and
R(A | µ,B,C) = 0.

• To obtain the MRH involving only theB parameters, letL1 = L2 = L6 = 0.
But then to removeC2 andC3 from the comparison,L4 must also be set to 0.
Thus,B1−B2 is not estimable andR(B | µ,A,C) = 0.

• To obtain the MRH involving only theC parameters, letL1 = L2 = L4 = 0.
Thus, the MRH involving onlyC parameters is

C1− 2× C2 + C3 = K (for anyK)

or any multiple of the left-hand side equal toK. Furthermore,

SS(H0: C1− 2× C2 + C3 = 0) = R(C | µ,A,B)

A Multiple Regression Model

Suppose

E(Y ) = β0 + β1 ×X1 + β2 ×X2 + β3 ×X3

If the X′X matrix is of full rank, the general form of estimable functions is as shown
in Table 11.3.

Table 11.3. General Form of Estimable Functions for a Multiple Regression Model
When X′X Matrix Is of Full Rank

Parameter Coefficient
β0 L1
β1 L2
β2 L3
β3 L4

To test, for example, the hypothesis thatβ2 = 0, let L1 = L2 = L4 = 0 and
let L3 = 1. Then SS(Lβ = 0) = R(β2 | β0, β1, β3). In the full-rank case, all
parameters, as well as any linear combination of parameters, are estimable.

Suppose, however, thatX3 = 2 × X1 + 3 × X2. The general form of estimable
functions is shown inTable 11.4.
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Table 11.4. General Form of Estimable Functions for a Multiple Regression Model
When X′X Matrix Is Not of Full Rank

Parameter Coefficient
β0 L1
β1 L2
β2 L3
β3 2× L2 + 3× L3

For this example, it is possible to testH0: β0 = 0. However,β1, β2, andβ3 are not
jointly estimable; that is,

R(β1 | β0, β2, β3) = 0

R(β2 | β0, β1, β3) = 0

R(β3 | β0, β1, β2) = 0

Using Symbolic Notation

The preceding examples demonstrate the ability to manipulate the symbolic repre-
sentation of a generating set. Note that any operations performed on the symbolic
notation have corresponding row operations that are performed on the generating set
itself.

Estimable Functions

Type I SS and Estimable Functions

The Type I SS and the associated hypotheses they test are by-products of the modified
sweep operator used to compute a generalized inverse ofX′X and a solution to the
normal equations. For the modelE(Y ) = X1 × B1 + X2 × B2 + X3 × B3, the
Type I SS for each effect correspond to

Effect Type I SS
B1 R(B1)
B2 R(B2|B1)
B3 R(B3|B1, B2)

The Type I SS are model-order dependent; each effect is adjusted only for the
preceding effects in the model.

There are numerous ways to obtain a Type I hypothesis matrixL for each effect. One
way is to form theX′X matrix and then reduceX′X to an upper triangular matrix
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by row operations, skipping over any rows with a zero diagonal. The nonzero rows
of the resulting matrix associated withX1 provide anL such that

SS(H0: Lβ = 0) = R(B1)

The nonzero rows of the resulting matrix associated withX2 provide anL such that

SS(H0: Lβ = 0) = R(B2|B1)

The last set of nonzero rows (associated withX3) provide anL such that

SS(H0: Lβ = 0) = R(B3|B1, B2)

Another more formalized representation of Type I generating sets forB1, B2, and
B3, respectively, is

G1 = ( X′
1X1 | X′

1X2 | X′
1X3 )

G2 = ( 0 | X′
2M2X2 | X′

2M2X3 )

G3 = ( 0 | 0 | X′
3M3X3 )

where

M1 = I−X1(X′
1X1)−X′

1

and

M2 = M1 −M1X2(X′
2M1X2)−X′

2M1

Using the Type I generating setG2 (for example), if anL is formed from linear
combinations of the rows ofG2 such thatL is of full row rank and of the same row
rank asG2, then SS(H0 : Lβ = 0) = R(B2|B1).

In the GLM procedure, the Type I estimable functions displayed symbolically when
the E1 option is requested are

G∗
1 = (X′

1X1)−G1

G∗
2 = (X′

2M1X2)−G2

G∗
3 = (X′

3M2X3)−G3

As can be seen from the nature of the generating setsG1, G2, andG3, only the Type I
estimable functions forB3 are guaranteed not to involve theB1 andB2 parameters.
The Type I hypothesis forB2 can (and usually does) involveB3 parameters. The
Type I hypothesis forB1 usually involvesB2 andB3 parameters.

There are, however, a number of models for which the Type I hypotheses are consid-
ered appropriate. These are
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• balanced ANOVA models specified in proper sequence (that is, interactions do
not precede main effects in the MODEL statement and so forth)

• purely nested models (specified in the proper sequence)

• polynomial regression models (in the proper sequence).

Type II SS and Estimable Functions

For main effects models and regression models, the general form of estimable func-
tions can be manipulated to provide tests of hypotheses involving only the parameters
of the effect in question. The same result can also be obtained by entering each effect
in turn as the last effect in the model and obtaining the Type I SS for that effect. These
are theType II SS. Using a modified reversible sweep operator, it is possible to obtain
the Type II SS without actually rerunning the model.

Thus, theType II SS correspond to the R notation in which each effect is adjusted
for all other effects possible. For a regression model such as

E(Y ) = X1×B1 + X2×B2 + X3×B3

the Type II SS correspond to

Effect Type II SS
B1 R(B1 | B2, B3)
B2 R(B2 | B1, B3)
B3 R(B3 | B1, B2)

For a main effects model (A, B, andC as classification variables), the Type II SS
correspond to

Effect Type II SS
A R(A | B,C)
B R(B | A,C)
C R(C | A,B)

As the discussion in the section“A Three-Factor Main Effects Model”on page 177
indicates, for regression and main effects models the Type II SS provide an MRH for
each effect that does not involve the parameters of the other effects.

For models involving interactions and nested effects, in the absence of a priori para-
metric restrictions, it is not possible to obtain a test of a hypothesis for a main effect
free of parameters of higher-level effects with which the main effect is involved.

It is reasonable to assume, then, that any test of a hypothesis concerning an effect
should involve the parameters of that effect and only those other parameters with
which that effect is involved.
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Contained Effect

Given two effectsF1 andF2, F1 is said to becontained inF2 provided that

• both effects involve the same continuous variables (if any)

• F2 has more CLASS variables than doesF1, and ifF1 has CLASS variables,
they all appear inF2

Note that the interaction effectµ is contained in all pure CLASS effects, but it is not
contained in any effect involving a continuous variable. No effect is contained byµ.

Type II, Type III, and Type IV estimable functions rely on this definition, and they
all have one thing in common: the estimable functions involving an effectF1 also
involve the parameters of all effects that containF1, and they do not involve the
parameters of effects that do not containF1 (other thanF1).

Hypothesis Matrix for Type II Estimable Functions

The Type II estimable functions for an effectF1 have anL (before reduction to full
row rank) of the following form:

• All columns of L associated with effects not containingF1 (exceptF1) are
zero.

• The submatrix ofL associated with effectF1 is (X′
1MX1)−(X′

1MX1).

• Each of the remaining submatrices ofL associated with an effectF2 that con-
tainsF1 is (X′

1MX1)−(X′
1MX2).

In these submatrices,

X0 = the columns ofX whose associated effects do not containF1.

X1 = the columns ofX associated withF1.

X2 = the columns ofX associated with anF2 effect that containsF1.

M = I−X0(X′
0X0)−X′

0.

For the modelY = A B A ∗B, the Type II SS correspond to

R(A | µ,B), R(B | µ,A), R(A ∗B | µ,A,B)

for effectsA, B, andA ∗ B, respectively. For the modelY = A B(A) C(A B), the
Type II SS correspond to

R(A | µ), R(B(A) | µ,A), R(C(AB) | µ,A,B(A))

for effectsA, B(A) andC(AB), respectively. For the modelY = X X ∗ X, the
Type II SS correspond to

R(X | µ,X ∗X) and R(X ∗X | µ,X)

for X andX ∗X, respectively.
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Example of Type II Estimable Functions

For a 2 × 2 factorial with w observations per cell, the general form of estimable
functions is shown inTable 11.5. Any nonzero values forL2, L4, andL6 can be
used to constructL vectors for computing the Type II SS forA, B, andA ∗ B,
respectively.

Table 11.5. General Form of Estimable Functions for 2× 2 Factorial
Effect Coefficient

µ L1
A1 L2
A2 L1− L2
B1 L4
B2 L1− L4

AB11 L6
AB12 L2− L6
AB21 L4− L6
AB22 L1− L2− L4 + L6

For a balanced2×2 factorial with the same number of observations in every cell, the
Type II estimable functions are shown inTable 11.6.

Table 11.6. Type II Estimable Functions for Balanced 2× 2 Factorial
Coefficients for Effect

Effect A B A ∗B

µ 0 0 0
A1 L2 0 0
A2 −L2 0 0
B1 0 L4 0
B2 0 −L4 0

AB11 0.5 ∗ L2 0.5 ∗ L4 L6
AB12 0.5 ∗ L2 −0.5 ∗ L4 −L6
AB21 −0.5 ∗ L2 0.5 ∗ L4 −L6
AB22 −0.5 ∗ L2 −0.5 ∗ L4 L6

For an unbalanced2 × 2 factorial (with two observations in every cell except the
AB22 cell, which contains only one observation), the general form of estimable
functions is the same as if it were balanced since the same effects are still estimable.
However, the Type II estimable functions forA andB are not the same as they were
for the balanced design. The Type II estimable functions for this unbalanced2 × 2
factorial are shown inTable 11.7.
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Table 11.7. Type II Estimable Functions for Unbalanced 2× 2 Factorial
Coefficients for Effect

Effect A B A ∗B

µ 0 0 0
A1 L2 0 0
A2 −L2 0 0
B1 0 L4 0
B2 0 −L4 0

AB11 0.6 ∗ L2 0.6 ∗ L4 L6
AB12 0.4 ∗ L2 −0.6 ∗ L4 −L6
AB21 −0.6 ∗ L2 0.4 ∗ L4 −L6
AB22 −0.4 ∗ L2 −0.4 ∗ L4 L6

By comparing the hypothesis being tested in the balanced case to the hypothesis be-
ing tested in the unbalanced case for effectsA andB, you can note that the Type II
hypotheses forA andB are dependent on the cell frequencies in the design. For un-
balanced designs in which the cell frequencies are not proportional to the background
population, the Type II hypotheses for effects that are contained in other effects are
of questionable merit.

However, if an effect is not contained in any other effect, the Type II hypothesis for
that effect is an MRH that does not involve any parameters except those associated
with the effect in question.

Thus, Type II SS are appropriate for

• any balanced model

• any main effects model

• any pure regression model

• an effect not contained in any other effect (regardless of the model)

In addition to the preceding, the Type II SS is generally accepted by most statisticians
for purely nested models.

Type III and IV SS and Estimable Functions
When an effect is contained in another effect, the Type II hypotheses for that effect
are dependent on the cell frequencies. The philosophy behind both the Type III and
Type IV hypotheses is that the hypotheses tested for any given effect should be the
same for all designs with the same general form of estimable functions.

To demonstrate this concept, recall the hypotheses being tested by the Type II SS in
the balanced2 × 2 factorial shown inTable 11.6. Those hypotheses are precisely
the ones that the Type III and Type IV hypotheses employ for all2 × 2 factorials
that have at least one observation per cell. The Type III and Type IV hypotheses for
a design without missing cells usually differ from the hypothesis employed for the
same design with missing cells since the general form of estimable functions usually
differs.
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Type III Estimable Functions

Type III hypotheses are constructed by working directly with the general form of
estimable functions. The following steps are used to construct a hypothesis for an
effectF1:

1. For every effect in the model exceptF1 and those effects that containF1,
equate the coefficients in the general form of estimable functions to zero.

If F1 is not contained in any other effect, this step defines the Type III hypothe-
sis (as well as the Type II and Type IV hypotheses). IfF1 is contained in other
effects, go on to step 2. (See the section“Type II SS and Estimable Functions”
on page 181 for a definition of when effectF1 is contained in another effect.)

2. If necessary, equate new symbols to compound expressions in theF1 block in
order to obtain the simplest form for theF1 coefficients.

3. Equate all symbolic coefficients outside of theF1 block to a linear function of
the symbols in theF1 block in order to make theF1 hypothesis orthogonal to
hypotheses associated with effects that containF1.

By once again observing the Type II hypotheses being tested in the balanced2 × 2
factorial, it is possible to verify that theA andA ∗ B hypotheses are orthogonal and
also that theB andA ∗B hypotheses are orthogonal. This principle of orthogonality
between an effect and any effect that contains it holds for all balanced designs. Thus,
construction of Type III hypotheses for any design is a logical extension of a process
that is used for balanced designs.

The Type III hypotheses are precisely the hypotheses being tested by programs that
reparameterize using the usual assumptions (for example, all parameters for an effect
summing to zero). When no missing cells exist in a factorial model, Type III SS
coincide with Yates’ weighted squares-of-means technique. When cells are missing
in factorial models, the Type III SS coincide with those discussed in Harvey (1960)
and Henderson (1953).

The following steps illustrate the construction of Type III estimable functions for a
2× 2 factorial with no missing cells.

To obtain theA ∗B interaction hypothesis, start with the general form and equate the
coefficients for effectsµ, A, andB to zero, as shown inTable 11.8.

Table 11.8. Type III Hypothesis for A ∗B Interaction
Effect General Form L1 = L2 = L4 = 0

µ L1 0
A1 L2 0
A2 L1− L2 0
B1 L4 0
B2 L1− L4 0

AB11 L6 L6
AB12 L2− L6 −L6
AB21 L4− L6 −L6
AB22 L1− L2− L4 + L6 L6
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The last column inTable 11.8represents the form of the MRH forA ∗B.

To obtain the Type III hypothesis forA, first start with the general form and equate the
coefficients for effectsµ andB to zero (letL1 = L4 = 0). Next letL6 = K∗L2, and
find the value of K that makes the A hypothesis orthogonal to the A*B hypothesis. In
this case, K=0.5. Each of these steps is shown inTable 11.9.

In Table 11.9, the fourth column (underL6 = K ∗ L2) represents the form of all
estimable functions not involvingµ, B1, or B2. The prime difference between the
Type II and Type III hypotheses forA is the wayK is determined. Type II chooses
K as a function of the cell frequencies, whereas Type III choosesK such that the
estimable functions forA are orthogonal to the estimable functions forA ∗B.

Table 11.9. Type III Hypothesis for A

Effect General Form L1 = L4 = 0 L6 = K ∗ L2 K = 0.5
µ L1 0 0 0
A1 L2 L2 L2 L2
A2 L1− L2 −L2 −L2 −L2
B1 L4 0 0 0
B2 L1− L4 0 0 0

AB11 L6 L6 K ∗ L2 0.5 ∗ L2
AB12 L2− L6 L2− L6 (1−K) ∗ L2 0.5 ∗ L2
AB21 L4− L6 −L6 −K ∗ L2 −0.5 ∗ L2
AB22 L1− L2− L4 + L6 −L2 + L6 (K − 1) ∗ L2 −0.5 ∗ L2

An example of Type III estimable functions in a3 × 3 factorial with unequal cell
frequencies and missing diagonals is given inTable 11.10(N1 throughN6 represent
the nonzero cell frequencies).

Table 11.10. A 3× 3 Factorial Design with Unequal Cell Frequencies and Missing
Diagonals

B
1 2 3

1 N1 N2

A 2 N3 N4

3 N5 N6

For any nonzero values ofN1 throughN6, the Type III estimable functions for each
effect are shown inTable 11.11.
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Table 11.11. Type III Estimable Functions for 3× 3 Factorial Design with Unequal
Cell Frequencies and Missing Diagonals

Effect A B A ∗B

µ 0 0 0
A1 L2 0 0
A2 L3 0 0
A3 −L2− L3 0 0
B1 0 L5 0
B2 0 L6 0
B3 0 −L5− L6 0

AB12 0.667 ∗ L2 + 0.333 ∗ L3 0.333 ∗ L5 + 0.667 ∗ L6 L8
AB13 0.333 ∗ L2− 0.333 ∗ L3 −0.333 ∗ L5− 0.667 ∗ L6 −L8
AB21 0.333 ∗ L2 + 0.667 ∗ L3 0.667 ∗ L5 + 0.333 ∗ L6 −L8
AB23 −0.333 ∗ L2 + 0.333 ∗ L3 −0.667 ∗ L5− 0.333 ∗ L6 L8
AB31 −0.333 ∗ L2− 0.667 ∗ L3 0.333 ∗ L5− 0.333 ∗ L6 L8
AB32 −0.667 ∗ L2− 0.333 ∗ L3 −0.333 ∗ L5 + 0.333 ∗ L6 −L8

Type IV Estimable Functions

By once again looking at the Type II hypotheses being tested in the balanced2×2 fac-
torial (seeTable 11.6), you can see another characteristic of the hypotheses employed
for balanced designs: the coefficients of lower-order effects are averaged across each
higher-level effect involving the same subscripts. For example, in theA hypothesis,
the coefficients ofAB11 andAB12 are equal to one-half the coefficient ofA1, and
the coefficients ofAB21 andAB22 are equal to one-half the coefficient ofA2. With
this in mind then, the basic concept used to construct Type IV hypotheses is that the
coefficients of any effect, sayF1, are distributed equitably across higher-level effects
that containF1. When missing cells occur, this same general philosophy is adhered
to, but care must be taken in the way the distributive concept is applied.

Construction of Type IV hypotheses begins as does the construction of the Type III
hypotheses. That is, for an effectF1, equate to zero all coefficients in the general
form that do not belong toF1 or to any other effect containingF1. If F1 is not
contained in any other effect, then the Type IV hypothesis (and Type II and III) has
been found. IfF1 is contained in other effects, then simplify, if necessary, the coef-
ficients associated withF1 so that they are all free coefficients or functions of other
free coefficients in theF1 block.

To illustrate the method of resolving the free coefficients outside of theF1 block,
suppose that you are interested in the estimable functions for an effectA and thatA
is contained inAB, AC, andABC. (In other words, the main effects in the model
areA, B, andC.)

With missing cells, the coefficients of intermediate effects (here they areAB and
AC) do not always have an equal distribution of the lower-order coefficients, so the
coefficients of the highest-order effects are determined first (here it isABC). Once
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the highest-order coefficients are determined, the coefficients of intermediate effects
are automatically determined.

The following process is performed for each free coefficient ofA in turn. The result-
ing symbolic vectors are then added together to give the Type IV estimable functions
for A.

1. Select a free coefficient ofA, and set all other free coefficients ofA to zero.

2. If any of the levels ofA have zero as a coefficient, equate all of the coefficients
of higher-level effects involving that level ofA to zero. This step alone usually
resolves most of the free coefficients remaining.

3. Check to see if any higher-level coefficients are now zero when the coefficient
of the associated level ofA is not zero. If this situation occurs, the Type IV
estimable functions forA are not unique.

4. For each level ofA in turn, if theA coefficient for that level is nonzero, count
the number of times that level occurs in the higher-level effect. Then equate
each of the higher-level coefficients to the coefficient of that level ofA divided
by the count.

An example of a3 × 3 factorial with four missing cells (N1 throughN5 represent
positive cell frequencies) is shown inTable 11.12.

Table 11.12. 3× 3 Factorial Design with Four Missing Cells
B

1 2 3
1 N1 N2

A 2 N3 N4

3 N5

The Type IV estimable functions are shown inTable 11.13.

Table 11.13. Type IV Estimable Functions for 3× 3 Factorial Design with Four
Missing Cells

Effect A B A ∗B

µ 0 0 0
A1 −L3 0 0
A2 L3 0 0
A3 0 0 0
B1 0 L5 0
B2 0 −L5 0
B3 0 0 0

AB11 −0.5 ∗ L3 0.5 ∗ L5 L8
AB12 −0.5 ∗ L3 −0.5 ∗ L5 −L8
AB21 0.5 ∗ L3 0.5 ∗ L5 −L8
AB22 0.5 ∗ L3 −0.5 ∗ L5 L8
AB33 0 0 0



References � 189

A Comparison of Type III and Type IV Hypotheses

For the vast majority of designs, Type III and Type IV hypotheses for a given effect
are the same. Specifically, they are the same for any effectF1 that is not contained in
other effects for any design (with or without missing cells). For factorial designs with
no missing cells, the Type III and Type IV hypotheses coincide for all effects. When
there are missing cells, the hypotheses can differ. By using the GLM procedure, you
can study the differences in the hypotheses and then decide on the appropriateness of
the hypotheses for a particular model.

The Type III hypotheses for three-factor and higher completely nested designs with
unequalNs in the lowest level differ from the Type II hypotheses; however, the Type
IV hypotheses do correspond to the Type II hypotheses in this case.

When missing cells occur in a design, the Type IV hypotheses may not be unique. If
this occurs in PROC GLM, you are notified, and you may need to consider defining
your own specific comparisons.
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Chapter 12
Introduction to Nonparametric

Analysis

Overview
In statistical inference, or hypothesis testing, the traditional tests are calledparamet-
ric testsbecause they depend on the specification of a probability distribution (such
as the normal) except for a set of free parameters. Parametric tests are said to depend
on distributional assumptions.Nonparametric tests, on the other hand, do not re-
quire any strict distributional assumptions. Even if the data are distributed normally,
nonparametric methods are often almost as powerful as parametric methods.

Many nonparametric methods analyze the ranks of a variable rather than the original
values. Procedures such as PROC NPAR1WAY calculate the ranks for you and then
perform appropriate nonparametric tests. However, there are some situations in which
you use a procedure such as PROC RANK to calculate ranks and then use another
procedure to perform the appropriate test. See the section“Obtaining Ranks”on page
198 for details.

Although the NPAR1WAY procedure is specifically targeted for nonparametric anal-
ysis, many other procedures also perform nonparametric analyses. Some general
references on nonparametrics include Hollander and Wolfe (1999), Conover (1999),
Gibbons and Chakraborti (1992), Hettmansperger (1984), Randles and Wolfe (1979),
and Lehmann (1975).

Testing for Normality
Many parametric tests assume an underlying normal distribution for the population.
If your data do not meet this assumption, you may prefer to use a nonparametric
analysis.

Base SAS software provides several tests for normality in the UNIVARIATE pro-
cedure. Depending on your sample size, PROC UNIVARIATE performs the
Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darling, and Cramér-von Mises
tests. For more on PROC UNIVARIATE, refer to theBase SAS 9.1 Procedures Guide.

Comparing Distributions
To test the hypothesis that two or more groups of observations have identical distribu-
tions, use the NPAR1WAY procedure, which provides empirical distribution function
(EDF) statistics. The procedure calculates the Kolmogorov-Smirnov test, the the
Cramér-von Mises test, and, when the data are classified into only two samples, the
Kuiper test. Exactp-values are available for the two-sample Kolmogorov-Smirnov
test. To obtain these tests, use the EDF option in the PROC NPAR1WAY statement.
For details, seeChapter 52, “The NPAR1WAY Procedure.”
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One-Sample Tests

Base SAS software provides two one-sample tests in the UNIVARIATE procedure:
a sign test and the Wilcoxon signed rank test. Both tests are designed for situations
where you want to make an inference about the location (median) of a population. For
example, suppose you want to test whether the median resting pulse rate of marathon
runners differs from a specified value.

By default, both of these tests examine the hypothesis that the median of the popula-
tion from which the sample is drawn is equal to a specified value, which is zero by
default. The Wilcoxon signed rank test requires that the distribution be symmetric;
the sign test does not require this assumption. These tests can also be used for the
case of two related samples; see the section“Comparing Two Independent Samples”
for more information.

The two tests are automatically provided by the UNIVARIATE procedure. For de-
tails, formulas, and examples, refer to the chapter on the UNIVARIATE procedure in
theBase SAS 9.1 Procedures Guide.

Two-Sample Tests

This section describes tests appropriate for two independent samples (for example,
two groups of subjects given different treatments) and for two related samples (for
example, before-and-after measurements on a single group of subjects). Related sam-
ples are also referred to as paired samples or matched pairs.

Comparing Two Independent Samples

SAS/STAT software provides several nonparametric tests for location and scale dif-
ferences.

When you perform these tests, your data should consist of a random sample of obser-
vations from two different populations. Your goal is either to compare the location
parameters (medians) or the scale parameters of the two populations. For example,
suppose your data consist of the number of days in the hospital for two groups of
patients: those who received a standard surgical procedure and those who received a
new, experimental surgical procedure. These patients are a random sample from the
population of patients who have received the two types of surgery. Your goal is to
decide whether the median hospital stays differ for the two populations.

Tests in the NPAR1WAY Procedure

The NPAR1WAY procedure provides the following location tests: Wilcoxon rank
sum test (Mann-Whitney U test), Median test, Savage test, and Van der Waerden
test. Also note that the Wilcoxon rank sum test can be obtained from the FREQ
procedure. In addition, PROC NPAR1WAY produces the following tests for scale
differences: Siegel-Tukey test, Ansari-Bradley test, Klotz test, and Mood test. PROC
NPAR1WAY also provides tests using the input data observations as scores, enabling
you to produce a wide variety of tests. You can construct any scores with the DATA
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step, and then PROC NPAR1WAY computes the corresponding linear rank test. You
can also directly analyze the raw data this way, producing the permutation test known
as Pitman’s test.

When data are sparse, skewed, or heavily tied, the usual asymptotic tests may not be
appropriate. In these situations, exact tests may be suitable for analyzing your data.
The NPAR1WAY procedure can produce exactp-values for all of the two-sample
tests for location and scale differences.

Chapter 52, “The NPAR1WAY Procedure,”provides detailed statistical formulas for
these statistics, as well as examples of their use.

Tests in the FREQ Procedure

This procedure provides a test for comparing the location of two groups and for test-
ing for independence between two variables.

The situation in which you want to compare the location of two groups of observa-
tions corresponds to a table with two rows. In this case, the asymptotic Wilcoxon
rank sum test can be obtained by using SCORES=RANK in the TABLES statement
and by looking at either of the following:

• the Mantel-Haenszel statistic in the list of tests for no association. This is
labeled as “Mantel Haenszel Chi-Square” and PROC FREQ displays the statis-
tic, the degrees of freedom, and thep-value. To obtain this statistic, specify the
CHISQ option in the TABLES statement.

• the CMH statistic 2 in the section on Cochran-Mantel-Haenszel statistics.
PROC FREQ displays the statistic, the degrees of freedom, and thep-value.
To obtain this statistic, specify the CMH2 option in the TABLES statement.

When you test for independence, the question being answered is whether the two
variables of interest are related in some way. For example, you might want to know
if student scores on a standard test are related to whether students attended a pub-
lic or private school. One way to think of this situation is to consider the data as a
two-way table; the hypothesis of interest is whether the rows and columns are inde-
pendent. In the preceding example, the groups of students would form the two rows,
and the scores would form the columns. The special case of a two-category response
(Pass/Fail) leads to a2×2 table; the case of more than two categories for the response
(A/B/C/D/F) leads to a2× c table, wherec is the number of response categories.

For testing whether two variables are independent, PROC FREQ provides Fisher’s
exact test. For a2× 2 table, PROC FREQ automatically provides Fisher’s exact test
when you specify the CHISQ option in the TABLES statement. For a2× c table, use
the FISHER option in the EXACT statement to obtain the test.

SeeChapter 29, “The FREQ Procedure,”for details, formulas, and examples of these
tests.
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Comparing Two Related Samples

SAS/STAT software provides the following nonparametric tests for comparing the
locations of two related samples:

• Wilcoxon signed rank test

• sign test

• McNemar’s test

The first two tests are available in the UNIVARIATE procedure, and the last test is
available in the FREQ procedure. When you perform these tests, your data should
consist of pairs of measurements for a random sample from a single population. For
example, suppose your data consist of SAT scores for students before and after at-
tending a course on how to prepare for the SAT. The pairs of measurements are the
scores before and after the course, and the students should be a random sample of
students who attended the course. Your goal in analysis is to decide if the median
change in scores is significantly different from zero.

Tests in the UNIVARIATE Procedure

By default, PROC UNIVARIATE performs a Wilcoxon signed rank test and a sign
test. To use these tests on two related samples, perform the following steps:

1. In the DATA step, create a new variable that contains the differences between
the two related variables.

2. Run PROC UNIVARIATE, using the new variable in the VAR statement.

For discussion of the tests, formulas, and examples, refer to the chapter on the
UNIVARIATE procedure in theBase SAS 9.1 Procedures Guide.

Tests in the FREQ Procedure

The FREQ procedure can be used to obtain McNemar’s test, which is simply another
special case of a Cochran-Mantel-Haenszel statistic (and also of the sign test). The
AGREE option in the TABLES statement produces this test for2×2 tables, and exact
p-values are also available for this test. SeeChapter 29, “The FREQ Procedure,”for
more information.

Tests for k Samples

Comparing k Independent Samples

One goal in comparingk independent samples is to determine whether the location
parameters (medians) of the populations are different. Another goal is to determine
whether the scale parameters for the populations are different. For example, suppose
new employees are randomly assigned to one of three training programs. At the end
of the program, the employees receive a standard test that gives a rating score of their
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job ability. The goal of analysis is to compare the median scores for the three groups
and decide whether the differences are real or due to chance alone.

To comparek independent samples, either the NPAR1WAY or the FREQ procedure
provides a Kruskal-Wallis test. PROC NPAR1WAY also provides the Savage, me-
dian, and Van der Waerden tests. In addition, PROC NPAR1WAY produces the fol-
lowing tests for scale differences: Siegel-Tukey test, Ansari-Bradley test, Klotz test,
and Mood test. Note that you can obtain exactp-values for all of these tests.

In addition, you can specify the SCORES=DATA option to use the input data obser-
vations as scores. This enables you to produce a very wide variety of tests. You can
construct any scores using the DATA step, and then PROC NPAR1WAY computes
the corresponding linear rank and one-way ANOVA tests. You can also analyze the
raw data with the SCORES=DATA option; for two-sample data, this permutation test
is known as Pitman’s test.

SeeChapter 52, “The NPAR1WAY Procedure,”for details, formulas, and examples.

To produce a Kruskal-Wallis test in the FREQ procedure, use SCORES=RANK and
the CMH2 option in the TABLES statement. Then, look at the second Cochran-
Mantel-Haenszel statistic (labeled “Row Mean Scores Differ”) to obtain the Kruskal-
Wallis test. The FREQ procedure also provides the Jonckheere-Terpstra test, which
is more powerful than the Kruskal-Wallis test for comparingk samples against
ordered alternatives. The exact test is also available. In addition, you can ob-
tain a ridit analysis, developed by Bross (1958), by specifying SCORES=RIDIT
or SCORES=MODRIDIT in the TABLES statement in the FREQ procedure. See
Chapter 29, “The FREQ Procedure,”for more information.

Comparing k Dependent Samples

Friedman’s test enables you to compare the locations of three or more dependent
samples. You can obtain Friedman’s Chi-square with the FREQ procedure by using
the CMH2 option and SCORES=RANK and looking at the second CMH statistic in
the output. For an example, seeChapter 29, “The FREQ Procedure.”This chapter
also contains formulas and other details on the CMH statistics. For a discussion of
how to use the RANK and GLM procedures to obtain Friedman’s test, refer to Ipe
(1987).

Measures of Correlation and Associated Tests

The CORR procedure in Base SAS software provides several nonparametric mea-
sures of association and associated tests. It computes Spearman’s rank-order cor-
relation, Kendall’s tau-b, and Hoeffding’s measure of dependence, and it provides
tests for each of these statistics. PROC CORR also computes Spearman’s partial
rank-order correlation and Kendall’s partial tau-b. Finally, PROC CORR computes
Cronbach’s coefficient alpha for raw and standardized variables. This statistic can be
used to estimate the reliability coefficient. For a general discussion of correlations,
formulas, interpretation, and examples, refer to the chapter on the CORR procedure
in theBase SAS 9.1 Procedures Guide.
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The FREQ procedure also provides some nonparametric measures of association:
gamma, Kendall’s tau-b, Stuart’s tau-c, Somer’sD, and the Spearman rank corre-
lation. The output includes the measure, the asymptotic standard error, confidence
limits, and the asymptotic test that the measure equals zero. For the Spearman rank
correlation, you can optionally request an exactp-value that the correlation is equal
to zero. For more information, seeChapter 29, “The FREQ Procedure.”

Obtaining Ranks

The primary procedure for obtaining ranks is the RANK procedure in Base SAS
software. Note that the PRINQUAL and TRANSREG procedures also provide rank
transformations. With all three of these procedures, you can create an output data set
and use it as input to another SAS/STAT procedure or to the IML procedure. Refer
to theBase SAS 9.1 Procedures Guidefor information on the RANK procedure, and
see the chapters in this book for information on the PRINQUAL and TRANSREG
procedures.

In addition, you can specify SCORES=RANK in the TABLES statement in the FREQ
procedure. PROC FREQ then uses ranks to perform the analyses requested and gen-
erates nonparametric analyses.

For more discussion of using the rank transform, refer to Iman and Conover (1979),
Conover and Iman (1981), Hora and Conover (1984), Iman, Hora, and Conover
(1984), Hora and Iman (1988), and Iman (1988).

Kernel Density Estimation

The KDE procedure performs either univariate or bivariate kernel density estima-
tion. Statisticaldensity estimationinvolves approximating a hypothesized probabil-
ity density function from observed data.Kernel density estimationis a nonparametric
technique for density estimation in which a known density function (the kernel) is
averaged across the observed data points to create a smooth approximation.

PROC KDE uses a Gaussian density as the kernel, and its assumed variance de-
termines the smoothness of the resulting estimate. PROC KDE outputs the kernel
density estimate to a SAS data set, which you can then use with other procedures for
plotting or analysis. PROC KDE also computes a variety of common statistics, in-
cluding estimates of the percentiles of the hypothesized probability density function.

For more information, seeChapter 36, “The KDE Procedure.”
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Chapter 13
Introduction to Structural Equations

with Latent Variables
Overview

You can use the CALIS procedure for analysis of covariance structures, fitting sys-
tems of linear structural equations, and path analysis. These terms are more or less
interchangeable, but they emphasize different aspects of the analysis. The analysis
of covariance structures refers to the formulation of a model for the variances and
covariances among a set of variables and the fitting of the model to an observed co-
variance matrix. In linear structural equations, the model is formulated as a system
of equations relating several random variables with assumptions about the variances
and covariances of the random variables. In path analysis, the model is formulated
as a path diagram, in which arrows connecting variables represent (co)variances and
regression coefficients. Path models and linear structural equation models can be con-
verted to models of the covariance matrix and can, therefore, be fitted by the methods
of covariance structure analysis. All of these methods allow the use of hypothetical
latent variables or measurement errors in the models.

Loehlin (1987) provides an excellent introduction to latent variable models using path
diagrams and structural equations. A more advanced treatment of structural equation
models with latent variables is given by Bollen (1989). Fuller (1987) provides a
highly technical statistical treatment of measurement-error models.

Comparison of the CALIS and SYSLIN
Procedures

The SYSLIN procedure in the SAS/ETS product can also fit certain kinds of path
models and linear structural equation models. PROC CALIS differs from PROC
SYSLIN in that PROC CALIS allows more generality in the use of latent variables in
the models. Latent variables are unobserved, hypothetical variables, as distinct from
manifest variables, which are the observed data. PROC SYSLIN allows at most one
latent variable, the error term, in each equation. PROC CALIS allows several latent
variables to appear in an equation—in fact, all the variables in an equation can be
latent as long as there are other equations that relate the latent variables to manifest
variables.

Both the CALIS and SYSLIN procedures enable you to specify a model as a sys-
tem of linear equations. When there are several equations, a given variable may be
a dependent variable in one equation and an independent variable in other equations.
Therefore, additional terminology is needed to describe unambiguously the roles of
variables in the system. Variables with values that are determined jointly and si-
multaneously by the system of equations are calledendogenous variables. Variables
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with values that are determined outside the system, that is, in a manner separate from
the process described by the system of equations, are called exogenous variables. The
purpose of the system of equations is to explain the variation of each endogenous vari-
able in terms of exogenous variables or other endogenous variables or both. Refer to
Loehlin (1987, p. 4) for further discussion of endogenous and exogenous variables.
In the econometric literature, error and disturbance terms are usually distinguished
from exogenous variables, but in systems with more than one latent variable in an
equation, the distinction is not always clear.

In PROC SYSLIN, endogenous variables are identified by the ENDOGENOUS state-
ment. When you specify structural equations in PROC CALIS, endogenous variables
are assumed to be those that appear on the left-hand sides of the equations; a given
variable may appear on the left-hand side of at most one equation.

PROC SYSLIN provides many methods of estimation, some of which are applica-
ble only in special cases. For example, ordinary least-squares estimates are suitable
in certain kinds of systems but may be statistically biased and inconsistent in other
kinds. PROC CALIS provides three methods of estimation that can be used with
most models. Both the CALIS and SYSLIN procedures can do maximum likelihood
estimation, which PROC CALIS calls ML and PROC SYSLIN calls FIML. PROC
SYSLIN can be much faster than PROC CALIS in those special cases for which it
provides computationally efficient estimation methods. However, PROC CALIS has
a variety of sophisticated algorithms for maximum likelihood estimation that may be
much faster than FIML in PROC SYSLIN.

PROC CALIS can impose a wider variety of constraints on the parameters, including
nonlinear constraints, than can PROC SYSLIN. For example, PROC CALIS can con-
strain error variances or covariances to equal specified constants, or it can constrain
two error variances to have a specified ratio.

Model Specification

PROC CALIS provides several ways to specify a model. Structural equations can
be transcribed directly in the LINEQS statement. A path diagram can be described
in the RAM statement. You can specify a first-order factor model in the FACTOR
and MATRIX statements. Higher-order factor models and other complicated models
can be expressed in the COSAN and MATRIX statements. For most applications,
the LINEQS and RAM statements are easiest to use; the choice between these two
statements is a matter of personal preference.

You can save a model specification in an OUTRAM= data set, which can then be
used with the INRAM= option to specify the model in a subsequent analysis.
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Estimation Methods

The CALIS procedure provides five methods of estimation specified by the
METHOD= option:

DWLS diagonally weighted least squares
ULS unweighted least squares
GLS normal theory generalized least squares
ML maximum likelihood for multivariate normal distributions
WLS weighted least squares for arbitrary distributions

Each estimation method is based on finding parameter estimates that minimize a
badness-of-fit function, which measures the difference between the observed sam-
ple covariance matrix and the predicted covariance matrix, given the model and the
parameter estimates. See the section“Estimation Methods”on page 574 inChapter
19, “The CALIS Procedure,”for formulas, or refer to Loehlin (1987, pp. 54–62) and
Bollen (1989, pp. 104–123) for further discussion.

The default is METHOD=ML, which is the most popular method for applications.
The option METHOD=GLS usually produces very similar results to METHOD=ML.
Asymptotically, ML and GLS are the same. Both methods assume a multivari-
ate normal distribution in the population. The WLS method with default weight
matrix, which is equivalent to the asymptotically distribution free (ADF) method,
yields asymptotically normal estimates regardless of the distribution in the popula-
tion. When the multivariate normal assumption is in doubt, especially if they have
high kurtosis, you should seriously consider the WLS method. When a correlation
matrix is analyzed, only the WLS may produce correct standard error estimates.
However, in order to use the WLS method with the expected statistical properties,
sample size must be large. Several thousands may be a minimum requirement.

The ULS and DWLS methods yield reasonable estimates under less restrictive as-
sumptions. You can apply these methods to normal or nonnormal situations, or to
covariance or correlation matrices. The drawback is that the statistical qualities of
the estimates seem to be unknown. For this reason, PROC CALIS does not provide
standard errors or test statistics with these two methods.

You cannot use METHOD=ML if the observed covariance matrix is singular. You
could either remove variables involved in the linear dependencies or use less restric-
tive estimation methods like ULS. Specifying METHOD=GLS assumes that the pre-
dicted covariance matrix is nonsingular. If GLS fails because of a singular predicted
covariance matrix, you need to examine whether the model specification leads to the
singularity. If so, modify the model specification to eliminate the problem. If not,
you probably need to use other estimation methods.

You should remove outliers and try to transform variables that are skewed or heavy-
tailed. This applies to all estimation methods, since all the estimation methods depend
on the sample covariance matrix, and the sample covariance matrix is a poor estimator
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for distributions with high kurtosis (Bollen 1989, pp. 415–418; Huber 1981; Hampel
et al. 1986). PROC CALIS displays estimates of univariate and multivariate kurto-
sis (Bollen 1989, pp. 418–425) if you specify the KURTOSIS option in the PROC
CALIS statement.

Statistical Inference

When you specify the ML, GLS, or WLS estimation with appropriate models, PROC
CALIS can compute

• a chi-square goodness-of-fit test of the specified model versus the alterna-
tive that the data are from a population with unconstrained covariance matrix
(Loehlin 1987, pp. 62–64; Bollen 1989, pp. 110, 115, 263–269)

• approximate standard errors of the parameter estimates (Bollen 1989, pp. 109,
114, 286), displayed with the STDERR option

• various modification indices, requested via the MODIFICATION or MOD op-
tion, that give the approximate change in the chi-square statistic that would
result from removing constraints on the parameters or constraining additional
parameters to zero (Bollen 1989, pp. 293–303)

If you have two models such that one model results from imposing constraints on
the parameters of the other, you can test the constrained model against the more
general model by fitting both models with PROC CALIS. If the constrained model
is correct, the difference between the chi-square goodness-of-fit statistics for the two
models has an approximate chi-square distribution with degrees of freedom equal to
the difference between the degrees of freedom for the two models (Loehlin 1987, pp.
62–67; Bollen 1989, pp. 291–292).

All of the test statistics and standard errors computed under ML and GLS depend on
the assumption of multivariate normality. Normality is a much more important re-
quirement for data with random independent variables than it is for fixed independent
variables. If the independent variables are random, distributions with high kurtosis
tend to give liberal tests and excessively small standard errors, while low kurtosis
tends to produce the opposite effects (Bollen 1989, pp. 266–267, 415–432).

All test statistics and standard errors computed by PROC CALIS are based on asymp-
totic theory and should not be trusted in small samples. There are no firm guidelines
on how large a sample must be for the asymptotic theory to apply with reasonable ac-
curacy. Some simulation studies have indicated that problems are likely to occur with
sample sizes less than 100 (Loehlin 1987, pp. 60–61; Bollen 1989, pp. 267–268).
Extrapolating from experience with multiple regression would suggest that the sam-
ple size should be at least 5 to 20 times the number of parameters to be estimated
in order to get reliable and interpretable results. The WLS method may even require
that the sample size be over several thousands.

The asymptotic theory requires that the parameter estimates be in the interior of the
parameter space. If you do an analysis with inequality constraints and one or more
constraints are active at the solution (for example, if you constrain a variance to be
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nonnegative and the estimate turns out to be zero), the chi-square test and standard
errors may not provide good approximations to the actual sampling distributions.

For modeling correlation structures, the only theoretically correct method is the WLS
method with the default ASYCOV=CORR option. For other methods, standard error
estimates for modeling correlation structures may be inaccurate even for sample sizes
as large as 400. The chi-square statistic is generally the same regardless of which
matrix is analyzed, provided that the model involves no scale-dependent constraints.
However, if the purpose is to obtain reasonable parameter estimates for the correlation
structures only, then you may find other estimation methods useful as well.

If you fit a model to a correlation matrix and the model constrains one or more ele-
ments of the predicted matrix to equal 1.0, the degrees of freedom of the chi-square
statistic must be reduced by the number of such constraints. PROC CALIS attempts
to determine which diagonal elements of the predicted correlation matrix are con-
strained to a constant, but it may fail to detect such constraints in complicated mod-
els, particularly when programming statements are used. If this happens, you should
add parameters to the model to release the constraints on the diagonal elements.

Goodness-of-fit Statistics

In addition to the chi-square test, there are many other statistics for assessing the
goodness of fit of the predicted correlation or covariance matrix to the observed ma-
trix.

Akaike’s (1987) information criterion (AIC) and Schwarz’s (1978) Bayesian criterion
(SBC) are useful for comparing models with different numbers of parameters—the
model with the smallest value of AIC or SBC is considered best. Based on both
theoretical considerations and various simulation studies, SBC seems to work better,
since AIC tends to select models with too many parameters when the sample size is
large.

There are many descriptive measures of goodness of fit that are scaled to range ap-
proximately from zero to one: the goodness of fit index (GFI) and GFI adjusted
for degrees of freedom (AGFI) (Jöreskog and Sörbom 1988), centrality (McDonald
1989), and the parsimonious fit index (James, Mulaik, and Brett 1982). Bentler and
Bonett (1980) and Bollen (1986) have proposed measures for comparing the good-
ness of fit of one model with another in a descriptive rather than inferential sense.

The root mean squared error approximation (RMSEA) proposed by Steiger and Lind
(1980) does not assume a true model being fitting to the data. It measures the dis-
crepancy between the fitted model and the covariance matrix in the population. For
samples, RMSEA and confidence intervals can be estimated. Statistical tests for de-
termining whether the population RMSEA’s fall below certain specified values are
available (Browne and Cudeck 1993). In the same vein, Browne and Cudeck (1993)
propose the expected cross validation index (ECVI) that measures how good a model
is for predicting future sample covariances. Point estimate and confidence intervals
for ECVI are also developed.



208 � Chapter 13. Introduction to Structural Equation Modeling

None of these measures of goodness of fit are related to the goodness of prediction
of the structural equations. Goodness of fit is assessed by comparing the observed
correlation or covariance matrix with the matrix computed from the model and pa-
rameter estimates. Goodness of prediction is assessed by comparing the actual values
of the endogenous variables with their predicted values, usually in terms of root mean
squared error or proportion of variance accounted for (R2). For latent endogenous
variables, root mean squared error andR2 can be estimated from the fitted model.

Optimization Methods
PROC CALIS uses a variety of nonlinear optimization algorithms for computing pa-
rameter estimates. These algorithms are very complicated and do not always work.
PROC CALIS will generally inform you when the computations fail, usually by dis-
playing an error message about the iteration limit being exceeded. When this hap-
pens, you may be able to correct the problem simply by increasing the iteration limit
(MAXITER= and MAXFUNC=). However, it is often more effective to change the
optimization method (OMETHOD=) or initial values. For more details, see the sec-
tion “Use of Optimization Techniques”on page 664 inChapter 19, “The CALIS
Procedure,”and refer to Bollen (1989, pp. 254–256).

PROC CALIS may sometimes converge to a local optimum rather than the global
optimum. To gain some protection against local optima, you can run the analysis
several times with different initial estimates. The RANDOM= option in the PROC
CALIS statement is useful for generating a variety of initial estimates.

Specifying Structural Equation Models
Consider fitting a linear equation to two observed variables,Y andX. Simple linear
regression uses the model of a particular form, labeled for purposes of discussion, as
Model Form A.

Model Form A

Y = α + βX + EY

whereα andβ are coefficients to be estimated andEY is an error term. If the val-
ues ofX are fixed, the values ofEY are assumed to be independent and identically
distributed realizations of a normally distributed random variable with mean zero and
variance Var(EY ). If X is a random variable,X andEY are assumed to have a bi-
variate normal distribution with zero correlation and variances Var(X) and Var(EY ),
respectively. Under either set of assumptions, the usual formulas hold for the esti-
mates of the coefficients and their standard errors (seeChapter 2, “Introduction to
Regression Procedures,”).

In the REG or SYSLIN procedure, you would fit a simple linear regression model
with a MODEL statement listing only the names of the manifest variables:
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proc reg;
model y=x;

run;

You can also fit this model with PROC CALIS, but you must explicitly specify the
names of the parameters and the error terms (except for the intercept, which is as-
sumed to be present in each equation). The linear equation is given in the LINEQS
statement, and the error variance is specified in the STD statement.

proc calis cov;
lineqs y=beta x + ex;
std ex=vex;

run;

The parameters are the regression coefficientbeta and the variancevex of the error
termex. You do not need to type an * betweenbeta andx to indicate the multiplica-
tion of the variable by the coefficient.

The LINEQS statement uses the convention that the names of error terms begin with
the letter E, disturbances (errors terms for latent variables) in equations begin with D,
and other latent variables begin with F for “factor.” Names of variables in the input
SAS data set can, of course, begin with any letter.

If you leave out the name of a coefficient, the value of the coefficient is assumed to
be 1. If you leave out the name of a variance, the variance is assumed to be 0. So if
you tried to write the model the same way you would in PROC REG, for example,

proc calis cov;
lineqs y=x;

you would be fitting a model that saysY is equal toX plus an intercept, with no
error.

The COV option is used because PROC CALIS, like PROC FACTOR, analyzes the
correlation matrix by default, yielding standardized regression coefficients. The COV
option causes the covariance matrix to be analyzed, producing raw regression coeffi-
cients. SeeChapter 2, “Introduction to Regression Procedures,”for a discussion of
the interpretation of raw and standardized regression coefficients.

Since the analysis of covariance structures is based on modeling the covariance ma-
trix and the covariance matrix contains no information about means, PROC CALIS
neglects the intercept parameter by default. To estimate the intercept, change the
COV option to UCOV, which analyzes the uncorrected covariance matrix, and use
the AUGMENT option, which adds a row and column for the intercept, called
INTERCEPT, to the matrix being analyzed. The model can then be specified as

proc calis ucov augment;
lineqs y=alpha intercept + beta x + ex;
std ex=vex;

run;
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In the LINEQS statement,intercept represents a variable with a constant value of 1;
hence, the coefficientalpha is the intercept parameter.

Other commonly used options in the PROC CALIS statement include

• MODIFICATION to display model modification indices

• RESIDUAL to display residual correlations or covariances

• STDERR to display approximate standard errors

• TOTEFF to display total effects

For ordinary unconstrained regression models, there is no reason to use PROC CALIS
instead of PROC REG. But suppose that the observed variablesY andX are contam-
inated by error, and you want to estimate the linear relationship between their true,
error-free scores. The model can be written in several forms. A model of Form B is
as follows.

Model Form B

Y = α + βFX + EY

X = FX + EX

Cov(FX , EX) = Cov(FX , EY ) = Cov(EX , EY ) = 0

This model has two error terms,EY andEX , as well as another latent variableFX

representing the true value corresponding to the manifest variableX. The true value
corresponding toY does not appear explicitly in this form of the model.

The assumption in Model Form B is that the error terms and the latent variableFX

are jointly uncorrelated is of critical importance. This assumption must be justified
on substantive grounds such as the physical properties of the measurement process.
If this assumption is violated, the estimators may be severely biased and inconsistent.

You can express Model Form B in PROC CALIS as follows:

proc calis cov;
lineqs y=beta fx + ey,

x=fx + ex;
std fx=vfx,

ey=vey,
ex=vex;

run;

You must specify a variance for each of the latent variables in this model using the
STD statement. You can specify either a name, in which case the variance is con-
sidered a parameter to be estimated, or a number, in which case the variance is con-
strained to equal that numeric value. In general, you must specify a variance for each
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latent exogenous variable in the model, including error and disturbance terms. The
variance of a manifest exogenous variable is set equal to its sample variance by de-
fault. The variances of endogenous variables are predicted from the model and are
not parameters. Covariances involving latent exogenous variables are assumed to be
zero by default. Covariances between manifest exogenous variables are set equal to
the sample covariances by default.

Fuller (1987, pp. 18–19) analyzes a data set from Voss (1969) involving corn yields
(Y ) and available soil nitrogen (X) for which there is a prior estimate of the mea-
surement error for soil nitrogen Var(EX ) of 57. You can fit Model Form B with this
constraint using the following SAS statements.

data corn(type=cov);
input _type_ $ _name_ $ y x;
datalines;

n . 11 11
mean . 97.4545 70.6364
cov y 87.6727 .
cov x 104.8818 304.8545
;

proc calis data=corn cov stderr;
lineqs y=beta fx + ey,

x=fx + ex;
std ex=57,

fx=vfx,
ey=vey;

run;

In the STD statement, the variance ofex is given as the constant value 57. PROC
CALIS produces the following estimates.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

y = 0.4232*fx + 1.0000 ey
Std Err 0.1658 beta
t Value 2.5520
x = 1.0000 fx + 1.0000 ex

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fx vfx 247.85450 136.33508 1.82
ey vey 43.29105 23.92488 1.81
ex 57.00000

Figure 13.1. Measurement Error Model for Corn Data
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PROC CALIS also displays information about the initial estimates that can be useful
if there are optimization problems. If there are no optimization problems, the initial
estimates are usually not of interest; they are not reproduced in the examples in this
chapter.

You can write an equivalent model (labeled here as Model Form C) using a latent
variableFY to represent the true value corresponding toY .

Model Form C

Y = FY + EY

X = FX + EX

FY = α + βFX

Cov(FX , EX) = Cov(FX , EX) = Cov(EX , EY ) = 0

The first two of the three equations express the observed variables in terms of a true
score plus error; these equations are called the measurement model. The third equa-
tion, expressing the relationship between the latent true-score variables, is called the
structural or causal model. The decomposition of a model into a measurement model
and a structural model (Keesling 1972; Wiley 1973; Jöreskog 1973) has been pop-
ularized by the program LISREL (Jöreskog and Sörbom 1988). The statements for
fitting this model are

proc calis cov;
lineqs y=fy + ey,

x=fx + ex,
fy=beta fx;

std fx=vfx,
ey=vey,
ex=vex;

run;

You do not need to include the variance ofFY in the STD statement because the
variance ofFY is determined by the structural model in terms of the variance ofFX ,
that is, Var(FY )=β2 Var(FX ).

Correlations involving endogenous variables are derived from the model. For exam-
ple, the structural equation in Model Form C implies thatFY andFX are correlated
unlessβ is zero. In all of the models discussed so far, the latent exogenous variables
are assumed to be jointly uncorrelated. For example, in Model Form C,EY , EX , and
FX are assumed to be uncorrelated. If you want to specify a model in whichEY and
EX , say, are correlated, you can use the COV statement to specify the numeric value
of the covariance Cov(EY , EX ) betweenEY andEX , or you can specify a name to
make the covariance a parameter to be estimated. For example,
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proc calis cov;
lineqs y=fy + ey,

x=fx + ex,
fy=beta fx;

std fy=vfy,
fx=vfx,
ey=vey,
ex=vex;

cov ey ex=ceyex;
run;

This COV statement specifies that the covariance betweeney andex is a parameter
namedceyex. All covariances that are not listed in the COV statement and that are
not determined by the model are assumed to be zero. If the model contained two or
more manifest exogenous variables, their covariances would be set to the observed
sample values by default.

Identification of Models

Unfortunately, if you try to fit models of Form B or Form C without additional
constraints, you cannot obtain unique estimates of the parameters. These models
have four parameters (one coefficient and three variances). The covariance matrix
of the observed variablesY and X has only three elements that are free to vary,
since Cov(Y ,X)=Cov(X,Y ). The covariance structure can, therefore, be expressed
as three equations in four unknown parameters. Since there are fewer equations than
unknowns, there are many different sets of values for the parameters that provide a
solution for the equations. Such a model is said to be underidentified.

If the number of parameters equals the number of free elements in the covariance ma-
trix, then there may exist a unique set of parameter estimates that exactly reproduce
the observed covariance matrix. In this case, the model is said to be just identified or
saturated.

If the number of parameters is less than the number of free elements in the covariance
matrix, there may exist no set of parameter estimates that reproduces the observed co-
variance matrix. In this case, the model is said to be overidentified. Various statistical
criteria, such as maximum likelihood, can be used to choose parameter estimates that
approximately reproduce the observed covariance matrix. If you use ML, GLS, or
WLS estimation, PROC CALIS can perform a statistical test of the goodness of fit of
the model under the certain statistical assumptions.

If the model is just identified or overidentified, it is said to be identified. If you
use ML, GLS, or WLS estimation for an identified model, PROC CALIS can com-
pute approximate standard errors for the parameter estimates. For underidentified
models, PROC CALIS obtains approximate standard errors by imposing additional
constraints resulting from the use of a generalized inverse of the Hessian matrix.

You cannot guarantee that a model is identified simply by counting the parameters.
For example, for any latent variable, you must specify a numeric value for the vari-
ance, or for some covariance involving the variable, or for a coefficient of the variable
in at least one equation. Otherwise, the scale of the latent variable is indeterminate,
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and the model will be underidentified regardless of the number of parameters and
the size of the covariance matrix. As another example, an exploratory factor analysis
with two or more common factors is always underidentified because you can rotate
the common factors without affecting the fit of the model.

PROC CALIS can usually detect an underidentified model by computing the approx-
imate covariance matrix of the parameter estimates and checking whether any esti-
mate is linearly related to other estimates (Bollen 1989, pp. 248–250), in which case
PROC CALIS displays equations showing the linear relationships among the esti-
mates. Another way to obtain empirical evidence regarding the identification of a
model is to run the analysis several times with different initial estimates to see if the
same final estimates are obtained.

Bollen (1989) provides detailed discussions of conditions for identification in a vari-
ety of models.

The following example is inspired by Fuller (1987, pp. 40–41). The hypothetical data
are counts of two types of cells, cells forming rosettes and nucleated cells, in spleen
samples. It is reasonable to assume that counts have a Poisson distribution; hence,
the square roots of the counts should have a constant error variance of 0.25.

You can use PROC CALIS to fit a model of Form C to the square roots of the counts
without constraints on the parameters, as displayed in following statements. The
option OMETHOD=QUANEW is used in the PROC CALIS statement because in
this case it produces more rapid convergence than the default optimization method.

data spleen;
input rosette nucleate;
sqrtrose=sqrt(rosette);
sqrtnucl=sqrt(nucleate);
datalines;

4 62
5 87
5 117
6 142
8 212
9 120
12 254
13 179
15 125
19 182
28 301
51 357
;
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proc calis data=spleen cov omethod=quanew;
lineqs sqrtrose=factrose + err_rose,

sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl;

std err_rose=v_rose,
err_nucl=v_nucl,
factnucl=v_factnu;

run;

This model is underidentified. PROC CALIS displays the following warning:

WARNING: Problem not identified: More parameters to estimate ( 4 )
than given values in data matrix ( 3 ).

and diagnoses the indeterminacy as follows:

NOTE: Hessian matrix is not full rank. Not all parameters are identified.
Some parameter estimates are linearly related to other parameter
estimates as shown in the following equations:

v_nucl = -10.554977 - 0.036438 * beta + 1.00000 * v_factnu
+ 0.149564 * v_rose

The constraint that the error variances equal 0.25 can be imposed by modifying the
STD statement:

proc calis data=spleen cov stderr;
lineqs sqrtrose=factrose + err_rose,

sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl;

std err_rose=.25,
err_nucl=.25,
factnucl=v_factnu;

run;
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The resulting parameter estimates are displayed inFigure 13.2.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

factrose = 0.4034*factnucl
Std Err 0.0508 beta
t Value 7.9439

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

factnucl v_factnu 10.45846 4.56608 2.29
err_rose 0.25000
err_nucl 0.25000

Figure 13.2. Spleen Data: Parameter Estimates for Overidentified Model

This model is overidentified and the chi-square goodness-of-fit test yields ap-value
of 0.0219, as displayed inFigure 13.3.

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.4775
Goodness of Fit Index (GFI) 0.7274
GFI Adjusted for Degrees of Freedom (AGFI) 0.1821
Root Mean Square Residual (RMR) 0.1785
Parsimonious GFI (Mulaik, 1989) 0.7274
Chi-Square 5.2522
Chi-Square DF 1
Pr > Chi-Square 0.0219
Independence Model Chi-Square 13.273
Independence Model Chi-Square DF 1
RMSEA Estimate 0.6217
RMSEA 90% Lower Confidence Limit 0.1899
RMSEA 90% Upper Confidence Limit 1.1869
ECVI Estimate 0.9775
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 2.2444
Probability of Close Fit 0.0237
Bentler’s Comparative Fit Index 0.6535
Normal Theory Reweighted LS Chi-Square 9.5588
Akaike’s Information Criterion 3.2522
Bozdogan’s (1987) CAIC 1.7673
Schwarz’s Bayesian Criterion 2.7673
McDonald’s (1989) Centrality 0.8376
Bentler & Bonett’s (1980) Non-normed Index 0.6535
Bentler & Bonett’s (1980) NFI 0.6043
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6043
Z-Test of Wilson & Hilferty (1931) 2.0375
Bollen (1986) Normed Index Rho1 0.6043
Bollen (1988) Non-normed Index Delta2 0.6535
Hoelter’s (1983) Critical N 10

Figure 13.3. Spleen Data: Fit Statistics for Overidentified Model

The sample size is so small that thep-value should not be taken to be accurate, but to



Identification of Models � 217

get a smallp-value with such a small sample indicates it is possible that the model is
seriously deficient. The deficiency could be due to any of the following:

• The error variances are not both equal to 0.25.

• The error terms are correlated with each other or with the true scores.

• The observations are not independent.

• There is a disturbance in the linear relation betweenfactrose andfactnucl.

• The relation betweenfactrose andfactnucl is not linear.

• The actual distributions are not adequately approximated by the multivariate
normal distribution.

A simple and plausible modification to the model is to add a “disturbance term” or
“error in the equation” to the structural model, as follows.

proc calis data=spleen cov stderr;
lineqs sqrtrose=factrose + err_rose,

sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl + disturb;

std err_rose=.25,
err_nucl=.25,
factnucl=v_factnu,
disturb=v_dist;

run;

The following parameter estimates are produced.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

factrose = 0.3907*factnucl + 1.0000 disturb
Std Err 0.0771 beta
t Value 5.0692

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

factnucl v_factnu 10.50458 4.58577 2.29
err_rose 0.25000
err_nucl 0.25000
disturb v_dist 0.38153 0.28556 1.34

Figure 13.4. Spleen Data: Parameter Estimated for Just Identified Model

This model is just identified, so there are no degrees of freedom for the chi-square
goodness-of-fit test.
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Path Diagrams and the RAM Model

Complicated models are often easier to understand when they are expressed as path
diagrams. One advantage of path diagrams over equations is that variances and co-
variances can be shown directly in the path diagram. Loehlin (1987) provides a de-
tailed discussion of path diagrams.

It is customary to write the names of manifest variables in rectangles and names of
latent variables in ovals. The coefficients in each equation are indicated by draw-
ing arrows from the independent variables to the dependent variable. Covariances
between exogenous variables are drawn as two-headed arrows. The variance of an
exogenous variable can be displayed as a two-headed arrow with both heads pointing
to the exogenous variable, since the variance of a variable is the covariance of the
variable with itself. Here is a path diagram for the spleen data, explicitly showing all
latent variables and variances of exogenous variables.

V_DIST

.25 .25

5: ERR_ROSE 6: ERR_NUCL

1.0 1.0

1.0 1.0

1: SQRTROSE

3: FACTROSE 4: FACTNUCL

7: DISTURB

2: SQRTNUCL

V_FACTNU

BETA

Figure 13.5. Path Diagram: Spleen

There is an easier way to draw the path diagram based on McArdle’s reticular action
model (RAM) (McArdle and McDonald 1984). McArdle uses the convention that a
two-headed arrow that points to an endogenous variable actually refers to the error
or disturbance term associated with that variable. A two-headed arrow with both
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heads pointing to the same endogenous variable represents the error or disturbance
variance for the equation that determines the endogenous variable; there is no need to
draw a separate oval for the error or disturbance term. Similarly, a two-headed arrow
connecting two endogenous variables represents the covariance between the error of
disturbance terms associated with the endogenous variables. The RAM conventions
allow the previous path diagram to be simplified, as follows.

4: FACTNUCL

1: SQRTROSE 2: SQRTNUCL

.25 .25

V_DIST V_FACTNU

BETA

1.0 1.0

3: FACTROSE

Figure 13.6. Path Diagram: Spleen

The RAM statement in PROC CALIS provides a simple way to transcribe a path
diagram based on the reticular action model. Assign the integers 1, 2, 3,. . . to the
variables in the order in which they appear in the SAS data set or in the VAR state-
ment, if you use one. Assign subsequent consecutive integers to the latent variables
displayed explicitly in the path diagram (excluding the error and disturbance terms
implied by two-headed arrows) in any order. Each arrow in the path diagram can
then be identified by two numbers indicating the variables connected by the path.
The RAM statement consists of a list of descriptions of all the arrows in the path
diagram. The descriptions are separated by commas. Each arrow description consists
of three or four numbers and, optionally, a name in the following order:

1. The number of heads the arrow has.

2. The number of the variable the arrow points to, or either variable if the arrow
is two-headed.

3. The number of the variable the arrow comes from, or the other variable if the
arrow is two-headed.

4. The value of the coefficient or (co)variance that the arrow represents.

5. A name if the arrow represents a parameter to be estimated, in which case the
previous number is taken to be the initial estimate of the parameter. Omit the
name if the arrow represents a constant. If you specify a name, the fourth
number may be omitted.
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The model for the spleen data can be specified with the RAM statement, as follows:

/* 1 sqrtrose */
/* 2 sqrtnucl */
/* 3 factrose */
/* 4 factnucl */

proc calis data=spleen cov stderr method=ml outram=splram1;
var sqrtrose sqrtnucl;
ram 1 1 3 1, /* sqrtrose <- factrose */

1 2 4 1, /* sqrtnucl <- factnucl */
1 3 4 beta, /* factrose <- factnucl */
2 1 1 .25, /* error variance for sqrtrose */
2 2 2 .25, /* error variance for sqrtnucl */
2 3 3 v_dist, /* disturbance variance for factrose */
2 4 4 v_factnu; /* variance of factnucl */

run;

The resulting output in RAM form is displayed inFigure 13.7.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- ---Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 F1 3 . 1.00000
1 2 sqrtnucl 2 F2 4 . 1.00000
1 2 F1 3 F2 4 beta 0.39074 0.07708 5.07
1 3 E1 1 E1 1 . 0.25000
1 3 E2 2 E2 2 . 0.25000
1 3 D1 3 D1 3 v_dist 0.38153 0.28556 1.34
1 3 D2 4 D2 4 v_factnu 10.50458 4.58577 2.29

Figure 13.7. Spleen Data: RAM Model

You can request an output data set containing the model specification by using the
OUTRAM= option in the PROC CALIS statement. Names for the latent variables
can be specified in a VNAMES statement.
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proc calis data=spleen cov stderr method=ml outram=splram1;
var sqrtrose sqrtnucl;
vnames 1 factrose factnucl,

2 err_rose err_nucl disturb factnucl;
ram 1 1 3 1, /* sqrtrose <- factrose */

1 2 4 1, /* sqrtnucl <- factnucl */
1 3 4 beta, /* factrose <- factnucl */
2 1 1 .25, /* error variance for sqrtrose */
2 2 2 .25, /* error variance for sqrtnucl */
2 3 3 v_dist, /* disturbance variance for factrose */
2 4 4 v_factnu; /* variance of factnucl */

run;

proc print;
run;

The RAM output is displayed inFigure 13.8.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- ---Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 factrose 3 . 1.00000
1 2 sqrtnucl 2 factnucl 4 . 1.00000
1 2 factrose 3 factnucl 4 beta 0.39074 0.07708 5.07
1 3 err_rose 1 err_rose 1 . 0.25000
1 3 err_nucl 2 err_nucl 2 . 0.25000
1 3 disturb 3 disturb 3 v_dist 0.38153 0.28556 1.34
1 3 factnucl 4 factnucl 4 v_factnu 10.50458 4.58577 2.29

Figure 13.8. Spleen Data: RAM Model with Names for Latent Variables

The OUTRAM= data set contains the RAM model as you specified it in the RAM
statement, but it contains the final parameter estimates and standard errors instead of
the initial values.
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Obs _TYPE_ _NAME_ _MATNR_ _ROW_ _COL_ _ESTIM_ _STDERR_

1 MODEL _IDE_ 1 2 4 1.0000 0.00000
2 MODEL _A_ 2 4 4 6.0000 2.00000
3 MODEL _P_ 3 4 4 3.0000 0.00000
4 VARNAME sqrtrose 2 . 1 . .
5 VARNAME sqrtnucl 2 . 2 . .
6 VARNAME factrose 2 . 3 . .
7 VARNAME factnucl 2 . 4 . .
8 VARNAME err_rose 3 . 1 . .
9 VARNAME err_nucl 3 . 2 . .

10 VARNAME disturb 3 . 3 . .
11 VARNAME factnucl 3 . 4 . .
12 METHOD ML . . . . .
13 STAT N . . . 12.0000 .
14 STAT FIT . . . 0.0000 .
15 STAT GFI . . . 1.0000 .
16 STAT AGFI . . . . .
17 STAT RMR . . . 0.0000 .
18 STAT PGFI . . . 0.0000 .
19 STAT NPARM . . . 3.0000 .
20 STAT DF . . . 0.0000 .
21 STAT N_ACT . . . 0.0000 .
22 STAT CHISQUAR . . . 0.0000 .
23 STAT P_CHISQ . . . 0.0000 .
24 STAT CHISQNUL . . . 13.2732 .
25 STAT RMSEAEST . . . 0.0000 .
26 STAT RMSEALOB . . . . .
27 STAT RMSEAUPB . . . . .
28 STAT P_CLOSFT . . . . .
29 STAT ECVI_EST . . . 0.7500 .
30 STAT ECVI_LOB . . . . .
31 STAT ECVI_UPB . . . . .
32 STAT COMPFITI . . . 1.0000 .
33 STAT ADJCHISQ . . . . .
34 STAT P_ACHISQ . . . . .
35 STAT RLSCHISQ . . . 0.0000 .
36 STAT AIC . . . 0.0000 .
37 STAT CAIC . . . 0.0000 .
38 STAT SBC . . . 0.0000 .
39 STAT CENTRALI . . . 1.0000 .
40 STAT BB_NONOR . . . . .
41 STAT BB_NORMD . . . 1.0000 .
42 STAT PARSIMON . . . 0.0000 .
43 STAT ZTESTWH . . . . .
44 STAT BOL_RHO1 . . . . .
45 STAT BOL_DEL2 . . . 1.0000 .
46 STAT CNHOELT . . . . .
47 ESTIM 2 1 3 1.0000 0.00000
48 ESTIM 2 2 4 1.0000 0.00000
49 ESTIM beta 2 3 4 0.3907 0.07708
50 ESTIM 3 1 1 0.2500 0.00000
51 ESTIM 3 2 2 0.2500 0.00000
52 ESTIM v_dist 3 3 3 0.3815 0.28556
53 ESTIM v_factnu 3 4 4 10.5046 4.58577

Figure 13.9. Spleen Data: OUTRAM= Data Set with Final Parameter Estimates

This data set can be used as input to another run of PROC CALIS with the INRAM=
option in the PROC CALIS statement. For example, if the iteration limit is exceeded,
you can use the RAM data set to start a new run that begins with the final estimates
from the last run. Or you can change the data set to add or remove constraints or
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modify the model in various other ways. The easiest way to change a RAM data set
is to use the FSEDIT procedure, but you can also use a DATA step. For example, you
could set the variance of the disturbance term to zero, effectively removing the distur-
bance from the equation, by removing the parameter namev–dist in the–NAME–
variable and setting the value of the estimate to zero in the–ESTIM– variable:

data splram2(type=ram);
set splram1;
if _name_=’v_dist’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=spleen inram=splram2 cov stderr;
run;

The resulting RAM output is displayed inFigure 13.10.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- ---Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 factrose 3 . 1.00000
1 2 sqrtnucl 2 factnucl 4 . 1.00000
1 2 factrose 3 factnucl 4 beta 0.40340 0.05078 7.94
1 3 err_rose 1 err_rose 1 . 0.25000
1 3 err_nucl 2 err_nucl 2 . 0.25000
1 3 disturb 3 disturb 3 . 0
1 3 factnucl 4 factnucl 4 v_factnu 10.45846 4.56608 2.29

Figure 13.10. Spleen Data: RAM Model with INRAM= Data Set
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Some Measurement Models

Psychometric test theory involves many kinds of models relating scores on psycho-
logical and educational tests to latent variables representing intelligence or various
underlying abilities. The following example uses data on four vocabulary tests from
Lord (1957). TestsW andX have 15 items each and are administered with very
liberal time limits. TestsY andZ have 75 items and are administered under time
pressure. The covariance matrix is read by the following DATA step:

data lord(type=cov);
input _type_ $ _name_ $ w x y z;
datalines;

n . 649 . . .
cov w 86.3979 . . .
cov x 57.7751 86.2632 . .
cov y 56.8651 59.3177 97.2850 .
cov z 58.8986 59.6683 73.8201 97.8192
;

The psychometric model of interest states thatW andX are determined by a single
common factorFWX , andY andZ are determined by a single common factorFY Z .
The two common factors are expected to have a positive correlation, and it is desired
to estimate this correlation. It is convenient to assume that the common factors have
unit variance, so their correlation will be equal to their covariance. The error terms
for all the manifest variables are assumed to be uncorrelated with each other and with
the common factors. The model (labeled here as Model Form D) is as follows.

Model Form D

W = βW FWX + EW

X = βXFWX + EX

Y = βY FY Z + EY

Z = βZFY Z + EZ

Var(FWX) = Var(FY Z) = 1
Cov(FWX , FY Z) = ρ

Cov(EW , EX) = Cov(EW , EY ) = Cov(EW , EZ) = Cov(EX , EY )
= Cov(EX , EZ) = Cov(EY , EZ) = Cov(EW , FWX)
= Cov(EW , FY Z) = Cov(EX , FWX) = Cov(EX , FY Z)
= Cov(EY , FWX) = Cov(EY , FY Z) = Cov(EZ , FWX)
= Cov(EZ , FY Z) = 0
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The corresponding path diagram is as follows.

1: W

RHO

2: X 3: Y 4: Z

5: FWX 6: FYZ

VEW VEX VEY VEZ

1.01.0

BETAXBETAW BETAY BETAZ

Figure 13.11. Path Diagram: Lord

This path diagram can be converted to a RAM model as follows:

/* 1=w 2=x 3=y 4=z 5=fwx 6=fyz */
title ’H4: unconstrained’;
proc calis data=lord cov;

ram 1 1 5 betaw,
1 2 5 betax,
1 3 6 betay,
1 4 6 betaz,
2 1 1 vew,
2 2 2 vex,
2 3 3 vey,
2 4 4 vez,
2 5 5 1,
2 6 6 1,
2 5 6 rho;

run;



226 � Chapter 13. Introduction to Structural Equation Modeling

Here are the major results.

H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0011
Goodness of Fit Index (GFI) 0.9995
GFI Adjusted for Degrees of Freedom (AGFI) 0.9946
Root Mean Square Residual (RMR) 0.2720
Parsimonious GFI (Mulaik, 1989) 0.1666
Chi-Square 0.7030
Chi-Square DF 1
Pr > Chi-Square 0.4018
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0974
ECVI Estimate 0.0291
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0391
Probability of Close Fit 0.6854
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 0.7026
Akaike’s Information Criterion -1.2970
Bozdogan’s (1987) CAIC -6.7725
Schwarz’s Bayesian Criterion -5.7725
McDonald’s (1989) Centrality 1.0002
Bentler & Bonett’s (1980) Non-normed Index 1.0012
Bentler & Bonett’s (1980) NFI 0.9995
James, Mulaik, & Brett (1982) Parsimonious NFI 0.1666
Z-Test of Wilson & Hilferty (1931) 0.2363
Bollen (1986) Normed Index Rho1 0.9971
Bollen (1988) Non-normed Index Delta2 1.0002
Hoelter’s (1983) Critical N 3543

Figure 13.12. Lord Data: Major Results for RAM Model, Hypothesis H4
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H4: unconstrained

Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix --Row-- -Column- Parameter Estimate Error t Value

1 2 w 1 F1 5 betaw 7.50066 0.32339 23.19
1 2 x 2 F1 5 betax 7.70266 0.32063 24.02
1 2 y 3 F2 6 betay 8.50947 0.32694 26.03
1 2 z 4 F2 6 betaz 8.67505 0.32560 26.64
1 3 E1 1 E1 1 vew 30.13796 2.47037 12.20
1 3 E2 2 E2 2 vex 26.93217 2.43065 11.08
1 3 E3 3 E3 3 vey 24.87396 2.35986 10.54
1 3 E4 4 E4 4 vez 22.56264 2.35028 9.60
1 3 D1 5 D1 5 . 1.00000
1 3 D2 6 D1 5 rho 0.89855 0.01865 48.18
1 3 D2 6 D2 6 . 1.00000

Figure 13.12. (continued)

The same analysis can be performed with the LINEQS statement. Subsequent anal-
yses are illustrated with the LINEQS statement rather than the RAM statement be-
cause it is slightly easier to understand the constraints as written in the LINEQS
statement without constantly referring to the path diagram. The LINEQS and RAM
statements may yield slightly different results due to the inexactness of the numerical
optimization; the discrepancies can be reduced by specifying a more stringent conver-
gence criterion such as GCONV=1E-4 or GCONV=1E-6. It is convenient to create
an OUTRAM= data set for use in fitting other models with additional constraints.

title ’H4: unconstrained’;
proc calis data=lord cov outram=ram4;

lineqs w=betaw fwx + ew,
x=betax fwx + ex,
y=betay fyz + ey,
z=betaz fyz + ez;

std fwx fyz=1,
ew ex ey ez=vew vex vey vez;

cov fwx fyz=rho;
run;
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The LINEQS displayed output is as follows.

H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.5007*fwx + 1.0000 ew
Std Err 0.3234 betaw
t Value 23.1939
x = 7.7027*fwx + 1.0000 ex
Std Err 0.3206 betax
t Value 24.0235
y = 8.5095*fyz + 1.0000 ey
Std Err 0.3269 betay
t Value 26.0273
z = 8.6751*fyz + 1.0000 ez
Std Err 0.3256 betaz
t Value 26.6430

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vew 30.13796 2.47037 12.20
ex vex 26.93217 2.43065 11.08
ey vey 24.87396 2.35986 10.54
ez vez 22.56264 2.35028 9.60

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

fwx fyz rho 0.89855 0.01865 48.18

Figure 13.13. Lord Data: Using LINEQS Statement for RAM Model, Hypothesis
H4

In an analysis of these data by Jöreskog and Sörbom (1979, pp. 54–56; Loehlin 1987,
pp. 84–87), four hypotheses are considered:

H1: ρ = 1,

βW = βX , Var(EW ) = Var(EX),
βY = βZ , Var(EY ) = Var(EZ)

H2: same asH1: exceptρ is unconstrained

H3: ρ = 1

H4: Model Form D without any additional constraints
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The hypothesisH3 says that there is really just one common factor instead of two;
in the terminology of test theory,W , X, Y , andZ are said to be congeneric. The
hypothesisH2 says thatW andX have the same true-scores and have equal error
variance; such tests are said to be parallel. The hypothesisH2 also requiresY andZ
to be parallel. The hypothesisH1 says thatW andX are parallel tests,Y andZ are
parallel tests, and all four tests are congeneric.

It is most convenient to fit the models in the opposite order from that in which they
are numbered. The previous analysis fit the model forH4 and created an OUTRAM=
data set calledram4. The hypothesisH3 can be fitted directly or by modifying the
ram4 data set. SinceH3 differs fromH4 only in thatρ is constrained to equal 1, the
ram4 data set can be modified by finding the observation for which–NAME–=’rho’
and changing the variable–NAME– to a blank value (meaning that the observation
represents a constant rather than a parameter to be fitted) and setting the variable

–ESTIM– to the value 1. Both of the following analyses produce the same results:

title ’H3: W, X, Y, and Z are congeneric’;
proc calis data=lord cov;

lineqs w=betaw f + ew,
x=betax f + ex,
y=betay f + ey,
z=betaz f + ez;

std f=1,
ew ex ey ez=vew vex vey vez;

run;

data ram3(type=ram);
set ram4;
if _name_=’rho’ then

do;
_name_=’ ’;
_estim_=1;

end;
run;

proc calis data=lord inram=ram3 cov;
run;
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The resulting output from either of these analyses is displayed inFigure 13.14.

H3: W, X, Y, and Z are congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0559
Goodness of Fit Index (GFI) 0.9714
GFI Adjusted for Degrees of Freedom (AGFI) 0.8570
Root Mean Square Residual (RMR) 2.4636
Parsimonious GFI (Mulaik, 1989) 0.3238
Chi-Square 36.2095
Chi-Square DF 2
Pr > Chi-Square <.0001
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.1625
RMSEA 90% Lower Confidence Limit 0.1187
RMSEA 90% Upper Confidence Limit 0.2108
ECVI Estimate 0.0808
ECVI 90% Lower Confidence Limit 0.0561
ECVI 90% Upper Confidence Limit 0.1170
Probability of Close Fit 0.0000
Bentler’s Comparative Fit Index 0.9766
Normal Theory Reweighted LS Chi-Square 38.1432
Akaike’s Information Criterion 32.2095
Bozdogan’s (1987) CAIC 21.2586
Schwarz’s Bayesian Criterion 23.2586
McDonald’s (1989) Centrality 0.9740
Bentler & Bonett’s (1980) Non-normed Index 0.9297
Bentler & Bonett’s (1980) NFI 0.9753
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3251
Z-Test of Wilson & Hilferty (1931) 5.2108
Bollen (1986) Normed Index Rho1 0.9259
Bollen (1988) Non-normed Index Delta2 0.9766
Hoelter’s (1983) Critical N 109

Figure 13.14. Lord Data: Major Results for Hypothesis H3
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H3: W, X, Y, and Z are congeneric

Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.1047*fwx + 1.0000 ew
Std Err 0.3218 betaw
t Value 22.0802
x = 7.2691*fwx + 1.0000 ex
Std Err 0.3183 betax
t Value 22.8397
y = 8.3735*fyz + 1.0000 ey
Std Err 0.3254 betay
t Value 25.7316
z = 8.5106*fyz + 1.0000 ez
Std Err 0.3241 betaz
t Value 26.2598

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vew 35.92087 2.41466 14.88
ex vex 33.42397 2.31038 14.47
ey vey 27.16980 2.24619 12.10
ez vez 25.38948 2.20839 11.50

Figure 13.14. (continued)

The hypothesisH2 requires that several pairs of parameters be constrained to have
equal estimates. With PROC CALIS, you can impose this constraint by giving the
same name to parameters that are constrained to be equal. This can be done directly
in the LINEQS and STD statements or by using PROC FSEDIT or a DATA step to
change the values in theram4 data set:

title ’H2: W and X parallel, Y and Z parallel’;
proc calis data=lord cov;

lineqs w=betawx fwx + ew,
x=betawx fwx + ex,
y=betayz fyz + ey,
z=betayz fyz + ez;

std fwx fyz=1,
ew ex ey ez=vewx vewx veyz veyz;

cov fwx fyz=rho;
run;
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data ram2(type=ram);
set ram4;
if _name_=’betaw’ then _name_=’betawx’;
if _name_=’betax’ then _name_=’betawx’;
if _name_=’betay’ then _name_=’betayz’;
if _name_=’betaz’ then _name_=’betayz’;
if _name_=’vew’ then _name_=’vewx’;
if _name_=’vex’ then _name_=’vewx’;
if _name_=’vey’ then _name_=’veyz’;
if _name_=’vez’ then _name_=’veyz’;

run;

proc calis data=lord inram=ram2 cov;
run;

The resulting output from either of these analyses is displayed inFigure 13.15.

H2: W and X parallel, Y and Z parallel

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0030
Goodness of Fit Index (GFI) 0.9985
GFI Adjusted for Degrees of Freedom (AGFI) 0.9970
Root Mean Square Residual (RMR) 0.6983
Parsimonious GFI (Mulaik, 1989) 0.8321
Chi-Square 1.9335
Chi-Square DF 5
Pr > Chi-Square 0.8583
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0293
ECVI Estimate 0.0185
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0276
Probability of Close Fit 0.9936
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 1.9568
Akaike’s Information Criterion -8.0665
Bozdogan’s (1987) CAIC -35.4436
Schwarz’s Bayesian Criterion -30.4436
McDonald’s (1989) Centrality 1.0024
Bentler & Bonett’s (1980) Non-normed Index 1.0025
Bentler & Bonett’s (1980) NFI 0.9987
James, Mulaik, & Brett (1982) Parsimonious NFI 0.8322
Z-Test of Wilson & Hilferty (1931) -1.0768
Bollen (1986) Normed Index Rho1 0.9984
Bollen (1988) Non-normed Index Delta2 1.0021
Hoelter’s (1983) Critical N 3712

Figure 13.15. Lord Data: Major Results for Hypothesis H2
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H2: W and X parallel, Y and Z parallel

Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.6010*fwx + 1.0000 ew
Std Err 0.2684 betawx
t Value 28.3158
x = 7.6010*fwx + 1.0000 ex
Std Err 0.2684 betawx
t Value 28.3158
y = 8.5919*fyz + 1.0000 ey
Std Err 0.2797 betayz
t Value 30.7215
z = 8.5919*fyz + 1.0000 ez
Std Err 0.2797 betayz
t Value 30.7215

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vewx 28.55545 1.58641 18.00
ex vewx 28.55545 1.58641 18.00
ey veyz 23.73200 1.31844 18.00
ez veyz 23.73200 1.31844 18.00

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

fwx fyz rho 0.89864 0.01865 48.18

Figure 13.15. (continued)

The hypothesisH1 requires one more constraint in addition to those inH2:

title ’H1: W and X parallel, Y and Z parallel, all congeneric’;
proc calis data=lord cov;

lineqs w=betawx f + ew,
x=betawx f + ex,
y=betayz f + ey,
z=betayz f + ez;

std f=1,
ew ex ey ez=vewx vewx veyz veyz;

run;
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data ram1(type=ram);
set ram2;
if _name_=’rho’ then

do;
_name_=’ ’;
_estim_=1;

end;
run;

proc calis data=lord inram=ram1 cov;
run;

The resulting output from either of these analyses is displayed inFigure 13.16.

H1: W and X parallel, Y and Z parallel, all congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0576
Goodness of Fit Index (GFI) 0.9705
GFI Adjusted for Degrees of Freedom (AGFI) 0.9509
Root Mean Square Residual (RMR) 2.5430
Parsimonious GFI (Mulaik, 1989) 0.9705
Chi-Square 37.3337
Chi-Square DF 6
Pr > Chi-Square <.0001
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0898
RMSEA 90% Lower Confidence Limit 0.0635
RMSEA 90% Upper Confidence Limit 0.1184
ECVI Estimate 0.0701
ECVI 90% Lower Confidence Limit 0.0458
ECVI 90% Upper Confidence Limit 0.1059
Probability of Close Fit 0.0076
Bentler’s Comparative Fit Index 0.9785
Normal Theory Reweighted LS Chi-Square 39.3380
Akaike’s Information Criterion 25.3337
Bozdogan’s (1987) CAIC -7.5189
Schwarz’s Bayesian Criterion -1.5189
McDonald’s (1989) Centrality 0.9761
Bentler & Bonett’s (1980) Non-normed Index 0.9785
Bentler & Bonett’s (1980) NFI 0.9745
James, Mulaik, & Brett (1982) Parsimonious NFI 0.9745
Z-Test of Wilson & Hilferty (1931) 4.5535
Bollen (1986) Normed Index Rho1 0.9745
Bollen (1988) Non-normed Index Delta2 0.9785
Hoelter’s (1983) Critical N 220

Figure 13.16. Lord Data: Major Results for Hypothesis H1
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H1: W and X parallel, Y and Z parallel, all congeneric

Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.1862*fwx + 1.0000 ew
Std Err 0.2660 betawx
t Value 27.0180
x = 7.1862*fwx + 1.0000 ex
Std Err 0.2660 betawx
t Value 27.0180
y = 8.4420*fyz + 1.0000 ey
Std Err 0.2800 betayz
t Value 30.1494
z = 8.4420*fyz + 1.0000 ez
Std Err 0.2800 betayz
t Value 30.1494

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vewx 34.68865 1.64634 21.07
ex vewx 34.68865 1.64634 21.07
ey veyz 26.28513 1.39955 18.78
ez veyz 26.28513 1.39955 18.78

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

fwx fyz 1.00000

Figure 13.16. (continued)

The goodness-of-fit tests for the four hypotheses are summarized in the following
table.

Number of Degrees of
Hypothesis Parameters χ2 Freedom p-value ρ̂

H1 4 37.33 6 0.0000 1.0
H2 5 1.93 5 0.8583 0.8986
H3 8 36.21 2 0.0000 1.0
H4 9 0.70 1 0.4018 0.8986

The hypothesesH1 andH3, which positρ = 1, can be rejected. HypothesesH2 and
H4 seem to be consistent with the available data. SinceH2 is obtained by adding
four constraints toH4, you can testH2 versusH4 by computing the differences of
the chi-square statistics and their degrees of freedom, yielding a chi-square of 1.23
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with four degrees of freedom, which is obviously not significant. So hypothesisH2

is consistent with the available data.

The estimates ofρ for H2 andH4 are almost identical, about 0.90, indicating that
the speeded and unspeeded tests are measuring almost the same latent variable, even
though the hypotheses that stated they measured exactly the same latent variable are
rejected.

A Combined Measurement-Structural Model
with Reciprocal Influence and
Correlated Residuals

To illustrate a more complex model, this example uses some well-known data from
Haller and Butterworth (1960). Various models and analyses of these data are given
by Duncan, Haller, and Portes (1968), Jöreskog and Sörbom (1988), and Loehlin
(1987).

The study is concerned with the career aspirations of high-school students and how
these aspirations are affected by close friends. The data are collected from 442
seventeen-year-old boys in Michigan. There are 329 boys in the sample who named
another boy in the sample as a best friend. The observations to be analyzed consist
of the data from these 329 boys paired with the data from their best friends.

The method of data collection introduces two statistical problems. First, restricting
the analysis to boys whose best friends are in the original sample causes the reduced
sample to be biased. Second, since the data from a given boy may appear in two or
more observations, the observations are not independent. Therefore, any statistical
conclusions should be considered tentative. It is difficult to accurately assess the
effects of the dependence of the observations on the analysis, but it could be argued
on intuitive grounds that since each observation has data from two boys and since
it seems likely that many of the boys will appear in the data set at least twice, the
effective sample size may be as small as half of the reported 329 observations.

The correlation matrix is taken from Jöreskog and Sörbom (1988).
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title ’Peer Influences on Aspiration: Haller & Butterworth (1960)’;
data aspire(type=corr);

_type_=’corr’;
input _name_ $ riq rpa rses roa rea fiq fpa fses foa fea;
label riq=’Respondent: Intelligence’

rpa=’Respondent: Parental Aspiration’
rses=’Respondent: Family SES’
roa=’Respondent: Occupational Aspiration’
rea=’Respondent: Educational Aspiration’
fiq=’Friend: Intelligence’
fpa=’Friend: Parental Aspiration’
fses=’Friend: Family SES’
foa=’Friend: Occupational Aspiration’
fea=’Friend: Educational Aspiration’;

datalines;
riq 1. . . . . . . . . .
rpa .1839 1. . . . . . . . .
rses .2220 .0489 1. . . . . . . .
roa .4105 .2137 .3240 1. . . . . . .
rea .4043 .2742 .4047 .6247 1. . . . . .
fiq .3355 .0782 .2302 .2995 .2863 1. . . . .
fpa .1021 .1147 .0931 .0760 .0702 .2087 1. . . .
fses .1861 .0186 .2707 .2930 .2407 .2950 -.0438 1. . .
foa .2598 .0839 .2786 .4216 .3275 .5007 .1988 .3607 1. .
fea .2903 .1124 .3054 .3269 .3669 .5191 .2784 .4105 .6404 1.
;

The model analyzed by Jöreskog and Sörbom (1988) is displayed in the following
path diagram:

COV:

THETA2

THETA4

THETA1

THETA3

PSI11

PSI22

LAMBDA2

LAMBDA3

1.0

1.0
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GAM3

GAM4

GAM6

F_RAMB

F_FAMB
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FIQ
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RSES
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GAM8

GAM7

GAM5

BETA1 BETA2

Figure 13.17. Path Diagram: Career Aspiration – Jöreskog and Sörbom
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Two latent variables,f–ramb and f–famb, represent the respondent’s level of am-
bition and his best friend’s level of ambition, respectively. The model states that
the respondent’s ambition is determined by his intelligence and socioeconomic sta-
tus, his perception of his parents’ aspiration for him, and his friend’s socioeconomic
status and ambition. It is assumed that his friend’s intelligence and socioeconomic
status affect the respondent’s ambition only indirectly through his friend’s ambition.
Ambition is indexed by the manifest variables of occupational and educational aspi-
ration, which are assumed to have uncorrelated residuals. The path coefficient from
ambition to occupational aspiration is set to 1.0 to determine the scale of the ambition
latent variable.

This model can be analyzed with PROC CALIS using the LINEQS statement as fol-
lows, where the names of the parameters correspond to those used by Jöreskog and
Sörbom (1988). Since this TYPE=CORR data set does not contain an observation
with –TYPE–=’N’ giving the sample size, it is necessary to specify the degrees of
freedom (sample size minus one) with the EDF= option in the PROC CALIS state-
ment.

title2 ’Joreskog-Sorbom (1988) analysis 1’;
proc calis data=aspire edf=328;

lineqs /* measurement model for aspiration */
rea=lambda2 f_ramb + e_rea,
roa=f_ramb + e_roa,
fea=lambda3 f_famb + e_fea,
foa=f_famb + e_foa,

/* structural model of influences */
f_ramb=gam1 rpa + gam2 riq + gam3 rses +

gam4 fses + beta1 f_famb + d_ramb,
f_famb=gam8 fpa + gam7 fiq + gam6 fses +

gam5 rses + beta2 f_ramb + d_famb;
std d_ramb=psi11,

d_famb=psi22,
e_rea e_roa e_fea e_foa=theta:;

cov d_ramb d_famb=psi12,
rpa riq rses fpa fiq fses=cov:;

run;

Specify a name followed by a colon to represent a list of names formed by appending
numbers to the specified name. For example, in the COV statement, the line

rpa riq rses fpa fiq fses=cov:;

is equivalent to

rpa riq rses fpa fiq fses=cov1-cov15;
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The results from this analysis are as follows.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0814
Goodness of Fit Index (GFI) 0.9844
GFI Adjusted for Degrees of Freedom (AGFI) 0.9428
Root Mean Square Residual (RMR) 0.0202
Parsimonious GFI (Mulaik, 1989) 0.3281
Chi-Square 26.6972
Chi-Square DF 15
Pr > Chi-Square 0.0313
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0488
RMSEA 90% Lower Confidence Limit 0.0145
RMSEA 90% Upper Confidence Limit 0.0783
ECVI Estimate 0.2959
ECVI 90% Lower Confidence Limit 0.2823
ECVI 90% Upper Confidence Limit 0.3721
Probability of Close Fit 0.4876
Bentler’s Comparative Fit Index 0.9859
Normal Theory Reweighted LS Chi-Square 26.0113
Akaike’s Information Criterion -3.3028
Bozdogan’s (1987) CAIC -75.2437
Schwarz’s Bayesian Criterion -60.2437
McDonald’s (1989) Centrality 0.9824
Bentler & Bonett’s (1980) Non-normed Index 0.9576
Bentler & Bonett’s (1980) NFI 0.9694
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3231
Z-Test of Wilson & Hilferty (1931) 1.8625
Bollen (1986) Normed Index Rho1 0.9082
Bollen (1988) Non-normed Index Delta2 0.9864
Hoelter’s (1983) Critical N 309

Figure 13.18. Career Aspiration Data: J&S Analysis 1

Jöreskog and Sörbom (1988) present more detailed results from a second analysis in
which two constraints are imposed:

• The coefficients connecting the latent ambition variables are equal.

• The covariance of the disturbances of the ambition variables is zero.

This analysis can be performed by changing the namesbeta1 andbeta2 to beta and
omitting the line from the COV statement forpsi12:
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title2 ’Joreskog-Sorbom (1988) analysis 2’;
proc calis data=aspire edf=328;

lineqs /* measurement model for aspiration */
rea=lambda2 f_ramb + e_rea,
roa=f_ramb + e_roa,
fea=lambda3 f_famb + e_fea,
foa=f_famb + e_foa,

/* structural model of influences */
f_ramb=gam1 rpa + gam2 riq + gam3 rses +

gam4 fses + beta f_famb + d_ramb,
f_famb=gam8 fpa + gam7 fiq + gam6 fses +

gam5 rses + beta f_ramb + d_famb;
std d_ramb=psi11,

d_famb=psi22,
e_rea e_roa e_fea e_foa=theta:;

cov rpa riq rses fpa fiq fses=cov:;
run;

The results are displayed inFigure 13.19.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0820
Goodness of Fit Index (GFI) 0.9843
GFI Adjusted for Degrees of Freedom (AGFI) 0.9492
Root Mean Square Residual (RMR) 0.0203
Parsimonious GFI (Mulaik, 1989) 0.3718
Chi-Square 26.8987
Chi-Square DF 17
Pr > Chi-Square 0.0596
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0421
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0710
ECVI Estimate 0.2839
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.3592
Probability of Close Fit 0.6367
Bentler’s Comparative Fit Index 0.9880
Normal Theory Reweighted LS Chi-Square 26.1595
Akaike’s Information Criterion -7.1013
Bozdogan’s (1987) CAIC -88.6343
Schwarz’s Bayesian Criterion -71.6343
McDonald’s (1989) Centrality 0.9851
Bentler & Bonett’s (1980) Non-normed Index 0.9683
Bentler & Bonett’s (1980) NFI 0.9692
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3661
Z-Test of Wilson & Hilferty (1931) 1.5599
Bollen (1986) Normed Index Rho1 0.9183
Bollen (1988) Non-normed Index Delta2 0.9884
Hoelter’s (1983) Critical N 338

Figure 13.19. Career Aspiration Data: J&S Analysis 2
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

Covariance Structure Analysis: Maximum Likelihood Estimation

roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.0610*f_ramb + 1.0000 e_rea
Std Err 0.0892 lambda2
t Value 11.8923
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.0736*f_famb + 1.0000 e_fea
Std Err 0.0806 lambda3
t Value 13.3150

Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1801*f_famb + 0.2540*riq + 0.1637*rpa
Std Err 0.0391 beta 0.0419 gam2 0.0387 gam1
t Value 4.6031 6.0673 4.2274

+ 0.2211*rses + 0.0773*fses + 1.0000 d_ramb
0.0419 gam3 0.0415 gam4
5.2822 1.8626

f_famb = 0.1801*f_ramb + 0.0684*rses + 0.3306*fiq
Std Err 0.0391 beta 0.0387 gam5 0.0412 gam7
t Value 4.6031 1.7681 8.0331

+ 0.1520*fpa + 0.2184*fses + 1.0000 d_famb
0.0364 gam8 0.0395 gam6
4.1817 5.5320

Figure 13.19. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

riq 1.00000
rpa 1.00000
rses 1.00000
fiq 1.00000
fpa 1.00000
fses 1.00000
e_rea theta1 0.33764 0.05178 6.52
e_roa theta2 0.41205 0.05103 8.07
e_fea theta3 0.31337 0.04574 6.85
e_foa theta4 0.40381 0.04608 8.76
d_ramb psi11 0.28113 0.04640 6.06
d_famb psi22 0.22924 0.03889 5.89

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

riq rpa cov1 0.18390 0.05246 3.51
riq rses cov3 0.22200 0.05110 4.34
rpa rses cov2 0.04890 0.05493 0.89
riq fiq cov8 0.33550 0.04641 7.23
rpa fiq cov7 0.07820 0.05455 1.43
rses fiq cov9 0.23020 0.05074 4.54
riq fpa cov5 0.10210 0.05415 1.89
rpa fpa cov4 0.11470 0.05412 2.12
rses fpa cov6 0.09310 0.05438 1.71
fiq fpa cov10 0.20870 0.05163 4.04
riq fses cov12 0.18610 0.05209 3.57
rpa fses cov11 0.01860 0.05510 0.34
rses fses cov13 0.27070 0.04930 5.49
fiq fses cov15 0.29500 0.04824 6.12
fpa fses cov14 -0.04380 0.05476 -0.80

Figure 13.19. (continued)

The difference between the chi-square values for the two preceding models is
26.8987 - 26.6972= 0.2015 with 2 degrees of freedom, which is far from significant.
However, the chi-square test of the restricted model (analysis 2) against the alterna-
tive of a completely unrestricted covariance matrix yields ap-value of 0.0596, which
indicates that the model may not be entirely satisfactory (p-values from these data are
probably too small because of the dependence of the observations).

Loehlin (1987) points out that the models considered are unrealistic in at least two
aspects. First, the variables of parental aspiration, intelligence, and socioeconomic
status are assumed to be measured without error. Loehlin adds uncorrelated measure-
ment errors to the model and assumes, for illustrative purposes, that the reliabilities of
these variables are known to be 0.7, 0.8, and 0.9, respectively. In practice, these relia-
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bilities would need to be obtained from a separate study of the same or a very similar
population. If these constraints are omitted, the model is not identified. However,
constraining parameters to a constant in an analysis of a correlation matrix may make
the chi-square goodness-of-fit test inaccurate, so there is more reason to be skeptical
of thep-values. Second, the error terms for the respondent’s aspiration are assumed
to be uncorrelated with the corresponding terms for his friend. Loehlin introduces a
correlation between the two educational aspiration error terms and between the two
occupational aspiration error terms. These additions produce the following path dia-
gram for Loehlin’s model 1.
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Figure 13.20. Path Diagram: Career Aspiration – Loehlin
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The statements for fitting this model are as follows:

title2 ’Loehlin (1987) analysis: Model 1’;
proc calis data=aspire edf=328;

lineqs /* measurement model for aspiration */
rea=lambda2 f_ramb + e_rea,
roa=f_ramb + e_roa,
fea=lambda3 f_famb + e_fea,
foa=f_famb + e_foa,
/* measurement model for intelligence and environment */
rpa=.837 f_rpa + e_rpa,
riq=.894 f_riq + e_riq,
rses=.949 f_rses + e_rses,
fpa=.837 f_fpa + e_fpa,
fiq=.894 f_fiq + e_fiq,
fses=.949 f_fses + e_fses,

/* structural model of influences */
f_ramb=gam1 f_rpa + gam2 f_riq + gam3 f_rses +

gam4 f_fses + bet1 f_famb + d_ramb,
f_famb=gam8 f_fpa + gam7 f_fiq + gam6 f_fses +

gam5 f_rses + bet2 f_ramb + d_famb;
std d_ramb=psi11,

d_famb=psi22,
f_rpa f_riq f_rses f_fpa f_fiq f_fses=1,
e_rea e_roa e_fea e_foa=theta:,
e_rpa e_riq e_rses e_fpa e_fiq e_fses=err:;

cov d_ramb d_famb=psi12,
e_rea e_fea=covea,
e_roa e_foa=covoa,
f_rpa f_riq f_rses f_fpa f_fiq f_fses=cov:;

run;
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The results are displayed inFigure 13.21.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0366
Goodness of Fit Index (GFI) 0.9927
GFI Adjusted for Degrees of Freedom (AGFI) 0.9692
Root Mean Square Residual (RMR) 0.0149
Parsimonious GFI (Mulaik, 1989) 0.2868
Chi-Square 12.0132
Chi-Square DF 13
Pr > Chi-Square 0.5266
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0512
ECVI Estimate 0.3016
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.3392
Probability of Close Fit 0.9435
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 12.0168
Akaike’s Information Criterion -13.9868
Bozdogan’s (1987) CAIC -76.3356
Schwarz’s Bayesian Criterion -63.3356
McDonald’s (1989) Centrality 1.0015
Bentler & Bonett’s (1980) Non-normed Index 1.0041
Bentler & Bonett’s (1980) NFI 0.9862
James, Mulaik, & Brett (1982) Parsimonious NFI 0.2849
Z-Test of Wilson & Hilferty (1931) -0.0679
Bollen (1986) Normed Index Rho1 0.9523
Bollen (1988) Non-normed Index Delta2 1.0011
Hoelter’s (1983) Critical N 612

Figure 13.21. Career Aspiration Data: Loehlin Model 1
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.0840*f_ramb + 1.0000 e_rea
Std Err 0.0942 lambda2
t Value 11.5105
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1163*f_famb + 1.0000 e_fea
Std Err 0.0863 lambda3
t Value 12.9394

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1190*f_famb + 0.1837*f_rpa + 0.2800*f_riq
Std Err 0.1140 bet1 0.0504 gam1 0.0614 gam2
t Value 1.0440 3.6420 4.5618

+ 0.2262*f_rses + 0.0870*f_fses + 1.0000 d_ramb
0.0522 gam3 0.0548 gam4
4.3300 1.5884

f_famb = 0.1302*f_ramb + 0.0633*f_rses + 0.1688*f_fpa
Std Err 0.1207 bet2 0.0522 gam5 0.0493 gam8
t Value 1.0792 1.2124 3.4205

+ 0.3539*f_fiq + 0.2154*f_fses + 1.0000 d_famb
0.0674 gam7 0.0512 gam6
5.2497 4.2060

Figure 13.21. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea theta1 0.32707 0.05452 6.00
e_roa theta2 0.42307 0.05243 8.07
e_fea theta3 0.28715 0.04804 5.98
e_foa theta4 0.42240 0.04730 8.93
e_rpa err1 0.29584 0.07774 3.81
e_riq err2 0.20874 0.07832 2.67
e_rses err3 0.09887 0.07803 1.27
e_fpa err4 0.29987 0.07807 3.84
e_fiq err5 0.19988 0.07674 2.60
e_fses err6 0.10324 0.07824 1.32
d_ramb psi11 0.25418 0.04469 5.69
d_famb psi22 0.19698 0.03814 5.17

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.24677 0.07519 3.28
f_rpa f_rses cov2 0.06184 0.06945 0.89
f_riq f_rses cov3 0.26351 0.06687 3.94
f_rpa f_fpa cov4 0.15789 0.07873 2.01
f_riq f_fpa cov5 0.13085 0.07418 1.76
f_rses f_fpa cov6 0.11517 0.06978 1.65
f_rpa f_fiq cov7 0.10853 0.07362 1.47
f_riq f_fiq cov8 0.42476 0.07219 5.88
f_rses f_fiq cov9 0.27250 0.06660 4.09
f_fpa f_fiq cov10 0.27867 0.07530 3.70
f_rpa f_fses cov11 0.02383 0.06952 0.34
f_riq f_fses cov12 0.22135 0.06648 3.33
f_rses f_fses cov13 0.30156 0.06359 4.74
f_fpa f_fses cov14 -0.05623 0.06971 -0.81
f_fiq f_fses cov15 0.34922 0.06771 5.16
e_rea e_fea covea 0.02308 0.03139 0.74
e_roa e_foa covoa 0.11206 0.03258 3.44
d_ramb d_famb psi12 -0.00935 0.05010 -0.19

Figure 13.21. (continued)

Since thep-value for the chi-square test is 0.5266, this model clearly cannot be re-
jected. However, Schwarz’s Bayesian Criterion for this model (SBC = -63.3356) is
somewhat larger than for Jöreskog and Sörbom’s (1988) analysis 2 (SBC =-71.6343),
suggesting that a more parsimonious model would be desirable.
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Since it is assumed that the same model applies to all the boys in the sample, the path
diagram should be symmetric with respect to the respondent and friend. In particular,
the corresponding coefficients should be equal. By imposing equality constraints
on the 15 pairs of corresponding coefficients, this example obtains Loehlin’s model
2. The LINEQS model is as follows, where an OUTRAM= data set is created to
facilitate subsequent hypothesis tests:

title2 ’Loehlin (1987) analysis: Model 2’;
proc calis data=aspire edf=328 outram=ram2;

lineqs /* measurement model for aspiration */
rea=lambda f_ramb + e_rea, /* 1 ec! */
roa=f_ramb + e_roa,
fea=lambda f_famb + e_fea,
foa=f_famb + e_foa,
/* measurement model for intelligence and environment */
rpa=.837 f_rpa + e_rpa,
riq=.894 f_riq + e_riq,
rses=.949 f_rses + e_rses,
fpa=.837 f_fpa + e_fpa,
fiq=.894 f_fiq + e_fiq,
fses=.949 f_fses + e_fses,

/* structural model of influences */ /* 5 ec! */
f_ramb=gam1 f_rpa + gam2 f_riq + gam3 f_rses +

gam4 f_fses + beta f_famb + d_ramb,
f_famb=gam1 f_fpa + gam2 f_fiq + gam3 f_fses +

gam4 f_rses + beta f_ramb + d_famb;
std d_ramb=psi, /* 1 ec! */

d_famb=psi,
f_rpa f_riq f_rses f_fpa f_fiq f_fses=1,
e_rea e_fea=thetaea thetaea, /* 2 ec! */
e_roa e_foa=thetaoa thetaoa,
e_rpa e_fpa=errpa1 errpa2,
e_riq e_fiq=erriq1 erriq2,
e_rses e_fses=errses1 errses2;

cov d_ramb d_famb=psi12,
e_rea e_fea=covea,
e_roa e_foa = covoa,
f_rpa f_riq f_rses=cov1-cov3, /* 3 ec! */
f_fpa f_fiq f_fses=cov1-cov3,
f_rpa f_riq f_rses * f_fpa f_fiq f_fses = /* 3 ec! */

cov4 cov5 cov6
cov5 cov7 cov8
cov6 cov8 cov9;

run;
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The results are displayed inFigure 13.22.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0581
Goodness of Fit Index (GFI) 0.9884
GFI Adjusted for Degrees of Freedom (AGFI) 0.9772
Root Mean Square Residual (RMR) 0.0276
Parsimonious GFI (Mulaik, 1989) 0.6150
Chi-Square 19.0697
Chi-Square DF 28
Pr > Chi-Square 0.8960
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0194
ECVI Estimate 0.2285
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2664
Probability of Close Fit 0.9996
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 19.2372
Akaike’s Information Criterion -36.9303
Bozdogan’s (1987) CAIC -171.2200
Schwarz’s Bayesian Criterion -143.2200
McDonald’s (1989) Centrality 1.0137
Bentler & Bonett’s (1980) Non-normed Index 1.0174
Bentler & Bonett’s (1980) NFI 0.9781
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6086
Z-Test of Wilson & Hilferty (1931) -1.2599
Bollen (1986) Normed Index Rho1 0.9649
Bollen (1988) Non-normed Index Delta2 1.0106
Hoelter’s (1983) Critical N 713

Figure 13.22. Career Aspiration Data: Loehlin Model 2
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1007*f_ramb + 1.0000 e_rea
Std Err 0.0684 lambda
t Value 16.0879
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1007*f_famb + 1.0000 e_fea
Std Err 0.0684 lambda
t Value 16.0879

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1158*f_famb + 0.1758*f_rpa + 0.3223*f_riq
Std Err 0.0839 beta 0.0351 gam1 0.0470 gam2
t Value 1.3801 5.0130 6.8557

+ 0.2227*f_rses + 0.0756*f_fses + 1.0000 d_ramb
0.0363 gam3 0.0375 gam4
6.1373 2.0170

f_famb = 0.1158*f_ramb + 0.0756*f_rses + 0.1758*f_fpa
Std Err 0.0839 beta 0.0375 gam4 0.0351 gam1
t Value 1.3801 2.0170 5.0130

+ 0.3223*f_fiq + 0.2227*f_fses + 1.0000 d_famb
0.0470 gam2 0.0363 gam3
6.8557 6.1373

Figure 13.22. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.30662 0.03726 8.23
e_roa thetaoa 0.42295 0.03651 11.58
e_fea thetaea 0.30662 0.03726 8.23
e_foa thetaoa 0.42295 0.03651 11.58
e_rpa errpa1 0.30758 0.07511 4.09
e_riq erriq1 0.26656 0.07389 3.61
e_rses errses1 0.11467 0.07267 1.58
e_fpa errpa2 0.28834 0.07369 3.91
e_fiq erriq2 0.15573 0.06700 2.32
e_fses errses2 0.08814 0.07089 1.24
d_ramb psi 0.22456 0.02971 7.56
d_famb psi 0.22456 0.02971 7.56

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.26470 0.05442 4.86
f_rpa f_rses cov2 0.00176 0.04996 0.04
f_riq f_rses cov3 0.31129 0.05057 6.16
f_rpa f_fpa cov4 0.15784 0.07872 2.01
f_riq f_fpa cov5 0.11837 0.05447 2.17
f_rses f_fpa cov6 0.06910 0.04996 1.38
f_rpa f_fiq cov5 0.11837 0.05447 2.17
f_riq f_fiq cov7 0.43061 0.07258 5.93
f_rses f_fiq cov8 0.24967 0.05060 4.93
f_fpa f_fiq cov1 0.26470 0.05442 4.86
f_rpa f_fses cov6 0.06910 0.04996 1.38
f_riq f_fses cov8 0.24967 0.05060 4.93
f_rses f_fses cov9 0.30190 0.06362 4.75
f_fpa f_fses cov2 0.00176 0.04996 0.04
f_fiq f_fses cov3 0.31129 0.05057 6.16
e_rea e_fea covea 0.02160 0.03144 0.69
e_roa e_foa covoa 0.11208 0.03257 3.44
d_ramb d_famb psi12 -0.00344 0.04931 -0.07

Figure 13.22. (continued)

The test of Loehlin’s model 2 against model 1 yields a chi-square of
19.0697 - 12.0132 = 7.0565 with 15 degrees of freedom, which is clearly not
significant. Schwarz’s Bayesian Criterion (SBC) is also much lower for model 2
(-143.2200) than model 1 (-63.3356). Hence, model 2 seems preferable on both
substantive and statistical grounds.
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A question of substantive interest is whether the friend’s socioeconomic status (SES)
has a significant direct influence on a boy’s ambition. This can be addressed by
omitting the paths fromf–fses to f–ramb and fromf–rses to f–famb designated by
the parameter namegam4, yielding Loehlin’s model 3:

title2 ’Loehlin (1987) analysis: Model 3’;
data ram3(type=ram);

set ram2;
if _name_=’gam4’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram3;
run;
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The output is displayed inFigure 13.23.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 3

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0702
Goodness of Fit Index (GFI) 0.9858
GFI Adjusted for Degrees of Freedom (AGFI) 0.9731
Root Mean Square Residual (RMR) 0.0304
Parsimonious GFI (Mulaik, 1989) 0.6353
Chi-Square 23.0365
Chi-Square DF 29
Pr > Chi-Square 0.7749
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0295
ECVI Estimate 0.2343
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2780
Probability of Close Fit 0.9984
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 23.5027
Akaike’s Information Criterion -34.9635
Bozdogan’s (1987) CAIC -174.0492
Schwarz’s Bayesian Criterion -145.0492
McDonald’s (1989) Centrality 1.0091
Bentler & Bonett’s (1980) Non-normed Index 1.0112
Bentler & Bonett’s (1980) NFI 0.9736
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6274
Z-Test of Wilson & Hilferty (1931) -0.7563
Bollen (1986) Normed Index Rho1 0.9590
Bollen (1988) Non-normed Index Delta2 1.0071
Hoelter’s (1983) Critical N 607

Figure 13.23. Career Aspiration Data: Loehlin Model 3

The chi-square value for testing model 3 versus model 2 is
23.0365 - 19.0697 = 3.9668 with 1 degree of freedom and ap-value of 0.0464.
Although the parameter is of marginal significance, the estimate in model 2 (0.0756)
is small compared to the other coefficients, and SBC indicates that model 3 is
preferable to model 2.

Another important question is whether the reciprocal influences between the respon-
dent’s and friend’s ambitions are needed in the model. To test whether these paths
are zero, set the parameterbeta for the paths linkingf–ramb andf–famb to zero to
obtain Loehlin’s model 4:
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title2 ’Loehlin (1987) analysis: Model 4’;
data ram4(type=ram);

set ram2;
if _name_=’beta’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram4;
run;

The output is displayed inFigure 13.24.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0640
Goodness of Fit Index (GFI) 0.9873
GFI Adjusted for Degrees of Freedom (AGFI) 0.9760
Root Mean Square Residual (RMR) 0.0304
Parsimonious GFI (Mulaik, 1989) 0.6363
Chi-Square 20.9981
Chi-Square DF 29
Pr > Chi-Square 0.8592
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0234
ECVI Estimate 0.2281
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2685
Probability of Close Fit 0.9994
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 20.8040
Akaike’s Information Criterion -37.0019
Bozdogan’s (1987) CAIC -176.0876
Schwarz’s Bayesian Criterion -147.0876
McDonald’s (1989) Centrality 1.0122
Bentler & Bonett’s (1980) Non-normed Index 1.0150
Bentler & Bonett’s (1980) NFI 0.9759
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6289
Z-Test of Wilson & Hilferty (1931) -1.0780
Bollen (1986) Normed Index Rho1 0.9626
Bollen (1988) Non-normed Index Delta2 1.0095
Hoelter’s (1983) Critical N 666

Figure 13.24. Career Aspiration Data: Loehlin Model 4
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1051*f_ramb + 1.0000 e_rea
Std Err 0.0680 lambda
t Value 16.2416
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1051*f_famb + 1.0000 e_fea
Std Err 0.0680 lambda
t Value 16.2416

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0 f_famb + 0.1776*f_rpa + 0.3486*f_riq
Std Err 0.0361 gam1 0.0463 gam2
t Value 4.9195 7.5362

+ 0.2383*f_rses + 0.1081*f_fses + 1.0000 d_ramb
0.0355 gam3 0.0299 gam4
6.7158 3.6134

f_famb = 0 f_ramb + 0.1081*f_rses + 0.1776*f_fpa
Std Err 0.0299 gam4 0.0361 gam1
t Value 3.6134 4.9195

+ 0.3486*f_fiq + 0.2383*f_fses + 1.0000 d_famb
0.0463 gam2 0.0355 gam3
7.5362 6.7158

Figure 13.24. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.30502 0.03728 8.18
e_roa thetaoa 0.42429 0.03645 11.64
e_fea thetaea 0.30502 0.03728 8.18
e_foa thetaoa 0.42429 0.03645 11.64
e_rpa errpa1 0.31354 0.07543 4.16
e_riq erriq1 0.29611 0.07299 4.06
e_rses errses1 0.12320 0.07273 1.69
e_fpa errpa2 0.29051 0.07374 3.94
e_fiq erriq2 0.18181 0.06611 2.75
e_fses errses2 0.09873 0.07109 1.39
d_ramb psi 0.22738 0.03140 7.24
d_famb psi 0.22738 0.03140 7.24

Figure 13.24. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

Covariance Structure Analysis: Maximum Likelihood Estimation

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.27241 0.05520 4.94
f_rpa f_rses cov2 0.00476 0.05032 0.09
f_riq f_rses cov3 0.32463 0.05089 6.38
f_rpa f_fpa cov4 0.16949 0.07863 2.16
f_riq f_fpa cov5 0.13539 0.05407 2.50
f_rses f_fpa cov6 0.07362 0.05027 1.46
f_rpa f_fiq cov5 0.13539 0.05407 2.50
f_riq f_fiq cov7 0.46893 0.06980 6.72
f_rses f_fiq cov8 0.26289 0.05093 5.16
f_fpa f_fiq cov1 0.27241 0.05520 4.94
f_rpa f_fses cov6 0.07362 0.05027 1.46
f_riq f_fses cov8 0.26289 0.05093 5.16
f_rses f_fses cov9 0.30880 0.06409 4.82
f_fpa f_fses cov2 0.00476 0.05032 0.09
f_fiq f_fses cov3 0.32463 0.05089 6.38
e_rea e_fea covea 0.02127 0.03150 0.68
e_roa e_foa covoa 0.11245 0.03258 3.45
d_ramb d_famb psi12 0.05479 0.02699 2.03

Figure 13.24. (continued)

The chi-square value for testing model 4 versus model 2 is
20.9981 - 19.0697 = 1.9284 with 1 degree of freedom and ap-value of 0.1649.
Hence, there is little evidence of reciprocal influence.

Loehlin’s model 2 has not only the direct paths connecting the latent ambition vari-
ables f–ramb and f–famb but also a covariance between the disturbance terms
d–ramb andd–famb to allow for other variables omitted from the model that might
jointly influence the respondent and his friend. To test the hypothesis that this covari-
ance is zero, set the parameterpsi12 to zero, yielding Loehlin’s model 5:

title2 ’Loehlin (1987) analysis: Model 5’;
data ram5(type=ram);

set ram2;
if _name_=’psi12’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram5;
run;
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The output is displayed inFigure 13.25.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0582
Goodness of Fit Index (GFI) 0.9884
GFI Adjusted for Degrees of Freedom (AGFI) 0.9780
Root Mean Square Residual (RMR) 0.0276
Parsimonious GFI (Mulaik, 1989) 0.6370
Chi-Square 19.0745
Chi-Square DF 29
Pr > Chi-Square 0.9194
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0152
ECVI Estimate 0.2222
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2592
Probability of Close Fit 0.9998
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 19.2269
Akaike’s Information Criterion -38.9255
Bozdogan’s (1987) CAIC -178.0111
Schwarz’s Bayesian Criterion -149.0111
McDonald’s (1989) Centrality 1.0152
Bentler & Bonett’s (1980) Non-normed Index 1.0186
Bentler & Bonett’s (1980) NFI 0.9781
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6303
Z-Test of Wilson & Hilferty (1931) -1.4014
Bollen (1986) Normed Index Rho1 0.9661
Bollen (1988) Non-normed Index Delta2 1.0118
Hoelter’s (1983) Critical N 733

Figure 13.25. Career Aspiration Data: Loehlin Model 5
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1009*f_ramb + 1.0000 e_rea
Std Err 0.0684 lambda
t Value 16.1041
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1009*f_famb + 1.0000 e_fea
Std Err 0.0684 lambda
t Value 16.1041

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1107*f_famb + 0.1762*f_rpa + 0.3235*f_riq
Std Err 0.0428 beta 0.0350 gam1 0.0435 gam2
t Value 2.5854 5.0308 7.4435

+ 0.2233*f_rses + 0.0770*f_fses + 1.0000 d_ramb
0.0353 gam3 0.0323 gam4
6.3215 2.3870

f_famb = 0.1107*f_ramb + 0.0770*f_rses + 0.1762*f_fpa
Std Err 0.0428 beta 0.0323 gam4 0.0350 gam1
t Value 2.5854 2.3870 5.0308

+ 0.3235*f_fiq + 0.2233*f_fses + 1.0000 d_famb
0.0435 gam2 0.0353 gam3
7.4435 6.3215

Figure 13.25. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.30645 0.03721 8.24
e_roa thetaoa 0.42304 0.03650 11.59
e_fea thetaea 0.30645 0.03721 8.24
e_foa thetaoa 0.42304 0.03650 11.59
e_rpa errpa1 0.30781 0.07510 4.10
e_riq erriq1 0.26748 0.07295 3.67
e_rses errses1 0.11477 0.07265 1.58
e_fpa errpa2 0.28837 0.07366 3.91
e_fiq erriq2 0.15653 0.06614 2.37
e_fses errses2 0.08832 0.07088 1.25
d_ramb psi 0.22453 0.02973 7.55
d_famb psi 0.22453 0.02973 7.55

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.26494 0.05436 4.87
f_rpa f_rses cov2 0.00185 0.04995 0.04
f_riq f_rses cov3 0.31164 0.05039 6.18
f_rpa f_fpa cov4 0.15828 0.07846 2.02
f_riq f_fpa cov5 0.11895 0.05383 2.21
f_rses f_fpa cov6 0.06924 0.04993 1.39
f_rpa f_fiq cov5 0.11895 0.05383 2.21
f_riq f_fiq cov7 0.43180 0.07084 6.10
f_rses f_fiq cov8 0.25004 0.05039 4.96
f_fpa f_fiq cov1 0.26494 0.05436 4.87
f_rpa f_fses cov6 0.06924 0.04993 1.39
f_riq f_fses cov8 0.25004 0.05039 4.96
f_rses f_fses cov9 0.30203 0.06360 4.75
f_fpa f_fses cov2 0.00185 0.04995 0.04
f_fiq f_fses cov3 0.31164 0.05039 6.18
e_rea e_fea covea 0.02120 0.03094 0.69
e_roa e_foa covoa 0.11197 0.03254 3.44
d_ramb d_famb 0

Figure 13.25. (continued)

The chi-square value for testing model 5 versus model 2 is
19.0745 - 19.0697 = 0.0048 with 1 degree of freedom. Omitting the covari-
ance between the disturbance terms, therefore, causes hardly any deterioration in the
fit of the model.
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These data fail to provide evidence of direct reciprocal influence between the re-
spondent’s and friend’s ambitions or of a covariance between the disturbance terms
when these hypotheses are considered separately. Notice, however, that the covari-
ancepsi12 between the disturbance terms increases from -0.003344 for model 2 to
0.05479 for model 4. Before you conclude that all of these paths can be omitted from
the model, it is important to test both hypotheses together by setting bothbeta and
psi12 to zero as in Loehlin’s model 7:

title2 ’Loehlin (1987) analysis: Model 7’;
data ram7(type=ram);

set ram2;
if _name_=’psi12’|_name_=’beta’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram7;
run;
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The relevant output is displayed inFigure 13.26.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0773
Goodness of Fit Index (GFI) 0.9846
GFI Adjusted for Degrees of Freedom (AGFI) 0.9718
Root Mean Square Residual (RMR) 0.0363
Parsimonious GFI (Mulaik, 1989) 0.6564
Chi-Square 25.3466
Chi-Square DF 30
Pr > Chi-Square 0.7080
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0326
ECVI Estimate 0.2350
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2815
Probability of Close Fit 0.9975
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 25.1291
Akaike’s Information Criterion -34.6534
Bozdogan’s (1987) CAIC -178.5351
Schwarz’s Bayesian Criterion -148.5351
McDonald’s (1989) Centrality 1.0071
Bentler & Bonett’s (1980) Non-normed Index 1.0084
Bentler & Bonett’s (1980) NFI 0.9709
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6473
Z-Test of Wilson & Hilferty (1931) -0.5487
Bollen (1986) Normed Index Rho1 0.9564
Bollen (1988) Non-normed Index Delta2 1.0055
Hoelter’s (1983) Critical N 568

Figure 13.26. Career Aspiration Data: Loehlin Model 7
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1037*f_ramb + 1.0000 e_rea
Std Err 0.0678 lambda
t Value 16.2701
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1037*f_famb + 1.0000 e_fea
Std Err 0.0678 lambda
t Value 16.2701

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0 f_famb + 0.1765*f_rpa + 0.3573*f_riq
Std Err 0.0360 gam1 0.0461 gam2
t Value 4.8981 7.7520

+ 0.2419*f_rses + 0.1109*f_fses + 1.0000 d_ramb
0.0363 gam3 0.0306 gam4
6.6671 3.6280

f_famb = 0 f_ramb + 0.1109*f_rses + 0.1765*f_fpa
Std Err 0.0306 gam4 0.0360 gam1
t Value 3.6280 4.8981

+ 0.3573*f_fiq + 0.2419*f_fses + 1.0000 d_famb
0.0461 gam2 0.0363 gam3
7.7520 6.6671

Figure 13.26. (continued)
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.31633 0.03648 8.67
e_roa thetaoa 0.42656 0.03610 11.82
e_fea thetaea 0.31633 0.03648 8.67
e_foa thetaoa 0.42656 0.03610 11.82
e_rpa errpa1 0.31329 0.07538 4.16
e_riq erriq1 0.30776 0.07307 4.21
e_rses errses1 0.14303 0.07313 1.96
e_fpa errpa2 0.29286 0.07389 3.96
e_fiq erriq2 0.19193 0.06613 2.90
e_fses errses2 0.11804 0.07147 1.65
d_ramb psi 0.21011 0.02940 7.15
d_famb psi 0.21011 0.02940 7.15

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.27533 0.05552 4.96
f_rpa f_rses cov2 0.00611 0.05085 0.12
f_riq f_rses cov3 0.33510 0.05150 6.51
f_rpa f_fpa cov4 0.17099 0.07872 2.17
f_riq f_fpa cov5 0.13859 0.05431 2.55
f_rses f_fpa cov6 0.07563 0.05077 1.49
f_rpa f_fiq cov5 0.13859 0.05431 2.55
f_riq f_fiq cov7 0.48105 0.06993 6.88
f_rses f_fiq cov8 0.27235 0.05157 5.28
f_fpa f_fiq cov1 0.27533 0.05552 4.96
f_rpa f_fses cov6 0.07563 0.05077 1.49
f_riq f_fses cov8 0.27235 0.05157 5.28
f_rses f_fses cov9 0.32046 0.06517 4.92
f_fpa f_fses cov2 0.00611 0.05085 0.12
f_fiq f_fses cov3 0.33510 0.05150 6.51
e_rea e_fea covea 0.04535 0.02918 1.55
e_roa e_foa covoa 0.12085 0.03214 3.76
d_ramb d_famb 0

Figure 13.26. (continued)

When model 7 is tested against models 2, 4, and 5, thep-values are respectively
0.0433, 0.0370, and 0.0123, indicating that the combined effect of the reciprocal in-
fluence and the covariance of the disturbance terms is statistically significant. Thus,
the hypothesis tests indicate that it is acceptable to omit either the reciprocal influ-
ences or the covariance of the disturbances but not both.
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It is also of interest to test the covariances between the error terms for educational
(covea) and occupational aspiration (covoa), since these terms are omitted from
Jöreskog and Sörbom’s models. Constrainingcovea andcovoa to zero produces
Loehlin’s model 6:

title2 ’Loehlin (1987) analysis: Model 6’;
data ram6(type=ram);

set ram2;
if _name_=’covea’|_name_=’covoa’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram6;
run;
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The relevant output is displayed inFigure 13.27.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 6

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.1020
Goodness of Fit Index (GFI) 0.9802
GFI Adjusted for Degrees of Freedom (AGFI) 0.9638
Root Mean Square Residual (RMR) 0.0306
Parsimonious GFI (Mulaik, 1989) 0.6535
Chi-Square 33.4475
Chi-Square DF 30
Pr > Chi-Square 0.3035
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0187
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0471
ECVI Estimate 0.2597
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.3164
Probability of Close Fit 0.9686
Bentler’s Comparative Fit Index 0.9958
Normal Theory Reweighted LS Chi-Square 32.9974
Akaike’s Information Criterion -26.5525
Bozdogan’s (1987) CAIC -170.4342
Schwarz’s Bayesian Criterion -140.4342
McDonald’s (1989) Centrality 0.9948
Bentler & Bonett’s (1980) Non-normed Index 0.9937
Bentler & Bonett’s (1980) NFI 0.9616
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6411
Z-Test of Wilson & Hilferty (1931) 0.5151
Bollen (1986) Normed Index Rho1 0.9425
Bollen (1988) Non-normed Index Delta2 0.9959
Hoelter’s (1983) Critical N 431

Figure 13.27. Career Aspiration Data: Loehlin Model 6

The chi-square value for testing model 6 versus model 2 is
33.4476 - 19.0697 = 14.3779 with 2 degrees of freedom and ap-value of 0.0008,
indicating that there is considerable evidence of correlation between the error terms.

The following table summarizes the results from Loehlin’s seven models.

Model χ2 df p-value SBC
1. Full model 12.0132 13 0.5266 -63.3356
2. Equality constraints 19.0697 28 0.8960 -143.2200
3. No SES path 23.0365 29 0.7749 -145.0492
4. No reciprocal influence 20.9981 29 0.8592 -147.0876
5. No disturbance correlation 19.0745 29 0.9194 -149.0111
6. No error correlation 33.4475 30 0.3035 -140.4342
7. Constraints from both 4 & 5 25.3466 30 0.7080 -148.5351
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For comparing models, you can use a DATA step to compute the differences of the
chi-square statistics andp-values.

data _null_;
array achisq[7] _temporary_

(12.0132 19.0697 23.0365 20.9981 19.0745 33.4475 25.3466);
array adf[7] _temporary_

(13 28 29 29 29 30 30);
retain indent 16;
file print;
input ho ha @@;
chisq = achisq[ho] - achisq[ha];
df = adf[ho] - adf[ha];
p = 1 - probchi( chisq, df);
if _n_ = 1 then put

/ +indent ’model comparison chi**2 df p-value’
/ +indent ’---------------------------------------’;

put +indent +3 ho ’ versus ’ ha @18 +indent chisq 8.4 df 5. p 9.4;
datalines;
2 1 3 2 4 2 5 2 7 2 7 4 7 5 6 2
;

The DATA step displays the following table inFigure 13.28.

model comparison chi**2 df p-value
---------------------------------------

2 versus 1 7.0565 15 0.9561
3 versus 2 3.9668 1 0.0464
4 versus 2 1.9284 1 0.1649
5 versus 2 0.0048 1 0.9448
7 versus 2 6.2769 2 0.0433
7 versus 4 4.3485 1 0.0370
7 versus 5 6.2721 1 0.0123
6 versus 2 14.3778 2 0.0008

Figure 13.28. Career Aspiration Data: Model Comparisons

Although none of the seven models can be rejected when tested against the alterna-
tive of an unrestricted covariance matrix, the model comparisons make it clear that
there are important differences among the models. Schwarz’s Bayesian Criterion in-
dicates model 5 as the model of choice. The constraints added to model 5 in model
7 can be rejected (p=0.0123), while model 5 cannot be rejected when tested against
the less-constrained model 2 (p=0.9448). Hence, among the small number of mod-
els considered, model 5 has strong statistical support. However, as Loehlin (1987,
p. 106) points out, many other models for these data could be constructed. Further
analysis should consider, in addition to simple modifications of the models, the pos-
sibility that more than one friend could influence a boy’s aspirations, and that a boy’s
ambition might have some effect on his choice of friends. Pursuing such theories
would be statistically challenging.
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Overview

In the latest version of SAS software, all SAS/STAT procedures use the Output
Delivery System (ODS) to manage their output. This includes managing the form
in which the output appears as well as its organization and format. The default for
SAS/STAT procedures is to produce the usual SAS listing file. However, by using
the features of the Output Delivery System, you can make changes to the format and
appearance of your SAS output. For example, you can

• display your output in hypertext markup language (HTML)

• display your output in Rich Text Format (RTF), PDF, or PostScript

• create SAS data sets directly from output tables

• select or exclude individual output objects

• customize the layout, format, and headers of your output

ODS features can provide you with a powerful tool for managing your output. This
chapter provides background material and illustrates typical applications of ODS with
SAS/STAT software.

For complete documentation on the Output Delivery System, refer to theSAS Output
Delivery System User’s Guide.

The Output Delivery System

Output Objects and ODS Destinations

All SAS procedures produceoutput objectsthat the Output Delivery System delivers
to variousODS destinations, according to the default specifications for the procedure
or to your own specifications.

All output objects (for example, a table of parameter estimates) consist of two com-
ponent parts:

• the data component, which consists of the results computed by a SAS proce-
dure

• the template, which contains rules for formatting and displaying the results
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When you invoke a SAS procedure, the procedure sends all output to the Output
Delivery System. ODS then routes the output to all open destinations. You define
the form that the output should take when you specify an ODS destination. Some
supported destinations are as follows:

• LISTING destination (the standard SAS listing), which is the default

• HTML destination, for hypertext markup language

• RTF, for inclusion in Microsoft Word

• PDF, PostScript, and PCL, for high-fidelity printers

• OUTPUT destination, SAS data set

• DOCUMENT destination, for modifying and replaying your output without
rerunning the procedure that created it

You can activate multiple ODS destinations at the same time, so that a single proce-
dure step can route output to multiple destinations. If you do not supply any ODS
statements, ODS delivers all output to the SAS listing, which is the default.

Each output object has an associated template that defines its presentation format.
You can modify the presentation of the output by using the TEMPLATE procedure
to alter these templates or to create new templates. You can also specify stylistic
elements for ODS destinations, such as cell formats and headers, column ordering,
colors, and fonts. For detailed information, refer to the chapter titled “The Template
Procedure” in theSAS Output Delivery System User’s Guide.

Using the Output Delivery System

The ODS statement is a global statement that enables you to provide instructions
to the Output Delivery System. You can use ODS statements to specify options for
different ODS destinations, select templates to format your output, and select and
exclude output. You can also display the names of individual output tables as they
are generated.

In order to select, exclude, or modify a table, you must first know its name. You can
obtain the table names in several ways:

• For any SAS/STAT procedure, you can obtain table names from the individual
procedure chapter or from the individual procedure section of the SAS online
Help system.

• For any SAS procedure, you can use the SAS Explorer window to view the
names of the tables created in your SAS run (see the section“Using ODS with
the SAS Explorer”on page 277 for more information).

• For any SAS procedure, you can use the ODS TRACE statement to find the
names of tables created in your SAS run. The ODS TRACE statement writes
identifying information to the SAS log (or, optionally, to the SAS listing) for
each generated output table.
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Specify the ODS TRACE ON statement prior to the procedure statements that create
the output for which you want information. For example, the following statements
write the trace record for the specific tables created in this REG procedure step.

ods trace on;
proc reg;

model y=x;
model z=x;

run;
ods trace off;

By default, the trace record is written to the SAS log, as displayed inFigure 14.1.
Alternatively, you can specify the LISTING option, which writes the information,
interleaved with the procedure output, to the SAS listing (seeExample 14.3).

ods trace on;
proc reg;

model y=x;
model z=x;

run;

.

.

.

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: Stat.REG.ParameterEstimates
Path: Reg.MODEL1.Fit.y.ParameterEstimates
-------------

.

.

.

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: Stat.REG.ParameterEstimates
Path: Reg.MODEL2.Fit.z.ParameterEstimates
-------------

Figure 14.1. Partial Contents of the SAS Log: Result of the ODS TRACE ON
Statement

Figure 14.1displays the trace record, which contains the name of each created table
and its associated label, template, and path. The label provides a description of the
table. The template name displays the name of the template used to format the table.
The path shows the output hierarchy to which the table belongs.

The fully qualified path is given in the trace record. A partially qualified path consists
of any part of the full path that begins immediately after a period (. ) and continues
to the end of the full path.
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For example, the full path for the parameter estimates for the first model in the pre-
ceding regression analysis is

Reg.Model1.Fit.y.ParameterEstimates

Therefore, partially qualified paths for the table are

Model1.fit.y.ParameterEstimates
fit.y.ParameterEstimates
y.ParameterEstimates

To refer to a table (in order to select or exclude it from display, for example), specify
either the table name or the table’s fully or partially qualified path. You may want to
use qualified paths when your SAS program creates several tables that have the same
name, as in the preceding example. In such a case, you can use a partially qualified
path to select a subset of tables, or you can use a fully qualified path to select a
particular table.

You specify the tables that ODS selects or excludes with the ODS SELECT or ODS
EXCLUDE statement. Suppose that you want to display only the tables of parameter
estimates from the preceding regression analysis. You can give any of the following
statements (before invoking the REG procedure) to display both tables of parameter
estimates. For this example, these statements are equivalent:

ods select Reg.Model1.Fit.y.ParameterEstimates
Reg.Model1.Fit.z.ParameterEstimates;

ods select y.ParameterEstimates z.ParameterEstimates;

ods select ParameterEstimates;

The first ODS SELECT statement specifies the full path for both tables. The second
statement specifies the partially qualified path for both tables. The third statement
specifies the single name “ParameterEstimates,” which is shared by both tables.

The Output Delivery System records the specified table names in its internal selection
or exclusion list. ODS then processes the output it receives. Note that ODS maintains
an overall selection or exclusion list that pertains to all ODS destinations, and it
maintains a separate selection or exclusion list for each ODS destination. The list for
a specific destination provides the primary filtering step. Restrictions you specify in
the overall list are added to the destination-specific lists.

Suppose, for example, that your LISTING exclusion list (that is, the list of tables you
want to exclude from the SAS listing) contains the “FitStatistics” table, which you
specify with the statement

ods listing exclude FitStatistics;
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Suppose also that your overall selection list (that is, the list of tables you want to se-
lect for all destinations) contains the tables “FitStatistics” and “ParameterEstimates,”
which you specify with the statement

ods select ParameterEstimates FitStatistics;

The Output Delivery System then sends only the “ParameterEstimates” and
“FitStatistics” tables to all open destinations except the SAS listing. It sends only
the “ParameterEstimates” table to the SAS listing because the table “FitStatistics” is
excluded from that destination.

Some SAS procedures, such as the REG or the GLM procedure, support run-group
processing, which means that a RUN statement does not end the procedure. A QUIT
statement explicitly ends such procedures; if you omit the QUIT statement, a PROC
or a DATA statement implicitly ends such procedures. When you use the Output
Delivery System with procedures that support run-group processing, it is good pro-
gramming practice to specify a QUIT statement at the end of the procedure. This
causes ODS to clear the selection or exclusion list, and you are less likely to en-
counter unexpected results.

Using ODS with the SAS Explorer

The SAS Explorer enables you to examine the various parts of the SAS System.
Figure 14.2displays the Results window from the SAS Explorer. The Results node
retains a running record of your output as it is generated during your SAS session.
Figure 14.2displays the output hierarchy when the preceding statements are exe-
cuted.

Figure 14.2. The Results Window from the SAS Explorer
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When you click on the output table names in the Results window, you link directly to
the output in the output window or, if you specify the HTML destination, in an HTML
browser. The items on the left-hand side of the Results node are output directories.
The items on the right-hand side of the Results node are the names of the actual
output objects. You can also use the Explorer to determine names of the templates
associated with each output table.

Controlling Output Appearance with Templates

A template is an abstract description of how output should appear when it is for-
matted. Templates describe several characteristics of the output, including headers,
column ordering, style information, justification, and formats. All SAS/STAT proce-
dures have templates, which are stored in the SASHELP library.

You can create or modify a template with the TEMPLATE procedure. For example,
you can specify different column headings or different orderings of columns in a
table. You can find the template associated with a particular output table or column
by using the ODS TRACE statement or the SAS Explorer.

You can display the contents of a template by executing the following statements:

proc template;
source TemplateName ;

run;

whereTemplateNameis the name of the template.

Suppose you want to change the way all of the analysis of variance tests are displayed
by the GLM procedure. You can redefine the templates that the procedure uses with
PROC TEMPLATE. For example, in order to have the “SS” and “MS” columns al-
ways displayed with more digits, you can redefine the columns used by the procedure
to display them:

proc template;
edit Stat.GLM.SS;

format=Best16.;
end;
edit Stat.GLM.MS;

format=Best16.;
end;

run;

The BESTw. format enables you to display the most information about a value, ac-
cording to the available field width. The BEST16. format specifies a field width of
16. Refer to the chapter on formats in theSAS Language Reference: Dictionaryfor
detailed information.

When you run PROC TEMPLATE to modify or edit a template, the template is stored
in your SASUSER library (seeExample 14.10). You can then modify the path that
ODS uses to look up templates with the ODS PATH statement in order to access these
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new templates in a later SAS session. This means that you can create a default set of
templates to modify the presentation format for all your SAS output. (Note that you
can specify the SHOW option in the ODS PATH statement to determine the current
path.)

It is important to note the difference between a style template and a column or ta-
ble template. A column or table template applies to the specific columns or tables
that reference the template. For example, the preceding statements that modify the
“Stat.GLM.SS” and “Stat.GLM.MS” templates provide an example of modifying
specific column templates.

A style template applies to an entire SAS job and can be specified with the STYLE=
option in a valid ODS destination, such as HTML, RTF, or PDF. Notice that style
definitions do not apply to the LISTING destination, which uses the SAS monospace
format. For example, you can specify a style as follows:

ods html style=Styles.Brown;

A style template controls stylistic elements such as colors, fonts, and presentation
attributes. When you use a style template, you ensure that all your output shares a
consistent presentation style.

You can also reference style information in table templates for individual headers and
data cells. You can modify either type of template with the TEMPLATE procedure.
For information on creating your own styles, refer to theSAS Output Delivery System
User’s Guide.

Interaction between ODS and the NOPRINT Option

Most SAS/STAT procedures support a NOPRINT option that you can use when you
want to create an output data set but do not want any displayed output. Typically, you
use an OUTPUT statement in addition to the procedure’s NOPRINT option to create
a data set and suppress displayed output.

You can also use the Output Delivery System to create output data sets by using the
ODS OUTPUT statement. However, if you specify the NOPRINT option, the proce-
dure may not send any output to the Output Delivery System. Therefore, when you
want to create output data sets through ODS (using the ODS OUTPUT statement),
and you want to suppress the display of all output, specify

ods select none;

or close the active ODS destinations by entering the command

ods DestinationName close;

whereDestinationNameis the name of the active ODS destination (for example,
ODS HTML CLOSE).
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Note: The ODS statement does not instruct a procedure to generate output: instead, it
specifies how the Output Delivery System should manage the table once it is created.
You must ensure that the proper options are in effect. For example, the following
code does not create the requested data setParms.

proc glm;
ods output ParameterEstimates=Parms;
class x;
model y=x;
run;

quit;

When you execute these statements, the following message is displayed in the log:

WARNING: Output ’ParameterEstimates’ was not created.

The data setParms is not created because the table of parameter estimates is gener-
ated only when the SOLUTION option is specified in the MODEL statement in the
GLM procedure.

Compatibility Issues with Version 6 Prototypes

• In Version 6, the MIXED and GENMOD procedures use a prototype of the
Output Delivery System. This prototype provides the MAKE statement in or-
der to create data sets from output tables, and this statement remains supported
in these procedures. However, the new mechanism to create SAS data sets from
output tables is the ODS OUTPUT statement for all procedures.

• The Version 6 prototype of the ODS output hierarchy is stored in a SAS catalog.
The latest version of SAS software has a more flexible item-store file type used
to store templates and ODS output.

• The Version 6 prototype ODS uses two macro variables (–DISK– and

–PRINT–) to regulate the saving of an output hierarchy. The latest version
of SAS software uses the global ODS statement to accomplish this task.

• The Version 6 PROC TEMPLATE and PROC OUTPUT syntax is not compat-
ible with the latest version of SAS software.
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Examples

The following examples display typical uses of the Output Delivery System.

Example 14.1. Creating HTML Output with ODS

This example demonstrates how you can use the ODS HTML statement to display
your output in hypertext markup language (HTML).

The following statements create the data setscores, which contains the golf scores
for boys and girls in a physical education class. The TTEST procedure is then invoked
to compare the scores.

The ODS HTML statement specifies the name of the file to contain the HTML output.

data scores;
input Gender $ Score @@;
datalines;

f 75 f 76 f 80 f 77 f 80 f 77 f 73
m 82 m 80 m 85 m 85 m 78 m 87 m 82
;
run;

ods html body=’ttest.htm’;

title ’Comparing Group Means’;
proc ttest ;

class Gender;
var Score;

run;
ods html close;

By default, the SAS listing receives all output generated during your SAS run. In
this example, the ODS HTML statement opens the HTML destination, and both des-
tinations receive the generated output.Output 14.1.1displays the results as they are
rendered in the SAS listing.

Note that you must specify the following statement before you can view your output
in a browser.

ods html close;

If you do not close the HTML destination, your HTML file may contain no out-
put, or you may experience other unexpected results.Output 14.1.2displays the file
ttest.htm, which is specified in the preceding ODS HTML statement.
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Output 14.1.1. Results for PROC TTEST: SAS Listing Procedure Output

Comparing Group Means

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL Upper CL
Variable Class N Mean Mean Mean Std Dev Std Dev Std Dev Std Err Minimum Maximum

Score f 7 74.504 76.857 79.211 1.6399 2.5448 5.6039 0.9619 73 80
Score m 7 79.804 82.714 85.625 2.028 3.1472 6.9303 1.1895 78 87
Score Diff (1-2) -9.19 -5.857 -2.524 2.0522 2.8619 4.7242 1.5298

T-Tests

Variable Method Variances DF t Value Pr > |t|

Score Pooled Equal 12 -3.83 0.0024
Score Satterthwaite Unequal 11.5 -3.83 0.0026

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

Score Folded F 6 6 1.53 0.6189

Output 14.1.2. Results for PROC TTEST: HTML Procedure Output

Example 14.2. Creating HTML Output with a Table of Contents

The following example uses ODS to display the output in HTML with a table of
contents.

The data are fromPothoff and Roy(1964) and consist of growth measurements for
11 girls and 16 boys at ages 8, 10, 12, and 14.
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data pr;
input Person Gender $ y1 y2 y3 y4;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
run;

ods html body=’mixed.htm’
contents=’mixedc.htm’
frame=’mixedf.htm’;

proc mixed data=pr method=ml covtest asycov;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;
ods html close;

The ODS HTML statement specifies three files. The BODY= argument specifies the
file to contain the output generated from the statements that follow. The BODY=
argument is required.

The CONTENTS= option specifies a file to contain the table of contents. The
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FRAME= option specifies a file to contain both the table of contents and the output.
You open the FRAME= file in your browser to view the table of contents together
with the generated output (seeOutput 14.2.1). Note that if you specify the ODS
HTML statement with only the BODY= argument, no table of contents is created.

The MIXED procedure is invoked to fit the specified model. The resulting output is
displayed inOutput 14.2.1.

Output 14.2.1. HTML Output from the MIXED Procedure

The table of contents displayed inOutput 14.2.1contains the descriptive label for
each output table produced in the MIXED procedure step. You can select any label in
the table of contents and the corresponding output will be displayed in the right-hand
side of the browser window.

Example 14.3. Determining the Names of ODS Tables

In order to select or exclude a table, or to render it as a SAS data set, you must
first know its name. You can obtain the table names in several ways (see the section
“Using the Output Delivery System”beginning on page 274 for more information).

This example uses the ODS TRACE statement with the LISTING option to obtain the
names of the created output objects. By default, the ODS TRACE statement writes
its information to the SAS log. However, you can specify the LISTING option to
have the information interleaved with the procedure output in the SAS listing.

Suppose that you perform a randomized trial on rats that have been exposed to a
carcinogen. You divide them into two groups and give each group a different treat-
ment. In the following example, interest lies in whether the survival distributions
differ between the two treatments. The data setExposed contains four variables:
Days (survival time in days from treatment to death),Status (censoring indicator
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variable: 0 if censored and 1 if not censored),Treatment (treatment indicator), and
Sex (gender: F if female and M if male).

data Exposed;
input Days Status Treatment Sex $ @@;
datalines;

179 1 1 F 378 0 1 M
256 1 1 F 355 1 1 M
262 1 1 M 319 1 1 M
256 1 1 F 256 1 1 M
255 1 1 M 171 1 1 F
224 0 1 F 325 1 1 M
225 1 1 F 325 1 1 M
287 1 1 M 217 1 1 F
319 1 1 M 255 1 1 F
264 1 1 M 256 1 1 F
237 0 2 F 291 1 2 M
156 1 2 F 323 1 2 M
270 1 2 M 253 1 2 M
257 1 2 M 206 1 2 F
242 1 2 M 206 1 2 F
157 1 2 F 237 1 2 M
249 1 2 M 211 1 2 F
180 1 2 F 229 1 2 F
226 1 2 F 234 1 2 F
268 0 2 M 209 1 2 F
;
ods trace on / listing;

proc lifetest data=Exposed;
time Days*Status(0);
strata Treatment;

run;

ods trace off;

The purpose of these statements is to obtain the names of the ODS tables produced in
this PROC LIFETEST run. The ODS TRACE ON statement writes the trace record of
ODS output tables. The LISTING option specifies that the information is interleaved
with the output and written to the SAS listing.

The LIFETEST procedure is invoked to perform the analysis, the SAS listing receives
the procedure output and the trace record, and the trace is then disabled with the OFF
option.
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Output 14.3.1. The ODS Trace: Interleaved with LIFETEST Results: Partial
Results

The LIFETEST Procedure

Output Added:
-------------
Name: ProductLimitEstimates
Label: Product-Limit Estimates
Template: Stat.Lifetest.ProductLimitEstimates
Path: Lifetest.Stratum1.ProductLimitEstimates
-------------

Stratum 1: Treatment = 1

Product-Limit Survival Estimates

Survival
Standard Number Number

Days Survival Failure Error Failed Left

0.000 1.0000 0 0 0 20
171.000 0.9500 0.0500 0.0487 1 19
179.000 0.9000 0.1000 0.0671 2 18
217.000 0.8500 0.1500 0.0798 3 17
224.000* . . . 3 16
225.000 0.7969 0.2031 0.0908 4 15
255.000 . . . 5 14
255.000 0.6906 0.3094 0.1053 6 13
256.000 . . . 7 12
256.000 . . . 8 11
256.000 . . . 9 10
256.000 0.4781 0.5219 0.1146 10 9
262.000 0.4250 0.5750 0.1135 11 8
264.000 0.3719 0.6281 0.1111 12 7
287.000 0.3188 0.6813 0.1071 13 6
319.000 . . . 14 5
319.000 0.2125 0.7875 0.0942 15 4
325.000 . . . 16 3
325.000 0.1063 0.8938 0.0710 17 2
355.000 0.0531 0.9469 0.0517 18 1
378.000* . . . 18 0

NOTE: The marked survival times are censored observations.

Summary Statistics for Time Variable Days

Output Added:
-------------
Name: Quartiles
Label: Quartiles
Template: Stat.Lifetest.Quartiles
Path: Lifetest.Stratum1.TimeSummary.Quartiles
-------------

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 319.000 262.000 325.000
50 256.000 255.000 319.000
25 255.000 217.000 256.000
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As you can see inOutput 14.3.1, the ODS TRACE ON statement writes the name,
label, template, and path name of each generated ODS table. For more information
on names, labels, and qualified path names, see the discussion in the section“Using
the Output Delivery System”beginning on page 274.

The information obtained with the ODS TRACE ON statement enables you to request
output tables by name. The examples that follow demonstrate how you can use this
information to select, exclude, or create data sets from particular output tables.

Example 14.4. Selecting ODS Tables for Display

You can use the ODS SELECT statement to deliver only the desired tables to ODS
destinations. In the following example, the GLM procedure is used to perform an
analysis on an unbalanced two-way experimental design.

data twoway;
title "Unbalanced Two-way Design";

input Treatment Block y @@;
datalines;

1 1 17 1 1 28 1 1 19 1 1 21 1 1 19
1 2 43 1 2 30 1 2 39 1 2 44 1 2 44
1 3 16
2 1 21 2 1 21 2 1 24 2 1 25
2 2 39 2 2 45 2 2 42 2 2 47
2 3 19 2 3 22 2 3 16
3 1 22 3 1 30 3 1 33 3 1 31
3 2 46
3 3 26 3 3 31 3 3 26 3 3 33 3 3 29 3 3 25
;

proc glm data=twoway;
class Treatment Block;
model y = Treatment | Block;
means Treatment;
lsmeans Treatment;

ods select ModelANOVA Means;
ods trace on;
ods show;
run;

In the preceding statements, the GLM procedure is invoked to produce the output.
The ODS SELECT statement specifies that only the two tables “ModelANOVA” and
“Means” are to be delivered to the ODS destinations. In this example, no ODS des-
tinations are explicitly opened. Therefore, only the default SAS listing receives the
procedure output. The ODS SHOW statement displays the current overall selection
list in the SAS log. The ODS TRACE statement writes the trace record of the ODS
output objects to the SAS log.
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Output 14.4.1displays the results of the ODS SHOW statement, which writes the
current overall selection list to the SAS log.

Output 14.4.1. Results of the ODS SHOW Statement

ods select ModelANOVA Means;
ods show;

Current OVERALL select list is:
1. ModelANOVA
2. Means

Partial results of the ODS TRACE statement, which are written to the SAS log,
are displayed inOutput 14.4.2. Note that there are two tables having the name
“ModelANOVA,” which are the “Type I Model Anova” and the “Type III Model
Anova” tables. Similarly, there are two ODS tables having the name “Means,” which
are the “Means” and the “LS-means” tables.

Output 14.4.2. The ODS TRACE: Partial Contents of the SAS Log

Output Added:
-------------
Name: ClassLevels
Label: Class Levels
Template: STAT.GLM.ClassLevels
Path: GLM.Data.ClassLevels
-------------

.

.

.

.
Output Added:
-------------
Name: ModelANOVA
Label: Type I Model ANOVA
Template: stat.GLM.Tests
Path: GLM.ANOVA.y.ModelANOVA
-------------

Output Added:
-------------
Name: ModelANOVA
Label: Type III Model ANOVA
Template: stat.GLM.Tests
Path: GLM.ANOVA.y.ModelANOVA
-------------
NOTE: Means from the MEANS statement are not adjusted for other
terms in the model. For adjusted means, use the LSMEANS statement.

Output Added:
-------------
Name: Means
Label: Means
Template: stat.GLM.Means
Path: GLM.Means.Treatment.Means
-------------

Output Added:
-------------
Name: Means
Label: Means
Template: stat.GLM.LSMeans
Path: GLM.LSMEANS.Treatment.Means
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In the following statements, the ODS SHOW statement writes the current overall
selection list to the SAS log. The QUIT statement ends the GLM procedure. The
second ODS SHOW statement writes the selection list to the log after PROC GLM
terminates. The ODS selection list is reset to ALL, by default, when a procedure ter-
minates. For more information on ODS exclusion and selection lists, see the section
“Using the Output Delivery System”beginning on page 274.

ods show;
quit;
ods show;

The results of the statements are displayed inOutput 14.4.3. Before the GLM proce-
dure terminates, the ODS selection list includes only the two tables, “ModelANOVA”
and “Means.”

Output 14.4.3. The ODS Selection List: Before and After PROC GLM Terminates

ods show;

Current OVERALL select list is:
1. ModelANOVA
2. Means

quit;

NOTE: There were 33 observations read from the dataset WORK.TWOWAY.

ods show;

Current OVERALL select list is: ALL

The GLM procedure supports interactive run-group processing. Before the QUIT
statement is executed, PROC GLM is active and the ODS selection list remains at its
previous setting before PROC GLM was invoked. After the QUIT statement, when
PROC GLM is no longer active, the selection list is reset to deliver all output tables.

The entire displayed output consists of the four selected tables (two “ModelANOVA”
tables and two “Means” tables), as displayed inOutput 14.4.4andOutput 14.4.5.
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Output 14.4.4. The ModelANOVA Tables from PROC GLM

Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

Treatment 2 8.060606 4.030303 0.24 0.7888
Block 2 2621.864124 1310.932062 77.95 <.0001
Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Source DF Type III SS Mean Square F Value Pr > F

Treatment 2 266.130682 133.065341 7.91 0.0023
Block 2 1883.729465 941.864732 56.00 <.0001
Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Output 14.4.5. The Means Tables from PROC GLM

Unbalanced Two-way Design

The GLM Procedure

Level of --------------y--------------
Treatment N Mean Std Dev

1 11 29.0909091 11.5104695
2 11 29.1818182 11.5569735
3 11 30.1818182 6.3058414

Unbalanced Two-way Design

The GLM Procedure
Least Squares Means

Treatment y LSMEAN

1 25.6000000
2 28.3333333
3 34.4444444
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Example 14.5. Excluding ODS Tables from Display

The following example demonstrates how you can use the ODS EXCLUDE statement
to exclude particular tables from ODS destinations. This example also creates a SAS
data set from the excluded table.

The data are fromHemmerle and Hartley(1973). The response variable consists of
measurements from an oven experiment, and the model contains a fixed effecta and
random effectsb anda*b.

data hh;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246
1 2 178 1 2 179
2 1 208 2 1 178 2 1 187
2 2 146 2 2 145 2 2 141
3 1 186 3 1 183
3 2 142 3 2 125 3 2 136
;
ods html body=’mixed.htm’

contents=’mixedc.htm’
frame=’mixedf.htm’;

ods exclude ParmSearch(persist);
ods show;

The ODS HTML statement specifies the filenames to contain the output generated
from the statements that follow.

The ODS EXCLUDE statement excludes the table “ParmSearch” from display.
Although the table is excluded from the displayed output, the information contained
in the “ParmSearch” table is graphically summarized in a later step.

The PERSIST option in the ODS EXCLUDE statement excludes the table for
the entire SAS session or until you execute an ODS SELECT statement or an
ODS EXCLUDE NONE statement. If you omit the PERSIST option, the exclusion
list is cleared when the procedure terminates. The resulting exclusion list is displayed
in Output 14.5.1.

Output 14.5.1. Results of the ODS SHOW Statement: Before PROC MIXED

ods exclude ParmSearch(persist);
ods show;

Current OVERALL exclude list is:
1. ParmSearch(PERSIST)
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The following ODS OUTPUT statement outputs the table “ParmSearch” to a SAS
data set calledparms. The MIXED procedure is invoked and the model is fit. All
output from the MIXED procedure, except the “ParmSearch” table, is delivered to the
HTML destination and the SAS listing. The ODS SHOW statement again displays
the overall current exclusion list.

ods output ParmSearch=parms;
proc mixed data=hh asycov mmeq mmeqsol covtest;

class a b;
model y = a / outp=predicted;
random b a*b;
lsmeans a;
parms (17 to 20 by 0.1) (.3 to .4 by .005) (1.0);

run;

ods show;

The results of the ODS SHOW statement, given after the MIXED procedure has
terminated, are displayed inOutput 14.5.2.

Output 14.5.2. Results of the ODS SHOW Statement: After PROC MIXED

proc mixed data=hh asycov mmeq mmeqsol covtest;
class a b;
model y = a / outp=predicted;
random b a*b;
lsmeans a;
parms (17 to 20 by 0.1) (.3 to .4 by .005) (1.0);

run;

ods show;

Current OVERALL exclude list is:
1. ParmSearch(PERSIST)

Normally the ODS exclusion list is cleared at the conclusion of a procedure (for
more information on ODS exclusion and selection lists, see the section“Using the
Output Delivery System”on page 274). However, the PERSIST option in the pre-
ceding ODS EXCLUDE statement specifies that the “ParmSearch” table should
remain in the exclusion list until the list is explicitly cleared (that is, when the
ODS EXCLUDE NONE statement or an ODS SELECT statement is encountered).
Output 14.5.2shows that the exclusion list remains in effect after PROC MIXED
terminates.

The PERSIST option is useful when you want to exclude the same table in further
analyses during your SAS session.

The “ParmSearch” table is contained in theparms data set (as specified in the ODS
OUTPUT statement). The information is plotted with the G3D procedure in the fol-
lowing step:
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proc g3d data=parms;
plot CovP1*CovP2 = ResLogLike /

ctop=red cbottom=blue caxis=black;
run;

ods html close;

The MIXED procedure output resulting from the preceding statements is displayed
in Output 14.5.3. The table of contents shows the names for all of the output tables.
The “ParmSearch” table is not listed in the table of contents because of the preceding
ODS EXCLUDE statement.

Output 14.5.3. HTML Output from the Mixed Procedure

The results of the G3D procedure is displayed inOutput 14.5.4. The large amount of
information contained in the table, which is excluded from display, can be summa-
rized with a single plot.
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Output 14.5.4. Plot of the ParmSearch Data Set

Example 14.6. Creating an Output Data Set from an ODS Table

The ODS OUTPUT statement creates SAS data sets from ODS tables. In the follow-
ing example, the GENMOD procedure is invoked to perform Poisson regression and
part of the resulting procedure output is written to a SAS data set.

Suppose the following insurance claims data are classified by two factors: age group
(with two levels) and car type (with three levels).

data insure;
input n c car$ age;
ln = log(n);
datalines;

500 42 small 1
1200 37 medium 1
100 1 large 1
400 101 small 2
500 73 medium 2
300 14 large 2
;

In the data setinsure, the variablen represents the number of insurance policyhold-
ers and the variablec represents the number of insurance claims. The variablecar
represents the type of car involved (classified into three groups) and the variableage
is the age group of a policyholder (classified into two groups).

In the statements that follow, PROC GENMOD performs a Poisson regression anal-
ysis of these data with a log link function. Assume that the number of claimsc has a
Poisson probability distribution and that its mean,µi, is related to the factorscar and
age.
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Determining the Names of the ODS Tables

The purpose of the following statements is to obtain the names of the output tables
produced in this PROC GENMOD run. The ODS TRACE statement lists the trace
record, and the SAS listing destination is closed so that no output is displayed.

ods trace on;
ods listing close;

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln
obstats;

run;
ods trace off;
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Output 14.6.1. The ODS TRACE: Partial Contents of the SAS Log

ods trace on;
ods listing close;

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln
obstats;

run;

Output Added:
-------------
Name: ModelInfo
Label: Model Information
Template: Stat.Genmod.ModelInfo
Path: Genmod.ModelInfo
-------------

.

.

.

.

NOTE: Algorithm converged.

Output Added:
-------------
Name: ParameterEstimates
Label: Analysis Of Parameter Estimates
Template: stat.genmod.parameterestimates
Path: Genmod.ParameterEstimates
-------------
NOTE: The scale parameter was held fixed.

Output Added:
-------------
Name: ObStats
Label: Observation Statistics
Template: Stat.Genmod.Obstats
Path: Genmod.ObStats
-------------

By default, the trace record is written to the SAS log, as displayed inOutput 14.6.1.
Note that you can alternatively specify that the information be interleaved with the
procedure output in the SAS listing (seeExample 14.3).

Creating the Output Data Set

In the statements that follow, the ODS OUTPUT statement writes the ODS table
“ObStats” to a SAS data set calledmyObStats. All of the usual data set options, such
as the KEEP= or RENAME= option, can be used in the ODS OUTPUT statement.
Thus, to create themyObStats data set so that it contains only certain variables of
the “ObStats” table, you can use the data set options as follows.

ods output ObStats=myObStats
(keep=car age pred
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rename=(pred=PredictedValue));

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln
obstats;

run;

The KEEP= option in the ODS OUTPUT statement specifies that only the variables
car, age, andpred are written to the data set, and thepred variable is renamed
to PredictedValue. The GENMOD procedure is again invoked. In order to limit
the amount of displayed output, the SAS listing destination remains closed. When a
destination is closed, it remains closed until it is explicitly reopened.

In the following statements, the output data setmyObStats is sorted, and the SAS
listing is reopened for output. The results are displayed inOutput 14.6.2.

proc sort data=myObStats;
by descending PredictedValue;

run;

ods listing;
proc print data=myObStats noobs;
title ’Values of Car, Age, and the Predicted Values’;
run;

Output 14.6.2. The ObStats Table Created as a SAS Data Set

Values of Car, Age, and the Predicted Values

Predicted
car age Value

small 2 107.2011
medium 2 67.025444
medium 1 42.974556
small 1 35.798902
large 2 13.773459
large 1 1.2265414

Example 14.7. Creating an Output Data Set: Subsetting the
Data

This example demonstrates how you can create an output data set with the
ODS OUTPUT statement and also uses data set selection keywords to limit the output
that ODS writes to a SAS data set.

The following data set, calledColor, contains the eye and hair color of children from
two different regions of Europe. The data are recorded as cell counts, where the



298 � Chapter 14. Using the Output Delivery System

variableCount contains the number of children exhibiting each of the 15 eye and
hair color combinations.

data Color;
input Region Eyes $ Hair $ Count @@;

label Eyes =’Eye Color’
Hair =’Hair Color’
Region=’Geographic Region’;

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

In the statements that follow, the SAS listing is closed. The ODS OUTPUT state-
ment creates the “ChiSq” table as a SAS data set calledmyStats. Note that you can
obtain the names of the tables created by any SAS/STAT procedure in the individual
procedure chapter or from the individual procedure section of the SAS online Help
system. You can also determine the names of tables with the ODS TRACE statement
(seeExample 14.3andExample 14.6).

The DROP= data set option excludes variables from the new data set. The WHERE=
data set option selects particular observations for output to the new data setmyStats,
those that begin with ’Chi’ or ’Like’.

ods listing close;

ods output ChiSq=myStats
(drop=Table

where=(Statistic =: ’Chi’ or
Statistic =: ’Like’));

In the following statements, theColor data set is first sorted by theRegion variable.
The FREQ procedure is invoked to create and analyze a crosstabulation table from
the two categorical variablesEyes andHair, for each value of the variableRegion.

No ODS destinations are open until the ODS LISTING statement is encountered just
prior to the invocation of the PRINT procedure.

proc sort data=Color;
by Region;

run;
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proc freq data=Color order=data;
weight Count;
tables Eyes*Hair / testp=(30 12 30 25 3);
by Region;
title ’Hair Color of European Children’;

run;

ods listing;
proc print data=myStats;
run;

Output 14.7.1displays the output resulting from the previous statements.

Output 14.7.1. Output Data Set from PROC FREQ and ODS

Hair Color of European Children

Obs Region Statistic DF Value Prob

1 1 Chi-Square 8 12.6331 0.1251
2 1 Likelihood Ratio Chi-Square 8 14.1503 0.0779
3 2 Chi-Square 8 18.2839 0.0192
4 2 Likelihood Ratio Chi-Square 8 23.3021 0.0030

Example 14.8. RUN Group Processing

This example demonstrates how you can write multiple tables to a single data set
using the PERSIST= option in the ODS OUTPUT statement. The PERSIST= option
maintains ODS settings across RUN statements for procedures that support run-group
processing. In the following analysis, the REG procedure is invoked and the covari-
ance matrix of the estimates is output for two different models.

Consider the following population growth trends. The population of the United States
from 1790 to 1970 is fit to linear and quadratic functions of time. Note that the
quadratic term,YearSq, is created in the DATA step; this is done since polynomial
effects such asYear*Year cannot be specified in the MODEL statement in PROC
REG. The data are as follows:

title1 ’Concatenating Two Tables into One Data Set’;
title2 ’US Population Study’;
data USPopulation;

input Population @@;
retain Year 1780;
Year=Year+10;
YearSq=Year*Year;
Population=Population/1000;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
;
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In the following statements, the REG procedure is invoked and the ODS OUTPUT
statement with the PERSIST= option creates a data set with the COVB matrix (the
covariance matrix of the estimates).

proc reg data=USPopulation;
ods output covb(persist=run)=Bmatrix;
var YearSq;
model Population = Year / covb ;

run;

The MODEL statement defines the regression model, and the COVB matrix is re-
quested. The RUN statement executes the REG procedure and the model is fit, pro-
ducing a covariance matrix of the estimates with two rows and two columns.

Output 14.8.1. Regression Results for the Model Population

Concatenating Two Output Tables into One Data Set
US Population Study

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 66336 66336 201.87 <.0001
Error 17 5586.29253 328.60544
Corrected Total 18 71923

Root MSE 18.12748 R-Square 0.9223
Dependent Mean 69.76747 Adj R-Sq 0.9178
Coeff Var 25.98271

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -1958.36630 142.80455 -13.71 <.0001
Year 1 1.07879 0.07593 14.21 <.0001
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Output 14.8.2. CovB Matrix for the Model Population

Concatenating Two Output Tables into One Data Set
US Population Study

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Covariance of Estimates

Variable Intercept Year

Intercept 20393.138485 -10.83821461
Year -10.83821461 0.0057650078

In the next step, theYearSq variable is added to the model and the model is again fit,
producing a covariance matrix of the estimates with three rows and three columns.

add YearSq;
print;
run;

The results of the regression are displayed inOutput 14.8.3.

Output 14.8.3. Regression Results for the Model Population

Concatenating Two Output Tables into One Data Set
US Population Study

The REG Procedure
Model: MODEL1.1

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 71799 35900 4641.72 <.0001
Error 16 123.74557 7.73410
Corrected Total 18 71923

Root MSE 2.78102 R-Square 0.9983
Dependent Mean 69.76747 Adj R-Sq 0.9981
Coeff Var 3.98613

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 20450 843.47533 24.25 <.0001
Year 1 -22.78061 0.89785 -25.37 <.0001
YearSq 1 0.00635 0.00023877 26.58 <.0001
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Output 14.8.4. CovB Matrix for the Model Population

Concatenating Two Output Tables into One Data Set
US Population Study

The REG Procedure
Model: MODEL1.1

Dependent Variable: Population

Covariance of Estimates

Variable Intercept Year YearSq

Intercept 711450.62602 -757.2493826 0.2013282694
Year -757.2493826 0.8061328943 -0.000214361
YearSq 0.2013282694 -0.000214361 5.7010894E-8

The PERSIST=RUN option maintains the ODS selection list across RUN statements
for procedures that support run-group processing. If the PERSIST=RUN option is
omitted, the selection list is cleared when the RUN statement is encountered and only
the first COVB matrix is selected. Because the PERSIST=RUN option is specified,
the selection list remains in effect throughout the REG procedure step. This ensures
that each of the COVB matrices is selected and output.

proc print;
run;

Output 14.8.5. Results of the ODS OUTPUT Statement: Specifying the PERSIST
Option

The COVB Matrix Data Set, Using the PERSIST option
Concatenating Two Output Tables into One Data Set

Obs _Run_ Model Dependent Variable Intercept Year YearSq

1 1 MODEL1 Population Intercept 20393.138485 -10.83821461 .
2 1 MODEL1 Population Year -10.83821461 0.0057650078 .
3 2 MODEL1.1 Population Intercept 711450.62602 -757.2493826 0.2013282694
4 2 MODEL1.1 Population Year -757.2493826 0.8061328943 -0.000214361
5 2 MODEL1.1 Population YearSq 0.2013282694 -0.000214361 5.7010894E-8

Note that the two COVB matrices do not have the same variables. In previous ver-
sions of SAS, the MATCH–ALL option along with a subsequent DATA step was
needed to correctly get all of the variables in one data set. Now, the MATCH–ALL
option is only needed if you want to make separate data sets for each table.
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Example 14.9. Using the TEMPLATE Procedure to Customize
Output

You can use the TEMPLATE procedure to modify the appearance of your displayed
ODS tables. The following example, similar to that given inOlinger and Tobias
(1998), creates output data sets using the ODS OUTPUT statement, modifies a tem-
plate using PROC TEMPLATE, and displays the output data sets using the modified
template.

The data set comes from a preclinical drug experiment (Cole and Grizzle1966). In
order to study the effect of two different drugs on histamine levels in the blood, re-
searchers administer the drugs to 13 animals, and the levels of histamine in the an-
imals’ blood is measured after 0, 1, 3, and 5 minutes. The response variable is the
logarithm of the histamine level. The following statements create a SAS data set
namedHistamine that contains the experimental data.

title1 "Histamine Study";
data Histamine;

input Drug $12. Depleted $ hist0 hist1 hist3 hist5;
logHist0 = log(hist0); logHist1 = log(Hist1);
logHist3 = log(hist3); logHist5 = log(Hist5);
datalines;

Morphine N .04 .20 .10 .08
Morphine N .02 .06 .02 .02
Morphine N .07 1.40 .48 .24
Morphine N .17 .57 .35 .24
Morphine Y .10 .09 .13 .14
Morphine Y .07 .07 .06 .07
Morphine Y .05 .07 .06 .07
Trimethaphan N .03 .62 .31 .22
Trimethaphan N .03 1.05 .73 .60
Trimethaphan N .07 .83 1.07 .80
Trimethaphan N .09 3.13 2.06 1.23
Trimethaphan Y .10 .09 .09 .08
Trimethaphan Y .08 .09 .09 .10
Trimethaphan Y .13 .10 .12 .12
Trimethaphan Y .06 .05 .05 .05
;

In the analysis that follows, the GLM procedure is invoked to perform a repeated
measures analysis, naming the drug and depletion status as between-subject factors
in the MODEL statement and naming post-administration measurement time as the
within-subject factor. For more information on this study and its analysis, refer to
Example 32.7in Chapter 32, “The GLM Procedure.”

The following ODS statement requests that two ODS tables be written to SAS data
sets calledHistWithin andHistBetween. The SAS listing is closed so that no output
is displayed. The GLM procedure is invoked and the model is fit.

ods output MultStat = HistWithin
BetweenSubjects.ModelANOVA = HistBetween;

ods listing close;
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proc glm data=Histamine;
class Drug Depleted;
model LogHist0--LogHist5 = Drug Depleted Drug*Depleted / nouni;
repeated Time 4 (0 1 3 5) polynomial / summary printe;

run;
quit;

All of the multivariate test results appear in theHistWithin data set. This is because
all multivariate test tables are named “MultStat,” although they occur in different
directories in the output directory hierarchy.

Note that, even though there are also other tables named “ModelANOVA,” the pre-
ceding ODS OUTPUT statement ensures that only the between-subject ANOVA ap-
pears in theHistBetween data set. The specific table is selected because of the
additional specification of the partial path (“BetweenSubjects”) in which it occurs.
For more information on names and qualified path names, see the discussion in the
section“Using the Output Delivery System”beginning on page 274.

In the following statements, a new data set,temp1, is created to contain the two data
sets output in the preceding GLM run. They are displayed with no further processing.

ods listing;
title2 ’Listing of Raw Data Sets’;
data temp1;

set HistBetween HistWithin;
run;
proc print;
run;
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Output 14.9.1. Listing of the Raw Data Sets: Histamine Study

Histamine Study
Listing of Raw Data Sets

Hypothesis
Obs Dependent Type Source DF SS MS FValue ProbF

1 BetweenSubjects 3 Drug 1 5.99336243 5.99336243 2.71 0.1281
2 BetweenSubjects 3 Depleted 1 15.44840703 15.44840703 6.98 0.0229
3 BetweenSubjects 3 Drug*Depleted 1 4.69087508 4.69087508 2.12 0.1734
4 BetweenSubjects 3 Error 11 24.34683348 2.21334850 _ _
5 . . . . 24.03 0.0001
6 . . . . 24.03 0.0001
7 . . . . 24.03 0.0001
8 . . . . 24.03 0.0001
9 . . . . 5.78 0.0175

10 . . . . 5.78 0.0175
11 . . . . 5.78 0.0175
12 . . . . 5.78 0.0175
13 . . . . 21.31 0.0002
14 . . . . 21.31 0.0002
15 . . . . 21.31 0.0002
16 . . . . 21.31 0.0002
17 . . . . 12.48 0.0015
18 . . . . 12.48 0.0015
19 . . . . 12.48 0.0015
20 . . . . 12.48 0.0015

Obs Hypothesis Error Statistic Value NumDF DenDF

1 . . .
2 . . .
3 . . .
4 . . .
5 Time Error SSCP Matrix Wilks’ Lambda 0.11097706 3 9
6 Time Error SSCP Matrix Pillai’s Trace 0.88902294 3 9
7 Time Error SSCP Matrix Hotelling-Lawley Trace 8.01087137 3 9
8 Time Error SSCP Matrix Roy’s Greatest Root 8.01087137 3 9
9 Time_Drug Error SSCP Matrix Wilks’ Lambda 0.34155984 3 9

10 Time_Drug Error SSCP Matrix Pillai’s Trace 0.65844016 3 9
11 Time_Drug Error SSCP Matrix Hotelling-Lawley Trace 1.92774470 3 9
12 Time_Drug Error SSCP Matrix Roy’s Greatest Root 1.92774470 3 9
13 Time_Depleted Error SSCP Matrix Wilks’ Lambda 0.12339988 3 9
14 Time_Depleted Error SSCP Matrix Pillai’s Trace 0.87660012 3 9
15 Time_Depleted Error SSCP Matrix Hotelling-Lawley Trace 7.10373567 3 9
16 Time_Depleted Error SSCP Matrix Roy’s Greatest Root 7.10373567 3 9
17 Time_Drug_Depleted Error SSCP Matrix Wilks’ Lambda 0.19383010 3 9
18 Time_Drug_Depleted Error SSCP Matrix Pillai’s Trace 0.80616990 3 9
19 Time_Drug_Depleted Error SSCP Matrix Hotelling-Lawley Trace 4.15915732 3 9
20 Time_Drug_Depleted Error SSCP Matrix Roy’s Greatest Root 4.15915732 3 9

In order to reduce the amount of information displayed inOutput 14.9.1, this example
creates the following data set,HistTests. Only the observations from the raw data
sets that are needed for interpretation are included. The variableHypothesis in the
HistWithin data set is renamed toSource, and theNumDF variable is renamedDF.

The renamed variables correspond to the variable names found in theHistBetween
data set.

data HistTests;
set HistBetween(where =(Source ^= "Error"))

HistWithin (rename=(Hypothesis = Source NumDF=DF)
where =(Statistic = "Hotelling-Lawley Trace"));

run;
proc print ;
title2 ’Listing of Selections from the Raw Data Sets’;
run;



306 � Chapter 14. Using the Output Delivery System

Output 14.9.2. Listing of Selections from the Raw Data Sets: Histamine Study

Listing of Selections from the Raw Data Sets

Hypothesis
Obs Dependent Type Source DF SS MS

1 BetweenSubjects 3 Drug 1 5.99336243 5.99336243
2 BetweenSubjects 3 Depleted 1 15.44840703 15.44840703
3 BetweenSubjects 3 Drug*Depleted 1 4.69087508 4.69087508
4 . Time 3 . .
5 . Time_Drug 3 . .
6 . Time_Depleted 3 . .
7 . Time_Drug_Depleted 3 . .

Obs FValue ProbF Error Statistic Value DenDF

1 2.71 0.1281 . .
2 6.98 0.0229 . .
3 2.12 0.1734 . .
4 24.03 0.0001 Error SSCP Matrix Hotelling-Lawley Trace 8.01087137 9
5 5.78 0.0175 Error SSCP Matrix Hotelling-Lawley Trace 1.92774470 9
6 21.31 0.0002 Error SSCP Matrix Hotelling-Lawley Trace 7.10373567 9
7 12.48 0.0015 Error SSCP Matrix Hotelling-Lawley Trace 4.15915732 9

The amount of information contained in theHistTests is appropriate for interpreting
the analysis (Output 14.9.2). However, you can further modify the presentation of
the data by applying a template to this combined test data. A template specifies how
data should be displayed. The output from previous ODS TRACE ON statements
(for example,Output 14.4.2) shows that each table has an associated template as well
as a name. In particular, the template associated with PROC GLM’s ANOVA table is
called “Stat.GLM.Tests”.

You can use the “Stat.GLM.Tests” template to display the SAS data setHistTests, as
follows:

data _null_;
title2 ’Listing of the Selections, Using a Standard Template’;

set HistTests;
file print ods=(template=’Stat.GLM.Tests’);
put _ods_;

run;

The ODS= option in the FILE statement enables you to use the DATA step to display
a data set as a table. You do this by specifying data columns and associated attributes,
such as the template specification.

The PUT statement contains the–ODS– keyword. The keyword instructs the PUT
statement to send the data values for all columns (as defined in the ODS= option in
the FILE statement) to the open ODS destinations. For more information on using
ODS in the DATA step, refer to theSAS Output Delivery System User’s Guide.



Example 14.9. Using the TEMPLATE Procedure to Customize Output � 307

Output 14.9.3. Listing of the Data Sets Using a Standard Template

Histamine Study
Listing of the Selections, Using a Standard Template

Source DF SS Mean Square F Value Pr > F

Drug 1 5.99336243 5.99336243 2.71 0.1281
Depleted 1 15.44840703 15.44840703 6.98 0.0229
Drug*Depleted 1 4.69087508 4.69087508 2.12 0.1734
Time 3 . . 24.03 0.0001
Time_Drug 3 . . 5.78 0.0175
Time_Depleted 3 . . 21.31 0.0002
Time_Drug_Depleted 3 . . 12.48 0.0015

The data set contains the appropriate information, and it is presented in an easily
understandable format, using the “Stat.GLM.Tests” template.

Customizing Your Output

Suppose that you now want to modify the template used to format the ANOVA ta-
bles in order to emphasize significant effects. The following statements provide an
example of how you can use the TEMPLATE procedure to

• redefine the format for the “SS” and “Mean Square” columns

• include the table title and footnote in the body of the table

• translate the missing values for “SS” and “Mean Square” in the rows corre-
sponding to multivariate tests to asterisks (to refer to the footnote)

• add a column depicting the level of significance

For detailed information on using the TEMPLATE procedure, refer to the chapter
titled “The Template Procedure” in theSAS Output Delivery System User’s Guide.

proc template;
define table CombinedTests;

parent=Stat.GLM.Tests;

header "#Histamine Study##";
footer "#* - Test computed using Hotelling-Lawley trace";

column Source DF SS MS FValue ProbF Star;

define SS;
parent = Stat.GLM.SS;
format = D7.3;
translate _val_ = . into ’ *’;

end;
define MS;

parent = Stat.GLM.MS;
format = D7.3;
translate _val_ = . into ’ *’;

end;
define Star;

compute as ProbF;
translate _val_ > 0.05 into "",
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_val_ > 0.01 into "*",
_val_ > 0.001 into "**",
_val_ <= 0.001 into "***";

pre_space=1 width=3 just=l;
end;

end;
run;

The Dw.s format, used in the preceding statements to redefine the “SS” and “Mean
Square” columns, writes numbers in similar ranges with the same number of decimal
places. In the format specification,w represents the width of the field ands represents
the number of significant digits. Refer to the chapter on formats in theSAS Language
Reference: Dictionaryfor detailed information.

The following statements display theHistTests data set using the customized tem-
plate. The results are displayed inOutput 14.9.4.

data _null_;
title2 ’Listing of the Selections, Using a Customized Template’;

set HistTests;
file print ods=(template=’CombinedTests’);
put _ods_;

run;

Output 14.9.4. Listing of the Data Sets Using a Customized Template: Histamine
Study

Histamine Study

Sum of Mean
Source DF Squares Square F Value Pr > F

Drug 1 5.993 5.993 2.71 0.1281
Depleted 1 15.448 15.448 6.98 0.0229 *
Drug*Depleted 1 4.691 4.691 2.12 0.1734
Time 3 * * 24.03 0.0001 ***
Time_Drug 3 * * 5.78 0.0175 *
Time_Depleted 3 * * 21.31 0.0002 ***
Time_Drug_Depleted 3 * * 12.48 0.0015 **

* - Test computed using Hotelling-Lawley trace

Example 14.10. Creating HTML Output, Linked within a Single
Analysis

This example demonstrates how you can use ODS to provide links between different
parts of your HTML procedure output.

Suppose that you are analyzing a4× 4 factorial experiment for an industrial process,
testing for differences in the number of defective products manufactured by different
machines using different sources of raw material. The data setExperiment is created
as follows.
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data Experiment;
do Supplier = ’A’,’B’,’C’,’D’;

do Machine = 1 to 4;
do rep = 1 to 5;

input Defects @@;
output;
end;

end;
end;

datalines;
2 6 3 3 6 8 6 6 4 4 4 2 4 0 4 5 5 7 8 5

13 12 12 11 12 16 15 14 14 13 11 10 12 12 10 13 13 14 15 12
2 6 3 6 6 6 4 4 6 6 0 3 2 0 2 4 6 7 6 4

20 19 18 21 22 22 24 23 20 20 17 19 18 16 17 23 20 20 22 21
;

Suppose that you are interested in fitting a model to determine the effect that the sup-
plier of raw material and machine type have on the number of defects in the products.
If the F test for a factor is significant, you would like to follow up with a multiple
comparisons procedure. Thus, the tables of interest are the model ANOVA and the
multiple comparisons output.

The following statements demonstrate how you can link a row of the ANOVA table
to the corresponding multiple comparisons table. This is done by altering the display
of values (inserting links) in the “Source” column of the ANOVA table. The links are
inserted by using the TEMPLATE procedure.

proc template;
edit Stat.GLM.Tests;

edit Source;
translate _val_ = "Supplier" into

(’<a href="#IDX6">’ || _val_ || ’</a>’),
_val_ = "Machine" into

(’<a href="#IDX8">’ || _val_ || ’</a>’);
end;

end;
run;

In order to determine the value to use in the HTML anchor link (<A HREF="# ">),
you can run the analysis once and view information on your output in the
Results node of the SAS Explorer. The anchor nameIDX6 is given to the ta-
ble “ANOVA.Means.Supplier.Defects.MCLines.Tukey.MCLines” (the anchor name
is automatically generated in the SAS run). The statements create theSupplier label
as a link that, when clicked, opens the table of means from the “Tukey’s Studentized
Range Test for Defects” associated with theSupplier variable.

TheIDX8 anchor name is given to the table
“ANOVA.Means.Machine.Defects.MCLines.Tukey.MCLines.” The statements cre-
ate theMachine label as a link that, when clicked, opens the table of means from
the “Tukey’s Studentized Range Test for Defects” associated with theMachine vari-
able.
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The following statements specify that ODS close the SAS listing destination and open
the HTML destination. ODS writes the HTML output to the fileanovab.htm.

ods listing close;
ods html body=’anovab.htm’;

Since this is a balanced experiment, the ANOVA procedure computes the appropriate
analysis, performed with the following statements:

proc anova data=Experiment;
class Supplier Machine;
model Defects = Supplier Machine;
means Supplier Machine / tukey;

quit;

ods html close;

The output from the ANOVA procedure is displayed inOutput 14.10.1.

Output 14.10.1. HTML Output from the ANOVA Procedure: Linked Output

The ANOVA procedure uses the “Stat.GLM.Tests” template to format the ANOVA
table. The underlined text displayed inOutput 14.10.1shows the links in the table
cells labeled as ‘Supplier’ and ‘Machine.’ Because of the modifications in the pre-
ceding statements, theSupplier table listing contains the HTML anchor reference to
the tagIDX6. When you click on the ‘Supplier’ link, the appropriate multiple com-
parison table opens in your browser (Output 14.10.2). The links corresponding to the
Machine variable operate similarly.
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Output 14.10.2. Linked Output: Multiple Comparison Table from PROC ANOVA

Example 14.11. Creating HTML Output, Linked between
Analyses

The following example demonstrates how you can use ODS to create links between
different types of analyses.

The data in the following example are selected from a larger experiment on the use
of drugs in the treatment of leprosy (Snedecor and Cochran1967, p. 422). Variables
in the study are

drug – two antibiotics (‘a’ and ‘d’) and a control (‘f’)
PreTreatment – a pretreatment score of leprosy bacilli
PostTreatment – a posttreatment score of leprosy bacilli

The data set is created as follows:

data drugtest;
input drug $ PreTreatment PostTreatment @@;
datalines;

a 11 6 a 8 0 a 5 2 a 14 8 a 19 11
a 6 4 a 10 13 a 6 1 a 11 8 a 3 0
d 6 0 d 6 2 d 7 3 d 8 1 d 18 18
d 8 4 d 19 14 d 8 9 d 5 1 d 15 9
f 16 13 f 13 10 f 11 18 f 9 5 f 21 23
f 16 12 f 12 5 f 12 16 f 7 1 f 12 20
;

The ODS HTML statement opens the HTML destination, specifies the body file
name, requests that a table of contents be generated for the output, and specifies
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the file name of the frame to contain the body and table of contents. The NOGTITLE
option in the ODS HTML statement specifies that titles are not to be included as an
integral part of any generated graphics. For all graphics contained in the specified
body file, titles appear in the body file and are external to graphics.

ods html body=’glmb.htm’
contents=’glmc.htm’
frame=’glmf.htm’
nogtitle;

ods output LSMeans=lsmeans;

The ODS OUTPUT statement writes the table of “LS-means” to the data set called
lsmeans.

The GLM procedure is invoked to perform an analysis of covariance and compute
LS-means for the variabledrug.

proc glm;
class drug;
model PostTreatment = drug | PreTreatment / solution;
lsmeans drug / stderr pdiff;

quit;

The following steps demonstrate how you can create links to connect the results of
different analyses. In this example, the table of “LS-means” is graphically summa-
rized with the GCHART procedure. In the steps that follow, each part of the resulting
chart is linked to a plot that displays the relationship between thePostTreatment
response variable and thePreTreatment variable.

The following DATA step creates a new variable calleddrugclick that matches each
drug value with an HTML file. The variabledrugclick is used in the subsequent
GCHART procedure run. The variable provides the connection information for link-
ing the two parts of the analysis together. The files referred to in these statements are
created in a later step.

data lsmeans;
set lsmeans;
if drug=’a’ then drugclick=’href=drug1.htm’;
if drug=’d’ then drugclick=’href=drug2.htm’;
if drug=’f’ then drugclick=’href=drug3.htm’;

run;

The following GOPTIONS and AXIS statements specify settings for the GCHART
procedure. PROC GCHART is invoked, and the HBAR statement requests a horizon-
tal bar chart for the variabledrug. The length of the bars represent the value of the
lsmean variable. The HTML option specifies the variabledrugclick as the HTML
linking variable to use. The FOOTNOTE1 and FOOTNOTE2 statements provide text
that indicates how to use the links on the graph.



Example 14.11. Creating HTML Output, Linked between Analyses � 313

goptions ftext=swissb hsize=5.5in vsize=3.5in
border cback=white;

axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;

title f=swiss ’Chart of LS-means for Drug Type’;
proc gchart data=lsmeans;

hbar drug / sumvar=lsmean type=mean
frame cframe=ligr
gaxis=axis1 raxis=axis2
html=drugclick;

footnote1 j=l ’click on the bar to see a plot of PostTreatment’;
footnote2 j=l ’versus PreTreatment for the corresponding drug’;
format lsmean 6.3;
run;

footnote;
ods html close;
run;

The preceding statements create a chart that summarizes the information from
PROC GLM and that contains links to a second graphic analysis (using the variable
drugclick and the HTML option in PROC GCHART).

The following statements provide that second analysis. The three files referred to by
thedrugclick variable are created as follows.

ods html body=’drug1.htm’
newfile=page;

symbol1 c=white v=dot i=r;
title ’Plot of PostTreatment versus PreTreatment’;
proc gplot data=drugtest uniform;

plot PostTreatment*PreTreatment / frame cframe=ligr;
by drug notsorted;
footnote;

run;

ods html close;

The NEWFILE option in the ODS HTML statement specifies that a new HTML
file be created for each page of output. Note that page breaks occur only when a
procedure explicitly starts a new page. The NEWFILE option also increments the
filename for each new HTML file created, with the first filename corresponding to
that given in the BODY= option,drug1.htm.

The GPLOT procedure is invoked, producing a plot of the variablePostTreatment
versus the variablePreTreatment for each value of thedrug variable. Thus, three
plots are created, and each plot is contained in a separate HTML file. The files are
nameddrug1.htm, drug2.htm, anddrug3.htm. The filenames match those file-
names specified as values of thedrugclick variable.
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Output 14.11.1. Output from PROC GLM

Output 14.11.2. Bar Chart of LS-means by Drug Type: Linked Output

The graphic inOutput 14.11.2displays the difference inlsmeans for each drug type.
When you click on a bar that represents a value of the variabledrug, the browser
opens the plot ofPostTreatment versusPostTreatment that corresponds to that
value of the variabledrug. Output 14.11.3displays the plot corresponding to the
drug type ‘f’. You can view this graphic by clicking on the bottom bar in the bar chart
in Output 14.11.2.
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Output 14.11.3. Plot of PostTreatment versus PreTreatment for Drug Type ‘f’:
Linked Output
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(Experimental)
Overview

Graphics are indispensable for modern statistical analysis. They enrich the analysis
by revealing patterns, identifying differences, and expressing uncertainty that would
not be readily apparent in tabular output. Effective graphics also add visual clarity
to an analytical presentation, and they provoke questions that would not otherwise be
raised, stimulating deeper investigation.

In SAS 9.1, a number of SAS/STAT procedures have been modified to use an exper-
imental extension to the Output Delivery System (ODS) that enables them to create
statistical graphics as automatically as tables. This facility is referred to asODS
Statistical Graphics(or ODS Graphicsfor short), and it is invoked when you provide
the experimental ODS GRAPHICS statement prior to your procedure statements.
Any procedures that use ODS Graphics then create graphics, either by default or
when you specify procedure options for requesting specific graphs.

With ODS Graphics, a procedure creates the graphs that are most commonly needed
for a particular analysis. In many cases, graphs are automatically enhanced with use-
ful statistical information or metadata, such as sample sizes andp-values, which are
displayed in an inset box. Using ODS Graphics eliminates the need to save numerical
results in an output data set, manipulate them with a DATA step program, and display
them with a graphics procedure.

The SAS/STAT procedures that use ODS Graphics in SAS 9.1 are listed on page 348.
The plots produced by each procedure and any corresponding options are described
in the procedure chapter. See the “ODS Graphics” subsection in the “Details” section
of each procedure chapter for additional information.

In many ways, creating graphics with ODS is analogous to creating tables with ODS.
You use

• procedure options and defaults to determine which graphs are created

• ODS destination statements (such as ODS HTML) to specify the output desti-
nation for graphics

Additionally, you can use

• graph names in ODS SELECT and ODS EXCLUDE statements to select or
exclude graphs from your output

• ODS styles to control the general appearance and consistency ofall graphs

• ODS templates to control the layout and details ofindividual graphs. A default
template is provided by SAS for each graph.
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In SAS 9.1, the ODS destinations that support ODS Graphics include HTML,
LATEX, PRINTER, and RTF. These are discussed on page 326.

Both tables and graphs are saved in the ODS output file produced for a destination.
However, individual graphs can also be saved in files, which are produced in a spe-
cific graphics image file type, such as GIF or PostScript. This enables you to access
individual graphs for inclusion in a document. For example, you can save graphs
in PostScript files to include in a paper that you are writing with LATEX. Likewise,
you can save graphs in GIF files to include in an HTML document. With the HTML
destination, you can also request an image map format that supports tool tip displays,
which appear when you move a mouse over certain features of the graph.

In common applications of procedures that use ODS Graphics, the default graphs
should suffice. However, when modifications become necessary, you can customize
a particular graph by changing its template, or you can make consistent changes to
all your graphs by selecting a different ODS style or by modifying an existing ODS
style definition:

• As with table definitions, you can access graph template definitions and mod-
ify them with the TEMPLATE procedure. Graph template definitions are writ-
ten in an experimental graph template language, which has been added to the
TEMPLATE procedure in SAS 9.1. This language includes statements for
specifying plot types (such as scatter plots and histograms), plot layouts, and
text elements (such as titles and insets). It also provides support for built-in
computations (such as histogram binning) and evaluation of computational ex-
pressions. Options are available for specifying colors, marker symbols, and
other aspects of plot features.

• ODS style definitions include a number of graph elements that correspond to
general features of statistical graphics, such as titles and fitted lines. The at-
tributes of these elements, such as fonts and colors, provide the defaults for
options in graph templates provided by SAS. Consequently, you can change all
of your graphs in a consistent manner by simply selecting a different style. For
example, by specifying the “Journal” style, you can create gray-scale graphs
and tables that are suitable for publication in statistical journals.

Note: Statistical graphics created with ODS are experimental in this release, meaning
that both their appearance and their syntax are subject to change in a future release.

This chapter illustrates the use of ODS Graphics, and it provides general information
on managing your graphics. If you are unfamiliar with ODS, you will find it helpful
to readChapter 14, “Using the Output Delivery System.”For complete documenta-
tion on the Output Delivery System, refer to theSAS Output Delivery System User’s
Guide.
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How to Use This Chapter

If you are trying out ODS Graphics for the first time, begin by reading the section
“Getting Started”on page 321, which provides the essentials. Additional examples
are given in the chapters for procedures that use ODS Graphics in SAS 9.1.

To take full advantage of ODS Graphics, you will need to learn more about ODS
destinations, output files, and image file types for graphics, as well as ways to access
and include individual graphs in reports and presentations. This is explained in the
section“Managing Your Graphics”on page 326, the section“Graphics Image Files”
on page 334, and the section“Examples”beginning on page 352.

If you need to customize a graph by modifying its template, read the section
“Customizing Graphics with Templates”on page 338 and the series of examples be-
ginning on page 363.

If you need to customize a style definition read the section“Styles for Graphics”on
page 344 and the series of examples beginning on page 374.

Getting Started

This section introduces the use of ODS Graphics with two simple examples, which
illustrate how the ODS GRAPHICS statement and an ODS destination statement are
required to produce graphics. In the first example, no procedure options are required;
basic graphics are produced by default. In the second example, procedure options are
used to request specific plots.

Using the ODS GRAPHICS Statement

This example is taken from the “Getting Started” section ofChapter 61, “The REG
Procedure.” It illustrates a situation in which only theODS GRAPHICSstatement
and asupported ODS destinationare needed to create graphical displays.

The following data are from a study of 19 children. The variablesHeight, Weight,
andAge are measured for each child.

data Class;
input Name $ Height Weight Age @@;
datalines;

Alfred 69.0 112.5 14 Alice 56.5 84.0 13 Barbara 65.3 98.0 13
Carol 62.8 102.5 14 Henry 63.5 102.5 14 James 57.3 83.0 12
Jane 59.8 84.5 12 Janet 62.5 112.5 15 Jeffrey 62.5 84.0 13
John 59.0 99.5 12 Joyce 51.3 50.5 11 Judy 64.3 90.0 14
Louise 56.3 77.0 12 Mary 66.5 112.0 15 Philip 72.0 150.0 16
Robert 64.8 128.0 12 Ronald 67.0 133.0 15 Thomas 57.5 85.0 11
William 66.5 112.0 15
;

The following statements invoke the REG procedure and fit a simple linear regres-
sion model in whichWeight is the response variable andHeight is the independent
variable.
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ods html;
ods graphics on;

proc reg data = Class;
model Weight = Height;

run;
quit;

ods graphics off;
ods html close;

The ODS HTML statement specifies an HTML destination for the output. Note that
the LISTING destination is not supported by ODS Graphics in SAS 9.1. For a dis-
cussion of ODS destinations that are supported, see page 326.

TheODS GRAPHICSstatement is specified to request ODS Graphics in addition to
the usual tabular output. Here, the graphical output consists of a fit diagnostics panel,
a residual plot, and a fit plot; these are shown inFigure 15.1, Figure 15.2, andFigure
15.3, respectively.

The ODS GRAPHICS OFF statement disables ODS Graphics, and the ODS HTML
CLOSE statement closes the HTML destination.

Figure 15.1. Fit Diagnostics Panel
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Figure 15.2. Residual Plot

Figure 15.3. Fit Plot

Note: ODS Graphics are produced completely independently of both line printer
plots and traditional high resolution graphics requested with the PLOT statement in
PROC REG. Traditional high resolution graphics are saved in graphics catalogs and
controlled by the GOPTIONS statement. In contrast, ODS Graphics are produced in
ODS output (not graphics catalogs) and their appearance and layout are controlled
by ODS styles and templates. In SAS 9.1 both line printer plots and traditional high
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resolution graphics requested with the PLOT statement continue to be available and
are unaffected by the ODS GRAPHICS statement.

For more information about ODS Graphics available in the REG procedure, see the
“ODS Graphics”section on page 3922 inChapter 61, “The REG Procedure.”

A sample program namedodsgr01.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Using the ODS GRAPHICS Statement and Procedure Options

This example is taken from the“Getting Started”section ofChapter 36, “The KDE
Procedure.” Here, new procedure options are used to request graphical displays in
addition to theODS GRAPHICSstatement.

The following statements simulate 1,000 observations from a bivariate normal density
with means(0, 0), variances(10, 10), and covariance9.

data bivnormal;
seed = 1283470;
do i = 1 to 1000;

z1 = rannor(seed);
z2 = rannor(seed);
z3 = rannor(seed);
x = 3*z1+z2;
y = 3*z1+z3;
output;

end;
drop seed;

run;

The following statements request a bivariate kernel density estimate for the variables
x andy.

ods html;
ods graphics on;

proc kde data = bivnormal;
bivar x y / plots = contour surface;

run;

ods graphics off;
ods html close;

A contour plot and a surface plot of the estimate are displayed inFigure 15.4and
Figure 15.5, respectively. These graphical displays are requested by specifying the
ODS GRAPHICSstatement prior to the procedure statements and the experimental
PLOTS=option in the BIVAR statement. For more information about the graphics
available in the KDE procedure, see the“ODS Graphics”section on page 2009 in
Chapter 36, “The KDE Procedure.”
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Figure 15.4. Contour Plot of Estimated Density

Figure 15.5. Surface Plot of Estimated Density

A sample program namedodsgr02.sas is available for this example in the SAS
Sample Library for SAS/STAT software.
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Managing Your Graphics

This section describes techniques for managing your graphics:

• specifying an ODS destination for graphics

• viewing your graphs in the SAS windowing environment

• referring to graphs by name when using ODS

• selecting and excluding graphs from your output

• modifying the appearance of all your graphs with styles

Specifying an ODS Destination for Graphics

Whenever you use ODS Graphics you must specify a valid ODS destination. The
examples in“Getting Started”illustrate how to specify an HTML destination. Other
destinations are specified in a similar way. For example, you can specify an RTF
destination with the following statements.

ods rtf;
ods graphics on;

...SAS statements...

ods graphics off;
ods rtf close;

The supported ODS destinations are shown inTable 15.1.

Table 15.1. Destinations Supported by ODS Graphics
Destination Destination Family Viewer
DOCUMENT Not Applicable
HTML MARKUP Browser
LATEX MARKUP Ghostview
PCL PRINTER Ghostview
PDF PRINTER Acrobat
PS PRINTER Ghostview
RTF Microsoft Word

Note: In SAS 9.1 the LISTING destination does not support ODS Graphics. You
must specify a supported ODS destination in order to produce ODS Graphics, as
illustrated by all the examples in this chapter.

Specifying a File for ODS Output

You can specify a file name for your output with the FILE= option in the ODS desti-
nation statement, as in the following example:

ods html file = "test.htm";
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The output is written to the filetest.htm, which is saved in the SAS current folder.
At startup, the SAS current folder is the same directory in which you start your SAS
session. If you are running SAS with the windowing environment in the Windows
operating system, then the current folder is displayed in the status line at the bottom
of the main SAS window, as shown inFigure 15.6.

Figure 15.6. Current Folder (Right Bottom)

If you do not specify a file name for your output, then SAS provides a default file,
which depends on the ODS destination. This file is saved in the SAS current folder.
You can always check the SAS log to verify the name of the file in which your output
is saved. For example, suppose you specify the following statement at startup:

ods html;

Then the following message is displayed in the SAS log:

NOTE: Writing HTML Body file: sashtml.htm

The default file names for each destination are specified in the SAS Registry. For
more information, refer to the SAS Companion for your operating system.

Viewing Your Graphs in the SAS Windowing Environment

The mechanism for viewing graphics created with ODS can vary depending on your
operating system, which viewers are installed on your computer, and the ODS desti-
nation you have selected.

If you are using the SAS windowing environment in the Windows operating system
and you specify an HTML destination, then by default the results are displayed in the
SAS Results Viewer as they are being generated. Depending on your configuration,
this may also apply to the PDF and RTF destinations.∗ For information about the

∗If you are using the LATEX or the PS destinations you must use a PostScript viewer, such as
Ghostview.
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windowing environment in a different operating system, refer to the SAS Companion
for that operating system.

If you do not want to view the results as they are being generated, then selectTools
→ Options → Preferences. . .from the menu at the top of the main SAS window.
Then in theResults tab disableView results as they are generated, as shown in
Figure 15.7.

Figure 15.7. Disabling View of Results as Generated

You can change the default to use an external viewer instead of the Results Viewer.
SelectTools→Options→ Preferences. . .from the menu at the top of the main SAS
window. Then in theResultstab selectPreferred web browser, as shown inFigure
15.8. Your results will then be displayed in the default viewer that is configured in
your computer for the corresponding destination.
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Figure 15.8. Selecting an External Browser

You can also choose which browser to use for HTML output. SelectTools→Options
→ Preferences. . .from the menu at the top of the main SAS window. Then in
theWeb tab selectOther browser, and type (or browse) the path of your preferred
browser, as shown inFigure 15.9.

Figure 15.9. Changing the Default External Browser
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Referring to Graphs by Name

Procedures assign a name to each graph they create with ODS Graphics. This enables
you to refer to ODS graphs in the same way that you refer to ODS tables (see the
“Using the Output Delivery System”section on page 274 inChapter 14, “Using the
Output Delivery System”). You can determine the names of graphs in several ways:

• You can look up graph names in the “ODS Graphics” section of chapters for
procedures that use ODS Graphics. See, for example, the“ODS Graphics”
section on page 3922 inChapter 61, “The REG Procedure.”

• You can use the Results window to view the names of ODS graphs created in
your SAS session. See the section“Using ODS with the SAS Explorer”on
page 277 for more information.

• You can use the ODS TRACE ON statement to list the names of graphs created
by your SAS session. This statement adds identifying information in the SAS
log (or, optionally, in the SAS listing) for each graph that is produced. See
page 330 for an example, and the“Using the Output Delivery System”section
on page 274 for more information.

Note that the graph name is not the same as the name of the file containing the graph
(see page 335).

Selecting and Excluding Graphs

You can use graph names to specify which ODS graphs are displayed with the
ODS SELECT and ODS EXCLUDE statements. See the section“Using the Output
Delivery System”on page 274 for information on how to use these statements.

Example

This example revisits the analysis described in the section“Using the ODS
GRAPHICS Statement and Procedure Options”on page 324.

To determine which output objects are created by ODS, you specify the ODS TRACE
ON statement prior to the procedure statements.

ods trace on;

ods html;
ods graphics on;

proc kde data = bivnormal;
bivar x y / plots = contour surface;

run;

ods graphics off;
ods html close;

ods trace off;
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Figure 15.10displays the trace record, which is added to the SAS log. By default,
the KDE procedure creates table objects named “Inputs” and “Controls,” and it cre-
ates graph objects named “Contour” and “SurfacePlot.” In addition to the name, the
trace record provides the label, template, and path for each output object. Graph
templates are distinguished from table templates by a naming convention that uses
the procedure name in the second level and the word “Graphics” in the third level.
For example, the fully qualified template name for the surface plot created by PROC
KDE, as shown inFigure 15.10, is

Stat.KDE.Graphics.HistSurface

Output Added:
-------------
Name: Inputs
Template: Stat.KDE.Inputs
Path: KDE.Bivar1.x_y.Inputs
-------------

Output Added:
-------------
Name: Controls
Template: Stat.KDE.Controls
Path: KDE.Bivar1.x_y.Controls
-------------
WARNING: Statistical graphics displays created with ODS are experimental in

this release.

Output Added:
-------------
Name: Contour
Label: Contour Plot
Template: Stat.KDE.Graphics.ContourScatter
Path: KDE.Bivar1.x_y.Contour
-------------

Output Added:
-------------
Name: SurfacePlot
Label: Density Surface
Template: Stat.KDE.Graphics.HistSurface
Path: KDE.Bivar1.x_y.SurfacePlot
-------------

Figure 15.10. ODS Trace Record in SAS Log

Note that you can specify the LISTING option in the ODS TRACE ON statement to
write the trace record to the LISTING destination:

ods trace on / listing;

The following statements use the ODS SELECT statement to specify that only the two
graph objects named “Contour” and “SurfacePlot” are to be included in the HTML
output.
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ods html;
ods graphics on;

ods select Contour SurfacePlot;

proc kde data = bivnormal;
bivar x y / plots = contour surface;

run;

ods graphics off;
ods html close;

A sample program namedodsgr02.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Specifying Styles for Graphics

ODS styles control the overall look of your output. A style definition provides for-
matting information for specific visual aspects of your SAS output. For ODS tables
this information typically includes a list of font definitions (each font defines a fam-
ily, size, weight, and style) and a list of colors, which are associated with common
areas of printed output, including titles, footnotes, by-groups, table headers, and table
cells.

Starting with SAS 9, ODS styles also include graphical appearance information such
as line and marker properties in addition to font and color information. Furthermore,
in SAS 9.1, ODS styles include graphics appearance informats for common elements
of statistical graphics created with ODS Graphics. These elements include fitted lines,
confidence and prediction bands, and outliers.

For more information about styles, refer to the “TEMPLATE Procedure: Creating a
Style Definition” in theSAS Output Delivery System User’s Guide.

Specifying a Style

You can specify a style using the STYLE= option in a valid ODS destination,∗ such as
HTML, PDF, RTF, or PRINTER. Each style produces output with the same content,
but a somewhat different visual appearance. For example, the following statement
request output using the “Journal” style.

ods html style = Journal;

∗Style definitions do not apply to the LISTING destination, which uses the SAS monospace format
by default for output tables. The LISTING destination is not a valid destination for ODS Graphics in
SAS 9.1.
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Any SAS-supplied or user-defined style can be used for ODS Graphics. However, of
the SAS-supplied styles for SAS 9.1, four are specifically designed and recommended
for use with ODS Graphics:

• Analysis

• Default

• Journal

• Statistical

Figure 15.11andFigure 15.12illustrate the difference between the “Default” and the
“Journal” styles for the HTML destination. Note that the appearance of tables and
graphics is coordinated within a particular style. This is also illustrated in the series
of examples starting withExample 15.11.

For more information about styles for ODS Graphics, see the section“Styles for
Graphics”on page 344 or refer to the “ODS Statistical Graphics and ODS Styles:
Usage and Reference (Experimental)” at
http://support.sas.com/documentation/onlinedoc/base/.

Figure 15.11. HTML Output with Default Style
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Figure 15.12. HTML Output with Journal Style

Graphics Image Files
Accessing your graphs as individual image files is useful when you want to include
them in various types of documents. The default image file type depends on the ODS
destination, but there are other supported image file types that you can specify. You
can also specify the names for your graphics image files and the directory in which
you want to save them.

This section describes the image file types supported by ODS Graphics, and it ex-
plains how to name and save graphics image files.

Describing Supported Image File Types

If you are using an HTML or a LATEX destination, your graphs are individually
produced in a specific image file type, such as GIF or PostScript.

If you are using a destination in the PRINTER family or the RTF destination, the
graphs are contained in the ODS output file and cannot be accessed as individual
image files. However, you can open an RTF output file in Microsoft Word and then
copy and paste the graphs into another document, such as a Microsoft PowerPoint
presentation; this is illustrated inExample 15.3.
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Table 15.2shows the various ODS destinations supported by ODS Graphics, the
viewer that is appropriate for displaying graphs in each destination, and the image
file types supported for each destination.

Table 15.2. Destinations and Image File Types Supported by ODS Graphics
Destination Destination

Family
Viewer Image File Types

DOCUMENT Not Applicable Not Applicable
HTML MARKUP Browser GIF (default), JPEG, PNG
LATEX MARKUP Ghostview PostScript (default), EPSI, GIF,

JPEG, PNG
PCL PRINTER Ghostview Contained in PostScript file
PDF PRINTER Acrobat Contained in PDF file
PS PRINTER Ghostview Contained in PostScript file
RTF Microsoft Word Contained in RTF file

Note: In SAS 9.1 the LISTING destination does not support ODS Graphics. You
must specify a supported ODS destination in order to produce ODS Graphics, as
illustrated by all the examples in this chapter.

Naming Graphics Image Files

The names of graphics image files are determined by abase file name, an index
counter, and anextension. By default, the base file name is the ODS graph name
(see page 330). The index counter is set to zero when you begin a SAS session, and
it is increased by one after you create a graph, independently of the graph type or the
SAS procedure that creates it. The extension indicates the image file type.

For instance, if you run the example on page 324 at the beginning of a SAS session,
the two graphics image files created areContour0.gif andSurfacePlot1.gif. If you
immediately rerun this example, then ODS creates the same graphs in different image
files namedContour2.gif andSurfacePlot3.gif.

You can specify the RESET option in the ODS GRAPHICS statement to reset the
index counter to zero. This is useful to avoid duplication of graphics image files if
you are rerunning a SAS program in the same session.

ods graphics on / reset;

Note: The index counter is initialized to zero at the beginning of your SAS session or
if you specify the RESET option in the ODS GRAPHICS statement. Graphics image
files with the same name are overwritten.

You can specify a base file name for all your graphics image files with the
IMAGENAME= option in the ODS GRAPHICS statement. For example:

ods graphics on / imagename = "MyName";
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You can also specify

ods graphics on / imagename = "MyName" reset;

With the preceding statement, the graphics image files are namedMyName0,
MyName1, and so on.

You can specify the image file type for the HTML or LATEX destinations with the
IMAGEFMT= option in the ODS GRAPHICS statement. For example:

ods graphics on / imagefmt = png;

For more information, see the“ODS GRAPHICS Statement”section on page 349.

Saving Graphics Image Files

Knowing where your graphics image files are saved and how they are named is par-
ticularly important if you are running in batch mode, if you have disabled the SAS
Results Viewer (see page 327), or if you plan to access the files for inclusion in a doc-
ument. The following discussion assumes you are running SAS under the Windows
operating system. If you are running on a different operating system, refer to the SAS
Companion for your operating system.

Your graphics image files are saved by default in the SAS current folder. If you
are using the SAS windowing environment, the current folder is displayed in the
status line at the bottom of the main SAS window (see also page 327). If you are
running your SAS programs in batch mode, the graphs are saved by default in the
same directory where you started your SAS session.

For instance, suppose the SAS current folder isC:\myfiles. If you specify the ODS
GRAPHICS statement, then your graphics image files are saved in the directory
C:\myfiles. Unlike traditional high resolution graphics created with SAS/GRAPH,
ODS Graphics are not temporarily stored in a catalog in yourWork directory.

With the HTML and the LATEX destinations, you can specify a directory for saving
your graphics image files. With the PRINTER and RTF destinations, you can only
specify a directory for your output file. The remainder of this discussion provides
details for each destination type.

HTML Destination

If you are using the HTML destination, the individual graphs are created as GIF
files by default. You can use the PATH= and GPATH= options in the ODS HTML
statement to specify the directory where your HTML and graphics files are saved,
respectively. This also gives you more control over your graphs. For example, if you
want to save your HTML file namedtest.htm in the C:\myfiles directory, but you
want to save your graphics image files inC:\myfiles\gif, then you specify

ods html path = "C:\myfiles"
gpath = "C:\myfiles\gif"
file = "test.htm";
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When you specify the URL= suboption with the GPATH= option, SAS creates rela-
tive paths for the links and references to the graphics image files in the HTML file.
This is useful for building output files that are easily moved from one location to an-
other. For example, the following statements create a relative path to thegif directory
in all the links and references contained intest.htm.

ods html path = "C:\myfiles"
gpath = "C:\myfiles\gif" (url="gif/")
file = "test.htm";

If you do not specify the URL= suboption, SAS creates absolute paths that are hard-
coded in the HTML file; these may cause broken links if you move the files. For more
information, refer to the ODS HTML statement in the “Dictionary of ODS Language
Statements” (SAS Output Delivery System User’s Guide).

LATEX Destination

LATEX is a document preparation system for high-quality typesetting. The experimen-
tal ODS LATEX statement produces output in the form of a LATEX source file that is
ready to compile in LATEX.

When you request ODS Graphics for a LATEX destination, ODS creates the re-
quested graphs as PostScript files by default, and the LATEX source file includes refer-
ences to these image graphics files. You can compile the LATEX file or you can access
the individual PostScript files to include your graphs in a different LATEX document,
such as a paper that you are writing.

You can specify the PATH= and GPATH= options in the ODS LATEX statement,
as explained previously for the ODS HTML statement. SeeExample 15.4for an
illustration.

The ODS LATEX statement is an alias for the ODS MARKUP statement using the
TAGSET=LATEX option. For more information, refer to the ODS MARKUP state-
ment in the “Dictionary of ODS Language Statements” (SAS Output Delivery System
User’s Guide).

If you are using a LATEX destination with the default PostScript image file type, your
ODS graphs are created in gray-scale, regardless of the style you are using. When
you use this destination, it is recommended that you use the “Journal” style to obtain
high quality graphics. For more information about styles, see the“Specifying Styles
for Graphics”section on page 332.

To create color graphics using a LATEX destination, specify JPEG, GIF, or PNG
with the IMAGEFMT= option in the ODS GRAPHICS statement. If you spec-
ify GIF you can use a distiller to obtain a PostScript or a PDF file. If you spec-
ify JPEG you may need to include the\DeclareGraphicsExtensions and the
\DeclareGraphicsRule commands in the preamble of your LATEX file. For more
information, refer to the LATEX documentation for thegraphicx package.
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PRINTER and RTF Destinations

If you are using a destination in the PRINTER family (PCL, PDF, PS) or the RTF
destination, the graphs are contained in the output file and cannot be accessed as
individual graphics image files. You can specify the path where the output file is to
be saved using the FILE= option of the ODS destination statement. For example,
suppose that you specify

ods pdf file = "test.pdf";

Then your ODS output is saved as the PDF filetest.pdf in the SAS current folder
(for example, inC:\myfiles).

You can specify a full path name for your output with the FILE= option. For instance
to save your PDF file to the directoryC:\temp you specify

ods pdf file = "C:\temp\test.pdf";

You can always check the SAS log to verify where your output is saved. For example,
the preceding statement would result in the following log message:

NOTE: Writing ODS PDF output to DISK destination
"C:\temp\test.pdf", printer "PDF".

Customizing Graphics with Templates

This section describes how to locate templates for ODS Graphics, and how to display,
edit, and save these templates. It also provides an overview of the graph template
language. Before presenting these details, a review of the TEMPLATE procedure
terminology is helpful.

A template definitionis a set of SAS statements that can be run with the TEMPLATE
procedure to create a compiled template. Two common types of template definitions
aretable definitionsandstyle definitions. A table definition describes how to display
the output for an output object that is to be rendered as a table, and a style definition
provides formatting information for specific visual aspects of your SAS output.

A third type of template definition is agraph template definition(or graph defini-
tion for short), which controls the layout and details of graphs produced with ODS
Graphics. Graph definitions begin with a DEFINE STATGRAPH statement and end
with an END statement.

A template storeis a member of a SAS data library that stores compiled templates
created by the TEMPLATE procedure. Default templates supplied by SAS are saved
in theSashelp.Tmplmst template store.

In common applications of ODS Graphics, it should not be necessary to modify the
default template for each graph, which is supplied by SAS. However, when cus-
tomization is necessary, you can modify the default template with the graph template
language in the TEMPLATE procedure.
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If you are using the SAS windowing environment, the easiest way to display, edit,
and save your templates is by using the Templates window. For detailed information
about managing templates, refer to the “TEMPLATE Procedure: Managing Template
Stores” in theSAS Output Delivery System User’s Guide.

For details concerning the syntax of the graph template language, refer to the
“TEMPLATE Procedure: Creating ODS Statistical Graphics Output (Experimental)”
at http://support.sas.com/documentation/onlinedoc/base/.

Locating Templates

The first step in customizing a graph is to determine which template was used to
create the original graph. The easiest way to do this is to specify the ODS TRACE
ON statement prior to the procedure statements that created the graph. The fully
qualified template name is displayed in the SAS log. This is illustrated inExample
15.7and the section“Using the Output Delivery System”on page 274. Note that the
ODS TRACE ON statement applies to graphs just as it does to tables.

Displaying Templates

Once you have found the fully qualified name of a template, you can display its
definition using one of these methods:

• Open the Templates window by typingodstemplates(or odst for short) in the
command line, as shown inFigure 15.13. If you expand theSashelp.Tmplmst
icon, you can browse all the available templates and double-click on any tem-
plate icon to display its definition. This is illustrated inExample 15.7.

Figure 15.13. Requesting the Templates Window in the Command Line

• Use the SOURCE statement in PROC TEMPLATE to display a template defi-
nition in the SAS log. For example, the following statements display the default
definition of the residual Q-Q plot in PROC ROBUSTREG.

proc template;
source Stat.Robustreg.Graphics.ResidualQQPlot;

run;
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Editing Templates

You can modify the format and appearance of a particular graph by modifying its
template. There are several ways to edit a template definition:

• Find the template icon in the Templates window, right-click on the icon, and
selectEdit from the pull-down menu. This opens a Template Editor window
in which you can edit the template definition. This approach is illustrated in
Example 15.7.

• Find the template icon in the Templates window and double-click on the tem-
plate icon to display the template definition. Copy and paste the template defi-
nition into the Program Editor.

• Use the SOURCE statement with the FILE= option in PROC TEMPLATE.
This writes the template definition to a file that you can modify. For example:

proc template;
source Stat.Robustreg.Graphics.ResidualQQPlot /

file = "qqtpl.sas";
run;

By default the file is saved in the SAS current folder. Note that with this ap-
proach you have to add a PROC TEMPLATE statement before the template
definition statements and a RUN statement at the end before submitting your
modified definition.

Note: Graph definitions are self-contained and do not support parenting as do table
definitions. For more information about graph definitions and the graph template
language see the“Introducing the Template Language for Graphics”section on page
342.

Saving Customized Templates

After you edit the template definition you can submit your PROC TEMPLATE state-
ments as you would for any other SAS program:

• If you are using the Template Editor window, selectSubmit from the Run
menu. For example, seeExample 15.7.

• Alternatively, submit your PROC TEMPLATE statements in the Program
Editor.

ODS automatically saves the compiled template in the first template store that it can
update, according to the currently defined ODS path. If you have not changed the
ODS path, then the modified template is saved in theSasuser.Templat template
store. You can display the current ODS path with the following statement.

ods path show;
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By default, the result of this statement is displayed in the SAS log, as illustrated in
Figure 15.14.

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

Figure 15.14. Result of ODS PATH SHOW Statement

Using Customized Templates

When you create ODS output (either graphs or tables) with a SAS program, ODS
searches sequentially through each element of the ODS PATH list for the first
template that matches the ODS name of each output object requested. This tem-
plate is used to produce the output object. If you have not changed the default
ODS path, then the first template store searched isSasuser.Templat, followed by
Sashelp.Tmplmst.

Note that you can have templates with the same name in different template stores.
The template that is used is the first one found in the ODS path.

The ODS PATH statement specifies which locations to search for definitions that
were created by PROC TEMPLATE, as well as the order in which to search for them.
You can change the default path by specifying different locations in the ODS PATH
statement. For example, the following statement changes the default ODS path so
that the first template store searched isWork.Mypath.

ods path work.mypath(update) sashelp.tmplmst(read);

The UPDATE option provides update access as well as read access toWork.Mypath.
The READ option provides read-only access toSashelp.Tmplmst.

For more information, refer to the ODS PATH Statement in the “Dictionary of ODS
Language Statements” (SAS Output Delivery System User’s Guide).

Reverting to Default Templates

Customized templates are stored inSasuser.Templat or in user-defined template
stores. The default templates provided by SAS are saved in the read-only template
storeSashelp.Tmplmst. Consequently, if you have modified any of the default tem-
plates and you want to create ODS Graphics with the original default templates, one
way to do so is by changing your ODS path as follows.

ods path sashelp.tmplmst(read) sasuser.templat(update);
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A second approach, which is highly recommended, is to save all your customized
templates in a user-defined template store (for exampleWork.Mypath). Then you
can reset the default ODS path with the ODS PATH RESET statement:

ods path reset;

A third approach is to save your customized definition as part of your SAS program
and delete the corresponding template from yourSasuser.Templat template store.

Example 15.7illustrates all the steps of displaying, editing, saving and using cus-
tomized templates.

Introducing the Template Language for Graphics

Graph template definitions are written in agraph template language, which has been
added to the TEMPLATE procedure in SAS 9.1. This language includes statements
for specifying plot layouts (such as grids or overlays), plot types (such as scatter
plots and histograms), and text elements (such as titles, footnotes, and insets). It also
provides support for built-in computations (such as histogram binning) and evaluation
of expressions. Options are available for specifying colors, marker symbols, and
other attributes of plot features.

Graph template definitions begin with a DEFINE STATGRAPH statement in PROC
TEMPLATE, and they end with an END statement. You can specify the DYNAMIC
statement to define dynamic variables, the MVAR and NMVAR statements to define
macro variables, and the NOTES statement to provide descriptive information about
the graph.

The statements available in the graph template language can be classified as follows:

• Control statements, which specify conditional or iterative flow of control. By
default, flow of control is sequential. In other words, each statement is used in
the order in which it appears.

• Layout statements, which specify the arrangement of the components of the
graph. Layout statements are arranged in blocks which begin with a LAYOUT
statement and end with an ENDLAYOUT statement. The blocks can be nested.
Within a layout block, you can specify plot, text, and other statement types to
define one or more graph components. Statement options provide control for
attributes of layouts and components.

• Plot statements, which specify a number of commonly used displays, includ-
ing scatter plots, histograms, contour plots, surface plots, and box plots. Plot
statements are always provided within a layout block. The plot statements in-
clude options to specify which data columns from the source objects are used
in the graph. For example, in the SCATTERPLOT statement used to define a
scatter plot, there are mandatory X= and Y= options that specify which data
columns are used for thex- andy-variables in the plot, and there is a GROUP=
option that specifies a data column as an optional classification variable.
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• Text statements, which specify descriptions accompanying the graphs. An
entry is any textual description, including titles, footnotes, and legends, and it
can include symbols to identify graph elements.

As an illustration, the following statements display the template definition of the
scatter plot available in PROC KDE (seeOutput 36.7.1in Chapter 36, “The KDE
Procedure”).

proc template;
define statgraph Stat.KDE.Graphics.ScatterPlot;

dynamic _TITLE _DEPLABEL _DEPLABEL2;
layout Gridded;

layout overlay / padbottom = 5;
entrytitle _TITLE;

endlayout;
scatterplot x=X y=Y /

markersymbol = GraphDataDefault:markersymbol
markercolor = GraphDataDefault:contrastcolor
markersize = GraphDataDefault:markersize;

EndLayout;
end;

run;

The DEFINE STATGRAPH statement in PROC TEMPLATE creates the graph tem-
plate definition. The DYNAMIC statement defines three dynamic variables. The
variable–TITLE provides the title of the graph. The variables–DEPLABEL and

–DEPLABEL2 contain the names of thex andy-variables, respectively. You can use
these dynamic text variables in any text element of the graph definition.

The overall display is specified with the LAYOUT GRIDDED statement. The title of
the graph is specified with the ENTRYTITLE statement inside a layout overlay block,
which is nested within the main layout. The main plot is a scatter plot specified with
the SCATTERPLOT statement. The options in the SCATTERPLOT statement, which
are given after the slash, specify the symbol, color, and size for the markers using
indirect references to style attributes of the formstyle-element:attribute . The
values of these attributes are specified in the definition of the style you are using, and
so they are automatically set to different values if you specify a different style. For
more information about style references see the“Styles for Graphics”section on page
344.

The second ENDLAYOUT statement ends the main layout block and the END state-
ment ends the graph template definition.

Note: Graph template definitions are self-contained and do not support parenting (in-
heritance) as do table definitions. The EDIT statement is not supported.

For details concerning the syntax of the graph template language, refer to the
“TEMPLATE Procedure: Creating ODS Statistical Graphics Output (Experimental)”
at http://support.sas.com/documentation/onlinedoc/base/.
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Styles for Graphics

This section provides an overview of the style elements for ODS Graphics. It also
describes how to customize a style definition and how to specify a default style for
all your output.

Introducing Style Elements for Graphics

An ODS style definition is composed of a set ofstyle elements. A style element is a
collection ofstyle attributesthat apply to a particular feature or aspect of the output.
A value is specified for each attribute in a style definition.

Style definitions control the overall appearance of ODS tables and graphs. For ODS
tables, style definitions specify features such as background color, table borders, and
color scheme, and they specify the fonts, sizes, and color for the text and values
in a table and its headers. For ODS graphs, style definitions specify the following
features:

• background color

• graph dimensions (height and width). SeeExample 15.13for an illustration.

• borders

• line styles for axes and grid lines

• fonts, sizes, and colors for titles, footnotes, axis labels, axis values, and data
labels. SeeExample 15.11for an illustration.

• marker symbols, colors, and sizes for data points and outliers

• line styles for needles

• line and curve styles for fitted models and predicted values. SeeExample 15.12
for an illustration.

• line and curve styles for confidence and prediction limits

• fill colors for histogram bars, confidence bands, and confidence ellipses

• colors for box plot features

• colors for surfaces

• color ramps for contour plots

In the templates supplied by SAS for ODS graphs, options for plot features are always
specified with a style reference of the formstyle-element:attribute rather
than a hard-coded value. For example, the symbol, color, and size of markers for
basic scatter plots are specified in a template SCATTERPLOT statement as follows:

scatterplot x=X y=Y /
markersymbol = GraphDataDefault:markersymbol
markercolor = GraphDataDefault:contrastcolor
markersize = GraphDataDefault:markersize;
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This guarantees a common appearance for markers used in all basic scatter plots,
which is controlled by theGraphDataDefault element of the style definition that
you are using.

In general, the ODS graph features listed above are determined by style element
attributes unless they are overridden by a statement or option in the graph template.
For example, suppose that a classification variable is specified with the GROUP=
option in a template SCATTERPLOT statement such as

scatterplot x=X y=Y / group=GroupVar;

Then the colors for markers corresponding to the classification levels are as-
signed the style element attributesGraphData1:contrastcolor through
GraphData12:contrastcolor .

In order to create your own style definition or to modify a style definition for
use with ODS Graphics, you need to understand the relationships between style
elements and graph features. This information is provided in the section “ODS
Statistical Graphics and ODS Styles: Usage and Reference (Experimental)” at
http://support.sas.com/documentation/onlinedoc/base/.

Style definitions are created and modified with the TEMPLATE procedure. For more
information, refer to the “TEMPLATE Procedure: Creating a Style Definition” in the
SAS Output Delivery System User’s Guide.

Customizing Style Definitions

The default style definitions that SAS provides are stored in the “Styles” directory of
Sashelp.Tmplmst.

You can display, edit, and save style definitions using the same methods available for
modifying template definitions, as explained in the sections beginning on page 339.
In particular, you can display style definitions using one of these methods:

• If you are using the Templates window in the SAS windowing environment,
expand theSashelp.Tmplmstnode underTemplates, and then selectStylesto
display the contents of this folder.

• Use the SOURCE statement in PROC TEMPLATE. For example, the following
statements display the “Journal” style definition in the SAS log.

proc template;
source Styles.Journal;

run;
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Specifying a Default Style

The default style for each ODS destination is specified in the SAS Registry. For
example, the default style for the HTML destination is “Default,” and for the RTF
destination it is “Rtf.”

You can specify a default style for all your output in a particular ODS destination.
This is useful if you want to use a different SAS-supplied style, if you have modified
one of the SAS-supplied styles (see page 345), or if you have defined your own style.
For example, you can specify the “Journal” style for all your RTF output.

The recommended approach for specifying a default style is as follows. Open the
SAS Registry Editor by typingregedit in the command line. Expand the nodeODS
→ DESTINATIONS and select a destination (for example, selectRTF). Double-
click theSelected Styleitem, as illustrated inFigure 15.15, and specify a style. This
can be any SAS-supplied style or a user-defined style, as long as it can be found with
the current ODS path (for example, specifyJournal). You can specify a default style
for the HTML, MARKUP, and PRINTER destinations in a similar way.

Figure 15.15. SAS Registry Editor

Note: ODS searches sequentially through each element of the ODS PATH list for the
first style definition that matches the name of the style specified in the SAS Registry.
The first style definition found is used. If you are specifying a customized style as
your default style, the following are useful suggestions:

• If you save your style inSasuser.Templat, verify that the name of your default
style matches the name of the style specified in the SAS Registry. For example
suppose the “Rtf” style is specified for the RTF destination in the SAS Registry.
You can name your styleRtf and save it inSasuser.Templat. This blocks the
“Rtf” style in Sashelp.Tmplmst.

• If you save your style in a user-defined template store, verify that this template
store is the first in the current ODS PATH list. Include the ODS PATH statement
in your SAS autoexec file so that it is executed at startup.
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For the HTML destination, an alternative approach for specifying a default style is as
follows. From the menu at the top of the main SAS window selectTools→ Options
→ Preferences. . .. In the Results tab check theCreate HTML box and select a
style from the pull-down menu. This is illustrated inFigure 15.16.

Figure 15.16. Selecting a Default Style for HTML Destination
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Details

Procedures Supporting ODS Graphics

The following SAS procedures support ODS Graphics in SAS 9.1:

Base SAS

• CORR

SAS/ETS

• ARIMA

• AUTOREG

• ENTROPY

• EXPAND

• MODEL

• SYSLIN

• TIMESERIES

• UCM

• VARMAX

• X12

SAS High-Performance Forecasting

• HPF

SAS/STAT

• ANOVA

• CORRESP

• GAM

• GENMOD

• GLM

• KDE

• LIFETEST

• LOESS

• LOGISTIC

• MI

• MIXED

• PHREG

• PRINCOMP

• PRINQUAL

• REG

• ROBUSTREG

For details on the specific graphs available with a particular procedure, see the “ODS
Graphics” section in the corresponding procedure chapter.

Operating Environments Supporting ODS Graphics

The following operating systems are supported:

• Windows (32- and 64- bit)

• OpenVMS Alpha

• z/OS (OS/390)

• UNIX (AIX, HP-UX, Tru64 UNIX, Solaris, Linux)

For information specific to an operating system, refer to the SAS Companion for that
operating system.
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Creating ODS Graphics in z/OS

Creating ODS Graphics with the z/OS (OS/390) operating system requires the fol-
lowing to be configured by your System Administrator:

• Java

• UNIX File System components

For more information, refer to the sections “Installing UNIX File System
Components” and “Configuring SAS Software for Use with the Java Platform” of
theSAS System Configuration Guide.

In addition, when you specify an ODS HTML destination you must specify the
PATH= or GPATH= option with a valid UNIX directory.

ODS GRAPHICS Statement

The basic syntax for enabling ODS Graphics is

ods graphics on;

You specify this statement prior to your procedure statements, as illustrated in the
“Using the ODS GRAPHICS Statement”section on page 321. Any procedure that
supports ODS Graphics then produces graphics, either by default or when you specify
procedure options for requesting particular graphs.

To disable ODS Graphics, specify

ods graphics off;

The following is a summary of the ODS GRAPHICS statement syntax. You can find
the complete syntax in the section ODS Graphics Statement in the “Dictionary of
ODS Language Statements” (SAS Output Delivery System User’s Guide).

Syntax

ODS GRAPHICS < OFF | ON < / options > > ;

enables ODS to create graphics automatically. The default is ON.

Options

ANTIALIAS | NOANTIALIAS
ANTIALIAS = ON | OFF

controls the use of antialiasing to smooth the components of a graph.

OFF
suppresses the use of antialiasing for components other than text.

ON
specifies that antialiasing is to be used to smooth jagged edges of all of the
components in a graph.
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Text displayed in a graph is always antialiased. If the number of observations in the
ODS output object exceeds 250, then antialiasing is not used, even if you specify the
option ANTIALIAS=ON. The default is ON.

IMAGEFMT = < image-file-type | STATIC | STATICMAP >
specifies the image file type (directly or indirectly) for displaying graphics in ODS
output. The default image file type depends on the ODS destination; it is used when
you specify IMAGEFMT=STATIC. You can also specify other supported image file
types. This option only applies to ODS Graphics, and it has no effect on traditional
high resolution graphics that rely on GOPTIONS values. The default is STATIC.

image-file-type
specifies the type of image you want to add to your graph. If the image file type
is not valid for the active output destination, the default is used instead.Table
15.3lists the image file types supported for the ODS destinations that are valid
with ODS Graphics.

STATIC
specifies the best quality image file type for the active output destination.

STATICMAP
applies only with the HTML destination and specifies that an HTML image
map is to be created for tool tip support. The image file type used is the same
as with STATIC. For an illustration seeExample 15.2. If the number of obser-
vations in the data set exceeds 500, the image map is not generated.

Table 15.3. Supported Destinations and Image File Types
Destination Values for IMAGEFMT= Option
HTML GIF (default), JPEG, PNG
LATEX PS (default), EPSI, GIF, JPEG, PNG
PCL Not applicable
PDF Not applicable
PS Not applicable
RTF Not applicable

Note: For PCL, PDF, PS, and RTF, the IMAGEFMT= option is not applicable be-
cause the graph is contained in the output file. SeeTable 15.2.

IMAGENAME = <file-name>
specifies the base image file name. The default is the name of the output object. You
can determine the name of the output object by using the ODS TRACE statement.
The base image name should not include an extension. ODS automatically adds
the increment value and the appropriate extension (which is specific to the output
destination that has been selected).

RESET
resets the index counter appended to image file names.

Note: The index counter is initialized to zero at the beginning of your SAS session or
if you specify the RESET option in the ODS GRAPHICS statement. Graphics image
files with the same name are overwritten.
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Label Collision Avoidance

Label collision avoidance is supported in ODS Graphics by an algorithm which po-
sitions point labels so that label overlap is minimized. However, if the number of
data labels is greater than 100, the labels are displayed at fixed positions and collision
avoidance is not attempted.

Label collision avoidance is illustrated inFigure 15.17, which is a scatter plot taken
from Example 24.3in Chapter 24, “The CORRESP Procedure.”

Figure 15.17. Label Collision Avoidance
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Examples

This section provides a series of examples which illustrate various tasks that can be
performed with ODS Graphics. The examples are presented in increasing order of
task complexity and should be read sequentially.

Example 15.1. Selecting and Excluding Graphs

This example illustrates how to select and exclude ODS graphs from your output.

The “Getting Started” example on page 321 uses the REG procedure to produce
a panel, shown inFigure 15.1, which consists of eight different diagnostics plots.
The panel is produced by default. To display the plots individually, specify the
PLOTS(UNPACK) option in the PROC REG statement as follows:

ods trace on;

ods html;
ods graphics on;

proc reg data = Class plots(unpack);
model Weight = Height;

run;
quit;

ods graphics off;
ods html close;

ods trace off;

The ODS TRACE ON statement requests a record of the output objects created by
ODS, which is displayed in the SAS log as shown inOutput 15.1.1.
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Output 15.1.1. Partial ODS Trace Record in SAS Log

Output Added:
-------------
Name: NObs
Label: Number of Observations
Template: Stat.Reg.NObs
Path: Reg.MODEL1.Fit.Weight.NObs
-------------

.

.

.
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: Stat.REG.ParameterEstimates
Path: Reg.MODEL1.Fit.Weight.ParameterEstimates
-------------
WARNING: Statistical graphics displays created with ODS are experimental in

this release.

Output Added:
-------------
Name: ResidualHistogram
Label: Residual Histogram
Template: Stat.REG.Graphics.ResidualHistogram
Path: Reg.MODEL1.ObswiseStats.Weight.DiagnosticPlots.ResidualHistogram
-------------

.

.

.

Output Added:
-------------
Name: CooksD
Label: Cook’s D
Template: Stat.REG.Graphics.CooksD
Path: Reg.MODEL1.ObswiseStats.Weight.DiagnosticPlots.CooksD
-------------

.

.

.

Output Added:
-------------
Name: Fit
Label: Fit Plot
Template: Stat.REG.Graphics.Fit
Path: Reg.MODEL1.ObswiseStats.Weight.DiagnosticPlots.Fit
-------------

You can use the ODS SELECT statement to restrict your output to a particular subset
of ODS tables or graphs. The following statements restrict the output to the Cook’s D
plot, which is shown inOutput 15.1.2.

ods html;
ods graphics on;

ods select CooksD;

proc reg data = Class plots(unpack);
model Weight = Height;
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run;
quit;

ods graphics off;
ods html close;

Output 15.1.2. Cook’s D Plot

Conversely, you can use the ODS EXCLUDE statement to display all the output with
the exception of a particular subset of tables or graphs. For example, to exclude the
fit plot from the output you specify

ods exclude Fit;

See the“Selecting and Excluding Graphs”section on page 330 for further informa-
tion.

A sample program namedodsgr01.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.2. Creating Graphs with Tool Tips in HTML

This example demonstrates how to request graphics in HTML with tool tip displays,
which appear when you move a mouse over certain features of the graph. When
you specify the HTML destination and the IMAGEFMT=STATICMAP option in the
ODS GRAPHICSstatement, then the HTML file output file is generated with an
image map of coordinates for tool tips. The individual graphs are saved as GIF files.
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Example 46.2andExample 46.8of Chapter 46, “The MIXED Procedure”analyze a
data set with repeated growth measurements for twenty-seven children.

data pr;
input Person Gender $ y1 y2 y3 y4 @@;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;

datalines;
1 F 21.0 20.0 21.5 23.0 2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0 4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5 6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0 8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5 10 F 16.5 19.0 19.0 19.5

11 F 24.5 25.0 28.0 28.0 12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5 14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0 16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5 18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5 20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5 22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0 24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0 26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

The following statements fit a mixed model with random intercepts and slopes for
each child. TheBOXPLOT option in the PROC MIXED statement requests box
plots of observed values and residuals for each classification main effect in the model
(Gender andPerson).

ods html;
ods graphics on / imagefmt = staticmap;

proc mixed data=pr method=ml boxplot(npanel=15);
class Person Gender;
model y = Gender Age Gender*Age;
random intercept Age / type=un subject=Person;

run;

ods graphics off;
ods html close;

The NPANEL=15 suboption limits the number of box plots per graph to at most
fifteen. For example, the conditional residuals of thePerson effect are displayed in
two graphs, consisting of 15 and 12 box plots, respectively.Output 15.2.1displays
the second of these two graphs that are included in the HTML output.

Moving the mouse over a box plot displays a tool tip with summary statistics for the
corresponding person.
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Output 15.2.1. Box Plot with Tool Tips

Note: Graphics with tool tips are only supported for the HTML destination.

A sample program namedodsgr03.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.3. Creating Graphs for a Presentation

The RTF destination provides the easiest way to create ODS graphs for inclusion in a
document or presentation. You can specify the ODS RTF statement to create a file that
is easily imported into a word processor (such as Microsoft Word or WordPerfect) or
a presentation (such as Microsoft PowerPoint).

The following statements simulate 100 observations from the modely = log(x)+w,
wherex = 1, . . . , 100 andw has a normal distribution with mean0 and variance1.

data one;
do x = 1 to 100;

y = log(x) + rannor(12345);
output;

end;
run;

The following statements request a loess fit and save the output in the fileloess.rtf.
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ods rtf file = "loess.rtf";
ods graphics on;

proc loess data = one;
model y = x / clm residual;

run;

ods graphics off;
ods rtf close;

The output file includes various tables and the following plots: a plot of selection
criterion versus smoothing parameter, a fit plot with95% confidence bands, a plot of
residual by regressors, and a diagnostics panel. The fit plot is shown inOutput 15.3.1.

Output 15.3.1. Fit Plot

If you are running SAS in the Windows operating system, it is easy to include your
graphs in a Microsoft PowerPoint presentation when you generate RTF output. You
can open the RTF file in Microsoft Word and simply copy and paste the graphs into
Microsoft PowerPoint. In general, RTF output is convenient for exchange of graphi-
cal results between Windows applications through the clipboard.

Alternatively, if you request ODS Graphics using the HTML destination, then your
individual graphs are created as GIF files by default. You can insert the GIF files
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into a Microsoft PowerPoint presentation. See“Naming Graphics Image Files”and
“Saving Graphics Image Files”for information on how the image files are named and
saved.

A sample program namedodsgr04.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.4. Creating Graphs in PostScript Files

This example illustrates how to create individual graphs in PostScript files, which is
particularly useful when you want to include them in a LATEX document.

The “Getting Started” section ofChapter 62, “The ROBUSTREG Procedure,”cre-
ates the following data set to illustrate the use of the ROBUSTREG procedure for
robust regression.

data stack;
input x1 x2 x3 y @@;
datalines;

80 27 89 42 80 27 88 37 75 25 90 37
62 24 87 28 62 22 87 18 62 23 87 18
62 24 93 19 62 24 93 20 58 23 87 15
58 18 80 14 58 18 89 14 58 17 88 13
58 18 82 11 58 19 93 12 50 18 89 8
50 18 86 7 50 19 72 8 50 19 79 8
50 20 80 9 56 20 82 15 70 20 91 15
;

The following statements specify a LATEX destination∗ with the “Journal” style,
and request a histogram of standardized robust residuals computed with the
ROBUSTREG procedure.

ods latex style = Journal;
ods graphics on;

proc robustreg plot=reshistogram data=stack;
model y = x1 x2 x3;

run;

ods graphics off;
ods latex close;

The “Journal” style displays gray-scale graphs that are suitable for a journal. When
you specify the ODS LATEX destination, ODS creates a PostScript file for each
individual graph in addition to a LATEX source file that includes the tabular output and
references to the PostScript files. By default these files are saved in the SAS current
folder. If you run this example at the beginning of your SAS session, the histogram

∗The LATEX destination in ODS is experimental in SAS 9.1.
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shown inOutput 15.4.1is saved by default in a file namedResidualHistogram0.ps.
See page 335 for details about how graphics image files are named.

Output 15.4.1. Histogram Using Journal Style

If you are writing a paper, you can include the graphs in your own LATEX source file
by referencing the names of the individual PostScript graphics files. In this situation,
you may not find necessary to use the LATEX source file created by SAS.

If you specify PATH= and GPATH= options in the ODS LATEX statement, your
tabular output is saved as a LATEX source file in the directory specified with the PATH=
option, and your graphs are saved as PostScript files in the directory specified with
the GPATH= option. This is illustrated by the following statements:

ods latex path = "C:\temp"
gpath = "C:\temp\ps" (url="ps/")
style = Journal;

ods graphics on;

...SAS statements...

ods graphics off;
ods latex close;

The URL= suboption is specified in the GPATH= option to create relative paths
for graphs referenced in the LATEX source file created by SAS. See the“HTML
Destination”section on page 336 for further information.

A sample program namedodsgr05.sas is available for this example in the SAS
Sample Library for SAS/STAT software.
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Example 15.5. Creating Graphs in Multiple Destinations

This example illustrates how to send your output to more than one destination with a
single execution of your SAS statements.

For instance, to create both HTML and RTF output, you can specify the ODS HTML
and the ODS RTF statements before your procedure statements.

ods html;
ods rtf;

...SAS statements...

ods _all_ close;

The ODS–ALL – CLOSE statement closes all open destinations.

You can also specify multiple instances of the same destination. For example, us-
ing the data in the“Using the ODS GRAPHICS Statement and Procedure Options”
section on page 324, the following statements save the contour plot to the filecon-
tour.pdf and the surface plot to the filesurface.pdf.

ods pdf file = "contour.pdf";
ods pdf select Contour;

ods pdf(id=srf) file = "surface.pdf";
ods pdf(id=srf) select SurfacePlot;

ods graphics on;

proc kde data = bivnormal;
bivar x y / plots = contour surface;

run;

ods graphics off;
ods _all_ close;

The ID= option assigns the namesrf to the second instance of the PDF destination.
Without the ID= option, the second ODS PDF statement would close the destination
that was opened by the previous ODS PDF statement, and it would open a new in-
stance of the PDF destination. In that case, the filecontour.pdf would contain no
output. For more information, refer to the Example 1 of the ODS PDF statement in
the “Dictionary of ODS Language Statements” (SAS Output Delivery System User’s
Guide).
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Example 15.6. Displaying Graphs Using the DOCUMENT
Procedure

This example illustrates the use of the DOCUMENT destination and the
DOCUMENT procedure to display your ODS graphs. In particular, this is
useful when you want to display your output (both tables and graphs) in one or more
ODS destinations, or when you want to use different styles without rerunning your
SAS program.

In general, when you send your output to the DOCUMENT destination you can use
the DOCUMENT procedure to rearrange, duplicate, or remove output from the re-
sults of a procedure or a database query. You can also generate output for one or more
ODS destinations. For more information, refer to the ODS DOCUMENT statement in
the “Dictionary of ODS Language Statements” and “The DOCUMENT Procedure”
(SAS Output Delivery System User’s Guide).

The following statements request a Q-Q plot using PROC ROBUSTREG with the
stack data fromExample 15.4. The ODS DOCUMENT statement stores the data for
the tables and the residual Q-Q plot from this analysis in an ODS document named
QQDoc. Neither the tables nor the plot are displayed.

ods listing close;
ods document name = QQDoc(write);
ods graphics on;

proc robustreg plot=resqqplot data=stack;
model y = x1 x2 x3;

run;
quit;

ods graphics off;
ods document close;
ods listing;

In order to display the Q-Q plot using PROC DOCUMENT, you first need to deter-
mine its name. You can do this by specifying the ODS TRACE ON statement prior to
the procedure statements (see page 330 for more information). Alternatively, you can
typeodsdocuments(or odsd for short) in the command line to open the Documents
window, which you can then use to manage your ODS documents.

The following statements specify an HTML destination and display the residual Q-Q
plot using the REPLAY statement in PROC DOCUMENT.

ods html;
ods select ResidualQQPlot;

proc document name = QQDoc;
replay;

run;
quit;

ods html close;
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By default, the REPLAY statement attempts to replay every output object stored in
the document, but only the Q-Q plot is displayed as specified by the ODS SELECT
statement. The plot is displayed inOutput 15.6.1.

Output 15.6.1. Q-Q Plot Displayed by PROC DOCUMENT

As an alternative to running PROC DOCUMENT with an ODS SELECT statement,
you can run PROC DOCUMENT specifying adocument pathfor the Q-Q plot in the
REPLAY statement. This approach is preferable when the document contains a large
volume of output, because PROC DOCUMENT does not attempt to process every
piece of output stored in the document.

You can determine the document path for the Q-Q plot by specifying the LIST state-
ment with the LEVELS=ALL option in PROC DOCUMENT.

proc document name = QQDoc;
list / levels = all;

run;
quit;

This lists the entries of theQQDoc document, as shown inOutput 15.6.2.
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Output 15.6.2. Contents of QQDoc

Listing of: \Work.Qqdoc\
Order by: Insertion
Number of levels: All

Obs Path Type
--------------------------------------------------------------------------------

1 \Robustreg#1 Dir
2 \Robustreg#1\ModelInfo#1 Table
3 \Robustreg#1\NObs#1 Table
4 \Robustreg#1\SummaryStatistics#1 Table
5 \Robustreg#1\ParameterEstimates#1 Table
6 \Robustreg#1\DiagSummary#1 Table
7 \Robustreg#1\ResidualQQPlot#1 Graph
8 \Robustreg#1\GoodFit#1 Table

The document path of the “ResidualQQPlot” entry inQQDoc, as shown inOutput
15.6.2, is

\Robustreg#1\ResidualQQPlot#1

You can specify this path to display the residual Q-Q plot with PROC DOCUMENT
as follows.

ods html;

proc document name = QQDoc;
replay \Robustreg#1\ResidualQQPlot#1;

run;
quit;

ods html close;

You can also determine the document path from the Results window or the
Documents window. Right-click on the object icon and selectProperties.

A sample program namedodsgr06.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.7. Customizing Graph Titles and Axes Labels

This example shows how to use PROC TEMPLATE to customize the appearance and
content of an ODS graph. It illustrates the discussion in the section“Customizing
Graphics with Templates”on page 338 in the context of changing the default title and
y-axis label for a Q-Q plot created with the ROBUSTREG procedure.

The following statements request a Q-Q plot for robust residuals using PROC
ROBUSTREG with thestack data fromExample 15.4.
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ods trace on;
ods html;
ods graphics on;

ods select ResidualQQPlot;

proc robustreg plot=resqqplot data=stack;
model y = x1 x2 x3;

run;

ods graphics off;
ods html close;
ods trace off;

The Q-Q plot is shown inOutput 15.7.1.

Output 15.7.1. Default Q-Q Plot from PROC ROBUSTREG

The ODS TRACE ON statement requests a record of all the ODS output objects cre-
ated by PROC ROBUSTREG. A partial listing of the trace record, which is displayed
in the SAS log, is shown inOutput 15.7.2.
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Output 15.7.2. Trace Record for Q-Q Plot

Output Added:
-------------
Name: ResidualQQPlot
Label: ResidualQQPlot
Template: Stat.Robustreg.Graphics.ResidualQQPlot
Path: Robustreg.Graphics.ResidualQQPlot
-------------

As shown in Output 15.7.2, ODS Graphics creates the Q-Q plot using an
ODS output data object named “ResidualQQPlot” and a graph template named
“Stat.Robustreg.Graphics.ResidualQQPlot,” which is the default template provided
by SAS. Default templates supplied by SAS are saved in theSashelp.Tmplmst
template store (see page 338).

To display the default template definition, open the Templates window by typing
odstemplates(or odst for short) in the command line. ExpandSashelp.Tmplmst
and click on theStat folder, as shown inOutput 15.7.3.

Output 15.7.3. The Templates Window

Next, open theRobustregfolder and then open theGraphics folder. Then right-click
on the “ResidualQQPlot” template icon and selectEdit , as shown inOutput 15.7.4.
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Output 15.7.4. Editing Templates in the Template Window

SelectingEdit opens a Template Editor window, as shown inOutput 15.7.5. You can
use this window to edit the template.

Output 15.7.5. Default Template Definition for Q-Q Plot

The template definition inOutput 15.7.5is discussed below and in subsequent exam-
ples. It is listed in a more convenient format by the following statements:
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proc template;
define statgraph Stat.Robustreg.Graphics.ResidualQQPlot;

notes "Q-Q Plot for Standardized Robust Residuals";
dynamic _DEPLABEL Residual;
layout Gridded;

layout Gridded / columns = 2;
ENTRYTITLE "Q-Q Plot of Robust Residuals for" / padbottom = 5;
ENTRYTITLE _DEPLABEL / padbottom = 5;

EndLayout;
layout Lattice;

layout Overlay /
yaxisopts = (label = "Standardized Robust Residual")
xaxisopts = (label = "Normal Quantile")
XGrid = True YGrid = True;

SCATTERPLOT
y = eval(SORT(DROPMISSING(RESIDUAL)))
x = eval(PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL)))

-0.375)/(0.25+N(RESIDUAL)))) /
markersize = GraphDataDefault:markersize
markersymbol = GraphDataDefault:markersymbol
markercolor = GraphDataDefault:contrastcolor
legendlabel = "Residual"
name = "Data";

lineparm
slope = eval(STDDEV(RESIDUAL))
Yintercept = eval(MEAN(RESIDUAL)) /

linecolor = StatGraphFitLine:contrastcolor
linepattern = StatGraphFitLine:linestyle
linethickness = StatGraphFitLine:linethickness
legendlabel = "Normal"
name = "Fit"
extreme = true;

EndLayout;
column2header;

layout Gridded / padtop = 5;
DiscreteLegend "Fit" "Data" /

border = true
across = 2
background = GraphWalls:background;

EndLayout;
endcolumn2header;

EndLayout;
EndLayout;

end;
run;

As an alternative to using the Template Editor window, you can submit the following
statements, which display the “ResidualQQPlot” template definition in the SAS log.

proc template;
source Stat.Robustreg.Graphics.ResidualQQPlot;

run;

The SOURCE statement specifies the fully qualified template name. You can copy
and paste the template source into the Program Editor, modify it, and submit it us-
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ing PROC TEMPLATE. See the“Editing Templates”section on page 340 for more
information.

In the template, the default title of the Q-Q plot is specified by the two ENTRYTITLE
statements. Note that–DEPLABEL is a dynamic variable that provides the name of
the dependent variable in the regression analysis (the name happens to bey in Output
15.7.1). The default label for the y-axis is specified by the LABEL= suboption of the
YAXISOPTS= option for the LAYOUT OVERLAY statement.

Suppose you want to change the default title toMy Favorite Title, and you want
the y-axis label to display the name of the dependent variable. First, replace the two
ENTRYTITLE statements with the single statement

ENTRYTITLE "My Favorite Title" / padbottom = 5;

The PADBOTTOM= option specifies the amount of empty space (in pixel units) at
the bottom of the layout component. In this case it creates an empty space of 5 pixels
between the title and the adjacent layout component, which defines the plot itself.

Next, replace the LABEL= suboption with the following:

label = _DEPLABEL

Note that you can reuse dynamic text variables such as–DEPLABEL in any text
element.

You can then submit the modified template definition as you would any SAS program,
for example, by selectingSubmit from theRun menu.

After submitting the PROC TEMPLATE statements you should see the following
message in the SAS log:

NOTE: STATGRAPH ’Stat.Robustreg.Graphics.ResidualQQPlot’ has been
saved to: SASUSER.TEMPLAT

Note: Graph definitions are self-contained and do not support parenting as do table
definitions. For more information about graph definitions and the graph template
language, see the“Introducing the Template Language for Graphics”section on page
342.

Finally, resubmit the PROC ROBUSTREG statements on page 363 to display the
Q-Q plot created with your modified template, as shown inOutput 15.7.6.
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Output 15.7.6. Q-Q Plot with Modified Title and Y-Axis Label

If you have not changed the default ODS path, the modified template
“ResidualQQPlot” is used automatically becauseSasuser.Templat occurs be-
fore Sashelp.Tmplmst in the ODS search path. See the“Using Customized
Templates”section on page 341 for additional information.

Note that you do not need to rerun the PROC ROBUSTREG analysis after you mod-
ify a graph template. After you modify your template, you can submit the PROC
DOCUMENT statements inExample 15.6to replay the Q-Q plot with the modified
template.

See the“Reverting to Default Templates”section on page 341 for information on how
to revert to the default template.

A sample program namedodsgr07.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.8. Modifying Colors, Line Styles, and Markers

This example is a continuation ofExample 15.7. Here the objective is to customize
colors, line attributes, and marker symbol attributes by modifying the graph template.

In the “ResidualQQPlot” template definition shown inOutput 15.7.5, the
SCATTERPLOT statement specifies a scatter plot of normal quantiles versus
ordered standardized residuals. The default marker symbol in the scatter plot is
specified by the MARKERSYMBOL= option of the SCATTERPLOT statement:

markersymbol = GraphDataDefault:markersymbol
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The default value is a reference to the style attributemarkersymbol of the style
elementGraphDataDefault . See the“Introducing Style Elements for Graphics”
section on page 344 for more information. The actual value of the marker symbol
depends on the style that you are using. In this case, since the “Default” style is used,
the value of the marker symbol is Circle.

You can specify a filled circle as the marker symbol by modifying the value of the
MARKERSYMBOL= option as follows.

markersymbol = CircleFilled

Note that the value of the option can be any valid marker symbol or a reference to
a style attribute of the formstyle-element:attribute . It is recommended that
you use style attributes since these are chosen to provide consistency and appropriate
emphasis based on display principles for statistical graphics. If you specify values
directly in a template, you are overriding the style and run the risk of creating a graph
that is inconsistent with the style definition.

For more information about the syntax of the graphics template language and
style elements for graphics, refer to the sections “TEMPLATE Procedure:
Creating ODS Statistical Graphics Output (Experimental)” and “ODS
Statistical Graphics and ODS Styles: Usage and Reference (Experimental)” at
http://support.sas.com/documentation/onlinedoc/base/.

Similarly, you can change the line color and pattern with the LINECOLOR= and
LINEPATTERN= options in the LINEPARM statement. The LINEPARM statement
displays a straight line specified by slope and intercept parameters. The following
statements change the default color of the Q-Q plot line to red, and the line pattern to
dashed.

linecolor = red
linepattern = dash

To display these modifications, shown inOutput 15.8.1, submit the modified tem-
plate definition and then resubmit the PROC ROBUSTREG statements on page 363.
Alternatively, you can replay the plot using PROC DOCUMENT, as inExample 15.6.
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Output 15.8.1. Q-Q Plot with Modified Marker Symbols and Line

A sample program namedodsgr08.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.9. Swapping the Axes in a Graph

Sometimes a Q-Q plot is displayed with the normal quantiles plotted along the y-axis
and the ordered variable values plotted along the x-axis. This example, which is a
continuation ofExample 15.7andExample 15.8, illustrates how to interchange the
axes with a simple modification of the graph template.

Begin by swapping the YAXISOPTS= and XAXISOPTS= options, and by swapping
the X= and Y= options in the SCATTERPLOT statement.

Next, modify the LINEPARM statement. InOutput 15.8.1, the slope of the line in
the Q-Q plot isσ̂, and y-intercept iŝµ. When you swap the axes, the values of the
slope and y-intercept become1/σ̂ and−µ̂/σ̂, respectively. The modified template
definition (including the changes fromExample 15.7andExample 15.8) is as follows:
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proc template;
define statgraph Stat.Robustreg.Graphics.ResidualQQPlot;

notes "Q-Q Plot for Standardized Robust Residuals";
dynamic _DEPLABEL Residual;
layout Gridded;

layout Gridded / columns = 2;
ENTRYTITLE "My Favorite Title" / padbottom=5;

EndLayout;
layout Lattice;

layout Overlay /
xaxisopts = (label = _DEPLABEL)
yaxisopts = (label = "Normal Quantile")
XGrid = True YGrid = True;

SCATTERPLOT
x = eval(SORT(DROPMISSING(RESIDUAL)))
y = eval(PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL)))

-0.375)/(0.25+N(RESIDUAL)))) /
markersize = GraphDataDefault:markersize
markersymbol = CircleFilled
markercolor = GraphDataDefault:contrastcolor
legendlabel = "Residual"
name = "Data";

lineparm
slope = eval(1/STDDEV(RESIDUAL))
Yintercept = eval(-MEAN(RESIDUAL)/STDDEV(RESIDUAL)) /

linecolor = red
linepattern = dash
linethickness = StatGraphFitLine:linethickness
legendlabel = "Normal"
name = "Fit"
extreme = true;

EndLayout;
column2header;

layout Gridded / padtop = 5;
DiscreteLegend "Fit" "Data" /

border = true
across = 2
background = GraphWalls:background;

EndLayout;
endcolumn2header;

EndLayout;
EndLayout;

end;
run;

The resulting Q-Q plot, after submitting the preceding statements and the PROC
ROBUSTREG statements on page 363, is shown inOutput 15.9.1.
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Output 15.9.1. Q-Q Plot with Swapped Axes

A sample program namedodsgr09.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.10. Modifying Tick Marks and Suppressing Grid
Lines

This example, which is a continuation ofExample 15.7, Example 15.8, andExample
15.9, illustrates how to modify the tick marks for an axis and suppress grid lines.

You can use the TICKS= suboption in the XAXISOPTS= or YAXISOPTS= options
to specify the tick marks for an axis. For example, you can specify the following to
request tick marks ranging from−3 to 3 in the y-axis for the Q-Q plots inOutput
15.9.1:

yaxisopts = (label = "Normal Quantile"
ticks = (-3 -2 -1 0 1 2))

By default, the Q-Q plot inOutput 15.9.1displays grid lines since XGRID=TRUE
and YGRID=TRUE are specified in the LAYOUT OVERLAY statement in the
“ResidualQQPlot” template definition. You can suppress the grid lines by specify-
ing

XGrid = False

The result of these changes, after submitting the modified template definition and the
corresponding PROC ROBUSTREG statements on page 363, is displayed inOutput
15.10.1.
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Output 15.10.1. Q-Q Plot with Modified Y-Axis Tick Marks and Grids

A sample program namedodsgr10.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.11. Modifying Graph Fonts in Styles

You can modify an ODS style to customize the general appearance of ODS Graphics,
just as you can modify a style to customize the general appearance of ODS tables. The
goal of this example is to customize the fonts used in ODS graphs. It is a continuation
of Example 15.10.

The following statements define a style namedNewStyle that replaces the graph
fonts in the “Default” style with italic Times New Roman fonts.

proc template;
define style Styles.NewStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Times New Roman",8pt,Italic)
’GraphValueFont’ = ("Times New Roman",10pt,Italic)
’GraphLabelFont’ = ("Times New Roman",12pt,Italic)
’GraphFootnoteFont’ = ("Times New Roman",12pt,Italic)
’GraphTitleFont’ = ("Times New Roman",14pt,Italic Bold);

end;
run;

In general, the following graph fonts are specified in the ODS styles provided by
SAS:



Example 15.11. Modifying Graph Fonts in Styles � 375

• ’GraphDataFont’ is the smallest font. It is used for text that needs to be
small (labels for points in scatter plots, labels for contours, and so on)

• ’GraphValueFont’ is the next largest font. It is used for axis value (tick
marks) labels and legend entry labels.

• ’GraphLabelFont’ is the next largest font. It is used for axis labels and
legend titles.

• ’GraphFootnoteFont’ is the next largest font. It is used for all footnotes.

• ’GraphTitleFont’ is the largest font. It is used for all titles.

For more information about the DEFINE, PARENT, and REPLACE statements, re-
fer to the “TEMPLATE Procedure: Creating a Style Definition” in theSAS Output
Delivery System User’s Guide.

The Q-Q plots in the preceding examples, beginning withExample 15.6, were created
with the “Default” style; see, for instance,Output 15.10.1. In contrast, the Q-Q plot
displayed inOutput 15.11.1was produced by specifying theNewStyle style in the
following statements.

ods html style = NewStyle;
ods graphics on;

ods select ResidualQQPlot;

proc robustreg plot=resqqplot data=stack;
model y = x1 x2 x3;

run;

ods graphics off;
ods html close;
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Output 15.11.1. Q-Q Plot Using NewStyle

Although this example illustrates the use of a style with output from a particular pro-
cedure, note that a style is applied toall of your output (graphs and tables) in the
destination for which you specify the style. See the“Specifying a Default Style”sec-
tion on page 346 for information about specifying a default style for all your output.

A sample program namedodsgr11.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.12. Modifying Other Graph Elements in Styles

This example, which is a continuation ofExample 15.11, illustrates how to modify
additional style elements for graphics, such as the thickness of a line.

The attributes of fitted lines in ODS Graphics are controlled by the style element
StatGraphFitLine , which is defined in the “Default” style. For example, the line
thickness of the normal distribution reference line inOutput 15.11.1is specified in
the graph template by

linethickness = StatGraphFitLine:linethickness

To specify a line thickness of 4 pixels for the line, add the following statements to the
definition of theNewStyle style inExample 15.11.

replace StatGraphFitLine /
linethickness = 4px;

The complete revisedNewStyle style is now defined by the following statements:
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proc template;
define style Styles.NewStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Times New Roman",8pt,Italic)
’GraphValueFont’ = ("Times New Roman",10pt,Italic)
’GraphLabelFont’ = ("Times New Roman",12pt,Italic)
’GraphFootnoteFont’ = ("Times New Roman",12pt,Italic)
’GraphTitleFont’ = ("Times New Roman",14pt,Italic Bold);

replace StatGraphFitLine /
linethickness = 4px;

end;
run;

Output 15.12.1shows the Q-Q plot created by the ROBUSTREG statements on page
375 with the new version ofNewStyle.

Output 15.12.1. Q-Q Plot Using NewStyle with Thicker Line

You can use this approach to modify other attributes of the line, such astrans-

parency , linestyle , contrastcolor , andforeground .

Note: Values specified directly in a graph template override style attributes. If you
have customized a template, changes in a style may not have any effect. For more
information, refer to the “ODS Statistical Graphics and ODS Styles: Usage and
Reference (Experimental)” at http://support.sas.com/documentation/onlinedoc/base/.

A sample program namedodsgr12.sas is available for this example in the SAS
Sample Library for SAS/STAT software.
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Example 15.13. Modifying Graph Sizes Using Styles

This example demonstrates how to modify the size of your ODS graphs using a style
definition.

You can specify the size of a graph in a graph template definition or in a style defini-
tion:

• To modify the size of aparticular graph, specify the dimensions with the
HEIGHT= and WIDTH= options in the outermost layout of the graph template
definition.

• To modify the size ofall your ODS graphs, specify the dimensions with the
OUTPUTHEIGHT= and OUTPUTWIDTH= options in the style definition.

Dimensions specified in a graph template override those specified in a style.

Continuing the discussion inExample 15.12, you can add the following style element
to the definition ofNewStyle to change the size of all your graphs:

style Graph from Graph /
outputwidth = 400px
outputheight = 300px;

With all the changes introduced so far,NewStyle is defined as follows:

proc template;
define style Styles.NewStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Times New Roman",8pt,Italic)
’GraphValueFont’ = ("Times New Roman",10pt,Italic)
’GraphLabelFont’ = ("Times New Roman",12pt,Italic)
’GraphFootnoteFont’ = ("Times New Roman",12pt,Italic)
’GraphTitleFont’ = ("Times New Roman",14pt,Italic Bold);

replace StatGraphFitLine /
linethickness = 4px;

style Graph from Graph /
outputwidth = 400px
outputheight = 300px;

end;
run;

The dimensions of the graph must be specified in pixels. The actual size of the graph
in inches depends on your printer or display device. For example, if the resolution of
your printer is 100 dpi (100 dots per inch) and you want a graph that is 4 inches wide,
you should set the width to 400 pixels.

You can create a smaller version ofOutput 15.12.1, shown inOutput 15.13.1, by spec-
ifying the preceding PROC TEMPLATE statements followed by the ROBUSTREG
statements on page 375.
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Output 15.13.1. Q-Q Plot Using NewStyle with Smaller Dimensions

An alternative method for including smaller graphs in a document is to start with a
style provided by SAS and define a modified style thatincreasesthe size of the graph
fonts while preserving the default width and height attributes. Then you can include
the graph in a document (for example in Microsoft Word) and manually rescale the
graph to a smaller size while maintaining the fonts in a size that is still readable.∗

The following style increases the size of the fonts but retains all the other style ele-
ments as assigned in the “Default” style:

proc template;
define style Styles.BigFontStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Arial",12pt)
’GraphValueFont’ = ("Arial",15pt)
’GraphLabelFont’ = ("Arial",18pt)
’GraphFootnoteFont’ = ("Arial",18pt)
’GraphTitleFont’ = ("Arial",21pt);

end;
run;

A sample program namedodsgr13.sas is available for this example in the SAS
Sample Library for SAS/STAT software.

Example 15.14. Modifying Panels

This example illustrates how to modify the regression fit diagnostics panel inFigure
15.1so that it displays a subset of component plots. The original panel consists of
eight plots and a summary statistics box. These components are labeled 1 to 9 in the
annotated version ofFigure 15.1, which is shown inOutput 15.14.1.

∗In a markup language, such as HTML or LATEX, you can use a resize command.
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Output 15.14.1. Diagnostics Panel Annotated to Indicate Layout Structure

In the discussion that follows, the panel is modified so that it includes only the fol-
lowing components:

1. residual by predicted plot

4. residual Q-Q plot

6. Cook’s D plot

7. residual histogram

9. summary statistics box

The panel to be produced is shown inOutput 15.14.2. It displays components 1, 4, 6,
and 7 in a2× 2 lattice, and it displays four of the summary statistics in component 9
in a box at the bottom.

The template that defines the original panel is “Stat.Reg.Graphics.DiagnosticPanel.”
The following listing is abbreviated to show the main structure of the template defi-
nition (see page 339 for details on how to display the complete template definition).
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proc template;
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;

/* Dynamic variables */
dynamic _TITLE _MODELLABEL _DEPLABEL _NOBS _NPARM _EDF _MSE

_RSquare _AdjRSq;

/* 3x3 LATTICE layout */
layout lattice / columns = 3 rows = 3 ... ;

sidebar / align=top;
/* Statements for model label and graph title */

endsidebar;

/* 1. Residual By Predicted */
layout overlay / ... ;

lineparm slope = 0 yintercept = 0;
scatterplot y = RESIDUAL x = PREDICTEDVALUE;

endlayout;

...

/* LAYOUT statements for components 2-8 */

...

/* 9. Summary Statistics Box */
layout overlay;

layout gridded / ... ;
entry "NObs";
entry _NOBS / format=best6.;

.

.

.
entry "AdjRSq";
entry _ADJRSQ / format=best6.;

endlayout;
endlayout;

endlayout; /* End of 3x3 LATTICE layout */
end;
run;

The overall display is defined by the LAYOUT LATTICE statement, which specifies
a lattice of components, indicated by the solid grid annotated inOutput 15.14.1. The
COLUMNS=3 and ROWS=3 options in the LAYOUT LATTICE statement specify a
3× 3 lattice, indicated by the dashed grid.

The model label and the graph title (top rectangle inOutput 15.14.1) are specified
inside the LATTICE layout with a SIDEBAR statement. The ALIGN=TOP option
positions the sidebar at the top.

Each of the nine components of the lattice is defined by a LAYOUT statement. These
statements define the components from left to right and top to bottom. Components 1
through 7 are defined with LAYOUT OVERLAY statements. Component 8 (RF plot)
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is defined with a LAYOUT LATTICE statement. The last LAYOUT OVERLAY
statement defines a box with summary statistics for the fitted model.

The following abbreviated listing shows the basic structure of the template definition
for a simplified panel that displays components 1, 4, 6, and 7 in a2× 2 lattice.∗ For
the complete template definition, refer to the sample programodsgr14.sas in the
SAS Sample Library for SAS/STAT software.

proc template;
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;

dynamic _TITLE _MODELLABEL _DEPLABEL _NOBS _NPARM _EDF _MSE
_RSquare _AdjRSq;

/* 2x2 LATTICE layout */
/* Change COLUMNS= and ROWS= options */
layout lattice / columns = 2 rows = 2 ... ;

sidebar / align=top;
/* Statements for model label and graph title */

endsidebar;

/* 1. Residual By Predicted */
layout overlay / ... ;

lineparm slope = 0 yintercept = 0;
scatterplot y = RESIDUAL x = PREDICTEDVALUE;

endlayout;

/* 4. Q-Q Plot */
layout overlay / ... ;

lineparm slope = eval(STDDEV(RESIDUAL))
yintercept = eval(...);

scatterplot y = eval(...) x = eval(...);
endlayout;

/* Statements for components 6 and 7 (not listed) */

/* Summary Statistics Box in a SIDEBAR */
sidebar / align=bottom;

layout gridded;
layout lattice / rows=1 columns=4 ... ;

.

.

.
endlayout;

endlayout;
endsidebar;

endlayout; /* End of 2x2 LATTICE layout */
end;
run;

This template is a straightforward modification of the original template. The
COLUMNS=2 and ROWS=2 options in the LAYOUT LATTICE statement request
a 2 × 2 lattice. The LAYOUT statements for components 2, 3, 5, and 8 are deleted.

∗See page 340 for details on how to edit the template definition.
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A subset of the summary statistics are displayed at the bottom of the graph using a
SIDEBAR statement with the ALIGN=BOTTOM option.

After submitting the preceding statements, which create the modified template and
save it inSasuser.Templat, you can run the following PROC REG statements to
obtain the simplified panel, which is shown inOutput 15.14.2.

ods html;
ods graphics on;

ods select DiagnosticsPanel;

proc reg data = Class;
model Weight = Height;

run;
quit;

ods graphics off;
ods html close;

Output 15.14.2. Simplified Diagnostics Panel

A sample program namedodsgr14.sas is available for this example in the SAS
Sample Library for SAS/STAT software.
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Chapter 16
The ACECLUS Procedure
Overview

The ACECLUS (Approximate Covariance Estimation for CLUStering) procedure
obtains approximate estimates of the pooled within-cluster covariance matrix when
the clusters are assumed to be multivariate normal with equal covariance matrices.
Neither cluster membership nor the number of clusters need be known. PROC
ACECLUS is useful for preprocessing data to be subsequently clustered by the
CLUSTER or the FASTCLUS procedure.

Many clustering methods perform well with spherical clusters but poorly with elon-
gated elliptical clusters (Everitt 1980, 77–97). If the elliptical clusters have roughly
the same orientation and eccentricity, you can apply a linear transformation to the
data to yield a spherical within-cluster covariance matrix, that is, a covariance matrix
proportional to the identity. Equivalently, the distance between observations can be
measured in the metric of the inverse of the pooled within-cluster covariance matrix.
The remedy is difficult to apply, however, because you need to know what the clusters
are in order to compute the sample within-cluster covariance matrix. One approach is
to estimate iteratively both cluster membership and within-cluster covariance (Wolfe
1970; Hartigan 1975). Another approach is provided by Art, Gnanadesikan, and
Kettenring (1982). They have devised an ingenious method for estimating the within-
cluster covariance matrix without knowledge of the clusters. The method can be ap-
plied before any of the usual clustering techniques, including hierarchical clustering
methods.

First, Art, Gnanadesikan, and Kettenring (1982) obtain a decomposition of the total-
sample sum-of-squares-and-cross-products (SSCP) matrix into within-cluster and
between-cluster SSCP matrices computed from pairwise differences between obser-
vations, rather than differences between observations and means. Then, they show
how the within-cluster SSCP matrix based on pairwise differences can be approx-
imated without knowing the number or the membership of the clusters. The ap-
proximate within-cluster SSCP matrix can be used to compute distances for cluster
analysis, or it can be used in a canonical analysis similar to canonical discriminant
analysis. For more information, seeChapter 21, “The CANDISC Procedure.”

Art, Gnanadesikan, and Kettenring demonstrate by Monte Carlo calculations that
their method can produce better clusters than the Euclidean metric even when the
approximation to the within-cluster SSCP matrix is poor or the within-cluster covari-
ances are moderately heterogeneous. The algorithm used by the ACECLUS proce-
dure differs slightly from the algorithm used by Art, Gnanadesikan, and Kettenring.
In the following sections, the PROC ACECLUS algorithm is described first; then,
differences between PROC ACECLUS and the method used by Art, Gnanadesikan,
and Kettenring are summarized.
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Background

It is well known from the literature on nonparametric statistics that variances and,
hence, covariances can be computed from pairwise differences instead of deviations
from means. (For example, Puri and Sen (1971, pp. 51–52) show that the variance
is aU statistic of degree 2.) LetX = (xij) be the data matrix withn observations
(rows) andv variables (columns), and let̄xj be the mean of thejth variable. The
sample covariance matrixS = (sjk) is usually defined as

sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k)

The matrixS can also be computed as

sjk =
1

n(n− 1)

n∑
i=2

i−1∑
h=1

(xij − xhj)(xik − xhk)

Let W = (wjk) be the pooled within-cluster covariance matrix,q be the number of
clusters,nc be the number of observations in thecth cluster, and

d′′ic =
{

1 if observationi is in clusterc
0 otherwise

The matrixW is normally defined as

wjk =
1

n− q

q∑
c=1

n∑
i=1

d′′ic(xij − x̄cj)(xik − x̄ck)

wherex̄cj is the mean of thejth variable in clusterc. Let

d′ih =
{ 1

nc
if observationsi andh are in clusterc

0 otherwise

The matrixW can also be computed as

wjk =
1

n− q

n∑
i=2

i−1∑
h=1

d′ih(xij − xhj)(xik − xhk)

If the clusters are not known,d′ih cannot be determined. However, an approximation
to W can be obtained by using instead

dih =
{

1 if
∑v

j=1

∑v
k=1 mjk(xij − xhj)(xik − xhk) ≤ u2

0 otherwise
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whereu is an appropriately chosen value andM = (mjk) is an appropriate metric.
Let A = (ajk) be defined as

ajk =
∑n

i=2

∑i−1
h=1 dih(xij − xhj)(xik − xhk)

2
∑n

i=2

∑i−1
h=1 dih

If all of the following conditions hold,A equalsW:

• all within-cluster distances in the metricM are less than or equal tou

• all between-cluster distances in the metricM are greater thanu

• all clusters have the same number of membersnc

If the clusters are of unequal size,A gives more weight to large clusters thanW
does, but this discrepancy should be of little importance if the population within-
cluster covariance matrices are equal. There may be large differences betweenA and
W if the cutoffu does not discriminate between pairs in the same cluster and pairs in
different clusters. Lack of discrimination may occur for one of the following reasons:

• The clusters are not well separated.

• The metricM or the cutoffu is not chosen appropriately.

In the former case, little can be done to remedy the problem. The remaining question
concerns how to chooseM andu. ConsiderM first. The best choice forM is W−1,
butW is not known. The solution is to use an iterative algorithm:

1. Obtain an initial estimate ofA, such as the identity or the total-sample covari-
ance matrix. (See the INITIAL= option in the PROC ACECLUS statement for
more information.)

2. Let M equalA−1.

3. RecomputeA using the preceding formula.

4. Repeat steps 2 and 3 until the estimate stabilizes.

Convergence is assessed by comparing values ofA on successive iterations. LetAi

be the value ofA on theith iteration andA0 be the initial estimate ofA. Let Z be
a user-specifiedv × v matrix. (See the METRIC= option in the PROC ACECLUS
statement for more information.) The convergence measure is

ei =
1
v
‖ Z′(Ai −Ai−1)Z ‖

where‖ · · · ‖ indicates the Euclidean norm, that is, the square root of the sum of the
squares of the elements of the matrix. In PROC ACECLUS,Z can be the identity
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or an inverse factor ofS or diag(S). Iteration stops whenei falls below a user-
specified value. (See the CONVERGE= option or the MAXITER= option in the
PROC ACECLUS statement for more information.)

The remaining question of how to chooseu has no simple answer. In practice, you
must try several different values. PROC ACECLUS provides four different ways of
specifyingu:

• You can specify a constant value foru. This method is useful if the initial esti-
mate ofA is quite good. (See the ABSOLUTE option and the THRESHOLD=
option in the PROC ACECLUS statement for more information.)

• You can specify a threshold valuet > 0 that is multiplied by the root mean
square distance between observations in the current metric on each iteration to
giveu. Thus, the value ofu changes from iteration to iteration. This method is
appropriate if the initial estimate ofA is poor. (See the THRESHOLD= option
in the PROC ACECLUS statement for more information)

• You can specify a valuep, 0 < p < 1, to be transformed into a distanceu such
that approximately a proportionp of the pairwise Mahalanobis distances be-
tween observations in a random sample from a multivariate normal distribution
will be less thanu in repeated sampling. The transformation can be computed
only if the number of observations exceeds the number of variables, preferably
by at least 10 percent. This method also requires a good initial estimate of
A. (See the PROPORTION= option and the ABSOLUTE option in the PROC
ACECLUS statement for more information.)

• You can specify a valuep, 0 < p < 1, to be transformed into a valuet that
is then multiplied by1/

√
2v times the root mean square distance between ob-

servations in the current metric on each iteration to yieldu. The value ofu
changes from iteration to iteration. This method can be used with a poor ini-
tial estimate ofA. (See the PROPORTION= option in the PROC ACECLUS
statement for more information.)

In most cases, the analysis should begin with the last method using values ofp be-
tween 0.5 and 0.01 and using the full covariance matrix as the initial estimate ofA.

Proportionsp are transformed to distancest using the formula

t2 = 2v

{[
F−1

v,n−v(p)
]n−v

n−1

}

whereF−1
v,n−v is the quantile (inverse cumulative distribution) function of anF ran-

dom variable withv andn−v degrees of freedom. The squared Mahalanobis distance
between a single pair of observations sampled from a multivariate normal distribution
is distributed as2v times anF random variable withv andn− v degrees of freedom.
The distances between two pairs of observations are correlated if the pairs have an
observation in common. The quantile function is raised to the power given in the pre-
ceding formula to compensate approximately for the correlations among distances
between pairs of observations that share a member. Monte Carlo studies indicate that
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the approximation is acceptable if the number of observations exceeds the number of
variables by at least 10 percent.

If A becomes singular, step 2 in the iterative algorithm cannot be performed because
A cannot be inverted. In this case, letZ be the matrix as defined in discussing the con-
vergence measure, and letZ′AZ = R′ΛR whereR′R = RR′ = I andΛ = (λjk)
is diagonal. LetΛ∗ = (λ∗jk) be a diagonal matrix whereλ∗jj = max(λjj , g trace(Λ)),
and0 < g < 1 is a user-specified singularity criterion (see the SINGULAR= option
in the PROC ACECLUS statement for more information). ThenM is computed as
ZR′(Λ∗)−1RZ′.

The ACECLUS procedure differs from the method used by Art, Gnanadesikan, and
Kettenring (1982) in several respects.

• The Art, Gnanadesikan, and Kettenring method uses the identity matrix as the
initial estimate, whereas the ACECLUS procedure enables you to specify any
symmetric matrix as the initial estimate and defaults to the total-sample co-
variance matrix. The default initial estimate in PROC ACECLUS is chosen to
yield invariance under nonsingular linear transformations of the data but may
sometimes obscure clusters that become apparent if the identity matrix is used.

• The Art, Gnanadesikan, and Kettenring method carries out all computations
with SSCP matrices, whereas the ACECLUS procedure uses estimated covari-
ance matrices because covariances are easier to interpret than crossproducts.

• The Art, Gnanadesikan, and Kettenring method uses them pairs with the small-
est distances to form the new estimate at each iteration, wherem is specified
by the user, whereas the ACECLUS procedure uses all pairs closer than a given
cutoff value. Kettenring (1984) says that them-closest-pairs method seems to
give the user more direct control. PROC ACECLUS uses a distance cutoff be-
cause it yields a slight decrease in computer time and because in some cases,
such as widely separated spherical clusters, the results are less sensitive to the
choice of distance cutoff than to the choice ofm. Much research remains to be
done on this issue.

• The Art, Gnanadesikan, and Kettenring method uses a different convergence
measure. LetAi be computed on each iteration using them-closest-pairs
method, and letBi = A−1

i−1Ai − I whereI is the identity matrix. The conver-
gence measure is equivalent to trace(B2

i ).

Analyses of Fisher’s (1936) iris data, consisting of measurements of petal and sepal
length and width for fifty specimens from each of three iris species, are summarized
in Table 16.1. The number of misclassified observations out of 150 is given for four
clustering methods:

• k-means as implemented in PROC FASTCLUS with MAXC=3,
MAXITER=99, and CONV=0

• Ward’s minimum variance method as implemented in PROC CLUSTER

• average linkage on Euclidean distances as implemented in PROC CLUSTER
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• the centroid method as implemented in PROC CLUSTER

Each hierarchical analysis is followed by the TREE procedure with NCL=3 to de-
termine cluster assignments at the three-cluster level. Clusters with twenty or fewer
observations are discarded by using the DOCK=20 option. The observations in a
discarded cluster are considered unclassified.

Each method is applied to

• the raw data

• the data standardized to unit variance by the STANDARD procedure

• two standardized principal components accounting for 95 percent of the stan-
dardized variance and having an identity total-sample covariance matrix, com-
puted by the PRINCOMP procedure with the STD option

• four standardized principal components having an identity total-sample covari-
ance matrix, computed by PROC PRINCOMP with the STD option

• the data transformed by PROC ACECLUS using seven different settings of the
PROPORTION= (P=) option

• four canonical variables having an identity pooled within-species covariance
matrix, computed using the CANDISC procedure

Theoretically, the best results should be obtained by using the canonical variables
from PROC CANDISC. PROC ACECLUS yields results comparable to PROC
CANDISC for values of the PROPORTION= option ranging from 0.005 to 0.02. At
PROPORTION=0.04, average linkage and the centroid method show some deterio-
ration, butk-means and Ward’s method continue to produce excellent classifications.
At larger values of the PROPORTION= option, all methods perform poorly, although
no worse than with four standardized principal components.
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Table 16.1. Number of Misclassified and Unclassified Observations Using Fisher’s
(1936) Iris Data

Clustering Method
Average

Data k-means Ward’s Linkage Centroid

raw data 16∗ 16∗ 25 + 12∗∗ 14∗

standardized data 25 26 33+4 33+4

two standardized
principal components 29 31 30+9 27+32

four standardized
principal components 39 27 32+7 45+11

transformed
by ACECLUS P=0.32 39 10+9 7+25

transformed
by ACECLUS P=0.16 39 18+9 7+19 7+26

transformed
by ACECLUS P=0.08 19 9 3+13 5+16

transformed
by ACECLUS P=0.04 4 5 1+19 3+12

transformed
by ACECLUS P=0.02 4 3 3 3

transformed
by ACECLUS P=0.01 4 4 3 4

transformed
by ACECLUS P=0.005 4 4 4 4

canonical variables 3 5 4 4+1
∗ A single number represents misclassified observations with no unclassified observations.
∗∗ Where two numbers are separated by a plus sign, the first is the number of misclassified

observations; the second is the number of unclassified observations.

This example demonstrates the following:

• PROC ACECLUS can produce results as good as those from the optimal trans-
formation.
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• PROC ACECLUS can be useful even when the within-cluster covariance ma-
trices are moderately heterogeneous.

• The choice of the distance cutoff as specified by the PROPORTION= or the
THRESHOLD= option is important, and several values should be tried.

• Commonly used transformations such as standardization and principal compo-
nents can produce poor classifications.

Although experience with the Art, Gnanadesikan, and Kettenring and PROC
ACECLUS methods is limited, the results so far suggest that these methods help con-
siderably more often than they hinder the subsequent cluster analysis, especially with
normal-mixture techniques such ask-means and Ward’s minimum variance method.

Getting Started

The following example demonstrates how you can use the ACECLUS procedure to
obtain approximate estimates of the pooled within-cluster covariance matrix and to
compute canonical variables for subsequent analysis. You use PROC ACECLUS to
preprocess data before you cluster it using the FASTCLUS or CLUSTER procedure.

Suppose you want to determine whether national figures for birth rates, death rates,
and infant death rates can be used to determine certain types or categories of coun-
tries. You want to perform a cluster analysis to determine whether the observations
can be formed into groups suggested by the data. Previous studies indicate that the
clusters computed from this type of data can be elongated and elliptical. Thus, you
need to perform a linear transformation on the raw data before the cluster analysis.

The following data∗ from Rouncefield (1995) are the birth rates, death rates, and
infant death rates for 97 countries. The following statements create the SAS data set
Poverty:

data poverty;
input Birth Death InfantDeath Country $15. @@;
datalines;

24.7 5.7 30.8 Albania 12.5 11.9 14.4 Bulgaria
13.4 11.7 11.3 Czechoslovakia 12 12.4 7.6 Former_E._Germa
11.6 13.4 14.8 Hungary 14.3 10.2 16 Poland
13.6 10.7 26.9 Romania 14 9 20.2 Yugoslavia
17.7 10 23 USSR 15.2 9.5 13.1 Byelorussia
13.4 11.6 13 Ukrainian_SSR 20.7 8.4 25.7 Argentina
46.6 18 111 Bolivia 28.6 7.9 63 Brazil
23.4 5.8 17.1 Chile 27.4 6.1 40 Columbia
32.9 7.4 63 Ecuador 28.3 7.3 56 Guyana
34.8 6.6 42 Paraguay 32.9 8.3 109.9 Peru

18 9.6 21.9 Uruguay 27.5 4.4 23.3 Venezuela
29 23.2 43 Mexico 12 10.6 7.9 Belgium

13.2 10.1 5.8 Finland 12.4 11.9 7.5 Denmark
13.6 9.4 7.4 France 11.4 11.2 7.4 Germany

∗ These data have been compiled from the United Nations Demographic Yearbook 1990 (United
Nations publications, Sales No. E/F.91.XII.1, copyright 1991, United Nations, New York) and are
reproduced with the permission of the United Nations.
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10.1 9.2 11 Greece 15.1 9.1 7.5 Ireland
9.7 9.1 8.8 Italy 13.2 8.6 7.1 Netherlands

14.3 10.7 7.8 Norway 11.9 9.5 13.1 Portugal
10.7 8.2 8.1 Spain 14.5 11.1 5.6 Sweden
12.5 9.5 7.1 Switzerland 13.6 11.5 8.4 U.K.
14.9 7.4 8 Austria 9.9 6.7 4.5 Japan
14.5 7.3 7.2 Canada 16.7 8.1 9.1 U.S.A.
40.4 18.7 181.6 Afghanistan 28.4 3.8 16 Bahrain
42.5 11.5 108.1 Iran 42.6 7.8 69 Iraq
22.3 6.3 9.7 Israel 38.9 6.4 44 Jordan
26.8 2.2 15.6 Kuwait 31.7 8.7 48 Lebanon
45.6 7.8 40 Oman 42.1 7.6 71 Saudi_Arabia
29.2 8.4 76 Turkey 22.8 3.8 26 United_Arab_Emr
42.2 15.5 119 Bangladesh 41.4 16.6 130 Cambodia
21.2 6.7 32 China 11.7 4.9 6.1 Hong_Kong
30.5 10.2 91 India 28.6 9.4 75 Indonesia
23.5 18.1 25 Korea 31.6 5.6 24 Malaysia
36.1 8.8 68 Mongolia 39.6 14.8 128 Nepal
30.3 8.1 107.7 Pakistan 33.2 7.7 45 Philippines
17.8 5.2 7.5 Singapore 21.3 6.2 19.4 Sri_Lanka
22.3 7.7 28 Thailand 31.8 9.5 64 Vietnam
35.5 8.3 74 Algeria 47.2 20.2 137 Angola
48.5 11.6 67 Botswana 46.1 14.6 73 Congo
38.8 9.5 49.4 Egypt 48.6 20.7 137 Ethiopia
39.4 16.8 103 Gabon 47.4 21.4 143 Gambia
44.4 13.1 90 Ghana 47 11.3 72 Kenya

44 9.4 82 Libya 48.3 25 130 Malawi
35.5 9.8 82 Morocco 45 18.5 141 Mozambique

44 12.1 135 Namibia 48.5 15.6 105 Nigeria
48.2 23.4 154 Sierra_Leone 50.1 20.2 132 Somalia
32.1 9.9 72 South_Africa 44.6 15.8 108 Sudan
46.8 12.5 118 Swaziland 31.1 7.3 52 Tunisia
52.2 15.6 103 Uganda 50.5 14 106 Tanzania
45.6 14.2 83 Zaire 51.1 13.7 80 Zambia
41.7 10.3 66 Zimbabwe
;

The data setPoverty contains the character variableCountry and the numeric vari-
ablesBirth, Death, and InfantDeath, which represent the birth rate per thousand,
death rate per thousand, and infant death rate per thousand. The $15. in the INPUT
statement specifies that the variableCountry is a character variable with a length of
15. The double trailing at sign (@@) in the INPUT statement specifies that observa-
tions are input from each line until all values have been read.

It is often useful when beginning a cluster analysis to look at the data graphically. The
following statements use the GPLOT procedure to make a scatter plot of the variables
Birth andDeath.

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot data=poverty;

plot Birth*Death/
frame cframe=white legend=legend1 vaxis=axis1 haxis=axis2;

run;
quit;
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The plot, displayed inFigure 16.1, indicates the difficulty of dividing the points into
clusters. Plots of the other variable pairs (not shown) display similar characteristics.
The clusters that comprise these data may be poorly separated and elongated. Data
with poorly separated or elongated clusters must be transformed.

Figure 16.1. Scatter Plot of Original Poverty Data: Birth Rate versus Death Rate

If you know the within-cluster covariances, you can transform the data to make the
clusters spherical. However, since you do not know what the clusters are, you cannot
calculate exactly the within-cluster covariance matrix. The ACECLUS procedure
estimates the within-cluster covariance matrix to transform the data, even when you
have no knowledge of cluster membership or the number of clusters.

The following statements perform the ACECLUS procedure transformation using the
SAS data setPoverty.

proc aceclus data=poverty out=ace proportion=.03;
var Birth Death InfantDeath;

run;

The OUT= option creates an output data set calledAce to contain the canonical vari-
able scores. The PROPORTION= option specifies that approximately three percent
of the pairs are included in the estimation of the within-cluster covariance matrix.
The VAR statement specifies that the variablesBirth, Death, andInfantDeath are
used in computing the canonical variables.

The results of this analysis are displayed in the following figures.
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Figure 16.2displays the number of observations, the number of variables, and the
settings for the PROPORTION and CONVERGE options. The PROPORTION option
is set at 0.03, as specified in the previous statements. The CONVERGE parameter is
set at its default value of 0.001.

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Observations 97 Proportion 0.0300
Variables 3 Converge 0.00100

Means and Standard Deviations
Standard

Variable Mean Deviation

Birth 29.2299 13.5467
Death 10.8361 4.6475
InfantDeath 54.9010 45.9926

COV: Total Sample Covariances

Birth Death InfantDeath

Birth 183.512951 30.610056 534.794969
Death 30.610056 21.599205 139.925900
InfantDeath 534.794969 139.925900 2115.317811

Figure 16.2. Means, Standard Deviations, and Covariance Matrix from the
ACECLUS Procedure

Figure 16.2next displays the means, standard deviations, and sample covariance ma-
trix of the analytical variables.

The type of matrix used for the initial within-cluster covariance estimate is displayed
in Figure 16.3. In this example, that initial estimate is the full covariance matrix.
The threshold value that corresponds to the PROPORTION=0.03 setting is given as
0.292815.
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Initial Within-Cluster Covariance Estimate = Full Covariance Matrix

Threshold = 0.292815

Iteration History

Pairs
RMS Distance Within Convergence

Iteration Distance Cutoff Cutoff Measure
------------------------------------------------------------

1 2.449 0.717 385.0 0.552025
2 12.534 3.670 446.0 0.008406
3 12.851 3.763 521.0 0.009655
4 12.882 3.772 591.0 0.011193
5 12.716 3.723 628.0 0.008784
6 12.821 3.754 658.0 0.005553
7 12.774 3.740 680.0 0.003010
8 12.631 3.699 683.0 0.000676

Algorithm converged.

Figure 16.3. Table of Iteration History from the ACECLUS Procedure

Figure 16.3displays the iteration history. For each iteration, PROC ACECLUS dis-
plays the following measures:

• root mean square distance between all pairs of observations

• distance cutoff for including pairs of observations in the estimate of within-
cluster covariances (equal to RMS*Threshold)

• number of pairs within the cutoff

• convergence measure

Figure 16.4displays the approximate within-cluster covariance matrix and the table
of eigenvalues from the canonical analysis. The first column of the eigenvalues ta-
ble contains numbers for the eigenvectors. The next column of the table lists the
eigenvalues of Inv(ACE)*(COV-ACE).
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ACE: Approximate Covariance Estimate Within Clusters

Birth Death InfantDeath

Birth 5.94644949 -0.63235725 6.28151537
Death -0.63235725 2.33464129 1.59005857
InfantDeath 6.28151537 1.59005857 35.10327233

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 63.5500 54.7313 0.8277 0.8277
2 8.8187 4.4038 0.1149 0.9425
3 4.4149 0.0575 1.0000

Figure 16.4. Approximate Within–Cluster Covariance Estimates

The next three columns of the eigenvalue table (Figure 16.4) display measures of the
relative size and importance of the eigenvalues. The first column lists the difference
between each eigenvalue and its successor. The last two columns display the individ-
ual and cumulative proportions that each eigenvalue contributes to the total sum of
eigenvalues.

The raw and standardized canonical coefficients are displayed inFigure 16.5. The
coefficients are standardized by multiplying the raw coefficients with the standard de-
viation of the associated variable. The ACECLUS procedure uses these standardized
canonical coefficients to create the transformed canonical variables, which are the lin-
ear transformations of the original input variables,Birth, Death, andInfantDeath.

Eigenvectors (Raw Canonical Coefficients)

Can1 Can2 Can3

Birth 0.125610 0.457037 0.003875
Death 0.108402 0.163792 0.663538
InfantDeath 0.134704 -.133620 -.046266

Standardized Canonical Coefficients

Can1 Can2 Can3

Birth 1.70160 6.19134 0.05249
Death 0.50380 0.76122 3.08379
InfantDeath 6.19540 -6.14553 -2.12790

Figure 16.5. Raw and Standardized Canonical Coefficients from the ACECLUS
Procedure

The following statements invoke the CLUSTER procedure, using the SAS data set
Ace created in the previous ACECLUS procedure.
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proc cluster data=ace outtree=tree noprint method=ward;
var can1 can2 can3 ;
copy Birth--Country;

run;

The OUTTREE= option creates the output SAS data setTree that is used in sub-
sequent statements to draw a tree diagram. The NOPRINT option suppresses the
display of the output. The METHOD= option specifies Ward’s minimum-variance
clustering method.

The VAR statement specifies that the canonical variables computed in the ACECLUS
procedure are used in the cluster analysis. The COPY statement specifies that all the
variables from the SAS data setPoverty (Birth—Country) are added to the output
data setTree.

The following statements use the TREE procedure to create an output SAS data set
calledNew. The NCLUSTERS= option specifies the number of clusters desired in
the SAS data setNew. The NOPRINT option suppresses the display of the output.

proc tree data=tree out=new nclusters=3 noprint;
copy Birth Death InfantDeath can1 can2 ;
id Country;

run;

The COPY statement copies the canonical variablesCAN1 andCAN2 (computed
in the preceding ACECLUS procedure) and the original analytical variablesBirth,
Death, andInfantDeath into the output SAS data setNew.

The following statements invoke the GPLOT procedure, using the SAS data set cre-
ated by PROC TREE:

legend1 frame cframe=white cborder=black position=center
value=(justify=center);

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot data=new;

plot Birth*Death=cluster/
frame cframe=white legend=legend1 vaxis=axis1 haxis=axis2;

run;

The first plot statement requests a scatter plot of the two variablesBirth andDeath,
using the variableCLUSTER as the identification variable.

The second PLOT statement requests a plot of the two canonical variables, using the
value of the variableCLUSTER as the identification variable.
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Figure 16.6. Scatter Plot of Poverty Data, Identified by Cluster

Figure 16.6andFigure 16.7display the separation of the clusters when three clusters
are calculated.
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Figure 16.7. Scatter Plot of Canonical Variables

Syntax

The following statements are available in the ACECLUS procedure.

PROC ACECLUS PROPORTION=p | THRESHOLD=t < options > ;
BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

Usually you need only the VAR statement in addition to the required PROC
ACECLUS statement. The optional BY, FREQ, VAR, and WEIGHT statements are
described in alphabetical order after the PROC ACECLUS statement.

PROC ACECLUS Statement

PROC ACECLUS PROPORTION=p | THRESHOLD=t < options > ;

The PROC ACECLUS statement starts the ACECLUS procedure. The options avail-
able with the PROC ACECLUS statement are summarized inTable 16.2and dis-
cussed in the following sections. Note that, if you specify the METHOD=COUNT
option, you must specify either the PROPORTION= or the MPAIRS= option.
Otherwise, you must specify either the PROPORTION= or THRESHOLD= option.
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Table 16.2. Summary of PROC ACECLUS Statement Options

Task Options Description
Specify clustering options

METHOD= specify the clustering method
MPAIRS= specify number of pairs for estimat-

ing within-cluster covariance (when you
specify the option METHOD=COUNT)

PROPORTION= specify proportion of pairs for estimating
within-cluster covariance

THRESHOLD= specify the threshold for including pairs
in the estimation of the within-cluster
covariance

Specify input and output data sets
DATA= specify input data set name
OUT= specify output data set name
OUTSTAT= specify output data set name containing

various statistics

Specify iteration options
ABSOLUTE use absolute instead of relative threshold
CONVERGE= specify convergence criterion
INITIAL= specify initial estimate of within-cluster

covariance matrix

MAXITER= specify maximum number of iterations
METRIC= specify metric in which computations are

performed
SINGULAR= specify singularity criterion

Specify canonical analysis options
N= specify number of canonical variables
PREFIX= specify prefix for naming canonical

variables

Control displayed output
NOPRINT suppress the display of the output
PP produce PP-plot of distances between

pairs from last iteration
QQ produce QQ-plot of power transforma-

tion of distances between pairs from last
iteration

SHORT omit all output except for iteration history
and eigenvalue table
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The following list provides details on the options. The list is in alphabetical order.

ABSOLUTE
causes the THRESHOLD= value or the threshold computed from the
PROPORTION= option to be treated absolutely rather than relative to the root
mean square distance between observations. Use the ABSOLUTE option only when
you are confident that the initial estimate of the within-cluster covariance matrix is
close to the final estimate, such as when the INITIAL= option specifies a data set
created by a previous execution of PROC ACECLUS using the OUTSTAT= option.

CONVERGE=c
specifies the convergence criterion. By default, CONVERGE= 0.001. Iteration stops
when the convergence measure falls below the value specified by the CONVERGE=
option or when the iteration limit as specified by the MAXITER= option is exceeded,
whichever happens first.

DATA=SAS-data-set
specifies the SAS data set to be analyzed. By default, PROC ACECLUS uses the
most recently created SAS data set.

INITIAL=name
specifies the matrix for the initial estimate of the within-cluster covariance matrix.
Valid values fornameare as follows:

DIAGONAL | D uses the diagonal matrix of sample variances as the initial
estimate of the within-cluster covariance matrix.

FULL | F uses the total-sample covariance matrix as the initial esti-
mate of the within-cluster covariance matrix.

IDENTITY | I uses the identity matrix as the initial estimate of the within-
cluster covariance matrix.

INPUT=SAS-data-set specifies a SAS data set from which to obtain the initial
estimate of the within-cluster covariance matrix. The data
set can be TYPE=CORR, COV, UCORR, UCOV, SSCP, or
ACE, or it can be an ordinary SAS data set. (See Appendix
1, “Special SAS Data Sets,” for descriptions of CORR,
COV, UCORR, UCOV, and SSCP data sets. See the sec-
tion “Output Data Sets”on page 409 for a description of
ACE data sets.)

If you do not specify the INITIAL= option, the default
is the matrix specified by the METRIC= option. If nei-
ther the INITIAL= nor the METRIC= option is specified,
INITIAL=FULL is used if there are enough observations
to obtain a nonsingular total-sample covariance matrix;
otherwise, INITIAL=DIAGONAL is used.
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MAXITER=n
specifies the maximum number of iterations. By default, MAXITER=10.

METHOD= COUNT | C
METHOD= THRESHOLD | T

specifies the clustering method. The METHOD=THRESHOLD option requests a
method (also the default) that uses all pairs closer than a given cutoff value to form
the estimate at each iteration. The METHOD=COUNT option requests a method that
uses a number of pairs,m, with the smallest distances to form the estimate at each
iteration.

METRIC=name
specifies the metric in which the computations are performed, implies the default
value for the INITIAL= option, and specifies the matrixZ used in the formula for the
convergence measureei and for checking singularity of theA matrix. Valid values
for nameare as follows:

DIAGONAL | D uses the diagonal matrix of sample variances diag(S) and

setsZ = diag(S)−
1
2 , where the superscript−1

2 indicates
an inverse factor.

FULL | F uses the total-sample covariance matrixS and setsZ =
S− 1

2 .

IDENTITY | I uses the identity matrixI and setsZ = I.

If you do not specify the METRIC= option, METRIC=FULL is used if there are
enough observations to obtain a nonsingular total-sample covariance matrix; other-
wise, METRIC=DIAGONAL is used.

The option METRIC= is rather technical. It affects the computations in a variety of
ways, but for well-conditioned data the effects are subtle. For most data sets, the
METRIC= option is not needed.

MPAIRS=m
specifies the number of pairs to be included in the estimation of the within-cluster
covariance matrix when METHOD=COUNT is requested. The values ofm must be
greater than 0 but less than or equal to(totfq×(totfq−1))/2, wheretotfq is the sum
of nonmissing frequencies specified in the FREQ statement. If there is no FREQ
statement,totfqequals the number of total nonmissing observations.

N=n
specifies the number of canonical variables to be computed. The default is the number
of variables analyzed. N=0 suppresses the canonical analysis.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”
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OUT=SAS-data-set
creates an output SAS data set that contains all the original data as well as the canon-
ical variables having an estimated within-cluster covariance matrix equal to the iden-
tity matrix. If you want to create a permanent SAS data set, you must specify a
two-level name. See Chapter 16, “SAS Data Files” inSAS Language Reference:
Conceptsfor information on permanent SAS data sets.

OUTSTAT=SAS-data-set
specifies a TYPE=ACE output SAS data set that contains means, standard deviations,
number of observations, covariances, estimated within-cluster covariances, eigenval-
ues, and canonical coefficients. If you want to create a permanent SAS data set, you
must specify a two-level name. See Chapter 16, “SAS Data Files” inSAS Language
Reference: Conceptsfor information on permanent SAS data sets.

PROPORTION=p
PERCENT=p
P=p

specifies the percentage of pairs to be included in the estimation of the within-cluster
covariance matrix. The value ofp must be greater than 0. Ifp is greater than or equal
to 1, it is interpreted as a percentage and divided by 100; PROPORTION=0.02 and
PROPORTION=2 are equivalent. When you specify METHOD=THRESHOLD, a
threshold value is computed from the PROPORTION= option under the assumption
that the observations are sampled from a multivariate normal distribution.

When you specify METHOD=COUNT, the number of pairs,m, is computed from
PROPORTION=p as

m = floor
(p

2
× totfq× (totfq− 1)

)
wheretotfq is the number of total non-missing observations.

PP
produces a PP probability plot of distances between pairs of observations computed
in the last iteration.

PREFIX=name
specifies a prefix for naming the canonical variables. By default the names areCAN1,
CAN2, . . . , CANn. If you specify PREFIX=ABC, the variables are namedABC1,
ABC2, ABC3, and so on. The number of characters in the prefix plus the num-
ber of digits required to designate the variables should not exceed the name length
defined by the VALIDVARNAME= system option. For more information on the
VALIDVARNAME= system option, refer toSAS Language Reference: Dictionary.

QQ
produces a QQ probability plot of a power transformation of the distances between
pairs of observations computed in the last iteration.Caution: The QQ plot may
require an enormous amount of computer time.
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SHORT
omits all items from the standard output except for the iteration history and the eigen-
value table.

SINGULAR=g
SING=g

specifies a singularity criterion0 < g < 1 for the total-sample covariance ma-
trix S and the approximate within-cluster covariance estimateA. The default is
SINGULAR=1E−4.

THRESHOLD=t
T=t

specifies the threshold for including pairs of observations in the estimation of the
within-cluster covariance matrix. A pair of observations is included if the Euclidean
distance between them is less than or equal tot times the root mean square distance
computed over all pairs of observations.

BY Statement

BY variables ;

You can specify a BY statement with PROC ACECLUS to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the ACECLUS procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

If you specify the INITIAL=INPUT= option and the INITIAL=INPUT= data set does
not contain any of the BY variables, the entire INITIAL=INPUT= data set provides
the initial value for the matrixA for each BY group in the DATA= data set.

If the INITIAL=INPUT= data set contains some but not all of the BY variables, or
if some BY variables do not have the same type or length in the INITIAL=INPUT=
data set as in the DATA= data set, then PROC ACECLUS displays an error message
and stops.

If all the BY variables appear in the INITIAL=INPUT= data set with the same type
and length as in the DATA= data set, then each BY group in the INITIAL=INPUT=
data set provides the initial value forA for the corresponding BY group in the DATA=



408 � Chapter 16. The ACECLUS Procedure

data set. All BY groups in the DATA= data set must also appear in the INITIAL=
INPUT= data set. The BY groups in the INITIAL=INPUT= data set must be in
the same order as in the DATA= data set. If you specify NOTSORTED in the BY
statement, identical BY groups must occur in the same order in both data sets. If you
do not specify NOTSORTED, some BY groups can appear in the INITIAL= INPUT=
data set, but not in the DATA= data set; such BY groups are not used in the analysis.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If a variable in your data set represents the frequency of occurrence for the observa-
tion, include the name of that variable in the FREQ statement. The procedure then
treats the data set as if each observation appearsn times, wheren is the value of the
FREQ variable for the observation. If a value of the FREQ variable is not integral, it
is truncated to the largest integer not exceeding the given value. Observations with
FREQ values less than one are not included in the analysis. The total number of
observations is considered equal to the sum of the FREQ variable.

VAR Statement

VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR state-
ment is omitted, all numeric variables not specified in other statements are analyzed.

WEIGHT Statement

WEIGHT variable ;

If you want to specify relative weights for each observation in the input data set, place
the weights in a variable in the data set and specify that variable name in a WEIGHT
statement. This is often done when the variance associated with each observation is
different and the values of the weight variable are proportional to the reciprocals of
the variances. The values of the WEIGHT variable can be non-integral and are not
truncated. An observation is used in the analysis only if the value of the WEIGHT
variable is greater than zero.

The WEIGHT and FREQ statements have a similar effect, except in calculating the
divisor of theA matrix.
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Details

Missing Values

Observations with missing values are omitted from the analysis and are given missing
values for canonical variable scores in the OUT= data set.

Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables
containing the canonical variable scores. The N= option determines the number of
new variables. The OUT= data set is not created if N=0. The names of the new
variables are formed by concatenating the value given by the PREFIX= option (or
the prefix CAN if the PREFIX= option is not specified) and the numbers 1, 2, 3,
and so on. The OUT= data set can be used as input to PROC CLUSTER or PROC
FASTCLUS. The cluster analysis should be performed on the canonical variables,
not on the original variables.

OUTSTAT= Data Set

The OUTSTAT= data set is a TYPE=ACE data set containing the following variables.

• the BY variables, if any

• the two new character variables,–TYPE– and–NAME–
• the variables analyzed, that is, those in the VAR statement, or, if there is no

VAR statement, all numeric variables not listed in any other statement

Each observation in the new data set contains some type of statistic as indicated by
the–TYPE– variable. The values of the–TYPE– variable are as follows:

–TYPE–
MEAN mean of each variable

STD standard deviation of each variable

N number of observations on which the analysis is based.
This value is the same for each variable.

SUMWGT sum of the weights if a WEIGHT statement is used. This
value is the same for each variable.

COV covariances between each variable and the variable named
by the –NAME– variable. The number of observations
with –TYPE–=COV is equal to the number of variables
being analyzed.

ACE estimated within-cluster covariances between each vari-
able and the variable named by the–NAME– variable.
The number of observations with–TYPE–=ACE is equal
to the number of variables being analyzed.
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EIGENVAL eigenvalues of INV(ACE)*(COV−ACE). If the N= op-
tion requests fewer than the maximum number of canoni-
cal variables, only the specified number of eigenvalues are
produced, with missing values filling out the observation.

RAWSCORE raw canonical coefficients.

To obtain the canonical variable scores, these coefficients
should be multiplied by the raw data centered by means
obtained from the observation with–TYPE–=’MEAN’.

SCORE standardized canonical coefficients. The–NAME– vari-
able contains the name of the corresponding canonical
variable as constructed from the PREFIX= option. The
number of observations with–TYPE–=SCORE equals
the number of canonical variables computed.

To obtain the canonical variable scores, these coefficients
should be multiplied by the standardized data using means
obtained from the observation with–TYPE–=’MEAN’
and standard deviations obtained from the observation
with –TYPE–=’STD’.

The OUTSTAT= data set can be used

• to initialize another execution of PROC ACECLUS

• to compute canonical variable scores with the SCORE procedure

• as input to the FACTOR procedure, specifying METHOD=SCORE, to rotate
the canonical variables

Computational Resources

Let

n = number of observations

v = number of variables

i = number of iterations

Memory

The memory in bytes required by PROC ACECLUS is approximately

8(2n(v + 1) + 21v + 5v2)

bytes. If you request the PP or QQ option, an additional4n(n− 1) bytes are needed.
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Time

The time required by PROC ACECLUS is roughly proportional to

2nv2 + 10v3 + i

(
n2v

2
+ nv2 + 5v3

)

Displayed Output

Unless the SHORT option is specified, the ACECLUS procedure displays the follow-
ing items:

• Means and Standard Deviations of the input variables

• theS matrix, labeled COV: Total Sample Covariances

• the name or value of the matrix used for the Initial Within-Cluster Covariance
Estimate

• the Threshold value if the PROPORTION= option is specified

For each iteration, PROC ACECLUS displays

• the Iteration number

• RMS Distance, the root mean square distance between all pairs of observations

• the Distance Cutoff(u) for including pairs of observations in the estimate of the
within-cluster covariances, which equals the RMS distance times the threshold

• the number of Pairs Within Cutoff

• the Convergence Measure(ei) as specified by the METRIC= option

If the SHORT option is not specified, PROC ACECLUS also displays theA matrix,
labeled ACE: Approximate Covariance Estimate Within Clusters.

The ACECLUS procedure displays a table of eigenvalues from the canonical analysis
containing the following items:

• Eigenvalues of Inv(ACE)*(COV−ACE)

• the Difference between successive eigenvalues

• the Proportion of variance explained by each eigenvalue

• the Cumulative proportion of variance explained

If the SHORT option is not specified, PROC ACECLUS displays

• the Eigenvectors or raw canonical coefficients

• the standardized eigenvectors or standard canonical coefficients
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ODS Table Names

PROC ACECLUS assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 16.3. ODS Tables Produced in PROC ACECLUS

ODS Table Name Description Statement Option
ConvergenceStatus Convergence status PROC default
DataOptionInfo Data and option information PROC default
Eigenvalues Eigenvalues of

Inv(ACE)*(COV-ACE)
PROC default

Eigenvectors Eigenvectors (raw canonical
coefficients)

PROC default

InitWithin Initial within-cluster covari-
ance estimate

PROC INITIAL=INPUT

IterHistory Iteration history PROC default
SimpleStatistics Simple statistics PROC default
StdCanCoef Standardized canonical coef-

ficients
PROC default

Threshold Threshold value PROC PROPORTION=
TotSampleCov Total sample covariances PROC default
Within Approximate covariance esti-

mate within clusters
PROC default

Example

Example 16.1. Transformation and Cluster Analysis of Fisher
Iris Data

The iris data published by Fisher (1936) have been widely used for examples in dis-
criminant analysis and cluster analysis. The sepal length, sepal width, petal length,
and petal width are measured in millimeters on fifty iris specimens from each of
three species,Iris setosa, I. versicolor,andI. virginica. Mezzich and Solomon (1980)
discuss a variety of cluster analyses of the iris data.

In this example PROC ACECLUS is used to transform the data, and the clustering
is performed by PROC FASTCLUS. Compare this with the example inChapter 28,
“The FASTCLUS Procedure.”The results from the FREQ procedure display fewer
misclassifications when PROC ACECLUS is used. The following statements produce
Output 16.1.1throughOutput 16.1.5.

proc format;
value specname

1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

run;
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data iris;
title ’Fisher (1936) Iris Data’;
input SepalLength SepalWidth PetalLength PetalWidth Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’

SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

symbol = put(species, specname10.);
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;

proc aceclus data=iris out=ace p=.02 outstat=score;
var SepalLength SepalWidth PetalLength PetalWidth ;

run;
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legend1 frame cframe=white cborder=black
position=center value=(justify=center);

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot data=ace;

plot can2*can1=Species /
frame cframe=white legend=legend1 vaxis=axis1 haxis=axis2;

format Species specname. ;
run;
quit;

proc fastclus data=ace maxc=3 maxiter=10 conv=0 out=clus;
var can:;

run;

proc freq;
tables cluster*Species;

run;
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Output 16.1.1. Using PROC ACECLUS to Transform Fisher’s Iris Data

Fisher (1936) Iris Data

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Observations 150 Proportion 0.0200
Variables 4 Converge 0.00100

Means and Standard Deviations
Standard

Variable Mean Deviation Label

SepalLength 58.4333 8.2807 Sepal Length in mm.
SepalWidth 30.5733 4.3587 Sepal Width in mm.
PetalLength 37.5800 17.6530 Petal Length in mm.
PetalWidth 11.9933 7.6224 Petal Width in mm.

COV: Total Sample Covariances

SepalLength SepalWidth PetalLength PetalWidth

SepalLength 68.5693512 -4.2434004 127.4315436 51.6270694
SepalWidth -4.2434004 18.9979418 -32.9656376 -12.1639374
PetalLength 127.4315436 -32.9656376 311.6277852 129.5609396
PetalWidth 51.6270694 -12.1639374 129.5609396 58.1006264

Initial Within-Cluster Covariance Estimate = Full Covariance Matrix

Threshold = 0.334211

Iteration History

Pairs
RMS Distance Within Convergence

Iteration Distance Cutoff Cutoff Measure
------------------------------------------------------------

1 2.828 0.945 408.0 0.465775
2 11.905 3.979 559.0 0.013487
3 13.152 4.396 940.0 0.029499
4 13.439 4.491 1506.0 0.046846
5 13.271 4.435 2036.0 0.046859
6 12.591 4.208 2285.0 0.025027
7 12.199 4.077 2366.0 0.009559
8 12.121 4.051 2402.0 0.003895
9 12.064 4.032 2417.0 0.002051

10 12.047 4.026 2429.0 0.000971

Algorithm converged.
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Output 16.1.2. Eigenvalues, Raw Canonical Coefficients, and Standardized
Canonical Coefficients

ACE: Approximate Covariance Estimate Within Clusters

SepalLength SepalWidth PetalLength PetalWidth

SepalLength 11.73342939 5.47550432 4.95389049 2.02902429
SepalWidth 5.47550432 6.91992590 2.42177851 1.74125154
PetalLength 4.95389049 2.42177851 6.53746398 2.35302594
PetalWidth 2.02902429 1.74125154 2.35302594 2.05166735

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 63.7716 61.1593 0.9367 0.9367
2 2.6123 1.5561 0.0384 0.9751
3 1.0562 0.4167 0.0155 0.9906
4 0.6395 0.00939 1.0000

Eigenvectors (Raw Canonical Coefficients)

Can1 Can2 Can3 Can4

SepalLength Sepal Length in mm. -.012009 -.098074 -.059852 0.402352
SepalWidth Sepal Width in mm. -.211068 -.000072 0.402391 -.225993
PetalLength Petal Length in mm. 0.324705 -.328583 0.110383 -.321069
PetalWidth Petal Width in mm. 0.266239 0.870434 -.085215 0.320286

Standardized Canonical Coefficients

Can1 Can2 Can3 Can4

SepalLength Sepal Length in mm. -0.09944 -0.81211 -0.49562 3.33174
SepalWidth Sepal Width in mm. -0.91998 -0.00031 1.75389 -0.98503
PetalLength Petal Length in mm. 5.73200 -5.80047 1.94859 -5.66782
PetalWidth Petal Width in mm. 2.02937 6.63478 -0.64954 2.44134
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Output 16.1.3. Plot of Transformed Iris Data: PROC PLOT
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Output 16.1.4. Clustering of Transformed Iris Data: Partial Output from PROC
FASTCLUS

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=3 Maxiter=10 Converge=0

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest

Cluster Frequency Deviation to Observation Exceeded Cluster
-----------------------------------------------------------------------------

1 50 1.1016 5.2768 3
2 50 1.8880 6.8298 3
3 50 1.4138 5.3152 2

Cluster Summary

Distance Between
Cluster Cluster Centroids
-----------------------------

1 13.2845
2 5.8580
3 5.8580

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)
------------------------------------------------------------------
Can1 8.04808 1.48537 0.966394 28.756658
Can2 1.90061 1.85646 0.058725 0.062389
Can3 1.43395 1.32518 0.157417 0.186826
Can4 1.28044 1.27550 0.021025 0.021477
OVER-ALL 4.24499 1.50298 0.876324 7.085666

Pseudo F Statistic = 520.80

Approximate Expected Over-All R-Squared = 0.80391

Cubic Clustering Criterion = 5.179

Cluster Means

Cluster Can1 Can2 Can3 Can4
-------------------------------------------------------------------------------

1 -10.67516964 0.06706906 0.27068819 0.11164209
2 8.12988211 0.52566663 0.51836499 0.14915404
3 2.54528754 -0.59273569 -0.78905317 -0.26079612

Cluster Standard Deviations

Cluster Can1 Can2 Can3 Can4
-------------------------------------------------------------------------------

1 0.953761025 0.931943571 1.398456061 1.058217627
2 1.799159552 2.743869556 1.270344142 1.370523175
3 1.572366584 1.393565864 1.303411851 1.372050319
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Output 16.1.5. Crosstabulation of Cluster by Species for Fisher’s Iris Data: PROC
FREQ

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER(Cluster) Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 50 | 0 | 0 | 50
| 33.33 | 0.00 | 0.00 | 33.33
| 100.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
2 | 0 | 2 | 48 | 50

| 0.00 | 1.33 | 32.00 | 33.33
| 0.00 | 4.00 | 96.00 |
| 0.00 | 4.00 | 96.00 |

---------+--------+--------+--------+
3 | 0 | 48 | 2 | 50

| 0.00 | 32.00 | 1.33 | 33.33
| 0.00 | 96.00 | 4.00 |
| 0.00 | 96.00 | 4.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00
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Chapter 17
The ANOVA Procedure
Overview

The ANOVA procedure performsanalysis of variance(ANOVA) for balanced data
from a wide variety of experimental designs. In analysis of variance, a continuous
response variable, known as adependent variable, is measured under experimental
conditions identified by classification variables, known asindependent variables. The
variation in the response is assumed to be due to effects in the classification, with
random error accounting for the remaining variation.

The ANOVA procedure is one of several procedures available in SAS/STAT soft-
ware for analysis of variance. The ANOVA procedure is designed to handle balanced
data (that is, data with equal numbers of observations for every combination of the
classification factors), whereas the GLM procedure can analyze both balanced and
unbalanced data. Because PROC ANOVA takes into account the special structure of
a balanced design, it is faster and uses less storage than PROC GLM for balanced
data.

Use PROC ANOVA for the analysis of balanced data only, with the following excep-
tions: one-way analysis of variance, Latin square designs, certain partially balanced
incomplete block designs, completely nested (hierarchical) designs, and designs with
cell frequencies that are proportional to each other and are also proportional to the
background population. These exceptions have designs in which the factors are all
orthogonal to each other. For further discussion, refer to Searle (1971, p. 138). PROC
ANOVA works for designs with block diagonalX′X matrices where the elements of
each block all have the same value. The procedure partially tests this requirement
by checking for equal cell means. However, this test is imperfect: some designs that
cannot be analyzed correctly may pass the test, and designs that can be analyzed cor-
rectly may not pass. If your design does not pass the test, PROC ANOVA produces
a warning message to tell you that the design is unbalanced and that the ANOVA
analyses may not be valid; if your design is not one of the special cases described
here, then you should use PROC GLM instead. Complete validation of designs is
not performed in PROC ANOVA since this would require the wholeX′X matrix; if
you’re unsure about the validity of PROC ANOVA for your design, you should use
PROC GLM.

Caution: If you use PROC ANOVA for analysis of unbalanced data, you must as-
sume responsibility for the validity of the results.

Experimental graphics are now available with the ANOVA procedure. For more in-
formation, see the“ODS Graphics”section on page 460.
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Getting Started

The following examples demonstrate how you can use the ANOVA procedure to per-
form analyses of variance for a one-way layout and a randomized complete block
design.

One-Way Layout with Means Comparisons

A one-way analysis of variance considers one treatment factor with two or more
treatment levels. The goal of the analysis is to test for differences among the means
of the levels and to quantify these differences. If there are two treatment levels, this
analysis is equivalent to at test comparing two group means.

The assumptions of analysis of variance (Steel and Torrie 1980) are

• treatment effects are additive

• experimental errors

− are random

− are independently distributed

− follow a normal distribution

− have mean zero and constant variance

The following example studies the effect of bacteria on the nitrogen content of red
clover plants. The treatment factor is bacteria strain, and it has six levels. Five of
the six levels consist of five differentRhizobium trifoliibacteria cultures combined
with a composite of fiveRhizobium melilotistrains. The sixth level is a composite
of the fiveRhizobium trifoliistrains with the composite of theRhizobium meliloti.
Red clover plants are inoculated with the treatments, and nitrogen content is later
measured in milligrams. The data are derived from an experiment by Erdman (1946)
and are analyzed in Chapters 7 and 8 of Steel and Torrie (1980). The following DATA
step creates the SAS data setClover:

title1 ’Nitrogen Content of Red Clover Plants’;
data Clover;

input Strain $ Nitrogen @@;
datalines;

3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;

The variableStrain contains the treatment levels, and the variableNitrogen contains
the response. The following statements produce the analysis.
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proc anova data = Clover;
class strain;
model Nitrogen = Strain;

run;

The classification variable is specified in the CLASS statement. Note that, unlike the
GLM procedure, PROC ANOVA does not allow continuous variables on the right-
hand side of the model.Figure 17.1andFigure 17.2display the output produced by
these statements.

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Class Level Information

Class Levels Values

Strain 6 3DOK1 3DOK13 3DOK4 3DOK5 3DOK7 COMPOS

Number of Observations Read 30
Number of Observations Used 30

Figure 17.1. Class Level Information

The “Class Level Information” table shown inFigure 17.1lists the variables that
appear in the CLASS statement, their levels, and the number of observations in the
data set.

Figure 17.2displays the ANOVA table, followed by some simple statistics and tests
of effects.

Dependent Variable: Nitrogen

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 847.046667 169.409333 14.37 <.0001

Error 24 282.928000 11.788667

Corrected Total 29 1129.974667

R-Square Coeff Var Root MSE Nitrogen Mean

0.749616 17.26515 3.433463 19.88667

Source DF Anova SS Mean Square F Value Pr > F

Strain 5 847.0466667 169.4093333 14.37 <.0001

Figure 17.2. ANOVA Table
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The degrees of freedom (DF) column should be used to check the analysis results.
The model degrees of freedom for a one-way analysis of variance are the number of
levels minus 1; in this case,6 − 1 = 5. The Corrected Total degrees of freedom are
always the total number of observations minus one; in this case30 − 1 = 29. The
sum of Model and Error degrees of freedom equal the Corrected Total.

The overallF test is significant(F = 14.37, p < 0.0001), indicating that the model
as a whole accounts for a significant portion of the variability in the dependent vari-
able. TheF test forStrain is significant, indicating that some contrast between the
means for the different strains is different from zero. Notice that the Model and
Strain F tests are identical, sinceStrain is the only term in the model.

TheF test forStrain (F = 14.37, p < 0.0001) suggests that there are differences
among the bacterial strains, but it does not reveal any information about the nature of
the differences. Mean comparison methods can be used to gather further information.
The interactivity of PROC ANOVA enables you to do this without re-running the en-
tire analysis. After you specify a model with a MODEL statement and execute the
ANOVA procedure with a RUN statement, you can execute a variety of statements
(such as MEANS, MANOVA, TEST, and REPEATED) without PROC ANOVA re-
calculating the model sum of squares.

The following command requests means of theStrain levels with Tukey’s studentized
range procedure.

means strain / tukey;

Results of Tukey’s procedure are shown inFigure 17.3.
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The ANOVA Procedure

Tukey’s Studentized Range (HSD) Test for Nitrogen

NOTE: This test controls the Type I experimentwise error rate, but it generally
has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 24
Error Mean Square 11.78867
Critical Value of Studentized Range 4.37265
Minimum Significant Difference 6.7142

Means with the same letter are not significantly different.

Tukey Grouping Mean N Strain

A 28.820 5 3DOK1
A

B A 23.980 5 3DOK5
B
B C 19.920 5 3DOK7
B C
B C 18.700 5 COMPOS

C
C 14.640 5 3DOK4
C
C 13.260 5 3DOK13

Figure 17.3. Tukey’s Multiple Comparisons Procedure

The multiple comparisons results indicate, for example, that

• strain 3DOK1 fixes significantly more nitrogen than all but 3DOK5

• even though 3DOK5 is not significantly different from 3DOK1, it is also not
significantly better than all the rest

Although the experiment has succeeded in separating the best strains from the worst,
clearly distinguishing the very best strain requires more experimentation.

The experimental graphics features of PROC ANOVA enable you to visualize the
distribution of nitrogen content for each treatment.

ods html;
ods graphics on;

proc anova data = Clover;
class strain;
model Nitrogen = Strain;

run;

ods graphics off;
ods html close;
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When you specify the experimental ODS GRAPHICS statement and fit a one-way
analysis of variance model, the ANOVA procedure output includes a box plot of the
dependent variable values within each classification level of the independent variable.
For general information about ODS graphics, seeChapter 15, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the ANOVA
procedure, see the section“ODS Graphics”on page 460.

Figure 17.4. Box Plot of Nitrogen Content for each Treatment (Experimental)

Randomized Complete Block with One Factor

This example illustrates the use of PROC ANOVA in analyzing a randomized com-
plete block design. Researchers are interested in whether three treatments have dif-
ferent effects on the yield and worth of a particular crop. They believe that the exper-
imental units are not homogeneous. So, a blocking factor is introduced that allows
the experimental units to be homogeneous within each block. The three treatments
are then randomly assigned within each block.

The data from this study are input into the SAS data setRCB:

title1 ’Randomized Complete Block’;
data RCB;

input Block Treatment $ Yield Worth @@;
datalines;
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1 A 32.6 112 1 B 36.4 130 1 C 29.5 106
2 A 42.7 139 2 B 47.1 143 2 C 32.9 112
3 A 35.3 124 3 B 40.1 134 3 C 33.6 116
;

The variablesYield andWorth are continuous response variables, and the variables
Block andTreatment are the classification variables. Because the data for the anal-
ysis are balanced, you can use PROC ANOVA to run the analysis.

The statements for the analysis are

proc anova data=RCB;
class Block Treatment;
model Yield Worth=Block Treatment;

run;

The Block and Treatment effects appear in the CLASS statement. The MODEL
statement requests an analysis for each of the two dependent variables,Yield and
Worth.

Figure 17.5shows the “Class Level Information” table.

Randomized Complete Block

The ANOVA Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Treatment 3 A B C

Number of Observations Read 9
Number of Observations Used 9

Figure 17.5. Class Level Information

The “Class Level Information” table lists the number of levels and their values for all
effects specified in the CLASS statement. The number of observations in the data set
are also displayed. Use this information to make sure that the data have been read
correctly.

The overall ANOVA table forYield in Figure 17.6appears first in the output because
it is the first response variable listed on the left side in the MODEL statement.
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Dependent Variable: Yield

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 4 225.2777778 56.3194444 8.94 0.0283

Error 4 25.1911111 6.2977778

Corrected Total 8 250.4688889

R-Square Coeff Var Root MSE Yield Mean

0.899424 6.840047 2.509537 36.68889

Figure 17.6. Overall ANOVA Table for Yield

The overallF statistic is significant(F = 8.94, p = 0.02583), indicating that the
model as a whole accounts for a significant portion of the variation inYield and that
you may proceed to tests of effects.

The degrees of freedom (DF) are used to ensure correctness of the data and model.
The Corrected Total degrees of freedom are one less than the total number of obser-
vations in the data set; in this case,9 − 1 = 8. The Model degrees of freedom for a
randomized complete block are(b− 1) + (t− 1), whereb =number of block levels
andt =number of treatment levels. In this case,(3− 1) + (3− 1) = 4.

Several simple statistics follow the ANOVA table. The R-Square indicates that the
model accounts for nearly 90% of the variation in the variableYield. The coefficient
of variation (C.V.) is listed along with the Root MSE and the mean of the dependent
variable. The Root MSE is an estimate of the standard deviation of the dependent
variable. The C.V. is a unitless measure of variability.

The tests of the effects shown inFigure 17.7are displayed after the simple statistics.

Dependent Variable: Yield

Source DF Anova SS Mean Square F Value Pr > F

Block 2 98.1755556 49.0877778 7.79 0.0417
Treatment 2 127.1022222 63.5511111 10.09 0.0274

Figure 17.7. Tests of Effects for Yield

For Yield, both theBlock and Treatment effects are significant(F = 7.79, p =
0.0417 andF = 10.09, p = 0.0274, respectively) at the 95% level. From this you
can conclude that blocking is useful for this variable and that some contrast between
the treatment means is significantly different from zero.

Figure 17.8shows the ANOVA table, simple statistics, and tests of effects for the
variableWorth.
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Dependent Variable: Worth

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 4 1247.333333 311.833333 8.28 0.0323

Error 4 150.666667 37.666667

Corrected Total 8 1398.000000

R-Square Coeff Var Root MSE Worth Mean

0.892227 4.949450 6.137318 124.0000

Source DF Anova SS Mean Square F Value Pr > F

Block 2 354.6666667 177.3333333 4.71 0.0889
Treatment 2 892.6666667 446.3333333 11.85 0.0209

Figure 17.8. ANOVA Table for Worth

The overallF test is significant(F = 8.28, p = 0.0323) at the 95% level for the
variableWorth. TheBlock effect is not significant at the 0.05 level but is significant
at the 0.10 confidence level(F = 4.71, p = 0.0889). Generally, the usefulness of
blocking should be determined before the analysis. However, since there are two
dependent variables of interest, andBlock is significant for one of them (Yield),
blocking appears to be generally useful. ForWorth, as withYield, the effect of
Treatment is significant(F = 11.85, p = 0.0209).

Issuing the following command produces theTreatment means.

means Treatment;
run;

Figure 17.9displays the treatment means and their standard deviations for both de-
pendent variables.

The ANOVA Procedure

Level of ------------Yield----------- ------------Worth-----------
Treatment N Mean Std Dev Mean Std Dev

A 3 36.8666667 5.22908532 125.000000 13.5277493
B 3 41.2000000 5.43415127 135.666667 6.6583281
C 3 32.0000000 2.19317122 111.333333 5.0332230

Figure 17.9. Means of Yield and Worth
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Syntax

The following statements are available in PROC ANOVA.

PROC ANOVA < options > ;
CLASS variables < / option > ;
MODEL dependents=effects < / options > ;
ABSORB variables ;
BY variables ;
FREQ variable ;
MANOVA < test-options >< / detail-options > ;
MEANS effects < / options > ;
REPEATED factor-specification < / options > ;
TEST < H=effects > E=effect ;

The PROC ANOVA, CLASS, and MODEL statements are required, and they must
precede the first RUN statement. The CLASS statement must precede the MODEL
statement. If you use the ABSORB, FREQ, or BY statement, it must precede the first
RUN statement. The MANOVA, MEANS, REPEATED, and TEST statements must
follow the MODEL statement, and they can be specified in any order. These four
statements can also appear after the first RUN statement.

The following table summarizes the function of each statement (other than the PROC
statement) in the ANOVA procedure:

Table 17.1. Statements in the ANOVA Procedure

Statement Description
ABSORB absorbs classification effects in a model
BY specifies variables to define subgroups for the analysis
CLASS declares classification variables
FREQ specifies a frequency variable
MANOVA performs a multivariate analysis of variance
MEANS computes and compares means
MODEL defines the model to be fit
REPEATED performs multivariate and univariate repeated measures analysis of

variance
TEST constructs tests using the sums of squares for effects and the error

term you specify

PROC ANOVA Statement

PROC ANOVA < options > ;

The PROC ANOVA statement starts the ANOVA procedure.

You can specify the following options in the PROC ANOVA statement:



PROC ANOVA Statement � 433

DATA=SAS-data-set
names the SAS data set used by the ANOVA procedure. By default, PROC ANOVA
uses the most recently created SAS data set.

MANOVA
requests the multivariate mode of eliminating observations with missing values. If
any of the dependent variables have missing values, the procedure eliminates that
observation from the analysis. The MANOVA option is useful if you use PROC
ANOVA in interactive mode and plan to perform a multivariate analysis.

MULTIPASS
requests that PROC ANOVA reread the input data set, when necessary, instead of
writing the values of dependent variables to a utility file. This option decreases disk
space usage at the expense of increased execution times and is useful only in rare
situations where disk space is at an absolute premium.

NAMELEN=n
specifies the length of effect names to ben characters long, wheren is a value be-
tween 20 and 200 characters. The default length is 20 characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
want to create only the output data set with the procedure. Note that this option
temporarily disables the Output Delivery System (ODS); seeChapter 14, “Using the
Output Delivery System,”for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the classification variables (specified in the
CLASS statement). This ordering determines which parameters in the model corre-
spond to each level in the data. Note that the ORDER= option applies to the levels
for all classification variables. The exception is the default ORDER=FORMATTED
for numeric variables for which you have supplied no explicit format. In this case,
the levels are ordered by their internal value. Note that this represents a change from
previous releases for how class levels are ordered. In releases previous to Version 8,
numeric class levels with no explicit format were ordered by their BEST12. formatted
values, and in order to revert to the previous ordering you can specify this format ex-
plicitly for the affected classification variables. The change was implemented because
the former default behavior for ORDER=FORMATTED often resulted in levels not
being ordered numerically and usually required the user to intervene with an explicit
format or ORDER=INTERNAL to get the more natural ordering.

The following table shows how PROC ANOVA interprets values of the ORDER=
option.
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Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

OUTSTAT=SAS-data-set
names an output data set that contains sums of squares, degrees of freedom,F statis-
tics, and probability levels for each effect in the model. If you use the CANONICAL
option in the MANOVA statement and do not use an M= specification in the
MANOVA statement, the data set also contains results of the canonical analysis. See
the“Output Data Set”section on page 455 for more information.

ABSORB Statement

ABSORB variables ;

Absorption is a computational technique that provides a large reduction in time and
memory requirements for certain types of models. Thevariablesare one or more
variables in the input data set.

For a main effect variable that does not participate in interactions, you can absorb
the effect by naming it in an ABSORB statement. This means that the effect can be
adjusted out before the construction and solution of the rest of the model. This is
particularly useful when the effect has a large number of levels.

Several variables can be specified, in which case each one is assumed to be nested in
the preceding variable in the ABSORB statement.

Note: When you use the ABSORB statement, the data set (or each BY group, if a
BY statement appears) must be sorted by the variables in the ABSORB statement.
Including an absorbed variable in the CLASS list or in the MODEL statement may
produce erroneous sums of squares. If the ABSORB statement is used, it must appear
before the first RUN statement or it is ignored.

When you use an ABSORB statement and also use the INT option in the MODEL
statement, the procedure ignores the option but produces the uncorrected total sum of
squares (SS) instead of the corrected total SS.

See the“Absorption” section on page 1799 inChapter 32, “The GLM Procedure,”
for more information.
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BY Statement

BY variables ;

You can specify a BY statement with PROC ANOVA to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the ANOVA procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

Since sorting the data changes the order in which PROC ANOVA reads observations,
the sorting order for the levels of the classification variables may be affected if you
have also specified the ORDER=DATA option in the PROC ANOVA statement.

If the BY statement is used, it must appear before the first RUN statement or it is
ignored. When you use a BY statement, the interactive features of PROC ANOVA
are disabled.

When both a BY and an ABSORB statement are used, observations must be sorted
first by the variables in the BY statement, and then by the variables in the ABSORB
statement.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables < / option > ;

The CLASS statement names the classification variables to be used in the
model. Typical class variables are TREATMENT, SEX, RACE, GROUP, and
REPLICATION. The CLASS statement is required, and it must appear before the
MODEL statement.

By default, class levels are determined from the entire formatted values of the CLASS
variables. Note that this represents a slight change from previous releases in the way
in which class levels are determined. In releases prior to Version 9, class levels were
determined using no more than the first 16 characters of the formatted values. If
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you wish to revert to this previous behavior you can use the TRUNCATE option on
the CLASS statement. In any case, you can use formats to group values into levels.
Refer to the discussion of the FORMAT procedure in theSAS Procedures Guide
and the discussions for the FORMAT statement and SAS formats inSAS Language
Reference: Concepts.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE
specifies that class levels should be determined using only up to the first 16 characters
of the formatted values of CLASS variables. When formatted values are longer than
16 characters, you can use this option in order to revert to the levels as determined in
releases previous to Version 9.

FREQ Statement

FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation
in the DATA= data set. Specifically, ifn is the value of the FREQ variable for a given
observation, then that observation is usedn times.

The analysis produced using a FREQ statement reflects the expanded number of ob-
servations. For example, means and total degrees of freedom reflect the expanded
number of observations. You can produce the same analysis (without the FREQ state-
ment) by first creating a new data set that contains the expanded number of observa-
tions. For example, if the value of the FREQ variable is 5 for the first observation, the
first 5 observations in the new data set would be identical. Each observation in the
old data set would be replicatedni times in the new data set, whereni is the value of
the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.

If the FREQ statement is used, it must appear before the first RUN statement or it is
ignored.

MANOVA Statement

MANOVA < test-options >< / detail-options > ;

If the MODEL statement includes more than one dependent variable, you can perform
multivariate analysis of variance with the MANOVA statement. Thetest-optionsde-
fine which effects to test, while thedetail-optionsspecify how to execute the tests
and what results to display.

When a MANOVA statement appears before the first RUN statement, PROC ANOVA
enters a multivariate mode with respect to the handling of missing values; in addition
to observations with missing independent variables, observations withany missing
dependent variables are excluded from the analysis. If you want to use this mode
of handling missing values but do not need any multivariate analyses, specify the
MANOVA option in the PROC ANOVA statement.
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Test Options

You can specify the following options in the MANOVA statement astest-optionsin
order to define which multivariate tests to perform.

H=effects | INTERCEPT | –ALL –
specifies effects in the preceding model to use as hypothesis matrices. For each SSCP
matrixH associated with an effect, the H= specification computes an analysis based
on the characteristic roots ofE−1H, whereE is the matrix associated with the error
effect. The characteristic roots and vectors are displayed, along with the Hotelling-
Lawley trace, Pillai’s trace, Wilks’ criterion, and Roy’s maximum root criterion with
approximateF statistics. By default, these statistics are tested with approximations
based on theF distribution. To test them with exact (but computationally intensive)
calculations, use the MSTAT=EXACT option.

Use the keyword INTERCEPT to produce tests for the intercept. To produce tests
for all effects listed in the MODEL statement, use the keyword–ALL – in place of a
list of effects. For background and further details, see the“Multivariate Analysis of
Variance”section on page 1823 inChapter 32, “The GLM Procedure.”

E=effect
specifies the error effect. If you omit the E= specification, the ANOVA procedure
uses the error SSCP (residual) matrix from the analysis.

M=equation,. . .,equation | (row-of-matrix,. . .,row-of-matrix)
specifies a transformation matrix for the dependent variables listed in the MODEL
statement. The equations in the M= specification are of the form

c1 × dependent-variable± c2 × dependent-variable

· · · ± cn × dependent-variable

where theci values are coefficients for the variousdependent-variables. If the value
of a given ci is 1, it may be omitted; in other words1 × Y is the same asY .
Equations should involve two or more dependent variables. For sample syntax, see
the“Examples”section on page 439.

Alternatively, you can input the transformation matrix directly by entering the ele-
ments of the matrix with commas separating the rows, and parentheses surrounding
the matrix. When this alternate form of input is used, the number of elements in each
row must equal the number of dependent variables. Although these combinations
actually represent the columns of theM matrix, they are displayed by rows.

When you include an M= specification, the analysis requested in the MANOVA state-
ment is carried out for the variables defined by the equations in the specification, not
the original dependent variables. If you omit the M= option, the analysis is performed
for the original dependent variables in the MODEL statement.

If an M= specification is included without either the MNAMES= or the PREFIX=
option, the variables are labeled MVAR1, MVAR2, and so forth by default. For
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further information, see the section“Multivariate Analysis of Variance”on page 1823
in Chapter 32, “The GLM Procedure.”

MNAMES=names
provides names for the variables defined by the equations in the M= specification.
Names in the list correspond to the M= equations or the rows of theM matrix (as it
is entered).

PREFIX=name
is an alternative means of identifying the transformed variables defined by the M=
specification. For example, if you specify PREFIX=DIFF, the transformed variables
are labeled DIFF1, DIFF2, and so forth.

Detail Options

You can specify the following options in the MANOVA statement after a slash as
detail-options:

CANONICAL
produces a canonical analysis of theH andE matrices (transformed by theM matrix,
if specified) instead of the default display of characteristic roots and vectors.

MSTAT=FAPPROX
MSTAT=EXACT

specifies the method of evaluating the multivariate test statistics. The default is
MSTAT=FAPPROX, which specifies that the multivariate tests are evaluated using the
usual approximations based on theF distribution, as discussed in the “Multivariate
Tests” section inChapter 2, “Introduction to Regression Procedures.”Alternatively,
you can specify MSTAT=EXACT to compute exactp-values for three of the four
tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root) and an
improved F-approximation for the fourth (Pillai’s Trace). While MSTAT=EXACT
provides better control of the significance probability for the tests, especially for
Roy’s Greatest Root, computations for the exactp-values can be appreciably more
demanding, and are in fact infeasible for large problems (many dependent variables).
Thus, although MSTAT=EXACT is more accurate for most data, it is not the de-
fault method. For more information on the results of MSTAT=EXACT, see the
“Multivariate Analysis of Variance”section on page 1823 inChapter 32, “The GLM
Procedure.”

ORTH
requests that the transformation matrix in the M= specification of the MANOVA state-
ment be orthonormalized by rows before the analysis.

PRINTE
displays the error SSCP matrixE. If the E matrix is the error SSCP (residual) ma-
trix from the analysis, the partial correlations of the dependent variables given the
independent variables are also produced.

For example, the statement

manova / printe;
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displays the error SSCP matrix and the partial correlation matrix computed from the
error SSCP matrix.

PRINTH
displays the hypothesis SSCP matrixH associated with each effect specified by the
H= specification.

SUMMARY
produces analysis-of-variance tables for each dependent variable. When noM ma-
trix is specified, a table is produced for each original dependent variable from the
MODEL statement; with anM matrix other than the identity, a table is produced for
each transformed variable defined by theM matrix.

Examples

The following statements give several examples of using a MANOVA statement.

proc anova;
class A B;
model Y1-Y5=A B(A);
manova h=A e=B(A) / printh printe;
manova h=B(A) / printe;
manova h=A e=B(A) m=Y1-Y2,Y2-Y3,Y3-Y4,Y4-Y5

prefix=diff;

manova h=A e=B(A) m=(1 -1 0 0 0,
0 1 -1 0 0,
0 0 1 -1 0,
0 0 0 1 -1) prefix=diff;

run;

The first MANOVA statement specifiesA as the hypothesis effect andB(A) as the
error effect. As a result of the PRINTH option, the procedure displays the hypothesis
SSCP matrix associated with theA effect; and, as a result of the PRINTE option, the
procedure displays the error SSCP matrix associated with theB(A) effect.

The second MANOVA statement specifiesB(A) as the hypothesis effect. Since no
error effect is specified, PROC ANOVA uses the error SSCP matrix from the analysis
as theE matrix. The PRINTE option displays thisE matrix. Since theE matrix
is the error SSCP matrix from the analysis, the partial correlation matrix computed
from this matrix is also produced.

The third MANOVA statement requests the same analysis as the first MANOVA state-
ment, but the analysis is carried out for variables transformed to be successive dif-
ferences between the original dependent variables. The PREFIX=DIFF specification
labels the transformed variables as DIFF1, DIFF2, DIFF3, and DIFF4.

Finally, the fourth MANOVA statement has the identical effect as the third, but it uses
an alternative form of the M= specification. Instead of specifying a set of equations,
the fourth MANOVA statement specifies rows of a matrix of coefficients for the five
dependent variables.

As a second example of the use of the M= specification, consider the following:
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proc anova;
class group;
model dose1-dose4=group / nouni;
manova h = group

m = -3*dose1 - dose2 + dose3 + 3*dose4,
dose1 - dose2 - dose3 + dose4,

-dose1 + 3*dose2 - 3*dose3 + dose4
mnames = Linear Quadratic Cubic
/ printe;

run;

The M= specification gives a transformation of the dependent variablesdose1
throughdose4 into orthogonal polynomial components, and the MNAMES= option
labels the transformed variables as LINEAR, QUADRATIC, and CUBIC, respec-
tively. Since the PRINTE option is specified and the default residual matrix is used
as an error term, the partial correlation matrix of the orthogonal polynomial compo-
nents is also produced.

For further information, see the“Multivariate Analysis of Variance”section on page
1823 inChapter 32, “The GLM Procedure.”

MEANS Statement

MEANS effects < / options > ;

PROC ANOVA can compute means of the dependent variables for any effect that
appears on the right-hand side in the MODEL statement.

You can use any number of MEANS statements, provided that they appear after the
MODEL statement. For example, supposeA andB each have two levels. Then, if
you use the following statements

proc anova;
class A B;
model Y=A B A*B;
means A B / tukey;
means A*B;

run;

means, standard deviations, and Tukey’s multiple comparison tests are produced for
each level of the main effectsA andB, and just the means and standard deviations for
each of the four combinations of levels forA*B. Since multiple comparisons options
apply only to main effects, the single MEANS statement

means A B A*B / tukey;

produces the same results.

Options are provided to perform multiple comparison tests for only main effects in
the model. PROC ANOVA does not perform multiple comparison tests for interaction
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terms in the model; for multiple comparisons of interaction terms, see the LSMEANS
statement inChapter 32, “The GLM Procedure.”

The following table summarizes categories of options available in the MEANS state-
ment.

Table 17.2. Options Available in the MEANS Statement

Task Available options
Perform multiple comparison tests BON

DUNCAN
DUNNETT
DUNNETTL
DUNNETTU
GABRIEL
GT2
LSD
REGWQ
SCHEFFE
SIDAK
SMM

Perform multiple comparison tests SNK
T
TUKEY
WALLER

Specify additional details for ALPHA=
multiple comparison tests CLDIFF

CLM
E=
KRATIO=
LINES
NOSORT

Test for homogeneity of variances HOVTEST

Compensate for heterogeneous variances WELCH

Descriptions of these options follow. For a further discussion of these options,
see the section“Multiple Comparisons”on page 1806 inChapter 32, “The GLM
Procedure.”

ALPHA= p
specifies the level of significance for comparisons among the means. By default,
ALPHA=0.05. You can specify any value greater than 0 and less than 1.

BON
performs Bonferronit tests of differences between means for all main effect means
in the MEANS statement. See theCLDIFF andLINES options, which follow, for a
discussion of how the procedure displays results.
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CLDIFF
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, GT2, T, LSD,
and TUKEY options as confidence intervals for all pairwise differences between
means, and the results of the DUNNETT, DUNNETTU, and DUNNETTL options
as confidence intervals for differences with the control. The CLDIFF option is the
default for unequal cell sizes unless the DUNCAN, REGWQ, SNK, or WALLER
option is specified.

CLM
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, T, and LSD op-
tions as intervals for the mean of each level of the variables specified in the MEANS
statement. For all options except GABRIEL, the intervals are confidence intervals for
the true means. For the GABRIEL option, they arecomparison intervalsfor compar-
ing means pairwise: in this case, if the intervals corresponding to two means overlap,
the difference between them is insignificant according to Gabriel’s method.

DUNCAN
performs Duncan’s multiple range test on all main effect means given in the MEANS
statement. See theLINES option for a discussion of how the procedure displays
results.

DUNNETT < (formatted-control-values) >
performs Dunnett’s two-tailedt test, testing if any treatments are significantly differ-
ent from a single control for all main effects means in the MEANS statement.

To specify which level of the effect is the control, enclose the formatted value in
quotes in parentheses after the keyword. If more than one effect is specified in the
MEANS statement, you can use a list of control values within the parentheses. By
default, the first level of the effect is used as the control. For example,

means a / dunnett(’CONTROL’);

where CONTROL is the formatted control value of A. As another example,

means a b c / dunnett(’CNTLA’ ’CNTLB’ ’CNTLC’);

where CNTLA, CNTLB, and CNTLC are the formatted control values for A, B, and
C, respectively.

DUNNETTL < (formatted-control-value) >
performs Dunnett’s one-tailedt test, testing if any treatment is significantly less than
the control. Control level information is specified as described previously for the
DUNNETT option.

DUNNETTU < (formatted-control-value) >
performs Dunnett’s one-tailedt test, testing if any treatment is significantly greater
than the control. Control level information is specified as described previously for
theDUNNETT option.
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E=effect
specifies the error mean square used in the multiple comparisons. By default, PROC
ANOVA uses the residual Mean Square (MS). The effect specified with the E= option
must be a term in the model; otherwise, the procedure uses the residual MS.

GABRIEL
performs Gabriel’s multiple-comparison procedure on all main effect means in the
MEANS statement. See theCLDIFF andLINES options for discussions of how the
procedure displays results.

GT2
see theSMM option.

HOVTEST
HOVTEST=BARTLETT
HOVTEST=BF
HOVTEST=LEVENE <(TYPE=ABS | SQUARE) >
HOVTEST=OBRIEN <(W=number )>

requests a homogeneity of variance test for the groups defined by the MEANS effect.
You can optionally specify a particular test; if you do not specify a test, Levene’s test
(Levene 1960) with TYPE=SQUARE is computed. Note that this option is ignored
unless your MODEL statement specifies a simple one-way model.

The HOVTEST=BARTLETT option specifies Bartlett’s test (Bartlett 1937), a modi-
fication of the normal-theory likelihood ratio test.

The HOVTEST=BF option specifies Brown and Forsythe’s variation of Levene’s test
(Brown and Forsythe 1974).

The HOVTEST=LEVENE option specifies Levene’s test (Levene 1960), which is
widely considered to be the standard homogeneity of variance test. You can use
the TYPE= option in parentheses to specify whether to use the absolute residuals
(TYPE=ABS) or the squared residuals (TYPE=SQUARE) in Levene’s test. The de-
fault is TYPE=SQUARE.

The HOVTEST=OBRIEN option specifies O’Brien’s test (O’Brien 1979), which is
basically a modification of HOVTEST=LEVENE(TYPE=SQUARE). You can use
the W= option in parentheses to tune the variable to match the suspected kurtosis
of the underlying distribution. By default, W=0.5, as suggested by O’Brien (1979,
1981).

See the section“Homogeneity of Variance in One-Way Models”on page 1818 in
Chapter 32, “The GLM Procedure,”for more details on these methods.Example
32.10on page 1892 in the same chapter illustrates the use of the HOVTEST and
WELCH options in the MEANS statement in testing for equal group variances.

KRATIO=value
specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test.
Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for
the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure
uses the default value of 100.
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LINES
presents results of the BON, DUNCAN, GABRIEL, REGWQ, SCHEFFE, SIDAK,
SMM, GT2, SNK, T, LSD, TUKEY, and WALLER options by listing the means in
descending order and indicating nonsignificant subsets by line segments beside the
corresponding means. The LINES option is appropriate for equal cell sizes, for which
it is the default. The LINES option is also the default if the DUNCAN, REGWQ,
SNK, or WALLER option is specified, or if there are only two cells of unequal size.
If the cell sizes are unequal, the harmonic mean of the cell sizes is used, which may
lead to somewhat liberal tests if the cell sizes are highly disparate. The LINES option
cannot be used in combination with the DUNNETT, DUNNETTL, or DUNNETTU
option. In addition, the procedure has a restriction that no more than 24 overlapping
groups of means can exist. If a mean belongs to more than 24 groups, the procedure
issues an error message. You can either reduce the number of levels of the variable or
use a multiple comparison test that allows theCLDIFF option rather than the LINES
option.

LSD
see theT option.

NOSORT
prevents the means from being sorted into descending order when the CLDIFF or
CLM option is specified.

REGWQ
performs the Ryan-Einot-Gabriel-Welsch multiple range test on all main effect means
in the MEANS statement. See theLINES option for a discussion of how the proce-
dure displays results.

SCHEFFE
performs Scheffé’s multiple-comparison procedure on all main effect means in the
MEANS statement. See theCLDIFF andLINES options for discussions of how the
procedure displays results.

SIDAK
performs pairwiset tests on differences between means with levels adjusted accord-
ing to Sidak’s inequality for all main effect means in the MEANS statement. See the
CLDIFF andLINES options for discussions of how the procedure displays results.

SMM
GT2

performs pairwise comparisons based on the studentized maximum modulus and
Sidak’s uncorrelated-t inequality, yielding Hochberg’s GT2 method when sample
sizes are unequal, for all main effect means in the MEANS statement. See the
CLDIFF andLINES options for discussions of how the procedure displays results.

SNK
performs the Student-Newman-Keuls multiple range test on all main effect means in
the MEANS statement. See theLINES option for a discussion of how the procedure
displays results.
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T
LSD

performs pairwiset tests, equivalent to Fisher’s least-significant-difference test in the
case of equal cell sizes, for all main effect means in the MEANS statement. See the
CLDIFF andLINES options for discussions of how the procedure displays results.

TUKEY
performs Tukey’s studentized range test (HSD) on all main effect means in the
MEANS statement. (When the group sizes are different, this is the Tukey-Kramer
test.) See theCLDIFF andLINES options for discussions of how the procedure dis-
plays results.

WALLER
performs the Waller-Duncank-ratio t test on all main effect means in the MEANS
statement. See theKRATIO= option for information on controlling details of the test,
and see theLINES option for a discussion of how the procedure displays results.

WELCH
requests Welch’s (1951) variance-weighted one-way ANOVA. This alternative to the
usual analysis of variance for a one-way model is robust to the assumption of equal
within-group variances. This option is ignored unless your MODEL statement spec-
ifies a simple one-way model.

Note that using the WELCH option merely produces one additional table consisting
of Welch’s ANOVA. It does not affect all of the other tests displayed by the ANOVA
procedure, which still require the assumption of equal variance for exact validity.

See the“Homogeneity of Variance in One-Way Models”section on page 1818 in
Chapter 32, “The GLM Procedure,”for more details on Welch’s ANOVA.Example
32.10on page 1892 in the same chapter illustrates the use of the HOVTEST and
WELCH options in the MEANS statement in testing for equal group variances.

MODEL Statement

MODEL dependents=effects < / options > ;

The MODEL statement names the dependent variables and independent effects. The
syntax of effects is described in the section“Specification of Effects”on page 451.
For any model effect involving classification variables (interactions as well as main
effects), the number of levels can not exceed 32,767. If no independent effects are
specified, only an intercept term is fit. This tests the hypothesis that the mean of the
dependent variable is zero. All variables in effects that you specify in the MODEL
statement must appear in the CLASS statement because PROC ANOVA does not
allow for continuous effects.

You can specify the following options in the MODEL statement; they must be sepa-
rated from the list of independent effects by a slash.
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INTERCEPT
INT

displays the hypothesis tests associated with the intercept as an effect in the model.
By default, the procedure includes the intercept in the model but does not display
associated tests of hypotheses. Except for producing the uncorrected total SS instead
of the corrected total SS, the INT option is ignored when you use an ABSORB state-
ment.

NOUNI
suppresses the display of univariate statistics. You typically use the NOUNI option
with a multivariate or repeated measures analysis of variance when you do not need
the standard univariate output. The NOUNI option in a MODEL statement does not
affect the univariate output produced by the REPEATED statement.

REPEATED Statement

REPEATED factor-specification < / options > ;

When values of the dependent variables in the MODEL statement represent repeated
measurements on the same experimental unit, the REPEATED statement enables you
to test hypotheses about the measurement factors (often calledwithin-subject fac-
tors), as well as the interactions of within-subject factors with independent variables
in the MODEL statement (often calledbetween-subject factors). The REPEATED
statement provides multivariate and univariate tests as well as hypothesis tests for a
variety of single-degree-of-freedom contrasts. There is no limit to the number of
within-subject factors that can be specified. For more details, see the“Repeated
Measures Analysis of Variance”section on page 1825 inChapter 32, “The GLM
Procedure.”

The REPEATED statement is typically used for handling repeated measures designs
with one repeated response variable. Usually, the variables on the left-hand side of
the equation in the MODEL statement represent one repeated response variable. This
does not mean that only one factor can be listed in the REPEATED statement. For
example, one repeated response variable (hemoglobin count) might be measured 12
times (implying variables Y1 to Y12 on the left-hand side of the equal sign in the
MODEL statement), with the associated within-subject factors treatment and time
(implying two factors listed in the REPEATED statement). See the“Examples”sec-
tion on page 449 for an example of how PROC ANOVA handles this case. Designs
with two or more repeated response variables can, however, be handled with the
IDENTITY transformation;seeExample 32.9on page 1886 inChapter 32, “The GLM
Procedure,” for an example of analyzing a doubly-multivariate repeated measures
design.

When a REPEATED statement appears, the ANOVA procedure enters a multivariate
mode of handling missing values. If any values for variables corresponding to each
combination of the within-subject factors are missing, the observation is excluded
from the analysis.

The simplest form of the REPEATED statement requires only afactor-name. With
two repeated factors, you must specify thefactor-nameand number of levels (levels)
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for each factor. Optionally, you can specify the actual values for the levels (level-
values), atransformationthat defines single-degree-of freedom contrasts, andoptions
for additional analyses and output. When more than one within-subject factor is
specified,factor-names(and associated level and transformation information) must
be separated by a comma in the REPEATED statement. These terms are described in
the following section, “Syntax Details.”

Syntax Details

You can specify the following terms in the REPEATED statement.

factor-specification

The factor-specificationfor the REPEATED statement can include any number of
individual factor specifications, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where

factor-name names a factor to be associated with the dependent variables. The
name should not be the same as any variable name that already
exists in the data set being analyzed and should conform to the
usual conventions of SAS variable names.

When specifying more than one factor, list the dependent variables
in the MODEL statement so that the within-subject factors defined
in the REPEATED statement are nested; that is, the first factor de-
fined in the REPEATED statement should be the one with values
that change least frequently.

levels specifies the number of levels associated with the factor being de-
fined. When there is only one within-subject factor, the number of
levels is equal to the number of dependent variables. In this case,
levels is optional. When more than one within-subject factor is
defined, however,levelsis required, and the product of the num-
ber of levels of all the factors must equal the number of dependent
variables in the MODEL statement.

(level-values) specifies values that correspond to levels of a repeated-measures
factor. These values are used to label output; they are also used as
spacings for constructing orthogonal polynomial contrasts if you
specify a POLYNOMIAL transformation. The number of level
values specified must correspond to the number of levels for that
factor in the REPEATED statement. Enclose thelevel-valuesin
parentheses.

The following transformationkeywords define single-degree-of-freedom contrasts
for factors specified in the REPEATED statement. Since the number of contrasts
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generated is always one less than the number of levels of the factor, you have some
control over which contrast is omitted from the analysis by which transformation you
select. The only exception is the IDENTITY transformation; this transformation is
not composed of contrasts, and it has the same degrees of freedom as the factor has
levels. By default, the procedure uses the CONTRAST transformation.

CONTRAST < (ordinal-reference-level ) > generates contrasts between levels of
the factor and a reference level. By default, the procedure uses the
last level; you can optionally specify a reference level in paren-
theses after the keyword CONTRAST. The reference level corre-
sponds to the ordinal value of the level rather than the level value
specified. For example, to generate contrasts between the first level
of a factor and the other levels, use

contrast(1)

HELMERT generates contrasts between each level of the factor and the mean
of subsequent levels.

IDENTITY generates an identity transformation corresponding to the associ-
ated factor. This transformation isnot composed of contrasts; it
hasn degrees of freedom for ann-level factor, instead ofn − 1.
This can be used for doubly-multivariate repeated measures.

MEAN < (ordinal-reference-level ) > generates contrasts between levels of the
factor and the mean of all other levels of the factor. Specifying
a reference level eliminates the contrast between that level and the
mean. Without a reference level, the contrast involving the last
level is omitted. See theCONTRASTtransformation for an exam-
ple.

POLYNOMIAL generates orthogonal polynomial contrasts. Level values, if pro-
vided, are used as spacings in the construction of the polynomials;
otherwise, equal spacing is assumed.

PROFILE generates contrasts between adjacent levels of the factor.

For examples of the transformation matrices generated by these contrast transforma-
tions, see the section“Repeated Measures Analysis of Variance”on page 1825 in
Chapter 32, “The GLM Procedure.”

You can specify the following options in the REPEATED statement after a slash:

CANONICAL
performs a canonical analysis of theH andE matrices corresponding to the trans-
formed variables specified in the REPEATED statement.

MSTAT=FAPPROX
MSTAT=EXACT

specifies the method of evaluating the multivariate test statistics. The default is
MSTAT=FAPPROX, which specifies that the multivariate tests are evaluated using the
usual approximations based on theF distribution, as discussed in the “Multivariate
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Tests” section inChapter 2, “Introduction to Regression Procedures.”Alternatively,
you can specify MSTAT=EXACT to compute exactp-values for three of the four
tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root) and an
improved F-approximation for the fourth (Pillai’s Trace). While MSTAT=EXACT
provides better control of the significance probability for the tests, especially for
Roy’s Greatest Root, computations for the exactp-values can be appreciably more
demanding, and are in fact infeasible for large problems (many dependent variables).
Thus, although MSTAT=EXACT is more accurate for most data, it is not the de-
fault method. For more information on the results of MSTAT=EXACT, see the
“Multivariate Analysis of Variance”section on page 1823 inChapter 32, “The GLM
Procedure.”.

NOM
displays only the results of the univariate analyses.

NOU
displays only the results of the multivariate analyses.

PRINTE
displays theE matrix for each combination of within-subject factors, as well as par-
tial correlation matrices for both the original dependent variables and the variables
defined by the transformations specified in the REPEATED statement. In addition,
the PRINTE option provides sphericity tests for each set of transformed variables. If
the requested transformations are not orthogonal, the PRINTE option also provides a
sphericity test for a set of orthogonal contrasts.

PRINTH
displays theH (SSCP) matrix associated with each multivariate test.

PRINTM
displays the transformation matrices that define the contrasts in the analysis. PROC
ANOVA always displays theM matrix so that the transformed variables are defined
by the rows, not the columns, of the displayedM matrix. In other words, PROC
ANOVA actually displaysM′.

PRINTRV
produces the characteristic roots and vectors for each multivariate test.

SUMMARY
produces analysis-of-variance tables for each contrast defined by the within-subjects
factors. Along with tests for the effects of the independent variables specified in the
MODEL statement, a term labeled MEAN tests the hypothesis that the overall mean
of the contrast is zero.

Examples

When specifying more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors defined in the REPEATED statement are
nested; that is, the first factor defined in the REPEATED statement should be the one
with values that change least frequently. For example, assume that three treatments
are administered at each of four times, for a total of twelve dependent variables on
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each experimental unit. If the variables are listed in the MODEL statement asY1
throughY12, then the following REPEATED statement

repeated trt 3, time 4;

implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Value oftrt 1 1 1 1 2 2 2 2 3 3 3 3

Value oftime 1 2 3 4 1 2 3 4 1 2 3 4

The REPEATED statement always produces a table like the preceding one. For more
information on repeated measures analysis and on using the REPEATED statement,
see the section“Repeated Measures Analysis of Variance”on page 1825 inChapter
32, “The GLM Procedure.”

TEST Statement

TEST < H= effects > E= effect ;

Although anF value is computed for all SS in the analysis using the residual MS as
an error term, you can request additionalF tests using other effects as error terms.
You need a TEST statement when a nonstandard error structure (as in a split plot)
exists.

Caution: The ANOVA procedure does not check any of the assumptions underlying
theF statistic. When you specify a TEST statement, you assume sole responsibility
for the validity of theF statistic produced. To help validate a test, you may want to
use the GLM procedure with the RANDOM statement and inspect the expected mean
squares. In the GLM procedure, you can also use the TEST option in the RANDOM
statement.

You can use as many TEST statements as you want, provided that they appear after
the MODEL statement.

You can specify the following terms in the TEST statement.

H=effects specifies which effects in the preceding model are to be used as
hypothesis (numerator) effects.

E=effect specifies one, and only one, effect to use as the error (denominator)
term. The E= specification is required.
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The following example uses two TEST statements and is appropriate for analyzing a
split-plot design.

proc anova;
class a b c;
model y=a|b(a)|c;
test h=a e=b(a);
test h=c a*c e=b*c(a);

run;

Details

Specification of Effects
In SAS analysis-of-variance procedures, the variables that identify levels of the clas-
sifications are calledclassification variables, and they are declared in the CLASS
statement. Classification variables are also calledcategorical, qualitative, discrete,
or nominal variables. The values of a class variable are calledlevels. Class variables
can be either numeric or character. This is in contrast to theresponse(or dependent)
variables, which are continuous. Response variables must be numeric.

The analysis-of-variance model specifieseffects, which are combinations of classi-
fication variables used to explain the variability of the dependent variables in the
following manner:

• Main effects are specified by writing the variables by themselves in the CLASS
statement:A B C. Main effects used as independent variables test the hy-
pothesis that the mean of the dependent variable is the same for each level of
the factor in question, ignoring the other independent variables in the model.

• Crossed effects (interactions) are specified by joining the class variables with
asterisks in the MODEL statement:A*B A*C A*B*C. Interaction terms in
a model test the hypothesis that the effect of a factor does not depend on the
levels of the other factors in the interaction.

• Nested effects are specified by following a main effect or crossed effect with a
class variable or list of class variables enclosed in parentheses in the MODEL
statement. The main effect or crossed effect is nested within the effects listed
in parentheses:B(A) C*D(A B). Nested effects test hypotheses similar to
interactions, but the levels of the nested variables are not the same for every
combination within which they are nested.

The general form of an effect can be illustrated using the class variablesA, B, C, D,
E, andF:

A ∗ B ∗ C(D E F)

The crossed list should come first, followed by the nested list in parentheses. Note
that no asterisks appear within the nested list or immediately before the left parenthe-
sis.
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Main Effects Models

For a three-factor main effects model withA, B, andC as the factors andY as the
dependent variable, the necessary statements are

proc anova;
class A B C;
model Y=A B C;

run;

Models with Crossed Factors

To specify interactions in a factorial model, join effects with asterisks as described
previously. For example, these statements specify a complete factorial model, which
includes all the interactions:

proc anova;
class A B C;
model Y=A B C A*B A*C B*C A*B*C;

run;

Bar Notation

You can shorten the specifications of a full factorial model by using bar notation. For
example, the preceding statements can also be written

proc anova;
class A B C;
model Y=A|B|C;

run;

When the bar (|) is used, the expression on the right side of the equal sign is expanded
from left to right using the equivalents of rules 2–4 given in Searle (1971, p. 390).
The variables on the right- and left-hand sides of the bar become effects, and the cross
of them becomes an effect. Multiple bars are permitted. For instance,A | B | C is
evaluated as follows:

A | B | C → { A | B } | C

→ { A B A*B } | C

→ A B A*B A*C B*C A*B*C

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by specifying that maximum number, preceded by an @
sign, at the end of the bar effect. For example, the specificationA | B |C@2 results in
only those effects that contain two or fewer variables; in this case,A B A*B C A*C
andB*C.

The following table gives more examples of using the bar and at operators.
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A | C(B) is equivalent to A C(B) A*C(B)
A(B) | C(B) is equivalent to A(B) C(B) A*C(B)
A(B) | B(D E) is equivalent to A(B) B(D E)
A | B(A) | C is equivalent to A B(A) C A*C B*C(A)
A | B(A) | C@2 is equivalent to A B(A) C A*C
A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

Consult the“Specification of Effects”section on page 1784 inChapter 32, “The GLM
Procedure,”for further details on bar notation.

Nested Models

Write the effect that is nested within another effect first, followed by the other effect
in parentheses. For example, ifA andB are main effects andC is nested withinA and
B (that is, the levels ofC that are observed are not the same for each combination of
A andB), the statements for PROC ANOVA are

proc anova;
class A B C;
model y=A B C(A B);

run;

The identity of a level is viewed within the context of the level of the containing
effects. For example, ifCity is nested withinState, then the identity ofCity is
viewed within the context ofState.

The distinguishing feature of a nested specification is that nested effects never appear
as main effects. Another way of viewing nested effects is that they are effects that
pool the main effect with the interaction of the nesting variable. See the “Automatic
Pooling” section, which follows.

Models Involving Nested, Crossed, and Main Effects

Asterisks and parentheses can be combined in the MODEL statement for models
involving nested and crossed effects:

proc anova;
class A B C;
model Y=A B(A) C(A) B*C(A);

run;
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Automatic Pooling

In line with the general philosophy of the GLM procedure, there is no difference
between the statements

model Y=A B(A);

and

model Y=A A*B;

The effectB becomes a nested effect by virtue of the fact that it does not occur as a
main effect. IfB is not written as a main effect in addition to participating inA*B,
then the sum of squares that is associated withB is pooled intoA*B.

This feature allows the automatic pooling of sums of squares. If an effect is omitted
from the model, it is automatically pooled with all the higher-level effects containing
the class variables in the omitted effect (or within-error). This feature is most useful
in split-plot designs.

Using PROC ANOVA Interactively

PROC ANOVA can be used interactively. After you specify a model in a MODEL
statement and run PROC ANOVA with a RUN statement, a variety of statements
(such as MEANS, MANOVA, TEST, and REPEATED) can be executed without
PROC ANOVA recalculating the model sum of squares.

The “Syntax” section (page 432) describes which statements can be used interac-
tively. You can execute these interactive statements individually or in groups by fol-
lowing the single statement or group of statements with a RUN statement. Note that
the MODEL statement cannot be repeated; the ANOVA procedure allows only one
MODEL statement.

If you use PROC ANOVA interactively, you can end the procedure with a DATA step,
another PROC step, an ENDSAS statement, or a QUIT statement. The syntax of the
QUIT statement is

quit;

When you use PROC ANOVA interactively, additional RUN statements do not end
the procedure but tell PROC ANOVA to execute additional statements.

When a WHERE statement is used with PROC ANOVA, it should appear before
the first RUN statement. The WHERE statement enables you to select only certain
observations for analysis without using a subsetting DATA step. For example, the
statement where group ne 5 omits observations with GROUP=5 from the
analysis. Refer toSAS Language Reference: Dictionaryfor details on this statement.

When a BY statement is used with PROC ANOVA, interactive processing is not pos-
sible; that is, once the first RUN statement is encountered, processing proceeds for
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each BY group in the data set, and no further statements are accepted by the proce-
dure.

Interactivity is also disabled when there are different patterns of missing values
among the dependent variables. For details, see the section “Missing Values,” which
follows.

Missing Values

For an analysis involving one dependent variable, PROC ANOVA uses an observation
if values are nonmissing for that dependent variable and for all the variables used in
independent effects.

For an analysis involving multiple dependent variables without the MANOVA or
REPEATED statement, or without the MANOVA option in the PROC ANOVA state-
ment, a missing value in one dependent variable does not eliminate the observation
from the analysis of other nonmissing dependent variables. For an analysis with the
MANOVA or REPEATED statement, or with the MANOVA option in the PROC
ANOVA statement, the ANOVA procedure requires values for all dependent vari-
ables to be nonmissing for an observation before the observation can be used in the
analysis.

During processing, PROC ANOVA groups the dependent variables by their pattern of
missing values across observations so that sums and cross products can be collected
in the most efficient manner.

If your data have different patterns of missing values among the dependent variables,
interactivity is disabled. This could occur when some of the variables in your data set
have missing values and

• you do not use the MANOVA option in the PROC ANOVA statement

• you do not use a MANOVA or REPEATED statement before the first RUN
statement

Output Data Set

The OUTSTAT= option in the PROC ANOVA statement produces an output data set
that contains the following:

• the BY variables, if any

• –TYPE– , a new character variable. This variable has the value ‘ANOVA’ for
observations corresponding to sums of squares; it has the value ‘CANCORR’,
‘STRUCTUR’, or ‘SCORE’ if a canonical analysis is performed through the
MANOVA statement and no M= matrix is specified.

• –SOURCE– , a new character variable. For each observation in the data set,

–SOURCE– contains the name of the model effect from which the corre-
sponding statistics are generated.
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• –NAME– , a new character variable. The variable–NAME– contains the
name of one of the dependent variables in the model or, in the case of canon-
ical statistics, the name of one of the canonical variables (CAN1, CAN2, and
so on).

• four new numeric variables,SS, DF, F, and PROB, containing sums of
squares, degrees of freedom,F values, and probabilities, respectively, for each
model or contrast sum of squares generated in the analysis. For observations
resulting from canonical analyses, these variables have missing values.

• if there is more than one dependent variable, then variables with the same
names as the dependent variables represent

− for –TYPE–=‘ANOVA’, the crossproducts of the hypothesis matrices

− for –TYPE–=‘CANCORR’, canonical correlations for each variable

− for –TYPE–=‘STRUCTUR’, coefficients of the total structure matrix

− for –TYPE–=‘SCORE’, raw canonical score coefficients

The output data set can be used to perform special hypothesis tests (for example, with
the IML procedure in SAS/IML software), to reformat output, to produce canonical
variates (through the SCORE procedure), or to rotate structure matrices (through the
FACTOR procedure).

Computational Method

Let X represent then × p design matrix. The columns ofX contain only 0s and 1s.
Let Y represent then× 1 vector of dependent variables.

In the GLM procedure,X′X, X′Y, andY′Y are formed in main storage. However,
in the ANOVA procedure, only the diagonals ofX′X are computed, along withX′Y
andY′Y. Thus, PROC ANOVA saves a considerable amount of storage as well
as time. The memory requirements for PROC ANOVA are asymptotically linear
functions ofn2 and nr, wheren is the number of dependent variables andr the
number of independent parameters.

The elements ofX′Y are cell totals, and the diagonal elements ofX′X are cell
frequencies. Since PROC ANOVA automatically pools omitted effects into the next
higher-level effect containing the names of the omitted effect (or within-error), a
slight modification to the rules given by Searle (1971, p. 389) is used.

1. PROC ANOVA computes the sum of squares for each effect as if it is a main
effect. In other words, for each effect, PROC ANOVA squares each cell total
and divides by its cell frequency. The procedure then adds these quantities
together and subtracts the correction factor for the mean (total squared over
N).

2. For each effect involving two class names, PROC ANOVA subtracts the SS for
any main effect with a name that is contained in the two-factor effect.
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3. For each effect involving three class names, PROC ANOVA subtracts the SS
for all main effects and two-factor effects with names that are contained in the
three-factor effect. If effects involving four or more class names are present,
the procedure continues this process.

Displayed Output

PROC ANOVA first displays a table that includes the following:

• the name of each variable in the CLASS statement

• the number of different values or Levels of the Class variables

• the Values of the Class variables

• the Number of observations in the data set and the number of observations
excluded from the analysis because of missing values, if any

PROC ANOVA then displays an analysis-of-variance table for each dependent vari-
able in the MODEL statement. This table breaks down

• the Total Sum of Squares for the dependent variable into the portion attributed
to the Model and the portion attributed to Error

• the Mean Square term, which is the Sum of Squares divided by the degrees of
freedom (DF)

The analysis-of-variance table also lists the following:

• the Mean Square for Error (MSE), which is an estimate ofσ2, the variance of
the true errors

• the F Value, which is the ratio produced by dividing the Mean Square for the
Model by the Mean Square for Error. It tests how well the model as a whole
(adjusted for the mean) accounts for the dependent variable’s behavior. ThisF
test is a test of the null hypothesis that all parameters except the intercept are
zero.

• the significance probability associated with theF statistic, labeled “Pr > F”

• R-Square,R2, which measures how much variation in the dependent variable
can be accounted for by the model. TheR2 statistic, which can range from 0 to
1, is the ratio of the sum of squares for the model divided by the sum of squares
for the corrected total. In general, the larger theR2 value, the better the model
fits the data.

• C.V., the coefficient of variation, which is often used to describe the amount of
variation in the population. The C.V. is 100 times the standard deviation of the
dependent variable divided by the Mean. The coefficient of variation is often a
preferred measure because it is unitless.
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• Root MSE, which estimates the standard deviation of the dependent variable.
Root MSE is computed as the square root of Mean Square for Error, the mean
square of the error term.

• the Mean of the dependent variable

For each effect (or source of variation) in the model, PROC ANOVA then displays
the following:

• DF, degrees of freedom

• Anova SS, the sum of squares, and the associated Mean Square

• the F Value for testing the hypothesis that the group means for that effect are
equal

• Pr > F, the significance probability value associated with the F Value

When you specify a TEST statement, PROC ANOVA displays the results of the re-
quested tests. When you specify a MANOVA statement and the model includes more
than one dependent variable, PROC ANOVA produces these additional statistics:

• the characteristic roots and vectors ofE−1H for eachH matrix

• the Hotelling-Lawley trace

• Pillai’s trace

• Wilks’ criterion

• Roy’s maximum root criterion

SeeExample 32.6on page 1868 inChapter 32, “The GLM Procedure,”for an ex-
ample of the MANOVA results. These MANOVA tests are discussed inChapter 2,
“Introduction to Regression Procedures.”

ODS Table Names

PROC ANOVA assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 17.3. ODS Tables Produced in PROC ANOVA

ODS Table Name Description Statement / Option
AltErrTests Anova tests with error other than

MSE
TEST /E=

Bartlett Bartlett’s homogeneity of vari-
ance test

MEANS / HOVTEST=BARTLETT

CLDiffs Multiple comparisons of pair-
wise differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)
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Table 17.3. (continued)

ODS Table Name Description Statement / Option
CLDiffsInfo Information for multiple compar-

isons of pairwise differences
MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison
interval

MEANS / CLM with (BON or GABRIEL
or SCHEFFE or SIDAK or SMM or T or
LSD)

CLMeansInfo Information for multiple com-
parisons of means with confi-
dence/comparison interval

MEANS / CLM

CanAnalysis Canonical analysis (MANOVA or REPEATED) /
CANONICAL

CanCoef Canonical coefficients (MANOVA or REPEATED) /
CANONICAL

CanStructure Canonical structure (MANOVA or REPEATED) /
CANONICAL

CharStruct Characteristic roots and vectors (MANOVA / not CANONICAL)
or (REPEATED / PRINTRV)

ClassLevels Classification variable levels CLASS statement
DependentInfo Simultaneously analyzed depen-

dent variables
default when there are multiple depen-
dent variables with different patterns of
missing values

Epsilons Greenhouse-Geisser and Huynh-
Feldt epsilons

REPEATED statement

ErrorSSCP Error SSCP matrix (MANOVA or REPEATED) / PRINTE
FitStatistics R-Square, C.V., Root MSE, and

dependent mean
default

HOVFTest Homogeneity of variance
ANOVA

MEANS / HOVTEST

HypothesisSSCP Hypothesis SSCP matrix (MANOVA or REPEATED) / PRINTE
MANOVATransform Multivariate transformation ma-

trix
MANOVA / M=

MCLines Multiple comparisons LINES
output

MEANS / LINES or
((DUNCAN or WALLER or SNK or
REGWQ) and not(CLDIFF or CLM)) or
(Equal cells and not CLDIFF)

MCLinesInfo Information for multiple compar-
ison LINES output

MEANS / LINES or
((DUNCAN or WALLER or SNK or
REGWQ) and not (CLDIFF or CLM)) or
(Equal cells and not CLDIFF)

MCLinesRange Ranges for multiple range MC
tests

MEANS / LINES or
((DUNCAN or WALLER or SNK or
REGWQ) and not (CLDIFF or CLM)) or
(Equal cells and not CLDIFF)

Means Group means MEANS statement
ModelANOVA ANOVA for model terms default
MultStat Multivariate tests MANOVA statement



460 � Chapter 17. The ANOVA Procedure

Table 17.3. (continued)

ODS Table Name Description Statement / Option
NObs Number of observations default
OverallANOVA Over-all ANOVA default
PartialCorr Partial correlation matrix (MANOVA or REPEATED) / PRINTE
RepTransform Repeated transformation matrix REPEATED (CONTRAST or

HELMERT or MEAN or
POLYNOMIAL or PROFILE)

RepeatedLevelInfo Correspondence between depen-
dents and repeated measures lev-
els

REPEATED statement

Sphericity Sphericity tests REPEATED / PRINTE
Tests Summary ANOVA for specified

MANOVA H= effects
MANOVA / H= SUMMARY

Welch Welch’s ANOVA MEANS / WELCH

ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the ANOVA
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release. To request these graphs you must specify the ODS GRAPHICS statement
with an appropriate model, as discussed in the following. For more information on
the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”

When the ODS GRAPHICS are in effect, then if you specify a one-way analysis of
variance model, with just one independent classification variable, the ANOVA pro-
cedure will produce a grouped box plot of the response values versus the classifica-
tion levels. For an example of the box plot, see the“One-Way Layout with Means
Comparisons”section on page 424.

ODS Graph Names

PROC ANOVA assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed inTable 17.4.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

Table 17.4. ODS Graphics Produced by PROC ANOVA

ODS Graph Name Plot Description
BoxPlot Box plot
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Examples

Example 17.1. Randomized Complete Block With Factorial
Treatment Structure

This example uses statements for the analysis of a randomized block with two treat-
ment factors occuring in a factorial structure. The data, from Neter, Wasserman, and
Kutner (1990, p. 941), are from an experiment examining the effects of codeine and
acupuncture on post-operative dental pain in male subjects. Both treatment factors
have two levels. The codeine levels are a codeine capsule or a sugar capsule. The
acupuncture levels are two inactive acupuncture points or two active acupuncture
points. There are four distinct treatment combinations due to the factorial treatment
structure. The 32 subjects are assigned to eight blocks of four subjects each based on
an assessment of pain tolerance.

The data for the analysis are balanced, so PROC ANOVA is used. The data are as
follows:

title1 ’Randomized Complete Block With Two Factors’;
data PainRelief;

input PainLevel Codeine Acupuncture Relief @@;
datalines;

1 1 1 0.0 1 2 1 0.5 1 1 2 0.6 1 2 2 1.2
2 1 1 0.3 2 2 1 0.6 2 1 2 0.7 2 2 2 1.3
3 1 1 0.4 3 2 1 0.8 3 1 2 0.8 3 2 2 1.6
4 1 1 0.4 4 2 1 0.7 4 1 2 0.9 4 2 2 1.5
5 1 1 0.6 5 2 1 1.0 5 1 2 1.5 5 2 2 1.9
6 1 1 0.9 6 2 1 1.4 6 1 2 1.6 6 2 2 2.3
7 1 1 1.0 7 2 1 1.8 7 1 2 1.7 7 2 2 2.1
8 1 1 1.2 8 2 1 1.7 8 1 2 1.6 8 2 2 2.4
;

The variablePainLevel is the blocking variable, andCodeine andAcupuncture
represent the levels of the two treatment factors. The variableRelief is the pain relief
score (the higher the score, the more relief the patient has).

The following code invokes PROC ANOVA. The blocking variable and treatment
factors appear in the CLASS statement. The bar between the treatment factors
Codeine and Acupuncture adds their main effects as well as their interaction
Codeine*Acupuncture to the model.

proc anova data=PainRelief;
class PainLevel Codeine Acupuncture;
model Relief = PainLevel Codeine|Acupuncture;

The results from the analysis are shown inOutput 17.1.1, Output 17.1.2, andOutput
17.1.3.
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Output 17.1.1. Class Level Information

Randomized Complete Block With Two Factors

The ANOVA Procedure

Class Level Information

Class Levels Values

PainLevel 8 1 2 3 4 5 6 7 8

Codeine 2 1 2

Acupuncture 2 1 2

Number of Observations Read 32
Number of Observations Used 32

Output 17.1.2. ANOVA Table

Dependent Variable: Relief

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 10 11.33500000 1.13350000 78.37 <.0001

Error 21 0.30375000 0.01446429

Corrected Total 31 11.63875000

R-Square Coeff Var Root MSE Relief Mean

0.973902 10.40152 0.120268 1.156250

The Class Level Information and ANOVA table are shown inOutput 17.1.1and
Output 17.1.2. The class level information summarizes the structure of the design. It
is good to check these consistently in search of errors in the data step. The overall
F test is significant, indicating that the model accounts for a significant amount of
variation in the dependent variable.
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Output 17.1.3. Tests of Effects

Dependent Variable: Relief

Source DF Anova SS Mean Square F Value Pr > F

PainLevel 7 5.59875000 0.79982143 55.30 <.0001
Codeine 1 2.31125000 2.31125000 159.79 <.0001
Acupuncture 1 3.38000000 3.38000000 233.68 <.0001
Codeine*Acupuncture 1 0.04500000 0.04500000 3.11 0.0923

Output 17.1.3shows tests of the effects. The blocking effect is significant; hence, it
is useful. The interaction between codeine and acupuncture is significant at the 90%
level but not at the 95% level. The significance level of this test should be determined
before the analysis. The main effects of both treatment factors are highly significant.

Example 17.2. Alternative Multiple Comparison Procedures

The following is a continuation of the first example in the the“One-Way Layout with
Means Comparisons”section on page 424. You are studying the effect of bacteria
on the nitrogen content of red clover plants, and the analysis of variance shows a
highly significant effect. The following statements create the data set and compute
the analysis of variance as well as Tukey’s multiple comparisons test for pairwise
differences between bacteria strains; the results are shown inFigure 17.1, Figure
17.2, andFigure 17.3

title1 ’Nitrogen Content of Red Clover Plants’;
data Clover;

input Strain $ Nitrogen @@;
datalines;

3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;

proc anova data=Clover;
class Strain;
model Nitrogen = Strain;
means Strain / tukey;

run;

The interactivity of PROC ANOVA enables you to submit further MEANS statements
without re-running the entire analysis. For example, the following command requests
means of theStrain levels with Duncan’s multiple range test and the Waller-Duncan
k-ratio t test.
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means Strain / duncan waller;
run;

Results of the Waller-Duncank-ratio t test are shown inOutput 17.2.1.

Output 17.2.1. Waller-Duncan K-ratio t Test

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Waller-Duncan K-ratio t Test for Nitrogen

NOTE: This test minimizes the Bayes risk under additive loss and certain other
assumptions.

Kratio 100
Error Degrees of Freedom 24
Error Mean Square 11.78867
F Value 14.37
Critical Value of t 1.91873
Minimum Significant Difference 4.1665

Means with the same letter are not significantly different.

Waller Grouping Mean N Strain

A 28.820 5 3DOK1

B 23.980 5 3DOK5
B

C B 19.920 5 3DOK7
C
C D 18.700 5 COMPOS

D
E D 14.640 5 3DOK4
E
E 13.260 5 3DOK13

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Duncan’s Multiple Range Test for Nitrogen

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.
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The Waller-Duncank-ratiot test is a multiple range test. Unlike Tukey’s test, this test
does not operate on the principle of controlling Type I error. Instead, it compares the
Type I and Type II error rates based on Bayesian principles (Steel and Torrie 1980).

The Waller Grouping column inOutput 17.2.1shows which means are significantly
different. From this test, you can conclude the following:

• The mean nitrogen content for strain 3DOK1 is higher than the means for all
other strains.

• The mean nitrogen content for strain 3DOK5 is higher than the means for
COMPOS, 3DOK4, and 3DOK13.

• The mean nitrogen content for strain 3DOK7 is higher than the means for
3DOK4 and 3DOK13.

• The mean nitrogen content for strain COMPOS is higher than the mean for
3DOK13.

• Differences between all other means are not significant based on this sample
size.

Output 17.2.2shows the results of Duncan’s multiple range test. Duncan’s test
is a result-guided test that compares the treatment means while controlling the
comparison-wise error rate. You should use this test for planned comparisons only
(Steel and Torrie 1980). The results and conclusions for this example are the same as
for the Waller-Duncank-ratio t test. This is not always the case.
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Output 17.2.2. Duncan’s Multiple Range Test

Waller-Duncan K-ratio t Test for Nitrogen

NOTE: This test minimizes the Bayes risk under additive loss and certain other
assumptions.

Duncan’s Multiple Range Test for Nitrogen

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 24
Error Mean Square 11.78867

Number of Means 2 3 4 5 6
Critical Range 4.482 4.707 4.852 4.954 5.031

Means with the same letter are not significantly different.

Duncan Grouping Mean N Strain

A 28.820 5 3DOK1

B 23.980 5 3DOK5
B

C B 19.920 5 3DOK7
C
C D 18.700 5 COMPOS

D
E D 14.640 5 3DOK4
E
E 13.260 5 3DOK13

Tukey and Least Significant Difference (LSD) tests are requested with the following
MEANS statement. The CLDIFF option requests confidence intervals for both tests.

means strain/ lsd tukey cldiff ;
run;

The LSD tests for this example are shown inOutput 17.2.3, and they give the same
results as the previous two multiple comparison tests. Again, this is not always the
case.
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Output 17.2.3. T Tests (LSD)

The ANOVA Procedure

t Tests (LSD) for Nitrogen

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 24
Error Mean Square 11.78867
Critical Value of t 2.06390
Least Significant Difference 4.4818

Comparisons significant at the 0.05 level are indicated by ***.

Difference
Strain Between 95% Confidence

Comparison Means Limits

3DOK1 - 3DOK5 4.840 0.358 9.322 ***
3DOK1 - 3DOK7 8.900 4.418 13.382 ***
3DOK1 - COMPOS 10.120 5.638 14.602 ***
3DOK1 - 3DOK4 14.180 9.698 18.662 ***
3DOK1 - 3DOK13 15.560 11.078 20.042 ***
3DOK5 - 3DOK1 -4.840 -9.322 -0.358 ***
3DOK5 - 3DOK7 4.060 -0.422 8.542
3DOK5 - COMPOS 5.280 0.798 9.762 ***
3DOK5 - 3DOK4 9.340 4.858 13.822 ***
3DOK5 - 3DOK13 10.720 6.238 15.202 ***
3DOK7 - 3DOK1 -8.900 -13.382 -4.418 ***
3DOK7 - 3DOK5 -4.060 -8.542 0.422
3DOK7 - COMPOS 1.220 -3.262 5.702
3DOK7 - 3DOK4 5.280 0.798 9.762 ***
3DOK7 - 3DOK13 6.660 2.178 11.142 ***
COMPOS - 3DOK1 -10.120 -14.602 -5.638 ***
COMPOS - 3DOK5 -5.280 -9.762 -0.798 ***
COMPOS - 3DOK7 -1.220 -5.702 3.262
COMPOS - 3DOK4 4.060 -0.422 8.542
COMPOS - 3DOK13 5.440 0.958 9.922 ***
3DOK4 - 3DOK1 -14.180 -18.662 -9.698 ***
3DOK4 - 3DOK5 -9.340 -13.822 -4.858 ***
3DOK4 - 3DOK7 -5.280 -9.762 -0.798 ***
3DOK4 - COMPOS -4.060 -8.542 0.422
3DOK4 - 3DOK13 1.380 -3.102 5.862
3DOK13 - 3DOK1 -15.560 -20.042 -11.078 ***
3DOK13 - 3DOK5 -10.720 -15.202 -6.238 ***
3DOK13 - 3DOK7 -6.660 -11.142 -2.178 ***
3DOK13 - COMPOS -5.440 -9.922 -0.958 ***
3DOK13 - 3DOK4 -1.380 -5.862 3.102

The ANOVA Procedure

Tukey’s Studentized Range (HSD) Test for Nitrogen

NOTE: This test controls the Type I experimentwise error rate.
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If you only perform the LSD tests when the overall modelF -test is significant, then
this is called Fisher’s protected LSD test. Note that the LSD tests should be used for
planned comparisons.

The TUKEY tests shown inOutput 17.2.4find fewer significant differences than the
other three tests. This is not unexpected, as the TUKEY test controls the Type I
experimentwise error rate. For a complete discussion of multiple comparison meth-
ods, see the“Multiple Comparisons”section on page 1806 inChapter 32, “The GLM
Procedure.”
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Output 17.2.4. Tukey’s Studentized Range Test

t Tests (LSD) for Nitrogen

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Tukey’s Studentized Range (HSD) Test for Nitrogen

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 24
Error Mean Square 11.78867
Critical Value of Studentized Range 4.37265
Minimum Significant Difference 6.7142

Comparisons significant at the 0.05 level are indicated by ***.

Difference
Strain Between Simultaneous 95%

Comparison Means Confidence Limits

3DOK1 - 3DOK5 4.840 -1.874 11.554
3DOK1 - 3DOK7 8.900 2.186 15.614 ***
3DOK1 - COMPOS 10.120 3.406 16.834 ***
3DOK1 - 3DOK4 14.180 7.466 20.894 ***
3DOK1 - 3DOK13 15.560 8.846 22.274 ***
3DOK5 - 3DOK1 -4.840 -11.554 1.874
3DOK5 - 3DOK7 4.060 -2.654 10.774
3DOK5 - COMPOS 5.280 -1.434 11.994
3DOK5 - 3DOK4 9.340 2.626 16.054 ***
3DOK5 - 3DOK13 10.720 4.006 17.434 ***
3DOK7 - 3DOK1 -8.900 -15.614 -2.186 ***
3DOK7 - 3DOK5 -4.060 -10.774 2.654
3DOK7 - COMPOS 1.220 -5.494 7.934
3DOK7 - 3DOK4 5.280 -1.434 11.994
3DOK7 - 3DOK13 6.660 -0.054 13.374
COMPOS - 3DOK1 -10.120 -16.834 -3.406 ***
COMPOS - 3DOK5 -5.280 -11.994 1.434
COMPOS - 3DOK7 -1.220 -7.934 5.494
COMPOS - 3DOK4 4.060 -2.654 10.774
COMPOS - 3DOK13 5.440 -1.274 12.154
3DOK4 - 3DOK1 -14.180 -20.894 -7.466 ***
3DOK4 - 3DOK5 -9.340 -16.054 -2.626 ***
3DOK4 - 3DOK7 -5.280 -11.994 1.434
3DOK4 - COMPOS -4.060 -10.774 2.654
3DOK4 - 3DOK13 1.380 -5.334 8.094
3DOK13 - 3DOK1 -15.560 -22.274 -8.846 ***
3DOK13 - 3DOK5 -10.720 -17.434 -4.006 ***
3DOK13 - 3DOK7 -6.660 -13.374 0.054
3DOK13 - COMPOS -5.440 -12.154 1.274
3DOK13 - 3DOK4 -1.380 -8.094 5.334
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Example 17.3. Split Plot

In some experiments, treatments can be applied only to groups of experimental ob-
servations rather than separately to each observation. When there are two nested
groupings of the observations on the basis of treatment application, this is known
as asplit plot design. For example, in integrated circuit fabrication it is of interest
to see how different manufacturing methods affect the characteristics of individual
chips. However, much of the manufacturing process is applied to a relatively large
wafer of material, from which many chips are made. Additionally, a chip’s position
within a wafer may also affect chip performance. These two groupings of chips—by
wafer and by position-within-wafer—might form thewhole plotsand thesubplots,
respectively, of a split plot design for integrated circuits.

The following statements produce an analysis for a split-plot design. The CLASS
statement includes the variablesBlock, A, andB, whereB defines subplots within
BLOCK*A whole plots. The MODEL statement includes the independent effects
Block, A, Block*A, B, andA*B. The TEST statement asks for anF test of theA
effect, using theBlock*A effect as the error term. The following statements produce
Output 17.3.1andOutput 17.3.2:

title1 ’Split Plot Design’;
data Split;

input Block 1 A 2 B 3 Response;
datalines;

142 40.0
141 39.5
112 37.9
111 35.4
121 36.7
122 38.2
132 36.4
131 34.8
221 42.7
222 41.6
212 40.3
211 41.6
241 44.5
242 47.6
231 43.6
232 42.8
;

proc anova data=Split;
class Block A B;
model Response = Block A Block*A B A*B;
test h=A e=Block*A;

run;
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Output 17.3.1. Class Level Information and ANOVA Table

Split Plot Design

The ANOVA Procedure

Class Level Information

Class Levels Values

Block 2 1 2

A 4 1 2 3 4

B 2 1 2

Number of Observations Read 16
Number of Observations Used 16

Split Plot Design

The ANOVA Procedure

Dependent Variable: Response

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 182.0200000 16.5472727 7.85 0.0306

Error 4 8.4300000 2.1075000

Corrected Total 15 190.4500000

R-Square Coeff Var Root MSE Response Mean

0.955736 3.609007 1.451723 40.22500

First, notice that the overallF test for the model is significant.
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Output 17.3.2. Tests of Effects

Dependent Variable: Response

Source DF Anova SS Mean Square F Value Pr > F

Block 1 131.1025000 131.1025000 62.21 0.0014
A 3 40.1900000 13.3966667 6.36 0.0530
Block*A 3 6.9275000 2.3091667 1.10 0.4476
B 1 2.2500000 2.2500000 1.07 0.3599
A*B 3 1.5500000 0.5166667 0.25 0.8612

Tests of Hypotheses Using the Anova MS for Block*A as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

A 3 40.19000000 13.39666667 5.80 0.0914

The effect ofBlock is significant. The effect ofA is not significant: look at theF test
produced by the TEST statement, not at theF test produced by default. Neither the
B norA*B effects are significant. The test forBlock*A is irrelevant, as this is simply
the main-plot error.

Example 17.4. Latin Square Split Plot

The data for this example is taken from Smith (1951). A Latin square design is used to
evaluate six different sugar beet varieties arranged in a six-row (Rep) by six-column
(Column) square. The data are collected over two harvests. The variableHarvest
then becomes a split plot on the original Latin square design for whole plots. The
following statements produceOutput 17.4.1, Output 17.4.2, andOutput 17.4.3:

title1 ’Sugar Beet Varieties’;
title3 ’Latin Square Split-Plot Design’;
data Beets;

do Harvest=1 to 2;
do Rep=1 to 6;

do Column=1 to 6;
input Variety Y @;
output;
end;

end;
end;

datalines;
3 19.1 6 18.3 5 19.6 1 18.6 2 18.2 4 18.5
6 18.1 2 19.5 4 17.6 3 18.7 1 18.7 5 19.9
1 18.1 5 20.2 6 18.5 4 20.1 3 18.6 2 19.2
2 19.1 3 18.8 1 18.7 5 20.2 4 18.6 6 18.5
4 17.5 1 18.1 2 18.7 6 18.2 5 20.4 3 18.5
5 17.7 4 17.8 3 17.4 2 17.0 6 17.6 1 17.6
3 16.2 6 17.0 5 18.1 1 16.6 2 17.7 4 16.3
6 16.0 2 15.3 4 16.0 3 17.1 1 16.5 5 17.6
1 16.5 5 18.1 6 16.7 4 16.2 3 16.7 2 17.3



Example 17.4. Latin Square Split Plot � 473

2 17.5 3 16.0 1 16.4 5 18.0 4 16.6 6 16.1
4 15.7 1 16.1 2 16.7 6 16.3 5 17.8 3 16.2
5 18.3 4 16.6 3 16.4 2 17.6 6 17.1 1 16.5
;

proc anova data=Beets;
class Column Rep Variety Harvest;
model Y=Rep Column Variety Rep*Column*Variety

Harvest Harvest*Rep
Harvest*Variety;

test h=Rep Column Variety e=Rep*Column*Variety;
test h=Harvest e=Harvest*Rep;

run;

Output 17.4.1. Class Level Information

Sugar Beet Varieties

Latin Square Split-Plot Design

The ANOVA Procedure

Class Level Information

Class Levels Values

Column 6 1 2 3 4 5 6

Rep 6 1 2 3 4 5 6

Variety 6 1 2 3 4 5 6

Harvest 2 1 2

Number of Observations Read 72
Number of Observations Used 72
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Output 17.4.2. ANOVA Table

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 46 98.9147222 2.1503200 7.22 <.0001

Error 25 7.4484722 0.2979389

Corrected Total 71 106.3631944

R-Square Coeff Var Root MSE Y Mean

0.929971 3.085524 0.545838 17.69028

Source DF Anova SS Mean Square F Value Pr > F

Rep 5 4.32069444 0.86413889 2.90 0.0337
Column 5 1.57402778 0.31480556 1.06 0.4075
Variety 5 20.61902778 4.12380556 13.84 <.0001
Column*Rep*Variety 20 3.25444444 0.16272222 0.55 0.9144
Harvest 1 60.68347222 60.68347222 203.68 <.0001
Rep*Harvest 5 7.71736111 1.54347222 5.18 0.0021
Variety*Harvest 5 0.74569444 0.14913889 0.50 0.7729

First, note fromOutput 17.4.2that the overall model is significant.

Output 17.4.3. Tests of Effects

Dependent Variable: Y

Tests of Hypotheses Using the Anova MS for Column*Rep*Variety as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Rep 5 4.32069444 0.86413889 5.31 0.0029
Column 5 1.57402778 0.31480556 1.93 0.1333
Variety 5 20.61902778 4.12380556 25.34 <.0001

Tests of Hypotheses Using the Anova MS for Rep*Harvest as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Harvest 1 60.68347222 60.68347222 39.32 0.0015

Output 17.4.3shows that the effects forRep andHarvest are significant, while the
Column effect is not. The averageYs for the six differentVarietys are significantly
different. For these four tests, look at the output produced by the two TEST state-
ments, not at the usual ANOVA procedure output. TheVariety*Harvest interaction
is not significant. All other effects in the default output should either be tested using
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the results from the TEST statements or are irrelevant as they are only error terms for
portions of the model.

Example 17.5. Strip-Split Plot

In this example, four different fertilizer treatments are laid out in vertical strips, which
are then split into subplots with different levels of calcium. Soil type is stripped across
the split-plot experiment, and the entire experiment is then replicated three times. The
dependent variable is the yield of winter barley. The data come from the notes of G.
Cox and A. Rotti.

The input data are the 96 values ofY, arranged so that the calcium value (Calcium)
changes most rapidly, then the fertilizer value (Fertilizer), then theSoil value, and,
finally, the Rep value. Values are shown forCalcium (0 and 1);Fertilizer (0, 1,
2, 3); Soil (1, 2, 3); andRep (1, 2, 3, 4). The following example producesOutput
17.5.1, Output 17.5.2, Output 17.5.3, andOutput 17.5.4.

title1 ’Strip-split Plot’;
data Barley;

do Rep=1 to 4;
do Soil=1 to 3; /* 1=d 2=h 3=p */

do Fertilizer=0 to 3;
do Calcium=0,1;

input Yield @;
output;

end;
end;

end;
end;
datalines;

4.91 4.63 4.76 5.04 5.38 6.21 5.60 5.08
4.94 3.98 4.64 5.26 5.28 5.01 5.45 5.62
5.20 4.45 5.05 5.03 5.01 4.63 5.80 5.90
6.00 5.39 4.95 5.39 6.18 5.94 6.58 6.25
5.86 5.41 5.54 5.41 5.28 6.67 6.65 5.94
5.45 5.12 4.73 4.62 5.06 5.75 6.39 5.62
4.96 5.63 5.47 5.31 6.18 6.31 5.95 6.14
5.71 5.37 6.21 5.83 6.28 6.55 6.39 5.57
4.60 4.90 4.88 4.73 5.89 6.20 5.68 5.72
5.79 5.33 5.13 5.18 5.86 5.98 5.55 4.32
5.61 5.15 4.82 5.06 5.67 5.54 5.19 4.46
5.13 4.90 4.88 5.18 5.45 5.80 5.12 4.42
;

proc anova data=Barley;
class Rep Soil Calcium Fertilizer;
model Yield =

Rep
Fertilizer Fertilizer*Rep
Calcium Calcium*Fertilizer Calcium*Rep(Fertilizer)
Soil Soil*Rep
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Soil*Fertilizer Soil*Rep*Fertilizer
Soil*Calcium Soil*Fertilizer*Calcium
Soil*Calcium*Rep(Fertilizer);

test h=Fertilizer e=Fertilizer*Rep;
test h=Calcium calcium*fertilizer e=Calcium*Rep(Fertilizer);
test h=Soil e=Soil*Rep;
test h=Soil*Fertilizer e=Soil*Rep*Fertilizer;
test h=Soil*Calcium

Soil*Fertilizer*Calcium e=Soil*Calcium*Rep(Fertilizer);
means Fertilizer Calcium Soil Calcium*Fertilizer;

run;

Output 17.5.1. Class Level Information

Strip-split Plot

The ANOVA Procedure

Class Level Information

Class Levels Values

Rep 4 1 2 3 4

Soil 3 1 2 3

Calcium 2 0 1

Fertilizer 4 0 1 2 3

Number of Observations Read 96
Number of Observations Used 96
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Output 17.5.2. ANOVA Table

Dependent Variable: Yield

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 95 31.89149583 0.33569996 . .

Error 0 0.00000000 .

Corrected Total 95 31.89149583

R-Square Coeff Var Root MSE Yield Mean

1.000000 . . 5.427292

Source DF Anova SS Mean Square F Value Pr > F

Rep 3 6.27974583 2.09324861 . .
Fertilizer 3 7.22127083 2.40709028 . .
Rep*Fertilizer 9 6.08211250 0.67579028 . .
Calcium 1 0.27735000 0.27735000 . .
Calcium*Fertilizer 3 1.96395833 0.65465278 . .
Rep*Calcium(Fertili) 12 1.76705833 0.14725486 . .
Soil 2 1.92658958 0.96329479 . .
Rep*Soil 6 1.66761042 0.27793507 . .
Soil*Fertilizer 6 0.68828542 0.11471424 . .
Rep*Soil*Fertilizer 18 1.58698125 0.08816563 . .
Soil*Calcium 2 0.04493125 0.02246562 . .
Soil*Calcium*Fertili 6 0.18936042 0.03156007 . .
Rep*Soil*Calc(Ferti) 24 2.19624167 0.09151007 . .

As the model is completely specified by the MODEL statement, the entire top portion
of output (Output 17.5.2) should be ignored. Look at the following output produced
by the various TEST statements.
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Output 17.5.3. Tests of Effects

Dependent Variable: Yield

Tests of Hypotheses Using the Anova MS for Rep*Fertilizer as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Fertilizer 3 7.22127083 2.40709028 3.56 0.0604

Tests of Hypotheses Using the Anova MS for
Rep*Calcium(Fertili) as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Calcium 1 0.27735000 0.27735000 1.88 0.1950
Calcium*Fertilizer 3 1.96395833 0.65465278 4.45 0.0255

Tests of Hypotheses Using the Anova MS for Rep*Soil as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Soil 2 1.92658958 0.96329479 3.47 0.0999

Tests of Hypotheses Using the Anova MS for
Rep*Soil*Fertilizer as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Soil*Fertilizer 6 0.68828542 0.11471424 1.30 0.3063

Tests of Hypotheses Using the Anova MS for
Rep*Soil*Calc(Ferti) as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Soil*Calcium 2 0.04493125 0.02246562 0.25 0.7843
Soil*Calcium*Fertili 6 0.18936042 0.03156007 0.34 0.9059

The only significant effect is theCalcium*Fertilizer interaction.
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Output 17.5.4. Results of MEANS statement

Level of ------------Yield------------
Fertilizer N Mean Std Dev

0 24 5.18416667 0.48266395
1 24 5.12916667 0.38337082
2 24 5.75458333 0.53293265
3 24 5.64125000 0.63926801

Level of ------------Yield------------
Calcium N Mean Std Dev

0 48 5.48104167 0.54186141
1 48 5.37354167 0.61565219

Level of ------------Yield------------
Soil N Mean Std Dev

1 32 5.54312500 0.55806369
2 32 5.51093750 0.62176315
3 32 5.22781250 0.51825224

Level of Level of ------------Yield------------
Calcium Fertilizer N Mean Std Dev

0 0 12 5.34666667 0.45029956
0 1 12 5.08833333 0.44986530
0 2 12 5.62666667 0.44707806
0 3 12 5.86250000 0.52886027
1 0 12 5.02166667 0.47615569
1 1 12 5.17000000 0.31826233
1 2 12 5.88250000 0.59856077
1 3 12 5.42000000 0.68409197

The final portion of output shows the results of the MEANS statement. This portion
shows means for various effects and combinations of effects, as requested. Because
no multiple comparison procedures are requested, none are performed. You can ex-
amine theCalcium*Fertilizer means to understand the interaction better.

In this example, you could reduce memory requirements by omitting the
Soil*Calcium*Rep(Fertilizer) effect from the model in the MODEL state-
ment. This effect then becomes the ERROR effect, and you can omit the last TEST
statement (in the code shown earlier). The test for theSoil*Calcium effect is then
given in the Analysis of Variance table in the top portion of output. However, for all
other tests, you should look at the results from the TEST statement. In large models,
this method may lead to significant reductions in memory requirements.
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Chapter 18
The BOXPLOT Procedure
Overview

The BOXPLOT procedure creates side-by-side box-and-whisker plots of measure-
ments organized in groups. A box-and-whisker plot displays the mean, quartiles, and
minimum and maximum observations for a group. Throughout this chapter, this type
of plot, which can contain one or more box-and-whisker plots, is referred to as abox
plot.

The PLOT statement of the BOXPLOT procedure produces a box plot. You can
specify more than one PLOT statement to produce multiple box plots.

You can use options in the PLOT statement to

• control the style of the box-and-whisker plots

• specify one of several methods for calculating quantile statistics (percentiles)

• add block legends and symbol markers to reveal stratification in data

• display vertical and horizontal reference lines

• control axis values and labels

• overlay the box plot with plots of additional variables

• control the layout and appearance of the plot

The INSET and INSETGROUP statements produce boxes or tables (referred to as
insets) of summary statistics or other data on a box plot. An INSET statement pro-
duces an inset of statistics pertaining to the entire box plot. An INSETGROUP state-
ment produces an inset containing statistics calculated separately for each group. An
INSET or INSETGROUP statement by itself does not produce a display; it must be
used with a PLOT statement.

You can use options in an INSET or INSETGROUP statement to

• specify the position of the inset

• specify a header for the inset

• specify graphical enhancements, such as background colors, text colors, text
height, text font, and drop shadows
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Getting Started

Creating Box Plots from Raw Data

This section demonstrates how you can use the BOXPLOT procedure to produce box
plots for your data.

Suppose that a petroleum company uses a turbine to heat water into steam that is
pumped into the ground to make oil less viscous and easier to extract. This process
occurs 20 times daily, and the amount of power (in kilowatts) used to heat the water to
the desired temperature is recorded. The following statements create a SAS data set
calledTurbine that contains the power output measurements for 10 nonconsecutive
days.

data Turbine;
informat day date7.;
format day date5.;
label kwatts=’Average Power Output’;
input day @;
do i=1 to 10;

input kwatts @;
output;
end;

drop i;
datalines;

05JUL94 3196 3507 4050 3215 3583 3617 3789 3180 3505 3454
05JUL94 3417 3199 3613 3384 3475 3316 3556 3607 3364 3721
06JUL94 3390 3562 3413 3193 3635 3179 3348 3199 3413 3562
06JUL94 3428 3320 3745 3426 3849 3256 3841 3575 3752 3347
07JUL94 3478 3465 3445 3383 3684 3304 3398 3578 3348 3369
07JUL94 3670 3614 3307 3595 3448 3304 3385 3499 3781 3711
08JUL94 3448 3045 3446 3620 3466 3533 3590 3070 3499 3457
08JUL94 3411 3350 3417 3629 3400 3381 3309 3608 3438 3567
11JUL94 3568 2968 3514 3465 3175 3358 3460 3851 3845 2983
11JUL94 3410 3274 3590 3527 3509 3284 3457 3729 3916 3633
12JUL94 3153 3408 3741 3203 3047 3580 3571 3579 3602 3335
12JUL94 3494 3662 3586 3628 3881 3443 3456 3593 3827 3573
13JUL94 3594 3711 3369 3341 3611 3496 3554 3400 3295 3002
13JUL94 3495 3368 3726 3738 3250 3632 3415 3591 3787 3478
14JUL94 3482 3546 3196 3379 3559 3235 3549 3445 3413 3859
14JUL94 3330 3465 3994 3362 3309 3781 3211 3550 3637 3626
15JUL94 3152 3269 3431 3438 3575 3476 3115 3146 3731 3171
15JUL94 3206 3140 3562 3592 3722 3421 3471 3621 3361 3370
18JUL94 3421 3381 4040 3467 3475 3285 3619 3325 3317 3472
18JUL94 3296 3501 3366 3492 3367 3619 3550 3263 3355 3510
;
run;

In the data setTurbine, each observation contains the date and the power output for
a single heating. The first 20 observations contain the outputs for the first day, the
second 20 observations contain the outputs for the second day, and so on. Because
the variableday classifies the observations into groups, it is referred to as thegroup
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variable. The variablekwatts contains the output measurements and is referred to as
theanalysis variable.

You can create a box plot to examine the distribution of power output for each day.
The following statements create the box plot shown inFigure 18.1.

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day;
run;

The input data setTurbine is specified with the DATA= option in the
PROC BOXPLOT statement. The PLOT statement requests a box-and-whisker plot
for each group of data. After the keyword PLOT, you specify the analysis variable
(in this case,kwatts), followed by an asterisk and the group variable (day).

Figure 18.1. Box Plot for Power Output Data

The box plot displayed inFigure 18.1represents summary statistics for the analysis
variablekwatts; each of the 10 box-and-whisker plots describes the variablekwatts
for a particular day. The plot elements and the statistics they represent are as follows:

• the length of the box represents the interquartile range (the distance between
the25th and the75th percentiles)

• the dot in the box interior represents the mean

• the horizontal line in the box interior represents the median

• the vertical lines issuing from the box extend to the minimum and maximum
values of the analysis variable
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Displaying Summary Statistics on a Box Plot

This section demonstrates how you can use the INSET and INSETGROUP statements
to include tables of summary statistics on your box plots.

The following code produces a box plot of theTurbine data set from the previous
section, augmented with insets containing summary statistics. The resulting plot is
shown inFigure 18.2.

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day;
inset nobs mean / header = ’Overall Stats’

pos = tm;
insetgroup min max / header = ’Stats by day’;

run;

The INSET statement produces an inset of overall summary statistics. The NOBS
and MEAN keywords request the total number of observations and the overall mean
across all days. The POS=TM option places the inset in the top margin of the plot.

The INSETGROUP statement produces an inset containing statistics calculated for
each day separately. The MIN and MAX keywords request the minimum and maxi-
mum observations in each group.

Figure 18.2. Box Plot with Insets
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Syntax

The syntax for the BOXPLOT procedure is as follows:

PROC BOXPLOT < options > ;
PLOT analysis-variable*group-variable < (block-variables ) >

< =symbol-variable > < / options> ;
INSET keywords < / options > ;
INSETGROUP keywords < / options > ;
BY variables;
ID variables;

Both the PROC BOXPLOT and PLOT statements are required. You can specify any
number of PLOT statements within a single PROC BOXPLOT invocation.

PROC BOXPLOT Statement

PROC BOXPLOT < options > ;

The PROC BOXPLOT statement starts the BOXPLOT procedure. The following
options can appear in the PROC BOXPLOT statement.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an ANNOTATE= type data set, as described inSAS/GRAPH Software:
Reference, that enhances all box plots requested in subsequent PLOT statements.

BOX=SAS-data-set
names an input data set containing group summary statistics and outlier values.
Typically, this data set is created as an OUTBOX= data set in a previous run of PROC
BOXPLOT. Each group summary statistic and outlier value is recorded in a separate
observation in a BOX= data set, so there are multiple observations per group. You
cannot use a BOX= data set together with a DATA= or HISTORY= data set. If you do
not specify one of these input data sets, the procedure uses the most recently created
SAS data set as a DATA= data set.

DATA=SAS-data-set
names an input data set containing raw data to be analyzed. You cannot use a DATA=
data set together with a BOX= or a HISTORY= data set. If you do not specify one of
these input data sets, the procedure uses the most recently created SAS data set as a
DATA= data set.

GOUT=<libref.>output catalog
specifies the SAS catalog in which to save the graphics output that is produced by the
BOXPLOT procedure. If you omit the libref, PROC BOXPLOT looks for the catalog
in the temporary library called WORK and creates the catalog if it does not exist.
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HISTORY=SAS-data-set
HIST=SAS-data-set

names an input data set containing group summary statistics. Typically, this data set
is created as an OUTHISTORY= data set in a previous run of PROC BOXPLOT, but
it can also be created using a SAS summarization procedure such as PROC MEANS.
The HISTORY= data set can contain only one observation for each value of the
group-variable. You cannot use a HISTORY= data set with a DATA= or a BOX=
data set. If you do not specify one of these three input data sets, PROC BOXPLOT
uses the most recently created data set as a DATA= data set.

PLOT Statement

PLOT (analysis-variables)*group-variable <(block-variables ) >
< =symbol-variable > < / options>;

You can specify multiple PLOT statements after the PROC BOXPLOT statement.
The components of the PLOT statement are as follows.

analysis-variables

identify one or more variables to be analyzed. An analysis vari-
able is required. If you specify more than one analysis variable,
enclose the list in parentheses. For example, the following state-
ments request distinct box plots for the variablesweight, length,
andwidth:

proc boxplot data=summary;
plot (weight length width)*day;

run;

group-variable specifies the variable that identifies groups in the data. The group
variable is required. In the preceding PLOT statement,day is the
group variable.

block-variables specify optional variables that group the data into blocks of con-
secutive groups. These blocks are labeled in a legend, and each
block variable provides one level of labels in the legend.

symbol-variable specifies an optional variable whose levels (unique values) deter-
mine the symbol marker used to plot the means. Distinct symbol
markers are displayed for points corresponding to the various levels
of the symbol variable. You can specify the symbol markers with
SYMBOLn statements (refer toSAS/GRAPH Software: Reference
for complete details).

options enhance the appearance of the box plot, request additional analy-
ses, save results in data sets, and so on. Complete descriptions for
each option follow.

Table 18.1lists all options in the PLOT statement by function.
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PLOT Statement Options

Table 18.1. PLOT Statement Options
Option Description
Options for Controlling Box Appearance
BOXCONNECT= connects features of adjacent box-and-whisker plots with line

segments

BOXSTYLE= specifies style of box-and-whisker plots

BOXWIDTH= specifies width of box-and-whisker plots

BOXWIDTHSCALE= specifies that widths of box-and-whisker plots vary proportion-
ately to group size

CBOXES= specifies color for outlines of box-and-whisker plots

CBOXFILL= specifies fill color for interior of box-and-whisker plots

IDCOLOR= specifies outlier symbol color in schematic box-and-whisker plots

IDCTEXT= specifies outlier label color in schematic box-and-whisker plots

IDFONT= specifies outlier label font in schematic box-and-whisker plots

IDHEIGHT= specifies outlier label height in schematic box-and-whisker plots

IDSYMBOL= specifies outlier symbol in schematic box-and-whisker plots

LBOXES= specifies line types for outlines of box-and-whisker plots

NOSERIFS eliminates serifs from the whiskers of box-and-whisker plots

NOTCHES specifies that box-and-whisker plots are to be notched

PCTLDEF= specifies percentile definition used for box-and-whisker plots

Options for Plotting and Labeling Points
ALLLABEL= labels means of box-and-whisker plots

CLABEL= specifies color for labels requested with ALLLABEL= option

CCONNECT= specifies color for line segments that connect points on plot

LABELANGLE= specifies angle for labels requested with ALLLABEL= option

SYMBOLLEGEND= specifies LEGEND statement for levels of the symbol variable

SYMBOLORDER= specifies order in which symbols are assigned for levels of the sym-
bol variable

Reference Line Options
CHREF= specifies color for lines requested by HREF= option

CVREF= specifies color for lines requested by VREF= option

HREF= requests reference lines perpendicular to horizontal axis

HREFLABELS= specifies labels for HREF= lines

HREFLABPOS= specifies position of HREFLABELS= labels

LHREF= specifies line type for HREF= lines

LVREF= specifies line type for VREF= lines

NOBYREF specifies that reference line information in a data set is to be ap-
plied uniformly to plots created for all BY groups
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Table 18.1. (continued)

Option Description
VREF= requests reference lines perpendicular to vertical axis

VREFLABELS= specifies labels for VREF= lines

VREFLABPOS= specifies position of VREFLABELS= labels

Block Variable Legend Options
BLOCKLABELPOS= specifies position of label for the block variable legend

BLOCKLABTYPE= specifies text size of the block variable legend

BLOCKPOS= specifies vertical position of the block variable legend

BLOCKREP repeats identical consecutive labels in the block variable legend

CBLOCKLAB= specifies colors for filling frames enclosing block variable labels

CBLOCKVAR= specifies colors for filling background of the block variable legend

Axis and Axis Label Options
CAXIS= specifies color for axis lines and tick marks

CFRAME= specifies fill color for frame for plot area

CONTINUOUS produces horizontal axis for continuous group variable values

CTEXT= specifies color for tick mark values and axis labels

HAXIS= specifies major tick mark values for horizontal axis

HEIGHT= specifies height of axis label and axis legend text

HMINOR= specifies number of minor tick marks between major tick marks on
horizontal axis

HOFFSET= specifies length of offset at both ends of horizontal axis

NOHLABEL suppresses label for horizontal axis

NOTICKREP specifies that only the first occurrence of repeated, adjacent char-
acter group values is to be labeled on horizontal axis

NOVANGLE requests vertical axis labels that are strung out vertically

SKIPHLABELS= specifies thinning factor for tick mark labels on horizontal axis

TURNHLABELS requests horizontal axis labels that are strung out vertically

VAXIS= specifies major tick mark values for vertical axis

VFORMAT= specifies format for vertical axis tick marks

VMINOR= specifies number of minor tick marks between major tick marks on
vertical axis

VOFFSET= specifies length of offset at both ends of vertical axis

VZERO forces origin to be included in vertical axis

WAXIS= specifies width of axis lines

Input Data Set Options
MISSBREAK specifies that missing values between identical character group

values signify the start of a new group

Output Data Set Options
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Table 18.1. (continued)

Option Description
OUTBOX= produces an output data set containing group summary statistics

and outlier values

OUTHISTORY= produces an output data set containing group summary statistics

Graphical Enhancement Options
ANNOTATE= specifies annotate data set that adds features to box plot

BWSLEGEND displays a legend identifying the function of group size specified
with the BOXWIDTHSCALE= option

DESCRIPTION= specifies string that appears in the description field of the PROC
GREPLAY master menu for box plot

FONT= specifies software font for labels and legends on plots

HTML= specifies URLs to be associated with box-and-whisker plots

NAME= specifies name that appears in the name field of the PROC
GREPLAY master menu for box plot

NLEGEND requests a legend displaying group sizes

OUTHIGHHTML= specifies URLs to be associated with high outliers on box-and-
whisker plots

OUTLOWHTML= specifies URLs to be associated with low outliers on box-and-
whisker plots

PAGENUM= specifies the form of the label used in pagination

PAGENUMPOS= specifies the position of the page number requested with the
PAGENUM= option

Grid Options
CGRID= specifies color for grid requested with ENDGRID or GRID option

ENDGRID adds grid after last box-and-whisker plot

GRID adds grid to box plot

LENDGRID= specifies line type for grid requested with the ENDGRID option

LGRID= specifies line type for grid requested with the GRID option

WGRID= specifies width of grid lines

Plot Layout Options
INTERVAL= specifies natural time interval between consecutive group positions

when time, date, or datetime format is associated with a numeric
group variable

INTSTART= specifies first major tick mark value on horizontal axis when a date,
time, or datetime format is associated with numeric group variable

MAXPANELS= specifies maximum number of panels for plot

NOCHART suppresses creation of the box plot

NOFRAME suppresses frame for plot area

NPANELPOS= specifies number of group positions per panel on each plot
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Table 18.1. (continued)

Option Description
REPEAT repeats last group position on panel as first group position of next

panel

TOTPANELS= specifies number of panels to be used to display plot

Overlay Options
CCOVERLAY= specifies colors for line segments connecting points on overlays

COVERLAY= specifies colors for points on overlays

LOVERLAY= specifies line types for line segments connecting points on overlays

NOOVERLAYLEGEND suppresses overlay legend

OVERLAY= specifies variables to be plotted on overlays

OVERLAYHTML= specifies URLs to be associated with overlay plot points

OVERLAYID= specifies labels for overlay plot points

OVERLAYLEGLAB= specifies label for overlay legend

OVERLAYSYM= specifies symbols used for overlays

OVERLAYSYMHT= specifies heights for overlay symbols

WOVERLAY= specifies widths for line segments connecting points on overlays

Clipping Options
CCLIP= specifies color for plot symbol for clipped points

CLIPFACTOR= determines extent to which extreme values are clipped

CLIPLEGEND= specifies text for clipping legend

CLIPLEGPOS= specifies position of clipping legend

CLIPSUBCHAR= specifies substitution character for CLIPLEGEND= text

CLIPSYMBOL= specifies plot symbol for clipped points

CLIPSYMBOLHT= specifies symbol marker height for clipped points

COVERLAYCLIP= specifies color for clipped points on overlays

OVERLAYCLIPSYM= specifies symbol for clipped points on overlays

OVERLAYCLIPSYMHT= specifies symbol height for clipped points on overlays

Following are explanations of the options that you can specify in the PLOT statement
after a slash (/).

ALLLABEL=VALUE
ALLLABEL=( variable)

labels the point plotted for the mean of each box-and-whisker plot with its VALUE
or with the value of avariable in the input data set.

ANNOTATE=SAS-data-set
specifies an ANNOTATE= type data set, as described inSAS/GRAPH Software:
Reference.
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BLOCKLABELPOS=ABOVE | LEFT
specifies the position of a block variable label in the block legend. The keyword
ABOVE places the label immediately above the legend, and LEFT places the label
to the left of the legend. Use the keyword LEFT with labels that are short enough to
fit in the margin of the plot; otherwise, they are truncated. The default keyword is
ABOVE.

BLOCKLABTYPE=SCALED | TRUNCATED
BLOCKLABTYPE= height

specifies how lengthy block variable values are to be treated when there
is insufficient space to display them in the block legend. If you specify
BLOCKLABTYPE=SCALED, the values are uniformly reduced in height so
that they fit. If you specify BLOCKLABTYPE=TRUNCATED, lengthy values are
truncated on the right until they fit. You can also specify a text height in vertical
percent screen units for the values. By default, lengthy values are not displayed. For
more information, see the section“Displaying Blocks of Data”on page 530.

BLOCKPOS= n
specifies the vertical position of the legend for the values of the block vari-
ables. Values ofn and the corresponding positions are as follows. By default,
BLOCKPOS=1.

n Legend Position
1 top of plot, offset from axis frame
2 top of plot, immediately above axis frame
3 bottom of plot, immediately above horizontal axis
4 bottom of plot, below horizontal axis label

BLOCKREP
specifies that block variable values for all groups are to be displayed. By default, only
the first block variable value in any block is displayed, and repeated block variable
values are not displayed.

BOXCONNECT=MEAN | MEDIAN | MAX | MIN | Q1 | Q3
BOXCONNECT

specifies that the points in adjacent box-and-whisker plots representing group means,
medians, maximum values, minimum values, first quartiles, or third quartiles are to
be connected with line segments. If the BOXCONNECT option is specified without
a keyword identifying the points to be connected, group means are connected. By
default, no points are connected.

BOXSTYLE=keyword
specifies the style of the box-and-whisker plots displayed. If you specify
BOXSTYLE=SKELETAL, the whiskers are drawn from the edges of the box to
the extreme values of the group. This plot is sometimes referred to as a skeletal
box-and-whisker plot. By default, the whiskers are drawn with serifs: you can
specify the NOSERIFS option to draw the whiskers without serifs.
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In the following descriptions, the termsfenceandfar fencerefer to the distance from
the first and third quartiles (25th and75th percentiles, respectively), expressed in
terms of the interquartile range (IQR). For example, the lower fence is located at
1.5× IQR below the25th percentile; the upper fence is located at1.5× IQR above
the 75th percentile. Similarly, the lower far fence is located at3 × IQR below the
25th percentile; the upper far fence is located at3× IQR above the75th percentile.

If you specify BOXSTYLE=SCHEMATIC, a whisker is drawn from the upper edge
of the box to the largest observed value within the upper fence and from the lower
edge of the box to the smallest observed value within the lower fence. Serifs are
added to the whiskers by default. Observations outside the fences are identified
with a special symbol; you can specify the shape and color for this symbol with
the IDSYMBOL= and IDCOLOR= options. The default symbol is a square. This
type of plot corresponds to the schematic box-and-whisker plot described in Chapter
2 of Tukey (1977). SeeFigure 18.5and the discussion in the section“Styles of Box
Plots”on page 522 for more information.

If you specify BOXSTYLE=SCHEMATICID, a schematic box-and-whisker plot is
displayed in which an ID variable value is used to label the symbol marking each
observation outside the upper and lower fences. A BOX= data set can contain a
variable named–ID– that is used as the ID variable. Otherwise, the first variable
listed in the ID statement provides the labels.

If you specify BOXSTYLE=SCHEMATICIDFAR, a schematic box-and-whisker plot
is displayed in which the value of the ID variable is used to label the symbol marking
each observation outside the lower and upper far fences. Observations between the
fences and the far fences are identified with a symbol but are not labeled with the ID
variable.

Figure 18.3illustrates the elements of a skeletal box-and-whisker plot.

25    percentile (lower quartile) 

Median

th

th

Minimum
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 observation

Interquartile
Range (IQR)

Mean (specified with SYMBOL1 statement)

 75    percentile (upper quartile) 

Figure 18.3. Skeletal Box-and-Whisker Plot

The skeletal style of the box-and-whisker plot shown inFigure 18.3is the default.
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BOXWIDTH=value
specifies the width (in horizontal percent screen units) of the box-and-whisker plots.

BOXWIDTHSCALE= value
specifies that the box-and-whisker plot width is to vary proportionately to a particular
function of the group sizen. The function is determined by thevalue.

If you specify a positive value, the widths are proportional tonvalue. In particular,
if you specify BOXWIDTHSCALE=1, the widths are proportional to the group size.
If you specify BOXWIDTHSCALE=0.5, the widths are proportional to

√
n, as de-

scribed by McGill, Tukey, and Larsen (1978). If you specify BOXWIDTHSCALE=0,
the widths are proportional tolog(n). SeeExample 18.4on page 543 for an illustra-
tion of the BOXWIDTHSCALE= option.

You can specify the BWSLEGEND option to display a legend identifying the function
of n used to determine the box-and-whisker plot widths.

By default, the box widths are constant.

BWSLEGEND
displays a legend identifying the function of group sizen specified with the
BOXWIDTHSCALE= option. No legend is displayed if all group sizes are
equal. The BWSLEGEND option is not applicable unless you also specify the
BOXWIDTHSCALE= option.

CAXIS=color
CAXES=color
CA=color

specifies the color for the axes and tick marks. This option overrides any COLOR=
specifications in an AXIS statement. The default value is the first color in the device
color list.

CBLOCKLAB= color | (color-list)
specifies fill colors for the frames that enclose the block variable labels in a block
legend. By default, these areas are not filled. Colors in the CBLOCKLAB= list
are matched with block variables in the order in which they appear in the PLOT
statement.

CBLOCKVAR= variable | (variable-list)
specifies variables whose values are colors for filling the background of the legend
associated with block variables. Each CBLOCKVAR= variable must be a character
variable of no more than eight characters in the input data set, and its values must be
valid SAS/GRAPH color names (refer toSAS/GRAPH Software: Referencefor com-
plete details). A list of CBLOCKVAR= variables must be enclosed in parentheses.

The procedure matches the CBLOCKVAR= variables with block variables in the
order specified. That is, each block legend is filled with the color value of the
CBLOCKVAR= variable of the first observation in each block. In general, values of
theith CBLOCKVAR= variable are used to fill the block of the legend corresponding
to theith block variable.
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By default, fill colors are not used for the block variable legend. The CBLOCKVAR=
option is available only when block variables are used in the PLOT statement.

CBOXES=color
CBOXES=(variable)

specifies the colors for the outlines of the box-and-whisker plots created with the
PLOT statement. You can use one of the following approaches:

• You can specify CBOXES=color to provide a single outline color for all the
box-and-whisker plots.

• You can specify CBOXES=(variable) to provide a distinct outline color for
each box-and-whisker plot as the value of the variable. The variable must be a
character variable of length 8 or less in the input data set, and its values must be
valid SAS/GRAPH color names (refer toSAS/GRAPH Software: Referencefor
complete details). The outline color of the plot displayed for a particular group
is the value of the variable in the observations corresponding to this group.
Note that, if there are multiple observations per group in the input data set, the
values of the variable should be identical for all the observations in a given
group.

The default color is the second color in the device color list.

CBOXFILL= color
CBOXFILL= (variable)

specifies the interior fill colors for the box-and-whisker plots. You can use one of the
following approaches:

• You can specify CBOXFILL=color to provide a single color for all of the box-
and-whisker plots.

• You can specify CBOXFILL=(variable) to provide a distinct color for each
box-and-whisker plot as the value of the variable. The variable must be a char-
acter variable of length 8 or less in the input data set, and its values must be
valid SAS/GRAPH color names (or the value EMPTY, which you can use to
suppress color filling). Refer toSAS/GRAPH Software: Referencefor com-
plete details. The interior color of the box displayed for a particular group is
the value of the variable in the observations corresponding to this group. Note
that if there are multiple observations per group in the input data set, the values
of the variable should be identical for all the observations in a given group.

By default, the interiors are not filled.

CCLIP=color
specifies a color for the plotting symbol that is specified with the CLIPSYMBOL=
option to mark clipped values. The default color is the color specified in the COLOR=
option in the SYMBOL1 statement.
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CCONNECT=color
specifies the color for line segments connecting points on the plot. The default color
is the color specified in the COLOR= option in the SYMBOL1 statement. This option
is not applicable unless you also specify the BOXCONNECT= option.

CCOVERLAY= (color-list)
specifies the colors for line segments connecting points on overlay plots. Colors in
the CCOVERLAY= list are matched with variables in the corresponding positions in
the OVERLAY= list. By default, points are connected by line segments of the same
color as the plotted points. You can specify the value NONE to suppress the line
segments connecting points of an overlay plot.

CFRAME=color
specifies the color for filling the rectangle enclosed by the axes and the frame. By
default, this area is not filled. The CFRAME= option cannot be used in conjunction
with the NOFRAME option.

CGRID=color
specifies the color for the grid requested by the ENDGRID or GRID option. By
default, the grid is the same color as the axes.

CHREF=color
specifies the color for the lines requested by the HREF= option. The default value is
the first color in the device color list.

CLABEL= color
specifies the color for labels produced by the ALLLABEL= option. The default color
is the CTEXT= color.

CLIPFACTOR= factor
requests clipping of extreme values on the box plot. Thefactor that you specify
determines the extent to which these values are clipped, and it must be greater than 1.

For examples of the CLIPFACTOR= option, seeFigure 18.14on page 534 and
Figure 18.15on page 535. Related clipping options are CCLIP=, CLIPLEGEND=,
CLIPLEGPOS=, CLIPSUBCHAR=, and CLIPSYMBOL=.

CLIPLEGEND=’ label’
specifies thelabel for the legend that indicates the number of clipped boxes when the
CLIPFACTOR= option is used. Thelabel must be no more than 16 characters and
must be enclosed in quotes. For an example, seeFigure 18.15on page 535.

CLIPLEGPOS=TOP | BOTTOM
specifies the position for the legend that indicates the number of clipped boxes
when the CLIPFACTOR= option is used. The keywords TOP and BOTTOM
position the legend at the top or bottom of the chart, respectively. Do not
specify CLIPLEGPOS=TOP together with the PHASELEGEND option or the
BLOCKPOS=1 or BLOCKPOS=2 options. By default, CLIPLEGPOS=BOTTOM.
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CLIPSUBCHAR=’ character’
specifies a substitution character (such as#) for the label provided with the
CLIPLEGEND= option. The substitution character is replaced with the number of
boxes that are clipped. For example, suppose that the following statements produce a
chart in which three boxes are clipped:

proc boxplot data=pistons;
plot diameter*hour /

clipfactor = 1.5
cliplegend = ’Boxes clipped=#’
clipsubchar = ’#’ ;

run;

Then the clipping legend displayed on the chart will be

Boxes clipped=3

CLIPSYMBOL= symbol
specifies a plot symbol used to identify clipped points on the chart and in the legend
when the CLIPFACTOR= option is used. You should use this option in conjunction
with the CLIPFACTOR= option. The defaultsymbolis CLIPSYMBOL=SQUARE.

CLIPSYMBOLHT= value
specifies the height for the symbol marker used to identify clipped points on the chart
when the CLIPFACTOR= option is used. The default is the height specified with the
H= option in the SYMBOL statement.

For general information about clipping options, refer to“Clipping Extreme Values”
on page 532.

CONTINUOUS
specifies that numeric group variable values are to be treated as continuous values.
By default, the values of a numeric group variable are considered discrete values
unless the HAXIS= option is specified. For more information, see the discussion in
the section“Continuous Group Variables”on page 524.

COVERLAY= (color-list)
specifies the colors used to plot overlay variables. Colors in the COVERLAY= list
are matched with variables in the corresponding positions in the OVERLAY= list.

COVERLAYCLIP= color
specifies the color used to plot clipped values on overlay plots when the
CLIPFACTOR= option is used.

CTEXT=color
specifies the color for tick mark values and axis labels. The default color is the color
specified in the CTEXT= option in the most recent GOPTIONS statement.
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CVREF=color
specifies the color for the lines requested by the VREF= option. The default value is
the first color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description of the box plot, not longer than 40 characters, that appears in
the PROC GREPLAY master menu. The default string is the variable name.

ENDGRID
adds a grid to the rightmost portion of the plot, beginning with the first labeled ma-
jor tick mark position that follows the last box-and-whisker plot. You can use the
HAXIS= option to force space to be added to the horizontal axis.

FONT=font
specifies a software font for labels and legends. You can also specify fonts for axis
labels in an AXIS statement. The FONT= font takes precedence over the FTEXT=
font specified in the GOPTIONS statement. Hardware characters are used by default.
Refer toSAS/GRAPH Software: Referencefor more information on the GOPTIONS
statement.

GRID
adds a grid to the box plot. Grid lines are horizontal lines positioned at labeled major
tick marks, and they cover the length and height of the plotting area.

HAXIS=values
HAXIS=AXISn

specifies tick mark values for the horizontal (group) axis. If the group variable is
numeric, the values must be numeric and equally spaced. Optionally, you can specify
an axis name defined in a previous AXIS statement. Refer toSAS/GRAPH Software:
Referencefor more information on the AXIS statement.

Specifying the HAXIS= option with a numeric group variable causes the group vari-
able values to be treated as continuous values. For more information, see the de-
scription of theCONTINUOUS optionand the discussion in the section“Continuous
Group Variables”on page 524. Numeric values can be given in an explicit or implicit
list. If the group variable is character, values must be quoted strings of length 16 or
less. If a date, time, or datetime format is associated with a numeric group variable,
SAS datetime literals can be used. Examples of HAXIS= lists follow:

• haxis=0 2 4 6 8 10

• haxis=0 to 10 by 2

• haxis=’LT12A’ ’LT12B’ ’LT12C’ ’LT15A’ ’LT15B’ ’LT15C’

• haxis=’20MAY88’D to ’20AUG88’D by 7

• haxis=’01JAN88’D to ’31DEC88’D by 30

If the group variable is numeric, the HAXIS= list must span the group variable values;
if it is a character variable, the HAXIS= list must include all of the group variable
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values. You can add group positions to the box plot by specifying HAXIS= values
that are not group variable values.

If you specify a large number of HAXIS= values, some of these may be thinned to
avoid collisions between tick mark labels. To avoid thinning, use one of the following
methods.

• Shorten values of the group variable by eliminating redundant characters. For
example, if your group variable has values LOT1, LOT2, LOT3, and so on,
you can use the SUBSTR function in a DATA step to eliminate LOT from each
value, and you can modify the horizontal axis label to indicate that the values
refer to lots.

• Use the TURNHLABELS option to turn the labels vertically.

• Use the NPANELPOS= option to force fewer group positions per panel.

HEIGHT=value
specifies the height (in vertical screen percent units) of the text for axis labels and
legends. This value takes precedence over the HTEXT= value specified in the
GOPTIONS statement. This option is recommended for use with software fonts
specified with the FONT= option or with the FTEXT= option in the GOPTIONS
statement. Refer toSAS/GRAPH Software: Referencefor complete information on
the GOPTIONS statement.

HMINOR=n
HM=n

specifies the number of minor tick marks between each major tick mark on the hori-
zontal axis. Minor tick marks are not labeled. The default is HMINOR=0.

HOFFSET=value
specifies the length (in percent screen units) of the offset at both ends of the horizontal
axis. You can eliminate the offset by specifying HOFFSET=0.

HREF=values
HREF=SAS-data-set

draws reference lines perpendicular to the horizontal (group) axis on the box plot.
You can use this option in the following ways:

• You can specify the values for the lines with an HREF= list. If the group vari-
able is numeric, the values must be numeric. If the group variable is character,
the values must be quoted strings of up to 16 characters. If the group variable
is formatted, the values must be given as internal values. Examples of HREF=
values follow:

href=5
href=5 10 15 20 25 30
href=’Shift 1’ ’Shift 2’ ’Shift 3’

• You can specify reference line values as the values of a variable named–REF–
in an HREF= data set. The type and length of–REF– must match those of the
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group variable specified in the PLOT statement. Optionally, you can provide
labels for the lines as values of a variable named–REFLAB– , which must be
a character variable of length 16 or less. If you want distinct reference lines
to be displayed in plots for different analysis variables specified in the PLOT
statement, you must include a character variable named–VAR– , whose values
are the analysis variable names. If you do not include the variable–VAR– , all
of the lines are displayed in all of the plots.

Each observation in an HREF= data set corresponds to a reference line. If BY
variables are used in the input data set, the same BY variable structure must be
used in the reference line data set unless you specify the NOBYREF option.

Unless the CONTINUOUS or HAXIS= option is specified, numeric group variable
values are treated as discrete values, and only HREF= values matching these discrete
values are valid. Other values are ignored.

HREFLABELS= ’label1’ ... ’labeln’
HREFLABEL= ’label1’ ... ’labeln’
HREFLAB= ’label1’ ... ’labeln’

specifies labels for the reference lines requested by the HREF= option. The number
of labels must equal the number of lines. Enclose each label in quotes. Labels can be
up to 16 characters.

HREFLABPOS= n
specifies the vertical position of the HREFLABEL= label, as described in the follow-
ing table. By default, n=2.

HREFLABPOS= Label Position
1 along top of plot area
2 staggered from top to bottom of plot area
3 along bottom of plot area
4 staggered from bottom to top of plot area

HTML=variable
specifies uniform resource locators (URLs) as values of the specified character vari-
able (or formatted values of a numeric variable). These URLs are associated with
box-and-whisker plots when graphics output is directed into HTML. The value of the
HTML= variable should be the same for each observation with a given value of the
group variable.

IDCOLOR=color
specifies the color of the symbol marker used to identify outliers in schematic box-
and-whisker plots (that is, when you specify one of the keywords SCHEMATIC,
SCHEMATICID, or SCHEMATICIDFAR with the BOXSTYLE= option). The de-
fault color is the color specified with the CBOXES= option; otherwise, the second
color in the device color list is used.
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IDCTEXT=color
specifies the color for the text used to label outliers when you specify one of the
keywords SCHEMATICID or SCHEMATICIDFAR with the BOXSTYLE= option.
The default value is the color specified with the CTEXT= option.

IDFONT=font
specifies the font for the text used to label outliers when you specify one of the key-
words SCHEMATICID or SCHEMATICIDFAR with the BOXSTYLE= option. The
default font is SIMPLEX.

IDHEIGHT=value
specifies the height for the text used to label outliers when you specify one of the
keywords SCHEMATICID or SCHEMATICIDFAR with the BOXSTYLE= option.
The default value is the height specified with the HTEXT= option in the GOPTIONS
statement. Refer toSAS/GRAPH Software: Referencefor complete information on
the GOPTIONS statement.

IDSYMBOL=symbol
specifies the symbol marker used to identify outliers in schematic box plots. The
default symbol is SQUARE.

INTERVAL=DAY | DTDAY | HOUR | MINUTE | MONTH | QTR | SECOND
specifies the natural time interval between consecutive group positions when a time,
date, or datetime format is associated with a numeric group variable. By default, the
INTERVAL= option uses the number of group positions per panel (screen or page)
that you specify with the NPANELPOS= option. The default time interval keywords
for various time formats are shown in the following table.

Format Default Keyword Format Default Keyword
DATE DAY MONYY MONTH
DATETIME DTDAY TIME SECOND
DDMMYY DAY TOD SECOND
HHMM HOUR WEEKDATE DAY
HOUR HOUR WORDDATE DAY
MMDDYY DAY YYMMDD DAY
MMSS MINUTE YYQ QTR

You can use the INTERVAL= option to modify the effect of the NPANELPOS= op-
tion, which specifies the number of group positions per panel. The INTERVAL=
option enables you to match the scale of the horizontal axis to the scale of the group
variable without having to associate a different format with the group variable.

For example, suppose that your formatted group values span an overall time interval
of 100 days and a DATETIME format is associated with the group variable. Since the
default interval for the DATETIME format is DTDAY and since NPANELPOS=25
by default, the plot is displayed with four panels.

Now, suppose that your data span an overall time interval of 100 hours and a
DATETIME format is associated with the group variable. The plot for these data
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is created in a single panel, but the data occupy only a small fraction of the plot since
the scale of the data (hours) does not match that of the horizontal axis (days). If you
specify INTERVAL=HOUR, the horizontal axis is scaled for 25 hours, matching the
scale of the data, and the plot is displayed with four panels.

You should use the INTERVAL= option only in conjunction with the CONTINUOUS
or HAXIS= option, which produces a horizontal axis of continuous group vari-
able values. For more information, see the descriptions of the CONTINUOUS and
HAXIS= options, and the discussion in the section“Continuous Group Variables”on
page 524.

INTSTART=value
specifies the starting value for a numeric horizontal axis when a date, time, or date-
time format is associated with the group variable. If the value specified is greater than
the first group variable value, this option has no effect.

LABELANGLE= angle
specifies the angle at which labels requested with the ALLLABEL= option are drawn.
A positive angle rotates the labels counterclockwise; a negative angle rotates them
clockwise. By default, labels are oriented horizontally.

LBOXES= linetype
LBOXES= (variable)

specifies the line types for the outlines of the box-and-whisker plots. You can use one
of the following approaches:

• You can specify LBOXES=linetypeto provide a single linetype for all of the
box-and-whisker plots.

• You can specify LBOXES=(variable) to provide a distinct line type for each
box-and-whisker plot. The variable must be a numeric variable in the input
data set, and its values must be valid SAS/GRAPH linetype values (numbers
ranging from 1 to 46). The line type for the plot displayed for a particular
group is the value of the variable in the observations corresponding to this
group. Note that if there are multiple observations per group in the input data
set, the values of the variable should be identical for all of the observations in
a given group.

The default value is 1, which produces solid lines. Refer to the description of the
SYMBOL statement inSAS/GRAPH Software: Referencefor more information on
valid linetypes.

LENDGRID=n
specifies the line type for the grid requested with the ENDGRID option. The de-
fault value isn=1, which produces a solid line. If you use the LENDGRID= option,
you do not need to specify the ENDGRID option. Refer to the description of the
SYMBOL statement inSAS/GRAPH Software: Referencefor more information on
valid linetypes.
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LGRID=n
specifies the line type for the grid requested with the GRID option. The default value
is n=1, which produces a solid line. If you use the LGRID= option, you do not need
to specify the GRID option. Refer to the description of the SYMBOL statement in
SAS/GRAPH Software: Referencefor more information on valid linetypes.

LHREF=linetype
LH=linetype

specifies the line type for reference lines requested with the HREF= option. The
default value is 2, which produces a dashed line. Refer to the description of the
SYMBOL statement inSAS/GRAPH Software: Referencefor more information on
valid linetypes.

LOVERLAY= (linetypes)
specifies line types for the line segments connecting points on overlay plots. Line
types in the LOVERLAY= list are matched with variables in the corresponding posi-
tions in the OVERLAY= list.

LVREF=linetype
LV=linetype

specifies the line type for reference lines requested by the VREF= option. The default
value is 2, which produces a dashed line. Refer to the description of the SYMBOL
statement inSAS/GRAPH Software: Referencefor more information on valid line-
types.

MAXPANELS= n
specifies the maximum number of panels (pages or screens) for a plot. By default,
n = 20.

MISSBREAK
determines how groups are formed when observations are read from a DATA= data
set and a character group variable is provided. When you specify the MISSBREAK
option, observations with missing values of the group variable are not processed.
Furthermore, the next observation with a nonmissing value of the group variable is
treated as the beginning observation of a new group even if this value is identical to
the most recent nonmissing group value. In other words, by specifying the option
MISSBREAK and by inserting an observation with a missing group variable value
into a group of consecutive observations with the same group variable value, you can
split the group into two distinct groups of observations.

By default, (that is, when you omit the MISSBREAK option), observations with
missing values of the group variable are not processed, and all remaining observations
with the same consecutive value of the group variable are treated as a single group.

NAME=’string’
specifies a name for the box plot, not more than eight characters, that appears in the
PROC GREPLAY master menu.
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NLEGEND
requests a legend displaying group sizes. If the size is the same for each group,
that number is displayed. Otherwise, the minimum and maximum group sizes are
displayed.

NOBYREF
specifies that the reference line information in an HREF= or VREF= data set is to be
applied uniformly to box plots created for all the BY groups in the input data set. If
you specify the NOBYREF option, you do not need to provide BY variables in the
reference line data set. By default, you must provide BY variables.

NOCHART
suppresses the creation of the chart. You typically specify the NOCHART option
when you are using the procedure to compute group summary statistics and save
them in an output data set.

NOFRAME
suppresses the default frame drawn around the plot.

NOHLABEL
suppresses the label for the horizontal (group) axis. Use the NOHLABEL option
when the meaning of the axis is evident from the tick mark labels, such as when a
date format is associated with the group variable.

NOOVERLAYLEGEND
suppresses the legend for overlay plots that is displayed by default when the
OVERLAY= option is specified.

NOSERIFS
eliminates serifs from the whiskers of box-and-whisker plots.

NOTCHES
specifies that box-and-whisker plots are to be notched. The endpoints of the notches
are located at the median plus and minus1.58(IQR/

√
n), where IQR is the interquar-

tile range andn is the group size. The medians (central lines) of two box-and-whisker
plots are significantly different at approximately the 0.05 level if the corresponding
notches do not overlap. Refer to McGill, Tukey, and Larsen (1978) for more infor-
mation. Figure 18.4illustrates the NOTCHES option. Notice the folding effect at
the bottom, which happens when the endpoint of a notch is beyond its corresponding
quartile. This situation typically occurs when the group size is small.
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Figure 18.4. Box Plot: the NOTCHES Option

NOTICKREP
applies to character-valued group variables and specifies that only the first occurrence
of repeated, adjacent group values is to be labeled on the horizontal axis.

NOVANGLE
requests vertical axis labels that are oriented vertically. By default, the labels are
drawn at an angle of 90 degrees if a software font is used.

NPANELPOS=n
NPANEL=n

specifies the number of group positions per panel. A panel is defined as a screen
or page. You typically specify the NPANELPOS= option to display more box-and-
whisker plots on a panel than the default number, which isn = 25.

You can specify a positive or negative number forn. The absolute value ofn must
be at least 5. Ifn is positive, the number of positions is adjusted so that it is approx-
imately equal ton and so that all panels display approximately the same number of
group positions. Ifn is negative, no balancing is done, and each panel (except possi-
bly the last) displays approximately|n| positions. In this case, the approximation is
due only to axis scaling.

You can use the INTERVAL= option to change the effect of the NPANELPOS=
option when a date or time format is associated with the group variable. The
INTERVAL= option enables you to match the scale of the horizontal axis to the scale
of the group variable without having to associate a different format with the group
variable.

OUTBOX=SAS-data-set
creates an output data set that contains group summary statistics and outlier values
for a box plot. You can use an OUTBOX= data set as a BOX= input data set in a
subsequent run of the procedure. See“OUTBOX= Data Set”for details.
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OUTHIGHHTML=variable
specifies a variable whose values are URLs to be associated with outlier points above
the upper fence on a schematic box plot when graphics output is directed into HTML.

OUTHISTORY=SAS-data-set
creates an output data set that contains the group summary statistics. You can use an
OUTHISTORY= data set as a HISTORY= input data set in a subsequent run of the
procedure. See“OUTHISTORY= Data Set”for details.

OUTLOWHTML=variable
specifies a variable whose values are URLs to be associated with outlier points below
the lower fence on a schematic box plot when graphics output is directed into HTML.

OVERLAY= (variable-list)
specifies variables to be plotted as overlays on the box plot. One value for each
overlay variable is plotted at each group position. If there are multiple observations
with the same group variable value in the input data set, the overlay variable values
from the first observation in each group are plotted. By default, the points in an
overlay plot are connected with line segments.

OVERLAYCLIPSYM= symbol
specifies the symbol used to plot clipped values on overlay plots when the
CLIPFACTOR= option is used.

OVERLAYCLIPSYMHT= value
specifies the height for the symbol used to plot clipped values on overlay plots when
the CLIPFACTOR= option is used.

OVERLAYHTML= (variable-list)
specifies variables whose values are URLs to be associated with points on
overlay plots when graphics output is directed into HTML. Variables in the
OVERLAYHTML= list are matched with variables in the corresponding positions in
the OVERLAY= list.

OVERLAYID= (variable-list)
specifies variables whose formatted values are used to label points on overlays.
Variables in the OVERLAYID= list are matched with variables in the corresponding
positions in the OVERLAY= list. The value of the OVERLAYID= variable should be
the same for each observation with a given value of the group variable.

OVERLAYLEGLAB= ’label’
specifies the label displayed to the left of the overlay legend produced by the
OVERLAY= option. The label can be up to 16 characters and must be enclosed
in quotes. The default label is “Overlays:”.

OVERLAYSYM= (symbol-list)
specifies symbols used to plot overlay variables. Symbols in the OVERLAYSYM=
list are matched with variables in the corresponding positions in the OVERLAY= list.
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OVERLAYSYMHT= (value-list)
specifies the heights of symbols used to plot overlay variables. Symbol heights in the
OVERLAYSYMHT= list are matched with variables in the corresponding positions
in the OVERLAY= list.

PAGENUM=’string’
specifies the form of the label used for pagination. The string must be no longer
than 16 characters, and it must include one or two occurrences of the substitution
character ‘#’. The first ‘#’ is replaced with the page number, and the optional second
‘#’ is replaced with the total number of pages.

The PAGENUM= option is useful when you are working with a large number of
groups, resulting in multiple pages of output. For example, suppose that each of the
following PLOT statements produces multiple pages:

proc boxplot data=pistons;
plot diameter*hour / pagenum=’Page #’;
plot diameter*hour / pagenum=’Page # of #’;
plot diameter*hour / pagenum=’#/#’;

run;

The third page produced by the first statement would be labeledPage 3. The third
page produced by the second statement would be labeledPage 3 of 5. The third page
produced by the third statement would be labeled3/5.

By default, no page number is displayed.

PAGENUMPOS=TL | TR | BL | BR | TL100 | TR100 | BL0 | BR0
specifies where to position the page number requested with the PAGENUM= option.
The keywords TL, TR, BL, and BR correspond to the positions top left, top right,
bottom left, and bottom right, respectively. You can use the TL100 and TR100 key-
words to ensure that the page number appears at the very top of a page when a title
is displayed. The BL0 and BR0 keywords ensure that the page number appears at the
very bottom of a page when footnotes are displayed.

The default keyword is BR.

PCTLDEF=index
specifies one of five definitions used to calculate percentiles in the construction of
box-and-whisker plots. The index can be 1, 2, 3, 4, or 5. The five corresponding
percentile definitions are discussed in the section“Percentile Definitions”on page
523. The default index is 5.

REPEAT
REP

specifies that the horizontal axis of a plot that spans multiple pages is to be arranged
so that the last group position on a page is repeated as the first group position on the
next page. The REPEAT option facilitates cutting and pasting panels together. When
a SAS DATETIME format is associated with the group variable, the REPEAT option
is the default.
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SKIPHLABELS= n
SKIPHLABEL= n

specifies the numbern of consecutive tick mark labels, beginning with the second tick
mark label, that are thinned (not displayed) on the horizontal (group) axis. For exam-
ple, specifying SKIPHLABEL=1 causes every other label to be skipped. Specifying
SKIPHLABEL=2 causes the second and third labels to be skipped, the fifth and sixth
labels to be skipped, and so forth.

The default value of the SKIPHLABELS= option is the smallest valuen for which
tick mark labels do not collide. A specifiedn will be overridden to avoid collision.
To reduce thinning, you can use the TURNHLABELS option.

SYMBOLLEGEND=LEGEND n
SYMBOLLEGEND=NONE

controls the legend for the levels of a symbol variable (seeExample 18.1). You can
specify SYMBOLLEGEND=LEGENDn, wheren is the number of a LEGEND state-
ment defined previously. You can specify SYMBOLLEGEND=NONE to suppress
the default legend. Refer toSAS/GRAPH Software: Referencefor more information
on the LEGEND statement.

SYMBOLORDER=DATA | INTERNAL | FORMATTED
SYMORD=DATA | INTERNAL | FORMATTED

specifies the order in which symbols are assigned for levels of the symbol variable.
The DATA keyword assigns symbols to values in the order in which values appear in
the input data. The INTERNAL keyword assigns symbols based on sorted order of
internal values of the symbol variable, and the FORMATTED keyword assigns them
based on sorted formatted values. The default value is FORMATTED.

TOTPANELS=n
specifies the total number of panels (pages or screens) to be used to display the plot.
This option overrides the NPANEL= option.

TURNHLABELS
TURNHLABEL

turns the major tick mark labels for the horizontal (group) axis so that they are ar-
ranged vertically. By default, labels are arranged horizontally. You should specify
a software font (using the FONT= option) in conjunction with the TURNHLABELS
option. Otherwise, the labels may be displayed with a mixture of hardware and soft-
ware fonts.

Note that arranging the labels vertically may leave insufficient vertical space on the
panel for a plot.

VAXIS=value-list
VAXIS=AXISn

specifies major tick mark values for the vertical axis of a box plot. The values must be
listed in increasing order, must be evenly spaced, and must span the range of values
displayed on the plot. You can specify the values with an explicit list or with an
implicit list, as shown in the following example:
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proc boxplot;
plot width*hour / vaxis=0 2 4 6 8;
plot width*hour / vaxis=0 to 8 by 2;

run;

You can also specify a previously defined AXIS statement with the VAXIS= option.

VFORMAT=format
specifies a format to be used for displaying tick mark labels on the vertical axis of the
box plot.

VMINOR=n
VM=n

specifies the number of minor tick marks between each major tick mark on the vertical
axis. Minor tick marks are not labeled. By default, VMINOR=0.

VOFFSET=value
specifies the length in percent screen units of the offset at the ends of the vertical axis.

VREF=value-list
VREF=SAS-data-set

draws reference lines perpendicular to the vertical axis on the box plot. You can use
this option in the following ways:

• Specify the values for the lines with a VREF= list. Examples of the VREF=
option follow:

vref=20
vref=20 40 80

• Specify the values for the lines as the values of a numeric variable named

–REF– in a VREF= data set. Optionally, you can provide labels for the lines
as values of a variable named–REFLAB– , which must be a character variable
of length 16 or less. If you want distinct reference lines to be displayed in plots
for different analysis variables specified in the PLOT statement, you must in-
clude a character variable named–VAR– , whose values are the names of the
analysis variables. If you do not include the variable–VAR– , all of the lines
are displayed in all of the plots.

Each observation in the VREF= data set corresponds to a reference line. If BY
variables are used in the input data set, the same BY variable structure must be
used in the VREF= data set unless you specify the NOBYREF option.

VREFLABELS= ’label1’ ... ’labeln’
specifies labels for the reference lines requested by the VREF= option. The number
of labels must equal the number of lines. Enclose each label in quotes. Labels can be
up to 16 characters.
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VREFLABPOS= n
specifies the horizontal position of the VREFLABEL= label, as described in the fol-
lowing table. By default,n=1.

n Label Position
1 left-justified in plot area
2 right-justified in plot area
3 left-justified in right margin

VZERO
forces the origin to be included in the vertical axis for a box plot.

WAXIS=n
specifies the width in pixels for the axis and frame lines. By default,n=1.

WGRID=n
specifies the width in pixels for grid lines requested with the ENDGRID and GRID
options. By default,n=1.

WOVERLAY= (value-list)
specifies the widths in pixels for the line segments connecting points on overlay plots.
Widths in the WOVERLAY= list are matched with variables in the corresponding
positions in the OVERLAY= list. By default, all overlay widths are 1.

INSET Statement
INSET keywords < / options>;

You can use any number of INSET statements in the BOXPLOT procedure. Each
INSET statement produces one inset and must follow a PLOT statement. The inset
appears in all panels produced by the last PLOT statement preceding it. The data
requested using thekeywordsare displayed in the order in which they are specified.
Summary statistics requested with an INSET statement are calculated using the ob-
servations in all groups.

keywords identify summary statistics or other data to be displayed in the in-
set. By default, inset statistics are identified with appropriate la-
bels, and numeric values are printed using appropriate formats.
However, you can provide customized labels and formats. You pro-
vide the customized label by specifying thekeywordfor that statis-
tic followed by an equal sign (=) and the label in quotes. Labels
can have up to 24 characters. You provide the numeric format in
parentheses after thekeyword. Note that if you specify both a label
and a format for a statistic, the label must appear before the format.

The keywords are listed inTable 18.2.

options control the appearance of the inset.Table 18.3lists all the options
in the INSET statement. Complete descriptions for each option
follow.
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Table 18.2. INSET Statement Keywords
DATA= (label, value) pairs fromSAS-data-set
MEAN mean of all observations
MIN minimum observed value
MAX maximum observed value
NMIN minimum group size
NMAX maximum group size
NOBS number of observations in box plot
STDDEV pooled standard deviation

The DATA= keyword specifies a SAS data set containing (label, value) pairs to be dis-
played in an inset. The data set must contain the variables–LABEL– and–VALUE– .

–LABEL– is a character variable of length 24 or less whose values provide labels for
inset entries.–VALUE– can be character or numeric, and provides values displayed
in the inset. The label and value from each observation in the DATA= data set occupy
one line in the inset.

Thepooled standard deviationrequested with the STDDEV keyword is defined as

sp =

√∑N
i=1 s2

i (ni − 1)∑N
i=1 (ni − 1)

whereN is the number of groups,ni is the size of theith group, ands2
i is the variance

of theith group.

Table 18.3. INSET Options
CFILL=color | BLANK specifies color of inset background

CFILLH=color specifies color of header background

CFRAME=color specifies color of frame

CHEADER=color specifies color of header text

CSHADOW=color specifies color of drop shadow

CTEXT=color specifies color of inset text

DATA specifies data units for POSITION=(x, y)
coordinates

FONT=font specifies font of text

FORMAT=format specifies format of values in inset

HEADER=’quoted string’ specifies header text

HEIGHT=value specifies height of inset text

NOFRAME suppresses frame around inset

POSITION=position specifies position of inset

REFPOINT=BR|BL|TR|TL specifies reference point of inset positioned
with POSITION=(x, y) coordinates

Following are descriptions of the options that you can specify in the INSET statement
after a slash (/).
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CFILL=color | BLANK
specifies the color of the inset background (including the header background if you
do not specify the CFILLH= option).

If you do not specify the CFILL= option, then by default, the background is empty.
This means that items that overlap the inset (such as box-and-whisker plots or refer-
ence lines) show through the inset. If you specify any value for the CFILL= option,
then overlapping items no longer show through the inset. Specify CFILL=BLANK
to leave the background uncolored and also to prevent items from showing through
the inset.

CFILLH=color
specifies the color of the header background. By default, if you do not specify a
CFILLH= color, the CFILL= color is used.

CFRAME=color
specifies the color of the frame around the inset. By default, the frame is the same
color as the axis of the plot.

CHEADER=color
specifies the color of the header text. By default, if you do not specify a CHEADER=
color, the CTEXT= color is used.

CSHADOW=color
CS=color

specifies the color of the drop shadow. If you do not specify the CSHADOW= option,
a drop shadow is not displayed.

CTEXT=color
CT=color

specifies the color of the text in the inset. By default, the inset text color is the same
as the other text on the box plot.

DATA
specifies that data coordinates are to be used in positioning the inset with the
POSITION= option. The DATA option is available only when you specify
POSITION= (x, y), and it must be placed immediately after the coordinates(x, y).
See the entry for the POSITION= option.

FONT=font
specifies the font of the text. By default, the font is SIMPLEX if the inset is located
in the interior of the plot, and the font is the same as the other text displayed on the
plot if the inset is located in the exterior of the plot.

FORMAT=format
specifies a format for all the values displayed in an inset. If you specify a format
for a particular statistic, then this format overrides the format you specified with the
FORMAT= option.
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HEADER= ’string’
specifies the header text. Thestring cannot exceed 40 characters. If you do not
specify the HEADER= option, no header line appears in the inset.

HEIGHT=value
specifies the height of the text.

NOFRAME
suppresses the frame drawn around the text.

POSITION=position
POS=position

determines the position of the inset. Thepositioncan be a compass point keyword,
a margin keyword, or a pair of coordinates(x, y). You can specify coordinates in
axis percent units or axis data units. For more information, see“Positioning Insets”
on page 526. By default, POSITION=NW, which positions the inset in the upper left
(northwest) corner of the plot.

REFPOINT=BR | BL | TR | TL
RP=BR | BL | TR | TL

specifies the reference point for an inset that is positioned by a pair of coordinates
with the POSITION= option. Use the REFPOINT= option with POSITION= coor-
dinates. The REFPOINT= option specifies which corner of the inset frame you want
positioned at coordinates(x, y). The keywords BL, BR, TL, and TR represent bottom
left, bottom right, top left, and top right, respectively. The default is REFPOINT=BL.

If you specify the position of the inset as a compass point or margin keyword, the
REFPOINT= option is ignored.

INSETGROUP Statement

INSETGROUP keywords < / options>;

The INSETGROUP statement displays statistics associated with individual groups
on the box plot produced by the last PLOT statement preceding it. No more than
two INSETGROUP statements can be associated with a given PLOT statement: one
above the box plot and one below it. The data requested using thekeywordsare
displayed in the order in which they are specified.

keywords identify summary statistics to be displayed in the insets. By de-
fault, inset statistics are identified with appropriate labels, and nu-
meric values are printed using appropriate formats. However, you
can provide customized labels and formats. You provide the cus-
tomized label by specifying thekeywordfor that statistic followed
by an equal sign (=) and the label in quotes. Labels can have up to
24 characters. You provide the numeric format in parentheses after
thekeyword. Note that if you specify both a label and a format for
a statistic, the label must appear before the format. The keywords
are listed inTable 18.4.
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options control the appearance of the insets.Table 18.5lists all the options
in the INSETGROUP statement. Complete descriptions for each
option follow.

Table 18.4. INSETGROUP Statement Keywords
MEAN group mean
MIN minimum value in group
MAX maximum value in group
N number of observations in group
NHIGH number of outliers above upper fence
NLOW number of outliers below lower fence
NOUT total number of outliers
Q1 first quartile
Q2 second quartile
Q3 third quartile
RANGE range of group values
STDDEV group standard deviation

Table 18.5lists all options in the INSETGROUP statement.

Table 18.5. INSETGROUP Options
CFILL=color | BLANK specifies color of inset background

CFILLH=color specifies color of header background

CFRAME=color specifies color of frame

CHEADER=color specifies color of header text

CTEXT=color specifies color of inset text

FONT=font specifies font of text

FORMAT=format specifies format of values in inset

HEADER=’quoted string’ specifies header text

HEIGHT=value specifies height of inset text

NOFRAME suppresses frame around inset

POSITION=position specifies position of inset

Following are descriptions of the options that you can specify in the INSETGROUP
statement after a slash (/).

CFILL=color
specifies the color of the inset background (including the header background if you
do not specify the CFILLH= option). If you do not specify the CFILL= option, then
by default, the background is empty.

CFILLH=color
specifies the color of the header background. By default, if you do not specify a
CFILLH= color, the CFILL= color is used.
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CFRAME=color
specifies the color of the frame around the inset. By default, the frame is the same
color as the axis of the plot.

CHEADER=color
specifies the color of the header text. By default, if you do not specify a CHEADER=
color, the CTEXT= color is used.

CTEXT=color
CT=color

specifies the color of the inset text. By default, the inset text color is the same as the
other text on the plot.

FONT=font
specifies the font of the inset text. By default, the font is SIMPLEX.

FORMAT=format
specifies a format for all the values displayed in an inset. If you specify a format
for a particular statistic, then this format overrides the format you specified with the
FORMAT= option.

HEADER= ’string’
specifies the header text. Thestring cannot exceed 40 characters. If you do not
specify the HEADER= option, no header line appears in the inset.

HEIGHT=value
specifies the height of the text.

NOFRAME
suppresses the frame drawn around the text.

POSITION=position
POS=position

determines the position of the inset. Valid positions are TOP, TOPOFF, AXIS, and
BOTTOM. By default, POSITION=TOP.

Position Keyword Description
TOP top of plot, immediately above axis frame
TOPOFF top of plot, offset from axis frame
AXIS bottom of plot, immediately above horizontal axis
BOTTOM bottom of plot, below horizontal axis label

BY Statement

BY variables ;

You can specify a BY statement with PROC BOXPLOT to obtain separate box plots
for each group defined by the levels of the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.
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If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the BOXPLOT procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

ID Statement

ID variables ;

The ID statement specifies variables used to identify observations. The ID variables
must be variables in the input data set.

If you specify one of the keywords SCHEMATICID or SCHEMATICIDFAR with
the BOXSTYLE= option, the value of an ID variable is used to label each extreme
observation. When you specify a BOX= data set, the label values come from the vari-
able–ID– , if it is present in the data set. When you specify a DATA= or HISTORY=
input data set, or a BOX= data set that does not contain the variable–ID– , the labels
come from the first variable listed in the ID statement. If there is no ID statement, the
outliers are not labeled.

Details

Summary Statistics Represented by Box Plots

Table 18.6lists the summary statistics represented in each box-and-whisker plot.

Table 18.6. Summary Statistics Represented by Box Plots
Group Summary Statistic Feature of Box-and-Whisker Plot
Maximum Endpoint of upper whisker
Third quartile (75th percentile) Upper edge of box
Median (50th percentile) Line inside box
Mean Symbol marker
First quartile (25th percentile) Lower edge of box
Minimum Endpoint of lower whisker

Note that you can request different box plot styles, as discussed in the section“Styles
of Box Plots”on page 522, and as illustrated inExample 18.2on page 538.
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Output Data Sets

OUTBOX= Data Set

The OUTBOX= data set saves group summary statistics and outlier values. The fol-
lowing variables can be saved:

• the group variable
• the variable–VAR– , containing the analysis variable name
• the variable–TYPE– , identifying features of box-and-whisker plots
• the variable–VALUE– , containing values of box-and-whisker plot features
• the variable–ID– , containing labels for outliers
• the variable–HTML– , containing URLs associated with plot features

–ID– is included in the OUTBOX= data set only if one of the keywords
SCHEMATICID or SCHEMATICIDFAR is specified with the BOXSTYLE= option.

–HTML– is present only if one or more of the HTML=, OUTHIGHHTML=, or
OUTLOWHTML= options are specified.

Each observation in an OUTBOX= data set records the value of a single feature of
one group’s box-and-whisker plot, such as its mean. The–TYPE– variable identifies
the feature whose value is recorded in–VALUE– . The following table lists valid

–TYPE– variable values:

Table 18.7. Valid –TYPE– Values in an OUTBOX= Data Set

–TYPE– Value Description
N group size
MIN minimum group value
Q1 group first quartile
MEDIAN group median
MEAN group mean
Q3 group third quartile
MAX group maximum value
LOW low outlier value
HIGH high outlier value
LOWHISKR low whisker value, if different from MIN
HIWHISKR high whisker value, if different from MAX
FARLOW low far outlier value
FARHIGH high far outlier value

Additionally, the following variables, if specified, are included:

• block-variables
• symbol-variable
• BY variables
• ID variables
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OUTHISTORY= Data Set

The OUTHISTORY= data set saves group summary statistics. The following vari-
ables are saved:

• the group variable
• group minimum variables named byanalysis-variablesuffixed withL
• group first-quartile variables named byanalysis-variablesuffixed with1
• group mean variables named byanalysis-variablesuffixed withX
• group median variables named byanalysis-variablesuffixed withM
• group third-quartile variables named byanalysis-variablesuffixed with3
• group maximum variables named byanalysis-variablesuffixed withH
• group size variables named byanalysis-variablesuffixed withN

Subgroup summary variables are created for eachanalysis-variablespecified in the
PLOT statement. For example, consider the following statements:

proc boxplot data=steel;
plot (width diameter)*lot / outhistory=summary;

run;

The data set SUMMARY contains variables namedLOT, WIDTHL, WIDTH1,
WIDTHM, WIDTHX, WIDTH3, WIDTHH, WIDTHN, DIAMTERL, DIAMTER1,
DIAMTERM, DIAMTERX, DIAMTER3, DIAMTERH, andDIAMTERN.

Given an analysis variable name that contains the maximum of 32 characters, the
procedure first shortens the name to its first 16 characters and its last 15 characters,
and then it adds the suffix.

Additionally, the following variables, if specified, are included:

• BY variables
• block-variables
• symbol-variable
• ID variables

Note that an OUTHISTORY= data set does not contain outlier values, and therefore
cannot be used, in general, to save a schematic box plot. You can use an OUTBOX=
data set to save a schematic box plot summary.

Input Data Sets

DATA= Data Set

You can read data (analysis variable measurements) from a data set specified with the
DATA= option in the PROC BOXPLOT statement. Each analysis variable specified
in the PLOT statement must be a SAS variable in the data set. This variable provides
measurements that are organized into groups indexed by the group variable. The
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group variable, specified in the PLOT statement, must also be a SAS variable in the
DATA= data set. Each observation in a DATA= data set must contain a value for
each analysis variable and a value for the group variable. If theith group containsni

measurements, there should beni consecutive observations for which the value of the
group variable is the index of theith group. For example, if each group contains 20
items and there are 30 groups, the DATA= data set should contain 600 observations.
Other variables that can be read from a DATA= data set include

• block-variables

• symbol-variable

• BY variables

• ID variables

BOX= Data Set

You can read group summary statistics and outlier information from a BOX= data set
specified in the PROC BOXPLOT statement. This allows you to reuse OUTBOX=
data sets that have been created in previous runs of the BOXPLOT procedure to re-
produce schematic box plots.

A BOX= data set must contain the following variables:

• the group variable
• –VAR– , containing the analysis variable name
• –TYPE– , identifying features of box-and-whisker plots
• –VALUE– , containing values of those features

Each observation in a BOX= data set records the value of a single feature of one
group’s box-and-whisker plot, such as its mean. The–TYPE– variable identifies the
feature whose value is recorded in a given observation. The following table lists valid

–TYPE– variable values:

Table 18.8. Valid –TYPE– Values in a BOX= Data Set

–TYPE– Value Description
N group size
MIN minimum group value
Q1 group first quartile
MEDIAN group median
MEAN group mean
Q3 group third quartile
MAX group maximum value
LOW low outlier value
HIGH high outlier value
LOWHISKR low whisker value, if different from MIN
HIWHISKR high whisker value, if different from MAX
FARLOW low far outlier value
FARHIGH high far outlier value
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The features identified by–TYPE– values N, MIN, Q1, MEDIAN, MEAN, Q3, and
MAX are required for each group.

Other variables that can be read from a BOX= data set include:

• the variable–ID– , containing labels for outliers
• the variable–HTML– , containing URLs to be associated with features on box

plots
• block-variables
• symbol-variable
• BY variables
• ID variables

When you specify one of the keywords SCHEMATICID or SCHEMATICIDFAR
with the BOXSTYLE= option, values of–ID– are used as outlier labels. If–ID–
does not exist in the BOX= data set, the values of the first variable listed in the ID
statement are used.

HISTORY= Data Set

You can read group summary statistics from a HISTORY= data set specified in the
PROC BOXPLOT statement. This allows you to reuse OUTHISTORY= data sets that
have been created in previous runs of the BOXPLOT procedure or to read output data
sets created with SAS summarization procedures, such as PROC UNIVARIATE.

Note that a HISTORY= data set doesnot contain outlier information. Therefore, in
general you cannot reproduce a schematic box plot from summary statistics saved
in an OUTHISTORY= data set. To save and reproduce schematic box plots, use
OUTBOX= and BOX= data sets.

A HISTORY= data set must contain the following:

• the group variable
• a group minimum variable for each analysis variable
• a group first-quartile variable for each analysis variable
• a group median variable for each analysis variable
• a group mean variable for each analysis variable
• a group third-quartile variable for each analysis variable
• a group maximum variable for each analysis variable
• a group size variable for each analysis variable

The names of the group summary statistics variables must be the analysis variable
name concatenated with the following special suffix characters:
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Group Summary Statistic Suffix Character
group minimum L
group first-quartile 1
group median M
group mean X
group third-quartile 3
group maximum H
group size N

For example, consider the following statements:

proc boxplot history=summary;
plot (weight yldstren) * batch;

run;

The data set SUMMARY must include the variablesBATCH, WEIGHTL,
WEIGHT1, WEIGHTM, WEIGHTX, WEIGHT3, WEIGHTH, WEIGHTN,
YLDSRENL, YLDSREN1, YLDSRENM, YLDSRENX, YLDSREN3,
YLDSRENH, andYLDSRENN.

Note that if you specify an analysis variable name that contains 32 characters, the
names of the summary variables must be formed from the first 16 characters and
the last 15 characters of the analysis variable name, suffixed with the appropriate
character.

Other variables that can be read from a HISTORY= data set include

• block-variables
• symbol-variable
• BY variables
• ID variables

Styles of Box Plots

A box-and-whisker plot is displayed for the measurements in each group on the box
plot. The skeletal style of the box-and-whisker plot shown inFigure 18.3is the
default. Figure 18.5illustrates a typical schematic box plot and the locations of
the fences (which are not displayed in actual output). See the description of the
BOXSTYLE= optionon page 493 for complete details.
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Figure 18.5. BOXSTYLE= SCHEMATIC

You can draw connecting lines between adjacent box-and-whisker plots using the
BOXCONNECT=keywordoption. For example, BOXCONNECT=MEAN connects
the points representing the means of adjacent groups. Other available keywords are
MIN, Q1, MEDIAN, Q3, and MAX. Specifying BOXCONNECT without a keyword
is equivalent to specifying BOXCONNECT=MEAN. You can specify the color for
the connecting lines with the CCONNECT= option.

Percentile Definitions

You can use the PCTLDEF= option to specify one of five definitions for computing
quantile statistics (percentiles). Suppose thatn equals the number of nonmissing val-
ues for a variable and thatx1, x2, . . . , xn represents the ordered values of the analysis
variable. For thetth percentile, setp = t/100.

For the following definitions numbered 1, 2, 3, and 5, expressnp as

np = j + g

wherej is the integer part ofnp, andg is the fractional part ofnp. For definition 4,
let

(n + 1)p = j + g

Thetth percentile (call ity) can be defined as follows:

PCTLDEF=1 weighted average atxnp

y = (1− g)xj + gxj+1
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wherex0 is taken to bex1

PCTLDEF=2 observation numbered closest tonp

y = xi

wherei is the integer part ofnp+1/2 if g 6= 1/2. If g = 1/2, then
y = xj if j is even, ory = xj+1 if j is odd.

PCTLDEF=3 empirical distribution function

y = xj if g = 0

y = xj+1 if g > 0

PCTLDEF=4 weighted average aimed atxp(n+1)

y = (1− g)xj + gxj+1

wherexn+1 is taken to bexn

PCTLDEF=5 empirical distribution function with averaging

y = (xj + xj+1)/2 if g = 0

y = xj+1 if g > 0

Missing Values

An observation read from a DATA= data set is not analyzed if the value of the group
variable is missing. For a particular analysis variable, an observation read from a
DATA= data set is not analyzed if the value of the analysis variable is missing.

Missing values of analysis variables generally lead to unequal group sizes.

Continuous Group Variables

By default, the PLOT statement treats numerical group variable values asdiscrete
values and spaces the boxes evenly on the plot. The following statements produce the
plot shown inFigure 18.6:

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day;
run;

The labels on the horizontal axis inFigure 18.6do not represent 10 consecutive days,
but the box-and-whisker plots are evenly spaced.
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Figure 18.6. Box Plot with Discrete Group Variable

In order to treat the group variable ascontinuous, you can specify the CONTINUOUS
or HAXIS= option. Either option produces a box plot with a horizontal axis scaled
for continuous group variable values.

The following statements produce the plot shown inFigure 18.7. Note that the val-
ues on the horizontal axis represent consecutive days. (The TURNHLABEL option
orients the horizontal axis labels vertically so there is room to display them all.) Box-
and-whisker plots are not produced for days when no turbine data was collected.

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day / turnhlabel
continuous;

run;
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Figure 18.7. Box Plot with Continuous Group Variable

Positioning Insets

This section provides details on three different methods of positioning INSET boxes
using the POSITION= option. With the POSITION= option, you can specify

• compass points
• keywords for margin positions
• coordinates in data units or percent axis units

Positioning the Inset Using Compass Points

You can specify the eight compass points N, NE, E, SE, S, SW, W, and NW as key-
words for the POSITION= option. The following statements create the display in
Figure 18.8, which demonstrates all eight compass positions. The default is NW.

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day;
inset nobs / height=3 cfill=blank header=’NW’ pos=nw;
inset nobs / height=3 cfill=blank header=’N ’ pos=n ;
inset nobs / height=3 cfill=blank header=’NE’ pos=ne;
inset nobs / height=3 cfill=blank header=’E ’ pos=e ;
inset nobs / height=3 cfill=blank header=’SE’ pos=se;
inset nobs / height=3 cfill=blank header=’S ’ pos=s ;
inset nobs / height=3 cfill=blank header=’SW’ pos=sw;
inset nobs / height=3 cfill=blank header=’W ’ pos=w ;

run;
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Figure 18.8. Insets Positioned Using Compass Points

Positioning the Inset in the Margins

Using the INSET statement you can also position an inset in one of the four mar-
gins surrounding the plot area using the margin keywords LM, RM, TM, or BM, as
illustrated inFigure 18.9.

Plot Area

LM

BM

TM

RM

Figure 18.9. Positioning Insets in the Margins
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For an example of an inset placed in the top margin, seeFigure 18.2. Margin positions
are recommended if a large number of statistics are listed in the INSET statement. If
you attempt to display a lengthy inset in the interior of the plot, it is likely that the
inset will collide with the data display.

Positioning the Inset Using Coordinates

You can also specify the position of the inset with coordinates: POSITION= (x, y).
The coordinates can be given in axis percent units (the default) or in axis data units.

Data Unit Coordinates

If you specify the DATA option immediately following the coordinates, the inset
is positioned using axis data units. For example, the following statements place the
bottom left corner of the inset at 07JUL on the horizontal axis and 3950 on the vertical
axis:

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day;
inset nobs /

header = ’Position=(07JUL,3950)’
position = (’07JUL94’d, 3950) data;

run;

The box plot is displayed inFigure 18.10. By default, the specified coordinates deter-
mine the position of the bottom left corner of the inset. You can change this reference
point with the REFPOINT= option, as in the next example.

Figure 18.10. Inset Positioned Using Data Unit Coordinates
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Axis Percent Unit Coordinates

If you do not use the DATA option, the inset is positioned using axis percent units.
The coordinates of the bottom left corner of the display are(0, 0), while the upper
right corner is(100, 100). For example, the following statements create a box plot
with two insets, both positioned using coordinates in axis percent units:

title ’Box Plot for Power Output’;
proc boxplot data=Turbine;

plot kwatts*day;
inset nmin / position = (5,25)

header = ’Position=(5,25)’
height = 3
cfill = blank
refpoint = tl;

inset nmax / position = (95,95)
header = ’Position=(95,95)’
height = 3
cfill = blank
refpoint = tr;

run;

The display is shown inFigure 18.11. Notice that the REFPOINT= option is used to
determine which corner of the inset is to be placed at the coordinates specified with
the POSITION= option. The first inset has REFPOINT=TL, so the top left corner of
the inset is positioned 5% of the way across the horizontal axis and 25% of the way
up the vertical axis. The second inset has REFPOINT=TR, so the top right corner of
the inset is positioned 95% of the way across the horizontal axis and 95% of the way
up the vertical axis. Note also that coordinates in axis percent units must bebetween
0 and 100.

Figure 18.11. Inset Positioned Using Axis Percent Unit Coordinates
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Displaying Blocks of Data
To display data organized in blocks of consecutive observations, specify one or more
block-variablesin parentheses after thegroup-variablein the PLOT statement. The
block variables must be variables in the input data set. The procedure displays a
legend identifying blocks of consecutive observations with identical values of the
block variables. The legend displays one track of values for each block variable
containing formatted values of the block variable.

The values of a block variable must be the same for all observations with the same
value of the group variable. In other words, groups must be nested within blocks
determined by block variables.

The following statements create a SAS data set containing diameter measurements
for a part produced on three different machines:

data Parts;
length machine $ 4;
input sample machine $ @;
do i= 1 to 4;

input diam @;
output;

end;
drop i;

datalines;
1 A386 4.32 4.55 4.16 4.44
2 A386 4.49 4.30 4.52 4.61
3 A386 4.44 4.32 4.25 4.50
4 A386 4.55 4.15 4.42 4.49
5 A386 4.21 4.30 4.29 4.63
6 A386 4.56 4.61 4.29 4.56
7 A386 4.63 4.30 4.41 4.58
8 A386 4.38 4.65 4.43 4.44
9 A386 4.12 4.49 4.30 4.36

10 A455 4.45 4.56 4.38 4.51
11 A455 4.62 4.67 4.70 4.58
12 A455 4.33 4.23 4.34 4.58
13 A455 4.29 4.38 4.28 4.41
14 A455 4.15 4.35 4.28 4.23
15 A455 4.21 4.30 4.32 4.38
16 C334 4.16 4.28 4.31 4.59
17 C334 4.14 4.18 4.08 4.21
18 C334 4.51 4.20 4.28 4.19
19 C334 4.10 4.33 4.37 4.47
20 C334 3.99 4.09 4.47 4.25
21 C334 4.24 4.54 4.43 4.38
22 C334 4.23 4.48 4.31 4.57
23 C334 4.27 4.40 4.32 4.56
24 C334 4.70 4.65 4.49 4.38
;

The following statements create a box plot for the data in theParts data set grouped
into blocks by theblock-variableMachine. The plot is shown inFigure 18.12.
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title ’Box Plot for Diameter Grouped By Machine’;
proc boxplot data=Parts;

plot diam*sample (machine);
label sample = ’Sample Number’

machine = ’Machine’
diam = ’Diameter’;

run;

The unique consecutive values ofMachine (A386, A455, and C334) are displayed
in a legend above the plot. Note the LABEL statement used to provide labels for the
axes and for the block legend.

Figure 18.12. Box Plot Using a Block Variable

By default, the block legend is placed above the plot, as inFigure 18.12. You can con-
trol the position of the legend with the BLOCKPOS=n option; see theBLOCKPOS=
optionon page 493.

By default, block variable values that are too long to fit into the available space in
a block legend are not displayed. You can specify the BLOCKLABTYPE= option
to display lengthy labels. Specify BLOCKLABTYPE=SCALED to scale down the
text size of the values so they all fit. Choose BLOCKLABTYPE=TRUNCATED to
truncate lengthy values. You can also use BLOCKLABTYPE=height to specify a
text height in vertical percent screen units for the values.

You can control the position of legend labels with the BLOCKLABELPOS=keyword
option. The valid keywords are ABOVE (the default, as shown inFigure 18.12) and
LEFT.
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Clipping Extreme Values

By default a box plot’s vertical axis is scaled to accommodate all the values in all
groups. If the variation between groups is large with respect to the variation within
groups, or if some groups contain extreme outlier values, the vertical axis scale can
become so large that the box-and-whisker plots are compressed. In such cases, you
can clip the extreme values so that a more readable plot is displayed, as illustrated in
the following example.

A company produces copper tubing. The diameter measurements (in millimeters) for
15 batches of five tubes each are provided in the data set NEWTUBES.

data newtubes;
label diameter=’Diameter in mm’;
do batch = 1 to 15;

do i = 1 to 5;
input diameter @@;
output;

end;
end;

datalines;
69.13 69.83 70.76 69.13 70.81
85.06 82.82 84.79 84.89 86.53
67.67 70.37 68.80 70.65 68.20
71.71 70.46 71.43 69.53 69.28
71.04 71.04 70.29 70.51 71.29
69.01 68.87 69.87 70.05 69.85
50.72 50.49 49.78 50.49 49.69
69.28 71.80 69.80 70.99 70.50
70.76 69.19 70.51 70.59 70.40
70.16 70.07 71.52 70.72 70.31
68.67 70.54 69.50 69.79 70.76
68.78 68.55 69.72 69.62 71.53
70.61 70.75 70.90 71.01 71.53
74.62 56.95 72.29 82.41 57.64
70.54 69.82 70.71 71.05 69.24
;
run;

The following statements create the box plot shown inFigure 18.13for the tube
diameter:

symbol value=plus;
title ’Box Plot for New Copper Tubes’ ;
proc boxplot data=newtubes;

plot diameter*batch;
run;

Note that the diameters in batch 2 are significantly larger, and those in batch 7 sig-
nificantly smaller, than those in most of the other batches. The default vertical axis
scaling causes the box-and-whisker plots to be compressed.
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Figure 18.13. Compressed Box Plots

You can request clipping by specifying the CLIPFACTOR=factor option, wherefac-
tor is a value greater than one. Clipping is applied as follows:

1. The mean of the first quartile values (Q1) and the mean of the third quartile
values (Q3) are computed across all groups.

2. Any plotted statistic greater thanymax or less thanymin is ignored during verti-
cal axis scaling, where

ymax = Q1 + (Q3−Q1)× factor

and

ymin = Q3− (Q3−Q1)× factor

Notes:

• Clipping is applied only to the plotted statistics and not to the statistics saved
in an output data set.

• A special symbol is used for clipped points (the default symbol is a square),
and a legend is added to the chart indicating the number of boxes that were
clipped.
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The following statements create a box plot, shown inFigure 18.14, that use a clipping
factor of 1.5:

symbol value=plus;
title ’Box Plot for New Copper Tubes’ ;
proc boxplot data=newtubes;

plot diameter*batch /
clipfactor = 1.5;

run;

Figure 18.14. Box Plot with Clip Factor of 1.5

In Figure 18.14the extreme values are clipped, making the remaining boxes more
readable. The box-and-whisker plots for batches 2 and 7 are clipped completely,
while batch 14 is clipped at both the top and bottom. Clipped points are marked with
a square, and a clipping legend is added at the lower right of the display.

Other clipping options are available, as illustrated by the following statements:

symbol value=plus;
title ’Box Plot for New Copper Tubes’ ;
proc boxplot data=newtubes;

plot diameter*batch /
clipfactor = 1.5
clipsymbol = dot
cliplegpos = top
cliplegend = ’# Clipped Boxes’
clipsubchar = ’#’;

run;
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Figure 18.15. Box Plot Using Clipping Options

Specifying CLIPSYMBOL=DOT marks the clipped points with a dot instead of
the default square. Specifying CLIPLEGPOS=TOP positions the clipping leg-
end at the top of the chart. The options CLIPLEGEND=’# Clipped Boxes’ and
CLIPSUBCHAR=’#’ request the clipping legend3 Clipped Boxes. For more in-
formation about the clipping options, see the appropriate entries in“PLOT Statement
Options.”
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Examples

This section provides advanced examples of the PLOT statement.

Example 18.1. Using Box Plots to Compare Groups

In the following example, a box plot is used to compare the delay times for airline
flights during the Christmas holidays with the delay times prior to the holiday period.
The following statements create a data set namedTimes with the delay times in
minutes for 25 flights each day. When a flight is canceled, the delay is recorded as a
missing value.

data Times;
informat day date7. ;
format day date7. ;
input day @ ;
do flight=1 to 25;

input delay @ ;
output;
end;

datalines;
16DEC88 4 12 2 2 18 5 6 21 0 0

0 14 3 . 2 3 5 0 6 19
7 4 9 5 10

17DEC88 1 10 3 3 0 1 5 0 . .
1 5 7 1 7 2 2 16 2 1
3 1 31 5 0

18DEC88 7 8 4 2 3 2 7 6 11 3
2 7 0 1 10 2 3 12 8 6
2 7 2 4 5

19DEC88 15 6 9 0 15 7 1 1 0 2
5 6 5 14 7 20 8 1 14 3

10 0 1 11 7
20DEC88 2 1 0 4 4 6 2 2 1 4

1 11 . 1 0 6 5 5 4 2
2 6 6 4 0

21DEC88 2 6 6 2 7 7 5 2 5 0
9 2 4 2 5 1 4 7 5 6
5 0 4 36 28

22DEC88 3 7 22 1 11 11 39 46 7 33
19 21 1 3 43 23 9 0 17 35
50 0 2 1 0

23DEC88 6 11 8 35 36 19 21 . . 4
6 63 35 3 12 34 9 0 46 0
0 36 3 0 14

24DEC88 13 2 10 4 5 22 21 44 66 13
8 3 4 27 2 12 17 22 19 36
9 72 2 4 4

25DEC88 4 33 35 0 11 11 10 28 34 3
24 6 17 0 8 5 7 19 9 7
21 17 17 2 6

26DEC88 3 8 8 2 7 7 8 2 5 9



Example 18.1. Using Box Plots to Compare Groups � 537

2 8 2 10 16 9 5 14 15 1
12 2 2 14 18

;
run;

In the following statements, the MEANS procedure is used to count the number of
canceled flights for each day. This information is then added to the data setTimes.

proc means data=Times noprint;
var delay;
by day;
output out=Cancel nmiss=ncancel;

data Times;
merge Times Cancel;
by day;

run;

The following statements create a data set namedWeather that contains information
about possible causes for delays. This data set is merged with the data setTimes.

data Weather;
informat day date7. ;
format day date7. ;
length reason $ 16 ;

input day flight reason & ;
datalines;
16DEC88 8 Fog
17DEC88 18 Snow Storm
17DEC88 23 Sleet
21DEC88 24 Rain
21DEC88 25 Rain
22DEC88 7 Mechanical
22DEC88 15 Late Arrival
24DEC88 9 Late Arrival
24DEC88 22 Late Arrival
;
run;

data Times;
merge Times Weather;
by day flight;

run;

The following statements create a box plot for the complete set of data.

symbol1 v=plus c=black;
symbol2 v=square c=black;
symbol3 v=triangle c=black;
title ’Box Plot for Airline Delays’;
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proc boxplot data=Times;
plot delay*day = ncancel /

nohlabel
symbollegend = legend1;

legend1 label = (’Cancellations:’);
label delay = ’Delay in Minutes’;

run;

The box plot is shown inOutput 18.1.1. The level of thesymbol-variablencancel
determines the symbol marker for each group mean, and the SYMBOLLEGEND=
option controls the appearance of the legend for the symbols. The NOHLABEL
option suppresses the label for the horizontal axis.

Output 18.1.1. Box Plot for Airline Data

The delay distributions from December 22 through December 25 are drastically dif-
ferent from the delay distributions during the pre-holiday period. Both the mean
delay and the variability of the delays are much greater during the holiday period.

Example 18.2. Creating Various Styles of Box-and-Whisker
Plots

The following example uses the flight delay data of the preceding example to illustrate
how you can create box plots with various styles of box-and-whisker plots. The
following statements create a plot, shown inOutput 18.2.1, that displays skeletal
box-and-whisker plots:
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symbol1 v=plus c=black;
title ’Analysis of Airline Departure Delays’;
title2 ’BOXSTYLE=SKELETAL’;
proc boxplot data=Times;

plot delay*day /
boxstyle = skeletal
nohlabel;

label delay = ’Delay in Minutes’;
run;

In a skeletal box-and-whisker plot, the whiskers are drawn from the quartiles to the
extreme values of the group. The skeletal box-and-whisker plot is the default style;
consequently, you can also request this style by omitting the BOXSTYLE= option.

Output 18.2.1. BOXSTYLE=SKELETAL

The following statements request a box plot with schematic box-and-whisker plots:

symbol1 v=plus c=black;
title ’Analysis of Airline Departure Delays’;
title2 ’BOXSTYLE=SCHEMATIC’;
proc boxplot data=Times;

plot delay*day /
boxstyle = schematic
nohlabel;

label delay = ’Delay in Minutes’;
run;
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The plot is shown inOutput 18.2.2. When BOXSTYLE=SCHEMATIC is specified,
the whiskers are drawn to the most extreme points in the group that lie within the
fences. The upper fenceis defined as the third quartile (represented by the upper
edge of the box) plus 1.5 times the interquartile range (IQR). Thelower fenceis
defined as the first quartile (represented by the lower edge of the box) minus 1.5 times
the interquartile range. Observations outside the fences are identified with a special
symbol. The default symbol is a square, and you can specify the shape and color for
this symbol with the IDSYMBOL= and IDCOLOR= options. Serifs are added to the
whiskers by default. For further details, see the entry for theBOXSTYLE= optionon
page 493.

Output 18.2.2. BOXSTYLE=SCHEMATIC

The following statements create a box plot with schematic box-and-whisker plots in
which the observations outside the fences are labeled:

symbol1 v=plus c=black;
title ’Analysis of Airline Departure Delays’;
title2 ’BOXSTYLE=SCHEMATICID’;
proc boxplot data=Times;

plot delay*day /
boxstyle = schematicid
nohlabel;

id reason;
label delay = ’Delay in Minutes’;

run;
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The plot is shown inOutput 18.2.3. If you specify BOXSTYLE=SCHEMATICID,
schematic box-and-whisker plots are displayed in which the value of the first ID vari-
able (in this case,reason) is used to label each observation outside the fences.

Output 18.2.3. BOXSTYLE=SCHEMATICID

The following statements create a box plot with schematic box-and-whisker plots in
which only the extreme observations outside the fences are labeled:

title ’Analysis of Airline Departure Delays’;
title2 ’BOXSTYLE=SCHEMATICIDFAR’;
symbol v=plus color=black;
proc boxplot data=Times;

plot delay*day /
boxstyle = schematicidfar
nohlabel;

id reason;
label delay = ’Delay in Minutes’;

run;

The plot is shown inOutput 18.2.4. If you specify BOXSTYLE=SCHEMATICIDFAR,
schematic plots are displayed in which the value of the first ID variable is used
to label each observation outside thelower and upper far fences. The lower and
upper far fences are located3×IQR below the25th percentile and above the75th
percentile, respectively. Observations between the fences and the far fences are
identified with a symbol but are not labeled.
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Output 18.2.4. BOXSTYLE=SCHEMATICIDFAR

Other options for controlling the display of box-and-whisker plots include the
BOXWIDTH=, BOXWIDTHSCALE=, CBOXES=, CBOXFILL=, and LBOXES=
options.

Example 18.3. Creating Notched Box-and-Whisker Plots

The following statements use the flight delay data ofExample 18.1to illustrate how
to create box-and-whisker plots with notches:

symbol1 v=plus c=black;
title ’Analysis of Airline Departure Delays’;
title2 ’Using the NOTCHES Option’;
proc boxplot data=Times;

plot delay*day /
boxstyle = schematicid
nohlabel
notches;

id reason;
label delay = ’Delay in Minutes’;

run;

The notches, requested with the NOTCHES option, measure the significance of the
difference between two medians. The medians of two box plots are significantly
different at approximately the0.05 level if the corresponding notches do not overlap.
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For example, inOutput 18.3.1, the median for December 20 is significantly different
from the median for December 24.

Output 18.3.1. Notched Side-by-Side Box-and-Whisker Plots

Example 18.4. Creating Box-and-Whisker Plots with Varying
Widths

The following example shows how to create a box plot with box-and-whisker plots
whose widths vary proportionately with the group size. The following statements
create a SAS data set namedTimes2 that contains flight departure delays (in minutes)
recorded daily for eight consecutive days:

data Times2;
label delay = ’Delay in Minutes’;
informat day date7. ;
format day date7. ;
input day @ ;
do flight=1 to 25;

input delay @ ;
output;
end;

datalines;
01MAR90 12 4 2 2 15 8 0 11 0 0

0 12 3 . 2 3 5 0 6 25
7 4 9 5 10

02MAR90 1 . 3 . 0 1 5 0 . .
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1 5 7 . 7 2 2 16 2 1
3 1 31 . 0

03MAR90 6 8 4 2 3 2 7 6 11 3
2 7 0 1 10 2 5 12 8 6
2 7 2 4 5

04MAR90 12 6 9 0 15 7 1 1 0 2
5 6 5 14 7 21 8 1 14 3

11 0 1 11 7
05MAR90 2 1 0 4 . 6 2 2 1 4

1 11 . 1 0 . 5 5 . 2
3 6 6 4 0

06MAR90 8 6 5 2 9 7 4 2 5 1
2 2 4 2 5 1 3 9 7 8
1 0 4 26 27

07MAR90 9 6 6 2 7 8 . . 10 8
0 2 4 3 . . . 7 . 6
4 0 . . .

08MAR90 1 6 6 2 8 8 5 3 5 0
8 2 4 2 5 1 6 4 5 10
2 0 4 1 1

run;

The following statements create the box plot shown inOutput 18.4.1:

title ’Analysis of Airline Departure Delays’;
title2 ’Using the BOXWIDTHSCALE= Option’;
symbol1 v=plus c=black;
proc boxplot data=Times2;

plot delay*day /
nohlabel
boxstyle = schematic
boxwidthscale = 1
bwslegend;

run;

The BOXWIDTHSCALE=value option specifies that the width of box plots is to
vary proportionately to a particular function of the group sizen. The function is de-
termined by thevalueand is identified on the plot with a legend if the BWSLEGEND
option is specified. The BOXWIDTHSCALE= option is useful in situations where
the group sizes vary widely.
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Output 18.4.1. Box Plot with Box-and-Whisker Plots of Varying Widths
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Chapter 19
The CALIS Procedure
Overview

Structural equation modeling using covariance analysis is an important statistical
tool in economics and behavioral sciences. Structural equations express relation-
ships among several variables that can be either directly observed variables (manifest
variables) or unobserved hypothetical variables (latent variables). For an introduction
to latent variable models, refer to Loehlin (1987), Bollen (1989b), Everitt (1984), or
Long (1983); and for manifest variables, refer to Fuller (1987).

In structural models, as opposed to functional models, all variables are taken to be
random rather than having fixed levels. For maximum likelihood (default) and gen-
eralized least-squares estimation in PROC CALIS, the random variables are assumed
to have an approximately multivariate normal distribution. Nonnormality, especially
high kurtosis, can produce poor estimates and grossly incorrect standard errors and
hypothesis tests, even in large samples. Consequently, the assumption of normality
is much more important than in models with nonstochastic exogenous variables. You
should remove outliers and consider transformations of nonnormal variables before
using PROC CALIS with maximum likelihood (default) or generalized least-squares
estimation. If the number of observations is sufficiently large, Browne’s asymptoti-
cally distribution-free (ADF) estimation method can be used.

You can use the CALIS procedure to estimate parameters and test hypotheses for
constrained and unconstrained problems in

• multiple and multivariate linear regression

• linear measurement-error models

• path analysis and causal modeling

• simultaneous equation models with reciprocal causation

• exploratory and confirmatory factor analysis of any order

• canonical correlation

• a wide variety of other (non)linear latent variable models

The parameters are estimated using the criteria of

• unweighted least squares (ULS)

• generalized least squares (GLS, with optional weight matrix input)

• maximum likelihood (ML, for multivariate normal data)

• weighted least squares (WLS, ADF, with optional weight matrix input)

• diagonally weighted least squares (DWLS, with optional weight matrix input)
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The default weight matrix for generalized least-squares estimation is the sample co-
variance or correlation matrix. The default weight matrix for weighted least-squares
estimation is an estimate of the asymptotic covariance matrix of the sample covari-
ance or correlation matrix. In this case, weighted least-squares estimation is equiv-
alent to Browne’s (1982, 1984) asymptotic distribution-free estimation. The default
weight matrix for diagonally weighted least-squares estimation is an estimate of the
asymptotic variances of the input sample covariance or correlation matrix. You can
also use an input data set to specify the weight matrix in GLS, WLS, and DWLS
estimation.

You can specify the model in several ways:

• You can do a constrained (confirmatory) first-order factor analysis or compo-
nent analysis using the FACTOR statement.

• You can specify simple path models using an easily formulated list-type RAM
statement similar to that originally developed by J. McArdle (McArdle and
McDonald 1984).

• If you have a set of structural equations to describe the model, you can use
an equation-type LINEQS statement similar to that originally developed by P.
Bentler (1985).

• You can analyze a broad family of matrix models using COSAN and MATRIX
statements that are similar to the COSAN program of R. McDonald and C.
Fraser (McDonald 1978, 1980). It enables you to specify complex matrix mod-
els including nonlinear equation models and higher-order factor models.

You can specify linear and nonlinear equality and inequality constraints on the pa-
rameters with several different statements, depending on the type of input. Lagrange
multiplier test indices are computed for simple constant and equality parameter con-
straints and for active boundary constraints. General equality and inequality con-
straints can be formulated using program statements. For more information, see the
“SAS Program Statements”section on page 628.

PROC CALIS offers a variety of methods for the automatic generation of initial val-
ues for the optimization process:

• two-stage least-squares estimation

• instrumental variable factor analysis

• approximate factor analysis

• ordinary least-squares estimation

• McDonald’s (McDonald and Hartmann 1992) method

In many common applications, these initial values prevent computational problems
and save computer time.

Because numerical problems can occur in the (non)linearly constrained optimization
process, the CALIS procedure offers several optimization algorithms:
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• Levenberg-Marquardt algorithm (Moré, 1978)

• trust region algorithm (Gay 1983)

• Newton-Raphson algorithm with line search

• ridge-stabilized Newton-Raphson algorithm

• various quasi-Newton and dual quasi-Newton algorithms: Broyden-Fletcher-
Goldfarb-Shanno and Davidon-Fletcher-Powell, including a sequential
quadratic programming algorithm for processing nonlinear equality and
inequality constraints

• various conjugate gradient algorithms: automatic restart algorithm of Powell
(1977), Fletcher-Reeves, Polak-Ribiere, and conjugate descent algorithm of
Fletcher (1980)

The quasi-Newton and conjugate gradient algorithms can be modified by several line-
search methods. All of the optimization techniques can impose simple boundary and
general linear constraints on the parameters. Only the dual quasi-Newton algorithm
is able to impose general nonlinear equality and inequality constraints.

The procedure creates an OUTRAM= output data set that completely describes the
model (except for program statements) and also contains parameter estimates. This
data set can be used as input for another execution of PROC CALIS. Small model
changes can be made by editing this data set, so you can exploit the old parameter
estimates as starting values in a subsequent analysis. An OUTEST= data set con-
tains information on the optimal parameter estimates (parameter estimates, gradient,
Hessian, projected Hessian and Hessian of Lagrange function for constrained opti-
mization, the information matrix, and standard errors). The OUTEST= data set can
be used as an INEST= data set to provide starting values and boundary and linear
constraints for the parameters. An OUTSTAT= data set contains residuals and, for
exploratory factor analysis, the rotated and unrotated factor loadings.

Automatic variable selection (using only those variables from the input data set that
are used in the model specification) is performed in connection with the RAM and
LINEQS input statements or when these models are recognized in an input model
file. Also in these cases, the covariances of the exogenous manifest variables are rec-
ognized as given constants. With the PREDET option, you can display the predeter-
mined pattern of constant and variable elements in the predicted model matrix before
the minimization process starts. For more information, see the section“Automatic
Variable Selection”on page 662 and the section“Exogenous Manifest Variables”on
page 662.

PROC CALIS offers an analysis of linear dependencies in the information matrix
(approximate Hessian matrix) that may be helpful in detecting unidentified models.
You also can save the information matrix and the approximate covariance matrix of
the parameter estimates (inverse of the information matrix), together with parameter
estimates, gradient, and approximate standard errors, in an output data set for further
analysis.

PROC CALIS does not provide the analysis of multiple samples with different sample
size or a generalized algorithm for missing values in the data. However, the analysis
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of multiple samples with equal sample size can be performed by the analysis of a
moment supermatrix containing the individual moment matrices as block diagonal
submatrices.

Structural Equation Models

The Generalized COSAN Model

PROC CALIS can analyze matrix models of the form

C = F1P1F′
1 + · · ·+ FmPmF′

m

whereC is a symmetric correlation or covariance matrix, each matrixFk, k =
1, . . . ,m, is the product ofn(k) matricesFk1 , . . . ,Fkn(k)

, and each matrixPk is
symmetric, that is,

Fk = Fk1 · · ·Fkn(k)
and Pk = P′

k, k = 1, . . . ,m

The matricesFkj
andPk in the model are parameterized by the matricesGkj

and
Qk

Fkj
=


Gkj

G−1
kj

(I−Gkj
)−1

j = 1, . . . , n(k) and Pk =
{

Qk

Q−1
k

where you can specify the type of matrix desired.

The matricesGkj
andQk can contain

• constant values

• parameters to be estimated

• values computed from parameters via programming statements

The parameters can be summarized in a parameter vectorX = (x1, . . . , xt). For a
given covariance or correlation matrixC, PROC CALIS computes the unweighted
least-squares (ULS), generalized least-squares (GLS), maximum likelihood (ML),
weighted least-squares (WLS), or diagonally weighted least-squares (DWLS) esti-
mates of the vectorX.

Some Special Cases of the Generalized COSAN Model

Original COSAN (Covariance Structure Analysis) Model (McDonald 1978, 1980)

Covariance Structure:

C = F1 · · ·FnPF′
n · · ·F′

1
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RAM (Reticular Action) Model (McArdle 1980; McArdle and McDonald 1984)

Structural Equation Model:

v = Av + u

whereA is a matrix of coefficients, andv andu are vectors of random variables. The
variables inv andu can be manifest or latent variables. The endogenous variables
corresponding to the components inv are expressed as a linear combination of the
remaining variables and a residual component inu with covariance matrixP.

Covariance Structure:

C = J(I−A)−1P((I−A)−1)′J′

with selection matrixJ and

C = E{Jvv′J′} and P = E{uu′}

LINEQS (Linear Equations) Model (Bentler and Weeks 1980)

Structural Equation Model:

η = βη + γξ

whereβ andγ are coefficient matrices, andη andξ are vectors of random variables.
The components ofη correspond to the endogenous variables; the components ofξ
correspond to the exogenous variables and to error variables. The variables inη and
ξ can be manifest or latent variables. The endogenous variables inη are expressed as
a linear combination of the remaining endogenous variables, of the exogenous vari-
ables ofξ, and of a residual component inξ. The coefficient matrixβ describes the
relationships among the endogenous variables ofη, andI − β should be nonsin-
gular. The coefficient matrixγ describes the relationships between the endogenous
variables ofη and the exogenous and error variables ofξ.

Covariance Structure:

C = J(I−B)−1ΓΦΓ′((I−B)−1)′J′

with selection matrixJ, Φ = E{ξξ′}, and

B =
(

β 0
0 0

)
and Γ =

(
γ
I

)
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Keesling - Wiley - Jöreskog LISREL (Linear Structural Relationship) Model

Structural Equation Model and Measurement Models:

η = Bη + Γξ + ζ , y = Λyη + ε , x = Λxξ + δ

whereη andξ are vectors of latent variables (factors), andx andy are vectors of
manifest variables. The components ofη correspond to endogenous latent variables;
the components ofξ correspond to exogenous latent variables. The endogenous and
exogenous latent variables are connected by a system of linear equations (the struc-
tural model) with coefficient matricesB andΓ and an error vectorζ. It is assumed
that matrixI−B is nonsingular. The random vectorsy andx correspond to manifest
variables that are related to the latent variablesη andξ by two systems of linear equa-
tions (the measurement model) with coefficientsΛy andΛx and with measurement
errorsε andδ.

Covariance Structure:

C = J(I−A)−1P((I−A)−1)′J′

A =


0 0 Λy 0
0 0 0 Λx

0 0 B Γ
0 0 0 0

 and P =


Θε

Θδ

Ψ
Φ


with selection matrixJ, Φ = E{ξξ′}, Ψ = E{ζζ′}, Θδ = E{δδ′}, andΘε =
E{εε′}.

Higher-Order Factor Analysis Models
First-order model:

C = F1P1F′
1 + U2

1

Second-order model:

C = F1F2P2F′
2F

′
1 + F1U2

2F
′
1 + U2

1

First-Order Autoregressive Longitudinal Factor Model
Example of McDonald (1980): k=3: Occasions of Measurement; n=3: Variables
(Tests); m=2: Common Factors

C = F1F2F3LF−1
3 F−1

2 P(F−1
2 )′(F−1

3 )′L′F′
3F

′
2F

′
1 + U2

F1 =

B1

B2

B3

 , F2 =

 I2
D2

D2

 , F3 =

 I2
I2

D3



L =

 I2 o o
I2 I2 o
I2 I2 I2

 , P =

 I2
S2

S3

 , U =

U11 U12 U13

U21 U22 U23

U31 U32 U33


S2 = I2 −D2

2 , S3 = I2 −D2
3



Structural Equation Models � 555

For more information on this model, seeExample 19.6on page 739.

A Structural Equation Example

This example from Wheaton et al. (1977) illustrates the relationships among the
RAM, LINEQS, and LISREL models. Different structural models for these data are
in Jöreskog and Sörbom (1985) and in Bentler (1985, p. 28). The data set contains
covariances among six (manifest) variables collected from 932 people in rural regions
of Illinois:

Variable 1: V 1, y1 : Anomia 1967

Variable 2: V 2, y2 : Powerlessness 1967

Variable 3: V 3, y3 : Anomia 1971

Variable 4: V 4, y4 : Powerlessness 1971

Variable 5: V 5, x1 : Education (years of schooling)

Variable 6: V 6, x2 : Duncan’s Socioeconomic Index (SEI)

It is assumed that anomia and powerlessness are indicators of an alienation factor and
that education and SEI are indicators for a socioeconomic status (SES) factor. Hence,
the analysis contains three latent variables:

Variable 7: F1, η1 : Alienation 1967

Variable 8: F2, η2 : Alienation 1971

Variable 9: F3, ξ1 : Socioeconomic Status (SES)

The following path diagram shows the structural model used in Bentler (1985, p.
29) and slightly modified in Jöreskog and Sörbom (1985, p. 56). In this notation
for the path diagram, regression coefficients between the variables are indicated as
one-headed arrows. Variances and covariances among the variables are indicated as
two-headed arrows. Indicating error variances and covariances as two-headed arrows
with the same source and destination (McArdle 1988; McDonald 1985) is helpful in
transforming the path diagram to RAM model list input for the CALIS procedure.
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Figure 19.1. Path Diagram of Stability and Alienation Example

Variables inFigure 19.1are as follows:

Variable 1: V 1, y1 : Anomia 1967

Variable 2: V 2, y2 : Powerlessness 1967

Variable 3: V 3, y3 : Anomia 1971

Variable 4: V 4, y4 : Powerlessness 1971

Variable 5: V 5, x1 : Education (years of schooling)

Variable 6: V 6, x2 : Duncan’s Socioeconomic Index (SEI)

Variable 7: F1, η1 : Alienation 1967

Variable 8: F2, η2 : Alienation 1971

Variable 9: F3, ξ1 : Socioeconomic Status (SES)
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RAM Model

The vectorv contains the six manifest variablesv1 = V 1, . . . , v6 = V 6 and the
three latent variablesv7 = F1, v8 = F2, v9 = F3. The vectoru contains the
corresponding error variablesu1 = E1, . . . , u6 = E6 andu7 = D1, u8 = D2, u9 =
D3. The path diagram corresponds to the following set of structural equations of the
RAM model:

v1 = 1.000v7 + u1

v2 = 0.833v7 + u2

v3 = 1.000v8 + u3

v4 = 0.833v8 + u4

v5 = 1.000v9 + u5

v6 = λv9 + u6

v7 = γ1v9 + u7

v8 = βv7 + γ2v9 + u8

v9 = u9

This gives the matricesA andP in the RAM model:

A =



o o o o o o 1.000 o o
o o o o o o 0.833 o o
o o o o o o o 1.000 o
o o o o o o o 0.833 o
o o o o o o o o 1.000
o o o o o o o o λ
o o o o o o o o γ1

o o o o o o β o γ2

o o o o o o o o o



P =



θ1 o θ5 o o o o o o
o θ2 o θ5 o o o o o
θ5 o θ1 o o o o o o
o θ5 o θ2 o o o o o
o o o o θ3 o o o o
o o o o o θ4 o o o
o o o o o o ψ1 o o
o o o o o o o ψ2 o
o o o o o o o o φ


The RAM model input specification of this example for the CALIS procedure is in
the“RAM Model Specification”section on page 563.
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LINEQS Model

The vectorη contains the six endogenous manifest variablesV 1, . . . , V 6 and the
two endogenous latent variablesF1 andF2. The vectorξ contains the exogenous
error variablesE1, . . . , E6,D1, andD2 and the exogenous latent variableF3. The
path diagram corresponds to the following set of structural equations of the LINEQS
model:

V 1 = 1.0F1 + E1
V 2 = .833F1 + E2
V 3 = 1.0F2 + E3
V 4 = .833F2 + E4
V 5 = 1.0F3 + E5
V 6 = λF3 + E6
F1 = γ1F3 +D1
F2 = βF1 + γ2F3 +D2

This gives the matricesβ, γ andΦ in the LINEQS model:

β =



o o o o o o 1. o
o o o o o o .833 o
o o o o o o o 1.
o o o o o o o .833
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o β o


, γ =



1 o o o o o o o o
o 1 o o o o o o o
o o 1 o o o o o o
o o o 1 o o o o o
o o o o 1 o o o 1.
o o o o o 1 o o λ
o o o o o o 1 o γ1

o o o o o o o 1 γ2



Φ =



θ1 o θ5 o o o o o o
o θ2 o θ5 o o o o o
θ5 o θ1 o o o o o o
o θ5 o θ2 o o o o o
o o o o θ3 o o o o
o o o o o θ4 o o o
o o o o o o ψ1 o o
o o o o o o o ψ2 o
o o o o o o o o φ


The LINEQS model input specification of this example for the CALIS procedure is
in the section“LINEQS Model Specification”on page 562.
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LISREL Model

The vectory contains the four endogenous manifest variablesy1 = V 1, . . . , y4 =
V 4, and the vectorx contains the exogenous manifest variablesx1 = V 5 and
x2 = V 6. The vectorε contains the error variablesε1 = E1, . . . , ε4 = E4 cor-
responding toy, and the vectorδ contains the error variablesδ1 = E5 andδ2 = E6
corresponding tox. The vectorη contains the endogenous latent variables (factors)
η1 = F1 andη2 = F2, while the vectorξ contains the exogenous latent variable
(factor) ξ1 = F3. The vectorζ contains the errorsζ1 = D1 andζ2 = D2 in the
equations (disturbance terms) corresponding toη. The path diagram corresponds to
the following set of structural equations of the LISREL model:

y1 = 1.0η1 + ε1

y2 = .833η1 + ε2

y3 = 1.0η2 + ε3

y4 = .833η2 + ε4

x1 = 1.0ξ1 + δ1

x2 = λξ1 + δ2

η1 = γ1ξ1 + ζ1

η2 = βη1 + γ2ξ1 + ζ2

This gives the matricesΛy, Λx, B, Γ, andΦ in the LISREL model:

Λy =


1. o
.833 o
o 1.
o .833

 ,Λx =
(

1.
λ

)
,B =

(
o o
β o

)
,Γ =

(
γ1

γ2

)

Θ2
ε =


θ1 o θ5 o
o θ2 o θ5
θ5 o θ1 o
o θ5 o θ2

 ,Θ2
δ =

(
θ3 o
θ4 o

)
,Ψ =

(
ψ1 o
o ψ2

)
,Φ = (φ)

The CALIS procedure does not provide a LISREL model input specification.
However, any model that can be specified by the LISREL model can also be specified
by using the COSAN, LINEQS, or RAM model specifications in PROC CALIS.
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Getting Started

There are four sets of statements available in the CALIS procedure to specify a model.
Since a LISREL analysis can be performed easily by using a RAM, COSAN, or
LINEQS statement, there is no specific LISREL input form available in the CALIS
procedure.

For COSAN-style input, you can specify the following statements:

COSAN analysis model in matrix notation ;
MATRIX definition of matrix elements ;
VARNAMES names of additional variables ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

For linear equations input, you can specify the following statements:

LINEQS analysis model in equations notation ;
STD variance pattern ;
COV covariance pattern ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

For RAM-style input, you can specify the following statements:

RAM analysis model in list notation ;
VARNAMES names of latent and error variables ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

For (confirmatory) factor analysis input, you can specify the following statements:

FACTOR options ;
MATRIX definition of matrix elements ;
VARNAMES names of latent and residual variables ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

The model can also be obtained from an INRAM= data set, which is usually a ver-
sion of an OUTRAM= data set produced by a previous PROC CALIS analysis (and
possibly modified).

If no INRAM= data set is specified, you must use one of the four statements that
defines the input form of the analysis model: COSAN, RAM, LINEQS, or FACTOR.
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COSAN Model Specification

You specify the model for a generalized COSAN analysis with a COSAN statement
and one or more MATRIX statements. The COSAN statement determines the name,
dimension, and type (identity, diagonal, symmetric, upper, lower, general, inverse,
and so forth) of each matrix in the model. You can specify the values of the constant
elements in each matrix and give names and initial values to the elements that are
to be estimated as parameters or functions of parameters using MATRIX statements.
The resulting displayed output is in matrix form.

The following statements define the structural model of the alienation example as a
COSAN model:

Cosan J(9, Ide) * A(9, Gen, Imi) * P(9, Sym);
Matrix A

[ ,7] = 1. .833 5 * 0. Beta (.5) ,
[ ,8] = 2 * 0. 1. .833 ,
[ ,9] = 4 * 0. 1. Lamb Gam1-Gam2 (.5 2 * -.5);

Matrix P
[1,1] = The1-The2 The1-The4 (6 * 3.) ,
[7,7] = Psi1-Psi2 Phi (2 * 4. 6.) ,
[3,1] = The5 (.2) ,
[4,2] = The5 (.2) ;

The matrix model specified in the COSAN statement is the RAM model

C = J(I−A)−1P((I−A)−1)′J′

with selection matrixJ and

C = E{Jvv′J′}, P = E{uu′}

The COSAN statement must contain only the matrices up to the central matrixP
because of the symmetry of each matrix term in a COSAN model. Each matrix
name is followed by one to three arguments in parentheses. The first argument is the
number of columns. The second and third arguments are optional, and they specify
the form of the matrix. The selection matrixJ in the RAM model is specified by
the 6 × 9 identity (IDE) (sub)matrixJ because the first six variables in vectorv
correspond to the six manifest variables in the data set. The9 × 9 parameter matrix
A has a general (GEN) form and is used as(I −A)−1 in the analysis, as indicated
by the identity-minus-inverse (IMI) argument. The central9× 9 matrix P is specified
as a symmetric (SYM) matrix.

The MATRIX statement for matrixA specifies the values in columns 7, 8, and 9,
which correspond to the three latent variablesF1, F2, andF3, in accordance with
the RAM model. The other columns ofA are assumed to be zero. The initial values
for the parameter elements inA are chosen as in the path diagram to be

λ = β = .5, γ1 = γ2 = −.5
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In accordance with matrixP of the RAM model and the path model, the nine diagonal
elements of matrixP are parameters with initial values

θ1 = θ2 = θ3 = θ4 = 3, ψ1 = ψ2 = 4, φ = 6

There are also two off-diagonal elements in each triangle ofP that are constrained to
be equal, and they have an initial value of 0.2.

See the section“COSAN Model Statement”on page 591 for more information about
the COSAN statement.

LINEQS Model Specification

You can also describe the model by a set of linear equations combined with variance
and covariance specifications, using notation similar to that originally developed by
P. Bentler for his EQS program. The displayed output can be in either equation form
or matrix form.

The following statements define the structural model of the alienation example as a
LINEQS model:

Lineqs
V1 = F1 + E1,
V2 = .833 F1 + E2,
V3 = F2 + E3,
V4 = .833 F2 + E4,
V5 = F3 + E5,
V6 = Lamb (.5) F3 + E6,
F1 = Gam1(-.5) F3 + D1,
F2 = Beta (.5) F1 + Gam2(-.5) F3 + D2;

Std
E1-E6 = The1-The2 The1-The4 (6 * 3.),
D1-D2 = Psi1-Psi2 (2 * 4.),
F3 = Phi (6.) ;

Cov
E1 E3 = The5 (.2),
E4 E2 = The5 (.2);

The LINEQS statement shows the equations in the section“LINEQS Model” on page
558, except that in this case the coefficients to be estimated can be followed (option-
ally) by the initial value to use in the optimization process. If you do not specify
initial values for the parameters in a LINEQS statement, PROC CALIS tries to assign
these values automatically. The endogenous variables used on the left side can be
manifest variables (with names that must be defined by the input data set) or latent
variables (which must have names starting with F). The variables used on the right
side can be manifest variables, latent variables (with names that must start with an
F), or error variables (which must have names starting with an E or D). Commas
separate the equations. The coefficients to be estimated are indicated by names. If
no name is used, the coefficient is constant, either equal to a specified number or, if
no number is used, equal to 1. The VAR statement in Bentler’s notation is replaced
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here by the STD statement, because the VAR statement in PROC CALIS defines the
subset of manifest variables in the data set to be analyzed. The variable names used
in the STD or COV statement must be exogenous (that is, they should not occur on
the left side of any equation). The STD and COV statements define the diagonal
and off-diagonal elements in theΦ matrix. The parameter specifications in the STD
and COV statements are separated by commas. Usingk variable names on the left
of an equal sign in a COV statement means that the parameter list on the right side
refers to allk(k − 1)/2 distinct variable pairs in theΦ matrix. Identical coefficient
names indicate parameters constrained to be equal. You can also use prefix names to
specify those parameters for which you do not need a precise name in any parameter
constraint.

See the section“LINEQS Model Statement”on page 601 for more information about
the precise syntax rules for a LINEQS statement.

RAM Model Specification

The RAM model allows a path diagram to be transcribed into a RAM statement in
list form. The displayed output from the RAM statement is in matrix or list form.

The following statement defines the structural model of the alienation example as a
RAM model:

Ram
1 1 7 1. ,
1 2 7 .833 ,
1 3 8 1. ,
1 4 8 .833 ,
1 5 9 1. ,
1 6 9 .5 Lamb ,
1 7 9 -.5 Gam1 ,
1 8 7 .5 Beta ,
1 8 9 -.5 Gam2 ,
2 1 1 3. The1 ,
2 2 2 3. The2 ,
2 3 3 3. The1 ,
2 4 4 3. The2 ,
2 5 5 3. The3 ,
2 6 6 3. The4 ,
2 1 3 .2 The5 ,
2 2 4 .2 The5 ,
2 7 7 4. Psi1 ,
2 8 8 4. Psi2 ,
2 9 9 6. Phi ;

You must assign numbers to the nodes in the path diagram. In the path diagram of
Figure 19.1, the boxes corresponding to the six manifest variablesV 1, . . . , V 6 are
assigned the number of the variable in the covariance matrix (1,. . . ,6); the circles
corresponding to the three latent variablesF1, F2, andF3 are given the numbers 7,
8, and 9. The path diagram contains 20 paths between the nine nodes; nine of the
paths are one-headed arrows and eleven are two-headed arrows.
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The RAM statement contains a list of items separated by commas. Each item corre-
sponds to an arrow in the path diagram. The first entry in each item is the number
of arrow heads (matrix number), the second entry shows where the arrow points to
(row number), the third entry shows where the arrow comes from (column number),
the fourth entry gives the (initial) value of the coefficient, and the fifth entry assigns
a name if the path represents a parameter rather than a constant. If you specify the
fifth entry as a parameter name, then the fourth list entry can be omitted, since PROC
CALIS tries to assign an initial value to this parameter.

See the section“RAM Model Statement”on page 596 for more information about
the RAM statement.

FACTOR Model Specification

You can specify the FACTOR statement to compute factor loadingsF and unique
variancesU of an exploratory or confirmatory first-order factor (or component) anal-
ysis. By default, the factor correlation matrixP is an identity matrix.

C = FF′ + U, U = diag

For a first-order confirmatory factor analysis, you can use MATRIX statements to
define elements in the matricesF, P, andU of the more general model

C = FPF′ + U, P = P′, U = diag

To perform a component analysis, specify the COMPONENT option to constrain the
matrixU to a zero matrix; that is, the model is replaced by

C = FF′

Note that the rank ofFF′ is equal to the numberm of components inF, and if
m is smaller than the number of variables in the moment matrixC, the matrix of
predicted model values is singular and maximum likelihood estimates forF cannot
be computed. You should compute ULS estimates in this case.

The HEYWOOD option constrains the diagonal elements ofU to be nonnegative;
that is, the model is replaced by

C = FF′ + U2, U = diag

If the factor loadings are unconstrained, they can be orthogonally rotated by one of
the following methods:

• principal axes rotation

• quartimax

• varimax

• equamax

• parsimax
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The most common approach to factor analysis consists of two steps:

1. Obtain estimates for factor loadings and unique variances.

2. Apply an orthogonal or oblique rotation method.

PROC CALIS enables you to specify general linear and nonlinear equality and in-
equality constraints using the LINCON and NLINCON statements. You can specify
the NLINCON statement to estimate orthogonal or oblique rotated factor loadings;
refer to Browne and Du Toit (1992). Unlike PROC FACTOR, PROC CALIS currently
does not provide standard errors for the rotated factor loadings.

For default (exploratory) factor analysis, PROC CALIS computes initial estimates.
If you use a MATRIX statement together with a FACTOR model specification,
initial values are generally computed by McDonald’s (McDonald and Hartmann
1992) method or are set by the START= option. See the section“FACTOR Model
Statement”on page 606 andExample 19.3on page 718 for more information about
the FACTOR statement.

Constrained Estimation

• Simple equality constraints, xi = ci, ci = const, andxi = xj , can be defined
in each model by specifying constants or using the same name for parameters
constrained to be equal.

• BOUNDS statement: You can specify boundary constraints, li ≤ xi ≤
ui, li, ui = const, with the BOUNDS statement for the COSAN, LINEQS,
and RAM models and in connection with an INRAM= data set. There may
be serious convergence problems if negative values appear in the diagonal lo-
cations (variances) of the central model matrices during the minimization pro-
cess. You can use the BOUNDS statement to constrain these parameters to
have nonnegative values.

• LINCON statement: You can specify general linear equality and inequality
constraints of the parameter estimates with the LINCON statement or by using
an INEST= data set. The variables listed in the LINCON statements must be
(a subset of) the model parameters. All optimization methods can be used with
linear constraints.

• NLINCON statement: You can specify general nonlinear equality and inequal-
ity constraints of the parameter estimates with the NLINCON statement. The
syntax of the NLINCON statement is almost the same as that for the BOUNDS
statement with the exception that the BOUNDS statement can contain only
names of the model parameters. However, the variables listed in the NLINCON
statement can be defined by program statements. Only the quasi-Newton opti-
mization method can be used when there are nonlinear constraints.

• Reparameterizing the Model: Complex linear equality and inequality con-
straints can be defined by means of program statements similar to those used in
the DATA step. In this case, some of the parametersxi are not elements of the
matricesGkj andQk but are instead defined in a PARAMETERS statement.
Elements of the model matrices can then be computed by program statements
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as functions of parameters in the PARAMETERS statement. This approach is
similar to the classical COSAN program of R. McDonald, implemented by C.
Fraser (McDonald 1978, 1980). One advantage of the CALIS procedure is that
you need not supply code for the derivatives of the specified functions. The an-
alytic derivatives of the user-written functions are computed automatically by
PROC CALIS. The specified functions must be continuous and have continu-
ous first-order partial derivatives. See the“SAS Program Statements”section
on page 628 and the“Constrained Estimation Using Program Code”section on
page 675 for more information about imposing linear and nonlinear restrictions
on parameters by using program statements.

Although much effort has been made to implement reliable and numerically stable
optimization methods, no practical algorithm exists that can always find the global
optimum of a nonlinear function, especially when there are nonlinear constraints.

Syntax
PROC CALIS < options > ;

COSAN matrix model ;
MATRIX matrix elements ;
VARNAMES variables ;

LINEQS model equations ;
STD variance pattern ;
COV covariance pattern ;

RAM model list ;
VARNAMES variables ;

FACTOR < options > ;
MATRIX matrix elements ;
VARNAMES variables ;

BOUNDS boundary constraints ;
BY variables ;
FREQ variable ;
LINCON linear constraints ;
NLINCON nonlinear constraints ;
NLOPTIONS optimization options ;
PARAMETERS parameters ;
PARTIAL variables ;
STRUCTEQ variables ;
VAR variables ;
WEIGHT variable ;
program statements

• If no INRAM= data set is specified, one of the four statements that defines the
input form of the analysis model, COSAN, LINEQS, RAM, or FACTOR, must
be used.

• The MATRIX statement can be used multiple times for the same or differ-
ent matrices along with a COSAN or FACTOR statement. If the MATRIX
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statement is used multiple times for the same matrix, later definitions override
earlier ones.

• The STD and COV statements can be used only with the LINEQS model state-
ment.

• You can formulate a generalized COSAN model using a COSAN statement.
MATRIX statements can be used to define the elements of a matrix used in the
COSAN statement. The input notation resembles the COSAN program of R.
McDonald and C. Fraser (McDonald 1978, 1980).

• The RAM statement uses a simple list input that is especially suitable for
describing J. McArdle’s RAM analysis model (McArdle 1980, McArdle and
McDonald 1984) for causal and path analysis problems.

• The LINEQS statement formulates the analysis model by means of a system
of linear equations similar to P. Bentler’s (1989) EQS program notation. The
STD and COV statements can be used to define the variances and covariances
corresponding to elements of matrixΦ in the LINEQS model.

• A FACTOR statement can be used to compute a first-order exploratory or con-
firmatory factor (or component) analysis. The analysis of a simple exploratory
factor analysis model performed by PROC CALIS is not as efficient as one
performed by the FACTOR procedure. The CALIS procedure is designed for
more general structural problems, and it needs significantly more computation
time for a simple unrestricted factor or component analysis than does PROC
FACTOR.

• You can add program statements to impose linear or nonlinear constraints on
the parameters if you specify the model by means of a COSAN, LINEQS, or
RAM statement. The PARAMETERS statement defines additional parameters
that are needed as independent variables in your program code and that belong
to the set of parameters to be estimated. Variable names used in the program
code should differ from the preceding statement names. The code should re-
spect the syntax rules of SAS statements usually used in the DATA step. See
the“SAS Program Statements”section on page 628 for more information.

• The BOUNDS statement can be used to specify simple lower and upper bound-
ary constraints for the parameters.

• You can specify general linear equality and inequality constraints with the
LINCON statement (or via an INEST= data set). The NLINCON statement
can be used to specify general nonlinear equality and inequality constraints by
referring to nonlinear functions defined by program statements.

• The VAR, PARTIAL, WEIGHT, FREQ, and BY statements can be used in the
same way as in other procedures, for example, the FACTOR or PRINCOMP
procedure. You can select a subset of the input variables to analyze with the
VAR statement. The PARTIAL statement defines a set of input variables that
are chosen as partial variables for the analysis of a matrix of partial correlations
or covariances. The BY statement specifies groups in which separate covari-
ance structure analyses are performed.
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PROC CALIS Statement

PROC CALIS < options > ;

This statement invokes the procedure. The options available with the PROC CALIS
statement are summarized inTable 19.1and discussed in the following six sections.

Table 19.1. PROC CALIS Statement Options

Data Set Options Short Description
DATA= input data set
INEST= input initial values, constraints
INRAM= input model
INWGT= input weight matrix
OUTEST= covariance matrix of estimates
OUTJAC Jacobian into OUTEST= data set
OUTRAM= output model
OUTSTAT= output statistic
OUTWGT= output weight matrix

Data Processing Short Description
AUGMENT analyzes augmented moment matrix
COVARIANCE analyzes covariance matrix
EDF= defines nobs by number error df
NOBS= defines number of observations nobs
NOINT analyzes uncorrected moments
RDF= defines nobs by number regression df
RIDGE specifies ridge factor for moment matrix
UCORR analyzes uncorrected CORR matrix
UCOV analyzes uncorrected COV matrix
VARDEF= specifies variance divisor

Estimation Methods Short Description
METHOD= estimation method
ASYCOV= formula of asymptotic covariances
DFREDUCE= reduces degrees of freedom
G4= algorithm for STDERR
NODIAG excludes diagonal elements from fit
WPENALTY= penalty weight to fit correlations
WRIDGE= ridge factor for weight matrix

Optimization Techniques Short Description
TECHNIQUE= minimization method
UPDATE= update technique
LINESEARCH= line-search method
FCONV= function convergence criterion
GCONV= gradient convergence criterion
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Table 19.1. (continued)

Optimization Techniques Short Description
INSTEP= initial step length (RADIUS=, SALPHA=)
LSPRECISION= line-search precision (SPRECISION=)
MAXFUNC= max number function calls
MAXITER= max number iterations

Displayed Output Options Short Description
KURTOSIS compute and display kurtosis
MODIFICATION modification indices
NOMOD no modification indices
NOPRINT suppresses the displayed output
PALL all displayed output (ALL)
PCORR analyzed and estimated moment matrix
PCOVES covariance matrix of estimates
PDETERM determination coefficients
PESTIM parameter estimates
PINITIAL pattern and initial values
PJACPAT displays structure of variable and constant

elements of the Jacobian matrix
PLATCOV latent variable covariances, scores
PREDET displays predetermined moment matrix
PRIMAT displays output in matrix form
PRINT adds default displayed output
PRIVEC displays output in vector form
PSHORT reduces default output (SHORT)
PSUMMARY displays only fit summary (SUMMARY)
PWEIGHT weight matrix
RESIDUAL= residual matrix and distribution
SIMPLE univariate statistics
STDERR standard errors
NOSTDERR computes no standard errors
TOTEFF displays total and indirect effects

Miscellaneous Options Short Description
ALPHAECV= probability Browne & Cudeck ECV
ALPHARMS= probability Steiger & Lind RMSEA
BIASKUR biased skewness and kurtosis
DEMPHAS= emphasizes diagonal entries
FDCODE uses numeric derivatives for code
HESSALG= algorithm for Hessian
NOADJDF no adjustment of df for active constraints
RANDOM= randomly generated initial values
SINGULAR= singularity criterion
ASINGULAR= absolute singularity information matrix
COVSING= singularity tolerance of information matrix
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Table 19.1. (continued)

Miscellaneous Options Short Description
MSINGULAR= relative M singularity of information matrix
VSINGULAR= relative V singularity of information matrix
SLMW= probability limit for Wald test
START= constant initial values

Data Set Options

DATA=SAS-data-set
specifies an input data set that can be an ordinary SAS data set or a specially struc-
tured TYPE=CORR, TYPE=COV, TYPE=UCORR, TYPE=UCOV, TYPE=SSCP, or
TYPE=FACTOR SAS data set, as described in the section“Input Data Sets”on page
630. If the DATA= option is omitted, the most recently created SAS data set is used.

INEST | INVAR | ESTDATA= SAS-data-set
specifies an input data set that contains initial estimates for the parameters used in the
optimization process and can also contain boundary and general linear constraints on
the parameters. If the model did not change too much, you can specify an OUTEST=
data set from a previous PROC CALIS analysis. The initial estimates are taken from
the values of the PARMS observation.

INRAM=SAS-data-set
specifies an input data set that contains in RAM list form all information needed to
specify an analysis model. The INRAM= data set is described in the section“Input
Data Sets”on page 630. Typically, this input data set is an OUTRAM= data set
(possibly modified) from a previous PROC CALIS analysis. If you use an INRAM=
data set to specify the analysis model, you cannot use the model specification state-
ments COSAN, MATRIX, RAM, LINEQS, STD, COV, FACTOR, or VARNAMES,
but you can use the BOUNDS and PARAMETERS statements and program state-
ments. If the INRAM= option is omitted, you must define the analysis model with a
COSAN, RAM, LINEQS, or FACTOR statement.

INWGT=SAS-data-set
specifies an input data set that contains the weight matrixW used in generalized
least-squares (GLS), weighted least-squares (WLS, ADF), or diagonally weighted
least-squares (DWLS) estimation. If the weight matrixW defined by an INWGT=
data set is not positive definite, it can be ridged using the WRIDGE= option. See
the section“Estimation Criteria”on page 644 for more information. If no INWGT=
data set is specified, default settings for the weight matrices are used in the estimation
process. The INWGT= data set is described in the section“Input Data Sets”on page
630. Typically, this input data set is an OUTWGT= data set from a previous PROC
CALIS analysis.

OUTEST | OUTVAR=SAS-data-set
creates an output data set containing the parameter estimates, their gradient, Hessian
matrix, and boundary and linear constraints. For METHOD=ML, METHOD=GLS,
and METHOD=WLS, the OUTEST= data set also contains the information matrix,
the approximate covariance matrix of the parameter estimates ((generalized) inverse



PROC CALIS Statement � 571

of information matrix), and approximate standard errors. If linear or nonlinear equal-
ity or active inequality constraints are present, the Lagrange multiplier estimates of
the active constraints, the projected Hessian, and the Hessian of the Lagrange func-
tion are written to the data set. The OUTEST= data set also contains the Jacobian if
the OUTJAC option is used.

The OUTEST= data set is described in the section“OUTEST= SAS-data-set”on
page 634. If you want to create a permanent SAS data set, you must specify a two-
level name. Refer to the chapter titled “SAS Data Files” inSAS Language Reference:
Conceptsfor more information on permanent data sets.

OUTJAC
writes the Jacobian matrix, if it has been computed, to the OUTEST= data set. This
is useful when the information and Jacobian matrices need to be computed for other
analyses.

OUTSTAT=SAS-data-set
creates an output data set containing the BY group variables, the analyzed covari-
ance or correlation matrices, and the predicted and residual covariance or correlation
matrices of the analysis. You can specify the correlation or covariance matrix in an
OUTSTAT= data set as an input DATA= data set in a subsequent analysis by PROC
CALIS. The OUTSTAT= data set is described in the section“OUTSTAT= SAS-data-
set” on page 641. If the model contains latent variables, this data set also contains
the predicted covariances between latent and manifest variables and the latent vari-
ables scores regression coefficients (see thePLATCOV optionon page 586). If the
FACTOR statement is used, the OUTSTAT= data set also contains the rotated and
unrotated factor loadings, the unique variances, the matrix of factor correlations, the
transformation matrix of the rotation, and the matrix of standardized factor loadings.

You can specify the latent variable score regression coefficients with PROC SCORE
to compute factor scores.

If you want to create a permanent SAS data set, you must specify a two-level name.
Refer to the chapter titled “SAS Data Files” inSAS Language Reference: Concepts
for more information on permanent data sets.

OUTRAM=SAS-data-set
creates an output data set containing the model information for the analysis, the
parameter estimates, and their standard errors. An OUTRAM= data set can be
used as an input INRAM= data set in a subsequent analysis by PROC CALIS. The
OUTRAM= data set also contains a set of fit indices; it is described in more detail
in the section“OUTRAM= SAS-data-set”on page 638. If you want to create a per-
manent SAS data set, you must specify a two-level name. Refer to the chapter titled
“SAS Data Files” inSAS Language Reference: Conceptsfor more information on
permanent data sets.

OUTWGT=SAS-data-set
creates an output data set containing the weight matrixW used in the estimation pro-
cess. You cannot create an OUTWGT= data set with an unweighted least-squares or
maximum likelihood estimation. The fit function in GLS, WLS (ADF), and DWLS
estimation contain the inverse of the (Cholesky factor of the) weight matrixW writ-
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ten in the OUTWGT= data set. The OUTWGT= data set contains the weight matrix
on which the WRIDGE= and the WPENALTY= options are applied. An OUTWGT=
data set can be used as an input INWGT= data set in a subsequent analysis by PROC
CALIS. The OUTWGT= data set is described in the section“OUTWGT= SAS-data-
set” on page 643. If you want to create a permanent SAS data set, you must specify
a two-level name. Refer to the chapter titled “SAS Data Files” inSAS Language
Reference: Conceptsfor more information on permanent data sets.

Data Processing Options

AUGMENT | AUG
analyzes the augmented correlation or covariance matrix. Using the AUG option
is equivalent to specifying UCORR (NOINT but not COV) or UCOV (NOINT
and COV) for a data set that is augmented by an intercept variableINTERCEPT
that has constant values equal to 1. The variableINTERCEP can be used in-
stead of the defaultINTERCEPT only if you specify the SAS option OPTIONS
VALIDVARNAME=V6. The dimension of an augmented matrix is one higher than
that of the corresponding correlation or covariance matrix. The AUGMENT option
is effective only if the data set does not contain a variable called INTERCEPT and if
you specify the UCOV, UCORR, or NOINT option.

Caution: The INTERCEPT variable is included in the moment matrix as the variable
with numbern+1. Using the RAM model statement assumes that the firstn variable
numbers correspond to then manifest variables in the input data set. Therefore,
specifying the AUGMENT option assumes that the numbers of the latent variables
used in the RAM or path model have to start with numbern+ 2.

COVARIANCE | COV
analyzes the covariance matrix instead of the correlation matrix. By default, PROC
CALIS (like the FACTOR procedure) analyzes a correlation matrix. If the DATA=
input data set is a valid TYPE=CORR data set (containing a correlation matrix and
standard deviations), using the COV option means that the covariance matrix is com-
puted and analyzed.

DFE | EDF=n
makes the effective number of observationsn+i, wherei is 0 if the NOINT, UCORR,
or UCOV option is specified without the AUGMENT option or wherei is 1 otherwise.
You can also use the NOBS= option to specify the number of observations.

DFR | RDF=n
makes the effective number of observations the actual number of observations minus
the RDF= value. The degree of freedom for the intercept should not be included
in the RDF= option. If you use PROC CALIS to compute a regression model, you
can specify RDF=number-of-regressor-variablesto get approximate standard errors
equal to those computed by PROC REG.

NOBS= nobs
specifies the number of observations. If the DATA= input data set is a raw data
set,nobsis defined by default to be the number of observations in the raw data set.
The NOBS= and EDF= options override this default definition. You can use the
RDF= option to modify thenobsspecification. If the DATA= input data set contains
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a covariance, correlation, or scalar product matrix, you can specify the number of
observations either by using the NOBS=, EDF=, and RDF= options in the PROC
CALIS statement or by including a–TYPE–=’N’ observation in the DATA= input
data set.

NOINT
specifies that no intercept be used in computing covariances and correlations; that
is, covariances or correlations are not corrected for the mean. You can specify this
option (or UCOV or UCORR) to analyze mean structures in an uncorrected moment
matrix, that is, to compute intercepts in systems of structured linear equations (see
Example 19.2). The term NOINT is misleading in this case because an uncorrected
covariance or correlation matrix is analyzed containing a constant (intercept) variable
that is used in the analysis model. The degrees of freedom used in the variance divisor
(specified by the VARDEF= option) and some of the assessment of the fit function
(see the section“Assessment of Fit”on page 649) depend on whether an intercept
variable is included in the model (the intercept is used in computing the corrected
covariance or correlation matrix or is used as a variable in the uncorrected covariance
or correlation matrix to estimate mean structures) or not included (an uncorrected
covariance or correlation matrix is used that does not contain a constant variable).

RIDGE<=r >
defines a ridge factorr for the diagonal of the moment matrixS that is analyzed. The
matrixS is transformed to

S −→ S̃ = S + r(diag(S))

If you do not specifyr in the RIDGE option, PROC CALIS tries to ridge the moment
matrixS so that the smallest eigenvalue is about10−3.

Caution: The moment matrix in the OUTSTAT= output data set does not contain the
ridged diagonal.

UCORR
analyzes the uncorrected correlation matrix instead of the correlation matrix corrected
for the mean. Using the UCORR option is equivalent to specifying the NOINT option
but not the COV option.

UCOV
analyzes the uncorrected covariance matrix instead of the covariance matrix corrected
for the mean. Using the UCOV option is equivalent to specifying both the COV
and NOINT options. You can specify this option to analyze mean structures in an
uncorrected covariance matrix, that is, to compute intercepts in systems of linear
structural equations (seeExample 19.2).

VARDEF= DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of covariances and standard deviations.
The default value is VARDEF=DF. The values and associated divisors are displayed
in the following table, wherei = 0 if the NOINT option is used andi = 1 oth-
erwise and wherek is the number of partial variables specified in the PARTIAL
statement. Using an intercept variable in a mean structure analysis, by specifying
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the AUGMENT option, includes the intercept variable in the analysis. In this case,
i = 1. When a WEIGHT statement is used,wj is the value of the WEIGHT variable
in thejth observation, and the summation is performed only over observations with
positive weight.

Value Description Divisor
DF degrees of freedom N − k − i
N number of observationsN
WDF sum of weights DF

∑N
j wj − k − i

WEIGHT | WGT sum of weights
∑N

j wj

Estimation Methods

The default estimation method is maximum likelihood (METHOD=ML), assuming
a multivariate normal distribution of the observed variables. The two-stage esti-
mation methods METHOD=LSML, METHOD=LSGLS, METHOD=LSWLS, and
METHOD=LSDWLS first compute unweighted least-squares estimates of the model
parameters and their residuals. Afterward, these estimates are used as initial val-
ues for the optimization process to compute maximum likelihood, generalized least-
squares, weighted least-squares, or diagonally weighted least-squares parameter esti-
mates. You can do the same thing by using an OUTRAM= data set with least-squares
estimates as an INRAM= data set for a further analysis to obtain the second set of pa-
rameter estimates. This strategy is also discussed in the section“Use of Optimization
Techniques”on page 664. For more details, see the“Estimation Criteria”section on
page 644.

METHOD | MET=name
specifies the method of parameter estimation. The default is METHOD=ML. Valid
values fornameare as follows:

ML | M | MAX performs normal-theory maximum likelihood parameter
estimation. The ML method requires a nonsingular covari-
ance or correlation matrix.

GLS | G performs generalized least-squares parameter estimation.
If no INWGT= data set is specified, the GLS method
uses the inverse sample covariance or correlation matrix
as weight matrixW. Therefore, METHOD=GLS requires
a nonsingular covariance or correlation matrix.

WLS | W | ADF performs weighted least-squares parameter estimation. If
no INWGT= data set is specified, the WLS method uses
the inverse matrix of estimated asymptotic covariances of
the sample covariance or correlation matrix as the weight
matrix W. In this case, the WLS estimation method
is equivalent to Browne’s (1982, 1984) asymptotically
distribution-free estimation. The WLS method requires a
nonsingular weight matrix.
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DWLS | D performs diagonally weighted least-squares parameter es-
timation. If no INWGT= data set is specified, the DWLS
method uses the inverse diagonal matrix of asymptotic
variances of the input sample covariance or correlation ma-
trix as the weight matrixW. The DWLS method requires
a nonsingular diagonal weight matrix.

ULS | LS | U performs unweighted least-squares parameter estimation.

LSML | LSM | LSMAX performs unweighted least-squares followed by normal-
theory maximum likelihood parameter estimation.

LSGLS | LSG performs unweighted least-squares followed by general-
ized least-squares parameter estimation.

LSWLS | LSW | LSADF performs unweighted least-squares followed by weighted
least-squares parameter estimation.

LSDWLS | LSD performs unweighted least-squares followed by diagonally
weighted least-squares parameter estimation.

NONE | NO uses no estimation method. This option is suitable for
checking the validity of the input information and for dis-
playing the model matrices and initial values.

ASYCOV | ASC=name
specifies the formula for asymptotic covariances used in the weight matrixW for
WLS and DWLS estimation. The ASYCOV option is effective only if METHOD=
WLS or METHOD=DWLS and no INWGT= input data set is specified. The follow-
ing formulas are implemented:

BIASED: Browne’s (1984) formula (3.4)
biased asymptotic covariance estimates; the resulting weight ma-
trix is at least positive semidefinite. This is the default for analyz-
ing a covariance matrix.

UNBIASED: Browne’s (1984) formula (3.8)
asymptotic covariance estimates corrected for bias; the resulting
weight matrix can be indefinite (that is, can have negative eigen-
values), especially for smallN .

CORR: Browne and Shapiro’s (1986) formula (3.2)
(identical to DeLeeuw’s (1983) formulas (2,3,4)) the asymptotic
variances of the diagonal elements are set to the reciprocal of the
valuer specified by the WPENALTY= option (default:r = 100).
This formula is the default for analyzing a correlation matrix.

Caution: Using the WLS and DWLS methods with the ASYCOV=CORR option
means that you are fitting a correlation (rather than a covariance) structure. Since
the fixed diagonal of a correlation matrix for some models does not contribute to the
model’s degrees of freedom, you can specify the DFREDUCE=i option to reduce the
degrees of freedom by the number of manifest variables used in the model. See the
section“Counting the Degrees of Freedom”on page 676 for more information.
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DFREDUCE | DFRED=i
reduces the degrees of freedom of theχ2 test byi. In general, the number of degrees
of freedom is the number of elements of the lower triangle of the predicted model
matrix C, n(n + 1)/2, minus the number of parameters,t. If the NODIAG option
is used, the number of degrees of freedom is additionally reduced byn. Because
negative values ofi are allowed, you can also increase the number of degrees of
freedom by using this option. If the DFREDUCE= or NODIAG option is used in a
correlation structure analysis, PROC CALIS does not additionally reduce the degrees
of freedom by the number of constant elements in the diagonal of the predicted model
matrix, which is otherwise done automatically. See the section“Counting the Degrees
of Freedom”on page 676 for more information.

G4=i
specifies the algorithm to compute the approximate covariance matrix of parame-
ter estimates used for computing the approximate standard errors and modification
indices when the information matrix is singular. If the number of parameterst
used in the model you analyze is smaller than the value ofi, the time-expensive
Moore-Penrose (G4) inverse of the singular information matrix is computed by eigen-
value decomposition. Otherwise, an inexpensive pseudo (G1) inverse is computed by
sweeping. By default,i = 60. For more details, see the section“Estimation Criteria”
on page 644.

NODIAG | NODI
omits the diagonal elements of the analyzed correlation or covariance matrix from
the fit function. This option is useful only for special models with constant error vari-
ables. The NODIAG option does not allow fitting those parameters that contribute to
the diagonal of the estimated moment matrix. The degrees of freedom are automat-
ically reduced byn. A simple example for the usefulness of the NODIAG option is
the fit of the first-order factor model,S = FF′ + U2. In this case, you do not have
to estimate the diagonal matrix of unique variancesU2 that are fully determined by
diag(S− FF′).

WPENALTY | WPEN= r
specifies the penalty weightr ≥ 0 for the WLS and DWLS fit of the diagonal ele-
ments of a correlation matrix (constant 1s). The criterion for weighted least-squares
estimation of a correlation structure is

FWLS =
n∑

i=2

i−1∑
j=1

n∑
k=2

k−1∑
l=1

wij,kl(sij − cij)(skl − ckl) + r
n∑
i

(sii − cii)2

wherer is the penalty weight specified by the WPENALTY=r option and thewij,kl

are the elements of the inverse of the reduced(n(n − 1)/2) × (n(n − 1)/2) weight
matrix that contains only the nonzero rows and columns of the full weight matrix
W. The second term is a penalty term to fit the diagonal elements of the correlation
matrix. The default value is 100. The reciprocal of this value replaces the asymptotic
variance corresponding to the diagonal elements of a correlation matrix in the weight
matrixW, and it is effective only with the ASYCOV=CORR option. The often used
valuer = 1 seems to be too small in many cases to fit the diagonal elements of a
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correlation matrix properly. The default WPENALTY= value emphasizes the impor-
tance of the fit of the diagonal elements in the correlation matrix. You can decrease
or increase the value ofr if you want to decrease or increase the importance of the di-
agonal elements fit. This option is effective only with the WLS or DWLS estimation
method and the analysis of a correlation matrix. See the section“Estimation Criteria”
on page 644 for more details.

WRIDGE=r
defines a ridge factorr for the diagonal of the weight matrixW used in GLS, WLS,
or DWLS estimation. The weight matrixW is transformed to

W −→ W̃ = W + r(diag(W))

The WRIDGE= option is applied on the weight matrix

• before the WPENALTY= option is applied on it

• before the weight matrix is written to the OUTWGT= data set

• before the weight matrix is displayed

Optimization Techniques

Since there is no single nonlinear optimization algorithm available that is clearly
superior (in terms of stability, speed, and memory) for all applications, differ-
ent types of optimization techniques are provided in the CALIS procedure. Each
technique can be modified in various ways. The default optimization technique
for less than 40 parameters (t < 40) is TECHNIQUE=LEVMAR. For 40 ≤
t < 400, TECHNIQUE=QUANEW is the default method, and fort ≥ 400,
TECHNIQUE=CONGRA is the default method. For more details, see the section
“Use of Optimization Techniques”on page 664. You can specify the following set of
options in the PROC CALIS statement or in the NLOPTIONS statement.

TECHNIQUE | TECH=name
OMETHOD | OM=name

specifies the optimization technique. Valid values fornameare as follows:

CONGRA | CG chooses one of four different conjugate-gradient optimization
algorithms, which can be more precisely defined with the
UPDATE= option and modified with the LINESEARCH= op-
tion. The conjugate-gradient techniques need onlyO(t) mem-
ory compared to theO(t2) memory for the other three tech-
niques, wheret is the number of parameters. On the other hand,
the conjugate-gradient techniques are significantly slower than
other optimization techniques and should be used only when
memory is insufficient for more efficient techniques. When you
choose this option, UPDATE=PB by default. This is the default
optimization technique if there are more than 400 parameters to
estimate.



578 � Chapter 19. The CALIS Procedure

DBLDOG | DD performs a version of double dogleg optimization, which uses
the gradient to update an approximation of the Cholesky factor
of the Hessian. This technique is, in many aspects, very similar
to the dual quasi-Newton method, but it does not use line search.
The implementation is based on Dennis and Mei (1979) and
Gay (1983).

LEVMAR | LM | MARQUARDT performs a highly stable but, for large problems,
memory- and time-consuming Levenberg-Marquardt optimiza-
tion technique, a slightly improved variant of the Moré (1978)
implementation. This is the default optimization technique if
there are fewer than 40 parameters to estimate.

NEWRAP | NR | NEWTON performs a usually stable but, for large problems,
memory- and time-consuming Newton-Raphson optimization
technique. The algorithm combines a line-search algorithm
with ridging, and it can be modified with the LINESEARCH=
option. In releases prior to Release 6.11, this option invokes the
NRRIDG option.

NRRIDG | NRR | NR performs a usually stable but, for large problems, memory-
and time-consuming Newton-Raphson optimization tech-
nique. This algorithm does not perform a line search. Since
TECH=NRRIDG uses an orthogonal decomposition of the
approximate Hessian, each iteration of TECH=NRRIDG can
be slower than that of TECH=NEWRAP, which works with
Cholesky decomposition. However, usually TECH=NRRIDG
needs less iterations than TECH=NEWRAP.

QUANEW | QN chooses one of four different quasi-Newton optimization
algorithms that can be more precisely defined with the
UPDATE= option and modified with the LINESEARCH=
option. If boundary constraints are used, these techniques
sometimes converge slowly. When you choose this option,
UPDATE=DBFGS by default. If nonlinear constraints are
specified in the NLINCON statement, a modification of
Powell’s (1982a, 1982b) VMCWD algorithm is used, which
is a sequential quadratic programming (SQP) method. This
algorithm can be modified by specifying VERSION=1, which
replaces the update of the Lagrange multiplier estimate vector
µ to the original update of Powell (1978a, 1978b) that is used
in the VF02AD algorithm. This can be helpful for applications
with linearly dependent active constraints. The QUANEW
technique is the default optimization technique if there are
nonlinear constraints specified or if there are more than 40
and fewer than 400 parameters to estimate. The QUANEW
algorithm uses only first-order derivatives of the objective
function and, if available, of the nonlinear constraint functions.

TRUREG | TR performs a usually very stable but, for large problems, memory-
and time-consuming trust region optimization technique. The
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algorithm is implemented similar to Gay (1983) and Moré and
Sorensen (1983).

NONE | NO does not perform any optimization. This option is simi-
lar to METHOD=NONE, but TECH=NONE also computes
and displays residuals and goodness-of-fit statistics. If you
specify METHOD=ML, METHOD=LSML, METHOD=GLS,
METHOD=LSGLS, METHOD=WLS, or METHOD=LSWLS,
this option allows computing and displaying (if the display op-
tions are specified) of the standard error estimates and modifi-
cation indices corresponding to the input parameter estimates.

UPDATE | UPD=name
specifies the update method for the quasi-Newton or conjugate-gradient optimization
technique.

For TECHNIQUE=CONGRA, the following updates can be used:

PB performs the automatic restart update methodof Powell (1977) and Beale
(1972). This is the default.

FR performs the Fletcher-Reeves update (Fletcher 1980, p. 63).

PR performs the Polak-Ribiere update (Fletcher 1980, p. 66).

CD performs a conjugate-descent update of Fletcher (1987).

For TECHNIQUE=DBLDOG, the following updates (Fletcher 1987) can be used:

DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) up-
date of the Cholesky factor of the Hessian matrix. This is the default.

DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the
Cholesky factor of the Hessian matrix.

For TECHNIQUE=QUANEW, the following updates (Fletcher 1987) can be used:

BFGS performs original BFGS update of the inverse Hessian matrix. This is the
default for earlier releases.

DFP performs the original DFP update of the inverse Hessian matrix.

DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian
matrix. This is the default.

DDFP performs the dual DFP update of the Cholesky factor of the Hessian ma-
trix.
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LINESEARCH | LIS | SMETHOD | SM= i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP op-
timization techniques. Refer to Fletcher (1980) for an introduction to line-search
techniques. The value ofi can be1, . . . , 8; the default isi = 2.

LIS=1 specifies a line-search method that needs the same number of function and
gradient calls for cubic interpolation and cubic extrapolation; this method
is similar to one used by the Harwell subroutine library.

LIS=2 specifies a line-search method that needs more function calls than gradient
calls for quadratic and cubic interpolation and cubic extrapolation; this
method is implemented as shown in Fletcher (1987) and can be modified
to an exact line search by using the LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of function and
gradient calls for cubic interpolation and cubic extrapolation; this method
is implemented as shown in Fletcher (1987) and can be modified to an
exact line search by using the LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of function
and gradient calls for stepwise extrapolation and cubic interpolation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only func-
tion values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only function
values for linear approximation.

LIS=8 specifies Armijo line-search technique (Polak 1971), which uses only
function values for linear approximation.

FCONV | FTOL=r
specifies the relative function convergence criterion. The optimization process is ter-
minated when the relative difference of the function values of two consecutive itera-
tions is smaller than the specified value ofr, that is

|f(x(k))− f(x(k−1))|
max(|f(x(k−1))|, FSIZE)

≤ r

whereFSIZE can be defined by the FSIZE= option in the NLOPTIONS statement.
The default value isr = 10−FDIGITS , whereFDIGITS either can be specified in
the NLOPTIONS statement or is set by default to− log10(ε), whereε is the machine
precision.

GCONV | GTOL=r
specifies the relative gradient convergence criterion (see theABSGCONV= option
on page 617 for the absolute gradient convergence criterion).
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Termination of all techniques (except the CONGRA technique) requires the normal-
ized predicted function reduction to be small,

[g(x(k))]′[G(k)]−1g(x(k))
max(|f(x(k))|, FSIZE)

≤ r

whereFSIZE can be defined by the FSIZE= option in the NLOPTIONS statement.
For the CONGRA technique (where a reliable Hessian estimateG is not available),

‖ g(x(k)) ‖2
2 ‖ s(x(k)) ‖2

‖ g(x(k))− g(x(k−1)) ‖2 max(|f(x(k))|, FSIZE)
≤ r

is used. The default value isr = 10−8.

Note that for releases prior to Release 6.11, the GCONV= option specified the abso-
lute gradient convergence criterion.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default ini-
tial radius of the trust-region algorithms TRUREG, DBLDOG, and LEVMAR or the
default step length of the line-search algorithms can produce arithmetic overflows.
If this occurs, specify decreasing values of0 < r < 1 such as INSTEP=1E−1,
INSTEP=1E−2, INSTEP=1E−4, . . ., until the iteration starts successfully.

• For trust-region algorithms (TRUREG, DBLDOG, and LEVMAR), the
INSTEP option specifies a positive factor for the initial radius of the trust
region. The default initial trust-region radius is the length of the scaled
gradient, and it corresponds to the default radius factor ofr = 1.

• For line-search algorithms (NEWRAP, CONGRA, and QUANEW), INSTEP
specifies an upper bound for the initial step length for the line search during
the first five iterations. The default initial step length isr = 1.

For releases prior to Release 6.11, specify the SALPHA= and RADIUS= options. For
more details, see the section“Computational Problems”on page 678.

LSPRECISION | LSP= r
SPRECISION | SP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and successful.
For more difficult optimization problems, a more precise and more expensive line
search may be necessary (Fletcher 1980, p.22). The second (default for NEWRAP,
QUANEW, and CONGRA) and third line-search methods approach exact line search
for small LSPRECISION= values. If you have numerical problems, you should de-
crease the LSPRECISION= value to obtain a more precise line search. The default
LSPRECISION= values are displayed in the following table.
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TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1980, pp. 25–29).

MAXFUNC | MAXFU= i
specifies the maximum numberi of function calls in the optimization process. The
default values are displayed in the following table.

TECH= MAXFUNC default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=125
DBLDOG, QUANEW i=500
CONGRA i=1000

The default is used if you specify MAXFUNC=0. The optimization can be terminated
only after completing a full iteration. Therefore, the number of function calls that
is actually performed can exceed the number that is specified by the MAXFUNC=
option.

MAXITER | MAXIT= i <n>
specifies the maximum numberi of iterations in the optimization process. The default
values are displayed in the following table.

TECH= MAXITER default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=50
DBLDOG, QUANEW i=200
CONGRA i=400

The default is used if you specify MAXITER=0 or if you omit the MAXITER option.

The optional second valuen is valid only for TECH=QUANEW with nonlinear con-
straints. It specifies an upper boundn for the number of iterations of an algorithm
and reduces the violation of nonlinear constraints at a starting point. The default is
n=20. For example, specifying

maxiter= . 0

means that you do not want to exceed the default number of iterations during the main
optimization process and that you want to suppress the feasible point algorithm for
nonlinear constraints.
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RADIUS=r
is an alias for the INSTEP= option for Levenberg-Marquardt minimization.

SALPHA= r
is an alias for the INSTEP= option for line-search algorithms.

SPRECISION | SP=r
is an alias for the LSPRECISION= option.

Displayed Output Options

There are three kinds of options to control the displayed output:

• The PCORR, KURTOSIS, MODIFICATION, NOMOD, PCOVES,
PDETERM, PESTIM, PINITIAL, PJACPAT, PLATCOV, PREDET,
PWEIGHT, RESIDUAL, SIMPLE, STDERR, and TOTEFF options re-
fer to specific parts of displayed output.

• The PALL, PRINT, PSHORT, PSUMMARY, and NOPRINT options refer to
special subsets of the displayed output options mentioned in the first item. If
the NOPRINT option is not specified, a default set of output is displayed. The
PRINT and PALL options add other output options to the default output, and
the PSHORT and PSUMMARY options reduce the default displayed output.

• The PRIMAT and PRIVEC options describe the form in which some of the
output is displayed (the only nonredundant information displayed by PRIVEC
is the gradient).

Output Options PALL PRINT default PSHORT PSUMMARY
fit indices * * * * *
linear dependencies * * * * *
PREDET * (*) (*) (*)
model matrices * * * *
PESTIM * * * *
iteration history * * * *
PINITIAL * * *
SIMPLE * * *
STDERR * * *
RESIDUAL * *
KURTOSIS * *
PLATCOV * *
TOTEFF * *
PCORR *
MODIFICATION *
PWEIGHT *
PCOVES
PDETERM
PJACPAT
PRIMAT
PRIVEC
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KURTOSIS | KU
computes and displays univariate kurtosis and skewness, various coefficients of multi-
variate kurtosis, and the numbers of observations that contribute most to the normal-
ized multivariate kurtosis. See the section“Measures of Multivariate Kurtosis”on
page 658 for more information. Using the KURTOSIS option implies the SIMPLE
display option. This information is computed only if the DATA= data set is a raw
data set, and it is displayed by default if the PRINT option is specified. The multi-
variate LS kappa and the multivariate mean kappa are displayed only if you specify
METHOD=WLS and the weight matrix is computed from an input raw data set. All
measures of skewness and kurtosis are corrected for the mean. If an intercept variable
is included in the analysis, the measures of multivariate kurtosis do not include the
intercept variable in the corrected covariance matrix, as indicated by a displayed mes-
sage. Using the BIASKUR option displays the biased values of univariate skewness
and kurtosis.

MODIFICATION | MOD
computes and displays Lagrange multiplier test indices for constant parameter con-
straints, equality parameter constraints, and active boundary constraints, as well as
univariate and multivariate Wald test indices. The modification indices are not com-
puted in the case of unweighted or diagonally weighted least-squares estimation.

The Lagrange multiplier test (Bentler 1986; Lee 1985; Buse 1982) provides an es-
timate of theχ2 reduction that results from dropping the constraint. For constant
parameter constraints and active boundary constraints, the approximate change of the
parameter value is displayed also. You can use this value to obtain an initial value if
the parameter is allowed to vary in a modified model. For more information, see the
section“Modification Indices”on page 673.

NOMOD
does not compute modification indices. The NOMOD option is useful in connection
with the PALL option because it saves computing time.

NOPRINT | NOP
suppresses the displayed output. Note that this option temporarily disables the Output
Delivery System (ODS). For more information, seeChapter 14, “Using the Output
Delivery System.”

PALL | ALL
displays all optional output except the output generated by the PCOVES, PDETERM,
PJACPAT, and PRIVEC options.

Caution: The PALL option includes the very expensive computation of the modifica-
tion indices. If you do not really need modification indices, you can save computing
time by specifying the NOMOD option in addition to the PALL option.

PCORR | CORR
displays the (corrected or uncorrected) covariance or correlation matrix that is ana-
lyzed and the predicted model covariance or correlation matrix.
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PCOVES | PCE
displays the following:

• the information matrix (crossproduct Jacobian)

• the approximate covariance matrix of the parameter estimates (generalized in-
verse of the information matrix)

• the approximate correlation matrix of the parameter estimates

The covariance matrix of the parameter estimates is not computed for estimation
methods ULS and DWLS. This displayed output is not included in the output gener-
ated by the PALL option.

PDETERM | PDE
displays three coefficients of determination: the determination of all equations
(DETAE), the determination of the structural equations (DETSE), and the determina-
tion of the manifest variable equations (DETMV). These determination coefficients
are intended to be global means of the squared multiple correlations for different
subsets of model equations and variables. The coefficients are displayed only when
you specify a RAM or LINEQS model, but they are displayed for all five estimation
methods: ULS, GLS, ML, WLS, and DWLS.

You can use the STRUCTEQ statement to define which equations are structural equa-
tions. If you don’t use the STRUCTEQ statement, PROC CALIS uses its own default
definition to identify structural equations.

The term “structural equation” is not defined in a unique way. The LISREL program
defines the structural equations by the user-defined BETA matrix. In PROC CALIS,
the default definition of a structural equation is an equation that has a dependent
left side variable that appears at least once on the right side of another equation, or an
equation that has at least one right side variable that is the left side variable of another
equation. Therefore, PROC CALIS sometimes identifies more equations as structural
equations than the LISREL program does.

If the model contains structural equations, PROC CALIS also displays the “Stability
Coefficient of Reciprocal Causation,” that is, the largest eigenvalue of theBB′ ma-
trix, whereB is the causal coefficient matrix of the structural equations. These coef-
ficients are computed as in the LISREL VI program of Jöreskog and Sörbom (1985).
This displayed output is not included in the output generated by the PALL option.

PESTIM | PES
displays the parameter estimates. In some cases, this includes displaying the standard
errors andt values.

PINITIAL | PIN
displays the input model matrices and the vector of initial values.
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PJACPAT | PJP
displays the structure of variable and constant elements of the Jacobian matrix. This
displayed output is not included in the output generated by the PALL option.

PLATCOV | PLC
displays the following:

• the estimates of the covariances among the latent variables

• the estimates of the covariances between latent and manifest variables

• the latent variable score regression coefficients

The estimated covariances between latent and manifest variables and the latent vari-
able score regression coefficients are written to the OUTSTAT= data set. You can use
the score coefficients with PROC SCORE to compute factor scores.

PREDET | PRE
displays the pattern of variable and constant elements of the predicted moment matrix
that is predetermined by the analysis model. It is especially helpful in finding mani-
fest variables that are not used or that are used as exogenous variables in a complex
model specified in the COSAN statement. Those entries of the predicted moment
matrix for which the model generates variable (rather than constant) elements are
displayed as missing values. This output is displayed even without specifying the
PREDET option if the model generates constant elements in the predicted model ma-
trix different from those in the analysis moment matrix and if you specify at least the
PSHORT amount of displayed output.

If the analyzed matrix is a correlation matrix (containing constant elements of 1s
in the diagonal) and the model generates a predicted model matrix withq constant
(rather than variable) elements in the diagonal, the degrees of freedom are automat-
ically reduced byq. The output generated by the PREDET option displays those
constant diagonal positions. If you specify the DFREDUCE= or NODIAG option,
this automatic reduction of the degrees of freedom is suppressed. See the section
“Counting the Degrees of Freedom”on page 676 for more information.

PRIMAT | PMAT
displays parameter estimates, approximate standard errors, andt values in matrix
form if you specify the analysis model in the RAM or LINEQS statement. When a
COSAN statement is used, this occurs by default.

PRINT | PRI
adds the options KURTOSIS, RESIDUAL, PLATCOV, and TOTEFF to the default
output.

PRIVEC | PVEC
displays parameter estimates, approximate standard errors, the gradient, andt values
in vector form. The values are displayed with more decimal places. This displayed
output is not included in the output generated by the PALL option.



PROC CALIS Statement � 587

PSHORT | SHORT | PSH
excludes the output produced by the PINITIAL, SIMPLE, and STDERR options from
the default output.

PSUMMARY | SUMMARY | PSUM
displays the fit assessment table and the ERROR, WARNING, and NOTE messages.

PWEIGHT | PW
displays the weight matrixW used in the estimation. The weight matrix is displayed
after the WRIDGE= and the WPENALTY= options are applied to it.

RESIDUAL | RES < = NORM | VARSTAND | ASYSTAND >
displays the absolute and normalized residual covariance matrix, the rank order of
the largest residuals, and a bar chart of the residuals. This information is displayed
by default when you specify the PRINT option.

Three types of normalized or standardized residual matrices can be chosen with the
RESIDUAL= specification.

RESIDUAL= NORM Normalized Residuals

RESIDUAL= VARSTAND Variance Standardized Residuals

RESIDUAL= ASYSTAND Asymptotically Standardized Residuals

For more details, see the section“Assessment of Fit”on page 649.

SIMPLE | S
displays means, standard deviations, skewness, and univariate kurtosis if available.
This information is displayed when you specify the PRINT option. If you specify the
UCOV, UCORR, or NOINT option, the standard deviations are not corrected for the
mean. If the KURTOSIS option is specified, the SIMPLE option is set by default.

STDERR | SE
displays approximate standard errors if estimation methods other than unweighted
least squares (ULS) or diagonally weighted least squares (DWLS) are used (and the
NOSTDERR option is not specified). If you specify neither the STDERR nor the
NOSTDERR option, the standard errors are computed for the OUTRAM= data set.
This information is displayed by default when you specify the PRINT option.

NOSTDERR | NOSE
specifies that standard errors should not be computed. Standard errors are not
computed for unweighted least-squares (ULS) or diagonally weighted least-squares
(DWLS) estimation. In general, standard errors are computed even if the STDERR
display option is not used (for file output).

TOTEFF | TE
computes and displays total effects and indirect effects.
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Miscellaneous Options

ALPHAECV=α
specifies the significance level for a1 − α confidence interval,0 ≤ α ≤ 1, for the
Browne & Cudeck (1993) expected cross validation index (ECVI) . The default value
is α = 0.1, which corresponds to a 90% confidence interval for the ECVI.

ALPHARMS=α
specifies the significance level for a1 − α confidence interval,0 ≤ α ≤ 1, for the
Steiger & Lind (1980) root mean squared error of approximation (RMSEA) coef-
ficient (refer to Browne and Du Toit 1992). The default value isα = 0.1, which
corresponds to a 90% confidence interval for the RMSEA.

ASINGULAR | ASING= r
specifies an absolute singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the covariance matrix. The following singularity
criterion is used:

|dj,j | ≤ max(ASING, V SING ∗ |Hj,j |,MSING ∗max(|H1,1|, . . . , |Hn,n|))

In the preceding criterion,dj,j is the diagonal pivot of the matrix, andVSINGand
MSINGare the specified values of the VSINGULAR= and MSINGULAR= options.
The default value forASINGis the square root of the smallest positive double preci-
sion value. Note that, in many cases, a normalized matrixD−1HD−1 is decomposed,
and the singularity criteria are modified correspondingly.

BIASKUR
computes univariate skewness and kurtosis by formulas uncorrected for bias. See the
section“Measures of Multivariate Kurtosis”on page 658 for more information.

COVSING=r
specifies a nonnegative thresholdr, which determines whether the eigenvalues of
the information matrix are considered to be zero. If the inverse of the information
matrix is found to be singular (depending on the VSINGULAR=, MSINGULAR=,
ASINGULAR=, or SINGULAR= option), a generalized inverse is computed using
the eigenvalue decomposition of the singular matrix. Those eigenvalues smaller than
r are considered to be zero. If a generalized inverse is computed and you do not
specify the NOPRINT option, the distribution of eigenvalues is displayed.

DEMPHAS | DE=r
changes the initial values of all parameters that are located on the diagonals of the
central model matrices by the relationship

diagnew = r(|diagold|+ 1)

The initial values of the diagonal elements of the central matrices should always be
nonnegative to generate positive definite predicted model matrices in the first itera-
tion. By using values ofr > 1, for example,r = 2, r = 10, . . ., you can increase
these initial values to produce predicted model matrices with high positive eigenval-
ues in the first iteration. The DEMPHAS= option is effective independent of the way
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the initial values are set; that is, it changes the initial values set in the model specifi-
cation as well as those set by an INRAM= data set and those automatically generated
for RAM, LINEQS, or FACTOR model statements. It also affects the initial values
set by the START= option, which uses, by default, DEMPHAS=100 if a covariance
matrix is analyzed and DEMPHAS=10 for a correlation matrix.

FDCODE
replaces the analytic derivatives of the program statements by numeric derivatives
(finite difference approximations). In general, this option is needed only when you
have program statements that are too difficult for the built-in function compiler to dif-
ferentiate analytically. For example, if the program code for the nonlinear constraints
contains many arrays and many DO loops with array processing, the built-in function
compiler can require too much time and memory to compute derivatives of the con-
straints with respect to the parameters. In this case, the Jacobian matrix of constraints
is computed numerically by using finite difference approximations. The FDCODE
option does not modify the kind of derivatives specified with the HESSALG= option.

HESSALG | HA = 1 | 2 | 3 | 4 | 5 | 6 | 11
specifies the algorithm used to compute the (approximate) Hessian matrix when
TECHNIQUE=LEVMAR and NEWRAP, to compute approximate standard errors
of the parameter estimates, and to compute Lagrange multipliers. There are different
groups of algorithms available.

• analytic formulas: HA=1,2,3,4,11

• finite difference approximation: HA=5,6

• dense storage: HA=1,2,3,4,5,6

• sparse storage: HA=11

If the Jacobian is more than 25% dense, the dense analytic algorithm, HA= 1, is
used by default. The HA= 1 algorithm is faster than the other dense algorithms,
but it needs considerably more memory for large problems than HA= 2,3,4. If the
Jacobian is more than 75% sparse, the sparse analytic algorithm, HA= 11, is used
by default. The dense analytic algorithm HA= 4 corresponds to the original COSAN
algorithm; you are advised not to specify HA= 4 due to its very slow performance.
If there is not enough memory available for the dense analytic algorithm HA= 1 and
you must specify HA= 2 or HA= 3, it may be more efficient to use one of the quasi-
Newton or conjugate-gradient optimization techniques since Levenberg-Marquardt
and Newton-Raphson optimization techniques need to compute the Hessian matrix in
each iteration. For approximate standard errors and modification indices, the Hessian
matrix has to be computed at least once, regardless of the optimization technique.

The algorithms HA= 5 and HA= 6 compute approximate derivatives by using for-
ward difference formulas. The HA= 5 algorithm corresponds to the analytic HA= 1:
it is faster than HA= 6, however it needs much more memory. The HA= 6 algorithm
corresponds to the analytic HA= 2: it is slower than HA= 5, however it needs much
less memory.

Test computations of large sparse problems show that the sparse algorithm HA= 11
can be up to ten times faster than HA= 1 (and needs much less memory).
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MSINGULAR | MSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the covariance matrix. The following singularity
criterion is used:

|dj,j | ≤ max(ASING, V SING ∗ |Hj,j |,MSING ∗max(|H1,1|, . . . , |Hn,n|))

wheredj,j is the diagonal pivot of the matrix, andASINGandVSINGare the spec-
ified values of the ASINGULAR= and VSINGULAR= options. If you do not spec-
ify the SINGULAR= option, the default value forMSING is 1E−12; otherwise, the
default value is 1E−4 * SINGULAR. Note that, in many cases, a normalized ma-
trix D−1HD−1 is decomposed, and the singularity criteria are modified correspond-
ingly.

NOADJDF
turns off the automatic adjustment of degrees of freedom when there are active con-
straints in the analysis. When the adjustment is in effect, most fit statistics and the
associated probability levels will be affected. This option should be used when the re-
searcher believes that the active constraints observed in the current sample will have
little chance to occur in repeated sampling.

RANDOM =i
specifies a positive integer as a seed value for the pseudo-random number generator
to generate initial values for the parameter estimates for which no other initial value
assignments in the model definitions are made. Except for the parameters in the diag-
onal locations of the central matrices in the model, the initial values are set to random
numbers in the range0 ≤ r ≤ 1. The values for parameters in the diagonals of the
central matrices are random numbers multiplied by10 or 100. For more information,
see the section“Initial Estimates”on page 661.

SINGULAR | SING = r
specifies the singularity criterionr, 0 < r < 1, used, for example, for matrix in-
version. The default value is the square root of the relative machine precision or,
equivalently, the square root of the largest double precision value that, when added to
1, results in 1.

SLMW=r
specifies the probability limit used for computing the stepwise multivariate Wald test.
The process stops when the univariate probability is smaller thanr. The default value
is r = 0.05.

START =r
In general, this option is needed only in connection with the COSAN model state-
ment, and it specifies a constantr as an initial value for all the parameter estimates
for which no other initial value assignments in the pattern definitions are made. Start
values in the diagonal locations of the central matrices are set to100|r| if a COV or
UCOV matrix is analyzed and10|r| if a CORR or UCORR matrix is analyzed. The
default value isr = .5. Unspecified initial values in a FACTOR, RAM, or LINEQS
model are usually computed by PROC CALIS. If none of the initialization methods
are able to compute all starting values for a model specified by a FACTOR, RAM, or
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LINEQS statement, then the start values of parameters that could not be computed
are set tor, 10|r|, or 100|r|. If the DEMPHAS= option is used, the initial values
of the diagonal elements of the central model matrices are multiplied by the value
specified in the DEMPHAS= option. For more information, see the section“Initial
Estimates”on page 661.

VSINGULAR | VSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the covariance matrix. The following singularity
criterion is used:

|dj,j | ≤ max(ASING, V SING ∗ |Hj,j |,MSING ∗max(|H1,1|, . . . , |Hn,n|))

wheredj,j is the diagonal pivot of the matrix, andASINGandMSINGare the specified
values of the ASINGULAR= and MSINGULAR= options. If you do not specify the
SINGULAR= option, the default value forVSINGis 1E−8; otherwise, the default
value is SINGULAR. Note that in many cases a normalized matrixD−1HD−1 is
decomposed, and the singularity criteria are modified correspondingly.

COSAN Model Statement

COSAN matrix–term < + matrix–term. . . > ;

wherematrix–termrepresents
matrix–definition< ∗ matrix–definition ...>

andmatrix–definitionrepresents
matrix–name (column–number< ,general–form< ,transformation>> )

The COSAN statement constructs the symmetric matrix model for the covariance
analysis mentioned earlier (see the section“The Generalized COSAN Model”on
page 552):

C = F1P1F′
1 + · · ·+ FmPmF′

m,

Fk = Fk1 · · ·Fkn(k)
, and Pk = P′

k, k = 1, . . . ,m

Fkj
=


Gkj

G−1
kj

(I−Gkj
)−1

j = 1, . . . , n(k), and Pk =
{

Qk

Q−1
k

You can specify only one COSAN statement with each PROC CALIS statement.
The COSAN statement containsm matrix–terms corresponding to the generalized
COSAN formula. Thematrix–terms are separated by plus signs (+) according to the
addition of the terms within the model.

Eachmatrix–termof the COSAN statement contains the definitions of the firstn(k)+
1 matrices,Fkj

andPk, separated by asterisks (*) according to the multiplication of
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the matrices within the term. The matricesF′
k of the right-hand-side product are

redundant and are not specified within the COSAN statement.

Eachmatrix–definitionconsists of the name of the matrix (matrix–name), followed
in parentheses by the number of columns of the matrix (column–number) and, op-
tionally, one or two matrix properties, separated by commas, describing the form of
the matrix.

The number of rows of the first matrix in each term is defined by the input correlation
or covariance matrix. You can reorder and reduce the variables in the input moment
matrix using the VAR statement. The number of rows of the other matrices within
the term is defined by the number of columns of the preceding matrix.

The first matrix property describes the general form of the matrix in the model. You
can choose one of the following specifications of the first matrix property. The default
first matrix property is GEN.

Code Description

IDE specifies an identity matrix; if the matrix is not square, this specification
describes an identity submatrix followed by a rectangular zero submatrix.

ZID specifies an identity matrix; if the matrix is not square, this specification
describes a rectangular zero submatrix followed by an identity submatrix.

DIA specifies a diagonal matrix; if the matrix is not square, this specification
describes a diagonal submatrix followed by a rectangular zero submatrix.

ZDI specifies a diagonal matrix; if the matrix is not square, this specification
describes a rectangular zero submatrix followed by a diagonal submatrix.

LOW specifies a lower triangular matrix; the matrix can be rectangular.

UPP specifies an upper triangular matrix; the matrix can be rectangular.

SYM specifies a symmetric matrix; the matrix cannot be rectangular.

GEN specifies a general rectangular matrix (default).

The second matrix property describes the kind of inverse matrix transformation. If
the second matrix property is omitted, no transformation is applied to the matrix.

Code Description

INV uses the inverse of the matrix.

IMI uses the inverse of the difference between the identity and the matrix.

You cannot specify a nonsquare parameter matrix as an INV or IMI model matrix.
Specifying a matrix of type DIA, ZDI, UPP, LOW, or GEN is not necessary if you do
not use theunspecified locationlist in the corresponding MATRIX statements. After
PROC CALIS processes the corresponding MATRIX statements, the matrix type
DIA, ZDI, UPP, LOW, or GEN is recognized from the pattern of possibly nonzero
elements. If you do not specify the first matrix property and you use theunspecified
location list in a corresponding MATRIX statement, the matrix is recognized as a
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GEN matrix. You can also generate an IDE or ZID matrix by specifying a DIA, ZDI,
or IMI matrix and by using MATRIX statements that define the pattern structure.
However, PROC CALIS would be unable to take advantage of the fast algorithms
that are available for IDE and ZID matrices in this case.

For example, to specify a second-order factor analysis model

S = F1F2P2F′
2F

′
1 + F1U2

2F
′
1 + U2

1

with m1 = 3 first-order factors andm2 = 2 second-order factors and withn = 9
variables, you can use the following COSAN statement:

cosan F1(3) * F2(2) * P2(2,SYM)+F1(3) * U2(3,DIA) * I1(3,IDE)
+U1(9,DIA) * I2(9,IDE)

MATRIX Statement

MATRIX matrix-name < location > = list < , location = list . . . > ;

You can specify one or more MATRIX statements with a COSAN or FACTOR state-
ment. A MATRIX statement specifies which elements of the matrix are constant and
which are parameters. You can also assign values to the constant elements and initial
values for the parameters. The input notation resembles that used in the COSAN pro-
gram of R. McDonald and C. Fraser (personal communication), except that in PROC
CALIS, parameters are distinguished from constants by giving parameters names in-
stead of by using positive and negative integers.

A MATRIX statement cannot be used for an IDE or ZID matrix. For all other types of
matrices, each element is assumed to be a constant of 0 unless a MATRIX statement
specifies otherwise. Hence, there must be at least one MATRIX statement for each
matrix mentioned in the COSAN statement except for IDE and ZID matrices. There
can be more than one MATRIX statement for a given matrix. If the same matrix
element is given different definitions, later definitions override earlier definitions.

At the start, all elements of each model matrix, except IDE or ZID matrices, are set
equal to 0.

Description of location:

There are several ways to specify the startinglocationand continuation direction of
a list with n+ 1, n ≥ 0, elements within the parameter matrix.

[ i , j ] The list elements correspond to the diagonally continued matrix elements
[i,j ] , [ i+1,j+1] , ... , [i+n,j+n ]. The number of elements is defined by the
length of the list and eventually terminated by the matrix boundaries. If the
list contains just one element (constant or variable), then it is assigned to
the matrix element [i,j ].

[ i , ] The list elements correspond to the horizontally continued matrix elements
[i,j ], [ i,j+1] , ... , [i,j+n ], where the starting columnj is the diagonal position
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for a DIA, ZDI, or UPP matrix and is the first column for all other matrix
types. For a SYM matrix, the list elements refer only to the matrix elements
in the lower triangle. For a DIA or ZDI matrix, only one list element is
accepted.

[ , j ] The list elements correspond to the vertically continued matrix elements
[i,j ], [ i+1,j] , ... , [i+n,j ], where the starting rowi is equal to the diagonal
position for a DIA, ZDI, SYM, or LOW matrix and is the first row for each
other matrix type. For a SYM matrix, the list elements refer only to the
matrix elements in the lower triangle. For a DIA or ZDI matrix, only one
list element is accepted.

[ , ] unspecified location: Thelist is allocated to all valid matrix positions (ex-
cept for a ZDI matrix) starting at the element [1,1] and continuing rowwise.
The only valid matrix positions for a DIA or ZDI matrix are the diagonal
elements; for an UPP or LOW matrix, the valid positions are the elements
above or below the diagonal; and for a symmetric matrix, the valid positions
are the elements in the lower triangle since the other triangle receives the
symmetric allocation automatically. Thislocation definition differs from
the definitions with specified pattern locations in one important respect: if
the number of elements in thelist is smaller than the number of valid matrix
elements, the list is repeated in the allocation process until all valid matrix
elements are filled.

Omitting the left-hand-side term is equivalent to using [ , ] for anunspecified loca-
tion.

Description of list:

The list contains numeric values or parameter names, or both, that are assigned to a
list of matrix elements starting at a specified position and proceeding in a specified
direction. A real numberr in the list defines the corresponding matrix element as a
constant element with this value. The notationn ∗ r generatesn values ofr in the
list. A name in the list defines the corresponding matrix element as a parameter to be
estimated. You can use numbered name lists (X1-X10) or the asterisk notation (5 *X
means five occurrences of the parameterX). If a sublist ofn1 names inside alist is
followed by a list ofn2 ≤ n1 real values inside parentheses, the lastn2 parameters
in the name sublist are given the initial values mentioned inside the parenthesis. For
example, the followinglist

0. 1. A2-A5 (1.4 1.9 2.5) 5.

specifies that the first two matrix elements (specified by thelocationto the left of the
equal sign) are constants with values 0 and 1. The next element is parameterA2 with
no specified initial value. The next three matrix elements are the variable parameters
A3, A4, andA5 with initial values 1.4, 1.9, and 2.5, respectively. The next matrix
element is specified by the seventh list element to be the constant 5.

If your model contains many unconstrained parameters and it is too cumbersome to
find different parameter names, you can specify all those parameters by the same
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prefix name. A prefix is a short name followed by a colon. The CALIS procedure
generates a parameter name by appending an integer suffix to this prefix name. The
prefix name should have no more than five or six characters so that the generated
parameter name is not longer than eight characters. For example, if the prefixA (the
parameterA1) is already used once in alist, the previous example would be identical
to

0. 1. 4 * A: (1.4 1.9 2.5) 5.

To avoid unintentional equality constraints, the prefix names should not coincide with
explicitly defined parameter names.

If you do not assign initial values to the parameters (listed in parentheses following a
name sublist within the pattern list), PROC CALIS assigns initial values as follows:

• If the PROC CALIS statement contains a START=r option, each uninitialized
parameter is given the initial valuer. The uninitialized parameters in the diag-
onals of the central model matrices are given the initial value10|r|, 100|r|, or
|r| multiplied by the value specified in the DEMPHAS= option.

• If the PROC CALIS statement contains a RANDOM=i option, each uninitial-
ized parameter is given a random initial value0 ≤ r ≤ 1. The uninitialized
parameters in the diagonals of the central model matrices are given the random
values multiplied by10, 100, or the value specified in the DEMPHAS= option.

• Otherwise, the initial value is set corresponding to START=0.5.

For example, to specify a confirmatory second-order factor analysis model

S = F1F2P2F′
2F

′
1 + F1U2

2F
′
1 + U2

1

with m1 = 3 first-order factors,m2 = 2 second-order factors, andn = 9 variables
and the following matrix pattern,

F1 =



X1 0 0
X2 0 0
X3 0 0
0 X4 0
0 X5 0
0 X6 0
0 0 X7

0 0 X8

0 0 X9


, U1 =



U1

U2

U3

U4

U5

U6

U7

U8

U9



F2 =

Y1 0
Y1 Y2

0 Y2

 , P2 =
(
P 0
0 P

)
, U2 =

V1

V2

V3
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you can specify the following COSAN and MATRIX statements:

cosan f1(3) * f2(2) * p2(2,dia) + f1(3) * u2(3,dia) * i1(3,ide)
+ u1(9,dia) * i2(9,ide);

matrix f1
[ ,1]= x1-x3,
[ ,2]= 3 * 0 x4-x6,
[ ,3]= 6 * 0 x7-x9;

matrix u1
[1,1]=u1-u9;

matrix f2
[ ,1]= 2 * y1,
[ ,2]= 0. 2 * y2;

matrix u2 = 3 * v:;
matrix p2 = 2 * p;
run;

The matrix pattern includes several equality constraints. Two loadings in the first and
second factor ofF2 (parameter namesY1 andY2) and the two factor correlations in
the diagonal of matrixP2 (parameter nameP) are constrained to be equal. There are
many other ways to specify the same model. SeeFigure 19.2for the path diagram of
this model.

The MATRIX statement can also be used with the FACTOR model statement. See
“Using the FACTOR and MATRIX Statements”on page 608 for the usage.

RAM Model Statement

RAM list-entry < , list-entry . . . > ;

wherelist-entryrepresents
matrix-number row-number column-number<value><parameter-name>

The RAM statement defines the elements of the symmetric RAM matrix model

v = Av + u

in the form of a list type input (McArdle and McDonald 1984).

The covariance structure is given by

C = J(I−A)−1P((I−A)−1)′J′

with selection matrixJ and

C = E{Jvv′J′}, P = E{uu′}

You can specify only one RAM statement with each PROC CALIS statement. Using
the RAM statement requires that the firstn variable numbers in the path diagram and
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in the vectorv correspond to the numbers of then manifest variables of the given
covariance or correlation matrix. If you are not sure what the order of the manifest
variables in the DATA= data set is, use a VAR statement to specify the order of
these observed variables. Using the AUGMENT option includes theINTERCEPT
variable as a manifest variable with numbern + 1 in the RAM model. In this case,
latent variables have to start withn + 2. The box of each manifest variable in the
path diagram is assigned the number of the variable in the covariance or correlation
matrix.

The selection matrixJ is always a rectangular identity (IDE) matrix, and it does not
have to be specified in the RAM statement. A constant matrix element is defined in
a RAM statement by alist-entrywith four numbers. You define a parameter element
by three or four numbers followed by a name for the parameter. Separate the list
entries with a comma. Eachlist-entry in the RAM statement corresponds to a path in
the diagram, as follows:

• The first number in each list entry (matrix-number) is the number of arrow
heads of the path, which is the same as the number of the matrix in the RAM
model (1 :=A , 2 :=P).

• The second number in each list entry (row-number) is the number of the node
in the diagram to which the path points, which is the same as the row number
of the matrix element.

• The third number in each list entry (column-number) is the number of the node
in the diagram from which the path originates, which is the same as the column
number of the matrix element.

• The fourth number (value) gives the (initial) value of the path coefficient. If you
do not specify a fifthlist-entry, this number specifies a constant coefficient;
otherwise, this number specifies the initial value of this parameter. It is not
necessary to specify the fourth item. If you specify neither the fourth nor the
fifth item, the constant is set to 1 by default. If the fourth item (value) is not
specified for a parameter, PROC CALIS tries to compute an initial value for
this parameter.

• If the path coefficient is a parameter rather than a constant, then a fifth item in
the list entry (parameter-name) is required to assign a name to the parameter.
Using the same name for different paths constrains the corresponding coeffi-
cients to be equal.

If the initial value of a parameter is not specified in the list, the initial value is chosen
in one of the following ways:

• If the PROC CALIS statement contains a RANDOM=i option, then the pa-
rameter obtains a randomly generated initial valuer, such that0 ≤ r ≤ 1.
The uninitialized parameters in the diagonals of the central model matrices are
given the random valuesr multiplied by10, 100, or the value specified in the
DEMPHAS= option.
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• If the RANDOM= option is not used, PROC CALIS tries to estimate the initial
values.

• If the initial values cannot be estimated, the value of the START= option is
used as an initial value.

If your model contains many unconstrained parameters and it is too cumbersome to
find different parameter names, you can specify all those parameters by the same
prefix name. A prefix is a short name followed by a colon. The CALIS procedure
then generates a parameter name by appending an integer suffix to this prefix name.
The prefix name should have no more than five or six characters so that the generated
parameter name is not longer than eight characters. To avoid unintentional equality
constraints, the prefix names should not coincide with explicitly defined parameter
names.

For example, you can specify theconfirmatory second-order factor analysis model
(mentioned on page 595)

S = F1F2P2F′
2F

′
1 + F1U2

2F
′
1 + U2

1

using the following RAM model statement.

ram
1 1 10 x1,
1 2 10 x2,
1 3 10 x3,
1 4 11 x4,
1 5 11 x5,
1 6 11 x6,
1 7 12 x7,
1 8 12 x8,
1 9 12 x9,
1 10 13 y1,
1 11 13 y1,
1 11 14 y2,
1 12 14 y2,
2 1 1 u:,
2 2 2 u:,
2 3 3 u:,
2 4 4 u:,
2 5 5 u:,
2 6 6 u:,
2 7 7 u:,
2 8 8 u:,
2 9 9 u:,
2 10 10 v:,
2 11 11 v:,
2 12 12 v:,
2 13 13 p ,
2 14 14 p ;

run;
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The confirmatory second-order factor analysis model corresponds to the path diagram
displayed inFigure 19.2.
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Figure 19.2. Path Diagram of Second-Order Factor Analysis Model
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There is a very close relationship between the RAM model algebra and the specifica-
tion of structural linear models by path diagrams. SeeFigure 19.3for an example.
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Refer to McArdle (1980) for the interpretation of the models displayed inFigure 19.3.
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LINEQS Model Statement

LINEQS equation < , equation . . . > ;

whereequationrepresentsdependent = term< + term . . . >
and wheretermrepresents one of the following:

• coefficient-name< (number)> variable-name
• prefix-name< (number)> variable-name
• < number> variable-name

The LINEQS statement defines the LINEQS model

η = βη + γξ

C = J(I−B)−1ΓΦΓ′((I−B)−1)′J′

You can specify only one LINEQS statement with each PROC CALIS statement.
There are some differences from Bentler’s notation in choosing the variable names.
The length of each variable name is restricted to eight characters. The names of the
manifest variables are defined in the DATA= input data set. The VAR statement can
be used to select a subset of manifest variables in the DATA= input data set to analyze.
You do not need to use a V prefix for manifest variables in the LINEQS statement nor
do you need to use a numerical suffix in any variable name. The names of the latent
variables must start with the prefix letter F (for Factor); the names of the residuals
must start with the prefix letters E (for Error) or D (for Disturbance). The trailing
part of the variable name can contain letters or digits. The prefix letter E is used for
the errors of the manifest variables, and the prefix letter D is used for the disturbances
of the latent variables. The names of the manifest variables in the DATA= input data
set can start with F, E, or D, but these names should not coincide with the names of
latent or error variables used in the model. The left-hand side (that is, endogenous
dependentvariable) of each equation should be either a manifest variable of the data
set or a latent variable with prefix letter F. The left-hand-side variable should not
appear on the right-hand side of the same equation; this means that matrixβ should
not have a nonzero diagonal element. Each equation should contain, at most, one E
or D variable.

The equations must be separated by a comma. The order of the equations is arbitrary.
The displayed output generally contains equations and terms in an order different
from the input.

Coefficients to estimate are indicated in the equations by a name preceding the inde-
pendent variable’s name. The coefficient’s name can be followed by a number inside
parentheses indicating the initial value for this coefficient. A number preceding the
independent variable’s name indicates a constant coefficient. If neither a coefficient
name nor a number precedes the independent variable’s name, a constant coefficient
of 1 is assumed.
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If the initial value of a parameter is not specified in the equation, the initial value is
chosen in one of the following ways:

• If you specify the RANDOM= option in the PROC CALIS statement, the vari-
able obtains a randomly generated initial valuer, such that0 ≤ r ≤ 1. The
uninitialized parameters in the diagonals of the central model matrices are
given the nonnegative random valuesr multiplied by 10, 100, or the value
specified in the DEMPHAS= option.

• If the RANDOM= option is not used, PROC CALIS tries to estimate the initial
values.

• If the initial values cannot be estimated, the value of the START= option is
used as an initial value.

In Bentler’s notation, estimated coefficients are indicated by asterisks. Referring to a
parameter in Bentler’s notation requires the specification of two variable names that
correspond to the row and column of the position of the parameter in the matrix.
Specifying the estimated coefficients by parameter names makes it easier to impose
additional constraints with code. You do not need any additional statements to express
equality constraints. Simply specify the same name for parameters that should have
equal values.

If your model contains many unconstrained parameters and it is too cumbersome to
find different parameter names, you can specify all those parameters by the same
prefix name. A prefix is a short name followed by a colon. The CALIS procedure
then generates a parameter name by appending an integer suffix to this prefix name.
The prefix name should have no more than five or six characters so that the generated
parameter name is not longer than eight characters. To avoid unintentional equality
constraints, the prefix names should not coincide with explicitly defined parameter
names.

For example, you can specifyconfirmatory second-order factor analysis model(men-
tioned on page 595)

S = F1F2P2F′
2F

′
1 + F1U2

2F
′
1 + U2

1

by using the LINEQS and STD statements:

lineqs
V1 = X1 F1 + E1,
V2 = X2 F1 + E2,
V3 = X3 F1 + E3,
V4 = X4 F2 + E4,
V5 = X5 F2 + E5,
V6 = X6 F2 + E6,
V7 = X7 F3 + E7,
V8 = X8 F3 + E8,
V9 = X9 F3 + E9,
F1 = Y1 F4 + D1,
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F2 = Y1 F4 + Y2 F5 + D2,
F3 = Y2 F5 + D3;

std
E1-E9 = 9 * U:,
D1-D3 = 3 * V:,
F4 F5 = 2 * P;

run;

STD Statement

STD assignment < , assignment . . . > ;

whereassignmentrepresentsvariables = pattern-definition

The STD statement tells which variances are parameters to estimate and which are
fixed. The STD statement can be used only with the LINEQS statement. You can
specify only one STD statement with each LINEQS model statement. The STD state-
ment defines the diagonal elements of the central model matrixΦ. These elements
correspond to the variances of the exogenous variables and to the error variances of
the endogenous variables. Elements that are not defined are assumed to be 0.

Eachassignmentconsists of a variable list (variables) on the left-hand side and a pat-
tern list (pattern-definition) on the right-hand side of an equal sign. Theassignments
in the STD statement must be separated by commas. Thevariableslist on the left-
hand side of the equal sign should contain only names of variables that do not appear
on the left-hand side of an equation in the LINEQS statement, that is, exogenous,
error, and disturbance variables.

Thepattern-definitionon the right-hand side is similar to that used in the MATRIX
statement. Each list element on the right-hand side defines the variance of the variable
on the left-hand side in the same list position. A name on the right-hand side means
that the corresponding variance is a parameter to estimate. A name on the right-hand
side can be followed by a number inside parentheses that gives the initial value. A
number on the right-hand side means that the corresponding variance of the variable
on the left-hand side is fixed. If the right-hand-side list is longer than the left-hand-
side variable list, the right-hand-side list is shortened to the length of the variable list.
If the right-hand-side list is shorter than the variable list, the right-hand-side list is
filled with repetitions of the last item in the list.

The right-hand side can also contain prefixes. A prefix is a short name followed
by a colon. The CALIS procedure then generates a parameter name by appending
an integer suffix to this prefix name. The prefix name should have no more than
five or six characters so that the generated parameter name is not longer than eight
characters. To avoid unintentional equality constraints, the prefix names should not
coincide with explicitly defined parameter names. For example, if the prefix A is not
used in any previous statement, this STD statement

std E1-E6=6 * A: (6 * 3.) ;
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defines the six error variances as free parametersA1,. . .,A6, all with starting values
of 3.

COV Statement

COV assignment < , assignment . . . > ;

whereassignmentrepresentsvariables< ∗ variables2> = pattern-definition

The COV statement tells which covariances are parameters to estimate and which are
fixed. The COV statement can be used only with the LINEQS statement. The COV
statement differs from the STD statement only in the meaning of the left-hand-side
variableslist. You can specify only one COV statement with each LINEQS state-
ment. The COV statement defines the off-diagonal elements of the central model
matrix Φ. These elements correspond to the covariances of the exogenous variables
and to the error covariances of the endogenous variables. Elements that are not de-
fined are assumed to be 0. Theassignments in the COV statement must be separated
by commas.

Thevariableslist on the left-hand side of the equal sign should contain only names
of variables that do not appear on the left-hand side of an equation in the LINEQS
statement, that is, exogenous, error, and disturbance variables.

Thepattern-definitionon the right-hand side is similar to that used in the MATRIX
statement. Each list element on the right-hand side defines the covariance of a pair
of variables in the list on the left-hand side. A name on the right-hand side can be
followed by a number inside parentheses that gives the initial value. A number on
the right-hand side means that the corresponding covariance of the variable on the
left-hand side is fixed. If the right-hand-side list is longer than the left-hand-side
variable list, the right-hand-side list is shortened to the length of the variable list. If
the right-hand-side list is shorter than the variable list, the right-hand-side list is filled
with repetitions of the last item in the list.

You can use one of two alternatives to refer to parts ofΦ. The first alternative uses
only one variable list and refers to all distinct pairs of variables within the list. The
second alternative uses two variable lists separated by an asterisk and refers to all
pairs of variables among the two lists.

Within-List Covariances

Usingk variable names in thevariableslist on the left-hand side of an equal sign in
a COV statement means that the parameter list (pattern-definition) on the right-hand
side refers to allk(k − 1)/2 distinct variable pairs in the below-diagonal part of the
Φ matrix. Order is very important. The order relation between the left-hand-side
variable pairs and the right-hand-side parameter list is illustrated by the following
example:

COV E1-E4 = PHI1-PHI6 ;
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This is equivalent to the following specification:

COV E2 E1 = PHI1,
E3 E1 = PHI2, E3 E2 = PHI3,
E4 E1 = PHI4, E4 E2 = PHI5, E4 E3 = PHI6;

The symmetric elements are generated automatically. When you use prefix names on
the right-hand sides, you do not have to count the exact number of parameters. For
example,

COV E1-E4 = PHI: ;

generates the same list of parameter names if the prefix PHI is not used in a previous
statement.
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Figure 19.4. Within-List and Between-List Covariances

Between-List Covariances

Usingk1 andk2 variable names in the two lists (separated by an asterisk) on the left-
hand side of an equal sign in a COV statement means that the parameter list on the
right-hand side refers to allk1 × k2 distinct variable pairs in theΦ matrix. Order is
very important. The order relation between the left-hand-side variable pairs and the
right-hand-side parameter list is illustrated by the following example:

COV E1 E2 * E3 E4 = PHI1-PHI4 ;

This is equivalent to the following specification:

COV E1 E3 = PHI1, E1 E4 = PHI2,
E2 E3 = PHI3, E2 E4 = PHI4;
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The symmetric elements are generated automatically.

Using prefix names on the right-hand sides lets you achieve the same purpose without
counting the number of parameters. That is,

COV E1 E2 * E3 E4 = PHI: ;

FACTOR Model Statement

FACTOR < options > ;

You can use the FACTOR statement to specify an exploratory or confirmatory first-
order factor analysis of the given covariance or correlation matrixC,

C = FF′ + U, U = diag

or

C = FPF′ + U, P = P′

whereU is a diagonal matrix andP is symmetric. Within this section,n denotes the
number of manifest variables corresponding to the rows and columns of matrixC,
andm denotes the number of latent variables (factors or components) corresponding
to the columns of the loading matrixF.

You can specify only one FACTOR statement with each PROC CALIS statement.
You can specify higher-order factor analysis problems using a COSAN model spec-
ification. PROC CALIS requires more computing time and memory than PROC
FACTOR because it is designed for more general structural estimation problems and
is unable to exploit the special properties of the unconstrained factor analysis model.

For default (exploratory) factor analysis, PROC CALIS computes initial estimates for
factor loadings and unique variances by an algebraic method of approximate factor
analysis. If you use a MATRIX statement together with a FACTOR model specifi-
cation, initial values are computed by McDonald’s (McDonald and Hartmann 1992)
method (if possible). For details, see“Using the FACTOR and MATRIX Statements”
on page 608. If neither of the two methods are appropriate, the initial values are set
by the START= option.

The unrestricted factor analysis model is not identified because any orthogonal ro-
tated factor loading matrix̃F = FΘ is equivalent to the resultF,

C = F̃F̃′ + U, F̃ = FΘ, where Θ′Θ = ΘΘ′ = I

To obtain an identified factor solution, the FACTOR statement imposes zero con-
straints on them(m− 1)/2 elements in the upper triangle ofF by default.
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The following options are available in the FACTOR statement.

COMPONENT | COMP
computes a component analysis instead of a factor analysis (the diagonal matrixU in
the model is set to 0). Note that the rank ofFF′ is equal to the numberm of compo-
nents inF. If m is smaller than the number of variables in the moment matrixC, the
matrix of predicted model values is singular and maximum likelihood estimates for
F cannot be computed. You should compute ULS estimates in this case.

HEYWOOD | HEY
constrains the diagonal elements ofU to be nonnegative; in other words, the model
is replaced by

C = FF′ + U2, U = diag

N = m
specifies the number of first-order factors or components. The numberm of factors
should not exceed the numbern of variables in the covariance or correlation matrix
analyzed. For the saturated model,m = n, the COMP option should generally be
specified forU = 0; otherwise,df < 0. Form = 0 no factor loadings are estimated,
and the model isC = U, with U = diag. By default,m = 1.

NORM
normalizes the rows of the factor pattern for rotation using Kaiser’s normalization.

RCONVERGE=p
RCONV=p

specifies the convergence criterion for rotation cycles. The option is applicable to
rotation using either the QUARTIMAX, VARIMAX, EQUAMAX, or PARSIMAX
method in the ROTATE= option. Rotation stops when the scaled change of the sim-
plicity function value is less than the RCONVERGE= value. The default convergence
criterion is

|fnew − fold|/K < ε

wherefnew andfold are simplicity function values of the current cycle and the pre-
vious cycle, respectively,K = max(1, |fold|) is a scaling factor, andε is 1E-9 by
default and is modified by the RCONVERGE= value.

RITER=n
specifies the maximum number of cyclesn for factor rotation using either the
QUARTIMAX, VARIMAX, EQUAMAX, or PARSIMAX method in the ROTATE=
option. The defaultn is the maximum between 100 and 10 times of the number of
variables.

ROTATE | R = name
specifies an orthogonal rotation. By default, ROTATE=NONE. The possible values
for nameare as follows:
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PRINCIPAL | PC specifies a principal axis rotation. If ROTATE=PRINCIPAL is
used with a factor rather than a component model, the following
rotation is performed:

Fnew = FoldT, with F′
oldFold = TΛT′

where the columns of matrixT contain the eigenvectors of
F′

oldFold.

QUARTIMAX | Q specifies quartimax rotation.

VARIMAX | V specifies varimax rotation.

EQUAMAX | E specifies equamax rotation.

PARSIMAX | P specifies parsimax rotation.

NONE performs no rotation (default).

Using the FACTOR and MATRIX Statements

You can specify the MATRIX statement and the FACTOR statement to compute a
confirmatory first-order factor or component analysis. You can define the elements of
the matricesF, P, andU of the oblique model,

C = FPF′ + U2, P = P′, U = diag

To specify the structure for matrixF, P, or U, you have to refer to the matrix–F– ,

–P– , or –U– in the MATRIX statement. Matrix names automatically set by PROC
CALIS always start with an underscore. As you name your own matrices or variables,
you should avoid leading underscores.

The default matrix forms are as follows.

–F– lower triangular matrix (0 upper triangle for problem identification, removing
rotational invariance)

–P– identity matrix (constant)

–U– diagonal matrix

For details about specifying the elements in matrices, see the section“MATRIX
Statement”on page 593. If you are using at least one MATRIX statement in
connection with a FACTOR model statement, you can also use the BOUNDS
or PARAMETERS statement and program statements to constrain the parameters
named in the MATRIX statement. Initial estimates are computed by McDonald’s
(McDonald and Hartmann 1992) method. McDonald’s method of computing initial
values works better if you scale the factors by setting the factor variances to 1 rather
than by setting the loadings of the reference variables equal to 1.
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BOUNDS Statement

BOUNDS constraint < , constraint . . . > ;

whereconstraintrepresents
< number operator> parameter-list< operator number>

You can use the BOUNDS statement to define boundary constraints for any parameter
that has its name specified in a MATRIX, LINEQS, STD, COV, or RAM statement
or that is used in the model of an INRAM= data set. Valid operators are<=,<,>=,
>, and= or, equivalently, LE, LT, GE, GT, and EQ. The following is an example of
the BOUNDS statement:

bounds 0. <= a1-a9 x <= 1. ,
-1. <= c2-c5 ,

b1-b10 y >= 0. ;

You must separate boundary constraints with a comma, and you can specify more
than one BOUNDS statement. The feasible region for a parameter is the intersection
of all boundary constraints specified for that parameter; if a parameter has a maximum
lower boundary constraint larger than its minimum upper bound, the parameter is set
equal to the minimum of the upper bounds.

If you need to compute the values of the upper or lower bounds, create a TYPE=EST
data set containing–TYPE–=’UPPERBD’ or–TYPE–=’LOWERBD’ observations
and use it as an INEST= or INVAR= input data set in a later PROC CALIS run.

The BOUNDS statement can contain only parameter names and numerical constants.
You cannot use the names of variables created in program statements.

The active set strategies made available in PROC CALIS cannot realize the strict
inequality constraints< or>. For example, you cannot specifyBOUNDS x > 0;
to prevent infinite values fory = log(x). UseBOUNDS x > 1E-8; instead.

If the CALIS procedure encounters negative diagonal elements in the central model
matrices during the minimization process, serious convergence problems can occur.
You can use the BOUNDS statement to constrain these parameters to nonnegative
values. Using negative values in these locations can lead to a smallerχ2 value but
uninterpretable estimates.

LINCON Statement

LINCON constraint < , constraint . . . > ;

whereconstraintrepresents
number operator linear-termor
linear-term operator number,

andlinear-termis
<+|-><coefficient∗ > parameter <<+|-><coefficient∗ >

parameter. . . >
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The LINCON statement specifies a set of linear equality or inequality constraints of
the form

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m

The constraints must be separated by commas. Each linear constrainti in the state-
ment consists of a linear combination

∑
j aijxj of a subset of then parameters

xj , j = 1, . . . , n, and a constant valuebi separated by a comparison operator. Valid
operators are<=,<,>=,>, and= or, equivalently, LE, LT, GE, GT, and EQ. PROC
CALIS cannot enforce the strict inequalities< or >. Note that the coefficientsaij

in the linear combination must be constant numbers and must be followed by an as-
terisk and the name of a parameter (for example, listed in the PARMS, STD or COV
statement). The following is an example of the LINCON statement that sets a linear
constraint on parameters x1 and x2:

lincon x1 + 3 * x2 <= 1;

Although you can easily express boundary constraints in LINCON statements, for
many applications it is much more convenient to specify both the BOUNDS and the
LINCON statements in the same PROC CALIS call.

The LINCON statement can contain only parameter names, operators, and numerical
constants. If you need to compute the values of the coefficientsaij or right-hand sides
bi, you can run a preliminary DATA step and create a TYPE=EST data set containing

–TYPE–=’LE’, –TYPE–=’GE’, or –TYPE–=’EQ’ observations, then specify this
data set as an INEST= or INVAR= data set in a following PROC CALIS run.

NLINCON Statement

NLINCON | NLC constraint < , constraint . . . > ;

whereconstraintrepresents
number operator variable-list number operatoror
variable-list operator numberor
number operator variable-list

You can specify nonlinear equality and inequality constraints with the NLINCON or
NLC statement. The QUANEW optimization subroutine is used when you specify
nonlinear constraints using the NLINCON statement.

The syntax of the NLINCON statement is similar to that of the BOUNDS statement,
except that the NLINCON statement must contain the names of variables that are de-
fined in the program statements and are defined as continuous functions of parameters
in the model. They must not be confused with the variables in the data set.

As with the BOUNDS statement, one- or two-sided constraints are allowed in the
NLINCON statement; equality constraints must be one sided. Valid operators are
<=,<,>=,>, and= or, equivalently, LE, LT, GE, GT, and EQ.
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PROC CALIS cannot enforce the strict inequalities< or > but instead treats them
as<= and>=, respectively. The listed nonlinear constraints must be separated by
commas. The following is an example of the NLINCON statement that constrains
the nonlinear parametric functionx1 ∗ x1 + u1, which is defined below in a program
statement, to a fixed value of 1:

nlincon xx = 1;
xx = x1 * x1 + u1;

Note thatx1 and u1 are parameters defined in the model. The following three
NLINCON statements, which requirexx1, xx2, andxx3 to be between zero and
ten, are equivalent:

nlincon 0. <= xx1-xx3,
xx1-xx3 <= 10;

nlincon 0. <= xx1-xx3 <= 10.;
nlincon 10. >= xx1-xx3 >= 0.;

NLOPTIONS Statement

NLOPTIONS option(s) ;

Many options that are available in PROC NLP can now be specified for the op-
timization subroutines in PROC CALIS using the NLOPTIONS statement. The
NLOPTIONS statement provides more displayed and file output on the results of
the optimization process, and it permits the same set of termination criteria as in
PROC NLP. These are more technical options that you may not need to specify in
most cases. The available options are summarized inTable 19.2throughTable 19.4,
and the options are described in detail in the following three sections.

Table 19.2. Options Documented in the PROC CALIS Statement

Option Short Description
Estimation Methods
G4=i algorithm for computing STDERR

Optimization Techniques
TECHNIQUE=name minimization method
UPDATE=name update technique
LINESEARCH=i line-search method
FCONV=r relative change function convergence criterion
GCONV=r relative gradient convergence criterion
INSTEP=r initial step length (SALPHA=, RADIUS=)
LSPRECISION=r line-search precision
MAXFUNC=i maximum number of function calls
MAXITER= i <n> maximum number of iterations

Miscellaneous Options
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Table 19.2. Options Documented in the PROC CALIS Statement (continued)

Option Short Description
ASINGULAR=r absolute singularity criterion for inversion of the

information matrix
COVSING=r singularity tolerance of the information matrix
MSINGULAR=r relative M singularity criterion for inversion of the

information matrix
SINGULAR=r singularity criterion for inversion of the Hessian
VSINGULAR=r relative V singularity criterion for inversion of the

information matrix

Table 19.3. Termination Criteria Options

Option Short Description
Options Used by All Techniques
ABSCONV=r absolute function convergence criterion
MAXFUNC=i maximum number of function calls
MAXITER= i <n> maximum number of iterations
MAXTIME= r maximum CPU time
MINITER=i minimum number of iterations

Options for Unconstrained and Linearly Constrained Techniques
ABSFCONV=r <n> absolute change function convergence criterion
ABSGCONV=r <n> absolute gradient convergence criterion
ABSXCONV=r <n> absolute change parameter convergence criterion
FCONV=r <n> relative change function convergence criterion
FCONV2=r <n> function convergence criterion
FDIGITS=r precision in computation of the objective function
FSIZE=r parameter for FCONV= and GCONV=
GCONV=r <n> relative gradient convergence criterion
GCONV2=r <n> relative gradient convergence criterion
XCONV=r <n> relative change parameter convergence criterion
XSIZE=r parameter for XCONV=

Options for Nonlinearly Constrained Techniques
ABSGCONV=r <n> maximum absolute gradient of Lagrange function

criterion
FCONV2=r <n> predicted objective function reduction criterion
GCONV=r <n> normalized predicted objective function reduction

criterion

Table 19.4. Miscellaneous Options

Option Short Description
Options for the Approximate Covariance Matrix of Parameter Estimates
CFACTOR=r scalar factor for STDERR



NLOPTIONS Statement � 613

Table 19.4. Miscellaneous Options (continued)

Option Short Description
NOHLF use Hessian of the objective function for STDERR

Options for Additional Displayed Output
PALL display initial and final optimization values
PCRPJAC display approximate Hessian matrix
PHESSIAN display Hessian matrix
PHISTORY display optimization history
PINIT display initial values and derivatives (PALL)
PNLCJAC display Jacobian matrix of nonlinear constraints

(PALL)
PRINT display results of the optimization process

Additional Options for Optimization Techniques
DAMPSTEP< =r > controls initial line-search step size
HESCAL=n scaling version of Hessian or Jacobian
LCDEACT=r Lagrange multiplier threshold of constraint
LCEPSILON=r range for boundary and linear constraints
LCSINGULAR=r QR decomposition linear dependence criterion
NOEIGNUM suppress computation of matrices
RESTART=i restart algorithm with a steepest descent direction
VERSION=1 | 2 quasi-Newton optimization technique version

Options Documented in the PROC CALIS Statement

The following options are the same as in the PROC CALIS statement and are docu-
mented in the section“PROC CALIS Statement”on page 568.

Estimation Method Option

G4=i
specifies the method for computing the generalized (G2 or G4) inverse of a singular
matrix needed for the approximate covariance matrix of parameter estimates. This
option is valid only for applications where the approximate covariance matrix of pa-
rameter estimates is found to be singular.

Optimization Technique Options

TECHNIQUE | TECH=name
OMETHOD | OM=name

specifies the optimization technique.

UPDATE | UPD=name
specifies the update method for the quasi-Newton or conjugate-gradient optimization
technique.
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LINESEARCH | LIS= i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP opti-
mization techniques.

FCONV | FTOL=r
specifies the relative function convergence criterion. For more details, see the section
“Termination Criteria Options”on page 615.

GCONV | GTOL=r
specifies the relative gradient convergence criterion. For more details, see the section
“Termination Criteria Options”on page 615.

INSTEP | SALPHA | RADIUS= r
restricts the step length of an optimization algorithm during the first iterations.

LSPRECISION | LSP= r
specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3.

MAXFUNC | MAXFU= i
specifies the maximum numberi of function calls in the optimization process. For
more details, see the section“Termination Criteria Options”on page 615.

MAXITER | MAXIT= i <n>
specifies the maximum numberi of iterations in the optimization process. For more
details, see the section“Termination Criteria Options”on page 615.

Miscellaneous Options

ASINGULAR | ASING= r
specifies an absolute singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the approximate covariance matrix of parameter
estimates.

COVSING=r
specifies a nonnegative thresholdr, r > 0, that decides whether the eigenvalues of
the information matrix are considered to be zero. This option is valid only for appli-
cations where the approximate covariance matrix of parameter estimates is found to
be singular.

MSINGULAR | MSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the approximate covariance matrix of parameter
estimates.

SINGULAR | SING = r
specifies the singularity criterionr, 0 ≤ r ≤ 1, that is used for the inversion of the
Hessian matrix. The default value is 1E−8.
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VSINGULAR | VSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the approximate covariance matrix of parameter
estimates.

Termination Criteria Options

Let x∗ be the point at which the objective functionf(·) is optimized, and letx(k) be
the parameter values attained at thekth iteration. All optimization techniques stop
at thekth iteration if at least one of a set of termination criteria is satisfied. The
specified termination criteria should allow termination in an area of sufficient size
aroundx∗. You can avoid termination respective to any of the following function,
gradient, or parameter criteria by setting the corresponding option to zero. There is
a default set of termination criteria for each optimization technique; most of these
default settings make the criteria ineffective for termination. PROC CALIS may have
problems due to rounding errors (especially in derivative evaluations) that prevent an
optimizer from satisfying strong termination criteria.

Note that PROC CALIS also terminates if the pointx(k) is fully constrained by lin-
early independent active linear or boundary constraints, and all Lagrange multiplier
estimates of active inequality constraints are greater than a small negative tolerance.

The following options are available only in the NLOPTIONS statement (except for
FCONV, GCONV, MAXFUNC, and MAXITER), and they affect the termination
criteria.

Options Used by All Techniques

The following five criteria are used by all optimization techniques.

ABSCONV | ABSTOL= r
specifies an absolute function convergence criterion.

• For minimization, termination requires

f (k) = f(x(k)) ≤ ABSCONV

• For maximization, termination requires

f (k) = f(x(k)) ≥ ABSCONV

The default value of ABSCONV is

• for minimization, the negative square root of the largest double precision value

• for maximization, the positive square root of the largest double precision value
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MAXFUNC | MAXFU= i
requires the number of function calls to be no larger thani. The default values are
listed in the following table.

TECH= MAXFUNC default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=125
DBLDOG, QUANEW i=500
CONGRA i=1000

The default is used if you specify MAXFUNC=0. The optimization can be terminated
only after completing a full iteration. Therefore, the number of function calls that
is actually performed can exceed the number that is specified by the MAXFUNC=
option.

MAXITER | MAXIT= i <n>
requires the number of iterations to be no larger thani. The default values are listed
in the following table.

TECH= MAXITER default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=50
DBLDOG, QUANEW i=200
CONGRA i=400

The default is used if you specify MAXITER=0 or you omit the MAXITER option.

The optional second valuen is valid only for TECH=QUANEW with nonlinear con-
straints. It specifies an upper boundn for the number of iterations of an algorithm
and reduces the violation of nonlinear constraints at a starting point. The default
value isn=20. For example, specifyingMAXITER= . 0 means that you do not
want to exceed the default number of iterations during the main optimization process
and that you want to suppress the feasible point algorithm for nonlinear constraints.

MAXTIME=r
requires the CPU time to be no larger thanr. The default value of the MAXTIME=
option is the largest double floating point number on your computer.

MINITER | MINIT=i
specifies the minimum number of iterations. The default value isi = 0.

The ABSCONV=, MAXITER=, MAXFUNC=, and MAXTIME= options are useful
for dividing a time-consuming optimization problem into a series of smaller problems
by using the OUTEST= and INEST= data sets.

Options for Unconstrained and Linearly Constrained Techniques

This section contains additional termination criteria for all unconstrained, boundary,
or linearly constrained optimization techniques.
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ABSFCONV | ABSFTOL= r <n>
specifies the absolute function convergence criterion. Termination requires a small
change of the function value in successive iterations,

|f(x(k−1))− f(x(k))| ≤ r

The default value isr = 0. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

ABSGCONV | ABSGTOL= r <n>
specifies the absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small,

max
j
|g(k)

j | ≤ r

The default value isr=1E−5. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

Note: In some applications, the small default value of the ABSGCONV= criterion is
too difficult to satisfy for some of the optimization techniques.

ABSXCONV | ABSXTOL= r <n>
specifies the absolute parameter convergence criterion. Termination requires a small
Euclidean distance between successive parameter vectors,

‖ x(k) − x(k−1) ‖2≤ r

The default value isr = 0. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

FCONV | FTOL=r <n>
specifies the relative function convergence criterion. Termination requires a small
relative change of the function value in successive iterations,

|f(x(k))− f(x(k−1))|
max(|f(x(k−1))|, FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. The default value isr =
10−FDIGITS , whereFDIGITS either is specified or is set by default to−log10(ε),
whereε is the machine precision. The optional integer valuen determines the num-
ber of successive iterations for which the criterion must be satisfied before the process
can be terminated.



618 � Chapter 19. The CALIS Procedure

FCONV2 | FTOL2=r <n>
specifies another function convergence criterion. For least-squares problems, termi-
nation requires a small predicted reduction

df (k) ≈ f(x(k))− f(x(k) + s(k))

of the objective function.

The predicted reduction

df (k) = −g(k)′s(k) − 1
2
s(k)′G(k)s(k)

= −1
2
s(k)′g(k)

≤ r

is computed by approximating the objective functionf by the first two terms of the
Taylor series and substituting the Newton step

s(k) = −G(k)−1g(k)

The FCONV2 criterion is the unscaled version of the GCONV criterion. The default
value isr = 0. The optional integer valuen determines the number of successive
iterations for which the criterion must be satisfied before the process can be termi-
nated.

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function.
Fractional values such as FDIGITS=4.7 are allowed. The default value isr =
−log10ε, whereε is the machine precision. The value ofr is used for the specifi-
cation of the default value of the FCONV= option.

FSIZE=r
specifies theFSIZE parameter of the relative function and relative gradient termi-
nation criteria. The default value isr = 0. See the FCONV= and GCONV= options.

GCONV | GTOL=r <n>
specifies the relative gradient convergence criterion. For all techniques except the
CONGRA technique, termination requires that the normalized predicted function re-
duction is small,

[g(k)]′[G(k)]−1g(k)

max(|f(x(k))|, FSIZE)
≤ r

whereFSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimateG is not available),

‖ g(k) ‖2
2 ‖ s(k) ‖2

‖ g(k) − g(k−1) ‖2 max(|f(x(k))|, FSIZE)
≤ r
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is used. The default value isr=1E−8. The optional integer valuen determines the
number of successive iterations for which the criterion must be satisfied before the
process can be terminated.

Note: The default setting for the GCONV= option sometimes leads to early termina-
tion far from the location of the optimum. This is especially true for the special
form of this criterion used in the CONGRA optimization.

GCONV2 | GTOL2=r <n>
specifies another relative gradient convergence criterion. For least-squares problems
and the TRUREG, LEVMAR, NRRIDG, and NEWRAP techniques, the criterion of
Browne (1982) is used,

max
j

|g(k)
j |√

f(x(k))G(k)
j,j

≤ r

This criterion is not used by the other techniques. The default value isr = 0. The
optional integer valuen determines the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.

XCONV | XTOL=r <n>
specifies the relative parameter convergence criterion. Termination requires a small
relative parameter change in subsequent iterations,

maxj |x(k)
j − x

(k−1)
j |

max(|x(k)
j |, |x(k−1)

j |, XSIZE)
≤ r

The default value isr = 0. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

XSIZE=r
specifies theXSIZE parameter of the relative function and relative gradient termi-
nation criteria. The default value isr = 0. See the XCONV= option.

Options for Nonlinearly Constrained Techniques

The non-NMSIMP algorithms available for nonlinearly constrained optimization
(currently only TECH=QUANEW) do not monotonically reduce either the value of
the objective function or some kind of merit function that combines objective and
constraint functions. Furthermore, the algorithm uses the watchdog technique with
backtracking (Chamberlain et al., 1982). Therefore, no termination criteria are im-
plemented that are based on the values (x or f ) of successive iterations. In addition to
the criteria used by all optimization techniques, only three more termination criteria
are currently available, and they are based on the Lagrange function

L(x, λ) = f(x)−
m∑

i=1

λici(x)
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and its gradient

∇xL(x, λ) = g(x)−
m∑

i=1

λi∇xci(x)

Here,m denotes the total number of constraints,g = g(x) denotes the gradient of the
objective function, andλ denotes them vector of Lagrange multipliers. The Kuhn-
Tucker conditions require that the gradient of the Lagrange function is zero at the
optimal point(x∗, λ∗):

∇xL(x∗, λ∗) = 0

The termination criteria available for nonlinearly constrained optimization follow.

ABSGCONV | ABSGTOL= r <n>
specifies that termination requires the maximum absolute gradient element of the
Lagrange function to be small,

max
j
|{∇xL(x(k), λ(k))}j | ≤ r

The default value isr=1E−5. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

FCONV2 | FTOL2=r <n>
specifies that termination requires the predicted objective function reduction to be
small:

|g(x(k))s(x(k))|+
m∑

i=1

|λici| ≤ r

The default value isr=1E−6. This is the criterion used by the programs VMCWD
and VF02AD (Powell 1982b). The optional integer valuen determines the number
of successive iterations for which the criterion must be satisfied before the process
can be terminated.

GCONV | GTOL=r <n>
specifies that termination requires the normalized predicted objective function reduc-
tion to be small:

|g(x(k))s(x(k))|+
∑m

i=1 |λici(x(k))|
max(|f(x(k))|, FSIZE)

≤ r

whereFSIZE is defined by the FSIZE= option. The default value isr=1E−8. The
optional integer valuen determines the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.
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Miscellaneous Options

Options for the Approximate Covariance Matrix of Parameter Estimates

You can specify the following options to modify the approximate covariance matrix
of parameter estimates.

CFACTOR=r
specifies the scalar factor for the covariance matrix of parameter estimates. The
scalarr ≥ 0 replaces the default valuec/NM . For more details, see the section
“Approximate Standard Errors”on page 648.

NOHLF
specifies that the Hessian matrix of the objective function (rather than the Hessian
matrix of the Lagrange function) is used for computing the approximate covariance
matrix of parameter estimates and, therefore, the approximate standard errors.

It is theoretically not correct to use the NOHLF option. However, since most imple-
mentations use the Hessian matrix of the objective function and not the Hessian ma-
trix of the Lagrange function for computing approximate standard errors, the NOHLF
option can be used to compare the results.

Options for Additional Displayed Output

You can specify the following options to obtain additional displayed output.

PALL | ALL
displays information on the starting values and final values of the optimization pro-
cess.

PCRPJAC | PJTJ
displays the approximate Hessian matrix. If general linear or nonlinear constraints
are active at the solution, the projected approximate Hessian matrix is also displayed.

PHESSIAN | PHES
displays the Hessian matrix. If general linear or nonlinear constraints are active at the
solution, the projected Hessian matrix is also displayed.

PHISTORY | PHIS
displays the optimization history. The PHISTORY option is set automatically if the
PALL or PRINT option is set.

PINIT | PIN
displays the initial values and derivatives (if available). The PINIT option is set auto-
matically if the PALL option is set.

PNLCJAC
displays the Jacobian matrix of nonlinear constraints specified by the NLINCON
statement. The PNLCJAC option is set automatically if the PALL option is set.
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PRINT | PRI
displays the results of the optimization process, such as parameter estimates and con-
straints.

More Options for Optimization Techniques

You can specify the following options, in addition to the options already listed, to
fine-tune the optimization process. These options should not be necessary in most
applications of PROC CALIS.

DAMPSTEP | DS <=r>
specifies that the initial step-size valueα(0) for each line search (used by the
QUANEW, CONGRA, or NEWRAP techniques) cannot be larger thanr times the
step-size value used in the former iteration. If the factorr is not specified, the de-
fault value isr = 2. The DAMPSTEP option can prevent the line-search algorithm
from repeatedly stepping into regions where some objective functions are difficult to
compute or where they can lead to floating point overflows during the computation of
objective functions and their derivatives. The DAMPSTEP<=r> option can prevent
time-costly function calls during line searches with very small step sizesα of objec-
tive functions. For more information on setting the start values of each line search,
see the section“Restricting the Step Length”on page 672.

HESCAL | HS = 0 | 1 | 2 | 3
specifies the scaling version of the Hessian or crossproduct Jacobian matrix used in
NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If HS is not
equal to zero, the first iteration and each restart iteration sets the diagonal scaling

matrixD(0) = diag(d(0)
i ):

d
(0)
i =

√
max(|G(0)

i,i |, ε)

whereG(0)
i,i are the diagonal elements of the Hessian or crossproduct Jacobian matrix.

In every other iteration, the diagonal scaling matrixD(0) = diag(d(0)
i ) is updated

depending on the HS option:

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max(d(k)

i ,

√
max(|G(k)

i,i |, ε))

HS=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max(0.6 ∗ d(k)

i ,

√
max(|G(k)

i,i |, ε))

HS=3 specifies thatdi is reset in each iteration:

d
(k+1)
i =

√
max(|G(k)

i,i |, ε)
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In the preceding equations,ε is the relative machine precision. The default is
HS=1 for LEVMAR minimization and HS=0 otherwise. Scaling of the Hessian or
crossproduct Jacobian can be time-consuming in the case where general linear con-
straints are active.

LCDEACT | LCD = r
specifies a thresholdr for the Lagrange multiplier that decides whether an active
inequality constraint remains active or can be deactivated. For maximization,r must
be greater than zero; for minimization,r must be smaller than zero. The default is

r = ±min(0.01,max(0.1 ∗ABSGCONV, 0.001 ∗ gmax(k)))

where “+” stands for maximization, “−” stands for minimization,ABSGCONV is
the value of the absolute gradient criterion, andgmax(k) is the maximum absolute
element of the (projected) gradientg(k) orZ ′g(k).

LCEPSILON | LCEPS | LCE = r
specifies the ranger, r ≥ 0, for active and violated boundary and linear constraints.
If the pointx(k) satisfies the condition

|
n∑

j=1

aijx
(k)
j − bi| ≤ r ∗ (|bi|+ 1)

the constrainti is recognized as an active constraint. Otherwise, the constrainti is ei-
ther an inactive inequality or a violated inequality or equality constraint. The default
value isr=1E−8. During the optimization process, the introduction of rounding er-
rors can force PROC NLP to increase the value ofr by factors of 10. If this happens,
it is indicated by a message displayed in the log.

LCSINGULAR | LCSING | LCS = r
specifies a criterionr, r ≥ 0, used in the update of the QR decomposition that decides
whether an active constraint is linearly dependent on a set of other active constraints.
The default isr=1E−8. The largerr becomes, the more the active constraints are
recognized as being linearly dependent.

NOEIGNUM
suppresses the computation and displayed output of the determinant and the inertia
of the Hessian, crossproduct Jacobian, and covariance matrices. The inertia of a
symmetric matrix are the numbers of negative, positive, and zero eigenvalues. For
large applications, the NOEIGNUM option can save computer time.

RESTART | REST = i
specifies that the QUANEW or CONGRA algorithm is restarted with a steepest de-
scent/ascent search direction after at mosti iterations,i > 0. Default values are as
follows:

• CONGRA: UPDATE=PB: restart is done automatically so specification ofi is
not used.

• CONGRA: UPDATE6=PB: i = min(10n, 80), wheren is the number of pa-
rameters.
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• QUANEW: i is the largest integer available.

VERSION | VS = 1 | 2
specifies the version of the quasi-Newton optimization technique with nonlinear con-
straints.

VS=1 specifies the update of theµ vector as in Powell (1978a, 1978b) (update
like VF02AD).

VS=2 specifies the update of theµ vector as in Powell (1982a, 1982b) (update
like VMCWD).

The default is VS=2.

PARAMETERS Statement

PARAMETERS | PARMS parameter(s) << = > number(s) >
<< , > parameter(s) << = > num-

ber(s) > . . . > ;

The PARAMETERS statement defines additional parameters that are not elements of
a model matrix to use in your own program statements. You can specify more than
one PARAMETERS statement with each PROC CALIS statement. Theparameters
can be followed by an equal sign and a number list. The values of thenumberslist
are assigned as initial values to the preceding parameters in theparameterslist. For
example, each of the following statements assigns the initial values ALPHA=.5 and
BETA=-.5 for the parameters used in program statements:

parameters alfa beta=.5 -.5;
parameters alfa beta (.5 -.5);
parameters alfa beta .5 -.5;
parameters alfa=.5 beta (-.5);

The number of parameters and the number of values does not have to match. When
there are fewer values than parameter names, either the RANDOM= or START=
option is used. When there are more values than parameter names, the extra values
are dropped. Parameters listed in the PARAMETERS statement can be assigned
initial values by program statements or by the START= or RANDOM= option in the
PROC CALIS statement.

Caution: The OUTRAM= and INRAM= data sets do not contain any information
about the PARAMETERS statement or additional program statements.
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STRUCTEQ Statement

STRUCTEQ variable < variable . . . > ;

The STRUCTEQ statement is used to list the dependent variables of the structural
equations. This statement is ignored if you omit the PDETERM option. This state-
ment is useful because the termstructural equationis not defined in a unique way,
and PROC CALIS has difficulty identifying the structural equations.

If LINEQS statements are used, the names of the left-hand-side (dependent) vari-
ables of those equations to be treated as structural equations should be listed in the
STRUCTEQ statement.

If the RAM statement is used, variable names in the STRUCTEQ statements depend
on the VARNAMES statement:

• If the VARNAMES statement is used, variable names must correspond to those
in the VARNAMES statement.

• If the VARNAMES statement is not used, variable names must correspond to
the names of manifest variables or latent (F) variables.

The STRUCTEQ statement also defines the names of variables used in the causal co-
efficient matrix of the structural equations,B, for computing theStability Coefficient
of Reciprocal Causation(the largest eigenvalue of theBB′ matrix). If the PROC
CALIS option PDETERM is used without the STRUCTEQ statement, the structural
equations are defined as described in the PDETERM option. See the PROC CALIS
optionPDETERMon page 585 for more details.

VARNAMES Statement

VARNAMES | VNAMES assignment < , assignment . . . > ;

whereassignmentrepresents

matrix-id variable-namesor matrix-name = matrix-name

Use the VARNAMES statement in connection with the RAM, COSAN, or FACTOR
model statement to allocate names to latent variables including error and disturbance
terms. This statement is not needed if you are using the LINEQS statement.

In connection with the RAM model statement, thematrix-id must be specified by
the integer number as it is used in the RAM list input (1 for matrixA, 2 for matrix
P). Because the first variables of matrixA correspond to the manifest variables
in the input data set, you can specify names only for the latent variables following
the manifest variables in the rows ofA. For example, in the RAM notation of the
alienation example, you can specify the latent variables by names F1, F2, F3 and the
error variables by names E1,. . . , E6, D1, D2, D3 with the following statement:

vnames 1 F1-F3,
2 E1-E6 D1-D3;
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If the RAM model statement is not accompanied by a VNAMES statement, default
variable names are assigned using the prefixes F, E, and D with numerical suffixes:
latent variables are F1, F2,. . . , and error variables are E1, E2,. . . .

Thematrix-idmust be specified by its name when used with the COSAN or FACTOR
statement. Thevariable-namesfollowing the matrix name correspond to the columns
of this matrix. The variable names corresponding to the rows of this matrix are set
automatically by

• the names of the manifest variables for the first matrix in each term

• the column variable names of the same matrix for the central symmetric matrix
in each term

• the column variable names of the preceding matrix for each other matrix

You also can use the second kind of name assignment in connection with a COSAN
statement. Two matrix names separated by an equal sign allocate the column names
of one matrix to the column names of the other matrix. This assignment assumes that
the column names of at least one of the two matrices are already allocated. For exam-
ple, in the COSAN notation of the alienation example, you can specify the variable
names by using the following statements to allocate names to the columns ofJ, A,
andP:

vnames J V1-V6 F1-F3 ,
A =J ,
P E1-E6 D1-D3 ;

BY Statement

BY variables ;

You can specify a BY statement with PROC CALIS to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CALIS procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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VAR Statement

VAR variables ;

The VAR statement lists the numeric variables to be analyzed. If the VAR statement
is omitted, all numeric variables not mentioned in other statements are analyzed. You
can use the VAR statement to ensure that the manifest variables appear in correct
order for use in the RAM statement. Only one VAR statement can be used with each
PROC CALIS statement. If you do not use all manifest variables when you specify
the model with a RAM or LINEQS statement, PROC CALIS does automatic variable
selection. For more information, see the section“Automatic Variable Selection”on
page 662.

PARTIAL Statement

PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix,
use the PARTIAL statement to list the variables used to partial out the variables in
the analysis. You can specify only one PARTIAL statement with each PROC CALIS
statement.

FREQ Statement

FREQ variable ;

If one variable in your data set represents the frequency of occurrence for the other
values in the observation, specify the variable’s name in a FREQ statement. PROC
CALIS then treats the data set as if each observation appearsni times, whereni is the
value of the FREQ variable for observationi. Only the integer portion of the value is
used. If the value of the FREQ variable is less than 1 or is missing, that observation
is not included in the analysis. The total number of observations is considered to be
the sum of the FREQ values when the procedure computes significance probabilities.
You can use only one FREQ statement with each PROC CALIS statement.

WEIGHT Statement

WEIGHT variable ;

To compute weighted covariances or correlations, specify the name of the weight-
ing variable in a WEIGHT statement. This is often done when the error variance
associated with each observation is different and the values of the weight variable
are proportional to the reciprocals of the variances. You can use only one WEIGHT
statement with each PROC CALIS statement. The WEIGHT and FREQ statements
have a similar effect, except the WEIGHT statement does not alter the number of
observations unless VARDEF=WGT or VARDEF=WDF. An observation is used in
the analysis only if the WEIGHT variable is greater than 0 and is not missing.
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SAS Program Statements

This section lists the program statements used to express the linear and nonlinear
constraints on the parameters and documents the differences between program state-
ments in PROC CALIS and program statements in the DATA step. The very different
use of the ARRAY statement by PROC CALIS is also discussed. Most of the pro-
gram statements that can be used in the SAS DATA step also can be used in PROC
CALIS. Refer toSAS Language Reference: Dictionaryfor a description of the SAS
program statements. You can specify the following SAS program statements to com-
pute parameter constraints with the CALIS procedure:

ABORT ;
CALL name < ( expression < , expression. . . > ) > ;
DELETE;
DO < variable = expression <TO expression> <BY expression>

<, expression <TO expression> <BY expression>. . . > >
< WHILE expression>
< UNTIL expression>;

END;
GOTO statement-label;
IF expression;
IF expressionTHEN program-statement;

ELSE program-statement;
variable = expression;
variable+expression;
LINK statement-label;
PUT <variable> <=> < . . . > ;
RETURN ;
SELECT < ( expression ) >;
STOP;
SUBSTR( variable, index, length ) = expression;
WHEN (expression) program-statement;

OTHERWISE program-statement;

For the most part, the SAS program statements work the same as they do in the SAS
DATA step as documented inSAS Language Reference: Concepts. However, there
are several differences that should be noted.

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus,

do I=1,2,3;

is supported; however,

do I=’A’,’B’,’C’;

is not valid in PROC CALIS, although it is supported in the DATA step.
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• The PUT statement, used mostly for program debugging in PROC CALIS,
supports only some of the features of the DATA step PUT statement, and it has
some new features that the DATA step PUT statement does not have:

− The CALIS procedure PUT statement does not support line pointers, fac-
tored lists, iteration factors, overprinting,–INFILE–, the colon (:) format
modifier, or $.

− The CALIS procedure PUT statement does support expressions enclosed
in parentheses. For example, the following statement displays the square
root of x:

put (sqrt(x));

− The CALIS procedure PUT statement supports the print item–PDV– to
display a formatted listing of all variables in the program. For exam-
ple, the following statement displays a much more readable listing of the
variables than the–ALL – print item:

put _pdv_ ;

• The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple WHEN state-
ments. For example, the following syntax is valid:

select;
when ( expression1 ) statement1;

statement2;
when ( expression2 ) statement3;

statement4;
end;

You can specify one or more PARMS statements to define parameters used in the
program statements that are not defined in the model matrices (MATRIX, RAM,
LINEQS, STD, or COV statement).

Parameters that are used only on the right-hand side of your program statements are
called independent, and parameters that are used at least once on the left-hand side
of an equation in the program code are called dependent parameters. The depen-
dent parameters are used only indirectly in the minimization process. They should
be fully defined as functions of the independent parameters. The independent pa-
rameters are included in the setX of parameters used in the minimization. Be sure
that all independent parameters used in your program statements are somehow con-
nected to elements of the model matrices. Otherwise the minimization function does
not depend on those independent parameters, and the parameters vary without con-
trol (since the corresponding derivative is the constant 0). You also can specify the
PARMS statement to set the initial values of all independent parameters used in the
program statements that are not defined as elements of model matrices.
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ARRAY Statement

ARRAY arrayname <(dimensions)>< $ ><variables and constants> ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the DATA step. The ARRAY statement is used to associate a name with a list of
variables and constants. The array name can then be used with subscripts in the
program to refer to the items in the list.

The ARRAY statement supported by PROC CALIS does not support all the features
of the DATA step ARRAY statement. With PROC CALIS, the ARRAY statement
cannot be used to give initial values to array elements. Implicit indexing variables
cannot be used; all array references must have explicit subscript expressions. Only
exact array dimensions are allowed; lower-bound specifications are not supported. A
maximum of six dimensions is allowed.

On the other hand, the ARRAY statement supported by PROC CALIS does allow
both variables and constants to be used as array elements. Constant array elements
cannot be changed. Both the dimension specification and the list of elements are
optional, but at least one must be given. When the list of elements is not given or
fewer elements than the size of the array are listed, array variables are created by
suffixing element numbers to the array name to complete the element list.

Details

Input Data Sets
You can use four different kinds of input data sets in the CALIS procedure, and you
can use them simultaneously. The DATA= data set contains the data to be analyzed,
and it can be an ordinary SAS data set containing raw data or a special TYPE=COV,
TYPE=UCOV, TYPE=CORR, TYPE=UCORR, TYPE=SYMATRIX, TYPE=SSCP,
or TYPE=FACTOR data set containing previously computed statistics. The INEST=
data set specifies an input data set that contains initial estimates for the parameters
used in the optimization process, and it can also contain boundary and general linear
constraints on the parameters. If the model does not change too much, you can use
an OUTEST= data set from a previous PROC CALIS analysis; the initial estimates
are taken from the values of the PARMS observation. The INRAM= data set names a
third input data set that contains all information needed to specify the analysis model
in RAM list form (except for user-written program statements). Often the INRAM=
data set can be the OUTRAM= data set from a previous PROC CALIS analysis.
See the section“OUTRAM= SAS-data-set”on page 638 for the structure of both
OUTRAM= and INRAM= data sets. Using the INWGT= data set enables you to
read in the weight matrixW that can be used in generalized least-squares, weighted
least-squares, or diagonally weighted least-squares estimation.

DATA= SAS-data-set

A TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR data set can be
created by the CORR procedure or various other procedures. It contains means, stan-
dard deviations, the sample size, the covariance or correlation matrix, and possibly
other statistics depending on which procedure is used.



Input Data Sets � 631

If your data set has many observations and you plan to run PROC CALIS several
times, you can save computer time by first creating a TYPE=COV, TYPE=UCOV,
TYPE=CORR, or TYPE=UCORR data set and using it as input to PROC CALIS. For
example, assuming that PROC CALIS is first run with an OUTRAM=MOD option,
you can run

* create TYPE=COV data set;
proc corr cov nocorr data=raw outp=cov(type=cov);
run;
* analysis using correlations;
proc calis data=cov inram=mod;
run;
* analysis using covariances;
proc calis cov data=cov inram=mod;
run;

Most procedures automatically set the TYPE= option of an output data set appropri-
ately. However, the CORR procedure sets TYPE=CORR unless an explicit TYPE=
option is used. Thus,(TYPE=COV) is needed in the preceding PROC CORR request,
since the output data set is a covariance matrix. If you use a DATA step with a SET
statement to modify this data set, you must declare the TYPE=COV, TYPE=UCOV,
TYPE=CORR, or TYPE=UCORR attribute in the new data set.

You can use a VAR statement with PROC CALIS when reading a TYPE=COV,
TYPE=UCOV, TYPE=CORR, TYPE=UCORR, or TYPE=SSCP data set to select
a subset of the variables or change the order of the variables.

Caution: Problems can arise from using the CORR procedure when there are miss-
ing data. By default, PROC CORR computes each covariance or correlation from
all observations that have values present for the pair of variables involved (“pairwise
deletion”). The resulting covariance or correlation matrix can have negative eigen-
values. A correlation or covariance matrix with negative eigenvalues is recognized
as a singular matrix in PROC CALIS, and you cannot compute (default) generalized
least-squares or maximum likelihood estimates. You can specify the RIDGE option
to ridge the diagonal of such a matrix to obtain a positive definite data matrix. If the
NOMISS option is used with the CORR procedure, observations with any missing
values are completely omitted from the calculations (“listwise deletion”), and there
is no possibility of negative eigenvalues (but still a chance for a singular matrix).

PROC CALIS can also create a TYPE=COV, TYPE=UCOV, TYPE=CORR, or
TYPE=UCORR data set that includes all the information needed for repeated anal-
yses. If the data set DATA=RAW does not contain missing values, the following
statements should give the same PROC CALIS results as the previous example.

* using correlations;
proc calis data=raw outstat=cov inram=mod;
run;
* using covariances;
proc calis cov data=cov inram=mod;
run;



632 � Chapter 19. The CALIS Procedure

You can create a TYPE=COV, TYPE=UCOV, TYPE=CORR, TYPE=UCORR, or
TYPE=SSCP data set in a DATA step. Be sure to specify the TYPE= option in paren-
theses after the data set name in the DATA statement, and include the–TYPE– and

–NAME– variables. If you want to analyze the covariance matrix but your DATA=
data set is a TYPE=CORR or TYPE=UCORR data set, you should include an ob-
servation with–TYPE–=STD giving the standard deviation of each variable. If you
specify the COV option, PROC CALIS analyzes the recomputed covariance matrix:

data correl(type=corr);
input _type_ $ _name_ $ X1-X3;
datalines;

std . 4. 2. 8.
corr X1 1.0 . .
corr X2 .7 1.0 .
corr X3 .5 .4 1.0
;
proc calis cov inram=model;
run;

If you want to analyze the UCOV or UCORR matrix but your DATA= data set
is a TYPE=COV or TYPE=CORR data set, you should include observations with

–TYPE–=STD and–TYPE–=MEAN giving the standard deviation and mean of
each variable.

INEST= SAS-data-set

You can use the INEST= (or INVAR= or ESTDATA=) input data set to specify the
initial values of the parameters used in the optimization and to specify boundary
constraints and the more general linear constraints that can be imposed on these pa-
rameters.

The variables of the INEST= data set must correspond to

• a character variable–TYPE– that indicates the type of the observation

• n numeric variables with the parameter names used in the specified PROC
CALIS model

• the BY variables that are used in a DATA= input data set

• a numeric variable–RHS– (right-hand side) (needed only if linear constraints
are used)

• additional variables with names corresponding to constants used in the program
statements

The content of the–TYPE– variable defines the meaning of the observation of
the INEST= data set. PROC CALIS recognizes observations with the following

–TYPE– specifications.



Input Data Sets � 633

PARMS specifies initial values for parameters that are defined in the
model statements of PROC CALIS. The–RHS– variable is not
used. Additional variables can contain the values of constants that
are referred to in program statements. At the beginning of each
run of PROC CALIS, the values of the constants are read from
the PARMS observation initializing the constants in the program
statements.

UPPERBD | UB specifies upper bounds with nonmissing values. The use of a
missing value indicates that no upper bound is specified for the
parameter. The–RHS– variable is not used.

LOWERBD | LB specifies lower bounds with nonmissing values. The use of a
missing value indicates that no lower bound is specified for the
parameter. The–RHS– variable is not used.

LE |<= |< specifies the linear constraint
∑

j aijxj ≤ bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable con-
tains the right-hand-sidebi. The use of a missing value indicates
a zero coefficientaij .

GE |>= |> specifies the linear constraint
∑

j aijxj ≥ bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable con-
tains the right-hand-sidebi. The use of a missing value indicates
a zero coefficientaij .

EQ |= specifies the linear constraint
∑

j aijxj = bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable con-
tains the right-hand-sidebi. The use of a missing value indicates
a zero coefficientaij .

The constraints specified in the INEST=, INVAR=, or ESTDATA= data set are added
to the constraints specified in BOUNDS and LINCON statements.

You can use an OUTEST= data set from a PROC CALIS run as an INEST= data set in
a new run. However, be aware that the OUTEST= data set also contains the bound-
ary and general linear constraints specified in the previous run of PROC CALIS.
When you are using this OUTEST= data set without changes as an INEST= data set,
PROC CALIS adds the constraints from the data set to the constraints specified by
a BOUNDS and LINCON statement. Although PROC CALIS automatically elimi-
nates multiple identical constraints, you should avoid specifying the same constraint
a second time.

INRAM= SAS-data-set

This data set is usually created in a previous run of PROC CALIS. It is useful if you
want to reanalyze a problem in a different way such as using a different estimation
method. You can alter an existing OUTRAM= data set, either in the DATA step or
using the FSEDIT procedure, to create the INRAM= data set describing a modified
model. For more details on the INRAM= data set, see the section“OUTRAM= SAS-
data-set”on page 638.
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In the case of a RAM or LINEQS analysis of linear structural equations, the
OUTRAM= data set always contains the variable names of the model specified.
These variable names and the model specified in the INRAM= data set are the basis
of the automatic variable selection algorithm performed after reading the INRAM=
data set.

INWGT= SAS-data-set

This data set enables you to specify a weight matrix other than the default matrix for
the generalized, weighted, and diagonally weighted least-squares estimation meth-
ods. The specification of any INWGT= data set for unweighted least-squares or maxi-
mum likelihood estimation is ignored. For generalized and diagonally weighted least-
squares estimation, the INWGT= data set must contain a–TYPE– and a–NAME–
variable as well as the manifest variables used in the analysis. The value of the

–NAME– variable indicates the row indexi of the weightwij . For weighted least
squares, the INWGT= data set must contain–TYPE– , –NAME– , –NAM2– , and

–NAM3– variables as well as the manifest variables used in the analysis. The values
of the–NAME– , –NAM2– , and–NAM3– variables indicate the three indicesi, j, k
of the weightwij,kl. You can store information other than the weight matrix in the
INWGT= data set, but only observations with–TYPE–=WEIGHT are used to spec-
ify the weight matrixW. This property enables you to store more than one weight
matrix in the INWGT= data set. You can then run PROC CALIS with each of the
weight matrices by changing only the–TYPE– observation in the INWGT= data set
with an intermediate DATA step.

For more details on the INWGT= data set, see the section“OUTWGT= SAS-data-
set” on page 643.

Output Data Sets

OUTEST= SAS-data-set

The OUTEST= (or OUTVAR=) data set is of TYPE=EST and contains the final pa-
rameter estimates, the gradient, the Hessian, and boundary and linear constraints.
For METHOD=ML, METHOD=GLS, and METHOD=WLS, the OUTEST= data set
also contains the approximate standard errors, the information matrix (crossproduct
Jacobian), and the approximate covariance matrix of the parameter estimates ((gen-
eralized) inverse of the information matrix). If there are linear or nonlinear equality
or active inequality constraints at the solution, the OUTEST= data set also contains
Lagrange multipliers, the projected Hessian matrix, and the Hessian matrix of the
Lagrange function.

The OUTEST= data set can be used to save the results of an optimization by PROC
CALIS for another analysis with either PROC CALIS or another SAS procedure.
Saving results to an OUTEST= data set is advised for expensive applications that
cannot be repeated without considerable effort.

The OUTEST= data set contains the BY variables, two character variables–TYPE–
and –NAME– , t numeric variables corresponding to the parameters used in the
model, a numeric variable–RHS– (right-hand side) that is used for the right-hand-
side valuebi of a linear constraint or for the valuef = f(x) of the objective function
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at the final pointx∗ of the parameter space, and a numeric variable–ITER– that is
set to zero for initial values, set to the iteration number for the OUTITER output, and
set to missing for the result output.

The –TYPE– observations inTable 19.5are available in the OUTEST= data set,
depending on the request.

Table 19.5. –TYPE– Observations in the OUTEST= data set

–TYPE– Description
ACTBC If there are active boundary constraints at the solutionx∗, three

observations indicate which of the parameters are actively con-
strained, as follows.

–NAME – Description
GE indicates the active lower bounds
LE indicates the active upper bounds
EQ indicates the active masks

COV contains the approximate covariance matrix of the parameter
estimates; used in computing the approximate standard errors.

COVRANK contains the rank of the covariance matrix of the parameter
estimates.

CRPJ–LF contains the Hessian matrix of the Lagrange function (based on
CRPJAC).

CRPJAC contains the approximate Hessian matrix used in the optimiza-
tion process. This is the inverse of the information matrix.

EQ If linear constraints are used, this observation contains the
ith linear constraint

∑
j aijxj = bi. The parameter

variables contain the coefficientsaij , j = 1, . . . , n, the

–RHS– variable containsbi, and –NAME–=ACTLC or

–NAME–=LDACTLC.

GE If linear constraints are used, this observation contains theith
linear constraint

∑
j aijxj ≥ bi. The parameter variables con-

tain the coefficientsaij , j = 1, . . . , n, and the–RHS– variable
containsbi. If the constrainti is active at the solutionx∗, then

–NAME–=ACTLC or –NAME–=LDACTLC.

GRAD contains the gradient of the estimates.

GRAD–LF contains the gradient of the Lagrange function. The–RHS–
variable contains the value of the Lagrange function.

HESSIAN contains the Hessian matrix.

HESS–LF contains the Hessian matrix of the Lagrange function (based on
HESSIAN).
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Table 19.5. –TYPE– Observations in the OUTEST= data set (continued)

–TYPE– Description
INFORMAT contains the information matrix of the parameter esti-

mates (only for METHOD=ML, METHOD=GLS, or
METHOD=WLS).

INITIAL contains the starting values of the parameter estimates.

JACNLC contains the Jacobian of the nonlinear constraints evaluated at
the final estimates.

JACOBIAN contains the Jacobian matrix (only if the OUTJAC option is
used).

LAGM BC contains Lagrange multipliers for masks and active boundary
constraints.

–NAME– Description
GE indicates the active lower bounds
LE indicates the active upper bounds
EQ indicates the active masks

LAGM LC contains Lagrange multipliers for linear equality and active in-
equality constraints in pairs of observations containing the con-
straint number and the value of the Lagrange multiplier.

–NAME– Description
LEC–NUM number of the linear equality constraint
LEC–VAL corresponding Lagrange multiplier value
LIC–NUM number of the linear inequality constraint
LIC–VAL corresponding Lagrange multiplier value

LAGM
NLC

contains Lagrange multipliers for nonlinear equality and active
inequality constraints in pairs of observations containing the
constraint number and the value of the Lagrange multiplier.

–NAME– Description
NLEC–NUM number of the nonlinear equality constraint
NLEC–VAL corresponding Lagrange multiplier value
NLIC–NUM number of the linear inequality constraint
NLIC–VAL corresponding Lagrange multiplier value

LE If linear constraints are used, this observation contains theith
linear constraint

∑
j aijxj ≤ bi. The parameter variables con-

tain the coefficientsaij , j = 1, . . . , n, and the–RHS– variable
containsbi. If the constrainti is active at the solutionx∗, then

–NAME–=ACTLC or –NAME–=LDACTLC.
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Table 19.5. –TYPE– Observations in the OUTEST= data set (continued)

–TYPE– Description
LOWERBD

| LB
If boundary constraints are used, this observation contains the
lower bounds. Those parameters not subjected to lower bounds
contain missing values. The–RHS– variable contains a miss-
ing value, and the–NAME– variable is blank.

NACTBC All parameter variables contain the numbernabc of active
boundary constraints at the solutionx∗. The–RHS– variable
contains a missing value, and the–NAME– variable is blank.

NACTLC All parameter variables contain the numbernalc of active linear
constraints at the solutionx∗ that are recognized as linearly
independent. The–RHS– variable contains a missing value,
and the–NAME– variable is blank.

NLC–EQ
NLC–GE
NLC–LE

contains values and residuals of nonlinear constraints. The

–NAME– variable is described as follows.

–NAME– Description
NLC inactive nonlinear constraint
NLCACT linear independent active nonlinear constr.
NLCACTLD linear dependent active nonlinear constr.

NLDACTBC contains the number of active boundary constraints at the solu-
tion x∗ that are recognized as linearly dependent. The–RHS–
variable contains a missing value, and the–NAME– variable
is blank.

NLDACTLC contains the number of active linear constraints at the solution
x∗ that are recognized as linearly dependent. The–RHS– vari-
able contains a missing value, and the–NAME– variable is
blank.

–NOBS– contains the number of observations.

PARMS contains the final parameter estimates. The–RHS– variable
contains the value of the objective function.

PCRPJ–LF contains the projected Hessian matrix of the Lagrange function
(based on CRPJAC).

PHESS–LF contains the projected Hessian matrix of the Lagrange function
(based on HESSIAN).

PROJCRPJ contains the projected Hessian matrix (based on CRPJAC).

PROJGRAD If linear constraints are used in the estimation, this observation
contains then−nact values of the projected gradientgZ = Z ′g
in the variables corresponding to the firstn − nact parame-
ters. The–RHS– variable contains a missing value, and the

–NAME– variable is blank.
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Table 19.5. –TYPE– Observations in the OUTEST= data set (continued)

–TYPE– Description
PROJHESS contains the projected Hessian matrix (based on HESSIAN).

SIGSQ contains the scalar factor of the covariance matrix of the pa-
rameter estimates.

STDERR contains approximate standard errors (only for METHOD=ML,
METHOD=GLS, or METHOD=WLS).

TERMINAT The –NAME– variable contains the name of the termination
criterion.

UPPERBD
| UB

If boundary constraints are used, this observation contains the
upper bounds. Those parameters not subjected to upper bounds
contain missing values. The–RHS– variable contains a miss-
ing value, and the–NAME– variable is blank.

If the technique specified by the TECH= option cannot be performed (for example,
no feasible initial values can be computed, or the function value or derivatives cannot
be evaluated at the starting point), the OUTEST= data set may contain only some of
the observations (usually only the PARMS and GRAD observations).

OUTRAM= SAS-data-set

The OUTRAM= data set is of TYPE=RAM and contains the model specification
and the computed parameter estimates. This data set is intended to be reused as an
INRAM= data set to specify good initial values in a subsequent analysis by PROC
CALIS.

The OUTRAM= data set contains the following variables:

• the BY variables, if any

• the character variable–TYPE– , which takes the values MODEL, ESTIM,
VARNAME, METHOD, and STAT

• six additional variables whose meaning depends on the–TYPE– of the obser-
vation

Each observation with–TYPE– =MODEL defines one matrix in the generalized
COSAN model. The additional variables are as follows.

Table 19.6. Additional Variables when –TYPE–=MODEL
Variable Contents

–NAME– name of the matrix (character)

–MATNR– number for the term and matrix in the model (numeric)

–ROW– matrix row number (numeric)

–COL– matrix column number (numeric)

–ESTIM– first matrix type (numeric)

–STDERR– second matrix type (numeric)
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If the generalized COSAN model has only one matrix term, the–MATNR– variable
contains only the number of the matrix in the term. If there is more than one term,
then it is the term number multiplied by 10,000 plus the matrix number (assuming that
there are no more than 9,999 matrices specified in the COSAN model statement).

Each observation with–TYPE– =ESTIM defines one element of a matrix in the
generalized COSAN model. The variables are used as follows.

Table 19.7. Additional Variables when –TYPE–=ESTIM
Variable Contents

–NAME– name of the parameter (character)

–MATNR– term and matrix location of parameter (numeric)

–ROW– row location of parameter (numeric)

–COL– column location of parameter (numeric)

–ESTIM– parameter estimate or constant value (numeric)

–STDERR– standard error of estimate (numeric)

For constants rather than estimates, the–STDERR– variable is 0. The–STDERR–
variable is missing for ULS and DWLS estimates if NOSTDERR is specified or if the
approximate standard errors are not computed.

Each observation with–TYPE– =VARNAME defines a column variable name of a
matrix in the generalized COSAN model.

The observations with–TYPE–=METHOD and–TYPE–=STAT are not used to
build the model. The–TYPE–=METHOD observation contains the name of the es-
timation method used to compute the parameter estimates in the–NAME– variable.
If METHOD=NONE is not specified, the–ESTIM– variable of the–TYPE–=STAT
observations contains the information summarized inTable 19.8(described in the
section“Assessment of Fit”on page 649).

Table 19.8. –ESTIM– Contents for –TYPE–=STAT

–NAME– –ESTIM–
N sample size

NPARM number of parameters used in the model
DF degrees of freedom

N–ACT number of active boundary constraints
for ML, GLS, and WLS estimation

FIT fit function
GFI goodness-of-fit index (GFI)

AGFI adjusted GFI for degrees of freedom
RMR root mean square residual
PGFI parsimonious GFI of Mulaik et al. (1989)

CHISQUAR overallχ2

P–CHISQ probability> χ2

CHISQNUL null (baseline) modelχ2

RMSEAEST Steiger & Lind’s (1980) RMSEA index estimate
RMSEALOB lower range of RMSEA confidence interval
RMSEAUPB upper range of RMSEA confidence interval
P–CLOSFT Browne & Cudeck’s (1993) probability of close fit
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Table 19.8. –ESTIM– Contents for –TYPE–=STAT (continued)

–NAME– –ESTIM–
ECVI–EST Browne & Cudeck’s (1993) ECV index estimate
ECVI–LOB lower range of ECVI confidence interval
ECVI–UPB upper range of ECVI confidence interval
COMPFITI Bentler’s (1989) comparative fit index
ADJCHISQ adjustedχ2 for elliptic distribution
P–ACHISQ probability corresponding adjustedχ2

RLSCHISQ reweighted least-squaresχ2 (only ML estimation)
AIC Akaike’s information criterion

CAIC Bozdogan’s consistent information criterion
SBC Schwarz’s Bayesian criterion

CENTRALI McDonald’s centrality criterion
PARSIMON Parsimonious index of James, Mulaik, and Brett
ZTESTWH z test of Wilson and Hilferty

BB–NONOR Bentler-Bonett (1980) nonnormed indexρ
BB–NORMD Bentler-Bonett (1980) normed index∆
BOL–RHO1 Bollen’s (1986) normed indexρ1

BOL–DEL2 Bollen’s (1989a) nonnormed index∆2

CNHOELT Hoelter’s critical N index

You can edit the OUTRAM= data set to use its contents for initial estimates in a
subsequent analysis by PROC CALIS, perhaps with a slightly changed model. But
you should be especially careful for–TYPE–=MODEL when changing matrix types.
The codes for the two matrix types are listed inTable 19.9.

Table 19.9. Matrix Type Codes
Code First Matrix Type Description

1: IDE identity matrix
2: ZID zero:identity matrix
3: DIA diagonal matrix
4: ZDI zero:diagonal matrix
5: LOW lower triangular matrix
6: UPP upper triangular matrix
7: temporarily not used
8: SYM symmetric matrix
9: GEN general-type matrix

10: BET identity minus general-type matrix
11: PER selection matrix
12: first matrix (J) in LINEQS model statement
13: second matrix (β) in LINEQS model statement
14: third matrix (γ) in LINEQS model statement

Code Second Matrix Type Description
0: noninverse model matrix
1: INV inverse model matrix
2: IMI ’identity minus inverse’ model matrix
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OUTSTAT= SAS-data-set

The OUTSTAT= data set is similar to the TYPE=COV, TYPE=UCOV,
TYPE=CORR, or TYPE=UCORR data set produced by the CORR procedure.
The OUTSTAT= data set contains the following variables:

• the BY variables, if any

• two character variables,–TYPE– and–NAME–
• the variables analyzed, that is, those in the VAR statement, or if there is no VAR

statement, all numeric variables not listed in any other statement but used in
the analysis. (Caution: Using the LINEQS or RAM model statements selects
variables automatically.)

The OUTSTAT= data set contains the following information (when available):

• the mean and standard deviation

• the skewness and kurtosis (if the DATA= data set is a raw data set and the
KURTOSIS option is specified)

• the number of observations

• if the WEIGHT statement is used, sum of the weights

• the correlation or covariance matrix to be analyzed

• the predicted correlation or covariance matrix

• the standardized or normalized residual correlation or covariance matrix

• if the model contains latent variables, the predicted covariances between la-
tent and manifest variables, and the latent variable (or factor) score regression
coefficients (see thePLATCOV display optionon page 586)

In addition, if the FACTOR model statement is used, the OUTSTAT= data set con-
tains:

• the unrotated factor loadings, the unique variances, and the matrix of factor
correlations

• the rotated factor loadings and the transformation matrix of the rotation

• the matrix of standardized factor loadings

Each observation in the OUTSTAT= data set contains some type of statistic as indi-
cated by the–TYPE– variable. The values of the–TYPE– variable are given in
Table 19.10.
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Table 19.10. –TYPE– Observations in the OUTSTAT= data set

–TYPE– Contents
MEAN means

STD standard deviations
USTD uncorrected standard deviations

SKEWNESS univariate skewness
KURTOSIS univariate kurtosis

N sample size
SUMWGT sum of weights (if WEIGHT statement is used)

COV covariances analyzed
CORR correlations analyzed
UCOV uncorrected covariances analyzed

UCORR uncorrected correlations analyzed
ULSPRED ULS predicted model values
GLSPRED GLS predicted model values

MAXPRED ML predicted model values
WLSPRED WLS predicted model values

DWLSPRED DWLS predicted model values

ULSNRES ULS normalized residuals
GLSNRES GLS normalized residuals

MAXNRES ML normalized residuals
WLSNRES WLS normalized residuals

DWLSNRES DWLS normalized residuals

ULSSRES ULS variance standardized residuals
GLSSRES GLS variance standardized residuals

MAXSRES ML variance standardized residuals
WLSSRES WLS variance standardized residuals

DWLSSRES DWLS variance standardized residuals

ULSASRES ULS asymptotically standardized residuals
GLSASRES GLS asymptotically standardized residuals

MAXASRES ML asymptotically standardized residuals
WLSASRES WLS asymptotically standardized residuals
DWLSASRS DWLS asymptotically standardized residuals

UNROTATE unrotated factor loadings
FCORR matrix of factor correlations

UNIQUE–V unique variances
TRANSFOR transformation matrix of rotation
LOADINGS rotated factor loadings
STD–LOAD standardized factor loadings

LSSCORE latent variable (or factor) score regression coefficients for ULS method
SCORE latent variable (or factor) score regression coefficients other than ULS method

The–NAME– variable contains the name of the manifest variable corresponding to
each row for the covariance, correlation, predicted, and residual matrices and con-
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tains the name of the latent variable in case of factor regression scores. For other
observations,–NAME– is blank.

The unique variances and rotated loadings can be used as starting values in more
difficult and constrained analyses.

If the model contains latent variables, the OUTSTAT= data set also contains the latent
variable score regression coefficients and the predicted covariances between latent
and manifest variables. You can use the latent variable score regression coefficients
with PROC SCORE to compute factor scores.

If the analyzed matrix is a (corrected or uncorrected) covariance rather than a cor-
relation matrix, the–TYPE–=STD or–TYPE–=USTD observation is not included
in the OUTSTAT= data set. In this case, the standard deviations can be obtained
from the diagonal elements of the covariance matrix. Dropping the–TYPE–=STD
or –TYPE–=USTD observation prevents PROC SCORE from standardizing the ob-
servations before computing the factor scores.

OUTWGT= SAS-data-set

You can create an OUTWGT= data set that is of TYPE=WEIGHT and contains the
weight matrix used in generalized, weighted, or diagonally weighted least-squares
estimation. Theinverseof the weight matrix is used in the corresponding fit function.
The OUTWGT= data set contains the weight matrix on which the WRIDGE= and
the WPENALTY= options are applied. For unweighted least-squares or maximum
likelihood estimation, no OUTWGT= data set can be written. The last weight matrix
used in maximum likelihood estimation is the predicted model matrix (observations
with –TYPE– =MAXPRED) that is included in the OUTSTAT= data set.

For generalized and diagonally weighted least-squares estimation, the weight matri-
cesW of the OUTWGT= data set contain all elementswij , where the indicesi andj
correspond to all manifest variables used in the analysis. Letvarnami be the name
of the ith variable in the analysis. In this case, the OUTWGT= data set containsn
observations with variables as displayed in the following table.

Table 19.11. Contents of OUTWGT= data set for GLS and DWLS Estimation
Variable Contents

–TYPE– WEIGHT (character)

–NAME– name of variablevarnami (character)
varnam1 weightwi1 for variablevarnam1 (numeric)
...

...
varnamn weightwin for variablevarnamn (numeric)

For weighted least-squares estimation, the weight matrixW of the OUTWGT= data
set contains only the nonredundant elementswij,kl. In this case, the OUTWGT= data
set containsn(n+ 1)(2n+ 1)/6 observations with variables as follows.

Table 19.12. Contents of OUTWGT= data set for WLS Estimation
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Variable Contents

–TYPE– WEIGHT (character)

–NAME– name of variablevarnami (character)

–NAM2– name of variablevarnamj (character)

–NAM3– name of variablevarnamk (character)
varnam1 weightwij,k1 for variablevarnam1 (numeric)
...

...
varnamn weightwij,kn for variablevarnamn (numeric)

Symmetric redundant elements are set to missing values.

Missing Values

If the DATA= data set contains raw data (rather than a covariance or correlation ma-
trix), observations with missing values for any variables in the analysis are omitted
from the computations. If a covariance or correlation matrix is read, missing values
are allowed as long as every pair of variables has at least one nonmissing value.

Estimation Criteria

The following five estimation methods are available in PROC CALIS:

• unweighted least squares (ULS)

• generalized least squares (GLS)

• normal-theory maximum likelihood (ML)

• weighted least squares (WLS, ADF)

• diagonally weighted least squares (DWLS)

An INWGT= data set can be used to specify other than the default weight matrices
W for GLS, WLS, and DWLS estimation.

In each case, the parameter vector is estimated iteratively by a nonlinear optimization
algorithm that optimizes a goodness-of-fit functionF . Whenn denotes the number
of manifest variables,S denotes the given sample covariance or correlation matrix
for a sample with sizeN , andC denotes the predicted moment matrix, then the fit
function for unweighted least-squares estimation is

FULS = .5Tr[(S−C)2]

For normal-theory generalized least-squares estimation, the function is

FGLS = .5Tr[(S−1(S−C))2]

For normal-theory maximum likelihood estimation, the function is

FML = Tr(SC−1)− n+ ln(det(C))− ln(det(S))
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The first three functions can be expressed by the generalized weighted least-squares
criterion (Browne 1982):

FGWLS = .5Tr[(W−1(S−C))2]

For unweighted least squares, the weight matrixW is chosen as the identity matrixI;
for generalized least squares, the default weight matrixW is the sample covariance
matrix S; and for normal-theory maximum likelihood,W is the iteratively updated
predicted moment matrixC. The values of the normal-theory maximum likelihood
functionFML and the generally weighted least-squares criterionFGWLS with W =
C are asymptotically equivalent.

The goodness-of-fit function that is minimized in weighted least-squares estimation
is

FWLS = V ec(sij − cij)′W−1V ec(sij − cij)

whereV ec(sij − cij) denotes the vector of then(n + 1)/2 elements of the lower
triangle of the symmetric matrixS − C, andW = (wij,kl) is a positive definite
symmetric matrix withn(n+ 1)/2 rows and columns.

If the moment matrixS is considered as a covariance rather than a correlation matrix,
the default setting ofW = (wij,kl) is the consistent but biased estimators of the
asymptotic covariancesσij,kl of the sample covariancesij with the sample covariance
skl

wij,kl = sij,kl − sijskl

where

sij,kl =
1
N

N∑
r=1

(zri − zi)(zrj − zj)(zrk − zk)(zrl − zl)

The formula of the asymptotic covariances of uncorrected covariances (using the
UCOV or NOINT option) is a straightforward generalization of this expression.

The resulting weight matrixW is at least positive semidefinite (except for rounding
errors). Using the ASYCOV option, you can use Browne’s (1984, formula (3.8))
unbiased estimators

wij,kl =
N(N − 1)

(N − 2)(N − 3)
(sij,kl − sijskl)

− N

(N − 2)(N − 3)
(siksjl + silsjk −

2
N − 1

sijskl)

There is no guarantee that this weight matrix is positive semidefinite. However, the
second part is of orderO(N−1) and does not destroy the positive semidefinite first
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part for sufficiently largeN . For a large number of independent observations, default
settings of the weight matrixW result in asymptotically distribution-free parameter
estimates with unbiased standard errors and a correctχ2 test statistic (Browne 1982,
1984).

If the moment matrixS is a correlation (rather than a covariance) matrix, the default
setting ofW = (wij,kl) is the estimators of the asymptotic covariancesσij,kl of the
correlationsS = (sij) (Browne and Shapiro 1986; DeLeeuw 1983)

wij,kl = rij,kl −
1
2
rij(rii,kl + rjj,kl)−

1
2
rkl(rkk,ij + rll,ij)

+
1
4
rijrkl(rii,kk + rii,ll + rjj,kk + rjj,ll)

where

rij,kl =
sij,kl√

siisjjskksll

The asymptotic variances of the diagonal elements of a correlation matrix are 0.
Therefore, the weight matrix computed by Browne and Shapiro’s formula is always
singular. In this case the goodness-of-fit function for weighted least-squares estima-
tion is modified to

FWLS =
n∑

i=2

i−1∑
j=1

n∑
k=2

k−1∑
l=1

wij,kl(sij − cij)(skl − ckl) + r
n∑
i

(sii − cii)2

wherer is the penalty weight specified by the WPENALTY=r option and thewij,kl

are the elements of the inverse of the reduced(n(n − 1)/2) × (n(n − 1)/2) weight
matrix that contains only the nonzero rows and columns of the full weight matrixW.
The second term is a penalty term to fit the diagonal elements of the moment matrix
S. The default value ofr = 100 can be decreased or increased by the WPENALTY=
option. The often used value ofr = 1 seems to be too small in many cases to fit
the diagonal elements of a correlation matrix properly. If your model does not fit the
diagonal of the moment matrixS, you can specify the NODIAG option to exclude
the diagonal elements from the fit function.

Storing and inverting the huge weight matrixW in WLS estimation needs consid-
erable computer resources. A compromise is found by implementing the DWLS
method that uses only the diagonal of the weight matrixW from the WLS estimation
in the minimization function

FDWLS = V ec(sij − cij)′diag(W)−1V ec(sij − cij)

The statistical properties of DWLS estimates are still not known.

In generalized, weighted, or diagonally weighted least-squares estimation, you can
change from the default settings of weight matricesW by using an INWGT= data
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set. Because the diagonal elementswii,kk of the weight matrixW are interpreted
as asymptotic variances of the sample covariances or correlations, they cannot be
negative. The CALIS procedure requires a positive definite weight matrix that has
positive diagonal elements.

Relationships among Estimation Criteria

The five estimation functions,FULS , FGLS , FML, FWLS , andFDWLS , belong to the
following two groups:

• The functionsFULS , FGLS , andFML take into account alln2 elements of the
symmetric residual matrixS − C. This means that the off-diagonal residuals
contribute twice toF , as lower and as upper triangle elements.

• The functionsFWLS andFDWLS take into account only then(n+ 1)/2 lower
triangular elements of the symmetric residual matrixS −C. This means that
the off-diagonal residuals contribute toF only once.

TheFDWLS function used in PROC CALIS differs from that used by the LISREL 7
program. Formula (1.25) of the LISREL 7 manual (Jöreskog and Sörbom 1988, p.
23) shows that LISREL groups theFDWLS function in the first group by taking into
account alln2 elements of the symmetric residual matrixS−C.

• Relationship between DWLS and WLS:
PROC CALIS: TheFDWLS andFWLS estimation functions deliver the same
results for the special case that the weight matrixW used by WLS estimation
is a diagonal matrix.
LISREL 7: This is not the case.

• Relationship between DWLS and ULS:
LISREL 7: TheFDWLS andFULS estimation functions deliver the same re-
sults for the special case that the diagonal weight matrixW used by DWLS
estimation is an identity matrix (contains only 1s).
PROC CALIS: To obtain the same results withFDWLS andFULS estimation,
set the diagonal weight matrixW used in DWLS estimation to

wik,ik =
{

1. if i = k
0.5 otherwise

Because the reciprocal elements of the weight matrix are used in the goodness-
of-fit function, the off-diagonal residuals are weighted by a factor of 2.

Testing Rank Deficiency in the Approximate Covariance
Matrix

The inverse of the information matrix (or approximate Hessian matrix) is used for the
covariance matrix of the parameter estimates, which is needed for the computation
of approximate standard errors and modification indices. The numerical condition
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of the information matrix (computed as the crossproductJ′J of the Jacobian matrix
J) can be very poor in many practical applications, especially for the analysis of
unscaled covariance data. The following four-step strategy is used for the inversion
of the information matrix.

1. The inversion (usually of a normalized matrixD−1HD−1) is tried using a
modified form of the Bunch and Kaufman (1977) algorithm, which allows the
specification of a different singularity criterion for each pivot. The following
three criteria for the detection of rank loss in the information matrix are used
to specify thresholds:

• ASINGspecifies absolute singularity.

• MSING specifies relative singularity depending on the whole matrix
norm.

• VSING specifies relative singularity depending on the column matrix
norm.

If no rank loss is detected, the inverse of the information matrix is used for the
covariance matrix of parameter estimates, and the next two steps are skipped.

2. The linear dependencies among the parameter subsets are displayed based on
the singularity criteria.

3. If the number of parameterst is smaller than the value specified by the G4=
option (the default value is 60), the Moore-Penrose inverse is computed based
on the eigenvalue decomposition of the information matrix. If you do not spec-
ify the NOPRINT option, the distribution of eigenvalues is displayed, and those
eigenvalues that are set to zero in the Moore-Penrose inverse are indicated. You
should inspect this eigenvalue distribution carefully.

4. If PROC CALIS did not set the right subset of eigenvalues to zero, you can
specify the COVSING= option to set a larger or smaller subset of eigenvalues
to zero in a further run of PROC CALIS.

Approximate Standard Errors

Except for unweighted and diagonally weighted least-squares estimation, approxi-
mate standard errors can be computed as the diagonal elements of the matrix

c

NM
H−1, where

NM =


(N − 1) if the CORR or COV matrix is analyzed

or the intercept variable is not used in the model
N if the UCORR or UCOV matrix is analyzed

and the intercept variable is not used in the model

The matrixH is the approximate Hessian matrix ofF evaluated at the final esti-
mates,c = 1 for the WLS estimation method,c = 2 for the GLS and ML method,
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andN is the sample size. If a given correlation or covariance matrix is singular,
PROC CALIS offers two ways to compute a generalized inverse of the information
matrix and, therefore, two ways to compute approximate standard errors of implicitly
constrained parameter estimates,t values, and modification indices. Depending on
the G4= specification, either a Moore-Penrose inverse or a G2 inverse is computed.
The expensive Moore-Penrose inverse computes an estimate of the null space using
an eigenvalue decomposition. The cheaper G2 inverse is produced by sweeping the
linearly independent rows and columns and zeroing out the dependent ones. The
information matrix, the approximate covariance matrix of the parameter estimates,
and the approximate standard errors are not computed in the cases of unweighted or
diagonally weighted least-squares estimation.

Assessment of Fit

This section contains a collection of formulas used in computing indices to assess the
goodness of fit by PROC CALIS. The following notation is used:

• N for the sample size

• n for the number of manifest variables

• t for the number of parameters to estimate

• NM =


(N − 1) if the CORR or COV matrix is analyzed

or the intercept variable is not used in the model
N if the UCORR or UCOV matrix is analyzed

and the intercept variable is not used in the model

• df for the degrees of freedom

• γ = X for thet vector of optimal parameter estimates

• S = (sij) for then× n input COV, CORR, UCOV, or UCORR matrix

• C = (cij) = Σ̂ = Σ(γ̂) for the predicted model matrix

• W for the weight matrix (W = I for ULS, W = S for default GLS, and
W = C for ML estimates)

• U for then2 × n2 asymptotic covariance matrix of sample covariances

• Φ(x|λ, df) for the cumulative distribution function of the noncentral chi-
squared distribution with noncentrality parameterλ

The following notation is for indices that allow testing nested models by aχ2 differ-
ence test:

• f0 for the function value of the independence model

• df0 for the degrees of freedom of the independence model

• fmin = F for the function value of the fitted model

• dfmin = df for the degrees of freedom of the fitted model
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The degrees of freedomdfmin and the number of parameterst are adjusted automat-
ically when there are active constraints in the analysis. The computation of many fit
statistics and indices are affected. You can turn off the automatic adjustment using
the NOADJDF option. See the section“Counting the Degrees of Freedom”on page
676 for more information.

Residuals

PROC CALIS computes four types of residuals and writes them to the OUTSTAT=
data set.

• Raw Residuals

Res = S−C, Resij = sij − cij

The raw residuals are displayed whenever the PALL, the PRINT, or the
RESIDUAL option is specified.

• Variance Standardized Residuals

V SResij =
sij − cij√
siisjj

The variance standardized residuals are displayed when you specify

– the PALL, the PRINT, or the RESIDUAL option and METHOD=NONE,
METHOD=ULS, or METHOD=DWLS

– RESIDUAL=VARSTAND

The variance standardized residuals are equal to those computed by the EQS 3
program (Bentler 1989).

• Asymptotically Standardized Residuals

ASResij =
sij − cij√
vij,ij

, where

vij,ij = diag(U− JCov(γ)J′)ij

The matrixJ is then2 × t Jacobian matrixdΣ/dγ, andCov(γ) is thet × t
asymptotic covariance matrix of parameter estimates (the inverse of the infor-
mation matrix). Asymptotically standardized residuals are displayed when one
of the following conditions is met:

– The PALL, the PRINT, or the RESIDUAL option is specified, and
METHOD=ML, METHOD=GLS, or METHOD=WLS, and the expen-
sive information and Jacobian matrices are computed for some other rea-
son.

– RESIDUAL= ASYSTAND is specified.
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The asymptotically standardized residuals are equal to those computed by the
LISREL 7 program (Jöreskog and Sörbom 1988) except for the denominator
NM in the definition of matrixU.

• Normalized Residuals

NResij =
sij − cij√
uij,ij

where the diagonal elementsuij,ij of then2×n2 asymptotic covariance matrix
U of sample covariances are defined for the following methods.

– GLS asuij,ij = 1
NM (siisjj + s2ij)

– ML asuij,ij = 1
NM (ciicjj + c2ij)

– WLS as uij,ij=1
NMwij,ij

Normalized residuals are displayed when one of the following conditions is
met:

– The PALL, the PRINT, or the RESIDUAL option is specified, and
METHOD=ML, METHOD=GLS, or METHOD=WLS, and the expen-
sive information and Jacobian matrices arenot computed for some other
reason.

– RESIDUAL=NORM is specified.

The normalized residuals are equal to those computed by the LISREL VI pro-
gram (Jöreskog and Sörbom 1985) except for the definition of the denominator
NM in matrixU.

For estimation methods that are not BGLS estimation methods (Browne 1982, 1984),
such as METHOD=NONE, METHOD=ULS, or METHOD=DWLS, the assumption
of an asymptotic covariance matrixU of sample covariances does not seem to be
appropriate. In this case, the normalized residuals should be replaced by the more
relaxed variance standardized residuals. Computation of asymptotically standardized
residuals requires computing the Jacobian and information matrices. This is compu-
tationally very expensive and is done only if the Jacobian matrix has to be computed
for some other reason, that is, if at least one of the following items is true:

• The default, PRINT, or PALL displayed output is requested, and neither the
NOMOD nor NOSTDERR option is specified.

• Either the MODIFICATION (included in PALL), PCOVES, or STDERR
(included in default, PRINT, and PALL output) option is requested or
RESIDUAL=ASYSTAND is specified.

• The LEVMAR or NEWRAP optimization technique is used.

• An OUTRAM= data set is specified without using the NOSTDERR option.

• An OUTEST= data set is specified without using the NOSTDERR option.
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Since normalized residuals use an overestimate of the asymptotic covariance matrix
of residuals (the diagonal ofU), the normalized residuals cannot be larger than the
asymptotically standardized residuals (which use the diagonal ofU− JCov(γ)J′).

Together with the residual matrices, the values of the average residual, the average
off-diagonal residual, and the rank order of the largest values are displayed. The
distribution of the normalized and standardized residuals is displayed also.

Goodness-of-Fit Indices Based on Residuals

The following items are computed for all five kinds of estimation:ULS, GLS, ML,
WLS, and DWLS. All these indices are written to the OUTRAM= data set. The
goodness of fit (GFI), adjusted goodness of fit (AGFI), and root mean square residual
(RMR) are computed as in the LISREL VI program of Jöreskog and Sörbom (1985).

• Goodness-of-Fit Index
The goodness-of-fit index for the ULS, GLS, and ML estimation methods is

GFI = 1− Tr((W−1(S−C))2)
Tr((W−1S)2)

but for WLS and DWLS estimation, it is

GFI = 1− V ec(sij − cij)′W−1V ec(sij − cij)
V ec(sij)′W−1V ec(sij)

whereW = diag for DWLS estimation, andV ec(sij − cij) denotes the vector
of then(n+1)/2 elements of the lower triangle of the symmetric matrixS−C.
For a constant weight matrixW, the goodness-of-fit index is 1 minus the ratio
of the minimum function value and the function value before any model has
been fitted. The GFI should be between 0 and 1. The data probably do not fit
the model if the GFI is negative or much larger than 1.

• Adjusted Goodness-of-Fit Index
The AGFI is the GFI adjusted for the degrees of freedom of the model

AGFI = 1− n(n+ 1)
2df

(1−GFI)

The AGFI corresponds to the GFI in replacing the total sum of squares by the
mean sum of squares.

Caution:

– Large n and smalldf can result in a negative AGFI. For example,
GFI=0.90, n=19, and df=2 result in an AGFI of -8.5.

– AGFI is not defined for a saturated model, due to division bydf = 0.

– AGFI is not sensitive to losses indf .
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The AGFI should be between 0 and 1. The data probably do not fit the model
if the AGFI is negative or much larger than 1. For more information, refer to
Mulaik et al. (1989).

• Root Mean Square Residual
The RMR is the mean of the squared residuals:

RMR =

√√√√ 2
n(n+ 1)

n∑
i

i∑
j

(sij − cij)2

• Parsimonious Goodness-of-Fit Index
The PGFI (Mulaik et al. 1989) is a modification of the GFI that takes the
parsimony of the model into account:

PGFI =
dfmin

df0
GFI

The PGFI uses the same parsimonious factor as the parsimonious normed
Bentler-Bonett index (James, Mulaik, and Brett 1982).

Goodness-of-Fit Indices Based on the χ2

The following items are transformations of the overallχ2 value and in general depend
on the sample size N. These indices are not computed for ULS or DWLS estimates.

• Uncorrectedχ2

The overallχ2 measure is the optimum function valueF multiplied byN − 1
if a CORR or COV matrix is analyzed, or multiplied byN if a UCORR or
UCOV matrix is analyzed. This gives the likelihood ratio test statistic for the
null hypothesis that the predicted matrixC has the specified model structure
against the alternative thatC is unconstrained. Theχ2 test is valid only if the
observations are independent and identically distributed, the analysis is based
on the nonstandardized sample covariance matrixS, and the sample sizeN is
sufficiently large (Browne 1982; Bollen 1989b; Jöreskog and Sörbom 1985).
For ML and GLS estimates, the variables must also have an approximately
multivariate normal distribution. The notation Prob>Chi**2 means “the prob-
ability under the null hypothesis of obtaining a greaterχ2 statistic than that
observed.”

χ2 = NM ∗ F

whereF is the function value at the minimum.

• χ2
0 Value of the Independence Model

Theχ2
0 value of the independence model

χ2
0 = NM ∗ f0

and the corresponding degrees of freedomdf0 can be used (in large samples)
to evaluate the gain of explanation by fitting the specific model (Bentler 1989).
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• RMSEA Index (Steiger and Lind 1980)
The Steiger and Lind (1980) root mean squared error approximation (RMSEA)
coefficient is

εα =

√
max(

F

df
− 1
NM

, 0)

The lower and upper limits of the confidence interval are computed using
the cumulative distribution function of the noncentral chi-squared distribution
Φ(x|λ, df) = α, with x = NM ∗ F , λL satisfyingΦ(x|λL, df) = 1− α

2 , and
λU satisfyingΦ(x|λU , df) = α

2 :

(εαL ; εαU ) = (

√
λL

NM ∗ df
;

√
λU

NM ∗ df
)

Refer to Browne and Du Toit (1992) for more details. The size of the con-
fidence interval is defined by the option ALPHARMS=α, 0 ≤ α ≤ 1. The
default isα = 0.1, which corresponds to the 90% confidence interval for the
RMSEA.

• Probability for Test of Close Fit (Browne and Cudeck 1993)
The traditional exactχ2 test hypothesisH0: εα = 0 is replaced by the null
hypothesis of close fitH0: εα ≤ 0.05 and the exceedance probabilityP is
computed as

P = 1− Φ(x|λ∗, df)

wherex = NM ∗ F andλ∗ = 0.052 ∗NM ∗ df . The null hypothesis of close
fit is rejected ifP is smaller than a prespecified level (for example,P < 0.05).

• Expected Cross Validation Index (Browne and Cudeck 1993)
For GLS and WLS, the estimatorc of the ECVI is linearly related to AIC:

c = F (S,C) +
2t
NM

For ML estimation,cML is used.

cML = FML(S,C) +
2t

NM − n− 1

The confidence interval(cL; cU ) for c is computed using the cumulative distri-
bution functionΦ(x|λ, df) of the noncentral chi-squared distribution,

(cL; cU ) = (
λL + nnt

NM
;
λU + nnt

NM
)

with nnt = n(n + 1)/2 + t, x = NM ∗ F , Φ(x|λU , df) = 1 − α
2 , and

Φ(x|λL, df) = α
2 . The confidence interval(c∗L; c∗U ) for cML is

(c∗L; c∗U ) = (
λ∗L + nnt

NM − n− 1
;

λ∗U + nnt

NM − n− 1
)
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wherennt = n(n+ 1)/2 + t, x = (NM − n− 1) ∗ F , Φ(x|λ∗U , df) = α
2 and

Φ(x|λ∗L, df) = 1 − α
2 . Refer to Browne and Cudeck (1993). The size of the

confidence interval is defined by the option ALPHAECV=α, 0 ≤ α ≤ 1. The
default isα = 0.1, which corresponds to the 90% confidence interval for the
ECVI.

• Comparative Fit Index (Bentler 1989)

CFI = 1− max(NM ∗ fmin − dfmin, 0)
max(NM ∗ f0 − df0, 0)

• Adjusted χ2 Value (Browne 1982)
If the variables aren-variate elliptic rather than normal and have significant
amounts of multivariate kurtosis (leptokurtic or platykurtic), theχ2 value can
be adjusted to

χ2
ell =

χ2

η2

whereη2 is the multivariate relative kurtosis coefficient.

• Normal Theory Reweighted LSχ2 Value
This index is displayed only if METHOD=ML. Instead of the function value
FML, the reweighted goodness-of-fit functionFGWLS is used,

χ2
GWLS = NM ∗ FGWLS

whereFGWLS is the value of the function at the minimum.

• Akaike’s Information Criterion (AIC) (Akaike 1974; Akaike 1987)
This is a criterion for selecting the best model among a number of candidate
models. The model that yields the smallest value of AIC is considered the best.

AIC = χ2 − 2df

• Consistent Akaike’s Information Criterion (CAIC) (Bozdogan 1987)
This is another criterion, similar to AIC, for selecting the best model among
alternatives. The model that yields the smallest value of CAIC is considered
the best. CAIC is preferred by some people to AIC or theχ2 test.

CAIC = χ2 − (ln(N) + 1)df

• Schwarz’s Bayesian Criterion (SBC) (Schwarz 1978; Sclove 1987)
This is another criterion, similar to AIC, for selecting the best model. The
model that yields the smallest value of SBC is considered the best. SBC is
preferred by some people to AIC or theχ2 test.

SBC = χ2 − ln(N)df
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• McDonald’s Measure of Centrality (McDonald and Hartmann 1992)

CENT = exp(−(χ2 − df)
2N

)

• Parsimonious Normed Fit Index (James, Mulaik, and Brett 1982)
The PNFI is a modification of Bentler-Bonett’s normed fit index that takes
parsimony of the model into account,

PNFI =
dfmin

df0

(f0 − fmin)
f0

The PNFI uses the same parsimonious factor as the parsimonious GFI of
Mulaik et al. (1989).

• Z-Test (Wilson and Hilferty 1931)
The Z-Test of Wilson and Hilferty assumes ann-variate normal distribution:

Z =
3

√
χ2

df − (1− 2
9df )√

2
9df

Refer to McArdle (1988) and Bishop, Fienberg, and Holland (1977, p. 527) for
an application of the Z-Test.

• Nonnormed Coefficient (Bentler and Bonett 1980)

ρ =
f0/df0 − fmin/dfmin

f0/df0 − 1/NM

Refer to Tucker and Lewis (1973).

• Normed Coefficient (Bentler and Bonett 1980)

∆ =
f0 − fmin

f0

Mulaik et al. (1989) recommend the parsimonious weighted form PNFI.

• Normed Index ρ1 (Bollen 1986)

ρ1 =
f0/df0 − fmin/dfmin

f0/df0

ρ1 is always less than or equal to1; ρ1 < 0 is unlikely in practice. Refer to the
discussion in Bollen (1989a).
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• Nonnormed Index∆2 (Bollen 1989a)

∆2 =
f0 − fmin

f0 − df
NM

is a modification of Bentler & Bonett’s∆ that usesdf and “lessens the depen-
dence” onN . Refer to the discussion in Bollen (1989b).∆2 is identical to
Mulaik et al.’s (1989) IFI2 index.

• Critical N Index (Hoelter 1983)

CN =
χ2

crit

F
+ 1

whereχ2
crit is the critical chi-square value for the givendf degrees of freedom

and probabilityα = 0.05, andF is the value of the estimation criterion (min-
imization function). Refer to Bollen (1989b, p. 277). Hoelter (1983) suggests
that CN should be at least 200; however, Bollen (1989b) notes that the CN
value may lead to an overly pessimistic assessment of fit for small samples.

Squared Multiple Correlation

The following are measures of the squared multiple correlation for manifest and en-
dogenous variables and are computed for all five estimation methods: ULS, GLS,
ML, WLS, and DWLS. These coefficients are computed as in the LISREL VI pro-
gram of Jöreskog and Sörbom (1985). The DETAE, DETSE, and DETMV determi-
nation coefficients are intended to be global means of the squared multiple correla-
tions for different subsets of model equations and variables. These coefficients are
displayed only when you specify the PDETERM option with a RAM or LINEQS
model.

• R2 Values Corresponding to Endogenous Variables

R2
i = 1−

̂var(ζi)
̂var(ηi)

• Total Determination of All Equations

DETAE = 1− det(Θ̂, Ψ̂)

det( ̂Cov(y, x,η))

• Total Determination of the Structural Equations

DETSE = 1− det(Ψ̂)

det(Ĉov(η))
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• Total Determination of the Manifest Variables

DETMV = 1− det(Θ̂)
det(S)

Caution: In the LISREL program, the structural equations are defined by specifying
the BETA matrix. In PROC CALIS, a structural equation has a dependent left-hand-
side variable that appears at least once on the right-hand side of another equation, or
the equation has at least one right-hand-side variable that is the left-hand-side variable
of another equation. Therefore, PROC CALIS sometimes identifies more equations
as structural equations than the LISREL program does.

Measures of Multivariate Kurtosis

In many applications, the manifest variables are not even approximately multivariate
normal. If this happens to be the case with your data set, the default generalized
least-squares and maximum likelihood estimation methods are not appropriate, and
you should compute the parameter estimates and their standard errors by an asymptot-
ically distribution-free method, such as the WLS estimation method. If your manifest
variables are multivariate normal, then they have a zero relative multivariate kurtosis,
and all marginal distributions have zero kurtosis (Browne 1982). If your DATA= data
set contains raw data, PROC CALIS computes univariate skewness and kurtosis and
a set of multivariate kurtosis values. By default, the values of univariate skewness and
kurtosis are corrected for bias (as in PROC UNIVARIATE), but using the BIASKUR
option enables you to compute the uncorrected values also. The values are displayed
when you specify the PROC CALIS statement option KURTOSIS.

• Corrected Variance for Variable zj

σ2
j =

1
N − 1

N∑
i

(zij − zj)2

• Corrected Univariate Skewness for Variablezj

γ1(j) =
N

(N − 1)(N − 2)

∑N
i (zij − zj)3

σ3
j

• Uncorrected Univariate Skewness for Variablezj

γ1(j) =
N

∑N
i (zij − zj)3√

N [
∑N

i (zij − zj)2]3
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• Corrected Univariate Kurtosis for Variable zj

γ2(j) =
N(N + 1)

(N − 1)(N − 2)(N − 3)

∑N
i (zij − zj)4

σ4
j

− 3(N − 1)2

(N − 2)(N − 3)

• Uncorrected Univariate Kurtosis for Variable zj

γ2(j) =
N

∑N
i (zij − zj)4

[
∑N

i (zij − zj)2]2
− 3

• Mardia’s Multivariate Kurtosis

γ2 =
1
N

N∑
i

[(zi − z)′S−1(zi − z)]2 − n(n+ 2)

• Relative Multivariate Kurtosis

η2 =
γ2 + n(n+ 2)
n(n+ 2)

• Normalized Multivariate Kurtosis

κ0 =
γ2√

8n(n+ 2)/N

• Mardia Based Kappa

κ1 =
γ2

n(n+ 2)

• Mean Scaled Univariate Kurtosis

κ2 =
1
3n

n∑
j

γ2(j)

• Adjusted Mean Scaled Univariate Kurtosis

κ3 =
1
3n

n∑
j

γ∗2(j)

with

γ∗2(j) =


γ2(j) , if γ2(j) >

−6
n+2

−6
n+2 , otherwise
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If variable Zj is normally distributed, the uncorrected univariate kurtosisγ2(j) is
equal to 0. IfZ has ann-variate normal distribution, Mardia’s multivariate kurto-
sis γ2 is equal to 0. A variableZj is calledleptokurtic if it has a positive value of
γ2(j) and is calledplatykurtic if it has a negative value ofγ2(j). The values ofκ1, κ2,
andκ3 should not be smaller than a lower bound (Bentler 1985):

κ̂ ≥ −2
n+ 2

PROC CALIS displays a message if this happens.

If weighted least-squares estimates (METHOD=WLS or METHOD=ADF) are spec-
ified and the weight matrix is computed from an input raw data set, the CALIS pro-
cedure computes two more measures of multivariate kurtosis.

• Multivariate Mean Kappa

κ4 =
1
m

n∑
i

i∑
j

j∑
k

k∑
l

κ̂ij,kl − 1

where

κ̂ij,kl =
sij,kl

sijskl + siksjl + silsjk

andm = n(n+ 1)(n+ 2)(n+ 3)/24 is the number of elements in the vector
sij,kl (Bentler 1985).

• Multivariate Least-Squares Kappa

κ5 =
s′4s2
s′2s2

− 1

where

sij,kl =
1
N

N∑
r=1

(zri − zi)(zrj − zj)(zrk − zk)(zrl − zl)

s4 is the vector of thesij,kl, ands2 is the vector of the elements in the denomi-
nator ofκ̂ (Bentler 1985).

The occurrence of significant nonzero values of Mardia’s multivariate kurtosisγ2 and
significant amounts of some of the univariate kurtosis valuesγ2(j) indicate that your
variables are not multivariate normal distributed. Violating the multivariate normality
assumption in (default) generalized least-squares and maximum likelihood estimation
usually leads to the wrong approximate standard errors and incorrect fit statistics
based on theχ2 value. In general, the parameter estimates are more stable against
violation of the normal distribution assumption. For more details, refer to Browne
(1974, 1982, 1984).
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Initial Estimates

Each optimization technique requires a set of initial values for the parameters. To
avoid local optima, the initial values should be as close as possible to the globally
optimal solution. You can check for local optima by running the analysis with several
different sets of initial values; the RANDOM= option in the PROC CALIS statement
is useful in this regard.

• RAM and LINEQS: There are several default estimation methods available in
PROC CALIS for initial values of parameters in a linear structural equation
model specified by a RAM or LINEQS model statement, depending on the
form of the specified model.

− two-stage least-squares estimation

− instrumental variable method (Hägglund 1982; Jennrich 1987)

− approximative factor analysis method

− ordinary least-squares estimation

− estimation method of McDonald (McDonald and Hartmann 1992)

• FACTOR: For default (exploratory) factor analysis, PROC CALIS computes
initial estimates for factor loadings and unique variances by an algebraic
method of approximate factor analysis. If you use a MATRIX statement to-
gether with a FACTOR model specification, initial values are computed by
McDonald’s (McDonald and Hartmann 1992) method if possible. McDonald’s
method of computing initial values works better if you scale the factors by set-
ting the factor variances to 1 rather than setting the loadings of the reference
variables equal to 1. If none of the two methods seems to be appropriate, the
initial values are set by the START= option.

• COSAN: For the more general COSAN model, there is no default estimation
method for the initial values. In this case, the START= or RANDOM= option
can be used to set otherwise unassigned initial values.

Poor initial values can cause convergence problems, especially with maximum like-
lihood estimation. You should not specify a constant initial value for all parame-
ters since this would produce a singular predicted model matrix in the first iteration.
Sufficiently large positive diagonal elements in the central matrices of each model
matrix term provide a nonnegative definite initial predicted model matrix. If maxi-
mum likelihood estimation fails to converge, it may help to use METHOD=LSML,
which uses the final estimates from an unweighted least-squares analysis as initial
estimates for maximum likelihood. Or you can fit a slightly different but better-
behaved model and produce an OUTRAM= data set, which can then be modified in
accordance with the original model and used as an INRAM= data set to provide initial
values for another analysis.

If you are analyzing a covariance or scalar product matrix, be sure to take into account
the scales of the variables. The default initial values may be inappropriate when some
variables have extremely large or small variances.
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Automatic Variable Selection

You can use the VAR statement to reorder the variables in the model and to delete
the variables not used. Using the VAR statement saves memory and computation
time. If a linear structural equation model using the RAM or LINEQS statement
(or an INRAM= data set specifying a RAM or LINEQS model) does not use all the
manifest variables given in the input DATA= data set, PROC CALIS automatically
deletes those manifest variables not used in the model.

In some special circumstances, the automatic variable selection performed for the
RAM and LINEQS statements may be inappropriate, for example, if you are inter-
ested in modification indices connected to some of the variables that are not used in
the model. You can include such manifest variables as exogenous variables in the
analysis by specifying constant zero coefficients.

For example, the first three steps in a stepwise regression analysis of the Werner
Blood Chemistry data (Jöreskog and Sörbom 1988, p. 111) can be performed as
follows:

proc calis data=dixon method=gls nobs=180 print mod;
lineqs y=0 x1+0 x2+0 x3+0 x4+0 x5+0 x6+0 x7+e;
std e=var;

run;
proc calis data=dixon method=gls nobs=180 print mod;

lineqs y=g1 x1+0 x2+0 x3+0 x4+0 x5+0 x6+0 x7+e;
std e=var;

run;
proc calis data=dixon method=gls nobs=180 print mod;

lineqs y=g1 x1+0 x2+0 x3+0 x4+0 x5+g6 x6+0 x7+e;
std e=var;

run;

Using the COSAN statement does not automatically delete those variables from the
analysis that are not used in the model. You can use the output of the predetermined
values in the predicted model matrix (PREDET option) to detect unused variables.
Variables that are not used in the model are indicated by 0 in the rows and columns
of the predetermined predicted model matrix.

Exogenous Manifest Variables

If there are exogenous manifest variables in the linear structural equation model, then
there is a one-to-one relationship between the given covariances and corresponding
estimates in the central model matrix (P or Φ). In general, using exogenous manifest
variables reduces the degrees of freedom since the corresponding sample correlations
or covariances are not part of the exogenous information provided for the parameter
estimation. See the section“Counting the Degrees of Freedom”on page 676 for more
information.

If you specify a RAM or LINEQS model statement, or if such a model is recognized
in an INRAM= data set, those elements in the central model matrices that correspond
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to the exogenous manifest variables are reset to the sample values after computing
covariances or correlations within the current BY group.

The COSAN statement does not automatically set the covariances in the central
model matrices that correspond to manifest exogenous variables.

You can use the output of the predetermined values in the predicted model matrix
(PREDET option) that correspond to manifest exogenous variables to see which of
the manifest variables are exogenous variables and to help you set the corresponding
locations of the central model matrices with their covariances.

The following two examples show how different the results of PROC CALIS can be
if manifest variables are considered either as endogenous or as exogenous variables.
(SeeFigure 19.5.) In both examples, a correlation matrixS is tested against an iden-
tity model matrixC; that is, no parameter is estimated. The three runs of the first
example (specified by the COSAN, LINEQS, and RAM statements) consider the two
variablesy andx as endogenous variables.

title2 ’Data: FULLER (1987, p.18)’;
data corn;

input y x;
datalines;

86 70
115 97

90 53
86 64

110 95
91 64
99 50
96 70
99 94

104 69
96 51

;

title3 ’Endogenous Y and X’;
proc calis data=corn;

cosan corr(2,ide);
run;
proc calis data=corn;

lineqs
y=ey,
x=ex;

std ey ex=2 * 1;
run;
proc calis data=corn;

ram
1 1 3 1.,
1 2 4 1.,
2 3 3 1.,
2 4 4 1.;

run;
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The two runs of the second example (specified by the LINEQS and RAM statements)
considery andx as exogenous variables.

title3 ’Exogenous Y and X’;
proc calis data=corn;

std y x=2 * 1;
run;
proc calis data=corn;

ram
2 1 1 1.,
2 2 2 1.;

run;

x y

� �??
1 � �??

1

Exogenous x, y

x y

����
ex

?
1

����
ey

?
1

� �??
1 � �??

1

Endogenous x, y
Figure 19.5. Exogenous and Endogenous Variables

The LINEQS and the RAM model statements set the covariances (correlations) of
exogenous manifest variables in the estimated model matrix and automatically reduce
the degrees of freedom.

Use of Optimization Techniques

No algorithm for optimizing general nonlinear functions exists that will always find
the global optimum for a general nonlinear minimization problem in a reasonable
amount of time. Since no single optimization technique is invariably superior to oth-
ers, PROC CALIS provides a variety of optimization techniques that work well in
various circumstances. However, you can devise problems for which none of the
techniques in PROC CALIS will find the correct solution. All optimization tech-
niques in PROC CALIS useO(n2) memory except the conjugate gradient methods,
which use onlyO(n) of memory and are designed to optimize problems with many
parameters.

The PROC CALIS statement NLOPTIONS can be especially helpful for tuning appli-
cations with nonlinear equality and inequality constraints on the parameter estimates.
Some of the options available in NLOPTIONS may also be invoked as PROC CALIS
options. The NLOPTIONS statement can specify almost the same options as the
SAS/OR NLP procedure.

Nonlinear optimization requires the repeated computation of

• the function value (optimization criterion)

• the gradient vector (first-order partial derivatives)
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• for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

• values of linear and nonlinear constraints

• the first-order partial derivatives (Jacobian) of nonlinear constraints

For the criteria used by PROC CALIS, computing the gradient takes more computer
time than computing the function value, and computing the Hessian takesmuchmore
computer time and memory than computing the gradient, especially when there are
many parameters to estimate. Unfortunately, optimization techniques that do not use
the Hessian usually require many more iterations than techniques that do use the
(approximate) Hessian, and so they are often slower. Techniques that do not use the
Hessian also tend to be less reliable (for example, they may terminate at local rather
than global optima).

The available optimization techniques are displayed inTable 19.13and can be chosen
by the TECH=name option.

Table 19.13. Optimization Techniques
TECH= Optimization Technique

LEVMAR Levenberg-Marquardt Method
TRUREG Trust-Region Method
NEWRAP Newton-Raphson Method with Line Search
NRRIDG Newton-Raphson Method with Ridging

QUANEW Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP)
DBLDOG Double-Dogleg Method (DBFGS, DDFP)
CONGRA Conjugate Gradient Methods (PB, FR, PR, CD)

Table 19.14shows, for each optimization technique, which derivatives are needed
(first-order or second-order) and what kind of constraints (boundary, linear, or non-
linear) can be imposed on the parameters.

Table 19.14. Derivatives Needed and Constraints Allowed
Derivatives Constraints

TECH= First Order Second Order Boundary Linear Nonlinear
LEVMAR x x x x -
TRUREG x x x x -
NEWRAP x x x x -
NRRIDG x x x x -

QUANEW x - x x x
DBLDOG x - x x -
CONGRA x - x x -

The Levenberg-Marquardt, trust-region, and Newton-Raphson techniques are usually
the most reliable, work well with boundary and general linear constraints, and gener-
ally converge after a few iterations to a precise solution. However, these techniques
need to compute a Hessian matrix in each iteration. For HESSALG=1, this means
that you need about4(n(n+1)/2)t bytes of work memory (n = the number of mani-
fest variables,t = the number of parameters to estimate) to store the Jacobian and its
cross product. With HESSALG=2 or HESSALG=3, you do not need this work mem-
ory, but the use of a utility file increases execution time. Computing the approximate
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Hessian in each iteration can be very time- and memory-consuming, especially for
large problems (more than 60 or 100 parameters, depending on the computer used).
For large problems, a quasi-Newton technique, especially with the BFGS update, can
be far more efficient.

For a poor choice of initial values, the Levenberg-Marquardt method seems to be
more reliable.

If memory problems occur, you can use one of the conjugate gradient techniques, but
they are generally slower and less reliable than the methods that use second-order
information.

There are several options to control the optimization process. First of all, you can
specify various termination criteria. You can specify the GCONV= option to specify
a relative gradient termination criterion. If there are active boundary constraints, only
those gradient components that correspond to inactive constraints contribute to the
criterion. When you want very precise parameter estimates, the GCONV= option is
useful. Other criteria that use relative changes in function values or parameter esti-
mates in consecutive iterations can lead to early termination when active constraints
cause small steps to occur. The small default value for the FCONV= option helps
prevent early termination. Using the MAXITER= and MAXFUNC= options enables
you to specify the maximum number of iterations and function calls in the optimiza-
tion process. These limits are especially useful in combination with the INRAM=
and OUTRAM= options; you can run a few iterations at a time, inspect the results,
and decide whether to continue iterating.

Nonlinearly Constrained QN Optimization

The algorithm used for nonlinearly constrained quasi-Newton optimization is an
efficient modification of Powell’s (1978a, 1978b, 1982a, 1982b)Variable Metric
Constrained WatchDog(VMCWD) algorithm. A similar but older algorithm
(VF02AD) is part of the Harwell library. Both VMCWD and VF02AD use Fletcher’s
VE02AD algorithm (also part of the Harwell library) for positive definite quadratic
programming. The PROC CALIS QUANEW implementation uses a quadratic pro-
gramming subroutine that updates and downdates the approximation of the Cholesky
factor when the active set changes. The nonlinear QUANEW algorithm is not a fea-
sible point algorithm, and the value of the objective function need not decrease (min-
imization) or increase (maximization) monotonically. Instead, the algorithm tries to
reduce a linear combination of the objective function and constraint violations, called
themerit function.

The following are similarities and differences between this algorithm and VMCWD:

• A modification of this algorithm can be performed by specifying VERSION=1,
which replaces the update of the Lagrange vectorµ with the original update of
Powell (1978a, 1978b), which is used in VF02AD. This can be helpful for
some applications with linearly dependent active constraints.

• If the VERSION= option is not specified or VERSION=2 is specified, the eval-
uation of the Lagrange vectorµ is performed in the same way as Powell (1982a,
1982b) describes.
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• Instead of updating an approximate Hessian matrix, this algorithm uses the
dual BFGS (or DFP) update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

• The Cholesky factor is loaded into the quadratic programming subroutine,
automatically ensuring positive definiteness of the problem. During the
quadratic programming step, the Cholesky factor of the projected Hessian ma-
trix Z′

kGZk and theQT decomposition are updated simultaneously when the
active set changes. Refer to Gill et al. (1984) for more information.

• The line-search strategy is very similar to that of Powell (1982a, 1982b).
However, this algorithm does not call for derivatives during the line search;
hence, it generally needs fewer derivative calls than function calls. The
VMCWD algorithm always requires the same number of derivative and func-
tion calls. It was also found in several applications of VMCWD that Powell’s
line-search method sometimes uses steps that are too long during the first iter-
ations. In those cases, you can use the INSTEP= option specification to restrict
the step lengthα of the first iterations.

• Also the watchdog strategy is similar to that of Powell (1982a, 1982b).
However, this algorithm doesn’t return automatically after a fixed number of
iterations to a former better point. A return here is further delayed if the ob-
served function reduction is close to the expected function reduction of the
quadratic model.

• Although Powell’s termination criterion still is used (as FCONV2), the
QUANEW implementation uses two additional termination criteria (GCONV
and ABSGCONV).

This algorithm is automatically invoked when you specify the NLINCON state-
ment. The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order
derivatives (constraints normals) of the constraints

(∇ci) = (
∂ci
∂xj

), i = 1, . . . , nc, j = 1, . . . , n

wherenc is the number of nonlinear constraints for a given pointx.

You can specify two update formulas with the UPDATE= option:

• UPDATE=DBFGS performs the dual BFGS update of the Cholesky factor of
the Hessian matrix. This is the default.

• UPDATE=DDFP performs the dual DFP update of the Cholesky factor of the
Hessian matrix.

This algorithm uses its own line-search technique. All options and parameters (ex-
cept the INSTEP= option) controlling the line search in the other algorithms do not
apply here. In several applications, large steps in the first iterations are troublesome.
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You can specify the INSTEP= option to impose an upper bound for the step sizeα
during the first five iterations. The values of the LCSINGULAR=, LCEPSILON=,
and LCDEACT= options, which control the processing of linear and boundary con-
straints, are valid only for the quadratic programming subroutine used in each itera-
tion of the nonlinear constraints QUANEW algorithm.

Optimization and Iteration History

The optimization and iteration histories are displayed by default because it is impor-
tant to check for possible convergence problems.

The optimization history includes the following summary of information about the
initial state of the optimization.

• the number of constraints that are active at the starting point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

• the value of the objective function at the starting point

• if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

• for the TRUREG and LEVMAR subroutines, the initial radius of the trust re-
gion around the starting point

The optimization history ends with some information concerning the optimization
result:

• the number of constraints that are active at the final point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

• the value of the objective function at the final point

• if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

• other information specific to the optimization technique

The iteration history generally consists of one line of displayed output containing the
most important information for each iteration. The–LIST– variable (see the“SAS
Program Statements”section on page 628) also enables you to display the parameter
estimates and the gradient in some or all iterations.

The iteration history always includes the following (the words in parentheses are the
column header output):
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• the iteration number (Iter)

• the number of iteration restarts (rest)

• the number of function calls (nfun)

• the number of active constraints (act)

• the value of the optimization criterion (optcrit)

• the difference between adjacent function values (difcrit)

• the maximum of the absolute gradient components corresponding to inactive
boundary constraints (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of
the active constraints is released from the active set due to a significant Lagrange
multiplier.

For the Levenberg-Marquardt technique (LEVMAR), the iteration history also in-
cludes the following information:

• An asterisk trailing the iteration number means that the computed Hessian ap-
proximation is singular and consequently ridged with a positive lambda value.
If all or the last several iterations show a singular Hessian approximation, the
problem is not sufficiently identified. Thus, there are other locally optimal so-
lutions that lead to the same optimum function value for different parameter
values. This implies that standard errors for the parameter estimates are not
computable without the addition of further constraints.

• the value of the Lagrange multiplier (lambda); this is 0 if the optimum of
the quadratic function approximation is inside the trust region (a trust-region-
scaled Newton step can be performed) and is greater than 0 when the opti-
mum of the quadratic function approximation is located at the boundary of the
trust region (the scaled Newton step is too long to fit in the trust region and
a quadratic constraint optimization is performed). Large values indicate opti-
mization difficulties. For a nonsingular Hessian matrix, the value of lambda
should go to 0 during the last iterations, indicating that the objective function
can be well approximated by a quadratic function in a small neighborhood of
the optimum point. An increasing lambda value often indicates problems in the
optimization process.

• the value of the ratioρ (rho) between the actually achieved difference in func-
tion values and the predicted difference in the function values on the basis of the
quadratic function approximation. Values much less than 1 indicate optimiza-
tion difficulties. The value of the ratioρ indicates the goodness of the quadratic
function approximation; in other words,ρ << 1 means that the radius of the
trust region has to be reduced. A fairly large value ofρ means that the radius
of the trust region need not be changed. And a value close to or larger than
1 means that the radius can be increased, indicating a good quadratic function
approximation.

For the Newton-Raphson technique (NRRIDG), the iteration history also includes the
following information:
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• the value of the ridge parameter. This is 0 when a Newton step can be per-
formed, and it is greater than 0 when either the Hessian approximation is sin-
gular or a Newton step fails to reduce the optimization criterion. Large values
indicate optimization difficulties.

• the value of the ratioρ (rho) between the actually achieved difference in func-
tion values and the predicted difference in the function values on the basis of
the quadratic function approximation. Values much less than 1.0 indicate opti-
mization difficulties.

For the Newton-Raphson with line-search technique (NEWRAP), the iteration history
also includes

• the step sizeα (alpha) computed with one of the line-search algorithms

• the slope of the search direction at the current parameter iterate. For minimiza-
tion, this value should be significantly negative. Otherwise, the line-search
algorithm has difficulty reducing the function value sufficiently.

For the Trust-Region technique (TRUREG), the iteration history also includes the
following information.

• An asterisk after the iteration number means that the computed Hessian ap-
proximation is singular and consequently ridged with a positive lambda value.

• the value of the Lagrange multiplier (lambda). This value is zero when the
optimum of the quadratic function approximation is inside the trust region (a
trust-region-scaled Newton step can be performed) and is greater than zero
when the optimum of the quadratic function approximation is located at the
boundary of the trust region (the scaled Newton step is too long to fit in the
trust region and a quadratically constrained optimization is performed). Large
values indicate optimization difficulties. As in Gay (1983), a negative lambda
value indicates the special case of an indefinite Hessian matrix (the smallest
eigenvalue is negative in minimization).

• the value of the radius∆ of the trust region. Small trust region radius values
combined with large lambda values in subsequent iterations indicate optimiza-
tion problems.

For the quasi-Newton (QUANEW) and conjugate gradient (CONGRA) techniques,
the iteration history also includes the following information:

• the step size (alpha) computed with one of the line-search algorithms

• the descent of the search direction at the current parameter iterate. This value
should be significantly smaller than 0. Otherwise, the line-search algorithm
has difficulty reducing the function value sufficiently.
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Frequent update restarts (rest) of a quasi-Newton algorithm often indicate numerical
problems related to required properties of the approximate Hessian update, and they
decrease the speed of convergence. This can happen particularly if the ABSGCONV=
termination criterion is too small, that is, when the requested precision cannot be
obtained by quasi-Newton optimization. Generally, the number of automatic restarts
used by conjugate gradient methods are much higher.

For the nonlinearly constrained quasi-Newton technique, the iteration history also
includes the following information:

• the maximum value of all constraint violations,

conmax= max(|ci(x)| : ci(x) < 0)

• the value of the predicted function reduction used with the GCONV and
FCONV2 termination criteria,

pred= |g(x(k))s(x(k))|+
m∑

i=1

|λici(x(k))|

• the step sizeα of the quasi-Newton step. Note that this algorithm works with
a special line-search algorithm.

• the maximum element of the gradient of the Lagrange function,

lfgmax = ∇xL(x(k), λ(k))

= ∇xf(x(k))−
m∑

i=1

λ
(k)
i ∇xci(x(k))

For the double dogleg technique, the iteration history also includes the following
information:

• the parameterλ of the double-dogleg step. A valueλ = 0 corresponds to the
full (quasi) Newton step.

• the slope of the search direction at the current parameter iterate. For minimiza-
tion, this value should be significantly negative.

Line-Search Methods

In each iterationk, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gra-
dient, and Newton-Raphson minimization techniques use iterative line-search algo-
rithms that try to optimize a linear, quadratic, or cubic approximation of the nonlinear
objective functionf of n parametersx along a feasible descent search directions(k)

f(x(k+1)) = f(x(k) + α(k)s(k))
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by computing an approximately optimal scalarα(k) > 0. Since the outside iteration
process is based only on the approximation of the objective function, the inside itera-
tion of the line-search algorithm does not have to be perfect. Usually, it is satisfactory
that the choice ofα significantly reduces (in a minimization) the objective function.
Criteria often used for termination of line-search algorithms are the Goldstein condi-
tions (Fletcher 1987).

Various line-search algorithms can be selected by using theLIS= option(page 580).
The line-search methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand-side and
right-hand-side Goldstein conditions (refer to Fletcher 1987). When derivatives are
available, the line-search methods LIS=6, LIS=7, and LIS=8 try to satisfy the right-
hand-side Goldstein condition; if derivatives are not available, these line-search algo-
rithms use only function calls.

The line-search method LIS=2 seems to be superior when function evaluation con-
sumes significantly less computation time than gradient evaluation. Therefore, LIS=2
is the default value for Newton-Raphson, (dual) quasi-Newton, and conjugate gradi-
ent optimizations.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can eas-
ily lead to feasible points where the objective functionf is no longer defined (result-
ing in indefinite matrices for ML estimation) or is difficult to compute (resulting in
floating point overflows). Therefore, PROC CALIS provides options that restrict the
step length or trust region radius, especially during the first main iterations.

The inner productg′s of the gradientg and the search directions is the slope of
f(α) = f(x + αs) along the search directions with step lengthα. The default
starting valueα(0) = α(k,0) in each line-search algorithm (minα>0 f(x+αs)) during
the main iterationk is computed in three steps.

1. Use either the differencedf = |f (k) − f (k−1)| of the function values during
the last two consecutive iterations or the final stepsize valueα– of the previous

iterationk − 1 to compute a first valueα(0)
1 .

• Using the DAMPSTEP<=r> option:

α
(0)
1 = min(1, rα–)

The initial value for the new step length can be no larger thanr times the
final step lengthα– of the previous iteration. The default isr = 2.

• Not using the DAMPSTEP option:

α
(0)
1 =


step if 0.1 ≤ step ≤ 10
10 if step > 10
0.1 if step < 0.1

with

step =
{
df/|g′s| if |g′s| ≥ εmax(100df, 1)
1 otherwise
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This value ofα(0)
1 can be too large and can lead to a difficult or impossible

function evaluation, especially for highly nonlinear functions such as the
EXP function.

2. During the first five iterations, the second step enables you to reduceα
(0)
1 to a

smaller starting valueα(0)
2 using the INSTEP=r option:

α
(0)
2 = min(α(0)

1 , r)

After more than five iterations,α(0)
2 is set toα(0)

1 .

3. The third step can further reduce the step length by

α
(0)
3 = min(α(0)

2 ,min(10, u))

whereu is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius of the trust re-
gion used in the first iteration by the trust-region, double-dogleg, and Levenberg-
Marquardt algorithm. The default initial trust region radius is the length of the scaled
gradient (Moré 1978). This step corresponds to the default radius factor ofr = 1.
This choice is successful in most practical applications of the TRUREG, DBLDOG,
and LEVMAR algorithms. However, for bad initial values used in the analysis of a
covariance matrix with high variances, or for highly nonlinear constraints (such as
using the EXP function) in your programming code, the default start radius can result
in arithmetic overflows. If this happens, you can try decreasing values of INSTEP=r,
0 < r < 1, until the iteration starts successfully. A small factorr also affects the
trust region radius of the next steps because the radius is changed in each iteration
by a factor0 < c ≤ 4 depending on theρ ratio. Reducing the radius corresponds to
increasing the ridge parameterλ that produces smaller steps directed closer toward
the gradient direction.

Modification Indices

While fitting structural models, you may want to modify the specified model in order
to

• reduce theχ2 value significantly

• reduce the number of parameters to estimate without increasing theχ2 value
too much

If you specify the MODIFICATION or MOD option, PROC CALIS computes and
displays a default set of modification indices:

• Univariate Lagrange multiplier test indices for most elements in the model
matrices that are constrained toequal constants. These are second-order ap-
proximations of the decrease in theχ2 value that would result from allowing
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the constant matrix element to vary. Besides the value of the Lagrange multi-
plier, the corresponding probability (df = 1) and the approximate change of
the parameter value (should the constant be changed to a parameter) are dis-
played. If allowing the constant to be a free estimated parameter would result
in a singular information matrix, the string ’sing’ is displayed instead of the
Lagrange multiplier index. Not all elements in the model matrices should be
allowed to vary; the diagonal elements of the inverse matrices in the RAM or
LINEQS model must be constant ones. The univariate Lagrange multipliers
are displayed at the constant locations of the model matrices.

• Univariate Wald test indices for those matrix elements that correspond to
parameter estimatesin the model. These are second-order approximations of
the increase in theχ2 value that would result from constraining the parameter
to a 0 constant. The univariate Wald test indices are the same as thet values
that are displayed together with the parameter estimates and standard errors.
The univariate Wald test indices are displayed at the parameter locations of the
model matrices.

• Univariate Lagrange multiplier test indices that are second-order approxi-
mations of the decrease in theχ2 value that would result from the release of
equality constraints. Multiple equality constraints containingn > 2 parame-
ters are tested successively inn steps, each assuming the release of one of the
equality-constrained parameters. The expected change of the parameter values
of the separated parameter and the remaining parameter cluster are displayed,
too.

• Univariate Lagrange multiplier test indices for releasingactive boundary
constraintsspecified by the BOUNDS statement

• Stepwise multivariate Wald test indicesfor constraining estimated parame-
ters to 0 are computed and displayed. In each step, the parameter that would
lead to the smallest increase in the multivariateχ2 value is set to 0. Besides
the multivariateχ2 value and its probability, the univariate increments are also
displayed. The process stops when the univariate probability is smaller than
the specified value in the SLMW= option.

All of the preceding tests are approximations. You can often get more accurate tests
by actually fitting different models and computing likelihood ratio tests. For more
details about the Wald and the Lagrange multiplier test, refer to MacCallum (1986),
Buse (1982), Bentler (1986), or Lee (1985).

Note that, for large model matrices, the computation time for the default modification
indices can considerably exceed the time needed for the minimization process.

The modification indices are not computed for unweighted least-squares or diago-
nally weighted least-squares estimation.

Caution: Modification indices are not computed if the model matrix is an identity
matrix (IDE or ZID), a selection matrix (PER), or the first matrixJ in the LINEQS
model. If you want to display the modification indices for such a matrix, you should
specify the matrix as another type; for example, specify an identity matrix used in the
COSAN statement as a diagonal matrix with constant diagonal elements of 1.
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Constrained Estimation Using Program Code

The CALIS procedure offers a very flexible way to constrain parameter estimates.
You can use your own programming statements to express special properties of the
parameter estimates. This tool is also present in McDonald’s COSAN implementa-
tion but is considerably easier to use in the CALIS procedure. PROC CALIS is able
to compute analytic first- and second-order derivatives that you would have to specify
using the COSAN program. There are also three PROC CALIS statements you can
use:

• the BOUNDS statement, to specify simple bounds on the parameters used in
the optimization process

• the LINCON statement, to specify general linear equality and inequality con-
straints on the parameters used in the optimization process

• the NLINCON statement, to specify general nonlinear equality and inequality
constraints on the parameters used in the optimization process. The variables
listed in the NLINCON statement must be specified in the program code.

There are some traditional ways to enforce parameter constraints by using parameter
transformations (McDonald 1980).

• One-sided boundary constraints:For example, the parameterqk should be at
least as large (or at most as small) as a given constant valuea (or b),

qk ≥ a or qk ≤ b

This inequality constraint can be expressed as an equality constraint

qk = a+ x2
j or qk = b− x2

j

in which the fundamental parameterxj is unconstrained.

• Two-sided boundary constraints: For example, the parameterqk should be
located between two given constant valuesa andb, a < b,

a ≤ qk ≤ b

This inequality constraint can be expressed as an equality constraint

qk = a+ b
exp(xj)

1 + exp(xj)

in which the fundamental parameterxj is unconstrained.

• One-sided order constraints:For example, the parametersq1 , . . . , qk should
be ordered in the form

q1 ≤ q2, q1 ≤ q3, . . . , q1 ≤ qk
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These inequality constraints can be expressed as a set of equality constraints

q1 = x1, q2 = x1 + x2
2, . . . , qk = x1 + x2

k

in which the fundamental parametersx1 , . . . , xk are unconstrained.

• Two-sided order constraints:For example, the parametersq1 , . . . , qk should
be ordered in the form

q1 ≤ q2 ≤ q3 ≤ . . . ≤ qk

These inequality constraints can be expressed as a set of equality constraints

q1 = x1, q2 = q1 + x2
2, . . . , qk = qk−1 + x2

k

in which the fundamental parametersx1 , . . . , xk are unconstrained.

• Linear equation constraints: For example, the parametersq1, q2, q3 should
be linearly constrained in the form

q1 + q2 + q3 = a

which can be expressed in the form of three explicit equations in which the
fundamental parametersx1 andx2 are unconstrained:

q1 = x1, q2 = x2, q3 = a− x1 − x2

Refer to McDonald (1980) and Browne (1982) for further notes on reparameterizing
techniques. If the optimization problem is not too large to apply the Levenberg-
Marquardt or Newton-Raphson algorithm, boundary constraints should be requested
by the BOUNDS statement rather than by reparameterizing code. If the problem is
so large that you must use a quasi-Newton or conjugate gradient algorithm, reparam-
eterizing techniques may be more efficient than the BOUNDS statement.

Counting the Degrees of Freedom

In a regression problem, the number of degrees of freedom for the error estimate is
the number of observations in the data set minus the number of parameters. The
NOBS=, DFR= (RDF=), and DFE= (EDF=) options refer to degrees of freedom in
this sense. However, these values are not related to the degrees of freedom of a test
statistic used in a covariance or correlation structure analysis. The NOBS=, DFR=,
and DFE= options should be used in PROC CALIS to specify only the effective
number of observations in the input DATA= data set.

In general, the number of degrees of freedom in a covariance or correlation structure
analysis is defined as the difference between the number of nonredundant valuesq
in the observedn × n correlation or covariance matrixS and the numbert of free
parametersX used in the fit of the specified model,df = q − t. Both values,q andt,
are counted differently in different situations by PROC CALIS.
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The number of nonredundant valuesq is generally equal to the number of lower
triangular elements in then × n moment matrixS including all diagonal elements,
minus a constantc dependent upon special circumstances,

q = n(n+ 1)/2− c

The numberc is evaluated by adding the following quantities:

• If you specify a linear structural equation model containing exogenous man-
ifest variables by using the RAM or LINEQS statement, PROC CALIS adds
to c the number of variances and covariances among these manifest exoge-
nous variables, which are automatically set in the corresponding locations of
the central model matrices (see the section“Exogenous Manifest Variables”on
page 662).

• If you specify the DFREDUCE=i option, PROC CALIS adds the specified
numberi to c. The numberi can be a negative integer.

• If you specify the NODIAG option to exclude the fit of the diagonal elements
of the data matrixS, PROC CALIS adds the numbern of diagonal elements to
c.

• If all the following conditions hold, then PROC CALIS adds toc the number
of the diagonal locations:

– NODIAG and DFREDUC= options are not specified.

– A correlation structure is being fitted.

– The predicted correlation matrix contains constants on the diagonal.

In some complicated models, especially those using programming statements, PROC
CALIS may not be able to detect all the constant predicted values. In such cases, you
must specify the DFREDUCE= option to get the correct degrees of freedom.

The numbert is the number of different parameter names used in constructing the
model if you do not use programming statements to impose constraints on the param-
eters. Using programming statements in general introduces two kinds of parameters:

• independent parameters, which are used only at the right-hand side of the ex-
pressions

• dependent parameters, which are used at least once at the left-hand side of the
expressions

The independent parameters belong to the parameters involved in the estimation pro-
cess, whereas the dependent parameters are fully defined by the programming state-
ments and can be computed from the independent parameters. In this case, the num-
bert is the number of different parameter names used in the model specification, but
not used in the programming statements, plus the number of independent parame-
ters. The independent parameters and their initial values can be defined in a model
specification statement or in a PARMS statement.
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The degrees of freedom are automatically increased by the number of active con-
straints in the solution. Similarly, the number of parameters are decreased by the
number of active constraints. This affects the computation of many fit statistics and
indices. Refer to Dijkstra (1992) for a discussion of the validity of statistical in-
ferences with active boundary constraints. If the researcher believes that the active
constraints will have a small chance of occurrence in repeated sampling, it may be
more suitable to turn off the automatic adjustment using the NOADJDF option.

Computational Problems

First Iteration Overflows

Analyzing a covariance matrix including high variances in the diagonal and using
bad initial estimates for the parameters can easily lead to arithmetic overflows in the
first iterations of the minimization algorithm. The line-search algorithms that work
with cubic extrapolation are especially sensitive to arithmetic overflows. If this occurs
with quasi-Newton or conjugate gradient minimization, you can specify the INSTEP=
option to reduce the length of the first step. If an arithmetic overflow occurs in the
first iteration of the Levenberg-Marquardt algorithm, you can specify the INSTEP=
option to reduce the trust region radius of the first iteration. You also can change the
minimization technique or the line-search method. If none of these help, you should
consider

• scaling the covariance matrix

• providing better initial values

• changing the model

No Convergence of Minimization Process

If convergence does not occur during the minimization process, perform the following
tasks:

• If there arenegative variance estimatesin the diagonal locations of the central
model matrices, you can

− specify the BOUNDS statement to obtain nonnegative variance estimates

− specify the HEYWOOD option, if the FACTOR model statement is spec-
ified

• Change the estimation method to obtain a better set of initial estimates. For
example, if you use METHOD=ML, you can

− change to METHOD=LSML

− run some iterations with METHOD=DWLS or METHOD=GLS, write
the results in an OUTRAM= data set, and use the results as initial values
specified by an INRAM= data set in a second run with METHOD=ML
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• Change the optimization technique. For example, if you use the default
TECH=LEVMAR, you can

− change to TECH=QUANEW or to TECH=NEWRAP

− run some iterations with TECH=CONGRA, write the results in an
OUTRAM= data set, and use the results as initial values specified by
an INRAM= data set in a second run with a different TECH= technique

• Change or modify the update technique or the line-search algorithm, or both,
when using TECH=QUANEW or TECH=CONGRA. For example, if you use
the default update formula and the default line-search algorithm, you can

− change the update formula with the UPDATE= option

− change the line-search algorithm with the LIS= option

− specify a more precise line search with the LSPRECISION= option, if
you use LIS=2 or LIS=3

• You can allow more iterations and function calls by using the MAXIT= and
MAXFU= options.

• Change the initial values. For many categories of model specifications done
by the LINEQS, RAM, or FACTOR model, PROC CALIS computes an ap-
propriate set of initial values automatically. However, for some of the model
specifications (for example, structural equations with latent variables on the
left-hand side and manifest variables on the right-hand side), PROC CALIS
can generate very obscure initial values. In these cases, you have to set the
initial values yourself.

− Increase the initial values of the parameters located at the diagonal of
central matrices

∗ manually, by setting the values in the model specification
∗ automatically, by using the DEMPHAS= option

− Use a slightly different, but more stable, model to obtain preliminary es-
timates.

− Use additional information to specify initial values, for example, by us-
ing other SAS software like the FACTOR, REG, SYSLIN, and MODEL
(SYSNLIN) procedures for the modified, unrestricted model case.

• Change the optimization technique. For example, if you use the default
TECH=LEVMAR, you can

− change to TECH=QUANEW or to TECH=NEWRAP

− run some iterations with TECH=CONGRA, write the results in an
OUTRAM= data set, and use the results as initial values specified by
an INRAM= data set in a second run with a different TECH= technique

• Change or modify the update technique or the line-search algorithm, or both,
when using TECH=QUANEW or TECH=CONGRA. For example, if you use
the default update formula and the default line-search algorithm, you can
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− change the update formula with the UPDATE= option
− change the line-search algorithm with the LIS= option
− specify a more precise line search with the LSPRECISION= option, if

you use LIS=2 or LIS=3

• Temporarily change the estimation method to obtain a better set of initial esti-
mates. For example, if you use METHOD=ML, you can

− change to METHOD=LSML
− run some iterations with METHOD=DWLS or GLS, write the results in

an OUTRAM= data set, and use the results as initial values specified by
an INRAM= data set in a second run with METHOD=ML

• You can allow more iterations and function calls by using the MAXIT= and
MAXFU= options.

Unidentified Model

The parameter vectorx in the covariance structure model

C = C(x)

is said to be identified in a parameter spaceG, if

C(x) = C(x̃), x̃ ∈ G

impliesx = x̃. The parameter estimates that result from an unidentified model can be
very far from the parameter estimates of a very similar but identified model. They are
usually machine dependent. Don’t use parameter estimates of an unidentified model
as initial values for another run of PROC CALIS.

Singular Predicted Model Matrix

You can easily specify models with singular predicted model matrices, for example,
by fixing diagonal elements of central matrices to 0. In such cases, you cannot com-
pute maximum likelihood estimates (the ML function valueF is not defined). Since
singular predicted model matrices can also occur temporarily in the minimization
process, PROC CALIS tries in such cases to change the parameter estimates so that
the predicted model matrix becomes positive definite. In such cases, the following
message is displayed:

NOTE: Parameter set changed.

This process does not always work well, especially if there are fixed instead of vari-
able diagonal elements in the central model matrices. A famous example where you
cannot compute ML estimates is a component analysis with fewer components than
given manifest variables. See the section“FACTOR Model Statement”on page 606
for more details. If you continue to get a singular predicted model matrix after chang-
ing initial values and optimization techniques, then your model is perhaps specified
so that ML estimates cannot be computed.
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Saving Computing Time

For large models, the most computing time is needed to compute the modification in-
dices. If you don’t really need the Lagrange multipliers or multiple Wald test indices
(the univariate Wald test indices are the same as thet values), using the NOMOD
option can save a considerable amount of computing time.

Central Matrices with Negative Eigenvalues

A covariance matrix cannot have negative eigenvalues, since a negative eigenvalue
means that some linear combination of the variables has negative variance. PROC
CALIS displays a warning if a central model matrix has negative eigenvalues but
does not actually compute the eigenvalues. Sometimes this warning can be triggered
by 0 or very small positive eigenvalues that appear negative because of numerical
error. If you want to be sure that the central model matrix you are fitting can be
considered to be a variance-covariance matrix, you can use the SAS/IML command
VAL=EIGVAL(U)to compute the vectorVALof eigenvalues of matrixU.

Negative R 2 Values

The estimated squared multiple correlationsR2 of the endogenous variables are com-
puted using the estimated error variances

R2
i = 1− v̂ar(ζi)

v̂ar(ηi)

If the model is a poor fit, it is possible that̂var(ζi) > v̂ar(ηi), which results in
R2

i < 0.

Displayed Output

The output displayed by PROC CALIS depends on the statement used to specify
the model. Since an analysis requested by the LINEQS or RAM statement implies
the analysis of a structural equation model, more statistics can be computed and dis-
played than for a covariance structure analysis following the generalized COSAN
model requested by the COSAN statement. The displayed output resulting from use
of the FACTOR statement includes all the COSAN displayed output as well as more
statistics displayed only when you specify the FACTOR statement. Since the dis-
played output using the RAM statement differs only in its form from that generated
by the LINEQS statement, in this section distinctions are made between COSAN and
LINEQS output only.

The unweighted least-squares and diagonally weighted least-squares estimation
methods do not provide a sufficient statistical basis to provide the following output
(neither displayed nor written to an OUTEST= data set):

• most of the fit indices

• approximate standard errors
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• normalized or asymptotically standardized residuals

• modification indices

• information matrix

• covariance matrix of parameter estimates

The notationS = (sij) is used for the analyzed covariance or correlation matrix,
C = (cij) for the predicted model matrix,W for the weight matrix (for example,
W = I for ULS, W = S for GLS,W = C for ML estimates),X for the vector of
optimal parameter estimates,n for the number of manifest variables,t for the number
of parameter estimates, andN for the sample size.

The output of PROC CALIS includes the following:

• COSAN and LINEQS: List of the matrices and their properties specified by the
generalized COSAN model if you specify at least the PSHORT option.

• LINEQS: List of manifest variables that are not used in the specified model and
that are automatically omitted from the analysis. Note that there is no automatic
variable reduction with the COSAN or FACTOR statement. If necessary, you
should use the VAR statement in these cases.

• LINEQS: List of the endogenous and exogenous variables specified by the
LINEQS, STD, and COV statements if you specify at least the PSHORT op-
tion.

• COSAN: Initial values of the parameter matrices indicating positions of con-
stants and parameters. The output, or at least the default output, is displayed if
you specify the PINITIAL option.

• LINEQS: The set of structural equations containing the initial values and in-
dicating constants and parameters, and output of the initial error variances and
covariances. The output, or at least the default output, is displayed if you spec-
ify the PINITIAL option.

• COSAN and LINEQS: The weight matrixW is displayed if GLS, WLS, or
DWLS estimation is used and you specify the PWEIGHT or PALL option.

• COSAN and LINEQS: General information about the estimation problem:
number of observations (N ), number of manifest variables (n), amount of in-
dependent information in the data matrix (information,n(n + 1)/2), number
of terms and matrices in the specified generalized COSAN model, and number
of parameters to be estimated (parameters,t). If there are no exogenous man-
ifest variables, the difference between the amount of independent information
(n(n+ 1)/2) and the number of requested estimates (t) is equal to the degrees
of freedom (df ). A necessary condition for a model to be identified is that the
degrees of freedom are nonnegative. The output, or at least the default output,
is displayed if you specify the SIMPLE option.

• COSAN and LINEQS: Mean and Std Dev (standard deviation) of each variable
if you specify the SIMPLE option, as well as skewness and kurtosis if the
DATA= data set is a raw data set and you specify the KURTOSIS option.
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• COSAN and LINEQS: Various coefficients of multivariate kurtosis and the
numbers of observations that contribute most to the normalized multivariate
kurtosis if the DATA= data set is a raw data set and the KURTOSIS op-
tion, or you specify at least the PRINT option. See the section“Measures
of Multivariate Kurtosis”on page 658 for more information.

• COSAN and LINEQS: Covariance or correlation matrix to be analyzed and the
value of its determinant if you specify the output option PCORR or PALL. A
0 determinant indicates a singular data matrix. In this case, the generalized
least-squares estimates with default weight matrixS and maximum likelihood
estimates cannot be computed.

• LINEQS: If exogenous manifest variables in the linear structural equation
model are specified, then there is a one-to-one relationship between the given
covariances and corresponding estimates in the central model matrixΦ or P .
The output indicates which manifest variables are recognized as exogenous,
that is, for which variables the entries in the central model matrix are set to
fixed parameters. The output, or at least the default output, is displayed if you
specify the PINITIAL option.

• COSAN and LINEQS: Vector of parameter names, initial values, and corre-
sponding matrix locations, also indicating dependent parameter names used in
your program statements that are not allocated to matrix locations and have
no influence on the fit function. The output, or at least the default output, is
displayed if you specify the PINITIAL option.

• COSAN and LINEQS: The pattern of variable and constant elements of the pre-
dicted moment matrix that is predetermined by the analysis model is displayed
if there are significant differences between constant elements in the predicted
model matrix and the data matrix and you specify at least the PSHORT option.
It is also displayed if you specify the PREDET option. The output indicates
the differences between constant values in the predicted model matrix and the
data matrix that is analyzed.

• COSAN and LINEQS: Special features of the optimization technique chosen
if you specify at least the PSHORT option.

• COSAN and LINEQS: Optimization history if at least the PSHORT option is
specified. For more details, see the section“Use of Optimization Techniques”
on page 664.

• COSAN and LINEQS: Specific output requested by options in the
NLOPTIONS statement; for example, parameter estimates, gradient,
gradient of Lagrange function, constraints, Lagrange multipliers, projected
gradient, Hessian, projected Hessian, Hessian of Lagrange function, Jacobian
of nonlinear constraints.

• COSAN and LINEQS: The predicted model matrix and its determinant, if you
specify the output option PCORR or PALL.

• COSAN and LINEQS: Residual and normalized residual matrix if you specify
the RESIDUAL, or at least the PRINT option. The variance standardized or
asymptotically standardized residual matrix can be displayed also. The aver-
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age residual and the average off-diagonal residual are also displayed. See the
section“Assessment of Fit”on page 649 for more details.

• COSAN and LINEQS: Rank order of the largest normalized residuals if you
specify the RESIDUAL, or at least the PRINT option.

• COSAN and LINEQS: Bar chart of the normalized residuals if you specify the
RESIDUAL, or at least the PRINT option.

• COSAN and LINEQS: Value of the fit functionF . See the section“Estimation
Criteria” on page 644 for more details. This output can be suppressed only by
the NOPRINT option.

• COSAN and LINEQS: Goodness-of-fit index (GFI), adjusted goodness-of-fit
index (AGFI), and root mean square residual (RMR) (Jöreskog and Sörbom
1985). See the section“Assessment of Fit”on page 649 for more details. This
output can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: Parsimonious goodness-of-fit index (PGFI) of Mulaik
et al. (1989). See the section“Assessment of Fit”on page 649 for more detail.
This output can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: Overallχ2, df , and Prob>Chi**2 if the METHOD=
option is not ULS or DWLS. Theχ2 measure is the optimum function valueF
multiplied by(N − 1) if a CORR or COV matrix is analyzed or multiplied by
N if a UCORR or UCOV matrix is analyzed;χ2 measures the likelihood ratio
test statistic for the null hypothesis that the predicted matrixC has the specified
model structure against the alternative thatC is unconstrained. The notation
Prob>Chi**2 means “the probability under the null hypothesis of obtaining a
greaterχ2 statistic than that observed.” This output can be suppressed only by
the NOPRINT option.

• COSAN and LINEQS: If METHOD= is not ULS or DWLS, theχ2
0 value of the

independence model and the corresponding degrees of freedom can be used (in
large samples) to evaluate the gain of explanation by fitting the specific model
(Bentler 1989). See the section“Assessment of Fit”on page 649 for more
detail. This output can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: If METHOD= is not ULS or DWLS, the value of the
Steiger & Lind (1980) root mean squared error of approximation (RMSEA)
coefficient and the lower and upper limits of the confidence interval. The size
of the confidence interval is defined by the option ALPHARMS=α, 0 ≤ α ≤ 1.
The default isα = 0.1, which corresponds to a 90% confidence interval. See
the section“Assessment of Fit”on page 649 for more detail. This output can
be suppressed only by the NOPRINT option.

• COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, the value of theprobability of close fit(Browne and Cudeck 1993).
See the section“Assessment of Fit”on page 649 for more detail. This output
can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, the value of the Browne & Cudeck (1993) expected cross validation
(ECVI) index and the lower and upper limits of the confidence interval. The
size of the confidence interval is defined by the option ALPHAECV=α, 0 ≤
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α ≤ 1. The default isα = 0.1, which corresponds to a 90% confidence
interval. See the section“Assessment of Fit”on page 649 for more detail. This
output can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, Bentler’s (1989) Comparative Fit Index. See the section“Assessment
of Fit” on page 649 for more detail. This output can be suppressed only by the
NOPRINT option.

• COSAN and LINEQS: If you specify METHOD=ML or METHOD=GLS, the
χ2 value and corresponding probability adjusted by the relative kurtosis coeffi-
cientη2, which should be a close approximation of theχ2 value for elliptically
distributed data (Browne 1982). See the section“Assessment of Fit”on page
649 for more detail. This output can be suppressed only by the NOPRINT
option.

• COSAN and LINEQS: The Normal Theory Reweighted LSχ2 Value is dis-
played if METHOD= ML. Instead of the function valueFML, the reweighted
goodness-of-fit functionFGWLS is used. See the section“Assessment of Fit”
on page 649 for more detail.

• COSAN and LINEQS: Akaike’s Information Criterion if the value of the
METHOD= option is not ULS or DWLS. See the section“Assessment of Fit”
on page 649. This output can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: Bozdogan’s (1987) Consistent Information Criterion,
CAIC. See the section“Assessment of Fit”on page 649. This output can be
suppressed only by the NOPRINT option.

• COSAN and LINEQS: Schwarz’s Bayesian Criterion (SBC) if the value of the
METHOD= option is not ULS or DWLS (Schwarz 1978). See the section
“Assessment of Fit”on page 649. This output can be suppressed only by the
NOPRINT option.

• COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, the following fit indices based on the overallχ2 value are displayed:

– McDonald’s (McDonald and Hartmann 1992) measure of centrality

– Parsimonious index of James, Mulaik, and Brett (1982)

– Z-Test of Wilson and Hilferty (1931)

– Bentler and Bonett’s (1980) nonnormed coefficient

– Bentler and Bonett’s (1980) normed coefficient

– Bollen’s (1986) normed indexρ1

– Bollen’s (1989a) nonnormed index∆2

See the section“Assessment of Fit”on page 649 for more detail. This output
can be suppressed only by the NOPRINT option.

• COSAN and LINEQS: Hoelter’s (1983) Critical N Index is displayed (Bollen
1989b, p. 277). See the section“Assessment of Fit”on page 649 for more
detail. This output can be suppressed only by the NOPRINT option.



686 � Chapter 19. The CALIS Procedure

• COSAN and LINEQS: Equations of linear dependencies among the parame-
ters used in the model specification if the information matrix is recognized as
singular at the final solution.

• COSAN: Model matrices containing the parameter estimates. Except for ULS
or DWLS estimates, the approximate standard errors andt values are also dis-
played. This output is displayed if you specify the PESTIM option or at least
the PSHORT option.

• LINEQS: Linear equations containing the parameter estimates. Except for
ULS and DWLS estimates, the approximate standard errors andt values are
also displayed. This output is displayed if you specify the PESTIM option, or
at least the PSHORT option.

• LINEQS: Variances and covariances of the exogenous variables. This output is
displayed if you specify the PESTIM option, or at least the PSHORT.

• LINEQS: Linear equations containing the standardized parameter estimates.
This output is displayed if you specify the PESTIM option, or at least the
PSHORT option.

• LINEQS: Table of correlations among the exogenous variables. This output is
displayed if you specify the PESTIM option, or at least the PSHORT option.

• LINEQS: Correlations among the exogenous variables. This output is dis-
played if you specify the PESTIM option, or at least the PSHORT option.

• LINEQS: Squared Multiple Correlations table, which displays the error vari-
ances of the endogenous variables. These are the diagonal elements of the
predicted model matrix. Also displayed is the Total Variance and theR2 val-
ues corresponding to all endogenous variables. See the section“Assessment of
Fit” on page 649 for more detail. This output is displayed if you specify the
PESTIM option, or at least the PSHORT option.

• LINEQS: If you specify the PDETERM or the PALL option, the total determi-
nation of all equations (DETAE), the total determination of the structural equa-
tions (DETSE), and the total determination of the manifest variables (DETMV)
are displayed. See the section“Assessment of Fit”on page 649 for more de-
tails. If one of the determinants in the formulas is 0, the corresponding coeffi-
cient is displayed as a missing value. If there are structural equations, PROC
CALIS also displays the Stability Coefficient of Reciprocal Causation, that is,
the largest eigenvalue of theBB′ matrix, whereB is the causal coefficient
matrix of the structural equations.

• LINEQS: The matrix of estimated covariances among the latent variables if
you specify the PLATCOV option, or at least the PRINT option.

• LINEQS: The matrix of estimated covariances between latent and manifest
variables used in the model if you specify the PLATCOV option, or at least the
PRINT option.

• LINEQS and FACTOR: The matrixFSR of latent variable scores regression
coefficients if you specify the PLATCOV option, or at least the PRINT option.
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TheFSR matrix is a generalization of Lawley and Maxwell’s (1971, p.109)
factor scores regression matrix,

FSR = CyxC−1
xx

whereCxx is then× n predicted model matrix (predicted covariances among
manifest variables) andCyx is thenlat×n matrix of the predicted covariances
between latent and manifest variables. You can multiply the manifest observa-
tions by this matrix to estimate the scores of the latent variables used in your
model.

• LINEQS: The matrixTEF of total effects if you specify the TOTEFF option,
or at least the PRINT option. For the LINEQS model, the matrix of total effects
is

TEF = (I− β)−1γ − (O : I)

(For the LISREL model, refer to Jöreskog and Sörbom 1985) The matrix of
indirect effects is displayed also.

• FACTOR: The matrix of rotated factor loadings and the orthogonal transfor-
mation matrix if you specify the ROTATE= and PESTIM options, or at least
the PSHORT options.

• FACTOR: Standardized (rotated) factor loadings, variance estimates of en-
dogenous variables,R2 values, correlations among factors, and factor scores
regression matrix, if you specify the PESTIM option, or at least the PSHORT
option. The determination of manifest variables is displayed only if you specify
the PDETERM option.

• COSAN and LINEQS: Univariate Lagrange multiplier and Wald test indices
are displayed in matrix form if you specify the MODIFICATION (or MOD) or
the PALL option. Those matrix locations that correspond to constants in the
model in general contain three values: the value of the Lagrange multiplier, the
corresponding probability (df = 1), and the estimated change of the parameter
value should the constant be changed to a parameter. If allowing the constant
to be an estimated parameter would result in a singular information matrix,
the string ’sing’ is displayed instead of the Lagrange multiplier index. Those
matrix locations that correspond to parameter estimates in the model contain
the Wald test index and the name of the parameter in the model. See the section
“Modification Indices”on page 673 for more detail.

• COSAN and LINEQS: Univariate Lagrange multiplier test indices for releas-
ing equality constraints if you specify the MODIFICATION (or MOD) or the
PALL option. See the section“Modification Indices”on page 673 for more
detail.

• COSAN and LINEQS: Univariate Lagrange multiplier test indices for releas-
ing active boundary constraints specified by the BOUNDS statement if you
specify the MODIFICATION (or MOD) or the PALL option. See the section
“Modification Indices”on page 673 for more detail.
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• COSAN and LINEQS: If the MODIFICATION (or MOD) or the PALL option
is specified, the stepwise multivariate Wald test for constraining estimated pa-
rameters to zero constants is performed as long as the univariate probability is
larger than the value specified in the PMW= option (default PMW=0.05). See
the section“Modification Indices”on page 673 for more details.

ODS Table Names

PROC CALIS assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 19.15. ODS Tables Created in PROC CALIS

ODS Table Name Model1 Description Option2

AddParms C, F, L, R Additional parameters in the
PARAMETERS statement

PINITIAL, or default

AsymStdRes C, F, L, R Asymptotically standardized residual
matrix

RESIDUAL=, or PRINT

AveAsymStdRes C, F, L, R Average absolute asymptotically
standardized residuals

RESIDUAL=, or PRINT

AveNormRes C, F, L, R Average absolute normalized residuals RESIDUAL=, or PRINT
AveRawRes C, F, L, R Average absolute raw residuals RESIDUAL=, or PRINT
AveVarStdRes C, F, L, R Average absolute variance standardized

residuals
RESIDUAL=, or PRINT

ContKurtosis C, F, L, R Contributions to kurtosis KURTOSIS, or PRINT
ConvergenceStatus C, F, L, R Convergence status PSHORT
CorrExog L Correlations among exogenous variables PESTIM, or PSHORT
CorrParm C, F, L, R Correlations among parameter estimates PCOVES, and default
CovMat C, F, L, R Assorted cov matrices PCOVES, and default
DependParms C, F, L, R Dependent parameters (if specified by

program statements)
PRIVEC, and default

Determination L, F, R Coefficients of determination PDETERM, and default
DistAsymStdRes C, F, L, R Distribution of asymptotically

standardized residuals
RESIDUAL=, or PRINT

DistNormRes C, F, L, R Distribution of normalized residuals RESIDUAL=, or PRINT
DistVarStdRes C, F, L, R Distribution of variance standardized

residuals
RESIDUAL=, or PRINT

EndogenousVar L Endogenous variables PESTIM, or PSHORT
EstCovExog L Estimated covariances among exogenous

variables
PESTIM, or PSHORT

Estimates C, F, L, R Vector of estimates PRIVEC
EstLatentEq L Estimated latent variable equations PESTIM, or PSHORT
EstManifestEq L Estimated manifest variable equations PESTIM, or PSHORT
EstParms C, F Estimated parameter matrix PESTIM, or PSHORT
EstVarExog L Estimated variances of exogenous

variables
PESTIM, or PSHORT
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Table 19.15. (continued)

ODS Table Name Model1 Description Option2

ExogenousVar L List of exogenous variables PESTIM, or PSHORT
FactCorrExog F Correlations among factors PESTIM, or PSHORT
FactScoreCoef F Factor score regression coefficients PESTIM, or PSHORT
Fit C, F, L, R Fit statistics PSUMMARY
GenModInfo C, F, L, R General modeling information PSIMPLE, or default
Gradient C, F, L, R First partial derivatives (Gradient) PRIVEC, and default
InCorr C, F, L, R Input correlation matrix PCORR, or PALL
InCorrDet C, F, L, R Determinant of the input correlation

matrix
PCORR, or PALL

InCov C, F, L, R Input covariance matrix PCORR, or PALL
InCovDet C, F, L, R Determinant of the input covariance

matrix
PCORR, or PALL

InCovExog L Input covariances among exogenous
variables

PESTIM, or PSHORT

Indirect Effects L, R Indirect effects TOTEFF, or PRINT
Information C, F, L, R Information matrix PCOVES, and default
InitEstimates C, F, L, R Initial vector of parameter estimates PINITIAL, or default
InitParms C, F Initial matrix of parameter estimates PINITIAL, or default
InitParms L, R Initial matrix of parameter estimates PRIMAT, and default
InitRAMEstimates R Initial RAM estimates PESTIM, or PSHORT
InLatentEq L Input latent variable equations PESTIM, or PSHORT
InManifestEq L Input manifest variable equations PESTIM, or PSHORT
InSymmetric C, F, L, R Input symmetric matrix (SYMATRIX

data type)
PCORR, or PALL

InVarExog L Input variances of exogenous variables PESTIM, or PSHORT
IterHist C, F, L, R Iteration history PSHORT
IterStart C, F, L, R Iteration start PSHORT
IterStop C, F, L, R Iteration stop PSHORT
Jacobian C, F, L, R Jacobi column pattern PJACPAT
Kurtosis C, F, L, R Kurtosis, with raw data input KURTOSIS, or PRINT
LagrangeBoundary C, F, L, R Lagrange, releasing active boundary

constraints
MODIFICATION3, or PALL

LagrangeEquality C, F, L, R Lagrange, releasing equality constraints MODIFICATION, or PALL
LatentScoreCoef L, R Latent variable regression score

coefficients
PLATCOV, or PRINT

ModelStatement C, F, L, R Model summary PSHORT
ModIndices C, F, L, R Lagrange multiplier and Wald test

statistics
MODIFICATION, or PALL

NormRes C, F, L, R Normalized residual matrix RESIDUAL=, or PRINT
PredetElements C, F, L, R Predetermined elements PREDET, or PALL
PredModel C, F, L, R Predicted model matrix PCORR, or PALL
PredModelDet C, F, L, R Predicted model determinant PCORR, or PALL
PredMomentLatent L, R Predicted latent variable moments PLATCOV, or PRINT
PredMomentManLat L, R Predicted manifest and latent variable

moments
PLATCOV, or PRINT
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Table 19.15. (continued)

ODS Table Name Model1 Description Option2

ProblemDescription C, F, L, R Problem description PSHORT
RAMCorrExog R Correlations among exogenous variables PESTIM, or PSHORT
RAMEstimates R RAM Final Estimates PESTIM, or PSHORT
RAMStdEstimates R Standardized estimates PESTIM, or PSHORT
RankAsymStdRes C, F, L, R Ranking of the largest asymptotically

standardized residuals
RESIDUAL=, or PRINT

RankLagrange C, F, L, R Ranking of the largest Lagrange indices RESIDUAL=, or PRINT
RankNormRes C, F, L, R Ranking of the largest normalized

residuals
RESIDUAL=, or PRINT

RankRawRes C, F, L, R Ranking of the largest raw residuals RESIDUAL=, or PRINT
RankVarStdRes C, F, L, R Ranking of the largest variance

standardized residuals
RESIDUAL=, or PRINT

RawRes C, F, L, R Raw residual matrix RESIDUAL=, or PRINT
RotatedLoadings F Rotated loadings, with ROTATE= option

in FACTOR statement
PESTIM, or PSHORT

Rotation F Rotation Matrix, with ROTATE= option
in FACTOR statement

PESTIM, or PSHORT

SetCovExog L, R Set covariance parameters for manifest
exogenous variables

PINITIAL, or default

SimpleStatistics C, F, L, R Simple statistics, with raw data input SIMPLE, or default
SqMultCorr F, L, R Squared multiple correlations PESTIM, or PSHORT
Stability L, R Stability of reciprocal causation PDETERM, and default
StdErrs C, F, L, R Vector of standard errors PRIVEC, and default
StdLatentEq L Standardized latent variable equations PESTIM, or PSHORT
StdLoadings F Standardized factor loadings PESTIM, or PSHORT
StdManifestEq L Standardized manifest variable equations PESTIM, or PSHORT
StructEq L, R Variables in the structural equations PDETERM, and default
SumSqDif C, F, L, R Sum of squared differences of pre-

determined elements
PREDET, or PALL

TotalEffects L, R Total effects TOTEFF, or PRINT
tValues C, F, L, R Vector of t values PRIVEC, and default
VarSelection L, R Manifest variables, if not all are used,

selected for Modeling
default

VarStdRes C, F, L, R Variance standardized residual matrix RESIDUAL=, or PRINT
WaldTest C, F, L, R Wald test MODIFICATION, or PALL
Weights C, F, L, R Weight matrix PWEIGHT4, or PALL
WeightsDet C, F, L, R Determinant of the weight matrix PWEIGHT4, or PALL

1. Most CALIS output tables are specific to the model statement used. Keys: C: COSAN model, F:

FACTOR model, L: LINEQS model, R: RAM model.

2. The printing options PALL, PRINT, “default”, PSHORT, and PSUMM form hierarchical levels of

output control, with PALL including all the output enabled by the options at the lower levels, and so

on. The “default” option means that NOPRINT is not specified. Therefore, in the table, for example,
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if PSHORT is the printing option for an output, PALL, PRINT, or “default” will also enable the same

output printing.

3. The printing of LagrangeBoundary is effective only if you have set some boundary constraints for

parameters.

4. The printing of Weights or WeightsDet is effective only if your estimation method uses the weight

matrix (e.g., WLS or LSWLS).

Examples

Example 19.1. Path Analysis: Stability of Alienation

The following covariance matrix from Wheaton, Muthen, Alwin, and Summers
(1977) has served to illustrate the performance of several implementations for the
analysis of structural equation models. Two different models have been analyzed
by an early implementation of LISREL and are mentioned in Jöreskog (1978). You
also can find a more detailed discussion of these models in the LISREL VI manual
(Jöreskog and Sörbom 1985). A slightly modified model for this covariance matrix
is included in the EQS 2.0 manual (Bentler 1985, p. 28). The path diagram of this
model is displayed inFigure 19.1. The same model is reanalyzed here by PROC
CALIS. However, for the analysis with the EQS implementation, the last variable
(V6) is rescaled by a factor of 0.1 to make the matrix less ill-conditioned. Since
the Levenberg-Marquardt or Newton-Raphson optimization techniques are used with
PROC CALIS, rescaling the data matrix is not necessary and, therefore, is not done
here. The results reported here reflect the estimates based on the original covariance
matrix.

data Wheaton(TYPE=COV);
title "Stability of Alienation";
title2 "Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)";

_type_ = ’cov’; input _name_ $ v1-v6;
label v1=’Anomia (1967)’ v2=’Anomia (1971)’ v3=’Education’

v4=’Powerlessness (1967)’ v5=’Powerlessness (1971)’
v6=’Occupational Status Index’;

datalines;
v1 11.834 . . . . .
v2 6.947 9.364 . . . .
v3 6.819 5.091 12.532 . . .
v4 4.783 5.028 7.495 9.986 . .
v5 -3.839 -3.889 -3.841 -3.625 9.610 .
v6 -21.899 -18.831 -21.748 -18.775 35.522 450.288
;
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proc calis cov data=Wheaton tech=nr edf=931 pall;
Lineqs

V1 = F1 + E1,
V2 = .833 F1 + E2,
V3 = F2 + E3,
V4 = .833 F2 + E4,
V5 = F3 + E5,
V6 = Lamb (.5) F3 + E6,
F1 = Gam1(-.5) F3 + D1,
F2 = Beta (.5) F1 + Gam2(-.5) F3 + D2;

Std
E1-E6 = The1-The2 The1-The4 (6 * 3.),
D1-D2 = Psi1-Psi2 (2 * 4.),
F3 = Phi (6.) ;

Cov
E1 E3 = The5 (.2),
E4 E2 = The5 (.2);

run;

The COV option in the PROC CALIS statement requests the analysis of the covari-
ance matrix. Without the COV option, the correlation matrix would be computed and
analyzed. Since no METHOD= option has been used, maximum likelihood estimates
are computed by default. The TECH=NR option requests the Newton-Raphson op-
timization method. The PALL option produces the almost complete set of displayed
output, as displayed inOutput 19.1.1throughOutput 19.1.11. Note that, when you
specify the PALL option, you can produce large amounts of output. The PALL option
is used in this example to show how you can get a wide spectrum of useful informa-
tion from PROC CALIS.

Output 19.1.1displays the model specification in matrix terms, followed by the lists
of endogenous and exogenous variables. Equations and initial parameter estimates
are also displayed. You can use this information to ensure that the desired model is
the model being analyzed.
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Output 19.1.1. Model Specification

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

LINEQS Model Statement

Matrix Rows Columns ------Matrix Type-------

Term 1 1 _SEL_ 6 17 SELECTION
2 _BETA_ 17 17 EQSBETA IMINUSINV
3 _GAMMA_ 17 9 EQSGAMMA
4 _PHI_ 9 9 SYMMETRIC

The 8 Endogenous Variables

Manifest v1 v2 v3 v4 v5 v6
Latent F1 F2

The 9 Exogenous Variables

Manifest
Latent F3
Error E1 E2 E3 E4 E5 E6 D1 D2

Output 19.1.1. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Pattern and Initial Values

v1 = 1.0000 F1 + 1.0000 E1
v2 = 0.8330 F1 + 1.0000 E2
v3 = 1.0000 F2 + 1.0000 E3
v4 = 0.8330 F2 + 1.0000 E4
v5 = 1.0000 F3 + 1.0000 E5
v6 = 0.5000*F3 + 1.0000 E6

Lamb

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Pattern and Initial Values

F1 = -0.5000*F3 + 1.0000 D1
Gam1

F2 = 0.5000*F1 + -0.5000*F3 + 1.0000 D2
Beta Gam2
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Output 19.1.1. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Pattern and Initial Values

Variances of Exogenous Variables

Variable Parameter Estimate

F3 Phi 6.00000
E1 The1 3.00000
E2 The2 3.00000
E3 The1 3.00000
E4 The2 3.00000
E5 The3 3.00000
E6 The4 3.00000
D1 Psi1 4.00000
D2 Psi2 4.00000

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate

E1 E3 The5 0.20000
E2 E4 The5 0.20000

General modeling information and simple descriptive statistics are displayed in
Output 19.1.2. Because the input data set contains only the covariance matrix, the
means of the manifest variables are assumed to be zero. Note that this has no im-
pact on the estimation, unless a mean structure model is being analyzed. The twelve
parameter estimates in the model and their respective locations in the parameter ma-
trices are also displayed. Each of the parameters,The1, The2, andThe5, is specified
for two elements in the parameter matrix–PHI– .

Output 19.1.2. Modeling Information, Simple Statistics, and Parameter Vector

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Observations 932 Model Terms 1
Variables 6 Model Matrices 4
Informations 21 Parameters 12

Variable Mean Std Dev

v1 Anomia (1967) 0 3.44006
v2 Anomia (1971) 0 3.06007
v3 Education 0 3.54006
v4 Powerlessness (1967) 0 3.16006
v5 Powerlessness (1971) 0 3.10000
v6 Occupational Status Index 0 21.21999
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Output 19.1.2. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Covariances

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) 11.83400000 6.94700000 6.81900000 4.78300000 -3.83900000 -21.8990000
v2 Anomia (1971) 6.94700000 9.36400000 5.09100000 5.02800000 -3.88900000 -18.8310000
v3 Education 6.81900000 5.09100000 12.53200000 7.49500000 -3.84100000 -21.7480000
v4 Powerlessness (1967) 4.78300000 5.02800000 7.49500000 9.98600000 -3.62500000 -18.7750000
v5 Powerlessness (1971) -3.83900000 -3.88900000 -3.84100000 -3.62500000 9.61000000 35.5220000
v6 Occupational Status Index -21.89900000 -18.83100000 -21.74800000 -18.77500000 35.52200000 450.2880000

Determinant 6080570 Ln 15.620609

Output 19.1.2. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Vector of Initial Estimates

Parameter Estimate Type

1 Beta 0.50000 Matrix Entry: _BETA_[8:7]
2 Lamb 0.50000 Matrix Entry: _GAMMA_[6:1]
3 Gam1 -0.50000 Matrix Entry: _GAMMA_[7:1]
4 Gam2 -0.50000 Matrix Entry: _GAMMA_[8:1]
5 Phi 6.00000 Matrix Entry: _PHI_[1:1]
6 The1 3.00000 Matrix Entry: _PHI_[2:2] _PHI_[4:4]
7 The2 3.00000 Matrix Entry: _PHI_[3:3] _PHI_[5:5]
8 The5 0.20000 Matrix Entry: _PHI_[4:2] _PHI_[5:3]
9 The3 3.00000 Matrix Entry: _PHI_[6:6]

10 The4 3.00000 Matrix Entry: _PHI_[7:7]
11 Psi1 4.00000 Matrix Entry: _PHI_[8:8]
12 Psi2 4.00000 Matrix Entry: _PHI_[9:9]

PROC CALIS examines whether each element in the moment matrix is modeled by
the parameters defined in the model. If an element is not structured by the model
parameters, it is predetermined by its observed value. This occurs, for example, when
there are exogenous manifest variables in the model. If present, the predetermined
values of the elements will be displayed. In the current example, the ‘.’ displayed for
all elements in the predicted moment matrix (Output 19.1.3) indicates that there are
no predetermined elements in the model.
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Output 19.1.3. Predetermined Elements

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Predetermined Elements of the Predicted Moment Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) . . . . . .
v2 Anomia (1971) . . . . . .
v3 Education . . . . . .
v4 Powerlessness (1967) . . . . . .
v5 Powerlessness (1971) . . . . . .
v6 Occupational Status Index . . . . . .

Sum of Squared Differences 0

Output 19.1.4displays the optimization information. You can check this table to
determine whether the convergence criterion is satisfied. PROC CALIS displays an
error message when problematic solutions are encountered.

Output 19.1.4. Optimization

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 12
Functions (Observations) 21

Optimization Start

Active Constraints 0 Objective Function 119.33282242
Max Abs Gradient Element 74.016932345

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Ridge Change

1 0 2 0 0.82689 118.5 1.3507 0 0.0154
2 0 3 0 0.09859 0.7283 0.2330 0 0.716
3 0 4 0 0.01581 0.0828 0.00684 0 1.285
4 0 5 0 0.01449 0.00132 0.000286 0 1.042
5 0 6 0 0.01448 9.936E-7 0.000045 0 1.053
6 0 7 0 0.01448 4.227E-9 1.685E-6 0 1.056

Optimization Results

Iterations 6 Function Calls 8
Jacobian Calls 7 Active Constraints 0
Objective Function 0.0144844811 Max Abs Gradient Element 1.6847829E-6
Ridge 0 Actual Over Pred Change 1.0563204982

ABSGCONV convergence criterion satisfied.

The predicted model matrix is displayed next, followed by a list of model test statis-
tics or fit indices (Output 19.1.5). Depending on your modeling philosophy, some
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indices may be preferred to others. In this example, all indices and test statistics
point to a good fit of the model.

Output 19.1.5. Predicted Model Matrix and Fit Statistics

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Predicted Model Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) 11.90390632 6.91059048 6.83016211 4.93499582 -4.16791157 -22.3768816
v2 Anomia (1971) 6.91059048 9.35145064 4.93499582 5.01664889 -3.47187034 -18.6399424
v3 Education 6.83016211 4.93499582 12.61574998 7.50355625 -4.06565606 -21.8278873
v4 Powerlessness (1967) 4.93499582 5.01664889 7.50355625 9.84539112 -3.38669150 -18.1826302
v5 Powerlessness (1971) -4.16791157 -3.47187034 -4.06565606 -3.38669150 9.61000000 35.5219999
v6 Occupational Status Index -22.37688158 -18.63994236 -21.82788734 -18.18263015 35.52199986 450.2879993

Determinant 6169285 Ln 15.635094

Output 19.1.5. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0145
Goodness of Fit Index (GFI) 0.9953
GFI Adjusted for Degrees of Freedom (AGFI) 0.9890
Root Mean Square Residual (RMR) 0.2281
Parsimonious GFI (Mulaik, 1989) 0.5972
Chi-Square 13.4851
Chi-Square DF 9
Pr > Chi-Square 0.1419
Independence Model Chi-Square 2131.4
Independence Model Chi-Square DF 15
RMSEA Estimate 0.0231
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0470
ECVI Estimate 0.0405
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0556
Probability of Close Fit 0.9705
Bentler’s Comparative Fit Index 0.9979
Normal Theory Reweighted LS Chi-Square 13.2804
Akaike’s Information Criterion -4.5149
Bozdogan’s (1987) CAIC -57.0509
Schwarz’s Bayesian Criterion -48.0509
McDonald’s (1989) Centrality 0.9976
Bentler & Bonett’s (1980) Non-normed Index 0.9965
Bentler & Bonett’s (1980) NFI 0.9937
James, Mulaik, & Brett (1982) Parsimonious NFI 0.5962
Z-Test of Wilson & Hilferty (1931) 1.0754
Bollen (1986) Normed Index Rho1 0.9895
Bollen (1988) Non-normed Index Delta2 0.9979
Hoelter’s (1983) Critical N 1170

PROC CALIS can perform a detailed residual analysis. Large residuals may indicate
misspecification of the model. InOutput 19.1.6for example, note the table for the
10 largest asymptotically standardized residuals. As the table shows, the specified
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model performs the poorest concerning the variableV5 and its covariance withV2,
V1, andV3. This may be the result of a misspecification of the model equation for
V5. However, because the model fit is quite good, such a possible misspecification
may have no practical significance and is not a serious concern in the analysis.

Output 19.1.6. Residual Analysis

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Raw Residual Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) -.0699063150 0.0364095216 -.0111621061 -.1519958205 0.3289115712 0.4778815840
v2 Anomia (1971) 0.0364095216 0.0125493646 0.1560041795 0.0113511059 -.4171296612 -.1910576405
v3 Education -.0111621061 0.1560041795 -.0837499788 -.0085562504 0.2246560598 0.0798873380
v4 Powerlessness (1967) -.1519958205 0.0113511059 -.0085562504 0.1406088766 -.2383085022 -.5923698474
v5 Powerlessness (1971) 0.3289115712 -.4171296612 0.2246560598 -.2383085022 0.0000000000 0.0000000000
v6 Occupational Status Index 0.4778815840 -.1910576405 0.0798873380 -.5923698474 0.0000000000 0.0000000000

Average Absolute Residual 0.153928
Average Off-diagonal Absolute Residual 0.195045

Output 19.1.6. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Raw Residuals

Row Column Residual

v6 v4 -0.59237
v6 v1 0.47788
v5 v2 -0.41713
v5 v1 0.32891
v5 v4 -0.23831
v5 v3 0.22466
v6 v2 -0.19106
v3 v2 0.15600
v4 v1 -0.15200
v4 v4 0.14061
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Output 19.1.6. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Asymptotically Standardized Residual Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) -0.308548787 0.526654452 -0.056188826 -0.865070455 2.553366366 0.464866661
v2 Anomia (1971) 0.526654452 0.054363484 0.876120855 0.057354415 -2.763708659 -0.170127806
v3 Education -0.056188826 0.876120855 -0.354347092 -0.121874301 1.697931678 0.070202664
v4 Powerlessness (1967) -0.865070455 0.057354415 -0.121874301 0.584930625 -1.557412695 -0.495982427
v5 Powerlessness (1971) 2.553366366 -2.763708659 1.697931678 -1.557412695 0.000000000 0.000000000
v6 Occupational Status Index 0.464866661 -0.170127806 0.070202664 -0.495982427 0.000000000 0.000000000

Average Standardized Residual 0.646622
Average Off-diagonal Standardized Residual 0.818457

Output 19.1.6. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Asymptotically Standardized Residuals

Row Column Residual

v5 v2 -2.76371
v5 v1 2.55337
v5 v3 1.69793
v5 v4 -1.55741
v3 v2 0.87612
v4 v1 -0.86507
v4 v4 0.58493
v2 v1 0.52665
v6 v4 -0.49598
v6 v1 0.46487
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Output 19.1.6. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Distribution of Asymptotically Standardized Residuals

Each * Represents 1 Residuals

----------Range--------- Freq Percent

-3.00000 -2.75000 1 4.76 *
-2.75000 -2.50000 0 0.00
-2.50000 -2.25000 0 0.00
-2.25000 -2.00000 0 0.00
-2.00000 -1.75000 0 0.00
-1.75000 -1.50000 1 4.76 *
-1.50000 -1.25000 0 0.00
-1.25000 -1.00000 0 0.00
-1.00000 -0.75000 1 4.76 *
-0.75000 -0.50000 0 0.00
-0.50000 -0.25000 3 14.29 ***
-0.25000 0 3 14.29 ***

0 0.25000 6 28.57 ******
0.25000 0.50000 1 4.76 *
0.50000 0.75000 2 9.52 **
0.75000 1.00000 1 4.76 *
1.00000 1.25000 0 0.00
1.25000 1.50000 0 0.00
1.50000 1.75000 1 4.76 *
1.75000 2.00000 0 0.00
2.00000 2.25000 0 0.00
2.25000 2.50000 0 0.00
2.50000 2.75000 1 4.76 *

Output 19.1.7displays the equations and parameter estimates. Each parameter esti-
mate is displayed with its standard error and the correspondingt ratio. As a general
rule, at ratio larger than 2 represents a statistically significant departure from 0. From
these results, it is observed that bothF1 (Alienation 1967) andF2 (Alienation 1971)
are regressed negatively onF3 (Socioeconomic Status), andF1 has a positive effect
on F2. The estimates and significance tests for the variance and covariance of the
exogenous variables are also displayed.
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Output 19.1.7. Equations and Parameter Estimates

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

v1 = 1.0000 F1 + 1.0000 E1
v2 = 0.8330 F1 + 1.0000 E2
v3 = 1.0000 F2 + 1.0000 E3
v4 = 0.8330 F2 + 1.0000 E4
v5 = 1.0000 F3 + 1.0000 E5
v6 = 5.3688*F3 + 1.0000 E6
Std Err 0.4337 Lamb
t Value 12.3788

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = -0.6299*F3 + 1.0000 D1
Std Err 0.0563 Gam1
t Value -11.1809
F2 = 0.5931*F1 + -0.2409*F3 + 1.0000 D2
Std Err 0.0468 Beta 0.0549 Gam2
t Value 12.6788 -4.3885

Output 19.1.7. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

F3 Phi 6.61632 0.63914 10.35
E1 The1 3.60788 0.20092 17.96
E2 The2 3.59493 0.16448 21.86
E3 The1 3.60788 0.20092 17.96
E4 The2 3.59493 0.16448 21.86
E5 The3 2.99368 0.49861 6.00
E6 The4 259.57580 18.31150 14.18
D1 Psi1 5.67047 0.42301 13.41
D2 Psi2 4.51480 0.33532 13.46

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

E1 E3 The5 0.90580 0.12167 7.44
E2 E4 The5 0.90580 0.12167 7.44

The measurement scale of variables is often arbitrary. Therefore, it can be useful to
look at the standardized equations produced by PROC CALIS.Output 19.1.8displays
the standardized equations and predicted moments. From the standardized structural
equations forF1 andF2, you can conclude that SES (F3) has a larger impact on
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earlier Alienation (F1) than on later Alienation (F3).

The squared multiple correlation for each equation, the correlation among the exoge-
nous variables, and the covariance matrices among the latent variables and between
the observed and the latent variables help to describe the relationships among all
variables.

Output 19.1.8. Standardized Equations and Predicted Moments

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

v1 = 0.8348 F1 + 0.5505 E1
v2 = 0.7846 F1 + 0.6200 E2
v3 = 0.8450 F2 + 0.5348 E3
v4 = 0.7968 F2 + 0.6043 E4
v5 = 0.8297 F3 + 0.5581 E5
v6 = 0.6508*F3 + 0.7593 E6

Lamb

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = -0.5626*F3 + 0.8268 D1
Gam1

F2 = 0.5692*F1 + -0.2064*F3 + 0.7080 D2
Beta Gam2

Output 19.1.8. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Squared Multiple Correlations

Error Total
Variable Variance Variance R-Square

1 v1 3.60788 11.90391 0.6969
2 v2 3.59493 9.35145 0.6156
3 v3 3.60788 12.61575 0.7140
4 v4 3.59493 9.84539 0.6349
5 v5 2.99368 9.61000 0.6885
6 v6 259.57580 450.28800 0.4235
7 F1 5.67047 8.29603 0.3165
8 F2 4.51480 9.00787 0.4988

Correlations Among Exogenous Variables

Var1 Var2 Parameter Estimate

E1 E3 The5 0.25106
E2 E4 The5 0.25197
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Output 19.1.8. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Predicted Moments of Latent Variables

F1 F2 F3

F1 8.296026985 5.924364730 -4.167911571
F2 5.924364730 9.007870649 -4.065656060
F3 -4.167911571 -4.065656060 6.616317547

Predicted Moments between Manifest and Latent Variables

F1 F2 F3

v1 8.29602698 5.92436473 -4.16791157
v2 6.91059048 4.93499582 -3.47187034
v3 5.92436473 9.00787065 -4.06565606
v4 4.93499582 7.50355625 -3.38669150
v5 -4.16791157 -4.06565606 6.61631755
v6 -22.37688158 -21.82788734 35.52199986

Output 19.1.9displays the latent variable score regression coefficients that produce
the latent variable scores. Each latent variable is expressed as a linear combination of
the observed variables. SeeChapter 64, “The SCORE Procedure,”for more informa-
tion on the creation of latent variable scores. Note that the total effects and indirect
effects of the exogenous variables are also displayed.
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Output 19.1.9. Latent Variable Score Regression, Direct and Indirect Effects

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Latent Variable Score Regression Coefficients

F1 F2 F3

v1 Anomia (1967) 0.4131113567 0.0482681051 -.0521264408
v2 Anomia (1971) 0.3454029627 0.0400143300 -.0435560637
v3 Education 0.0526632293 0.4306175653 -.0399927539
v4 Powerlessness (1967) 0.0437036855 0.3600452776 -.0334000265
v5 Powerlessness (1971) -.0749215200 -.0639697183 0.5057060770
v6 Occupational Status Index -.0046390513 -.0039609288 0.0313127184

Total Effects

F3 F1 F2

v1 -0.629944307 1.000000000 0.000000000
v2 -0.524743608 0.833000000 0.000000000
v3 -0.614489258 0.593112208 1.000000000
v4 -0.511869552 0.494062469 0.833000000
v5 1.000000000 0.000000000 0.000000000
v6 5.368847492 0.000000000 0.000000000
F1 -0.629944307 0.000000000 0.000000000
F2 -0.614489258 0.593112208 0.000000000

Indirect Effects

F3 F1 F2

v1 -.6299443069 0.0000000000 0
v2 -.5247436076 0.0000000000 0
v3 -.6144892580 0.5931122083 0
v4 -.5118695519 0.4940624695 0
v5 0.0000000000 0.0000000000 0
v6 0.0000000000 0.0000000000 0
F1 0.0000000000 0.0000000000 0
F2 -.3736276589 0.0000000000 0

PROC CALIS can display Lagrange multiplier and Wald statistics for model mod-
ifications. Modification indices are displayed for each parameter matrix. Only the
Lagrange multiplier statistics have significance levels and approximate changes of
values displayed. The significance level of the Wald statistic for a given parame-
ter is the same as that shown in the equation output. An insignificantp-value for a
Wald statistic means that the corresponding parameter can be dropped from the model
without significantly worsening the fit of the model.

A significantp-value for a Lagrange multiplier test indicates that the model would
achieve a better fit if the corresponding parameter is free. To aid in determining
significant results, PROC CALIS displays the rank order of the ten largest Lagrange
multiplier statistics. For example, [E5:E2] in the–PHI– matrix is associated with the
largest Lagrange multiplier statistic; the associatedp-value is 0.0067. This means that
adding a parameter for the covariance between E5 and E2 will lead to a significantly
better fit of the model. However, adding parameters indiscriminately can result in
specification errors. An over-fitted model may not perform well with future samples.
As always, the decision to add parameters should be accompanied with consideration
and knowledge of the application area.
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Output 19.1.10. Lagrange Multiplier and Wald Tests

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Lagrange Multiplier and Wald Test Indices _PHI_ [9:9]
Symmetric Matrix

Univariate Tests for Constant Constraints
Lagrange Multiplier or Wald Index / Probability / Approx Change of Value

F3 E1 E2 E3 E4 E5 E6 D1 D2

F3 107.1619 3.3903 3.3901 0.5752 0.5753 . . . .
. 0.0656 0.0656 0.4482 0.4482 . . . .
. 0.5079 -0.4231 0.2090 -0.1741 . . . .
[Phi] Sing Sing Sing Sing

E1 3.3903 322.4501 0.1529 55.4237 1.2037 5.8025 0.7398 0.4840 0.0000
0.0656 . 0.6958 . 0.2726 0.0160 0.3897 0.4866 0.9961
0.5079 . 0.0900 . -0.3262 0.5193 -1.2587 0.2276 0.0014

[The1] [The5]

E2 3.3901 0.1529 477.6768 0.5946 55.4237 7.3649 1.4168 0.4840 0.0000
0.0656 0.6958 . 0.4406 . 0.0067 0.2339 0.4866 0.9961

-0.4231 0.0900 . 0.2328 . -0.5060 1.5431 -0.1896 -0.0011
[The2] [The5]

E3 0.5752 55.4237 0.5946 322.4501 0.1528 1.5982 0.0991 1.1825 0.5942
0.4482 . 0.4406 . 0.6958 0.2062 0.7529 0.2768 0.4408
0.2090 . 0.2328 . -0.0900 0.2709 -0.4579 0.2984 -0.2806

[The5] [The1]

E4 0.5753 1.2037 55.4237 0.1528 477.6768 1.2044 0.0029 1.1825 0.5942
0.4482 0.2726 . 0.6958 . 0.2724 0.9568 0.2768 0.4408

-0.1741 -0.3262 . -0.0900 . -0.2037 0.0700 -0.2486 0.2338
[The5] [The2]

E5 . 5.8025 7.3649 1.5982 1.2044 36.0486 . 0.1033 0.1035
. 0.0160 0.0067 0.2062 0.2724 . . 0.7479 0.7477
. 0.5193 -0.5060 0.2709 -0.2037 . . -0.2776 0.1062

Sing [The3] Sing

E6 . 0.7398 1.4168 0.0991 0.0029 . 200.9466 0.1034 0.1035
. 0.3897 0.2339 0.7529 0.9568 . . 0.7478 0.7477
. -1.2587 1.5431 -0.4579 0.0700 . . 1.4906 -0.5700

Sing Sing [The4]

D1 . 0.4840 0.4840 1.1825 1.1825 0.1033 0.1034 179.6950 .
. 0.4866 0.4866 0.2768 0.2768 0.7479 0.7478 . .
. 0.2276 -0.1896 0.2984 -0.2486 -0.2776 1.4906 . .

Sing [Psi1] Sing

D2 . 0.0000 0.0000 0.5942 0.5942 0.1035 0.1035 . 181.2787
. 0.9961 0.9961 0.4408 0.4408 0.7477 0.7477 . .
. 0.0014 -0.0011 -0.2806 0.2338 0.1062 -0.5700 . .

Sing Sing [Psi2]
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Output 19.1.10. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Lagrange Multipliers in _PHI_

Row Column Chi-Square Pr > ChiSq

E5 E2 7.36486 0.0067
E5 E1 5.80246 0.0160
E1 F3 3.39030 0.0656
E2 F3 3.39013 0.0656
E5 E3 1.59820 0.2062
E6 E2 1.41677 0.2339
E5 E4 1.20437 0.2724
E4 E1 1.20367 0.2726
D1 E3 1.18251 0.2768
D1 E4 1.18249 0.2768
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Output 19.1.10. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Lagrange Multiplier and Wald Test Indices _GAMMA_ [8:1]
General Matrix

Univariate Tests for Constant Constraints
Lagrange Multiplier or Wald Index / Probability / Approx Change of Value

F3

v1 3.3903
0.0656
0.0768

v2 3.3901
0.0656

-0.0639

v3 0.5752
0.4482
0.0316

v4 0.5753
0.4482

-0.0263

v5 .
.
.

Sing

v6 153.2354
.
.

[Lamb]

F1 125.0132
.
.

[Gam1]

F2 19.2585
.
.

[Gam2]
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Output 19.1.10. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 4 Largest Lagrange Multipliers in _GAMMA_

Row Column Chi-Square Pr > ChiSq

v1 F3 3.39030 0.0656
v2 F3 3.39013 0.0656
v4 F3 0.57526 0.4482
v3 F3 0.57523 0.4482
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Output 19.1.10. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Lagrange Multiplier and Wald Test Indices _BETA_ [8:8]
General Matrix

Identity-Minus-Inverse Model Matrix
Univariate Tests for Constant Constraints

Lagrange Multiplier or Wald Index / Probability / Approx Change of Value

v1 v2 v3 v4 v5 v6 F1 F2

v1 . 0.1647 0.0511 0.8029 5.4083 0.1233 0.4047 0.4750
. 0.6849 0.8212 0.3702 0.0200 0.7255 0.5247 0.4907
. -0.0159 -0.0063 -0.0284 0.0697 0.0015 -0.0257 -0.0239

Sing

v2 0.5957 . 0.6406 0.0135 5.8858 0.0274 0.4047 0.4750
0.4402 . 0.4235 0.9076 0.0153 0.8686 0.5247 0.4907
0.0218 . 0.0185 0.0032 -0.0609 -0.0006 0.0214 0.0199

Sing

v3 0.3839 0.3027 . 0.1446 1.1537 0.0296 0.1588 0.0817
0.5355 0.5822 . 0.7038 0.2828 0.8634 0.6902 0.7750
0.0178 0.0180 . -0.0145 0.0322 0.0007 0.0144 -0.0110

Sing

v4 0.4487 0.2519 0.0002 . 0.9867 0.1442 0.1588 0.0817
0.5030 0.6157 0.9877 . 0.3206 0.7041 0.6903 0.7750

-0.0160 -0.0144 -0.0004 . -0.0249 -0.0014 -0.0120 0.0092
Sing

v5 5.4085 8.6455 2.7123 2.1457 . . 0.1033 0.1035
0.0200 0.0033 0.0996 0.1430 . . 0.7479 0.7476
0.1242 -0.1454 0.0785 -0.0674 . . -0.0490 0.0329

Sing Sing

v6 0.4209 1.4387 0.3044 0.0213 . . 0.1034 0.1035
0.5165 0.2304 0.5811 0.8841 . . 0.7478 0.7477

-0.2189 0.3924 -0.1602 0.0431 . . 0.2629 -0.1765
Sing Sing

F1 1.0998 1.1021 1.6114 1.6128 0.1032 0.1035 . .
0.2943 0.2938 0.2043 0.2041 0.7480 0.7477 . .
0.0977 -0.0817 0.0993 -0.0831 -0.0927 0.0057 . .

Sing Sing

F2 0.0193 0.0194 0.4765 0.4760 0.1034 0.1035 160.7520 .
0.8896 0.8892 0.4900 0.4902 0.7477 0.7477 . .

-0.0104 0.0087 -0.0625 0.0522 0.0355 -0.0022 . .
[Beta] Sing
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Output 19.1.10. (continued)

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Lagrange Multipliers in _BETA_

Row Column Chi-Square Pr > ChiSq

v5 v2 8.64546 0.0033
v2 v5 5.88576 0.0153
v5 v1 5.40848 0.0200
v1 v5 5.40832 0.0200
v5 v3 2.71233 0.0996
v5 v4 2.14572 0.1430
F1 v4 1.61279 0.2041
F1 v3 1.61137 0.2043
v6 v2 1.43867 0.2304
v3 v5 1.15372 0.2828

When you specify equality constraints, PROC CALIS displays Lagrange multiplier
tests for releasing the constraints. In the current example, none of the three constraints
achieve ap-value smaller than 0.05. This means that releasing the constraints may not
lead to a significantly better fit of the model. Therefore, all constraints are retained in
the model.

Output 19.1.11. Tests for Equality Constraints

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

Covariance Structure Analysis: Maximum Likelihood Estimation

Univariate Lagrange Multiplier Test for Releasing Equality Constraints

Equality Constraint -----Changes----- Chi-Square Pr > ChiSq

[E1:E1] = [E3:E3] 0.0293 -0.0308 0.02106 0.8846
[E2:E2] = [E4:E4] -0.1342 0.1388 0.69488 0.4045
[E3:E1] = [E4:E2] 0.2468 -0.1710 1.29124 0.2558

The model is specified using the LINEQS, STD, and COV statements. The section
“Getting Started”on page 560 also contains the COSAN and RAM specifications of
this model. These model specifications would give essentially the same results.

proc calis cov data=Wheaton tech=nr edf=931;
Cosan J(9, Ide) * A(9, Gen, Imi) * P(9, Sym);
Matrix A

[ ,7] = 1. .833 5 * 0. Beta (.5) ,
[ ,8] = 2 * 0. 1. .833 ,
[ ,9] = 4 * 0. 1. Lamb Gam1-Gam2 (.5 2 * -.5);

Matrix P
[1,1] = The1-The2 The1-The4 (6 * 3.) ,
[7,7] = Psi1-Psi2 Phi (2 * 4. 6.) ,
[3,1] = The5 (.2) ,
[4,2] = The5 (.2) ;
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Vnames J V1-V6 F1-F3 ,
A = J ,
P E1-E6 D1-D3 ;

run;

proc calis cov data=Wheaton tech=nr edf=931;
Ram

1 1 7 1. ,
1 2 7 .833 ,
1 3 8 1. ,
1 4 8 .833 ,
1 5 9 1. ,
1 6 9 .5 Lamb ,
1 7 9 -.5 Gam1 ,
1 8 7 .5 Beta ,
1 8 9 -.5 Gam2 ,
2 1 1 3. The1 ,
2 2 2 3. The2 ,
2 3 3 3. The1 ,
2 4 4 3. The2 ,
2 5 5 3. The3 ,
2 6 6 3. The4 ,
2 1 3 .2 The5 ,
2 2 4 .2 The5 ,
2 7 7 4. Psi1 ,
2 8 8 4. Psi2 ,
2 9 9 6. Phi ;

Vnames 1 F1-F3,
2 E1-E6 D1-D3;

run;

Example 19.2. Simultaneous Equations with Intercept

The demand-and-supply food example of Kmenta (1971, pp. 565, 582) is used to
illustrate the use of PROC CALIS for the estimation of intercepts and coefficients
of simultaneous equations. The model is specified by two simultaneous equations
containing two endogenous variablesQ andP and three exogenous variablesD, F ,
andY ,

Qt(demand) = α1 + β1Pt + γ1Dt

Qt(supply) = α2 + β2Pt + γ2Ft + γ3Yt

for t = 1, . . . , 20.

The LINEQS statement requires that each endogenous variable appear on the left-
hand side of exactly one equation. Instead of analyzing the system

B∗η = Γξ + ζ

PROC CALIS analyzes the equivalent system

η = Bη + Γξ + ζ
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with B∗ = I−B. This requires that one of the preceding equations be solved forPt.
Solving the second equation forPt yields

Pt =
1
β2
Qt −

α2

β2
− γ2

β2
Ft −

γ3

β2
Yt

You can estimate the intercepts of a system of simultaneous equations by applying
PROC CALIS on the uncorrected covariance (UCOV) matrix of the data set that
is augmented by an additional constant variable with the value 1. In the following
example, the uncorrected covariance matrix is augmented by an additional variable
INTERCEPT by using the AUGMENT option. The PROC CALIS statement contains
the options UCOV and AUG to compute and analyze an augmented UCOV matrix
from the input data set FOOD.

Data food;
Title ’Food example of KMENTA(1971, p.565 & 582)’;

Input Q P D F Y;
Label Q=’Food Consumption per Head’

P=’Ratio of Food Prices to General Price’
D=’Disposable Income in Constant Prices’
F=’Ratio of Preceding Years Prices’
Y=’Time in Years 1922-1941’;

datalines;
98.485 100.323 87.4 98.0 1
99.187 104.264 97.6 99.1 2

102.163 103.435 96.7 99.1 3
101.504 104.506 98.2 98.1 4
104.240 98.001 99.8 110.8 5
103.243 99.456 100.5 108.2 6
103.993 101.066 103.2 105.6 7

99.900 104.763 107.8 109.8 8
100.350 96.446 96.6 108.7 9
102.820 91.228 88.9 100.6 10

95.435 93.085 75.1 81.0 11
92.424 98.801 76.9 68.6 12
94.535 102.908 84.6 70.9 13
98.757 98.756 90.6 81.4 14

105.797 95.119 103.1 102.3 15
100.225 98.451 105.1 105.0 16
103.522 86.498 96.4 110.5 17

99.929 104.016 104.4 92.5 18
105.223 105.769 110.7 89.3 19
106.232 113.490 127.1 93.0 20

;



Example 19.2. Simultaneous Equations with Intercept � 713

proc calis ucov aug data=food pshort;
Title2 ’Compute ML Estimates With Intercept’;
Lineqs

Q = alf1 Intercept + alf2 P + alf3 D + E1,
P = gam1 Intercept + gam2 Q + gam3 F + gam4 Y + E2;

Std
E1-E2 = eps1-eps2;

Cov
E1-E2 = eps3;

Bounds
eps1-eps2 >= 0. ;

run;

The following, essentially equivalent model definition uses program code to reparam-
eterize the model in terms of the original equations; the output is displayed inOutput
19.2.1.

proc calis data=food ucov aug pshort;
Lineqs

Q = alphal Intercept + beta1 P + gamma1 D + E1,
P = alpha2_b Intercept + gamma2_b F + gamma3_b Y + _b Q + E2;

Std
E1-E2 = eps1-eps2;

Cov
E1-E2 = eps3;

Parameters alpha2 (50.) beta2 gamma2 gamma3 (3*.25);
alpha2_b = -alpha2 / beta2;
gamma2_b = -gamma2 / beta2;
gamma3_b = -gamma3 / beta2;
_b = 1 / beta2;

Bounds
eps1-eps2 >= 0. ;

run;
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Output 19.2.1. Food Example of Kmenta

Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

LINEQS Model Statement

Matrix Rows Columns ------Matrix Type-------

Term 1 1 _SEL_ 6 8 SELECTION
2 _BETA_ 8 8 EQSBETA IMINUSINV
3 _GAMMA_ 8 6 EQSGAMMA
4 _PHI_ 6 6 SYMMETRIC

The 2 Endogenous Variables

Manifest Q P
Latent

The 6 Exogenous Variables

Manifest D F Y Intercept
Latent
Error E1 E2



Example 19.2. Simultaneous Equations with Intercept � 715

Output 19.2.1. (continued)

Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 10
Functions (Observations) 21
Lower Bounds 2
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 2.350006504
Max Abs Gradient Element 203.97414363 Radius 62167.829154

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Lambda Change

1 0 2 0 1.19094 1.1591 3.9410 0 0.688
2 0 5 0 0.32678 0.8642 9.9864 0.00127 2.356
3 0 7 0 0.19108 0.1357 5.5100 0.00006 0.685
4 0 10 0 0.16682 0.0243 2.0513 0.00005 0.867
5 0 12 0 0.16288 0.00393 1.0570 0.00014 0.828
6 0 13 0 0.16132 0.00156 0.3643 0.00004 0.864
7 0 15 0 0.16077 0.000557 0.2176 0.00006 0.984
8 0 16 0 0.16052 0.000250 0.1819 0.00001 0.618
9 0 17 0 0.16032 0.000201 0.0663 0 0.971

10 0 18 0 0.16030 0.000011 0.0195 0 1.108
11 0 19 0 0.16030 6.118E-7 0.00763 0 1.389
12 0 20 0 0.16030 9.454E-8 0.00301 0 1.389
13 0 21 0 0.16030 1.462E-8 0.00118 0 1.389
14 0 22 0 0.16030 2.246E-9 0.000466 0 1.380
15 0 23 0 0.16030 3.61E-10 0.000183 0 1.436

Optimization Results

Iterations 15 Function Calls 24
Jacobian Calls 16 Active Constraints 0
Objective Function 0.1603035477 Max Abs Gradient Element 0.0001826654
Lambda 0 Actual Over Pred Change 1.43562251
Radius 0.0010320614

GCONV convergence criterion satisfied.
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Output 19.2.1. (continued)

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.1603
Goodness of Fit Index (GFI) 0.9530
GFI Adjusted for Degrees of Freedom (AGFI) 0.0120
Root Mean Square Residual (RMR) 2.0653
Parsimonious GFI (Mulaik, 1989) 0.0635
Chi-Square 3.0458
Chi-Square DF 1
Pr > Chi-Square 0.0809
Independence Model Chi-Square 534.27
Independence Model Chi-Square DF 15
RMSEA Estimate 0.3281
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.7777
ECVI Estimate 1.8270
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 3.3493
Probability of Close Fit 0.0882
Bentler’s Comparative Fit Index 0.9961
Normal Theory Reweighted LS Chi-Square 2.8142
Akaike’s Information Criterion 1.0458
Bozdogan’s (1987) CAIC -0.9500
Schwarz’s Bayesian Criterion 0.0500
McDonald’s (1989) Centrality 0.9501
Bentler & Bonett’s (1980) Non-normed Index 0.9409
Bentler & Bonett’s (1980) NFI 0.9943
James, Mulaik, & Brett (1982) Parsimonious NFI 0.0663
Z-Test of Wilson & Hilferty (1931) 1.4250
Bollen (1986) Normed Index Rho1 0.9145
Bollen (1988) Non-normed Index Delta2 0.9962
Hoelter’s (1983) Critical N 25

Output 19.2.1. (continued)

Covariance Structure Analysis: Maximum Likelihood Estimation

Q = -0.2295*P + 0.3100*D + 93.6193*Intercept + 1.0000 E1
beta1 gamma1 alphal

P = 4.2140*Q + -0.9305*F + -1.5579*Y + -218.9*Intercept + 1.0000 E2
_b gamma2_b gamma3_b alpha2_b
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Output 19.2.1. (continued)

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Variable Parameter Estimate

D 10154
F 9989
Y 151.05263
Intercept 1.05263
E1 eps1 3.51274
E2 eps2 105.06746

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate

D F 9994
D Y 1101
F Y 1046
D Intercept 102.66842
F Intercept 101.71053
Y Intercept 11.05263
E1 E2 eps3 -18.87270
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Output 19.2.1. (continued)

Covariance Structure Analysis: Maximum Likelihood Estimation

Q = -0.2278*P + 0.3016*D + 0.9272*Intercept + 0.0181 E1
beta1 gamma1 alphal

P = 4.2467*Q + -0.9048*F + -0.1863*Y + -2.1849*Intercept + 0.0997 E2
_b gamma2_b gamma3_b alpha2_b

Squared Multiple Correlations

Error Total
Variable Variance Variance R-Square

1 Q 3.51274 10730 0.9997
2 P 105.06746 10565 0.9901

Correlations Among Exogenous Variables

Var1 Var2 Parameter Estimate

D F 0.99237
D Y 0.88903
F Y 0.85184
D Intercept 0.99308
F Intercept 0.99188
Y Intercept 0.87652
E1 E2 eps3 -0.98237

Additional PARMS and Dependent Parameters

The Number of Dependent Parameters is 4

Standard
Parameter Estimate Error t Value

alpha2 51.94453 . .
beta2 0.23731 . .
gamma2 0.22082 . .
gamma3 0.36971 . .
_b 4.21397 . .
gamma2_b -0.93053 . .
gamma3_b -1.55794 . .
alpha2_b -218.89288 . .

You can obtain almost equivalent results by applying the SAS/ETS procedure
SYSLIN on this problem.

Example 19.3. Second-Order Confirmatory Factor Analysis

A second-order confirmatory factor analysis model is applied to a correlation matrix
of Thurstone reported by McDonald (1985). Using the LINEQS statement, the three-
term second-order factor analysis model is specified in equations notation. The first-
order loadings for the three factors,F1, F2, andF3, each refer to three variables,
X1-X3, X4-X6, andX7-X9. One second-order factor,F4, reflects the correlations
among the three first-order factors. The second-order factor correlation matrixP is
defined as a1 × 1 identity matrix. Choosing the second-order uniqueness matrix
U2 as a diagonal matrix with parametersU21-U23 gives an unidentified model. To
compute identified maximum likelihood estimates, the matrixU2 is defined as a3×3
identity matrix. The following code generates results that are partially displayed in
Output 19.3.1.
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Data Thurst(TYPE=CORR);
Title "Example of THURSTONE resp. McDONALD (1985, p.57, p.105)";

_TYPE_ = ’CORR’; Input _NAME_ $ Obs1-Obs9;
Label Obs1=’Sentences’ Obs2=’Vocabulary’ Obs3=’Sentence Completion’

Obs4=’First Letters’ Obs5=’Four-letter Words’ Obs6=’Suffices’
Obs7=’Letter series’ Obs8=’Pedigrees’ Obs9=’Letter Grouping’;

Datalines;
Obs1 1. . . . . . . . .
Obs2 .828 1. . . . . . . .
Obs3 .776 .779 1. . . . . . .
Obs4 .439 .493 .460 1. . . . . .
Obs5 .432 .464 .425 .674 1. . . . .
Obs6 .447 .489 .443 .590 .541 1. . . .
Obs7 .447 .432 .401 .381 .402 .288 1. . .
Obs8 .541 .537 .534 .350 .367 .320 .555 1. .
Obs9 .380 .358 .359 .424 .446 .325 .598 .452 1.
;

proc calis data=Thurst method=max edf=212 pestim se;
Title2 "Identified Second Order Confirmatory Factor Analysis";
Title3 "C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide";
Lineqs

Obs1 = X1 F1 + E1,
Obs2 = X2 F1 + E2,
Obs3 = X3 F1 + E3,
Obs4 = X4 F2 + E4,
Obs5 = X5 F2 + E5,
Obs6 = X6 F2 + E6,
Obs7 = X7 F3 + E7,
Obs8 = X8 F3 + E8,
Obs9 = X9 F3 + E9,
F1 = X10 F4 + E10,
F2 = X11 F4 + E11,
F3 = X12 F4 + E12;

Std
F4 = 1. ,
E1-E9 = U11-U19 ,
E10-E12 = 3 * 1.;

Bounds
0. <= U11-U19;

run;
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Output 19.3.1. Second-Order Confirmatory Factor Analysis

Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 21
Functions (Observations) 45
Lower Bounds 9
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 0.7151823452
Max Abs Gradient Element 0.4067179803 Radius 2.2578762496

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Lambda Change

1 0 2 0 0.23113 0.4840 0.1299 0 1.363
2 0 3 0 0.18322 0.0479 0.0721 0 1.078
3 0 4 0 0.18051 0.00271 0.0200 0 1.006
4 0 5 0 0.18022 0.000289 0.00834 0 1.093
5 0 6 0 0.18018 0.000041 0.00251 0 1.201
6 0 7 0 0.18017 6.523E-6 0.00114 0 1.289
7 0 8 0 0.18017 1.085E-6 0.000388 0 1.347
8 0 9 0 0.18017 1.853E-7 0.000173 0 1.380
9 0 10 0 0.18017 3.208E-8 0.000063 0 1.399

10 0 11 0 0.18017 5.593E-9 0.000028 0 1.408
11 0 12 0 0.18017 9.79E-10 0.000011 0 1.414

Optimization Results

Iterations 11 Function Calls 13
Jacobian Calls 12 Active Constraints 0
Objective Function 0.1801712147 Max Abs Gradient Element 0.0000105805
Lambda 0 Actual Over Pred Change 1.4135921728
Radius 0.0002026368

GCONV convergence criterion satisfied.
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Output 19.3.1. (continued)

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.1802
Goodness of Fit Index (GFI) 0.9596
GFI Adjusted for Degrees of Freedom (AGFI) 0.9242
Root Mean Square Residual (RMR) 0.0436
Parsimonious GFI (Mulaik, 1989) 0.6397
Chi-Square 38.1963
Chi-Square DF 24
Pr > Chi-Square 0.0331
Independence Model Chi-Square 1101.9
Independence Model Chi-Square DF 36
RMSEA Estimate 0.0528
RMSEA 90% Lower Confidence Limit 0.0153
RMSEA 90% Upper Confidence Limit 0.0831
ECVI Estimate 0.3881
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.4888
Probability of Close Fit 0.4088
Bentler’s Comparative Fit Index 0.9867
Normal Theory Reweighted LS Chi-Square 40.1947
Akaike’s Information Criterion -9.8037
Bozdogan’s (1987) CAIC -114.4747
Schwarz’s Bayesian Criterion -90.4747
McDonald’s (1989) Centrality 0.9672
Bentler & Bonett’s (1980) Non-normed Index 0.9800
Bentler & Bonett’s (1980) NFI 0.9653
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6436
Z-Test of Wilson & Hilferty (1931) 1.8373
Bollen (1986) Normed Index Rho1 0.9480
Bollen (1988) Non-normed Index Delta2 0.9868
Hoelter’s (1983) Critical N 204
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Output 19.3.1. (continued)

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

Obs1 = 0.5151*F1 + 1.0000 E1
Std Err 0.0629 X1
t Value 8.1868
Obs2 = 0.5203*F1 + 1.0000 E2
Std Err 0.0634 X2
t Value 8.2090
Obs3 = 0.4874*F1 + 1.0000 E3
Std Err 0.0608 X3
t Value 8.0151
Obs4 = 0.5211*F2 + 1.0000 E4
Std Err 0.0611 X4
t Value 8.5342
Obs5 = 0.4971*F2 + 1.0000 E5
Std Err 0.0590 X5
t Value 8.4213
Obs6 = 0.4381*F2 + 1.0000 E6
Std Err 0.0560 X6
t Value 7.8283
Obs7 = 0.4524*F3 + 1.0000 E7
Std Err 0.0660 X7
t Value 6.8584
Obs8 = 0.4173*F3 + 1.0000 E8
Std Err 0.0622 X8
t Value 6.7135
Obs9 = 0.4076*F3 + 1.0000 E9
Std Err 0.0613 X9
t Value 6.6484

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = 1.4438*F4 + 1.0000 E10
Std Err 0.2565 X10
t Value 5.6282
F2 = 1.2538*F4 + 1.0000 E11
Std Err 0.2114 X11
t Value 5.9320
F3 = 1.4065*F4 + 1.0000 E12
Std Err 0.2689 X12
t Value 5.2307
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Output 19.3.1. (continued)

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

F4 1.00000
E1 U11 0.18150 0.02848 6.37
E2 U12 0.16493 0.02777 5.94
E3 U13 0.26713 0.03336 8.01
E4 U14 0.30150 0.05102 5.91
E5 U15 0.36450 0.05264 6.93
E6 U16 0.50642 0.05963 8.49
E7 U17 0.39032 0.05934 6.58
E8 U18 0.48138 0.06225 7.73
E9 U19 0.50509 0.06333 7.98
E10 1.00000
E11 1.00000
E12 1.00000

Output 19.3.1. (continued)

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

Obs1 = 0.9047*F1 + 0.4260 E1
X1

Obs2 = 0.9138*F1 + 0.4061 E2
X2

Obs3 = 0.8561*F1 + 0.5168 E3
X3

Obs4 = 0.8358*F2 + 0.5491 E4
X4

Obs5 = 0.7972*F2 + 0.6037 E5
X5

Obs6 = 0.7026*F2 + 0.7116 E6
X6

Obs7 = 0.7808*F3 + 0.6248 E7
X7

Obs8 = 0.7202*F3 + 0.6938 E8
X8

Obs9 = 0.7035*F3 + 0.7107 E9
X9

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = 0.8221*F4 + 0.5694 E10
X10

F2 = 0.7818*F4 + 0.6235 E11
X11

F3 = 0.8150*F4 + 0.5794 E12
X12
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Output 19.3.1. (continued)

Identified Second Order Confirmatory Factor Analysis
C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

Covariance Structure Analysis: Maximum Likelihood Estimation

Squared Multiple Correlations

Error Total
Variable Variance Variance R-Square

1 Obs1 0.18150 1.00000 0.8185
2 Obs2 0.16493 1.00000 0.8351
3 Obs3 0.26713 1.00000 0.7329
4 Obs4 0.30150 1.00000 0.6985
5 Obs5 0.36450 1.00000 0.6355
6 Obs6 0.50642 1.00000 0.4936
7 Obs7 0.39032 1.00000 0.6097
8 Obs8 0.48138 1.00000 0.5186
9 Obs9 0.50509 1.00000 0.4949

10 F1 1.00000 3.08452 0.6758
11 F2 1.00000 2.57213 0.6112
12 F3 1.00000 2.97832 0.6642

To compute McDonald’s unidentified model, you would have to change the STD and
BOUNDS statements to include three more parameters:

Std
F4 = 1. ,
E1-E9 = U11-U19 ,
E10-E12 = U21-U23 ;

Bounds
0. <= U11-U19,
0. <= U21-U23;

The unidentified model is indicated in the output by an analysis of the linear depen-
dencies in the approximate Hessian matrix (not shown). Because the information ma-
trix is singular, standard errors are computed based on a Moore-Penrose inverse. The
results computed by PROC CALIS differ from those reported by McDonald (1985).
In the case of an unidentified model, the parameter estimates are not unique.
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To specify the identified model using the COSAN model statement, you can use the
following statements:

Title2 "Identified Second Order Confirmatory Factor Analysis Using COSAN";
Title3 "C = F1*F2*P*F2’*F1’ + F1*U2*F1’ + U1, With P=U2=Ide";
proc calis data=Thurst method=max edf=212 pestim se;

Cosan F1(3) * F2(1) * P(1,Ide) + F1(3) * U2(3,Ide) + U1(9,Dia);
Matrix F1

[ ,1] = X1-X3,
[ ,2] = 3 * 0. X4-X6,
[ ,3] = 6 * 0. X7-X9;

Matrix F2
[ ,1] = X10-X12;

Matrix U1
[1,1] = U11-U19;

Bounds
0. <= U11-U19;

run;

Because PROC CALIS cannot compute initial estimates for a model specified by the
general COSAN statement, this analysis may require more iterations than one using
the LINEQS statement, depending on the precision of the processor.

Example 19.4. Linear Relations Among Factor Loadings

The correlation matrix from Kinzer and Kinzer (N=326) is used by Guttman (1957)
as an example that yields an approximate simplex. McDonald (1980) uses this data
set as an example of factor analysis where he supposes that the loadings of the second
factor are a linear function of the loadings on the first factor, for example

bj2 = α+ βbj1, j = 1, . . . , n

This example is also discussed in Browne (1982). The matrix specification of the
model is

C = F1F′
1

with

F1 =



b11 α+ βb11 u11

b21 α+ βb21 u22

b31 α+ βb31 u33

b41 α+ βb41 u44

b51 α+ βb51 u55

b61 α+ βb61 u66
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This example is recomputed by PROC CALIS to illustrate a simple application of
the COSAN model statement combined with program statements. This example also
serves to illustrate the identification problem.

Data Kinzer(TYPE=CORR);
Title "Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)";

_TYPE_ = ’CORR’; INPUT _NAME_ $ Obs1-Obs6;
Datalines;

Obs1 1.00 . . . . .
Obs2 .51 1.00 . . . .
Obs3 .46 .51 1.00 . . .
Obs4 .46 .47 .54 1.00 . .
Obs5 .40 .39 .49 .57 1.00 .
Obs6 .33 .39 .47 .45 .56 1.00

;

In a first test run of PROC CALIS, the same model is used as reported in McDonald
(1980). Using the Levenberg-Marquardt optimization algorithm, this example speci-
fies maximum likelihood estimation in the following code:

proc calis data=Kinzer method=max outram=ram nobs=326 noprint;
Title2 "Linearly Related Factor Analysis, (Mcdonald,1980)";
Title3 "Identification Problem";
Cosan F(8,Gen) * I(8,Ide);
Matrix F

[ ,1]= X1-X6,
[ ,2]= X7-X12,
[1,3]= X13-X18;

Parms Alfa = .5 Beta = -.5;
X7 = Alfa + Beta * X1;
X8 = Alfa + Beta * X2;
X9 = Alfa + Beta * X3;
X10 = Alfa + Beta * X4;
X11 = Alfa + Beta * X5;
X12 = Alfa + Beta * X6;

Bounds X13-X18 >= 0.;
Vnames F Fact1 Fact2 Uvar1-Uvar6;

run;

The pattern of the initial values is displayed in vector and in matrix form. You should
always read this output very carefully, particularly when you use your own program-
ming statements to constrain the matrix elements. The vector form shows the map-
ping of the model parameters to indices of the vectorX that is optimized. The matrix
form indicates parameter elements that are constrained by program statements by in-
dices ofX in angle brackets ( < > ). An asterisk trailing the iteration number in the
displayed optimization history of the Levenberg-Marquardt algorithm indicates that
the optimization process encountered a singular Hessian matrix. When this happens,
especially in the last iterations, the model may not be properly identified. The com-
putedχ2 value of 10.337 for 7 degrees of freedom and the computed unique loadings
agree with those reported by McDonald (1980), but the maximum likelihood esti-
mates for the common factor loadings differ to some degree. The common factor
loadings can be subjected to transformations that do not increase the value of the
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optimization criterion because the problem is not identified. An estimation problem
that is not fully identified can lead to different solutions caused only by different ini-
tial values, different optimization techniques, or computers with different machine
precision or floating-point arithmetic.

To overcome the identification problem in the first model, restart PROC CALIS with
a simple modification to the model in which the former parameter X1 is fixed to 0.
This leads to 8 instead of 7 degrees of freedom. The following code produces results
that are partially displayed inOutput 19.4.1.

Data ram2(TYPE=RAM);
set ram;
if _type_ = ’ESTIM’ then
if _name_ = ’X1’ then do;

_name_ = ’ ’; _estim_ = 0.;
end;

run;

proc calis data=Kinzer method=max inram=ram2 nobs=326;
Title2 "Linearly Related Factor Analysis, (Mcdonald,1980)";
Title3 "Identified Model";
Parms Alfa = .5 Beta = -.5;

X7 = Alfa;
X8 = Alfa + Beta * X2;
X9 = Alfa + Beta * X3;
X10 = Alfa + Beta * X4;
X11 = Alfa + Beta * X5;
X12 = Alfa + Beta * X6;

Bounds X13-X18 >= 0.;
run;
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Output 19.4.1. Linearly Related Factor Analysis: Identification Problem

Linearly Related Factor Analysis, (Mcdonald,1980)
Identified Model

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

COSAN Model Statement

Matrix Rows Columns ------Matrix Type-------

Term 1 1 F 6 8 GENERAL
2 I 8 8 IDENTITY

Linearly Related Factor Analysis, (Mcdonald,1980)
Identified Model

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 13
Functions (Observations) 21
Lower Bounds 6
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 0.3233206993
Max Abs Gradient Element 2.2941016639 Radius 5.9649770297
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Output 19.4.1. (continued)

Linearly Related Factor Analysis, (Mcdonald,1980)
Identified Model

Covariance Structure Analysis: Maximum Likelihood Estimation

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Lambda Change

1 0 2 0 0.07869 0.2446 0.3945 0 0.556
2 0 3 0 0.03326 0.0454 0.0652 0 1.197
3 0 4 0 0.03185 0.00142 0.00473 0 1.047
4 0 5 0 0.03181 0.000033 0.00239 0 0.761
5 0 6 0 0.03181 4.182E-6 0.000790 0 0.551
6 0 7 0 0.03181 1.007E-6 0.000506 0 0.514
7 0 8 0 0.03181 2.661E-7 0.000213 0 0.504
8 0 9 0 0.03181 7.129E-8 0.000134 0 0.497
9 0 10 0 0.03181 1.921E-8 0.000057 0 0.492

10 0 11 0 0.03181 5.197E-9 0.000036 0 0.488
11 0 12 0 0.03181 1.41E-9 0.000015 0 0.485
12 0 13 0 0.03181 3.83E-10 9.489E-6 0 0.483

Optimization Results

Iterations 12 Function Calls 14
Jacobian Calls 13 Active Constraints 0
Objective Function 0.0318073951 Max Abs Gradient Element 9.4889247E-6
Lambda 0 Actual Over Pred Change 0.48329327
Radius 0.0002173982

ABSGCONV convergence criterion satisfied.
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Output 19.4.1. (continued)

Linearly Related Factor Analysis, (Mcdonald,1980)
Identified Model

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0318
Goodness of Fit Index (GFI) 0.9897
GFI Adjusted for Degrees of Freedom (AGFI) 0.9730
Root Mean Square Residual (RMR) 0.0409
Parsimonious GFI (Mulaik, 1989) 0.5278
Chi-Square 10.3374
Chi-Square DF 8
Pr > Chi-Square 0.2421
Independence Model Chi-Square 682.87
Independence Model Chi-Square DF 15
RMSEA Estimate 0.0300
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0756
ECVI Estimate 0.1136
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.1525
Probability of Close Fit 0.7137
Bentler’s Comparative Fit Index 0.9965
Normal Theory Reweighted LS Chi-Square 10.1441
Akaike’s Information Criterion -5.6626
Bozdogan’s (1987) CAIC -43.9578
Schwarz’s Bayesian Criterion -35.9578
McDonald’s (1989) Centrality 0.9964
Bentler & Bonett’s (1980) Non-normed Index 0.9934
Bentler & Bonett’s (1980) NFI 0.9849
James, Mulaik, & Brett (1982) Parsimonious NFI 0.5253
Z-Test of Wilson & Hilferty (1931) 0.7019
Bollen (1986) Normed Index Rho1 0.9716
Bollen (1988) Non-normed Index Delta2 0.9965
Hoelter’s (1983) Critical N 489
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Output 19.4.1. (continued)

Linearly Related Factor Analysis, (Mcdonald,1980)
Identified Model

Covariance Structure Analysis: Maximum Likelihood Estimation

Estimated Parameter Matrix F[6:8]
Standard Errors and t Values

General Matrix

Fact1 Fact2 Uvar1 Uvar2 Uvar3 Uvar4 Uvar5 Uvar6

Obs1 0 0.7151 0.7283 0 0 0 0 0
0 0.0405 0.0408 0 0 0 0 0
0 17.6382 17.8276 0 0 0 0 0

<X7> [X13]

Obs2 -0.0543 0.7294 0 0.6707 0 0 0 0
0.1042 0.0438 0 0.0472 0 0 0 0

-0.5215 16.6655 0 14.2059 0 0 0 0
[X2] <X8> [X14]

Obs3 0.1710 0.6703 0 0 0.6983 0 0 0
0.0845 0.0396 0 0 0.0324 0 0 0
2.0249 16.9077 0 0 21.5473 0 0 0

[X3] <X9> [X15]

Obs4 0.2922 0.6385 0 0 0 0.6876 0 0
0.0829 0.0462 0 0 0 0.0319 0 0
3.5224 13.8352 0 0 0 21.5791 0 0

[X4] <X10> [X16]

Obs5 0.5987 0.5582 0 0 0 0 0.5579 0
0.1003 0.0730 0 0 0 0 0.0798 0
5.9665 7.6504 0 0 0 0 6.9937 0

[X5] <X11> [X17]

Obs6 0.4278 0.6029 0 0 0 0 0 0.7336
0.0913 0.0586 0 0 0 0 0 0.0400
4.6844 10.2929 0 0 0 0 0 18.3580

[X6] <X12> [X18]

Output 19.4.1. (continued)

Linearly Related Factor Analysis, (Mcdonald,1980)
Identified Model

Covariance Structure Analysis: Maximum Likelihood Estimation

Additional PARMS and Dependent Parameters

The Number of Dependent Parameters is 6

Standard
Parameter Estimate Error t Value

Alfa 0.71511 0.04054 17.64
Beta -0.26217 0.12966 -2.02
X7 0.71511 0.04054 17.64
X8 0.72936 0.04376 16.67
X9 0.67027 0.03964 16.91
X10 0.63851 0.04615 13.84
X11 0.55815 0.07296 7.65
X12 0.60295 0.05858 10.29
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The lambda value of the iteration history indicates that Newton steps can always be
performed. Because no singular Hessian matrices (which can slow down the conver-
gence rate considerably) are computed, this example needs just 12 iterations com-
pared to the 17 needed in the previous example. Note that the number of iterations
may be machine-dependent. The value of the fit function, the residuals, and theχ2

value agree with the values obtained in fitting the first model. This indicates that this
second model is better identified than the first one. It is fully identified, as indicated
by the fact that the Hessian matrix is nonsingular.

Example 19.5. Ordinal Relations Among Factor Loadings

McDonald (1980) uses the same data set to compute a factor analysis with ordinally
constrained factor loadings. The results of the linearly constrained factor analysis
show that the loadings of the two factors are ordered as 2, 1, 3, 4, 6, 5. McDonald
(1980) then tests the hypothesis that the factor loadings are all nonnegative and can
be ordered in the following manner:

b11 ≤ b21 ≤ b31 ≤ b41 ≤ b51 ≤ b61

b12 ≥ b22 ≥ b32 ≥ b42 ≥ b52 ≥ b62

This example is recomputed by PROC CALIS to illustrate a further application of
the COSAN model statement combined with program statements. The same identi-
fication problem as inExample 19.4on page 725 occurs here. The following model
specification describes an unidentified model:

proc calis data=Kinzer method=max outram=ram tech=nr nobs=326 noprint;
Title2 "Ordinally Related Factor Analysis, (Mcdonald,1980)";
Title3 "Identification Problem";
Cosan F(8,Gen) * I(8,Ide);

MATRIX F
[,1] = x1-x6,
[,2] = x7-x12,
[1,3] = x13-x18;

PARAMETERS t1-t10=1.;
x2 = x1 + t1 * t1;
x3 = x2 + t2 * t2;
x4 = x3 + t3 * t3;
x5 = x4 + t4 * t4;
x6 = x5 + t5 * t5;
x11 = x12 + t6 * t6;
x10 = x11 + t7 * t7;
x9 = x10 + t8 * t8;
x8 = x9 + t9 * t9;
x7 = x8 + t10 * t10;
Bounds x13-x18 >= 0.;
Vnames F Fact1 Fact2 Uvar1-Uvar6;

run;
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You can specify the same model with the LINCON statement:

proc calis data=Kinzer method=max tech=lm edf=325;
Title3 "Identified Problem 2";

cosan f(8,gen)*I(8,ide);
matrix F

[,1] = x1-x6,
[,2] = x7-x12,
[1,3] = x13-x18;

lincon x1 <= x2,
x2 <= x3,
x3 <= x4,
x4 <= x5,
x5 <= x6,
x7 >= x8,
x8 >= x9,
x9 >= x10,
x10 >= x11,
x11 >= x12;

Bounds x13-x18 >= 0.;
Vnames F Fact1 Fact2 Uvar1-Uvar6;
run;

To have an identified model, the loading,b11 (x1), is fixed at 0. The information in the
OUTRAM= data set (the data setram), produced by the unidentified model, can be
used to specify the identified model. However, becausex1 is now a fixed constant in
the identified model, it should not have a parameter name in the new analysis. Thus,
the data setram is modified as follows:

data ram2(type=ram);
set ram;
if _name_ = ’x1’ then do;

_name_ = ’ ’; _estim_ = 0.;
end;

run;

The data setram2 is now an OUTRAM= data set in whichx1 is no longer a pa-
rameter. PROC CALIS reads the information (that is, the set of parameters and the
model specification) in the data setram2 for the identified model. As displayed in
the following code, you can use the PARMS statement to specify the desired ordinal
relationships between the parameters.



734 � Chapter 19. The CALIS Procedure

proc calis data=Kinzer method=max inram=ram2 tech=nr nobs=326;
title2 "Ordinally Related Factor Analysis, (Mcdonald,1980)";
title3 "Identified Model with X1=0";
parms t1-t10= 10 * 1.;

x2 = + t1 * t1;
x3 = x2 + t2 * t2;
x4 = x3 + t3 * t3;
x5 = x4 + t4 * t4;
x6 = x5 + t5 * t5;
x11 = x12 + t6 * t6;
x10 = x11 + t7 * t7;
x9 = x10 + t8 * t8;
x8 = x9 + t9 * t9;
x7 = x8 + t10 * t10;

bounds x13-x18 >= 0.;
run;
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Selected output for the identified model is displayed inOutput 19.5.1.

Output 19.5.1. Factor Analysis with Ordinal Constraints

Ordinally Related Factor Analysis, (Mcdonald,1980)
Identified Model with X1=0

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 17
Functions (Observations) 21
Lower Bounds 6
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 5.2552270182
Max Abs Gradient Element 0.8821788922

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Ridge Change

1 0 2 0 3.14901 2.1062 1.0712 0 2.226
2 0 3 0 1.42725 1.7218 1.0902 0 2.064
3 0 4 0 0.41661 1.0106 0.7472 0 1.731
4 0 5 0 0.09260 0.3240 0.3365 0 1.314
5 0 6 0 0.09186 0.000731 0.3880 0 0.0123
6 0 8 0 0.04570 0.0462 0.2870 0.0313 0.797
7 0 10 0 0.03269 0.0130 0.0909 0.0031 0.739
8 0 16 0 0.02771 0.00498 0.0890 0.0800 0.682
9 0 17 0 0.02602 0.00168 0.0174 0.0400 0.776

10 0 19 0 0.02570 0.000323 0.0141 0.0800 0.630
11 0 21 0 0.02560 0.000103 0.00179 0.160 1.170
12 0 23 0 0.02559 7.587E-6 0.000670 0.160 1.423
13 0 24 0 0.02559 2.993E-6 0.000402 0.0400 1.010
14 0 27 0 0.02559 1.013E-6 0.000206 0.160 1.388
15 0 28 0 0.02559 1.889E-7 0.000202 0.0400 0.530
16 0 30 0 0.02559 1.803E-7 0.000097 0.0800 0.630
17 0 32 0 0.02559 4.845E-8 0.000035 0.160 1.340
18 0 33 0 0.02559 1.837E-9 0.000049 0.0400 0.125
19 0 35 0 0.02559 9.39E-9 0.000024 0.0800 0.579
20 0 37 0 0.02559 2.558E-9 6.176E-6 0.160 1.305

Optimization Results

Iterations 20 Function Calls 38
Jacobian Calls 21 Active Constraints 0
Objective Function 0.0255871615 Max Abs Gradient Element 6.1764582E-6
Ridge 0.04 Actual Over Pred Change 1.3054368156

ABSGCONV convergence criterion satisfied.
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Output 19.5.1. (continued)

Ordinally Related Factor Analysis, (Mcdonald,1980)
Identified Model with X1=0

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0256
Goodness of Fit Index (GFI) 0.9916
GFI Adjusted for Degrees of Freedom (AGFI) 0.9557
Root Mean Square Residual (RMR) 0.0180
Parsimonious GFI (Mulaik, 1989) 0.2644
Chi-Square 8.3158
Chi-Square DF 4
Pr > Chi-Square 0.0807
Independence Model Chi-Square 682.87
Independence Model Chi-Square DF 15
RMSEA Estimate 0.0576
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.1133
ECVI Estimate 0.1325
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.1711
Probability of Close Fit 0.3399
Bentler’s Comparative Fit Index 0.9935
Normal Theory Reweighted LS Chi-Square 8.2901
Akaike’s Information Criterion 0.3158
Bozdogan’s (1987) CAIC -18.8318
Schwarz’s Bayesian Criterion -14.8318
McDonald’s (1989) Centrality 0.9934
Bentler & Bonett’s (1980) Non-normed Index 0.9758
Bentler & Bonett’s (1980) NFI 0.9878
James, Mulaik, & Brett (1982) Parsimonious NFI 0.2634
Z-Test of Wilson & Hilferty (1931) 1.4079
Bollen (1986) Normed Index Rho1 0.9543
Bollen (1988) Non-normed Index Delta2 0.9936
Hoelter’s (1983) Critical N 372
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Output 19.5.1. (continued)

Ordinally Related Factor Analysis, (Mcdonald,1980)
Identified Model with X1=0

Covariance Structure Analysis: Maximum Likelihood Estimation

Estimated Parameter Matrix F[6:8]
Standard Errors and t Values

General Matrix

Fact1 Fact2 Uvar1 Uvar2 Uvar3 Uvar4 Uvar5 Uvar6

Obs1 0 0.7101 0.7131 0 0 0 0 0
0 0.0435 0.0404 0 0 0 0 0
0 16.3317 17.6427 0 0 0 0 0

<x7> [x13]

Obs2 0.0261 0.7101 0 0.6950 0 0 0 0
0.0875 0.0435 0 0.0391 0 0 0 0
0.2977 16.3317 0 17.7571 0 0 0 0

<x2> <x8> [x14]

Obs3 0.2382 0.6827 0 0 0.6907 0 0 0
0.0851 0.0604 0 0 0.0338 0 0 0
2.7998 11.3110 0 0 20.4239 0 0 0

<x3> <x9> [x15]

Obs4 0.3252 0.6580 0 0 0 0.6790 0 0
0.0823 0.0621 0 0 0 0.0331 0 0
3.9504 10.5950 0 0 0 20.5361 0 0

<x4> <x10> [x16]

Obs5 0.5395 0.5528 0 0 0 0 0.6249 0
0.0901 0.0705 0 0 0 0 0.0534 0
5.9887 7.8359 0 0 0 0 11.7052 0

<x5> <x11> [x17]

Obs6 0.5395 0.4834 0 0 0 0 0 0.7005
0.0918 0.0726 0 0 0 0 0 0.0524
5.8776 6.6560 0 0 0 0 0 13.3749

<x6> [x12] [x18]
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Output 19.5.1. (continued)

Ordinally Related Factor Analysis, (Mcdonald,1980)
Identified Model with X1=0

Covariance Structure Analysis: Maximum Likelihood Estimation

Additional PARMS and Dependent Parameters

The Number of Dependent Parameters is 10

Standard
Parameter Estimate Error t Value

t1 0.16143 0.27111 0.60
t2 0.46060 0.09289 4.96
t3 0.29496 0.13702 2.15
t4 0.46297 0.10756 4.30
t5 0.0000522 1311 0.00
t6 0.26347 0.12203 2.16
t7 0.32430 0.09965 3.25
t8 0.15721 0.21134 0.74
t9 0.16543 0.20537 0.81
t10 -4.2528E-7 0.47736 -0.00
x7 0.71007 0.04348 16.33
x2 0.02606 0.08753 0.30
x8 0.71007 0.04348 16.33
x3 0.23821 0.08508 2.80
x9 0.68270 0.06036 11.31
x4 0.32521 0.08232 3.95
x10 0.65799 0.06210 10.60
x5 0.53955 0.09009 5.99
x11 0.55282 0.07055 7.84
x6 0.53955 0.09180 5.88

By fixing the loadingb11 (x1) to constant 0, you obtainχ2 = 8.316 on df = 4
(p < .09). McDonald reports the sameχ2 value, but ondf = 3, and thus, he obtains
a smallerp-value. An analysis without the fixed loading shows typical signs of an
unidentified problem: after more iterations it leads to a parameter set with aχ2 value
of 8.174 ondf = 3. A singular Hessian matrix occurs.

The singular Hessian matrix of the unidentified problem slows down the convergence
rate of the Levenberg-Marquardt algorithm considerably. Compared to the unidenti-
fied problem with 30 iterations, the identified problem needs only 20 iterations. Note
that the number of iterations may depend on the precision of the processor.
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The same model can also be specified using the LINCON statement for linear con-
straints:

proc calis data=Kinzer method=max tech=lm edf=325;
Title3 "Identified Model 2";
cosan f(8,gen)*I(8,ide);
matrix f

[,1] = 0. x2-x6,
[,2] = x7-x12,
[1,3] = x13-x18;

lincon x2 <= x3,
x3 <= x4,
x4 <= x5,
x5 <= x6,
x7 >= x8,
x8 >= x9,
x9 >= x10,
x10 >= x11,
x11 >= x12;

bounds x2 x13-x18 >= 0.;
run;

Example 19.6. Longitudinal Factor Analysis
The following example (McDonald 1980) illustrates both the ability of PROC CALIS
to formulate complex covariance structure analysis problems by the generalized
COSAN matrix model and the use of program statements to impose nonlinear con-
straints on the parameters. The example is a longitudinal factor analysis using the
Swaminathan (1974) model. Form = 3 tests,k = 3 occasions, andr = 2 factors the
matrix model is formulated in the section“First-Order Autoregressive Longitudinal
Factor Model”on page 554 as follows:

C = F1F2F3LF−1
3 F−1

2 P(F−1
2 )′(F−1

3 )′L′F′
3F

′
2F

′
1 + U2

F1 =

B1

B2

B3

 , F2 =

 I2
D2

D2

 , F3 =

 I2
I2

D3


L =

 I2 o o
I2 I2 o
I2 I2 I2

 , P =

 I2
S2

S3

 , U =

U11 U12 U13

U21 U22 U23

U31 U32 U33


S2 = I2 −D2

2, S3 = I2 −D2
3

The Swaminathan longitudinal factor model assumes that the factor scores for each
(m) common factor change from occasion to occasion (k) according to a first-
order autoregressive scheme. The matrixF1 contains thek factor loading matrices
B1,B2,B3 (each isn ×m). The matricesD2,D3,S2,S3 andUij , i, j = 1, . . . , k,
are diagonal, and the matricesDi andSi, i = 2, . . . , k, are subjected to the constraint

Si + D2
i = I
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Since the constructed correlation matrix given in McDonald’s (1980) paper is singu-
lar, only unweighted least-squares estimates can be computed.

data Mcdon(TYPE=CORR);
Title "Swaminathan’s Longitudinal Factor Model, Data: McDONALD(1980)";
Title2 "Constructed Singular Correlation Matrix, GLS & ML not possible";

_TYPE_ = ’CORR’; INPUT _NAME_ $ Obs1-Obs9;
datalines;

Obs1 1.000 . . . . . . . .
Obs2 .100 1.000 . . . . . . .
Obs3 .250 .400 1.000 . . . . . .
Obs4 .720 .108 .270 1.000 . . . . .
Obs5 .135 .740 .380 .180 1.000 . . . .
Obs6 .270 .318 .800 .360 .530 1.000 . . .
Obs7 .650 .054 .135 .730 .090 .180 1.000 . .
Obs8 .108 .690 .196 .144 .700 .269 .200 1.000 .
Obs9 .189 .202 .710 .252 .336 .760 .350 .580 1.000

;

proc calis data=Mcdon method=ls tech=nr nobs=100;
cosan B(6,Gen) * D1(6,Dia) * D2(6,Dia) * T(6,Low) * D3(6,Dia,Inv)

* D4(6,Dia,Inv) * P(6,Dia) + U(9,Sym);
Matrix B

[ ,1]= X1-X3,
[ ,2]= 0. X4-X5,
[ ,3]= 3 * 0. X6-X8,
[ ,4]= 4 * 0. X9-X10,
[ ,5]= 6 * 0. X11-X13,
[ ,6]= 7 * 0. X14-X15;

Matrix D1
[1,1]= 2 * 1. X16 X17 X16 X17;

Matrix D2
[1,1]= 4 * 1. X18 X19;

Matrix T
[1,1]= 6 * 1.,
[3,1]= 4 * 1.,
[5,1]= 2 * 1.;

Matrix D3
[1,1]= 4 * 1. X18 X19;

Matrix D4
[1,1]= 2 * 1. X16 X17 X16 X17;

Matrix P
[1,1]= 2 * 1. X20-X23;

Matrix U
[1,1]= X24-X32,
[4,1]= X33-X38,
[7,1]= X39-X41;

Bounds 0. <= X24-X32,
-1. <= X16-X19 <= 1.;

X20 = 1. - X16 * X16;
X21 = 1. - X17 * X17;
X22 = 1. - X18 * X18;
X23 = 1. - X19 * X19;

run;
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Because this formulation of Swaminathan’s model in general leads to an unidenti-
fied problem, the results given here are different from those reported by McDonald
(1980). The displayed output of PROC CALIS also indicates that the fitted central
model matricesP andU are not positive definite. The BOUNDS statement constrains
the diagonals of the matricesP andU to be nonnegative, but this cannot preventU
from having three negative eigenvalues. The fact that many of the published results
for more complex models in covariance structure analysis are connected to unidenti-
fied problems implies that more theoretical work should be done to study the general
features of such models.
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Chapter 20
The CANCORR Procedure
Overview

The CANCORR procedure performs canonical correlation, partial canonical correla-
tion, and canonical redundancy analysis.

Canonical correlation is a generalization of multiple correlation for analyzing the
relationship between two sets of variables. In multiple correlation, you examine the
relationship between a linear combination of a set of explanatory variables,X, and a
singleresponse variable,Y. In canonical correlation, you examine the relationship
between linear combinations of the set ofX variables and linear combinations of
a setof Y variables. These linear combinations are calledcanonical variablesor
canonical variates. Either set of variables can be considered explanatory or response
variables, since the statistical model is symmetric in the two sets of variables. Simple
and multiple correlation are special cases of canonical correlation in which one or
both sets contain a single variable.

The CANCORR procedure tests a series of hypotheses that each canonical correlation
and all smaller canonical correlations are zero in the population. PROC CANCORR
uses anF approximation (Rao 1973; Kshirsagar 1972) that gives better small sample
results than the usualχ2 approximation. At least one of the two sets of variables
should have an approximate multivariate normal distribution in order for the proba-
bility levels to be valid.

Both standardized and unstandardized canonical coefficients are computed, as well
as the fourcanonical structurematrices showing correlations between the two sets
of canonical variables and the two sets of original variables. A canonical redundancy
analysis (Stewart and Love 1968; Cooley and Lohnes 1971) can also be done. PROC
CANCORR provides multiple regression analysis options to aid in interpreting the
canonical correlation analysis. You can examine the linear regression of each variable
on the opposite set of variables.

PROC CANCORR can produce a data set containing the scores of each observation
on each canonical variable, and you can use the PRINT procedure to list these values.
A plot of each canonical variable against its counterpart in the other group is often
useful, and you can use PROC PLOT with the output data set to produce these plots.
A second output data set contains the canonical correlations, coefficients, and most
other statistics computed by the procedure.
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Background
Canonical correlation was developed by Hotelling (1935, 1936). The application of
canonical correlation is discussed by Cooley and Lohnes (1971), Tatsuoka (1971),
and Mardia, Kent, and Bibby (1979). One of the best theoretical treatments is given
by Kshirsagar (1972).

Given a set ofp X variables andq Y variables, the CANCORR procedure finds the
linear combinations

w1 = a11x1 + a21x2 + · · · + ap1xp

v1 = b11y1 + b21y2 + · · · + bq1yq

such that the two canonical variables,w1 andv1, have the largest possible correlation.
This maximized correlation between the two canonical variables is the first canonical
correlation. The coefficients of the linear combinations are canonical coefficients or
canonical weights. It is customary to normalize the canonical coefficients so that each
canonical variable has a variance of 1.

PROC CANCORR continues by finding a second set of canonical variables, uncorre-
lated with the first pair, that produces the second highest correlation coefficient. That
is, the second pair of canonical variables is:

w2 = a12x1 + a22x2 + · · · + ap2xp

v2 = b12y1 + b22y2 + · · · + bq2yq

such thatw2 is uncorrelated withw1 andv1, v2 is uncorrelated withw1 andv1, andw2

andv2 have the largest possible correlation subject to these constraints. The process
of constructing canonical variables continues until the number of pairs of canonical
variables ismin(p, q), the number of variables in the smaller group.

Each canonical variable is uncorrelated with all the other canonical variables of ei-
ther set except for the one corresponding canonical variable in the opposite set. The
canonical coefficients are not generally orthogonal, however, so the canonical vari-
ables do not represent jointly perpendicular directions through the space of the origi-
nal variables.

The first canonical correlation is at least as large as the multiple correlation between
any variable and the opposite set of variables. It is possible for the first canonical
correlation to be very large while all the multiple correlations for predicting one of the
original variables from the opposite set of canonical variables are small. Canonical
redundancy analysis (Stewart and Love 1968; Cooley and Lohnes 1971; van den
Wollenberg 1977), examines how well the original variables can be predicted from
the canonical variables.

PROC CANCORR can also perform partial canonical correlation, which is a multi-
variate generalization of ordinary partial correlation (Cooley and Lohnes 1971; Timm
1975). Most commonly-used parametric statistical methods, ranging fromt tests to
multivariate analysis of covariance, are special cases of partial canonical correlation.
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Getting Started

The following example demonstrates how you can use the CANCORR procedure to
calculate and test canonical correlations between two sets of variables.

Suppose you want to determine the degree of correspondence between a set of job
characteristics and measures of employee satisfaction. Using a survey instrument for
employees, you calculate three measures of job satisfaction. With another instrument
designed for supervisors, you calculate the corresponding job characteristics profile.

Your three variables associated with job satisfaction are

• career track satisfaction: employee satisfaction with career direction and the
possibility of future advancement, expressed as a percent

• management and supervisor satisfaction: employee satisfaction with supervi-
sor’s communication and management style, expressed as a percent

• financial satisfaction: employee satisfaction with salary and other benefits, us-
ing a scale measurement from 1 to 10 (1=unsatisfied, 10=satisfied)

The three variables associated with job characteristics are

• task variety: degree of variety involved in tasks, expressed as a percent

• feedback: degree of feedback required in job tasks, expressed as a percent

• autonomy: degree of autonomy required in job tasks, expressed as a percent

The following statements create the SAS data setJobs and request a canonical cor-
relation analysis:

options ls=120;
data Jobs;

input Career Supervisor Finance Variety Feedback Autonomy;
label

Career =’Career Satisfaction’ Variety =’Task Variety’
Supervisor=’Supervisor Satisfaction’ Feedback=’Amount of Feedback’
Finance =’Financial Satisfaction’ Autonomy=’Degree of Autonomy’;

datalines;
72 26 9 10 11 70
63 76 7 85 22 93
96 31 7 83 63 73
96 98 6 82 75 97
84 94 6 36 77 97
66 10 5 28 24 75
31 40 9 64 23 75
45 14 2 19 15 50
42 18 6 33 13 70
79 74 4 23 14 90
39 12 2 37 13 70
54 35 3 23 74 53
60 75 5 45 58 83
63 45 5 22 67 53
;
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proc cancorr data=Jobs
vprefix=Satisfaction wprefix=Characteristics
vname=’Satisfaction Areas’ wname=’Job Characteristics’;
var Career Supervisor Finance;
with Variety Feedback Autonomy;

run;

The DATA= option in the PROC CANCORR statement specifiesJobs as the SAS
data set to be analyzed. The VPREFIX and WPREFIX options specify the prefixes
for naming the canonical variables from the VAR statement and the WITH statement,
respectively. The VNAME option specifies ‘Satisfaction Areas’ to refer to the set
of variables from the VAR statement. Similarly, the WNAME option specifies ‘Job
Characteristics’ to refer to the set of variables from the WITH statement.

The VAR statement defines the first of the two sets of variables to be analyzed as
Career, Supervisor andFinance. The WITH statement defines the second set of
variables to beVariety, Feedback, andAutonomy. The results of this analysis are
displayed inFigure 20.1to Figure 20.4.

The CANCORR Procedure

Canonical Correlation Analysis

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.919412 0.898444 0.042901 0.845318
2 0.418649 0.276633 0.228740 0.175267
3 0.113366 . 0.273786 0.012852

Test of H0: The canonical correlations in the
Eigenvalues of Inv(E)*H current row and all that follow are zero

= CanRsq/(1-CanRsq)
Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F

1 5.4649 5.2524 0.9604 0.9604 0.12593148 2.93 9 19.621 0.0223
2 0.2125 0.1995 0.0373 0.9977 0.81413359 0.49 4 18 0.7450
3 0.0130 0.0023 1.0000 0.98714819 0.13 1 10 0.7257

Figure 20.1. Canonical Correlations, Eigenvalues, and Likelihood Tests

Figure 20.1displays the canonical correlation, adjusted canonical correlation, ap-
proximate standard error, and squared canonical correlation for each pair of canon-
ical variables. The first canonical correlation (the correlation between the first pair
of canonical variables) is 0.9194. This value represents the highest possible correla-
tion between any linear combination of the job satisfaction variables and any linear
combination of the job characteristics variables.

Figure 20.1also lists the likelihood ratio and associated statistics for testing the hy-
pothesis that the canonical correlations in the current row and all that follow are zero.

The first approximateF value of 2.93 corresponds to the test that all three canonical
correlations are zero. Since thep-value is small (0.0223), you would reject the null
hypothesis at the 0.05 level. The second approximateF value of 0.49 corresponds to
the test that both the second and the third canonical correlations are zero. Since the
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p-value is large (0.7450), you would fail to reject the hypothesis and conclude that
only the first canonical correlation is significant.

Figure 20.2lists several multivariate statistics andF test approximations for the null
hypothesis that all canonical correlations are zero. These statistics are described in the
section “Multivariate Tests” inChapter 2, “Introduction to Regression Procedures.”

The CANCORR Procedure

Canonical Correlation Analysis

Multivariate Statistics and F Approximations

S=3 M=-0.5 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.12593148 2.93 9 19.621 0.0223
Pillai’s Trace 1.03343732 1.75 9 30 0.1204
Hotelling-Lawley Trace 5.69042615 4.76 9 9.8113 0.0119
Roy’s Greatest Root 5.46489324 18.22 3 10 0.0002

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Figure 20.2. Multivariate Statistics and Approximate F Tests

The smallp-values for these tests (< 0.05), except for Pillai’s Trace, suggest rejecting
the null hypothesis that all canonical correlations are zero in the population, confirm-
ing the results of the preceding likelihood ratio test (Figure 20.1). With only one of
the tests resulting in ap-value larger than 0.05, you can assume that the first canonical
correlation is significant. The next step is to interpret or identify the two canonical
variables corresponding to this significant correlation.

Even though canonical variables are artificial, they can often be “identified” in terms
of the original variables. This is done primarily by inspecting the standardized coeffi-
cients of the canonical variables and the correlations between the canonical variables
and their original variables. Since only the first canonical correlation is significant,
only the first pair of canonical variables (Satisfaction1 andCharacteristics1) need
to be identified.

PROC CANCORR calculates and displays the raw canonical coefficients for the job
satisfaction variables and the job characteristic variables. However, since the original
variables do not necessarily have equal variance and are not measured in the same
units, the raw coefficients must be standardized to allow interpretation. The coeffi-
cients are standardized by multiplying the raw coefficients with the standard deviation
of the associated variable.

The standardized canonical coefficients inFigure 20.3show that the first canonical
variable for theSatisfaction group is a weighted sum of the variablesSupervisor
(0.7854) andCareer (0.3028), with the emphasis onSupervisor. The coefficient for
the variableFinance is near 0. Thus, a person satisfied with his or her supervisor and
with a large degree of career satisfaction would score high on the canonical variable
Satisfaction1.
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The CANCORR Procedure

Canonical Correlation Analysis

Standardized Canonical Coefficients for the Satisfaction Areas

Satisfaction1 Satisfaction2 Satisfaction3

Career Career Satisfaction 0.3028 -0.5416 1.0408
Supervisor Supervisor Satisfaction 0.7854 0.1305 -0.9085
Finance Financial Satisfaction 0.0538 0.9754 0.3329

Standardized Canonical Coefficients for the Job Characteristics

Characteristics1 Characteristics2 Characteristics3

Variety Task Variety -0.1108 0.8095 0.9071
Feedback Amount of Feedback 0.5520 -0.7722 0.4194
Autonomy Degree of Autonomy 0.8403 0.1020 -0.8297

Figure 20.3. Standardized Canonical Coefficients from the CANCORR Procedure

The coefficients for the job characteristics variables show that degree of auton-
omy (Autonomy) and amount of feedback (Feedback) contribute heavily to the
Characteristics1 canonical variable (0.8403 and 0.5520, respectively).

Figure 20.4shows the table of correlations between the canonical variables and the
original variables.

The CANCORR Procedure

Canonical Structure

Correlations Between the Satisfaction Areas and Their Canonical Variables

Satisfaction1 Satisfaction2 Satisfaction3

Career Career Satisfaction 0.7499 -0.2503 0.6123
Supervisor Supervisor Satisfaction 0.9644 0.0362 -0.2618
Finance Financial Satisfaction 0.2873 0.8814 0.3750

Correlations Between the Job Characteristics and Their Canonical Variables

Characteristics1 Characteristics2 Characteristics3

Variety Task Variety 0.4863 0.6592 0.5736
Feedback Amount of Feedback 0.6216 -0.5452 0.5625
Autonomy Degree of Autonomy 0.8459 0.4451 -0.2938

Correlations Between the Satisfaction Areas and the Canonical Variables of the Job Characteristics

Characteristics1 Characteristics2 Characteristics3

Career Career Satisfaction 0.6895 -0.1048 0.0694
Supervisor Supervisor Satisfaction 0.8867 0.0152 -0.0297
Finance Financial Satisfaction 0.2642 0.3690 0.0425

Correlations Between the Job Characteristics and the Canonical Variables of the Satisfaction Areas

Satisfaction1 Satisfaction2 Satisfaction3

Variety Task Variety 0.4471 0.2760 0.0650
Feedback Amount of Feedback 0.5715 -0.2283 0.0638
Autonomy Degree of Autonomy 0.7777 0.1863 -0.0333

Figure 20.4. Canonical Structure Correlations from the CANCORR Procedure
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Although these univariate correlations must be interpreted with caution since they do
not indicate how the original variables contributejointly to the canonical analysis,
they are often useful in the identification of the canonical variables.

Figure 20.4shows that the supervisor satisfaction variableSupervisor is strongly
associated with theSatisfaction1 canonical variable with a correlation of 0.9644.
Slightly less influential is the variableCareer, which has a correlation with the
canonical variable of 0.7499. Thus, the canonical variableSatisfaction1 seems to
represent satisfaction with supervisor and career track.

The correlations for the job characteristics variables show that the canonical variable
Characteristics1 seems to represent all three measured variables, with degree of
autonomy variable (Autonomy) being the most influential (0.8459).

Hence, you can interpret these results to mean that job characteristics and job satisfac-
tion are related—jobs that possess a high degree of autonomy and level of feedback
are associated with workers who are more satisfied with their supervisor and their
career. While financial satisfaction is a factor in job satisfaction, it is not as important
as the other measured satisfaction-related variables.

Syntax

The following statements are available in PROC CANCORR.

PROC CANCORR < options > ;
WITH variables ;
BY variables ;
FREQ variable ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;

The PROC CANCORR statement and the WITH statement are required. The rest
of this section provides detailed syntax information for each of the preceding state-
ments, beginning with the PROC CANCORR statement. The remaining statements
are covered in alphabetical order.

PROC CANCORR Statement

PROC CANCORR < options > ;

The PROC CANCORR statement starts the CANCORR procedure and optionally
identifies input and output data sets, specifies the analyses performed, and controls
displayed output.Table 20.1summarizes the options.



758 � Chapter 20. The CANCORR Procedure

Table 20.1. PROC CANCORR Statement Options

Task Options Description
Specify computational details EDF= specify error degrees of freedom

if input observations are regression
residuals

NOINT omit intercept from canonical corre-
lation and regression models

RDF= specify regression degrees of free-
dom if input observations are regres-
sion residuals

SINGULAR= specify the singularity criterion

Specify input and output data sets DATA= specify input data set name
OUT= specify output data set name
OUTSTAT= specify output data set name contain-

ing various statistics
Specify labeling options VNAME= specify a name to refer to VAR state-

ment variables
VPREFIX= specify a prefix for naming VAR

statement canonical variables
WNAME= specify a name to refer to WITH

statement variables
WPREFIX= specify a prefix for naming WITH

statement canonical variables
Control amount of output ALL produce simple statistics, input vari-

able correlations, and canonical re-
dundancy analysis

CORR produce input variable correlations
NCAN= specify number of canonical vari-

ables for which full output is desired
NOPRINT suppress all displayed output
REDUNDANCY produce canonical redundancy analy-

sis
SHORT suppress default output from canoni-

cal analysis
SIMPLE produce means and standard devia-

tions
Request regression analyses VDEP request multiple regression analyses

with the VAR variables as dependents
and the WITH variables as regressors

VREG request multiple regression analyses
with the VAR variables as regressors
and the WITH variables as depen-
dents

WDEP same as VREG
WREG same as VDEP
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Table 20.1. (continued)

Task Options Description
Specify regression statistics ALL produce all regression statistics

and includes these statistics in the
OUTSTAT= data set

B produce raw regression coefficients
CLB produce 95% confidence interval lim-

its for the regression coefficients
CORRB produce correlations among regres-

sion coefficients
INT request statistics for the intercept

when you specify the B, CLB, SEB,
T, or PROBT option

PCORR display partial correlations between
regressors and dependents

PROBT display probability levels fort statis-
tics

SEB display standard errors of regression
coefficients

SMC display squared multiple correlations
andF tests

SPCORR display semipartial correlations be-
tween regressors and dependents

SQPCORR display squared partial correlations
between regressors and dependents

SQSPCORR display squared semipartial correla-
tions between regressors and depen-
dents

STB display standardized regression coef-
ficients

T displayt statistics for regression co-
efficients

Following are explanations of the options that can be used in the PROC CANCORR
statement (in alphabetic order):

ALL
displays simple statistics, correlations among the input variables, the confidence lim-
its for the regression coefficients, and the canonical redundancy analysis. If you
specify the VDEP or WDEP option, the ALL option displays all related regression
statistics (unless the NOPRINT option is specified) and includes these statistics in the
OUTSTAT= data set.

B
produces raw regression coefficients from the regression analyses.
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CLB
produces the 95% confidence limits for the regression coefficients from the regression
analyses.

CORR
C

produces correlations among the original variables. If you include a PARTIAL state-
ment, the CORR option produces a correlation matrix for all variables in the analysis,
the regression statistics (R2, RMSE), the standardized regression coefficients for both
the VAR and WITH variables as predicted from the PARTIAL statement variables,
and partial correlation matrices.

CORRB
produces correlations among the regression coefficient estimates.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC CANCORR. It can be an ordinary
SAS data set or a TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV data set.
By default, the procedure uses the most recently created SAS data set.

EDF=error-df
specifies the error degrees of freedom if the input observations are residuals from a
regression analysis. The effective number of observations is the EDF= value plus
one. If you have 100 observations, then specifying EDF=99 has the same effect as
omitting the EDF= option.

INT
requests that statistics for the intercept be included when B, CLB, SEB, T, or PROBT
is specified for the regression analyses.

NCAN=number
specifies the number of canonical variables for which full output is desired. The
numbermust be less than or equal to the number of canonical variables in the analysis.

The value of the NCAN= option specifies the number of canonical variables for which
canonical coefficients and canonical redundancy statistics are displayed, and the num-
ber of variables shown in the canonical structure matrices. The NCAN= option does
not affect the number of displayed canonical correlations.

If an OUTSTAT= data set is requested, the NCAN= option controls the number of
canonical variables for which statistics are output. If an OUT= data set is requested,
the NCAN= option controls the number of canonical variables for which scores are
output.

NOINT
omits the intercept from the canonical correlation and regression models. Standard
deviations, variances, covariances, and correlations are not corrected for the mean.
If you use a TYPE=SSCP data set as input to the CANCORR procedure and list the
variableIntercept in the VAR or WITH statement, the procedure runs as if you also
specified the NOINT option. If you use NOINT and also create an OUTSTAT= data
set, the data set is TYPE=UCORR.



PROC CANCORR Statement � 761

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain all the original data plus scores on the
canonical variables. If you want to create a permanent SAS data set, you must spec-
ify a two-level name. The OUT= option cannot be used when the DATA= data set
is TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV. For details on OUT=
data sets, see the section“Output Data Sets”on page 766. Refer toSAS Language
Reference: Conceptsfor more information on permanent SAS data sets.

OUTSTAT=SAS-data-set
creates an output SAS data set containing various statistics, including the canonical
correlations and coefficients and the multiple regression statistics you request. If you
want to create a permanent SAS data set, you must specify a two-level name. For
details on OUTSTAT= data sets, see the section“Output Data Sets”on page 766.
Refer toSAS Language Reference: Conceptsfor more information on permanent
SAS data sets.

PCORR
produces partial correlations between regressors and dependent variables, removing
from each dependent variable and regressor the effects of all other regressors.

PROBT
produces probability levels for thet statistics in the regression analyses.

RDF=regression-df
specifies the regression degrees of freedom if the input observations are residuals
from a regression analysis. The effective number of observations is the actual num-
ber minus the RDF= value. The degrees of freedom for the intercept should not be
included in the RDF= option.

REDUNDANCY
RED

produces canonical redundancy statistics.

SEB
produces standard errors of the regression coefficients.

SHORT
suppresses all default output from the canonical analysis except the tables of canoni-
cal correlations and multivariate statistics.

SIMPLE
S

produces means and standard deviations.
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SINGULAR=p
SING=p

specifies the singularity criterion, where0 < p < 1. If a variable in the PARTIAL
statement has anR2 as large as1−p (wherep is the value of the SINGULAR= option)
when predicted from the variables listed before it in the statement, the variable is
assigned a standardized regression coefficient of 0, and the LOG generates a linear
dependency warning message. By default, SINGULAR=1E−8.

SMC
produces squared multiple correlations andF tests for the regression analyses.

SPCORR
produces semipartial correlations between regressors and dependent variables, re-
moving from each regressor the effects of all other regressors.

SQPCORR
produces squared partial correlations between regressors and dependent variables, re-
moving from each dependent variable and regressor the effects of all other regressors.

SQSPCORR
produces squared semipartial correlations between regressors and dependent vari-
ables, removing from each regressor the effects of all other regressors.

STB
produces standardized regression coefficients.

T
producest statistics for the regression coefficients.

VDEP
WREG

requests multiple regression analyses with the VAR variables as dependent variables
and the WITH variables as regressors.

VNAME=’label’
VN=’label’

specifies a character constant to refer to variables from the VAR statement on the
output. Enclose the constant in single quotes. If you omit the VNAME= option,
these variables are referred to as the VAR Variables. The number of characters in the
label should not exceed the label length defined by the VALIDVARNAME= system
option. For more information on the VALIDVARNAME= system option, refer toSAS
Language Reference: Dictionary.

VPREFIX=name
VP=name

specifies a prefix for naming canonical variables from the VAR statement. By de-
fault, these canonical variables are given the namesV1, V2, and so on. If you specify
VPREFIX=ABC, the names areABC1, ABC2, and so forth. The number of charac-
ters in the prefix plus the number of digits required to designate the variables should
not exceed the name length defined by the VALIDVARNAME= system option. For
more information on the VALIDVARNAME= system option, refer toSAS Language
Reference: Dictionary.
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WDEP
VREG

requests multiple regression analyses with the WITH variables as dependent variables
and the VAR variables as regressors.

WNAME=’label’
WN=’label’

specifies a character constant to refer to variables in the WITH statement on the out-
put. Enclose the constant in quotes. If you omit the WNAME= option, these variables
are referred to as the WITH Variables. The number of characters in the label should
not exceed the label length defined by the VALIDVARNAME= system option. For
more information, on the VALIDVARNAME= system option, refer toSAS Language
Reference: Dictionary.

WPREFIX=name
WP=name

specifies a prefix for naming canonical variables from the WITH statement. By de-
fault, these canonical variables are given the namesW1, W2, and so on. If you
specify WPREFIX=XYZ, then the names areXYZ1, XYZ2, and so forth. The num-
ber of characters in the prefix plus the number of digits required to designate the
variables should not exceed the label length defined by the VALIDVARNAME= sys-
tem option. For more information, on the VALIDVARNAME= system option, refer
to SAS Language Reference: Dictionary.

BY Statement

BY variables ;

You can specify a BY statement with PROC CANCORR to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CANCORR procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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FREQ Statement

FREQ variable ;

If one variable in your input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
CANCORR then treats the data set as if each observation appearedn times, where
n is the value of the FREQ variable for the observation. If the value of the FREQ
variable is less than one, the observation is not used in the analysis. Only the integer
portion of the value is used. The total number of observations is considered to be
equal to the sum of the FREQ variable when PROC CANCORR calculates signifi-
cance probabilities.

PARTIAL Statement

PARTIAL variables ;

You can use the PARTIAL statement to base the canonical analysis on partial corre-
lations. The variables in the PARTIAL statement are partialled out of the VAR and
WITH variables.

VAR Statement

VAR variables ;

The VAR statement lists the variables in the first of the two sets of variables to be
analyzed. The variables must be numeric. If you omit the VAR statement, all numeric
variables not mentioned in other statements make up the first set of variables. If,
however, the DATA= data set is TYPE=SSCP, the default set of variables used as
VAR variables does not include the variableIntercept.

WEIGHT Statement

WEIGHT variable ;

If you want to compute weighted product-moment correlation coefficients, specify
the name of the weighting variable in a WEIGHT statement. The WEIGHT and
FREQ statements have a similar effect, except the WEIGHT statement does not alter
the degrees of freedom or number of observations. An observation is used in the
analysis only if the WEIGHT variable is greater than zero.

WITH Statement

WITH variables ;

The WITH statement lists the variables in the second set of variables to be analyzed.
The variables must be numeric. The WITH statement is required.
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Details

Missing Values

If an observation has a missing value for any of the variables in the analysis, that
observation is omitted from the analysis.

Formulas

Assume without loss of generality that the two sets of variables,X with p variables
andY with q variables, have means of zero. Letn be the number of observations,
andm ben − 1.

Note that the scales of eigenvectors and canonical coefficients are arbitrary. PROC
CANCORR follows the usual procedure of rescaling the canonical coefficients so that
each canonical variable has a variance of one.

There are several different sets of formulas that can be used to compute the canonical
correlations,ρi, i = 1, . . . ,min(p, q), and unscaled canonical coefficients:

1. Let SXX = X′X/m be the covariance matrix ofX, SY Y = Y′Y/m be
the covariance matrix ofY, andSXY = X′Y/m be the covariance matrix
betweenX andY. Then the eigenvalues ofS−1

Y Y S′
XY S−1

XXSXY are the squared
canonical correlations, and the right eigenvectors are raw canonical coefficients
for the Y variables. The eigenvalues ofS−1

XXSXY S−1
Y Y S′

XY are the squared
canonical correlations, and the right eigenvectors are raw canonical coefficients
for theX variables.

2. Let T = Y′Y andH = Y′X(X′X)−1X′Y. The eigenvaluesξi of T−1H
are the squared canonical correlations,ρ2

i , and the right eigenvectors are raw
canonical coefficients for theY variables. InterchangeX andY in the above
formulas, and the eigenvalues remain the same, but the right eigenvectors are
raw canonical coefficients for theX variables.

3. Let E = T − H. The eigenvalues ofE−1H areλi = 1/(1 − ρ2
i ). The right

eigenvectors ofE−1H are the same as the right eigenvectors ofT−1H.

4. Canonical correlation can be viewed as a principal component analysis of
the predicted values of one set of variables from a regression on the other
set of variables, in the metric of the error covariance matrix. For exam-
ple, regress theY variables on theX variables. Call the predicted values
P = X(X′X)−1X′Y and the residualsR = Y−P = (I−X(X′X)−1X′)Y.
The error covariance matrix isR′R/m. Choose a transformationQ that
converts the error covariance matrix to an identity, that is,(RQ)′(RQ) =
Q′R′RQ = mI. Apply the same transformation to the predicted values to
yield, say,Z = PQ. Now do a principal component analysis on the covariance
matrix of Z, and you get the eigenvalues ofE−1H. Repeat withX andY
variables interchanged, and you get the same eigenvalues.

To show this relationship between canonical correlation and principal com-
ponents, note thatP′P = H , R′R = E , andQQ′ = mE−1. Let the



766 � Chapter 20. The CANCORR Procedure

covariance matrix ofZ be G. Then G = Z′Z/m = (PQ)′PQ/m =
Q′P′PQ/m = Q′HQ/m. Let u be an eigenvector ofG andκ be the cor-
responding eigenvalue. Then by definition,Gu = κu, henceQ′HQu/m =
κu. Premultiplying both sides byQ yields QQ′HQu/m = κQu and thus
E−1HQu = κQu. HenceQu is an eigenvector ofE−1H andκ is also an
eigenvalue ofE−1H.

5. If the covariance matrices are replaced by correlation matrices, the formulas
above yield standardized canonical coefficients instead of raw canonical coef-
ficients.

The formulas for multivariate test statistics are shown in “Multivariate Tests” in
Chapter 2, “Introduction to Regression Procedures.”Formulas for linear regression
are provided in other sections of that chapter.

Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new vari-
ables containing the canonical variable scores. The number of new variables is twice
that specified by the NCAN= option. The names of the new variables are formed by
concatenating the values given by the VPREFIX= and WPREFIX= options (the de-
faults are V and W) with the numbers 1, 2, 3, and so on. The new variables have mean
0 and variance equal to 1. An OUT= data set cannot be created if the DATA= data
set is TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV or if a PARTIAL
statement is used.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set
produced by the CORR procedure, but it contains several results in addition to those
produced by PROC CORR.

The new data set contains the following variables:

• the BY variables, if any

• two new character variables,–TYPE– and–NAME–
• Intercept, if the INT option is used

• the variables analyzed (those in the VAR statement and the WITH statement)

Each observation in the new data set contains some type of statistic as indicated by
the–TYPE– variable. The values of the–TYPE– variable are as follows:

–TYPE–
MEAN means

STD standard deviations
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USTD uncorrected standard deviations. When you specify the NOINT
option in the PROC CANCORR statement, the OUTSTAT=
data set contains standard deviations not corrected for the mean
(–TYPE–=’USTD’).

N number of observations on which the analysis is based. This value
is the same for each variable.

SUMWGT sum of the weights if a WEIGHT statement is used. This value is
the same for each variable.

CORR correlations. The–NAME– variable contains the name of the vari-
able corresponding to each row of the correlation matrix.

UCORR uncorrected correlation matrix. When you specify the NOINT op-
tion in the PROC CANCORR statement, the OUTSTAT= data set
contains a matrix of correlations not corrected for the means.

CORRB correlations among the regression coefficient estimates

STB standardized regression coefficients. The–NAME– variable con-
tains the name of the dependent variable.

B raw regression coefficients

SEB standard errors of the regression coefficients

LCLB 95% lower confidence limits for the regression coefficients

UCLB 95% upper confidence limits for the regression coefficients

T t statistics for the regression coefficients

PROBT probability levels for thet statistics

SPCORR semipartial correlations between regressors and dependent vari-
ables

SQSPCORR squared semipartial correlations between regressors and dependent
variables

PCORR partial correlations between regressors and dependent variables

SQPCORR squared partial correlations between regressors and dependent vari-
ables

RSQUARED R2s for the multiple regression analyses

ADJRSQ adjustedR2s

LCLRSQ approximate 95% lower confidence limits for theR2s

UCLRSQ approximate 95% upper confidence limits for theR2s

F F statistics for the multiple regression analyses

PROBF probability levels for theF statistics

CANCORR canonical correlations

SCORE standardized canonical coefficients. The–NAME– variable con-
tains the name of the canonical variable.

To obtain the canonical variable scores, these coefficients should
be multiplied by the standardized data using means obtained from
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the observation with–TYPE–=’MEAN’ and standard deviations
obtained from the observation with–TYPE–=’STD’.

RAWSCORE raw canonical coefficients.

To obtain the canonical variable scores, these coefficients should
be multiplied by the raw data centered by means obtained from the
observation with–TYPE–=’MEAN’.

USCORE scoring coefficients to be applied without subtracting the mean
from the raw variables. These are standardized canonical coeffi-
cients computed under a NOINT model.

To obtain the canonical variable scores, these coefficients should
be multiplied by the data that are standardized by the uncor-
rected standard deviations obtained from the observation with

–TYPE–=’USTD’.

STRUCTUR canonical structure

Computational Resources

Notation

n = number of observations

v = number of variables

w = number of WITH variables

p = max(v, w)
q = min(v, w)
b = v + w

t = total number of variables (VAR, WITH, and PARTIAL)

Time Requirements

The time required to compute the correlation matrix is roughly proportional to

n(p + q)2

The time required for the canonical analysis is roughly proportional to

1
6
p3 + p2q +

3
2
pq2 + 5q3

but the coefficient forq3 varies depending on the number of QR iterations in the
singular value decomposition.
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Memory Requirements

The minimum memory required is approximately

4(v2 + w2 + t2)

bytes. Additional memory is required if you request the VDEP or WDEP option.

Displayed Output

If the SIMPLE option is specified, PROC CANCORR produces means and stan-
dard deviations for each input variable. If the CORR option is specified, PROC
CANCORR produces correlations among the input variables. Unless the NOPRINT
option is specified, PROC CANCORR displays a table of canonical correlations con-
taining the following:

• Canonical Correlations. These are always nonnegative.

• Adjusted Canonical Correlations (Lawley 1959), which are asymptotically less
biased than the raw correlations and may be negative. The adjusted canonical
correlations may not be computable, and they are displayed as missing values
if two canonical correlations are nearly equal or if some are close to zero. A
missing value is also displayed if an adjusted canonical correlation is larger
than a previous adjusted canonical correlation.

• Approx Standard Errors, which are the approximate standard errors of the
canonical correlations

• Squared Canonical Correlations

• Eigenvalues of INV(E)*H, which are equal to CanRsq/(1−CanRsq), where
CanRsq is the corresponding squared canonical correlation. Also displayed
for each eigenvalue is the Difference from the next eigenvalue, the Proportion
of the sum of the eigenvalues, and the Cumulative proportion.

• Likelihood Ratio for the hypothesis that the current canonical correlation and
all smaller ones are 0 in the population. The likelihood ratio for all canonical
correlations equals Wilks’ lambda.

• Approx F statistic based on Rao’s approximation to the distribution of the like-
lihood ratio (Rao 1973, p. 556; Kshirsagar 1972, p. 326)

• Num DF and Den DF (numerator and denominator degrees of freedom) and
Pr> F (probability level) associated with theF statistic

Unless you specify the NOPRINT option, PROC CANCORR produces a table of
multivariate statistics for the null hypothesis that all canonical correlations are zero
in the population. These statistics, as described in the section “Multivariate Tests” in
Chapter 2, “Introduction to Regression Procedures.”, are:

• Wilks’ Lambda

• Pillai’s Trace
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• Hotelling-Lawley Trace

• Roy’s Greatest Root

For each of the preceding statistics, PROC CANCORR displays

• anF approximation or upper bound

• Num DF, the numerator degrees of freedom

• Den DF, the denominator degrees of freedom

• Pr > F , the probability level

Unless you specify the SHORT or NOPRINT option, PROC CANCORR displays the
following:

• both Raw (unstandardized) and Standardized Canonical Coefficients normal-
ized to give canonical variables with unit variance. Standardized coefficients
can be used to compute canonical variable scores from the standardized (zero
mean and unit variance) input variables. Raw coefficients can be used to com-
pute canonical variable scores from the input variables without standardizing
them.

• all four Canonical Structure matrices, giving Correlations Between the canon-
ical variables and the original variables

If you specify the REDUNDANCY option, PROC CANCORR displays

• the Canonical Redundancy Analysis (Stewart and Love 1968; Cooley and
Lohnes 1971), including Raw (unstandardized) and Standardized Variance and
Cumulative Proportion of the Variance of each set of variables Explained by
Their Own Canonical Variables and Explained by The Opposite Canonical
Variables

• the Squared Multiple Correlations of each variable with the firstm canonical
variables of the opposite set, wherem varies from 1 to the number of canonical
correlations

If you specify the VDEP option, PROC CANCORR performs multiple regression
analyses with the VAR variables as dependent variables and the WITH variables as
regressors. If you specify the WDEP option, PROC CANCORR performs multiple
regression analyses with the WITH variables as dependent variables and the VAR
variables as regressors. If you specify the VDEP or WDEP option and also specify the
ALL option, PROC CANCORR displays the following items. You can also specify
individual options to request a subset of the output generated by the ALL option; or
you can suppress the output by specifying the NOPRINT option.
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• if you specify the SMC option, Squared Multiple Correlations andF Tests.
For each regression model, identified by its dependent variable name, PROC
CANCORR displays the R-Squared, Adjusted R-Squared (Wherry 1931),F
Statistic, andPr > F . Also for each regression model, PROC CANCORR dis-
plays an Approximate 95% Confidence Interval for the populationR2 (Helland
1987). These confidence limits are valid only when the regressors are random
and when the regressors and dependent variables are approximately distributed
according to a multivariate normal distribution.

The averageR2s for the models considered, unweighted and weighted by vari-
ance, are also given.

• if you specify the CORRB option, Correlations Among the Regression
Coefficient Estimates

• if you specify the STB option, Standardized Regression Coefficients

• if you specify the B option, Raw Regression Coefficients

• if you specify the SEB option, Standard Errors of the Regression Coefficients

• if you specify the CLB option, 95% confidence limits for the regression coeffi-
cients

• if you specify the T option, T Statistics for the Regression Coefficients

• if you specify the PROBT option, Probability > |T| for the Regression
Coefficients

• if you specify the SPCORR option, Semipartial Correlations between regres-
sors and dependent variables, Removing from Each Regressor the Effects of
All Other Regressors

• if you specify the SQSPCORR option, Squared Semipartial Correlations be-
tween regressors and dependent variables, Removing from Each Regressor the
Effects of All Other Regressors

• if you specify the PCORR option, Partial Correlations between regressors and
dependent variables, Removing the Effects of All Other Regressors from Both
Regressor and Criterion

• if you specify the SQPCORR option, Squared Partial Correlations between
regressors and dependent variables, Removing the Effects of All Other
Regressors from Both Regressor and Criterion

ODS Table Names

PROC CANCORR assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed inTable 20.2.

For more information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 20.2. ODS Tables Produced in PROC CANCORR

ODS Table Name Description Statement Option
AvgRSquare Average R-Squares (weighted

and unweighted)
PROC CANCORR VDEP (or WDEP)

SMC (or ALL)
CanCorr Canonical correlations PROC CANCORR default
CanStructureVCan Correlations between the

VAR canonical variables and
the VAR and WITH variables

PROC CANCORR default (unless
SHORT)

CanStructureWCan Correlations between the
WITH canonical variables
and the WITH and VAR
variables

PROC CANCORR default (unless
SHORT)

ConfidenceLimits 95% Confidence limits for the
regression coefficients

PROC CANCORR VDEP (or WDEP)
CLB (or ALL)

Corr Correlations among the origi-
nal variables

PROC CANCORR CORR (or ALL)

CorrOnPartial Partial correlations PARTIAL CORR (or ALL)
CorrRegCoefEst Correlations among the re-

gression coefficient estimates
PROC CANCORR VDEP (or WDEP)

CORRB (or ALL)
MultStat Multivariate statistics default
NObsNVar Number of observations and

variables
PROC CANCORR SIMPLE (or ALL)

ParCorr Partial correlations PROC CANCORR VDEP (or WDEP)
PCORR (or ALL)

ProbtRegCoef Prob > |t| for the regression
coefficients

PROC CANCORR VDEP (or WDEP)
PROBT (or ALL)

RawCanCoefV Raw canonical coefficients
for the var variables

PROC CANCORR default (unless
SHORT)

RawCanCoefW Raw canonical coefficients
for the with variables

PROC CANCORR default (unless
SHORT)

RawRegCoef Raw regression coefficients PROC CANCORR VDEP (or WDEP) B
(or ALL)

Redundancy Canonical redundancy analy-
sis

PROC CANCORR REDUNDANCY
(or ALL)

Regression Squared multiple correlations
and F tests

PROC CANCORR VDEP (or WDEP)
SMC (or ALL)

RSquareRMSEOnPartial R-Squares and RMSEs on
PARTIAL

PARTIAL CORR (or ALL)

SemiParCorr Semi-partial correlations PROC CANCORR VDEP (or WDEP)
SPCORR (or ALL)

SimpleStatistics Simple statistics PROC CANCORR SIMPLE (or ALL)
SqMultCorr Canonical redundancy analy-

sis: squared multiple correla-
tions

PROC CANCORR REDUNDANCY
(or ALL)

SqParCorr Squared partial correlations PROC CANCORR VDEP (or WDEP)
SQPCORR (or
ALL)
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Table 20.2. (continued)

ODS Table Name Description Statement Option
SqSemiParCorr Squared semi-partial correla-

tions
PROC CANCORR VDEP (or WDEP)

SQSPCORR (or
ALL)

StdCanCoefV Standardized Canonical coef-
ficients for the VAR variables

PROC CANCORR default (unless
SHORT)

StdCanCoefW Standardized Canonical coef-
ficients for the WITH vari-
ables

PROC CANCORR default (unless
SHORT)

StdErrRawRegCoef Standard errors of the raw re-
gression coefficients

PROC CANCORR VDEP (or WDEP)
SEB (or ALL)

StdRegCoef Standardized regression coef-
ficients

PROC CANCORR VDEP (or WDEP)
STB (or ALL)

StdRegCoefOnPartial Standardized regression coef-
ficients on PARTIAL

PARTIAL CORR (or ALL)

tValueRegCoef t values for the regression co-
efficients

PROC CANCORR VDEP (or WDEP) T
(or ALL)

Example

Example 20.1. Canonical Correlation Analysis of Fitness Club
Data

Three physiological and three exercise variables are measured on twenty middle-aged
men in a fitness club. You can use the CANCORR procedure to determine whether the
physiological variables are related in any way to the exercise variables. The following
statements create the SAS data setFit:

data Fit;
input Weight Waist Pulse Chins Situps Jumps;
datalines;

191 36 50 5 162 60
189 37 52 2 110 60
193 38 58 12 101 101
162 35 62 12 105 37
189 35 46 13 155 58
182 36 56 4 101 42
211 38 56 8 101 38
167 34 60 6 125 40
176 31 74 15 200 40
154 33 56 17 251 250
169 34 50 17 120 38
166 33 52 13 210 115
154 34 64 14 215 105
247 46 50 1 50 50
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193 36 46 6 70 31
202 37 62 12 210 120
176 37 54 4 60 25
157 32 52 11 230 80
156 33 54 15 225 73
138 33 68 2 110 43
;
proc cancorr data=Fit all

vprefix=Physiological vname=’Physiological Measurements’
wprefix=Exercises wname=’Exercises’;

var Weight Waist Pulse;
with Chins Situps Jumps;
title ’Middle-Aged Men in a Health Fitness Club’;
title2 ’Data Courtesy of Dr. A. C. Linnerud, NC State Univ’;

run;

Output 20.1.1. Correlations among the Original Variables

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Correlations Among the Original Variables

Correlations Among the Physiological Measurements

Weight Waist Pulse

Weight 1.0000 0.8702 -0.3658
Waist 0.8702 1.0000 -0.3529
Pulse -0.3658 -0.3529 1.0000

Correlations Among the Exercises

Chins Situps Jumps

Chins 1.0000 0.6957 0.4958
Situps 0.6957 1.0000 0.6692
Jumps 0.4958 0.6692 1.0000

Correlations Between the Physiological Measurements and the Exercises

Chins Situps Jumps

Weight -0.3897 -0.4931 -0.2263
Waist -0.5522 -0.6456 -0.1915
Pulse 0.1506 0.2250 0.0349

Output 20.1.1displays the correlations among the original variables. The correla-
tions between the physiological and exercise variables are moderate, the largest being
−0.6456 betweenWaist andSitups. There are larger within-set correlations: 0.8702
betweenWeight andWaist, 0.6957 betweenChins andSitups, and 0.6692 between
Situps andJumps.
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Output 20.1.2. Canonical Correlations and Multivariate Statistics

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Correlation Analysis

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.795608 0.754056 0.084197 0.632992
2 0.200556 -.076399 0.220188 0.040223
3 0.072570 . 0.228208 0.005266

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Eigenvalue Difference Proportion Cumulative

1 1.7247 1.6828 0.9734 0.9734
2 0.0419 0.0366 0.0237 0.9970
3 0.0053 0.0030 1.0000

Test of H0: The canonical correlations in the
current row and all that follow are zero

Likelihood Approximate
Ratio F Value Num DF Den DF Pr > F

1 0.35039053 2.05 9 34.223 0.0635
2 0.95472266 0.18 4 30 0.9491
3 0.99473355 0.08 1 16 0.7748

Multivariate Statistics and F Approximations

S=3 M=-0.5 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.35039053 2.05 9 34.223 0.0635
Pillai’s Trace 0.67848151 1.56 9 48 0.1551
Hotelling-Lawley Trace 1.77194146 2.64 9 19.053 0.0357
Roy’s Greatest Root 1.72473874 9.20 3 16 0.0009

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

As Output 20.1.2shows, the first canonical correlation is 0.7956, which would appear
to be substantially larger than any of the between-set correlations. The probability
level for the null hypothesis that all the canonical correlations are 0 in the population
is only 0.0635, so no firm conclusions can be drawn. The remaining canonical cor-
relations are not worthy of consideration, as can be seen from the probability levels
and especially from the negative adjusted canonical correlations.

Because the variables are not measured in the same units, the standardized coeffi-
cients rather than the raw coefficients should be interpreted. The correlations given
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in the canonical structure matrices should also be examined.

Output 20.1.3. Raw and Standardized Canonical Coefficients

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Correlation Analysis

Raw Canonical Coefficients for the Physiological Measurements

Physiological1 Physiological2 Physiological3

Weight -0.031404688 -0.076319506 -0.007735047
Waist 0.4932416756 0.3687229894 0.1580336471
Pulse -0.008199315 -0.032051994 0.1457322421

Raw Canonical Coefficients for the Exercises

Exercises1 Exercises2 Exercises3

Chins -0.066113986 -0.071041211 -0.245275347
Situps -0.016846231 0.0019737454 0.0197676373
Jumps 0.0139715689 0.0207141063 -0.008167472

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Correlation Analysis

Standardized Canonical Coefficients for the Physiological Measurements

Physiological1 Physiological2 Physiological3

Weight -0.7754 -1.8844 -0.1910
Waist 1.5793 1.1806 0.5060
Pulse -0.0591 -0.2311 1.0508

Standardized Canonical Coefficients for the Exercises

Exercises1 Exercises2 Exercises3

Chins -0.3495 -0.3755 -1.2966
Situps -1.0540 0.1235 1.2368
Jumps 0.7164 1.0622 -0.4188

The first canonical variable for the physiological variables, displayed inOutput
20.1.3, is a weighted difference ofWaist (1.5793) andWeight (−0.7754), with more
emphasis onWaist. The coefficient forPulse is near 0. The correlations between
Waist andWeight and the first canonical variable are both positive, 0.9254 forWaist
and 0.6206 forWeight. Weight is therefore a suppressor variable, meaning that its
coefficient and its correlation have opposite signs.
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The first canonical variable for the exercise variables also shows a mixture of signs,
subtractingSitups (−1.0540) andChins (−0.3495) from Jumps (0.7164), with the
most weight onSitups. All the correlations are negative, indicating thatJumps is
also a suppressor variable.

It may seem contradictory that a variable should have a coefficient of opposite sign
from that of its correlation with the canonical variable. In order to understand how
this can happen, consider a simplified situation: predictingSitups from Waist and
Weight by multiple regression. In informal terms, it seems plausible that fat people
should do fewer sit-ups than skinny people. Assume that the men in the sample do
not vary much in height, so there is a strong correlation betweenWaist andWeight
(0.8702). Examine the relationships between fatness and the independent variables:

• People with large waists tend to be fatter than people with small waists. Hence,
the correlation betweenWaist andSitups should be negative.

• People with high weights tend to be fatter than people with low weights.
Therefore,Weight should correlate negatively withSitups.

• For a fixed value ofWeight, people with large waists tend to be shorter and
fatter. Thus, the multiple regression coefficient forWaist should be negative.

• For a fixed value ofWaist, people with higher weights tend to be taller and
skinnier. The multiple regression coefficient forWeight should, therefore, be
positive, of opposite sign from the correlation betweenWeight andSitups.

Therefore, the general interpretation of the first canonical correlation is thatWeight
andJumps act as suppressor variables to enhance the correlation betweenWaist and
Situps. This canonical correlation may be strong enough to be of practical interest,
but the sample size is not large enough to draw definite conclusions.

The canonical redundancy analysis (Output 20.1.4) shows that neither of the first pair
of canonical variables is a good overall predictor of the opposite set of variables, the
proportions of variance explained being 0.2854 and 0.2584. The second and third
canonical variables add virtually nothing, with cumulative proportions for all three
canonical variables being 0.2969 and 0.2767.
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Output 20.1.4. Canonical Redundancy Analysis

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Redundancy Analysis

Standardized Variance of the Physiological Measurements Explained by
Their Own The Opposite

Canonical Variables Canonical Variables
Canonical

Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion

1 0.4508 0.4508 0.6330 0.2854 0.2854
2 0.2470 0.6978 0.0402 0.0099 0.2953
3 0.3022 1.0000 0.0053 0.0016 0.2969

Standardized Variance of the Exercises Explained by
Their Own The Opposite

Canonical Variables Canonical Variables
Canonical

Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion

1 0.4081 0.4081 0.6330 0.2584 0.2584
2 0.4345 0.8426 0.0402 0.0175 0.2758
3 0.1574 1.0000 0.0053 0.0008 0.2767

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Redundancy Analysis

Squared Multiple Correlations Between the Physiological Measurements
and the First M Canonical Variables of the Exercises

M 1 2 3

Weight 0.2438 0.2678 0.2679
Waist 0.5421 0.5478 0.5478
Pulse 0.0701 0.0702 0.0749

Squared Multiple Correlations Between the Exercises and the First
M Canonical Variables of the Physiological Measurements

M 1 2 3

Chins 0.3351 0.3374 0.3396
Situps 0.4233 0.4365 0.4365
Jumps 0.0167 0.0536 0.0539

The squared multiple correlations indicate that the first canonical variable of the phys-
iological measurements has some predictive power forChins (0.3351) andSitups
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(0.4233) but almost none forJumps (0.0167). The first canonical variable of the
exercises is a fairly good predictor ofWaist (0.5421), a poorer predictor ofWeight
(0.2438), and nearly useless for predictingPulse (0.0701).
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Chapter 21
The CANDISC Procedure
Overview

Canonical discriminant analysis is a dimension-reduction technique related to prin-
cipal component analysis and canonical correlation. The methodology used in de-
riving the canonical coefficients parallels that of a one-way MANOVA. Whereas in
MANOVA the goal is to test for equality of the mean vector across class levels, in a
canonical discriminant analysis we find linear combinations of the quantitative vari-
ables that provide maximal separation between the classes or groups. Given a classi-
fication variable and several quantitative variables, the CANDISC procedure derives
canonical variables, linear combinations of the quantitative variables that summarize
between-class variation in much the same way that principal components summarize
total variation.

The CANDISC procedure performs a canonical discriminant analysis, computes
squared Mahalanobis distances between class means, and performs both univariate
and multivariate one-way analyses of variance. Two output data sets can be pro-
duced: one containing the canonical coefficients and another containing, among other
things, scored canonical variables. The canonical coefficients output data set can be
rotated by the FACTOR procedure. It is customary to standardize the canonical coef-
ficients so that the canonical variables have means that are equal to zero and pooled
within-class variances that are equal to one. PROC CANDISC displays both stan-
dardized and unstandardized canonical coefficients. Correlations between the canon-
ical variables and the original variables as well as the class means for the canonical
variables are also displayed; these correlations, sometimes known as loadings, are
called canonical structures. The scored canonical variables output data set can be
used in conjunction with the PLOT procedure or the %PLOTIT macro to plot pairs
of canonical variables to aid visual interpretation of group differences.

Given two or more groups of observations with measurements on several quantitative
variables, canonical discriminant analysis derives a linear combination of the vari-
ables that has the highest possible multiple correlation with the groups. This maximal
multiple correlation is called thefirst canonical correlation. The coefficients of the
linear combination are thecanonical coefficientsor canonical weights. The variable
defined by the linear combination is thefirst canonical variableor canonical compo-
nent. The second canonical correlation is obtained by finding the linear combination
uncorrelated with the first canonical variable that has the highest possible multiple
correlation with the groups. The process of extracting canonical variables can be re-
peated until the number of canonical variables equals the number of original variables
or the number of classes minus one, whichever is smaller.

The first canonical correlation is at least as large as the multiple correlation between
the groups and any of the original variables. If the original variables have high within-
group correlations, the first canonical correlation can be large even if all the multiple
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correlations are small. In other words, the first canonical variable can show sub-
stantial differences between the classes, even if none of the original variables do.
Canonical variables are sometimes calleddiscriminant functions, but this usage is
ambiguous because the DISCRIM procedure produces very different functions for
classification that are also called discriminant functions.

For each canonical correlation, PROC CANDISC tests the hypothesis that it and all
smaller canonical correlations are zero in the population. AnF approximation (Rao
1973; Kshirsagar 1972) is used that gives better small-sample results than the usual
chi-square approximation. The variables should have an approximate multivariate
normal distribution within each class, with a common covariance matrix in order for
the probability levels to be valid.

Canonical discriminant analysis is equivalent to canonical correlation analysis be-
tween the quantitative variables and a set of dummy variables coded from the class
variable. Canonical discriminant analysis is also equivalent to performing the follow-
ing steps:

1. Transform the variables so that the pooled within-class covariance matrix is an
identity matrix.

2. Compute class means on the transformed variables.

3. Perform a principal component analysis on the means, weighting each mean
by the number of observations in the class. The eigenvalues are equal to the
ratio of between-class variation to within-class variation in the direction of each
principal component.

4. Back-transform the principal components into the space of the original vari-
ables, obtaining the canonical variables.

An interesting property of the canonical variables is that they are uncorrelated
whether the correlation is calculated from the total sample or from the pooled within-
class correlations. The canonical coefficients are not orthogonal, however, so the
canonical variables do not represent perpendicular directions through the space of
the original variables.
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Getting Started

The data in this example are measurements on 159 fish caught in Finland’s lake
Laengelmavesi. The species, weight, three different length measurements, height,
and width of each fish is tallied. The complete data set is displayed inChapter 67,
“The STEPDISC Procedure.”The STEPDISC procedure identified all the variables
as significant indicators of the differences among the seven fish species.

proc format;
value specfmt

1=’Bream’
2=’Roach’
3=’Whitefish’
4=’Parkki’
5=’Perch’
6=’Pike’
7=’Smelt’;

data fish (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Species Weight Length1 Length2 Length3 HtPct

WidthPct @@;
Height=HtPct*Length3/100;
Width=WidthPct*Length3/100;
format Species specfmt.;
symbol = put(Species, specfmt2.);
datalines;

1 242.0 23.2 25.4 30.0 38.4 13.4
1 290.0 24.0 26.3 31.2 40.0 13.8
1 340.0 23.9 26.5 31.1 39.8 15.1
1 363.0 26.3 29.0 33.5 38.0 13.3

...[155 more records]
;

The following program uses PROC CANDISC to find the three canonical variables
that best separate the species of fish in thefish data and creates the output data set
outcan. The NCAN= option is used to request that only the first three canonical
variables are displayed. The %PLOTIT macro is invoked to create a plot of the first
two canonical variables. SeeAppendix B, “Using the %PLOTIT Macro,”for more
information on the %PLOTIT macro.

proc candisc data=fish ncan=3 out=outcan;
class Species;
var Weight Length1 Length2 Length3 Height Width;

run;
%plotit(data=outcan, plotvars=Can2 Can1,

labelvar=_blank_, symvar=symbol, typevar=symbol,
symsize=1, symlen=4, tsize=1.5, exttypes=symbol, ls=100,
plotopts=vaxis=-5 to 15 by 5, vtoh=, extend=close);
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PROC CANDISC begins by displaying summary information about the variables in
the analysis. This information includes the number of observations, the number of
quantitative variables in the analysis (specified with the VAR statement), and the
number of classes in the classification variable (specified with the CLASS statement).
The frequency of each class is also displayed.

Fish Measurement Data

The CANDISC Procedure

Observations 158 DF Total 157
Variables 6 DF Within Classes 151
Classes 7 DF Between Classes 6

Class Level Information

Variable
Species Name Frequency Weight Proportion

Bream Bream 34 34.0000 0.215190
Parkki Parkki 11 11.0000 0.069620
Perch Perch 56 56.0000 0.354430
Pike Pike 17 17.0000 0.107595
Roach Roach 20 20.0000 0.126582
Smelt Smelt 14 14.0000 0.088608
Whitefish Whitefish 6 6.0000 0.037975

Figure 21.1. Summary Information

PROC CANDISC performs a multivariate one-way analysis of variance (one-way
MANOVA) and provides four multivariate tests of the hypothesis that the class mean
vectors are equal. These tests, shown inFigure 21.2, indicate that not all of the mean
vectors are equal(p < .0001).

Fish Measurement Data

The CANDISC Procedure

Multivariate Statistics and F Approximations

S=6 M=-0.5 N=72

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.00036325 90.71 36 643.89 <.0001
Pillai’s Trace 3.10465132 26.99 36 906 <.0001
Hotelling-Lawley Trace 52.05799676 209.24 36 413.64 <.0001
Roy’s Greatest Root 39.13499776 984.90 6 151 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Figure 21.2. MANOVA and Multivariate Tests
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The first canonical correlation is the greatest possible multiple correlation with the
classes that can be achieved using a linear combination of the quantitative variables.
The first canonical correlation, displayed inFigure 21.3, is 0.987463.

Fish Measurement Data

The CANDISC Procedure

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.987463 0.986671 0.001989 0.975084
2 0.952349 0.950095 0.007425 0.906969
3 0.838637 0.832518 0.023678 0.703313
4 0.633094 0.623649 0.047821 0.400809
5 0.344157 0.334170 0.070356 0.118444
6 0.005701 . 0.079806 0.000033

Figure 21.3. Canonical Correlations

A likelihood ratio test is displayed of the hypothesis that the current canonical cor-
relation and all smaller ones are zero. The first line is equivalent to Wilks’ Lambda
multivariate test.

Test of H0: The canonical correlations in the
current row and all that follow are zero

Likelihood Approximate
Ratio F Value Num DF Den DF Pr > F

1 0.00036325 90.71 36 643.89 <.0001
2 0.01457896 46.46 25 547.58 <.0001
3 0.15671134 23.61 16 452.79 <.0001
4 0.52820347 12.09 9 362.78 <.0001
5 0.88152702 4.88 4 300 0.0008
6 0.99996749 0.00 1 151 0.9442

Figure 21.4. Likelihood Ratio Test

The first canonical variable,Can1, shows that the linear combination of the cen-
tered variablesCan1= −0.0006×Weight − 0.33×Length1 − 2.49×Length2 +
2.60×Length3 + 1.12×Height − 1.45×Width separates the species most effec-
tively (seeFigure 21.5).



788 � Chapter 21. The CANDISC Procedure

Fish Measurement Data

The CANDISC Procedure

Raw Canonical Coefficients

Variable Can1 Can2 Can3

Weight -0.000648508 -0.005231659 -0.005596192
Length1 -0.329435762 -0.626598051 -2.934324102
Length2 -2.486133674 -0.690253987 4.045038893
Length3 2.595648437 1.803175454 -1.139264914
Height 1.121983854 -0.714749340 0.283202557
Width -1.446386704 -0.907025481 0.741486686

Figure 21.5. Raw Canonical Coefficients

PROC CANDISC computes the means of the canonical variables for each class. The
first canonical variable is the linear combination of the variablesWeight, Length1,
Length2, Length3, Height, andWidth that provides the greatest difference (in terms
of a univariateF -test) between the class means. The second canonical variable pro-
vides the greatest difference between class means while being uncorrelated with the
first canonical variable.

Fish Measurement Data

The CANDISC Procedure

Class Means on Canonical Variables

Species Can1 Can2 Can3

Bream 10.94142464 0.52078394 0.23496708
Parkki 2.58903743 -2.54722416 -0.49326158
Perch -4.47181389 -1.70822715 1.29281314
Pike -4.89689441 8.22140791 -0.16469132
Roach -0.35837149 0.08733611 -1.10056438
Smelt -4.09136653 -2.35805841 -4.03836098
Whitefish -0.39541755 -0.42071778 1.06459242

Figure 21.6. Class Means for Canonical Variables

A plot of the first two canonical variables (Figure 21.7) shows thatCan1 discrimi-
nates between three groups: 1) bream; 2) whitefish, roach, and parkki; and 3) smelt,
pike, and perch.Can2 best discriminates between pike and the other species.
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Figure 21.7. Plot of First Two Canonical Variables

Syntax

The following statements are available in PROC CANDISC.

PROC CANDISC < options > ;
CLASS variable ;
BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

The BY, CLASS, FREQ, VAR, and WEIGHT statements are described after the
PROC CANDISC statement.

PROC CANDISC Statement

PROC CANDISC < options > ;

This statement invokes the CANDISC procedure. The options listed in the following
table can appear in the PROC CANDISC statement.
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Table 21.1. CANDISC Procedure Options

Task Options
Specify Data Sets DATA=

OUT=
OUTSTAT=

Control Canonical Variables NCAN=
PREFIX=

Determine Singularity SINGULAR=

Control Displayed Correlations BCORR
PCORR
TCORR
WCORR

Control Displayed Covariances BCOV
PCOV
TCOV
WCOV

Control Displayed SSCP Matrices BSSCP
PSSCP
TSSCP
WSSCP

Suppress Output NOPRINT
SHORT

Miscellaneous ALL
ANOVA
DISTANCE
SIMPLE
STDMEAN

ALL
activates all of the display options.

ANOVA
displays univariate statistics for testing the hypothesis that the class means are equal
in the population for each variable.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the
between-class SSCP matrix divided byn(c − 1)/c, wheren is the number of ob-
servations andc is the number of classes. The between-class covariances should be
interpreted in comparison with the total-sample and within-class covariances, not as
formal estimates of population parameters.
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BSSCP
displays the between-class SSCP matrix.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can be an ordinary SAS data set
or one of several specially structured data sets created by SAS statistical procedures.
These specially structured data sets include TYPE=CORR, COV, CSSCP, and SSCP.
If you omit the DATA= option, the procedure uses the most recently created SAS data
set.

DISTANCE
displays squared Mahalanobis distances between the group means,F statistics, and
the corresponding probabilities of greater squared Mahalanobis distances between
the group means.

NCAN=n
specifies the number of canonical variables to be computed. The value ofn must be
less than or equal to the number of variables. If you specify NCAN=0, the procedure
displays the canonical correlations, but not the canonical coefficients, structures, or
means. A negative value suppresses the canonical analysis entirely. Letv be the
number of variables in the VAR statement andc be the number of classes. If you
omit the NCAN= option, onlymin(v, c−1) canonical variables are generated; if you
also specify an OUT= output data set,v canonical variables are generated, and the
lastv − (c− 1) canonical variables have missing values.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables
the Output Delivery System (ODS); seeChapter 14, “Using the Output Delivery
System,” for more information.

OUT=SAS-data-set
creates an output SAS data set containing the original data and the canonical variable
scores. To create a permanent SAS data set, specify a two-level name (refer toSAS
Language Reference: Concepts, for more information on permanent SAS data sets).

OUTSTAT=SAS-data-set
creates a TYPE=CORR output SAS data set that contains various statistics includ-
ing class means, standard deviations, correlations, canonical correlations, canonical
structures, canonical coefficients, and means of canonical variables for each class. To
create a permanent SAS data set, specify a two-level name (refer toSAS Language
Reference: Concepts, for more information on permanent SAS data sets).

PCORR
displays pooled within-class correlations (partial correlations based on the pooled
within-class covariances).

PCOV
displays pooled within-class covariances.
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PREFIX=name
specifies a prefix for naming the canonical variables. By default the names areCan1,
Can2, Can3 and so forth. If you specify PREFIX=Abc, the components are named
Abc1, Abc2, and so on. The number of characters in the prefix, plus the number of
digits required to designate the canonical variables, should not exceed 32. The prefix
is truncated if the combined length exceeds 32.

PSSCP
displays the pooled within-class corrected SSCP matrix.

SHORT
suppresses the display of canonical structures, canonical coefficients, and class means
on canonical variables; only tables of canonical correlations and multivariate test
statistics are displayed.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.

SINGULAR=p
specifies the criterion for determining the singularity of the total-sample correlation
matrix and the pooled within-class covariance matrix, where0 < p < 1. The default
is SINGULAR=1E−8.

Let S be the total-sample correlation matrix. If theR2 for predicting a quantitative
variable in the VAR statement from the variables preceding it exceeds1 − p, S is
considered singular. IfS is singular, the probability levels for the multivariate test
statistics and canonical correlations are adjusted for the number of variables withR2

exceeding1− p.

If S is considered singular and the inverse ofS (Squared Mahalanobis Distances) is
required, a quasi-inverse is used instead. For details see the “Quasi-Inverse” section
in Chapter 25, “The DISCRIM Procedure.”

STDMEAN
displays total-sample and pooled within-class standardized class means.

TCORR
displays total-sample correlations.

TCOV
displays total-sample covariances.

TSSCP
displays the total-sample corrected SSCP matrix.

WCORR
displays within-class correlations for each class level.

WCOV
displays within-class covariances for each class level.
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WSSCP
displays the within-class corrected SSCP matrix for each class level.

BY Statement

BY variables ;

You can specify a BY statement with PROC CANDISC to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CANDISC procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variable ;

The values of the CLASS variable define the groups for analysis. Class levels are
determined by the formatted values of the CLASS variable. The CLASS variable can
be numeric or character. A CLASS statement is required.

FREQ Statement

FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other val-
ues in the observation, include the name of the variable in a FREQ statement. The
procedure then treats the data set as if each observation appearsn times, wheren is
the value of the FREQ variable for the observation. The total number of observa-
tions is considered to be equal to the sum of the FREQ variable when the procedure
determines degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not
used in the analysis. If the value is not an integer, the value is truncated to an integer.
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VAR Statement

VAR variables ;

You specify the quantitative variables to include in the analysis using a VAR state-
ment. If you do not use a VAR statement, the analysis includes all numeric variables
not listed in other statements.

WEIGHT Statement

WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in
a variable in the data set and specify the name in a WEIGHT statement. This is often
done when the variance associated with each observation is different and the values
of the WEIGHT variable are proportional to the reciprocals of the variances. If the
value of the WEIGHT variable is missing or is less than zero, then a value of zero for
the weight is assumed.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT
statement does not alter the degrees of freedom.

Details

Missing Values

If an observation has a missing value for any of the quantitative variables, it is omitted
from the analysis. If an observation has a missing CLASS value but is otherwise
complete, it is not used in computing the canonical correlations and coefficients;
however, canonical variable scores are computed for that observation for the OUT=
data set.

Computational Details

General Formulas

Canonical discriminant analysis is equivalent to canonical correlation analysis be-
tween the quantitative variables and a set of dummy variables coded from the class
variable. In the following notation the dummy variables will be denoted byy and
the quantitative variables byx. The total sample covariance matrix for thex andy
variables is

S =
[
Sxx Sxy

Syx Syy

]
Whenc is the number of groups,nt is the number of observations in groupt, andSt

is the sample covariance matrix for thex variables in groupt, the within-class pooled
covariance matrix for thex variables is

Sp =
1∑

nt − c

∑
(nt − 1)St
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The canonical correlations,ρi, are the square roots of the eigenvalues,λi, of the
following matrix. The corresponding eigenvectors arevi.

Sp
−1/2SxySyy

−1SyxSp
−1/2

Let V be the matrix with the eigenvectorsvi that correspond to nonzero eigenvalues
as columns. The raw canonical coefficients are calculated as follows

R = Sp
−1/2V

The pooled within-class standardized canonical coefficients are

P = diag(Sp)1/2R

And the total sample standardized canonical coefficients are

T = diag(Sxx)1/2R

Let Xc be the matrix with the centeredx variables as columns. The canonical scores
may be calculated by any of the following

Xc R

Xc diag(Sp)−1/2P

Xc diag(Sxx)−1/2T

For the Multivariate tests based onE−1H

E = (n− 1)(Syy − SyxS−1
xx Sxy)

H = (n− 1)SyxS−1
xx Sxy

wheren is the total number of observations.

Input Data Set

The input DATA= data set can be an ordinary SAS data set or one of several specially
structured data sets created by statistical procedures available with SAS/STAT soft-
ware. For more information on special types of data sets, seeAppendix A, “Special
SAS Data Sets.”The BY variable in these data sets becomes the CLASS variable in
PROC CANDISC. These specially structured data sets include

• TYPE=CORR data sets created by PROC CORR using a BY statement
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• TYPE=COV data sets created by PROC PRINCOMP using both the COV op-
tion and a BY statement

• TYPE=CSSCP data sets created by PROC CORR using the CSSCP option and
a BY statement, where the OUT= data set is assigned TYPE=CSSCP with the
TYPE= data set option

• TYPE=SSCP data sets created by PROC REG using both the OUTSSCP= op-
tion and a BY statement.

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, PROC
CANDISC reads the number of observations for each class from the observations
with –TYPE–=’N’ and the variable means in each class from the observations with

–TYPE–=’MEAN’. The CANDISC procedure then reads the within-class correla-
tions from the observations with–TYPE–=’CORR’, the standard deviations from
the observations with–TYPE–=’STD’ (data set TYPE=CORR), the within-class co-
variances from the observations with–TYPE–=’COV’ (data set TYPE=COV), or the
within-class corrected sums of squares and crossproducts from the observations with

–TYPE–=’CSSCP’ (data set TYPE=CSSCP).

When the data set does not include any observations with–TYPE–=’CORR’ (data
set TYPE=CORR),–TYPE–=’COV’ (data set TYPE=COV), or–TYPE–=’CSSCP’
(data set TYPE=CSSCP) for each class, PROC CANDISC reads the pooled within-
class information from the data set. In this case, PROC CANDISC reads the pooled
within-class correlations from the observations with–TYPE–=’PCORR’, the pooled
within-class standard deviations from the observations with–TYPE–=’PSTD’ (data
set TYPE=CORR), the pooled within-class covariances from the observations with

–TYPE–=’PCOV’ (data set TYPE=COV), or the pooled within-class corrected SSCP
matrix from the observations with–TYPE–=’PSSCP’ (data set TYPE=CSSCP).

When the input data set is TYPE=SSCP, PROC CANDISC reads the number of obser-
vations for each class from the observations with–TYPE–=’N’, the sum of weights of
observations from the variable INTERCEPT in observations with–TYPE–=’SSCP’
and–NAME–=’INTERCEPT’, the variable sums from the variable=variablenames
in observations with–TYPE–=’SSCP’ and–NAME–=’INTERCEPT’, and the un-
corrected sums of squares and crossproducts from the variable=variablenamesin ob-
servations with–TYPE–=’SSCP’ and–NAME–=variablenames.

Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables
containing the canonical variable scores. You determine the number of new variables
using the NCAN= option. The names of the new variables are formed as described in
the PREFIX= option. The new variables have means equal to zero and pooled within-
class variances equal to one. An OUT= data set cannot be created if the DATA= data
set is not an ordinary SAS data set.
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OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set produced by the
CORR procedure but contains many results in addition to those produced by the
CORR procedure.

The OUTSTAT= data set is TYPE=CORR, and it contains the following variables:

• the BY variables, if any

• the CLASS variable

• –TYPE– , a character variable of length 8 that identifies the type of statistic

• –NAME– , a character variable of length 32 that identifies the row of the matrix
or the name of the canonical variable

• the quantitative variables (those in the VAR statement, or if there is no VAR
statement, all numeric variables not listed in any other statement)

The observations, as identified by the variable–TYPE– , have the following

–TYPE– values:

–TYPE– Contents

N number of observations for both the total sample (CLASS variable
missing) and within each class (CLASS variable present)

SUMWGT sum of weights for both the total sample (CLASS variable miss-
ing) and within each class (CLASS variable present) if a WEIGHT
statement is specified

MEAN means for both the total sample (CLASS variable missing) and
within each class (CLASS variable present)

STDMEAN total-standardized class means

PSTDMEAN pooled within-class standardized class means

STD standard deviations for both the total sample (CLASS variable
missing) and within each class (CLASS variable present)

PSTD pooled within-class standard deviations

BSTD between-class standard deviations

RSQUARED univariateR2s

The following kinds of observations are identified by the combination of the variables

–TYPE– and –NAME– . When the–TYPE– variable has one of the following
values, the–NAME– variable identifies the row of the matrix.

–TYPE– Contents

CSSCP corrected SSCP matrix for the total sample (CLASS variable miss-
ing) and within each class (CLASS variable present)

PSSCP pooled within-class corrected SSCP matrix



798 � Chapter 21. The CANDISC Procedure

BSSCP between-class SSCP matrix

COV covariance matrix for the total sample (CLASS variable missing)
and within each class (CLASS variable present)

PCOV pooled within-class covariance matrix

BCOV between-class covariance matrix

CORR correlation matrix for the total sample (CLASS variable missing)
and within each class (CLASS variable present)

PCORR pooled within-class correlation matrix

BCORR between-class correlation matrix

When the–TYPE– variable has one of the following values, the–NAME– variable
identifies the canonical variable:

–TYPE– Contents

CANCORR canonical correlations

STRUCTUR canonical structure

BSTRUCT between canonical structure

PSTRUCT pooled within-class canonical structure

SCORE total sample standardized canonical coefficients

PSCORE pooled within-class standardized canonical coefficients

RAWSCORE raw canonical coefficients

CANMEAN means of the canonical variables for each class

You can use this data set with PROC SCORE to get scores on the canonical variables
for new data using one of the following forms.

* The CLASS variable C is numeric;
proc score data=NewData score=Coef(where=(c = . )) out=Scores; run;

* The CLASS variable C is character;
proc score data=NewData score=Coef(where=(c = ’ ’)) out=Scores;
run;

The WHERE clause is used to exclude the within-class means and standard devia-
tions. PROC SCORE standardizes the new data by subtracting the original variable
means that are stored in the–TYPE–=’MEAN’ observations, and dividing by the
original variable standard deviations from the–TYPE–=’STD’ observations. Then
PROC SCORE multiplies the standardized variables by the coefficients from the

–TYPE–=’SCORE’ observations to get the canonical scores.
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Computational Resources

In the following discussion, let

n = number of observations

c = number of class levels

v = number of variables in the VAR list

l = length of the CLASS variable

Memory Requirements

The amount of memory in bytes for temporary storage needed to process the data is

c(4v2 + 28v + 4l + 68) + 16v2 + 96v + 4l

With the ANOVA option, the temporary storage must be increased by 16v bytes. The
DISTANCE option requires an additional temporary storage of4v2 + 4v bytes.

Time Requirements

The following factors determine the time requirements of the CANDISC procedure.

• The time needed for reading the data and computing covariance matrices is
proportional tonv2. PROC CANDISC must also look up each class level in
the list. This is faster if the data are sorted by the CLASS variable. The time
for looking up class levels is proportional to a value ranging fromn to n log(c).

• The time for inverting a covariance matrix is proportional tov3.

• The time required for the canonical discriminant analysis is proportional tov3.

Each of the preceding factors has a different constant of proportionality.

Displayed Output

The output produced by PROC CANDISC includes

• Class Level Information, including the values of the classification variable, the
Frequency and Weight of each value, and its Proportion in the total sample.

Optional output includes

• Within-Class SSCP Matrices for each group

• Pooled Within-Class SSCP Matrix

• Between-Class SSCP Matrix

• Total-Sample SSCP Matrix
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• Within-Class Covariance Matrices for each group

• Pooled Within-Class Covariance Matrix

• Between-Class Covariance Matrix, equal to the between-class SSCP matrix
divided byn(c − 1)/c, wheren is the number of observations andc is the
number of classes

• Total-Sample Covariance Matrix

• Within-Class Correlation Coefficients andPr > |r| to test the hypothesis that
the within-class population correlation coefficients are zero

• Pooled Within-Class Correlation Coefficients andPr > |r| to test the hypoth-
esis that the partial population correlation coefficients are zero

• Between-Class Correlation Coefficients andPr > |r| to test the hypothesis that
the between-class population correlation coefficients are zero

• Total-Sample Correlation Coefficients andPr > |r| to test the hypothesis that
the total population correlation coefficients are zero

• Simple Statistics including N (the number of observations), Sum, Mean,
Variance, and Standard Deviation both for the total sample and within each
class

• Total-Sample Standardized Class Means, obtained by subtracting the grand
mean from each class mean and dividing by the total sample standard devi-
ation

• Pooled Within-Class Standardized Class Means, obtained by subtracting the
grand mean from each class mean and dividing by the pooled within-class stan-
dard deviation

• Pairwise Squared Distances Between Groups

• Univariate Test Statistics, including Total-Sample Standard Deviations, Pooled
Within-Class Standard Deviations, Between-Class Standard Deviations,R2,
R2/(1 − R2), F , andPr > F (univariateF values and probability levels for
one-way analyses of variance)

By default, PROC CANDISC displays these statistics:

• Multivariate Statistics andF Approximations including Wilks’ Lambda,
Pillai’s Trace, Hotelling-Lawley Trace, and Roy’s Greatest Root withF ap-
proximations, degrees of freedom (Num DF and Den DF), and probability val-
ues(Pr > F ). Each of these four multivariate statistics tests the hypothesis
that the class means are equal in the population. See the “Multivariate Tests”
section inChapter 2, “Introduction to Regression Procedures,”for more infor-
mation.

• Canonical Correlations

• Adjusted Canonical Correlations (Lawley 1959). These are asymptotically less
biased than the raw correlations and can be negative. The adjusted canonical
correlations may not be computable and are displayed as missing values if two
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canonical correlations are nearly equal or if some are close to zero. A miss-
ing value is also displayed if an adjusted canonical correlation is larger than a
previous adjusted canonical correlation.

• Approx Standard Error, approximate standard error of the canonical correla-
tions

• Squared Canonical Correlations

• Eigenvalues ofE−1H. Each eigenvalue is equal toρ2/(1−ρ2), whereρ2 is the
corresponding squared canonical correlation and can be interpreted as the ratio
of between-class variation to pooled within-class variation for the correspond-
ing canonical variable. The table includes Eigenvalues, Differences between
successive eigenvalues, the Proportion of the sum of the eigenvalues, and the
Cumulative proportion.

• Likelihood Ratio for the hypothesis that the current canonical correlation and
all smaller ones are zero in the population. The likelihood ratio for the hypoth-
esis that all canonical correlations equal zero is Wilks’ lambda.

• Approx F statistic based on Rao’s approximation to the distribution of the
likelihood ratio (Rao 1973, p. 556; Kshirsagar 1972, p. 326)

• Num DF (numerator degrees of freedom), Den DF (denominator degrees of
freedom), andPr > F , the probability level associated with theF statistic

The following statistics can be suppressed with the SHORT option:

• Total Canonical Structure, giving total-sample correlations between the canon-
ical variables and the original variables

• Between Canonical Structure, giving between-class correlations between the
canonical variables and the original variables

• Pooled Within Canonical Structure, giving pooled within-class correlations be-
tween the canonical variables and the original variables

• Total-Sample Standardized Canonical Coefficients, standardized to give canon-
ical variables with zero mean and unit pooled within-class variance when ap-
plied to the total-sample standardized variables

• Pooled Within-Class Standardized Canonical Coefficients, standardized to give
canonical variables with zero mean and unit pooled within-class variance when
applied to the pooled within-class standardized variables

• Raw Canonical Coefficients, standardized to give canonical variables with zero
mean and unit pooled within-class variance when applied to the centered vari-
ables

• Class Means on Canonical Variables
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ODS Table Names

PROC CANDISC assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 21.2. ODS Tables Produced in PROC CANDISC

ODS Table Name Description PROC CANDISC Option
ANOVA Univariate statistics ANOVA
AveRSquare Average R-square ANOVA
BCorr Between-class correlations BCORR
BCov Between-class covariances BCOV
BSSCP Between-class SSCP matrix BSSCP
BStruc Between canonical structure default
CanCorr Canonical correlations default
CanonicalMeans Class means on canonical variables default
Counts Number of observations, variables,

classes, df
default

CovDF DF for covariance matrices, not printed any *COV option
Dist Squared distances MAHALANOBIS
DistFValues F statistics based on squared distances MAHALANOBIS
DistProb Probabilities forF statistics from

squared distances
MAHALANOBIS

Levels Class level information default
MultStat MANOVA default
PCoef Pooled standard canonical coefficients default
PCorr Pooled within-class correlations PCORR
PCov Pooled within-class covariances PCOV
PSSCP Pooled within-class SSCP matrix PSSCP
PStdMeans Pooled standardized class means STDMEAN
PStruc Pooled within canonical structure default
RCoef Raw canonical coefficients default
SimpleStatistics Simple statistics SIMPLE
TCoef Total-sample standard canonical

coefficients
default

TCorr Total-sample correlations TCORR
TCov Total-sample covariances TCOV
TSSCP Total-sample SSCP matrix TSSCP
TStdMeans Total standardized class means STDMEAN
TStruc Total canonical structure default
WCorr Within-class correlations WCORR
WCov Within-class covariances WCOV
WSSCP Within-class SSCP matrices WSSCP
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Example

Example 21.1. Analysis of Iris Data Using PROC CANDISC

The iris data published by Fisher (1936) have been widely used for examples in dis-
criminant analysis and cluster analysis. The sepal length, sepal width, petal length,
and petal width are measured in millimeters on fifty iris specimens from each of three
species:Iris setosa, I. versicolor, and I. virginica.

This example is a canonical discriminant analysis that creates an output data set con-
taining scores on the canonical variables and plots the canonical variables. The fol-
lowing statements produceOutput 21.1.1throughOutput 21.1.7:

proc format;
value specname

1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

run;

data iris;
title ’Fisher (1936) Iris Data’;
input SepalLength SepalWidth PetalLength PetalWidth

Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’

SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

symbol = put(Species, specname10.);
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
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49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;
proc candisc data=iris out=outcan distance anova;

class Species;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

PROC CANDISC first displays information about the observations and the classes in
the data set inOutput 21.1.1.

Output 21.1.1. Iris Data: Summary Information
Fisher (1936) Iris Data

The CANDISC Procedure

Observations 150 DF Total 149
Variables 4 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable
Species Name Frequency Weight Proportion

Setosa Setosa 50 50.0000 0.333333
Versicolor Versicolor 50 50.0000 0.333333
Virginica Virginica 50 50.0000 0.333333

The DISTANCE option in the PROC CANDISC statement displays squared
Mahalanobis distances between class means. Results from the DISTANCE option is
shown inOutput 21.1.2andOutput 21.1.3.
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Output 21.1.2. Iris Data: Squared Mahalanobis Distances
Fisher (1936) Iris Data

The CANDISC Procedure

Pairwise Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X )

i j i j

Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 0 89.86419 179.38471
Versicolor 89.86419 0 17.20107
Virginica 179.38471 17.20107 0

Output 21.1.3. Iris Data: Squared Mahalanobis Distance Statistics
Fisher (1936) Iris Data

The CANDISC Procedure

F Statistics, NDF=4, DDF=144 for Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 0 550.18889 1098
Versicolor 550.18889 0 105.31265
Virginica 1098 105.31265 0

Prob > Mahalanobis Distance for Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 1.0000 <.0001 <.0001
Versicolor <.0001 1.0000 <.0001
Virginica <.0001 <.0001 1.0000

The ANOVA option specifies testing of the hypothesis that the class means are equal
using univariate statistics. The resultingR2 values (seeOutput 21.1.4) range from
0.4008 forSepalWidth to 0.9414 forPetalLength, and each variable is significant
at the 0.0001 level. The multivariate test for differences between the classes (which
is displayed by default) is also significant at the 0.0001 level; you would expect this
from the highly significant univariate test results.
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Output 21.1.4. Iris Data: Univariate and Multivariate Statistics
Fisher (1936) Iris Data

The CANDISC Procedure

Univariate Test Statistics

F Statistics, Num DF=2, Den DF=147

Total Pooled Between
Standard Standard Standard R-Square

Variable Label Deviation Deviation Deviation R-Square / (1-RSq) F Value Pr > F

SepalLength Sepal Length in mm. 8.2807 5.1479 7.9506 0.6187 1.6226 119.26 <.0001
SepalWidth Sepal Width in mm. 4.3587 3.3969 3.3682 0.4008 0.6688 49.16 <.0001
PetalLength Petal Length in mm. 17.6530 4.3033 20.9070 0.9414 16.0566 1180.16 <.0001
PetalWidth Petal Width in mm. 7.6224 2.0465 8.9673 0.9289 13.0613 960.01 <.0001

Average R-Square

Unweighted 0.7224358
Weighted by Variance 0.8689444

Multivariate Statistics and F Approximations

S=2 M=0.5 N=71

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.02343863 199.15 8 288 <.0001
Pillai’s Trace 1.19189883 53.47 8 290 <.0001
Hotelling-Lawley Trace 32.47732024 582.20 8 203.4 <.0001
Roy’s Greatest Root 32.19192920 1166.96 4 145 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

The R2 betweenCan1 and the class variable, 0.969872, is much larger than the
correspondingR2 for Can2, 0.222027. This is displayed inOutput 21.1.5.

Output 21.1.5. Iris Data: Canonical Correlations and Eigenvalues
Fisher (1936) Iris Data

The CANDISC Procedure

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.984821 0.984508 0.002468 0.969872
2 0.471197 0.461445 0.063734 0.222027

Test of H0: The canonical correlations in
the current row and all

Eigenvalues of Inv(E)*H that follow are zero
= CanRsq/(1-CanRsq)

Likelihood Approximate
Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F

1 32.1919 31.9065 0.9912 0.9912 0.02343863 199.15 8 288 <.0001
2 0.2854 0.0088 1.0000 0.77797337 13.79 3 145 <.0001
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Output 21.1.6. Iris Data: Correlations Between Canonical and Original Variables
Fisher (1936) Iris Data

The CANDISC Procedure

Total Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.791888 0.217593
SepalWidth Sepal Width in mm. -0.530759 0.757989
PetalLength Petal Length in mm. 0.984951 0.046037
PetalWidth Petal Width in mm. 0.972812 0.222902

Between Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.991468 0.130348
SepalWidth Sepal Width in mm. -0.825658 0.564171
PetalLength Petal Length in mm. 0.999750 0.022358
PetalWidth Petal Width in mm. 0.994044 0.108977

Pooled Within Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.222596 0.310812
SepalWidth Sepal Width in mm. -0.119012 0.863681
PetalLength Petal Length in mm. 0.706065 0.167701
PetalWidth Petal Width in mm. 0.633178 0.737242

The raw canonical coefficients (shown inOutput 21.1.7) for the first canonical vari-
able,Can1, show that the classes differ most widely on the linear combination of
the centered variables−0.0829378 × SepalLength − 0.153447 × SepalWidth +
0.220121× PetalLength + 0.281046× PetalWidth.

Output 21.1.7. Iris Data: Canonical Coefficients
Fisher (1936) Iris Data

The CANDISC Procedure

Total-Sample Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length in mm. -0.686779533 0.019958173
SepalWidth Sepal Width in mm. -0.668825075 0.943441829
PetalLength Petal Length in mm. 3.885795047 -1.645118866
PetalWidth Petal Width in mm. 2.142238715 2.164135931

Pooled Within-Class Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length in mm. -.4269548486 0.0124075316
SepalWidth Sepal Width in mm. -.5212416758 0.7352613085
PetalLength Petal Length in mm. 0.9472572487 -.4010378190
PetalWidth Petal Width in mm. 0.5751607719 0.5810398645
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Fisher (1936) Iris Data

The CANDISC Procedure

Raw Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length in mm. -.0829377642 0.0024102149
SepalWidth Sepal Width in mm. -.1534473068 0.2164521235
PetalLength Petal Length in mm. 0.2201211656 -.0931921210
PetalWidth Petal Width in mm. 0.2810460309 0.2839187853

Class Means on Canonical Variables

Species Can1 Can2

Setosa -7.607599927 0.215133017
Versicolor 1.825049490 -0.727899622
Virginica 5.782550437 0.512766605

The plot of canonical variables inOutput 21.1.8shows that of the two canonical
variablesCan1 has the most discriminatory power. The following invocation of the
%PLOTIT macro creates this plot:

%plotit(data=outcan, plotvars=Can2 Can1,
labelvar=_blank_, symvar=symbol, typevar=symbol,
symsize=1, symlen=4, exttypes=symbol, ls=100,
tsize=1.5, extend=close);

Output 21.1.8. Iris Data: Plot of First Two Canonical Variables
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Chapter 22
The CATMOD Procedure
Overview

The CATMOD procedure performs categorical data modeling of data that can be
represented by a contingency table. PROC CATMOD fits linear models to functions
of response frequencies, and it can be used for linear modeling, log-linear modeling,
logistic regression, and repeated measurement analysis. PROC CATMOD uses

• weighted least-squares (WLS) estimation of parameters for a wide range of
general linear models

• maximum likelihood (ML) estimation of parameters for log-linear models and
the analysis of generalized logits

The CATMOD procedure provides a wide variety of categorical data analyses, many
of which are generalizations of continuous data analysis methods. For example, anal-
ysis of variance, in the traditional sense, refers to the analysis of means and the parti-
tioning of variation among the means into various sources. Here, the termanalysis of
varianceis used in a generalized sense to denote the analysis of response functions
and the partitioning of variation among those functions into various sources. The re-
sponse functions might be mean scores if the dependent variables are ordinally scaled.
But they can also be marginal probabilities, cumulative logits, or other functions that
incorporate the essential information from the dependent variables.

Types of Input Data

The data that PROC CATMOD analyzes are usually supplied in one of two ways.
First, you can supply raw data, where each observation is a subject. Second, you can
supply cell count data, where each observation is a cell in a contingency table. (A
third way, which uses direct input of the covariance matrix, is also available; details
are given in the“Inputting Response Functions and Covariances Directly”section on
page 862.)

Suppose detergent preference is related to three other categorical variables: water
softness, water temperature, and previous use of a brand of detergent. In the raw data
case, each observation in the input data set identifies a given respondent in the study
and contains information on all four variables. The data set contains the same number
of observations as the survey had respondents. In the cell count case, each observation
identifies a given cell in the four-way table of water softness, water temperature,
previous use of brand, and brand preference. A fifth variable contains the number of
respondents in the cell. In the analysis, this fifth variable is identified in a WEIGHT
statement. The data set contains the same number of observations as the number
of cross-classifications formed by the four categorical variables. For more on this
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particular example, seeExample 22.1on page 901. For additional details, see the
section“Input Data Sets”on page 860.

Most of the examples in this chapter use cell counts as input and use a WEIGHT
statement.

Types of Statistical Analyses

This section illustrates, by example, the wide variety of categorical data analyses that
PROC CATMOD provides. For each type of analysis, a brief description of the sta-
tistical problem and the SAS statements to provide the analysis are given. For each
analysis, assume that the input data set consists of a set of cell counts from a contin-
gency table. The variable specified in the WEIGHT statement contains these counts.
In all these analyses, both the dependent and independent variables are categorical.

Linear Model Analysis

Suppose you want to analyze the relationship between the dependent variables (r1,
r2) and the independent variables (a, b). Analyze the marginal probabilities of the
dependent variables, and use a main-effects model.

proc catmod;
weight wt;
response marginals;
model r1*r2=a b;

quit;

Log-Linear Model Analysis

Suppose you want to analyze the nominal dependent variables (r1, r2, r3) with a log-
linear model. Use maximum likelihood analysis, and include the main effects and the
r1* r2 interaction in the model. Obtain the predicted cell frequencies.

proc catmod;
weight wt;
model r1*r2*r3=_response_ / pred=freq;
loglin r1|r2 r3;

quit;

Logistic Regression

Suppose you want to analyze the relationship between the nominal dependent vari-
able (r) and the independent variables (x1, x2) with a logistic regression analysis.
Use maximum likelihood estimation.

proc catmod;
weight wt;
direct x1 x2;
model r=x1 x2;

quit;
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If x1 and x2 are continuous so that each observation has a unique value of these
two variables, then it may be more appropriate to use the LOGISTIC, GENMOD, or
PROBIT procedure. See the“Logistic Regression”section on page 869.

Repeated Measures Analysis
Suppose the dependent variables (r1, r2, r3) represent the same type of measure-
ment taken at three different times. Analyze the relationship among the dependent
variables, the repeated measurement factor (time), and the independent variable (a).

proc catmod;
weight wt;
response marginals;
model r1*r2*r3=_response_|a;
repeated time 3 / _response_=time;

quit;

Analysis of Variance
Suppose you want to investigate the relationship between the dependent variable (r)
and the independent variables (a, b). Analyze the mean of the dependent variable,
and include all main effects and interactions in the model.

proc catmod;
weight wt;
response mean;
model r=a|b;

quit;

Linear Regression
PROC CATMOD can analyze the relationship between the dependent variables (r1,
r2) and the independent variables (x1, x2). Use a linear regression analysis to analyze
the marginal probabilities of the dependent variables.

proc catmod;
weight wt;
direct x1 x2;
response marginals;
model r1*r2=x1 x2;

quit;

Logistic Analysis of Ordinal Data
Suppose you want to analyze the relationship between the ordinally scaled depen-
dent variable (r) and the independent variable (a). Use cumulative logits to take into
account the ordinal nature of the dependent variable. Use weighted least-squares
estimation.

proc catmod;
weight wt;
response clogits;
model r=_response_ a;

quit;
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Sample Survey Analysis

Suppose the data set contains estimates of a vector of four functions and their covari-
ance matrix, estimated in such a way as to correspond to the sampling process that is
used. Analyze the functions with respect to the independent variables (a, b), and use
a main-effects model.

proc catmod;
response read b1-b10;
model _f_=_response_;
factors a 2 , b 5 / _response_=a b;

quit;

Background: The Underlying Model

The CATMOD procedure analyzes data that can be represented by a two-dimensional
contingency table. The rows of the table correspond to populations (or samples)
formed on the basis of one or more independent variables. The columns of the ta-
ble correspond to observed responses formed on the basis of one or more dependent
variables. The frequency in the(i, j)th cell is the number of subjects in theith popu-
lation that have thejth response. The frequencies in the table are assumed to follow
a product multinomial distribution, corresponding to a sampling design in which a
simple random sample is taken for each population. The contingency table can be
represented as shown inTable 22.1.

Table 22.1. Contingency Table Representation

Response

Sample 1 2 · · · r Total

1 n11 n12 · · · n1r n1

2 n21 n22 · · · n2r n2

...
...

...
...

...
...

s ns1 ns2 · · · nsr ns

For each samplei, the probability of thejth response (πij) is estimated by the sample
proportion,pij = nij/ni. The vector (p) of all such proportions is then transformed
into a vector of functions, denoted byF = F(p). If π denotes the vector of true
probabilities for the entire table, then the functions of the true probabilities, denoted
by F(π), are assumed to follow a linear model

EA(F) = F(π) = Xβ

whereEA denotes asymptotic expectation,X is the design matrix containing fixed
constants, andβ is a vector of parameters to be estimated.
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PROC CATMOD provides two estimation methods:

• The maximum likelihood method estimates the parameters of the linear model
so as to maximize the value of the joint multinomial likelihood function of the
responses. Maximum likelihood estimation is available only for the standard
response functions, logits and generalized logits, which are used for logistic re-
gression analysis and log-linear model analysis. Two methods of maximization
are available: Newton-Raphson and iterative proportional fitting. For details of
the theory, refer to Bishop, Fienberg, and Holland (1975).

• The weighted least-squares method minimizes the weighted residual sum of
squares for the model. The weights are contained in the inverse covariance
matrix of the functionsF(p). According to central limit theory, if the sample
sizes within populations are sufficiently large, the elements ofF andb (the
estimate ofβ) are distributed approximately as multivariate normal. This al-
lows the computation of statistics for testing the goodness of fit of the model
and the significance of other sources of variation. For details of the theory,
refer to Grizzle, Starmer, and Koch (1969) or Koch et al. (1977, Appendix 1).
Weighted least-squares estimation is available for all types of response func-
tions.

Following parameter estimation, hypotheses about linear combinations of the param-
eters can be tested. For that purpose, PROC CATMOD computes generalized Wald
(1943) statistics, which are approximately distributed as chi-square if the sample sizes
are sufficiently large and the null hypotheses are true.

Linear Models Contrasted with Log-Linear Models

Linear model methods (as typified by the Grizzle, Starmer, Koch approach) make
a very clear distinction between independent and dependent variables. The empha-
sis of these methods is estimation and hypothesis testing of the model parameters.
Therefore, it is easy to test for differences among probabilities, perform repeated
measurement analysis, and test for marginal homogeneity, but it is awkward to test
independence and generalized independence. These methods are a natural extension
of the usual ANOVA approach for continuous data.

In contrast, log-linear model methods (as typified by the Bishop, Fienberg, Holland
approach) do not make an a priori distinction between independent and dependent
variables, although model specifications that allow for the distinction can be made.
The emphasis of these methods is on model building, goodness-of-fit tests, and esti-
mation of cell frequencies or probabilities for the underlying contingency table. With
these methods, it is easy to test independence and generalized independence, but it is
awkward to test for differences among probabilities, do repeated measurement anal-
ysis, and test for marginal homogeneity.
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Using PROC CATMOD Interactively

You can use the CATMOD procedure interactively. After specifying a model with a
MODEL statement and running PROC CATMOD with a RUN statement, you can ex-
ecute any statement without reinvoking PROC CATMOD. You can execute the state-
ments singly or in groups by following the single statement or group of statements
with a RUN statement. Note that you can use more than one MODEL statement; this
is an important difference from the GLM procedure.

If you use PROC CATMOD interactively, you can end the CATMOD procedure with
a DATA step, another PROC step, an ENDSAS statement, or a QUIT statement. The
syntax of the QUIT statement is

quit;

When you are using PROC CATMOD interactively, additional RUN statements do
not end the procedure but tell the procedure to execute additional statements.

When the CATMOD procedure detects a BY statement, it disables interactive pro-
cessing; that is, once the BY statement and the next RUN statement are encountered,
processing proceeds for each BY group in the data set, and no additional statements
are accepted by the procedure. For example, the following statements tell PROC
CATMOD to do three analyses: one for the entire data set, one for males, and one for
females.

proc catmod;
weight wt;
response marginals;
model r1*r2=a|b;

run;
by sex;

run;

Note that the BY statement may appear after the first RUN statement; this is an im-
portant difference from PROC GLM, which requires that the BY statement appear
before the first RUN statement.

Getting Started

The CATMOD procedure is a general modeling procedure for categorical data analy-
sis, and it can be used for very sophisticated analyses that require matrix specification
of the response function and the design matrix. It can be used to perform very basic
analysis-of-variance-type analyses that require very few statements. The following is
a basic example.
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Weighted-Least-Squares Analysis of Mean Response

Consider the data in the following table (Stokes, Davis, and Koch 2000).

Table 22.2. Colds in Children
Periods with Colds

Sex Residence 0 1 2 Total
Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

For males and females in rural and urban counties, the number of periods (of two)
in which subjects report cold symptoms are recorded. Thus, 45 subjects who were
female and in rural counties report no cold symptoms, and 71 subjects who are female
and from rural counties report colds in both periods.

The question of interest is whether the mean number of periods with colds reported is
associated with gender or type of county. There is no reason to believe that the mean
number of periods with colds is normally distributed, so a weighted least-squares
analysis of these data is performed with PROC CATMOD instead of an analysis of
variance with PROC ANOVA or PROC GLM.

The input data for categorical data is often recorded in frequency form, with the
counts for each particular profile being the input values. Thus, for the colds data, the
input SAS data setcolds is created with the following statements. The variablecount
contains the frequency of observations that have the particular profile described by
the values of the other variables on that input line.

data colds;
input sex $ residence $ periods count @@;

datalines;
female rural 0 45 female rural 1 64 female rural 2 71
female urban 0 80 female urban 1 104 female urban 2 116
male rural 0 84 male rural 1 124 male rural 2 82
male urban 0 106 male urban 1 117 male urban 2 87
;
run;

In order to fit a model to the mean number of periods with colds, you have to specify
the response function in PROC CATMOD. The default response function is the logit
if the response variable has two values, and it is generalized logits if the response
variable has more than two values. If you want a different response function, then
you request that function in the RESPONSE statement. To request the mean number
of periods with colds, you specify the MEANS option in the RESPONSE statement.

You can request a model consisting of the main effects and interaction of the vari-
ablessex andresidence just as you would in the GLM procedure. Unlike the GLM
procedure, you do not need to use a CLASS statement in PROC CATMOD to treat
a variable as a classification variable. All variables in the MODEL statement in the
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CATMOD procedure are treated as classification variables unless you specify oth-
erwise with a DIRECT statement. To verify that your model is specified correctly,
you can specify the DESIGN option in the MODEL statement to display the design
matrix.

Thus, the PROC CATMOD statements needed to model mean periods of colds with
a main effects and interaction model are

proc catmod data=colds;
weight count;
response means;
model periods = sex residence sex*residence / design;

run;

The results of this analysis are shown inFigure 22.1throughFigure 22.3.

The CATMOD Procedure

Data Summary

Response periods Response Levels 3
Weight Variable count Populations 4
Data Set COLDS Total Frequency 1080
Frequency Missing 0 Observations 12

Population Profiles

Sample sex residence Sample Size
--------------------------------------------

1 female rural 180
2 female urban 300
3 male rural 290
4 male urban 310

Response Profiles

Response periods
-------------------

1 0
2 1
3 2

Figure 22.1. Model Information and Profile Tables

The CATMOD procedure first displays a summary of the contingency table you are
analyzing. The “Population Profiles” table lists the values of the explanatory variables
that define each population, or row of the underlying contingency table, and labels
each group with a sample number. The number of observations in each population is
also displayed. The “Response Profiles” table lists the variable levels that define the
response, or columns of the underlying contingency table.
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Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4
--------------------------------------------------------

1 1.14444 1 1 1 1
2 1.12000 1 1 -1 -1
3 0.99310 1 -1 1 -1
4 0.93871 1 -1 -1 1

Figure 22.2. Observed Response Functions and Design Matrix

The “Design Matrix” table contains the observed response functions—in this case,
the mean number of periods with colds for each of the populations—and the design
matrix. The first column of the design matrix contains the coefficients for the inter-
cept parameter, the second column coefficients are for thesex parameter (note that
the sum-to-zero constraint of a full-rank parameterization implies that the coefficient
for males is the negative of that for females. The parameter is called thedifferential
effectfor females), the third column is similarly set up forresidence, and the last
column is for the interaction.

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-----------------------------------------------
Intercept 1 1841.13 <.0001
sex 1 11.57 0.0007
residence 1 0.65 0.4202
sex*residence 1 0.09 0.7594

Residual 0 . .

Figure 22.3. ANOVA Table for the Saturated Model

The model-fitting results are displayed in the “Analysis of Variance” table (Figure
22.3), which is similar to an ANOVA table. The effects from the right-hand side of
the MODEL statement are listed under the “Source” column.

The interaction effect is nonsignificant, so the data are reanalyzed using a main-
effects model. Since PROC CATMOD is an interactive procedure, you can analyze
the main-effects model by simply submitting the new MODEL statement as follows.
The resulting tables are displayed inFigure 22.4throughFigure 22.7.

proc catmod data=colds;
weight count;
response means;
model periods = sex residence / design;

run;
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The CATMOD Procedure

Data Summary

Response periods Response Levels 3
Weight Variable count Populations 4
Data Set COLDS Total Frequency 1080
Frequency Missing 0 Observations 12

Population Profiles

Sample sex residence Sample Size
--------------------------------------------

1 female rural 180
2 female urban 300
3 male rural 290
4 male urban 310

Response Profiles

Response periods
-------------------

1 0
2 1
3 2

Figure 22.4. Population and Response Profiles, Main-Effects Model

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3
-----------------------------------------------

1 1.14444 1 1 1
2 1.12000 1 1 -1
3 0.99310 1 -1 1
4 0.93871 1 -1 -1

Figure 22.5. Design Matrix for the Main-Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 1882.77 <.0001
sex 1 12.08 0.0005
residence 1 0.76 0.3839

Residual 1 0.09 0.7594

Figure 22.6. ANOVA Table for the Main-Effects Model

The goodness-of-fit chi-square statistic is 0.09 with one degree of freedom and ap-
value of 0.7594; hence, the model fits the data. Note that the chi-square tests inFigure
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22.6test whether all the parameters for a given effect are zero. In this model, each
effect has only one parameter, and therefore only one degree of freedom.

Analysis of Weighted Least Squares Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------
Intercept 1.0501 0.0242 1882.77 <.0001
sex female 0.0842 0.0242 12.08 0.0005
residence rural 0.0210 0.0241 0.76 0.3839

Figure 22.7. Parameter Estimates for the Main-Effects Model

The “Analysis of Weighted-Least-Squares Estimates” table lists the parameters and
their estimates for the model, as well as the standard errors, Wald statistics, andp-
values. These chi-square tests are single degree-of-freedom tests that the individual
parameter is equal to zero. They are equal to the tests shown inFigure 22.6since
each effect is composed of exactly one parameter.

You can compute the mean number of periods of colds for the first population (Sample
1, females in rural residences) fromTable 22.2as follows.

mean colds= 0× 45
180

+ 1× 64
180

+ 2× 71
180

= 1.1444

This is the same value as reported for the Response Function for Sample 1 inFigure
22.5.

PROC CATMOD is fitting a model to the mean number of colds in each population
as follows:

Expected number of colds for rural females
urban females

rural males
urban males

 =


1 1 1
1 1 −1
1 −1 1
1 −1 −1


 β0

β1

β2


where the design matrix is the same one displayed inFigure 22.5, β0 is the mean
number of colds averaged over all the populations,β1 is the differential effect for
females, andβ2 is the differential effect for rural residences. The parameter estimates
are shown inFigure 22.7; thus, the expected number of periods with colds for rural
females from this model is

1× 1.0501 + 1× 0.0842 + 1× 0.0210 = 1.1553

and the expected number for rural males from this model is

1× 1.0501− 1× 0.0842 + 1× 0.0210 = 0.9869

Notice also, inFigure 22.7, that the differential effect for residence is nonsignificant
(p = 0.3839): If you continue the analysis by fitting a single effect model (sex),
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you need to include a POPULATION statement to maintain the same underlying
contingency table.

population sex residence;
model periods = sex;

run;

Generalized Logits Model

Over the course of one school year, third-graders from three different schools are
exposed to three different styles of mathematics instruction: a self-paced computer-
learning style, a team approach, and a traditional class approach. The students are
asked which style they prefer, and their responses, classified by the type of program
they are in (a regular school day versus a regular day supplemented with an afternoon
school program), are displayed inTable 22.3. The data set is from Stokes, Davis, and
Koch (2000), and it is also analyzed inExample 42.4on page 2416 ofChapter 42,
“The LOGISTIC Procedure,”.

Table 22.3. School Program Data
Learning Style Preference

School Program Self Team Class
1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20

The levels of the response variable (self, team, and class) have no essential ordering,
hence a logistic regression is performed on the generalized logits. The model to be
fit is

log
(

πhij

πhir

)
= αj + x′

hiβj

whereπhij is the probability that a student in schoolh and programi prefers teaching
style j, j 6= r, and styler is the class style. There are separate sets of intercept
parametersαj and regression parametersβj for each logit, and the matrixxhi is the
set of explanatory variables for thehith population. Thus, two logits are modeled for
each school and program combination (population): the logit comparing self to class
and the logit comparing team to class.

The following statements create the data setschool and request the analysis.
Generalized logits are the default response functions, and maximum likelihood es-
timation is the default method for analyzing generalized logits, so only the WEIGHT
and MODEL statements are required. The optionORDER=DATAmeans that the re-
sponse variable levels are ordered as they exist in the data set: self, team, and class;
thus the logits are formed by comparing self to class and by comparing team to class.
The results of this analysis are shown inFigure 22.8andFigure 22.9.
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data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;

proc catmod order=data;
weight Count;
model Style=School Program School*Program;

run;

The CATMOD Procedure

Data Summary

Response Style Response Levels 3
Weight Variable Count Populations 6
Data Set SCHOOL Total Frequency 338
Frequency Missing 0 Observations 18

Population Profiles

Sample School Program Sample Size
--------------------------------------------

1 1 regular 53
2 1 afternoon 67
3 2 regular 64
4 2 afternoon 64
5 3 regular 46
6 3 afternoon 44

Response Profiles

Response Style
-----------------

1 self
2 team
3 class

Figure 22.8. Model Information and Profile Tables

A summary of the data set is displayed inFigure 22.8; the variable levels that form
the three responses and six populations are listed in the “Response Profiles” and
“Population Profiles” table, respectively.
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Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 40.05 <.0001
School 4 14.55 0.0057
Program 2 10.48 0.0053
School*Program 4 1.74 0.7827

Likelihood Ratio 0 . .

Figure 22.9. ANOVA Table

The analysis of variance table is displayed inFigure 22.9. Since this is a saturated
model, there are no degrees of freedom remaining for a likelihood ratio test, and miss-
ing values are displayed in the table. The interaction effect is clearly nonsignificant,
so a main effects model is fit.

Since PROC CATMOD is an interactive procedure, you can analyze the main effects
model by simply submitting the new MODEL statement as follows.

model Style=School Program;
run;

The CATMOD Procedure

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 39.88 <.0001
School 4 14.84 0.0050
Program 2 10.92 0.0043

Likelihood Ratio 4 1.78 0.7766

Figure 22.10. ANOVA Table

You can check the population and response profiles (not shown) to confirm that they
are the same as those inFigure 22.8. The analysis of variance table is shown in
Figure 22.10. The likelihood ratio chi-square statistic is 1.78 with ap-value of 0.7766,
indicating a good fit; the Wald chi-square tests for the school and program effects are
also significant. SinceSchool has three levels, two parameters are estimated for each
of the two logits they modeled, for a total of four degrees of freedom. SinceProgram
has two levels, one parameter is estimated for each of the two logits, for a total of two
degrees of freedom.
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Analysis of Maximum Likelihood Estimates

Function Standard Chi-
Parameter Number Estimate Error Square Pr > ChiSq
---------------------------------------------------------------------------
Intercept 1 -0.7979 0.1465 29.65 <.0001

2 -0.6589 0.1367 23.23 <.0001
School 1 1 -0.7992 0.2198 13.22 0.0003

1 2 -0.2786 0.1867 2.23 0.1356
2 1 0.2836 0.1899 2.23 0.1352
2 2 -0.0985 0.1892 0.27 0.6028

Program regular 1 0.3737 0.1410 7.03 0.0080
regular 2 0.3713 0.1353 7.53 0.0061

Figure 22.11. Parameter Estimates

The parameter estimates and tests for individual parameters are displayed inFigure
22.11. The ordering of the parameters corresponds to the order of the population and
response variables as shown in the profile tables (seeFigure 22.8), with the levels of
the response variables varying most rapidly. So, for the first response function, which
is the logit that compares self to class, Parameter 1 is the intercept, Parameter 3 is the
parameter for the differential effect forSchool=1, Parameter 5 is the parameter for
the differential effect forSchool=2, and Parameter 7 is the parameter for the differ-
ential effect forProgram=regular. The even parameters are interpreted similarly for
the second logit, which compares team to class.

TheProgram variable (Parameters 7 and 8) has nearly the same effect on both logits,
while School=1 (Parameters 3 and 4) has the largest effect of the schools.

Syntax

The following statements are available in PROC CATMOD.

PROC CATMOD < options > ;
DIRECT < variables > ;
MODEL response-effect=design-effects < / options > ;
CONTRAST ’label’ row-description <, . . . , row-description >

< / options > ;
BY variables ;
FACTORS factor-description <, . . . , factor-description >

< / options > ;
LOGLIN effects ;
POPULATION variables ;
REPEATED factor-description <, . . . , factor-description >

< / options > ;
RESPONSE function <, . . . , function >< / options > ;
RESTRICT parameter=value < . . . parameter=value > ;
WEIGHT variable ;
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You can use all of the statements in PROC CATMOD interactively. The first RUN
statement executes all of the previous statements. Any subsequent RUN statement
executes only those statements that appear between the previous RUN statement and
the current one. However, if you specify a BY statement, interactive processing is
disabled. That is, all statements through the following RUN statement are processed
for each BY group in the data set, but no additional statements are accepted by the
procedure.

If more than one CONTRAST statement appears between two RUN statements, all
the CONTRAST statements are processed. If more than one RESPONSE state-
ment appears between two RUN statements, then analyses associated with each
RESPONSE statement are produced. For all other statements, there can be only
one occurrence of the statement between any two RUN statements. For example, if
there are two LOGLIN statements between two RUN statements, the first LOGLIN
statement is ignored.

The PROC CATMOD and MODEL statements are required. If specified, the
DIRECT statement must precede the MODEL statement. As a result, if you use
the DIRECT statement interactively, you need to specify a MODEL statement in the
same RUN group. See the section“DIRECT Statement”on page 835 for an example.

The CONTRAST statements, if any, must follow the MODEL statement.

You can specify only one of the LOGLIN, REPEATED, and FACTORS statements
between any two RUN statements, because they all specify the same information:
how to partition the variation among the response functions within a population.

A QUIT statement executes any statements that have not been processed and then
ends the CATMOD procedure.

The purpose of each statement, other than the PROC CATMOD statement, are sum-
marized in the following list:

BY determines groups in which data are to be processed separately.

CONTRAST specifies a hypothesis to test.

DIRECT specifies independent variables that are to be treated quantitatively
(like continuous variables) rather than qualitatively (like class or
discrete variables). These variables also help to determine the rows
of the contingency table and distinguish response functions in one
population from those in other populations.

FACTORS specifies (1) the factors that distinguish response functions from
others in the same population and (2) model effects, based on these
factors, which help to determine the design matrix.

LOGLIN specifies log-linear model effects.

MODEL specifies (1) dependent variables, which determine the columns of
the contingency table, (2) independent variables, which distinguish
response functions in one population from those in other popula-
tions, and (3) model effects, which determine the design matrix
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and the way in which total variation among the response functions
is partitioned.

POPULATION specifies variables which determine the rows of the contingency
table and distinguish response functions in one population from
those in other populations.

REPEATED specifies (1) the repeated measurement factors that distinguish re-
sponse functions from others in the same population and (2) model
effects, based on these factors, which help to determine the design
matrix.

RESPONSE determines the response functions that are to be modeled.

RESTRICT restricts values of parameters to the values you specify.

WEIGHT specifies a variable containing frequency counts.

PROC CATMOD Statement

PROC CATMOD < options > ;

The PROC CATMOD statement invokes the procedure. You can specify the follow-
ing options.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. By default, the CATMOD
procedure uses the most recently created SAS data set. For details, see the section
“Input Data Sets”on page 860.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters
long, wheren is a value between 24 and 200 characters. The default length is 24
characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
only want to create output data sets with theOUT= or OUTEST= option in the
RESPONSE statement. ANOPRINT option is also available in the MODEL state-
ment. Note that this option temporarily disables the Output Delivery System (ODS);
seeChapter 14, “Using the Output Delivery System,”for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of classification variables. This affects the
ordering of the populations, responses, and parameters, as well as the definitions of
the parameters. The default, ORDER=INTERNAL, orders the variable levels by their
unformatted values (for example, numeric order or alphabetical order).

The following table shows how PROC CATMOD interprets values of the ORDER=
option.
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Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric vari-
ables with no explicit format, which are sorted by
their unformatted (internal) value

FREQ descending frequency count; levels with the most
observations come first in the order

INTERNAL unformatted value

By default, ORDER=INTERNAL. For ORDER=FORMATTED and
ORDER=INTERNAL, the sort order is machine dependent. See the section
“Ordering of Populations and Responses”on page 863 for more information and
examples. For more information on sorting order, see the chapter on the SORT
procedure in theSAS Procedures Guideand the discussion of BY-group processing
in SAS Language Reference: Concepts.

BY Statement

BY variables ;

You can specify a BY statement with PROC CATMOD to obtain separate analyses of
groups determined by the BY variables. When a BY statement appears, the procedure
expects the input data set to be sorted in order of the BY variables. Thevariablesare
one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CATMOD procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

When you specify a BY statement with PROC CATMOD, no further interactive pro-
cessing is possible. In other words, once the BY statement appears, all statements
up to the associated RUN statement are executed for each BY group in the data set.
After the RUN statement, no further statements are accepted by the procedure.
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CONTRAST Statement

CONTRAST ’label’ row-description < , . . . , row-description >< / options > ;

where arow-descriptionis

< @n > effect values < . . . < @n > effect values >

The CONTRAST statement constructs and tests linear functions of the parameters in
the MODEL statement or effects listed in the LOGLIN statement. Each set of effects
(separated by commas) specifies one row or set of rows of the matrixC that PROC
CATMOD uses to test the hypothesisCβ = 0.

CONTRAST statements must be preceded by the MODEL statement, and by the
LOGLIN statement, if one is used. You can specify the following terms in the
CONTRAST statement.

’ label’ specifies up to 256 characters of identifying information displayed with
the test. The ’label’ is required.

effect is one of the effects specified in the MODEL or LOGLIN statement,
INTERCEPT (for the intercept parameter), or ALL–PARMS (for the
complete set of parameters).

The ALL–PARMS option is regarded as an effect with the same num-
ber of parameters as the number of columns in the design matrix. This
is particularly useful when the design matrix is input directly, as in the
following example:

model y=(1 0 0 0,
1 0 1 0,
1 1 0 0,
1 1 1 1);

contrast ’Main Effect of B’ all_parms 0 1 0 0;
contrast ’Main Effect of C’ all_parms 0 0 1 0;
contrast ’B*C Interaction ’ all_parms 0 0 0 1;

values are numbers that form the coefficients of the parameters associated with
the given effect. If there are fewer values than parameters for an effect,
the remaining coefficients become zero. For example, if you specify two
values and the effect actually has five parameters, the final three are set to
zero.

@n points to the parameters in thenth set when the model has a separate
set of parameters for each of the response functions. The@n notation
is seldom needed. It enables you to test the variation among response
functions in the same population. However, it is usually easier to model
and test such variation by using the–RESPONSE– effect in the MODEL
statement or by using the ALL–PARMS designation. Usually, contrasts
are performed with respect to all of the response functions, and this is
what the CONTRAST statement does by default (in this case, do not use
the@n notation).
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For example, if there are three response functions per population, then

contrast ’Level 1 vs. Level 2’ A 1 -1 0;

results in a three-degree-of-freedom test comparing the first two levels of
A simultaneously on the three response functions.

If, however, you want to specify a contrast with respect to the parameters
in thenth set only, then use a single@n in a row-description. For exam-
ple, to test that the first parameter ofA and the first parameter ofB are
zero in the third response function, specify

contrast ’A=0, B=0, Function 3’ @3 A 1 B 1;

To specify a contrast with respect to parameters in two or more different
sets of effects, use@n with each effect. For example,

contrast ’Average over Functions’ @1 A 1 0 -1
@2 A 1 1 -2;

When the model does not have a separate set of parameters for each of
the response functions, the@n notation is invalid. This type of model is
called AVERAGED. For details, see the description of theAVERAGED
optionon page 842 and the“Generation of the Design Matrix”section on
page 876.

You can specify the following options in the CONTRAST statement after a slash.

ALPHA= value
specifies the significance level of the confidence interval for each contrast when the
ESTIMATE= option is specified. The default is ALPHA=0.05, resulting in a 95%
confidence interval for each contrast.

ESTIMATE=keyword
EST=keyword

requests that each individual contrast (that is, each row,ciβ, of Cβ) or exponentiated
contrast(exp(ciβ)) be estimated and tested. PROC CATMOD displays the point
estimate, its standard error, a Wald confidence interval, and a Wald chi-square test for
each contrast. The significance level of the confidence interval is controlled by the
ALPHA= option.

You can estimate the contrast or the exponentiated contrast, or both, by specifying
one of the following keywords:

PARM specifies that the contrast itself be estimated.

EXP specifies that the exponentiated contrast be estimated.

BOTH specifies that both the contrast and the exponentiated contrast be
estimated.
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Specifying Contrasts

PROC CATMOD is parameterized differently than PROC GLM, so you must be care-
ful not to use the same contrasts that you would with PROC GLM. Since PROC
CATMOD uses a full-rank parameterization, all estimable parameters are directly
estimable without involving other parameters.

For example, suppose a class variableA has four levels. Then there are four parame-
ters (α1, α2, α3, α4), of which PROC CATMOD uses only the first three. The fourth
parameter is related to the others by the equation

α4 = −α1 − α2 − α3

To test the first versus the fourth level ofA, you would testα1 = α4, which is

α1 = −α1 − α2 − α3

or, equivalently,

2α1 + α2 + α3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1 vs. 4’ A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

α1 + α2

2
= α3

or, equivalently,

α1 + α2 − 2α3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1&2 vs. 3’ A 1 1 -2;

Other CONTRAST statements are constructed similarly; for example,

contrast ’1 vs. 2 ’ A 1 -1 0;
contrast ’1&2 vs. 4 ’ A 3 3 2;
contrast ’1&2 vs. 3&4’ A 2 2 0;
contrast ’Main Effect’ A 1 0 0,

A 0 1 0,
A 0 0 1;
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The actual form of theC matrix depends on the effects in the model. The following
examples assume a single response function for each population.

proc catmod;
model y=a;
contrast ’1 vs. 4’ A 2 1 1;

run;

TheC matrix for the preceding statements is

C = [ 0 2 1 1 ]

since the first parameter corresponds to the intercept.

But if there is a variableB with three levels and you use the following statements,

proc catmod;
model y=b a;
contrast ’1 vs. 4’ A 2 1 1;

run;

then the CONTRAST statement induces theC matrix

C = [ 0 0 0 2 1 1 ]

since the first parameter corresponds to the intercept and the next two correspond to
theB main effect.

You can also use the CONTRAST statement to test the joint effect of two or more
effects in the MODEL statement. For example, the joint effect ofA andB in the
previous model has five degrees of freedom and is obtained by specifying

contrast ’Joint Effect of A&B’ A 1 0 0,
A 0 1 0,
A 0 0 1,
B 1 0,
B 0 1;

The ordering of variable levels is determined by theORDER=option in the PROC
CATMOD statement. Whenever you specify a contrast that depends on the order of
the variable levels, you should verify the order from the “Population Profiles” table,
the “Response Profiles” table, or the “One-Way Frequencies” table.
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DIRECT Statement

DIRECT variables ;

The DIRECT statement lists numeric independent variables to be treated in a quan-
titative, rather than qualitative, way. The DIRECT statement is useful for logistic
regression, which is described in the“Logistic Regression”section on page 869. For
limitations of models involving continuous variables, see the“Continuous Variables”
section on page 870.

If a DIRECT variable is formatted, then the unformatted (internal) values are used in
the analysis and the formatted values are displayed.CAUTION: If you use a format
to group the internal values into one formatted value, then the first internal value is
used in the analysis.

If specified, the DIRECT statement must precede the MODEL statement. For exam-
ple,

proc catmod;
direct X;
model Y=X;

run;

SupposeX has five levels. Then the main effectX induces only one column in the
design matrix, rather than four. The values inserted into the design matrix are the
actual values ofX.

You can interactively change the variables declared as DIRECT variables by using
the statement without listing any variables. The following statements are valid:

proc catmod;
direct X;
model Y=X;
weight wt;

run;
direct;
model Y=X;

run;

The first MODEL statement uses the actual values ofX, and the second MODEL
statement uses the four variables created when PROC CATMOD generates the design
matrix. Note that the preceding statements can be run without a WEIGHT statement
if the input data are raw data rather than cell counts.

For more details, see the discussions of main and direct effects in the section
“Generation of the Design Matrix”on page 876.
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FACTORS Statement

FACTORS factor-description <, . . . , factor-description >< / options > ;

where afactor-descriptionis

factor-name < $ >< levels >

andfactor-descriptions are separated from each other by a comma. The $ is required
for character-valued factors. The value oflevelsprovides the number of levels of the
factor identified by a givenfactor-name. For only one factor,levelsis optional; for
two or more factors, it is required.

The FACTORS statement identifies factors that distinguish response functions from
others in the same population. It also specifies how those factors are incorporated
into the model. You can use the FACTORS statement whenever there is more than
one response function per population and the keyword–RESPONSE– is specified in
the MODEL statement. You can specify the name, type, and number of levels of each
factor and the identification of each level.

The FACTORS statement is most useful when the response functions and their covari-
ance matrix are read directly from the input data set. In this case, PROC CATMOD
reads the response functions as though they are from one population (this poses no
problem in the multiple-population case because the appropriately constructed co-
variance matrix is also read directly). Thus, you can use the FACTORS statement to
partition the variation among the response functions into appropriate sources, even
when the functions actually represent separate populations.

The format of the FACTORS statement is identical to that of the REPEATED state-
ment. In fact, repeated measurement factors are simply special cases of factors in
which some of the response functions correspond to multiple dependent variables
that are measurements on the same experimental (or sampling) units.

You cannot specify the FACTORS statement for an analysis that also contains the
REPEATED or LOGLIN statement since all of them specify the same information:
how to partition the variation among the response functions within a population.

In the FACTORS statement,

factor-name names a factor that corresponds to two or more response functions.
This name must be a valid SAS variable name, and it should not be
the same as the name of a variable that already exists in the data set
being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then
PROC CATMOD assumes that the factor is numeric. The type of the
factor is relevant only when you use the PROFILE= option or when
the –RESPONSE–= option (described later in this section) specifies
nested-by-value effects.

levels specifies the number of levels of the corresponding factor. If there
is only one such factor, and the number is omitted, then PROC
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CATMOD assumes that the number of levels is equal to the num-
ber of response functions per population (q). Unless you specify the
PROFILE= option, the numberq must either be equal to or be a mul-
tiple of the product of the number of levels of all the factors.

You can specify the following options in the FACTORS statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should
be one column for each factor, and the values in a given column (character or numeric)
should match the type of the corresponding factor. Character values are restricted to
16 characters or less. If there areq response functions per population, then the matrix
must havei rows, whereq must either be equal to or be a multiple ofi. Adjacent
rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations
where the study design is not a full factorial with respect to the factors. They can also
be used to specify nested-by-value effects in the–RESPONSE–= option. If you spec-
ify character values in both places (the PROFILE= option and the–RESPONSE–=
option), then the values must match with respect to whether or not they are enclosed
in quotes (that is, enclosed in quotes in both places or in neither place).

For an example of using the PROFILE= option, seeExample 22.10on page 944.

–RESPONSE–=effects
specifies design effects. The variables named in the effects must befactor-names
that appear in the FACTORS statement. If the–RESPONSE–= option is omitted,
then PROC CATMOD builds a full factorial–RESPONSE– effect with respect to the
factors.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to the current
FACTORS statement.

For an example of how the FACTORS statement is useful, consider the case where
the response functions and their covariance matrix are read directly from the input
data set. The TYPE=EST data set might be created in the following manner:

data direct(type=est);
input b1-b4 _type_ $ _name_ $8.;
datalines;

0.590463 0.384720 0.273269 0.136458 parms .
0.001690 0.000911 0.000474 0.000432 cov b1
0.000911 0.001823 0.000031 0.000102 cov b2
0.000474 0.000031 0.001056 0.000477 cov b3
0.000432 0.000102 0.000477 0.000396 cov b4
;

Suppose the response functions correspond to four populations that represent the
cross-classification of age (two groups) by sex. You can use the FACTORS statement
to identify these two factors and to name the effects in the model. The statements
required to fit a main-effects model to these data are
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proc catmod data=direct;
response read b1-b4;
model _f_=_response_;
factors age 2, sex 2 / _response_=age sex;

run;

If you want to specify some nested-by-value effects, you can change the FACTORS
statement to

factors age $ 2, sex $ 2 /
_response_=age sex(age=’under 30’) sex(age=’30 & over’)

profile=(’under 30’ male,
’under 30’ female,
’30 & over’ male,
’30 & over’ female);

If, by design or by chance, the study contains no male subjects under 30 years of
age, then there are only three response functions, and you can specify a main-effects
model as

proc catmod data=direct;
response read b2-b4;
model _f_=_response_;
factors age $ 2, sex $ 2 / _response_=age sex

profile=(’under 30’ female,
’30 & over’ male,
’30 & over’ female);

run;

When you specify two or more factors and omit the PROFILE= option, PROC
CATMOD presumes that the response functions are ordered so that the levels of the
rightmost factor change most rapidly. For the preceding example, the order implied
by the FACTORS statement is as follows.

Response Dependent
Function Variable Age Sex

1 b1 1 1
2 b2 1 2
3 b3 2 1
4 b4 2 2

For additional examples of how to use the FACTORS statement, see the section
“Repeated Measures Analysis”on page 873. All of the examples in that section
are applicable, with the REPEATED statement replaced by the FACTORS statement.
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LOGLIN Statement

LOGLIN effects < / option > ;

The LOGLIN statement is used to define log-linear model effects. It can be used
whenever the default response functions (generalized logits) are used.

In the LOGLIN statement,effectsare design effects that contain dependent variables
in the MODEL statement, including interaction, nested, and nested-by-value effects.
You can use the bar (|) and at (@) operators as well. The following lists of effects are
equivalent:

a b c a*b a*c b*c

and

a|b|c @2

When you use the LOGLIN statement, the keyword–RESPONSE– should be speci-
fied in the MODEL statement. For further information on log-linear model analysis,
see the“Log-Linear Model Analysis”section on page 870.

You cannot specify the LOGLIN statement for an analysis that also contains the
REPEATED or FACTORS statement since all of them specify the same information:
how to partition the variation among the response functions within a population.

You can specify the following option in the LOGLIN statement after a slash.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this LOGLIN
statement.

The following statements give an example of how to use the LOGLIN statement.

proc catmod;
model a*b*c=_response_;
loglin a|b|c @ 2;

run;

These statements yield a log-linear model analysis that contains all main effects and
two-variable interactions. For more examples of log-linear model analysis, see the
“Log-Linear Model Analysis”section on page 870.
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MODEL Statement

MODEL response-effect=< design-effects >< / options > ;

PROC CATMOD requires a MODEL statement. You can specify the following in a
MODEL statement:

response-effect can be either a single variable, a crossed effect with two or more
variables joined by asterisks, or–F–. The –F– specification in-
dicates that the response functions and their estimated covariance
matrix are to be read directly into the procedure (see the“Inputting
Response Functions and Covariances Directly”section on page
862 for details). Theresponse-effectindicates the dependent vari-
ables that determine the response categories (the columns of the
underlying contingency table).

design-effects specify potential sources of variation (such as main effects and in-
teractions) in the model. Thus, these effects determine the number
of model parameters, as well as the interpretation of such param-
eters. In addition, if there is no POPULATION statement, PROC
CATMOD uses these variables to determine the populations (the
rows of the underlying contingency table). When fitting the model,
PROC CATMOD adjusts the independent effects in the model for
all other independent effects in the model.

Design-effectscan be any of those described in the section
“Specification of Effects”on page 864, or they can be defined by
specifying the actual design matrix, enclosed in parentheses (see
the“Specifying the Design Matrix Directly”section on page 847).
In addition, you can use the keyword–RESPONSE– alone or as
part of an effect. Effects cannot be nested within–RESPONSE–,
so effects of the formA(–RESPONSE–) are invalid.

For more information, see the“Log-Linear Model Analysis”sec-
tion on page 870 and the“Repeated Measures Analysis”section on
page 873.

Some examples of MODEL statements are

model r=a b; main effects only

model r=a b a*b; main effects with interaction

model r=a b(a); nested effect

model r=a|b; complete factorial

model r=a b(a=1) b(a=2); nested-by-value effects

model r*s=_response_; log-linear model

model r*s=a _response_(a); nested repeated measurement factor

model _f_=_response_; direct input of the response functions
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The relationship between these specifications and the structure of the design matrix
X is described in the“Generation of the Design Matrix”section on page 876.

The following table summarizes the options available in the MODEL statement.

Task Options
Specify details of computation
Generates maximum likelihood estimates ML=
Generates weighted least-squares estimates GLS

WLS
Omits intercept term from the model NOINT
Specifies parameterization of classification variables PARAM=
Adds a number to each cell frequency ADDCELL=
Averages main effects across response functions AVERAGED
Specifies the convergence criterion for maximum likelihoodEPSILON=
Specifies the number of iterations for maximum likelihoodMAXITER=
Specifies how missing cells are treated MISSING=
Specifies how zero cells are treated ZERO=

Request additional computation and tables
Significance level of confidence intervals ALPHA=
Wald confidence intervals of estimates CLPARM
Estimated correlation matrix of estimates CORRB
Covariance matrix of response functions COV
Estimated covariance matrix of estimates COVB
Design and–RESPONSE– matrix DESIGN
Two-way frequency tables FREQ
Iterations for maximum likelihood ITPRINT
One-way frequency tables ONEWAY
Predicted values PRED=

PREDICT
Probability estimates PROB
Population profiles PROFILE
Crossproducts matrix XPX
Title TITLE=

Suppress output
Design matrix NODESIGN
Parameter estimates NOPARM
Variable levels NOPREDVAR
Population and response profiles NOPROFILE

–RESPONSE– matrix NORESPONSE

The following list describes these options in alphabetical order.

ADDCELL= number
addsnumberto the frequency count in each cell, wherenumberis any positive num-
ber. This option has no effect on maximum likelihood analysis; it is used only for
weighted least-squares analysis.
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ALPHA= number
sets the significance level for the Wald confidence intervals for parameter estimates.
The value must be between 0 and 1. The default value of 0.05 results in the calculation
of a 95% confidence interval. This option has no effect unless theCLPARM option
is also specified.

AVERAGED
specifies that dependent variable effects can be modeled and that independent vari-
able main effects are averaged across the response functions in a population. For
further information on the effect of using (or not using) the AVERAGED option, see
the “Generation of the Design Matrix”section on page 876. Direct input of the de-
sign matrix or specification of the–RESPONSE– keyword in the MODEL statement
automatically induces an AVERAGED model type.

CLPARM
produces Wald confidence limits for the parameter estimates. The confidence coeffi-
cient can be specified with theALPHA= option.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COV
displaysSi, which is the covariance matrix of the response functions for each popu-
lation.

COVB
displays the estimated covariance matrix of the parameter estimates.

DESIGN
displays the design matrixX for WLS and ML analyses, and also displays the

–RESPONSE– matrix for log-linear models. For further information, see the
“Generation of the Design Matrix”section on page 876.

EPSILON=number
specifies the convergence criterion for the maximum likelihood estimation of the pa-
rameters. The iterative estimation process stops when the proportional change in the
log likelihood is less thannumber, or after the number of iterations specified by the
MAXITER= option, whichever comes first. By default, EPSILON=1E−8.

FREQ
produces the two-way frequency table for the cross-classification of populations by
responses.

ITPRINT
displays parameter estimates and other information at each iteration of a maximum
likelihood analysis.

MAXITER=number
specifies the maximum number of iterations used for the maximum likelihood esti-
mation of the parameters. By default, MAXITER=20.
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ML < = NR | IPF< ( ipf-options ) >>
computes maximum likelihood estimates (MLE) using either a Newton-Raphson al-
gorithm (NR) or an iterative proportional fitting algorithm (IPF).

The option ML=NR (or simply ML) is available when you use generalized logits,
and also when you perform binary logistic regression with logits, cumulative logits,
or adjacent category logits. For generalized logits (the default response functions),
ML=NR is the default estimation method.

The option ML=IPF is available for fitting a hierarchical log-linear model with one
population (no independent variables and no population variables). The use of bar
notation to express the log-linear effects guarantees that the model is hierarchical (the
presence of any interaction term in the model requires the presence of all its lower-
order terms). If your table isincomplete(that is, your table has a zero or missing
entry in at least one cell), then all missing cells and all cells with zero weight are
treated as structural zeros by default; this behavior can be modified with theZERO=
andMISSING=options in the MODEL statement.

You can control the convergence of the two algorithms with theEPSILON= and
MAXITER= options in the MODEL statement. You can select the convergence cri-
terion for the IPF algorithm with the CONVCRIT= option.Note: The RESTRICT
statement is not available with the ML=IPF option.

You can specify the followingipf-optionswithin parentheses after the ML=IPF op-
tion.

CONV=keyword
CONVCRIT=keyword

specifies the method that determines when convergence of the IPF algorithm
occurs. You can specify one of the followingkeywords:

CELL termination requires the maximum absolute difference between
consecutive cell estimates to be less than 0.001 (or the value of
the EPSILON= option, if specified).

LOGL termination requires the relative difference between consecutive es-
timates of the log-likelihood to be less than 1E-8 (or the value of
the EPSILON= option, if specified). This is the default.

MARGIN termination requires the maximum absolute difference between
consecutive margin estimates to be less than 0.001 (or the value
of the EPSILON= option, if specified).

DF=keyword
specifies the method used to compute the degrees of freedom for the goodness
of fit G2 test (labeled “Likelihood Ratio” in the “Estimates” table).

For acompletetable (a table having nonzero entries in every cell), the degrees
of freedom are calculated as the number of cells in the table (nc) minus the
number of independent parameters specified in the model (np). For incomplete
tables, these degrees of freedom may be adjusted by the number of fitted zeros
(nz, which includes the number of structural zeros) and the number of nones-
timable parameters due to the zeros (nn). If you are analyzing an incomplete
table, you should verify that the degrees of freedom are correct.
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You can specify one of the followingkeywords:

UNADJ computes the unadjusted degrees of freedom asnc − np. These are
the same degrees of freedom you would get if all cells in the table
were positive.

ADJ computes the degrees of freedom as(nc−np)−(nz−nn) (Bishop,
Fienberg, and Holland 1975), which adjusts for fitted zeros and
nonestimable parameters. This is the default, and for complete ta-
bles gives the same results as the UNADJ option.

ADJEST computes the degrees of freedom as(nc − np)− nz, which adjusts
for fitted zeros only. This gives a lower bound on the true degrees
of freedom.

PARM
computes parameter estimates, generates the “ANOVA,” “Parameter
Estimates,” and “Predicted Values of Response Functions” tables, and includes
the predicted standard errors in the “Predicted Values of Frequencies and
Probabilities” tables.

When you specify the PARM option, the algorithm used to obtain the max-
imum likelihood parameter estimates is weighted least squares on the IPF-
predicted frequencies. This algorithm can be much faster than the Newton-
Raphson algorithm used if you just specify the ML=NR option. In the resulting
ANOVA table, the likelihood ratio is computed from the initial IPF fit while the
degrees of freedom are generated from the WLS analysis; the DF= option can
override this. Also, the initial response function, which the WLS method usu-
ally computes from the raw data, is computed from the IPF fitted frequencies.

If there are any zero marginals in the configurations that define the model,
then there are predicted cell frequencies of zero and WLS cannot be used to
compute the estimates. In this case, PROC CATMOD automatically changes
the algorithm from ML=IPF to ML=NR and prints a note in the log.

MISSING=keyword
MISS=keyword

specifies whether a missing cell is treated as a sampling or structural zero.

Structural zero cells are removed from the analysis since their expected values are
zero, while sampling zero cells may have nonzero expected value and may be es-
timable. For a single population, the missing cells are treated as structural zeros by
default. For multiple populations, as long as some population has a nonzero count for
a given population and response profile, the missing values are treated as sampling
zeros by default.

The following table displays the availablekeywordsand summarizes how PROC
CATMOD treats missing values for one or more populations.

MISSING= One Population Multiple Populations
STRUCTURAL (default) structural zeros sampling zeros
SAMP | SAMPLING sampling zeros sampling zeros
value sets missing weights

and cells tovalue
sets missing weights
and cells tovalue
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NODESIGN
suppresses the display of the design matrixX when theDESIGNoption is also spec-
ified. This enables you to display only the–RESPONSE– matrix for log-linear mod-
els.

NOINT
suppresses the intercept term in the model.

NOITER
suppresses the display of parameter estimates and other information at each iteration
of a maximum likelihood analysis.

NOPARM
suppresses the display of the estimated parameters and the statistics for testing that
each parameter is zero.

NOPREDVAR
suppresses the display of the variable levels in tables requested with thePRED=
option and in the “Estimates” table. Population profiles are replaced with the sample
number, class variable levels are suppressed, and response profiles are replaced with
a function number.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
only want to create output data sets with theOUT= or OUTEST= option in the
RESPONSE statement. ANOPRINToption is also available in the PROC CATMOD
statement. Note that this option temporarily disables the Output Delivery System
(ODS); seeChapter 14, “Using the Output Delivery System,”for more information.

NOPROFILE
suppresses the display of the population profiles and the response profiles.

NORESPONSE
suppresses the display of the–RESPONSE– matrix for log-linear models when the
DESIGNoption is also specified. This enables you to display only the design matrix
for log-linear models.

ONEWAY
produces a one-way table of frequencies for each variable used in the analysis. This
table is useful in determining the order of the observed levels for each variable.

PARAM = EFFECT | REFERENCE
specifies the parameterization method for the classification variable or variables. The
default is PARAM=EFFECT. Both the effect and reference parameterizations are full
rank. See the“Generation of the Design Matrix”section on page 876 for further
details.

PREDICT
PRED=FREQ | PROB

displays the observed and predicted values of the response functions for each popula-
tion, together with their standard errors and the residuals (observed− predicted). In
addition, if the response functions are the standard ones (generalized logits), then the
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PRED=FREQ option specifies the computation and display of predicted cell frequen-
cies, while PRED=PROB (or just PREDICT) specifies the computation and display
of predicted cell probabilities.

TheOUT= data set always contains the predicted probabilities. If the response func-
tions are the generalized logits, the predicted cell probabilities are output unless the
option PRED=FREQ is specified, in which case the predicted cell frequencies are
output.

PROB
produces the two-way table of probability estimates for the cross-classification of
populations by responses. These estimates sum to one across the response categories
for each population.

PROFILE
displays all of the population profiles. If you have more than 60 populations, then
by default only the first 40 profiles are displayed; the PROFILE option overrides this
default behavior.

TITLE=’ title’
displays thetitle at the top of certain pages of output that correspond to this MODEL
statement.

WLS
GLS

computes weighted least-squares estimates. This type of estimation is also called
generalized-least-squares estimation. For response functions other than the default
(of generalized logits), WLS is the default estimation method.

XPX
displaysX′S−1X, the crossproducts matrix for the normal equations.

ZERO=keyword
ZEROS=keyword
ZEROES=keyword

specifies whether a non-missing cell with zero weight in the data set is treated as a
sampling or structural zero.

Structural zero cells are removed from the analysis since their expected values are
zero, while sampling zero cells have nonzero expected value and may be estimable.
For a single population, the zero cells are treated as structural zeros by default; with
multiple populations, as long as some population has a nonzero count for a given
population and response profile, the zeros are treated as sampling zeros by default.

The following table displays the availablekeywordsand summarizes how PROC
CATMOD treats zeros for one or more populations.

ZERO= One Population Multiple Populations
STRUCTURAL (default) structural zeros sampling zeros
SAMP | SAMPLING sampling zeros sampling zeros
value sets zero weights to

value
sets zero weights to
value
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Specifying the Design Matrix Directly

If you specify the design matrix directly, adjacent rows of the matrix must be sep-
arated by a comma, and the matrix must haveq × s rows, wheres is the number
of populations andq is the number of response functions per population. The first
q rows correspond to the response functions for the first population, the second set
of q rows corresponds to the functions for the second population, and so forth. The
following is an example using direct specification of the design matrix.

proc catmod;
model R=(1 0,

1 1,
1 2,
1 3);

run;

These statements are appropriate for the case of one population and forR with five
levels (generating four response functions), so that4 × 1 = 4. These statements are
also appropriate for a situation with two populations and two response functions per
population; giving2 × 2 = 4 rows of the design matrix. (To induce more than one
population, the POPULATION statement is needed.)

When you input the design matrix directly, you also have the option of specifying
that any subsets of the parameters be tested for equality to zero. Indicate each subset
by specifying the appropriate column numbers of the design matrix, followed by an
equal sign and a label (24 characters or less, in quotes) that describes the subset.
Adjacent subsets are separated by a comma, and the entire specification is enclosed
in parentheses and placed after the design matrix. For example,

proc catmod;
population Group Time;
model R=(1 1 0 0,

1 1 0 1,
1 1 0 2,
1 0 1 0,
1 0 1 1,
1 0 1 2,
1 -1 -1 0,
1 -1 -1 1,
1 -1 -1 2) (1 =’Intercept’,

2 3=’Group main effect’,
4 =’Linear effect of Time’);

run;

The preceding statements are appropriate whenGroup andTime each have three lev-
els, andR is dichotomous. The POPULATION statement induces nine populations,
andq = 1 (sinceR is dichotomous), soq × s = 1× 9 = 9.

If you input the design matrix directly but do not specify any subsets of the parame-
ters to be tested, then PROC CATMOD tests the effect of MODEL| MEAN, which
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represents the significance of the model beyond what is explained by an overall mean.
For the previous example, the MODEL| MEAN effect is the same as that obtained
by specifying

(2 3 4=’model|mean’);

at the end of the MODEL statement.

POPULATION Statement

POPULATION variables ;

The POPULATION statement specifies that populations are to be based only
on cross-classifications of the specifiedvariables. If you do not specify the
POPULATION statement, then populations are based only on cross-classifications
of the independent variables in the MODEL statement.

The POPULATION statement has two major uses:

• When you enter the design matrix directly, there are no independent variables
in the MODEL statement; therefore, the POPULATION statement is the only
way of inducing more than one population.

• When you fit a reduced model, the POPULATION statement may be neces-
sary if you want to form the same number of populations as there are for the
saturated model.

To illustrate the first use, suppose that you specify the following statements:

data one;
input A $ B $ wt @@;
datalines;

yes yes 23 yes no 31 no yes 47 no no 50
;
proc catmod;

weight wt;
population B;
model A=(1 0,

1 1);
run;

Since the dependent variableA has two levels, there is one response function per
population. Since the variableB has two levels, there are two populations. Thus,
the MODEL statement is valid since the number of rows in the design matrix (2) is
the same as the total number of response functions. If the POPULATION statement
is omitted, there would be only one population and one response function, and the
MODEL statement would be invalid.
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To illustrate the second use, suppose that you specify

data two;
input A $ B $ Y wt @@;
datalines;

yes yes 1 23 yes yes 2 63
yes no 1 31 yes no 2 70
no yes 1 47 no yes 2 80
no no 1 50 no no 2 84
;
proc catmod;

weight wt;
model Y=A B A*B / wls;

run;

These statements form four populations and produce the following design matrix and
analysis of variance table.

X =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


Source DF Chi-Square Pr > ChiSq
Intercept 1 48.10 <.0001
A 1 3.47 0.0625
B 1 0.25 0.6186
A*B 1 0.19 0.6638
Residual 0

Since theB andA*B effects are nonsignificant (p > 0.10), you may want to fit the
reduced model that contains only theA effect. If your new statements are

proc catmod;
weight wt;
model Y=A / wls;

run;

then only two populations are formed, and the design matrix and the analysis of
variance table are as follows.

X =
[

1 1
1 −1

] Source DF Chi-Square Pr > ChiSq
Intercept 1 47.94 <.0001
A 1 3.33 0.0678
Residual 0

However, if the new statements are

proc catmod;
weight wt;
population A B;
model Y=A / wls;

run;
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then four populations are formed, and the design matrix and the analysis of variance
table are as follows.

X =


1 1
1 1
1 −1
1 −1


Source DF Chi-Square Pr > ChiSq
Intercept 1 47.76 <.0001
A 1 3.30 0.0694
Residual 2 0.35 0.8374

The advantage of the latter analysis is that it retains four populations for the reduced
model, thereby creating a built-in goodness-of-fit test: the residual chi-square. Such
a test is important because the cumulative (or joint) effect of deleting two or more
effects from the model may be significant, even if the individual effects are not.

The resulting differences between the two analyses are due to the fact that the latter
analysis uses pure weighted least-squares estimates with respect to the four popula-
tions that are actually sampled. The former analysis pools populations and therefore
uses parameter estimates that can be regarded as weighted least-squares estimates of
maximum likelihood predicted cell frequencies. In any case, the estimation methods
are asymptotically equivalent; therefore, the results are very similar. If you spec-
ify the ML option (instead of theWLS option) in the MODEL statements, then the
parameter estimates are identical for the two analyses.

CAUTION: if your model has different covariate profiles within any population, then
the first profile is used in the analysis.

REPEATED Statement

REPEATED factor-description < , . . . , factor-description >< / options > ;

where afactor-descriptionis

factor-name < $ >< levels >

andfactor-descriptions are separated from each other by a comma. The $ is required
for character-valued factors. The value oflevelsprovides the number of levels of the
repeated measurement factor identified by a givenfactor-name. For only one repeated
measurement factor,levelsis optional; for two or more repeated measurement factors,
it is required.

The REPEATED statement incorporates repeated measurement factors into the
model. You can use this statement whenever there is more than one dependent vari-
able and the keyword–RESPONSE– is specified in the MODEL statement. If the
dependent variables correspond to one or more repeated measurement factors, you
can use the REPEATED statement to define–RESPONSE– in terms of those factors.
You can specify the name, type, and number of levels of each factor, as well as the
identification of each level.

You cannot specify the REPEATED statement for an analysis that also contains the
FACTORS or LOGLIN statement since all of them specify the same information:
how to partition the variation among the response functions within a population.



REPEATED Statement � 851

In the REPEATED statement,

factor-name names a repeated measurement factor that corresponds to two or more
response functions. This name must be a valid SAS variable name,
and it should not be the same as the name of a variable that already
exists in the data set being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then
PROC CATMOD assumes that the factor is numeric. The type of the
factor is relevant only when you use the PROFILE= option or when
the–RESPONSE–= option specifies nested-by-value effects.

levels specifies the number of levels of the corresponding repeated measure-
ment factor. If there is only one such factor and the number is omitted,
then PROC CATMOD assumes that the number of levels is equal to
the number of response functions per population(q). Unless you spec-
ify the PROFILE= option, the numberq must either be equal to or be
a multiple of the product of the number of levels of all the factors.

You can specify the following options in the REPEATED statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should
be one column for each factor, and the values in a given column should match the type
(character or numeric) of the corresponding factor. Character values are restricted to
16 characters or less. If there areq response functions per population, then the matrix
must havei rows, whereq must either be equal to or be a multiple ofi. Adjacent
rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations
where the study design is not a full factorial with respect to the factors. They can
also be used to specify nested-with-value effects in the–RESPONSE–= option. If
you specify character values in both the PROFILE= option and the–RESPONSE–=
option, then the values must match with respect to whether or not they are enclosed
in quotes (that is, enclosed in quotes in both places or in neither place).

–RESPONSE–=effects
specifies design effects. The variables named in the effects must befactor-names
that appear in the REPEATED statement. If the–RESPONSE–= option is omitted,
then PROC CATMOD builds a full factorial–RESPONSE– effect with respect to
the repeated measurement factors. For example, the following two statements are
equivalent in that they produce the same parameter estimates.

repeated Time 2, Treatment 2;
repeated Time 2, Treatment 2 / _response_=Time|Treatment;

However, the second statement produces tests of theTime, Treatment, and
Time*Treatment effects in the “Analysis of Variance” table, whereas the first state-
ment produces a single test for the combined effects in–RESPONSE–.
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TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this
REPEATED statement.

For further information and numerous examples of the REPEATED statement, see
the section“Repeated Measures Analysis”on page 873.

RESPONSE Statement

RESPONSE < function >< / options > ;

The RESPONSE statement specifies functions of the response probabilities. The
procedure models these response functions as linear combinations of the parameters.

By default, PROC CATMOD uses the standard response functions (generalized log-
its, which are explained in detail in the“Understanding the Standard Response
Functions”section on page 859). With these standard response functions, the de-
fault estimation method is maximum likelihood, but you can use theWLS option
in the MODEL statement to request weighted least-squares estimation. With other
response functions (specified in the RESPONSE statement), the default (and only)
estimation method is weighted least squares.

You can specify more than one RESPONSE statement, in which case each
RESPONSE statement produces a separate analysis. If the computed response
functions for any population are linearly dependent (yielding a singular covariance
matrix), then PROC CATMOD displays an error message and stops processing. See
the“Cautions”section on page 887 for methods of dealing with this.

The functionspecification can be any of the items in the following list. For an ex-
ample of response functions generated and formulas forq (the number of response
functions), see the“More on Response Functions”section on page 854.

ALOGIT
ALOGITS

specifies response functions as adjacent-category logits of the
marginal probabilities for each of the dependent variables. For
each dependent variable, the response functions are a set of lin-
early independent adjacent-category logits, obtained by taking
the logarithms of the ratios of two probabilities. The denom-
inator of thekth ratio is the marginal probability correspond-
ing to thekth level of the variable, and the numerator is the
marginal probability corresponding to the (k + 1)th level. If a
dependent variable has two levels, then the adjacent-category
logit is the negative of the generalized logit.



RESPONSE Statement � 853

CLOGIT
CLOGITS

specifies that the response functions are cumulative logits of
the marginal probabilities for each of the dependent variables.
For each dependent variable, the response functions are a set of
linearly independent cumulative logits, obtained by taking the
logarithms of the ratios of two probabilities. The denominator
of thekth ratio is the cumulative probability,ck, corresponding
to thekth level of the variable, and the numerator is1 − ck

(Agresti 1984, 113–114). If a dependent variable has two lev-
els, then PROC CATMOD computes its cumulative logit as the
negative of its generalized logit. You should use cumulative
logits only when the dependent variables are ordinally scaled.

JOINT specifies that the response functions are the joint response
probabilities. A linearly independent set is created by delet-
ing the last response probability. For the case of one depen-
dent variable, the JOINT and MARGINALS specifications are
equivalent.

LOGIT
LOGITS

specifies that the response functions are generalized logits of
the marginal probabilities for each of the dependent variables.
For each dependent variable, the response functions are a set of
linearly independent generalized logits, obtained by taking the
logarithms of the ratios of two probabilities. The denominator
of each ratio is the marginal probability corresponding to the
last observed level of the variable, and the numerators are the
marginal probabilities corresponding to each of the other lev-
els. If there is one dependent variable, then specifying LOGIT
is equivalent to using the standard response functions.

MARGINAL
MARGINALS

specifies that the response functions are marginal probabili-
ties for each of the dependent variables in the MODEL state-
ment. For each dependent variable, the response functions are
a set of linearly independent marginals, obtained by deleting
the marginal probability corresponding to the last level.

MEAN
MEANS

specifies that the response functions are the means of the de-
pendent variables in the MODEL statement. This specification
requires that all of the dependent variables be numeric.

READ variables specifies that the response functions and their covariance ma-
trix are to be read directly from the input data set with one
response function for each variable named. See the section
“Inputting Response Functions and Covariances Directly”on
page 862 for more information.

transformation specifies response functions that can be expressed by using suc-
cessive applications of the four operations:LOG, EXP, ∗
matrix literal, or+ matrix literal. The operations are described
in detail in the“Using a Transformation to Specify Response
Functions”section on page 856.

You can specify the following options in the RESPONSE statement after a slash.
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OUT=SAS-data-set
produces a SAS data set that contains, for each population, the observed and predicted
values of the response functions, their standard errors, and the residuals. Moreover, if
you use the standard response functions, the data set also includes observed and pre-
dicted values of the cell frequencies or the cell probabilities. For further information,
see the“Output Data Sets”section on page 866.

OUTEST=SAS-data-set
produces a SAS data set that contains the estimated parameter vector and its estimated
covariance matrix. For further information, see the“Output Data Sets”section on
page 866.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this
RESPONSE statement.

More on Response Functions

Suppose the dependent variableA has 3 levels and is the onlyresponse-effectin the
MODEL statement. The following table shows the proportions upon which the re-
sponse functions are defined.

Value of A: 1 2 3

proportions: p1 p2 p3

Note that
∑

j pj = 1. The following table shows the response functions generated
for each population.

Function Value
Specification of q Response Function

none∗ 2 ln
(

p1

p3

)
, ln

(
p2

p3

)
ALOGITS 2 ln

(
p2

p1

)
, ln

(
p3

p2

)
CLOGITS 2 ln

(
1−p1

p1

)
, ln

(
1−(p1+p2)

p1+p2

)
JOINT 2 p1, p2

LOGITS 2 ln
(

p1

p3

)
, ln

(
p2

p3

)
MARGINAL 2 p1, p2

MEAN 1 1p1 + 2p2 + 3p3
∗Without a function specification, the default response functions are generalized logits.

Now, suppose the dependent variablesA andB each have 3 levels (valued 1, 2, and 3
each) and theresponse-effectin the MODEL statement isA*B. The following table
shows the proportions upon which the response functions are defined.
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Value of A: 1 1 1 2 2 2 3 3 3

Value of B: 1 2 3 1 2 3 1 2 3

proportions: p1 p2 p3 p4 p5 p6 p7 p8 p9

The marginal totals for the preceding table are defined as follows,

p1· = p1 + p2 + p3 p·1 = p1 + p4 + p7

p2· = p4 + p5 + p6 p·2 = p2 + p5 + p8

p3· = p7 + p8 + p9 p·3 = p3 + p6 + p9

where
∑

j pj = 1. The following table shows the response functions generated for
each population.

Function Value
Specification of q Response Function

none∗ 8 ln
(

p1

p9

)
, ln

(
p2

p9

)
, ln

(
p3

p9

)
, . . . , ln

(
p8

p9

)
ALOGITS 4 ln

(
p2·
p1·

)
, ln

(
p3·
p2·

)
, ln

(
p·2
p·1

)
, ln

(
p·3
p·2

)
CLOGITS 4 ln

(
1−p1·

p1·

)
, ln

(
1−(p1·+p2·)

p1·+p2·

)
, ln

(
1−p·1

p·1

)
, ln

(
1−(p·1+p·2)

p·1+p·2

)
JOINT 8 p1, p2, p3, p4, p5, p6, p7, p8

LOGITS 4 ln
(

p1·
p3·

)
, ln

(
p2·
p3·

)
, ln

(
p·1
p·3

)
, ln

(
p·2
p·3

)
MARGINAL 4 p1·, p2·, p·1, p·2

MEAN 2 1p1· + 2p2· + 3p3·, 1p·1 + 2p·2 + 3p·3
∗ Without a function specification, the default response functions are generalized logits.

The READ andtransformationfunction specifications are not shown in the preceding
table. For these two situations, there is not a general response function; the response
functions generated depend on what you specify.

Another important aspect of the function specification is the number of response func-
tions generated per population,q. Let mi represent the number of levels for theith
dependent variable in the MODEL statement, and letd represent the number of de-
pendent variables in the MODEL statement. Then, if the function specification is
ALOGITS, CLOGITS, LOGITS, or MARGINALS, the number of response func-
tions is

q =
d∑

i=1

(mi − 1)
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If the function specification is JOINT or the default (generalized logits), the number
of response functions per population is

q = r − 1

wherer is the number of response profiles. If every possible cross-classification of
the dependent variables is observed in the samples, then

r =
d∏

i=1

mi

Otherwise,r is the number of cross-classifications actually observed.

If the function specification is MEANS, the number of response functions per popu-
lation isq = d.

Response Statement Examples

Some example response statements are shown in the following table.

Example Result
response marginals; marginals for each dependent variable

response means; the mean of each dependent variable

response logits; generalized logits of the marginal probabilities

response clogits; cumulative logits of the marginal probabilities

response alogits; adjacent-category logits of the marginal probabilities

response joint; the joint probabilities

response 1 -1 log; the logit

response; generalized logits

response 1 2 3; the mean score, with scores of 1, 2, and 3 correspond-
ing to the three response levels

response read b1-b4; four response functions and their covariance matrix,
read directly from the input data set

Using a Transformation to Specify Response Functions

If you specify atransformation, it is applied to the vector that contains the sample
proportions in each population. Thetransformationcan be any combination of the
following four operations.
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Operation Specification
linear combination ∗ matrix literal

matrix literal

logarithm LOG

exponential EXP

adding constant + matrix literal

If more than one operation is specified, then PROC CATMOD applies the operations
consecutively from right to left.

A matrix literal is a matrix of numbers with each row of the matrix separated from
the next by a comma. If you specify a linear combination, in most cases the∗ is
not needed. The following statement defines the response functionp1 + 1. The∗ is
needed to separate the two matrix literals ’1’ and ’1 0’.

response + 1 * 1 0;

The LOG of a vector transforms each element of the vector into its natural loga-
rithm; theEXP of a vector transforms each element into its exponential function
(antilogarithm).

In order to specify a linear response function for data that haver = 3 response
categories, you could specify either of the following RESPONSE statements:

response * 1 0 0 , 0 1 0;
response 1 0 0 , 0 1 0;

The matrix literal in the preceding statements specifies a2×3 matrix, which is applied
to each population as follows:

[
F1

F2

]
=

[
1 0 0
0 1 0

]
∗

 p1

p2

p3


wherep1, p2, andp3 are sample proportions for the three response categories in a pop-
ulation, andF1 andF2 are the two response functions computed for that population.
This response function, therefore, setsF1 = p1 andF2 = p2 in each population.

As another example of the linear response function, suppose you have two depen-
dent variables corresponding to two observers who evaluate the same subjects. If the
observers grade on the same three-point scale and if all nine possible responses are
observed, then the following RESPONSE statement would compute the probability
that the observers agree on their assessments:

response 1 0 0 0 1 0 0 0 1;
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This response function is then computed as

F = p11 + p22 + p33 =
[

1 0 0 0 1 0 0 0 1
]
∗



p11

p12

p13

p21

p22

p23

p31

p32

p33


wherepij denotes the probability that a subject gets a grade ofi from the first observer
andj from the second observer.

If the function is a compound function, requiring more than one operation to specify
it, then the operations should be listed so that the first operation to be applied is on
the right and the last operation to be applied is on the left. For example, if there are
two response levels, the response function

response 1 -1 log;

is equivalent to the matrix expression:

F =
[

1 −1
]
∗

[
log(p1)
log(p2)

]
= log(p1)− log(p2) = log

(
p1

p2

)
which is the logit response function sincep2 = 1 − p1 when there are only two
response levels.

Another example of a compound response function is

response exp 1 -1 * 1 0 0 1, 0 1 1 0 log;

which is equivalent to the matrix expression

F = EXP(A ∗B ∗ LOG(P))

whereP is the vector of sample proportions for some population,

A =
[

1 −1
]

andB =
[

1 0 0 1
0 1 1 0

]
If the four responses are based on two dependent variables, each with two levels, then
the function can also be written as

F =
p11p22

p12p21

which is the odds (crossproduct) ratio for a2× 2 table.
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Understanding the Standard Response Functions
If no RESPONSE statement is specified, PROC CATMOD computes the standard
response functions, which contrast the log of each response probability with the log
of the probability for the last response category. If there arer response categories,
then there arer − 1 standard response functions. For example, if there are four
response categories, using no RESPONSE statement is equivalent to specifying

response 1 0 0 -1,
0 1 0 -1,
0 0 1 -1 log;

This results in three response functions:

F =

 F1

F2

F3

 =

 log(p1/p4)
log(p2/p4)
log(p3/p4)


If there are only two response levels, the resulting response function would be a logit.
Thus, the standard response functions are called generalized logits. They are useful
in dealing with the log-linear model:

π = EXP(Xβ)

If C denotes the matrix in the preceding RESPONSE statement, then because of the
restriction that the probabilities sum to 1, it follows that an equivalent model is

C ∗ LOG(π) = (CX)β

But C∗LOG (P) is simply the vector of standard response functions. Thus, fitting a
log-linear model on the cell probabilities is equivalent to fitting a linear model on the
generalized logits.

RESTRICT Statement
RESTRICT parameter=value < . . . parameter=value > ;

whereparameteris the letter B followed by a number; for example, B3 specifies
the third parameter in the model. Thevalue is the value to which the parameter
is restricted. The RESTRICT statement restricts values of parameters to the values
you specify, so that the estimation of the remaining parameters is subject to these
restrictions. Consider the following statement:

restrict b1=1 b4=0 b6=0;

This restricts the values of three parameters. The first parameter is set to 1, and the
fourth and sixth parameters are set to zero.

The RESTRICT statement is interactive. A new RESTRICT statement replaces
any previous ones. In addition, if you submit two or more MODEL, LOGLIN,
FACTORS, or REPEATED statements, then the subsequent occurrences of these
statements also delete the previous RESTRICT statement.
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WEIGHT Statement

WEIGHT variable ;

You can use a WEIGHT statement to refer to a variable containing the cell frequen-
cies, which need not be integers. The WEIGHT statement lets you use summary data
sets containing a count variable. See the“Input Data Sets”section on page 860 for
further information concerning the WEIGHT statement.

Details

Missing Values

Observations with missing values for any variable listed in the MODEL or
POPULATION statement are omitted from the analysis.

If the WEIGHT variable for an observation has a missing value, the observation
is by default omitted from the analysis. You can modify this behavior by specify-
ing theMISSING= option in the MODEL statement. The option MISSING=value
sets all missing weights tovalue and all missing cells tovalue. The option
MISSING=SAMPLING causes all missing cells in a contingency table to be treated
as sampling zeros.

Any observation with nonpositive weight is also, by default, omitted from the anal-
ysis. If it has zero weight, then you can specify theZERO=option in the MODEL
statement.

Input Data Sets

Data to be analyzed by PROC CATMOD must be in a SAS data set containing one
of the following:

• raw data values (variable values for every subject)

• frequency counts and the corresponding variable values

• response function values and their covariance matrix

If you specify a WEIGHT statement, then PROC CATMOD uses the values of the
WEIGHT variable as the frequency counts. If the READ function is specified in
the RESPONSE statement, then the procedure expects the input data set to con-
tain the values of response functions and their covariance matrix. Otherwise, PROC
CATMOD assumes that the SAS data set contains raw data values.

Raw Data Values

If you use raw data, PROC CATMOD first counts the number of observations
having each combination of values for all variables specified in the MODEL or
POPULATION statements. For example, suppose the variablesA andB each take
on the values 1 and 2, and their frequencies can be represented as follows.



Input Data Sets � 861

A=1 A=2
B=1 2 1
B=2 3 1

The SAS data setRaw containing the raw data might be as follows.

Observation A B
1 1 1
2 1 1
3 1 2
4 1 2
5 1 2
6 2 1
7 2 2

And the statements for PROC CATMOD would be

proc catmod data=Raw;
model A=B;

run;

For discussions of how to handle structural and random zeros with raw data as input
data, see the“Zero Frequencies”section on page 888 andExample 22.5on page 919.

Frequency Counts

If your data set contains frequency counts, then use the WEIGHT statement in PROC
CATMOD to specify the variable containing the frequencies. For example, you could
create theSummary data set as follows.

data Summary;
input A B Count;
datalines;

1 1 2
1 2 3
2 1 1
2 2 1
;

In this case, the corresponding statements would be

proc catmod data=Summary;
weight Count;
model A=B;

run;
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The data setSummary can also be created from data setRaw by using the FREQ
procedure:

proc freq data=Raw;
tables A*B / out=Summary;

run;

Inputting Response Functions and Covariances Directly

If you want to read in the response functions and their covariance matrix, rather than
have PROC CATMOD compute them, create a TYPE=EST data set. In addition to
having one variable name for each function, the data set should have two additional
variables:–TYPE– and–NAME– , both character variables of length 8. The vari-
able–TYPE– should have the value ’PARMS’ when the observation contains the
response functions; it should have the value ’COV’ when the observation contains el-
ements of the covariance matrix of the response functions. The variable–NAME– is
used only when–TYPE–=COV, in which case it should contain the name of the vari-
able that has its covariance elements stored in that observation. In the following data
set, for example, the covariance between the second and fourth response functions is
0.000102.

data direct(type=est);
input b1-b4 _type_ $ _name_ $8.;
datalines;

0.590463 0.384720 0.273269 0.136458 PARMS .
0.001690 0.000911 0.000474 0.000432 COV B1
0.000911 0.001823 0.000031 0.000102 COV B2
0.000474 0.000031 0.001056 0.000477 COV B3
0.000432 0.000102 0.000477 0.000396 COV B4
;

In order to tell PROC CATMOD that the input data set contains the values of response
functions and their covariance matrix,

• specify the READ function in theRESPONSEstatement

• specify–F– as the dependent variable in theMODEL statement

For example, suppose the response functions correspond to four populations that rep-
resent the cross-classification of two age groups by two race groups. You can use
theFACTORSstatement to identify these two factors and to name the effects in the
model. The statements required to fit a main-effects model to these data are

proc catmod data=direct;
response read b1-b4;
model _f_=_response_;
factors age 2, race 2 / _response_=age race;

run;
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Ordering of Populations and Responses

By default, populations and responses are sorted in standard SAS order as follows:

• alphabetic order for character variables

• increasing numeric order for numeric variables

Suppose you specify the following statements:

data one;
length A B $ 6;
input A $ B $ wt @@;
datalines;

low low 23 low medium 31 low high 38
medium low 40 medium medium 42 medium high 50
high low 52 high medium 54 high high 61
;

proc catmod;
weight wt;
model A=B / oneway;

run;

The ordering of populations and responses corresponds to the alphabetical order of
the levels of the character variables. You can specify theONEWAY option to display
the ordering of the variables, while the “Population Profiles” and “Response Profiles”
tables display the ordering of the populations and the responses, respectively.

Population Profiles Response Profiles
Sample B Response A

1 high 1 high
2 low 2 low
3 medium 3 medium

However, in this example, you may want to have the levels ordered in the natural
order of ‘low,’ ‘medium,’ ‘high.’ If you specify theORDER=DATAoption

proc catmod order=data;
weight wt;
model a=b / oneway;

run;

then the ordering of populations and responses is as follows.
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Population Profiles Response Profiles
Sample B Response A

1 low 1 low
2 medium 2 medium
3 high 3 high

Thus, you can use the ORDER=DATA option to ensure that populations and re-
sponses are ordered in a specific way. But since this also affects the definitions and the
ordering of the parameters, you must exercise caution when using the–RESPONSE–
effect, the CONTRAST statement, or direct input of the design matrix.

An alternative method of ensuring that populations and responses are or-
dered in a specific way is to assign a format to your variables and specify the
ORDER=FORMATTED option. The levels will be ordered according to their
formatted values.

Another method is to replace any character variables with numeric variables and
to assign formatted values such as ‘yes’ and ‘no’ to the numeric levels. Since
ORDER=INTERNAL is the default ordering, PROC CATMOD orders the popula-
tions and responses according to the numeric values but displays the formatted val-
ues.

Specification of Effects
By default, the CATMOD procedure treats all variables as classification variables.
As a result, there is no CLASS statement in PROC CATMOD. The values of a clas-
sification variable can be numeric or character. PROC CATMOD builds a set of
effects-coded variables to represent the levels of the classification variable and then
uses these to fit the model (for details, see the“Generation of the Design Matrix”
section on page 876). You can modify the default by using the DIRECT statement to
treat numeric independent continuous variables as continuous variables. The classi-
fication variables, combinations of classification variables, and continuous variables
are then used in fitting linear models to data.

The parameters of a linear model are generally divided into subsets that correspond
to meaningful sources of variation in the response functions. These sources, called
effects, can be specified in the MODEL, LOGLIN, FACTORS, REPEATED, and
CONTRAST statements. Effects can be specified in any of the following ways:

• A main effect is a single class variable (that is, it induces classification levels):
A B C.

• A crossed effect (or interaction) is two or more class variables joined by aster-
isks, for example: A*B A*B*C.

• A nested effect is a main effect or an interaction, followed by a parenthetical
field containing a main effect or an interaction. Multiple variables within the
parentheses are assumed to form a crossed effect even when the asterisk is
absent. Thus, the last two effects are identical:B(A) C(A*B) A*B(C*D)
A*B(C D).
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• A nested-by-value effect is the same as a nested effect except that any variable
in the parentheses can be followed by an equal sign and a value:B(A=1)
C(A B=1) C*D(A=1 B=1) A(C=’low’).

• A direct effect is a variable specified in a DIRECT statement:X Y.

• Direct effects can be crossed with other effects:X*Y X*X*X
X*A*B(C D=1).

The variables for crossed and nested effects remain in the order in which they are first
encountered. For example, in the model

model R=B A A*B C(A B);

the effectA*B is reported asB*A sinceB appeared beforeA in the statement. Also,
C(A B) is interpreted asC(A*B) and is therefore reported asC(B*A).

Bar Notation

You can shorten the specification of multiple effects by using bar notation. For ex-
ample, two methods of writing a full three-way factorial model are

proc catmod;
model y=a b c a*b a*c b*c a*b*c;

run;

and

proc catmod;
model y=a|b|c;

run;

When you use the bar (|) notation, the right- and left-hand sides become effects, and
the interaction between them becomes an effect. Multiple bars are permitted. The
expressions are expanded from left to right, using rules 1 through 4 given in Searle
(1971, p. 390):

• Multiple bars are evaluated left to right. For example,A|B|C is evaluated as
follows:

A | B | C → { A | B} | C
→ { A B A*B} | C
→ A B A*B C A*C B*C A*B*C

• Crossed and nested groups of variables are combined. For example,
A(B) | C(D) generatesA*C(B D), among other terms.

• Duplicate variables are removed. For example,A(C) | B(C) generates
A*B(C C), among other terms, and the extraC is removed.
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• Effects are discarded if a variable occurs on both the crossed and nested sides
of an effect. For instance,A(B) | B(D E) generatesA*B(B D E), but this effect
is deleted.

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by specifying that maximum number, preceded by an @
sign, at the end of the bar effect. For example, the specificationA | B | C @ 2 would
result in only those effects that contain 2 or fewer variables; in this case, the effects
A, B, A*B, C, A*C, andB*C are generated.

Other examples of the bar notation are

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

For details on how the effects specified lead to a design matrix, see the“Generation
of the Design Matrix”section on page 876.

Output Data Sets

OUT= Data Set

For each population, theOUT=data set contains the observed and predicted values of
the response functions, their standard errors, the residuals, and variables that describe
the population and response profiles. In addition, if you use the standard response
functions, the data set includes observed and predicted values for the cell frequencies
or the cell probabilities, together with their standard errors and residuals.

Number of Observations

For the standard response functions, there ares × (2q − 1) observations in the data
set for each BY group, wheres is the number of populations, andq is the number of
response functions per population. Otherwise, there ares×q observations in the data
set for each BY group.

Variables in the OUT= Data Set

The data set contains the following variables:

BY variables If you use a BY statement, the BY variables are included
in the OUT= data set.
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dependent variables If the response functions are the default ones (general-
ized logits), then the dependent variables, which describe
the response profiles, are included in the OUT= data set.
When –TYPE–=FUNCTION, the values of these vari-
ables are missing.

independent variables The independent variables, which describe the population
profiles, are included in the OUT= data set.

–NUMBER– the sequence number of the response function or the cell
probability or the cell frequency

–OBS– the observed value

–PRED– the predicted value

–RESID– the residual (observed− predicted)

–SAMPLE– the population number. This matches the sample number
in the Population Profile section of the output.

–SEOBS– the standard error of the observed value

–SEPRED– the standard error of the predicted value

–TYPE– specifies a character variable with three possible val-
ues. When–TYPE–=FUNCTION, the observed and pre-
dicted values are values of the response functions. When

–TYPE–=PROB, they are values of the cell probabilities.
When –TYPE–=FREQ, they are values of the cell fre-
quencies. Cell probabilities or frequencies are provided
only when the default response functions are modeled. In
this case, cell probabilities are provided by default, and
cell frequencies are provided if you specify the option
PRED=FREQ.

OUTEST= Data Set

This TYPE=EST output data set contains the estimated parameter vector and its
estimated covariance matrix. If you specify both theML andWLS options in the
MODEL statement, theOUTEST=data set contains both sets of estimates. For each
BY group, there arep + 1 observations in the data set for each estimation method,
wherep is the number of estimated parameters. The data set contains the following
variables.

B1, B2, and so on variables for the estimated parameters. The OUTEST=
data set contains one variable for each estimated param-
eter.

BY variables If you use a BY statement, the BY variables are included
in the OUT= data set.

–METHOD– the method used to obtain parameter esti-
mates. For weighted least-squares estimation,

–METHOD–=WLS, and for maximum likelihood
estimation,–METHOD–=ML.
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–NAME– identifies parameter names. When–TYPE–=PARMS,

–NAME– is blank, but when–TYPE–=COV, –NAME–
has one of the values B1, B2, and so on, corresponding to
the parameter names.

–STATUS– indicates whether the estimates have converged

–TYPE– identifies the statistics contained in the variables for
parameter estimates (B1, B2, and so on). When

–TYPE–=PARMS, the variables contain parameter
estimates; when–TYPE–=COV, they contain covariance
estimates.

The variables–METHOD– , –NAME– , and–TYPE– are character variables; the
BY variables can be either character or numeric; and the variables for estimated pa-
rameters are numeric.

SeeAppendix A, “Special SAS Data Sets,”for more information on special SAS data
sets.

Logistic Analysis

In a logistic analysis, the response functions are the logits of the dependent variable.

PROC CATMOD can compute three different types of logits with the use of keywords
in the RESPONSE statement. Other types of response functions can be generated by
specifying appropriate transformations in the RESPONSE statement.

• Generalized logits are used primarily for nominally scaled dependent variables,
but they can also be used for ordinal data modeling. Maximum likelihood
estimation is available for the analysis of these logits.

• Cumulative logits are used for ordinally scaled dependent variables. Except
for dependent variables with two response levels, only weighted least-squares
estimation is available for the analysis of these logits.

• Adjacent-category logits are equivalent to generalized logits, but they have
some advantages for ordinal data analysis because they automatically incorpo-
rate integer scores for the levels of the dependent variable. Except for depen-
dent variables with two response levels, only weighted least-squares estimation
is available for the analysis of these logits.

If the dependent variable has only two responses, then the cumulative logit and the
adjacent-category logit are the negative of the generalized logit, as computed by
PROC CATMOD. Consequently, parameter estimates obtained using these logits are
the negative of those obtained using generalized logits. A simple logistic analysis of
variance uses statements like the following:

proc catmod;
model r=a|b;

run;
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Logistic Regression

If the independent variables are treated quantitatively (like continuous variables), then
a logistic analysis is known as alogistic regression. If you want PROC CATMOD
to treat the independent variables as quantitative variables, specify them in both the
DIRECT and MODEL statements, as follows.

proc catmod;
direct x1 x2 x3;
model r=x1 x2 x3;

run;

Since the preceding statements do not include a RESPONSE statement, generalized
logits are computed. SeeExample 22.3for another example.

The parameter estimates from the CATMOD procedure are the same as those from
a logistic regression program such as PROC LOGISTIC (seeChapter 42, “The
LOGISTIC Procedure”). The chi-square statistics and the predicted values are also
identical. In the binary response case, PROC CATMOD can be made to model the
probability of the maximum value by either (1) organizing the input data so that the
maximum value occurs first and specifyingORDER=DATAin the PROC CATMOD
statement or (2) specifying cumulative logits (CLOGITS) in the RESPONSE state-
ment.

CAUTION: Computational difficulties may occur if you use a continuous variable
with a large number of unique values in a DIRECT statement. See the“Continuous
Variables”section on page 870 for more details.

Cumulative Logits

If your dependent variable is ordinally scaled, you can specify the analysis of cumu-
lative logits that take into account the ordinal nature of the dependent variable:

proc catmod;
response clogits;
direct x;
model r=a x;

run;

The preceding statements correspond to a simple analysis that addresses the question
of existence of an association between the independent variables and the ordinal de-
pendent variable. However, there are some commonly used models for the analysis
of ordinal data (Agresti 1984) that address the structure of association (in terms of
odds ratios), as well as its existence.
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If the independent variables are class variables, a typical analysis for such a model
uses the following statements:

proc catmod;
weight wt;
response clogits;
model r=_response_ a b;

run;

On the other hand, if the independent variables are ordinally scaled, you might specify
numeric scores in variablesx1 andx2, and use the following statements:

proc catmod;
weight wt;
direct x1 x2;
response clogits;
model r=_response_ x1 x2;

run;

Refer to Agresti (1984) for additional details of estimation, testing, and interpretation.

Continuous Variables

Computational difficulties may occur if you have a continuous variable with a large
number of unique values and you use this variable in a DIRECT statement, since
an observation often represents a separate population of size one. At this extreme
of sparseness, the weighted least-squares method is inappropriate since there are too
many zero frequencies. Therefore, you should use the maximum likelihood method.
PROC CATMOD is not designed optimally for continuous variables; therefore, it
may be less efficient and unable to allocate sufficient memory to handle this problem,
as compared with a procedure designed specifically to handle continuous data. In
these situations, consider using the LOGISTIC, GENMOD, or PROBIT procedure to
analyze your data.

Log-Linear Model Analysis

When the response functions are the default generalized logits, then inclusion of the
keyword–RESPONSE– in every effect in the right-hand side of the MODEL state-
ment induces a log-linear model. The keyword–RESPONSE– tells PROC CATMOD
that you want to model the variation among the dependent variables. You then specify
the actual model in the LOGLIN statement.

When you perform log-linear model analysis, you can request weighted least-squares
estimates, maximum likelihood estimates, or both. By default, PROC CATMOD cal-
culates maximum likelihood estimates when the default response functions are used.
The following table provides appropriate MODEL statements for the combinations
of types of estimates.
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Estimation Desired MODEL Statement
Maximum likelihood
(Newton-Raphson)

model a*b=_response_;

Maximum likelihood
(Iterative Proportional Fitting)

model a*b=_response_ / ml=ipf;

Weighted least squares model a*b=_response_ / wls;

Maximum likelihood and
weighted least squares

model a*b=_response_ / wls ml;

CAUTION: sampling zeros in the input data set should be specified with the
ZERO= option to ensure that these sampling zeros are not treated as structural ze-
ros. Alternatively, you can replace cell counts for sampling zeros by some positive
number close to zero (such as 1E-20) in a DATA step. Data containing sampling
zeros should be analyzed with maximum likelihood estimation. See the“Cautions”
section on page 887 andExample 22.5on page 919 for further information and an
illustration for both cell count data and raw data.

One Population

The usual log-linear model analysis has one population, which means that all of the
variables are dependent variables. For example, the statements

proc catmod;
weight wt;
model r1*r2=_response_;
loglin r1|r2;

run;

yield a maximum likelihood analysis of a saturated log-linear model for the dependent
variablesr1 andr2.

If you want to fit a reduced model with respect to the dependent variables (for ex-
ample, a model of independence or conditional independence), specify the reduced
model in the LOGLIN statement. For example, the statements

proc catmod;
weight wt;
model r1*r2=_response_ / pred;
loglin r1 r2;

run;

yield a main-effects log-linear model analysis of the factorsr1 and r2. The output
includes Wald statistics for the individual effectsr1 andr2, as well as predicted cell
probabilities. Moreover, the goodness-of-fit statistic is the likelihood ratio test for the
hypothesis of independence betweenr1 andr2 or, equivalently, a test ofr1* r2.
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Multiple Populations

You can do log-linear model analysis with multiple populations by using a
POPULATION statement or by including effects on the right-hand side of the
MODEL statement that contain independent variables. Each effect must include the

–RESPONSE– keyword.

For example, suppose the dependent variablesr1 and r2 are dichotomous, and the
independent variablegroup has three levels. Then

proc catmod;
weight wt;
model r1*r2=_response_ group*_response_;
loglin r1|r2;

run;

specifies a saturated model (three degrees of freedom for–RESPONSE– and six
degrees of freedom for the interaction between–RESPONSE– andgroup). From
another point of view,–RESPONSE–*group can be regarded as a main effect for
group with respect to the three response functions, while–RESPONSE– can be re-
garded as an intercept effect with respect to the functions. In other words, these
statements give essentially the same results as the logistic analysis:

proc catmod;
weight wt;
model r1*r2=group;

run;

The ability to model the interaction between the independent and the dependent vari-
ables becomes particularly useful when a reduced model is specified for the depen-
dent variables. For example,

proc catmod;
weight wt;
model r1*r2=_response_ group*_response_;
loglin r1 r2;

run;

specifies a model with two degrees of freedom for–RESPONSE– (one for r1 and
one forr2) and four degrees of freedom for the interaction of–RESPONSE–*group.
The likelihood ratio goodness-of-fit statistic (three degrees of freedom) tests the hy-
pothesis thatr1 andr2 are independent in each of the three groups.

Iterative Proportional Fitting

You can use the iterative proportional fitting (IPF) algorithm to fit a hierarchical log-
linear model with no independent variables and no population variables.

The advantage of IPF over the Newton-Raphson (NR) algorithm and over the
weighted least squares (WLS) method is that, when the contingency table has several
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dimensions and the parameter vector is large, you can obtain the log-likelihood, the
goodness-of-fitG2, and the predicted frequencies or probabilities without performing
potentially expensive parameter estimation and covariance matrix calculations. This
enables you to

• compare two models by computing the likelihood ratio statistics to test the
significance of the contribution of the variables in one model that are not in the
other model.

• compute predicted values of the cell probabilities or frequencies for the final
model.

Each iteration of the IPF algorithm is generally faster than an iteration of the NR
algorithm; however, the IPF algorithm converges to the MLEs more slowly than the
NR algorithm. Both NR and WLS are more general methods that are able to perform
more complex analyses than IPF can.

Repeated Measures Analysis

If there are multiple dependent variables and the variables represent repeated mea-
surements of the same observational unit, then the variation among the dependent
variables can be attributed to one or more repeated measurement factors. The factors
can be included in the model by specifying–RESPONSE– on the right-hand side of
the MODEL statement and using a REPEATED statement to identify the factors.

To perform a repeated measures analysis, you also need to specify a RESPONSE
statement, since the standard response functions (generalized logits) cannot be used.
Typically, the MEANS or MARGINALS response functions are specified in a re-
peated measures analysis, but other response functions may also be reasonable.

One Population

Consider an experiment in which each subject is measured at three times, and the
response functions are marginal probabilities for each of the dependent variables.
If the dependent variables each hask levels, then PROC CATMOD computesk−1
response functions for each time. Differences among the response functions with
respect to these times could be attributed to the repeated measurement factorTime.
To incorporate theTime variation into the model, specify

proc catmod;
response marginals;
model t1*t2*t3=_response_;
repeated Time 3 / _response_=Time;

run;

These statements induce aTime effect that has2(k − 1) degrees of freedom since
there arek − 1 response functions at each time point. Thus, for a dichotomous vari-
able, theTime effect has two degrees of freedom.
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Now suppose that at each time point, each subject has X-rays taken, and the X-rays
are read by two different radiologists. This creates six dependent variables that rep-
resent the3 × 2 cross-classification of the repeated measurement factorsTime and
Reader. A saturated model with respect to these factors can be obtained by specify-
ing

proc catmod;
response marginals;
model r11*r12*r21*r22*r31*r32=_response_;
repeated Time 3, Reader 2

/ _response_=Time Reader Time*Reader;
run;

If you want to fit a main-effects model with respect toTime andReader, then change
the REPEATED statement to

repeated Time 3, Reader 2 / _response_=Time Reader;

If you want to fit a main-effects model forTime but for only one of the readers, the
REPEATED statement might look like

repeated Time $ 3, Reader $ 2
/_response_=Time(Reader=Smith)

profile =(’1’ Smith,
’1’ Jones,
’2’ Smith,
’2’ Jones,
’3’ Smith,
’3’ Jones);

If Jones had been unavailable for a reading at time 3, then there would be only5(k−1)
response functions, even though PROC CATMOD would be expecting some multiple
of 6 (= 3 × 2). In that case, thePROFILE=option would be necessary to indicate
which repeated measurement profiles were actually represented:

repeated Time $ 3, Reader $ 2
/_response_=Time(Reader=Smith)

profile =(’1’ Smith,
’1’ Jones,
’2’ Smith,
’2’ Jones,
’3’ Smith);

When two or more repeated measurement factors are specified, PROC CATMOD pre-
sumes that the response functions are ordered so that the levels of the rightmost factor
change most rapidly. This means that the dependent variables should be specified in
the same order. For this example, the order implied by the REPEATED statement is
as follows, where the variablerij corresponds toTime i andReader j.



Repeated Measures Analysis � 875

Response Dependent
Function Variable Time Reader

1 r11 1 1
2 r12 1 2
3 r21 2 1
4 r22 2 2
5 r31 3 1
6 r32 3 2

Thus, the order of dependent variables in the MODEL statement must agree with the
order implied by the REPEATED statement.

Multiple Populations

When there are variables specified in the POPULATION statement or in the right-
hand side of the MODEL statement, these variables induce multiple populations.
PROC CATMOD can then model these independent variables, the repeated measure-
ment factors, and the interactions between the two.

For example, suppose that there are five groups of subjects, that each subject in the
study is measured at three different times, and that the dichotomous dependent vari-
ables are labeledt1, t2, andt3. The following statements induce the computation of
three response functions for each population:

proc catmod;
weight wt;
population Group;
response marginals;
model t1*t2*t3=_response_;
repeated Time / _response_=Time;

run;

PROC CATMOD then regards–RESPONSE– as a variable with three levels cor-
responding to the three response functions in each population and forms an effect
with two degrees of freedom. The MODEL and REPEATED statements tell PROC
CATMOD to fit the main effect ofTime.

In general, the MODEL statement tells PROC CATMOD how to integrate the inde-
pendent variables and the repeated measurement factors into the model. For example,
again suppose that there are five groups of subjects, that each subject is measured at
three times, and that the dichotomous independent variables are labeledt1, t2, and
t3. If you use the same WEIGHT, POPULATION, RESPONSE, and REPEATED
statements as in the preceding program, the following MODEL statements result in
the indicated analyses:
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model t1*t2*t3=Group / averaged; specifies theGroup main effect
(with four degrees of freedom).

model t1*t2*t3=_response_; specifies theTime main effect
(with two degrees of freedom).

model t1*t2*t3=_response_*Group; specifies the interaction between
Time and Group (with eight de-
grees of freedom).

model t1*t2*t3=_response_|Group; specifies both main effects, and
the interaction betweenTime and
Group (with a total of fourteen
degrees of freedom).

model t1*t2*t3=_response_(Group); specifies a Time main effect
within eachGroup (with ten de-
grees of freedom).

However, the following MODEL statement is invalid since effects cannot be nested
within –RESPONSE–:

model t1*t2*t3=Group(_response_);

Generation of the Design Matrix

Each row of the design matrix (corresponding to a population) is generated by a
unique combination of independent variable values. Each column of the design ma-
trix corresponds to a model parameter. The columns are produced from the effect
specifications in the MODEL, LOGLIN, FACTORS, and REPEATED statements.
For details on effect specifications, see the“Specification of Effects”section on page
864.

This section is divided into three parts:

• one response function per population

• two or moreresponse functions per population (excluding log-linear models),
beginning on page 879

• log-linear models, beginning on page 884

This section assumes that the default effect parameterization is used. Specifying the
reference parameterizationreplaces the “−1”s with zeros in the design matrix for the
main effects of classification variables, and makes appropriate changes to interaction
terms.

You can display the design matrix by specifying theDESIGNoption in the MODEL
statement.
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One Response Function Per Population

Intercept

When there is one response function per population, all design matrices start with
a column of 1s for the intercept unless theNOINT option is specified or the design
matrix is input directly.

Main Effects

If a class variableA hask levels, then its main effect hask − 1 degrees of freedom,
and the design matrix hask−1 columns that correspond to the firstk−1 levels ofA.
The ith column contains a 1 in theith row, a−1 in the last row, and 0s everywhere
else. Ifαi denotes the parameter that corresponds to theith level of variableA, then
thek − 1 columns yield estimates of the independent parameters,α1, αi, . . . , αk−1.
The last parameter is not needed because PROC CATMOD constrains thek param-
eters to sum to zero. In other words, PROC CATMOD uses a full-rank center-point
parameterization to build design matrices. Here are two examples.

Data Levels Design Columns
A A
1 1 0
2 0 1
3 −1 −1

B B
1 1
2 −1

For an effect with three levels, such asA, PROC CATMOD produces two parameter
estimates for each response function. By default, the first (corresponding to the first
row in the “Design Columns”) estimates the effect of level 1 ofA compared to the
average effect of the three levels of A. The second (corresponding to the second row
in the “Design Columns”) estimates the effect of level 2 ofA compared to the average
effect of the three levels of A. The sum-to-zero constraint requires the effect of level
3 of A to be the negative of the sum of the level 1 and 2 effects (as shown by the third
row in the “Design Columns”).

Crossed Effects (Interactions)

Crossed effects (such asA*B) are formed by the horizontal direct products of main
effects, as illustrated in the following table.

Data Levels Design Matrix Columns
A B A B A*B
1 1 1 0 1 1 0
1 2 1 0 −1 −1 0
2 1 0 1 1 0 1
2 2 0 1 −1 0 −1
3 1 −1 −1 1 −1 −1
3 2 −1 −1 −1 1 1
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The number of degrees of freedom for a crossed effect (that is, the number of design
matrix columns) is equal to the product of the numbers of degrees of freedom for the
separate effects.

Nested Effects

The effectA(B) is read “A within B” and is the same as specifying anA main effect
for every value ofB. If na andnb are the number of levels inA andB, respectively,
then the number of columns forA(B) is (na−1)nb when every combination of levels
exists in the data. The following table gives an example.

Data Levels Design Matrix Columns
B A A(B)
1 1 1 0 0 0
1 2 0 1 0 0
1 3 −1 −1 0 0
2 1 0 0 1 0
2 2 0 0 0 1
2 3 0 0 −1 −1

CAUTION: PROC CATMOD actually allocates a column for all possible combina-
tions of values even though some combinations may not be present in the data. This
may be of particular concern if the data are not balanced with respect to the nested
levels.

Nested-by-value Effects

Instead of nesting an effect within all values of the main effect, you can nest an
effect within specified values of the nested variable (A(B=1), for example). The four
degrees of freedom for theA(B) effect shown in the preceding section can also be
obtained by specifying the two separate nested effects with values.

Data Levels Design Matrix Columns
B A A(B=1) A(B=2)
1 1 1 0 0 0
1 2 0 1 0 0
1 3 −1 −1 0 0
2 1 0 0 1 0
2 2 0 0 0 1
2 3 0 0 −1 −1

Each effect hasna − 1 degrees of freedom, assuming a complete combination. Thus,
for the example, each effect has two degrees of freedom.

The procedure compares nested values to data values on the basis of formatted values.
If a format is not specified for the variable, the procedure formats internal data values
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to BEST16, left-justified. The nested values specified in nested-by-value effects are
also converted to a BEST16 formatted value, left-justified.

For example, if the numeric variableB has internal data values 1 and 2, thenA(B=1),
A(B=1.0), andA(B=1E0) are all valid nested-by-value effects. However, if the data
value 1 is formatted as ‘one’, thenA(B=’one’) is a valid effect, butA(B=1) is not
since the formatted nested value (1) does not match the formatted data value (one).

To ensure correct nested-by-value effects, look at the tables of population and re-
sponse profiles. These are displayed by default, and they contain the formatted data
values. In addition, the population and response profiles are displayed when you
specify theONEWAY option in the MODEL statement.

Direct Effects

To request that the actual values of a variable be inserted into the design matrix, de-
clare the variable in a DIRECT statement, and specify the effect by the variable name.
For example, specifying the effectsX1 andX2 in both the MODEL and DIRECT
statements results in the following.

Data Levels Design Columns
X1 X2 X1 X2
1 1 1 1
2 4 2 4
3 9 3 9

Unless there is a POPULATION statement that excludes the direct variables, the di-
rect variables help to define the sample populations. In general, the variables should
not be continuous in the sense that every subject has a different value because this
would induce a separate population for each subject (note, however, that such a strat-
egy is used purposely for logistic regression).

If there is a POPULATION statement that omits mention of the direct variables, then
the values of the direct variables must be identical for all subjects in a given popula-
tion since there can only be one independent variable profile for each population.

Two or More Response Functions Per Population

When there is more than one response function per population, the structure of the
design matrix depends on whether or not the model type is AVERAGED (see the
AVERAGED optionon page 842). The model type is AVERAGED if independent
variable effects are averaged over the multiple responses within a population, rather
than being nested in them.

The following subsections illustrate the effect of specifying (or not specifying) an
AVERAGED model type. This section does not apply to log-linear models; for these
models, see the“Log-Linear Model Design Matrices”section on page 884.
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Model Type Not AVERAGED

Suppose the variableA has two levels, and you specify

proc catmod;
model Y=A / design;

run;

If the variableY has two levels, then there is only one response function per popula-
tion, and the design matrix is as follows.

Design Matrix
Sample Intercept A

1 1 1
2 1 −1

But if the variableY has three levels, then there are two response functions per pop-
ulation, and the preceding design matrix is assumed to hold for each of the two re-
sponse functions. The response functions are always ordered so that the multiple
response functions within a population are grouped together. For this example, the
design matrix would be as follows.

Response
Function Design Matrix

Sample Number Intercept A
1 1 1 0 1 0
1 2 0 1 0 1
2 1 1 0 −1 0
2 2 0 1 0 −1

Since the same submatrix applies to each of the multiple response functions, PROC
CATMOD displays only the submatrix (that is, the one it would create if there were
only one response function per population) rather than the entire design matrix.
PROC CATMOD displays[

1 1
1 −1

]
Ordering of Parameters

This grouping of multiple response functions within populations also has an effect in
the table of parameter estimates displayed by PROC CATMOD. The following table
shows some parameter estimates, where the four rows of the table correspond to the
four columns in the preceding design matrix.
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Effect Parameter Estimate
Intercept 1 1.4979

2 0.8404

A 3 0.1116
4 −0.3296

Notice that the intercept and theA effect each have two parameter estimates associ-
ated with them. The first estimate in each pair is associated with the first response
function, and the second in each pair is associated with the second response function.
Consequently, 0.1116 is the effect of the first level ofA on the first response func-
tion. In any table of parameter estimates displayed by PROC CATMOD, as you read
down the column of estimates, the response function level changes before levels of
the variables making up the effect.

Model Type AVERAGED

When the model type isAVERAGED (for example, when the AVERAGED option
is specified in the MODEL statement, when–RESPONSE– is used in the MODEL
statement, or when the design matrix is input directly in the MODEL statement),
PROC CATMOD does not assume that the same submatrix applies to each of the
q response functions per population. Rather, it averages any independent variable
effects across the functions, and it enables you to study variation among theq func-
tions. The first column of the design matrix is always a column of 1s corresponding
to the intercept, unless theNOINT option is specified in the MODEL statement or
the design matrix is input directly. Also, since the design matrix does not have any
special submatrix structure, PROC CATMOD displays the entire matrix.

For example, suppose the dependent variableY has three levels, the independent
variableA has two levels, and you specify

proc catmod;
response marginals;
model y=a / averaged design;

run;

Then there are two response functions per population, and the response functions
are always ordered so that the multiple response functions within a population are
grouped together. For this example, the design matrix would be as follows.

Response
Function Design Matrix

Sample Number Intercept A
1 1 1 1
1 2 1 1
2 1 1 −1
2 2 1 −1
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Note that the model now has only two degrees of freedom. The remaining two de-
grees of freedom in the residual correspond to variation among the three levels of the
dependent variable. Generally, that variation tends to be statistically significant and
therefore should not be left out of the model. You can include it in the model by
including the two effects,–RESPONSE– and–RESPONSE–*A, but if the study is
not a repeated measurement study, those sources of variation tend to be uninteresting.
Thus, the usual solution for this type of study (one dependent variable) is to exclude
the AVERAGED option from the MODEL statement.

An AVERAGED model type is automatically induced whenever you use the

–RESPONSE– keyword in the MODEL statement. The–RESPONSE– effect
models variation among theq response functions per population. If there is no
REPEATED, FACTORS, or LOGLIN statement, then PROC CATMOD builds a main
effect withq − 1 degrees of freedom. For example, three response functions would
induce the following design columns.

Response
Function Design Columns
Number –Response–

1 1 0
2 0 1
3 −1 −1

If there is more than one population, then the–RESPONSE– effect is averaged over
the populations. Also, the–RESPONSE– effect can be crossed with any other effect,
or it can be nested within an effect.

If there is a REPEATED statement that contains only one repeated measurement fac-
tor, then PROC CATMOD builds the design columns for–RESPONSE– in the same
way, except that the output labels the main effect with the factor name rather than
with the word–RESPONSE–. For example, suppose an independent variableA has
two levels, and the input statements are

proc catmod;
response marginals;
model Time1*Time2=A _response_ A*_response_ / design;
repeated Time 2 / _response_=Time;

run;

If Time1 andTime2 each have two levels (so that they each have one independent
marginal probability), then the RESPONSE statement causes PROC CATMOD to
compute two response functions per population. Thus, the design matrix is as follows.
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Response
Function Design Matrix

Sample Number Intercept A Time A*Time
1 1 1 1 1 1
1 2 1 1 −1 −1
2 1 1 −1 1 −1
2 2 1 −1 −1 1

However, if Time1 andTime2 each have three levels (so that they each have two
independent marginal probabilities), then the RESPONSE statement causes PROC
CATMOD to compute four response functions per population. In that case, since
Time has two levels, PROC CATMOD groups the functions into sets of 2(= 4/2)
and constructs the preceding submatrix for each function in the set. This results in
the following design matrix, which is obtained from the previous one by multiplying
each element by an identity matrix of order two.

Response Design Matrix
Sample Function Intercept A Time A*Time

1 P(Time1=1) 1 0 1 0 1 0 1 0
1 P(Time1=2) 0 1 0 1 0 1 0 1

1 P(Time2=1) 1 0 1 0 −1 0 −1 0
1 P(Time2=2) 0 1 0 1 0 −1 0 −1

2 P(Time1=1) 1 0 −1 0 1 0 −1 0
2 P(Time1=2) 0 1 0 −1 0 1 0 −1

2 P(Time2=1) 1 0 −1 0 −1 0 1 0
2 P(Time2=2) 0 1 0 −1 0 −1 0 1

If there is a REPEATED statement that contains two or more repeated measurement
factors, then PROC CATMOD builds the design columns for–RESPONSE– accord-
ing to the definition of–RESPONSE– in the REPEATED statement. For example,
suppose you specify

proc catmod;
response marginals;
model R11*R12*R21*R22=_response_ / design;
repeated Time 2, Place 2 / _response_=Time Place;

run;

If each of the dependent variables has two levels, then PROC CATMOD builds four
response functions. The–RESPONSE– effect generates a main effects model with
respect toTime andPlace, and the design matrix is as follows.
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Response
Function Design Matrix
Number Variable Time Place Intercept –Response–

1 R11 1 1 1 1 1
2 R12 1 2 1 1 −1
3 R21 2 1 1 −1 1
4 R22 2 2 1 −1 −1

Log-Linear Model Design Matrices

When the response functions are the standard ones (generalized logits), then inclu-
sion of the keyword–RESPONSE– in every design effect induces a log-linear model.
The design matrix for a log-linear model looks different from a standard design ma-
trix because the standard one is transformed by the same linear transformation that
converts ther response probabilities tor−1 generalized logits. For example, suppose
the dependent variablesX andY each have two levels, and you specify a saturated
log-linear model analysis:

proc catmod;
model X*Y=_response_ / design;
loglin X Y X*Y;

run;

Then the cross-classification ofX andY yields four response probabilities,p11, p12,
p21, andp22, which are then reduced to three generalized logit response functions,
F1 = log(p11/p22), F2 = log(p12/p22), andF3 = log(p21/p22).

Since the saturated log-linear model implies that


log(p11)
log(p12)
log(p21)
log(p22)

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 γ − λ


1
1
1
1



=


1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

β − δ


1
1
1
1



whereγ andβ are parameter vectors, andλ andδ are normalizing constants required
by the restriction that the probabilities sum to 1, it follows that the MODEL statement
yields
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 F1

F2

F3

 =

 1 0 0 −1
0 1 0 −1
0 0 1 −1

×


log(p11)
log(p12)
log(p21)
log(p22)



=

 1 0 0 −1
0 1 0 −1
0 0 1 −1

×


1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

β

=

 2 2 0
2 0 −2
0 2 −2

β

Thus, the design matrix is as follows.

Response
Function Design Matrix

Sample Number X Y X*Y
1 1 2 2 0
1 2 2 0 −2
1 3 0 2 −2

Design matrices for reduced models are constructed similarly. For example, suppose
you request a main-effects log-linear model analysis of the factorsX andY:

proc catmod;
model X*Y=_response_ / design;
loglin X Y;

run;

Since the main-effects log-linear model implies that


log(p11)
log(p12)
log(p21)
log(p22)

 =


1 1 1
1 1 −1
1 −1 1
1 −1 −1

 γ − λ


1
1
1
1



=


1 1
1 −1

−1 1
−1 −1

β − δ


1
1
1
1
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it follows that the MODEL statement yields

 F1

F2

F3

 =

 1 0 0 −1
0 1 0 −1
0 0 1 −1

×


log(p11)
log(p12)
log(p21)
log(p22)



=

 1 0 0 −1
0 1 0 −1
0 0 1 −1

×


1 1
1 −1

−1 1
−1 −1

β

=

 2 2
2 0
0 2

β

Therefore, the corresponding design matrix is as follows.

Response
Function Design Matrix

Sample Number X Y
1 1 2 2
1 2 2 0
1 3 0 2

Since it is difficult to tell from the final design matrix whether PROC CATMOD used
the parameterization that you intended, the procedure displays the untransformed

–RESPONSE– matrix for log-linear models. For example, the main-effects model in
the preceding example induces the display of the following matrix.

Response
Function –Response– Matrix
Number 1 2

1 1 1
2 1 −1
3 −1 1
4 −1 −1

You can suppress the display of this matrix by specifying theNORESPONSEoption
in the MODEL statement.
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Cautions

Effective Sample Size

Since the method depends on asymptotic approximations, you need to be careful that
the sample sizes are sufficiently large to support the asymptotic normal distributions
of the response functions. A general guideline is that you would like to have an
effective sample size of at least 25 to 30 for each response function that is being
analyzed. For example, if you have one dependent variable andr = 4 response
levels, and you use the standard response functions to compute three generalized
logits for each population, then you would like the sample size of each population
to be at least 75. Moreover, the subjects should be dispersed throughout the table so
that less than 20 percent of the response functions have an effective sample size less
than 5. For example, if each population had less than 5 subjects in the first response
category, then it would be wiser to pool this category with another category rather
than to assume the asymptotic normality of the first response function. Or, if the
dependent variable is ordinally scaled, an alternative is to request the mean score
response function rather than three generalized logits.

If there is more than one dependent variable, and you specify RESPONSE MEANS,
then the effective sample size for each response function is the same as the actual
sample size. Thus, a sample size of 30 could be sufficient to support four response
functions, provided that the functions are the means of four dependent variables.

A Singular Covariance Matrix

If there is a singular (noninvertible) covariance matrix for the response functions in
any population, then PROC CATMOD writes an error message and stops processing.
You have several options available to correct this situation:

• You can reduce the number of response functions according to how many can
be supported by the populations with the smallest sample sizes.

• If there are three or more levels for any independent variable, you can pool
the levels into a fewer number of categories, thereby reducing the number of
populations. However, your interpretation of results must be done more cau-
tiously since such pooling implies a different sampling scheme and masks any
differences that existed among the pooled categories.

• If there are two or more independent variables, you can delete at least one of
them from the model. However, this is just another form of pooling, and the
same cautions that apply to the previous option also apply here.

• If there is one independent variable, then, in some situations, you might sim-
ply eliminate the populations that are causing the covariance matrices to be
singular.

• You can use theADDCELL= option in the MODEL statement to add a small
amount (for example, 0.5) to every cell frequency, but this can seriously bias
the results if the cell frequencies are small.
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Zero Frequencies

There are two types of zero cells in a contingency table: structural and sampling. A
structural zero cell has an expected value of zero, while a sampling zero cell may
have nonzero expected value and may be estimable.

If you use the standard response functions and there are zero frequencies, you should
use maximum likelihood estimation (the default isML=NR) rather than weighted
least-squares to analyze the data. For weighted least-squares analysis, the CATMOD
procedure always computes the observed response functions and may need to take the
logarithm of a zero proportion. In this case, PROC CATMOD issues a warning and
then takes the log of a small value (0.5/ni for the probability) in order to continue, but
this can produce invalid results if the cells contain too few observations. Maximum
likelihood analysis, on the other hand, does not require computation of the observed
response functions and therefore yields valid results for the parameter estimates and
all of the predicted values.

For a log-linear model analysis usingWLS or ML=NR, PROC CATMOD creates
response profiles only for the observed profiles. Thus, for any log-linear model anal-
ysis with one population (the usual case), the contingency table will not contain zeros,
which means that all zero frequencies are treated as structural zeros. If there is more
than one population, then a zero in the body of the contingency table is treated as
a sampling zero (as long as some population has a nonzero count for that profile).
If you fit the log-linear model usingML=IPF, the contingency table is incomplete
and the zeros are treated like structural zeros. If you want zero frequencies that
PROC CATMOD would normally treat as structural zeros to be interpreted as sam-
pling zeros, you may specify theZERO=SAMPLING andMISSING=SAMPLING
options in the MODEL statement. Alternatively, you can specify ZERO=1E−20 and
MISSING=1E−20.

Refer to Bishop, Fienberg, and Holland (1975) for a discussion of the issues and
Example 22.5on page 919 for an illustration of a log-linear model analysis of data
that contain both structural and sampling zeros.

If you perform a weighted least-squares analysis on a contingency table that contains
zero cell frequencies, then avoid using the LOG transformation as the first trans-
formation on the observed proportions. In general, it may be better to change the
response functions or to pool some of the response categories than to settle for the
0.5 correction or to use theADDCELL= option.

Testing the Wrong Hypothesis

If you use the keyword–RESPONSE– in the MODEL statement, and you specify
MARGINALS, LOGITS, ALOGITS, or CLOGITS in your RESPONSE statement,
you may receive the following warning message:

Warning: The _RESPONSE_ effect may be testing the wrong
hypothesis since the marginal levels of the
dependent variables do not coincide. Consult the
response profiles and the CATMOD documentation.
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The following examples illustrate situations in which the–RESPONSE– effect tests
the wrong hypothesis.

Zeros in the Marginal Frequencies

Suppose you specify the following statements:

data A1;
input Time1 Time2 @@;
datalines;

1 2 2 3 1 3
;

proc catmod;
response marginals;
model Time1*Time2=_response_;
repeated Time 2 / _response_=Time;

run;

One marginal probability is computed for each dependent variable, resulting in two
response functions. The model is a saturated one: one degree of freedom for the
intercept and one for the main effect ofTime. Except for the warning message,
PROC CATMOD produces an analysis with no apparent errors, but the “Response
Profiles” table displayed by PROC CATMOD is as follows.

Response Profiles
Response Time1 Time2

1 1 2
2 1 3
3 2 3

Since RESPONSE MARGINALS yields marginal probabilities for every level
but the last, the two response functions being analyzed are Prob(Time1=1)
and Prob(Time2=2). Thus, theTime effect is testing the hypothesis that
Prob(Time1=1)=Prob(Time2=2). What itshouldbe testing is the hypothesis that

Prob(Time1=1) = Prob(Time2=1)
Prob(Time1=2) = Prob(Time2=2)
Prob(Time1=3) = Prob(Time2=3)

but there are not enough data to support the test (assuming that none of the probabil-
ities are structural zeros by the design of the study).
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The ORDER=DATA Option

Suppose you specify

data a1;
input Time1 Time2 @@;
datalines;

2 1 2 2 1 1 1 2 2 1
;

proc catmod order=data;
response marginals;
model Time1*Time2=_response_;
repeated Time 2 / _response_=Time;

run;

As in the preceding example, one marginal probability is computed for each depen-
dent variable, resulting in two response functions. The model is also the same:
one degree of freedom for the intercept and one for the main effect ofTime.
PROC CATMOD issues the warning message and displays the following “Response
Profiles” table.

Response Profiles
Response Time1 Time2

1 2 1
2 2 2
3 1 1
4 1 2

Although the marginal levels are the same for the two dependent variables, they
are not in the same order because theORDER=DATA option specified that they
be ordered according to their appearance in the input stream. Since RESPONSE
MARGINALS yields marginal probabilities for every level except the last, the two
response functions being analyzed are Prob(Time1=2) and Prob(Time2=1). Thus, the
Time effect is testing the hypothesis that Prob(Time1=2)=Prob(Time2=1). What it
shouldbe testing is the hypothesis that

Prob(Time1=1) = Prob(Time2=1)
Prob(Time1=2) = Prob(Time2=2)

Whenever the warning message appears, look at the “Response Profiles” table or
the “One-Way Frequencies” table to determine what hypothesis is actually being
tested. For the latter example, a correct analysis can be obtained by deleting the
ORDER=DATA option or by reordering the data so that the (1,1) observation is first.
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Computational Method

The notation used in PROC CATMOD differs slightly from that used in other lit-
erature. The following table provides a summary of the basic dimensions and the
notation for a contingency table. See the “Computational Formulas” section, which
follows, for a complete description.

Summary of Basic Dimensions

s = number of populations or samples ( = number of rows in the underlying
contingency table)

r = number of response categories (= number of columns in the underlying
contingency table)

q = number of response functions computed for each population

d = number of parameters

Notation

j denotes a column vector of 1s.
J denotes a square matrix of 1s.∑
k is the sum over all the possible values ofk.

ni denotes the row sum
∑

j nij .
DIAG n(p) is the diagonal matrix formed from the firstn elements

of the vectorp.
DIAG −1

n (p) is the inverse ofDIAG n(p).
DIAG (A1,A2, . . . ,Ak) denotes a block diagonal matrix with theA matrices

on the main diagonal.

Input data can be represented by a contingency table, as shown inTable 22.4.

Table 22.4. Input Data Represented by a Contingency Table

Response

Population 1 2 · · · r Total
1 n11 n12 · · · n1r n1

2 n21 n22 · · · n2r n2
...

...
...

...
...

...
s ns1 ns2 · · · nsr ns
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Computational Formulas
The following formulas are shown for each population and for all populations combined.

Source Formula Dimension
Probability Estimates

jth response pij =
nij

ni
1× 1

ith population pi =


pi1

pi2
...

pir

 r × 1

all populations p =


p1

p2
...

ps

 sr × 1

Variance of Probability Estimates

ith population Vi =
1
ni

(DIAG(pi)− pipi
′) r × r

all populations V = DIAG(V1,V2, . . . ,Vs) sr × sr

Response Functions

ith population Fi = F(pi) q × 1

all populations F =


F1

F2
...

Fs

 sq × 1

Derivative of Function with Respect to Probability Estimates

ith population Hi =
∂F(pi)

∂pi
q × r

all populations H = DIAG(H1,H2, . . . ,Hs) sq × sr

Variance of Functions

ith population Si = HiViHi
′ q × q

all populations S = DIAG(S1,S2, . . . ,Ss) sq × sq

Inverse Variance of Functions

ith population Si = (Si)−1 q × q

all populations S−1 = DIAG(S1,S2, . . . ,Ss) sq × sq
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Derivative Table for Compound Functions: Y=F(G(p))

In the following table, letG(p) be a vector of functions ofp, and letD denote
∂G/∂p, which is the first derivative matrix ofG with respect top.

Function Y = F(G) Derivative (∂Y/∂p)
Multiply matrix Y = A ∗G A ∗D

Logarithm Y = LOG(G) DIAG−1(G) ∗D

Exponential Y = EXP(G) DIAG(Y) ∗D

Add constant Y = G + A D

Default Response Functions: Generalized Logits

In the following table, subscriptsi for the population are suppressed. Also denote

fj = log
(

pj

pr

)
for j = 1, . . . , r − 1 for each populationi = 1, . . . , s.

Inverse of Response Functions for a Population

pj =
exp(fj)

1 +
∑

k exp(fk)
for j = 1, . . . , r − 1

pr =
1

1 +
∑

k exp(fk)

Form of F and Derivative for a Population

F = KLOG(p) = (Ir−1,−j) LOG(p)

H =
∂F
∂p

=
(
DIAG−1

r−1(p),
−1
pr

j
)

Covariance Results for a Population

S = HVH′

=
1
n

(
DIAG−1

r−1(p) +
1
pr

Jr−1

)
whereV,H, andJ are as previously defined.

S−1 = n(DIAGr−1(p)− qq′) whereq = DIAGr−1(p) j

S−1F = nDIAGr−1(p)F− (n
∑

j

pjfj) q

F′S−1F = n
∑

j

pjf
2
j − n(

∑
j

pjfj)2
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The following calculations are shown for each population and then for all populations
combined.

Source Formula Dimension
Design Matrix

ith population Xi q × d

all populations X =


X1

X2
...

Xs

 sq × d

Crossproduct of Design Matrix

ith population Ci = Xi
′SiXi d× d

all populations C = X′S−1X =
∑

i Ci d× d

In the following table,zp is the 100pth percentile of the standard normal distribution.

Source Formula Dimension
Crossproduct of Design Matrix with Function

R = X′S−1F =
∑

i Xi
′SiFi d× 1

Weighted Least-Squares Estimates

b = C−1R = (X′S−1X)−1(X′S−1F) d× 1

Covariance of Weighted Least-Squares Estimates

COV(b) = C−1 d× d

Wald Confidence Limits for Parameter Estimates

bk ± z1−α/2C
−1
kk k = 1, . . . , d

Predicted Response Functions

F̂ = Xb sq × 1

Covariance of Predicted Response Functions

VF̂ = XC−1X′ sq × sq

Residual Chi-Square

RSS= F′S−1F− F̂′S−1F̂ 1× 1
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Source Formula Dimension
Chi-Square for H0:Lβ = 0

Q = (Lb)′(LC−1L′)−1(Lb) 1× 1

Maximum Likelihood Method
Let C be the Hessian matrix andG be the gradient of the log-likelihood function
(both functions ofπ and the parametersβ). Let p∗

i denote the vector containing
the firstr − 1 sample proportions from populationi, and letπ∗

i denote the corre-
sponding vector of probability estimates from the current iteration. Starting with the
least-squares estimatesb0 of β (if you use theML andWLS options; with the ML
option alone, the procedure starts with0), the probabilitiesπ(b) are computed, and
b is calculated iteratively by the Newton-Raphson method until it converges (see the
EPSILON= optionon page 842). The factorλ is a step-halving factor that equals
one at the start of each iteration. For any iteration in which the likelihood decreases,
PROC CATMOD uses a series of subiterations in whichλ is iteratively divided by
two. The subiterations continue until the likelihood is greater than that of the previ-
ous iteration. If the likelihood has not reached that point after ten subiterations, then
convergence is assumed, and a warning message is displayed.

Sometimes, infinite parameters may be present in the model, either because of the
presence of one or more zero frequencies or because of a poorly specified model with
collinearity among the estimates. If an estimate is tending toward infinity, then PROC
CATMOD flags the parameter as infinite and holds the estimate fixed in subsequent
iterations. PROC CATMOD regards a parameter to be infinite when two conditions
apply:

• The absolute value of its estimate exceeds five divided by the range of the
corresponding variable.

• The standard error of its estimate is at least three times greater than the estimate
itself.

The estimator of the asymptotic covariance matrix of the maximum likelihood pre-
dicted probabilities is given by Imrey, Koch, and Stokes (1981, eq. 2.18).

The following equations summarize the method:

bk+1 = bk − λC−1G

where

C = X′S−1(π)X

N =

 n1(p∗
1 − π∗

1)
...

ns(p∗
s − π∗

s)


G = X′N
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Iterative Proportional Fitting

The algorithm used by PROC CATMOD for iterative proportional fitting is described
in Bishop, Fienberg, and Holland (1975), Haberman (1972), and Agresti (2002). To
illustrate the method, consider the observed three-dimensional table{nijk} for the
variables X, Y, and Z. The statements

model X*Y*Z = _response_ / ml=ipf;
loglin X|Y|Z@2;

request that PROC CATMOD use IPF to fit the hierarchical model

log(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk

Begin with a table of initial cell estimates{m̂(0)
ijk}; PROC CATMOD produces the

initial estimates by setting thensz structural zero cells to 0 and all other cells to
n/(nc − nsz), wheren is the total weight of the table andnc is the total number of
cells in the table. Iteratively adjust the estimates at steps−1 to the observed marginal
tables specified in the model by cycling through the following three-stage process to
produce the estimates at steps.

m̂
(s1)
ijk = m̂

(s−1)
ijk

nij·

m̂
(s−1)
ij·

m̂
(s2)
ijk = m̂

(s1)
ijk

ni·k

m̂
(s1)
i·k

m̂
(s)
ijk = m̂

(s2)
ijk

n·jk

m̂
(s2)
·jk

The subscript “·” indicates summation over the missing subscript. The log-likelihood
ls is estimated at each steps by

ls =
∑
i,j,k

nijk log

m̂
(s)
ijk

n


When the function|(ls−1 − ls)/ls−1| is less than10−8, the iterations terminate. You
can change the comparison value with theEPSILON=option, and you can change
the convergence criterion with theCONV= option. The option CONV=CELL uses
the maximum cell difference

max
i,j,k

|m̂(s−1)
ijk − m̂

(s)
ijk|

as the criterion while the option CONV=MARGIN computes the maximum differ-
ence of the margins

Maximum of

{
max

i,j
|m̂(s−1)

ij· − m̂
(s)
ij· |,max

i,k
|m̂(s−1)

i·k − m̂
(s)
i·k |,max

j,k
|m̂(s−1)

·jk − m̂
(s)
·jk|

}
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Memory and Time Requirements

The memory and time required by PROC CATMOD are proportional to the number
of parameters in the model.

Displayed Output

PROC CATMOD displays the following information in the “Data Summary” table:

• the Response effect

• the Weight Variable, if one is specified

• the Data Set name

• the number of Response Levels

• the number of samples or Populations

• the Total Frequency, which is the total sample size

• the number of Observations from the data set (the number of data records)

• the frequency of missing observations, labeled as “Frequency Missing”

Except for the analysis of variance table, all of the following items can be displayed
or suppressed, depending on your specification of statements and options.

• TheONEWAY option produces the “One-Way Frequencies” table, which dis-
plays the frequencies of each variable value used in the analysis.

• The populations (or samples) are defined in a table labeled “Population
Profiles.” The Sample Size and the values of the defining variables are dis-
played for each Sample. This table is suppressed if theNOPROFILEoption is
specified.

• The observed responses are defined in a table labeled “Response Profiles.” The
values of the defining variables are displayed for each Response. This table is
suppressed if theNOPROFILEoption is specified.

• If the FREQoption is specified, then the “Response Frequencies” table is dis-
played, which shows the frequency of each response for each population.

• If the PROBoption is specified, then the “Response Probabilities” table is pro-
duced. This table displays the probability of each response for each population.

• If the COV option is specified, the “Response Functions, Covariance Matrix”
table, which shows the covariance matrix of the response functions for each
Sample, is displayed.

• If the DESIGN option is specified, the Response Functions are displayed in
the “Response Functions, Design Matrix” table. If theCOV option is also
specified, the Response Functions are displayed in the “Response Functions,
Covariance Matrix” table.
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• If the DESIGN option is specified, the design matrix is displayed in the
“Response Functions, Design Matrix” table, and if a log-linear model is being
fit, the –RESPONSE– matrix is displayed in the “–Response– Matrix” table.
If the model type isAVERAGED, then the design matrix is displayed withq∗s
rows, assumingq response functions for each ofs populations. Otherwise, the
design matrix is displayed with onlys rows since the model is the same for
each of theq response functions.

• The “X′*Inv(S)*X” matrix is displayed for weighted least-squares analyses if
theXPX option is specified.

• The “Analysis of Variance” table for the weighted least-squares analysis re-
ports the results of significance tests for each of thedesign-effectsin the right-
hand side of the MODEL statement. If–RESPONSE– is adesign-effectand
is defined explicitly in the LOGLIN, FACTORS, or REPEATED statement,
then the table contains test statistics for the individual effects constituting the

–RESPONSE– effect. If the design matrix is input directly, then the content of
the displayed output depends on whether you specify any subsets of the param-
eters to be tested. If you specify one or more subsets, then the table contains
one test for each subset. Otherwise, the table contains one test for the effect
MODEL | MEAN. In every case, the table also contains the Residual goodness-
of-fit test. Produced for each test of significance are the Source of variation,
the number of degrees of freedom (DF), the Chi-Square value (which is a Wald
statistic), and the significance probability (Pr > ChiSq).

• The “Analysis of Weighted Least-Squares Estimates” table lists, for each pa-
rameter in the model, the least-squares Estimate, the estimated Standard Error
of the parameter estimate, the Chi-Square value (a Wald statistic, calculated as
((parameter estimate)/(standard error))2) for testing that the parameter is zero,
and the significance probability (Pr > ChiSq) of the test. If theCLPARM option
is specified, then 95% Wald confidence intervals are displayed.

Each row in the table is labeled with the Parameter (the model effect and the
class levels) and the response Function Number; however, if theNOPREDVAR
option or a REPEATED or FACTORS statement is specified or if the design
matrix is directly input, the rows are labeled by the Effect in the model for
which parameters are formed and the Parameter number.

• The “Covariance Matrix of the Parameter Estimates” table for the weighted
least-squares analysis displays the estimated covariance matrix of the least-
squares estimates of the parameters, provided theCOVB option is specified.

• The “Correlation Matrix of the Parameter Estimates” table for the weighted
least-squares analysis displays the estimated correlation matrix of the least-
squares estimates of the parameters, provided that theCORRBoption is speci-
fied.

• The “Maximum Likelihood Analysis” table is produced when theML and
ITPRINT options are specified for the standard response functions. It dis-
plays the Iteration number, the number of step-halving Sub-Iterations,−2 Log
Likelihood for that iteration, the Convergence Criterion, and the Parameter
Estimates for each iteration.
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• The “Maximum Likelihood Analysis of Variance” table, displayed when the
ML option is specified for the standard response functions, is similar to the
table produced for the least-squares analysis. The Chi-Square test for each
effect is a Wald test based on the information matrix from the likelihood calcu-
lations. The Likelihood Ratio statistic compares the specified model with the
unrestricted (saturated) model and is an appropriate goodness-of-fit test for the
model.

• The “Analysis of Maximum Likelihood Estimates” table, displayed when the
ML option is specified for the standard response functions, is similar to the
one produced for the least-squares analysis. The table includes the maximum
likelihood estimates, the estimated Standard Errors based on the information
matrix, and the Wald statistics (Chi-Square) based on estimated standard errors.

• The “Covariance Matrix of the Maximum Likelihood Estimates” table displays
the estimated covariance matrix of the maximum likelihood estimates of the
parameters, provided that theCOVB andML options are specified for the stan-
dard response functions.

• The “Correlation Matrix of the Maximum Likelihood Estimates” table displays
the estimated correlation matrix of the maximum likelihood estimates of the
parameters, provided that theCORRBandML options are specified for the
standard response functions.

• For each source of variation specified in a CONTRAST statement, the
“Contrasts” table lists the label for the source (Contrast), the number of degrees
of freedom (DF), the Chi-Square value (which is a Wald statistic), and the sig-
nificance probability (Pr > ChiSq). If theESTIMATE= option is specified, the
“Analysis of Contrasts” table displays, for each row of the contrast, the label
(Contrast), the Type (PARM or EXP), the Row of the contrast, the Estimate
and its Standard Error, a Wald confidence interval, the Wald Chi-Square, and
thep-value (Pr > ChiSq) for 1 degree of freedom.

• Specification of thePREDICToption in the MODEL statement has the fol-
lowing effect. Produced for each response function within each population
are the Observed and Predicted Function values, their Standard Errors, and
the Residual (Observed− Predicted). If the response functions are the default
ones (generalized logits), additional information displayed for each response
within each population includes the Observed and Predicted cell probabilities,
their Standard Errors, and the Residual. However, specifying PRED=FREQ in
the MODEL statement results in the display of the predicted cell frequencies,
rather than the predicted cell probabilities. The displayed output includes the
population profiles and, for the response function table, the Function Number,
while the probability and frequency tables display the response profiles. If the
NOPREDVAR option is specified in the MODEL statement, the population
profiles are replaced with the Sample numbers, and the response profiles are
replaced with the labels Pn for thenth cell probability, and Fn for thenth cell
frequency.

• When there are multiple RESPONSE statements, the output for each statement
starts on a new page. For each RESPONSE statement, the corresponding title,
if specified, is displayed at the top of each page.
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• If the ADDCELL= option is specified in the MODEL statement, and if there is
a weighted least-squares analysis specified, the adjusted sample size for each
population (with number added to each cell) is labeled Adjusted Sample Size
in the “Population Profiles” table. Similarly, the adjusted response frequencies
and probabilities are displayed in the “Adjusted Response Frequencies” and
“Adjusted Response Probabilities” tables, respectively.

• If –RESPONSE– is defined explicitly in the LOGLIN, FACTORS, or
REPEATED statement, then the definition is displayed as a NOTE whenever

–RESPONSE– appears in the output.

ODS Table Names

PROC CATMOD assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 22.5. ODS Tables Produced in PROC CATMOD

ODS Table Name Description Statement Option
ANOVA Analysis of variance MODEL default
Contrasts Contrasts CONTRAST default
ContrastEstimates Analysis of Contrasts CONTRAST ESTIMATE=
ConvergenceStatus Convergence status MODEL ML
CorrB Correlation matrix of the

estimates
MODEL CORRB

CovB Covariance matrix of the
estimates

MODEL COVB

DataSummary Data summary PROC default
Estimates Analysis of estimates MODEL default, unless NOPARM
MaxLikelihood Maximum likelihood

analysis
MODEL ML and ITPRINT

OneWayFreqs One-way frequencies MODEL ONEWAY
PopProfiles Population profiles MODEL default, unless NOPROFILE
PredictedFreqs Predicted frequencies MODEL PRED=FREQ
PredictedProbs Predicted probabilities MODEL PREDICT or PRED=PROB
PredictedValues Predicted values MODEL PREDICT or PRED=
ResponseCov Response functions,

covariance matrix
MODEL COV

ResponseDesign Response functions,
design matrix

MODEL DESIGN, unless NODESIGN

ResponseFreqs Response frequencies MODEL FREQ
ResponseMatrix –RESPONSE– matrix MODEL &

LOGLIN
DESIGN, unless NORESPONSE

ResponseProbs Response probabilities MODEL PROB
ResponseProfiles Response profiles MODEL default, unless NOPROFILE
XPX X’*Inv( S)*X matrix MODEL XPX, for WLS∗
∗ WLS estimation is the default for response functions other than the default (generalized logits).
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Examples

Example 22.1. Linear Response Function, r=2 Responses

In an example from Ries and Smith (1963), the choice of detergent brand (Brand=
M or X) is related to three other categorical variables: the softness of the laundry wa-
ter (Softness= soft, medium, or hard), the temperature of the water (Temperature=
high or low), and whether the subject was a previous user of Brand M (Previous= yes
or no). The linear response function, which could also be specified as RESPONSE
MARGINALS, yields one probability, Pr(brand preference=M), as the response func-
tion to be analyzed. Two models are fit in this example: the first model is a saturated
one, containing all of the main effects and interactions, while the second is a reduced
model containing only the main effects. The following statements produceOutput
22.1.1throughOutput 22.1.4:

data detergent;
input Softness $ Brand $ Previous $ Temperature $ Count @@;
datalines;

soft X yes high 19 soft X yes low 57
soft X no high 29 soft X no low 63
soft M yes high 29 soft M yes low 49
soft M no high 27 soft M no low 53
med X yes high 23 med X yes low 47
med X no high 33 med X no low 66
med M yes high 47 med M yes low 55
med M no high 23 med M no low 50
hard X yes high 24 hard X yes low 37
hard X no high 42 hard X no low 68
hard M yes high 43 hard M yes low 52
hard M no high 30 hard M no low 42
;

title ’Detergent Preference Study’;
proc catmod data=detergent;

response 1 0;
weight Count;
model Brand=Softness|Previous|Temperature / freq prob;
title2 ’Saturated Model’;

run;
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Output 22.1.1. Detergent Preference Study: Linear Model Analysis

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Data Summary

Response Brand Response Levels 2
Weight Variable Count Populations 12
Data Set DETERGENT Total Frequency 1008
Frequency Missing 0 Observations 24

The “Data Summary” table (Output 22.1.1) indicates that you have two response
levels and twelve populations.

Output 22.1.2. Population Profiles

Detergent Preference Study
Saturated Model

Population Profiles

Sample Softness Previous Temperature Sample Size
------------------------------------------------------------

1 hard no high 72
2 hard no low 110
3 hard yes high 67
4 hard yes low 89
5 med no high 56
6 med no low 116
7 med yes high 70
8 med yes low 102
9 soft no high 56

10 soft no low 116
11 soft yes high 48
12 soft yes low 106

The “Population Profiles” table inOutput 22.1.2displays the ordering of independent
variable levels as used in the table of parameter estimates.
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Output 22.1.3. Response Profiles, Frequencies, and Probabilities

Detergent Preference Study
Saturated Model

Response Profiles

Response Brand
-----------------

1 M
2 X

Response Frequencies

Response Number
Sample 1 2
------------------------

1 30 42
2 42 68
3 43 24
4 52 37
5 23 33
6 50 66
7 47 23
8 55 47
9 27 29

10 53 63
11 29 19
12 49 57

Response Probabilities

Response Number
Sample 1 2
----------------------------

1 0.41667 0.58333
2 0.38182 0.61818
3 0.64179 0.35821
4 0.58427 0.41573
5 0.41071 0.58929
6 0.43103 0.56897
7 0.67143 0.32857
8 0.53922 0.46078
9 0.48214 0.51786

10 0.45690 0.54310
11 0.60417 0.39583
12 0.46226 0.53774

SinceBrand M is the first level in the “Response Profiles” table (Output 22.1.3),
the RESPONSE statement causes Pr(Brand=M) to be the single response function
modeled.
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Output 22.1.4. Analysis of Variance and WLS Estimates

Detergent Preference Study
Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Intercept 1 983.13 <.0001
Softness 2 0.09 0.9575
Previous 1 22.68 <.0001
Softness*Previous 2 3.85 0.1457
Temperature 1 3.67 0.0555
Softness*Temperature 2 0.23 0.8914
Previous*Temperature 1 2.26 0.1324
Softnes*Previou*Temperat 2 0.76 0.6850

Residual 0 . .

Analysis of Weighted Least Squares Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------------------
Intercept 0.5069 0.0162 983.13 <.0001
Softness hard -0.00073 0.0225 0.00 0.9740

med 0.00623 0.0226 0.08 0.7830
Previous no -0.0770 0.0162 22.68 <.0001
Softness*Previous hard no -0.0299 0.0225 1.77 0.1831

med no -0.0152 0.0226 0.45 0.5007
Temperature high 0.0310 0.0162 3.67 0.0555
Softness*Temperature hard high -0.00786 0.0225 0.12 0.7265

med high -0.00298 0.0226 0.02 0.8953
Previous*Temperature no high -0.0243 0.0162 2.26 0.1324
Softnes*Previou*Temperat hard no high 0.0187 0.0225 0.69 0.4064

med no high -0.0138 0.0226 0.37 0.5415

The “Analysis of Variance” table inOutput 22.1.4shows that all of the interactions
are nonsignificant. Therefore, a main-effects model is fit with the following state-
ments:

model Brand=Softness Previous Temperature
/ clparm noprofile design;

title2 ’Main-Effects Model’;
run;
quit;

The PROC CATMOD statement is not required due to the interactive capability of
the CATMOD procedure. TheNOPROFILEoption suppresses the redisplay of the
“Response Profiles” table. TheCLPARM option produces 95% confidence limits for
the parameter estimates.Output 22.1.5throughOutput 22.1.7are produced.
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Output 22.1.5. Main-Effects Design Matrix

Detergent Preference Study
Main-Effects Model

The CATMOD Procedure

Data Summary

Response Brand Response Levels 2
Weight Variable Count Populations 12
Data Set DETERGENT Total Frequency 1008
Frequency Missing 0 Observations 24

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5
-----------------------------------------------------------------

1 0.41667 1 1 0 1 1
2 0.38182 1 1 0 1 -1
3 0.64179 1 1 0 -1 1
4 0.58427 1 1 0 -1 -1
5 0.41071 1 0 1 1 1
6 0.43103 1 0 1 1 -1
7 0.67143 1 0 1 -1 1
8 0.53922 1 0 1 -1 -1
9 0.48214 1 -1 -1 1 1

10 0.45690 1 -1 -1 1 -1
11 0.60417 1 -1 -1 -1 1
12 0.46226 1 -1 -1 -1 -1

The design matrix inOutput 22.1.5displays the results of the factor effects modeling
used in PROC CATMOD.

Output 22.1.6. ANOVA Table for the Main-Effects Model

Detergent Preference Study
Main-Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
---------------------------------------------
Intercept 1 1004.93 <.0001
Softness 2 0.24 0.8859
Previous 1 20.96 <.0001
Temperature 1 3.95 0.0468

Residual 7 8.26 0.3100

The analysis of variance table inOutput 22.1.6shows that previous use of Brand M,
together with the temperature of the laundry water, are significant factors in preferring
Brand M laundry detergent. The table also shows that the additive model fits since
the goodness-of-fit statistic (the Residual Chi-Square) is nonsignificant.
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Output 22.1.7. WLS Estimates for the Main-Effects Model

Detergent Preference Study
Main-Effects Model

Analysis of Weighted Least Squares Estimates

Standard Chi- 95% Confidence
Parameter Estimate Error Square Pr > ChiSq Limits
-------------------------------------------------------------------------------
Intercept 0.5080 0.0160 1004.93 <.0001 0.4766 0.5394
Softness hard -0.00256 0.0218 0.01 0.9066 -0.0454 0.0402

med 0.0104 0.0218 0.23 0.6342 -0.0323 0.0530
Previous no -0.0711 0.0155 20.96 <.0001 -0.1015 -0.0407
Temperature high 0.0319 0.0161 3.95 0.0468 0.000446 0.0634

The chi-square test inOutput 22.1.7shows that theSoftness parameters are not
significantly different from zero; as expected, the Wald confidence limits for these
two estimates contain zero. So softness of the water is not a factor in choosing Brand
M.

The negative coefficient forPrevious (−0.0711) indicates that the first level of
Previous (which, from the table of population profiles, is ‘no’) is associated with
a smaller probability of preferring Brand M than the second level ofPrevious (with
coefficient constrained to be 0.0711 since the parameter estimates for a given effect
must sum to zero). In other words, previous users of Brand M are much more likely
to prefer it than those who have never used it before.

Similarly, the positive coefficient forTemperature indicates that the first level of
Temperature (which, from the “Population Profiles” table, is ‘high’) has a larger
probability of preferring Brand M than the second level ofTemperature. In other
words, those who do their laundry in hot water are more likely to prefer Brand M
than those who do their laundry in cold water.

Example 22.2. Mean Score Response Function, r=3
Responses

Four surgical operations for duodenal ulcers are compared in a clinical trial at four
hospitals. The operations performed are:Treatment=a, drainage and vagotomy;
Treatment=b, 25%resection and vagotomy;Treatment=c, 50%resection and vago-
tomy; andTreatment=d, 75%resection. The response is severity of an undesirable
complication called “dumping syndrome.” The data are from Grizzle, Starmer, and
Koch (1969, pp. 489–504).

data operate;
input Hospital Treatment $ Severity $ wt @@;
datalines;

1 a none 23 1 a slight 7 1 a moderate 2
1 b none 23 1 b slight 10 1 b moderate 5
1 c none 20 1 c slight 13 1 c moderate 5
1 d none 24 1 d slight 10 1 d moderate 6
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2 a none 18 2 a slight 6 2 a moderate 1
2 b none 18 2 b slight 6 2 b moderate 2
2 c none 13 2 c slight 13 2 c moderate 2
2 d none 9 2 d slight 15 2 d moderate 2
3 a none 8 3 a slight 6 3 a moderate 3
3 b none 12 3 b slight 4 3 b moderate 4
3 c none 11 3 c slight 6 3 c moderate 2
3 d none 7 3 d slight 7 3 d moderate 4
4 a none 12 4 a slight 9 4 a moderate 1
4 b none 15 4 b slight 3 4 b moderate 2
4 c none 14 4 c slight 8 4 c moderate 3
4 d none 13 4 d slight 6 4 d moderate 4
;

The response variable (Severity) is ordinally scaled with three levels, so assignment
of scores is appropriate (0=none, 0.5=slight, 1=moderate). For these scores, the
response function yields the mean score. The following statements produceOutput
22.2.1throughOutput 22.2.6.

title ’Dumping Syndrome Data’;
proc catmod data=operate order=data ;

weight wt;
response 0 0.5 1;
model Severity=Treatment Hospital / freq oneway design;
title2 ’Main-Effects Model’;

quit;

The ORDER=option is specified so that the levels of the response variable remain
in the correct order. A main effects model is fit. TheFREQ option displays the
frequency of each response within each sample (Output 22.2.3), and theONEWAY
option produces a table of the number of subjects within each variable level (Output
22.2.1).



908 � Chapter 22. The CATMOD Procedure

Output 22.2.1. Surgical Data: Analysis of Mean Scores

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Data Summary

Response Severity Response Levels 3
Weight Variable wt Populations 16
Data Set OPERATE Total Frequency 417
Frequency Missing 0 Observations 48

One-Way Frequencies

Variable Value Frequency
---------------------------------
Severity none 240

slight 129
moderate 48

Treatment a 96
b 104
c 110
d 107

Hospital 1 148
2 105
3 74
4 90

Output 22.2.2. Population Sizes

Dumping Syndrome Data
Main-Effects Model

Population Profiles

Sample Treatment Hospital Sample Size
----------------------------------------------

1 a 1 32
2 a 2 25
3 a 3 17
4 a 4 22
5 b 1 38
6 b 2 26
7 b 3 20
8 b 4 20
9 c 1 38

10 c 2 28
11 c 3 19
12 c 4 25
13 d 1 40
14 d 2 26
15 d 3 18
16 d 4 23
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Output 22.2.3. Response Frequencies

Dumping Syndrome Data
Main-Effects Model

Response Profiles

Response Severity
--------------------

1 none
2 slight
3 moderate

Response Frequencies

Response Number
Sample 1 2 3
---------------------------------

1 23 7 2
2 18 6 1
3 8 6 3
4 12 9 1
5 23 10 5
6 18 6 2
7 12 4 4
8 15 3 2
9 20 13 5

10 13 13 2
11 11 6 2
12 14 8 3
13 24 10 6
14 9 15 2
15 7 7 4
16 13 6 4

You can use the oneway frequencies (Output 22.2.1) and the response profiles (Output
22.2.3) to verify that the response levels are in the desired order (none, slight, mod-
erate) so that the response scores (0, 0.5, 1.0) are applied appropriately. If the
ORDER=DATA option had not been used, the levels would have been in a differ-
ent order.
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Output 22.2.4. Design Matrix

Dumping Syndrome Data
Main-Effects Model

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6 7
---------------------------------------------------------------------------

1 0.17188 1 1 0 0 1 0 0
2 0.16000 1 1 0 0 0 1 0
3 0.35294 1 1 0 0 0 0 1
4 0.25000 1 1 0 0 -1 -1 -1
5 0.26316 1 0 1 0 1 0 0
6 0.19231 1 0 1 0 0 1 0
7 0.30000 1 0 1 0 0 0 1
8 0.17500 1 0 1 0 -1 -1 -1
9 0.30263 1 0 0 1 1 0 0

10 0.30357 1 0 0 1 0 1 0
11 0.26316 1 0 0 1 0 0 1
12 0.28000 1 0 0 1 -1 -1 -1
13 0.27500 1 -1 -1 -1 1 0 0
14 0.36538 1 -1 -1 -1 0 1 0
15 0.41667 1 -1 -1 -1 0 0 1
16 0.30435 1 -1 -1 -1 -1 -1 -1

Output 22.2.5. ANOVA Table

Dumping Syndrome Data
Main-Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 248.77 <.0001
Treatment 3 8.90 0.0307
Hospital 3 2.33 0.5065

Residual 9 6.33 0.7069

The analysis of variance table (Output 22.2.5) shows that the additive model fits (since
the Residual Chi-Square is not significant), that theTreatment effect is significant,
and that theHospital effect is not significant.
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Output 22.2.6. Parameter Estimates

Dumping Syndrome Data
Main-Effects Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------
Intercept 0.2724 0.0173 248.77 <.0001
Treatment a -0.0552 0.0270 4.17 0.0411

b -0.0365 0.0289 1.59 0.2073
c 0.0248 0.0280 0.78 0.3757

Hospital 1 -0.0204 0.0264 0.60 0.4388
2 -0.0178 0.0268 0.44 0.5055
3 0.0531 0.0352 2.28 0.1312

The coefficients ofTreatment in Output 22.2.6show that the first two treatments
(with negative coefficients) have lower mean scores than the last two treatments (the
fourth coefficient, not shown, must be positive since the four coefficients must sum
to zero). In other words, the less severe treatments (the first two) cause significantly
less severe dumping syndrome complications.

Example 22.3. Logistic Regression, Standard Response
Function

In this data set, from Cox and Snell (1989), ingots are prepared with different heating
and soaking times and tested for their readiness to be rolled. The response variable
Y has value 1 for ingots that are not ready and value 0 otherwise. The explanatory
variables areHeat andSoak.

data ingots;
input Heat Soak nready ntotal @@;
Count=nready;
Y=1;
output;
Count=ntotal-nready;
Y=0;
output;
drop nready ntotal;
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

Logistic regression analysis is often used to investigate the relationship between dis-
crete response variables and continuous explanatory variables. For logistic regres-
sion, the continuousdesign-effectsare declared in a DIRECT statement. The follow-
ing statements produceOutput 22.3.1throughOutput 22.3.8.
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title ’Maximum Likelihood Logistic Regression’;
proc catmod data=ingots;

weight Count;
direct Heat Soak;
model Y=Heat Soak / freq covb corrb itprint design;

quit;

Output 22.3.1. Maximum Likelihood Logistic Regression

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Data Summary

Response Y Response Levels 2
Weight Variable Count Populations 19
Data Set INGOTS Total Frequency 387
Frequency Missing 0 Observations 25

Population Profiles

Sample Heat Soak Sample Size
-------------------------------------

1 7 1 10
2 7 1.7 17
3 7 2.2 7
4 7 2.8 12
5 7 4 9
6 14 1 31
7 14 1.7 43
8 14 2.2 33
9 14 2.8 31

10 14 4 19
11 27 1 56
12 27 1.7 44
13 27 2.2 21
14 27 2.8 22
15 27 4 16
16 51 1 13
17 51 1.7 1
18 51 2.2 1
19 51 4 1

You can verify that the populations are defined as you intended by looking at the
“Population Profiles” table inOutput 22.3.1.
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Output 22.3.2. Response Summaries

Maximum Likelihood Logistic Regression

Response Profiles

Response Y
-------------

1 0
2 1

Response Frequencies

Response Number
Sample 1 2
------------------------

1 10 0
2 17 0
3 7 0
4 12 0
5 9 0
6 31 0
7 43 0
8 31 2
9 31 0

10 19 0
11 55 1
12 40 4
13 21 0
14 21 1
15 15 1
16 10 3
17 1 0
18 1 0
19 1 0

Since the “Response Profiles” table shows the response level ordering as 0, 1, the

default response function, the logit, is defined aslog
(

pY =0

pY =1

)
.
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Output 22.3.3. Design Matrix

Maximum Likelihood Logistic Regression

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3
-----------------------------------------------

1 2.99573 1 7 1
2 3.52636 1 7 1.7
3 2.63906 1 7 2.2
4 3.17805 1 7 2.8
5 2.89037 1 7 4
6 4.12713 1 14 1
7 4.45435 1 14 1.7
8 2.74084 1 14 2.2
9 4.12713 1 14 2.8

10 3.63759 1 14 4
11 4.00733 1 27 1
12 2.30259 1 27 1.7
13 3.73767 1 27 2.2
14 3.04452 1 27 2.8
15 2.70805 1 27 4
16 1.20397 1 51 1
17 0.69315 1 51 1.7
18 0.69315 1 51 2.2
19 0.69315 1 51 4

The values of the continuous variable are inserted into the design matrix.

Output 22.3.4. Iteration History

Maximum Likelihood Logistic Regression

Maximum Likelihood Analysis

Sub -2 Log Convergence Parameter Estimates
Iteration Iteration Likelihood Criterion 1 2 3
------------------------------------------------------------------------------

0 0 536.49592 1.0000 0 0 0
1 0 152.58961 0.7156 2.1594 -0.0139 -0.003733
2 0 106.76066 0.3003 3.5334 -0.0363 -0.0120
3 0 96.692171 0.0943 4.7489 -0.0640 -0.0299
4 0 95.383825 0.0135 5.4138 -0.0790 -0.0498
5 0 95.345659 0.000400 5.5539 -0.0819 -0.0564
6 0 95.345613 4.8289E-7 5.5592 -0.0820 -0.0568
7 0 95.345613 7.731E-13 5.5592 -0.0820 -0.0568

Maximum likelihood computations converged.

Seven Newton-Raphson iterations are required to find the maximum likelihood esti-
mates.
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Output 22.3.5. Analysis of Variance Table

Maximum Likelihood Logistic Regression

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 24.65 <.0001
Heat 1 11.95 0.0005
Soak 1 0.03 0.8639

Likelihood Ratio 16 13.75 0.6171

The analysis of variance table (Output 22.3.5) shows that the model fits since the
likelihood ratio goodness-of-fit test is nonsignificant. It also shows that the length of
heating time is a significant factor with respect to readiness but that length of soaking
time is not.

Output 22.3.6. Maximum Likelihood Estimates

Maximum Likelihood Logistic Regression

Analysis of Maximum Likelihood Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
----------------------------------------------------------
Intercept 5.5592 1.1197 24.65 <.0001
Heat -0.0820 0.0237 11.95 0.0005
Soak -0.0568 0.3312 0.03 0.8639

Output 22.3.7. Covariance Matrix

Maximum Likelihood Logistic Regression

Covariance Matrix of the Maximum Likelihood Estimates

Row Parameter Col1 Col2 Col3
------------------------------------------------------------------

1 Intercept 1.2537133 -0.0215664 -0.2817648
2 Heat -0.0215664 0.0005633 0.0026243
3 Soak -0.2817648 0.0026243 0.1097020
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Output 22.3.8. Correlation Matrix

Maximum Likelihood Logistic Regression

Correlation Matrix of the Maximum Likelihood Estimates

Row Parameter Col1 Col2 Col3
------------------------------------------------------------------

1 Intercept 1.00000 -0.81152 -0.75977
2 Heat -0.81152 1.00000 0.33383
3 Soak -0.75977 0.33383 1.00000

From the table of maximum likelihood estimates (Output 22.3.6), the fitted model is

E(logit(p)) = 5.559− 0.082(Heat)− 0.057(Soak)

For example, for Sample 1 withHeat = 7 andSoak = 1, the estimate is

E(logit(p)) = 5.559− 0.082(7)− 0.057(1) = 4.9284

Predicted values of the logits, as well as the probabilities of readiness, could be ob-
tained by specifyingPRED=PROBin the MODEL statement. For the example of
Sample 1 withHeat = 7 andSoak = 1, PRED=PROB would give an estimate of the
probability of readiness equal to 0.9928 since

4.9284 = log
(

p̂

1− p̂

)
implies that

p̂ =
e4.9284

1 + e4.9284
= 0.9928

As another consideration, since soaking time is nonsignificant, you could fit another
model that deleted the variableSoak.

Example 22.4. Log-Linear Model, Three Dependent Variables

This analysis reproduces the predicted cell frequencies for Bartlett’s data using a log-
linear model of no three-variable interaction (Bishop, Fienberg, and Holland 1975,
p. 89). Cuttings of two different lengths (Length=short or long) are planted at one
of two time points (Time=now or spring), and their survival status (Status=dead or
alive) is recorded.

As in the text, the variable levels are simply labeled 1 and 2. The following statements
produceOutput 22.4.1throughOutput 22.4.5:
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data bartlett;
input Length Time Status wt @@;
datalines;

1 1 1 156 1 1 2 84 1 2 1 84 1 2 2 156
2 1 1 107 2 1 2 133 2 2 1 31 2 2 2 209
;

title ’Bartlett’’s Data’;
proc catmod data=bartlett;

weight wt;
model Length*Time*Status=_response_

/ noparm pred=freq;
loglin Length|Time|Status @ 2;
title2 ’Model with No 3-Variable Interaction’;

quit;

Output 22.4.1. Analysis of Bartlett’s Data: Log-Linear Model

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Data Summary

Response Length*Time*Status Response Levels 8
Weight Variable wt Populations 1
Data Set BARTLETT Total Frequency 960
Frequency Missing 0 Observations 8

Population Profiles

Sample Sample Size
---------------------

1 960

Output 22.4.2. Response Profiles

Bartlett’s Data
Model with No 3-Variable Interaction

Response Profiles

Response Length Time Status
------------------------------------

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2
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Output 22.4.3. Analysis of Variance Table

Bartlett’s Data
Model with No 3-Variable Interaction

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Length 1 2.64 0.1041
Time 1 5.25 0.0220
Length*Time 1 5.25 0.0220
Status 1 48.94 <.0001
Length*Status 1 48.94 <.0001
Time*Status 1 95.01 <.0001

Likelihood Ratio 1 2.29 0.1299

The analysis of variance table shows that the model fits since the likelihood ratio test
for the three-variable interaction is nonsignificant. All of the two-variable interac-
tions, however, are significant; this shows that there is mutual dependence among all
three variables.

Output 22.4.4. Response Function Predicted Values

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Number Function Error Function Error Residual
--------------------------------------------------------------------

1 -0.29248 0.105806 -0.23565 0.098486 -0.05683
2 -0.91152 0.129188 -0.94942 0.129948 0.037901
3 -0.91152 0.129188 -0.94942 0.129948 0.037901
4 -0.29248 0.105806 -0.23565 0.098486 -0.05683
5 -0.66951 0.118872 -0.69362 0.120172 0.024113
6 -0.45199 0.110921 -0.3897 0.102267 -0.06229
7 -1.90835 0.192465 -1.73146 0.142969 -0.17688

The predicted values table (Output 22.4.4) displays observed and predicted values
for the generalized logits. The predicted frequencies table (Output 22.4.5) displays
observed and predicted cell frequencies, their standard errors, and residuals.
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Output 22.4.5. Predicted Frequencies

Bartlett’s Data
Model with No 3-Variable Interaction

Maximum Likelihood Predicted Values for Frequencies

-------Observed------ ------Predicted------
Standard Standard

Length Time Status Frequency Error Frequency Error Residual
--------------------------------------------------------------------------------------
1 1 1 156 11.43022 161.0961 11.07379 -5.09614
1 1 2 84 8.754999 78.90386 7.808613 5.096139
1 2 1 84 8.754999 78.90386 7.808613 5.096139
1 2 2 156 11.43022 161.0961 11.07379 -5.09614
2 1 1 107 9.750588 101.9039 8.924304 5.096139
2 1 2 133 10.70392 138.0961 10.33434 -5.09614
2 2 1 31 5.47713 36.09614 4.826315 -5.09614
2 2 2 209 12.78667 203.9039 12.21285 5.09614

Example 22.5. Log-Linear Model, Structural and Sampling
Zeros

This example illustrates a log-linear model of independence, using data that contain
structural zero frequencies as well as sampling (random) zero frequencies.

In a population of six squirrel monkeys, the joint distribution of genital display with
respect to active or passive role was observed. The data are from Fienberg (1980,
Table 8-2). Since a monkey cannot have both the active and passive roles in the same
interaction, the diagonal cells of the table are structural zeros. See Agresti (2002) for
more information on the quasi-independence model.

The DATA step replaces the structural zeros with missing values, and the
MISSING=STRUCTURAL option is specified in the MODEL statement to remove
these zeros from the analysis. The ZERO=SAMPLING option treats the off-diagonal
zeros as sampling zeros. Also, the row for Monkey ‘t’ is deleted since it contains
all zeros; therefore, the cell frequencies predicted by a model of independence are
also zero. In addition, the CONTRAST statement compares the behavior of the two
monkeys labeled ‘u’ and ‘v’. See the“Structural and Sampling Zeros with Raw
Data” section on page 924 for information on how to perform this analysis when
you have raw data. The following statements produceOutput 22.5.1throughOutput
22.5.8:

data Display;
input Active $ Passive $ wt @@;
if Active ne ’t’;
if Active eq Passive then wt=.;
datalines;

r r 0 r s 1 r t 5 r u 8 r v 9 r w 0
s r 29 s s 0 s t 14 s u 46 s v 4 s w 0
t r 0 t s 0 t t 0 t u 0 t v 0 t w 0
u r 2 u s 3 u t 1 u u 0 u v 38 u w 2
v r 0 v s 0 v t 0 v u 0 v v 0 v w 1
w r 9 w s 25 w t 4 w u 6 w v 13 w w 0
;
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title ’Behavior of Squirrel Monkeys’;
proc catmod data=Display;

weight wt;
model Active*Passive=_response_ /

missing=structural zero=sampling
freq pred=freq noparm oneway;

loglin Active Passive;
contrast ’Passive, U vs. V’ Passive 0 0 0 1 -1;
contrast ’Active, U vs. V’ Active 0 0 1 -1;
title2 ’Test Quasi-Independence for the Incomplete Table’;

quit;

Output 22.5.1. Log-Linear Model Analysis with Zero Frequencies

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Data Summary

Response Active*Passive Response Levels 25
Weight Variable wt Populations 1
Data Set DISPLAY Total Frequency 220
Frequency Missing 0 Observations 25

The results of theONEWAY option are shown inOutput 22.5.2. Monkey ‘t’ does not
show up as a value for theActive variable since that row was removed.

Output 22.5.2. Output from the ONEWAY option

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

One-Way Frequencies

Variable Value Frequency
-----------------------------
Active r 23

s 93
u 46
v 1
w 57

Passive r 40
s 29
t 24
u 60
v 64
w 3
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Output 22.5.3. Profiles

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

Population Profiles

Sample Sample Size
---------------------

1 220

Response Profiles

Response Active Passive
-----------------------------

1 r s
2 r t
3 r u
4 r v
5 r w
6 s r
7 s t
8 s u
9 s v

10 s w
11 u r
12 u s
13 u t
14 u v
15 u w
16 v r
17 v s
18 v t
19 v u
20 v w
21 w r
22 w s
23 w t
24 w u
25 w v

Sampling zeros are displayed as 0 inOutput 22.5.4. The Response Number corre-
sponds to the value displayed in the Response Profiles inOutput 22.5.3.
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Output 22.5.4. Frequency of Response by Response Number

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 1 5 8 9 0 29 14 46

Response Frequencies

Response Number
Sample 9 10 11 12 13 14 15 16
------------------------------------------------------------------------------

1 4 0 2 3 1 38 2 0

Response Frequencies

Response Number
Sample 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------

1 0 0 0 1 9 25 4 6

Response Frequencies

Response
Number

Sample 25
---------------

1 13

Output 22.5.5. Analysis of Variance Table

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Active 4 56.58 <.0001
Passive 5 47.94 <.0001

Likelihood Ratio 15 135.17 <.0001

The analysis of variance table (Output 22.5.5) shows that the model of independence
does not fit since the likelihood ratio test for the interaction is significant. In other
words, active and passive behaviors of the squirrel monkeys are dependent behavior
roles.
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Output 22.5.6. Contrasts between Monkeys ‘u’ and ‘v’

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

Contrasts of Maximum Likelihood Estimates

Contrast DF Chi-Square Pr > ChiSq
-------------------------------------------------
Passive, U vs. V 1 1.31 0.2524
Active, U vs. V 1 14.87 0.0001

If the model fit these data, then the contrasts inOutput 22.5.6show that monkeys
‘u’ and ‘v’ appear to have similar passive behavior patterns but very different active
behavior patterns.

Output 22.5.7. Response Function Predicted Values

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Number Function Error Function Error Residual
--------------------------------------------------------------------

1 -2.56495 1.037749 -0.97355 0.339019 -1.5914
2 -0.95551 0.526235 -1.72504 0.345438 0.769529
3 -0.48551 0.449359 -0.52751 0.309254 0.042007
4 -0.36772 0.433629 -0.73927 0.249006 0.371543
5 . . -3.56052 0.634104 .
6 0.802346 0.333775 0.320589 0.26629 0.481758
7 0.074108 0.385164 -0.29934 0.295634 0.37345
8 1.263692 0.314105 0.898184 0.250857 0.365508
9 -1.17865 0.571772 0.686431 0.173396 -1.86509

10 . . -2.13482 0.608071 .
11 -1.8718 0.759555 -0.2415 0.287218 -1.63031
12 -1.46634 0.640513 -0.10994 0.303568 -1.3564
13 -2.56495 1.037749 -0.86143 0.314794 -1.70352
14 1.072637 0.321308 0.124346 0.204345 0.94829
15 -1.8718 0.759555 -2.6969 0.617433 0.8251
16 . . -4.14787 1.024508 .
17 . . -4.01632 1.030062 .
18 . . -4.76781 1.032457 .
19 . . -3.57028 1.020794 .
20 -2.56495 1.037749 -6.60328 1.161289 4.038332
21 -0.36772 0.433629 -0.36584 0.202959 -0.00188
22 0.653926 0.34194 -0.23429 0.232794 0.888212
23 -1.17865 0.571772 -0.98577 0.239408 -0.19288
24 -0.77319 0.493548 0.211754 0.185007 -0.98494
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Output 22.5.8. Predicted Frequencies

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

Maximum Likelihood Predicted Values for Frequencies

-------Observed------ ------Predicted------
Standard Standard

Active Passive Frequency Error Frequency Error Residual
-------------------------------------------------------------------------------
r s 1 0.997725 5.259508 1.36156 -4.25951
r t 5 2.210512 2.480726 0.691066 2.519274
r u 8 2.776525 8.215948 1.855146 -0.21595
r v 9 2.937996 6.648049 1.50932 2.351951
r w 0 0 0.395769 0.240268 -0.39577
s r 29 5.017696 19.18599 3.147915 9.814007
s t 14 3.620648 10.32172 2.169599 3.678284
s u 46 6.031734 34.18463 4.428706 11.81537
s v 4 1.981735 27.66096 3.722788 -23.661
s w 0 0 1.6467 0.952712 -1.6467
u r 2 1.407771 10.9364 2.12322 -8.9364
u s 3 1.720201 12.47407 2.554336 -9.47407
u t 1 0.997725 5.883583 1.380655 -4.88358
u v 38 5.606814 15.7673 2.684692 22.2327
u w 2 1.407771 0.938652 0.551645 1.061348
v r 0 0 0.219966 0.221779 -0.21997
v s 0 0 0.250893 0.253706 -0.25089
v t 0 0 0.118338 0.120314 -0.11834
v u 0 0 0.391924 0.393255 -0.39192
v w 1 0.997725 0.018879 0.021728 0.981121
w r 9 2.937996 9.657645 1.808656 -0.65765
w s 25 4.707344 11.01553 2.275019 13.98447
w t 4 1.981735 5.195638 1.184452 -1.19564
w u 6 2.415857 17.2075 2.772098 -11.2075
w v 13 3.497402 13.92369 2.24158 -0.92369

Output 22.5.7displays the predicted response functions andOutput 22.5.8displays
predicted cell frequencies (from thePRED=FREQoption), but since the model does
not fit, these should be ignored. Note that, since the response function is the gen-
eralized logit with the twenty-fifth response as the baseline, the observed response
functions for the sampling zeros are missing.

Structural and Sampling Zeros with Raw Data

The preceding PROC CATMOD step uses cell count data as input. Prior to invoking
the CATMOD procedure, structural and sampling zeros are easily identified and ma-
nipulated in a single DATA step. For the situation where structural or sampling zeros
(or both) may exist and the input data set is raw data, use the following steps:

1. Run PROC FREQ on the raw data. In the TABLES statement, list all dependent
and independent variables separated by asterisks and use the SPARSE option
and the OUT= option. This creates an output data set that contains all possible
zero frequencies. Since the tabled output can be huge, you should also specify
the NOPRINT option on the TABLES statement.

2. Use a DATA step to change the zero frequencies associated with either sam-
pling zeros or structural zeros to missing.

3. Use the resulting data set as input to PROC CATMOD, specify the statement
WEIGHT COUNT to use adjusted frequencies, and specify the ZERO= and
MISSING= options to define your sampling and structural zeros.
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For example, suppose the data setRawDisplay contains the raw data for the squirrel
monkey data. The following statements show how to obtain the same analysis as
shown previously:

proc freq data=RawDisplay;
tables Active*Passive / sparse out=Combos noprint;

run;

data Combos2;
set Combos;
if Active ne ’t’;
if Active eq Passive then count=.;

run;

proc catmod data=Combos2;
weight count;
model Active*Passive=_response_ /

zero=sampling missing=structural
freq pred=freq noparm noresponse;

loglin Active Passive;
quit;

The first IF statement in the DATA step is needed only for this particular example;
since observations for Monkey ‘t’ were deleted from theDisplay data set, they also
need to be deleted fromCombos2.

Example 22.6. Repeated Measures, 2 Response Levels,
3 Populations

In this multi-population repeated measures example, from Guthrie (1981), subjects
from three groups have their responses (0 or 1) recorded in each of four trials. The
analysis of the marginal probabilities is directed at assessing the main effects of the
repeated measurement factor (Trial) and the independent variable (Group), as well as
their interaction. Although the contingency table is incomplete (only thirteen of the
sixteen possible responses are observed), this poses no problem in the computation of
the marginal probabilities. The following statements produceOutput 22.6.1through
Output 22.6.5:

data group;
input a b c d Group wt @@;
datalines;

1 1 1 1 2 2 0 0 0 0 2 2 0 0 1 0 1 2 0 0 1 0 2 2
0 0 0 1 1 4 0 0 0 1 2 1 0 0 0 1 3 3 1 0 0 1 2 1
0 0 1 1 1 1 0 0 1 1 2 2 0 0 1 1 3 5 0 1 0 0 1 4
0 1 0 0 2 1 0 1 0 1 2 1 0 1 0 1 3 2 0 1 1 0 3 1
1 0 0 0 1 3 1 0 0 0 2 1 0 1 1 1 2 1 0 1 1 1 3 2
1 0 1 0 1 1 1 0 1 1 2 1 1 0 1 1 3 2
;
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title ’Multi-Population Repeated Measures’;
proc catmod data=group;

weight wt;
response marginals;
model a*b*c*d=Group _response_ Group*_response_

/ freq;
repeated Trial 4;
title2 ’Saturated Model’;

run;

Output 22.6.1. Analysis of Multiple-Population Repeated Measures

Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Data Summary

Response a*b*c*d Response Levels 13
Weight Variable wt Populations 3
Data Set GROUP Total Frequency 45
Frequency Missing 0 Observations 23

Population Profiles

Sample Group Sample Size
------------------------------

1 1 15
2 2 15
3 3 15

Output 22.6.2. Response Profiles

Multi-Population Repeated Measures
Saturated Model

Response Profiles

Response a b c d
----------------------------

1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0

10 1 0 0 1
11 1 0 1 0
12 1 0 1 1
13 1 1 1 1
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Output 22.6.3. Response Frequencies

Multi-Population Repeated Measures
Saturated Model

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 0 4 2 1 4 0 0 0
2 2 1 2 2 1 1 0 1
3 0 3 0 5 0 2 1 2

Response Frequencies

Response Number
Sample 9 10 11 12 13
---------------------------------------------------

1 3 0 1 0 0
2 1 1 0 1 2
3 0 0 0 2 0

Output 22.6.4. Analysis of Variance Table

Multi-Population Repeated Measures
Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 354.88 <.0001
Group 2 24.79 <.0001
Trial 3 21.45 <.0001
Group*Trial 6 18.71 0.0047

Residual 0 . .
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Output 22.6.5. Parameter Estimates

Multi-Population Repeated Measures
Saturated Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------------
Intercept 1 0.5833 0.0310 354.88 <.0001
Group 2 0.1333 0.0335 15.88 <.0001

3 -0.0333 0.0551 0.37 0.5450
Trial 4 0.1722 0.0557 9.57 0.0020

5 0.1056 0.0647 2.66 0.1028
6 -0.0722 0.0577 1.57 0.2107

Group*Trial 7 -0.1556 0.0852 3.33 0.0679
8 -0.0556 0.0800 0.48 0.4877
9 -0.0889 0.0953 0.87 0.3511

10 0.0111 0.0866 0.02 0.8979
11 0.0889 0.0822 1.17 0.2793
12 -0.0111 0.0824 0.02 0.8927

The analysis of variance table inOutput 22.6.4shows that there is a significant inter-
action between the independent variableGroup and the repeated measurement factor
Trial. Thus, an intermediate model (not shown) is fit in which the effectsTrial and
Group* Trial are replaced byTrial(Group=1),Trial(Group=2), andTrial(Group=3).
Of these three effects, only the last is significant, so it is retained in the final model.
The following statements produceOutput 22.6.6andOutput 22.6.7:

model a*b*c*d=Group _response_(Group=3)
/ noprofile noparm design;

title2 ’Trial Nested within Group 3’;
quit;
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Output 22.6.6. Final Model: Design Matrix

Multi-Population Repeated Measures
Trial Nested within Group 3

The CATMOD Procedure

Data Summary

Response a*b*c*d Response Levels 13
Weight Variable wt Populations 3
Data Set GROUP Total Frequency 45
Frequency Missing 0 Observations 23

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 0.73333 1 1 0 0 0 0
2 0.73333 1 1 0 0 0 0
3 0.73333 1 1 0 0 0 0
4 0.66667 1 1 0 0 0 0

2 1 0.66667 1 0 1 0 0 0
2 0.66667 1 0 1 0 0 0
3 0.46667 1 0 1 0 0 0
4 0.40000 1 0 1 0 0 0

3 1 0.86667 1 -1 -1 1 0 0
2 0.66667 1 -1 -1 0 1 0
3 0.33333 1 -1 -1 0 0 1
4 0.06667 1 -1 -1 -1 -1 -1

Output 22.6.6displays the design matrix resulting from retaining the nested effect.

Output 22.6.7. ANOVA Table

Multi-Population Repeated Measures
Trial Nested within Group 3

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-----------------------------------------------------
Intercept 1 386.94 <.0001
Group 2 25.42 <.0001
Trial(Group=3) 3 75.07 <.0001

Residual 6 5.09 0.5319

The residual goodness-of-fit statistic tests the joint effect ofTrial(Group=1) and
Trial(Group=2). The analysis of variance table inOutput 22.6.7shows that the fi-
nal model fits, that there is a significantGroup effect, and that there is a significant
Trial effect inGroup 3.
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Example 22.7. Repeated Measures, 4 Response Levels,
1 Population

This example illustrates a repeated measurement analysis in which there are more
than two levels of response. In this study, from Grizzle, Starmer, and Koch (1969, p.
493), 7,477 women aged 30–39 are tested for vision in both right and left eyes. Since
there are four response levels for each dependent variable, the RESPONSE statement
computes three marginal probabilities for each dependent variable, resulting in six
response functions for analysis. Since the model contains a repeated measurement
factor (Side) with two levels (Right, Left), PROC CATMOD groups the functions
into sets of three (=6/2). Therefore, theSide effect has three degrees of freedom (one
for each marginal probability), and it is the appropriate test of marginal homogeneity.
The following statements produceOutput 22.7.1throughOutput 22.7.6:

title ’Vision Symmetry’;
data vision;

input Right Left count @@;
datalines;

1 1 1520 1 2 266 1 3 124 1 4 66
2 1 234 2 2 1512 2 3 432 2 4 78
3 1 117 3 2 362 3 3 1772 3 4 205
4 1 36 4 2 82 4 3 179 4 4 492
;

proc catmod data=vision;
weight count;
response marginals;
model Right*Left=_response_ / freq design;
repeated Side 2;
title2 ’Test of Marginal Homogeneity’;

quit;

Output 22.7.1. Vision Study: Analysis of Marginal Homogeneity

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Data Summary

Response Right*Left Response Levels 16
Weight Variable count Populations 1
Data Set VISION Total Frequency 7477
Frequency Missing 0 Observations 16

Population Profiles

Sample Sample Size
---------------------

1 7477
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Output 22.7.2. Response Profiles

Test of Marginal Homogeneity

Response Profiles

Response Right Left
-------------------------

1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4
9 3 1

10 3 2
11 3 3
12 3 4
13 4 1
14 4 2
15 4 3
16 4 4

Output 22.7.3. Response Frequencies

Test of Marginal Homogeneity

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 1520 266 124 66 234 1512 432 78

Response Frequencies

Response Number
Sample 9 10 11 12 13 14 15 16
------------------------------------------------------------------------------

1 117 362 1772 205 36 82 179 492
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Output 22.7.4. Design Matrix

Test of Marginal Homogeneity

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 0.26428 1 0 0 1 0 0
2 0.30173 0 1 0 0 1 0
3 0.32847 0 0 1 0 0 1
4 0.25505 1 0 0 -1 0 0
5 0.29718 0 1 0 0 -1 0
6 0.33529 0 0 1 0 0 -1

Output 22.7.5. ANOVA Table

Test of Marginal Homogeneity

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 3 78744.17 <.0001
Side 3 11.98 0.0075

Residual 0 . .

Output 22.7.6. Parameter Estimates

Test of Marginal Homogeneity

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.2597 0.00468 3073.03 <.0001

2 0.2995 0.00464 4160.17 <.0001
3 0.3319 0.00483 4725.25 <.0001

Side 4 0.00461 0.00194 5.65 0.0174
5 0.00227 0.00255 0.80 0.3726
6 -0.00341 0.00252 1.83 0.1757

The analysis of variance table inOutput 22.7.5shows that theSide effect is sig-
nificant, so there is not marginal homogeneity between left-eye vision and right-eye
vision. In other words, the distribution of the quality of right-eye vision differs signif-
icantly from the quality of left-eye vision in the same subjects. The test of theSide
effect is equivalent to Bhapkar’s test (Agresti 1990).
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Example 22.8. Repeated Measures, Logistic Analysis of
Growth Curve

The data, from a longitudinal study reported in Koch et al. (1977), are from patients
in four populations (2 diagnostic groups× 2 treatments) who are measured at three
times to assess their response (n=normal or a=abnormal) to treatment.

title ’Growth Curve Analysis’;
data growth2;

input Diagnosis $ Treatment $ week1 $ week2 $ week4 $ count @@;
datalines;

mild std n n n 16 severe std n n n 2
mild std n n a 13 severe std n n a 2
mild std n a n 9 severe std n a n 8
mild std n a a 3 severe std n a a 9
mild std a n n 14 severe std a n n 9
mild std a n a 4 severe std a n a 15
mild std a a n 15 severe std a a n 27
mild std a a a 6 severe std a a a 28
mild new n n n 31 severe new n n n 7
mild new n n a 0 severe new n n a 2
mild new n a n 6 severe new n a n 5
mild new n a a 0 severe new n a a 2
mild new a n n 22 severe new a n n 31
mild new a n a 2 severe new a n a 5
mild new a a n 9 severe new a a n 32
mild new a a a 0 severe new a a a 6
;

The analysis is directed at assessing the effect of the repeated measurement fac-
tor, Time, as well as the independent variables,Diagnosis (mild or severe) and
Treatment (std or new). The RESPONSE statement is used to compute the logits of
the marginal probabilities. The times used in the design matrix (0, 1, 2) correspond to
the logarithms (base 2) of the actual times (1, 2, 4). The following statements produce
Output 22.8.1throughOutput 22.8.7:

proc catmod data=growth2 order=data;
title2 ’Reduced Logistic Model’;
weight count;
population Diagnosis Treatment;
response logit;
model week1*week2*week4=(1 0 0 0, /* mild, std */

1 0 1 0,
1 0 2 0,

1 0 0 0, /* mild, new */
1 0 0 1,
1 0 0 2,

0 1 0 0, /* severe, std */
0 1 1 0,
0 1 2 0,
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0 1 0 0, /* severe, new */
0 1 0 1,
0 1 0 2)

(1=’Mild diagnosis, week 1’,
2=’Severe diagnosis, week 1’,
3=’Time effect for std trt’,
4=’Time effect for new trt’)
/ freq design;

contrast ’Diagnosis effect, week 1’ all_parms 1 -1 0 0;
contrast ’Equal time effects’ all_parms 0 0 1 -1;

quit;

Output 22.8.1. Logistic Analysis of Growth Curve

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Data Summary

Response week1*week2*week4 Response Levels 8
Weight Variable count Populations 4
Data Set GROWTH2 Total Frequency 340
Frequency Missing 0 Observations 29

Output 22.8.2. Population and Response Profiles

Growth Curve Analysis
Reduced Logistic Model

Population Profiles

Sample Diagnosis Treatment Sample Size
-----------------------------------------------

1 mild std 80
2 mild new 70
3 severe std 100
4 severe new 90

Response Profiles

Response week1 week2 week4
-----------------------------------

1 n n n
2 n n a
3 n a n
4 n a a
5 a n n
6 a n a
7 a a n
8 a a a
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The samples and the response numbers are defined inOutput 22.8.2, and Output
22.8.3displays the frequency distribution of the response numbers within the sam-
ples. Output 22.8.4displays the design matrix specified in the MODEL statement,
and the observed logits of the marginal probabilities are displayed in the Response
Function column.

Output 22.8.3. Response Frequencies

Growth Curve Analysis
Reduced Logistic Model

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 16 13 9 3 14 4 15 6
2 31 0 6 0 22 2 9 0
3 2 2 8 9 9 15 27 28
4 7 2 5 2 31 5 32 6

Output 22.8.4. Design Matrix

Growth Curve Analysis
Reduced Logistic Model

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 0.05001 1 0 0 0
2 0.35364 1 0 1 0
3 0.73089 1 0 2 0

2 1 0.11441 1 0 0 0
2 1.29928 1 0 0 1
3 3.52636 1 0 0 2

3 1 -1.32493 0 1 0 0
2 -0.94446 0 1 1 0
3 -0.16034 0 1 2 0

4 1 -1.53148 0 1 0 0
2 0.00000 0 1 0 1
3 1.60944 0 1 0 2
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Output 22.8.5. Analysis of Variance

Growth Curve Analysis
Reduced Logistic Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Mild diagnosis, week 1 1 0.28 0.5955
Severe diagnosis, week 1 1 100.48 <.0001
Time effect for std trt 1 26.35 <.0001
Time effect for new trt 1 125.09 <.0001

Residual 8 4.20 0.8387

The analysis of variance table (Output 22.8.5) shows that the data can be adequately
modeled by two parameters that represent diagnosis effects at week 1 and two log-
linear time effects (one for each treatment). Both of the time effects are significant.

Output 22.8.6. Parameter Estimates

Growth Curve Analysis
Reduced Logistic Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 -0.0716 0.1348 0.28 0.5955

2 -1.3529 0.1350 100.48 <.0001
3 0.4944 0.0963 26.35 <.0001
4 1.4552 0.1301 125.09 <.0001

Output 22.8.7. Contrasts

Growth Curve Analysis
Reduced Logistic Model

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
---------------------------------------------------------
Diagnosis effect, week 1 1 77.02 <.0001
Equal time effects 1 59.12 <.0001

The analysis of contrasts (Output 22.8.7) shows that the diagnosis effect at week 1
is highly significant. InOutput 22.8.6, since the estimate of the logit for the severe
diagnosis effect (parameter 2) is more negative than it is for the mild diagnosis effect
(parameter 1), there is a smaller predicted probability of the first response (normal)
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for the severe diagnosis group. In other words, those subjects with a severe diagnosis
have a significantly higher probability of abnormal response at week 1 than those
subjects with a mild diagnosis.

The analysis of contrasts also shows that the time effect for the standard treatment
is significantly different than the one for the new treatment. The table of parameter
estimates (Output 22.8.6) shows that the time effect for the new treatment (parameter
4) is stronger than it is for the standard treatment (parameter 3).

Example 22.9. Repeated Measures, Two Repeated
Measurement Factors

This example, from MacMillan et al. (1981), illustrates a repeated measurement
analysis in which there are two repeated measurement factors. Two diagnostic pro-
cedures (standard and test) are performed on each subject, and the results of both are
evaluated at each of two times as being positive or negative.

title ’Diagnostic Procedure Comparison’;
data a;

input std1 $ test1 $ std2 $ test2 $ wt @@;
datalines;

neg neg neg neg 509 neg neg neg pos 4 neg neg pos neg 17
neg neg pos pos 3 neg pos neg neg 13 neg pos neg pos 8
neg pos pos pos 8 pos neg neg neg 14 pos neg neg pos 1
pos neg pos neg 17 pos neg pos pos 9 pos pos neg neg 7
pos pos neg pos 4 pos pos pos neg 9 pos pos pos pos 170
;

For the initial model, the response functions are marginal probabilities, and the re-
peated measurement factors areTime andTreatment. The model is a saturated one,
containing effects forTime, Treatment, andTime*Treatment. The following state-
ments produceOutput 22.9.1throughOutput 22.9.5:

proc catmod data=a;
title2 ’Marginal Symmetry, Saturated Model’;
weight wt;
response marginals;
model std1*test1*std2*test2=_response_ / freq design noparm;
repeated Time 2, Treatment 2 / _response_=Time Treatment

Time*Treatment;
run;
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Output 22.9.1. Diagnosis Data: Two Repeated Measurement Factors

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Data Summary

Response std1*test1*std2*test2 Response Levels 15
Weight Variable wt Populations 1
Data Set A Total Frequency 793
Frequency Missing 0 Observations 15

Population Profiles

Sample Sample Size
---------------------

1 793

Output 22.9.2. Response Profiles

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

Response Profiles

Response std1 test1 std2 test2
------------------------------------------

1 neg neg neg neg
2 neg neg neg pos
3 neg neg pos neg
4 neg neg pos pos
5 neg pos neg neg
6 neg pos neg pos
7 neg pos pos pos
8 pos neg neg neg
9 pos neg neg pos

10 pos neg pos neg
11 pos neg pos pos
12 pos pos neg neg
13 pos pos neg pos
14 pos pos pos neg
15 pos pos pos pos
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Output 22.9.3. Response Frequencies

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 509 4 17 3 13 8 8 14

Response Frequencies

Response Number
Sample 9 10 11 12 13 14 15
---------------------------------------------------------------------

1 1 17 9 7 4 9 170

Output 22.9.4. Design Matrix

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 0.70870 1 1 1 1
2 0.72383 1 1 -1 -1
3 0.70618 1 -1 1 -1
4 0.73897 1 -1 -1 1

Output 22.9.5. ANOVA Table

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------
Intercept 1 2385.34 <.0001
Time 1 0.85 0.3570
Treatment 1 8.20 0.0042
Time*Treatment 1 2.40 0.1215

Residual 0 . .

The analysis of variance table inOutput 22.9.5shows that there is no significant effect
of Time, either by itself or in its interaction withTreatment. Thus, the second model
includes only theTreatment effect. Again, the response functions are marginal prob-
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abilities, and the repeated measurement factors areTime andTreatment. A main ef-
fect model with respect toTreatment is fit. The following statements produceOutput
22.9.6throughOutput 22.9.10:

title2 ’Marginal Symmetry, Reduced Model’;
model std1*test1*std2*test2=_response_ / corrb design noprofile;
repeated Time 2, Treatment 2 / _response_=Treatment;

run;

Output 22.9.6. Diagnosis Data: Reduced Model

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Data Summary

Response std1*test1*std2*test2 Response Levels 15
Weight Variable wt Populations 1
Data Set A Total Frequency 793
Frequency Missing 0 Observations 15

Output 22.9.7. Design Matrix

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2
--------------------------------------------------

1 1 0.70870 1 1
2 0.72383 1 -1
3 0.70618 1 1
4 0.73897 1 -1

Output 22.9.8. ANOVA Table

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 2386.97 <.0001
Treatment 1 9.55 0.0020

Residual 2 3.51 0.1731



Example 22.9. Repeated Measures, Two Repeated Measurement Factors � 941

Output 22.9.9. Parameter Estimates

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.7196 0.0147 2386.97 <.0001
Treatment 2 -0.0128 0.00416 9.55 0.0020

Output 22.9.10. Correlation Matrix

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

Correlation Matrix of the Parameter Estimates

Row Col1 Col2
-----------------------------------

1 1.00000 0.04194
2 0.04194 1.00000

The analysis of variance table for the reduced model (Output 22.9.8) shows that the
model fits (since the Residual is nonsignificant) and that the treatment effect is sig-
nificant. The negative parameter estimate forTreatment in Output 22.9.9shows that
the first level of treatment (std) has a smaller probability of the first response level
(neg) than the second level of treatment (test). In other words, the standard diagnos-
tic procedure gives a significantly higher probability of a positive response than the
test diagnostic procedure.

The next example illustrates a RESPONSE statement that, at each time, computes
the sensitivity and specificity of the test diagnostic procedure with respect to the
standard procedure. Since these are measures of the relative accuracy of the two di-
agnostic procedures, the repeated measurement factors in this case are labeledTime
andAccuracy. Only fifteen of the sixteen possible responses are observed, so addi-
tional care must be taken in formulating the RESPONSE statement for computation
of sensitivity and specificity.
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The following statements produceOutput 22.9.11throughOutput 22.9.15:

title2 ’Sensitivity and Specificity Analysis, ’
’Main-Effects Model’;

model std1*test1*std2*test2=_response_ / covb design noprofile;
repeated Time 2, Accuracy 2 / _response_=Time Accuracy;
response exp 1 -1 0 0 0 0 0 0,

0 0 1 -1 0 0 0 0,
0 0 0 0 1 -1 0 0,
0 0 0 0 0 0 1 -1

log 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1,
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1,
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0,
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0,
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1,
0 0 1 1 0 0 1 0 0 1 1 0 0 1 1,
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0,
1 1 0 0 1 1 0 1 1 0 0 1 1 0 0;

quit;

Output 22.9.11. Diagnosis Data: Sensitivity and Specificity Analysis

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Data Summary

Response std1*test1*std2*test2 Response Levels 15
Weight Variable wt Populations 1
Data Set A Total Frequency 793
Frequency Missing 0 Observations 15

Output 22.9.12. Design Matrix

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3
-----------------------------------------------------------

1 1 0.82251 1 1 1
2 0.94840 1 1 -1
3 0.81545 1 -1 1
4 0.96964 1 -1 -1

For the sensitivity and specificity analysis, the four response functions displayed next
to the design matrix (Output 22.9.12) represent the following:
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1. sensitivity, time 1

2. specificity, time 1

3. sensitivity, time 2

4. specificity, time 2

The sensitivities and specificities are for the test diagnostic procedure relative to the
standard procedure.

Output 22.9.13. ANOVA Table

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 6448.79 <.0001
Time 1 4.10 0.0428
Accuracy 1 38.81 <.0001

Residual 1 1.00 0.3178

The ANOVA table (Output 22.9.13) shows that an additive model fits, that there is
a significant effect of time, and that the sensitivity is significantly different from the
specificity.

Output 22.9.14. Parameter Estimates

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.8892 0.0111 6448.79 <.0001
Time 2 -0.00932 0.00460 4.10 0.0428
Accuracy 3 -0.0702 0.0113 38.81 <.0001
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Output 22.9.15. Covariance Matrix

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

Covariance Matrix of the Parameter Estimates

Row Col1 Col2 Col3
---------------------------------------------------

1 0.00012260 0.00000229 0.00010137
2 0.00000229 0.00002116 -.00000587
3 0.00010137 -.00000587 0.00012697

Output 22.9.14shows that the predicted sensitivities and specificities are lower for
time 1 (since parameter 2 is negative). It also shows that the sensitivity is significantly
less than the specificity.

Example 22.10. Direct Input of Response Functions and
Covariance Matrix

This example illustrates the ability of PROC CATMOD to operate on an existing
vector of functions and the corresponding covariance matrix. The estimates under
investigation are composite indices summarizing the responses to eighteen psycho-
logical questions pertaining to general well-being. These estimates are computed for
domains corresponding to an age by sex cross-classification, and the covariance ma-
trix is calculated via the method of balanced repeated replications. The analysis is
directed at obtaining a description of the variation among these domain estimates.
The data are from Koch and Stokes (1979).

data fbeing(type=est);
input b1-b5 _type_ $ _name_ $ b6-b10 #2;
datalines;

7.93726 7.92509 7.82815 7.73696 8.16791 parms .
7.24978 7.18991 7.35960 7.31937 7.55184
0.00739 0.00019 0.00146 -0.00082 0.00076 cov b1
0.00189 0.00118 0.00140 -0.00140 0.00039
0.00019 0.01172 0.00183 0.00029 0.00083 cov b2

-0.00123 -0.00629 -0.00088 -0.00232 0.00034
0.00146 0.00183 0.01050 -0.00173 0.00011 cov b3
0.00434 -0.00059 -0.00055 0.00023 -0.00013

-0.00082 0.00029 -0.00173 0.01335 0.00140 cov b4
0.00158 0.00212 0.00211 0.00066 0.00240
0.00076 0.00083 0.00011 0.00140 0.01430 cov b5

-0.00050 -0.00098 0.00239 -0.00010 0.00213
0.00189 -0.00123 0.00434 0.00158 -0.00050 cov b6
0.01110 0.00101 0.00177 -0.00018 -0.00082
0.00118 -0.00629 -0.00059 0.00212 -0.00098 cov b7
0.00101 0.02342 0.00144 0.00369 0.00253
0.00140 -0.00088 -0.00055 0.00211 0.00239 cov b8
0.00177 0.00144 0.01060 0.00157 0.00226

-0.00140 -0.00232 0.00023 0.00066 -0.00010 cov b9
-0.00018 0.00369 0.00157 0.02298 0.00918

0.00039 0.00034 -0.00013 0.00240 0.00213 cov b10
-0.00082 0.00253 0.00226 0.00918 0.01921
;
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The following statements produceOutput 22.10.1throughOutput 22.10.3:

proc catmod data=fbeing;
title ’Complex Sample Survey Analysis’;
response read b1-b10;
factors sex $ 2, age $ 5 / _response_=sex age

profile=(male ’25-34’,
male ’35-44’,
male ’45-54’,
male ’55-64’,
male ’65-74’,
female ’25-34’,
female ’35-44’,
female ’45-54’,
female ’55-64’,
female ’65-74’);

model _f_=_response_
/ design title=’Main Effects for Sex and Age’;

run;

Output 22.10.1. Health Survey Data: Using Direct Input

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 7.93726 1 1 1 0 0 0
2 7.92509 1 1 0 1 0 0
3 7.82815 1 1 0 0 1 0
4 7.73696 1 1 0 0 0 1
5 8.16791 1 1 -1 -1 -1 -1
6 7.24978 1 -1 1 0 0 0
7 7.18991 1 -1 0 1 0 0
8 7.35960 1 -1 0 0 1 0
9 7.31937 1 -1 0 0 0 1

10 7.55184 1 -1 -1 -1 -1 -1
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Output 22.10.2. ANOVA Table

Complex Sample Survey Analysis

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 28089.07 <.0001
sex 1 65.84 <.0001
age 4 9.21 0.0561

Residual 4 2.92 0.5713

Output 22.10.3. Parameter Estimates

Complex Sample Survey Analysis

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 7.6319 0.0455 28089.07 <.0001
sex 2 0.2900 0.0357 65.84 <.0001
age 3 -0.00780 0.0645 0.01 0.9037

4 -0.0465 0.0636 0.54 0.4642
5 -0.0343 0.0557 0.38 0.5387
6 -0.1098 0.0764 2.07 0.1506

The analysis of variance table (Output 22.10.2) shows that the additive model fits
and that there is a significant effect of both sex and age. The following statements
produceOutput 22.10.4:

contrast ’No Age Effect for Age<65’ all_parms 0 0 1 0 0 -1,
all_parms 0 0 0 1 0 -1,
all_parms 0 0 0 0 1 -1;

run;
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Output 22.10.4. Age<65 Contrast

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
---------------------------------------------------------
No Age Effect for Age<65 3 0.72 0.8678

The analysis of the contrast shows that there is no significant difference among the
four age groups that are under age 65. Thus, the next model contains a binary age
effect (less than 65 versus 65 and over). The following statements produceOutput
22.10.5throughOutput 22.10.7:

model _f_=(1 1 1,
1 1 1,
1 1 1,
1 1 1,
1 1 -1,
1 -1 1,
1 -1 1,
1 -1 1,
1 -1 1,
1 -1 -1)

(1=’Intercept’ ,
2=’Sex’ ,
3=’Age (25-64 vs. 65-74)’)

/ design title=’Binary Age Effect (25-64 vs. 65-74)’ ;
run;
quit;
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Output 22.10.5. Design Matrix

Complex Sample Survey Analysis

Binary Age Effect (25-64 vs. 65-74)

The CATMOD Procedure

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3
-----------------------------------------------------------

1 1 7.93726 1 1 1
2 7.92509 1 1 1
3 7.82815 1 1 1
4 7.73696 1 1 1
5 8.16791 1 1 -1
6 7.24978 1 -1 1
7 7.18991 1 -1 1
8 7.35960 1 -1 1
9 7.31937 1 -1 1

10 7.55184 1 -1 -1

Output 22.10.6. ANOVA Table

Complex Sample Survey Analysis

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------------------
Intercept 1 19087.16 <.0001
Sex 1 72.64 <.0001
Age (25-64 vs. 65-74) 1 8.49 0.0036

Residual 7 3.64 0.8198

Output 22.10.7. Parameter Estimates

Complex Sample Survey Analysis

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 7.7183 0.0559 19087.16 <.0001

2 0.2800 0.0329 72.64 <.0001
3 -0.1304 0.0448 8.49 0.0036

The analysis of variance table inOutput 22.10.6shows that the model fits (note that
the goodness-of-fit statistic is the sum of the previous one (Output 22.10.2) plus the
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chi-square for the contrast matrix inOutput 22.10.4). The age and sex effects are
significant. Since the second parameter in the table of estimates is positive, males
(the first level for the sex variable) have a higher predicted index of well-being than
females. Since the third parameter estimate is negative, those younger than age 65
(the first level of age) have a lower predicted index of well-being than those 65 and
older.

Example 22.11. Predicted Probabilities

Suppose you have collected marketing research data to examine the relationship be-
tween a prospect’s likelihood of buying your product and their education and income.
Specifically, the variables are as follows.

Variable Levels Interpretation
Education high, low prospect’s education level
Income high, low prospect’s income level
Purchase yes, no Did prospect purchase product?

The following statements first create a data set,loan, that contains the marketing
research data, then they use the CATMOD procedure to fit a model, obtain the pa-
rameter estimates, and obtain the predicted probabilities of interest. These statements
produceOutput 22.11.1throughOutput 22.11.5.

data loan;
input Education $ Income $ Purchase $ wt;
datalines;

high high yes 54
high high no 23
high low yes 41
high low no 12
low high yes 35
low high no 42
low low yes 19
low low no 8
;
ods output PredictedValues=Predicted (keep=Education Income PredFunction);

proc catmod data=loan order=data;
weight wt;
response marginals;
model Purchase=Education Income / pred design;

run;
proc sort data=Predicted;

by descending PredFunction;
run;

proc print data=Predicted;
run;
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Notice that the preceding statements use the Output Delivery System (ODS) to output
the parameter estimates instead of theOUT= option, though either can be used.

Output 22.11.1. Marketing Research Data: Obtaining Predicted Probabilities

The CATMOD Procedure

Data Summary

Response Purchase Response Levels 2
Weight Variable wt Populations 4
Data Set LOAN Total Frequency 234
Frequency Missing 0 Observations 8

Output 22.11.2. Profiles and Design Matrix

Population Profiles

Sample Education Income Sample Size
--------------------------------------------

1 high high 77
2 high low 53
3 low high 77
4 low low 27

Response Profiles

Response Purchase
--------------------

1 yes
2 no

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3
-----------------------------------------------

1 0.70130 1 1 1
2 0.77358 1 1 -1
3 0.45455 1 -1 1
4 0.70370 1 -1 -1
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Output 22.11.3. ANOVA Table and Parameter Estimates

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 418.36 <.0001
Education 1 8.85 0.0029
Income 1 4.70 0.0302

Residual 1 1.84 0.1745

Analysis of Weighted Least Squares Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
---------------------------------------------------------------
Intercept 0.6481 0.0317 418.36 <.0001
Education high 0.0924 0.0311 8.85 0.0029
Income high -0.0675 0.0312 4.70 0.0302

Output 22.11.4. Predicted Values and Residuals

Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Education Income Number Function Error Function Error Residual
-------------------------------------------------------------------------------------------
high high 1 0.701299 0.052158 0.67294 0.047794 0.028359
high low 1 0.773585 0.057487 0.808034 0.051586 -0.03445
low high 1 0.454545 0.056744 0.48811 0.051077 -0.03356
low low 1 0.703704 0.087877 0.623204 0.064867 0.080499

Output 22.11.5. Predicted Probabilities Data Set

Pred
Obs Education Income Function

1 high low 0.808034
2 high high 0.67294
3 low low 0.623204
4 low high 0.48811

You can use the predicted values (values ofPredFunction in Output 22.11.5) as
scores representing the likelihood that a randomly chosen subject from one of these
populations will purchase the product. Notice that the Response Profiles inOutput
22.11.2show you that the first sorted level ofPurchase is “yes,” indicating that
the predicted probabilities are for Pr(Purchase=’yes’). For example, someone with
high education and low income has an estimated probability of purchase of 0.808.
As with any response function estimate given by PROC CATMOD, this estimate can
be obtained by cross-multiplying the row from the design matrix corresponding to
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the sample (sample number 2 in this case) with the vector of parameter estimates
((1 ∗ 0.6481) + (1 ∗ 0.0924) + (−1 ∗ (−0.0675))).

This ranking of scores can help in decision making (for example, with respect to
allocation of advertising dollars, choice of advertising media, choice of print media,
and so on).
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Chapter 23
The CLUSTER Procedure
Overview

The CLUSTER procedure hierarchically clusters the observations in a SAS data set
using one of eleven methods. The CLUSTER procedure finds hierarchical clusters
of the observations in a SAS data set. The data can be coordinates or distances. If
the data are coordinates, PROC CLUSTER computes (possibly squared) Euclidean
distances. If you want to perform a cluster analysis on non-Euclidean distance data, it
is possible to do so by using the DISTANCE procedure. This procedure can produce
an appropriate distance data that can then be used set as input to PROC CLUSTER.

One situation where analyzing non-Euclidean distance data can be useful is when
you have categorical data, where the distance data are calculated using an association
measure. For more information, seeExample 23.5on page 1044.

The clustering methods available are average linkage, the centroid method, complete
linkage, density linkage (including Wong’s hybrid andkth-nearest-neighbor meth-
ods), maximum likelihood for mixtures of spherical multivariate normal distribu-
tions with equal variances but possibly unequal mixing proportions, the flexible-beta
method, McQuitty’s similarity analysis, the median method, single linkage, two-stage
density linkage, and Ward’s minimum-variance method.

All methods are based on the usual agglomerative hierarchical clustering procedure.
Each observation begins in a cluster by itself. The two closest clusters are merged
to form a new cluster that replaces the two old clusters. Merging of the two closest
clusters is repeated until only one cluster is left. The various clustering methods differ
in how the distance between two clusters is computed. Each method is described in
the section“Clustering Methods”on page 975.

The CLUSTER procedure is not practical for very large data sets because, with most
methods, the CPU time varies as the square or cube of the number of observations.
The FASTCLUS procedure requires time proportional to the number of observations
and can, therefore, be used with much larger data sets than PROC CLUSTER. If you
want to cluster a very large data set hierarchically, you can use PROC FASTCLUS
for a preliminary cluster analysis producing a large number of clusters and then use
PROC CLUSTER to cluster the preliminary clusters hierarchically. This method is
used to find clusters for the Fisher Iris data inExample 23.3, later in this chapter.

PROC CLUSTER displays a history of the clustering process, giving statistics use-
ful for estimating the number of clusters in the population from which the data are
sampled. PROC CLUSTER also creates an output data set that can be used by the
TREE procedure to draw a tree diagram of the cluster hierarchy or to output the clus-
ter membership at any desired level. For example, to obtain the six-cluster solution,
you could first use PROC CLUSTER with the OUTTREE= option then use this out-
put data set as the input data set to the TREE procedure. With PROC TREE, specify
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NCLUSTERS=6 and the OUT= options to obtain the six-cluster solution and draw a
tree diagram. For an example, seeExample 76.1on page 4758 inChapter 76, “The
TREE Procedure.”

Before you perform a cluster analysis on coordinate data, it is necessary to consider
scaling or transforming the variables since variables with large variances tend to have
more effect on the resulting clusters than those with small variances. The ACECLUS
procedure is useful for performing linear transformations of the variables. You can
also use the PRINCOMP procedure with the STD option, although in some cases it
tends to obscure clusters or magnify the effect of error in the data when all compo-
nents are retained. The STD option in the CLUSTER procedure standardizes the vari-
ables to mean 0 and standard deviation 1. Standardization is not always appropriate.
See Milligan and Cooper (1987) for a Monte Carlo study on various methods of vari-
able standardization. You should remove outliers before using PROC PRINCOMP or
before using PROC CLUSTER with the STD option unless you specify the TRIM=
option.

Nonlinear transformations of the variables may change the number of population
clusters and should, therefore, be approached with caution. For most applications,
the variables should be transformed so that equal differences are of equal practical
importance. An interval scale of measurement is required if raw data are used as
input. Ordinal or ranked data are generally not appropriate.

Agglomerative hierarchical clustering is discussed in all standard references on clus-
ter analysis, for example, Anderberg (1973), Sneath and Sokal (1973), Hartigan
(1975), Everitt (1980), and Spath (1980). An especially good introduction is given by
Massart and Kaufman (1983). Anyone considering doing a hierarchical cluster anal-
ysis should study the Monte Carlo results of Milligan (1980), Milligan and Cooper
(1985), and Cooper and Milligan (1988). Other essential, though more advanced, ref-
erences on hierarchical clustering include Hartigan (1977, pp. 60–68; 1981), Wong
(1982), Wong and Schaack (1982), and Wong and Lane (1983). Refer to Blashfield
and Aldenderfer (1978) for a discussion of the confusing terminology in hierarchical
cluster analysis.

Getting Started

The following example demonstrates how you can use the CLUSTER procedure to
compute hierarchical clusters of observations in a SAS data set.

Suppose you want to determine whether national figures for birth rates, death rates,
and infant death rates can be used to determine certain types or categories of coun-
tries. You want to perform a cluster analysis to determine whether the observations
can be formed into groups suggested by the data. Previous studies indicate that the
clusters computed from this type of data can be elongated and elliptical. Thus, you
need to perform some linear transformation on the raw data before the cluster analy-
sis.

The following data∗ from Rouncefield (1995) are birth rates, death rates, and infant

∗ These data have been compiled from the United Nations Demographic Yearbook 1990 (United
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death rates for 97 countries. The DATA step creates the SAS data setPoverty:
data Poverty;

input Birth Death InfantDeath Country $20. @@;
datalines;

24.7 5.7 30.8 Albania 12.5 11.9 14.4 Bulgaria
13.4 11.7 11.3 Czechoslovakia 12 12.4 7.6 Former_E._Germany
11.6 13.4 14.8 Hungary 14.3 10.2 16 Poland
13.6 10.7 26.9 Romania 14 9 20.2 Yugoslavia
17.7 10 23 USSR 15.2 9.5 13.1 Byelorussia_SSR
13.4 11.6 13 Ukrainian_SSR 20.7 8.4 25.7 Argentina
46.6 18 111 Bolivia 28.6 7.9 63 Brazil
23.4 5.8 17.1 Chile 27.4 6.1 40 Columbia
32.9 7.4 63 Ecuador 28.3 7.3 56 Guyana
34.8 6.6 42 Paraguay 32.9 8.3 109.9 Peru

18 9.6 21.9 Uruguay 27.5 4.4 23.3 Venezuela
29 23.2 43 Mexico 12 10.6 7.9 Belgium

13.2 10.1 5.8 Finland 12.4 11.9 7.5 Denmark
13.6 9.4 7.4 France 11.4 11.2 7.4 Germany
10.1 9.2 11 Greece 15.1 9.1 7.5 Ireland

9.7 9.1 8.8 Italy 13.2 8.6 7.1 Netherlands
14.3 10.7 7.8 Norway 11.9 9.5 13.1 Portugal
10.7 8.2 8.1 Spain 14.5 11.1 5.6 Sweden
12.5 9.5 7.1 Switzerland 13.6 11.5 8.4 U.K.
14.9 7.4 8 Austria 9.9 6.7 4.5 Japan
14.5 7.3 7.2 Canada 16.7 8.1 9.1 U.S.A.
40.4 18.7 181.6 Afghanistan 28.4 3.8 16 Bahrain
42.5 11.5 108.1 Iran 42.6 7.8 69 Iraq
22.3 6.3 9.7 Israel 38.9 6.4 44 Jordan
26.8 2.2 15.6 Kuwait 31.7 8.7 48 Lebanon
45.6 7.8 40 Oman 42.1 7.6 71 Saudi_Arabia
29.2 8.4 76 Turkey 22.8 3.8 26 United_Arab_Emirates
42.2 15.5 119 Bangladesh 41.4 16.6 130 Cambodia
21.2 6.7 32 China 11.7 4.9 6.1 Hong_Kong
30.5 10.2 91 India 28.6 9.4 75 Indonesia
23.5 18.1 25 Korea 31.6 5.6 24 Malaysia
36.1 8.8 68 Mongolia 39.6 14.8 128 Nepal
30.3 8.1 107.7 Pakistan 33.2 7.7 45 Philippines
17.8 5.2 7.5 Singapore 21.3 6.2 19.4 Sri_Lanka
22.3 7.7 28 Thailand 31.8 9.5 64 Vietnam
35.5 8.3 74 Algeria 47.2 20.2 137 Angola
48.5 11.6 67 Botswana 46.1 14.6 73 Congo
38.8 9.5 49.4 Egypt 48.6 20.7 137 Ethiopia
39.4 16.8 103 Gabon 47.4 21.4 143 Gambia
44.4 13.1 90 Ghana 47 11.3 72 Kenya

44 9.4 82 Libya 48.3 25 130 Malawi
35.5 9.8 82 Morocco 45 18.5 141 Mozambique

44 12.1 135 Namibia 48.5 15.6 105 Nigeria
48.2 23.4 154 Sierra_Leone 50.1 20.2 132 Somalia
32.1 9.9 72 South_Africa 44.6 15.8 108 Sudan
46.8 12.5 118 Swaziland 31.1 7.3 52 Tunisia
52.2 15.6 103 Uganda 50.5 14 106 Tanzania
45.6 14.2 83 Zaire 51.1 13.7 80 Zambia
41.7 10.3 66 Zimbabwe

The data setPoverty contains the character variableCountry and the numeric vari-

Nations publications, Sales No. E/F.91.XII.1, copyright 1991, United Nations, New York) and are
reproduced with the permission of the United Nations.
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ablesBirth, Death, and InfantDeath, which represent the birth rate per thousand,
death rate per thousand, and infant death rate per thousand. The$20. in the INPUT
statement specifies that the variableCountry is a character variable with a length of
20. The double trailing at sign (@@) in the INPUT statement holds the input line for
further iterations of the DATA step, specifying that observations are input from each
line until all values are read.

Because the variables in the data set do not have equal variance, you must perform
some form of scaling or transformation. One method is to standardize the variables
to mean zero and variance one. However, when you suspect that the data contain
elliptical clusters, you can use the ACECLUS procedure to transform the data such
that the resulting within-cluster covariance matrix is spherical. The procedure ob-
tains approximate estimates of the pooled within-cluster covariance matrix and then
computes canonical variables to be used in subsequent analyses.

The following statements perform the ACECLUS transformation using the SAS data
setPoverty. The OUT= option creates an output SAS data set calledAce to contain
the canonical variable scores.

proc aceclus data=Poverty out=Ace p=.03 noprint;
var Birth Death InfantDeath;

run;

The P= option specifies that approximately three percent of the pairs are included in
the estimation of the within-cluster covariance matrix. The NOPRINT option sup-
presses the display of the output. The VAR statement specifies that the variables
Birth, Death, andInfantDeath are used in computing the canonical variables.

The following statements invoke the CLUSTER procedure, using the SAS data set
ACE created in the previous PROC ACECLUS run.

proc cluster data=Ace outtree=Tree method=ward
ccc pseudo print=15;

var can1 can2 can3 ;
id Country;

run;

The OUTTREE= option creates an output SAS data set calledTree that can be used
by the TREE procedure to draw a tree diagram. Ward’s minimum-variance clustering
method is specified by the METHOD= option. The CCC option displays the cubic
clustering criterion, and the PSEUDO option displays pseudoF and t2 statistics.
Only the last 15 generations of the cluster history are displayed, as defined by the
PRINT= option.

The VAR statement specifies that the canonical variables computed in the ACECLUS
procedure are used in the cluster analysis. The ID statement specifies that the variable
Country should be added to theTree output data set.

The results of this analysis are displayed in the following figures.
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PROC CLUSTER first displays the table of eigenvalues of the covariance matrix for
the three canonical variables (Figure 23.1). The first two columns list each eigenvalue
and the difference between the eigenvalue and its successor. The last two columns
display the individual and cumulative proportion of variation associated with each
eigenvalue.

The CLUSTER Procedure
Ward’s Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 64.5500051 54.7313223 0.8091 0.8091
2 9.8186828 4.4038309 0.1231 0.9321
3 5.4148519 0.0679 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 5.156987
Root-Mean-Square Distance Between Observations = 12.63199

Figure 23.1. Table of Eigenvalues of the Covariance Matrix

As displayed in the last column, the first two canonical variables account for about
93% of the total variation.Figure 23.1also displays the root mean square of the total
sample standard deviation and the root mean square distance between observations.

Figure 23.2displays the last 15 generations of the cluster history. First listed are the
number of clusters and the names of the clusters joined. The observations are iden-
tified either by the ID value or by CLn, wheren is the number of the cluster. Next,
PROC CLUSTER displays the number of observations in the new cluster and the
semipartialR2. The latter value represents the decrease in the proportion of variance
accounted for by joining the two clusters.
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The CLUSTER Procedure
Ward’s Minimum Variance Cluster Analysis

Root-Mean-Square Total-Sample Standard Deviation = 5.156987
Root-Mean-Square Distance Between Observations = 12.63199

Cluster History
T
i

NCL --------------Clusters Joined--------------- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 e

15 Oman CL37 5 0.0039 .957 .933 6.03 132 12.1
14 CL31 CL22 13 0.0040 .953 .928 5.81 131 9.7
13 CL41 CL17 32 0.0041 .949 .922 5.70 131 13.1
12 CL19 CL21 10 0.0045 .945 .916 5.65 132 6.4
11 CL39 CL15 9 0.0052 .940 .909 5.60 134 6.3
10 CL76 CL27 6 0.0075 .932 .900 5.25 133 18.1

9 CL23 CL11 15 0.0130 .919 .890 4.20 125 12.4
8 CL10 Afghanistan 7 0.0134 .906 .879 3.55 122 7.3
7 CL9 CL25 17 0.0217 .884 .864 2.26 114 11.6
6 CL8 CL20 14 0.0239 .860 .846 1.42 112 10.5
5 CL14 CL13 45 0.0307 .829 .822 0.65 112 59.2
4 CL16 CL7 28 0.0323 .797 .788 0.57 122 14.8
3 CL12 CL6 24 0.0323 .765 .732 1.84 153 11.6
2 CL3 CL4 52 0.1782 .587 .613 -.82 135 48.9
1 CL5 CL2 97 0.5866 .000 .000 0.00 . 135

Figure 23.2. Cluster Generation History and R-Square Values

Next listed is the squared multiple correlation,R2, which is the proportion of variance
accounted for by the clusters.Figure 23.2shows that, when the data are grouped into
three clusters, the proportion of variance accounted for by the clusters (R2) is about
77%. The approximate expected value ofR2 is given in the column labeled “ERSQ.”

The next three columns display the values of the cubic clustering criterion (CCC),
pseudoF (PSF), andt2 (PST2) statistics. These statistics are useful in determining
the number of clusters in the data.

Values of the cubic clustering criterion greater than 2 or 3 indicate good clusters;
values between 0 and 2 indicate potential clusters, but they should be considered
with caution; large negative values can indicate outliers. InFigure 23.2, there is a
local peak of the CCC when the number of clusters is 3. The CCC drops at 4 clusters
and then steadily increases, levelling off at 11 clusters.

Another method of judging the number of clusters in a data set is to look at the pseudo
F statistic (PSF). Relatively large values indicate a stopping point. Reading down the
PSF column, you can see that this method indicates a possible stopping point at 11
clusters and another at 3 clusters.

A general rule for interpreting the values of the pseudot2 statistic is to move down
the column until you find the first value markedly larger than the previous value and
move back up the column by one cluster. Moving down the PST2 column, you can
see possible clustering levels at 11 clusters, 6 clusters, 3 clusters, and 2 clusters.

The final column inFigure 23.2lists ties for minimum distance; a blank value indi-
cates the absence of a tie.

These statistics indicate that the data can be clustered into 11 clusters or 3 clusters.
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The following statements examine the results of clustering the data into 3 clusters.

A graphical view of the clustering process can often be helpful in interpreting the
clusters. The following statements use the TREE procedure to produce a tree diagram
of the clusters:

goptions vsize=8in htext=1pct htitle=2.5pct;
axis1 order=(0 to 1 by 0.2);
proc tree data=Tree out=New nclusters=3

graphics haxis=axis1 horizontal;
height _rsq_;
copy can1 can2 ;
id country;

run;

The AXIS1 statement defines axis parameters that are used in the TREE procedure.
The ORDER= option specifies the data values in the order in which they should
appear on the axis.

The preceding statements use the SAS data setTree as input. The OUT= option
creates an output SAS data set namedNew to contain information on cluster mem-
bership. The NCLUSTERS= option specifies the number of clusters desired in the
data setNew.

The GRAPHICS option directs the procedure to use high resolution graphics. The
HAXIS= option specifies AXIS1 to customize the appearance of the horizontal axis.
Use this option only when the GRAPHICS option is in effect. The HORIZONTAL
option orients the tree diagram horizontally. The HEIGHT statement specifies the
variable–RSQ– (R2) as the height variable.

The COPY statement copies the canonical variablescan1 andcan2 (computed in
the ACECLUS procedure) into the output SAS data setNew. Thus, the SAS output
data setNew contains information for three clusters and the first two of the original
canonical variables.

Figure 23.3displays the tree diagram. The figure provides a graphical view of the
information inFigure 23.2. As the number of branches grows to the left from the
root, theR2 approaches 1; the first three clusters (branches of the tree) account for
over half of the variation (about 77%, fromFigure 23.2). In other words, only three
clusters are necessary to explain over three-fourths of the variation.
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Figure 23.3. Tree Diagram of Clusters versus R-Square Values

The following statements invoke the GPLOT procedure on the SAS data setNew.
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legend1 frame cframe=ligr cborder=black
position=center value=(justify=center);

axis1 label=(angle=90 rotate=0) minor=none order=(-10 to 20 by 5);
axis2 minor=none order=(-10 to 20 by 5);

proc gplot data=New ;
plot can2*can1=cluster/frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
run;

The PLOT statement requests a plot of the two canonical variables, using the value
of the variablecluster as the identification variable.

Figure 23.4displays the separation of the clusters when three clusters are calculated.
The plotting symbol is the cluster number.

Figure 23.4. Plot of Canonical Variables and Cluster for Three Clusters

The statistics inFigure 23.2, the tree diagram inFigure 23.3, and the plot of the
canonical variables assist in the determination of clusters in the data. There seems
to be reasonable separation in the clusters. However, you must use this information,
along with experience and knowledge of the field, to help in deciding the correct
number of clusters.
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Syntax

The following statements are available in the CLUSTER procedure.

PROC CLUSTER METHOD = name < options > ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;
RMSSTD variable ;
VAR variables ;

Only the PROC CLUSTER statement is required, except that the FREQ statement
is required when the RMSSTD statement is used; otherwise the FREQ statement is
optional. Usually only the VAR statement and possibly the ID and COPY statements
are needed in addition to the PROC CLUSTER statement. The rest of this section
provides detailed syntax information for each of the preceding statements, beginning
with the PROC CLUSTER statement. The remaining statements are covered in al-
phabetical order.

PROC CLUSTER Statement

PROC CLUSTER METHOD=name < options > ;

The PROC CLUSTER statement starts the CLUSTER procedure, identifies a clus-
tering method, and optionally identifies details for clustering methods, data sets, data
processing, and displayed output. The METHOD= specification determines the clus-
tering method used by the procedure. Any one of the following 11 methods can be
specified forname:

AVERAGE | AVE requests average linkage (group average, unweighted
pair-group method using arithmetic averages, UPGMA).
Distance data are squared unless you specify the
NOSQUARE option.

CENTROID | CEN requests the centroid method (unweighted pair-group
method using centroids, UPGMC, centroid sorting,
weighted-group method). Distance data are squared
unless you specify the NOSQUARE option.

COMPLETE | COM requests complete linkage (furthest neighbor, maximum
method, diameter method, rank order typal analysis). To
reduce distortion of clusters by outliers, the TRIM= option
is recommended.

DENSITY | DEN requests density linkage, which is a class of clustering
methods using nonparametric probability density estima-
tion. You must also specify one of the K=, R=, or HYBRID
options to indicate the type of density estimation to be
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used. See also the MODE= and DIM= options in this sec-
tion.

EML requests maximum-likelihood hierarchical clustering for
mixtures of spherical multivariate normal distributions
with equal variances but possibly unequal mixing propor-
tions. Use METHOD=EML only with coordinate data.
See thePENALTY= optionon page 971. The NONORM
option does not affect the reported likelihood values but
does affect other unrelated criteria. The EML method is
much slower than the other methods in the CLUSTER pro-
cedure.

FLEXIBLE | FLE requests the Lance-Williams flexible-beta method. See the
BETA= option in this section.

MCQUITTY | MCQ requests McQuitty’s similarity analysis, which is weighted
average linkage, weighted pair-group method using arith-
metic averages (WPGMA).

MEDIAN | MED requests Gower’s median method, which is weighted pair-
group method using centroids (WPGMC). Distance data
are squared unless you specify the NOSQUARE option.

SINGLE | SIN requests single linkage (nearest neighbor, minimum
method, connectedness method, elementary linkage
analysis, or dendritic method). To reduce chaining, you
can use the TRIM= option with METHOD=SINGLE.

TWOSTAGE | TWO requests two-stage density linkage. You must also spec-
ify the K=, R=, or HYBRID option to indicate the type of
density estimation to be used. See also the MODE= and
DIM= options in this section.

WARD | WAR requests Ward’s minimum-variance method (error sum of
squares, trace W). Distance data are squared unless you
specify the NOSQUARE option. To reduce distortion
by outliers, the TRIM= option is recommended. See the
NONORM option.

The following table summarizes the options in the PROC CLUSTER statement.
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Tasks Options
Specify input and output data sets

specify input data set DATA=
create output data set OUTTREE=

Specify clustering methods
specify clustering method METHOD=
beta for flexible beta method BETA=
minimum number of members for modal clusters MODE=
penalty coefficient for maximum-likelihood PENALTY=
Wong’s hybrid clustering method HYBRID

Control data processing prior to clustering
suppress computation of eigenvalues NOEIGEN
suppress normalizing of distances NONORM
suppress squaring of distances NOSQUARE
standardize variables STANDARD
omit points with low probability densities TRIM=

Control density estimation
dimensionality for estimates DIM=
number of neighbors forkth-nearest-neighbor K=
radius of sphere of support for uniform-kernel R=

Suppress checking for ties NOTIE

Control display of the cluster history
display cubic clustering criterion CCC
suppress display of ID values NOID
specify number of generations to display PRINT=
display pseudoF andt2 statistics PSEUDO
display root-mean-square standard deviation RMSSTD
displayR2 and semipartialR2 RSQUARE

Control other aspects of output
suppress display of all output NOPRINT
display simple summary statistics SIMPLE

The following list provides details on these options.

BETA=n
specifies the beta parameter for METHOD=FLEXIBLE. The value ofn should be
less than 1, usually between 0 and−1. By default, BETA=−0.25. Milligan (1987)
suggests a somewhat smaller value, perhaps−0.5, for data with many outliers.

CCC
displays the cubic clustering criterion and approximate expectedR2 under the uni-
form null hypothesis (Sarle 1983). The statistics associated with the RSQUARE
option,R2 and semipartialR2, are also displayed. The CCC option applies only to
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coordinate data. The CCC option is not appropriate with METHOD=SINGLE be-
cause of the method’s tendency to chop off tails of distributions.

DATA=SAS-data-set
names the input data set containing observations to be clustered. By default,
the procedure uses the most recently created SAS data set. If the data set is
TYPE=DISTANCE, the data are interpreted as a distance matrix; the number of vari-
ables must equal the number of observations in the data set or in each BY group.
The distances are assumed to be Euclidean, but the procedure accepts other types of
distances or dissimilarities. If the data set is not TYPE=DISTANCE, the data are in-
terpreted as coordinates in a Euclidean space, and Euclidean distances are computed.
For more on TYPE=DISTANCE data sets, seeAppendix A, “Special SAS Data Sets.”

You cannot use a TYPE=CORR data set as input to PROC CLUSTER, since the
procedure uses dissimilarity measures. Instead, you can use a DATA step or the
IML procedure to extract the correlation matrix from a TYPE=CORR data set and
transform the values to dissimilarities such as1−r or1−r2, wherer is the correlation.

All methods produce the same results when used with coordinate data as when used
with Euclidean distances computed from the coordinates. However, the DIM= op-
tion must be used with distance data if you specify METHOD=TWOSTAGE or
METHOD=DENSITY or if you specify the TRIM= option.

Certain methods that are most naturally defined in terms of coordinates require
squaredEuclidean distances to be used in the combinatorial distance formulas (Lance
and Williams 1967). For this reason, distance data are automatically squared when
used with METHOD=AVERAGE, METHOD=CENTROID, METHOD=MEDIAN,
or METHOD=WARD. If you want the combinatorial formulas to be applied to the
(unsquared) distances with these methods, use the NOSQUARE option.

DIM=n
specifies the dimensionality used when computing density estimates with the TRIM=
option, METHOD=DENSITY, or METHOD=TWOSTAGE. The values ofn must
be greater than or equal to 1. The default is the number of variables if the data are
coordinates; the default is 1 if the data are distances.

HYBRID
requests Wong’s (1982) hybrid clustering method in which density estimates are com-
puted from a preliminary cluster analysis using thek-means method. The DATA=
data set must contain means, frequencies, and root-mean-square standard devia-
tions of the preliminary clusters (see the FREQ and RMSSTD statements). To use
HYBRID, you must use either a FREQ statement or a DATA= data set that contains a

–FREQ– variable, and you must also use either an RMSSTD statement or a DATA=
data set that contains a–RMSSTD– variable.

The MEAN= data set produced by the FASTCLUS procedure is suitable for input to
the CLUSTER procedure for hybrid clustering. Since this data set contains–FREQ–
and–RMSSTD– variables, you can use it as input and then omit the FREQ and
RMSSTD statements.

You must specify either METHOD=DENSITY or METHOD=TWOSTAGE with the
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HYBRID option. You cannot use this option in combination with the TRIM=, K=, or
R= option.

K=n
specifies the number of neighbors to use forkth-nearest-neighbor density estimation
(Silverman 1986, pp. 19–21 and 96–99). The number of neighbors (n) must be at
least two but less than the number of observations. See the MODE= option, which
follows.

If you request an analysis that requires density estimation (the TRIM= option,
METHOD=DENSITY, or METHOD=TWOSTAGE), you must specify one of the
K=, HYBRID, or R= options.

MODE=n
specifies that, when two clusters are joined, each must have at leastn members for
either cluster to be designated a modal cluster. If you specify MODE=1, each cluster
must also have a maximum density greater than the fusion density for either cluster
to be designated a modal cluster.

Use the MODE= option only with METHOD=DENSITY or
METHOD=TWOSTAGE. With METHOD=TWOSTAGE, the MODE= option
affects the number of modal clusters formed. With METHOD=DENSITY, the
MODE= option does not affect the clustering process but does determine the number
of modal clusters reported on the output and identified by the–MODE– variable in
the output data set.

If you specify the K= option, the default value of MODE= is the same as the value of
K= because the use ofkth-nearest-neighbor density estimation limits the resolution
that can be obtained for clusters with fewer thank members. If you do not specify
the K= option, the default is MODE=2.

If you specify MODE=0, the default value is used instead of 0.

If you specify a FREQ statement or if a–FREQ– variable appears in the input data
set, the MODE= value is compared with the number of actual observations in the
clusters being joined, not with the sum of the frequencies in the clusters.

NOEIGEN
suppresses computation of eigenvalues for the cubic clustering criterion. Specifying
the NOEIGEN option saves time if the number of variables is large, but it should be
used only if the variables are nearly uncorrelated or if you are not interested in the
cubic clustering criterion. If you specify the NOEIGEN option and the variables are
highly correlated, the cubic clustering criterion may be very liberal. The NOEIGEN
option applies only to coordinate data.

NOID
suppresses the display of ID values for the clusters joined at each generation of the
cluster history.
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NONORM
prevents the distances from being normalized to unit mean or unit root mean square
with most methods. With METHOD=WARD, the NONORM option prevents the
between-cluster sum of squares from being normalized by the total sum of squares
to yield a squared semipartial correlation. The NONORM option does not affect the
reported likelihood values with METHOD=EML, but it does affect other unrelated
criteria, such as the–DIST– variable.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

NOSQUARE
prevents input distances from being squared with METHOD=AVERAGE,
METHOD=CENTROID, METHOD=MEDIAN, or METHOD=WARD.

If you specify the NOSQUARE option with distance data, the data are assumed to be
squared Euclidean distances for computing R-squared and related statistics defined
in a Euclidean coordinate system.

If you specify the NOSQUARE option with coordinate data with
METHOD=CENTROID, METHOD=MEDIAN, or METHOD=WARD, then
the combinatorial formula is applied to unsquared Euclidean distances. The resulting
cluster distances do not have their usual Euclidean interpretation and are, therefore,
labeled “False” in the output.

NOTIE
prevents PROC CLUSTER from checking for ties for minimum distance between
clusters at each generation of the cluster history. If your data are measured with such
sufficient precision that ties are unlikely, then you can specify the NOTIE option to
reduce slightly the time and space required by the procedure. See the section“Ties”
on page 987.

OUTTREE=SAS-data-set
creates an output data set that can be used by the TREE procedure to draw a tree
diagram. You must give the data set a two-level name to save it. Refer toSAS
Language Reference: Conceptsfor a discussion of permanent data sets. If you
omit the OUTTREE= option, the data set is named using the DATAn convention
and is not permanently saved. If you do not want to create an output data set, use
OUTTREE=–NULL–.

PENALTY=p
specifies the penalty coefficient used with METHOD=EML. See the section
“Clustering Methods”on page 975. Values forp must be greater than zero. By
default, PENALTY=2.

PRINT=n | P=n
specifies the number of generations of the cluster history to display. The P= option
displays the latestn generations; for example, P=5 displays the cluster history from 1
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cluster through 5 clusters. The value of P= must be a nonnegative integer. The default
is to display all generations. Specify PRINT=0 to suppress the cluster history.

PSEUDO
displays pseudoF and t2 statistics. This option is effective only when the
data are coordinates or when METHOD=AVERAGE, METHOD=CENTROID,
or METHOD=WARD. See the section“Miscellaneous Formulas”on page 984.
The PSEUDO option is not appropriate with METHOD=SINGLE because of the
method’s tendency to chop off tails of distributions.

R=n
specifies the radius of the sphere of support for uniform-kernel density estimation
(Silverman 1986, pp. 11–13 and 75–94). The value of R= must be greater than zero.

If you request an analysis that requires density estimation (the TRIM= option,
METHOD=DENSITY, or METHOD=TWOSTAGE), you must specify one of the
K=, HYBRID, or R= options.

RMSSTD
displays the root-mean-square standard deviation of each cluster. This option
is effective only when the data are coordinates or when METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD. See the section“Miscellaneous
Formulas”on page 984.

RSQUARE | RSQ
displays theR2 and semipartialR2. This option is effective only when the data
are coordinates or when METHOD=AVERAGE or METHOD=CENTROID. TheR2

and semipartialR2 statistics are always displayed with METHOD=WARD. See the
section“Miscellaneous Formulas”on page 984.

SIMPLE | S
displays means, standard deviations, skewness, kurtosis, and a coefficient of bi-
modality. The SIMPLE option applies only to coordinate data. See the section
“Miscellaneous Formulas”on page 984.

STANDARD | STD
standardizes the variables to mean 0 and standard deviation 1. The STANDARD
option applies only to coordinate data.

TRIM=p
omits points with low estimated probability densities from the analysis. Valid values
for the TRIM= option are0 ≤ p < 100. If p < 1, thenp is the proportion of
observations omitted. Ifp ≥ 1, thenp is interpreted as a percentage. A specification
of TRIM=10, which trims 10 percent of the points, is a reasonable value for many data
sets. Densities are estimated by thekth-nearest-neighbor or uniform-kernel methods.
Trimmed points are indicated by a negative value of the–FREQ– variable in the
OUTTREE= data set.

You must use either the K= or R= option when you use TRIM=. You cannot use
the HYBRID option in combination with TRIM=, so you may want to use the DIM=
option instead. If you specify the STANDARD option in combination with TRIM=,
the variables are standardized both before and after trimming.
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The TRIM= option is useful for removing outliers and reducing chaining. Trimming
is highly recommended with METHOD=WARD or METHOD=COMPLETE be-
cause clusters from these methods can be severely distorted by outliers. Trimming is
also valuable with METHOD=SINGLE since single linkage is the method most sus-
ceptible to chaining. Most other methods also benefit from trimming. However, trim-
ming is unnecessary with METHOD=TWOSTAGE or METHOD=DENSITY when
kth-nearest-neighbor density estimation is used.

Use of the TRIM= option may spuriously inflate the cubic clustering criterion and
the pseudoF and t2 statistics. Trimming only outliers improves the accuracy of
the statistics, but trimming saddle regions between clusters yields excessively large
values.

BY Statement

BY variables ;

You can specify a BY statement with PROC CLUSTER to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CLUSTER procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

COPY Statement

COPY variables ;

The variables in the COPY statement are copied from the input data set to the
OUTTREE= data set. Observations in the OUTTREE= data set that represent clus-
ters of more than one observation from the input data set have missing values for the
COPY variables.
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FREQ Statement

FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
CLUSTER then treats the data set as if each observation appearedn times, wheren is
the value of the FREQ variable for the observation. Noninteger values of the FREQ
variable are truncated to the largest integer less than the FREQ value.

If you omit the FREQ statement but the DATA= data set contains a variable called

–FREQ– , then frequencies are obtained from the–FREQ– variable. If neither a
FREQ statement nor a–FREQ– variable is present, each observation is assumed to
have a frequency of one.

If each observation in the DATA= data set represents a cluster (for example, clusters
formed by PROC FASTCLUS), the variable specified in the FREQ statement should
give the number of original observations in each cluster.

If you specify the RMSSTD statement, a FREQ statement is required. A FREQ
statement or–FREQ– variable is required when you specify the HYBRID option.

With most clustering methods, the same clusters are obtained from a data set with
a FREQ variable as from a similar data set without a FREQ variable, if each obser-
vation is repeated as many times as the value of the FREQ variable in the first data
set. The FLEXIBLE method can yield different results due to the nature of the com-
binatorial formula. The DENSITY and TWOSTAGE methods are also exceptions
because two identical observations can be absorbed one at a time by a cluster with
a higher density. If you are using a FREQ statement with either the DENSITY or
TWOSTAGE method, see theMODE=optionon page 970.

ID Statement

ID variable ;

The values of the ID variable identify observations in the displayed cluster history
and in the OUTTREE= data set. If the ID statement is omitted, each observation is
denoted byOBn, wheren is the observation number.

RMSSTD Statement

RMSSTD variable ;

If the coordinates in the DATA= data set represent cluster means (for example, formed
by the FASTCLUS procedure), you can obtain accurate statistics in the cluster his-
tories for METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD if
the data set contains

• a variable giving the number of original observations in each cluster (see the
discussion of the FREQ statement earlier in this chapter)

• a variable giving the root-mean-square standard deviation of each cluster



Clustering Methods � 975

Specify the name of the variable containing root-mean-square standard deviations
in the RMSSTD statement. If you specify the RMSSTD statement, you must also
specify a FREQ statement.

If you omit the RMSSTD statement but the DATA= data set contains a variable
called–RMSSTD– , then root-mean-square standard deviations are obtained from
the–RMSSTD– variable.

An RMSSTD statement or–RMSSTD– variable is required when you specify the
HYBRID option.

A data set created by FASTCLUS using the MEAN= option contains–FREQ– and

–RMSSTD– variables, so you do not have to use FREQ and RMSSTD statements
when using such a data set as input to the CLUSTER procedure.

VAR Statement

VAR variables ;

The VAR statement lists numeric variables to be used in the cluster analysis. If you
omit the VAR statement, all numeric variables not listed in other statements are used.

Details

Clustering Methods

The following notation is used, with lowercase symbols generally pertaining to ob-
servations and uppercase symbols pertaining to clusters:

n number of observations

v number of variables if data are coordinates

G number of clusters at any given level of the hierarchy

xi or xi ith observation (row vector if coordinate data)

CK Kth cluster, subset of{1, 2, . . . , n}
NK number of observations inCK

x̄ sample mean vector

x̄K mean vector for clusterCK

‖x‖ Euclidean length of the vectorx, that is, the square root of the sum of
the squares of the elements ofx

T
∑n

i=1 ‖xi − x̄‖2

WK
∑

i∈Ck
‖xi − x̄K‖2

PG
∑

WJ , where summation is over theG clusters at theGth level of the
hierarchy

BKL WM −WK −WL if CM = CK ∪ CL
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d(x,y) any distance or dissimilarity measure between observations or vectors
x andy

DKL any distance or dissimilarity measure between clustersCK andCL

The distance between two clusters can be defined either directly or combinatorially
(Lance and Williams 1967), that is, by an equation for updating a distance matrix
when two clusters are joined. In all of the following combinatorial formulas, it is
assumed that clustersCK andCL are merged to formCM , and the formula gives the
distance between the new clusterCM and any other clusterCJ .

For an introduction to most of the methods used in the CLUSTER procedure, refer to
Massart and Kaufman (1983).

Average Linkage

The following method is obtained by specifying METHOD=AVERAGE. The dis-
tance between two clusters is defined by

DKL =
1

NKNL

∑
i∈CK

∑
j∈CL

d(xi, xj)

If d(x,y) = ‖x− y‖2, then

DKL = ‖x̄K − x̄L‖2 +
WK

NK
+

WL

NL

The combinatorial formula is

DJM =
NKDJK + NLDJL

NM

In average linkage the distance between two clusters is the average distance between
pairs of observations, one in each cluster. Average linkage tends to join clusters with
small variances, and it is slightly biased toward producing clusters with the same
variance.

Average linkage was originated by Sokal and Michener (1958).

Centroid Method

The following method is obtained by specifying METHOD=CENTROID. The dis-
tance between two clusters is defined by

DKL = ‖x̄K − x̄L‖2

If d(x,y) = ‖x− y‖2, then the combinatorial formula is

DJM =
NKDJK + NLDJL

NM
− NKNLDKL

N2
M
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In the centroid method, the distance between two clusters is defined as the (squared)
Euclidean distance between their centroids or means. The centroid method is more
robust to outliers than most other hierarchical methods but in other respects may not
perform as well as Ward’s method or average linkage (Milligan 1980).

The centroid method was originated by Sokal and Michener (1958).

Complete Linkage

The following method is obtained by specifying METHOD=COMPLETE. The dis-
tance between two clusters is defined by

DKL = max
i∈CK

max
j∈CL

d(xi, xj)

The combinatorial formula is

DJM = max(DJK , DJL)

In complete linkage, the distance between two clusters is the maximum distance be-
tween an observation in one cluster and an observation in the other cluster. Complete
linkage is strongly biased toward producing clusters with roughly equal diameters,
and it can be severely distorted by moderate outliers (Milligan 1980).

Complete linkage was originated by Sorensen (1948).

Density Linkage

The phrasedensity linkageis used here to refer to a class of clustering methods us-
ing nonparametric probability density estimates (for example, Hartigan 1975, pp.
205–212; Wong 1982; Wong and Lane 1983). Density linkage consists of two steps:

1. A new dissimilarity measure,d∗, based on density estimates and adjacencies is
computed. Ifxi andxj are adjacent (the definition ofadjacencydepends on the
method of density estimation), thend∗(xi, xj) is the reciprocal of an estimate
of the density midway betweenxi andxj ; otherwise,d∗(xi, xj) is infinite.

2. A single linkage cluster analysis is performed usingd∗.

The CLUSTER procedure supports three types of density linkage: thekth-nearest-
neighbor method, the uniform kernel method, and Wong’s hybrid method. These
are obtained by using METHOD=DENSITY and the K=, R=, and HYBRID options,
respectively.

kth-Nearest Neighbor Method

Thekth-nearest-neighbor method (Wong and Lane 1983) useskth-nearest neighbor
density estimates. Letrk(x) be the distance from pointx to thekth-nearest obser-
vation, wherek is the value specified for the K= option. Consider a closed sphere
centered atx with radiusrk(x). The estimated density atx, f(x), is the proportion



978 � Chapter 23. The CLUSTER Procedure

of observations within the sphere divided by the volume of the sphere. The new
dissimilarity measure is computed as

d∗(xi, xj) =

 1
2

(
1

f(xi)
+ 1

f(xj)

)
if d(xi, xj) ≤ max(rk(xi), rk(xj))

∞ otherwise

Wong and Lane (1983) show thatkth-nearest-neighbor density linkage is strongly set
consistent for high-density (density-contour) clusters ifk is chosen such thatk/n →
0 andk/ ln(n) → ∞ asn → ∞. Wong and Schaack (1982) discuss methods for
estimating the number of population clusters usingkth-nearest-neighbor clustering.

Uniform-Kernel Method

The uniform-kernel method uses uniform-kernel density estimates. Letr be the value
specified for the R= option. Consider a closed sphere centered at pointx with radius
r. The estimated density atx, f(x), is the proportion of observations within the
sphere divided by the volume of the sphere. The new dissimilarity measure is com-
puted as

d∗(xi, xj) =

 1
2

(
1

f(xi)
+ 1

f(xj)

)
if d(xi, xj) ≤ r

∞ otherwise

Wong’s Hybrid Method

Wong’s (1982) hybrid clustering method uses density estimates based on a prelimi-
nary cluster analysis by thek-means method. The preliminary clustering can be done
by the FASTCLUS procedure, using the MEAN= option to create a data set contain-
ing cluster means, frequencies, and root-mean-square standard deviations. This data
set is used as input to the CLUSTER procedure, and the HYBRID option is speci-
fied with METHOD=DENSITY to request the hybrid analysis. The hybrid method is
appropriate for very large data sets but should not be used with small data sets, say
fewer than 100 observations in the original data. The termpreliminary clusterrefers
to an observation in the DATA= data set.

For preliminary clusterCK , NK andWK are obtained from the input data set, as are
the cluster means or the distances between the cluster means. Preliminary clusters
CK andCL are considered adjacent if the midpoint betweenx̄K and x̄L is closer
to eitherx̄K or x̄L than to any other preliminary cluster mean or, equivalently, if
d2(x̄K , x̄L) < d2(x̄K , x̄M ) + d2(x̄L, x̄M ) for all other preliminary clustersCM ,
M 6= K or L. The new dissimilarity measure is computed as

d∗(x̄K , x̄L) =

 (WK+WL+ 1
4
(NK+NL)d2(x̄K ,x̄L))

v
2

(NK+NL)1+
v
2

if CK andCL are adjacent

∞ otherwise
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Using the K= and R= Options

The values of the K= and R= options are calledsmoothing parameters. Small values
of K= or R= produce jagged density estimates and, as a consequence, many modes.
Large values of K= or R= produce smoother density estimates and fewer modes. In
the hybrid method, the smoothing parameter is the number of clusters in the prelimi-
nary cluster analysis. The number of modes in the final analysis tends to increase as
the number of clusters in the preliminary analysis increases. Wong (1982) suggests
usingn0.3 preliminary clusters, wheren is the number of observations in the original
data set. There is no general rule-of-thumb for selecting K= values. For all types of
density linkage, you should repeat the analysis with several different values of the
smoothing parameter (Wong and Schaack 1982).

There is no simple answer to the question of which smoothing parameter to use
(Silverman 1986, pp. 43–61, 84–88, and 98–99). It is usually necessary to try several
different smoothing parameters. A reasonable first guess for the R= option in many
coordinate data sets is given by

[
2v+2(v + 2)Γ(v

2 + 1)
nv2

] 1
v+4

√√√√ v∑
l=1

s2
l

wheres2
l is the standard deviation of thelth variable. The estimate for R= can be

computed in a DATA step using the GAMMA function forΓ. This formula is derived
under the assumption that the data are sampled from a multivariate normal distri-
bution and tends, therefore, to be too large (oversmooth) if the true distribution is
multimodal. Robust estimates of the standard deviations may be preferable if there
are outliers. If the data are distances, the factor

∑
s2
l can be replaced by an average

(mean, trimmed mean, median, root-mean-square, and so on) distance divided by
√

2.
To prevent outliers from appearing as separate clusters, you can also specify K=2, or
more generally K=m, m ≥ 2, which in most cases forces clusters to have at leastm
members.

If the variables all have unit variance (for example, if the STANDARD option is
used),Table 23.1can be used to obtain an initial guess for the R= option:
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Table 23.1. Reasonable First Guess for the R= Option for Standardized Data

Number of Number of Variables
Observations 1 2 3 4 5 6 7 8 9 10

20 1.01 1.36 1.77 2.23 2.73 3.25 3.81 4.38 4.98 5.60

35 0.91 1.24 1.64 2.08 2.56 3.08 3.62 4.18 4.77 5.38

50 0.84 1.17 1.56 1.99 2.46 2.97 3.50 4.06 4.64 5.24

75 0.78 1.09 1.47 1.89 2.35 2.85 3.38 3.93 4.50 5.09

100 0.73 1.04 1.41 1.82 2.28 2.77 3.29 3.83 4.40 4.99

150 0.68 0.97 1.33 1.73 2.18 2.66 3.17 3.71 4.27 4.85

200 0.64 0.93 1.28 1.67 2.11 2.58 3.09 3.62 4.17 4.75

350 0.57 0.85 1.18 1.56 1.98 2.44 2.93 3.45 4.00 4.56

500 0.53 0.80 1.12 1.49 1.91 2.36 2.84 3.35 3.89 4.45

750 0.49 0.74 1.06 1.42 1.82 2.26 2.74 3.24 3.77 4.32

1000 0.46 0.71 1.01 1.37 1.77 2.20 2.67 3.16 3.69 4.23

1500 0.43 0.66 0.96 1.30 1.69 2.11 2.57 3.06 3.57 4.11

2000 0.40 0.63 0.92 1.25 1.63 2.05 2.50 2.99 3.49 4.03

Since infinited∗ values occur in density linkage, the final number of clusters can
exceed one when there are wide gaps between the clusters or when the smoothing
parameter results in little smoothing.

Density linkage applies no constraints to the shapes of the clusters and, unlike most
other hierarchical clustering methods, is capable of recovering clusters with elongated
or irregular shapes. Since density linkage employs less prior knowledge about the
shape of the clusters than do methods restricted to compact clusters, density linkage
is less effective at recovering compact clusters from small samples than are methods
that always recover compact clusters, regardless of the data.

EML

The following method is obtained by specifying METHOD=EML. The distance be-
tween two clusters is given by

DKL = nv ln
(

1 +
BKL

PG

)
− 2 (NM ln(NM )−NK ln(NK)−NL ln(NL))

The EML method joins clusters to maximize the likelihood at each level of the hier-
archy under the following assumptions.

• multivariate normal mixture

• equal spherical covariance matrices
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• unequal sampling probabilities

The EML method is similar to Ward’s minimum-variance method but removes the
bias toward equal-sized clusters. Practical experience has indicated that EML is
somewhat biased toward unequal-sized clusters. You can specify the PENALTY=
option to adjust the degree of bias. If you specify PENALTY=p, the formula is mod-
ified to

DKL = nv ln
(

1 +
BKL

PG

)
− p (NM ln(NM )−NK ln(NK)−NL ln(NL))

The EML method was derived by W.S. Sarle of SAS Institute Inc. from the
maximum-likelihood formula obtained by Symons (1981, p. 37, equation 8) for
disjoint clustering. There are currently no other published references on the EML
method.

Flexible-Beta Method

The following method is obtained by specifying METHOD=FLEXIBLE. The com-
binatorial formula is

DJM = (DJK + DJL)
1− b

2
+ DKLb

whereb is the value of the BETA= option, or−0.25 by default.

The flexible-beta method was developed by Lance and Williams (1967). See also
Milligan (1987).

McQuitty’s Similarity Analysis

The following method is obtained by specifying METHOD=MCQUITTY. The com-
binatorial formula is

DJM =
DJK + DJL

2

The method was independently developed by Sokal and Michener (1958) and
McQuitty (1966).

Median Method

The following method is obtained by specifying METHOD=MEDIAN. Ifd(x,y) =
‖x− y‖2, then the combinatorial formula is

DJM =
DJK + DJL

2
− DKL

4

The median method was developed by Gower (1967).
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Single Linkage

The following method is obtained by specifying METHOD=SINGLE. The distance
between two clusters is defined by

DKL = min
i∈CK

min
j∈CL

d(xi, xj)

The combinatorial formula is

DJM = min(DJK , DJL)

In single linkage, the distance between two clusters is the minimum distance between
an observation in one cluster and an observation in the other cluster. Single link-
age has many desirable theoretical properties (Jardine and Sibson 1971; Fisher and
Van Ness 1971; Hartigan 1981) but has fared poorly in Monte Carlo studies (for ex-
ample, Milligan 1980). By imposing no constraints on the shape of clusters, single
linkage sacrifices performance in the recovery of compact clusters in return for the
ability to detect elongated and irregular clusters. You must also recognize that single
linkage tends to chop off the tails of distributions before separating the main clusters
(Hartigan 1981). The notorious chaining tendency of single linkage can be alleviated
by specifying the TRIM= option (Wishart 1969, pp. 296–298).

Density linkage and two-stage density linkage retain most of the virtues of single
linkage while performing better with compact clusters and possessing better asymp-
totic properties (Wong and Lane 1983).

Single linkage was originated by Florek et al. (1951a, 1951b) and later reinvented by
McQuitty (1957) and Sneath (1957).

Two-Stage Density Linkage

If you specify METHOD=DENSITY, the modal clusters often merge before all the
points in the tails have clustered. The option METHOD=TWOSTAGE is a modifi-
cation of density linkage that ensures that all points are assigned to modal clusters
before the modal clusters are allowed to join. The CLUSTER procedure supports
the same three varieties of two-stage density linkage as of ordinary density linkage:
kth-nearest neighbor, uniform kernel, and hybrid.

In the first stage, disjoint modal clusters are formed. The algorithm is the same as
the single linkage algorithm ordinarily used with density linkage, with one exception:
two clusters are joined only if at least one of the two clusters has fewer members than
the number specified by the MODE= option. At the end of the first stage, each point
belongs to one modal cluster.

In the second stage, the modal clusters are hierarchically joined by single linkage.
The final number of clusters can exceed one when there are wide gaps between the
clusters or when the smoothing parameter is small.

Each stage forms a tree that can be plotted by the TREE procedure. By default, the
TREE procedure plots the tree from the first stage. To obtain the tree for the second



Clustering Methods � 983

stage, use the option HEIGHT=MODE in the PROC TREE statement. You can also
produce a single tree diagram containing both stages, with the number of clusters
as the height axis, by using the option HEIGHT=N in the PROC TREE statement.
To produce an output data set from PROC TREE containing the modal clusters, use

–HEIGHT– for the HEIGHT variable (the default) and specify LEVEL=0.

Two-stage density linkage was developed by W.S. Sarle of SAS Institute Inc. There
are currently no other published references on two-stage density linkage.

Ward’s Minimum-Variance Method

The following method is obtained by specifying METHOD=WARD. The distance
between two clusters is defined by

DKL = BKL =
‖x̄K − x̄L‖2

1
NK

+ 1
NL

If d(x,y) = 1
2‖x− y‖2, then the combinatorial formula is

DJM =
(NJ + NK)DJK + (NJ + NL)DJL −NJDKL

NJ + NM

In Ward’s minimum-variance method, the distance between two clusters is the
ANOVAsum of squares between the two clusters added up over all the variables.
At each generation, the within-cluster sum of squares is minimized over all parti-
tions obtainable by merging two clusters from the previous generation. The sums of
squares are easier to interpret when they are divided by the total sum of squares to
give proportions of variance (squared semipartial correlations).

Ward’s method joins clusters to maximize the likelihood at each level of the hierarchy
under the following assumptions:

• multivariate normal mixture

• equal spherical covariance matrices

• equal sampling probabilities

Ward’s method tends to join clusters with a small number of observations, and it is
strongly biased toward producing clusters with roughly the same number of observa-
tions. It is also very sensitive to outliers (Milligan 1980).

Ward (1963) describes a class of hierarchical clustering methods including the mini-
mum variance method.
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Miscellaneous Formulas

The root-mean-square standard deviation of a clusterCK is

RMSSTD=

√
WK

v(NK − 1)

TheR2 statistic for a given level of the hierarchy is

R2 = 1− PG

T

The squared semipartial correlation for joining clustersCK andCL is

semipartialR2 =
BKL

T

The bimodality coefficient is

b =
m2

3 + 1

m4 + 3(n−1)2

(n−2)(n−3)

wherem3 is skewness andm4 is kurtosis. Values ofb greater than 0.555 (the value
for a uniform population) may indicate bimodal or multimodal marginal distributions.
The maximum of 1.0 (obtained for the Bernoulli distribution) is obtained for a popu-
lation with only two distinct values. Very heavy-tailed distributions have small values
of b regardless of the number of modes.

Formulas for the cubic-clustering criterion and approximate expectedR2 are given in
Sarle (1983).

The pseudoF statistic for a given level is

pseudoF =
T−PG
G−1
PG

n−G

The pseudot2 statistic for joiningCK andCL is

pseudot2 =
BKL

WK+WL
NK+NL−2

The pseudoF and t2 statistics may be useful indicators of the number of clusters,
but they arenot distributed asF andt2 random variables. If the data are indepen-
dently sampled from a multivariate normal distribution with a scalar covariance ma-
trix and if the clustering method allocates observations to clusters randomly (which
no clustering method actually does), then the pseudoF statistic is distributed as anF
random variable withv(G − 1) andv(n − G) degrees of freedom. Under the same
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assumptions, the pseudot2 statistic is distributed as anF random variable withv and
v(NK +NL− 2) degrees of freedom. The pseudot2 statistic differs computationally
from Hotelling’sT 2 in that the latter uses a general symmetric covariance matrix in-
stead of a scalar covariance matrix. The pseudoF statistic was suggested by Calinski
and Harabasz (1974). The pseudot2 statistic is related to theJe(2)/Je(1) statistic of
Duda and Hart (1973) by

Je(2)
Je(1)

=
WK + WL

WM
=

1
1 + t2

NK+NL−2

See Milligan and Cooper (1985) and Cooper and Milligan (1988) regarding the
performance of these statistics in estimating the number of population clusters.
Conservative tests for the number of clusters using the pseudoF andt2 statistics can
be obtained by the Bonferroni approach (Hawkins, Muller, and ten Krooden 1982,
pp. 337–340).

Ultrametrics

A dissimilarity measured(x, y) is called anultrametric if it satisfies the following
conditions:

• d(x, x) = 0 for all x

• d(x, y) ≥ 0 for all x, y

• d(x, y) = d(y, x) for all x, y

• d(x, y) ≤ max (d(x, z), d(y, z)) for all x, y, andz

Any hierarchical clustering method induces a dissimilarity measure on the obser-
vations, sayh(xi, xj). Let CM be the cluster with the fewest members that con-
tains bothxi andxj . AssumeCM was formed by joiningCK andCL. Then define
h(xi, xj) = DKL.

If the fusion ofCK andCL reduces the number of clusters fromg to g−1, then define
D(g) = DKL. Johnson (1967) shows that if

0 ≤ D(n) ≤ D(n−1) ≤ · · · ≤ D(2)

thenh(·, ·) is an ultrametric. A method that always satisfies this condition is said to
be amonotonicor ultrametric clustering method. All methods implemented in PROC
CLUSTER except CENTROID, EML, and MEDIAN are ultrametric (Milligan 1979;
Batagelj 1981).
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Algorithms

Anderberg (1973) describes three algorithms for implementing agglomerative hi-
erarchical clustering: stored data, stored distance, and sorted distance. The algo-
rithms used by PROC CLUSTER for each method are indicated inTable 23.2. For
METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD, either the
stored data or the stored distance algorithm can be used. For these methods, if the
data are distances or if you specify the NOSQUARE option, the stored distance algo-
rithm is used; otherwise, the stored data algorithm is used.

Table 23.2. Three Algorithms for Implementing Agglomerative Hierarchical
Clustering

Algorithm
Stored Stored Stored Sorted
Method Data Distance Distance
AVERAGE x x
CENTROID x x
COMPLETE x
DENSITY x
EML x
FLEXIBLE x
MCQUITTY x
MEDIAN x
SINGLE x
TWOSTAGE x
WARD x x

Computational Resources

The CLUSTER procedure stores the data (including the COPY and ID variables) in
memory or, if necessary, on disk. If eigenvalues are computed, the covariance matrix
is stored in memory. If the stored distance or sorted distance algorithm is used, the
distances are stored in memory or, if necessary, on disk.

With coordinate data, the increase in CPU time is roughly proportional to the number
of variables. The VAR statement should list the variables in order of decreasing
variance for greatest efficiency.

For both coordinate and distance data, the dominant factor determining CPU time is
the number of observations. For density methods with coordinate data, the asymptotic
time requirements are somewhere betweenn ln(n) andn2, depending on how the
smoothing parameter increases. For other methods except EML, time is roughly
proportional ton2. For the EML method, time is roughly proportional ton3.

PROC CLUSTER runs much faster if the data can be stored in memory and, if the
stored distance algorithm is used, the distance matrix can be stored in memory as
well. To estimate the bytes of memory needed for the data, use the following equation
and round up to the nearest multiple ofd.
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n(vd + 8d + i

+ i if density estimation or the
sorted distance algorithm used

+ 3d if stored data algorithm used

+ 3d if density estimation used

+ max(8, length of ID variable) if ID variable used

+ length of ID variable if ID variable used

+ sum of lengths of COPY variables) if COPY variables used

where

n is the number of observations

v is the number of variables
d is the size of a C variable of typedouble. For most computers,d = 8.

i is the size of a C variable of typeint. For most computers,i = 4.

The number of bytes needed for the distance matrix isdn(n + 1)/2.

Missing Values

If the data are coordinates, observations with missing values are excluded from
the analysis. If the data are distances, missing values are not allowed in the
lower triangle of the distance matrix. The upper triangle is ignored. For more on
TYPE=DISTANCE data sets, seeAppendix A, “Special SAS Data Sets.”

Ties

At each level of the clustering algorithm, PROC CLUSTER must identify the pair of
clusters with the minimum distance. Sometimes, usually when the data are discrete,
there may be two or more pairs with the same minimum distance. In such cases the
tie must be broken in some arbitrary way. If there are ties, then the results of the
cluster analysis depend on the order of the observations in the data set. The presence
of ties is reported in the SAS log and in the column of the cluster history labeled
“Tie” unless the NOTIE option is specified.

PROC CLUSTER breaks ties as follows. Each cluster is identified by the smallest
observation number among its members. For each pair of clusters, there is a smaller
identification number and a larger identification number. If two or more pairs of clus-
ters are tied for minimum distance between clusters, the pair that has the minimum
larger identification number is merged. If there is a tie for minimum larger identifica-
tion number, the pair that has the minimum smaller identification number is merged.
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This method for breaking ties is different from that used in Version 5. The change in
the algorithm may produce changes in the resulting clusters.

A tie means that the level in the cluster history at which the tie occurred and possibly
some of the subsequent levels are not uniquely determined. Ties that occur early in
the cluster history usually have little effect on the later stages. Ties that occur in the
middle part of the cluster history are cause for further investigation. Ties late in the
cluster history indicate important indeterminacies.

The importance of ties can be assessed by repeating the cluster analysis for several
different random permutations of the observations. The discrepancies at a given level
can be examined by crosstabulating the clusters obtained at that level for all of the
permutations. SeeExample 23.4on page 1027 for details.

Size, Shape, and Correlation

In some biological applications, the organisms that are being clustered may be at
different stages of growth. Unless it is the growth process itself that is being studied,
differences in size among such organisms are not of interest. Therefore, distances
among organisms should be computed in such a way as to control for differences in
size while retaining information about differences in shape.

If coordinate data are measured on an interval scale, you can control for size by
subtracting a measure of the overall size of each observation from each datum. For
example, if no other direct measure of size is available, you could subtract the mean
of each row of the data matrix, producing a row-centered coordinate matrix. An easy
way to subtract the mean of each row is to use PROC STANDARD on the transposed
coordinate matrix:

proc transpose data= coordinate-datatype ;
proc standard m=0;
proc transpose out=row-centered-coordinate-data;

Another way to remove size effects from interval-scale coordinate data is to do a
principal component analysis and discard the first component (Blackith and Reyment
1971).

If the data are measured on a ratio scale, you can control for size by dividing each
datum by a measure of overall size; in this case, the geometric mean is a more natural
measure of size than the arithmetic mean. However, it is often more meaningful
to analyze the logarithms of ratio-scaled data, in which case you can subtract the
arithmetic mean after taking logarithms. You must also consider the dimensions of
measurement. For example, if you have measures of both length and weight, you may
need to cube the measures of length or take the cube root of the weights. Various other
complications may also arise in real applications, such as different growth rates for
different parts of the body (Sneath and Sokal 1973).

Issues of size and shape are pertinent to many areas besides biology (for example,
Hamer and Cunningham 1981). Suppose you have data consisting of subjective rat-
ings made by several different raters. Some raters may tend to give higher overall
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ratings than other raters. Some raters may also tend to spread out their ratings over
more of the scale than do other raters. If it is impossible for you to adjust directly
for rater differences, then distances should be computed in such a way as to control
for both differences in size and variability. For example, if the data are considered
to be measured on an interval scale, you can subtract the mean of each observation
and divide by the standard deviation, producing a row-standardized coordinate ma-
trix. With some clustering methods, analyzing squared Euclidean distances from a
row-standardized coordinate matrix is equivalent to analyzing the matrix of correla-
tions among rows, since squared Euclidean distance is an affine transformation of the
correlation (Hartigan 1975, p. 64).

If you do an analysis of row-centered or row-standardized data, you need to consider
whether the columns (variables) should be standardized before centering or standard-
izing the rows, after centering or standardizing the rows, or both before and after.
If you standardize the columns after standardizing the rows, then strictly speaking
you are not analyzing shape because the profiles are distorted by standardizing the
columns; however, this type of double standardization may be necessary in practice
to get reasonable results. It is not clear whether iterating the standardization of rows
and columns may be of any benefit.

The choice of distance or correlation measure should depend on the meaning of the
data and the purpose of the analysis. Simulation studies that compare distance and
correlation measures are useless unless the data are generated to mimic data from
your field of application; conclusions drawn from artificial data cannot be generalized
because it is possible to generate data such that distances that include size effects
work better or such that correlations work better.

You can standardize the rows of a data set by using a DATA step or by using the
TRANSPOSE and STANDARD procedures. You can also use PROC TRANSPOSE
and then have PROC CORR create a TYPE=CORR data set containing a correlation
matrix. If you want to analyze a TYPE=CORR data set with PROC CLUSTER, you
must use a DATA step to perform the following steps:

1. Set the data set TYPE= to DISTANCE.

2. Convert the correlations to dissimilarities by computing1− r,
√

1− r, 1− r2,
or some other decreasing function.

3. Delete observations for which the variable–TYPE– does not have the value
’CORR’.

SeeExample 23.6on page 1044 for an analysis of a data set in which size information
is detrimental to the classification.
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Output Data Set

The OUTTREE= data set contains one observation for each observation in the input
data set, plus one observation for each cluster of two or more observations (that is,
one observation for each node of the cluster tree). The total number of output obser-
vations is usually2n − 1, wheren is the number of input observations. The density
methods may produce fewer output observations when the number of clusters cannot
be reduced to one.

The label of the OUTTREE= data set identifies the type of cluster analysis performed
and is automatically displayed when the TREE procedure is invoked.

The variables in the OUTTREE= data set are as follows:

• the BY variables, if you use a BY statement

• the ID variable, if you use an ID statement

• the COPY variables, if you use a COPY statement

• –NAME– , a character variable giving the name of the node. If the node is a
cluster, the name isCLn, wheren is the number of the cluster. If the node is an
observation, the name isOBn, wheren is the observation number. If the node
is an observation and the ID statement is used, the name is the formatted value
of the ID variable.

• –PARENT– , a character variable giving the value of–NAME– of the parent
of the node

• –NCL– , the number of clusters

• –FREQ– , the number of observations in the current cluster

• –HEIGHT– , the distance or similarity between the last clusters joined, as
defined in the section“Clustering Methods”on page 975. The variable

–HEIGHT– is used by the TREE procedure as the default height axis. The
label of the–HEIGHT– variable identifies the between-cluster distance mea-
sure. For METHOD=TWOSTAGE, the–HEIGHT– variable contains the den-
sities at which clusters joined in the first stage; for clusters formed in the second
stage,–HEIGHT– is a very small negative number.

If the input data set contains coordinates, the following variables appear in the output
data set:

• the variables containing the coordinates used in the cluster analysis. For out-
put observations that correspond to input observations, the values of the co-
ordinates are the same in both data sets except for some slight numeric error
possibly introduced by standardizing and unstandardizing if the STANDARD
option is used. For output observations that correspond to clusters of more than
one input observation, the values of the coordinates are the cluster means.

• –ERSQ– , the approximate expected value ofR2 under the uniform null hy-
pothesis
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• –RATIO– , equal to1−–ERSQ–
1−–RSQ–

• –LOGR– , natural logarithm of–RATIO–
• –CCC– , the cubic clustering criterion

The variables–ERSQ– , –RATIO– , –LOGR– , and–CCC– have missing values
when the number of clusters is greater than one-fifth the number of observations.

If the input data set contains coordinates and METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD, then the following variables
appear in the output data set.

• –DIST– , the Euclidean distance between the means of the last clusters joined

• –AVLINK– , the average distance between the last clusters joined

If the input data set contains coordinates or METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD, then the following variables
appear in the output data set:

• –RMSSTD– , the root-mean-square standard deviation of the current cluster

• –SPRSQ– , the semipartial squared multiple correlation or the decrease in the
proportion of variance accounted for due to joining two clusters to form the
current cluster

• –RSQ– , the squared multiple correlation

• –PSF– , the pseudoF statistic

• –PST2– , the pseudot2 statistic

If METHOD=EML, then the following variable appears in the output data set:

• –LNLR– , the log-likelihood ratio

If METHOD=TWOSTAGE or METHOD=DENSITY, the following variable appears
in the output data set:

• –MODE– , pertaining to the modal clusters. With METHOD=DENSITY, the

–MODE– variable indicates the number of modal clusters contained by the
current cluster. With METHOD=TWOSTAGE, the–MODE– variable gives
the maximum density in each modal cluster and the fusion density,d∗, for clus-
ters containing two or more modal clusters; for clusters containing no modal
clusters,–MODE– is missing.

If nonparametric density estimates are requested (when METHOD=DENSITY or
METHOD=TWOSTAGE and the HYBRID option is not used; or when the TRIM=
option is used), the output data set contains

• –DENS– , the maximum density in the current cluster
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Displayed Output

If you specify the SIMPLE option and the data are coordinates, PROC CLUSTER
produces simple descriptive statistics for each variable:

• the Mean

• the standard deviation, Std Dev

• the Skewness

• the Kurtosis

• a coefficient of Bimodality

If the data are coordinates and you do not specify the NOEIGEN option, PROC
CLUSTER displays

• the Eigenvalues of the Correlation or Covariance Matrix

• the Difference between successive eigenvalues

• the Proportion of variance explained by each eigenvalue

• the Cumulative proportion of variance explained

If the data are coordinates, PROC CLUSTER displays the Root-Mean-Square Total-
Sample Standard Deviation of the variables

If the distances are normalized, PROC CLUSTER displays one of the following,
depending on whether squared or unsquared distances are used:

• the Root-Mean-Square Distance Between Observations

• the Mean Distance Between Observations

For the generations in the clustering process specified by the PRINT= option, PROC
CLUSTER displays

• the Number of Clusters or NCL

• the names of the Clusters Joined. The observations are identified by the format-
ted value of the ID variable, if any; otherwise, the observations are identified by
OBn, wheren is the observation number. The CLUSTER procedure displays
the entire value of the ID variable in the cluster history instead of truncating
at 16 characters. Long ID values may be flowed onto several lines. Clusters
of two or more observations are identified as CLn, wheren is the number of
clusters existing after the cluster in question is formed.

• the number of observations in the new cluster, Frequency of New Cluster or
FREQ
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If you specify the RMSSTD option and if the data are coordinates or if you spec-
ify METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD, then
PROC CLUSTER displays the root-mean-square standard deviation of the new clus-
ter, RMS Std of New Cluster or RMS Std.

PROC CLUSTER displays the following items if you specify METHOD=WARD.
It also displays them if you specify the RSQUARE option and either the data are
coordinates or you specify METHOD=AVERAGE or METHOD=CENTROID:

• the decrease in the proportion of variance accounted for resulting from joining
the two clusters, Semipartial R-Squared or SPRSQ. This equals the between-
cluster sum of squares divided by the corrected total sum of squares.

• the squared multiple correlation, R-Squared or RSQ.R2 is the proportion of
variance accounted for by the clusters.

If you specify the CCC option and the data are coordinates, PROC CLUSTER dis-
plays

• Approximate Expected R-Squared or ERSQ, the approximate expected value
of R2 under the uniform null hypothesis

• the Cubic Clustering Criterion or CCC. The cubic clustering criterion and ap-
proximate expectedR2 are given missing values when the number of clusters
is greater than one-fifth the number of observations.

If you specify the PSEUDO option and if the data are coordinates or
METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD, then
PROC CLUSTER displays

• PseudoF or PSF, the pseudoF statistic measuring the separation among all
the clusters at the current level

• Pseudot2 or PST2, the pseudot2 statistic measuring the separation between
the two clusters most recently joined

If you specify the NOSQUARE option and METHOD=AVERAGE, PROC
CLUSTER displays the (Normalized) Average Distance or (Norm) Aver Dist, the
average distance between pairs of objects in the two clusters joined with one object
from each cluster.

If you do not specify the NOSQUARE option and METHOD=AVERAGE, PROC
CLUSTER displays the (Normalized) RMS Distance or (Norm) RMS Dist, the root-
mean-square distance between pairs of objects in the two clusters joined with one
object from each cluster.

If METHOD=CENTROID, PROC CLUSTER displays the (Normalized) Centroid
Distance or (Norm) Cent Dist, the distance between the two cluster centroids.
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If METHOD=COMPLETE, PROC CLUSTER displays the (Normalized) Maximum
Distance or (Norm) Max Dist, the maximum distance between the two clusters.

If METHOD=DENSITY or METHOD=TWOSTAGE, PROC CLUSTER displays

• Normalized Fusion Density or Normalized Fusion Dens, the value ofd∗ as
defined in the section“Clustering Methods”on page 975

• the Normalized Maximum Density in Each Cluster joined, including the Lesser
or Min, and the Greater or Max, of the two maximum density values

If METHOD=EML, PROC CLUSTER displays

• Log Likelihood Ratio or LNLR

• Log Likelihood or LNLIKE

If METHOD=FLEXIBLE, PROC CLUSTER displays the (Normalized) Flexible
Distance or (Norm) Flex Dist, the distance between the two clusters based on the
Lance-Williams flexible formula.

If METHOD=MEDIAN, PROC CLUSTER displays the (Normalized) Median
Distance or (Norm) Med Dist, the distance between the two clusters based on the
median method.

If METHOD=MCQUITTY, PROC CLUSTER displays the (Normalized) McQuitty’s
Similarity or (Norm) MCQ, the distance between the two clusters based on
McQuitty’s similarity method.

If METHOD=SINGLE, PROC CLUSTER displays the (Normalized) Minimum
Distance or (Norm) Min Dist, the minimum distance between the two clusters.

If you specify the NONORM option and METHOD=WARD, PROC CLUSTER dis-
plays the Between-Cluster Sum of Squares or BSS, theANOVAsum of squares be-
tween the two clusters joined.

If you specify neither the NOTIE option nor METHOD=TWOSTAGE or
METHOD=DENSITY, PROC CLUSTER displaysTie, where a T in the col-
umn indicates a tie for minimum distance and a blank indicates the absence of a
tie.

After the cluster history, if METHOD=TWOSTAGE or METHOD=DENSITY,
PROC CLUSTER displays the number of modal clusters.

ODS Table Names

PROC CLUSTER assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 23.3. ODS Tables Produced in PROC CLUSTER

ODS Table Name Description Statement Option
ClusterHistory Obs or clusters joined, frequen-

cies and other cluster statistics
PROC default

SimpleStatistics Simple statistics, before or after
trimming

PROC SIMPLE

EigenvalueTable Eigenvalues of the CORR or
COV matrix

PROC default

Examples

Example 23.1. Cluster Analysis of Flying Mileages between
Ten American Cities

This first example clusters ten American cities based on the flying mileages between
them. Six clustering methods are shown with corresponding tree diagrams produced
by the TREE procedure. The EML method cannot be used because it requires coor-
dinate data. The other omitted methods produce the same clusters, although not the
same distances between clusters, as one of the illustrated methods: complete linkage
and the flexible-beta method yield the same clusters as Ward’s method, McQuitty’s
similarity analysis produces the same clusters as average linkage, and the median
method corresponds to the centroid method.

All of the methods suggest a division of the cities into two clusters along the east-
west dimension. There is disagreement, however, about which cluster Denver should
belong to. Some of the methods indicate a possible third cluster containing Denver
and Houston. The following statements produceOutput 23.1.1:

title ’Cluster Analysis of Flying Mileages Between 10 American Cities’;
data mileages(type=distance);

input (atlanta chicago denver houston losangeles
miami newyork sanfran seattle washdc) (5.)
@55 city $15.;

datalines;
0 ATLANTA

587 0 CHICAGO
1212 920 0 DENVER

701 940 879 0 HOUSTON
1936 1745 831 1374 0 LOS ANGELES

604 1188 1726 968 2339 0 MIAMI
748 713 1631 1420 2451 1092 0 NEW YORK

2139 1858 949 1645 347 2594 2571 0 SAN FRANCISCO
2182 1737 1021 1891 959 2734 2408 678 0 SEATTLE

543 597 1494 1220 2300 923 205 2442 2329 0 WASHINGTON D.C.
;

/*---------------------- Average linkage --------------------*/
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proc cluster data=mileages method=average pseudo;
id city;

run;

proc tree horizontal spaces=2;
id city;

run;

/*---------------------- Centroid method --------------------*/
proc cluster data=mileages method=centroid pseudo;

id city;
run;

proc tree horizontal spaces=2;
id city;

run;

/*-------- Density linkage with 3rd-nearest-neighbor --------*/
proc cluster data=mileages method=density k=3;

id city;
run;

proc tree horizontal spaces=2;
id city;

run;

/*--------------------- Single linkage ----------------------*/
proc cluster data=mileages method=single;

id city;
run;

proc tree horizontal spaces=2;
id city;

run;

/*--- Two-stage density linkage with 3rd-nearest-neighbor ---*/
proc cluster data=mileages method=twostage k=3;

id city;
run;

proc tree horizontal spaces=2;
id city;

run;

/* Ward’s minimum variance with pseudo $F$ and $t^2$ statistics */
proc cluster data=mileages method=ward pseudo;

id city;
run;

proc tree horizontal spaces=2;
id city;

run;
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Output 23.1.1. Statistics and Tree Diagrams for Six Different Clustering Methods

Cluster Analysis of Flying Mileages Between 10 American Cities

The CLUSTER Procedure
Average Linkage Cluster Analysis

Root-Mean-Square Distance Between Observations = 1580.242

Cluster History
Norm T

RMS i
NCL ---------Clusters Joined---------- FREQ PSF PST2 Dist e

9 NEW YORK WASHINGTON D.C. 2 66.7 . 0.1297
8 LOS ANGELES SAN FRANCISCO 2 39.2 . 0.2196
7 ATLANTA CHICAGO 2 21.7 . 0.3715
6 CL7 CL9 4 14.5 3.4 0.4149
5 CL8 SEATTLE 3 12.4 7.3 0.5255
4 DENVER HOUSTON 2 13.9 . 0.5562
3 CL6 MIAMI 5 15.5 3.8 0.6185
2 CL3 CL4 7 16.0 5.3 0.8005
1 CL2 CL5 10 . 16.0 1.2967
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Cluster Analysis of Flying Mileages Between 10 American Cities

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Root-Mean-Square Distance Between Observations = 1580.242

Cluster History
Norm T
Cent i

NCL ---------Clusters Joined---------- FREQ PSF PST2 Dist e

9 NEW YORK WASHINGTON D.C. 2 66.7 . 0.1297
8 LOS ANGELES SAN FRANCISCO 2 39.2 . 0.2196
7 ATLANTA CHICAGO 2 21.7 . 0.3715
6 CL7 CL9 4 14.5 3.4 0.3652
5 CL8 SEATTLE 3 12.4 7.3 0.5139
4 DENVER CL5 4 12.4 2.1 0.5337
3 CL6 MIAMI 5 14.2 3.8 0.5743
2 CL3 HOUSTON 6 22.1 2.6 0.6091
1 CL2 CL4 10 . 22.1 1.173
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Cluster Analysis of Flying Mileages Between 10 American Cities

The CLUSTER Procedure
Density Linkage Cluster Analysis

K = 3

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL ---------Clusters Joined---------- FREQ Density Lesser Greater e

9 ATLANTA WASHINGTON D.C. 2 96.106 92.5043 100.0
8 CL9 CHICAGO 3 95.263 90.9548 100.0
7 CL8 NEW YORK 4 86.465 76.1571 100.0
6 CL7 HOUSTON 5 74.079 61.7747 100.0 T
5 CL6 MIAMI 6 74.079 58.8299 100.0
4 LOS ANGELES SAN FRANCISCO 2 71.968 65.3430 80.0885
3 CL4 SEATTLE 3 66.341 56.6215 80.0885
2 CL3 DENVER 4 63.509 61.7747 80.0885
1 CL5 CL2 10 61.775 * 80.0885 100.0

* indicates fusion of two modal or multimodal clusters
2 modal clusters have been formed.
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Cluster Analysis of Flying Mileages Between 10 American Cities

The CLUSTER Procedure
Single Linkage Cluster Analysis

Mean Distance Between Observations = 1417.133

Cluster History
Norm T

Min i
NCL ---------Clusters Joined---------- FREQ Dist e

9 NEW YORK WASHINGTON D.C. 2 0.1447
8 LOS ANGELES SAN FRANCISCO 2 0.2449
7 ATLANTA CL9 3 0.3832
6 CL7 CHICAGO 4 0.4142
5 CL6 MIAMI 5 0.4262
4 CL8 SEATTLE 3 0.4784
3 CL5 HOUSTON 6 0.4947
2 DENVER CL4 4 0.5864
1 CL3 CL2 10 0.6203
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Cluster Analysis of Flying Mileages Between 10 American Cities

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

K = 3

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL ---------Clusters Joined---------- FREQ Density Lesser Greater e

9 ATLANTA WASHINGTON D.C. 2 96.106 92.5043 100.0
8 CL9 CHICAGO 3 95.263 90.9548 100.0
7 CL8 NEW YORK 4 86.465 76.1571 100.0
6 CL7 HOUSTON 5 74.079 61.7747 100.0 T
5 CL6 MIAMI 6 74.079 58.8299 100.0
4 LOS ANGELES SAN FRANCISCO 2 71.968 65.3430 80.0885
3 CL4 SEATTLE 3 66.341 56.6215 80.0885
2 CL3 DENVER 4 63.509 61.7747 80.0885
1 CL5 CL2 10 61.775 80.0885 100.0

2 modal clusters have been formed.
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Cluster Analysis of Flying Mileages Between 10 American Cities

The CLUSTER Procedure
Ward’s Minimum Variance Cluster Analysis

Root-Mean-Square Distance Between Observations = 1580.242

Cluster History
T
i

NCL ---------Clusters Joined---------- FREQ SPRSQ RSQ PSF PST2 e

9 NEW YORK WASHINGTON D.C. 2 0.0019 .998 66.7 .
8 LOS ANGELES SAN FRANCISCO 2 0.0054 .993 39.2 .
7 ATLANTA CHICAGO 2 0.0153 .977 21.7 .
6 CL7 CL9 4 0.0296 .948 14.5 3.4
5 DENVER HOUSTON 2 0.0344 .913 13.2 .
4 CL8 SEATTLE 3 0.0391 .874 13.9 7.3
3 CL6 MIAMI 5 0.0586 .816 15.5 3.8
2 CL3 CL5 7 0.1488 .667 16.0 5.3
1 CL2 CL4 10 0.6669 .000 . 16.0

Example 23.2. Crude Birth and Death Rates

The following example uses the SAS data setPoverty created in the“Getting Started”
section beginning on page 958. The data, from Rouncefield (1995), are birth rates,
death rates, and infant death rates for 97 countries. Six cluster analyses are performed
with eight methods. Scatter plots showing cluster membership at selected levels are
produced instead of tree diagrams.

Each cluster analysis is performed by a macro called ANALYZE. The macro takes
two arguments. The first, &METHOD, specifies the value of the METHOD= option
to be used in the PROC CLUSTER statement. The second, &NCL, must be specified
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as a list of integers, separated by blanks, indicating the number of clusters desired
in each scatter plot. For example, the first invocation of ANALYZE specifies the
AVERAGE method and requests plots of 3 and 8 clusters. When two-stage density
linkage is used, the K= and R= options are specified as part of the first argument.

The ANALYZE macro first invokes the CLUSTER procedure with
METHOD=&METHOD, where &METHOD represents the value of the first
argument to ANALYZE. This part of the macro produces the PROC CLUSTER
output shown.

The %DO loop processes &NCL, the list of numbers of clusters to plot. The macro
variable &K is a counter that indexes the numbers within &NCL. The %SCAN func-
tion picks out the &Kth number in &NCL, which is then assigned to the macro vari-
able &N. When &K exceeds the number of numbers in &NCL, %SCAN returns a
null string. Thus, the %DO loop executes while &N is not equal to a null string. In
the %WHILE condition, a null string is indicated by the absence of any nonblank
characters between the comparison operator (NE) and the right parenthesis that ter-
minates the condition.

Within the %DO loop, the TREE procedure creates an output data set containing &N
clusters. The GPLOT procedure then produces a scatter plot in which each obser-
vation is identified by the number of the cluster to which it belongs. The TITLE2
statement uses double quotes so that &N and &METHOD can be used within the ti-
tle. At the end of the loop, &K is incremented by 1, and the next number is extracted
from &NCL by %SCAN.

For this example, plots are obtained only for average linkage. To generate plots for
other methods, follow the example shown in the first macro call. The following
statements produceOutput 23.2.1throughOutput 23.2.7.

title ’Cluster Analysis of Birth and Death Rates’;

%macro analyze(method,ncl);
proc cluster data=poverty outtree=tree method=&method p=15 ccc pseudo;

var birth death;
title2;

run;
%let k=1;
%let n=%scan(&ncl,&k);
%do %while(&n NE);

proc tree data=tree noprint out=out ncl=&n;
copy birth death;

run;
legend1 frame cframe=ligr cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot;

plot death*birth=cluster /
frame cframe=ligr legend=legend1 vaxis=axis1 haxis=axis2;
title2 "Plot of &n Clusters from METHOD=&METHOD";

run;
%let k=%eval(&k+1);
%let n=%scan(&ncl,&k);
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%end;
%mend;

%analyze(average,3 8)
%analyze(complete,3)
%analyze(single,7 10)
%analyze(two k=10,3)
%analyze(two k=18,2)

For average linkage, the CCC has peaks at 3, 8, 10, and 12 clusters, but the 3-cluster
peak is lower than the 8-cluster peak. The pseudoF statistic has peaks at 3, 8, and
12 clusters. The pseudot2 statistic drops sharply at 3 clusters, continues to fall at
4 clusters, and has a particularly low value at 12 clusters. However, there are not
enough data to seriously consider as many as 12 clusters. Scatter plots are given for
3 and 8 clusters. The results are shown inOutput 23.2.1throughOutput 23.2.2. In
Output 23.2.2, the eighth cluster consists of the two outlying observations, Mexico
and Korea.

Output 23.2.1. Clusters for Birth and Death Rates: METHOD=AVERAGE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Average Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 10.127
Root-Mean-Square Distance Between Observations = 20.25399

Cluster History
Norm T

RMS i
NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

15 CL27 CL20 18 0.0035 .980 .975 2.61 292 18.6 0.2325
14 CL23 CL17 28 0.0034 .977 .972 1.97 271 17.7 0.2358
13 CL18 CL54 8 0.0015 .975 .969 2.35 279 7.1 0.2432
12 CL21 CL26 8 0.0015 .974 .966 2.85 290 6.1 0.2493
11 CL19 CL24 12 0.0033 .971 .962 2.78 285 14.8 0.2767
10 CL22 CL16 12 0.0036 .967 .957 2.84 284 17.4 0.2858

9 CL15 CL28 22 0.0061 .961 .951 2.45 271 17.5 0.3353
8 OB23 OB61 2 0.0014 .960 .943 3.59 302 . 0.3703
7 CL25 CL11 17 0.0098 .950 .933 3.01 284 23.3 0.4033
6 CL7 CL12 25 0.0122 .938 .920 2.63 273 14.8 0.4132
5 CL10 CL14 40 0.0303 .907 .902 0.59 225 82.7 0.4584
4 CL13 CL6 33 0.0244 .883 .875 0.77 234 22.2 0.5194
3 CL9 CL8 24 0.0182 .865 .827 2.13 300 27.7 0.735
2 CL5 CL3 64 0.1836 .681 .697 -.55 203 148 0.8402
1 CL2 CL4 97 0.6810 .000 .000 0.00 . 203 1.3348
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Output 23.2.2. Plot of Three Clusters, METHOD=AVERAGE

Output 23.2.3. Plot of Eight Clusters, METHOD=AVERAGE

Complete linkage shows CCC peaks at 3, 8 and 12 clusters. The pseudoF statistic
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peaks at 3 and 12 clusters. The pseudot2 statistic indicates 3 clusters.

The scatter plot for 3 clusters is shown. The results are shown inOutput 23.2.4.

Output 23.2.4. Clusters for Birth and Death Rates: METHOD=COMPLETE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Complete Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 10.127
Mean Distance Between Observations = 17.13099

Cluster History
Norm T

Max i
NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

15 CL22 CL33 8 0.0015 .983 .975 3.80 329 6.1 0.4092
14 CL56 CL18 8 0.0014 .981 .972 3.97 331 6.6 0.4255
13 CL30 CL44 8 0.0019 .979 .969 4.04 330 19.0 0.4332
12 OB23 OB61 2 0.0014 .978 .966 4.45 340 . 0.4378
11 CL19 CL24 24 0.0034 .974 .962 4.17 327 24.1 0.4962
10 CL17 CL28 12 0.0033 .971 .957 4.18 325 14.8 0.5204

9 CL20 CL13 16 0.0067 .964 .951 3.38 297 25.2 0.5236
8 CL11 CL21 32 0.0054 .959 .943 3.44 297 19.7 0.6001
7 CL26 CL15 13 0.0096 .949 .933 2.93 282 28.9 0.7233
6 CL14 CL10 20 0.0128 .937 .920 2.46 269 27.7 0.8033
5 CL9 CL16 30 0.0237 .913 .902 1.29 241 47.1 0.8993
4 CL6 CL7 33 0.0240 .889 .875 1.38 248 21.7 1.2165
3 CL5 CL12 32 0.0178 .871 .827 2.56 317 13.6 1.2326
2 CL3 CL8 64 0.1900 .681 .697 -.55 203 167 1.5412
1 CL2 CL4 97 0.6810 .000 .000 0.00 . 203 2.5233
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The CCC and pseudoF statistics are not appropriate for use with single linkage
because of the method’s tendency to chop off tails of distributions. The pseudot2

statistic can be used by looking forlarge values and taking the number of clusters
to be one greater than the level at which the large pseudot2 value is displayed. For
these data, there are large values at levels 6 and 9, suggesting 7 or 10 clusters.

The scatter plots for 7 and 10 clusters are shown. The results are shown inOutput
23.2.5.
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Output 23.2.5. Clusters for Birth and Death Rates: METHOD=SINGLE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Single Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 10.127
Mean Distance Between Observations = 17.13099

Cluster History
Norm T

Min i
NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

15 CL37 CL19 8 0.0014 .968 .975 -2.3 178 6.6 0.1331
14 CL20 CL23 15 0.0059 .962 .972 -3.1 162 18.7 0.1412
13 CL14 CL16 19 0.0054 .957 .969 -3.4 155 8.8 0.1442
12 CL26 OB58 31 0.0014 .955 .966 -2.7 165 4.0 0.1486
11 OB86 CL18 4 0.0003 .955 .962 -1.6 183 3.8 0.1495
10 CL13 CL11 23 0.0088 .946 .957 -2.3 170 11.3 0.1518

9 CL15 CL10 31 0.0210 .925 .951 -4.4 136 21.8 0.1593 T
8 CL22 CL17 30 0.0235 .902 .943 -5.8 117 45.7 0.1593
7 CL8 OB75 31 0.0052 .897 .933 -4.7 130 4.0 0.1628
6 CL7 CL12 62 0.2023 .694 .920 -15 41.3 223 0.1725
5 CL6 CL9 93 0.6681 .026 .902 -26 0.6 199 0.1756
4 CL5 OB48 94 0.0056 .021 .875 -24 0.7 0.5 0.1811 T
3 CL4 OB67 95 0.0083 .012 .827 -15 0.6 0.8 0.1811
2 OB23 OB61 2 0.0014 .011 .697 -13 1.0 . 0.4378
1 CL3 CL2 97 0.0109 .000 .000 0.00 . 1.0 0.5815
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For kth-nearest-neighbor density linkage, the number of modes as a function ofk is
as follows (not all of these analyses are shown):

k modes
3 13
4 6

5-7 4
8-15 3
16-21 2
22+ 1

Thus, there is strong evidence of 3 modes and an indication of the possibility of
2 modes. Uniform-kernel density linkage gives similar results. For K=10 (10th-
nearest-neighbor density linkage), the scatter plot for 3 clusters is shown; and for
K=18, the scatter plot for 2 clusters is shown. The results are shown inOutput 23.2.6.
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Output 23.2.6. Clusters for Birth and Death Rates: METHOD=TWOSTAGE, K=10

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

K = 10
Root-Mean-Square Total-Sample Standard Deviation = 10.127

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL --Clusters Joined-- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Density Lesser Greater e

15 CL16 OB94 22 0.0015 .921 .975 -11 68.4 1.4 9.2234 6.7927 15.3069
14 CL19 OB49 28 0.0021 .919 .972 -11 72.4 1.8 8.7369 5.9334 33.4385
13 CL15 OB52 23 0.0024 .917 .969 -10 76.9 2.3 8.5847 5.9651 15.3069
12 CL13 OB96 24 0.0018 .915 .966 -9.3 83.0 1.6 7.9252 5.4724 15.3069
11 CL12 OB93 25 0.0025 .912 .962 -8.5 89.5 2.2 7.8913 5.4401 15.3069
10 CL11 OB78 26 0.0031 .909 .957 -7.7 96.9 2.5 7.787 5.4082 15.3069

9 CL10 OB76 27 0.0026 .907 .951 -6.7 107 2.1 7.7133 5.4401 15.3069
8 CL9 OB77 28 0.0023 .904 .943 -5.5 120 1.7 7.4256 4.9017 15.3069
7 CL8 OB43 29 0.0022 .902 .933 -4.1 138 1.6 6.927 4.4764 15.3069
6 CL7 OB87 30 0.0043 .898 .920 -2.7 160 3.1 4.932 2.9977 15.3069
5 CL6 OB82 31 0.0055 .892 .902 -1.1 191 3.7 3.7331 2.1560 15.3069
4 CL22 OB61 37 0.0079 .884 .875 0.93 237 10.6 3.1713 1.6308 100.0
3 CL14 OB23 29 0.0126 .872 .827 2.60 320 10.4 2.0654 1.0744 33.4385
2 CL4 CL3 66 0.2129 .659 .697 -1.3 183 172 12.409 33.4385 100.0
1 CL2 CL5 97 0.6588 .000 .000 0.00 . 183 10.071 15.3069 100.0

3 modal clusters have been formed.
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Output 23.2.7. Clusters for Birth and Death Rates: METHOD=TWOSTAGE, K=18

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

K = 18
Root-Mean-Square Total-Sample Standard Deviation = 10.127

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL --Clusters Joined-- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Density Lesser Greater e

15 CL16 OB72 46 0.0107 .799 .975 -21 23.3 3.0 10.118 7.7445 23.4457
14 CL15 OB94 47 0.0098 .789 .972 -21 23.9 2.7 9.676 7.1257 23.4457
13 CL14 OB51 48 0.0037 .786 .969 -20 25.6 1.0 9.409 6.8398 23.4457 T
12 CL13 OB96 49 0.0099 .776 .966 -19 26.7 2.6 9.409 6.8398 23.4457
11 CL12 OB76 50 0.0114 .764 .962 -19 27.9 2.9 8.8136 6.3138 23.4457
10 CL11 OB77 51 0.0021 .762 .957 -18 31.0 0.5 8.6593 6.0751 23.4457

9 CL10 OB78 52 0.0103 .752 .951 -17 33.3 2.5 8.6007 6.0976 23.4457
8 CL9 OB43 53 0.0034 .748 .943 -16 37.8 0.8 8.4964 5.9160 23.4457
7 CL8 OB93 54 0.0109 .737 .933 -15 42.1 2.6 8.367 5.7913 23.4457
6 CL7 OB88 55 0.0110 .726 .920 -13 48.3 2.6 7.916 5.3679 23.4457
5 CL6 OB87 56 0.0120 .714 .902 -12 57.5 2.7 6.6917 4.3415 23.4457
4 CL20 OB61 39 0.0077 .707 .875 -9.8 74.7 8.3 6.2578 3.2882 100.0
3 CL5 OB82 57 0.0138 .693 .827 -5.0 106 3.0 5.3605 3.2834 23.4457
2 CL3 OB23 58 0.0117 .681 .697 -.54 203 2.5 3.2687 1.7568 23.4457
1 CL2 CL4 97 0.6812 .000 .000 0.00 . 203 13.764 23.4457 100.0

2 modal clusters have been formed.
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In summary, most of the clustering methods indicate 3 or 8 clusters. Most methods
agree at the 3-cluster level, but at the other levels, there is considerable disagreement
about the composition of the clusters. The presence of numerous ties also complicates
the analysis; seeExample 23.4on page 1027.

Example 23.3. Cluster Analysis of Fisher Iris Data

The iris data published by Fisher (1936) have been widely used for examples in dis-
criminant analysis and cluster analysis. The sepal length, sepal width, petal length,
and petal width are measured in millimeters on fifty iris specimens from each of
three species,Iris setosa, I. versicolor,andI. virginica. Mezzich and Solomon (1980)
discuss a variety of cluster analyses of the iris data.

This example analyzes the iris data by Ward’s method and two-stage density linkage
and then illustrates how the FASTCLUS procedure can be used in combination with
PROC CLUSTER to analyze large data sets.

title ’Cluster Analysis of Fisher (1936) Iris Data’;
proc format;

value specname
1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

run;

data iris;
input SepalLength SepalWidth PetalLength PetalWidth Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’
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SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

symbol = put(species, specname10.);
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;

The following macro, SHOW, is used in the subsequent analyses to display cluster
results. It invokes the FREQ procedure to crosstabulate clusters and species. The
CANDISC procedure computes canonical variables for discriminating among the
clusters, and the first two canonical variables are plotted to show cluster member-
ship. SeeChapter 21, “The CANDISC Procedure,”for a canonical discriminant
analysis of the iris species.

%macro show;
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proc freq;
tables cluster*species;

run;
proc candisc noprint out=can;

class cluster;
var petal: sepal:;

run;
legend1 frame cframe=ligr cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot;

plot can2*can1=cluster /
frame cframe=ligr legend=legend1 vaxis=axis1 haxis=axis2;

run;
%mend;

The first analysis clusters the iris data by Ward’s method and plots the CCC and
pseudoF andt2 statistics. The CCC has a local peak at 3 clusters but a higher peak
at 5 clusters. The pseudoF statistic indicates 3 clusters, while the pseudot2 statistic
suggests 3 or 6 clusters. For large numbers of clusters, Version 6 of the SAS System
produces somewhat different results than previous versions of PROC CLUSTER.
This is due to changes in the treatment of ties. Results are identical for 5 or fewer
clusters.

The TREE procedure creates an output data set containing the 3-cluster partition for
use by the SHOW macro. The FREQ procedure reveals 16 misclassifications. The
results are shown inOutput 23.3.1.

title2 ’By Ward’’s Method’;
proc cluster data=iris method=ward print=15 ccc pseudo;

var petal: sepal:;
copy species;

run;
legend1 frame cframe=ligr cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none order=(0 to 600 by 100);
axis2 minor=none order=(1 to 30 by 1);
axis3 label=(angle=90 rotate=0) minor=none order=(0 to 7 by 1);
proc gplot;

plot _ccc_*_ncl_ /
frame cframe=ligr legend=legend1 vaxis=axis3 haxis=axis2;

plot _psf_*_ncl_ _pst2_*_ncl_ /overlay
frame cframe=ligr legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: species;

run;

%show;
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Output 23.3.1. Cluster Analysis of Fisher Iris Data:CLUSTER with
METHOD=WARD

Cluster Analysis of Fisher (1936) Iris Data
By Ward’s Method

The CLUSTER Procedure
Ward’s Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 422.824171 398.557096 0.9246 0.9246
2 24.267075 16.446125 0.0531 0.9777
3 7.820950 5.437441 0.0171 0.9948
4 2.383509 0.0052 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 10.69224
Root-Mean-Square Distance Between Observations = 30.24221

Cluster History
T
i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 e

15 CL24 CL28 15 0.0016 .971 .958 5.93 324 9.8
14 CL21 CL53 7 0.0019 .969 .955 5.85 329 5.1
13 CL18 CL48 15 0.0023 .967 .953 5.69 334 8.9
12 CL16 CL23 24 0.0023 .965 .950 4.63 342 9.6
11 CL14 CL43 12 0.0025 .962 .946 4.67 353 5.8
10 CL26 CL20 22 0.0027 .959 .942 4.81 368 12.9

9 CL27 CL17 31 0.0031 .956 .936 5.02 387 17.8
8 CL35 CL15 23 0.0031 .953 .930 5.44 414 13.8
7 CL10 CL47 26 0.0058 .947 .921 5.43 430 19.1
6 CL8 CL13 38 0.0060 .941 .911 5.81 463 16.3
5 CL9 CL19 50 0.0105 .931 .895 5.82 488 43.2
4 CL12 CL11 36 0.0172 .914 .872 3.99 515 41.0
3 CL6 CL7 64 0.0301 .884 .827 4.33 558 57.2
2 CL4 CL3 100 0.1110 .773 .697 3.83 503 116
1 CL5 CL2 150 0.7726 .000 .000 0.00 . 503
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Cluster Analysis of Fisher (1936) Iris Data

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 0 | 49 | 15 | 64
| 0.00 | 32.67 | 10.00 | 42.67
| 0.00 | 76.56 | 23.44 |
| 0.00 | 98.00 | 30.00 |

---------+--------+--------+--------+
2 | 0 | 1 | 35 | 36

| 0.00 | 0.67 | 23.33 | 24.00
| 0.00 | 2.78 | 97.22 |
| 0.00 | 2.00 | 70.00 |

---------+--------+--------+--------+
3 | 50 | 0 | 0 | 50

| 33.33 | 0.00 | 0.00 | 33.33
| 100.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00

The second analysis uses two-stage density linkage. The raw data suggest 2 or 6
modes instead of 3:
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k modes
3 12

4-6 6
7 4
8 3

9-50 2
51+ 1

However, the ACECLUS procedure can be used to reveal 3 modes. This analysis
uses K=8 to produce 3 clusters for comparison with other analyses. There are only 6
misclassifications. The results are shown inOutput 23.3.2.

title2 ’By Two-Stage Density Linkage’;
proc cluster data=iris method=twostage k=8 print=15 ccc pseudo;

var petal: sepal:;
copy species;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: species;

run;

%show;
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Output 23.3.2. Cluster Analysis of Fisher Iris Data: CLUSTER with
METHOD=TWOSTAGE

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 422.824171 398.557096 0.9246 0.9246
2 24.267075 16.446125 0.0531 0.9777
3 7.820950 5.437441 0.0171 0.9948
4 2.383509 0.0052 1.0000

K = 8
Root-Mean-Square Total-Sample Standard Deviation = 10.69224

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL --Clusters Joined-- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Density Lesser Greater e

15 CL17 OB127 44 0.0025 .916 .958 -11 105 3.4 0.3903 0.2066 3.5156
14 CL16 OB137 50 0.0023 .913 .955 -11 110 5.6 0.3637 0.1837 100.0
13 CL15 OB74 45 0.0029 .910 .953 -10 116 3.7 0.3553 0.2130 3.5156
12 CL28 OB49 46 0.0036 .907 .950 -8.0 122 5.2 0.3223 0.1736 8.3678 T
11 CL12 OB85 47 0.0036 .903 .946 -7.6 130 4.8 0.3223 0.1736 8.3678
10 CL11 OB98 48 0.0033 .900 .942 -7.1 140 4.1 0.2879 0.1479 8.3678

9 CL13 OB24 46 0.0037 .896 .936 -6.5 152 4.4 0.2802 0.2005 3.5156
8 CL10 OB25 49 0.0019 .894 .930 -5.5 171 2.2 0.2699 0.1372 8.3678
7 CL8 OB121 50 0.0035 .891 .921 -4.5 194 4.0 0.2586 0.1372 8.3678
6 CL9 OB45 47 0.0042 .886 .911 -3.3 225 4.6 0.1412 0.0832 3.5156
5 CL6 OB39 48 0.0049 .882 .895 -1.7 270 5.0 0.107 0.0605 3.5156
4 CL5 OB21 49 0.0049 .877 .872 0.35 346 4.7 0.0969 0.0541 3.5156
3 CL4 OB90 50 0.0047 .872 .827 3.28 500 4.1 0.0715 0.0370 3.5156
2 CL3 CL7 100 0.0993 .773 .697 3.83 503 91.9 2.6277 3.5156 8.3678

3 modal clusters have been formed.
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Cluster Analysis of Fisher (1936) Iris Data

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 50 | 0 | 0 | 50
| 33.33 | 0.00 | 0.00 | 33.33
| 100.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
2 | 0 | 47 | 3 | 50

| 0.00 | 31.33 | 2.00 | 33.33
| 0.00 | 94.00 | 6.00 |
| 0.00 | 94.00 | 6.00 |

---------+--------+--------+--------+
3 | 0 | 3 | 47 | 50

| 0.00 | 2.00 | 31.33 | 33.33
| 0.00 | 6.00 | 94.00 |
| 0.00 | 6.00 | 94.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00

The CLUSTER procedure is not practical for very large data sets because, with most
methods, the CPU time varies as the square or cube of the number of observations.
The FASTCLUS procedure requires time proportional to the number of observations
and can, therefore, be used with much larger data sets than PROC CLUSTER. If you
want to hierarchically cluster a very large data set, you can use PROC FASTCLUS
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for a preliminary cluster analysis producing a large number of clusters and then use
PROC CLUSTER to hierarchically cluster the preliminary clusters.

FASTCLUS automatically creates variables–FREQ– and –RMSSTD– in the
MEAN= output data set. These variables are then automatically used by PROC
CLUSTER in the computation of various statistics.

The iris data are used to illustrate the process of clustering clusters. In the preliminary
analysis, PROC FASTCLUS produces ten clusters, which are then crosstabulated
with species. The data set containing the preliminary clusters is sorted in preparation
for later merges. The results are shown inOutput 23.3.3.

title2 ’Preliminary Analysis by FASTCLUS’;
proc fastclus data=iris summary maxc=10 maxiter=99 converge=0

mean=mean out=prelim cluster=preclus;
var petal: sepal:;

run;

proc freq;
tables preclus*species;

run;

proc sort data=prelim;
by preclus;

run;
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Output 23.3.3. Preliminary Analysis of Fisher Iris Data

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=10 Maxiter=99 Converge=0

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 9 2.7067 8.2027 5 8.7362
2 19 2.2001 7.7340 4 6.2243
3 18 2.1496 6.2173 8 7.5049
4 4 2.5249 5.3268 2 6.2243
5 3 2.7234 5.8214 1 8.7362
6 7 2.2939 5.1508 2 9.3318
7 17 2.0274 6.9576 10 7.9503
8 18 2.2628 7.1135 3 7.5049
9 22 2.2666 7.5029 8 9.0090

10 33 2.0594 10.0033 7 7.9503

Pseudo F Statistic = 370.58

Observed Over-All R-Squared = 0.95971

Approximate Expected Over-All R-Squared = 0.82928

Cubic Clustering Criterion = 27.077

WARNING: The two values above are invalid for correlated variables.
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Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FREQ Procedure

Table of preclus by Species

preclus(Cluster) Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 0 | 0 | 9 | 9
| 0.00 | 0.00 | 6.00 | 6.00
| 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 18.00 |

---------+--------+--------+--------+
2 | 0 | 19 | 0 | 19

| 0.00 | 12.67 | 0.00 | 12.67
| 0.00 | 100.00 | 0.00 |
| 0.00 | 38.00 | 0.00 |

---------+--------+--------+--------+
3 | 0 | 18 | 0 | 18

| 0.00 | 12.00 | 0.00 | 12.00
| 0.00 | 100.00 | 0.00 |
| 0.00 | 36.00 | 0.00 |

---------+--------+--------+--------+
4 | 0 | 3 | 1 | 4

| 0.00 | 2.00 | 0.67 | 2.67
| 0.00 | 75.00 | 25.00 |
| 0.00 | 6.00 | 2.00 |

---------+--------+--------+--------+
5 | 0 | 0 | 3 | 3

| 0.00 | 0.00 | 2.00 | 2.00
| 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 6.00 |

---------+--------+--------+--------+
6 | 0 | 7 | 0 | 7

| 0.00 | 4.67 | 0.00 | 4.67
| 0.00 | 100.00 | 0.00 |
| 0.00 | 14.00 | 0.00 |

---------+--------+--------+--------+
7 | 17 | 0 | 0 | 17

| 11.33 | 0.00 | 0.00 | 11.33
| 100.00 | 0.00 | 0.00 |
| 34.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
8 | 0 | 3 | 15 | 18

| 0.00 | 2.00 | 10.00 | 12.00
| 0.00 | 16.67 | 83.33 |
| 0.00 | 6.00 | 30.00 |

---------+--------+--------+--------+
9 | 0 | 0 | 22 | 22

| 0.00 | 0.00 | 14.67 | 14.67
| 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 44.00 |

---------+--------+--------+--------+
10 | 33 | 0 | 0 | 33

| 22.00 | 0.00 | 0.00 | 22.00
| 100.00 | 0.00 | 0.00 |
| 66.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00

The following macro, CLUS, clusters the preliminary clusters. There is one argument
to choose the METHOD= specification to be used by PROC CLUSTER. The TREE
procedure creates an output data set containing the 3-cluster partition, which is sorted
and merged with the OUT= data set from PROC FASTCLUS to determine to which
cluster each of the original 150 observations belongs. The SHOW macro is then used
to display the results. In this example, the CLUS macro is invoked using Ward’s
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method, which produces 16 misclassifications, and Wong’s hybrid method, which
produces 22 misclassifications. The results are shown inOutput 23.3.4andOutput
23.3.5.

%macro clus(method);
proc cluster data=mean method=&method ccc pseudo;

var petal: sepal:;
copy preclus;

run;
proc tree noprint ncl=3 out=out;

copy petal: sepal: preclus;
run;
proc sort data=out;

by preclus;
run;
data clus;

merge out prelim;
by preclus;

run;
%show;
%mend;

title2 ’Clustering Clusters by Ward’’s Method’;
%clus(ward);

title2 ’Clustering Clusters by Wong’’s Hybrid Method’;
%clus(twostage hybrid);
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Output 23.3.4. Clustering Clusters: with Ward’s Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward’s Method

The CLUSTER Procedure
Ward’s Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 416.976349 398.666421 0.9501 0.9501
2 18.309928 14.952922 0.0417 0.9918
3 3.357006 3.126943 0.0076 0.9995
4 0.230063 0.0005 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 10.69224
Root-Mean-Square Distance Between Observations = 30.24221

Cluster History
T
i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 e

9 OB2 OB4 23 0.0019 .958 .932 6.26 400 6.3
8 OB1 OB5 12 0.0025 .955 .926 6.75 434 5.8
7 CL9 OB6 30 0.0069 .948 .918 6.28 438 19.5
6 OB3 OB8 36 0.0074 .941 .907 6.21 459 26.0
5 OB7 OB10 50 0.0104 .931 .892 6.15 485 42.2
4 CL8 OB9 34 0.0162 .914 .870 4.28 519 39.3
3 CL7 CL6 66 0.0318 .883 .824 4.39 552 59.7
2 CL4 CL3 100 0.1099 .773 .695 3.94 503 113
1 CL2 CL5 150 0.7726 .000 .000 0.00 . 503

Cluster Analysis of Fisher (1936) Iris Data

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 0 | 50 | 16 | 66
| 0.00 | 33.33 | 10.67 | 44.00
| 0.00 | 75.76 | 24.24 |
| 0.00 | 100.00 | 32.00 |

---------+--------+--------+--------+
2 | 0 | 0 | 34 | 34

| 0.00 | 0.00 | 22.67 | 22.67
| 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 68.00 |

---------+--------+--------+--------+
3 | 50 | 0 | 0 | 50

| 33.33 | 0.00 | 0.00 | 33.33
| 100.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00
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Output 23.3.5. Clustering Clusters: PROC CLUSTER with Wong’s Hybrid Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong’s Hybrid Method

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 416.976349 398.666421 0.9501 0.9501
2 18.309928 14.952922 0.0417 0.9918
3 3.357006 3.126943 0.0076 0.9995
4 0.230063 0.0005 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 10.69224

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL --Clusters Joined-- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Density Lesser Greater e

9 OB10 OB7 50 0.0104 .949 .932 3.81 330 42.2 40.24 58.2179 100.0
8 OB3 OB8 36 0.0074 .942 .926 3.22 329 26.0 27.981 39.4511 48.4350
7 OB2 OB4 23 0.0019 .940 .918 4.24 373 6.3 23.775 8.9675 46.3026
6 CL8 OB9 58 0.0194 .921 .907 2.13 334 46.3 20.724 46.8846 48.4350
5 CL7 OB6 30 0.0069 .914 .892 3.09 383 19.5 13.303 17.6360 46.3026
4 CL6 OB1 67 0.0292 .884 .870 1.21 372 41.0 8.4137 10.8758 48.4350
3 CL4 OB5 70 0.0138 .871 .824 3.33 494 12.3 5.1855 6.2890 48.4350
2 CL3 CL5 100 0.0979 .773 .695 3.94 503 89.5 19.513 46.3026 48.4350
1 CL2 CL9 150 0.7726 .000 .000 0.00 . 503 1.3337 48.4350 100.0

3 modal clusters have been formed.
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Cluster Analysis of Fisher (1936) Iris Data

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 50 | 0 | 0 | 50
| 33.33 | 0.00 | 0.00 | 33.33
| 100.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
2 | 0 | 21 | 49 | 70

| 0.00 | 14.00 | 32.67 | 46.67
| 0.00 | 30.00 | 70.00 |
| 0.00 | 42.00 | 98.00 |

---------+--------+--------+--------+
3 | 0 | 29 | 1 | 30

| 0.00 | 19.33 | 0.67 | 20.00
| 0.00 | 96.67 | 3.33 |
| 0.00 | 58.00 | 2.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00

Example 23.4. Evaluating the Effects of Ties

If, at some level of the cluster history, there is a tie for minimum distance between
clusters, then one or more levels of the sample cluster tree are not uniquely deter-
mined. This example shows how the degree of indeterminacy can be assessed.
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Mammals have four kinds of teeth: incisors, canines, premolars, and molars. The
following data set gives the number of teeth of each kind on one side of the top and
bottom jaws for 32 mammals.

Since all eight variables are measured in the same units, it is not strictly necessary to
rescale the data. However, the canines have much less variance than the other kinds
of teeth and, therefore, have little effect on the analysis if the variables are not stan-
dardized. An average linkage cluster analysis is run with and without standardization
to allow comparison of the results. The results are shown inOutput 23.4.1andOutput
23.4.2.

title ’Hierarchical Cluster Analysis of Mammals’’ Teeth Data’;
title2 ’Evaluating the Effects of Ties’;
data teeth;

input mammal $ 1-16
@21 (v1-v8) (1.);

label v1=’Top incisors’
v2=’Bottom incisors’
v3=’Top canines’
v4=’Bottom canines’
v5=’Top premolars’
v6=’Bottom premolars’
v7=’Top molars’
v8=’Bottom molars’;

datalines;
BROWN BAT 23113333
MOLE 32103333
SILVER HAIR BAT 23112333
PIGMY BAT 23112233
HOUSE BAT 23111233
RED BAT 13112233
PIKA 21002233
RABBIT 21003233
BEAVER 11002133
GROUNDHOG 11002133
GRAY SQUIRREL 11001133
HOUSE MOUSE 11000033
PORCUPINE 11001133
WOLF 33114423
BEAR 33114423
RACCOON 33114432
MARTEN 33114412
WEASEL 33113312
WOLVERINE 33114412
BADGER 33113312
RIVER OTTER 33114312
SEA OTTER 32113312
JAGUAR 33113211
COUGAR 33113211
FUR SEAL 32114411
SEA LION 32114411
GREY SEAL 32113322
ELEPHANT SEAL 21114411
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REINDEER 04103333
ELK 04103333
DEER 04003333
MOOSE 04003333
;

proc cluster data=teeth method=average nonorm
outtree=_null_;

var v1-v8;
id mammal;
title3 ’Raw Data’;

run;

proc cluster data=teeth std method=average nonorm
outtree=_null_;

var v1-v8;
id mammal;
title3 ’Standardized Data’;

run;
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Output 23.4.1. Average Linkage Analysis of Mammals’ Teeth Data: Raw Data

Hierarchical Cluster Analysis of Mammals’ Teeth Data
Evaluating the Effects of Ties

Raw Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 3.76799365 2.33557185 0.5840 0.5840
2 1.43242180 0.91781899 0.2220 0.8061
3 0.51460281 0.08414950 0.0798 0.8858
4 0.43045331 0.30021485 0.0667 0.9525
5 0.13023846 0.03814626 0.0202 0.9727
6 0.09209220 0.04216914 0.0143 0.9870
7 0.04992305 0.01603541 0.0077 0.9947
8 0.03388764 0.0053 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 0.898027

Cluster History
T

RMS i
NCL ----------Clusters Joined----------- FREQ Dist e

31 BEAVER GROUNDHOG 2 0 T
30 GRAY SQUIRREL PORCUPINE 2 0 T
29 WOLF BEAR 2 0 T
28 MARTEN WOLVERINE 2 0 T
27 WEASEL BADGER 2 0 T
26 JAGUAR COUGAR 2 0 T
25 FUR SEAL SEA LION 2 0 T
24 REINDEER ELK 2 0 T
23 DEER MOOSE 2 0
22 BROWN BAT SILVER HAIR BAT 2 1 T
21 PIGMY BAT HOUSE BAT 2 1 T
20 PIKA RABBIT 2 1 T
19 CL31 CL30 4 1 T
18 CL28 RIVER OTTER 3 1 T
17 CL27 SEA OTTER 3 1 T
16 CL24 CL23 4 1
15 CL21 RED BAT 3 1.2247
14 CL17 GREY SEAL 4 1.291
13 CL29 RACCOON 3 1.4142 T
12 CL25 ELEPHANT SEAL 3 1.4142
11 CL18 CL14 7 1.5546
10 CL22 CL15 5 1.5811

9 CL20 CL19 6 1.8708 T
8 CL11 CL26 9 1.9272
7 CL8 CL12 12 2.2278
6 MOLE CL13 4 2.2361
5 CL9 HOUSE MOUSE 7 2.4833
4 CL6 CL7 16 2.5658
3 CL10 CL16 9 2.8107
2 CL3 CL5 16 3.7054
1 CL2 CL4 32 4.2939
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Output 23.4.2. Average Linkage Analysis of Mammals’ Teeth Data: Standardized
Data

Hierarchical Cluster Analysis of Mammals’ Teeth Data
Evaluating the Effects of Ties

Standardized Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 4.74153902 3.27458808 0.5927 0.5927
2 1.46695094 0.70824118 0.1834 0.7761
3 0.75870977 0.25146252 0.0948 0.8709
4 0.50724724 0.30264737 0.0634 0.9343
5 0.20459987 0.05925818 0.0256 0.9599
6 0.14534169 0.03450100 0.0182 0.9780
7 0.11084070 0.04606994 0.0139 0.9919
8 0.06477076 0.0081 1.0000

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1

Cluster History
T

RMS i
NCL ----------Clusters Joined----------- FREQ Dist e

31 BEAVER GROUNDHOG 2 0 T
30 GRAY SQUIRREL PORCUPINE 2 0 T
29 WOLF BEAR 2 0 T
28 MARTEN WOLVERINE 2 0 T
27 WEASEL BADGER 2 0 T
26 JAGUAR COUGAR 2 0 T
25 FUR SEAL SEA LION 2 0 T
24 REINDEER ELK 2 0 T
23 DEER MOOSE 2 0
22 PIGMY BAT RED BAT 2 0.9157
21 CL28 RIVER OTTER 3 0.9169
20 CL31 CL30 4 0.9428 T
19 BROWN BAT SILVER HAIR BAT 2 0.9428 T
18 PIKA RABBIT 2 0.9428
17 CL27 SEA OTTER 3 0.9847
16 CL22 HOUSE BAT 3 1.1437
15 CL21 CL17 6 1.3314
14 CL25 ELEPHANT SEAL 3 1.3447
13 CL19 CL16 5 1.4688
12 CL15 GREY SEAL 7 1.6314
11 CL29 RACCOON 3 1.692
10 CL18 CL20 6 1.7357

9 CL12 CL26 9 2.0285
8 CL24 CL23 4 2.1891
7 CL9 CL14 12 2.2674
6 CL10 HOUSE MOUSE 7 2.317
5 CL11 CL7 15 2.6484
4 CL13 MOLE 6 2.8624
3 CL4 CL8 10 3.5194
2 CL3 CL6 17 4.1265
1 CL2 CL5 32 4.7753

There are ties at 16 levels for the raw data but at only 10 levels for the standardized
data. There are more ties for the raw data because the increments between successive
values are the same for all of the raw variables but different for the standardized
variables.

One way to assess the importance of the ties in the analysis is to repeat the analysis
on several random permutations of the observations and then to see to what extent the
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results are consistent at the interesting levels of the cluster history. Three macros are
presented to facilitate this process.

/* --------------------------------------------------------- */
/* */
/* The macro CLUSPERM randomly permutes observations and */
/* does a cluster analysis for each permutation. */
/* The arguments are as follows: */
/* */
/* data data set name */
/* var list of variables to cluster */
/* id id variable for proc cluster */
/* method clustering method (and possibly other options) */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro CLUSPERM(data,var,id,method,nperm);
/* ------CREATE TEMPORARY DATA SET WITH RANDOM NUMBERS------ */
data _temp_;

set &data;
array _random_ _ran_1-_ran_&nperm;
do over _random_;

_random_=ranuni(835297461);
end;

run;
/* ------PERMUTE AND CLUSTER THE DATA----------------------- */
%do n=1 %to &nperm;

proc sort data=_temp_(keep=_ran_&n &var &id) out=_perm_;
by _ran_&n;

run;
proc cluster method=&method noprint outtree=_tree_&n;

var &var;
id &id;

run;
%end;
%mend;

/* --------------------------------------------------------- */
/* */
/* The macro PLOTPERM plots various cluster statistics */
/* against the number of clusters for each permutation. */
/* The arguments are as follows: */
/* */
/* stats names of variables from tree data set */
/* nclus maximum number of clusters to be plotted */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro PLOTPERM(stat,nclus,nperm);
/* ---CONCATENATE TREE DATA SETS FOR 20 OR FEWER CLUSTERS--- */
data _plot_;

set %do n=1 %to &nperm; _tree_&n(in=_in_&n) %end; ;
if _ncl_<=&nclus;
%do n=1 %to &nperm;
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if _in_&n then _perm_=&n;
%end;
label _perm_=’permutation number’;
keep _ncl_ &stat _perm_;

run;
/* ---PLOT THE REQUESTED STATISTICS BY NUMBER OF CLUSTERS--- */

proc plot;
plot (&stat)*_ncl_=_perm_ /vpos=26;

title2 ’Symbol is value of _PERM_’;
run;
%mend;

/* --------------------------------------------------------- */
/* */
/* The macro TREEPERM generates cluster-membership variables */
/* for a specified number of clusters for each permutation. */
/* PROC PRINT lists the objects in each cluster-combination, */
/* and PROC TABULATE gives the frequencies and means. The */
/* arguments are as follows: */
/* */
/* var list of variables to cluster */
/* (no "-" or ":" allowed) */
/* id id variable for proc cluster */
/* meanfmt format for printing means in PROC TABULATE */
/* nclus number of clusters desired */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro TREEPERM(var,id,meanfmt,nclus,nperm);
/* ------CREATE DATA SETS GIVING CLUSTER MEMBERSHIP--------- */
%do n=1 %to &nperm;

proc tree data=_tree_&n noprint n=&nclus
out=_out_&n(drop=clusname

rename=(cluster=_clus_&n));
copy &var;
id &id;

run;
proc sort;

by &id &var;
run;

%end;
/* ------MERGE THE CLUSTER VARIABLES------------------------ */
data _merge_;

merge
%do n=1 %to &nperm;

_out_&n
%end; ;

by &id &var;
length all_clus $ %eval(3*&nperm);
%do n=1 %to &nperm;

substr( all_clus, %eval(1+(&n-1)*3), 3) =
put( _clus_&n, 3.);

%end;
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run;

/* ------PRINT AND TABULATE CLUSTER COMBINATIONS------------ */
proc sort;

by _clus_:;
run;
proc print;

var &var;
id &id;
by all_clus notsorted;

run;
proc tabulate order=data formchar=’ ’;

class all_clus;
var &var;
table all_clus, n=’FREQ’*f=5. mean*f=&meanfmt*(&var) /

rts=%eval(&nperm*3+1);
run;
%mend;

To use these, it is first convenient to define a macro, VLIST, listing the teeth variables,
since the forms V1-V8 or V: cannot be used with the TABULATE procedure in the
TREEPERM macro:

/* -TABULATE does not accept hyphens or colons in VAR lists- */
%let vlist=v1 v2 v3 v4 v5 v6 v7 v8;

The CLUSPERM macro is then called to analyze ten random permutations. The
PLOTPERM macro plots the pseudoF andt2 statistics and the cubic clustering cri-
terion. Since the data are discrete, the pseudoF statistic and the cubic clustering
criterion can be expected to increase as the number of clusters increases, so local
maxima or large jumps in these statistics are more relevant than the global maximum
in determining the number of clusters. For the raw data, only the pseudot2 statistic
indicates the possible presence of clusters, with the 4-cluster level being suggested.
Hence, the TREEPERM macro is used to analyze the results at the 4-cluster level:

title3 ’Raw Data’;

/* ------CLUSTER RAW DATA WITH AVERAGE LINKAGE-------------- */
%clusperm( teeth, &vlist, mammal, average, 10);

/* -----PLOT STATISTICS FOR THE LAST 20 LEVELS-------------- */
%plotperm( _psf_ _pst2_ _ccc_, 20, 10);

/* ------ANALYZE THE 4-CLUSTER LEVEL------------------------ */
%treeperm( &vlist, mammal, 9.1, 4, 10);

The results are shown inOutput 23.4.3.
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Output 23.4.3. Analysis of Ten Random Permutations of Raw Mammals’ Teeth
Data: Indeterminacy at the 4-Cluster Level

Hierarchical Cluster Analysis of Mammals’ Teeth Data
Symbol is value of _PERM_

Plot of _PSF_*_NCL_. Symbol is value of _perm_.

|
100 +

|
|

P |
s |
e | 5
u 80 +
d |
o |

|
F |

| 2
S 60 +
t | 5 4
a | 2
t | 9 9 1
i | 3 3 1 6
s | 2 2 1 1 4
t 40 + 2 4 1
i | 1 1 1 1
c | 2 3

| 1 2 2 1 1
| 1 1 1 1 1 1
| 2 1

20 +
---+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

NOTE: 10 obs had missing values. 151 obs hidden.
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Hierarchical Cluster Analysis of Mammals’ Teeth Data
Symbol is value of _PERM_

Plot of _PST2_*_NCL_. Symbol is value of _perm_.

P |
s 30 +
e |
u | 1
d |
o 25 +

|
T |
- | 1
S 20 +
q | 1
u |
a |
r 15 +
e |
d | 2

| 2 1
S 10 +
t |
a | 2 2 3
t | 1 2 2 1 1 1
i 5 + 1 2 5
s | 1 2 3 4 1
t | 1
i | 1 2 1
c 0 +

---+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

NOTE: 69 obs had missing values. 104 obs hidden.
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Hierarchical Cluster Analysis of Mammals’ Teeth Data
Symbol is value of _PERM_

Plot of _CCC_*_NCL_. Symbol is value of _perm_.

C |
u 4 +
b |
i |
c |

| 2
C |
l 3 +
u | 1 1
s |
t |
e |
r | 2
i 2 +
n | 1
g | 1 2

|
C |
r |
i 1 +
t |
e |
r | 2
i |
o | 1
n 0 +1

-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

NOTE: 140 obs had missing values. 50 obs hidden.
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-------------------------------------- all_clus=’ 1 3 1 1 1 3 3 3 2 3’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

DEER 0 4 0 0 3 3 3 3
ELK 0 4 1 0 3 3 3 3
MOOSE 0 4 0 0 3 3 3 3
REINDEER 0 4 1 0 3 3 3 3

-------------------------------------- all_clus=’ 2 2 2 2 2 2 1 2 1 1’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

BADGER 3 3 1 1 3 3 1 2
BEAR 3 3 1 1 4 4 2 3
COUGAR 3 3 1 1 3 2 1 1
ELEPHANT SEAL 2 1 1 1 4 4 1 1
FUR SEAL 3 2 1 1 4 4 1 1
GREY SEAL 3 2 1 1 3 3 2 2
JAGUAR 3 3 1 1 3 2 1 1
MARTEN 3 3 1 1 4 4 1 2
RACCOON 3 3 1 1 4 4 3 2
RIVER OTTER 3 3 1 1 4 3 1 2
SEA LION 3 2 1 1 4 4 1 1
SEA OTTER 3 2 1 1 3 3 1 2
WEASEL 3 3 1 1 3 3 1 2
WOLF 3 3 1 1 4 4 2 3
WOLVERINE 3 3 1 1 4 4 1 2

-------------------------------------- all_clus=’ 2 4 2 2 4 2 1 2 1 1’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

MOLE 3 2 1 0 3 3 3 3

-------------------------------------- all_clus=’ 3 1 3 3 3 1 2 1 3 2’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

BEAVER 1 1 0 0 2 1 3 3
GRAY SQUIRREL 1 1 0 0 1 1 3 3
GROUNDHOG 1 1 0 0 2 1 3 3
HOUSE MOUSE 1 1 0 0 0 0 3 3
PORCUPINE 1 1 0 0 1 1 3 3

-------------------------------------- all_clus=’ 3 4 3 3 4 1 2 1 3 2’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

PIKA 2 1 0 0 2 2 3 3
RABBIT 2 1 0 0 3 2 3 3

-------------------------------------- all_clus=’ 4 4 4 4 4 4 4 4 4 4’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

BROWN BAT 2 3 1 1 3 3 3 3
HOUSE BAT 2 3 1 1 1 2 3 3
PIGMY BAT 2 3 1 1 2 2 3 3
RED BAT 1 3 1 1 2 2 3 3
SILVER HAIR BAT 2 3 1 1 2 3 3 3
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Mean

Top Bottom Top Bottom Top Bottom Top Bottom
FREQ incisors incisors canines canines premolars premolars molars molars

all_clus

1 3 1 1 1 3 3 3 2 3 4 0.0 4.0 0.5 0.0 3.0 3.0 3.0 3.0

2 2 2 2 2 2 1 2 1 1 15 2.9 2.6 1.0 1.0 3.6 3.4 1.3 1.8

2 4 2 2 4 2 1 2 1 1 1 3.0 2.0 1.0 0.0 3.0 3.0 3.0 3.0

3 1 3 3 3 1 2 1 3 2 5 1.0 1.0 0.0 0.0 1.2 0.8 3.0 3.0

3 4 3 3 4 1 2 1 3 2 2 2.0 1.0 0.0 0.0 2.5 2.0 3.0 3.0

4 4 4 4 4 4 4 4 4 4 5 1.8 3.0 1.0 1.0 2.0 2.4 3.0 3.0

From the TABULATE and PRINT output, you can see that two types of clustering
are obtained. In one case, the mole is grouped with the carnivores, while the pika
and rabbit are grouped with the rodents. In the other case, both the mole and the
lagomorphs are grouped with the bats.

Next, the analysis is repeated with the standardized data. The pseudoF andt2 statis-
tics indicate 3 or 4 clusters, while the cubic clustering criterion shows a sharp rise up
to 4 clusters and then levels off up to 6 clusters. So the TREEPERM macro is used
again at the 4-cluster level. In this case, there is no indeterminacy, as the same four
clusters are obtained with every permutation, although in different orders. It must be
emphasized, however, that lack of indeterminacy in no way indicates validity. The
results are shown inOutput 23.4.4.

title3 ’Standardized Data’;

/*------CLUSTER STANDARDIZED DATA WITH AVERAGE LINKAGE------*/
%clusperm( teeth, &vlist, mammal, average std, 10);

/*------PLOT STATISTICS FOR THE LAST 20 LEVELS--------------*/
%plotperm( _psf_ _pst2_ _ccc_, 20, 10);

/*------ANALYZE THE 4-CLUSTER LEVEL-------------------------*/
%treeperm( &vlist, mammal, 9.1, 4, 10);
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Output 23.4.4. Analysis of Ten Random Permutations of Standardized Mammals’
Teeth Data: No Indeterminacy at the 4-Cluster Level

Hierarchical Cluster Analysis of Mammals’ Teeth Data
Symbol is value of _PERM_

Plot of _PSF_*_NCL_. Symbol is value of _perm_.

|
100 +

|
|

P |
s |
e | 1
u 80 +
d | 1
o | 1

|
F | 1

| 1
S 60 +
t |
a |
t |
i | 1 1
s |
t 40 + 1 1
i | 1
c | 1 1

| 1 1 1
| 1 1 1 1
|

20 +
---+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

NOTE: 10 obs had missing values. 171 obs hidden.
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Hierarchical Cluster Analysis of Mammals’ Teeth Data
Symbol is value of _PERM_

Plot of _PST2_*_NCL_. Symbol is value of _perm_.

P |
s |
e |
u |
d |
o |

30 +
T | 1
- |
S |
q |
u |
a 20 +
r |
e | 1
d |

| 1
S |
t 10 + 1
a |
t | 1 1 1 1 1
i |
s | 1 1 1
t | 1
i 0 +
c |

---+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

NOTE: 70 obs had missing values. 117 obs hidden.
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Hierarchical Cluster Analysis of Mammals’ Teeth Data
Symbol is value of _PERM_

Plot of _CCC_*_NCL_. Symbol is value of _perm_.

C |
u 4 +
b | 1 1
i |
c |

|
C |
l 3 + 1
u |
s |
t |
e |
r | 1
i 2 +
n |
g |

|
C |
r |
i 1 +
t |
e |
r |
i |
o | 1
n 0 +1

-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

NOTE: 140 obs had missing values. 54 obs hidden.
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-------------------------------------- all_clus=’ 1 3 1 1 1 3 3 3 2 3’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

DEER 0 4 0 0 3 3 3 3
ELK 0 4 1 0 3 3 3 3
MOOSE 0 4 0 0 3 3 3 3
REINDEER 0 4 1 0 3 3 3 3

-------------------------------------- all_clus=’ 2 2 2 2 2 2 1 2 1 1’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

BADGER 3 3 1 1 3 3 1 2
BEAR 3 3 1 1 4 4 2 3
COUGAR 3 3 1 1 3 2 1 1
ELEPHANT SEAL 2 1 1 1 4 4 1 1
FUR SEAL 3 2 1 1 4 4 1 1
GREY SEAL 3 2 1 1 3 3 2 2
JAGUAR 3 3 1 1 3 2 1 1
MARTEN 3 3 1 1 4 4 1 2
RACCOON 3 3 1 1 4 4 3 2
RIVER OTTER 3 3 1 1 4 3 1 2
SEA LION 3 2 1 1 4 4 1 1
SEA OTTER 3 2 1 1 3 3 1 2
WEASEL 3 3 1 1 3 3 1 2
WOLF 3 3 1 1 4 4 2 3
WOLVERINE 3 3 1 1 4 4 1 2

-------------------------------------- all_clus=’ 3 1 3 3 3 1 2 1 3 2’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

BEAVER 1 1 0 0 2 1 3 3
GRAY SQUIRREL 1 1 0 0 1 1 3 3
GROUNDHOG 1 1 0 0 2 1 3 3
HOUSE MOUSE 1 1 0 0 0 0 3 3
PIKA 2 1 0 0 2 2 3 3
PORCUPINE 1 1 0 0 1 1 3 3
RABBIT 2 1 0 0 3 2 3 3

-------------------------------------- all_clus=’ 4 4 4 4 4 4 4 4 4 4’ ---------------------------------------

mammal v1 v2 v3 v4 v5 v6 v7 v8

BROWN BAT 2 3 1 1 3 3 3 3
HOUSE BAT 2 3 1 1 1 2 3 3
MOLE 3 2 1 0 3 3 3 3
PIGMY BAT 2 3 1 1 2 2 3 3
RED BAT 1 3 1 1 2 2 3 3
SILVER HAIR BAT 2 3 1 1 2 3 3 3

Mean

Top Bottom Top Bottom Top Bottom Top Bottom
FREQ incisors incisors canines canines premolars premolars molars molars

all_clus

1 3 1 1 1 3 3 3 2 3 4 0.0 4.0 0.5 0.0 3.0 3.0 3.0 3.0

2 2 2 2 2 2 1 2 1 1 15 2.9 2.6 1.0 1.0 3.6 3.4 1.3 1.8

3 1 3 3 3 1 2 1 3 2 7 1.3 1.0 0.0 0.0 1.6 1.1 3.0 3.0

4 4 4 4 4 4 4 4 4 4 6 2.0 2.8 1.0 0.8 2.2 2.5 3.0 3.0
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Example 23.5. Computing a Distance Matrix

An example of the use of distance and similarity measures in cluster analysis is given
in Example 26.1in the PROC DISTANCE chapter.

Example 23.6. Size, Shape, and Correlation

The following example shows the analysis of a data set in which size information
is detrimental to the classification. Imagine that an archaeologist of the future is
excavating a 20th century grocery store. The archaeologist has discovered a large
number of boxes of various sizes, shapes, and colors and wants to do a preliminary
classification based on simple external measurements: height, width, depth, weight,
and the predominant color of the box. It is known that a given product may have been
sold in packages of different size, so the archaeologist wants to remove the effect of
size from the classification. It is not known whether color is relevant to the use of the
products, so the analysis should be done both with and without color information.

Unknown to the archaeologist, the boxes actually fall into six general categories ac-
cording to the use of the product: breakfast cereals, crackers, laundry detergents,
Little Debbie snacks, tea, and toothpaste. These categories are shown in the analysis
so that you can evaluate the effectiveness of the classification.

Since there is no reason for the archaeologist to assume that the true categories have
equal sample sizes or variances, the centroid method is used to avoid undue bias.
Each analysis is done with Euclidean distances after suitable transformations of the
data. Color is coded as five dummy variables with values of 0 or 1. The DATA step
is as follows:

options ls=120;
title ’Cluster Analysis of Grocery Boxes’;
data grocery2;

length name $35 /* name of product */
class $16 /* category of product */
unit $1 /* unit of measurement for weights:

g=gram
o=ounce
l=lb

all weights are converted to grams */
color $8 /* predominant color of box */
height 8 /* height of box in cm. */
width 8 /* width of box in cm. */
depth 8 /* depth of box (front to back) in cm. */
weight 8 /* weight of box in grams */
c_white c_yellow c_red c_green c_blue 4;

/* dummy variables */
retain class;
drop unit;

/*--- read name with possible embedded blanks ---*/
input name & @;

/*--- if name starts with "---", ---*/
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/*--- it’s really a category value ---*/
if substr(name,1,3) = ’---’ then do;

class = substr(name,4,index(substr(name,4),’-’)-1);
delete;
return;

end;

/*--- read the rest of the variables ---*/
input height width depth weight unit color;

/*--- convert weights to grams ---*/
select (unit);

when (’l’) weight = weight * 454;
when (’o’) weight = weight * 28.3;
when (’g’) ;
otherwise put ’Invalid unit ’ unit;

end;

/*--- use 0/1 coding for dummy variables for colors ---*/
c_white = (color = ’w’);
c_yellow = (color = ’y’);
c_red = (color = ’r’);
c_green = (color = ’g’);
c_blue = (color = ’b’);

datalines;

---Breakfast cereals---

Cheerios 32.5 22.4 8.4 567 g y
Cheerios 30.3 20.4 7.2 425 g y
Cheerios 27.5 19 6.2 283 g y
Cheerios 24.1 17.2 5.3 198 g y
Special K 30.1 20.5 8.5 18 o w
Special K 29.6 19.2 6.7 12 o w
Special K 23.4 16.6 5.7 7 o w
Corn Flakes 33.7 25.4 8 24 o w
Corn Flakes 30.2 20.6 8.4 18 o w
Corn Flakes 30 19.1 6.6 12 o w
Grape Nuts 21.7 16.3 4.9 680 g w
Shredded Wheat 19.7 19.9 7.5 283 g y
Shredded Wheat, Spoon Size 26.6 19.6 5.6 510 g r
All-Bran 21.1 14.3 5.2 13.8 o y
Froot Loops 30.2 20.8 8.5 19.7 o r
Froot Loops 25 17.7 6.4 11 o r

---Crackers---

Wheatsworth 11.1 25.2 5.5 326 g w
Ritz 23.1 16 5.3 340 g r
Ritz 23.1 20.7 5.2 454 g r
Premium Saltines 11 25 10.7 454 g w
Waverly Wafers 14.4 22.5 6.2 454 g g
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---Detergent---

Arm & Hammer Detergent 38.8 30 16.9 25 l y
Arm & Hammer Detergent 39.5 25.8 11 14.2 l y
Arm & Hammer Detergent 33.7 22.8 7 7 l y
Arm & Hammer Detergent 27.8 19.4 6.3 4 l y
Tide 39.4 24.8 11.3 9.2 l r
Tide 32.5 23.2 7.3 4.5 l r
Tide 26.5 19.9 6.3 42 o r
Tide 19.3 14.6 4.7 17 o r

---Little Debbie---

Figaroos 13.5 18.6 3.7 12 o y
Swiss Cake Rolls 10.1 21.8 5.8 13 o w
Fudge Brownies 11 30.8 2.5 12 o w
Marshmallow Supremes 9.4 32 7 10 o w
Apple Delights 11.2 30.1 4.9 15 o w
Snack Cakes 13.4 32 3.4 13 o b
Nutty Bar 13.2 18.5 4.2 12 o y
Lemon Stix 13.2 18.5 4.2 9 o w
Fudge Rounds 8.1 28.3 5.4 9.5 o w

---Tea---

Celestial Saesonings Mint Magic 7.8 13.8 6.3 49 g b
Celestial Saesonings Cranberry Cove 7.8 13.8 6.3 46 g r
Celestial Saesonings Sleepy Time 7.8 13.8 6.3 37 g g
Celestial Saesonings Lemon Zinger 7.8 13.8 6.3 56 g y
Bigelow Lemon Lift 7.7 13.4 6.9 40 g y
Bigelow Plantation Mint 7.7 13.4 6.9 35 g g
Bigelow Earl Grey 7.7 13.4 6.9 35 g b
Luzianne 8.9 22.8 6.4 6 o r
Luzianne 18.4 20.2 6.9 8 o r
Luzianne Decaffeinated 8.9 22.8 6.4 5.25 o g
Lipton Tea Bags 17.1 20 6.7 8 o r
Lipton Tea Bags 11.5 14.4 6.6 3.75 o r
Lipton Tea Bags 6.7 10 5.7 1.25 o r
Lipton Family Size Tea Bags 13.7 24 9 12 o r
Lipton Family Size Tea Bags 8.7 20.8 8.2 6 o r
Lipton Family Size Tea Bags 8.9 11.1 8.2 3 o r
Lipton Loose Tea 12.7 10.9 5.4 8 o r

---Paste, Tooth---

Colgate 4.4 22 3.5 7 o r
Colgate 3.6 15.6 3.3 3 o r
Colgate 4.2 18.3 3.5 5 o r
Crest 4.3 21.7 3.7 6.4 o w
Crest 4.3 17.4 3.6 4.6 o w
Crest 3.5 15.2 3.2 2.7 o w
Crest 3.0 10.9 2.8 .85 o w
Arm & Hammer 4.4 17 3.7 5 o w
;
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data grocery;
length name $16;
set grocery2;

The FORMAT procedure is used to define to formats to make the output easier to
read. TheSTARS. format is used for graphical crosstabulations in the TABULATE
procedure. The$COLOR format displays the names of the colors instead of just the
first letter.

/*------ formats and macros for displaying ------*/
/*------ cluster results ------*/

proc format; value stars
0=’ ’
1=’ #’
2=’ ##’
3=’ ###’
4=’ ####’
5=’ #####’
6=’ ######’
7=’ #######’
8=’ ########’
9=’ #########’

10=’ ##########’
11=’ ###########’
12=’ ############’
13=’ #############’
14=’ ##############’

15-high=’>##############’;
run;

proc format; value $color
’w’=’White’
’y’=’Yellow’
’r’=’Red’
’g’=’Green’
’b’=’Blue’;

run;

Since a full display of the results of each cluster analysis would be very long, a macro
is used with five macro variables to select parts of the output. The macro variables
are set to select only the PROC CLUSTER output and the crosstabulation of clusters
and true categories for the first two analyses. The example could be run with different
settings of the macro variables to show the full output or other selected parts.

%let cluster=1; /* 1=show CLUSTER output, 0=don’t */
%let tree=0; /* 1=print TREE diagram, 0=don’t */
%let list=0; /* 1=list clusters, 0=don’t */
%let crosstab=1; /* 1=crosstabulate clusters and classes,

0=don’t */
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%let crosscol=0; /* 1=crosstabulate clusters and colors,
0=don’t */

/*--- define macro with options for TREE ---*/
%macro treeopt;

%if &tree %then h page=1;
%else noprint;

%mend;

/*--- define macro with options for CLUSTER ---*/
%macro clusopt;

%if &cluster %then pseudo ccc p=20;
%else noprint;

%mend;

/*------ macro for showing cluster results ------*/
%macro show(n); /* n=number of clusters

to show results for */

proc tree data=tree %treeopt n=&n out=out;
id name;
copy class height width depth weight color;

run;

%if &list %then %do;
proc sort;

by cluster;
run;

proc print;
var class name height width depth weight color;
by cluster clusname;

run;
%end;

%if &crosstab %then %do;
proc tabulate noseps /* formchar=’ ’ */;

class class cluster;
table cluster, class*n=’

’*f=stars./rts=10 misstext=’ ’;
run;
%end;

%if &crosscol %then %do;
proc tabulate noseps /* formchar=’ ’ */;

class color cluster;
table cluster, color*n=’

’*f=stars./rts=10 misstext=’ ’;
format color $color.;

run;
%end;
%mend;

The first analysis uses the variablesheight, width, depth, andweight in standard-
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ized form to show the effect of including size information. The CCC, pseudoF ,
and pseudot2 statistics indicate 10 clusters. Most of the clusters do not correspond
closely to the true categories, and four of the clusters have only one or two observa-
tions.

/**********************************************************/
/* */
/* Analysis 1: standardized box measurements */
/* */
/**********************************************************/
title2 ’Analysis 1: Standardized data’;
proc cluster data=grocery m=cen std %clusopt outtree=tree;

var height width depth weight;
id name;
copy class color;

run;

%show(10);

Output 23.6.1. Analysis of Standardized Data

Cluster Analysis of Grocery Boxes
Analysis 1: Standardized data

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 2.44512438 1.64456210 0.6113 0.6113
2 0.80056228 0.33149770 0.2001 0.8114
3 0.46906458 0.18381582 0.1173 0.9287
4 0.28524876 0.0713 1.0000

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1
Root-Mean-Square Distance Between Observations = 2.828427
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Cluster Analysis of Grocery Boxes
Analysis 1: Standardized data

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1
Root-Mean-Square Distance Between Observations = 2.828427

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL22 OB54 11 0.0028 .974 . . 85.4 4.5 0.3073
19 CL36 OB8 5 0.0026 .972 . . 83.7 15.3 0.3146
18 CL24 CL41 12 0.0080 .964 . . 70.2 10.0 0.3316
17 CL18 CL30 18 0.0144 .949 . . 53.8 12.7 0.3343
16 OB33 CL29 3 0.0024 .947 . . 55.8 4.7 0.3363
15 CL50 CL33 7 0.0055 .941 . . 55.0 24.4 0.346
14 CL46 CL15 10 0.0069 .934 . . 53.7 8.1 0.3192
13 CL27 OB53 6 0.0035 .931 . . 56.1 6.3 0.362
12 CL31 CL16 5 0.0075 .923 .861 8.03 55.8 6.6 0.4416
11 CL19 CL23 7 0.0102 .913 .848 7.59 54.6 12.7 0.4713
10 OB23 OB26 2 0.0037 .909 .835 8.36 59.1 . 0.4781

9 CL11 CL17 25 0.0393 .870 .819 4.72 45.2 19.3 0.4918
8 CL13 CL14 16 0.0329 .837 .801 2.95 40.4 23.7 0.5215
7 CL8 CL20 27 0.0629 .774 .779 -.31 32.0 25.9 0.5467
6 CL7 OB62 28 0.0112 .763 .752 0.61 36.7 2.4 0.6003
5 CL9 CL6 53 0.1879 .575 .718 -5.9 19.6 43.4 0.6641
4 CL5 CL21 55 0.0345 .541 .672 -5.2 23.2 4.5 0.745
3 CL4 CL12 60 0.1137 .427 .602 -5.3 22.4 14.5 0.8769
2 CL3 CL10 62 0.1511 .276 .471 -4.3 23.2 15.8 1.5559
1 CL2 OB22 63 0.2759 .000 .000 0.00 . 23.2 2.948

----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 | | | | | | ###########|
|2 | | ##| | #| | ###|
|3 | #####| | ##| | | |
|4 | | | | ###| #######| |
|5 | ###########| ##| ###| | | ##|
|6 | | | | #####| | |
|7 | | #| | | | #|
|8 | | | ##| | | |
|9 | | | | | #| |
|10 | | | #| | | |
----------------------------------------------------------------------------------------------------------

The second analysis uses logarithms ofheight, width, depth, and the cube root of
weight; the cube root is used for consistency with the linear measures. The rows are
then centered to remove size information. Finally, the columns are standardized to
have a standard deviation of 1. There is no compelling a priori reason to standardize
the columns, but if they are not standardized,height dominates the analysis because
of its large variance. The STANDARD procedure is used instead of the STD option
in PROC CLUSTER so that a subsequent analysis can separately standardize the
dummy variables for color.

/**********************************************************/
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/* */
/* Analysis 2: standardized row-centered logarithms */
/* */
/**********************************************************/

title2 ’Row-centered logarithms’;
data shape;

set grocery;
array x height width depth weight;
array l l_height l_width l_depth l_weight;

/* logarithms */
weight=weight**(1/3); /* take cube root to conform with

the other linear measurements */
do over l; /* take logarithms */

l=log(x);
end;
mean=mean( of l(*)); /* find row mean of logarithms */
do over l;

l=l-mean; /* center row */
end;

run;

title2 ’Analysis 2: Standardized row-centered logarithms’;
proc standard data=shape out=shapstan m=0 s=1;

var l_height l_width l_depth l_weight;
run;

proc cluster data=shapstan m=cen %clusopt outtree=tree;
var l_height l_width l_depth l_weight;
id name;
copy class height width depth weight color;

run;

%show(8);

The results of the second analysis are shown for eight clusters. Clusters 1 through 4
correspond fairly well to tea, toothpaste, breakfast cereals, and detergents. Crackers
and Little Debbie products are scattered among several clusters.
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Output 23.6.2. Analysis of Standardized Row-Centered Logarithms

Cluster Analysis of Grocery Boxes
Analysis 2: Standardized row-centered logarithms

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 1.94931049 0.34845395 0.4873 0.4873
2 1.60085654 1.15102358 0.4002 0.8875
3 0.44983296 0.44983296 0.1125 1.0000
4 -.00000000 -0.0000 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 1
Root-Mean-Square Distance Between Observations = 2.828427

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL29 OB14 4 0.0017 .977 . . 94.7 2.9 0.2658
19 CL26 CL27 8 0.0045 .972 . . 85.4 8.4 0.3047
18 OB38 OB62 2 0.0016 .971 . . 87.2 . 0.3193
17 OB32 OB35 2 0.0018 .969 . . 89.1 . 0.3331
16 OB22 OB55 2 0.0019 .967 . . 91.3 . 0.3434
15 CL23 CL18 5 0.0050 .962 . . 86.5 4.8 0.3587
14 CL37 CL21 5 0.0051 .957 . . 83.5 10.4 0.3613
13 CL30 CL24 9 0.0068 .950 . . 79.2 12.9 0.3682
12 CL32 CL20 16 0.0142 .936 .892 5.75 67.6 29.3 0.3826
11 CL22 OB34 4 0.0037 .932 .881 6.31 71.4 3.2 0.3901
10 CL11 CL31 7 0.0090 .923 .869 6.17 70.8 6.3 0.4032

9 CL33 CL13 11 0.0092 .914 .853 6.25 71.7 7.6 0.4181
8 CL19 CL16 10 0.0131 .901 .835 6.12 71.4 10.9 0.503
7 CL14 CL9 16 0.0297 .871 .813 4.63 63.1 15.6 0.5173
6 CL10 CL15 12 0.0329 .838 .785 3.69 59.1 13.6 0.5916
5 CL6 CL28 19 0.0557 .783 .748 2.01 52.2 15.8 0.6252
4 CL12 CL8 26 0.0885 .694 .697 -.16 44.6 48.8 0.6679
3 CL5 CL17 21 0.0459 .648 .617 1.21 55.3 7.4 0.8863
2 CL4 CL7 42 0.2841 .364 .384 -.56 34.9 60.3 0.9429
1 CL2 CL3 63 0.3640 .000 .000 0.00 . 34.9 0.8978

----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 | | #| | | | ##########|
|2 | | | | | #######| |
|3 | ##############| ##| | | | |
|4 | #| | ########| | | #|
|5 | | | | ##| #| ##|
|6 | #| | | | | ####|
|7 | | ##| | #####| | |
|8 | | | | ##| | |
----------------------------------------------------------------------------------------------------------

The third analysis is similar to the second analysis except that the rows are standard-
ized rather than just centered. There is a clear indication of seven clusters from the
CCC, pseudoF , and pseudot2 statistics. The clusters are listed as well as crosstabu-
lated with the true categories and colors.
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/**********************************************************/
/* */
/* Analysis 3: standardized row-standardized logarithms */
/* */
/**********************************************************/

%let list=1;
%let crosscol=1;

title2 ’Row-standardized logarithms’;
data std;

set grocery;
array x height width depth weight;
array l l_height l_width l_depth l_weight;

/* logarithms */
weight=weight**(1/3); /* take cube root to conform with

the other linear measurements */
do over l;

l=log(x); /* take logarithms */
end;
mean=mean( of l(*)); /* find row mean of logarithms */
std=std( of l(*)); /* find row standard deviation */
do over l;

l=(l-mean)/std; /* standardize row */
end;

run;

title2 ’Analysis 3: Standardized row-standardized logarithms’;
proc standard data=std out=stdstan m=0 s=1;

var l_height l_width l_depth l_weight;
run;

proc cluster data=stdstan m=cen %clusopt outtree=tree;
var l_height l_width l_depth l_weight;
id name;
copy class height width depth weight color;

run;

%show(7);

The output from the third analysis shows that cluster 1 contains 9 of the 17 teas.
Cluster 2 contains all of the detergents plus Grape Nuts, a very heavy cereal. Cluster
3 includes all of the toothpastes and one Little Debbie product that is of very similar
shape, although roughly twice as large. Cluster 4 has most of the cereals, Ritz crack-
ers (which come in a box very similar to most of the cereal boxes), and Lipton Loose
Tea (all the other teas in the sample come in tea bags). Clusters 5 and 6 each con-
tain several Luzianne and Lipton teas and one or two miscellaneous items. Cluster
7 includes most of the Little Debbie products and two types of crackers. Thus, the
crackers are not identified and the teas are broken up into three clusters, but the other
categories correspond to single clusters. This analysis classifies toothpaste and Little
Debbie products slightly better than the second analysis,
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Output 23.6.3. Analysis of Standardized Row-Standardized Logarithms

Cluster Analysis of Grocery Boxes
Analysis 3: Standardized row-standardized logarithms

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 2.42684848 0.94583675 0.6067 0.6067
2 1.48101173 1.38887193 0.3703 0.9770
3 0.09213980 0.09213980 0.0230 1.0000
4 -.00000000 -0.0000 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 1
Root-Mean-Square Distance Between Observations = 2.828427

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL35 CL33 8 0.0024 .990 . . 229 32.0 0.1923
19 CL22 OB19 5 0.0010 .989 . . 224 2.9 0.2014
18 CL44 CL27 6 0.0018 .987 . . 206 20.5 0.2073
17 CL18 CL26 9 0.0025 .985 . . 187 6.4 0.1956
16 OB38 OB62 2 0.0009 .984 . . 192 . 0.24
15 CL24 CL23 5 0.0029 .981 . . 177 7.8 0.2753
14 CL25 OB21 4 0.0021 .979 . . 175 7.7 0.2917
13 CL30 CL19 17 0.0101 .969 . . 130 41.0 0.2974
12 CL16 CL31 9 0.0049 .964 .932 5.49 124 20.5 0.3121
11 CL21 OB52 4 0.0029 .961 .924 5.81 129 8.2 0.3445
10 CL41 CL11 6 0.0045 .957 .915 5.94 130 5.0 0.323

9 CL29 OB50 4 0.0031 .953 .904 6.52 138 20.3 0.3603
8 CL14 CL15 9 0.0101 .943 .890 6.08 131 10.7 0.3761
7 CL20 OB54 9 0.0047 .939 .872 6.89 143 11.7 0.4063
6 CL13 CL9 21 0.0272 .911 .848 5.23 117 30.0 0.5101
5 CL6 CL17 30 0.0746 .837 .814 1.30 74.3 42.2 0.606
4 CL10 CL7 15 0.0440 .793 .764 1.40 75.3 36.4 0.6152
3 CL8 CL12 18 0.0642 .729 .681 2.02 80.6 44.0 0.6648
2 CL3 CL4 33 0.2580 .471 .470 0.01 54.2 54.4 0.9887
1 CL5 CL2 63 0.4707 .000 .000 0.00 . 54.2 0.9636
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------------------------------------------------ CLUSTER=1 CLUSNAME=CL7 ------------------------------------------------

Obs class name height width depth weight color

1 Tea Bigelow Plantati 7.7 13.4 6.9 3.27107 g
2 Tea Bigelow Earl Gre 7.7 13.4 6.9 3.27107 b
3 Tea Celestial Saeson 7.8 13.8 6.3 3.65931 b
4 Tea Celestial Saeson 7.8 13.8 6.3 3.58305 r
5 Tea Bigelow Lemon Li 7.7 13.4 6.9 3.41995 y
6 Tea Celestial Saeson 7.8 13.8 6.3 3.82586 y
7 Tea Celestial Saeson 7.8 13.8 6.3 3.33222 g
8 Tea Lipton Tea Bags 6.7 10.0 5.7 3.28271 r
9 Tea Lipton Family Si 8.9 11.1 8.2 4.39510 r

----------------------------------------------- CLUSTER=2 CLUSNAME=CL17 ------------------------------------------------

Obs class name height width depth weight color

10 Detergent Tide 26.5 19.9 6.3 10.5928 r
11 Detergent Tide 19.3 14.6 4.7 7.8357 r
12 Detergent Tide 32.5 23.2 7.3 12.6889 r
13 Breakfast cereal Grape Nuts 21.7 16.3 4.9 8.7937 w
14 Detergent Arm & Hammer Det 33.7 22.8 7.0 14.7023 y
15 Detergent Arm & Hammer Det 27.8 19.4 6.3 12.2003 y
16 Detergent Arm & Hammer Det 38.8 30.0 16.9 22.4732 y
17 Detergent Tide 39.4 24.8 11.3 16.1045 r
18 Detergent Arm & Hammer Det 39.5 25.8 11.0 18.6115 y

----------------------------------------------- CLUSTER=3 CLUSNAME=CL12 ------------------------------------------------

Obs class name height width depth weight color

19 Paste, Tooth Colgate 3.6 15.6 3.3 4.39510 r
20 Paste, Tooth Crest 3.5 15.2 3.2 4.24343 w
21 Paste, Tooth Crest 4.3 17.4 3.6 5.06813 w
22 Paste, Tooth Arm & Hammer 4.4 17.0 3.7 5.21097 w
23 Paste, Tooth Colgate 4.2 18.3 3.5 5.21097 r
24 Paste, Tooth Crest 4.3 21.7 3.7 5.65790 w
25 Paste, Tooth Colgate 4.4 22.0 3.5 5.82946 r
26 Little Debbie Fudge Rounds 8.1 28.3 5.4 6.45411 w
27 Paste, Tooth Crest 3.0 10.9 2.8 2.88670 w
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----------------------------------------------- CLUSTER=4 CLUSNAME=CL13 ------------------------------------------------

Obs class name height width depth weight color

28 Breakfast cereal Cheerios 27.5 19.0 6.2 6.56541 y
29 Breakfast cereal Froot Loops 25.0 17.7 6.4 6.77735 r
30 Breakfast cereal Special K 30.1 20.5 8.5 7.98644 w
31 Breakfast cereal Corn Flakes 30.2 20.6 8.4 7.98644 w
32 Breakfast cereal Special K 29.6 19.2 6.7 6.97679 w
33 Breakfast cereal Corn Flakes 30.0 19.1 6.6 6.97679 w
34 Breakfast cereal Froot Loops 30.2 20.8 8.5 8.23034 r
35 Breakfast cereal Cheerios 30.3 20.4 7.2 7.51847 y
36 Breakfast cereal Cheerios 24.1 17.2 5.3 5.82848 y
37 Breakfast cereal Corn Flakes 33.7 25.4 8.0 8.79021 w
38 Breakfast cereal Special K 23.4 16.6 5.7 5.82946 w
39 Breakfast cereal Cheerios 32.5 22.4 8.4 8.27677 y
40 Breakfast cereal Shredded Wheat, 26.6 19.6 5.6 7.98957 r
41 Crackers Ritz 23.1 16.0 5.3 6.97953 r
42 Breakfast cereal All-Bran 21.1 14.3 5.2 7.30951 y
43 Tea Lipton Loose Tea 12.7 10.9 5.4 6.09479 r
44 Crackers Ritz 23.1 20.7 5.2 7.68573 r

----------------------------------------------- CLUSTER=5 CLUSNAME=CL10 ------------------------------------------------

Obs class name height width depth weight color

45 Tea Luzianne 8.9 22.8 6.4 5.53748 r
46 Tea Luzianne Decaffe 8.9 22.8 6.4 5.29641 g
47 Crackers Premium Saltines 11.0 25.0 10.7 7.68573 w
48 Tea Lipton Family Si 8.7 20.8 8.2 5.53748 r
49 Little Debbie Marshmallow Supr 9.4 32.0 7.0 6.56541 w
50 Tea Lipton Family Si 13.7 24.0 9.0 6.97679 r

------------------------------------------------ CLUSTER=6 CLUSNAME=CL9 ------------------------------------------------

Obs class name height width depth weight color

51 Tea Luzianne 18.4 20.2 6.9 6.09479 r
52 Tea Lipton Tea Bags 17.1 20.0 6.7 6.09479 r
53 Breakfast cereal Shredded Wheat 19.7 19.9 7.5 6.56541 y
54 Tea Lipton Tea Bags 11.5 14.4 6.6 4.73448 r

------------------------------------------------ CLUSTER=7 CLUSNAME=CL8 ------------------------------------------------

Obs class name height width depth weight color

55 Crackers Wheatsworth 11.1 25.2 5.5 6.88239 w
56 Little Debbie Swiss Cake Rolls 10.1 21.8 5.8 7.16545 w
57 Little Debbie Figaroos 13.5 18.6 3.7 6.97679 y
58 Little Debbie Nutty Bar 13.2 18.5 4.2 6.97679 y
59 Little Debbie Apple Delights 11.2 30.1 4.9 7.51552 w
60 Little Debbie Lemon Stix 13.2 18.5 4.2 6.33884 w
61 Little Debbie Fudge Brownies 11.0 30.8 2.5 6.97679 w
62 Little Debbie Snack Cakes 13.4 32.0 3.4 7.16545 b
63 Crackers Waverly Wafers 14.4 22.5 6.2 7.68573 g

----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 | | | | | | #########|
|2 | #| | ########| | | |
|3 | | | | #| ########| |
|4 | ##############| ##| | | | #|
|5 | | #| | #| | ####|
|6 | #| | | | | ###|
|7 | | ##| | #######| | |
----------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------
| | color |
| |-------------------------------------------------------------------------------|
| | Blue | Green | Red | White | Yellow |
|--------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | |
|1 | ##| ##| ###| | ##|
|2 | | | ####| #| ####|
|3 | | | ###| ######| |
|4 | | | ######| ######| #####|
|5 | | #| ###| ##| |
|6 | | | ###| | #|
|7 | #| #| | #####| ##|
------------------------------------------------------------------------------------------

The last several analyses include color. Obviously, the dummy variables must not
be included in calculations to standardize the rows. If the five dummy variables are
simply standardized to variance 1.0 and included with the other variables, color dom-
inates the analysis. The dummy variables should be scaled to a smaller variance,
which must be determined by trial and error. Four analyses are done using PROC
STANDARD to scale the dummy variables to a standard deviation of 0.2, 0.3, 0.4, or
0.8. The cluster listings are suppressed.

Since dummy variables drastically violate the normality assumption on which the
CCC depends, the CCC tends to indicate an excessively large number of clusters.

/************************************************************/
/* */
/* Analyses 4-7: standardized row-standardized logs & color */
/* */
/************************************************************/
%let list=0;
%let crosscol=1;

title2
’Analysis 4: Standardized row-standardized

logarithms and color (s=.2)’;
proc standard data=stdstan out=stdstan m=0 s=.2;

var c_:;
run;

proc cluster data=stdstan m=cen %clusopt outtree=tree;
var l_height l_width l_depth l_weight c_:;
id name;
copy class height width depth weight color;

run;

%show(7);

title2
’Analysis 5: Standardized row-standardized

logarithms and color (s=.3)’;
proc standard data=stdstan out=stdstan m=0 s=.3;

var c_:;
run;
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proc cluster data=stdstan m=cen %clusopt outtree=tree;
var l_height l_width l_depth l_weight c_:;
id name;
copy class height width depth weight color;

run;

%show(6);

title2
’Analysis 6: Standardized row-standardized

logarithms and color (s=.4)’;
proc standard data=stdstan out=stdstan m=0 s=.4;

var c_:;
run;

proc cluster data=stdstan m=cen %clusopt outtree=tree;
var l_height l_width l_depth l_weight c_:;
id name;
copy class height width depth weight color;

run;

%show(3);

title2
’Analysis 7: Standardized row-standardized

logarithms and color (s=.8)’;
proc standard data=stdstan out=stdstan m=0 s=.8;

var c_:;
run;

proc cluster data=stdstan m=cen %clusopt outtree=tree;
var l_height l_width l_depth l_weight c_:;
id name;
copy class height width depth weight color;

run;

%show(10);

Using PROC STANDARD on the dummy variables with S=0.2 causes four of the
Little Debbie products to join the toothpastes. Using S=0.3 causes one of the tea
clusters to merge with the breakfast cereals while three cereals defect to the deter-
gents. Using S=0.4 produces three clusters consisting of (1) cereals and detergents,
(2) Little Debbie products and toothpaste, and (3) teas, with crackers divided among
all three clusters and a few other misclassifications. With S=0.8, ten clusters are in-
dicated, each entirely monochrome. So, S=0.2 or S=0.3 degrades the classification,
S=0.4 yields a good but perhaps excessively coarse classification, and higher values
of the S= option produce clusters that are determined mainly by color.
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Output 23.6.4. Analysis of Standardized Row-Standardized Logarithms and Color

Cluster Analysis of Grocery Boxes
Analysis 4: Standardized row-standardized logarithms and color (s=.2)

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 2.43584975 0.94791932 0.5800 0.5800
2 1.48793042 1.39363531 0.3543 0.9342
3 0.09429511 0.03686218 0.0225 0.9567
4 0.05743293 0.01036136 0.0137 0.9704
5 0.04707157 0.00489503 0.0112 0.9816
6 0.04217654 0.00693298 0.0100 0.9916
7 0.03524355 0.03524355 0.0084 1.0000
8 0.00000000 0.00000000 0.0000 1.0000
9 -.00000000 -0.0000 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 0.68313
Root-Mean-Square Distance Between Observations = 2.898275

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL46 OB37 3 0.0016 .968 . . 67.5 11.9 0.2706
19 OB46 OB52 2 0.0014 .966 . . 69.7 . 0.2995
18 CL25 CL37 6 0.0041 .962 . . 67.1 5.0 0.3081
17 CL33 CL35 16 0.0099 .952 . . 57.2 16.7 0.3196
16 CL19 OB48 3 0.0024 .950 . . 59.2 1.7 0.3357
15 CL30 CL16 5 0.0042 .946 . . 59.5 2.7 0.3299
14 CL27 CL18 8 0.0057 .940 . . 58.9 4.2 0.3429
13 CL20 OB32 4 0.0031 .937 . . 61.7 3.6 0.3564
12 CL24 OB50 4 0.0031 .934 .905 3.23 65.2 4.7 0.359
11 CL39 CL28 6 0.0068 .927 .896 3.17 65.9 12.1 0.3743
10 CL13 OB35 5 0.0036 .923 .886 3.62 70.8 2.3 0.3755

9 CL11 CL32 13 0.0176 .906 .874 2.70 64.8 16.0 0.4107
8 CL14 OB54 9 0.0052 .900 .859 3.29 71.0 2.6 0.4265
7 OB21 CL10 6 0.0052 .895 .841 4.09 79.8 2.4 0.4378
6 CL17 CL12 20 0.0248 .870 .817 3.52 76.6 19.7 0.4898
5 CL15 CL8 14 0.0326 .838 .783 3.08 75.0 14.0 0.5607
4 CL6 CL21 30 0.0743 .764 .734 1.35 63.5 35.6 0.5877
3 CL9 CL7 19 0.0579 .706 .653 2.17 72.0 22.8 0.6611
2 CL4 CL3 49 0.3632 .343 .450 -2.6 31.8 73.0 0.9838
1 CL2 CL5 63 0.3426 .000 .000 0.00 . 31.8 0.9876

----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 | ##| | ########| | | |
|2 | | #| | ####| ########| |
|3 | #############| ##| | | | #|
|4 | #| | | | | ###|
|5 | | #| | #####| | |
|6 | | | | | | #########|
|7 | | #| | | | ####|
----------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------
| | color |
| |-------------------------------------------------------------------------------|
| | Blue | Green | Red | White | Yellow |
|--------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | |
|1 | | | ####| #| #####|
|2 | | | ###| ##########| |
|3 | | | ######| ######| ####|
|4 | | | ###| | #|
|5 | #| #| | ##| ##|
|6 | ##| ##| ###| | ##|
|7 | | #| ###| #| |
------------------------------------------------------------------------------------------

Cluster Analysis of Grocery Boxes
Analysis 5: Standardized row-standardized logarithms and color (s=.3)

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 2.44752302 0.95026671 0.5500 0.5500
2 1.49725632 1.36701945 0.3365 0.8865
3 0.13023687 0.02135049 0.0293 0.9157
4 0.10888637 0.00867367 0.0245 0.9402
5 0.10021271 0.00628821 0.0225 0.9627
6 0.09392449 0.02196469 0.0211 0.9838
7 0.07195981 0.07195981 0.0162 1.0000
8 0.00000000 0.00000000 0.0000 1.0000
9 -.00000000 -0.0000 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 0.703167
Root-Mean-Square Distance Between Observations = 2.983287

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL24 CL28 4 0.0038 .953 . . 45.7 2.7 0.3448
19 OB11 CL23 6 0.0033 .950 . . 46.0 3.5 0.3477
18 CL46 OB37 3 0.0027 .947 . . 47.1 21.9 0.3558
17 CL21 OB50 4 0.0031 .944 . . 48.2 2.5 0.3577
16 CL39 CL33 6 0.0064 .937 . . 46.9 12.1 0.3637
15 CL19 CL29 14 0.0152 .922 . . 40.6 12.4 0.3707
14 CL18 OB32 4 0.0035 .919 . . 42.5 2.5 0.3813
13 CL16 CL25 13 0.0175 .901 . . 38.0 13.7 0.4103
12 CL22 OB54 5 0.0049 .896 .875 1.76 40.0 3.2 0.4353
11 CL12 CL37 7 0.0089 .887 .865 1.71 40.9 4.6 0.4397
10 CL20 OB48 5 0.0056 .882 .854 2.02 43.9 2.5 0.4669

9 CL26 CL17 16 0.0222 .859 .841 1.20 41.3 16.6 0.479
8 CL32 CL11 9 0.0125 .847 .826 1.31 43.5 4.5 0.4988
7 CL14 OB35 5 0.0070 .840 .806 1.95 49.0 3.3 0.519
6 OB21 CL7 6 0.0077 .832 .782 2.79 56.6 2.3 0.5366
5 CL9 CL15 30 0.0716 .761 .749 0.54 46.1 28.3 0.5452
4 CL10 CL8 14 0.0318 .729 .700 1.21 52.9 8.6 0.5542
3 CL5 CL6 36 0.0685 .660 .622 1.50 58.3 14.2 0.6516
2 CL13 CL4 27 0.2008 .460 .427 0.90 51.9 46.6 0.9611
1 CL3 CL2 63 0.4595 .000 .000 0.00 . 51.9 0.9609
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----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 | ###| ##| ########| | | #|
|2 | | #| | ####| ########| |
|3 | #############| | | | | ###|
|4 | | #| | #####| | |
|5 | | | | | | #########|
|6 | | #| | | | ####|
----------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------
| | color |
| |-------------------------------------------------------------------------------|
| | Blue | Green | Red | White | Yellow |
|--------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | |
|1 | | | ########| #| #####|
|2 | | | ###| ##########| |
|3 | | | #####| ######| #####|
|4 | #| #| | ##| ##|
|5 | ##| ##| ###| | ##|
|6 | | #| ###| #| |
------------------------------------------------------------------------------------------



1062 � Chapter 23. The CLUSTER Procedure

Cluster Analysis of Grocery Boxes
Analysis 6: Standardized row-standardized logarithms and color (s=.4)

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 2.46469435 0.95296119 0.5135 0.5135
2 1.51173316 1.28149311 0.3149 0.8284
3 0.23024005 0.04306536 0.0480 0.8764
4 0.18717469 0.01766446 0.0390 0.9154
5 0.16951023 0.01827481 0.0353 0.9507
6 0.15123542 0.06582379 0.0315 0.9822
7 0.08541162 0.08541162 0.0178 1.0000
8 0.00000000 0.00000000 0.0000 1.0000
9 -.00000000 -0.0000 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 0.730297
Root-Mean-Square Distance Between Observations = 3.098387

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL29 CL44 10 0.0074 .955 . . 47.7 8.2 0.3789
19 CL38 OB54 3 0.0031 .952 . . 48.1 9.3 0.3792
18 CL25 CL41 11 0.0155 .936 . . 38.8 36.7 0.4192
17 CL23 CL43 10 0.0120 .924 . . 35.0 11.6 0.4208
16 OB11 CL26 6 0.0050 .919 . . 35.6 5.8 0.4321
15 CL19 CL31 5 0.0074 .912 . . 35.4 5.3 0.4362
14 OB20 CL27 4 0.0046 .907 . . 36.8 2.9 0.4374
13 CL18 CL20 21 0.0352 .872 . . 28.4 19.7 0.4562
12 CL13 CL16 27 0.0372 .835 .839 -.37 23.4 12.0 0.4968
11 CL21 CL17 15 0.0289 .806 .828 -1.5 21.6 13.6 0.5183
10 CL14 CL15 9 0.0200 .786 .815 -1.8 21.6 7.2 0.5281

9 OB21 OB48 2 0.0047 .781 .801 -1.2 24.1 . 0.5425
8 CL10 CL24 12 0.0243 .757 .785 -1.3 24.5 5.8 0.5783
7 CL12 CL46 29 0.0224 .735 .765 -1.3 25.8 5.3 0.6105
6 CL8 CL37 14 0.0220 .712 .740 -1.1 28.3 4.0 0.6313
5 CL6 CL32 16 0.0251 .687 .707 -.78 31.9 3.9 0.6664
4 CL11 CL9 17 0.0287 .659 .660 -.04 38.0 7.0 0.7098
3 CL4 OB35 18 0.0180 .641 .584 2.21 53.5 3.2 0.7678
2 CL3 CL5 34 0.2175 .423 .400 0.67 44.8 31.4 0.8923
1 CL7 CL2 63 0.4232 .000 .000 0.00 . 44.8 0.9156

----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 |>##############| ##| ########| ##| | #|
|2 | | ##| | #######| ########| #|
|3 | | #| | | |>##############|
----------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------
| | color |
| |-------------------------------------------------------------------------------|
| | Blue | Green | Red | White | Yellow |
|--------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | |
|1 | | | ##########| #######| ############|
|2 | #| ##| ###| ############| |
|3 | ##| ##| #########| #| ##|
------------------------------------------------------------------------------------------
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Cluster Analysis of Grocery Boxes
Analysis 7: Standardized row-standardized logarithms and color (s=.8)

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 2.61400794 0.93268930 0.3631 0.3631
2 1.68131864 0.77645948 0.2335 0.5966
3 0.90485916 0.22547234 0.1257 0.7222
4 0.67938683 0.00292216 0.0944 0.8166
5 0.67646466 0.12119211 0.0940 0.9106
6 0.55527255 0.46658428 0.0771 0.9877
7 0.08868827 0.08868827 0.0123 1.0000
8 0.00000000 0.00000000 0.0000 1.0000
9 -.00000000 -0.0000 1.0000

Root-Mean-Square Total-Sample Standard Deviation = 0.894427
Root-Mean-Square Distance Between Observations = 3.794733

Cluster History
Norm T
Cent i

NCL --Clusters Joined--- FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Dist e

20 CL29 CL44 10 0.0049 .970 . . 72.7 8.2 0.3094
19 CL38 OB54 3 0.0021 .968 . . 73.3 9.3 0.3096
18 CL21 CL23 12 0.0153 .952 . . 53.0 15.0 0.4029
17 OB21 OB48 2 0.0032 .949 . . 53.8 . 0.443
16 CL27 CL24 6 0.0095 .940 . . 48.9 10.4 0.444
15 CL19 CL16 9 0.0136 .926 . . 43.0 6.1 0.4587
14 CL41 OB11 7 0.0058 .920 . . 43.6 51.2 0.4591
13 CL26 CL46 7 0.0105 .910 . . 42.1 22.0 0.4769
12 CL25 CL13 12 0.0205 .889 .743 16.5 37.3 13.8 0.467
11 CL18 OB20 13 0.0093 .880 .726 16.7 38.2 4.0 0.5586
10 CL17 CL37 4 0.0134 .867 .706 16.5 38.3 7.9 0.6454

9 CL14 CL20 17 0.0567 .810 .684 11.0 28.8 52.6 0.6534
8 CL12 CL9 29 0.0828 .727 .659 5.03 20.9 20.7 0.604
7 CL11 CL43 16 0.0359 .691 .631 4.25 20.9 14.4 0.6758
6 CL15 CL31 11 0.0263 .665 .598 4.24 22.6 8.0 0.7065
5 CL7 CL6 27 0.1430 .522 .557 -1.7 15.8 28.2 0.8247
4 CL8 CL5 56 0.2692 .253 .507 -9.1 6.6 31.5 0.7726
3 OB35 CL32 3 0.0216 .231 .435 -6.6 9.0 46.0 1.0027
2 CL4 CL10 60 0.1228 .108 .289 -5.6 7.4 9.5 1.0096
1 CL2 CL3 63 0.1083 .000 .000 0.00 . 7.4 1.0839

----------------------------------------------------------------------------------------------------------
| | class |
| |-----------------------------------------------------------------------------------------------|
| | Breakfast | | | | | |
| | cereal | Crackers | Detergent | Little Debbie | Paste, Tooth | Tea |
|--------+---------------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | | |
|1 | ###| ##| ####| | | #|
|2 | | ##| | ######| #####| |
|3 | #######| | | | | |
|4 | ######| | ####| ##| | |
|5 | | | | | ###| |
|6 | | | | | | #########|
|7 | | #| | | | ###|
|8 | | | | | | ##|
|9 | | | | | | ##|
|10 | | | | #| | |
----------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------
| | color |
| |-------------------------------------------------------------------------------|
| | Blue | Green | Red | White | Yellow |
|--------+---------------+---------------+---------------+---------------+---------------|
|CLUSTER | | | | | |
|1 | | | ##########| | |
|2 | | | | #############| |
|3 | | | | #######| |
|4 | | | | | ############|
|5 | | | ###| | |
|6 | | | #########| | |
|7 | | ####| | | |
|8 | ##| | | | |
|9 | | | | | ##|
|10 | #| | | | |
------------------------------------------------------------------------------------------
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Chapter 24
The CORRESP Procedure
Overview

The CORRESP procedure performs simple and multiple correspondence analysis.
You can use correspondence analysis to find a low-dimensional graphical represen-
tation of the rows and columns of a crosstabulation or contingency table. Each row
and column is represented by a point in a plot determined from the cell frequen-
cies. PROC CORRESP can also compute coordinates for supplementary rows and
columns. Experimental graphics are now available with the CORRESP procedure.
For more information, see the“ODS Graphics”section on page 1109.

PROC CORRESP can read two kinds of input: raw categorical responses on two or
more classification variables, and a two-way contingency table. The correspondence
analysis results can be output and displayed with the %PLOTIT macro.

Background

Correspondence analysis is a popular data analysis method in France and Japan. In
France, correspondence analysis was developed under the strong influence of Jean-
Paul Benzécri; in Japan, it was developed under Chikio Hayashi. The namecorre-
spondence analysisis a translation of the Frenchanalyse des correspondances. The
technique apparently has many independent beginnings (for example, Richardson and
Kuder 1933; Hirshfeld 1935; Horst 1935; Fisher 1940; Guttman 1941; Burt 1950;
Hayashi 1950). It has had many other names, including optimal scaling, reciprocal
averaging, optimal scoring, and appropriate scoring in the United States; quantifi-
cation method in Japan; homogeneity analysis in the Netherlands; dual scaling in
Canada; and scalogram analysis in Israel.

Correspondence analysis is described in more detail in French in Benzécri (1973)
and Lebart, Morineau, and Tabard (1977). In Japanese, the subject is described in
Komazawa (1982), Nishisato (1982), and Kobayashi (1981). In English, correspon-
dence analysis is described in Lebart, Morineau, and Warwick (1984), Greenacre
(1984), Nishisato (1980), Tenenhaus and Young (1985); Gifi (1990); Greenacre and
Hastie (1987); and many other sources. Hoffman and Franke (1986) offer a short,
introductory treatment using examples from the field of market research.
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Getting Started

Data are available containing the numbers of Ph.Ds awarded in the United States dur-
ing the years 1973 through 1978 (U.S. Bureau of the Census 1979). The table has
six rows, one for each of six academic disciplines, and six columns for the six years.
The following DATA step reads the complete table into a SAS data set, and PROC
CORRESP displays correspondence analysis results including the inertia decomposi-
tion and coordinates. The concept ofinertia in correspondence analysis is analogous
to the concept of variance in principal component analysis, and it is proportional to
the chi-square information. The %PLOTIT macro creates a graphical scatterplot of
the results. SeeAppendix B, “Using the %PLOTIT Macro,”for more information on
the %PLOTIT macro.

title "Number of Ph.D’s Awarded from 1973 to 1978";
data PhD;

input Science $ 1-19 y1973-y1978;
label y1973 = ’1973’

y1974 = ’1974’
y1975 = ’1975’
y1976 = ’1976’
y1977 = ’1977’
y1978 = ’1978’;

datalines;
Life Sciences 4489 4303 4402 4350 4266 4361
Physical Sciences 4101 3800 3749 3572 3410 3234
Social Sciences 3354 3286 3344 3278 3137 3008
Behavioral Sciences 2444 2587 2749 2878 2960 3049
Engineering 3338 3144 2959 2791 2641 2432
Mathematics 1222 1196 1149 1003 959 959
;

proc corresp data=PhD out=Results short;
var y1973-y1978;
id Science;

run;

%plotit(data=Results, datatype=corresp, plotvars=Dim1 Dim2)
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Number of Ph.D’s Awarded from 1973 to 1978

The CORRESP Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative
Value Inertia Square Percent Percent 19 38 57 76 95

----+----+----+----+----+---
0.05845 0.00342 368.653 96.04 96.04 *************************
0.00861 0.00007 7.995 2.08 98.12 *
0.00694 0.00005 5.197 1.35 99.48
0.00414 0.00002 1.852 0.48 99.96
0.00122 0.00000 0.160 0.04 100.00

Total 0.00356 383.856 100.00

Degrees of Freedom = 25

Figure 24.1. Inertia and Chi-Square Decomposition

The total chi-square statistic, which is a measure of the association between the rows
and columns in the full five dimensions of the (centered) table, is 383.856. The
maximum number of dimensions (or axes) is the minimum of the number of rows and
columns, minus one. Over 96% of the total chi-square and inertia is explained by the
first dimension, indicating that the association between the row and column categories
is essentially one dimensional. The plot shows how the number of doctorates in the
different areas changes over time. The plot shows that the number of doctorates in
the behavioral sciences is associated with later years, and the number of doctorates
in mathematics and engineering is associated with earlier years. This is consistent
with the data which shows that number of doctorates in the behavioral sciences is
increasing, the number of doctorates in every other discipline is decreasing, and the
rate of decrease is greatest for mathematics and engineering.
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Figure 24.2. Plot of Dimension 1 versus Dimension 2 for Ph.D. Data

Syntax

The following statements are available in the CORRESP procedure.

PROC CORRESP < options > ;
TABLES < row-variables, > column-variables ;
VAR variables ;
BY variables ;
ID variable ;
SUPPLEMENTARY variables ;
WEIGHT variable ;

There are two separate forms of input to PROC CORRESP. One form is specified in
the TABLES statement, the other in the VAR statement. You must specify either the
TABLES or the VAR statement, but not both, each time you run PROC CORRESP.

Specify the TABLES statement if you are using raw, categorical data, the levels of
which define the rows and columns of a table.
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Specify the VAR statement if your data are already in tabular form. PROC CORRESP
is generally more efficient with VAR statement input than with TABLES statement
input.

The other statements are optional. Each of the statements is explained in alpha-
betical order following the PROC CORRESP statement. All of the options in PROC
CORRESP can be abbreviated to their first three letters, except for the OUTF= option.
This is a special feature of PROC CORRESP and is not generally true of SAS/STAT
procedures.

PROC CORRESP Statement

PROC CORRESP < options > ;

The PROC CORRESP statement invokes the procedure. You can specify the follow-
ing options in the PROC CORRESP statement. These options are described following
Table 24.1.

Table 24.1. Summary of PROC CORRESP Statement Options

Task Options
Specify data sets

specify input SAS data set DATA=
specify output coordinate SAS data set OUTC=
specify output frequency SAS data set OUTF=

Compute row and column coordinates
specify the number of dimensions or axes DIMENS=
perform multiple correspondence analysis MCA
standardize the row and column coordinates PROFILE=

Construct tables
specify binary table BINARY
specify cross levels of TABLES variables CROSS=
specify input data in PROC FREQ output FREQOUT
include observations with missing values MISSING

Display output
display all output ALL
display inertias adjusted by Benzécri’s method BENZECRI
display cell contributions to chi-square CELLCHI2
display column profile matrix CP
display observed minus expected values DEVIATION
display chi-square expected values EXPECTED
display inertias adjusted by Greenacre’s method GREENACRE
suppress the display of column coordinates NOCOLUMN=
suppress the display of all output NOPRINT
suppress the display of row coordinates NOROW=
display contingency table of observed frequencies OBSERVED
display percentages or frequencies PRINT=
display row profile matrix RP
suppress all point and coordinate statistics SHORT
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Task Options
display unadjusted inertias UNADJUSTED

Other tasks
specify rarely used column coordinate standardizations COLUMN=
specify minimum inertia MININERTIA=
specify number of classification variables NVARS=
specify rarely used row coordinate standardizations ROW=
specify effective zero SINGULAR=
include level source in the OUTC= data set SOURCE

The display options control the amount of displayed output. The CELLCHI2,
EXPECTED, and DEVIATION options display additional chi-square information.
See the“Details” section on page 1082 for more information. The unit of the ma-
trices displayed by the CELLCHI2, CP, DEVIATION, EXPECTED, OBSERVED,
and RP options depends on the value of the PRINT= option. The table construction
options control the construction of the contingency table; these options are valid only
when you also specify a TABLES statement.

You can specify the following options in the PROC CORRESP statement. They are
described in alphabetical order.

ALL
is equivalent to specifying the OBSERVED, RP, CP, CELLCHI2, EXPECTED, and
DEVIATION options. Specifying the ALL option does not affect the PRINT= option.
Therefore, only frequencies (not percentages) for these options are displayed unless
you specify otherwise with the PRINT= option.

BENZECRI | BEN
displays adjusted inertias when performing multiple correspondence analysis. By
default, unadjusted inertias, the usual inertias from multiple correspondence analy-
sis, are displayed. However, adjusted inertias using a method proposed by Benzécri
(1979) and described by Greenacre (1984, p. 145) can be displayed by specifying the
BENZECRI option. Specify the UNADJUSTED option to output the usual table of
unadjusted inertias as well. See the section“MCA Adjusted Inertias”on page 1102
for more information.

BINARY
enables you to create binary tables easily. When you specify the BINARY option,
specify only column variables in the TABLES statement. Each input data set obser-
vation forms a single row in the constructed table.

CELLCHI2 | CEL
displays the contribution to the total chi-square test statistic for each cell. See also
the descriptions of the DEVIATION, EXPECTED, and OBSERVED options.
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COLUMN=B | BD | DB | DBD | DBD1/2 | DBID1/2
COL=B | BD | DB | DBD | DBD1/2 | DBID1/2

provides other standardizations of the column coordinates. The COLUMN= option is
rarely needed. Typically, you should use the PROFILE= option instead (see the sec-
tion “The PROFILE=, ROW=, and COLUMN= Options”on page 1099). By default,
COLUMN=DBD.

CP
displays the column profile matrix. Column profiles contain the observed conditional
probabilities of row membership given column membership. See also the RP option.

CROSS=BOTH | COLUMN | NONE | ROW
CRO=BOT | COL | NON | ROW

specifies the method of crossing (factorially combining) the levels of the TABLES
variables. The default is CROSS=NONE.

• CROSS=NONE causes each level of every row variable to become a row label
and each level of every column variable to become a column label.

• CROSS=ROW causes each combination of levels for all row variables to be-
come a row label, whereas each level of every column variable becomes a
column label.

• CROSS=COLUMN causes each combination of levels for all column variables
to become a column label, whereas each level of every row variable becomes a
row label.

• CROSS=BOTH causes each combination of levels for all row variables to be-
come a row label and each combination of levels for all column variables to
become a column label.

The“TABLES Statement”section on page 1081 provides a more detailed description
of this option.

DATA=SAS-data-set
specifies the SAS data set to be used by PROC CORRESP. If you do not specify the
DATA= option, PROC CORRESP uses the most recently created SAS data set.

DEVIATION | DEV
displays the matrix of deviations between the observed frequency matrix and the
product of its row marginals and column marginals divided by its grand frequency.
For ordinary two-way contingency tables, these are the observed minus expected
frequencies under the hypothesis of row and column independence and are compo-
nents of the chi-square test statistic. See also the CELLCHI2, EXPECTED, and
OBSERVED options.

DIMENS=n
DIM=n

specifies the number of dimensions or axes to use. The default is DIMENS=2. The
maximum value of the DIMENS= option in an(nr × nc) table isnr − 1 or nc −
1, whichever is smaller. For example, in a table with 4 rows and 5 columns, the
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maximum specification is DIMENS=3. If your table has 2 rows or 2 columns, specify
DIMENS=1.

EXPECTED | EXP
displays the product of the row marginals and the column marginals divided by the
grand frequency of the observed frequency table. For ordinary two-way contingency
tables, these are the expected frequencies under the hypothesis of row and column
independence and are components of the chi-square test statistic. In other situations,
this interpretation is not strictly valid. See also the CELLCHI2, DEVIATION, and
OBSERVED options.

FREQOUT | FRE
indicates that the PROC CORRESP input data set has the same form as an output data
set from the FREQ procedure, even if it was not directly produced by PROC FREQ.
The FREQOUT option enables PROC CORRESP to take shortcuts in constructing
the contingency table.

When you specify the FREQOUT option, you must also specify a WEIGHT state-
ment. The cell frequencies in a PROC FREQ output data set are contained in a
variable calledCOUNT, so specifyCOUNT in a WEIGHT statement with PROC
CORRESP. The FREQOUT option may produce unexpected results if the DATA=
data set is structured incorrectly. Each of the two variable lists specified in the
TABLES statement must consist of a single variable, and observations must be
grouped by the levels of the row variable and then by the levels of the column vari-
able. It is not required that the observations be sorted by the row variable and column
variable, but they must be grouped consistently. There must be as many observations
in the input data set (or BY group) as there are cells in the completed contingency
table. Zero cells must be specified with zero weights. When you use PROC FREQ
to create the PROC CORRESP input data set, you must specify the SPARSE option
in the FREQ procedure’s TABLES statement so that the zero cells are written to the
output data set.

GREENACRE | GRE
displays adjusted inertias when performing multiple correspondence analysis. By
default, unadjusted inertias, the usual inertias from multiple correspondence analysis,
are displayed. However, adjusted inertias using a method proposed by Greenacre
(1994, p. 156) can be displayed by specifying the GREENACRE option. Specify the
UNADJUSTED option to output the usual table of unadjusted inertias as well. See
the section“MCA Adjusted Inertias”on page 1102 for more information.

MCA
requests a multiple correspondence analysis. This option requires that the input table
be a Burt table, which is a symmetric matrix of crosstabulations among several cat-
egorical variables. If you specify the MCA option and a VAR statement, you must
also specify the NVARS= option, which gives the number of categorical variables
that were used to create the table. With raw categorical data, if you want results for
the individuals as well as the categories, use the BINARY option instead.
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MININERTIA=n
MIN=n

specifies the minimum inertia(0 ≤ n ≤ 1) used to create the “best” tables—the
indicator of which points best explain the inertia of each dimension. By default,
MININERTIA=0.8. See the“Algorithm and Notation”section on page 1097 for
more information.

MISSING | MIS
specifies that observations with missing values for the TABLES statement variables
are included in the analysis. Missing values are treated as a distinct level of each
categorical variable. By default, observations with missing values are excluded from
the analysis.

NOCOLUMN < = BOTH | DATA | PRINT >
NOC < = BOT | DAT | PRI >

suppresses the display of the column coordinates and statistics and omits them from
the output coordinate data set.

BOTH suppresses all column information from both the SAS listing and
the output data set. The NOCOLUMN option is equivalent to the
option NOCOLUMN=BOTH.

DATA suppresses all column information from the output data set.

PRINT suppresses all column information from the SAS listing.

NOPRINT | NOP
suppresses the display of all output. This option is useful when you need only an
output data set. Note that this option temporarily disables the Output Delivery System
(ODS). For more information, seeChapter 14, “Using the Output Delivery System.”

NOROW < = BOTH | DATA | PRINT >
NOR < = BOT | DAT | PRI >

suppresses the display of the row coordinates and statistics and omits them from the
output coordinate data set.

BOTH suppresses all row information from both the SAS listing and the
output data set. The NOROW option is equivalent to the option
NOROW=BOTH.

DATA suppresses all row information from the output data set.

PRINT suppresses all row information from the SAS listing.

The NOROW option can be useful when the rows of the contingency table are repli-
cations.

NVARS=n
NVA=n

specifies the number of classification variables that were used to create the Burt table.
For example, if the Burt table was originally created with the statement
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tables a b c;

you must specify NVARS=3 to read the table with a VAR statement.

The NVARS= option is required when you specify both the MCA option and a VAR
statement. (See the section“VAR Statement”on page 1081 for an example.)

OBSERVED | OBS
displays the contingency table of observed frequencies and its row, column, and grand
totals. If you do not specify the OBSERVED or ALL option, the contingency table is
not displayed.

OUTC=SAS-data-set
OUT=SAS-data-set

creates an output coordinate SAS data set to contain the row, column, supplementary
observation, and supplementary variable coordinates. This data set also contains the
masses, squared cosines, quality of each point’s representation in the DIMENS=n
dimensional display, relative inertias, partial contributions to inertia, and best indica-
tors.

OUTF=SAS-data-set
creates an output frequency SAS data set to contain the contingency table, row, and
column profiles, the expected values, and the observed minus expected values and
contributions to the chi-square statistic.

PRINT=BOTH | FREQ | PERCENT
PRI=BOT | FRE | PER

affects the OBSERVED, RP, CP, CELLCHI2, EXPECTED, and DEVIATION op-
tions. The default is PRINT=FREQ.

• The PRINT=FREQ option displays output in the appropriate raw or natural
units. (That is, PROC CORRESP displays raw frequencies for the OBSERVED
option, relative frequencies with row marginals of 1.0 for the RP option, and
so on.)

• The PRINT=PERCENT option scales results to percentages for the display of
the output. (All elements in the OBSERVED matrix sum to 100.0, the row
marginals are 100.0 for the RP option, and so on.)

• The PRINT=BOTH option displays both percentages and frequencies.

PROFILE=BOTH | COLUMN | NONE | ROW
PRO=BOT | COL | NON | ROW

specifies the standardization for the row and column coordinates. The default is
PROFILE=BOTH.

PROFILE=BOTH specifies a standard correspondence analysis, which jointly dis-
plays the principal row and column coordinates. Row coordinates
are computed from the row profile matrix, and column coordinates
are computed from the column profile matrix.
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PROFILE=ROW specifies a correspondence analysis of the row profile matrix. The
row coordinates are weighted centroids of the column coordinates.

PROFILE=COLUMN specifies a correspondence analysis of the column profile ma-
trix. The column coordinates are weighted centroids of the row
coordinates.

PROFILE=NONE is rarely needed. Row and column coordinates are the general-
ized singular vectors, without the customary standardizations.

ROW=A | AD | DA | DAD | DAD1/2 | DAID1/2
provides other standardizations of the row coordinates. The ROW= option is rarely
needed. Typically, you should use the PROFILE= option instead (see the section
“The PROFILE=, ROW=, and COLUMN= Options”on page 1099). By default,
ROW=DAD.

RP
displays the row profile matrix. Row profiles contain the observed conditional prob-
abilities of column membership given row membership. See also the CP option.

SHORT | SHO
suppresses the display of all point and coordinate statistics except the coordinates.
The following information is suppressed: each point’s mass, relative contribution to
the total inertia, and quality of representation in the DIMENS=n dimensional display;
the squared cosines of the angles between each axis and a vector from the origin to
the point; the partial contributions of each point to the inertia of each dimension; and
the best indicators.

SINGULAR=n
SIN=n

specifies the largest value that is considered to be within rounding error of zero. The
default value is 1E−8. This parameter is used when checking for zero rows and
columns, when checking Burt table diagonal sums for equality, when checking de-
nominators before dividing, and so on. Typically, you should not assign a value
outside the range 1E−6 to 1E−12.

SOURCE | SOU
adds the variable–VAR– , which contains the name or label of the variable corre-
sponding to the current level, to the OUTC= and OUTF= data sets.

UNADJUSTED | UNA
displays unadjusted inertias when performing multiple correspondence analysis. By
default, unadjusted inertias, the usual inertias from multiple correspondence analysis,
are displayed. However, if adjusted inertias are requested by either the GREENACRE
option or the BENZECRI option, then the unadjusted inertia table is not displayed un-
less the UNADJUSTED option is specified. See the section“MCA Adjusted Inertias”
on page 1102 for more information.
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BY Statement

BY variables ;

You can specify a BY statement with PROC CORRESP to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CORRESP procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

ID Statement

ID variable ;

You specify the ID statement only in conjunction with the VAR statement. You cannot
specify the ID statement when you use the TABLES statement or the MCA option.
When you specify an ID variable, PROC CORRESP labels the rows of the tables with
the ID values and places the ID variable in the output data set.

SUPPLEMENTARY Statement

SUPPLEMENTARY variables ;

SUP variables ;

The SUPPLEMENTARY statement specifies variables that are to be represented as
points in the joint row and column space but that are not used when determining
the locations of the other, active row and column points of the contingency table.
Supplementary observations on supplementary variables are ignored in simple corre-
spondence analysis but are needed to compute the squared cosines for multiple corre-
spondence analysis. Variables that are specified in the SUPPLEMENTARY statement
must also be specified in the TABLES or VAR statement.

When you specify a VAR statement, each SUPPLEMENTARY variable indicates one
supplementary column of the table. Supplementary variables must be numeric with
VAR statement input.
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When you specify a TABLES statement, each SUPPLEMENTARY variable indicates
a set of rows or columns of the table that is supplementary. Supplementary variables
can be either character or numeric with TABLES statement input.

TABLES Statement

TABLES < row-variables, > column-variables ;

The TABLES statement instructs PROC CORRESP to create a contingency table,
Burt table, or binary table from the values of two or more categorical variables. The
TABLES statement specifies classification variables that are used to construct the
rows and columns of the contingency table. The variables can be either numeric
or character. The variable lists in the TABLES statement and the CROSS= option
together determine the row and column labels of the contingency table.

You can specify both row variables and column variables separated by a comma,
or you can specify only column variables and no comma. If you do not specify
row variables (that is, if you list variables but do not use the comma as a delimiter),
then you should specify either the MCA or the BINARY option. With the MCA
option, PROC CORRESP creates a Burt table, which is a crosstabulation of each
variable with itself and every other variable. The Burt table is symmetric. With
the BINARY option, PROC CORRESP creates a binary table, which consists of one
row for each input data set observation and one column for each category of each
TABLES statement variable. If the binary matrix isZ, then the Burt table isZ′Z.
Specifying the BINARY option with the NOROWS option produces the same results
as specifying the MCA option (except for the chi-square statistics).

SeeFigure 24.3for an example or see the section“The MCA Option” on page 1101
for a detailed description of Burt tables.

You can use the WEIGHT statement with the TABLES statement to read category
frequencies. Specify the SUPPLEMENTARY statement to name variables with cat-
egories that are supplementary rows or columns. You cannot specify the ID or VAR
statement with the TABLES statement.

See the section“Using the TABLES Statement”on page 1088 for an example.

VAR Statement

VAR variables ;

You should specify the VAR statement when your data are in tabular form. The VAR
variables must be numeric. The VAR statement instructs PROC CORRESP to read
an existing contingency table, binary indicator matrix, fuzzy-coded indicator matrix,
or Burt table, rather than raw data. See the“Algorithm and Notation”section on
page 1097 for a description of a binary indicator matrix and a fuzzy-coded indicator
matrix.

You can specify the WEIGHT statement with the VAR statement to read category fre-
quencies and designate supplementary rows. Specify the SUPPLEMENTARY state-
ment to name supplementary variables. You cannot specify the TABLES statement
with the VAR statement.
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WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies weights for each observation and indicates supple-
mentary observations for simple correspondence analyses with VAR statement input.
You can include only one WEIGHT statement, and the weight variable must be nu-
meric.

If you omit the WEIGHT statement, each observation contributes a value of 1 to the
frequency count for its category. That is, each observation represents one subject.
When you specify a WEIGHT statement, each observation contributes the value of
the weighting variable for that observation. For example, a weight of 3 means that
the observation represents 3 subjects. Weight values are not required to be integers.

You can specify the WEIGHT statement with a TABLES statement to indicate cate-
gory frequencies, as in the following example:

proc freq;
tables a*b / out=outfreq sparse;

run;

proc corresp freqout;
tables a, b;
weight count;

run;

If you specify a VAR statement, you can specify the WEIGHT statement to indicate
supplementary observations and to weight some rows of the table more heavily than
others. When the value of the WEIGHT variable is negative, the observation is treated
as supplementary, and the absolute value of the weight is used as the weighting value.

You cannot specify a WEIGHT statement with a VAR statement and the MCA option,
because the table must be symmetric. Supplementary variables are indicated with the
SUPPLEMENTARY statement, so differential weighting of rows is inappropriate.

Details

Input Data Set

PROC CORRESP can read two kinds of input:

• raw category responses on two or more classification variables with the
TABLES statement

• a two-way contingency table with the VAR statement

You can use output from PROC FREQ as input for PROC CORRESP.

The classification variables referred to by the TABLES statement can be either nu-
meric or character variables. Normally, all observations for a given variable that have
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the same formatted value are placed in the same level, and observations with different
values are placed in different levels.

The variables in the VAR statement must be numeric. The values of the observa-
tions specify the cell frequencies. These values are not required to be integers, but
only those observations with all nonnegative, nonmissing values are used in the cor-
respondence analysis. Observations with one or more negative values are removed
from the analysis.

The WEIGHT variable must be numeric. Observations with negative weights are
treated as supplementary observations. The absolute values of the weights are used
to weight the observations.

Types of Tables Used as Input

The following example explains correspondence analysis and illustrates some capa-
bilities of PROC CORRESP.

data Neighbor;
input Name $ 1-10 Age $ 12-18 Sex $ 19-25

Height $ 26-30 Hair $ 32-37;
datalines;

Jones Old Male Short White
Smith Young Female Tall Brown
Kasavitz Old Male Short Brown
Ernst Old Female Tall White
Zannoria Old Female Short Brown
Spangel Young Male Tall Blond
Myers Young Male Tall Brown
Kasinski Old Male Short Blond
Colman Young Female Short Blond
Delafave Old Male Tall Brown
Singer Young Male Tall Brown
Igor Old Short
;

There are several types of tables,N, that can be used as input to correspondence
analysis —all tables can be defined using a binary matrix,Z.

With the BINARY option,N = Z is directly analyzed. The binary matrix has one
column for each category and one row for each individual or case. A binary table
constructed fromm categorical variables hasm partitions. The following table has
four partitions, one for each of the four categorical variables. Each partition has a 1
in each row, and each row contains exactly four 1s since there are four categorical
variables. More generally, the binary design matrix has exactlym 1s in each row.
The 1s indicate the categories to which the observation applies.



1084 � Chapter 24. The CORRESP Procedure

Table 24.2. Z, The Binary Coding of Neighbor Data Set
ZHair ZHeight ZSex ZAge

Blond Brown White Short Tall Female Male Old Young
0 0 1 1 0 0 1 1 0
0 1 0 0 1 1 0 0 1
0 1 0 1 0 0 1 1 0
0 0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 1 0 1
1 0 0 1 0 0 1 1 0
1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 1 0
0 1 0 0 1 0 1 0 1

With the MCA option, the Burt table (Z′Z) is analyzed. A Burt table is a partitioned
symmetric matrix containing all pairs of crosstabulations among a set of categorical
variables. Each diagonal partition is a diagonal matrix containing marginal frequen-
cies (a crosstabulation of a variable with itself). Each off-diagonal partition is an
ordinary contingency table. Each contingency table above the diagonal has a trans-
posed counterpart below the diagonal.

Table 24.3. Z′Z, The Burt Table
Blond Brown White Short Tall Female Male Old Young

Blond 3 0 0 2 1 1 2 1 2
Brown 0 6 0 2 4 2 4 3 3
White 0 0 2 1 1 1 1 2 0
Short 2 2 1 5 0 2 3 4 1
Tall 1 4 1 0 6 2 4 2 4
Female 1 2 1 2 2 4 0 2 2
Male 2 4 1 3 4 0 7 4 3
Old 1 3 2 4 2 2 4 6 0
Young 2 3 0 1 4 2 3 0 5

This Burt table is composed of all pairs of crosstabulations among the variablesHair,
Height, Sex, andAge. It is composed of sixteen individual subtables —the number
of variables squared. Both the rows and the columns have the same nine categories
(in this case Blond, Brown, White, Short, Tall, Female, Male, Old, and Young). The
off-diagonal partitions are crosstabulations of each variable with every other variable.
Below the diagonal are the following crosstabulations (from left to right, top to bot-
tom): Height * Hair, Sex * Hair, Sex * Height, Age * Hair, Age * Height, and
Age * Sex. Each crosstabulation below the diagonal has a transposed counterpart
above the diagonal. Each diagonal partition contains a crosstabulation of a variable
with itself (Hair * Hair, Height * Height, Sex * Sex, andAge * Age). The diagonal
elements of the diagonal partitions contain marginal frequencies of the off-diagonal
partitions.
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For example, the tableHair * Height has three rows forHair and two columns for
Height. The values of theHair * Height table, summed across rows, sum to the
diagonal values of theHeight * Height table, as displayed in the following table.

Table 24.4. ZHair,Height
′ZHeight

The (Hair Height) × Height Crosstabulation

Short Tall
Blond 2 1
Brown 2 4
White 1 1
Short 5 0
Tall 0 6

A simple crosstabulation ofHair× Height is N = ZHair
′ZHeight. Crosstabulations

such as this, involving only two variables, are the input to simple correspondence
analysis.

Table 24.5. ZHair
′ZHeight

TheHair × Height Crosstabulation

Short Tall
Blond 2 1
Brown 2 4
White 1 1

Tables such as the following (N = ZHair
′ZHeight,Sex), made up of several crosstab-

ulations, can also be analyzed in simple correspondence analysis.

Table 24.6. ZHair
′ZHeight,Sex

TheHair × (Height Sex) Crosstabulation

Short Tall Female Male
Blond 2 1 1 2
Brown 2 4 2 4
White 1 1 1 1

Coding, Fuzzy Coding, and Doubling

You can use an indicator matrix as input to PROC CORRESP using the VAR state-
ment. An indicator matrix is composed of several submatrices, each of which is a
design matrix with one column for each category of a categorical variable. In order
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to create an indicator matrix, you must code an indicator variable for each level of
each categorical variable. For example, the categorical variableSex, with two levels
(Female and Male), would be coded using two indicator variables.

A binary indicator variable is coded 1 to indicate the presence of an attribute and
0 to indicate its absence. For the variableSex, a male would be codedFemale=0
andMale=1, and a female would be codedFemale=1 andMale=0. The indicator
variables representing a categorical variable must sum to 1.0. You can specify the
BINARY option to create a binary table.

Sometimes binary data such as Yes/No data are available. For example, 1 means
“Yes, I have bought this brand in the last month” and 0 means “No, I have not bought
this brand in the last month”.

title ’Doubling Yes/No Data’;

proc format;
value yn 0 = ’No ’ 1 = ’Yes’;
run;

data BrandChoice;
input a b c;
label a = ’Brand A’ b = ’Brand B’ c = ’Brand B’;
format a b c yn.;
datalines;

0 0 1
1 1 0
0 1 1
0 1 0
1 0 0
;

Data such as these cannot be analyzed directly because the raw data do not consist
of partitions, each with one column per level and exactly one 1 in each row. The
data must bedoubledso that both Yes and No are both represented by a column in
the data matrix. The TRANSREG procedure provides one way of doubling. In the
following statements, the DESIGN option specifies that PROC TRANSREG is being
used only for coding, not analysis. The option SEPARATORS=’: ’ specifies that
labels for the coded columns are constructed from input variable labels, followed by
a colon and space, followed by the formatted value. The variables are designated in
the MODEL statement as CLASS variables, and the ZERO=NONE option creates
binary variables for all levels. The OUTPUT statement specifies the output data set
and drops the–NAME– , –TYPE– , andIntercept variables. PROC TRANSREG
stores a list of coded variable names in a macro variable&–TRGIND, which in this
case has the value “aNo aYes bNo bYes cNo cYes”. This macro can be used
directly in the VAR statement in PROC CORRESP.

proc transreg data=BrandChoice design separators=’: ’;
model class(a b c / zero=none);
output out=Doubled(drop=_: Intercept);
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run;

proc print label;
run;

proc corresp data=Doubled norow short;
var &_trgind;

run;

A fuzzy-coded indicator also sums to 1.0 across levels of the categorical variable,
but it is coded with fractions rather than with 1 and 0. The fractions represent the
distribution of the attribute across several levels of the categorical variable.

Ordinal variables, such as survey responses of 1 to 3 can be represented as two design
variables.

Table 24.7. Coding an Ordinal Variable
Ordinal
Values Coding

1 0.25 0.75
2 0.50 0.50
3 0.75 0.25

Values of the coding sum to one across the two coded variables.

This next example illustrates the use of binary and fuzzy-coded indicator variables.
Fuzzy-coded indicators are used to represent missing data. Note that the missing
values in the observation Igor are coded with equal proportions.

proc transreg data=Neighbor design cprefix=0;
model class(Age Sex Height Hair / zero=none);
output out=Neighbor2(drop=_: Intercept);
id Name;
run;

data Neighbor3;
set Neighbor2;
if Sex = ’ ’ then do;

Female = 0.5;
Male = 0.5;
end;

if Hair = ’ ’ then do;
White = 1/3;
Brown = 1/3;
Blond = 1/3;
end;

run;

proc print label;
run;
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Age Age Sex Sex Height Height Hair Hair Hair
Obs Old Young Female Male Short Tall Blond Brown White Age Sex Height Hair Name

1 1 0 0.0 1.0 1 0 0.00000 0.00000 1.00000 Old Male Short White Jones
2 0 1 1.0 0.0 0 1 0.00000 1.00000 0.00000 Young Female Tall Brown Smith
3 1 0 0.0 1.0 1 0 0.00000 1.00000 0.00000 Old Male Short Brown Kasavitz
4 1 0 1.0 0.0 0 1 0.00000 0.00000 1.00000 Old Female Tall White Ernst
5 1 0 1.0 0.0 1 0 0.00000 1.00000 0.00000 Old Female Short Brown Zannoria
6 0 1 0.0 1.0 0 1 1.00000 0.00000 0.00000 Young Male Tall Blond Spangel
7 0 1 0.0 1.0 0 1 0.00000 1.00000 0.00000 Young Male Tall Brown Myers
8 1 0 0.0 1.0 1 0 1.00000 0.00000 0.00000 Old Male Short Blond Kasinski
9 0 1 1.0 0.0 1 0 1.00000 0.00000 0.00000 Young Female Short Blond Colman

10 1 0 0.0 1.0 0 1 0.00000 1.00000 0.00000 Old Male Tall Brown Delafave
11 0 1 0.0 1.0 0 1 0.00000 1.00000 0.00000 Young Male Tall Brown Singer
12 1 0 0.5 0.5 1 0 0.33333 0.33333 0.33333 Old Short Igor

Figure 24.3. Fuzzy Coding of Missing Values

There is one set of coded variables for each input categorical variable. If observation
12 is excluded, each set is a binary design matrix. Each design matrix has one column
for each category and exactly one 1 in each row.

Fuzzy-coding is shown in the final observation, Igor. The observation Igor has miss-
ing values for the variablesSex andHair. The design matrix variables are coded with
fractions that sum to one within each categorical variable.

An alternative way to represent missing data is to treat missing values as an additional
level of the categorical variable. This alternative is available with the MISSING op-
tion in the PROC statement. This approach yields coordinates for missing responses,
allowing the comparison of “missing” along with the other levels of the categorical
variables.

Greenacre and Hastie (1987) discuss additional coding schemes, including one for
continuous variables. Continuous variables can be coded with PROC TRANSREG
by specifying BSPLINE(variables/ degree=1) in the MODEL statement.

Using the TABLES Statement

In the following TABLES statement, each variable list consists of a single variable:

proc corresp data=Neighbor dimens=1 observed short;
ods select observed;
tables Sex, Age;

run;

These statements create a contingency table with two rows (Female and Male) and
two columns (Old and Young) and show the neighbors broken down by age and
sex. The DIMENS=1 option overrides the default, which is DIMENS=2. The
OBSERVED option displays the contingency table. The SHORT option limits
the displayed output. Because it contains missing values, the observation where
Name=’Igor’ is omitted from the analysis.Figure 24.4displays the contingency
table.
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The CORRESP Procedure

Contingency Table

Old Young Sum

Female 2 2 4
Male 4 3 7
Sum 6 5 11

Figure 24.4. Contingency Table for Sex, Age

The following statements create a table with six rows (Blond*Short , Blond*Tall ,
Brown*Short , Brown*Tall , White*Short , andWhite*Tall ), and four columns
(Female , Male , Old , andYoung). The levels of the row variables are crossed, form-
ing mutually exclusive categories, whereas the categories of the column variables
overlap.

proc corresp data=Neighbor cross=row observed short;
ods select observed;
tables Hair Height, Sex Age;

run;

The CORRESP Procedure

Contingency Table

Female Male Old Young Sum

Blond * Short 1 1 1 1 4
Blond * Tall 0 1 0 1 2
Brown * Short 1 1 2 0 4
Brown * Tall 1 3 1 3 8
White * Short 0 1 1 0 2
White * Tall 1 0 1 0 2
Sum 4 7 6 5 22

Figure 24.5. Contingency Table for Hair * Height, Sex Age

You can enter supplementary variables with TABLES input by including a
SUPPLEMENTARY statement. Variables named in the SUPPLEMENTARY
statement indicate TABLES variables with categories that are supplementary. In
other words, the categories of the variableAge are represented in the row and
column space, but they are not used in determining the scores of the categories of
the variablesHair, Height, andSex. The variable used in the SUPPLEMENTARY
statement must be listed in the TABLES statement as well. For example, the
following statements create a Burt table with seven active rows and columns (Blond ,
Brown , White , Short , Tall , Female , Male ) and two supplementary rows and
columns (Old andYoung).
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proc corresp data=Neighbor observed short mca;
ods select burt supcols;
tables Hair Height Sex Age;
supplementary Age;

run;

The CORRESP Procedure

Burt Table

Blond Brown White Short Tall Female Male

Blond 3 0 0 2 1 1 2
Brown 0 6 0 2 4 2 4
White 0 0 2 1 1 1 1
Short 2 2 1 5 0 2 3
Tall 1 4 1 0 6 2 4
Female 1 2 1 2 2 4 0
Male 2 4 1 3 4 0 7

Supplementary Columns

Old Young

Blond 1 2
Brown 3 3
White 2 0
Short 4 1
Tall 2 4
Female 2 2
Male 4 3

Figure 24.6. Burt Table from PROC CORRESP

The following statements create a binary table with 7 active columns (Blond , Brown ,
White , Short , Tall , Female , Male ), 2 supplementary columns (Old andYoung),
and 11 rows for the 11 observations with nonmissing values.

proc corresp data=Neighbor observed short binary;
ods select binary supcols;
tables Hair Height Sex Age;
supplementary Age;

run;
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The CORRESP Procedure

Binary Table

Blond Brown White Short Tall Female Male

1 0 0 1 1 0 0 1
2 0 1 0 0 1 1 0
3 0 1 0 1 0 0 1
4 0 0 1 0 1 1 0
5 0 1 0 1 0 1 0
6 1 0 0 0 1 0 1
7 0 1 0 0 1 0 1
8 1 0 0 1 0 0 1
9 1 0 0 1 0 1 0

10 0 1 0 0 1 0 1
11 0 1 0 0 1 0 1

Supplementary Columns

Old Young

1 1 0
2 0 1
3 1 0
4 1 0
5 1 0
6 0 1
7 0 1
8 1 0
9 0 1

10 1 0
11 0 1

Figure 24.7. Binary Table from PROC CORRESP

Using the VAR Statement

With VAR statement input, the rows of the contingency table correspond to the ob-
servations of the input data set, and the columns correspond to the VAR statement
variables. The values of the variables typically contain the table frequencies. The
example displayed inFigure 24.4could be run with VAR statement input using the
following code:

data Ages;
input Sex $ Old Young;
datalines;

Female 2 2
Male 4 3
;

proc corresp data=Ages dimens=1 observed short;
var Old Young;
id Sex;

run;
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Only nonnegative values are accepted. Negative values are treated as missing, causing
the observation to be excluded from the analysis. The values are not required to be
integers. Row labels for the table are specified with an ID variable. Column labels
are constructed from the variable name or variable label if one is specified. When you
specify multiple correspondence analysis (MCA), the row and column labels are the
same and are constructed from the variable names or labels, so you cannot include
an ID statement. With MCA, the VAR statement must list the variables in the order
in which the rows occur. For example, the table displayed inFigure 24.6, which was
created with the following TABLES statement,

tables Hair Height Sex Age;

is input as follows with the VAR statement:

proc corresp data=table nvars=4 mca;
var Blond Brown White Short Tall Female Male Old Young;

run;

You must specify the NVARS= option to specify the number of original categorical
variables with the MCA option. The option NVARS=n is needed to find boundaries
between the subtables of the Burt table. Iff is the sum of all elements in the Burt
tableZ′Z, thenfn−2 is the number of rows in the binary matrixZ. The sum of all
elements in each diagonal subtable of the Burt table must befn−2.

To enter supplementary observations, include a WEIGHT statement with negative
weights for those observations. Specify the SUPPLEMENTARY statement to include
supplementary variables. You must list supplementary variables in both the VAR and
SUPPLEMENTARY statements.

Missing and Invalid Data

With VAR statement input, observations with missing or negative frequencies are ex-
cluded from the analysis. Supplementary variables and supplementary observations
with missing or negative frequencies are also excluded. Negative weights are valid
with VAR statement input.

With TABLES statement input, observations with negative weights are excluded
from the analysis. With this form of input, missing cell frequencies cannot occur.
Observations with missing values on the categorical variables are excluded unless
you specify the MISSING option. If you specify the MISSING option, ordinary
missing values and special missing values are treated as additional levels of a cate-
gorical variable. In all cases, if any row or column of the constructed table contains
only zeros, that row or column is excluded from the analysis.

Observations with missing weights are excluded from the analysis.
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Creating a Data Set Containing the Crosstabulation

The CORRESP procedure can read or create a contingency or Burt table. PROC
CORRESP is generally more efficient with VAR statement input than with TABLES
statement input. TABLES statement input requires that the table be created from raw
categorical variables, whereas the VAR statement is used to read an existing table. If
PROC CORRESP runs out of memory, it may be possible to use some other method
to create the table and then use VAR statement input with PROC CORRESP.

The following example uses the CORRESP, FREQ, and TRANSPOSE procedures to
create rectangular tables from a SAS data set WORK.A that contains the categorical
variablesV1–V5. The Burt table examples assume that no categorical variable has
a value found in any of the other categorical variables (that is, that each row and
column label is unique).

You can use PROC CORRESP and ODS to create a rectangular two-way contingency
table from two categorical variables.

proc corresp data=a observed short;
ods listing close;
ods output Observed=Obs(drop=Sum where=(Label ne ’Sum’));
tables v1, v2;

run;

ods listing;

You can use PROC FREQ and PROC TRANSPOSE to create a rectangular two-way
contingency table from two categorical variables.

proc freq data=a;
tables v1 * v2 / sparse noprint out=freqs;

run;

proc transpose data=freqs out=rfreqs;
id v2;
var count;
by v1;

run;

You can use PROC CORRESP and ODS to create a Burt table from five categorical
variables.

proc corresp data=a observed short mca;
ods listing close;
ods output Burt=Obs;
tables v1-v5;

run;

ods listing;



1094 � Chapter 24. The CORRESP Procedure

You can use a DATA step, PROC FREQ, and PROC TRANSPOSE to create a Burt
table from five categorical variables.

data b;
set a;
array v[5] $ v1-v5;
do i = 1 to 5;

row = v[i];
do j = 1 to 5;

column = v[j];
output;
end;

end;
keep row column;

run;

proc freq data=b;
tables row * column / sparse noprint out=freqs;

run;

proc transpose data=freqs out=rfreqs;
id column;
var count;
by row;

run;

Output Data Sets

The OUTC= Data Set

The OUTC= data set contains two or three character variables and4n + 4 numeric
variables, wheren is the number of axes from DIMENS=n (two by default). The
OUTC= data set contains one observation for each row, column, supplementary row,
and supplementary column point, and one observation for inertias.

The first variable is named–TYPE– and identifies the type of observation. The
values of–TYPE– are as follows:

• The ‘INERTIA’ observation contains the total inertia in the INERTIA variable,
and each dimension’s inertia in theContr1–Contrn variables.

• The ‘OBS’ observations contain the coordinates and statistics for the rows of
the table.

• The ‘SUPOBS’ observations contain the coordinates and statistics for the sup-
plementary rows of the table.

• The ‘VAR’ observations contain the coordinates and statistics for the columns
of the table.

• The ‘SUPVAR’ observations contain the coordinates and statistics for the sup-
plementary columns of the table.
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If you specify the SOURCE option, then the data set also contains a variable–VAR–
containing the name or label of the input variable from which that row originates.
The name of the next variable is either–NAME– or (if you specify an ID statement)
the name of the ID variable.

For observations with a value of ‘OBS’ or ‘SUPOBS’ for the–TYPE– variable, the
values of the second variable are constructed as follows:

• When you use a VAR statement without an ID statement, the values are
‘Row1’, ‘Row2’, and so on.

• When you specify a VAR statement with an ID statement, the values are set
equal to the values of the ID variable.

• When you specify a TABLES statement, the–NAME– variable has values
formed from the appropriate row variable values.

For observations with a value of ‘VAR’ or ‘SUPVAR’ for the–TYPE– variable,
the values of the second variable are equal to the names or labels of the VAR (or
SUPPLEMENTARY) variables. When you specify a TABLES statement, the values
are formed from the appropriate column variable values.

The third and subsequent variables contain the numerical results of the correspon-
dence analysis.

• Quality contains the quality of each point’s representation in the DIMENS=n
dimensional display, which is the sum of squared cosines over the firstn di-
mensions.

• Mass contains the masses or marginal sums of the relative frequency matrix.

• Inertia contains each point’s relative contribution to the total inertia.

• Dim1–Dimn contain the point coordinates.

• Contr1–Contrn contain the partial contributions to inertia.

• SqCos1–SqCosn contain the squared cosines.

• Best1–Bestn andBest contain the summaries of the partial contributions to
inertia.

The OUTF= Data Set

The OUTF= data set contains frequencies and percentages. It is similar to a PROC
FREQ output data set. The OUTF= data set begins with a variable called–TYPE– ,
which contains the observation type. If the SOURCE option is specified, the data
set contains two variables–ROWVAR– and–COLVAR– that contain the names or
labels of the row and column input variables from which each cell originates. The
next two variables are classification variables that contain the row and column levels.
If you use TABLES statement input and each variable list consists of a single variable,
the names of the first two variables match the names of the input variables; otherwise,
these variables are namedRow andColumn. The next two variables areCount and
Percent, which contain frequencies and percentages.

The–TYPE– variable can have the following values:
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• ‘OBSERVED’ observations contain the contingency table.

• ‘SUPOBS’ observations contain the supplementary rows.

• ‘SUPVAR’ observations contain the supplementary columns.

• ‘EXPECTED’ observations contain the product of the row marginals and the
column marginals divided by the grand frequency of the observed frequency ta-
ble. For ordinary two-way contingency tables, these are the expected frequency
matrix under the hypothesis of row and column independence.

• ‘DEVIATION’ observations contain the matrix of deviations between the ob-
served frequency matrix and the product of its row marginals and column
marginals divided by its grand frequency. For ordinary two-way contingency
tables, these are the observed minus expected frequencies under the hypothesis
of row and column independence.

• ‘CELLCHI2’ observations contain contributions to the total chi-square test
statistic.

• ‘RP’ observations contain the row profiles.

• ‘SUPRP’ observations contain supplementary row profiles.

• ‘CP’ observations contain the column profiles.

• ‘SUPCP’ observations contain supplementary column profiles.

Computational Resources

Let

nr = number of rows in the table

nc = number of columns in the table

n = number of observations

v = number of VAR statement variables

t = number of TABLES statement variables

c = max(nr, nc)
d = min(nr, nc)

For TABLES statement input, more than

32(t + 1) + 8(max(2tn, (nr + 3)(nc + 3)))

bytes of array space are required.

For VAR statement input, more than

16(v + 2) + 8(nr + 3)(nc + 3)

bytes of array space are required.
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Memory

The computational resources formulas are underestimates of the amounts of memory
needed to handle most problems. If you use a utility data set, and if memory could
be used with perfect efficiency, then roughly the stated amount of memory would be
needed. In reality, most problems require at least two or three times the minimum.

PROC CORRESP tries to store the raw data (TABLES input) and the contingency
table in memory. If there is not enough memory, a utility data set is used, potentially
resulting in a large increase in execution time.

Time

The time required to perform the generalized singular value decomposition is roughly
proportional to2cd2 + 5d3. Overall computation time increases with table size at a
rate roughly proportional to(nrnc)

3
2 .

Algorithm and Notation

This section is primarily based on the theory of correspondence analysis found in
Greenacre (1984). If you are interested in other references, see the“Background”
section on page 1069.

Let N be the contingency table formed from those observations and variables that are
not supplementary and from those observations that have no missing values and have
a positive weight. This table is an(nr × nc) rankq matrix of nonnegative numbers
with nonzero row and column sums. IfZa is the binary coding for variableA, andZb

is the binary coding for variableB, thenN = Z′
aZb is a contingency table. Similarly,

if Zb,c contains the binary coding for both variablesB and C, thenN = Z′
aZb,c

can also be input to a correspondence analysis. With the BINARY option,N = Z,
and the analysis is based on a binary table. In multiple correspondence analysis, the
analysis is based on a Burt table,Z′Z.

Let 1 be a vector of 1s of the appropriate order, letI be an identity matrix, and let
diag(·) be a matrix-valued function that creates a diagonal matrix from a vector. Let

f = 1′N1

P =
1
f
N

r = P1

c = P′1

Dr = diag(r)
Dc = diag(c)
R = D−1

r P

C′ = D−1
c P′

The scalarf is the sum of all elements inN. The matrixP is a matrix of relative
frequencies. The vectorr contains row marginal proportions or row “masses.” The
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vectorc contains column marginal proportions or column masses. The matricesDr

andDc are diagonal matrices of marginals.

The rows ofR contain the “row profiles.” The elements of each row ofR sum to one.
Each(i, j) element ofR contains the observed probability of being in columnj given
membership in rowi. Similarly, the columns ofC contain the column profiles. The
coordinates in correspondence analysis are based on the generalized singular value
decomposition ofP,

P = ADuB′

where

A′D−1
r A = B′D−1

c B = I

In multiple correspondence analysis,

P = BD2
uB

′

The matrixA, which is the rectangular matrix of left generalized singular vectors,
hasnr rows andq columns; the matrixDu, which is a diagonal matrix of singular
values, hasq rows and columns; and the matrixB, which is the rectangular matrix
of right generalized singular vectors, hasnc rows andq columns. The columns ofA
andB define the principal axes of the column and row point clouds, respectively.

The generalized singular value decomposition ofP − rc′, discarding the last singu-
lar value (which is zero) and the last left and right singular vectors, is exactly the
same as a generalized singular value decomposition ofP, discarding the first singu-
lar value (which is one), the first left singular vector,r, and the first right singular
vector,c. The first (trivial) column ofA andB and the first singular value inDu are
discarded before any results are displayed. You can obtain the generalized singular
value decomposition ofP − rc′ from the ordinary singular value decomposition of

D−1/2
r (P− rc′)D−1/2

c .

D−1/2
r (P− rc′)D−1/2

c = UDuV′ = (D−1/2
r A)Du(D−1/2

c B)′

P− rc′ = D1/2
r UDuV′D1/2

c = (D1/2
r U)Du(D1/2

c V)′ = ADuB′

Hence,A = D1/2
r U andB = D1/2

c V.

The default row coordinates areD−1
r ADu, and the default column coordinates are

D−1
c BDu. Typically the first two columns ofD−1

r ADu andD−1
c BDu are plotted

to display graphically associations between the row and column categories. The plot
consists of two overlaid plots, one for rows and one for columns. The row points are
row profiles, rescaled so that distances between profiles can be displayed as ordinary
Euclidean distances, then orthogonally rotated to a principal axes orientation. The
column points are column profiles, rescaled so that distances between profiles can be
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displayed as ordinary Euclidean distances, then orthogonally rotated to a principal
axes orientation. Distances between row points and other row points have meaning.
Distances between column points and other column points have meaning. However,
distances between column points and row points are not interpretable.

The PROFILE=, ROW=, and COLUMN= Options

The PROFILE=, ROW=, and COLUMN= options standardize the coordinates before
they are displayed and placed in the output data set. The options PROFILE=BOTH,
PROFILE=ROW, and PROFILE=COLUMN provide the standardizations that are
typically used in correspondence analysis. There are six choices each for row and col-
umn coordinates. However, most of the combinations of the ROW= and COLUMN=
options are not useful. The ROW= and COLUMN= options are provided for com-
pleteness, but they are not intended for general use.

ROW= Matrix Formula

A A

AD ADu

DA D−1
r A

DAD D−1
r ADu

DAD1/2 D−1
r AD1/2

u

DAID1/2 D−1
r A(I + Du)1/2

COLUMN= Matrix Formula

B B

BD BDu

DB D−1
c B

DBD D−1
c BDu

DBD1/2 D−1
c BD1/2

u

DBID1/2 D−1
c B(I + Du)1/2

When PROFILE=ROW (ROW=DAD and COLUMN=DB), the row coordinates
D−1

r ADu and column coordinatesD−1
c B provide a correspondence analysis based

on the row profile matrix. The row profile (conditional probability) matrix is de-
fined asR = D−1

r P = D−1
r ADuB′. The elements of each row ofR sum to

one. Each(i, j) element ofR contains the observed probability of being in column
j given membership in rowi. The “principal” row coordinatesD−1

r ADu and “stan-
dard” column coordinatesD−1

c B provide a decomposition ofD−1
r ADuB′D−1

c =
D−1

r PD−1
c = RD−1

c . SinceD−1
r ADu = RD−1

c B, the row coordinates are
weighted centroids of the column coordinates. Each column point, with coordinates
scaled to standard coordinates, defines a vertex in(nc− 1)-dimensional space. All of
the principal row coordinates are located in the space defined by the standard column
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coordinates. Distances among row points have meaning, but distances among column
points and distances between row and column points are not interpretable.

The option PROFILE=COLUMN can be described as applying the PROFILE=ROW
formulas to the transpose of the contingency table. When PROFILE=COLUMN
(ROW=DA and COLUMN=DBD), the principal column coordinatesD−1

c BDu are
weighted centroids of the standard row coordinatesD−1

r A. Each row point, with
coordinates scaled to standard coordinates, defines a vertex in(nr − 1)-dimensional
space. All of the principal column coordinates are located in the space defined by
the standard row coordinates. Distances among column points have meaning, but
distances among row points and distances between row and column points are not
interpretable.

The usual sets of coordinates are given by the default PROFILE=BOTH (ROW=DAD
and COLUMN=DBD). All of the summary statistics, such as the squared cosines and
contributions to inertia, apply to these two sets of points. One advantage to using
these coordinates is that both sets(D−1

r ADu andD−1
c BDu) are postmultiplied by

the diagonal matrixDu, which has diagonal values that are all less than or equal
to one. WhenDu is a part of the definition of only one set of coordinates, that set
forms a tight cluster near the centroid whereas the other set of points is more widely
dispersed. IncludingDu in both sets makes a better graphical display. However,
care must be taken in interpreting such a plot. No correct interpretation of distances
between row points and column points can be made.

Another property of this choice of coordinates concerns the geometry of distances
between points within each set. The default row coordinates can be decomposed

into D−1
r ADu = D−1

r ADuB′D−1
c B = (D−1

r P)(D−1/2
c )(D−1/2

c B). The row

coordinates are row profiles(D−1
r P), rescaled byD−1/2

c (rescaled so that distances
between profiles are transformed from a chi-square metric to a Euclidean metric),

then orthogonally rotated (withD−1/2
c B) to a principal axes orientation. Similarly,

the column coordinates are column profiles rescaled to a Euclidean metric and or-
thogonally rotated to a principal axes orientation.

The rationale for computing distances between row profiles using the non-Euclidean
chi-square metric is as follows. Each row of the contingency table can be viewed as
a realization of a multinomial distribution conditional on its row marginal frequency.
The null hypothesis of row and column independence is equivalent to the hypothesis
of homogeneity of the row profiles. A significant chi-square statistic is geometrically
interpreted as a significant deviation of the row profiles from their centroid,c′. The
chi-square metric is the Mahalanobis metric between row profiles based on their es-
timated covariance matrix under the homogeneity assumption (Greenacre and Hastie
1987). A parallel argument can be made for the column profiles.

When ROW=DAD1/2 and COLUMN=DBD1/2 (Gifi 1990; van der Heijden and de

Leeuw 1985), the row coordinatesD−1
r AD1/2

u and column coordinatesD−1
c BD1/2

u

are a decomposition ofD−1
r PD−1

c .

In all of the preceding pairs, distances between row and column points are not mean-
ingful. This prompted Carroll, Green, and Schaffer (1986) to propose that row co-
ordinatesD−1

r A(I + Du)1/2 and column coordinatesD−1
c B(I + Du)1/2 be used.



Algorithm and Notation � 1101

These coordinates are (except for a constant scaling) the coordinates from a multi-
ple correspondence analysis of a Burt table created from two categorical variables.
This standardization is available with ROW=DAID1/2 and COLUMN=DBID1/2.
However, this approach has been criticized on both theoretical and empirical grounds
by Greenacre (1989). The Carroll, Green, and Schaffer standardization relies on the
assumption that the chi-square metric is an appropriate metric for measuring the dis-
tance between the columns of a bivariate indicator matrix. See the section“Types of
Tables Used as Input”on page 1083 for a description of indicator matrices. Greenacre
(1989) showed that this assumption cannot be justified.

The MCA Option

The MCA option performs a multiple correspondence analysis (MCA). This option
requires a Burt table. You can specify the MCA option with a table created from a
design matrix with fuzzy coding schemes as long as every row of every partition of
the design matrix has the same marginal sum. For example, each row of each partition
could contain the probabilities that the observation is a member of each level. Then
the Burt table constructed from this matrix no longer contains all integers, and the
diagonal partitions are no longer diagonal matrices, but MCA is still valid.

A TABLES statement with a single variable list creates a Burt table. Thus, you can
always specify the MCA option with this type of input. If you use the MCA option
when reading an existing table with a VAR statement, you must ensure that the table
is a Burt table.

If you perform MCA on a table that is not a Burt table, the results of the analysis are
invalid. If the table is not symmetric, or if the sums of all elements in each diagonal
partition are not equal, PROC CORRESP displays an error message and quits.

A subset of the columns of a Burt table is not necessarily a Burt table, so in MCA it is
not appropriate to designate arbitrary columns as supplementary. You can, however,
designate all columns from one or more categorical variables as supplementary.

The results of a multiple correspondence analysis of a Burt tableZ′Z are the same
as the column results from a simple correspondence analysis of the binary (or fuzzy)
matrix Z. Multiple correspondence analysis is not a simple correspondence analysis
of the Burt table. It is not appropriate to perform a simple correspondence analy-
sis of a Burt table. The MCA option is based onP = BD2

uB
′, whereas a simple

correspondence analysis of the Burt table would be based onP = BDuB′.

Since the rows and columns of the Burt table are the same, no row information is
displayed or written to the output data sets. The resulting inertias and the default
(COLUMN=DBD) column coordinates are the appropriate inertias and coordinates
for an MCA. The supplementary column coordinates, cosines, and quality of repre-
sentation formulas for MCA differ from the simple correspondence analysis formulas
because the design matrix column profiles and left singular vectors are not available.

The following statements create a Burt table and perform a multiple correspondence
analysis:
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proc corresp data=Neighbor observed short mca;
tables Hair Height Sex Age;

run;

Both the rows and the columns have the same nine categories (Blond, Brown, White,
Short, Tall, Female, Male, Old, and Young).

MCA Adjusted Inertias

The usual principal inertias of a Burt Table constructed fromm categorical variables
in MCA are the eigenvaluesuk from D2

u. The problem with these inertias is that they
provide a pessimistic indication of fit. Benzécri (1979) proposed the following inertia
adjustment, which is also described by Greenacre (1984, p. 145):(

m
m−1

)2
×

(
uk − 1

m

)2
for uk > 1

m

The Benzécri adjustment is available with the BENZECRI option.

Greenacre (1994, p. 156) argues that the Benzécri adjustment overestimates the qual-
ity of fit. Greenacre proposes instead the following inertia adjustment:(

m
m−1

)2
×

(√
uk − 1

m

)2
for

√
uk > 1

m

The Greenacre adjustment is available with the GREENACRE option.

Ordinary unadjusted inertias are printed by default with MCA when neither the
BENZECRI nor the GREENACRE option is specified. However, the unadjusted in-
ertias are not printed by default when either the BENZECRI or the GREENACRE
option is specified. To display both adjusted and unadjusted inertias, spec-
ify the UNADJUSTED option in addition to the relevant adjusted inertia option
(BENZECRI, GREENACRE, or both).

Supplementary Rows and Columns

Supplementary rows and columns are represented as points in the joint row and col-
umn space, but they are not used when determining the locations of the other active
rows and columns of the table. The formulas that are used to compute coordinates
for the supplementary rows and columns depend on the PROFILE= option or on the
ROW= and COLUMN= options. LetSo be the matrix with rows that contain the
supplementary observations andSv be a matrix with rows that contain the supple-
mentary variables. Note thatSv is defined to be the transpose of the supplementary
variable partition of the table. LetRs = diag(So1)−1So be the supplementary ob-
servation profile matrix andCs = diag(Sv1)−1Sv be the supplementary variable
profile matrix. Note that the notation diag(·)−1 means to convert the vector to a diag-
onal matrix, then invert the diagonal matrix. The coordinates for the supplementary
observations and variables are as follows.
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ROW= Matrix Formula

A 1
f SoD−1

c BD−1
u

AD 1
f SoD−1

c B

DA RsD−1
c BD−1

u

DAD RsD−1
c B

DAD1/2 RsD−1
c BD−1/2

u

DAID1/2 RsD−1
c BD−1

u (I + Du)1/2

COLUMN= Matrix Formula

B 1
f SvD−1

r AD−1
u

BD 1
f SvD−1

r A

DB CsD−1
r AD−1

u

DBD CsD−1
r A

DBD1/2 CsD−1
r AD−1/2

u

DBID1/2 CsD−1
r AD−1

u (I + Du)1/2

MCA COLUMN= Matrix Formula

B not allowed

BD not allowed

DB CsD−1
r BD−2

u

DBD CsD−1
r BD−1

u

DBD1/2 CsD−1
r BD−3/2

u

DBID1/2 CsD−1
r BD−2

u (I + Du)1/2

Statistics that Aid Interpretation

The partial contributions to inertia, squared cosines, quality of representation, iner-
tia, and mass provide additional information about the coordinates. These statistics
are displayed by default. Include the SHORT or NOPRINT option in the PROC
CORRESP statement to avoid having these statistics displayed.

These statistics pertain to the default PROFILE=BOTH coordinates, no matter what
values you specify for the ROW=, COLUMN=, or PROFILE= option. Let sq(·) be a
matrix-valued function denoting element-wise squaring of the argument matrix. Let
t be the total inertia (the sum of the elements inD2

u).

In MCA, let Ds be the Burt table partition containing the intersection of the supple-
mentary columns and the supplementary rows. The matrixDs is a diagonal matrix
of marginal frequencies of the supplemental columns of the binary matrixZ. Letp be
the number of rows in this design matrix.
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Statistic Matrix Formula

Row partial contributions D−1
r sq(A)

to inertia

Column partial contributions D−1
c sq(B)

to inertia

Row squared cosines diag(sq(ADu)1)−1sq(ADu)

Column squared cosines diag(sq(BDu)1)−1sq(BDu)

Row mass r

Column mass c

Row inertia 1
t D

−1
r sq(ADu)1

Column inertia 1
t D

−1
c sq(BDu)1

Supplementary row diag(sq(Rs − 1c′)D−1
c 1)−1sq(RsD−1

c B)
squared cosines

Supplementary column diag(sq(Cs − 1r′)D−1
r 1)−1sq(CsD−1

r A)
squared cosines

MCA supplementary column Ds(pI−Ds)−1 sq(CsD−1
r BD−1

u )
squared cosines

The quality of representation in the DIMENS=n dimensional display of any point is
the sum of its squared cosines over only then dimensions. Inertia and mass are not
defined for supplementary points.

A table that summarizes the partial contributions to inertia table is also computed.
The points that best explain the inertia of each dimension and the dimension to which
each point contributes the most inertia are indicated. The output data set variable
names for this table areBest1–Bestn (where DIMENS=n) and Best. The Best
column contains the dimension number of the largest partial contribution to iner-
tia for each point (the index of the maximum value in each row ofD−1

r sq(A) or
D−1

c sq(B)).

For each row, theBest1–Bestn columns contain either the corresponding value of
Best if the point is one of the biggest contributors to the dimension’s inertia or 0 if
it is not. Specifically,Best1 contains the value ofBest for the point with the largest
contribution to dimension one’s inertia. A cumulative proportion sum is initialized to
this point’s partial contribution to the inertia of dimension one. If this sum is less than
the value for the MININERTIA= option, thenBest1 contains the value ofBest for
the point with the second largest contribution to dimension one’s inertia. Otherwise,
this point’sBest1 is 0. This point’s partial contribution to inertia is added to the sum.
This process continues for the point with the third largest partial contribution, and so
on, until adding a point’s contribution to the sum increases the sum beyond the value
of the MININERTIA= option. This same algorithm is then used forBest2, and so
on.

For example, the following table contains contributions to inertia and the correspond-
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ing Best variables. The contribution to inertia variables are proportions that sum to
1 within each column. The first point makes its greatest contribution to the inertia
of dimension two, soBest for point one is set to 2 andBest1–Best3 for point one
must all be 0 or 2. The second point also makes its greatest contribution to the inertia
of dimension two, soBest for point two is set to 2 andBest1–Best3 for point two
must all be 0 or 2, and so on.

Assume MININERTIA=0.8, the default. In dimension one, the largest contribu-
tion is 0.41302 for the fourth point, soBest1 is set to 1, the value ofBest for the
fourth point. Because this value is less than 0.8, the second largest value (0.36456
for point five) is found and itsBest1 is set to itsBest’s value of 1. Because
0.41302 + 0.36456 = 0.77758 is less than 0.8, the third point (0.0882 at point eight)
is found andBest1 is set to 3 since the contribution to dimension 3 for that point is
greater than the contribution to dimension 1. This increases the sum of the partial
contributions to greater than 0.8, so the remainingBest1 values are all 0.

Contr1 Contr2 Contr3 Best1 Best2 Best3 Best
0.01593 0.32178 0.07565 0 2 2 2
0.03014 0.24826 0.07715 0 2 2 2
0.00592 0.02892 0.02698 0 0 0 2
0.41302 0.05191 0.05773 1 0 0 1
0.36456 0.00344 0.15565 1 0 1 1
0.03902 0.30966 0.11717 0 2 2 2
0.00019 0.01840 0.00734 0 0 0 2
0.08820 0.00527 0.16555 3 0 3 3
0.01447 0.00024 0.03851 0 0 0 3
0.02855 0.01213 0.27827 0 0 3 3

Displayed Output

The display options control the amount of displayed output. By default, the following
information is displayed:

• an inertia and chi-square decomposition table including the total inertia, the
principal inertias of each dimension (eigenvalues), the singular values (square
roots of the eigenvalues), each dimension’s percentage of inertia, a horizontal
bar chart of the percentages, and the total chi-square with its degrees of freedom
and decomposition. The chi-square statistics and degrees of freedom are valid
only when the constructed table is an ordinary two-way contingency table.

• the coordinates of the rows and columns on the dimensions

• the mass, relative contribution to the total inertia, and quality of representation
in the DIMENS=n dimensional display of each row and column

• the squared cosines of the angles between each axis and a vector from the origin
to the point

• the partial contributions of each point to each dimension’s inertia
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• the Best table, indicators of which points best explain the inertia of each di-
mension

Specific display options and combinations of options display output as follows.

If you specify the OBSERVED or ALL option and you do not specify
PRINT=PERCENT, PROC CORRESP displays

• the contingency table including the row and column marginal frequencies; or
with BINARY, the binary table; or the Burt table in MCA

• the supplementary rows

• the supplementary columns

If you specify the OBSERVED or ALL option, with the PRINT=PERCENT or
PRINT=BOTH option, PROC CORRESP displays

• the contingency table or Burt table in MCA, scaled to percentages, including
the row and column marginal percentages

• the supplementary rows, scaled to percentages

• the supplementary columns, scaled to percentages

If you specify the EXPECTED or ALL option and you do not specify
PRINT=PERCENT, PROC CORRESP displays the product of the row marginals
and the column marginals divided by the grand frequency of the observed frequency
table. For ordinary two-way contingency tables, these are the expected frequencies
under the hypothesis of row and column independence.

If you specify the EXPECTED or ALL option with the PRINT=PERCENT or
PRINT=BOTH option, PROC CORRESP displays the product of the row marginals
and the column marginals divided by the grand frequency of the observed percentages
table. For ordinary two-way contingency tables, these are the expected percentages
under the hypothesis of row and column independence.

If you specify the DEVIATION or ALL option and you do not specify
PRINT=PERCENT, PROC CORRESP displays the observed minus expected
frequencies. For ordinary two-way contingency tables, these are the expected
frequencies under the hypothesis of row and column independence.

If you specify the DEVIATION or ALL option with the PRINT=PERCENT or
PRINT=BOTH option, PROC CORRESP displays the observed minus expected per-
centages. For ordinary two-way contingency tables, these are the expected percent-
ages under the hypothesis of row and column independence.

If you specify the CELLCHI2 or ALL option and you do not specify
PRINT=PERCENT, PROC CORRESP displays contributions to the total chi-
square test statistic, including the row and column marginals. The intersection of the
marginals contains the total chi-square statistic.



Displayed Output � 1107

If you specify the CELLCHI2 or ALL option with the PRINT=PERCENT or the
PRINT=BOTH option, PROC CORRESP displays contributions to the total chi-
square, scaled to percentages, including the row and column marginals.

If you specify the RP or ALL option and you do not specify PRINT=PERCENT,
PROC CORRESP displays the row profiles and the supplementary row profiles.

If you specify the RP or ALL option with the PRINT=PERCENT or the
PRINT=BOTH option, PROC CORRESP displays the row profiles (scaled to
percentages) and the supplementary row profiles (scaled to percentages).

If you specify the CP or ALL option and you do not specify PRINT=PERCENT,
PROC CORRESP displays the column profiles and the supplementary column pro-
files.

If you specify the CP or ALL option with the PRINT=PERCENT or PRINT=BOTH
option, PROC CORRESP displays the column profiles (scaled to percentages) and
the supplementary column profiles (scaled to percentages).

If you do not specify the NOPRINT option, PROC CORRESP displays the inertia
and chi-square decomposition table. This includes the nonzero singular values of the
contingency table (or, in MCA, the binary matrixZ used to create the Burt table),
the nonzero principal inertias (or eigenvalues) for each dimension, the total inertia,
the total chi-square, the decomposition of chi-square, the chi-square degrees of free-
dom (appropriate only when the table is an ordinary two-way contingency table), the
percent of the total chi-square and inertia for each dimension, and a bar chart of the
percents.

If you specify the MCA option and you do not specify the NOPRINT option, PROC
CORRESP displays the adjusted inertias. This includes the nonzero adjusted inertias,
percents, cumulative percents, and a bar chart of the percents.

If you do not specify the NOROW, NOPRINT, or MCA option, PROC CORRESP
displays the row coordinates and the supplementary row coordinates (displayed when
there are supplementary row points).

If you do not specify the NOROW, NOPRINT, MCA, or SHORT option, PROC
CORRESP displays

• the summary statistics for the row points including the quality of representa-
tion of the row points in then-dimensional display, the mass, and the relative
contributions to inertia

• the quality of representation of the supplementary row points in the
n-dimensional display (displayed when there are supplementary row points)

• the partial contributions to inertia for the row points

• the row Best table, indicators of which row points best explain the inertia of
each dimension

• the squared cosines for the row points

• the squared cosines for the supplementary row points (displayed when there
are supplementary row points)
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If you do not specify the NOCOLUMN or NOPRINT option, PROC CORRESP dis-
plays the column coordinates and the supplementary column coordinates (displayed
when there are supplementary column points).

If you do not specify the NOCOLUMN, NOPRINT, or SHORT option, PROC
CORRESP displays

• the summary statistics for the column points including the quality of represen-
tation of the column points in then-dimensional display, the mass, and the
relative contributions to inertia for the supplementary column points

• the quality of representation of the supplementary column points in the
n-dimensional display (displayed when there are supplementary column
points)

• the partial contributions to inertia for the column points

• the column Best table, indicators of which column points best explain the iner-
tia of each dimension

• the squared cosines for the column points

• the squared cosines for the supplementary column points

ODS Table Names

PROC CORRESP assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 24.8. ODS Tables Produced in PROC CORRESP

ODS Table Name Description Option
AdjInGreenacre Greenacre Inertia Adjustment GREENACRE
AdjInBenzecri Benzécri Inertia Adjustment BENZECRI
Binary Binary table OBSERVED, BINARY
BinaryPct Binary table percents OBSERVED, BINARY *
Burt Burt table OBSERVED, MCA
BurtPct Burt table percents OBSERVED, MCA *
CellChiSq Contributions to Chi Square CELLCHI2
CellChiSqPct Contributions, pcts CELLCHI2 *
ColBest Col best indicators default
ColContr Col contributions to inertia default
ColCoors Col coordinates default
ColProfiles Col profiles CP
ColProfilesPct Col profiles, pcts CP *
ColQualMassIn Col quality, mass, inertia default
ColSqCos Col squared cosines default
DF DF, Chi Square (not displayed) default
Deviations Observed - expected freqs DEVIATIONS
DeviationsPct Observed - expected pcts DEVIATIONS *
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Table 24.8. (continued)

ODS Table Name Description Option
Expected Expected frequencies EXPECTED
ExpectedPct Expected percents EXPECTED *
Inertias Inertia decomposition table default
Observed Observed frequencies OBSERVED
ObservedPct Observed percents OBSERVED *
RowBest Row best indicators default
RowContr Row contributions to inertia default
RowCoors Row coordinates default
RowProfiles Row profiles RP
RowProfilesPct Row profiles, pcts RP *
RowQualMassIn Row quality, mass, inertia default
RowSqCos Row squared cosines default
SupColCoors Supp col coordinates default
SupColProfiles Supp col profiles CP
SupColProfilesPct Supp col profiles, pcts CP *
SupColQuality Supp col quality default
SupCols Supplementary col freq OBSERVED
SupColsPct Supplementary col pcts OBSERVED *
SupColSqCos Supp col squared cosines default
SupRows Supplementary row freqs OBSERVED
SupRowCoors Supp row coordinates default
SupRowProfiles Supp row profiles RP
SupRowProfilesPct Supp row profiles, pcts RP *
SupRowQuality Supp row quality default
SupRowsPct Supplementary row pcts OBSERVED *
SupRowSqCos Supp row squared cosines default

*Percents are displayed when you specify the PRINT=PERCENT or PRINT=BOTH option.

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the CORRESP pro-
cedure. These graphics are experimental in this release, meaning that both the graphi-
cal results and the syntax for specifying them are subject to change in a future release.
To request a graph you must specify the ODS GRAPHICS statement. For more in-
formation on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

ODS Graph Names

PROC CORRESP assigns a name to the graph it creates using ODS. You can use this
name to reference the graph when using ODS. The name is listed inTable 24.9.
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To request a graph you must specify the ODS GRAPHICS statement. For more in-
formation on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

Table 24.9. ODS Graphics Produced by PROC CORRESP

ODS Graph Name Plot Description
CorrespPlot Correspondence analysis plot

Examples

Example 24.1. Simple Correspondence Analysis of Cars and
Their Owners

In this example, PROC CORRESP creates a contingency table from categorical data
and performs a simple correspondence analysis. The data are from a sample of in-
dividuals who were asked to provide information about themselves and their cars.
The questions included origin of the car (American, Japanese, European) and fam-
ily status (single, married, single and living with children, and married living with
children). These data are used again inExample 24.2.

The first steps read the input data and assign formats. PROC CORRESP is used
to perform the simple correspondence analysis. The ALL option displays all tables
including the contingency table, chi-square information, profiles, and all results of
the correspondence analysis. The OUTC= option creates an output coordinate data
set. The TABLES statement specifies the row and column categorical variables. The
%PLOTIT macro is used to plot the results.

Normally, you only need to tell the %PLOTIT macro the name of the in-
put data set, DATA=Coor, and the type of analysis performed on the data,
DATATYPE=CORRESP.

The following statements produceOutput 24.1.1:

title ’Car Owners and Car Origin’;

proc format;
value Origin 1 = ’American’ 2 = ’Japanese’ 3 = ’European’;
value Size 1 = ’Small’ 2 = ’Medium’ 3 = ’Large’;
value Type 1 = ’Family’ 2 = ’Sporty’ 3 = ’Work’;
value Home 1 = ’Own’ 2 = ’Rent’;
value Sex 1 = ’Male’ 2 = ’Female’;
value Income 1 = ’1 Income’ 2 = ’2 Incomes’;
value Marital 1 = ’Single with Kids’ 2 = ’Married with Kids’

3 = ’Single’ 4 = ’Married’;
run;

data Cars;
missing a;
input (Origin Size Type Home Income Marital Kids Sex) (1.) @@;
* Check for End of Line;
if n(of Origin -- Sex) eq 0 then do; input; return; end;
marital = 2 * (kids le 0) + marital;
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format Origin Origin. Size Size. Type Type. Home Home.
Sex Sex. Income Income. Marital Marital.;

output;
datalines;

131112212121110121112201131211011211221122112121131122123211222212212201
121122023121221232211101122122022121110122112102131112211121110112311101
211112113211223121122202221122111311123131211102321122223221220221221101
122122022121220211212201221122021122110132112202213112111331226122221101
1212110231AA220232112212113112112121220212212202112111022222110212121221
211211012211222212211101313112113121220121112212121112212211222221112211
221111011112220122212201131211013121220113112222131112012131110221112211
121112212211121121112201321122311311221113112212213211013121220221221101
133211011212220233311102213111023211122121312222212212111111222121112211
133112011212112212112212212222022131222222121101111122022211220113112212
211112012232220121221102213211011131220121212201211122112331220233312202
222122012111220212112201221122112212220222212211311122012111110112212212
112222011131112221212202322211021222110121221101333211012232110132212101
223222013111220112211101211211022112110212211102221122021111220112111211
111122022121110113311122322111122221210222211101212122021211221232112202
1331110113112211213222012131221211112212221122021331220212121112121.2212
121122.22121210233112212222121011311122121211102211122112121110121212101
311212022231221112112211211211312221221213112212221122022222110131212202
213122211311221212112222113122221221220213111221121211221211221221221102
131122211211220221222101223112012111221212111102223122111311222121111102
2121110121112202133122222311122121312212112.2101312122012111122112112202
111212023121110111112221212111012211220221321101221211122121220112111112
212211022111110122221101121112112122110122122232221122212211221212112202
213122112211110212121201113211012221110232111102212211012112220121212202
221112011211220121221101211211022211221112121101111112212121221111221201
211122122122111212112221111122312132110113121101121122222111220222121102
221211012122110221221102312111012122220121121101121122221111222212221102
212122021222120113112202121122212121110113111101123112212111220113111101
221112211321210131212211121211011222110122112222123122023121223112212202
311211012131110131221102112211021131220213122201222111022121221221312202
131.22523221110122212221131112412211220221121112131222022122220122122201
212111011311220221312202221122123221210121222202223122121211221221111112
211111121211221221212201113122122131220222112222211122011311110112312211
211222013221220121211211312122122221220122112201111222011211110122311112
312111021231220122121101211112112.22110222112212121122122211110121112101
121211013211222121112222321112112112110121321101113111012221220121312201
213211012212220221211101321122121111220221121101122211021122110213112212
212122011211122131221101121211022212220212121101
;

*---Perform Simple Correspondence Analysis---;
proc corresp all data=Cars outc=Coor;

tables Marital, Origin;
run;

*---Plot the Simple Correspondence Analysis Results---;
%plotit(data=Coor, datatype=corresp)

Correspondence analysis locates all the categories in a Euclidean space. The first two
dimensions of this space are plotted to examine the associations among the categories.
Since the smallest dimension of this table is three, there is no loss of information
when only two dimensions are plotted. The plot should be thought of as two different
overlaid plots, one for each categorical variable. Distances between points within a
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variable have meaning, but distances between points from different variables do not.

Output 24.1.1. Simple Correspondence Analysis of a Contingency Table

Car Owners and Car Origin

The CORRESP Procedure

Contingency Table

American European Japanese Sum

Married 37 14 51 102
Married with Kids 52 15 44 111
Single 33 15 63 111
Single with Kids 6 1 8 15
Sum 128 45 166 339

Chi-Square Statistic Expected Values

American European Japanese

Married 38.5133 13.5398 49.9469
Married with Kids 41.9115 14.7345 54.3540
Single 41.9115 14.7345 54.3540
Single with Kids 5.6637 1.9912 7.3451

Observed Minus Expected Values

American European Japanese

Married -1.5133 0.4602 1.0531
Married with Kids 10.0885 0.2655 -10.3540
Single -8.9115 0.2655 8.6460
Single with Kids 0.3363 -0.9912 0.6549

Contributions to the Total Chi-Square Statistic

American European Japanese Sum

Married 0.05946 0.01564 0.02220 0.09730
Married with Kids 2.42840 0.00478 1.97235 4.40553
Single 1.89482 0.00478 1.37531 3.27492
Single with Kids 0.01997 0.49337 0.05839 0.57173
Sum 4.40265 0.51858 3.42825 8.34947
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Output 24.1.1. (continued)

Car Owners and Car Origin

The CORRESP Procedure

Row Profiles

American European Japanese

Married 0.362745 0.137255 0.500000
Married with Kids 0.468468 0.135135 0.396396
Single 0.297297 0.135135 0.567568
Single with Kids 0.400000 0.066667 0.533333

Column Profiles

American European Japanese

Married 0.289063 0.311111 0.307229
Married with Kids 0.406250 0.333333 0.265060
Single 0.257813 0.333333 0.379518
Single with Kids 0.046875 0.022222 0.048193
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Output 24.1.1. (continued)

Car Owners and Car Origin

The CORRESP Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative
Value Inertia Square Percent Percent 19 38 57 76 95

----+----+----+----+----+---
0.15122 0.02287 7.75160 92.84 92.84 ************************
0.04200 0.00176 0.59787 7.16 100.00 **

Total 0.02463 8.34947 100.00

Degrees of Freedom = 6

Row Coordinates

Dim1 Dim2

Married -0.0278 0.0134
Married with Kids 0.1991 0.0064
Single -0.1716 0.0076
Single with Kids -0.0144 -0.1947

Summary Statistics for the Row Points

Quality Mass Inertia

Married 1.0000 0.3009 0.0117
Married with Kids 1.0000 0.3274 0.5276
Single 1.0000 0.3274 0.3922
Single with Kids 1.0000 0.0442 0.0685
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Output 24.1.1. (continued)

Car Owners and Car Origin

The CORRESP Procedure

Partial Contributions to Inertia for the Row Points

Dim1 Dim2

Married 0.0102 0.0306
Married with Kids 0.5678 0.0076
Single 0.4217 0.0108
Single with Kids 0.0004 0.9511

Indices of the Coordinates that Contribute Most to Inertia for the Row Points

Dim1 Dim2 Best

Married 0 0 2
Married with Kids 1 0 1
Single 1 0 1
Single with Kids 0 2 2

Squared Cosines for the Row Points

Dim1 Dim2

Married 0.8121 0.1879
Married with Kids 0.9990 0.0010
Single 0.9980 0.0020
Single with Kids 0.0054 0.9946

Output 24.1.1. (continued)

Car Owners and Car Origin

The CORRESP Procedure

Column Coordinates

Dim1 Dim2

American 0.1847 -0.0166
European 0.0013 0.1073
Japanese -0.1428 -0.0163

Summary Statistics for the Column Points

Quality Mass Inertia

American 1.0000 0.3776 0.5273
European 1.0000 0.1327 0.0621
Japanese 1.0000 0.4897 0.4106
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Output 24.1.1. (continued)

Car Owners and Car Origin

The CORRESP Procedure

Partial Contributions to Inertia for the Column Points

Dim1 Dim2

American 0.5634 0.0590
European 0.0000 0.8672
Japanese 0.4366 0.0737

Indices of the Coordinates that Contribute Most to Inertia for the Column Points

Dim1 Dim2 Best

American 1 0 1
European 0 2 2
Japanese 1 0 1

Squared Cosines for the Column Points

Dim1 Dim2

American 0.9920 0.0080
European 0.0001 0.9999
Japanese 0.9871 0.0129
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Output 24.1.1. (continued)

To interpret the plot, start by interpreting the row points separately from the column
points. The European point is near and to the left of the centroid, so it makes a rel-
atively small contribution to the chi-square statistic (because it is near the centroid),
it contributes almost nothing to the inertia of dimension one (since its coordinate on
dimension one has a small absolute value relative to the other column points), and
it makes a relatively large contribution to the inertia of dimension two (since its co-
ordinate on dimension two has a large absolute value relative to the other column
points). Its squared cosines for dimension one and two, approximately 0 and 1, re-
spectively, indicate that its position is almost completely determined by its location
on dimension two. Its quality of display is 1.0, indicating perfect quality, since the
table is two-dimensional after the centering. The American and Japanese points are
far from the centroid, and they lie along dimension one. They make relatively large
contributions to the chi-square statistic and the inertia of dimension one. The hori-
zontal dimension seems to be largely determined by Japanese versus American car
ownership.

In the row points, the Married point is near the centroid, and the Single with Kids
point has a small coordinate on dimension one that is near zero. The horizontal
dimension seems to be largely determined by the Single versus the Married with
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Kids points. The two interpretations of dimension one show the association with
being Married with Kids and owning an American car, and being single and owning
a Japanese car. The fact that the Married with Kids point is close to the American
point and the fact that the Japanese point is near the Single point should be ignored.
Distances between row and column points are not defined. The plot shows that more
people who are married with kids than you would expect if the rows and columns
were independent drive an American car, and more people who are single than you
would expect if the rows and columns were independent drive a Japanese car.

Example 24.2. Multiple Correspondence Analysis of Cars and
Their Owners

In this example, PROC CORRESP creates a Burt table from categorical data and per-
forms a multiple correspondence analysis. The data are from a sample of individuals
who were asked to provide information about themselves and their cars. The ques-
tions included origin of the car (American, Japanese, European), size of car (Small,
Medium, Large), type of car (Family, Sporty, Work Vehicle), home ownership (Owns,
Rents), marital/family status (single, married, single and living with children, and
married living with children), and sex (Male, Female).

The data are read and formats assigned in a previous step, displayed inExample 24.1.
The variables used in this example areOrigin, Size, Type, Income, Home, Marital,
andSex. MCA specifies multiple correspondence analysis, OBSERVED displays
the Burt table, and the OUTC= option creates an output coordinate data set. The
TABLES statement with only a single variable list and no comma creates the Burt
table. The %PLOTIT macro is used to plot the results with vertical and horizontal
reference lines.

The data used to produceOutput 24.2.1andOutput 24.2.2can be found inExample
24.1.

title ’MCA of Car Owners and Car Attributes’;

*---Perform Multiple Correspondence Analysis---;
proc corresp mca observed data=Cars outc=Coor;

tables Origin Size Type Income Home Marital Sex;
run;

*---Plot the Multiple Correspondence Analysis Results---;
%plotit(data=Coor, datatype=corresp, href=0, vref=0)
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Output 24.2.1. Multiple Correspondence Analysis of a Burt Table

MCA of Car Owners and Car Attributes

The CORRESP Procedure

Burt Table

American European Japanese Large Medium Small Family Sporty Work 1 Income

American 125 0 0 36 60 29 81 24 20 58
European 0 44 0 4 20 20 17 23 4 18
Japanese 0 0 165 2 61 102 76 59 30 74
Large 36 4 2 42 0 0 30 1 11 20
Medium 60 20 61 0 141 0 89 39 13 57
Small 29 20 102 0 0 151 55 66 30 73
Family 81 17 76 30 89 55 174 0 0 69
Sporty 24 23 59 1 39 66 0 106 0 55
Work 20 4 30 11 13 30 0 0 54 26
1 Income 58 18 74 20 57 73 69 55 26 150
2 Incomes 67 26 91 22 84 78 105 51 28 0
Own 93 38 111 35 106 101 130 71 41 80
Rent 32 6 54 7 35 50 44 35 13 70
Married 37 13 51 9 42 50 50 35 16 10
Married with Kids 50 15 44 21 51 37 79 12 18 27
Single 32 15 62 11 40 58 35 57 17 99
Single with Kids 6 1 8 1 8 6 10 2 3 14
Female 58 21 70 17 70 62 83 44 22 47
Male 67 23 95 25 71 89 91 62 32 103

Burt Table

Married Single
2 with with

Incomes Own Rent Married Kids Single Kids Female Male

American 67 93 32 37 50 32 6 58 67
European 26 38 6 13 15 15 1 21 23
Japanese 91 111 54 51 44 62 8 70 95
Large 22 35 7 9 21 11 1 17 25
Medium 84 106 35 42 51 40 8 70 71
Small 78 101 50 50 37 58 6 62 89
Family 105 130 44 50 79 35 10 83 91
Sporty 51 71 35 35 12 57 2 44 62
Work 28 41 13 16 18 17 3 22 32
1 Income 0 80 70 10 27 99 14 47 103
2 Incomes 184 162 22 91 82 10 1 102 82
Own 162 242 0 76 106 52 8 114 128
Rent 22 0 92 25 3 57 7 35 57
Married 91 76 25 101 0 0 0 53 48
Married with Kids 82 106 3 0 109 0 0 48 61
Single 10 52 57 0 0 109 0 35 74
Single with Kids 1 8 7 0 0 0 15 13 2
Female 102 114 35 53 48 35 13 149 0
Male 82 128 57 48 61 74 2 0 185
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Output 24.2.1. (continued)

MCA of Car Owners and Car Attributes

The CORRESP Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative
Value Inertia Square Percent Percent 4 8 12 16 20

----+----+----+----+----+---
0.56934 0.32415 970.77 18.91 18.91 ************************
0.48352 0.23380 700.17 13.64 32.55 *****************
0.42716 0.18247 546.45 10.64 43.19 *************
0.41215 0.16987 508.73 9.91 53.10 ************
0.38773 0.15033 450.22 8.77 61.87 ***********
0.38520 0.14838 444.35 8.66 70.52 ***********
0.34066 0.11605 347.55 6.77 77.29 ********
0.32983 0.10879 325.79 6.35 83.64 ********
0.31517 0.09933 297.47 5.79 89.43 *******
0.28069 0.07879 235.95 4.60 94.03 ******
0.26115 0.06820 204.24 3.98 98.01 *****
0.18477 0.03414 102.24 1.99 100.00 **

Total 1.71429 5133.92 100.00

Degrees of Freedom = 324
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Output 24.2.1. (continued)

MCA of Car Owners and Car Attributes

The CORRESP Procedure

Column Coordinates

Dim1 Dim2

American -0.4035 0.8129
European -0.0568 -0.5552
Japanese 0.3208 -0.4678
Large -0.6949 1.5666
Medium -0.2562 0.0965
Small 0.4326 -0.5258
Family -0.4201 0.3602
Sporty 0.6604 -0.6696
Work 0.0575 0.1539
1 Income 0.8251 0.5472
2 Incomes -0.6727 -0.4461
Own -0.3887 -0.0943
Rent 1.0225 0.2480
Married -0.4169 -0.7954
Married with Kids -0.8200 0.3237
Single 1.1461 0.2930
Single with Kids 0.4373 0.8736
Female -0.3365 -0.2057
Male 0.2710 0.1656

Summary Statistics for the Column Points

Quality Mass Inertia

American 0.4925 0.0535 0.0521
European 0.0473 0.0188 0.0724
Japanese 0.3141 0.0706 0.0422
Large 0.4224 0.0180 0.0729
Medium 0.0548 0.0603 0.0482
Small 0.3825 0.0646 0.0457
Family 0.3330 0.0744 0.0399
Sporty 0.4112 0.0453 0.0569
Work 0.0052 0.0231 0.0699
1 Income 0.7991 0.0642 0.0459
2 Incomes 0.7991 0.0787 0.0374
Own 0.4208 0.1035 0.0230
Rent 0.4208 0.0393 0.0604
Married 0.3496 0.0432 0.0581
Married with Kids 0.3765 0.0466 0.0561
Single 0.6780 0.0466 0.0561
Single with Kids 0.0449 0.0064 0.0796
Female 0.1253 0.0637 0.0462
Male 0.1253 0.0791 0.0372
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Output 24.2.1. (continued)

MCA of Car Owners and Car Attributes

The CORRESP Procedure

Partial Contributions to Inertia for the Column Points

Dim1 Dim2

American 0.0268 0.1511
European 0.0002 0.0248
Japanese 0.0224 0.0660
Large 0.0268 0.1886
Medium 0.0122 0.0024
Small 0.0373 0.0764
Family 0.0405 0.0413
Sporty 0.0610 0.0870
Work 0.0002 0.0023
1 Income 0.1348 0.0822
2 Incomes 0.1099 0.0670
Own 0.0482 0.0039
Rent 0.1269 0.0103
Married 0.0232 0.1169
Married with Kids 0.0967 0.0209
Single 0.1889 0.0171
Single with Kids 0.0038 0.0209
Female 0.0223 0.0115
Male 0.0179 0.0093
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Output 24.2.1. (continued)

MCA of Car Owners and Car Attributes

The CORRESP Procedure

Indices of the Coordinates that Contribute Most to Inertia for the Column Points

Dim1 Dim2 Best

American 0 2 2
European 0 0 2
Japanese 0 2 2
Large 0 2 2
Medium 0 0 1
Small 0 2 2
Family 2 0 2
Sporty 2 2 2
Work 0 0 2
1 Income 1 1 1
2 Incomes 1 1 1
Own 1 0 1
Rent 1 0 1
Married 0 2 2
Married with Kids 1 0 1
Single 1 0 1
Single with Kids 0 0 2
Female 0 0 1
Male 0 0 1

Squared Cosines for the Column Points

Dim1 Dim2

American 0.0974 0.3952
European 0.0005 0.0468
Japanese 0.1005 0.2136
Large 0.0695 0.3530
Medium 0.0480 0.0068
Small 0.1544 0.2281
Family 0.1919 0.1411
Sporty 0.2027 0.2085
Work 0.0006 0.0046
1 Income 0.5550 0.2441
2 Incomes 0.5550 0.2441
Own 0.3975 0.0234
Rent 0.3975 0.0234
Married 0.0753 0.2742
Married with Kids 0.3258 0.0508
Single 0.6364 0.0416
Single with Kids 0.0090 0.0359
Female 0.0912 0.0341
Male 0.0912 0.0341

Multiple correspondence analysis locates all the categories in a Euclidean space. The
first two dimensions of this space are plotted to examine the associations among
the categories. The top-right quadrant of the plot shows that the categories single,
single with kids, 1 income, and renting a home are associated. Proceeding clockwise,
the categories sporty, small, and Japanese are associated. The bottom-left quadrant
shows the association between being married, owning your own home, and having
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two incomes. Having children is associated with owning a large American family
car. Such information could be used in market research to identify target audiences
for advertisements.

This interpretation is based on points found in approximately the same direction from
the origin and in approximately the same region of the space. Distances between
points do not have a straightforward interpretation in multiple correspondence anal-
ysis. The geometry of multiple correspondence analysis is not a simple generaliza-
tion of the geometry of simple correspondence analysis (Greenacre and Hastie 1987;
Greenacre 1988).

Output 24.2.2. Plot of Multiple Correspondence Analysis of a Burt Table

If you want to perform a multiple correspondence analysis and get scores for the
individuals, you can specify the BINARY option to analyze the binary table. In the
interest of space, only the first ten rows of coordinates are printed.

title ’Car Owners and Car Attributes’;
title2 ’Binary Table’;

*---Perform Multiple Correspondence Analysis---;
proc corresp data=Cars binary;
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ods select RowCoors;
tables Origin Size Type Income Home Marital Sex;

run;

Output 24.2.3. Correspondence Analysis of a Binary Table

Car Owners and Car Attributes
Binary Table

The Corresp Procedure

Row Coordinates

Dim1 Dim2

1 -0.4093 1.0878
2 0.8198 -0.2221
3 -0.2193 -0.5328
4 0.4382 1.1799
5 -0.6750 0.3600
6 -0.1778 0.1441
7 -0.9375 0.6846
8 -0.7405 -0.1539
9 -0.3027 -0.2749

10 -0.7263 -0.0803

Example 24.3. Cars and Their Owners, ODS Graphics
(Experimental)

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement. For general information about ODS graphics, seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the CORRESP procedure, see the“ODS Graphics”section on page
1109.

ods html;
ods graphics on;

*---Perform Simple Correspondence Analysis---;
proc corresp short data=Cars;

tables Sex Marital, Origin;
supvar Sex;

run;

*---Perform Multiple Correspondence Analysis---;
proc corresp mca short data=Cars;

tables Origin Size Type Income Home Marital Sex;
run;

ods graphics off;
ods html close;
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Output 24.3.1. Simple Correspondence Analysis (Experimental)



Example 24.4. Simple Correspondence Analysis of U.S. Population � 1127

Output 24.3.2. Multiple Correspondence Analysis (Experimental)

Example 24.4. Simple Correspondence Analysis of U.S.
Population

In this example, PROC CORRESP reads an existing contingency table with supple-
mentary observations and performs a simple correspondence analysis. The data are
populations of the fifty states, grouped into regions, for each of the census years from
1920 to 1970 (U.S. Bureau of the Census 1979). Alaska and Hawaii are treated as
supplementary regions. They were not states during this entire period and they are
not physically connected to the other 48 states. Consequently, it is reasonable to ex-
pect that population changes in these two states operate differently from population
changes in the other states. The correspondence analysis is performed giving the sup-
plementary points negative weight, then the coordinates for the supplementary points
are computed in the solution defined by the other points.

The initial DATA step reads the table, provides labels for the years, flags the supple-
mentary rows with negative weights, and specifies absolute weights of 1000 for all
observations since the data were originally reported in units of 1000 people.

In the PROC CORRESP statement, PRINT=PERCENT and the display options dis-
play the table of cell percentages (OBSERVED), cell contributions to the total chi-
square scaled to sum to 100 (CELLCHI2), row profile rows that sum to 100 (RP),
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and column profile columns that sum to 100 (CP). The SHORT option specifies that
the correspondence analysis summary statistics, contributions to inertia, and squared
cosines should not be displayed. The option OUTC=COOR creates the output co-
ordinate data set. Since the data are already in table form, a VAR statement is used
to read the table. Row labels are specified with the ID statement, and column la-
bels come from the variable labels. The WEIGHT statement flags the supplementary
observations and restores the table values to populations.

The %PLOTIT macro is used to plot the results. Normally, you only need to tell the
%PLOTIT macro the name of the input data set, DATA=Coor, and the type of analy-
sis performed on the data, DATATYPE=CORRESP. In this case, PLOTVARS=Dim1
Dim2 is also specified to indicate thatDim1 is the vertical axis variable, as opposed
to the default PLOTVARS=Dim2 Dim1.

For an essentially one-dimensional plot such as this, specifying PLOTVARS=Dim1
Dim2 improves the graphical display.

The following statements produceOutput 24.4.1andOutput 24.4.2:

title ’United States Population’;

data USPop;

* Regions:
* New England - ME, NH, VT, MA, RI, CT.
* Great Lake - OH, IN, IL, MI, WI.
* South Atlantic - DE, MD, DC, VA, WV, NC, SC, GA, FL.
* Mountain - MT, ID, WY, CO, NM, AZ, UT, NV.
* Pacific - WA, OR, CA.
*
* Note: Multiply data values by 1000 to get populations.;

input Region $14. y1920 y1930 y1940 y1950 y1960 y1970;

label y1920 = ’1920’ y1930 = ’1930’ y1940 = ’1940’
y1950 = ’1950’ y1960 = ’1960’ y1970 = ’1970’;

if region = ’Hawaii’ or region = ’Alaska’
then w = -1000; /* Flag Supplementary Observations */
else w = 1000;

datalines;
New England 7401 8166 8437 9314 10509 11842
NY, NJ, PA 22261 26261 27539 30146 34168 37199
Great Lake 21476 25297 26626 30399 36225 40252
Midwest 12544 13297 13517 14061 15394 16319
South Atlantic 13990 15794 17823 21182 25972 30671
KY, TN, AL, MS 8893 9887 10778 11447 12050 12803
AR, LA, OK, TX 10242 12177 13065 14538 16951 19321
Mountain 3336 3702 4150 5075 6855 8282
Pacific 5567 8195 9733 14486 20339 25454
Alaska 55 59 73 129 226 300
Hawaii 256 368 423 500 633 769
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;

*---Perform Simple Correspondence Analysis---;
proc corresp print=percent observed cellchi2 rp cp

short outc=Coor;
var y1920 -- y1970;
id Region;
weight w;
run;

*---Plot the Simple Correspondence Analysis Results---;
%plotit(data=Coor, datatype=corresp, plotvars=Dim1 Dim2)

The contingency table shows that the population of all regions increased over this
time period. The row profiles show that population is increasing at a different rate
for the different regions. There is a small increase in population in the Midwest, for
example, but the population has more than quadrupled in the Pacific region over the
same period. The column profiles show that in 1920, the US population was concen-
trated in the NY, NJ, PA, Great Lakes, Midwest, and South Atlantic regions. With
time, the population is shifting more to the South Atlantic, Mountain, and Pacific re-
gions. This is also clear from the correspondence analysis. The inertia and chi-square
decomposition table shows that there are five nontrivial dimensions in the table, but
the association between the rows and columns is almost entirely one-dimensional.
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Output 24.4.1. Supplementary Observations Example

United States Population

The CORRESP Procedure

Contingency Table

Percents 1920 1930 1940 1950 1960 1970 Sum

New England 0.830 0.916 0.946 1.045 1.179 1.328 6.245
NY, NJ, PA 2.497 2.946 3.089 3.382 3.833 4.173 19.921
Great Lake 2.409 2.838 2.987 3.410 4.064 4.516 20.224
Midwest 1.407 1.492 1.516 1.577 1.727 1.831 9.550
South Atlantic 1.569 1.772 1.999 2.376 2.914 3.441 14.071
KY, TN, AL, MS 0.998 1.109 1.209 1.284 1.352 1.436 7.388
AR, LA, OK, TX 1.149 1.366 1.466 1.631 1.902 2.167 9.681
Mountain 0.374 0.415 0.466 0.569 0.769 0.929 3.523
Pacific 0.625 0.919 1.092 1.625 2.282 2.855 9.398
Sum 11.859 13.773 14.771 16.900 20.020 22.677 100.000

Supplementary Rows

Percents 1920 1930 1940 1950 1960 1970

Alaska 0.006170 0.006619 0.008189 0.014471 0.025353 0.033655
Hawaii 0.028719 0.041283 0.047453 0.056091 0.071011 0.086268

Contributions to the Total Chi-Square Statistic

Percents 1920 1930 1940 1950 1960 1970 Sum

New England 0.937 0.314 0.054 0.009 0.352 0.469 2.135
NY, NJ, PA 0.665 1.287 0.633 0.006 0.521 2.265 5.378
Great Lake 0.004 0.085 0.000 0.001 0.005 0.094 0.189
Midwest 5.749 2.039 0.684 0.072 1.546 4.472 14.563
South Atlantic 0.509 1.231 0.259 0.000 0.285 1.688 3.973
KY, TN, AL, MS 1.454 0.711 1.098 0.087 0.946 2.945 7.242
AR, LA, OK, TX 0.000 0.069 0.077 0.001 0.059 0.030 0.238
Mountain 0.391 0.868 0.497 0.098 0.498 1.834 4.187
Pacific 18.591 9.380 5.458 0.074 7.346 21.248 62.096
Sum 28.302 15.986 8.761 0.349 11.558 35.046 100.000
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Output 24.4.1. (continued)

United States Population

The CORRESP Procedure

Row Profiles

Percents 1920 1930 1940 1950 1960 1970

New England 13.2947 14.6688 15.1557 16.7310 18.8777 21.2722
NY, NJ, PA 12.5362 14.7888 15.5085 16.9766 19.2416 20.9484
Great Lake 11.9129 14.0325 14.7697 16.8626 20.0943 22.3281
Midwest 14.7348 15.6193 15.8777 16.5167 18.0825 19.1691
South Atlantic 11.1535 12.5917 14.2093 16.8872 20.7060 24.4523
KY, TN, AL, MS 13.5033 15.0126 16.3655 17.3813 18.2969 19.4403
AR, LA, OK, TX 11.8687 14.1111 15.1401 16.8471 19.6433 22.3897
Mountain 10.6242 11.7898 13.2166 16.1624 21.8312 26.3758
Pacific 6.6453 9.7823 11.6182 17.2918 24.2784 30.3841

Supplementary Row Profiles

Percents 1920 1930 1940 1950 1960 1970

Alaska 6.5321 7.0071 8.6698 15.3207 26.8409 35.6295
Hawaii 8.6809 12.4788 14.3438 16.9549 21.4649 26.0766

Column Profiles

Percents 1920 1930 1940 1950 1960 1970

New England 7.0012 6.6511 6.4078 6.1826 5.8886 5.8582
NY, NJ, PA 21.0586 21.3894 20.9155 20.0109 19.1457 18.4023
Great Lake 20.3160 20.6042 20.2221 20.1788 20.2983 19.9126
Midwest 11.8664 10.8303 10.2660 9.3337 8.6259 8.0730
South Atlantic 13.2343 12.8641 13.5363 14.0606 14.5532 15.1729
KY, TN, AL, MS 8.4126 8.0529 8.1857 7.5985 6.7521 6.3336
AR, LA, OK, TX 9.6888 9.9181 9.9227 9.6503 9.4983 9.5581
Mountain 3.1558 3.0152 3.1519 3.3688 3.8411 4.0971
Pacific 5.2663 6.6748 7.3921 9.6158 11.3968 12.5921
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Output 24.4.1. (continued)

United States Population

The CORRESP Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative
Value Inertia Square Percent Percent 20 40 60 80 100

----+----+----+----+----+---
0.10664 0.01137 1.014E7 98.16 98.16 *************************
0.01238 0.00015 136586 1.32 99.48
0.00658 0.00004 38540 0.37 99.85
0.00333 0.00001 9896.6 0.10 99.95
0.00244 0.00001 5309.9 0.05 100.00

Total 0.01159 1.033E7 100.00

Degrees of Freedom = 40

Row Coordinates

Dim1 Dim2

New England 0.0611 0.0132
NY, NJ, PA 0.0546 -0.0117
Great Lake 0.0074 -0.0028
Midwest 0.1315 0.0186
South Atlantic -0.0553 0.0105
KY, TN, AL, MS 0.1044 -0.0144
AR, LA, OK, TX 0.0131 -0.0067
Mountain -0.1121 0.0338
Pacific -0.2766 -0.0070

Supplementary Row Coordinates

Dim1 Dim2

Alaska -0.4152 0.0912
Hawaii -0.1198 -0.0321

Column Coordinates

Dim1 Dim2

1920 0.1642 0.0263
1930 0.1149 -0.0089
1940 0.0816 -0.0108
1950 -0.0046 -0.0125
1960 -0.0815 -0.0007
1970 -0.1335 0.0086

The plot shows that the first dimension correctly orders the years. There is nothing
in the correspondence analysis that forces this to happen; PROC CORRESP knows
nothing about the inherent ordering of the column categories. The ordering of the
regions and the ordering of the years reflect the shift over time of the U.S. population
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from the Northeast quadrant of the country to the South and to the West. The results
show that the West and Southeast are growing faster than the rest of the contiguous
48 states.

The plot also shows that the growth pattern for Hawaii is similar to the growth pattern
for the mountain states and that Alaska’s growth is even more extreme than the Pacific
states’ growth. The row profiles confirm this interpretation.

The Pacific region is farther from the origin than all other active points. The Midwest
is the extreme region in the other direction. The table of contributions to the total chi-
square shows that 62% of the total chi-square statistic is contributed by the Pacific
region, which is followed by the Midwest at over 14%. Similarly the two extreme
years, 1920 and 1970, together contribute over 63% to the total chi-square, whereas
the years nearer the origin of the plot contribute less.

Output 24.4.2. Supplementary Observations Example
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Chapter 25
The DISCRIM Procedure
Overview

For a set of observations containing one or more quantitative variables and a classi-
fication variable defining groups of observations, the DISCRIM procedure develops
a discriminant criterion to classify each observation into one of the groups. The de-
rived discriminant criterion from this data set can be applied to a second data set
during the same execution of PROC DISCRIM. The data set that PROC DISCRIM
uses to derive the discriminant criterion is called thetraining or calibrationdata set.

When the distribution within each group is assumed to be multivariate normal, a
parametric method can be used to develop a discriminant function. The discrimi-
nant function, also known as a classification criterion, is determined by a measure of
generalized squared distance (Rao 1973). The classification criterion can be based on
either the individual within-group covariance matrices (yielding a quadratic function)
or the pooled covariance matrix (yielding a linear function); it also takes into account
the prior probabilities of the groups. The calibration information can be stored in a
special SAS data set and applied to other data sets.

When no assumptions can be made about the distribution within each group, or when
the distribution is assumed not to be multivariate normal, nonparametric methods can
be used to estimate the group-specific densities. These methods include the kernel
and k-nearest-neighbor methods (Rosenblatt 1956; Parzen 1962). The DISCRIM
procedure uses uniform, normal, Epanechnikov, biweight, or triweight kernels for
density estimation.

Either Mahalanobis or Euclidean distance can be used to determine proximity.
Mahalanobis distance can be based on either the full covariance matrix or the diag-
onal matrix of variances. With ak-nearest-neighbor method, the pooled covariance
matrix is used to calculate the Mahalanobis distances. With a kernel method, either
the individual within-group covariance matrices or the pooled covariance matrix can
be used to calculate the Mahalanobis distances. With the estimated group-specific
densities and their associated prior probabilities, the posterior probability estimates
of group membership for each class can be evaluated.

Canonical discriminant analysis is a dimension-reduction technique related to princi-
pal component analysis and canonical correlation. Given a classification variable and
several quantitative variables, PROC DISCRIM derives canonical variables (linear
combinations of the quantitative variables) that summarize between-class variation
in much the same way that principal components summarize total variation. (See
Chapter 21, “The CANDISC Procedure,”for more information on canonical dis-
criminant analysis.) A discriminant criterion is always derived in PROC DISCRIM.
If you want canonical discriminant analysis without the use of a discriminant crite-
rion, you should use the CANDISC procedure.
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The DISCRIM procedure can produce an output data set containing various statis-
tics such as means, standard deviations, and correlations. If a parametric method is
used, the discriminant function is also stored in the data set to classify future ob-
servations. When canonical discriminant analysis is performed, the output data set
includes canonical coefficients that can be rotated by the FACTOR procedure. PROC
DISCRIM can also create a second type of output data set containing the classification
results for each observation. When canonical discriminant analysis is performed, this
output data set also includes canonical variable scores. A third type of output data
set containing the group-specific density estimates at each observation can also be
produced.

PROC DISCRIM evaluates the performance of a discriminant criterion by estimating
error rates (probabilities of misclassification) in the classification of future observa-
tions. These error-rate estimates include error-count estimates and posterior proba-
bility error-rate estimates. When the input data set is an ordinary SAS data set, the
error rate can also be estimated by cross validation.

Do not confuse discriminant analysis with cluster analysis. All varieties of discrimi-
nant analysis require prior knowledge of the classes, usually in the form of a sample
from each class. In cluster analysis, the data do not include information on class
membership; the purpose is to construct a classification.

SeeChapter 6, “Introduction to Discriminant Procedures,”for a discussion of dis-
criminant analysis and the SAS/STAT procedures available.

Getting Started

The data in this example are measurements taken on 159 fish caught in Finland’s lake
Laengelmavesi. The species, weight, three different length measurements, height,
and width of each fish are tallied. The full data set is displayed inChapter 67, “The
STEPDISC Procedure.”The STEPDISC procedure identifies all the variables as
significant indicators of the differences among the seven fish species. The goal now
is to find a discriminant function based on these six variables that best classifies the
fish into species.

First, assume that the data are normally distributed within each group with equal
covariances across groups. The following program uses PROC DISCRIM to analyze
theFish data and createFigure 25.1throughFigure 25.5.

proc format;
value specfmt

1=’Bream’
2=’Roach’
3=’Whitefish’
4=’Parkki’
5=’Perch’
6=’Pike’
7=’Smelt’;

data fish (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
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input Species Weight Length1 Length2 Length3 HtPct
WidthPct @@;

Height=HtPct*Length3/100;
Width=WidthPct*Length3/100;
format Species specfmt.;
symbol = put(Species, specfmt.);
datalines;

1 242.0 23.2 25.4 30.0 38.4 13.4
1 290.0 24.0 26.3 31.2 40.0 13.8
1 340.0 23.9 26.5 31.1 39.8 15.1
1 363.0 26.3 29.0 33.5 38.0 13.3

...[155 more records]
;
proc discrim data=fish;

class Species;
run;

The DISCRIM procedure begins by displaying summary information about the vari-
ables in the analysis. This information includes the number of observations, the num-
ber of quantitative variables in the analysis (specified with the VAR statement), and
the number of classes in the classification variable (specified with the CLASS state-
ment). The frequency of each class, its weight, proportion of the total sample, and
prior probability are also displayed. Equal priors are assigned by default.

Fish Measurement Data

The DISCRIM Procedure

Observations 158 DF Total 157
Variables 6 DF Within Classes 151
Classes 7 DF Between Classes 6

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Bream Bream 34 34.0000 0.215190 0.142857
Parkki Parkki 11 11.0000 0.069620 0.142857
Perch Perch 56 56.0000 0.354430 0.142857
Pike Pike 17 17.0000 0.107595 0.142857
Roach Roach 20 20.0000 0.126582 0.142857
Smelt Smelt 14 14.0000 0.088608 0.142857
Whitefish Whitefish 6 6.0000 0.037975 0.142857

Figure 25.1. Summary Information

The natural log of the determinant of the pooled covariance matrix is displayed next
(Figure 25.2). The squared distances between the classes are shown inFigure 25.3.
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Fish Measurement Data

The DISCRIM Procedure

Pooled Covariance Matrix Information

Natural Log of the
Covariance Determinant of the

Matrix Rank Covariance Matrix

6 4.17613

Figure 25.2. Pooled Covariance Matrix Information

Fish Measurement Data

The DISCRIM Procedure

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X )

i j i j

Generalized Squared Distance to Species

From
Species Bream Parkki Perch Pike Roach Smelt Whitefish

Bream 0 83.32523 243.66688 310.52333 133.06721 252.75503 132.05820
Parkki 83.32523 0 57.09760 174.20918 27.00096 60.52076 26.54855
Perch 243.66688 57.09760 0 101.06791 29.21632 29.26806 20.43791
Pike 310.52333 174.20918 101.06791 0 92.40876 127.82177 99.90673
Roach 133.06721 27.00096 29.21632 92.40876 0 33.84280 6.31997
Smelt 252.75503 60.52076 29.26806 127.82177 33.84280 0 46.37326
Whitefish 132.05820 26.54855 20.43791 99.90673 6.31997 46.37326 0

Figure 25.3. Squared Distances

The coefficients of the linear discriminant function are displayed (inFigure 25.4) with
the default options METHOD=NORMAL and POOL=YES.

Fish Measurement Data

The DISCRIM Procedure

Linear Discriminant Function

_ -1 _ -1 _
Constant = -.5 X’ COV X Coefficient Vector = COV X

j j j

Linear Discriminant Function for Species

Variable Bream Parkki Perch Pike Roach Smelt Whitefish

Constant -185.91682 -64.92517 -48.68009 -148.06402 -62.65963 -19.70401 -67.44603
Weight -0.10912 -0.09031 -0.09418 -0.13805 -0.09901 -0.05778 -0.09948
Length1 -23.02273 -13.64180 -19.45368 -20.92442 -14.63635 -4.09257 -22.57117
Length2 -26.70692 -5.38195 17.33061 6.19887 -7.47195 -3.63996 3.83450
Length3 50.55780 20.89531 5.25993 22.94989 25.00702 10.60171 21.12638
Height 13.91638 8.44567 -1.42833 -8.99687 -0.26083 -1.84569 0.64957
Width -23.71895 -13.38592 1.32749 -9.13410 -3.74542 -3.43630 -2.52442
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Figure 25.4. Linear Discriminant Function

A summary of how the discriminant function classifies the data used to develop the
function is displayed last. InFigure 25.5, you see that only three of the observations
are misclassified. The error-count estimates give the proportion of misclassified ob-
servations in each group. Since you are classifying the same data that are used to
derive the discriminant function, these error-count estimates are biased. One way to
reduce the bias of the error-count estimates is to split theFish data into two sets,
use one set to derive the discriminant function, and use the other to run validation
tests;Example 25.4on page 1231 shows how to analyze a test data set. Another
method of reducing bias is to classify each observation using a discriminant func-
tion computed from all of the other observations; this method is invoked with the
CROSSVALIDATE option.
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Fish Measurement Data

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.FISH

Resubstitution Summary using Linear Discriminant Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Bream Parkki Perch Pike Roach Smelt Whitefish Total

Bream 34 0 0 0 0 0 0 34
100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Parkki 0 11 0 0 0 0 0 11
0.00 100.00 0.00 0.00 0.00 0.00 0.00 100.00

Perch 0 0 53 0 0 3 0 56
0.00 0.00 94.64 0.00 0.00 5.36 0.00 100.00

Pike 0 0 0 17 0 0 0 17
0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

Roach 0 0 0 0 20 0 0 20
0.00 0.00 0.00 0.00 100.00 0.00 0.00 100.00

Smelt 0 0 0 0 0 14 0 14
0.00 0.00 0.00 0.00 0.00 100.00 0.00 100.00

Whitefish 0 0 0 0 0 0 6 6
0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00

Total 34 11 53 17 20 17 6 158
21.52 6.96 33.54 10.76 12.66 10.76 3.80 100.00

Priors 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286

Error Count Estimates for Species

Bream Parkki Perch Pike Roach Smelt Whitefish Total

Rate 0.0000 0.0000 0.0536 0.0000 0.0000 0.0000 0.0000 0.0077
Priors 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

Figure 25.5. Resubstitution Misclassification Summary
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Syntax

The following statements are available in PROC DISCRIM.

PROC DISCRIM < options > ;
CLASS variable ;
BY variables ;
FREQ variable ;
ID variable ;
PRIORS probabilities ;
TESTCLASS variable ;
TESTFREQ variable ;
TESTID variable ;
VAR variables ;
WEIGHT variable ;

Only the PROC DISCRIM and CLASS statements are required. The following sec-
tions describe the PROC DISCRIM statement and then describe the other statements
in alphabetical order.

PROC DISCRIM Statement

PROC DISCRIM < options > ;

This statement invokes the DISCRIM procedure. You can specify the following op-
tions in the PROC DISCRIM statement.

Tasks Options
Specify Input Data Set DATA=

TESTDATA=

Specify Output Data Set OUTSTAT=
OUT=
OUTCROSS=
OUTD=
TESTOUT=
TESTOUTD=

Discriminant Analysis METHOD=
POOL=
SLPOOL=

Nonparametric Methods K=
R=
KERNEL=
METRIC=
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Tasks Options
Classification Rule THRESHOLD=

Determine Singularity SINGULAR=

Canonical Discriminant Analysis CANONICAL
CANPREFIX=
NCAN=

Resubstitution Classification LIST
LISTERR
NOCLASSIFY

Cross Validation Classification CROSSLIST
CROSSLISTERR
CROSSVALIDATE

Test Data Classification TESTLIST
TESTLISTERR

Estimate Error Rate POSTERR

Control Displayed Output

Correlations BCORR
PCORR
TCORR
WCORR

Covariances BCOV
PCOV
TCOV
WCOV

SSCP Matrix BSSCP
PSSCP
TSSCP
WSSCP

Miscellaneous ALL
ANOVA
DISTANCE
MANOVA
SIMPLE
STDMEAN

Suppress output NOPRINT
SHORT
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ALL
activates all options that control displayed output. When the derived classification
criterion is used to classify observations, the ALL option also activates thePOSTERR
option.

ANOVA
displays univariate statistics for testing the hypothesis that the class means are equal
in the population for each variable.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the
between-class SSCP matrix divided byn(c − 1)/c, wheren is the number of ob-
servations andc is the number of classes. You should interpret the between-class
covariances in comparison with the total-sample and within-class covariances, not as
formal estimates of population parameters.

BSSCP
displays the between-class SSCP matrix.

CANONICAL
CAN

performs canonical discriminant analysis.

CANPREFIX=name
specifies a prefix for naming the canonical variables. By default, the names are Can1,
Can2,. . . , Cann. If you specify CANPREFIX=ABC, the components are named
ABC1, ABC2, ABC3, and so on. The number of characters in the prefix, plus the
number of digits required to designate the canonical variables, should not exceed 32.
The prefix is truncated if the combined length exceeds 32.

The CANONICAL option is activated when you specify either the NCAN= or
the CANPREFIX= option. A discriminant criterion is always derived in PROC
DISCRIM. If you want canonical discriminant analysis without the use of discrimi-
nant criteria, you should use PROC CANDISC.

CROSSLIST
displays the cross validation classification results for each observation.

CROSSLISTERR
displays the cross validation classification results for misclassified observations only.

CROSSVALIDATE
specifies the cross validation classification of the input DATA= data set. When a para-
metric method is used, PROC DISCRIM classifies each observation in the DATA=
data set using a discriminant function computed from the other observations in the
DATA= data set, excluding the observation being classified. When a nonparametric
method is used, the covariance matrices used to compute the distances are based on
all observations in the data set and do not exclude the observation being classified.
However, the observation being classified is excluded from the nonparametric density
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estimation (if you specify the R= option) or thek nearest neighbors (if you specify
the K= option) of that observation. The CROSSVALIDATE option is set when you
specify the CROSSLIST, CROSSLISTERR, or OUTCROSS= option.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can be an ordinary SAS data set or
one of several specially structured data sets created by SAS/STAT procedures. These
specially structured data sets include TYPE=CORR, TYPE=COV, TYPE=CSSCP,
TYPE=SSCP, TYPE=LINEAR, TYPE=QUAD, and TYPE=MIXED. The input data
set must be an ordinary SAS data set if you specify METHOD=NPAR. If you omit
the DATA= option, the procedure uses the most recently created SAS data set.

DISTANCE
MAHALANOBIS

displays the squared Mahalanobis distances between the group means,F statistics,
and the corresponding probabilities of greater Mahalanobis squared distances be-
tween the group means. The squared distances are based on the specification of the
POOL=andMETRIC= options.

K=k
specifies ak value for thek-nearest-neighbor rule. An observationx is classified into
a group based on the information from thek nearest neighbors ofx. Do not specify
both the K= and R= options.

KERNEL=BIWEIGHT | BIW
KERNEL=EPANECHNIKOV | EPA
KERNEL=NORMAL | NOR
KERNEL=TRIWEIGHT | TRI
KERNEL=UNIFORM | UNI

specifies a kernel density to estimate the group-specific densities. You can spec-
ify the KERNEL= option only when theR= option is specified. The default is
KERNEL=UNIFORM.

LIST
displays the resubstitution classification results for each observation. You can specify
this option only when the input data set is an ordinary SAS data set.

LISTERR
displays the resubstitution classification results for misclassified observations only.
You can specify this option only when the input data set is an ordinary SAS data set.

MANOVA
displays multivariate statistics for testing the hypothesis that the class means are equal
in the population.

METHOD=NORMAL | NPAR
determines the method to use in deriving the classification criterion. When you spec-
ify METHOD=NORMAL, a parametric method based on a multivariate normal dis-
tribution within each class is used to derive a linear or quadratic discriminant func-
tion. The default is METHOD=NORMAL. When you specify METHOD=NPAR, a
nonparametric method is used and you must also specify either theK= or R= option.
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METRIC=DIAGONAL | FULL | IDENTITY
specifies the metric in which the computations of squared distances are performed.
If you specify METRIC=FULL, PROC DISCRIM uses either the pooled covariance
matrix (POOL=YES) or individual within-group covariance matrices (POOL=NO)
to compute the squared distances. If you specify METRIC=DIAGONAL, PROC
DISCRIM uses either the diagonal matrix of the pooled covariance matrix
(POOL=YES) or diagonal matrices of individual within-group covariance matrices
(POOL=NO) to compute the squared distances. If you specify METRIC=IDENTITY,
PROC DISCRIM uses Euclidean distance. The default is METRIC=FULL. When
you specify METHOD=NORMAL, the option METRIC=FULL is used.

NCAN=number
specifies the number of canonical variables to compute. The value ofnumbermust
be less than or equal to the number of variables. If you specify the option NCAN=0,
the procedure displays the canonical correlations but not the canonical coefficients,
structures, or means. Letv be the number of variables in the VAR statement andc be
the number of classes. If you omit the NCAN= option, onlymin(v, c− 1) canonical
variables are generated. If you request an output data set (OUT=, OUTCROSS=,
TESTOUT=),v canonical variables are generated. In this case, the lastv − (c − 1)
canonical variables have missing values.

The CANONICAL option is activated when you specify either the NCAN= or
the CANPREFIX= option. A discriminant criterion is always derived in PROC
DISCRIM. If you want canonical discriminant analysis without the use of discrimi-
nant criterion, you should use PROC CANDISC.

NOCLASSIFY
suppresses the resubstitution classification of the input DATA= data set. You can
specify this option only when the input data set is an ordinary SAS data set.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables
the Output Delivery System (ODS); seeChapter 14, “Using the Output Delivery
System,” for more information.

OUT=SAS-data-set
creates an output SAS data set containing all the data from the DATA= data set, plus
the posterior probabilities and the class into which each observation is classified by
resubstitution. When you specify the CANONICAL option, the data set also contains
new variables with canonical variable scores. See the“OUT= Data Set”section on
page 1170.

OUTCROSS=SAS-data-set
creates an output SAS data set containing all the data from the DATA= data set,
plus the posterior probabilities and the class into which each observation is classified
by cross validation. When you specify the CANONICAL option, the data set also
contains new variables with canonical variable scores. See the“OUT= Data Set”
section on page 1170.
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OUTD=SAS-data-set
creates an output SAS data set containing all the data from the DATA= data set, plus
the group-specific density estimates for each observation. See the“OUT= Data Set”
section on page 1170.

OUTSTAT=SAS-data-set
creates an output SAS data set containing various statistics such as means, stan-
dard deviations, and correlations. When the input data set is an ordinary SAS
data set or when TYPE=CORR, TYPE=COV, TYPE=CSSCP, or TYPE=SSCP, this
option can be used to generate discriminant statistics. When you specify the
CANONICAL option, canonical correlations, canonical structures, canonical coef-
ficients, and means of canonical variables for each class are included in the data
set. If you specify METHOD=NORMAL, the output data set also includes coef-
ficients of the discriminant functions, and the output data set is TYPE=LINEAR
(POOL=YES), TYPE=QUAD (POOL=NO), or TYPE=MIXED (POOL=TEST). If
you specify METHOD=NPAR, this output data set is TYPE=CORR. This data set
also holds calibration information that can be used to classify new observations.
See the“Saving and Using Calibration Information”section on page 1167 and the
“OUT= Data Set”section on page 1170.

PCORR
displays pooled within-class correlations.

PCOV
displays pooled within-class covariances.

POOL=NO | TEST | YES
determines whether the pooled or within-group covariance matrix is the basis of
the measure of the squared distance. If you specify POOL=YES, PROC DISCRIM
uses the pooled covariance matrix in calculating the (generalized) squared distances.
Linear discriminant functions are computed. If you specify POOL=NO, the pro-
cedure uses the individual within-group covariance matrices in calculating the dis-
tances. Quadratic discriminant functions are computed. The default is POOL=YES.

When you specify METHOD=NORMAL, the option POOL=TEST requests
Bartlett’s modification of the likelihood ratio test (Morrison 1976; Anderson 1984)
of the homogeneity of the within-group covariance matrices. The test is unbiased
(Perlman 1980). However, it is not robust to nonnormality. If the test statistic
is significant at the level specified by the SLPOOL= option, the within-group
covariance matrices are used. Otherwise, the pooled covariance matrix is used. The
discriminant function coefficients are displayed only when the pooled covariance
matrix is used.

POSTERR
displays the posterior probability error-rate estimates of the classification criterion
based on the classification results.
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PSSCP
displays the pooled within-class corrected SSCP matrix.

R=r
specifies a radiusr value for kernel density estimation. With uniform, Epanechnikov,
biweight, or triweight kernels, an observationx is classified into a group based on
the information from observationsy in the training set within the radiusr of x, that
is, the groupt observationsy with squared distanced2

t (x,y) ≤ r2. When a normal
kernel is used, the classification of an observationx is based on the information of
the estimated group-specific densities from all observations in the training set. The
matrix r2Vt is used as the groupt covariance matrix in the normal-kernel density,
whereVt is the matrix used in calculating the squared distances. Do not specify both
the K= and R= options. For more information on selectingr, see the“Nonparametric
Methods”section on page 1158.

SHORT
suppresses the display of certain items in the default output. If you specify
METHOD= NORMAL, PROC DISCRIM suppresses the display of determinants,
generalized squared distances between-class means, and discriminant function coef-
ficients. When you specify the CANONICAL option, PROC DISCRIM suppresses
the display of canonical structures, canonical coefficients, and class means on canon-
ical variables; only tables of canonical correlations are displayed.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.

SINGULAR=p
specifies the criterion for determining the singularity of a matrix, where0 < p < 1.
The default is SINGULAR=1E−8.

Let S be the total-sample correlation matrix. If theR2 for predicting a quantitative
variable in the VAR statement from the variables preceding it exceeds1 − p, thenS
is considered singular. IfS is singular, the probability levels for the multivariate test
statistics and canonical correlations are adjusted for the number of variables withR2

exceeding1− p.

Let St be the groupt covariance matrix andSp be the pooled covariance matrix. In
groupt, if the R2 for predicting a quantitative variable in the VAR statement from
the variables preceding it exceeds1 − p, thenSt is considered singular. Similarly,
if the partialR2 for predicting a quantitative variable in the VAR statement from the
variables preceding it, after controlling for the effect of the CLASS variable, exceeds
1− p, thenSp is considered singular.

If PROC DISCRIM needs to compute either the inverse or the determinant of a matrix
that is considered singular, then it uses a quasi-inverse or a quasi-determinant. For
details, see the“Quasi-Inverse”section on page 1164.

SLPOOL=p
specifies the significance level for the test of homogeneity. You can specify the
SLPOOL= option only when POOL=TEST is also specified. If you specify POOL=
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TEST but omit the SLPOOL= option, PROC DISCRIM uses 0.10 as the significance
level for the test.

STDMEAN
displays total-sample and pooled within-class standardized class means.

TCORR
displays total-sample correlations.

TCOV
displays total-sample covariances.

TESTDATA=SAS-data-set
names an ordinary SAS data set with observations that are to be classified. The
quantitative variable names in this data set must match those in the DATA= data set.
When you specify the TESTDATA= option, you can also specify theTESTCLASS,
TESTFREQ, andTESTID statements. When you specify the TESTDATA= option,
you can use theTESTOUT= and TESTOUTD= options to generate classification
results and group-specific density estimates for observations in the test data set. Note
that if the CLASS variable is not present in the TESTDATA= data set, the output will
not include misclassification statistics.

TESTLIST
lists classification results for all observations in theTESTDATA= data set.

TESTLISTERR
lists only misclassified observations in theTESTDATA= data set but only if a
TESTCLASSstatement is also used.

TESTOUT=SAS-data-set
creates an output SAS data set containing all the data from theTESTDATA= data set,
plus the posterior probabilities and the class into which each observation is classified.
When you specify the CANONICAL option, the data set also contains new variables
with canonical variable scores. See the“OUT= Data Set”section on page 1170.

TESTOUTD=SAS-data-set
creates an output SAS data set containing all the data from theTESTDATA= data set,
plus the group-specific density estimates for each observation. See the“OUT= Data
Set” section on page 1170.

THRESHOLD=p
specifies the minimum acceptable posterior probability for classification, where0 ≤
p ≤ 1. If the largest posterior probability of group membership is less than the
THRESHOLD value, the observation is classified into group OTHER. The default is
THRESHOLD=0.

TSSCP
displays the total-sample corrected SSCP matrix.
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WCORR
displays within-class correlations for each class level.

WCOV
displays within-class covariances for each class level.

WSSCP
displays the within-class corrected SSCP matrix for each class level.

BY Statement

BY variables ;

You can specify a BY statement with PROC DISCRIM to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the DISCRIM procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer toSAS Language Reference:
Concepts. For more information on the DATASETS procedure, see the discussion
in theSAS Procedures Guide.

If you specify the TESTDATA= option and the TESTDATA= data set does not contain
any of the BY variables, then the entire TESTDATA= data set is classified according
to the discriminant functions computed in each BY group in the DATA= data set.

If the TESTDATA= data set contains some but not all of the BY variables, or if some
BY variables do not have the same type or length in the TESTDATA= data set as in
the DATA= data set, then PROC DISCRIM displays an error message and stops.

If all BY variables appear in the TESTDATA= data set with the same type and length
as in the DATA= data set, then each BY group in the TESTDATA= data set is clas-
sified by the discriminant function from the corresponding BY group in the DATA=
data set. The BY groups in the TESTDATA= data set must be in the same order as
in the DATA= data set. If you specify the NOTSORTED option in the BY statement,
there must be exactly the same BY groups in the same order in both data sets. If
you omit the NOTSORTED option, some BY groups may appear in one data set but
not in the other. If some BY groups appear in the TESTDATA= data set but not in
the DATA= data set, and you request an output test data set using the TESTOUT= or
TESTOUTD= option, these BY groups are not included in the output data set.



1154 � Chapter 25. The DISCRIM Procedure

CLASS Statement

CLASS variable ;
The values of the classification variable define the groups for analysis. Class levels
are determined by the formatted values of the CLASS variable. The specified variable
can be numeric or character. A CLASS statement is required.

FREQ Statement

FREQ variable ;
If a variable in the data set represents the frequency of occurrence for the other values
in the observation, include the variable’s name in a FREQ statement. The procedure
then treats the data set as if each observation appearsn times, wheren is the value
of the FREQ variable for the observation. The total number of observations is con-
sidered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not
used in the analysis. If the value is not an integer, it is truncated to an integer.

ID Statement

ID variable ;

The ID statement is effective only when you specify the LIST or LISTERR option in
the PROC DISCRIM statement. When the DISCRIM procedure displays the classi-
fication results, the ID variable (rather than the observation number) is displayed for
each observation.

PRIORS Statement

PRIORS EQUAL;

PRIORS PROPORTIONAL | PROP;

PRIORS probabilities ;

The PRIORS statement specifies the prior probabilities of group membership. To set
the prior probabilities equal, use

priors equal;

To set the prior probabilities proportional to the sample sizes, use

priors proportional;

For other than equal or proportional priors, specify the prior probability for each level
of the classification variable. Each class level can be written as either a SAS name
or a quoted string, and it must be followed by an equal sign and a numeric constant
between zero and one. A SAS name begins with a letter or an underscore and can
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contain digits as well. Lowercase character values and data values with leading blanks
must be enclosed in quotes. For example, to define prior probabilities for each level
of Grade, whereGrade’s values are A, B, C, and D, the PRIORS statement can be

priors A=0.1 B=0.3 C=0.5 D=0.1;

If Grade’s values are ’a’, ’b’, ’c’, and ’d’, each class level must be written as a quoted
string:

priors ’a’=0.1 ’b’=0.3 ’c’=0.5 ’d’=0.1;

If Grade is numeric, with formatted values of ’1’, ’2’, and ’3’, the PRIORS statement
can be

priors ’1’=0.3 ’2’=0.6 ’3’=0.1;

The specified class levels must exactly match the formatted values of the CLASS
variable. For example, if a CLASS variableC has the format 4.2 and a value 5, the
PRIORS statement must specify ’5.00’, not ’5.0’ or ’5’. If the prior probabilities do
not sum to one, these probabilities are scaled proportionally to have the sum equal to
one. The default is PRIORS EQUAL.

TESTCLASS Statement

TESTCLASS variable ;

The TESTCLASS statement names the variable in theTESTDATA= data set that is
used to determine whether an observation in the TESTDATA= data set is misclassi-
fied. The TESTCLASS variable should have the same type (character or numeric) and
length as the variable given in the CLASS statement. PROC DISCRIM considers an
observation misclassified when the formatted value of the TESTCLASS variable does
not match the group into which the TESTDATA= observation is classified. When the
TESTCLASS statement is missing and the TESTDATA= data set contains the vari-
able given in the CLASS statement, the CLASS variable is used as the TESTCLASS
variable. Note that if the CLASS variable is not present in the TESTDATA= data set,
the output will not include misclassification statistics.

TESTFREQ Statement

TESTFREQ variable ;

If a variable in theTESTDATA= data set represents the frequency of occurrence for
the other values in the observation, include the variable’s name in a TESTFREQ
statement. The procedure then treats the data set as if each observation appearsn
times, wheren is the value of the TESTFREQ variable for the observation.

If the value of the TESTFREQ variable is missing or is less than one, the observation
is not used in the analysis. If the value is not an integer, it is truncated to an integer.
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TESTID Statement

TESTID variable ;

The TESTID statement is effective only when you specify theTESTLIST or
TESTLISTERRoption in the PROC DISCRIM statement. When the DISCRIM pro-
cedure displays the classification results for theTESTDATA= data set, the TESTID
variable (rather than the observation number) is displayed for each observation. The
variable given in the TESTID statement must be in the TESTDATA= data set.

VAR Statement

VAR variables ;

The VAR statement specifies the quantitative variables to be included in the analysis.
The default is all numeric variables not listed in other statements.

WEIGHT Statement

WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in
a variable in the data set and specify the name in a WEIGHT statement. This is often
done when the variance associated with each observation is different and the values
of the weight variable are proportional to the reciprocals of the variances. If the value
of the WEIGHT variable is missing or is less than zero, then a value of zero for the
weight is used.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT
statement does not alter the degrees of freedom.

Details

Missing Values

Observations with missing values for variables in the analysis are excluded from the
development of the classification criterion. When the values of the classification vari-
able are missing, the observation is excluded from the development of the classifi-
cation criterion, but if no other variables in the analysis have missing values for that
observation, the observation is classified and displayed with the classification results.

Background

The following notation is used to describe the classification methods:

x ap-dimensional vector containing the quantitative variables of an observation

Sp the pooled covariance matrix

t a subscript to distinguish the groups

nt the number of training set observations in groupt
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mt thep-dimensional vector containing variable means in groupt

St the covariance matrix within groupt

|St| the determinant ofSt

qt the prior probability of membership in groupt

p(t|x) the posterior probability of an observationx belonging to groupt

ft the probability density function for groupt

ft(x) the group-specific density estimate atx from groupt

f(x)
∑

t qtft(x), the estimated unconditional density atx

et the classification error rate for groupt

Bayes’ Theorem

Assuming that the prior probabilities of group membership are known and that the
group-specific densities atx can be estimated, PROC DISCRIM computesp(t|x),
the probability ofx belonging to groupt, by applying Bayes’ theorem:

p(t|x) =
qtft(x)
f(x)

PROC DISCRIM partitions ap-dimensional vector space into regionsRt, where the
regionRt is the subspace containing allp-dimensional vectorsy such thatp(t|y) is
the largest among all groups. An observation is classified as coming from groupt if
it lies in regionRt.

Parametric Methods

Assuming that each group has a multivariate normal distribution, PROC DISCRIM
develops a discriminant function or classification criterion using a measure of gener-
alized squared distance. The classification criterion is based on either the individual
within-group covariance matrices or the pooled covariance matrix; it also takes into
account the prior probabilities of the classes. Each observation is placed in the class
from which it has the smallest generalized squared distance. PROC DISCRIM also
computes the posterior probability of an observation belonging to each class.

The squared Mahalanobis distance fromx to groupt is

d2
t (x) = (x−mt)′V−1

t (x−mt)

whereVt = St if the within-group covariance matrices are used, orVt = Sp if the
pooled covariance matrix is used.

The group-specific density estimate atx from group t is then given by

ft(x) = (2π)−
p
2 |Vt|−

1
2 exp

(
−0.5d2

t (x)
)
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Using Bayes’ theorem, the posterior probability ofx belonging to groupt is

p(t|x) =
qtft(x)∑
u qufu(x)

where the summation is over all groups.

The generalized squared distance fromx to groupt is defined as

D2
t (x) = d2

t (x) + g1(t) + g2(t)

where

g1(t) =
{

ln |St| if the within-group covariance matrices are used
0 if the pooled covariance matrix is used

and

g2(t) =
{
−2 ln(qt) if the prior probabilities are not all equal
0 if the prior probabilities are all equal

The posterior probability ofx belonging to groupt is then equal to

p(t|x) =
exp

(
−0.5D2

t (x)
)∑

u exp (−0.5D2
u(x))

The discriminant scores are−0.5D2
u(x). An observation is classified into groupu

if setting t = u produces the largest value ofp(t|x) or the smallest value ofD2
t (x).

If this largest posterior probability is less than the threshold specified,x is classified
into group OTHER.

Nonparametric Methods

Nonparametric discriminant methods are based on nonparametric estimates of group-
specific probability densities. Either a kernel method or thek-nearest-neighbor
method can be used to generate a nonparametric density estimate in each group
and to produce a classification criterion. The kernel method uses uniform, normal,
Epanechnikov, biweight, or triweight kernels in the density estimation.

Either Mahalanobis distance or Euclidean distance can be used to determine prox-
imity. When thek-nearest-neighbor method is used, the Mahalanobis distances
are based on the pooled covariance matrix. When a kernel method is used, the
Mahalanobis distances are based on either the individual within-group covariance
matrices or the pooled covariance matrix. Either the full covariance matrix or the
diagonal matrix of variances can be used to calculate the Mahalanobis distances.

The squared distance between two observation vectors,x andy, in groupt is given
by

d2
t (x,y) = (x− y)′V −1

t (x− y)
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whereVt has one of the following forms:

Vt =


Sp the pooled covariance matrix
diag(Sp) the diagonal matrix of the pooled covariance matrix
St the covariance matrix within groupt
diag(St) the diagonal matrix of the covariance matrix within groupt
I the identity matrix

The classification of an observation vectorx is based on the estimated group-specific
densities from the training set. From these estimated densities, the posterior proba-
bilities of group membership atx are evaluated. An observationx is classified into
groupu if setting t = u produces the largest value ofp(t|x). If there is a tie for the
largest probability or if this largest probability is less than the threshold specified,x
is classified into group OTHER.

The kernel method uses a fixed radius,r, and a specified kernel,Kt, to estimate the
groupt density at each observation vectorx. Let z be ap-dimensional vector. Then
the volume of ap-dimensional unit sphere bounded byz′z = 1 is

v0 =
π

p
2

Γ
(p

2 + 1
)

where Γ represents the gamma function (refer toSAS Language Reference:
Dictionary).

Thus, in groupt, the volume of ap-dimensional ellipsoid bounded by
{z | z′V−1

t z = r2} is

vr(t) = rp|Vt|
1
2 v0

The kernel method uses one of the following densities as the kernel density in group
t.

Uniform Kernel

Kt(z) =


1

vr(t)
if z′V−1

t z ≤ r2

0 elsewhere

Normal Kernel (with mean zero, variancer2Vt)

Kt(z) =
1

c0(t)
exp

(
− 1

2r2
z′V−1

t z
)

wherec0(t) = (2π)
p
2 rp|Vt|

1
2 .
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Epanechnikov Kernel

Kt(z) =

 c1(t)
(

1− 1
r2

z′V−1
t z
)

if z′V−1
t z ≤ r2

0 elsewhere

wherec1(t) =
1

vr(t)

(
1 +

p

2

)
.

Biweight Kernel

Kt(z) =

 c2(t)
(

1− 1
r2

z′V−1
t z
)2

if z′V−1
t z ≤ r2

0 elsewhere

wherec2(t) =
(
1 +

p

4

)
c1(t).

Triweight Kernel

Kt(z) =

 c3(t)
(

1− 1
r2

z′V−1
t z
)3

if z′V−1
t z ≤ r2

0 elsewhere

wherec3(t) =
(
1 +

p

6

)
c2(t).

The groupt density atx is estimated by

ft(x) =
1
nt

∑
y

Kt(x− y)

where the summation is over all observationsy in groupt, andKt is the specified
kernel function. The posterior probability of membership in groupt is then given by

p(t|x) =
qtft(x)
f(x)

wheref(x) =
∑

u qufu(x) is the estimated unconditional density. Iff(x) is zero,
the observationx is classified into group OTHER.

The uniform-kernel method treatsKt(z) as a multivariate uniform function with den-
sity uniformly distributed overz′V−1

t z ≤ r2. Let kt be the number of training set
observationsy from groupt within the closed ellipsoid centered atx specified by
d2

t (x,y) ≤ r2. Then the groupt density atx is estimated by

ft(x) =
kt

ntvr(t)
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When the identity matrix or the pooled within-group covariance matrix is used in cal-
culating the squared distance,vr(t) is a constant, independent of group membership.
The posterior probability ofx belonging to groupt is then given by

p(t|x) =
qtkt
nt∑

u
quku
nu

If the closed ellipsoid centered atx does not include any training set observations,
f(x) is zero andx is classified into group OTHER. When the prior probabilities are
equal,p(t|x) is proportional tokt/nt andx is classified into the group that has the
highest proportion of observations in the closed ellipsoid. When the prior probabili-
ties are proportional to the group sizes,p(t|x) = kt/

∑
u ku, x is classified into the

group that has the largest number of observations in the closed ellipsoid.

The nearest-neighbor method fixes the number,k, of training set points for each ob-
servationx. The method finds the radiusrk(x) that is the distance fromx to thekth
nearest training set point in the metricV−1

t . Consider a closed ellipsoid centered
at x bounded by{z | (z − x)′V−1

t (z − x) = r2
k(x)}; the nearest-neighbor method

is equivalent to the uniform-kernel method with a location-dependent radiusrk(x).
Note that, with ties, more thank training set points may be in the ellipsoid.

Using thek-nearest-neighbor rule, thekn (or more with ties) smallest distances are
saved. Of thesek distances, letkt represent the number of distances that are asso-
ciated with groupt. Then, as in the uniform-kernel method, the estimated groupt
density atx is

ft(x) =
kt

ntvk(x)

wherevk(x) is the volume of the ellipsoid bounded by{z | (z − x)′V−1
t (z − x) =

r2
k(x)}. Since the pooled within-group covariance matrix is used to calculate the

distances used in the nearest-neighbor method, the volumevk(x) is a constant inde-
pendent of group membership. Whenk = 1 is used in the nearest-neighbor rule,x is
classified into the group associated with they point that yields the smallest squared
distanced2

t (x,y). Prior probabilities affect nearest-neighbor results in the same way
that they affect uniform-kernel results.

With a specified squared distance formula (METRIC=, POOL=), the values ofr and
k determine the degree of irregularity in the estimate of the density function, and
they are called smoothing parameters. Small values ofr or k produce jagged density
estimates, and large values ofr or k produce smoother density estimates. Various
methods for choosing the smoothing parameters have been suggested, and there is as
yet no simple solution to this problem.

For a fixed kernel shape, one way to choose the smoothing parameterr is to plot
estimated densities with different values ofr and to choose the estimate that is most
in accordance with the prior information about the density. For many applications,
this approach is satisfactory.
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Another way of selecting the smoothing parameterr is to choose a value that opti-
mizes a given criterion. Different groups may have different sets of optimal values.
Assume that the unknown density has bounded and continuous second derivatives
and that the kernel is a symmetric probability density function. One criterion is
to minimize an approximate mean integrated square error of the estimated density
(Rosenblatt 1956). The resulting optimal value ofr depends on the density function
and the kernel. A reasonable choice for the smoothing parameterr is to optimize the
criterion with the assumption that groupt has a normal distribution with covariance
matrixVt. Then, in groupt, the resulting optimal value forr is given by

(
A(Kt)

nt

)1/(p+4)

where the optimal constantA(Kt) depends on the kernelKt (Epanechnikov 1969).
For some useful kernels, the constantsA(Kt) are given by

A(Kt) =
1
p
2p+1(p + 2)Γ

(p

2

)
with a uniform kernel

A(Kt) =
4

2p + 1
with a normal kernel

A(Kt) =
2p+2p2(p + 2)(p + 4)

2p + 1
Γ
(p

2

)
with an Epanechnikov kernel

These selections ofA(Kt) are derived under the assumption that the data in
each group are from a multivariate normal distribution with covariance matrixVt.
However, when the Euclidean distances are used in calculating the squared distance

(Vt = I), the smoothing constant should be multiplied bys, wheres is an estimate
of standard deviations for all variables. A reasonable choice fors is

s =
(

1
p

∑
sjj

) 1
2

wheresjj are groupt marginal variances.

The DISCRIM procedure uses only a single smoothing parameter for all groups.
However, with the selection of the matrix to be used in the distance formula (using
the METRIC= or POOL= option), individual groups and variables can have different
scalings. WhenVt, the matrix used in calculating the squared distances, is an iden-
tity matrix, the kernel estimate on each data point is scaled equally for all variables in
all groups. WhenVt is the diagonal matrix of a covariance matrix, each variable in
groupt is scaled separately by its variance in the kernel estimation, where the vari-
ance can be the pooled variance(Vt = Sp) or an individual within-group variance
(Vt = St). WhenVt is a full covariance matrix, the variables in groupt are scaled
simultaneously byVt in the kernel estimation.
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In nearest-neighbor methods, the choice ofk is usually relatively uncritical (Hand
1982). A practical approach is to try several different values of the smoothing param-
eters within the context of the particular application and to choose the one that gives
the best cross validated estimate of the error rate.

Classification Error-Rate Estimates

A classification criterion can be evaluated by its performance in the classification of
future observations. PROC DISCRIM uses two types of error-rate estimates to eval-
uate the derived classification criterion based on parameters estimated by the training
sample:

• error-count estimates

• posterior probability error-rate estimates.

The error-count estimate is calculated by applying the classification criterion derived
from the training sample to a test set and then counting the number of misclassified
observations. The group-specific error-count estimate is the proportion of misclas-
sified observations in the group. When the test set is independent of the training
sample, the estimate is unbiased. However, it can have a large variance, especially if
the test set is small.

When the input data set is an ordinary SAS data set and no independent test sets are
available, the same data set can be used both to define and to evaluate the classifica-
tion criterion. The resulting error-count estimate has an optimistic bias and is called
anapparent error rate. To reduce the bias, you can split the data into two sets, one
set for deriving the discriminant function and the other set for estimating the error
rate. Such a split-sample method has the unfortunate effect of reducing the effective
sample size.

Another way to reduce bias is cross validation (Lachenbruch and Mickey 1968).
Cross validation treatsn − 1 out of n training observations as a training set. It
determines the discriminant functions based on thesen − 1 observations and then
applies them to classify the one observation left out. This is done for each of the
n training observations. The misclassification rate for each group is the proportion
of sample observations in that group that are misclassified. This method achieves a
nearly unbiased estimate but with a relatively large variance.

To reduce the variance in an error-count estimate, smoothed error-rate estimates are
suggested (Glick 1978). Instead of summing terms that are either zero or one as
in the error-count estimator, the smoothed estimator uses a continuum of values be-
tween zero and one in the terms that are summed. The resulting estimator has a
smaller variance than the error-count estimate. The posterior probability error-rate
estimates provided by the POSTERR option in the PROC DISCRIM statement (see
the following section, “Posterior Probability Error-Rate Estimates”) are smoothed
error-rate estimates. The posterior probability estimates for each group are based on
the posterior probabilities of the observations classified into that same group. The
posterior probability estimates provide good estimates of the error rate when the pos-
terior probabilities are accurate. When a parametric classification criterion (linear or
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quadratic discriminant function) is derived from a nonnormal population, the result-
ing posterior probability error-rate estimators may not be appropriate.

The overall error rate is estimated through a weighted average of the individual group-
specific error-rate estimates, where the prior probabilities are used as the weights.

To reduce both the bias and the variance of the estimator, Hora and Wilcox (1982)
compute the posterior probability estimates based on cross validation. The resulting
estimates are intended to have both low variance from using the posterior probabil-
ity estimate and low bias from cross validation. They use Monte Carlo studies on
two-group multivariate normal distributions to compare the cross validation posterior
probability estimates with three other estimators: the apparent error rate, cross val-
idation estimator, and posterior probability estimator. They conclude that the cross
validation posterior probability estimator has a lower mean squared error in their sim-
ulations.

Quasi-Inverse

Consider the plot shown inFigure 25.6with two variables,X1 and X2, and two
classes, A and B. The within-class covariance matrix is diagonal, with a positive
value forX1 but zero forX2. Using a Moore-Penrose pseudo-inverse would effec-
tively ignoreX2 in doing the classification, and the two classes would have a zero
generalized distance and could not be discriminated at all. The quasi-inverse used
by PROC DISCRIM replaces the zero variance forX2 by a small positive number to
remove the singularity. This allowsX2 to be used in the discrimination and results
correctly in a large generalized distance between the two classes and a zero error
rate. It also allows new observations, such as the one indicated by N, to be classified
in a reasonable way. PROC CANDISC also uses a quasi-inverse when the total-
sample covariance matrix is considered to be singular and Mahalanobis distances are
requested. This problem with singular within-class covariance matrices is discussed
in Ripley (1996, p. 38). The use of the quasi-inverse is an innovation introduced by
SAS Institute Inc.

Figure 25.6. Plot of Data with Singular Within-Class Covariance Matrix

Let S be a singular covariance matrix. The matrixS can be either a within-group
covariance matrix, a pooled covariance matrix, or a total-sample covariance matrix.
Letv be the number of variables in the VAR statement and the nullityn be the number
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of variables among them with (partial)R2 exceeding1 − p. If the determinant ofS
(Testing of Homogeneity of Within Covariance Matrices) or the inverse ofS (Squared
Distances and Generalized Squared Distances) is required, a quasi-determinant or
quasi-inverse is used instead. PROC DISCRIM scales each variable to unit total-
sample variance before calculating this quasi-inverse. The calculation is based on the
spectral decompositionS = ΓΛΓ′, whereΛ is a diagonal matrix of eigenvaluesλj ,
j = 1, . . . , v, whereλi ≥ λj wheni < j, andΓ is a matrix with the corresponding
orthonormal eigenvectors ofS as columns. When the nullityn is less thanv, set
λ0

j = λj for j = 1, . . . , v − n, andλ0
j = pλ̄ for j = v − n + 1, . . . , v, where

λ̄ =
1

v − n

v−n∑
k=1

λk

When the nullityn is equal tov, setλ0
j = p, for j = 1, . . . , v. A quasi-determinant

is then defined as the product ofλ0
j , j = 1, . . . , v. Similarly, a quasi-inverse is then

defined asS∗ = ΓΛ∗Γ′, whereΛ∗ is a diagonal matrix of values1/λ0
j , j = 1, . . . , v.

Posterior Probability Error-Rate Estimates

The posterior probability error-rate estimates (Fukunaga and Kessell 1973; Glick
1978; Hora and Wilcox 1982) for each group are based on the posterior probabili-
ties of the observations classified into that same group.

A sample of observations with classification results can be used to estimate the pos-
terior error rates. The following notation is used to describe the sample.

S the set of observations in the (training) sample

n the number of observations inS
nt the number of observations inS in groupt

Rt the set of observations such that the posterior probability belonging to group
t is the largest

Rut the set of observations from groupu such that the posterior probability be-
longing to groupt is the largest.

The classification error rate for groupt is defined as

et = 1−
∫
Rt

ft(x)dx

The posterior probability ofx for groupt can be written as

p(t|x) =
qtft(x)
f(x)

wheref(x) =
∑

u qufu(x) is the unconditional density ofx.
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Thus, if you replaceft(x) with p(t|x)f(x)/qt, the error rate is

et = 1− 1
qt

∫
Rt

p(t|x)f(x)dx

An estimator ofet, unstratified over the groups from which the observations come, is
then given by

êt (unstratified)= 1− 1
nqt

∑
Rt

p(t|x)

wherep(t|x) is estimated from the classification criterion, and the summation is over
all sample observations ofS classified into groupt. The true group membership of
each observation is not required in the estimation. The termnqt is the number of
observations that are expected to be classified into groupt, given the priors. If more
observations than expected are classified into groupt, thenêt can be negative.

Further, if you replacef(x) with
∑

u qufu(x), the error rate can be written as

et = 1− 1
qt

∑
u

qu

∫
Rut

p(t|x)fu(x)dx

and an estimator stratified over the group from which the observations come is given
by

êt (stratified)= 1− 1
qt

∑
u

qu
1
nu

(∑
Rut

p(t|x)

)

The inner summation is over all sample observations ofS coming from groupu and
classified into groupt, andnu is the number of observations originally from group
u. The stratified estimate uses only the observations with known group membership.
When the prior probabilities of the group membership are proportional to the group
sizes, the stratified estimate is the same as the unstratified estimator.

The estimated group-specific error rates can be less than zero, usually due to a large
discrepancy between prior probabilities of group membership and group sizes. To
have a reliable estimate for group-specific error rate estimates, you should use group
sizes that are at least approximately proportional to the prior probabilities of group
membership.

A total error rate is defined as a weighted average of the individual group error rates

e =
∑

t

qtet

and can be estimated from

ê (unstratified)=
∑

t

qtêt (unstratified)
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or

ê (stratified)=
∑

t

qtêt (stratified)

The total unstratified error-rate estimate can also be written as

ê (unstratified)= 1− 1
n

∑
t

∑
Rt

p(t|x)

which is one minus the average value of the maximum posterior probabilities for each
observation in the sample. The prior probabilities of group membership do not appear
explicitly in this overall estimate.

Saving and Using Calibration Information

When you specify METHOD=NORMAL to derive a linear or quadratic discrimi-
nant function, you can save the calibration information developed by the DISCRIM
procedure in a SAS data set by using the OUTSTAT= option in the procedure.
PROC DISCRIM then creates a specially structured SAS data set of TYPE=LINEAR,
TYPE=QUAD, or TYPE=MIXED that contains the calibration information. For
more information on these data sets, seeAppendix A, “Special SAS Data Sets.”
Calibration information cannot be saved when METHOD=NPAR, but you can clas-
sify a TESTDATA= data set in the same step. For an example of this, seeExample
25.1on page 1180.

To use this calibration information to classify observations in another data set, specify
both of the following:

• the name of the calibration data set after the DATA= option in the PROC
DISCRIM statement

• the name of the data set to be classified after the TESTDATA= option in the
PROC DISCRIM statement.

Here is an example:

data original;
input position x1 x2;
datalines;

...[data lines]
;

proc discrim outstat=info;
class position;

run;

data check;
input position x1 x2;
datalines;
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...[second set of data lines]
;

proc discrim data=info testdata=check testlist;
class position;

run;

The first DATA step creates the SAS data setOriginal, which the DISCRIM pro-
cedure uses to develop a classification criterion. Specifying OUTSTAT=INFO in
the PROC DISCRIM statement causes the DISCRIM procedure to store the cali-
bration information in a new data set calledInfo. The next DATA step creates the
data setCheck. The second PROC DISCRIM statement specifies DATA=INFO
and TESTDATA=CHECK so that the classification criterion developed earlier is ap-
plied to theCheck data set. Note that if the CLASS variable is not present in the
TESTDATA= data set, the output will not include misclassification statistics.

Input Data Sets

DATA= Data Set

When you specify METHOD=NPAR, an ordinary SAS data set is required as the
input DATA= data set. When you specify METHOD=NORMAL, the DATA= data
set can be an ordinary SAS data set or one of several specially structured data sets
created by SAS/STAT procedures. These specially structured data sets include

• TYPE=CORR data sets created by PROC CORR using a BY statement

• TYPE=COV data sets created by PROC PRINCOMP using both the COV op-
tion and a BY statement

• TYPE=CSSCP data sets created by PROC CORR using the CSSCP option and
a BY statement, where the OUT= data set is assigned TYPE=CSSCP with the
TYPE= data set option

• TYPE=SSCP data sets created by PROC REG using both the OUTSSCP= op-
tion and a BY statement

• TYPE=LINEAR, TYPE=QUAD, and TYPE=MIXED data sets produced by
previous runs of PROC DISCRIM that used both METHOD=NORMAL and
OUTSTAT= options

When the input data set is TYPE=CORR, TYPE=COV, TYPE=CSSCP, or
TYPE=SSCP, the BY variable in these data sets becomes the CLASS variable in the
DISCRIM procedure.

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, PROC
DISCRIM reads the number of observations for each class from the observations with

–TYPE–=’N’ and reads the variable means in each class from the observations with

–TYPE–=’MEAN’. PROC DISCRIM then reads the within-class correlations from
the observations with–TYPE–=’CORR’ and reads the standard deviations from the
observations with–TYPE–=’STD’ (data set TYPE=CORR), the within-class co-
variances from the observations with–TYPE–=’COV’ (data set TYPE=COV), or
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the within-class corrected sums of squares and cross products from the observations
with –TYPE–=’CSSCP’ (data set TYPE=CSSCP).

When you specify POOL=YES and the data set does not include any observa-
tions with–TYPE–=’CSSCP’ (data set TYPE=CSSCP),–TYPE–=’COV’ (data set
TYPE=COV), or–TYPE–=’CORR’ (data set TYPE=CORR) for each class, PROC
DISCRIM reads the pooled within-class information from the data set. In this case,
PROC DISCRIM reads the pooled within-class covariances from the observations
with –TYPE–=’PCOV’ (data set TYPE=COV) or reads the pooled within-class cor-
relations from the observations with–TYPE–=’PCORR’ and the pooled within-
class standard deviations from the observations with–TYPE–=’PSTD’ (data set
TYPE=CORR) or the pooled within-class corrected SSCP matrix from the obser-
vations with–TYPE–=’PSSCP’ (data set TYPE=CSSCP).

When the input data set is TYPE=SSCP, the DISCRIM procedure reads the num-
ber of observations for each class from the observations with–TYPE–=’N’, the
sum of weights of observations for each class from the variableINTERCEP in
observations with–TYPE–=’SSCP’ and–NAME–=’INTERCEPT’, the variable
sums from the variable=variablenamesin observations with–TYPE–=’SSCP’ and

–NAME–=’INTERCEPT’, and the uncorrected sums of squares and cross prod-
ucts from the variable=variablenamesin observations with–TYPE–=’SSCP’ and

–NAME–=’variablenames’.

When the input data set is TYPE=LINEAR, TYPE=QUAD, or TYPE=MIXED,
PROC DISCRIM reads the prior probabilities for each class from the observations
with variable–TYPE–=’PRIOR’.

When the input data set is TYPE=LINEAR, PROC DISCRIM reads the coef-
ficients of the linear discriminant functions from the observations with variable

–TYPE–=’LINEAR’ (see page 1173).

When the input data set is TYPE=QUAD, PROC DISCRIM reads the coeffi-
cients of the quadratic discriminant functions from the observations with variable

–TYPE–=’QUAD’ (see page 1173).

When the input data set is TYPE=MIXED, PROC DISCRIM reads the coeffi-
cients of the linear discriminant functions from the observations with variable

–TYPE–=’LINEAR’. If there are no observations with–TYPE–=’LINEAR’,
PROC DISCRIM then reads the coefficients of the quadratic discriminant functions
from the observations with variable–TYPE–=’QUAD’ (see page 1173).

TESTDATA= Data Set

The TESTDATA= data set is an ordinary SAS data set with observations that are to
be classified. The quantitative variable names in this data set must match those in
the DATA= data set. The TESTCLASS statement can be used to specify the variable
containing group membership information of the TESTDATA= data set observations.
When the TESTCLASS statement is missing and the TESTDATA= data set contains
the variable given in the CLASS statement, this variable is used as the TESTCLASS
variable. The TESTCLASS variable should have the same type (character or nu-
meric) and length as the variable given in the CLASS statement. PROC DISCRIM
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considers an observation misclassified when the value of the TESTCLASS variable
does not match the group into which the TESTDATA= observation is classified.

Output Data Sets

When an output data set includes variables containing the posterior probabilities
of group membership (OUT=, OUTCROSS=, or TESTOUT= data sets) or group-
specific density estimates (OUTD= or TESTOUTD= data sets), the names of these
variables are constructed from the formatted values of the class levels converted to
valid SAS variable names.

OUT= Data Set

The OUT= data set contains all the variables in the DATA= data set, plus new vari-
ables containing the posterior probabilities and the resubstitution classification re-
sults. The names of the new variables containing the posterior probabilities are con-
structed from the formatted values of the class levels converted to SAS names. A
new variable,–INTO– , with the same attributes as the CLASS variable, specifies
the class to which each observation is assigned. If an observation is classified into
group OTHER, the variable–INTO– has a missing value. When you specify the
CANONICAL option, the data set also contains new variables with canonical vari-
able scores. The NCAN= option determines the number of canonical variables. The
names of the canonical variables are constructed as described in the CANPREFIX=
option. The canonical variables have means equal to zero and pooled within-class
variances equal to one.

An OUT= data set cannot be created if the DATA= data set is not an ordinary SAS
data set.

OUTD= Data Set

The OUTD= data set contains all the variables in the DATA= data set, plus new vari-
ables containing the group-specific density estimates. The names of the new variables
containing the density estimates are constructed from the formatted values of the class
levels.

An OUTD= data set cannot be created if the DATA= data set is not an ordinary SAS
data set.

OUTCROSS= Data Set

The OUTCROSS= data set contains all the variables in the DATA= data set, plus new
variables containing the posterior probabilities and the classification results of cross
validation. The names of the new variables containing the posterior probabilities are
constructed from the formatted values of the class levels. A new variable,–INTO– ,
with the same attributes as the CLASS variable, specifies the class to which each
observation is assigned. When an observation is classified into group OTHER, the
variable–INTO– has a missing value. When you specify the CANONICAL option,
the data set also contains new variables with canonical variable scores. The NCAN=
option determines the number of new variables. The names of the new variables are
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constructed as described in the CANPREFIX= option. The new variables have mean
zero and pooled within-class variance equal to one.

An OUTCROSS= data set cannot be created if the DATA= data set is not an ordinary
SAS data set.

TESTOUT= Data Set

The TESTOUT= data set contains all the variables in the TESTDATA= data set, plus
new variables containing the posterior probabilities and the classification results. The
names of the new variables containing the posterior probabilities are formed from
the formatted values of the class levels. A new variable,–INTO– , with the same at-
tributes as the CLASS variable, gives the class to which each observation is assigned.
If an observation is classified into group OTHER, the variable–INTO– has a miss-
ing value. When you specify the CANONICAL option, the data set also contains new
variables with canonical variable scores. The NCAN= option determines the number
of new variables. The names of the new variables are formed as described in the
CANPREFIX= option.

TESTOUTD= Data Set

The TESTOUTD= data set contains all the variables in the TESTDATA= data set,
plus new variables containing the group-specific density estimates. The names of the
new variables containing the density estimates are formed from the formatted values
of the class levels.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set produced by the
CORR procedure. The data set contains various statistics such as means, standard
deviations, and correlations. For an example of an OUTSTAT= data set, seeExample
25.3on page 1222. When you specify the CANONICAL option, canonical correla-
tions, canonical structures, canonical coefficients, and means of canonical variables
for each class are included in the data set.

If you specify METHOD=NORMAL, the output data set also includes coefficients
of the discriminant functions, and the data set is TYPE=LINEAR (POOL=YES),
TYPE=QUAD (POOL=NO), or TYPE=MIXED (POOL=TEST). If you specify
METHOD=NPAR, this output data set is TYPE=CORR.

The OUTSTAT= data set contains the following variables:

• the BY variables, if any

• the CLASS variable

• –TYPE– , a character variable of length 8 that identifies the type of statistic

• –NAME– , a character variable of length 32 that identifies the row of the ma-
trix, the name of the canonical variable, or the type of the discriminant function
coefficients

• the quantitative variables, that is, those in the VAR statement, or, if there is no
VAR statement, all numeric variables not listed in any other statement
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The observations, as identified by the variable–TYPE– , have the following

–TYPE– values:

–TYPE– Contents

N number of observations both for the total sample (CLASS variable
missing) and within each class (CLASS variable present)

SUMWGT sum of weights both for the total sample (CLASS variable miss-
ing) and within each class (CLASS variable present), if a WEIGHT
statement is specified

MEAN means both for the total sample (CLASS variable missing) and
within each class (CLASS variable present)

PRIOR prior probability for each class

STDMEAN total-standardized class means

PSTDMEAN pooled within-class standardized class means

STD standard deviations both for the total sample (CLASS variable
missing) and within each class (CLASS variable present)

PSTD pooled within-class standard deviations

BSTD between-class standard deviations

RSQUARED univariateR2s

LNDETERM the natural log of the determinant or the natural log of the quasi-
determinant of the within-class covariance matrix either pooled
(CLASS variable missing) or not pooled (CLASS variable present)

The following kinds of observations are identified by the combination of the variables

–TYPE– and –NAME– . When the–TYPE– variable has one of the following
values, the–NAME– variable identifies the row of the matrix.

–TYPE– Contents

CSSCP corrected SSCP matrix both for the total sample (CLASS variable
missing) and within each class (CLASS variable present)

PSSCP pooled within-class corrected SSCP matrix

BSSCP between-class SSCP matrix

COV covariance matrix both for the total sample (CLASS variable miss-
ing) and within each class (CLASS variable present)

PCOV pooled within-class covariance matrix

BCOV between-class covariance matrix

CORR correlation matrix both for the total sample (CLASS variable miss-
ing) and within each class (CLASS variable present)

PCORR pooled within-class correlation matrix

BCORR between-class correlation matrix
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When you request canonical discriminant analysis, the–TYPE– variable can have
one of the following values. The–NAME– variable identifies a canonical vari-
able.

–TYPE– Contents

CANCORR canonical correlations

STRUCTUR canonical structure

BSTRUCT between canonical structure

PSTRUCT pooled within-class canonical structure

SCORE standardized canonical coefficients

RAWSCORE raw canonical coefficients

CANMEAN means of the canonical variables for each class

When you specify METHOD=NORMAL, the–TYPE– variable can have one of the
following values. The–NAME– variable identifies different types of coefficients in
the discriminant function.

–TYPE– Contents

LINEAR coefficients of the linear discriminant functions

QUAD coefficients of the quadratic discriminant functions

The values of the–NAME– variable are as follows:

–NAME– Contents

variable names quadratic coefficients of the quadratic discriminant functions (a
symmetric matrix for each class)

–LINEAR– linear coefficients of the discriminant functions

–CONST– constant coefficients of the discriminant functions

Computational Resources

In the following discussion, let

n = number of observations in the training data set

v = number of variables

c = number of class levels

k = number of canonical variables

l = length of the CLASS variable
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Memory Requirements

The amount of temporary storage required depends on the discriminant method used
and the options specified. The least amount of temporary storage in bytes needed to
process the data is approximately

c(32v + 3l + 128) + 8v2 + 104v + 4l

A parametric method (METHOD=NORMAL) requires an additional temporary
memory of12v2 + 100v bytes. When you specify the CROSSVALIDATE option,
this temporary storage must be increased by4v2 + 44v bytes. When a nonparametric
method (METHOD=NPAR) is used, an additional temporary storage of10v2 + 94v
bytes is needed if you specify METRIC=FULL to evaluate the distances.

With the MANOVA option, the temporary storage must be increased by8v2 + 96v
bytes. The CANONICAL option requires a temporary storage of2v2+94v+8k(v+c)
bytes. The POSTERR option requires a temporary storage of8c2 + 64c + 96 bytes.
Additional temporary storage is also required for classification summary and for each
output data set.

For example, in the following statements,

proc discrim manova;
class gp;
var x1 x2 x3;

run;

if the CLASS variablegp has a length of eight and the input data set contains two
class levels, the procedure requires a temporary storage of 1992 bytes. This includes
1104 bytes for data processing, 480 bytes for using a parametric method, and 408
bytes for specifying the MANOVA option.

Time Requirements

The following factors determine the time requirements of discriminant analysis.

• The time needed for reading the data and computing covariance matrices is
proportional tonv2. PROC DISCRIM must also look up each class level in the
list. This is faster if the data are sorted by the CLASS variable. The time for
looking up class levels is proportional to a value ranging fromn to n ln(c).

• The time for inverting a covariance matrix is proportional tov3.

• With a parametric method, the time required to classify each observation is pro-
portional tocv for a linear discriminant function and is proportional tocv2 for
a quadratic discriminant function. When you specify the CROSSVALIDATE
option, the discriminant function is updated for each observation in the classi-
fication. A substantial amount of time is required.

• With a nonparametric method, the data are stored in a tree structure (Friedman,
Bentley, and Finkel 1977). The time required to organize the observations into
the tree structure is proportional tonv ln(n). The time for performing each tree
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search is proportional toln(n). When you specify the normal KERNEL= op-
tion, all observations in the training sample contribute to the density estimation
and more computer time is needed.

• The time required for the canonical discriminant analysis is proportional tov3.

Each of the preceding factors has a different machine-dependent constant of propor-
tionality.

Displayed Output

The displayed output from PROC DISCRIM includes the following:

• Class Level Information, including the values of the classification variable,
Variable Name constructed from each class value, the Frequency and Weight
of each value, its Proportion in the total sample, and the Prior Probability for
each class level.

Optional output includes the following:

• Within-Class SSCP Matrices for each group

• Pooled Within-Class SSCP Matrix

• Between-Class SSCP Matrix

• Total-Sample SSCP Matrix

• Within-Class Covariance Matrices,St, for each group

• Pooled Within-Class Covariance Matrix,Sp

• Between-Class Covariance Matrix, equal to the between-class SSCP matrix
divided byn(c − 1)/c, wheren is the number of observations andc is the
number of classes

• Total-Sample Covariance Matrix

• Within-Class Correlation Coefficients andPr > |r| to test the hypothesis that
the within-class population correlation coefficients are zero

• Pooled Within-Class Correlation Coefficients andPr > |r| to test the hypoth-
esis that the partial population correlation coefficients are zero

• Between-Class Correlation Coefficients andPr > |r| to test the hypothesis that
the between-class population correlation coefficients are zero

• Total-Sample Correlation Coefficients andPr > |r| to test the hypothesis that
the total population correlation coefficients are zero

• Simple descriptive Statistics includingN (the number of observations), Sum,
Mean, Variance, and Standard Deviation both for the total sample and within
each class

• Total-Sample Standardized Class Means, obtained by subtracting the grand
mean from each class mean and dividing by the total sample standard devi-
ation
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• Pooled Within-Class Standardized Class Means, obtained by subtracting the
grand mean from each class mean and dividing by the pooled within-class stan-
dard deviation

• Pairwise Squared Distances Between Groups

• Univariate Test Statistics, including Total-Sample Standard Deviations, Pooled
Within-Class Standard Deviations, Between-Class Standard Deviations,R2,
R2/(1 − R2), F , andPr > F (univariateF values and probability levels for
one-way analyses of variance)

• Multivariate Statistics andF Approximations, including Wilks’ Lambda,
Pillai’s Trace, Hotelling-Lawley Trace, and Roy’s Greatest Root withF ap-
proximations, degrees of freedom (Num DF and Den DF), and probability val-
ues(Pr > F ). Each of these four multivariate statistics tests the hypothesis
that the class means are equal in the population. SeeChapter 2, “Introduction
to Regression Procedures,”for more information.

If you specify METHOD=NORMAL, the following three statistics are displayed:

• Covariance Matrix Information, including Covariance Matrix Rank and
Natural Log of Determinant of the Covariance Matrix for each group
(POOL=TEST, POOL=NO) and for the pooled within-group (POOL=TEST,
POOL=YES)

• Optionally, Test of Homogeneity of Within Covariance Matrices (the results
of a chi-square test of homogeneity of the within-group covariance matrices)
(Morrison 1976; Kendall, Stuart, and Ord 1983; Anderson 1984)

• Pairwise Generalized Squared Distances Between Groups

If the CANONICAL option is specified, the displayed output contains these statistics:

• Canonical Correlations

• Adjusted Canonical Correlations (Lawley 1959). These are asymptotically less
biased than the raw correlations and can be negative. The adjusted canonical
correlations may not be computable and are displayed as missing values if two
canonical correlations are nearly equal or if some are close to zero. A miss-
ing value is also displayed if an adjusted canonical correlation is larger than a
previous adjusted canonical correlation.

• Approximate Standard Error of the canonical correlations

• Squared Canonical Correlations

• Eigenvalues ofE−1H. Each eigenvalue is equal toρ2/(1 − ρ2), whereρ2 is
the corresponding squared canonical correlation and can be interpreted as the
ratio of between-class variation to within-class variation for the correspond-
ing canonical variable. The table includes Eigenvalues, Differences between
successive eigenvalues, the Proportion of the sum of the eigenvalues, and the
Cumulative proportion.
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• Likelihood Ratio for the hypothesis that the current canonical correlation and
all smaller ones are zero in the population. The likelihood ratio for all canonical
correlations equals Wilks’ lambda.

• ApproximateF statistic based on Rao’s approximation to the distribution of
the likelihood ratio (Rao 1973, p. 556; Kshirsagar 1972, p. 326)

• Num DF (numerator degrees of freedom), Den DF (denominator degrees of
freedom), andPr > F , the probability level associated with theF statistic

The following statistic concerns the classification criterion:

• the Linear Discriminant Function, but only if you specify
METHOD=NORMAL and the pooled covariance matrix is used to cal-
culate the (generalized) squared distances

When the input DATA= data set is an ordinary SAS data set, the displayed output
includes the following:

• Optionally, the Resubstitution Results including Obs, the observation number
(if an ID statement is included, the values of the ID variable are displayed
instead of the observation number), the actual group for the observation, the
group into which the developed criterion would classify it, and the Posterior
Probability of its Membership in each group

• Resubstitution Summary, a summary of the performance of the classification
criterion based on resubstitution classification results

• Error Count Estimate of the resubstitution classification results

• Optionally, Posterior Probability Error Rate Estimates of the resubstitution
classification results

If you specify the CROSSVALIDATE option, the displayed output contains these
statistics:

• Optionally, the Cross-validation Results including Obs, the observation number
(if an ID statement is included, the values of the ID variable are displayed
instead of the observation number), the actual group for the observation, the
group into which the developed criterion would classify it, and the Posterior
Probability of its Membership in each group

• Cross-validation Summary, a summary of the performance of the classification
criterion based on cross validation classification results

• Error Count Estimate of the cross validation classification results

• Optionally, Posterior Probability Error Rate Estimates of the cross validation
classification results

If you specify the TESTDATA= option, the displayed output contains these statistics:
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• Optionally, the Classification Results including Obs, the observation number
(if a TESTID statement is included, the values of the ID variable are displayed
instead of the observation number), the actual group for the observation (if
a TESTCLASS statement is included), the group into which the developed
criterion would classify it, and the Posterior Probability of its Membership in
each group

• Classification Summary, a summary of the performance of the classification
criterion

• Error Count Estimate of the test data classification results

• Optionally, Posterior Probability Error Rate Estimates of the test data classifi-
cation results

ODS Table Names

PROC DISCRIM assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 25.1. ODS Tables Produced by PROC DISCRIM

ODS Table Name Description PROC DISCRIM Option
ANOVA Univariate statistics ANOVA
AvePostCrossVal Average posterior probabilities,

cross validation
POSTERR & CROSSVALIDATE

AvePostResub Average posterior probabilities,
resubstitution

POSTERR

AvePostTestClass Average posterior probabilities,
test classification

POSTERR & TEST=

AveRSquare Average R-Square ANOVA
BCorr Between-class correlations BCORR
BCov Between-class covariances BCOV
BSSCP Between-class SSCP matrix BSSCP
BStruc Between canonical structure CANONICAL
CanCorr Canonical correlations CANONICAL
CanonicalMeans Class means on canonical

variables
CANONICAL

ChiSq Chi-square information POOL=TEST
ClassifiedCrossVal Number of observations and per-

cent classified, cross validation
CROSSVALIDATE

ClassifiedResub Number of observations and per-
cent classified, resubstitution

default

ClassifiedTestClass Number of observations and per-
cent classified, test classification

TEST=

Counts Number of observations,
variables, classes, df

default

CovDF DF for covariance matrices, not
displayed

any *COV option
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Table 25.1. (continued)

ODS Table Name Description PROC DISCRIM Option
Dist Squared distances MAHALANOBIS
DistFValues F values based on squared

distances
MAHALANOBIS

DistGeneralized Generalized squared distances default
DistProb Probabilities forF values from

squared distances
MAHALANOBIS

ErrorCrossVal Error count estimates,
cross validation

CROSSVALIDATE

ErrorResub Error count estimates,
resubstitution

default

ErrorTestClass Error count estimates,
test classification

TEST=

Levels Class level information default
LinearDiscFunc Linear discriminant function POOL=YES
LogDet Log determinant of the

covariance matrix
default

MultStat MANOVA MANOVA
PCoef Pooled standard canonical

coefficients
CANONICAL

PCorr Pooled within-class correlations PCORR
PCov Pooled within-class covariances PCOV
PSSCP Pooled within-class SSCP matrix PSSCP
PStdMeans Pooled standardized class means STDMEAN
PStruc Pooled within canonical

structure
CANONICAL

PostCrossVal Posterior probabilities,
cross validation

CROSSLIST or CROSSLISTERR

PostErrCrossVal Posterior error estimates,
cross validation

POSTERR & CROSSVALIDATE

PostErrResub Posterior error estimates,
resubstitution

POSTERR

PostErrTestClass Posterior error estimates,
test classification

POSTERR & TEST=

PostResub Posterior probabilities,
resubstitution

LIST or LISTERR

PostTestClass Posterior probabilities,
test classification

TESTLIST or TESTLISTERR

RCoef Raw canonical coefficients CANONICAL
SimpleStatistics Simple statistics SIMPLE
TCoef Total-sample standard canonical

coefficients
CANONICAL

TCorr Total-sample correlations TCORR
TCov Total-sample covariances TCOV
TSSCP Total-sample SSCP matrix TSSCP
TStdMeans Total standardized class means STDMEAN
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Table 25.1. (continued)

ODS Table Name Description PROC DISCRIM Option
TStruc Total canonical structure CANONICAL
WCorr Within-class correlations WCORR
WCov Within-class covariances WCOV
WSSCP Within-class SSCP matrices WSSCP

Examples

The iris data published by Fisher (1936) are widely used for examples in discriminant
analysis and cluster analysis. The sepal length, sepal width, petal length, and petal
width are measured in millimeters on fifty iris specimens from each of three species,
Iris setosa, I. versicolor, and I. virginica. The iris data are used inExample 25.1
throughExample 25.3.

Example 25.4andExample 25.5use remote-sensing data on crops. In this data set,
the observations are grouped into five crops: clover, corn, cotton, soybeans, and sugar
beets. Four measures called X1 through X4 make up the descriptive variables.

Example 25.1. Univariate Density Estimates and Posterior
Probabilities

In this example, several discriminant analyses are run with a single quantitative vari-
able, petal width, so that density estimates and posterior probabilities can be plotted
easily. The example producesOutput 25.1.1throughOutput 25.1.5. The GCHART
procedure is used to display the sample distribution of petal width in the three species.
Note the overlap between speciesI. versicolor and I. virginica that the bar chart
shows. These statements produceOutput 25.1.1:

proc format;
value specname

1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

run;

data iris;
title ’Discriminant Analysis of Fisher (1936) Iris Data’;
input SepalLength SepalWidth PetalLength PetalWidth

Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’

SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

symbol = put(Species, specname10.);
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
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59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;

pattern1 c=red /*v=l1 */;
pattern2 c=yellow /*v=empty*/;
pattern3 c=blue /*v=r1 */;
axis1 label=(angle=90);
axis2 value=(height=.6);
legend1 frame label=none;

proc gchart data=iris;
vbar PetalWidth / subgroup=Species midpoints=0 to 25

raxis=axis1 maxis=axis2 legend=legend1 cframe=ligr;
run;
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Output 25.1.1. Sample Distribution of Petal Width in Three Species

In order to plot the density estimates and posterior probabilities, a data set called
plotdata is created containing equally spaced values from -5 to 30, covering the
range of petal width with a little to spare on each end. Theplotdata data set is used
with the TESTDATA= option in PROC DISCRIM.

data plotdata;
do PetalWidth=-5 to 30 by .5;

output;
end;

run;

The same plots are produced after each discriminant analysis, so a macro can be used
to reduce the amount of typing required. The macro PLOT uses two data sets. The
data setplotd, containing density estimates, is created by the TESTOUTD= option
in PROC DISCRIM. The data setplotp, containing posterior probabilities, is created
by the TESTOUT= option. For each data set, the macro PLOT removes uninteresting
values (near zero) and does an overlay plot showing all three species on a single plot.
The following statements create the macro PLOT

%macro plot;
data plotd;

set plotd;
if setosa<.002 then setosa=.;
if versicolor<.002 then versicolor=.;
if virginica <.002 then virginica=.;
label PetalWidth=’Petal Width in mm.’;
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run;

symbol1 i=join v=none c=red l=1 /*l=21*/;
symbol2 i=join v=none c=yellow l=1 /*l= 1*/;
symbol3 i=join v=none c=blue l=1 /*l= 2*/;
legend1 label=none frame;
axis1 label=(angle=90 ’Density’) order=(0 to .6 by .1);

proc gplot data=plotd;
plot setosa*PetalWidth

versicolor*PetalWidth
virginica*PetalWidth
/ overlay vaxis=axis1 legend=legend1 frame

cframe=ligr;
title3 ’Plot of Estimated Densities’;

run;

data plotp;
set plotp;
if setosa<.01 then setosa=.;
if versicolor<.01 then versicolor=.;
if virginica<.01 then virginica=.;
label PetalWidth=’Petal Width in mm.’;

run;

axis1 label=(angle=90 ’Posterior Probability’)
order=(0 to 1 by .2);

proc gplot data=plotp;
plot setosa*PetalWidth

versicolor*PetalWidth
virginica*PetalWidth
/ overlay vaxis=axis1 legend=legend1 frame

cframe=ligr;
title3 ’Plot of Posterior Probabilities’;

run;
%mend;

The first analysis uses normal-theory methods (METHOD=NORMAL) assuming
equal variances (POOL=YES) in the three classes. The NOCLASSIFY option sup-
presses the resubstitution classification results of the input data set observations. The
CROSSLISTERR option lists the observations that are misclassified under cross val-
idation and displays cross validation error-rate estimates. The following statements
produceOutput 25.1.2:

proc discrim data=iris method=normal pool=yes
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var PetalWidth;
title2 ’Using Normal Density Estimates with Equal Variance’;

run;
%plot
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Output 25.1.2. Normal Density Estimates with Equal Variance
Discriminant Analysis of Fisher (1936) Iris Data

Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 1 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j (X)j (X) (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.9610 0.0390
9 Versicolor Virginica * 0.0000 0.0952 0.9048

57 Virginica Versicolor * 0.0000 0.9940 0.0060
78 Virginica Versicolor * 0.0000 0.8009 0.1991
91 Virginica Versicolor * 0.0000 0.9610 0.0390

148 Versicolor Virginica * 0.0000 0.3828 0.6172

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j (X)j (X) (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 4 46 50
0.00 8.00 92.00 100.00

Total 50 52 48 150
33.33 34.67 32.00 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 26 18 27 71
36.62 25.35 38.03 100.00

Priors 0.33333 0.33333 0.33333
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The next analysis uses normal-theory methods assuming unequal variances
(POOL=NO) in the three classes. The following statements produceOutput 25.1.3:

proc discrim data=iris method=normal pool=no
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var PetalWidth;
title2 ’Using Normal Density Estimates with Unequal Variance’;

run;
%plot

Output 25.1.3. Normal Density Estimates with Unequal Variance
Discriminant Analysis of Fisher (1936) Iris Data

Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 1 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j (X)j (X)j (X)j (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.8740 0.1260
9 Versicolor Virginica * 0.0000 0.0686 0.9314

42 Setosa Versicolor * 0.4923 0.5073 0.0004
57 Virginica Versicolor * 0.0000 0.9602 0.0398
78 Virginica Versicolor * 0.0000 0.6558 0.3442
91 Virginica Versicolor * 0.0000 0.8740 0.1260

148 Versicolor Virginica * 0.0000 0.2871 0.7129

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j (X)j (X)j (X)j (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 49 1 0 50
98.00 2.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 4 46 50
0.00 8.00 92.00 100.00

Total 49 53 48 150
32.67 35.33 32.00 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0200 0.0400 0.0800 0.0467
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j j j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 23 20 28 71
32.39 28.17 39.44 100.00

Priors 0.33333 0.33333 0.33333
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Two more analyses are run with nonparametric methods (METHOD=NPAR), specif-
ically kernel density estimates with normal kernels (KERNEL=NORMAL). The first
of these uses equal bandwidths (smoothing parameters) (POOL=YES) in each class.
The use of equal bandwidths does not constrain the density estimates to be of equal
variance. The value of the radius parameter that, assuming normality, minimizes an
approximate mean integrated square error is0.48 (see the“Nonparametric Methods”
section on page 1158). Choosingr = 0.4 gives a more detailed look at the irregular-
ities in the data. The following statements produceOutput 25.1.4:

proc discrim data=iris method=npar kernel=normal
r=.4 pool=yes

testdata=plotdata testout=plotp
testoutd=plotd

short noclassify crosslisterr;
class Species;
var PetalWidth;
title2 ’Using Kernel Density Estimates with Equal

Bandwidth’;
run;
%plot
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Output 25.1.4. Kernel Density Estimates with Equal Bandwidth
Discriminant Analysis of Fisher (1936) Iris Data

Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 1 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.8827 0.1173
9 Versicolor Virginica * 0.0000 0.0438 0.9562

57 Virginica Versicolor * 0.0000 0.9472 0.0528
78 Virginica Versicolor * 0.0000 0.8061 0.1939
91 Virginica Versicolor * 0.0000 0.8827 0.1173

148 Versicolor Virginica * 0.0000 0.2586 0.7414

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 4 46 50
0.00 8.00 92.00 100.00

Total 50 52 48 150
33.33 34.67 32.00 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 26 18 27 71
36.62 25.35 38.03 100.00

Priors 0.33333 0.33333 0.33333
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Another nonparametric analysis is run with unequal bandwidths (POOL=NO). These
statements produceOutput 25.1.5:

proc discrim data=iris method=npar kernel=normal
r=.4 pool=no

testdata=plotdata testout=plotp
testoutd=plotd

short noclassify crosslisterr;
class Species;
var PetalWidth;
title2 ’Using Kernel Density Estimates with Unequal

Bandwidth’;
run;
%plot
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Output 25.1.5. Kernel Density Estimates with Unequal Bandwidth
Discriminant Analysis of Fisher (1936) Iris Data

Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 1 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

j

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.8805 0.1195
9 Versicolor Virginica * 0.0000 0.0466 0.9534

57 Virginica Versicolor * 0.0000 0.9394 0.0606
78 Virginica Versicolor * 0.0000 0.7193 0.2807
91 Virginica Versicolor * 0.0000 0.8805 0.1195

148 Versicolor Virginica * 0.0000 0.2275 0.7725

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

j

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 4 46 50
0.00 8.00 92.00 100.00

Total 50 52 48 150
33.33 34.67 32.00 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

j

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 25 18 28 71
35.21 25.35 39.44 100.00

Priors 0.33333 0.33333 0.33333
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Example 25.2. Bivariate Density Estimates and Posterior
Probabilities

In this example, four more discriminant analyses of iris data are run with two quan-
titative variables: petal width and petal length. The example producesOutput 25.2.1
through Output 25.2.5. A scatter plot shows the joint sample distribution. See
Appendix B, “Using the %PLOTIT Macro,”for more information on the %PLOTIT
macro.

%plotit(data=iris, plotvars=PetalWidth PetalLength,
labelvar=_blank_, symvar=symbol, typevar=symbol,
symsize=0.35, symlen=4, exttypes=symbol, ls=100);

Output 25.2.1. Joint Sample Distribution of Petal Width and Petal Length in Three
Species

Another data set is created for plotting, containing a grid of points suitable for contour
plots. The large number of points in the grid makes the following analyses very time-
consuming. If you attempt to duplicate these examples, begin with a small number
of points in the grid.

data plotdata;
do PetalLength=-2 to 72 by 0.25;

h + 1; * Number of horizontal cells;
do PetalWidth=-5 to 32 by 0.25;

n + 1; * Total number of cells;
output;

end;
end;
* Make variables to contain H and V grid sizes;
call symput(’hnobs’, compress(put(h , best12.)));
call symput(’vnobs’, compress(put(n / h, best12.)));
drop n h;

run;
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A macro CONTOUR is defined to make contour plots of density estimates and pos-
terior probabilities. Classification results are also plotted on the same grid.

%macro contour;
data contour(keep=PetalWidth PetalLength symbol density);

set plotd(in=d) iris;
if d then density = max(setosa,versicolor,virginica);

run;

title3 ’Plot of Estimated Densities’;
%plotit(data=contour, plotvars=PetalWidth PetalLength,

labelvar=_blank_, symvar=symbol, typevar=symbol,
symlen=4, exttypes=symbol contour, ls=100,
paint=density white black, rgbtypes=contour,
hnobs=&hnobs, vnobs=&vnobs, excolors=white,
rgbround=-16 1 1 1, extend=close, options=noclip,
types =Setosa Versicolor Virginica ’’,
symtype=symbol symbol symbol contour,
symsize=0.6 0.6 0.6 1,
symfont=swiss swiss swiss solid)

data posterior(keep=PetalWidth PetalLength symbol
prob _into_);

set plotp(in=d) iris;
if d then prob = max(setosa,versicolor,virginica);

run;

title3 ’Plot of Posterior Probabilities ’
’(Black to White is Low to High Probability)’;

%plotit(data=posterior, plotvars=PetalWidth PetalLength,
labelvar=_blank_, symvar=symbol, typevar=symbol,
symlen=4, exttypes=symbol contour, ls=100,
paint=prob black white 0.3 0.999, rgbtypes=contour,
hnobs=&hnobs, vnobs=&vnobs, excolors=white,
rgbround=-16 1 1 1, extend=close, options=noclip,
types =Setosa Versicolor Virginica ’’,
symtype=symbol symbol symbol contour,
symsize=0.6 0.6 0.6 1,
symfont=swiss swiss swiss solid)

title3 ’Plot of Classification Results’;
%plotit(data=posterior, plotvars=PetalWidth PetalLength,

labelvar=_blank_, symvar=symbol, typevar=symbol,
symlen=4, exttypes=symbol contour, ls=100,
paint=_into_ CXCCCCCC CXDDDDDD white,

rgbtypes=contour, hnobs=&hnobs, vnobs=&vnobs,
excolors=white,

extend=close, options=noclip,
types =Setosa Versicolor Virginica ’’,
symtype=symbol symbol symbol contour,
symsize=0.6 0.6 0.6 1,
symfont=swiss swiss swiss solid)

%mend;
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A normal-theory analysis (METHOD=NORMAL) assuming equal covariance ma-
trices (POOL=YES) illustrates the linearity of the classification boundaries. These
statements produceOutput 25.2.2:

proc discrim data=iris method=normal pool=yes
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var Petal:;
title2 ’Using Normal Density Estimates with Equal

Variance’;
run;
%contour

Output 25.2.2. Normal Density Estimates with Equal Variance
Discriminant Analysis of Fisher (1936) Iris Data

Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 2 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j (X)j (X) (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.8453 0.1547
9 Versicolor Virginica * 0.0000 0.2130 0.7870

25 Virginica Versicolor * 0.0000 0.8322 0.1678
57 Virginica Versicolor * 0.0000 0.8057 0.1943
91 Virginica Versicolor * 0.0000 0.8903 0.1097

148 Versicolor Virginica * 0.0000 0.3118 0.6882

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j (X)j (X) (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 4 46 50
0.00 8.00 92.00 100.00

Total 50 52 48 150
33.33 34.67 32.00 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 14507 16888 12858 44253
32.78 38.16 29.06 100.00

Priors 0.33333 0.33333 0.33333
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A normal-theory analysis assuming unequal covariance matrices (POOL=NO) illus-
trates quadratic classification boundaries. These statements produceOutput 25.2.3:

proc discrim data=iris method=normal pool=no
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var Petal:;
title2 ’Using Normal Density Estimates with Unequal

Variance’;
run;
%contour

Output 25.2.3. Normal Density Estimates with Unequal Variance
Discriminant Analysis of Fisher (1936) Iris Data

Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 2 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333



1208 � Chapter 25. The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j (X)j (X)j (X)j (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.7288 0.2712
9 Versicolor Virginica * 0.0000 0.0903 0.9097

25 Virginica Versicolor * 0.0000 0.5196 0.4804
91 Virginica Versicolor * 0.0000 0.8335 0.1665

148 Versicolor Virginica * 0.0000 0.4675 0.5325

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j (X)j (X)j (X)j (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 3 47 50
0.00 6.00 94.00 100.00

Total 50 51 49 150
33.33 34.00 32.67 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0600 0.0333
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j j j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 5461 5354 33438 44253
12.34 12.10 75.56 100.00

Priors 0.33333 0.33333 0.33333



Examples � 1211



1212 � Chapter 25. The DISCRIM Procedure

A nonparametric analysis (METHOD=NPAR) follows, using normal kernels
(KERNEL=NORMAL) and equal bandwidths (POOL=YES) in each class. The
value of the radius parameterr that, assuming normality, minimizes an approximate
mean integrated square error is0.50 (see the“Nonparametric Methods”section on
page 1158). These statements produceOutput 25.2.4:

proc discrim data=iris method=npar kernel=normal
r=.5 pool=yes

testdata=plotdata testout=plotp
testoutd=plotd

short noclassify crosslisterr;
class Species;
var Petal:;
title2 ’Using Kernel Density Estimates with Equal

Bandwidth’;
run;
%contour

Output 25.2.4. Kernel Density Estimates with Equal Bandwidth
Discriminant Analysis of Fisher (1936) Iris Data

Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 2 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.7474 0.2526
9 Versicolor Virginica * 0.0000 0.0800 0.9200

25 Virginica Versicolor * 0.0000 0.5863 0.4137
91 Virginica Versicolor * 0.0000 0.8358 0.1642

148 Versicolor Virginica * 0.0000 0.4123 0.5877

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 3 47 50
0.00 6.00 94.00 100.00

Total 50 51 49 150
33.33 34.00 32.67 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0600 0.0333
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 12631 9941 21681 44253
28.54 22.46 48.99 100.00

Priors 0.33333 0.33333 0.33333
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Another nonparametric analysis is run with unequal bandwidths (POOL=NO). These
statements produceOutput 25.2.5:

proc discrim data=iris method=npar kernel=normal
r=.5 pool=no

testdata=plotdata testout=plotp
testoutd=plotd

short noclassify crosslisterr;
class Species;
var Petal:;
title2 ’Using Kernel Density Estimates with Unequal

Bandwidth’;
run;
%contour

Output 25.2.5. Kernel Density Estimates with Unequal Bandwidth
Discriminant Analysis of Fisher (1936) Iris Data

Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 2 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

j

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.7826 0.2174
9 Versicolor Virginica * 0.0000 0.0506 0.9494

91 Virginica Versicolor * 0.0000 0.8802 0.1198
148 Versicolor Virginica * 0.0000 0.3726 0.6274

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

j

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 2 48 50
0.00 4.00 96.00 100.00

Total 50 50 50 150
33.33 33.33 33.33 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0400 0.0267
Priors 0.3333 0.3333 0.3333
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Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Squared Distance Function

2 -1
D (X,Y) = (X-Y)’ COV (X-Y)

j

Posterior Probability of Membership in Each Species

-1 2 2
F(X|j) = n SUM exp( -.5 D (X,Y ) / R )

j i ji

Pr(j|X) = PRIOR F(X|j) / SUM PRIOR F(X|k)
j k k

Number of Observations and Percent Classified into Species

Setosa Versicolor Virginica Total

Total 5447 5984 32822 44253
12.31 13.52 74.17 100.00

Priors 0.33333 0.33333 0.33333
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Example 25.3. Normal-Theory Discriminant Analysis of Iris
Data

In this example, PROC DISCRIM uses normal-theory methods to classify the iris data
used inExample 25.1. The POOL=TEST option tests the homogeneity of the within-
group covariance matrices (Output 25.3.3). Since the resulting test statistic is signif-
icant at the 0.10 level, the within-group covariance matrices are used to derive the
quadratic discriminant criterion. The WCOV and PCOV options display the within-
group covariance matrices and the pooled covariance matrix (Output 25.3.2). The
DISTANCE option displays squared distances between classes (Output 25.3.4). The
ANOVA and MANOVA options test the hypothesis that the class means are equal,
using univariate statistics and multivariate statistics; all statistics are significant at the
0.0001 level (Output 25.3.5). The LISTERR option lists the misclassified observa-
tions under resubstitution (Output 25.3.6). The CROSSLISTERR option lists the ob-
servations that are misclassified under cross validation and displays cross validation
error-rate estimates (Output 25.3.7). The resubstitution error count estimate, 0.02,
is not larger than the cross validation error count estimate, 0.0267, as would be ex-
pected because the resubstitution estimate is optimistically biased. The OUTSTAT=
option generates a TYPE=MIXED (because POOL=TEST) output data set contain-
ing various statistics such as means, covariances, and coefficients of the discriminant
function (Output 25.3.8).

The following statements produceOutput 25.3.1throughOutput 25.3.8:

proc discrim data=iris outstat=irisstat
wcov pcov method=normal pool=test
distance anova manova listerr crosslisterr;

class Species;
var SepalLength SepalWidth PetalLength PetalWidth;
title2 ’Using Quadratic Discriminant Function’;

run;

proc print data=irisstat;
title2 ’Output Discriminant Statistics’;

run;

Output 25.3.1. Quadratic Discriminant Analysis of Iris Data
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure

Observations 150 DF Total 149
Variables 4 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable Prior
Species Name Frequency Weight Proportion Probability

Setosa Setosa 50 50.0000 0.333333 0.333333
Versicolor Versicolor 50 50.0000 0.333333 0.333333
Virginica Virginica 50 50.0000 0.333333 0.333333
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Output 25.3.2. Covariance Matrices
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure
Within-Class Covariance Matrices

Species = Setosa, DF = 49

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length in mm. 12.42489796 9.92163265 1.63551020 1.03306122
SepalWidth Sepal Width in mm. 9.92163265 14.36897959 1.16979592 0.92979592
PetalLength Petal Length in mm. 1.63551020 1.16979592 3.01591837 0.60693878
PetalWidth Petal Width in mm. 1.03306122 0.92979592 0.60693878 1.11061224

-----------------------------------------------------------------------------------------------

Species = Versicolor, DF = 49

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length in mm. 26.64326531 8.51836735 18.28979592 5.57795918
SepalWidth Sepal Width in mm. 8.51836735 9.84693878 8.26530612 4.12040816
PetalLength Petal Length in mm. 18.28979592 8.26530612 22.08163265 7.31020408
PetalWidth Petal Width in mm. 5.57795918 4.12040816 7.31020408 3.91061224

-----------------------------------------------------------------------------------------------

Species = Virginica, DF = 49

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length in mm. 40.43428571 9.37632653 30.32897959 4.90938776
SepalWidth Sepal Width in mm. 9.37632653 10.40040816 7.13795918 4.76285714
PetalLength Petal Length in mm. 30.32897959 7.13795918 30.45877551 4.88244898
PetalWidth Petal Width in mm. 4.90938776 4.76285714 4.88244898 7.54326531

-----------------------------------------------------------------------------------------------

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Pooled Within-Class Covariance Matrix, DF = 147

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length in mm. 26.50081633 9.27210884 16.75142857 3.84013605
SepalWidth Sepal Width in mm. 9.27210884 11.53877551 5.52435374 3.27102041
PetalLength Petal Length in mm. 16.75142857 5.52435374 18.51877551 4.26653061
PetalWidth Petal Width in mm. 3.84013605 3.27102041 4.26653061 4.18816327

Within Covariance Matrix Information

Natural Log of the
Covariance Determinant of the

Species Matrix Rank Covariance Matrix

Setosa 4 5.35332
Versicolor 4 7.54636
Virginica 4 9.49362
Pooled 4 8.46214
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Output 25.3.3. Homogeneity Test
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Notation: K = Number of Groups

P = Number of Variables

N = Total Number of Observations - Number of Groups

N(i) = Number of Observations in the i’th Group - 1

__ N(i)/2
|| |Within SS Matrix(i)|

V = -----------------------------------
N/2

|Pooled SS Matrix|

_ _ 2
| 1 1 | 2P + 3P - 1

RHO = 1.0 - | SUM ----- - --- | -------------
|_ N(i) N _| 6(P+1)(K-1)

DF = .5(K-1)P(P+1)
_ _

| PN/2 |
| N V |

Under the null hypothesis: -2 RHO ln | ------------------ |
| __ PN(i)/2 |
|_ || N(i) _|

is distributed approximately as Chi-Square(DF).

Chi-Square DF Pr > ChiSq

140.943050 20 <.0001

Since the Chi-Square value is significant at the 0.1 level, the within
covariance matrices will be used in the discriminant function.
Reference: Morrison, D.F. (1976) Multivariate Statistical Methods
p252.
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Output 25.3.4. Squared Distances
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure

Pairwise Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X )

i j j i j

Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 0 103.19382 168.76759
Versicolor 323.06203 0 13.83875
Virginica 706.08494 17.86670 0

Pairwise Generalized Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X ) + ln |COV |

i j j i j j

Generalized Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 5.35332 110.74017 178.26121
Versicolor 328.41535 7.54636 23.33238
Virginica 711.43826 25.41306 9.49362
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Output 25.3.5. Tests of Equal Class Means
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure

Univariate Test Statistics

F Statistics, Num DF=2, Den DF=147

Total Pooled Between
Standard Standard Standard R-Square

Variable Label Deviation Deviation Deviation R-Square / (1-RSq) F Value Pr > F

SepalLength Sepal Length in mm. 8.2807 5.1479 7.9506 0.6187 1.6226 119.26 <.0001
SepalWidth Sepal Width in mm. 4.3587 3.3969 3.3682 0.4008 0.6688 49.16 <.0001
PetalLength Petal Length in mm. 17.6530 4.3033 20.9070 0.9414 16.0566 1180.16 <.0001
PetalWidth Petal Width in mm. 7.6224 2.0465 8.9673 0.9289 13.0613 960.01 <.0001

Average R-Square

Unweighted 0.7224358
Weighted by Variance 0.8689444

Multivariate Statistics and F Approximations

S=2 M=0.5 N=71

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.02343863 199.15 8 288 <.0001
Pillai’s Trace 1.19189883 53.47 8 290 <.0001
Hotelling-Lawley Trace 32.47732024 582.20 8 203.4 <.0001
Roy’s Greatest Root 32.19192920 1166.96 4 145 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Output 25.3.6. Misclassified Observations: Resubstitution
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Resubstitution Results using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j j j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.6050 0.3950
9 Versicolor Virginica * 0.0000 0.3359 0.6641

12 Versicolor Virginica * 0.0000 0.1543 0.8457

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Resubstitution Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j j j j j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 1 49 50
0.00 2.00 98.00 100.00

Total 50 49 51 150
33.33 32.67 34.00 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0200 0.0200
Priors 0.3333 0.3333 0.3333
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Output 25.3.7. Misclassified Observations: Cross validation
Discriminant Analysis of Fisher (1936) Iris Data

Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.IRIS

Cross-validation Results using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j (X)j (X)j (X)j (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Species

From Classified
Obs Species into Species Setosa Versicolor Virginica

5 Virginica Versicolor * 0.0000 0.6632 0.3368
8 Versicolor Virginica * 0.0000 0.3134 0.6866
9 Versicolor Virginica * 0.0000 0.1616 0.8384

12 Versicolor Virginica * 0.0000 0.0713 0.9287

* Misclassified observation
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Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV |

j (X)j (X)j (X)j (X)j

Posterior Probability of Membership in Each Species

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 47 3 50
0.00 94.00 6.00 100.00

Virginica 0 1 49 50
0.00 2.00 98.00 100.00

Total 50 48 52 150
33.33 32.00 34.67 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0600 0.0200 0.0267
Priors 0.3333 0.3333 0.3333
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Output 25.3.8. Output Statistics from Iris Data
Discriminant Analysis of Fisher (1936) Iris Data

Output Discriminant Statistics

Sepal Sepal Petal Petal
Obs Species _TYPE_ _NAME_ Length Width Length Width

1 . N 150.00 150.00 150.00 150.00
2 Setosa N 50.00 50.00 50.00 50.00
3 Versicolor N 50.00 50.00 50.00 50.00
4 Virginica N 50.00 50.00 50.00 50.00
5 . MEAN 58.43 30.57 37.58 11.99
6 Setosa MEAN 50.06 34.28 14.62 2.46
7 Versicolor MEAN 59.36 27.70 42.60 13.26
8 Virginica MEAN 65.88 29.74 55.52 20.26
9 Setosa PRIOR 0.33 0.33 0.33 0.33

10 Versicolor PRIOR 0.33 0.33 0.33 0.33
11 Virginica PRIOR 0.33 0.33 0.33 0.33
12 Setosa CSSCP SepalLength 608.82 486.16 80.14 50.62
13 Setosa CSSCP SepalWidth 486.16 704.08 57.32 45.56
14 Setosa CSSCP PetalLength 80.14 57.32 147.78 29.74
15 Setosa CSSCP PetalWidth 50.62 45.56 29.74 54.42
16 Versicolor CSSCP SepalLength 1305.52 417.40 896.20 273.32
17 Versicolor CSSCP SepalWidth 417.40 482.50 405.00 201.90
18 Versicolor CSSCP PetalLength 896.20 405.00 1082.00 358.20
19 Versicolor CSSCP PetalWidth 273.32 201.90 358.20 191.62
20 Virginica CSSCP SepalLength 1981.28 459.44 1486.12 240.56
21 Virginica CSSCP SepalWidth 459.44 509.62 349.76 233.38
22 Virginica CSSCP PetalLength 1486.12 349.76 1492.48 239.24
23 Virginica CSSCP PetalWidth 240.56 233.38 239.24 369.62
24 . PSSCP SepalLength 3895.62 1363.00 2462.46 564.50
25 . PSSCP SepalWidth 1363.00 1696.20 812.08 480.84
26 . PSSCP PetalLength 2462.46 812.08 2722.26 627.18
27 . PSSCP PetalWidth 564.50 480.84 627.18 615.66
28 . BSSCP SepalLength 6321.21 -1995.27 16524.84 7127.93
29 . BSSCP SepalWidth -1995.27 1134.49 -5723.96 -2293.27
30 . BSSCP PetalLength 16524.84 -5723.96 43710.28 18677.40
31 . BSSCP PetalWidth 7127.93 -2293.27 18677.40 8041.33
32 . CSSCP SepalLength 10216.83 -632.27 18987.30 7692.43
33 . CSSCP SepalWidth -632.27 2830.69 -4911.88 -1812.43
34 . CSSCP PetalLength 18987.30 -4911.88 46432.54 19304.58
35 . CSSCP PetalWidth 7692.43 -1812.43 19304.58 8656.99
36 . RSQUARED 0.62 0.40 0.94 0.93
37 Setosa COV SepalLength 12.42 9.92 1.64 1.03
38 Setosa COV SepalWidth 9.92 14.37 1.17 0.93
39 Setosa COV PetalLength 1.64 1.17 3.02 0.61
40 Setosa COV PetalWidth 1.03 0.93 0.61 1.11
41 Versicolor COV SepalLength 26.64 8.52 18.29 5.58
42 Versicolor COV SepalWidth 8.52 9.85 8.27 4.12
43 Versicolor COV PetalLength 18.29 8.27 22.08 7.31
44 Versicolor COV PetalWidth 5.58 4.12 7.31 3.91
45 Virginica COV SepalLength 40.43 9.38 30.33 4.91
46 Virginica COV SepalWidth 9.38 10.40 7.14 4.76
47 Virginica COV PetalLength 30.33 7.14 30.46 4.88
48 Virginica COV PetalWidth 4.91 4.76 4.88 7.54
49 . PCOV SepalLength 26.50 9.27 16.75 3.84
50 . PCOV SepalWidth 9.27 11.54 5.52 3.27
51 . PCOV PetalLength 16.75 5.52 18.52 4.27
52 . PCOV PetalWidth 3.84 3.27 4.27 4.19
53 . BCOV SepalLength 63.21 -19.95 165.25 71.28
54 . BCOV SepalWidth -19.95 11.34 -57.24 -22.93
55 . BCOV PetalLength 165.25 -57.24 437.10 186.77
56 . BCOV PetalWidth 71.28 -22.93 186.77 80.41
57 . COV SepalLength 68.57 -4.24 127.43 51.63
58 . COV SepalWidth -4.24 19.00 -32.97 -12.16
59 . COV PetalLength 127.43 -32.97 311.63 129.56
60 . COV PetalWidth 51.63 -12.16 129.56 58.10
61 Setosa STD 3.52 3.79 1.74 1.05
62 Versicolor STD 5.16 3.14 4.70 1.98
63 Virginica STD 6.36 3.22 5.52 2.75
64 . PSTD 5.15 3.40 4.30 2.05
65 . BSTD 7.95 3.37 20.91 8.97
66 . STD 8.28 4.36 17.65 7.62
67 Setosa CORR SepalLength 1.00 0.74 0.27 0.28
68 Setosa CORR SepalWidth 0.74 1.00 0.18 0.23
69 Setosa CORR PetalLength 0.27 0.18 1.00 0.33
70 Setosa CORR PetalWidth 0.28 0.23 0.33 1.00
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Discriminant Analysis of Fisher (1936) Iris Data
Output Discriminant Statistics

Sepal Sepal Petal Petal
Obs Species _TYPE_ _NAME_ Length Width Length Width

71 Versicolor CORR SepalLength 1.000 0.526 0.754 0.546
72 Versicolor CORR SepalWidth 0.526 1.000 0.561 0.664
73 Versicolor CORR PetalLength 0.754 0.561 1.000 0.787
74 Versicolor CORR PetalWidth 0.546 0.664 0.787 1.000
75 Virginica CORR SepalLength 1.000 0.457 0.864 0.281
76 Virginica CORR SepalWidth 0.457 1.000 0.401 0.538
77 Virginica CORR PetalLength 0.864 0.401 1.000 0.322
78 Virginica CORR PetalWidth 0.281 0.538 0.322 1.000
79 . PCORR SepalLength 1.000 0.530 0.756 0.365
80 . PCORR SepalWidth 0.530 1.000 0.378 0.471
81 . PCORR PetalLength 0.756 0.378 1.000 0.484
82 . PCORR PetalWidth 0.365 0.471 0.484 1.000
83 . BCORR SepalLength 1.000 -0.745 0.994 1.000
84 . BCORR SepalWidth -0.745 1.000 -0.813 -0.759
85 . BCORR PetalLength 0.994 -0.813 1.000 0.996
86 . BCORR PetalWidth 1.000 -0.759 0.996 1.000
87 . CORR SepalLength 1.000 -0.118 0.872 0.818
88 . CORR SepalWidth -0.118 1.000 -0.428 -0.366
89 . CORR PetalLength 0.872 -0.428 1.000 0.963
90 . CORR PetalWidth 0.818 -0.366 0.963 1.000
91 Setosa STDMEAN -1.011 0.850 -1.301 -1.251
92 Versicolor STDMEAN 0.112 -0.659 0.284 0.166
93 Virginica STDMEAN 0.899 -0.191 1.016 1.085
94 Setosa PSTDMEAN -1.627 1.091 -5.335 -4.658
95 Versicolor PSTDMEAN 0.180 -0.846 1.167 0.619
96 Virginica PSTDMEAN 1.447 -0.245 4.169 4.039
97 . LNDETERM 8.462 8.462 8.462 8.462
98 Setosa LNDETERM 5.353 5.353 5.353 5.353
99 Versicolor LNDETERM 7.546 7.546 7.546 7.546

100 Virginica LNDETERM 9.494 9.494 9.494 9.494
101 Setosa QUAD SepalLength -0.095 0.062 0.023 0.024
102 Setosa QUAD SepalWidth 0.062 -0.078 -0.006 0.011
103 Setosa QUAD PetalLength 0.023 -0.006 -0.194 0.090
104 Setosa QUAD PetalWidth 0.024 0.011 0.090 -0.530
105 Setosa QUAD _LINEAR_ 4.455 -0.762 3.356 -3.126
106 Setosa QUAD _CONST_ -121.826 -121.826 -121.826 -121.826
107 Versicolor QUAD SepalLength -0.048 0.018 0.043 -0.032
108 Versicolor QUAD SepalWidth 0.018 -0.099 -0.011 0.097
109 Versicolor QUAD PetalLength 0.043 -0.011 -0.099 0.135
110 Versicolor QUAD PetalWidth -0.032 0.097 0.135 -0.436
111 Versicolor QUAD _LINEAR_ 1.801 1.596 0.327 -1.471
112 Versicolor QUAD _CONST_ -76.549 -76.549 -76.549 -76.549
113 Virginica QUAD SepalLength -0.053 0.017 0.050 -0.009
114 Virginica QUAD SepalWidth 0.017 -0.079 -0.006 0.042
115 Virginica QUAD PetalLength 0.050 -0.006 -0.067 0.014
116 Virginica QUAD PetalWidth -0.009 0.042 0.014 -0.097
117 Virginica QUAD _LINEAR_ 0.737 1.325 0.623 0.966
118 Virginica QUAD _CONST_ -75.821 -75.821 -75.821 -75.821

Example 25.4. Linear Discriminant Analysis of Remote-
Sensing Data on Crops

In this example, the remote-sensing data described at the beginning of the section are
used. In the first PROC DISCRIM statement, the DISCRIM procedure uses normal-
theory methods (METHOD=NORMAL) assuming equal variances (POOL=YES) in
five crops. The PRIORS statement, PRIORS PROP, sets the prior probabilities pro-
portional to the sample sizes. The LIST option lists the resubstitution classification
results for each observation (Output 25.4.2). The CROSSVALIDATE option displays
cross validation error-rate estimates (Output 25.4.3). The OUTSTAT= option stores
the calibration information in a new data set to classify future observations. A sec-
ond PROC DISCRIM statement uses this calibration information to classify a test
data set. Note that the values of the identification variable,xvalues, are obtained by
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rereading thex1 throughx4 fields in the data lines as a single character variable. The
following statements produceOutput 25.4.1throughOutput 25.4.3.

data crops;
title ’Discriminant Analysis of Remote Sensing Data

on Five Crops’;
input Crop $ 4-13 x1-x4 xvalues $ 14-24;
datalines;

Corn 16 27 31 33
Corn 15 23 30 30
Corn 16 27 27 26
Corn 18 20 25 23
Corn 15 15 31 32
Corn 15 32 32 15
Corn 12 15 16 73
Soybeans 20 23 23 25
Soybeans 24 24 25 32
Soybeans 21 25 23 24
Soybeans 27 45 24 12
Soybeans 12 13 15 42
Soybeans 22 32 31 43
Cotton 31 32 33 34
Cotton 29 24 26 28
Cotton 34 32 28 45
Cotton 26 25 23 24
Cotton 53 48 75 26
Cotton 34 35 25 78
Sugarbeets22 23 25 42
Sugarbeets25 25 24 26
Sugarbeets34 25 16 52
Sugarbeets54 23 21 54
Sugarbeets25 43 32 15
Sugarbeets26 54 2 54
Clover 12 45 32 54
Clover 24 58 25 34
Clover 87 54 61 21
Clover 51 31 31 16
Clover 96 48 54 62
Clover 31 31 11 11
Clover 56 13 13 71
Clover 32 13 27 32
Clover 36 26 54 32
Clover 53 08 06 54
Clover 32 32 62 16
;
proc discrim data=crops outstat=cropstat

method=normal pool=yes
list crossvalidate;

class Crop;
priors prop;
id xvalues;
var x1-x4;
title2 ’Using Linear Discriminant Function’;

run;
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Output 25.4.1. Linear Discriminant Function on Crop Data
Discriminant Analysis of Remote Sensing Data on Five Crops

Using Linear Discriminant Function

The DISCRIM Procedure

Observations 36 DF Total 35
Variables 4 DF Within Classes 31
Classes 5 DF Between Classes 4

Class Level Information

Variable Prior
Crop Name Frequency Weight Proportion Probability

Clover Clover 11 11.0000 0.305556 0.305556
Corn Corn 7 7.0000 0.194444 0.194444
Cotton Cotton 6 6.0000 0.166667 0.166667
Soybeans Soybeans 6 6.0000 0.166667 0.166667
Sugarbeets Sugarbeets 6 6.0000 0.166667 0.166667

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Linear Discriminant Function

The DISCRIM Procedure

Pooled Covariance Matrix Information

Natural Log of the
Covariance Determinant of the

Matrix Rank Covariance Matrix

4 21.30189

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Linear Discriminant Function

The DISCRIM Procedure

Pairwise Generalized Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X ) - 2 ln PRIOR

i j i j j

Generalized Squared Distance to Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets

Clover 2.37125 7.52830 4.44969 6.16665 5.07262
Corn 6.62433 3.27522 5.46798 4.31383 6.47395
Cotton 3.23741 5.15968 3.58352 5.01819 4.87908
Soybeans 4.95438 4.00552 5.01819 3.58352 4.65998
Sugarbeets 3.86034 6.16564 4.87908 4.65998 3.58352
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Discriminant Analysis of Remote Sensing Data on Five Crops
Using Linear Discriminant Function

The DISCRIM Procedure

Linear Discriminant Function

_ -1 _ -1 _
Constant = -.5 X’ COV X + ln PRIOR Coefficient = COV X

j j j Vector j

Linear Discriminant Function for Crop

Variable Clover Corn Cotton Soybeans Sugarbeets

Constant -10.98457 -7.72070 -11.46537 -7.28260 -9.80179
x1 0.08907 -0.04180 0.02462 0.0000369 0.04245
x2 0.17379 0.11970 0.17596 0.15896 0.20988
x3 0.11899 0.16511 0.15880 0.10622 0.06540
x4 0.15637 0.16768 0.18362 0.14133 0.16408
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Output 25.4.2. Misclassified Observations: Resubstitution
Discriminant Analysis of Remote Sensing Data on Five Crops

Using Linear Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.CROPS

Resubstitution Results using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) - 2 ln PRIOR

j j j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Crop

Classified
xvalues From Crop into Crop Clover Corn Cotton Soybeans Sugarbeets

16 27 31 33 Corn Corn 0.0894 0.4054 0.1763 0.2392 0.0897
15 23 30 30 Corn Corn 0.0769 0.4558 0.1421 0.2530 0.0722
16 27 27 26 Corn Corn 0.0982 0.3422 0.1365 0.3073 0.1157
18 20 25 23 Corn Corn 0.1052 0.3634 0.1078 0.3281 0.0955
15 15 31 32 Corn Corn 0.0588 0.5754 0.1173 0.2087 0.0398
15 32 32 15 Corn Soybeans * 0.0972 0.3278 0.1318 0.3420 0.1011
12 15 16 73 Corn Corn 0.0454 0.5238 0.1849 0.1376 0.1083
20 23 23 25 Soybeans Soybeans 0.1330 0.2804 0.1176 0.3305 0.1385
24 24 25 32 Soybeans Soybeans 0.1768 0.2483 0.1586 0.2660 0.1502
21 25 23 24 Soybeans Soybeans 0.1481 0.2431 0.1200 0.3318 0.1570
27 45 24 12 Soybeans Sugarbeets * 0.2357 0.0547 0.1016 0.2721 0.3359
12 13 15 42 Soybeans Corn * 0.0549 0.4749 0.0920 0.2768 0.1013
22 32 31 43 Soybeans Cotton * 0.1474 0.2606 0.2624 0.1848 0.1448
31 32 33 34 Cotton Clover * 0.2815 0.1518 0.2377 0.1767 0.1523
29 24 26 28 Cotton Soybeans * 0.2521 0.1842 0.1529 0.2549 0.1559
34 32 28 45 Cotton Clover * 0.3125 0.1023 0.2404 0.1357 0.2091
26 25 23 24 Cotton Soybeans * 0.2121 0.1809 0.1245 0.3045 0.1780
53 48 75 26 Cotton Clover * 0.4837 0.0391 0.4384 0.0223 0.0166
34 35 25 78 Cotton Cotton 0.2256 0.0794 0.3810 0.0592 0.2548
22 23 25 42 Sugarbeets Corn * 0.1421 0.3066 0.1901 0.2231 0.1381
25 25 24 26 Sugarbeets Soybeans * 0.1969 0.2050 0.1354 0.2960 0.1667
34 25 16 52 Sugarbeets Sugarbeets 0.2928 0.0871 0.1665 0.1479 0.3056
54 23 21 54 Sugarbeets Clover * 0.6215 0.0194 0.1250 0.0496 0.1845
25 43 32 15 Sugarbeets Soybeans * 0.2258 0.1135 0.1646 0.2770 0.2191
26 54 2 54 Sugarbeets Sugarbeets 0.0850 0.0081 0.0521 0.0661 0.7887
12 45 32 54 Clover Cotton * 0.0693 0.2663 0.3394 0.1460 0.1789
24 58 25 34 Clover Sugarbeets * 0.1647 0.0376 0.1680 0.1452 0.4845
87 54 61 21 Clover Clover 0.9328 0.0003 0.0478 0.0025 0.0165
51 31 31 16 Clover Clover 0.6642 0.0205 0.0872 0.0959 0.1322
96 48 54 62 Clover Clover 0.9215 0.0002 0.0604 0.0007 0.0173
31 31 11 11 Clover Sugarbeets * 0.2525 0.0402 0.0473 0.3012 0.3588
56 13 13 71 Clover Clover 0.6132 0.0212 0.1226 0.0408 0.2023
32 13 27 32 Clover Clover 0.2669 0.2616 0.1512 0.2260 0.0943
36 26 54 32 Clover Cotton * 0.2650 0.2645 0.3495 0.0918 0.0292
53 08 06 54 Clover Clover 0.5914 0.0237 0.0676 0.0781 0.2392
32 32 62 16 Clover Cotton * 0.2163 0.3180 0.3327 0.1125 0.0206

* Misclassified observation
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Discriminant Analysis of Remote Sensing Data on Five Crops
Using Linear Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Resubstitution Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) - 2 ln PRIOR

j j j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 6 0 3 0 2 11
54.55 0.00 27.27 0.00 18.18 100.00

Corn 0 6 0 1 0 7
0.00 85.71 0.00 14.29 0.00 100.00

Cotton 3 0 1 2 0 6
50.00 0.00 16.67 33.33 0.00 100.00

Soybeans 0 1 1 3 1 6
0.00 16.67 16.67 50.00 16.67 100.00

Sugarbeets 1 1 0 2 2 6
16.67 16.67 0.00 33.33 33.33 100.00

Total 10 8 5 8 5 36
27.78 22.22 13.89 22.22 13.89 100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.4545 0.1429 0.8333 0.5000 0.6667 0.5000
Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Output 25.4.3. Misclassified Observations: Cross Validation
Discriminant Analysis of Remote Sensing Data on Five Crops

Using Linear Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Cross-validation Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) - 2 ln PRIOR

j (X)j (X) (X)j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 4 3 1 0 3 11
36.36 27.27 9.09 0.00 27.27 100.00

Corn 0 4 1 2 0 7
0.00 57.14 14.29 28.57 0.00 100.00

Cotton 3 0 0 2 1 6
50.00 0.00 0.00 33.33 16.67 100.00

Soybeans 0 1 1 3 1 6
0.00 16.67 16.67 50.00 16.67 100.00

Sugarbeets 2 1 0 2 1 6
33.33 16.67 0.00 33.33 16.67 100.00

Total 9 9 3 9 6 36
25.00 25.00 8.33 25.00 16.67 100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.6364 0.4286 1.0000 0.5000 0.8333 0.6667
Priors 0.3056 0.1944 0.1667 0.1667 0.1667

Now use the calibration information stored in theCropstat data set to classify a test
data set. The TESTLIST option lists the classification results for each observation in
the test data set. The following statements produceOutput 25.4.4andOutput 25.4.5:

data test;
input Crop $ 1-10 x1-x4 xvalues $ 11-21;
datalines;

Corn 16 27 31 33
Soybeans 21 25 23 24
Cotton 29 24 26 28
Sugarbeets54 23 21 54
Clover 32 32 62 16
;

proc discrim data=cropstat testdata=test testout=tout
testlist;
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class Crop;
testid xvalues;
var x1-x4;
title2 ’Classification of Test Data’;

run;
proc print data=tout;

title2 ’Output Classification Results of Test Data’;
run;

Output 25.4.4. Classification of Test Data
Discriminant Analysis of Remote Sensing Data on Five Crops

Classification of Test Data

The DISCRIM Procedure
Classification Results for Test Data: WORK.TEST

Classification Results using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Posterior Probability of Membership in Crop

Classified
xvalues From Crop into Crop Clover Corn Cotton Soybeans Sugarbeets

16 27 31 33 Corn Corn 0.0894 0.4054 0.1763 0.2392 0.0897
21 25 23 24 Soybeans Soybeans 0.1481 0.2431 0.1200 0.3318 0.1570
29 24 26 28 Cotton Soybeans * 0.2521 0.1842 0.1529 0.2549 0.1559
54 23 21 54 Sugarbeets Clover * 0.6215 0.0194 0.1250 0.0496 0.1845
32 32 62 16 Clover Cotton * 0.2163 0.3180 0.3327 0.1125 0.0206

* Misclassified observation



Example 25.5. Linear Discriminant Analysis of Crop Data � 1239

Discriminant Analysis of Remote Sensing Data on Five Crops
Classification of Test Data

The DISCRIM Procedure
Classification Summary for Test Data: WORK.TEST

Classification Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X )

j j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 0 0 1 0 0 1
0.00 0.00 100.00 0.00 0.00 100.00

Corn 0 1 0 0 0 1
0.00 100.00 0.00 0.00 0.00 100.00

Cotton 0 0 0 1 0 1
0.00 0.00 0.00 100.00 0.00 100.00

Soybeans 0 0 0 1 0 1
0.00 0.00 0.00 100.00 0.00 100.00

Sugarbeets 1 0 0 0 0 1
100.00 0.00 0.00 0.00 0.00 100.00

Total 1 1 1 2 0 5
20.00 20.00 20.00 40.00 0.00 100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 1.0000 0.0000 1.0000 0.0000 1.0000 0.6389
Priors 0.3056 0.1944 0.1667 0.1667 0.1667

Output 25.4.5. Output Data Set of the Classification Results for Test Data
Discriminant Analysis of Remote Sensing Data on Five Crops

Output Classification Results of Test Data

Obs Crop x1 x2 x3 x4 xvalues Clover Corn Cotton Soybeans Sugarbeets _INTO_

1 Corn 16 27 31 33 16 27 31 33 0.08935 0.40543 0.17632 0.23918 0.08972 Corn
2 Soybeans 21 25 23 24 21 25 23 24 0.14811 0.24308 0.11999 0.33184 0.15698 Soybeans
3 Cotton 29 24 26 28 29 24 26 28 0.25213 0.18420 0.15294 0.25486 0.15588 Soybeans
4 Sugarbeets 54 23 21 54 54 23 21 54 0.62150 0.01937 0.12498 0.04962 0.18452 Clover
5 Clover 32 32 62 16 32 32 62 16 0.21633 0.31799 0.33266 0.11246 0.02056 Cotton
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Example 25.5. Quadratic Discriminant Analysis of Remote-
Sensing Data on Crops

In this example, PROC DISCRIM uses normal-theory methods
(METHOD=NORMAL) assuming unequal variances (POOL=NO) for the
remote-sensing data ofExample 25.4. The PRIORS statement, PRIORS PROP, sets
the prior probabilities proportional to the sample sizes. The CROSSVALIDATE
option displays cross validation error-rate estimates. Note that the total error count
estimate by cross validation (0.5556) is much larger than the total error count
estimate by resubstitution (0.1111). The following statements produceOutput
25.5.1:

proc discrim data=crops
method=normal pool=no
crossvalidate;

class Crop;
priors prop;
id xvalues;
var x1-x4;
title2 ’Using Quadratic Discriminant Function’;

run;

Output 25.5.1. Quadratic Discriminant Function on Crop Data
Discriminant Analysis of Remote Sensing Data on Five Crops

Using Quadratic Discriminant Function

The DISCRIM Procedure

Observations 36 DF Total 35
Variables 4 DF Within Classes 31
Classes 5 DF Between Classes 4

Class Level Information

Variable Prior
Crop Name Frequency Weight Proportion Probability

Clover Clover 11 11.0000 0.305556 0.305556
Corn Corn 7 7.0000 0.194444 0.194444
Cotton Cotton 6 6.0000 0.166667 0.166667
Soybeans Soybeans 6 6.0000 0.166667 0.166667
Sugarbeets Sugarbeets 6 6.0000 0.166667 0.166667

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure

Within Covariance Matrix Information

Natural Log of the
Covariance Determinant of the

Crop Matrix Rank Covariance Matrix

Clover 4 23.64618
Corn 4 11.13472
Cotton 4 13.23569
Soybeans 4 12.45263
Sugarbeets 4 17.76293
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Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure

Pairwise Generalized Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X ) + ln |COV | - 2 ln PRIOR

i j j i j j j

Generalized Squared Distance to Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets

Clover 26.01743 1320 104.18297 194.10546 31.40816
Corn 27.73809 14.40994 150.50763 38.36252 25.55421
Cotton 26.38544 588.86232 16.81921 52.03266 37.15560
Soybeans 27.07134 46.42131 41.01631 16.03615 23.15920
Sugarbeets 26.80188 332.11563 43.98280 107.95676 21.34645



1242 � Chapter 25. The DISCRIM Procedure

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Resubstitution Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV | - 2 ln PRIOR

j j j j j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 9 0 0 0 2 11
81.82 0.00 0.00 0.00 18.18 100.00

Corn 0 7 0 0 0 7
0.00 100.00 0.00 0.00 0.00 100.00

Cotton 0 0 6 0 0 6
0.00 0.00 100.00 0.00 0.00 100.00

Soybeans 0 0 0 6 0 6
0.00 0.00 0.00 100.00 0.00 100.00

Sugarbeets 0 0 1 1 4 6
0.00 0.00 16.67 16.67 66.67 100.00

Total 9 7 7 7 6 36
25.00 19.44 19.44 19.44 16.67 100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.1818 0.0000 0.0000 0.0000 0.3333 0.1111
Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Cross-validation Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

2 _ -1 _
D (X) = (X-X )’ COV (X-X ) + ln |COV | - 2 ln PRIOR

j (X)j (X)j (X)j (X)j j

Posterior Probability of Membership in Each Crop

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 9 0 0 0 2 11
81.82 0.00 0.00 0.00 18.18 100.00

Corn 3 2 0 0 2 7
42.86 28.57 0.00 0.00 28.57 100.00

Cotton 3 0 2 0 1 6
50.00 0.00 33.33 0.00 16.67 100.00

Soybeans 3 0 0 2 1 6
50.00 0.00 0.00 33.33 16.67 100.00

Sugarbeets 3 0 1 1 1 6
50.00 0.00 16.67 16.67 16.67 100.00

Total 21 2 3 3 7 36
58.33 5.56 8.33 8.33 19.44 100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.1818 0.7143 0.6667 0.6667 0.8333 0.5556
Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Chapter 26
The DISTANCE Procedure
Overview

The DISTANCE procedure computes various measures of distance, dissimilarity, or
similarity between the observations (rows) of a SAS data set. These proximity mea-
sures are stored as a lower triangular matrix or a square matrix in an output data set
(depending on the SHAPE= option) that can then be used as input to the CLUSTER,
MDS, and MODECLUS procedures. The input data set may contain numeric or char-
acter variables, or both, depending on which proximity measure is used.

The number of rows and columns in the output matrix equals the number of observa-
tions in the input data set. If there are BY groups, an output matrix is computed for
each BY group with the size determined by the maximum number of observations in
any BY group.

PROC DISTANCE also provides various non-parametric and parametric methods for
standardizing variables. Different variables can be standardized with different meth-
ods.

Distance matrices are used frequently in data mining, genomics, marketing, finan-
cial analysis, management science, education, chemistry, psychology, biology, and
various other fields.

Levels of Measurement

Measurementof some attribute of a set of objects is the process of assigning num-
bers or other symbols to the objects in such a way that properties of the numbers or
symbols reflect properties of the attribute being measured. There are differentlev-
elsof measurement that involve different properties (relations and operations) of the
numbers or symbols. Associated with each level of measurement is a set of transfor-
mations of the measurements that preserve the relevant properties; these transforma-
tions are calledpermissibletransformations. A particular way of assigning numbers
or symbols to measure something is called ascaleof measurement.

The most commonly discussed levels of measurement are:

Nominal Two objects are assigned the same symbol if they have the same
value of the attribute. Permissible transformations are any one-to-
one or many-to-one transformation, although a many-to-one trans-
formation loses information.

Ordinal Objects are assigned numbers such that the order of the numbers
reflects an order relation defined on the attribute. Two objectsx and
y with attribute valuesa(x)anda(y)are assigned numbersm(x)and
m(y) such that ifm(x) > m(y), thena(x) > a(y). Permissible
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transformations are any monotone increasing transformation, al-
though a transformation that is not strictly increasing loses infor-
mation.

Interval Objects are assigned numbers such that differences between the
numbers reflect differences of the attribute. Ifm(x) − m(y) >
m(u)−m(v), thena(x)−a(y) > a(u)−a(v). Permissible trans-
formations are any affine transformationt(m) = c ∗m + d, where
c andd are constants; another way of saying this is that the origin
and unit of measurement are arbitrary.

Log-interval Objects are assigned numbers such that ratios between the num-
bers reflect ratios of the attribute. Ifm(x)/m(y) > m(u)/m(v),
thena(x)/a(y) > a(u)/a(v). Permissible transformations are any
power transformationt(m) = c ∗md, wherec andd are constants.

Ratio Objects are assigned numbers such that differences and ratios be-
tween the numbers reflect differences and ratios of the attribute.
Permissible transformations are any linear (similarity) transforma-
tion t(m) = c ∗ m, wherec is a constant; another way of saying
this is that the unit of measurement is arbitrary.

Absolute Objects are assigned numbers such that all properties of the num-
bers reflect analogous properties of the attribute. The only permis-
sible transformation is the identity transformation.

Proximity measures provided in the DISTANCE procedure accept four levels of mea-
surement: nominal, ordinal, interval, and ratio. Ordinal variables are transformed to
interval variables before processing. This is done by replacing the data with their rank
scores, and by assuming that the classes of an ordinal variable are spaced equally
along the interval scale. See the RANKSCORE= option in the PROC DISTANCE
statement for choices on assigning scores to ordinal variables. There are also differ-
ent approaches on how to transform an ordinal variable to an interval variable. Refer
to Anderberg (1973) for alternatives.

Symmetric versus Asymmetric Nominal Variables

A binary variable contains two possible outcomes: 1 (positive/present) or 0 (nega-
tive/absent). If there is no preference for which outcome should be coded as 0 and
which as 1, the binary variable is calledsymmetric. For example, the binary variable
“is evergreen?” for a plant has the possible states “loses leaves in winter” and “does
not lose leaves in winter.” Both are equally valuable and carry the same weight when
a proximity measure is computed. Commonly used measures that accept symmetric
binary variables include the Simple Matching, Hamann, Roger and Tanimoto, Sokal
and Sneath 1, and Sokal and Sneath 3 coefficients.

If the outcomes of a binary variable are not equally important, the binary variable
is calledasymmetric. An example of such a variable is the presence or absence of
a relatively rare attribute, such as “is color blind” for a human-being. While you
say that two people who are color blind have something in common, you cannot say
that people who are not color blind have something in common. The most important
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outcome is usually coded as 1 (present) and the other is coded as 0 (absent). The
agreement of two 1’s (a present-present match or a positive match) is more significant
than the agreement of two 0’s (an absent-absent match or a negative match.) Usually,
the negative match is treated as irrelevant. Commonly used measures that accept
asymmetric binary variables include Jaccard, Dice, Russell and Rao, Binary Lance
and Williams nonmetric, and Kulcynski coefficients.

When nominal variables are employed, the comparison of one data unit with another
can only be in terms of whether the data units score the same or different on the
variables. If a variable is defined as an asymmetric nominal variable and two data
units score the same but fall into the absent category, the absent-absent match is
excluded from the computation of the proximity measure.

Standardization

Since variables with large variances tend to have more effect on the proximity mea-
sure than those with small variances, it is recommended to standardize the variables
before the computation of the proximity measure. The DISTANCE procedure pro-
vides a convenient way to standardize each variable with its own method before the
proximity measures are computed. The standardization can also be performed by the
STDIZE procedure with the limitation that all variables must be standardized with
the same method.

Mandatory Standardization

Variable standardization is not required if there is only one level of measurement, or if
only asymmetric nominal and nominal levels are specified; otherwise, standardization
is mandatory.

When standardization is mandatory and no standardization method is specified, a
default method of standardization will be used. This default method is determined
by the measurement level. In general, the default method is STD for interval vari-
ables and is MAXABS for ratio variables except when METHOD= GOWER or
METHOD= DGOWER is specified. See the STD= option in the VAR statement
for the default methods for GOWER and DGOWER as well as methods available for
standardizing variables.

When standardization is mandatory, PROC DISTANCE suppresses the REPONLY
option, if it is specified.

Getting Started

Creating a Distance Matrix as Input for a Subsequent Cluster
Analysis

The following example demonstrates how you can use the DISTANCE procedure to
obtain a distance matrix that will be used as input to a subsequent clustering proce-
dure.
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The following data, originated by A. Weber and cited in Hand et al. (1994, pp. 297),
measure the amount of protein consumed for nine food groups in 25 European coun-
tries. The nine food groups are red meat (RedMeat), white meat (WhiteMeat), eggs
(Eggs), milk (Milk), fish (Fish), cereal (Cereal), starch (Starch), nuts (Nuts), and
fruits and vegetables (FruitVeg). Suppose you want to determine whether national
figures in protein consumption can be used to determine certain types or categories
of countries; specifically, you want to perform a cluster analysis to determine if these
25 countries can be formed into groups suggested by the data.

The following DATA step creates the SAS data setProtein:

title ’Protein Consumption in Europe’;
data Protein;
input Country $14. RedMeat WhiteMeat Eggs Milk

Fish Cereal Starch Nuts FruitVeg;
datalines;
Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czechoslovakia 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 4.7 7.5 19.5 3.7 1.4 2.0
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugoslavia 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2
;

The data setProtein contains the character variableCountry and the nine numeric
variables representing the food groups. The$14. in the INPUT statement specifies
that the variableCountry has a length of 14.

The following statements create the distance matrix and display part of it.

proc distance data=Protein out=Dist method=Euclid;
var interval(RedMeat--FruitVeg / std=Std);
id Country;
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run;

options ls=120;
proc print data=Dist(Obs=10);
title2 ’First 10 observations in the output data set from PROC DISTANCE’;
run;

An output SAS data set calledDist that contains the distance matrix is created through
the OUT= option. METHOD=Euclid requests that Euclidean (which also is the
default) distances should be computed.

The VAR statement lists the variables (RedMeat—FruitVeg) along with their mea-
surement level to be used in the analysis. An interval level of measurement is assigned
to those variables. Since variables with large variances tend to have more effect on
the proximity measure than those with small variances, each variable is standardized
by the STD method to have a mean of 0 and a standard deviation of 1. This is done
by adding “/” with the STD= Std option at the end of the variables list specification.

The ID statement specifies that the variableCountry should be copied to the OUT=
data set and used to generate names for the distance variables. The distance variables
in the output data set are named by the values in the ID variable, and the maximum
length for the names of these variables is 14.

There are 25 observations in the input data set; therefore, the output data setDist
contains a 25 by 25 lower triangle matrix.

The PROC PRINT statement displays the first 10 observations in the output data set
Dist as shown inFigure 26.1.

Prptein Consumption in Europe
First 10 observations in the output data set from PROC DISTANCE

OBS Country Albania Austria Belgium Bulgaria Czechoslovakia Denmark E_Germany Finland France Greece Hungary

1 Albania 0.00000 . . . . . . . . . .
2 Austria 6.12388 0.00000 . . . . . . . . .
3 Belgium 5.94109 2.44987 0.00000 . . . . . . . .
4 Bulgaria 2.76446 4.88331 5.22711 0.00000 . . . . . . .
5 Czechoslovakia 5.13959 2.11498 2.21330 3.94761 0.00000 . . . . . .
6 Denmark 6.61002 3.01392 2.52541 6.00803 3.34049 0.00000 . . . . .
7 E Germany 6.39178 2.56341 2.10211 5.40824 1.87962 2.72112 0.00000 . . . .
8 Finland 5.81458 4.04271 3.45779 5.74882 3.91378 2.61570 3.99426 0.00000 . . .
9 France 6.29601 3.58891 2.19329 5.54675 3.36011 3.65772 3.78184 4.56796 0.00000 . .

10 Greece 4.24495 5.16330 4.69515 3.74849 4.86684 5.59084 5.61496 5.47453 4.54456 0 .

OBS Ireland Italy Netherlands Norway Poland Portugal Romania Spain Sweden Switzerland UK USSR W_Germany Yugoslavia

1 . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . .
4 . . . . . . . . . . . . . .
5 . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . .

10 . . . . . . . . . . . . . .

Figure 26.1. First 10 Observations in the Output Data Set from PROC DISTANCE
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The following statements produce the tree diagram inFigure 26.2:

proc cluster data=Dist method=Ward outtree=Tree noprint;
id Country;

run;

axis1 order=(0 to 1 by 0.1);
proc tree data=Tree haxis=axis1 horizontal;

height _rsq_;
id Country;

run;

The CLUSTER procedure performs a Ward’s Minimum-Variance cluster analysis
based on the distance matrix created by the PROC DISTANCE. The printed out-
put has been omitted, but the output data setTree is created (through outtree= Tree)
and used as input to the TREE procedure that produces the tree diagram as shown in
Figure 26.2. Theheight statement specifies the variable–RSQ– (R2) as the height
variable.

Figure 26.2. Tree Diagram of Clusters versus R-Square Values

After inspecting the tree diagram inFigure 26.2, you will see that when the coun-
tries are grouped into six clusters, the proportion of variance accounted for by these
clusters is slightly less than 70% (69.3%).
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Syntax

The following statements are available in the DISTANCE procedure.

PROC DISTANCE < options > ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;
VAR level(variables < / opt-list >) ;
WEIGHT variable ;

Both the PROC DISTANCE statement and the VAR statement are required.

PROC DISTANCE Statement

PROC DISTANCE < options >

You can specify the following options in the PROC DISTANCE statement.

Table 26.1. Summary of PROC DISTANCE Statement Options

Task/Statement Options Description
standardizing variables ADD= specifies the constant to add to each value

after standardizing and multiplying by
the value specified in the MULT= option

FUZZ= specifies the relative fuzz factor for writ-
ing the output

INITIAL= specifies the method for computing initial
estimates for the A-estimates

MULT= specifies the constant to multiply each
value by after standardizing

NORM normalizes the scale estimator to be con-
sistent for the standard deviation of a nor-
mal distribution

SNORM normalizes the scale estimator to have an
expectation of approximately 1 for a stan-
dard normal distribution

VARDEF= specifies the variances divisor
generating distance matrix ABSENT= specifies the value to be used as an ab-

sence value for all the asymmetric nomi-
nal variables

METHOD= specifies the method for computing prox-
imity measures

PREFIX= specifies a prefix for naming the distance
variables in the OUT= data set

RANKSCORE= specifies the method of assigning scores
to ordinal variables
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Table 26.1. (continued)

Task Options Description
SHAPE= specifies the shape of the proximity ma-

trix to be stored in the OUT= data set
UNDEF= specifies the numeric constant used to re-

place undefined distances

VARDEF= specifies the variances divisor
missing values NOMISS replaces missing data by the location

measure (does not standardize the data);
generates missing distance for observa-
tions with missing values

REPLACE replaces missing data by zero in the stan-
dardized data

REPONLY replaces missing data by the location
measure (does not standardize the data)

specifying data set details DATA= specifies the input data set
OUT= specifies the output data set
OUTSDZ= specifies the output data set for standard-

ized scores

These options and their abbreviations are described, in alphabetical order, in the re-
mainder of this section.

ABSENT= num or qs
specifies the value to be used as an absence value in an irrelevant absent-absent match
for all of the asymmetric nominal variables. If you want to specify a different absence
value for a particular variable, use the ABSENT= option in the VAR statement. See
the ABSENT= option in the VAR statement later in this chapter for details.

An absence value for a variable can be either a numeric value or a quoted string
consisting of combinations of characters. For instance, ., -999, “NA” are legal values
for the ABSENT= option.

The default absence value for a character variable is “NONE” (notice that a blank
value is considered a missing value), and the default absence value for a numeric
variable is 0.

ADD= c
specifies a constant,c, to add to each value after standardizing and multiplying by the
value you specify in the MULT= option. The default value is 0.

DATA= SAS-data-set
specifies the input data set containing observations from which the proximity is com-
puted. If you omit the DATA= option, the most recently created SAS data set is used.
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FUZZ= c
specifies the relative fuzz factor for computing the standardized scores. The default
value is 1E-14. For the OUTSDZ= data set, the score is computed as follows:

if |standardized scores| < scale measure× c, then standardized scores= 0

INITIAL= method
specifies the method for computing initial estimates for the A-estimates (ABW,
AWAVE, and AHUBER). The following methods are not allowed for the INITIAL=
option: ABW, AHUBER, AWAVE, IN.

The default value is INITIAL=MAD.

METHOD= method
specifies the method for computing proximity measures.

For use in PROC CLUSTER, distance or dissimilarity measures such as METHOD=
EUCLID or METHOD= DGOWER should be chosen.

The following six tables outline the proximity measures available for the METHOD=
option. These tables are classified by levels of measurement accepted by each
method. There are three to four columns in each table: the proximity measures
(Method) column, the upper and lower bounds (Range) column(s), and the types
of proximity (Type) column.

The Type column has two possible values: “sim” if a method generate similarity or
“dis” if a method generates distance or dissimilarity measures.

For formulas and descriptions of these methods, see the“Details” section on page
1270.

Table 26.2lists the GOWER and the DGOWER methods. These two methods ac-
cept all measurement levels including ratio, interval, ordinal, nominal, and asym-
metric nominal. METHOD= GOWER or METHOD= DGOWER always implies
standardization. Assuming all the numeric (ordinal, interval, and ratio) variables are
standardized by their corresponding default methods, the possible range values for
both methods in the second column of this table are on or between 0 and 1. To find
out the default methods of standardization for METHOD= GOWER or METHOD=
DGOWER, see the STD= option for the VAR statement later in this section. Entries
in this table are:

GOWER Gower’s similarity

DGOWER 1 minus GOWER

Table 26.2. Methods Accepting all Measurement Levels

Method Range Type
GOWER 0 to 1 sim
DGOWER 0 to 1 dis
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Table 26.3lists methods accepting ratio, interval, and ordinal variables. Entries in
this table are:

EUCLID Euclidean distance

SQEUCLID Squared Euclidean distance

SIZE Size distance

SHAPE Shape distance

COV Covariance

CORR Correlation

DCORR Correlation transformed to Euclidean distance

SQCORR Squared correlation

DSQCORR One minus squared correlation

L(p) Minkowski ( Lp) distance, wherep is a positive numeric value

CITYBLOCK L1, City-block, or Manhattan distance

CHEBYCHEV L∞

POWER(p, r) Generalized Euclidean distance wherep is a positive numeric
value, andr is a non-negative numeric value. The distance between
two observations is therth root of sum of the absolute differences
to thepth power between the values for the observations.

Table 26.3. Methods Accepting Ratio, Interval, and Ordinal Variables

Method Range Type
EUCLID ≥ 0 dis
SQEUCLID ≥ 0 dis
SIZE ≥ 0 dis
SHAPE ≥ 0 dis
COV ≥ 0 sim
CORR -1 to 1 sim
DCORR 0 to 2 dis
SQCORR 0 to 1 sim
DSQCORR 0 to 1 dis
L(p) ≥ 0 dis
CITYBLOCK ≥ 0 dis
CHEBYCHEV ≥ 0 dis
POWER(p, r) ≥ 0 dis

Table 26.4lists methods accepting ratio variables. Notice that in the second column
of this table, all of the possible range values are non-negative, because ratio variables
are assumed to be positive. Entries in this table are:
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SIMRATIO Similarity ratio (if variables are binary, this is the Jaccard coeffi-
cient)

DISRATIO One minus similarity ratio

NONMETRIC Lance and Williams nonmetric coefficient

CANBERRA Canberra metric distance coefficient

COSINE Cosine

DOT Dot (inner) product

OVERLAP Overlap similarity

DOVERLAP Overlap dissimilarity

CHISQ Chi-squared

CHI Squared root of Chi-squared

PHISQ phi-squared

PHI Squared root of phi-squared

Table 26.4. Methods Accepting Ratio Variables

Method Range Type
SIMRATIO 0 to 1 sim
DISRATIO 0 to 1 dis
NONMETRIC 0 to 1 dis
CANBERRA 0 to 1 dis
COSINE 0 to 1 sim
DOT ≥ 0 sim
OVERLAP ≥ 0 sim
DOVERLAP ≥ 0 dis
CHISQ ≥ 0 dis
CHI ≥ 0 dis
PHISQ ≥ 0 dis
PHI ≥ 0 dis

Table 26.5lists methods accepting nominal variables. Entries in the previous table
are:

HAMMING Hamming distance

MATCH Simple matching coefficient

DMATCH Simple matching coefficient transformed to Euclidean distance

DSQMATCH Simple matching coefficient transformed to squared Euclidean dis-
tance

HAMANN Hamann coefficient

RT Roger and Tanimoto
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SS1 Sokal and Sneath 1

SS3 Sokal and Sneath 3

Table 26.5. Methods Accepting Nominal Variables

Method Range Type

HAMMING 0 to v
∗

dis
MATCH 0 to 1 sim
DMATCH 0 to 1 dis
DSQMATCH 0 to 1 dis
HAMANN -1 to 1 sim
RT 0 to 1 sim
SS1 0 to 1 sim
SS3 0 to 1 sim

1 the number of variables or dimensionality.

Table 26.6 lists methods that accept asymmetric nominal variables. Use the
ABSENT= option to create a value to be considered absent. Entries in the previous
table are:

DICE Dice coefficient or Czekanowski/Sorensen similarity coefficient

RR Russell and Rao

BLWNM Binary Lance and Williams nonmetric, or Bray-Curtis coefficient

K1 Kulcynski 1

Table 26.6. Methods Accepting Asymmetric Nominal Variables

Method Range Type
DICE 0 to 1 sim
RR 0 to 1 sim
BLWNM 0 to 1 dis
K1 ≥ 0 sim

Table 26.7lists methods accepting asymmetric nominal and ratio variables. Use the
ABSENT= option to create a value to be considered absent. There are four instead
of three columns in this table. The second column contains possible range values if
only one level of measurement (either ratio or asymmetric nominal but not both) is
specified; the third column contains possible range values if both levels are specified.

The JACCARD method is equivalent to the SIMRATIO method if there is no asym-
metric nominal variable; if both ratio and asymmetric nominal variables are present,
the coefficient is computed as the sum of the coefficient from the ratio variables and
the coefficient from the asymmetric nominal variables. See “Proximity Measures” of
the “Details” section on page 1270 for formulas and descriptions of the JACCARD
method. Entries in this table are:
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JACCARD Jaccard similarity coefficient

DJACCARD Jaccard dissimilarity coefficient

Table 26.7. Methods Accepting Asymmetric Nominal and Ratio Variables

Method Range (one level) Range (two levels) Type
JACCARD 0 to 1 0 to 2 sim
DJACCARD 0 to 1 0 to 2 dis

MULT= c
specifies a constant,c, by which to multiply each value after standardizing. The
default value is 1.

NOMISS
While standardizing variables, omit observations with missing values from compu-
tation of the location and scale measures. While computing distances, generate un-
defined (missing) distances for observations with missing values. Use the UNDEF=
option to specify the undefined values.

If a distance matrix is created to be used as an input to PROC CLUSTER, the
NOMISS option should not be used because the CLUSTER procedure will not accept
distance matrices with missing values.

NORM
normalizes the scale estimator to be consistent for the standard deviation of a normal
distribution when you specify the option STD= AGK, STD= IQR, STD= MAD, or
STD= SPACING in the VAR statement.

PREFIX= name
specifies a prefix for naming the distance variables in the OUT= data set. By de-
fault, the names areDist1, Dist2, . . . , Distn. If you specify PREFIX=ABC, the
variables are namedABC1, ABC2, ..., ABCn. If the ID statement is also specified,
the variables are named by appending the value of the ID variable to the prefix.

OUT= SAS-data-set
specifies the name of the SAS data set created by PROC DISTANCE. The output
data set contains the BY variables, the ID variable, computed distance variables, the
COPY variables, the FREQ variable, and the WEIGHT variables.

If you omit the OUT= option, PROC DISTANCE creates an output data set named
according to the DATAn convention.

OUTSDZ= SAS-data-set
specifies the name of the SAS data set containing the standardized scores. The output
data set contains a copy of the DATA= data set, except that the analyzed variables
have been standardized. Analyzed variables are those listed in the VAR statement.

RANKSCORE= MIDRANK | INDEX
specifies the method of assigning scores to ordinal variables. The available methods
are listed as follows:
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MIDRANK assigns consecutive integers to each category with consideration of
the frequency value. This is the default method.

INDEX assigns consecutive integers to each category regardless of frequen-
cies.

The following example explains how each method assigns the rank scores. Suppose
the data contain an ordinal variable ABC with values A, B, C. There are two ways
to assign numbers. One is to use midranks, which depend on the frequencies of each
category. Another is to assign consecutive integers to each category, regardless of
frequencies.

Table 26.8. Example of Assigning Rank Scores

ABC MIDRANK INDEX
A 1.5 1
A 1.5 1
B 4 2
B 4 2
B 4 2
C 6 3

REPLACE
replaces missing data by zero in the standardized data (which corresponds to the
location measure before standardizing.) To replace missing data by something else,
use the MISSING= option in the VAR statement. The REPLACE option implies
standardization.

You can not specify both the REPLACE and the REPONLY options.

REPONLY
replaces missing data by the location measure specified by the MISSING= option or
the STD= option (if the MISSING= option is not specified), but doesnotstandardize
the data. If the MISSING= option is not specified and METHOD= GOWER is spec-
ified, missing values are replaced by the location measure from the RANGE method
(the minimum value), no matter what the value of the STD= option is.

When standardization is mandatory, PROC DISTANCE suppresses the REPONLY
option.

You can not specify both the REPLACE and the REPONLY options.

SHAPE= TRIANGLE | TRI
SHAPE= SQUARE | SQU | SQR

specifies the shape of the proximity matrix to be stored in the OUT= data set.
SHAPE= TRIANGLE requests the matrix to be stored as a lower triangular ma-
trix; SHAPE= SQUARE requests the matrix to be stored as a squared matrix. Use
SHAPE= SQUARE if the output data set is to be used as input to the MODECLUS
procedures. The default is TRIANGLE.
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SNORM
normalizes the scale estimator to have an expectation of approximately 1 for a stan-
dard normal distribution when the STD= SPACING option is specified.

UNDEF= n
specifies the numeric constant used to replace undefined distances, for example, when
an observation has all missing values, or if a divisor is zero.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor to be used in the calculation of distance, dissimilarity, or sim-
ilarity measures, and for standardizing variables whenever a variance or covariance
is computed. By default, VARDEF=DF. The values and associated divisors are as
follows:

Value Divisor Formula
DF degrees of freedom n− 1
N number of observations n
WDF sum of weights minus 1 (

∑
i wi)− 1

WEIGHT | WGT sum of weights
∑

i wi

VAR Statement

VAR | VARIABLES level ( variables < / opt-list > )
< level ( variables < / opt-list > )

level ( variables < / opt-list > )
.
.
.
level ( variables < / opt-list > ) >

where the syntax for theopt-list is:

< ABSENT= value>
< MISSING= miss-method or value>
< ORDER= order-option>
< STD= std-method>
< WEIGHTS= weight-list>

The VAR statement lists variables from which distances are to be computed. The
VAR statement is required. The variables can be numeric or character depending on
their measurement levels. A variable may not appear more than once in either the
same list or in a different list.

level is required. It declares the levels of measurement for those variables specified
within the parentheses. Available values forlevelare:
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ANOMINAL variables are asymmetric nominal and can be either numeric or
character.

NOMINAL variables are symmetric nominal and can be either numeric or char-
acter.

ORDINAL variables are ordinal and can be either numeric or character. Values
of ordinal variables will be replaced by their corresponding rank
scores. If standardization is required, the standardized rank scores
are output to the data set specified in the OUTSDZ= option.

See the RANKSCORE= option in the PROC DISTANCE state-
ment for methods available for assigning rank scores to ordinal
variables. After being replaced by scores, ordinal variables are
considered interval.

INTERVAL variables are interval, and only numeric variables are allowed.

RATIO variables are ratio, and only numeric variables are allowed. Ratio
variables should always contain positive measurements.

Each variable list can be followed by an option list. Use “/ ” after the list of variables
to start the option list. An option list contains options that are applied to the variables.
The following options are available in the option list.

ABSENT= to specify the value to be used as an absence value in an irrelevant
absent-absent match for asymmetric nominal variables.

MISSING= to specify the method (or value) with which to replace missing data

ORDER= to select the order for assigning scores to ordinal variables.

STD= to select the standardization method

WEIGHTS= to assign weights to the variables in the list

If an option is missing from the current attribute list, PROC DISTANCE provides
default values for all the variables in the current list.

For example, in the following VAR statement:

var ratio(x1-x4/std= mad weights= .5 .5 .1 .5 missing= -99)
interval(x5/std= range)
ordinal(x6/order= desc);

the first option list definesx1 –x4 as ratio variables to be standardized by the MAD
method. Also, any missing values inx1 –x4 should be replaced by -99.x1 is given a
weight of 0.5,x2 is given a weight of 0.5,x3 is given a weight of 0.1, andx4 is given
a weight of 0.5.

The second option list definesx5 as an interval variable to be standardized by the
RANGE method. If the REPLACE option is specified in the PROC DISTANCE
statement, missing values inx5 are replaced by the the location estimate from the
RANGE method. By default,x5 is given a weight of 1.
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The last option list definesx6 as an ordinal variable. The scores are assigned from
highest-to-lowest by its unformatted values. Although the STD= option is not speci-
fied,x6 will be standardized by the default method (STD) because there is more than
one level of measurements (ratio, interval, and ordinal) in the VAR statement. Again,
if the REPLACE option is specified, missing values inx6 are replaced by the location
estimate from the STD method. Finally, by default,x6 is given a weight of 1.

More details for the options are explained as follows.

STD= std-method
specifies the standardization method. Valid values forstd-method are: MEAN,
MEDIAN, SUM, EUCLEN, USTD, STD, RANGE, MIDRANGE, MAXABS, IQR,
MAD, ABW, AHUBER, AWAVE, AGK, SPACING, and L.Table 26.9lists available
methods of standardization as well as their corresponding location and scale mea-
sures.

Table 26.9. Available Standardization Methods

Method Scale Location

MEAN 1 mean
MEDIAN 1 median
SUM sum 0
EUCLEN Euclidean length 0
USTD standard deviation about origin 0
STD standard deviation mean
RANGE range minimum
MIDRANGE range/2 midrange
MAXABS maximum absolute value 0
IQR interval quartile range median
MAD median abs. dev. from median median
ABW(c) biweight A-estimate biweight 1-step M-estimate
AHUBER(c) Huber A-estimate Huber 1-step M-estimate
AWAVE(c) Wave 1-step M-estimate Wave A-estimate
AGK(p) AGK estimate (ACECLUS) mean
SPACING(p) minimum spacing mid minimum-spacing
L(p) Lp Lp

These standardization methods are further documented in the section on the
METHOD= option in the PROC STDIZE statement of the STDIZE procedure
(also see the“Standardization Methods”section on page 4136 inChapter 66, “The
STDIZE Procedure,”.)

Standardization is not required if there is only one level of measurement, or if only
asymmetric nominal and nominal levels are specified; otherwise, standardization is
mandatory. When standardization is mandatory, a default method will be provided
when the STD= option is not given. The default method is STD for standardizing
interval variables and MAXABS for standardizing ratio variables unless METHOD=
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GOWER or METHOD= DGOWER is specified. If METHOD= GOWER is specified,
interval variables are standardized by the RANGE method, and whatever is specified
in the STD= option is ignored; if METHOD= DGOWER is specified, the RANGE
method is the default standardization method for interval variables. The MAXABS
method is the default standardization method for ratio variables for both the GOWER
and the DGOWER.

Notice that a ratio variable should always be positive.

Table 26.10lists standardization methods and the levels of measurement that can be
accepted by each method. For example, the SUM method can be used to standardize
ratio variables but not interval, or ordinal variables. Also, the AGK and SPACING
methods should not be used to standardize ordinal variables. If you apply AGK and
SPACING to ranks, the results are degenerate because all the spacings of a given
order are equal.

Table 26.10. Legitimate Levels of Measurements for Each Method

Standardization Legitimate
Method Levels of Measurement

MEAN ratio, interval, ordinal
MEDIAN ratio, interval, ordinal
SUM ratio
EUCLEN ratio
USTD ratio
STD ratio, interval, ordinal
RANGE ratio, interval, ordinal
MIDRANGE ratio, interval, ordinal
MAXABS ratio
IQR ratio, interval, ordinal
MAD ratio, interval, ordinal
ABW(c) ratio, interval, ordinal
AHUBER(c) ratio, interval, ordinal
AWAVE(c) ratio, interval, ordinal
AGK(p) ratio, interval
SPACING(p) ratio, interval
L(p) ratio, interval, ordinal

ABSENT= num or qs
specifies the value to be used as an absence value in an irrelevant absent-absent match
for asymmetric nominal variables. The absence value specified here overwrites the
absence value specified through the ABSENT= option in the PROC DISTANCE
statement for those variables in the current variable list.

An absence value for a variable can be either a numeric value or a quoted string
consisting of combinations of characters. For instance, ., -999, “NA” are legal values
for the ABSENT= option.
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The default for an absence value for a character variable is “NONE” (notice that a
blank value is considered a missing value), and the default for an absence value for a
numeric variable is 0.

MISSING= miss-method or value
specifies the method or a numeric value for replacing missing values. If you omit the
MISSING= option, the REPLACE option replaces missing values with the location
measure given by the STD= option. Specify the MISSING= option when you want
to replace missing values with a different value. You can specify any method that
is valid in the STD= option. The corresponding location measure is used to replace
missing values.

If a numeric value is given, the value replaces missing values after standardizing
the data. However, when standardization is not mandatory, you can specify the
REPONLY option with the MISSING= option to suppress standardization for cases
in which you want only to replace missing values.

ORDER= ASCENDING | ASC
ORDER= DESCENDING | DESC
ORDER= ASCFORMATTED | ASCFMT
ORDER= DESFORMATTED | DESFMT
ORDER= DSORDER | DATA

specifies the order for assigning score to ordinal variables. The value for the
ORDER= option can be one of the following:

ASCENDING scores are assigned in lowest-to-highest order of unformat-
ted values.

DESCENDING scores are assigned in highest-to-lowest order of unformat-
ted values.

ASCFORMATTED scores are assigned in ascending order by their formatted
values. This option can be applied to character variables
only, since unformatted values are always used for numeric
variables.

DESFORMATTED scores are assigned in descending order by their formatted
values. This option can be applied to character variables
only, since unformatted values are always used for numeric
variables.

DSORDER scores are assigned according to the order of their appear-
ance in the input data set.

The default value is ASCENDING.

WEIGHTS= weight-list
specifies a list of values for weighting individual variables while computing the prox-
imity. Values in this list can be separated by blanks or commas. You can include
one or more items of the formstart TO stopBY increment. This list should contain
at least one weight. The maximum number of weights you can list is equal to the
number of variables. If the number of weights is less than the number of variables,
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the last value in theweight-listis used for the rest of the variables; conversely, if the
number of weights is greater than the number of variables, the trailing weights will
be discarded.

The default value is 1.

ID Statement

ID variable

The ID statement specifies a single variable to be copied to the OUT= data set and
used to generate names for the distance variables. The ID variable must be character.

Typically, each ID value occurs only once in the input data set or, if you use a BY
statement, only once within a BY group.

If you specify both the ID and the BY statements, the ID variable must have the same
values in the same order in each BY group.

COPY Statement

COPY variables

The COPY statement specifies a list of additional variables to be copied to the OUT=
data set.

BY Statement

BY variables

You can specify a BY statement to obtain separate distance matrices for observations
in groups defined by the BY variables.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts.

FREQ Statement

FREQ | FREQUENCY variable

The frequency variable is used for either standardizing variables or assigning rank
scores to the ordinal variables. It has no direct effect on computing the distances.

For standardizing variables and assigning rank scores, PROC DISTANCE treats the
data set as if each observation appearedn times, wheren is the value of the FREQ
variable for the observation. Non-integral values of the FREQ variable are truncated
to the largest integer less than the FREQ value. If the FREQ variable has a value that
is less than 1 or is missing, the observation is not used in the analysis.
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WEIGHT Statement

WGT | WEIGHT variable

The WEIGHT statement specifies a numeric variable in the input data set with values
that are used to weight each observation. This weight variable is used for standardiz-
ing variables rather than computing the distances. Only one variable can be specified.

The WEIGHT variable values can be non-integers. An observation is used in
the analysis only if the value of the WEIGHT variable is greater than zero. The
WEIGHT variable applies to variables that are standardized by the following options:
STD=MEAN, STD=SUM, STD=EUCLEN, STD=USTD, STD=STD, STD=AGK,
or STD=L. PROC DISTANCE uses the value of the WEIGHT variablewi, as fol-
lows.

The sample mean and (uncorrected) sample variances are computed as

xw =
∑

i

wixi/
∑

i

wi

uw
2 =

∑
i

wixi
2/d

sw
2 =

∑
i

wi(xi − xw)2/d

wherewi is the weight value of theith observation,xi is the value of theith obser-
vation, andd is the divisor controlled by the VARDEF= option (see the VARDEF=
option in the PROC DISTANCE statement for details.)

PROC DISTANCE uses the value of the WEIGHT variable to calculate the following
statistics:

MEAN the weighted mean,xw

SUM the weighted sum,
∑

i wixi

USTD the weighted uncorrected standard deviation,
√

u2
w

STD the weighted standard deviation,
√

s2
w

EUCLEN the weighted Euclidean length, computed as the square root of the
weighted uncorrected sum of squares:√∑

i

wixi
2

AGK the AGK estimate. This estimate is documented further in the
ACECLUS procedure as the METHOD=COUNT option. See
the discussion of the WEIGHT statement inChapter 16, “The
ACECLUS Procedure,” for information on how the WEIGHT
variable is applied to the AGK estimate.
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L the Lp estimate. This estimate is documented further in the
FASTCLUS procedure as the LEAST= option. See the discus-
sion of the WEIGHT statement inChapter 28, “The FASTCLUS
Procedure,”for information on how the WEIGHT variable is used
to compute weighted cluster means. Note that the number of clus-
ters is always 1.

Details

Proximity Measures

The following notation is used in this section:

v the number of variables or the dimensionality

xj data for observationx and thejth variable, wherej= 1 tov

yj data for observationy and thejth variable, wherej= 1 tov

wj weight for thejth variable from the WEIGHTS= option in the VAR
statement.wj = 0 when eitherxj or yj is missing.

W the sum of total weights. No matter if the observation is missing or
not, its weight is added to this metric.

x̄ mean for observationx

x̄ =
∑v

i=1 wjxj/
∑v

i=1 wj

ȳ mean for observationy

ȳ =
∑v

i=1 wjyj/
∑v

i=1 wj

d(x, y) the distance or dissimilarity between observationsx andy

s(x, y) the similarity between observationsx andy

The factorW/
∑v

i=1 wj is used to adjust some of the proximity measures for missing
values.

Methods Accepting All Measurement Levels

GOWER Gower’s similarity
s1(x, y) =

∑v
j=1 wjδ

j
x,yd

j
x,y/

∑v
j=1 wjδ

j
x,y

To computeδj
x,y: for nominal, ordinal, interval, or ratio variable,

δj
x,y = 1;

for asymmetric nominal variable,

δj
x,y = 1, if either xj or yj is present

δj
x,y = 0, if both xj andyj are absent
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To computedj
x,y: for nominal or asymmetric nominal variable,

dj
x,y = 1, if xj = yj

dj
x,y = 0, if xj 6= yj ;

for ordinal (where data are replaced by corre-
sponding rank scores), interval, or ratio variable,

dj
x,y = 1− |xj − yj |

DGOWER 1 minus Gower
d2(x, y) = 1− s1(x, y)

Methods Accepting Ratio, Interval, and Ordinal Variables:

EUCLID Euclidean distance
d3(x, y) =

√
(
∑v

j=1 wj(xj − yj)
2)W/(

∑v
j=1 wj)

SQEUCLID Squared Euclidean distance
d4(x, y) = (

∑v
j=1 wj(xj − yj)

2)W/(
∑v

j=1 wj)

SIZE Size distance
d5(x, y) = |

∑v
j=1 wj(xj − yj)|

√
W/(

∑v
j=1 wj)

SHAPE Shape distance

d6(x, y) =
√

(
∑v

j=1 wj [(xj − x̄)− (yj − ȳ)]2)W/(
∑v

j=1 wj)

Note: squared shape distance plus squared size distance equals
squared Euclidean distance.

COV Covariance similarity coefficient
s7(x, y) =

∑v
j=1 wj(xj − x̄)(yj − ȳ)/vardiv, where

vardiv = v if VARDEF=N

= v − 1 if VARDEF=DF

=
∑v

j=1 wj if VARDEF=WEIGHT

=
∑v

j=1 wj − 1 if VARDEF=WDF

CORR Correlation similarity coefficient

s8(x, y) =
∑v

j=1 wj(xj−x̄)(yj−ȳ)√∑v
j=1 wj(xj−x̄)2

∑v
j=1 wj(yj−ȳ)2

DCORR Correlation transformed to Euclidean distance as sqrt(1-CORR)
d9(x, y) =

√
1− s8(x, y)
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SQCORR Squared correlation

s10(x, y) =
[
∑v

j=1 wj(xj−x̄)(yj−ȳ)]2∑v
j=1 wj(xj−x̄)2

∑v
j=1 wj(yj−ȳ)2

DSQCORR Squared correlation transformed to squared Euclidean distance as
(1-SQCORR)

d11(x, y) = 1− s10(x, y)

L(p) Minkowski ( Lp) distance, where p is a positive numeric value

d12(x, y) = [(
∑v

j=1 wj |xj − yj |p)W/(
∑v

j=1 wj)]1/p

CITYBLOCK L1

d13(x, y) = (
∑v

j=1 wj |xj − yj |)W/(
∑v

j=1 wj)

CHEBYCHEV L∞
d14(x, y) = maxv

j=1 wj |xj − yj |

POWER(p, r) Generalized Euclidean distance, wherep is a non-negative numeric
value, andr is a positive numeric value. The distance between two
observations is therth root of sum of the absolute differences to
thepth power between the values for the observations

d15(x, y) = [(
∑v

j=1 wj |xj − yj |p)W/(
∑v

j=1 wj)]1/r

Methods Accepting Ratio Variables

SIMRATIO Similarity ratio

s16(x, y) =
∑v

j wj(xiyj)∑v
j=1 wj(xiyj)+

∑v
j wj(xj−yj)2

DISRATIO one minus similarity ratio
d17(x, y) = 1− s16(x, y)

NONMETRIC Lance-Williams nonmetric coefficient
d18(x, y) =

∑v
j=1 wj |xj−yj |∑v
j=1 wj(xj+yj)

CANBERRA Canberra metric coefficient
d19(x, y) =

∑v
j=1(

wj |xj−yj |
wj(xj+yj)

)

COSINE Cosine
s20(x, y) =

∑v
j=1 wj(xiyj)√∑v

j=1 wj(xj)2
∑v

j=1 wj(yj)2
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DOT Dot (inner) product
s21(x, y) =

∑v
j=1 wj(xiyj)/

∑v
j=1 wj

OVERLAP Sum of the minimum values
s22(x, y) =

∑v
j=1 wj [min(xj , yj)]

DOVERLAP The maximum of the sum of the x and the sum of y minus overlap
d23(x, y) = max(

∑v
j=1 wixj ,

∑v
j=1 wiyj)− s22(x, y)

CHISQ chi-squared
If the data represent the frequency counts, chi-squared dissimilar-
ity between two sets of frequencies can be computed. A 2 byv
contingency table is illustrated to explain how the chi-squared dis-
similarity is computed:

Variable Row
Observation Var 1 Var 2 ... Var v sum

X x1 x2 ... xv rx

Y y1 y2 ... yv ry

Column sum c1 c2 ... cv T

where

rx =
∑v

j=1 wjxj

ry =
∑v

j=1 wjyj

cj = wj(xj + yj)
T = rx + ry =

∑v
j=1 cj

The chi-squared measure is computed as follows:

d24(x, y) = (
∑v

j=1
(wjxj−E(xj))

2

E(xj)
+

∑v
j=1

(wjyj−E(yj))
2

E(yj)
)W/(

∑v
j=1 wj)

where forj= 1, 2, ...,v

E(xj) = rxcj/T

E(yj) = rycj/T

CHI Squared root of chi-squared
d25(x, y) =

√
d23(x, y)

PHISQ phi-squared
This is the CHISQ dissimilarity normalized by the sum of weights
d26(x, y) = d24(x, y)/(

∑v
j=1 wj)

PHI Squared root of phi-squared
d27(x, y) =

√
d25(x, y)
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Methods Accepting Symmetric Nominal Variables

The following notation is used for computingd28(x, y) to s35(x, y). Notice that only
the non-missing pairs are discussed below; all the pairs with at least one missing
value will be excluded from any of the computations in the following section because
wj = 0, if eitherxj or yj is missing.

M non-missing matches

M =
∑v

j=1 wjδ
j
x,y, where

δj
x,y = 1, if xj = yj

δj
x,y = 0, otherwise

X non-missing mismatches

X =
∑v

j=1 wjδ
j
x,y, where

δj
x,y = 1, if xj 6= yj

δj
x,y = 0, otherwise

N total non-missing pairs

N =
∑v

j=1 wj

HAMMING Hamming distance
d28(x, y) = X

MATCH Simple matching coefficient
s29(x, y) = M/N

DMATCH Simple matching coefficient transformed to Euclidean distance
d30(x, y) =

√
1−M/N =

√
(X/N)

DSQMATCH Simple matching coefficient transformed to squared Euclidean
distanced31(x, y) = 1−M/N = X/N

HAMANN Hamann coefficient
s32(x, y) = (M −X)/N

RT Roger and Tanimoto
s33(x, y) = M/(M + 2X)

SS1 Sokal and Sneath 1
s34(x, y) = 2M/(2M + X)
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SS3 Sokal and Sneath 3. The coefficient between an observations and
itself is always indeterminate (missing) since there is no mismatch.

s35(x, y) = M/X

The following notation is used for computings36(x, y) to d41(x, y). Notice that only
the non-missing pairs are discussed below; all the pairs with at least one missing
value will be excluded from any of the computations in the following section because
wj = 0, if eitherxj or yj is missing.

Also, the observed non-missing data of an asymmetric binary variable can possibly
have only two outcomes: presence or absence. Therefore, the notation,PX (present
mismatches), always has a value of zero for an asymmetric binary variable.

The following methods distinguish between the presence and absence of attributes.

X mismatches with at least one present

X =
∑v

j=1 wjδ
j
x,y, where

δj
x,y = 1, if xj 6= yj and not bothxj and yj are absent

δj
x,y = 0, otherwise

PM present matches

PM =
∑v

j=1 wjδ
j
x,y, where

δj
x,y = 1, if xj = yj and bothxj and yj are present

δj
x,y = 0, otherwise

PX present mismatches

PX =
∑v

j=1 wjδ
j
x,y, where

δj
x,y = 1, if xj 6= yj and bothxj and yj are present

δj
x,y = 0, otherwise

PP both present =PM + PX

P at least one present =PM + X

PAX present-absent mismatches

PAX =
∑v

j=1 wjδ
j
x,y, where

δj
x,y = 1, if xj 6= yj and eitherxj is present andyj is absent or

xj is absent andyj is present

δj
x,y = 0 otherwise

N total non-missing pairs

N =
∑v

j=1 wj
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Methods Accepting Asymmetric Nominal and Ratio Variables

JACCARD Jaccard similarity coefficient

The JACCARD method is equivalent to the SIMRATIO method if
there are only ratio variables; if there are both ratio and asymmetric
nominal variables, the coefficient is computed as sum of the coeffi-
cient from the ratio variables (SIMRATIO) and the coefficient from
the asymmetric nominal variables.

s36(x, y) = s16(x, y) + PM/P

DJACCARD Jaccard dissimilarity coefficient

The DJACCARD method is equivalent to the DISRATIO method
if there are only ratio variables; if there are both ratio and asym-
metric nominal variables, the coefficient is computed as sum of the
coefficient from the ratio variables(DISRATIO) and the coefficient
from the asymmetric nominal variables.

d37(x, y) = d17x, y + X/P

Methods Accepting Asymmetric Nominal Variables

DICE Dice coefficient or Czekanowski/Sorensen similarity coefficient
s38(x, y) = 2PM/(P + PM)

RR Russell and Rao. This is the binary equivalent of the dot product
coefficient.
s39(x, y) = PM/N

BLWNM

BRAYCURTIS Binary Lance and Williams, also known as Bray and Curtis
coefficient

d40(x, y) = X/(PAX + 2PP )

K1 Kulcynski 1. The coefficient between an observations and itself is
always indeterminate (missing) since there is no mismatch.
d41(x, y) = PM/X

Missing Values

Standardizing Variables

Missing values can be replaced by the location measure or by any specified constant
(see the REPLACE option in the PROC DISTANCE statement and the MISSING=
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option in the VAR statement.) If standardization is not mandatory, you can also sup-
press standardization if you want only to replace missing values (see the REPONLY
option in the PROC DISTANCE statement.)

If you specify the NOMISS option, PROC DISTANCE omits observations with any
missing values in the analyzed variables from computation of the location and scale
measures.

Distance Measures

If you specify the NOMISS option, PROC DISTANCE generates missing distance
for observations with missing values. If the NOMISS option is not specified, the sum
of total weights, no matter if an observation is missing or not, will be incorporated to
the the computation of some of the proximity measures. See the“Details” section on
page 1270 for formulas and descriptions.

Formatted versus Unformatted Values

PROC DISTANCE uses the formatted values from a character variable, if the variable
has a format; for example, one assigned by a format statement. PROC DISTANCE
uses the unformatted values from a numeric variable, even if it has a format.

Output Data Sets

OUT= Data Set

The DISTANCE procedure always produces an output data set, regardless of
whether you specify the OUT= option in the PROC DISTANCE statement. PROC
DISTANCE displays no output. Use PROC PRINT, PROC REPORT or some other
SAS reporting tool to print the output data set.

The output data set contains the following variables:

• the ID variable, if any

• the BY variables, if any

• the COPY variables, if any

• the FREQ variable, if any

• the WEIGHT variable, if any

• the new distance variables, named from PREFIX= options along with the ID
values, or from the default values.

OUTSDZ= Data Set

The output data set is a copy of the DATA= data set except that the analyzed variables
have been standardized. Analyzed variables are those listed in the VAR statement.
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Examples

Example 26.1. Divorce Grounds – the Jaccard Coefficient

A wide variety of distance and similarity measures are used in cluster analysis
(Anderberg 1973, Sneath and Sokal 1973). If your data are in coordinate form and
you want to use a non-Euclidean distance for clustering, you can compute a distance
matrix using the DISTANCE procedure.

Similarity measures must be converted to dissimilarities before being used in PROC
CLUSTER. Such conversion can be done in a variety of ways, such as taking recipro-
cals or subtracting from a large value. The choice of conversion method depends on
the application and the similarity measure. If applicable, PROC DISTANCE provides
a corresponding dissimilarity measure for each similarity measure.

In the following example, the observations are states. Binary-valued variables cor-
respond to various grounds for divorce and indicate whether the grounds for divorce
apply in each of the states of the USA. A value of “1” indicates that the ground for
divorce applies and a value of “0” indicates the opposite. The 0-0 matches are treated
totally irrelevant; therefore, each variable has an asymmetric nominal level of mea-
surement. The absence value is 0.

The DISTANCE procedure is used to compute the Jaccard coefficient (Anderberg
1973, pp. 89, 115, and 117) between each pair of states. The Jaccard coefficient is
defined as the number of variables that are coded as 1 for both states divided by the
number of variables that are coded as 1 for either or both states. Since dissimilarity
measures are required by the CLUSTER procedure, the DJACCARD coefficient is
selected.Output 26.1.1displays the distance matrix between the first ten states.

The CENTROID method is used to perform the cluster analysis, and the the resulting
tree diagram from PROC CLUSTER is saved into thetree output data set.Output
26.1.2displays the cluster history.

The TREE procedure generates nine clusters in the output data setout. After being
sorted by the state, theout data set is then merged with the input data setdivorce.
After being sorted by the state, the merged data set is printed to display the cluster
membership as shown inOutput 26.1.3.

options ls=120 ps=60;
data divorce;

title ’Grounds for Divorce’;
input state $15.

(incompat cruelty desertn non_supp alcohol
felony impotenc insanity separate) (1.) @@;

if mod(_n_,2) then input +4 @@; else input;
datalines;

Alabama 111111111 Alaska 111011110
Arizona 100000000 Arkansas 011111111
California 100000010 Colorado 100000000
Connecticut 111111011 Delaware 100000001
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Florida 100000010 Georgia 111011110
Hawaii 100000001 Idaho 111111011
Illinois 011011100 Indiana 100001110
Iowa 100000000 Kansas 111011110
Kentucky 100000000 Louisiana 000001001
Maine 111110110 Maryland 011001111
Massachusetts 111111101 Michigan 100000000
Minnesota 100000000 Mississippi 111011110
Missouri 100000000 Montana 100000000
Nebraska 100000000 Nevada 100000011
New Hampshire 111111100 New Jersey 011011011
New Mexico 111000000 New York 011001001
North Carolina 000000111 North Dakota 111111110
Ohio 111011101 Oklahoma 111111110
Oregon 100000000 Pennsylvania 011001110
Rhode Island 111111101 South Carolina 011010001
South Dakota 011111000 Tennessee 111111100
Texas 111001011 Utah 011111110
Vermont 011101011 Virginia 010001001
Washington 100000001 West Virginia 111011011
Wisconsin 100000001 Wyoming 100000011
;

proc distance data=divorce method=djaccard absent=0 out=distjacc;
var anominal(incompat--separate);
id state;

run;

proc print data=distjacc(obs=10);
id state; var alabama--georgia;
title2 ’First 10 states’;

run;
title2;

proc cluster data=distjacc method=centroid
pseudo outtree=tree;

id state;
var alabama--wyoming;

run;

proc tree data=tree noprint n=9 out=out;
id state;

run;

proc sort;
by state;

run;

data clus;
merge divorce out;
by state;

run;

proc sort;
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by cluster;
run;

proc print;
id state;
var incompat--separate;
by cluster;

run;

Output 26.1.1. Distance Matrix Based on the Jaccard Coefficient
Grounds for Divorce

First 10 states

state Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia

Alabama 0.00000 . . . . . . . . .
Alaska 0.22222 0.00000 . . . . . . . .
Arizona 0.88889 0.85714 0.00000 . . . . . . .
Arkansas 0.11111 0.33333 1.00000 0.00000 . . . . . .
California 0.77778 0.71429 0.50000 0.88889 0.00000 . . . . .
Colorado 0.88889 0.85714 0.00000 1.00000 0.50000 0.00000 . . . .
Connecticut 0.11111 0.33333 0.87500 0.22222 0.75000 0.87500 0.00000 . . .
Delaware 0.77778 0.87500 0.50000 0.88889 0.66667 0.50000 0.75000 0.00000 . .
Florida 0.77778 0.71429 0.50000 0.88889 0.00000 0.50000 0.75000 0.66667 0.00000 .
Georgia 0.22222 0.00000 0.85714 0.33333 0.71429 0.85714 0.33333 0.87500 0.71429 0



Example 26.1. Divorce Grounds – the Jaccard Coefficient � 1281

Output 26.1.2. Clustering History
The CLUSTER Procedure

Centroid Hierarchical Cluster Analysis

Root-Mean-Square Distance Between Observations = 0.694873

Cluster History
Norm T
Cent i

NCL ---------Clusters Joined---------- FREQ PSF PST2 Dist e

49 Arizona Colorado 2 . . 0 T
48 California Florida 2 . . 0 T
47 Alaska Georgia 2 . . 0 T
46 Delaware Hawaii 2 . . 0 T
45 Connecticut Idaho 2 . . 0 T
44 CL49 Iowa 3 . . 0 T
43 CL47 Kansas 3 . . 0 T
42 CL44 Kentucky 4 . . 0 T
41 CL42 Michigan 5 . . 0 T
40 CL41 Minnesota 6 . . 0 T
39 CL43 Mississippi 4 . . 0 T
38 CL40 Missouri 7 . . 0 T
37 CL38 Montana 8 . . 0 T
36 CL37 Nebraska 9 . . 0 T
35 North Dakota Oklahoma 2 . . 0 T
34 CL36 Oregon 10 . . 0 T
33 Massachusetts Rhode Island 2 . . 0 T
32 New Hampshire Tennessee 2 . . 0 T
31 CL46 Washington 3 . . 0 T
30 CL31 Wisconsin 4 . . 0 T
29 Nevada Wyoming 2 . . 0
28 Alabama Arkansas 2 1561 . 0.1599 T
27 CL33 CL32 4 479 . 0.1799 T
26 CL39 CL35 6 265 . 0.1799 T
25 CL45 West Virginia 3 231 . 0.1799
24 Maryland Pennsylvania 2 199 . 0.2399
23 CL28 Utah 3 167 3.2 0.2468
22 CL27 Ohio 5 136 5.4 0.2698
21 CL26 Maine 7 111 8.9 0.2998
20 CL23 CL21 10 75.2 8.7 0.3004
19 CL25 New Jersey 4 71.8 6.5 0.3053 T
18 CL19 Texas 5 69.1 2.5 0.3077
17 CL20 CL22 15 48.7 9.9 0.3219
16 New York Virginia 2 50.1 . 0.3598
15 CL18 Vermont 6 49.4 2.9 0.3797
14 CL17 Illinois 16 47.0 3.2 0.4425
13 CL14 CL15 22 29.2 15.3 0.4722
12 CL48 CL29 4 29.5 . 0.4797 T
11 CL13 CL24 24 27.6 4.5 0.5042
10 CL11 South Dakota 25 28.4 2.4 0.5449

9 Louisiana CL16 3 30.3 3.5 0.5844
8 CL34 CL30 14 23.3 . 0.7196
7 CL8 CL12 18 19.3 15.0 0.7175
6 CL10 South Carolina 26 21.4 4.2 0.7384
5 CL6 New Mexico 27 24.0 4.7 0.8303
4 CL5 Indiana 28 28.9 4.1 0.8343
3 CL4 CL9 31 31.7 10.9 0.8472
2 CL3 North Carolina 32 55.1 4.1 1.0017
1 CL2 CL7 50 . 55.1 1.0663



1282 � Chapter 26. The DISTANCE Procedure

Output 26.1.3. Cluster Membership
------------------------------------------------------ CLUSTER=1 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

Arizona 1 0 0 0 0 0 0 0 0
Colorado 1 0 0 0 0 0 0 0 0
Iowa 1 0 0 0 0 0 0 0 0
Kentucky 1 0 0 0 0 0 0 0 0
Michigan 1 0 0 0 0 0 0 0 0
Minnesota 1 0 0 0 0 0 0 0 0
Missouri 1 0 0 0 0 0 0 0 0
Montana 1 0 0 0 0 0 0 0 0
Nebraska 1 0 0 0 0 0 0 0 0
Oregon 1 0 0 0 0 0 0 0 0

------------------------------------------------------ CLUSTER=2 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

California 1 0 0 0 0 0 0 1 0
Florida 1 0 0 0 0 0 0 1 0
Nevada 1 0 0 0 0 0 0 1 1
Wyoming 1 0 0 0 0 0 0 1 1

------------------------------------------------------ CLUSTER=3 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

Alabama 1 1 1 1 1 1 1 1 1
Alaska 1 1 1 0 1 1 1 1 0
Arkansas 0 1 1 1 1 1 1 1 1
Connecticut 1 1 1 1 1 1 0 1 1
Georgia 1 1 1 0 1 1 1 1 0
Idaho 1 1 1 1 1 1 0 1 1
Illinois 0 1 1 0 1 1 1 0 0
Kansas 1 1 1 0 1 1 1 1 0
Maine 1 1 1 1 1 0 1 1 0
Maryland 0 1 1 0 0 1 1 1 1
Massachusetts 1 1 1 1 1 1 1 0 1
Mississippi 1 1 1 0 1 1 1 1 0
New Hampshire 1 1 1 1 1 1 1 0 0
New Jersey 0 1 1 0 1 1 0 1 1
North Dakota 1 1 1 1 1 1 1 1 0
Ohio 1 1 1 0 1 1 1 0 1
Oklahoma 1 1 1 1 1 1 1 1 0
Pennsylvania 0 1 1 0 0 1 1 1 0
Rhode Island 1 1 1 1 1 1 1 0 1
South Dakota 0 1 1 1 1 1 0 0 0
Tennessee 1 1 1 1 1 1 1 0 0
Texas 1 1 1 0 0 1 0 1 1
Utah 0 1 1 1 1 1 1 1 0
Vermont 0 1 1 1 0 1 0 1 1
West Virginia 1 1 1 0 1 1 0 1 1

------------------------------------------------------ CLUSTER=4 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

Delaware 1 0 0 0 0 0 0 0 1
Hawaii 1 0 0 0 0 0 0 0 1
Washington 1 0 0 0 0 0 0 0 1
Wisconsin 1 0 0 0 0 0 0 0 1

------------------------------------------------------ CLUSTER=5 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

Louisiana 0 0 0 0 0 1 0 0 1
New York 0 1 1 0 0 1 0 0 1
Virginia 0 1 0 0 0 1 0 0 1
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------------------------------------------------------ CLUSTER=6 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

South Carolina 0 1 1 0 1 0 0 0 1

------------------------------------------------------ CLUSTER=7 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

New Mexico 1 1 1 0 0 0 0 0 0

------------------------------------------------------ CLUSTER=8 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

Indiana 1 0 0 0 0 1 1 1 0

------------------------------------------------------ CLUSTER=9 -------------------------------------------------------

state incompat cruelty desertn non_supp alcohol felony impotenc insanity separate

North Carolina 0 0 0 0 0 0 1 1 1

Example 26.2. Financial Data – Stock Dividends

The following data set contains the average dividend yields for 15 utility stocks in
the U.S. The observations are names of the companies, and the variables correspond
to the annual dividend yields for the period of 1986-1990. The objective is to group
similar stocks into clusters.

Before the cluster analysis is performed, the correlation similarity is chosen for mea-
suring the closeness between each observation. Since distance type of measures are
required by the CLUSTER procedure, METHOD= DCORR is used in the PROC
DISTANCE statement to transform the correlation measures to the distance mea-
sures. Notice that inOutput 26.2.1, all the values in the distance matrix are between
0. and 2.

The macro functiondo–cluster performs cluster analysis and presents the results in
graphs. The CLUSTER procedure performs hierarchical clustering using agglomera-
tive methods based on the distance data created from the previous PROC DISTANCE
statement. The resulting tree diagrams can be saved into an output data set and later
be plotted by the TREE procedure. Since the CCC statistics is not suitable for dis-
tance type of data, only the Pseudo Statistics is requested to identify the number of
clusters.

Two clustering methods are invoked in thedo–cluster macro: the WARD’s and the
average linkage methods. Since the results of the Pseudo T statistics from both the
WARD’s and the average linkage methods contain many missing values, only the
graphs of the Pseudo F statistics versus the number of clusters are plotted.

BothOutput 26.2.2andOutput 26.2.3suggest a possible clusters of 4, and the result-
ing clusters are agreed by both clustering methods as shown fromOutput 26.2.4to
Output 26.2.5. The four clusters are:
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• Cincinnati G&E and Detroit Edison

• Texas Utilities and Pennsylvania Power & Light

• Union Electric, Iowa-Ill Gas & Electric, Oklahoma Gas & Electric, and
Wisconsin Energy.

• Orange & Rockland Utilities, Kentucky Utilities, Kansas Power & Light,
Allegheny Power, Green Mountain Power, Dominion Resources, and
Minnesota Power & Light.

data stock;
title ’Stock Dividends’;
input compname &$26. div_1986 div_1987 div_1988

div_1989 div_1990;
datalines;

Cincinnati G&E 8.4 8.2 8.4 8.1 8.0
Texas Utilities 7.9 8.9 10.4 8.9 8.3
Detroit Edison 9.7 10.7 11.4 7.8 6.5
Orange & Rockland Utilities 6.5 7.2 7.3 7.7 7.9
Kentucky Utilities 6.5 6.9 7.0 7.2 7.5
Kansas Power & Light 5.9 6.4 6.9 7.4 8.0
Union Electric 7.1 7.5 8.4 7.8 7.7
Dominion Resources 6.7 6.9 7.0 7.0 7.4
Allegheny Power 6.7 7.3 7.8 7.9 8.3
Minnesota Power & Light 5.6 6.1 7.2 7.0 7.5
Iowa-Ill Gas & Electric 7.1 7.5 8.5 7.8 8.0
Pennsylvania Power & Light 7.2 7.6 7.7 7.4 7.1
Oklahoma Gas & Electric 6.1 6.7 7.4 6.7 6.8
Wisconsin Energy 5.1 5.7 6.0 5.7 5.9
Green Mountain Power 7.1 7.4 7.8 7.8 8.3
;

proc distance data=stock method=dcorr out=distdcorr;
var interval(div_1986 div_1987 div_1988 div_1989 div_1990);
id compname;

run;

proc print data=distdcorr;
id compname;
title2 ’Distance Matrix for 15 Utility Stocks’;

run;
title2;

%macro do_cluster(clusmtd);

goptions vsize=5in hsize=5in htitle=2pct htext=1.5pct;
%let clusmtd = %upcase(&clusmtd);

proc cluster data=distdcorr method=&clusmtd outtree=Tree pseudo
id compname;

run;

/* plot pseudo statistics vs number of cluster */
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legend1 frame cframe=white cborder=black position=center
value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none order=(0 to 15);

proc gplot;
title2 "Cluster Method= &clusmtd";
plot _psf_*_ncl_=’F’ /
frame cframe=white legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc tree data=Tree horizontal;
title2 "Cluster Method= &clusmtd";
id compname;

run;
%mend;

%do_cluster(ward);
%do_cluster(average);

Output 26.2.1. Distance Matrix Based on the DCORR Coefficient
Stock Dividends

Distance Matrix for 15 Utility Stocks

Orange___ Kansas_
Cincinnati_ Texas_ Detroit_ Rockland_ Kentucky_ Power___ Union_ Dominion_

compname G_E Utilities Edison Utilitie Utilities Light Electric Resources

Cincinnati G&E 0.00000 . . . . . . .
Texas Utilities 0.82056 0.00000 . . . . . .
Detroit Edison 0.40511 0.65453 0.00000 . . . . .
Orange & Rockland Utilitie 1.35380 0.88583 1.27306 0.00000 . . . .
Kentucky Utilities 1.35581 0.92539 1.29382 0.12268 0.00000 . . .
Kansas Power & Light 1.34227 0.94371 1.31696 0.19905 0.12874 0.00000 . .
Union Electric 0.98516 0.29043 0.89048 0.68798 0.71824 0.72082 0.00000 .
Dominion Resources 1.32945 0.96853 1.29016 0.33290 0.21510 0.24189 0.76587 0.00000
Allegheny Power 1.30492 0.81666 1.24565 0.17844 0.15759 0.17029 0.58452 0.27819
Minnesota Power & Light 1.24069 0.74082 1.20432 0.32581 0.30462 0.27231 0.48372 0.35733
Iowa-Ill Gas & Electric 1.04924 0.43100 0.97616 0.61166 0.61760 0.61736 0.16923 0.63545
Pennsylvania Power & Light 0.74931 0.37821 0.44256 1.03566 1.08878 1.12876 0.63285 1.14354
Oklahoma Gas & Electric 1.00604 0.30141 0.86200 0.68021 0.70259 0.73158 0.17122 0.72977
Wisconsin Energy 1.17988 0.54830 1.03081 0.45013 0.47184 0.53381 0.37405 0.51969
Green Mountain Power 1.30397 0.88063 1.27176 0.26948 0.17909 0.15377 0.64869 0.17360

Minnesota_ Iowa_Ill_ Oklahoma_ Green_
Allegheny_ Power___ Gas___ Pennsylvania_ Gas___ Wisconsin_ Mountain_

compname Power Light Electric Power___Light Electric Energy Power

Cincinnati G&E . . . . . . .
Texas Utilities . . . . . . .
Detroit Edison . . . . . . .
Orange & Rockland Utilitie . . . . . . .
Kentucky Utilities . . . . . . .
Kansas Power & Light . . . . . . .
Union Electric . . . . . . .
Dominion Resources . . . . . . .
Allegheny Power 0.00000 . . . . . .
Minnesota Power & Light 0.15615 0.00000 . . . . .
Iowa-Ill Gas & Electric 0.47900 0.36368 0.00000 . . . .
Pennsylvania Power & Light 1.02358 0.99384 0.75596 0.00000 . . .
Oklahoma Gas & Electric 0.58391 0.50744 0.19673 0.60216 0.00000 . .
Wisconsin Energy 0.37522 0.36319 0.30259 0.76085 0.28070 0.00000 .
Green Mountain Power 0.13958 0.19370 0.52083 1.09269 0.64175 0.44814 0
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Output 26.2.2. Pseudo F versus Number of Clusters when METHOD= WARD

F

F F

F

F

F

F

F
F

F

F

F

F

Output 26.2.3. Pseudo F versus Number of Clusters when METHOD= AVERAGE

F

F

F

F
F

F

F

F
FF F

F

F



Example 26.2. Financial Data – Stock Dividends � 1287

Output 26.2.4. Tree Diagram of Clusters versus Semi-Partial R-Square Values
when METHOD= WARD

Output 26.2.5. Tree Diagram of Clusters versus Average Distance Between
Clusters when METHOD= AVERAGE
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Chapter 27
The FACTOR Procedure
Overview

The FACTOR procedure performs a variety of common factor and component anal-
yses and rotations. Input can be multivariate data, a correlation matrix, a covariance
matrix, a factor pattern, or a matrix of scoring coefficients. The procedure can factor
either the correlation or covariance matrix, and you can save most results in an output
data set.

PROC FACTOR can process output from other procedures. For example, it can rotate
the canonical coefficients from multivariate analyses in the GLM procedure.

The methods for factor extraction are principal component analysis, principal fac-
tor analysis, iterated principal factor analysis, unweighted least-squares factor anal-
ysis, maximum likelihood (canonical) factor analysis, alpha factor analysis, image
component analysis, and Harris component analysis. A variety of methods for prior
communality estimation is also available.

Specific methods for orthogonal rotation are varimax, quartimax, biquartimax, equa-
max, parsimax, and factor parsimax. Oblique versions of these methods are also
available. In addition, quartimin, biquartimin, and covarimin methods for (direct)
oblique rotation are available. General methods for orthogonal rotation are orthomax
with user-specified gamma, Crawford-Ferguson family with user-specified weights
on variable parsimony and factor parsimony, and generalized Crawford-Ferguson
family with user-specified weights. General methods for oblique rotation are di-
rect oblimin with user-specified tau, Crawford-Ferguson family with user-specified
weights on variable parsimony and factor parsimony, generalized Crawford-Ferguson
family with user-specified weights, promax with user-specified exponent, Harris-
Kaiser case II with user-specified exponent, and Procrustean with a user-specified
target pattern.

Output includes means, standard deviations, correlations, Kaiser’s measure of sam-
pling adequacy, eigenvalues, a scree plot, eigenvectors, prior and final communality
estimates, the unrotated factor pattern, residual and partial correlations, the rotated
primary factor pattern, the primary factor structure, interfactor correlations, the ref-
erence structure, reference axis correlations, the variance explained by each factor
both ignoring and eliminating other factors, plots of both rotated and unrotated fac-
tors, squared multiple correlation of each factor with the variables, standard error
estimates, confidence limits, coverage displays, and scoring coefficients.

Any topics that are not given explicit references are discussed in Mulaik (1972) or
Harman (1976).
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Background
SeeChapter 58, “The PRINCOMP Procedure,”for a discussion of principal compo-
nent analysis. SeeChapter 19, “The CALIS Procedure,”for a discussion of confir-
matory factor analysis.

Common factor analysis was invented by Spearman (1904). Kim and Mueller
(1978a, 1978b) provide a very elementary discussion of the common factor model.
Gorsuch (1974) contains a broad survey of factor analysis, and Gorsuch (1974) and
Cattell (1978) are useful as guides to practical research methodology. Harman (1976)
gives a lucid discussion of many of the more technical aspects of factor analysis, espe-
cially oblique rotation. Morrison (1976) and Mardia, Kent, and Bibby (1979) provide
excellent statistical treatments of common factor analysis. Mulaik (1972) is the most
thorough and authoritative general reference on factor analysis and is highly recom-
mended to anyone familiar with matrix algebra. Stewart (1981) gives a nontechnical
presentation of some issues to consider when deciding whether or not a factor analy-
sis may be appropriate.

A frequent source of confusion in the field of factor analysis is the termfactor. It
sometimes refers to a hypothetical, unobservable variable, as in the phrasecommon
factor. In this sense,factor analysismust be distinguished from component analy-
sis since a component is an observable linear combination.Factor is also used in
the sense ofmatrix factor,in that one matrix is a factor of a second matrix if the first
matrix multiplied by its transpose equals the second matrix. In this sense,factor anal-
ysisrefers to all methods of data analysis using matrix factors, including component
analysis and common factor analysis.

A common factoris an unobservable, hypothetical variable that contributes to the
variance of at least two of the observed variables. The unqualified term “factor” often
refers to a common factor. Aunique factoris an unobservable, hypothetical variable
that contributes to the variance of only one of the observed variables. The model for
common factor analysis posits one unique factor for each observed variable.

The equation for the common factor model is

yij = xi1b1j + xi2b2j + · · ·+ xiqbqj + eij

where

yij is the value of theith observation on thejth variable

xik is the value of theith observation on thekth common factor

bkj is the regression coefficient of thekth common factor for predicting thejth
variable

eij is the value of theith observation on thejth unique factor

q is the number of common factors

It is assumed, for convenience, that all variables have a mean of 0. In matrix terms,
these equations reduce to

Y = XB + E
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In the preceding equation,X is the matrix of factor scores, andB′ is the factor pattern.

There are two critical assumptions:

• The unique factors are uncorrelated with each other.

• The unique factors are uncorrelated with the common factors.

In principal component analysis, the residuals are generally correlated with each
other. In common factor analysis, the unique factors play the role of residuals and
are defined to be uncorrelated both with each other and with the common factors.
Each common factor is assumed to contribute to at least two variables; otherwise, it
would be a unique factor.

When the factors are initially extracted, it is also assumed, for convenience, that the
common factors are uncorrelated with each other and have unit variance. In this case,
the common factor model implies that the covariancesjk between thejth andkth
variables,j 6= k, is given by

sjk = b1jb1k + b2jb2k + · · ·+ bqjbqk

or

S = B′B + U2

whereS is the covariance matrix of the observed variables, andU2 is the diagonal
covariance matrix of the unique factors.

If the original variables are standardized to unit variance, the preceding formula yields
correlations instead of covariances. It is in this sense that common factors explain the
correlations among the observed variables. The difference between the correlation
predicted by the common factor model and the actual correlation is theresidual cor-
relation. A good way to assess the goodness-of-fit of the common factor model is to
examine the residual correlations.

The common factor model implies that the partial correlations among the variables,
removing the effects of the common factors, must all be 0. When the common factors
are removed, only unique factors, which are by definition uncorrelated, remain.

The assumptions of common factor analysis imply that the common factors are, in
general, not linear combinations of the observed variables. In fact, even if the data
contain measurements on the entire population of observations, you cannot compute
the scores of the observations on the common factors. Although the common factor
scores cannot be computed directly, they can be estimated in a variety of ways.

The problem of factor score indeterminacy has led several factor analysts to propose
methods yielding components that can be considered approximations to common fac-
tors. Since these components are defined as linear combinations, they are computable.
The methods include Harris component analysis and image component analysis. The
advantage of producing determinate component scores is offset by the fact that, even
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if the data fit the common factor model perfectly, component methods do not gener-
ally recover the correct factor solution. You should not use any type of component
analysis if you really want a common factor analysis (Dziuban and Harris 1973; Lee
and Comrey 1979).

After the factors are estimated, it is necessary to interpret them. Interpretation usually
means assigning to each common factor a name that reflects the salience of the factor
in predicting each of the observed variables, that is, the coefficients in the pattern
matrix corresponding to the factor. Factor interpretation is a subjective process. It
can sometimes be made less subjective byrotating the common factors, that is, by
applying a nonsingular linear transformation. A rotated pattern matrix in which all
the coefficients are close to 0 or±1 is easier to interpret than a pattern with many
intermediate elements. Therefore, most rotation methods attempt to optimize a sim-
plicity function of the rotated pattern matrix that measures, in some sense, how close
the elements are to 0 or±1. Because the loading estimates are subject to sampling
variability, it is useful to obtain the standard error estimates for the loadings for as-
sessing the uncertainty due to random sampling. Notice that the salience of a factor
loading refers to the magnitude of the loading, while statistical significance refers
to the statistical evidence against a particular hypothetical value. A loading signifi-
cantly different from 0 does not automatically mean it must be salient. For example,
if salience is defined as a magnitude bigger than 0.4 while the entire 95% confidence
interval for a loading lies between 0.1 and 0.3, the loading is statistically signifi-
cant larger than 0 but it is not salient. Under the maximum likelihood method, you
can obtain standard errors and confidence intervals for judging the salience of factor
loadings.

After the initial factor extraction, the common factors are uncorrelated with each
other. If the factors are rotated by anorthogonal transformation,the rotated factors
are also uncorrelated. If the factors are rotated by anoblique transformation,the
rotated factors become correlated. Oblique rotations often produce more useful pat-
terns than do orthogonal rotations. However, a consequence of correlated factors is
that there is no single unambiguous measure of the importance of a factor in explain-
ing a variable. Thus, for oblique rotations, the pattern matrix does not provide all the
necessary information for interpreting the factors; you must also examine thefactor
structureand thereference structure.

Rotating a set of factors does not change the statistical explanatory power of the
factors. You cannot say that any rotation is better than any other rotation from a
statistical point of view; all rotations, orthogonal or oblique, are equally good statisti-
cally. Therefore, the choice among different rotations must be based on nonstatistical
grounds. For most applications, the preferred rotation is that which is most easily
interpretable, or which is most compatible with substantive theories.

If two rotations give rise to different interpretations, those two interpretations must
not be regarded as conflicting. Rather, they are two different ways of looking at the
same thing, two different points of view in the common-factor space. Any conclusion
that depends on one and only one rotation being correct is invalid.
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Outline of Use

Principal Component Analysis

One important type of analysis performed by the FACTOR procedure is principal
component analysis. The statements

proc factor;
run;

result in a principal component analysis. The output includes all the eigenvalues and
the pattern matrix for eigenvalues greater than one.

Most applications require additional output. For example, you may want to compute
principal component scores for use in subsequent analyses or obtain a graphical aid to
help decide how many components to keep. You can save the results of the analysis
in a permanent SAS data library by using the OUTSTAT= option. (Refer to the
SAS Language Reference: Dictionaryfor more information on permanent SAS data
libraries and librefs.) Assuming that your SAS data library has the librefsave and
that the data are in a SAS data set calledraw, you could do a principal component
analysis as follows:

proc factor data=raw method=principal scree mineigen=0 score
outstat=save.fact_all;

run;

The SCREE option produces a plot of the eigenvalues that is helpful in deciding how
many components to use. The MINEIGEN=0 option causes all components with
variance greater than zero to be retained. The SCORE option requests that scoring
coefficients be computed. The OUTSTAT= option saves the results in a specially
structured SAS data set. The name of the data set, in this casefact–all, is arbitrary.
To compute principal component scores, use the SCORE procedure:

proc score data=raw score=save.fact_all out=save.scores;
run;

The SCORE procedure uses the data and the scoring coefficients that are saved in
save.fact–all to compute principal component scores. The component scores are
placed in variables namedFactor1, Factor2, . . . , Factorn and are saved in the data
setsave.scores. If you know ahead of time how many principal components you
want to use, you can obtain the scores directly from PROC FACTOR by specifying
the NFACTORS= and OUT= options. To get scores from three principal components,
specify

proc factor data=raw method=principal
nfactors=3 out=save.scores;

run;
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To plot the scores for the first three components, use the PLOT procedure:

proc plot;
plot factor2*factor1 factor3*factor1 factor3*factor2;

run;

Principal Factor Analysis

The simplest and computationally most efficient method of common factor analysis
is principal factor analysis, which is obtained the same way as principal component
analysis except for the use of the PRIORS= option. The usual form of the initial
analysis is

proc factor data=raw method=principal scree
mineigen=0 priors=smc outstat=save.fact_all;

run;

The squared multiple correlations (SMC) of each variable with all the other variables
are used as the prior communality estimates. If your correlation matrix is singu-
lar, you should specify PRIORS=MAX instead of PRIORS=SMC. The SCREE and
MINEIGEN= options serve the same purpose as in the preceding principal compo-
nent analysis. Saving the results with the OUTSTAT= option enables you to examine
the eigenvalues and scree plot before deciding how many factors to rotate and to try
several different rotations without re-extracting the factors. The OUTSTAT= data set
is automatically marked TYPE=FACTOR, so the FACTOR procedure realizes that it
contains statistics from a previous analysis instead of raw data.

After looking at the eigenvalues to estimate the number of factors, you can try some
rotations. Two and three factors can be rotated with the following statements:

proc factor data=save.fact_all method=principal n=2
rotate=promax reorder score outstat=save.fact_2;

proc factor data=save.fact_all method=principal n=3
rotate=promax reorder score outstat=save.fact_3;

run;

The output data set from the previous run is used as input for these analyses. The
options N=2 and N=3 specify the number of factors to be rotated. The specifica-
tion ROTATE=PROMAX requests a promax rotation, which has the advantage of
providing both orthogonal and oblique rotations with only one invocation of PROC
FACTOR. The REORDER option causes the variables to be reordered in the output
so that variables associated with the same factor appear next to each other.

You can now compute and plot factor scores for the two-factor promax-rotated solu-
tion as follows:

proc score data=raw score=save.fact_2 out=save.scores;
proc plot;

plot factor2*factor1;
run;
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Maximum Likelihood Factor Analysis

Although principal factor analysis is perhaps the most commonly used method of
common factor analysis, most statisticians prefer maximum likelihood (ML) factor
analysis (Lawley and Maxwell 1971). The ML method of estimation has desirable
asymptotic properties (Bickel and Doksum 1977) and produces better estimates than
principal factor analysis in large samples. You can test hypotheses about the number
of common factors using the ML method. You can also obtain standard error and
confidence interval estimates for many classes of rotated or unrotated factor loadings,
factor correlations, and structure loadings under the ML theory.

The unrotated ML solution is equivalent to Rao’s (1955) canonical factor solution
and Howe’s solution maximizing the determinant of the partial correlation matrix
(Morrison 1976). Thus, as a descriptive method, ML factor analysis does not require
a multivariate normal distribution. The validity of Bartlett’sχ2 test for the number of
factors does require approximate normality plus additional regularity conditions that
are usually satisfied in practice (Geweke and Singleton 1980).

Lawley and Maxwell (1971) derive the standard error formulas for unrotated load-
ings, while Archer and Jennrich (1973) and Jennrich (1973, 1974) derive the stan-
dard error formulas for several classes of rotated solutions. Extended results appear
in Browne, Cudeck, Tateneni, and Mels (1998), Hayashi and Yung (1999), and Yung
and Hayashi (2001). A combination of these methods is used to compute standard
errors in an efficient manner. Confidence intervals are computed using the asymp-
totic normality of the estimates. To ensure that the confidence intervals are range
respecting, transformation methods due to Browne (1982) are used. The validity of
the standard error estimates and confidence limits requires the assumptions of multi-
variate normality and a fixed number of factors.

The ML method is more computationally demanding than principal factor analysis
for two reasons. First, the communalities are estimated iteratively, and each iteration
takes about as much computer time as principal factor analysis. The number of it-
erations typically ranges from about five to twenty. Second, if you want to extract
different numbers of factors, as is often the case, you must run the FACTOR proce-
dure once for each number of factors. Therefore, an ML analysis can take 100 times
as long as a principal factor analysis. This does not include the time for computing
standard error estimates, which is even more computationally demanding. For anal-
yses with less than 35 variables, the computing time for the ML method, including
the computation of standard errors, usually ranges from a few seconds to well under
a minute. This seems to be a reasonable performance.

You can use principal factor analysis to get a rough idea of the number of factors
before doing an ML analysis. If you think that there are between one and three
factors, you can use the following statements for the ML analysis:
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proc factor data=raw method=ml n=1
outstat=save.fact1;

run;
proc factor data=raw method=ml n=2 rotate=promax

outstat=save.fact2;
run;
proc factor data=raw method=ml n=3 rotate=promax

outstat=save.fact3;
run;

The output data sets can be used for trying different rotations, computing scoring
coefficients, or restarting the procedure in case it does not converge within the allotted
number of iterations.

If you can determine how many factors should be retained before an analysis, you
can get the standard errors and confidence limits to aid interpretations for the ML
analysis:

proc factor data=raw method=ml n=3 rotate=quartimin se
cover=.4;

run;

In the analysis, you define salience as a magnitude greater than 0.4. You can then use
the coverage displays to determine the salience. See the section“Confidence Intervals
and the Salience of Factor Loadings”on page 1327 for more details.

The ML method cannot be used with a singular correlation matrix, and it is especially
prone to Heywood cases. (See the section“Heywood Cases and Other Anomalies”
on page 1332 for a discussion of Heywood cases.) If you have problems with ML,
the best alternative is to use the METHOD=ULS option for unweighted least-squares
factor analysis.

Factor Rotation

After the initial factor extraction, the factors are uncorrelated with each other. If
the factors are rotated by anorthogonal transformation,the rotated factors are also
uncorrelated. If the factors are rotated by anoblique transformation,the rotated
factors become correlated. Oblique rotations often produce more useful patterns than
do orthogonal rotations. However, a consequence of correlated factors is that there is
no single unambiguous measure of the importance of a factor in explaining a variable.
Thus, for oblique rotations, the pattern matrix does not provide all the necessary
information for interpreting the factors; you must also examine thefactor structure
and thereference structure.

Nowadays, most rotations are done analytically. There are many choices for orthogo-
nal and oblique rotations. An excellent summary of a wide class of analytic rotations
is in Crawford and Ferguson (1970). The Crawford-Ferguson family of orthogonal
rotations includes the orthomax rotation as a subclass and the popular varimax ro-
tation as a special case. For example, assuming that there are nine variables in the
analysis, the following four specifications for orthogonal rotations give the same re-
sults:
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/* Orthogonal Crawford-Ferguson Family with
variable parsimony weight = 8
factor parsimony weight = 1 */

proc factor data=raw method=ml n=3 rotate=orthcf(8,1);
run;

/* Orthomax without the GAMMA= option */
proc factor data=raw method=ml n=3 rotate=orthomax(1);
run;

/* Orthomax without the GAMMA= option */
proc factor data=raw method=ml n=3 rotate=orthomax gamma=1;
run;

/* Varimax */
proc factor data=raw method=ml n=3 rotate=varimax;
run;

You can also get the oblique versions of the varimax in two equivalent ways:

/* Oblique Crawford-Ferguson Family with
variable parsimony weight = 8
factor parsimony weight = 1; */

proc factor data=raw method=ml n=3 rotate=oblicf(8,1);
run;

/* Oblique Varimax */
proc factor data=raw method=ml n=3 rotate=obvarimax;
run;

Jennrich (1973) proposes a generalized Crawford-Ferguson family that includes the
Crawford-Ferguson family and the (direct) oblimin family (refer to Harman 1976) as
subclasses. The more well-known quartimin rotation is a special case of the oblimin
class, and hence a special case of the generalized Crawford-Ferguson family. For
example, the following four specifications of oblique rotations are equivalent:

/* Oblique generalized Crawford-Ferguson Family
with weights 0, 1, 0 , -1 */

proc factor data=raw method=ml n=3 rotate=obligencf(0,1,0,-1);
run;

/* Oblimin family without the TAU= option */
proc factor data=raw method=ml n=3 rotate=oblimin(0);
run;

/* Oblimin family with the TAU= option */
proc factor data=raw method=ml n=3 rotate=oblimin tau=0;
run;

/* Quartimin */
proc factor data=raw method=ml n=3 rotate=quartimin;
run;

In addition to the generalized Crawford-Ferguson family, the available oblique ro-
tation methods include Harris-Kaiser, promax, and Procrustean. See the section
“Simplicity Functions for Rotations”on page 1329 for details about the definitions
of various rotations. Refer to Harman (1976) and Mulaik (1972) for further informa-
tion.
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Getting Started

The following example demonstrates how you can use the FACTOR procedure to
perform common factor analysis and use a transformation to rotate the extracted fac-
tors.

In this example, 103 police officers were rated by their supervisors on 14 scales (vari-
ables). You conduct a common factor analysis on these variables to see what latent
factors are operating behind these ratings. The overall rating variable is excluded
from the factor analysis.

The following DATA step creates the SAS data setjobratings:

options validvarname=any;
data jobratings;

input (’Communication Skills’n
’Problem Solving’n
’Learning Ability’n
’Judgment Under Pressure’n
’Observational Skills’n
’Willingness to Confront Problems’n
’Interest in People’n
’Interpersonal Sensitivity’n
’Desire for Self-Improvement’n
’Appearance’n
’Dependability’n
’Physical Ability’n
’Integrity’n
’Overall Rating’n) (1.);

datalines;
26838853879867
74758876857667
56757863775875
67869777988997
99997798878888
89897899888799
89999889899798
87794798468886
35652335143113
89888879576867
76557899446397
97889998898989
76766677598888
77667676779677
63839932588856
25738811284915
88879966797988
87979877959679
87989975878798
99889988898888
78876765687677
88889888899899
88889988878988
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67646577384776
78778788799997
76888866768667
67678665746776
33424476664855
65656765785766
54566676565866
56655566656775
88889988868887
89899999898799
98889999899899
57554776468878
53687777797887
68666716475767
78778889798997
67364767565846
77678865886767
68698955669998
55546866663886
68888999998989
97787888798999
76677899799997
44754687877787
77876678798888
76668778799797
57653634361543
76777745653656
76766665656676
88888888878789
88977888869778
58894888747886
58674565473676
76777767777777
77788878789798
98989987999868
66729911474713
98889976999988
88786856667748
77868887897889
99999986999999
46688587616886
66755778486776
87777788889797
65666656545976
73574488887687
74755556586596
76677778789797
87878746777667
86776955874877
77888767778678
65778787778997
58786887787987
65787766676778
86777875468777
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67788877757777
77778967855867
67887876767777
24786585535866
46532343542533
35566766676784
11231214211211
76886588536887
57784788688589
56667766465666
66787778778898
77687998877997
76668888546676
66477987589998
86788976884597
77868765785477
99988888987888
65948933886457
99999877988898
96636736876587
98676887798968
87878877898979
88897888888788
99997899799799
99899899899899
76656399567486
;

The following statements invoke the FACTOR procedure:

proc factor data=jobratings(drop=’Overall Rating’n) priors=smc
rotate=varimax;

run;

The DATA= option in PROC FACTOR specifies the SAS data setjobratings as the
input data set. The DROP= option drops theOverall Rating variable from the anal-
ysis. To conduct a common factor analysis, you need to set the prior communality
estimate to less than one for each variable. Otherwise, the factor solution would
simply be a recast of the principal components solution, in which “factors” are lin-
ear combinations of observed variables. However, in the common factor model you
always assume that observed variables are functions of underlying factors. In this
example, the PRIORS= option specifies that the squared multiple correlations (SMC)
of each variable with all the other variables are used as the prior communality esti-
mates. Note that squared multiple correlations are usually less than one. By default,
the principal factor extraction is used if the METHOD= option is not specified. To
facilitate interpretations, the ROTATE= option specifies the VARIMAX orthogonal
factor rotation to be used.

The output from the factor analysis is displayed in the following figures.
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The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

Judgment
Communication Problem Learning Under Observational

Skills Solving Ability Pressure Skills

0.62981394 0.58657431 0.61009871 0.63766021 0.67187583

Willingness
to Confront Interest Interpersonal Desire for

Problems in People Sensitivity Self-Improvement

0.64779805 0.75641519 0.75584891 0.57460176

Physical
Appearance Dependability Ability Integrity

0.45505304 0.63449045 0.42245324 0.68195454

Eigenvalues of the Reduced Correlation Matrix:
Total = 8.06463816 Average = 0.62035678

Eigenvalue Difference Proportion Cumulative

1 6.17760549 4.71531946 0.7660 0.7660
2 1.46228602 0.90183348 0.1813 0.9473
3 0.56045254 0.28093933 0.0695 1.0168
4 0.27951322 0.04766016 0.0347 1.0515
5 0.23185305 0.16113428 0.0287 1.0802
6 0.07071877 0.07489624 0.0088 1.0890
7 -.00417747 0.03387533 -0.0005 1.0885
8 -.03805279 0.04776534 -0.0047 1.0838
9 -.08581814 0.02438060 -0.0106 1.0731

10 -.11019874 0.01452741 -0.0137 1.0595
11 -.12472615 0.02356465 -0.0155 1.0440
12 -.14829080 0.05823605 -0.0184 1.0256
13 -.20652684 -0.0256 1.0000

3 factors will be retained by the PROPORTION criterion.

Figure 27.1. Table of Eigenvalues from PROC FACTOR

As displayed inFigure 27.1, the prior communality estimates are set to the squared
multiple correlations.Figure 27.1also displays the table of eigenvalues (the vari-
ances of the principal factors) of the reduced correlation matrix. Each row of the
table pertains to a single eigenvalue. Following the column of eigenvalues are three
measures of each eigenvalue’s relative size and importance. The first of these displays
the difference between the eigenvalue and its successor. The last two columns display
the individual and cumulative proportions that the corresponding factor contributes
to the total variation. The last line displayed inFigure 27.1states that three factors
are retained, as determined by the PROPORTION criterion.
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Initial Factor Method: Principal Factors

Factor Pattern

Factor1 Factor2 Factor3

Communication Skills 0.75441 0.07707 -0.25551
Problem Solving 0.68590 0.08026 -0.34788
Learning Ability 0.65904 0.34808 -0.25249
Judgment Under Pressure 0.73391 -0.21405 -0.23513
Observational Skills 0.69039 0.45292 0.10298
Willingness to Confront Problems 0.66458 0.47460 0.09210
Interest in People 0.70770 -0.53427 0.10979
Interpersonal Sensitivity 0.64668 -0.61284 -0.07582
Desire for Self-Improvement 0.73820 0.12506 0.09062
Appearance 0.57188 0.20052 0.16367
Dependability 0.79475 -0.04516 0.16400
Physical Ability 0.51285 0.10251 0.34860
Integrity 0.74906 -0.35091 0.18656

Figure 27.2. Factor Pattern Matrix from PROC FACTOR

Figure 27.2displays the initial factor pattern matrix. The factor pattern matrix rep-
resents standardized regression coefficients for predicting the variables using the ex-
tracted factors. Because the initial factors are uncorrelated, the pattern matrix is also
equal to the correlations between variables and the common factors.

The pattern matrix suggests thatFactor1 represents general ability. All loadings
for Factor1 in the Factor Pattern are at least 0.5.Factor2 consists of high pos-
itive loadings on certain task-related skills (Willingness to Confront Problems,
Observational Skills, andLearning Ability) and high negative loadings on some
interpersonal skills (Interpersonal Sensitivity, Interest in People, andIntegrity).
This factor measures individuals’ relative strength in these skills. Theoretically, indi-
viduals with high positive scores on this factor would exhibit better task-related skills
than interpersonal skills. Individuals with high negative scores would exhibit better
interpersonal skills than task-related skills. Individuals with scores near zero have
those skills balanced.Factor3 does not have a cluster of very high or very low factor
loadings. Therefore, interpreting this factor is difficult.



Getting Started � 1305

Initial Factor Method: Principal Factors

Variance Explained by Each Factor

Factor1 Factor2 Factor3

6.1776055 1.4622860 0.5604525

Final Communality Estimates: Total = 8.200344

Judgment
Communication Problem Learning Under Observational

Skills Solving Ability Pressure Skills

0.64036292 0.59791844 0.61924167 0.63972863 0.69237485

Willingness
to Confront Interest Interpersonal Desire for

Problems in People Sensitivity Self-Improvement

0.67538695 0.79833968 0.79951357 0.56879171

Physical
Appearance Dependability Ability Integrity

0.39403630 0.66056907 0.39504805 0.71903222

Figure 27.3. Variance Explained and Final Communality Estimates

Figure 27.3displays the proportion of variance explained by each factor and the final
communality estimates, including the total communality. The final communality es-
timates are the proportion of variance of the variables accounted for by the common
factors. When the factors are orthogonal, the final communalities are calculated by
taking the sum of squares of each row of the factor pattern matrix.

Figure 27.4displays the results of the VARIMAX rotation of the three extracted fac-
tors and the corresponding orthogonal transformation matrix. The rotated factor pat-
tern matrix is calculated by postmultiplying the original factor pattern matrix (Figure
27.2) by the transformation matrix.
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Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2 3

1 0.59125 0.59249 0.54715
2 -0.80080 0.51170 0.31125
3 0.09557 0.62219 -0.77701

Rotated Factor Pattern

Factor1 Factor2 Factor3

Communication Skills 0.35991 0.32744 0.63530
Problem Solving 0.30802 0.23102 0.67058
Learning Ability 0.08679 0.41149 0.66512
Judgment Under Pressure 0.58287 0.17901 0.51764
Observational Skills 0.05533 0.70488 0.43870
Willingness to Confront Problems 0.02168 0.69391 0.43978
Interest in People 0.85677 0.21422 0.13562
Interpersonal Sensitivity 0.86587 0.02239 0.22200
Desire for Self-Improvement 0.34498 0.55775 0.37242
Appearance 0.19319 0.54327 0.24814
Dependability 0.52174 0.54981 0.29337
Physical Ability 0.25445 0.57321 0.04165
Integrity 0.74172 0.38033 0.15567

Figure 27.4. Transformation Matrix and Rotated Factor Pattern

The rotated factor pattern matrix is somewhat simpler to interpret. If a magnitude
of at least 0.5 is required to indicate a salient variable-factor relationship,Factor1
now represents interpersonal skills (Interpersonal Sensitivity, Interest in People,
Integrity, Judgment Under Pressure, and Dependability). Factor2 measures
physical skills and job enthusiasm (Observational Skills, Willingness to Confront
Problems, Physical Ability, Desire for Self-Improvement, Dependability,
and Appearance). Factor3 measures cognitive skills (Communication Skills,
Problem Solving, Learning Ability, andJudgment Under Pressure).

However, using 0.5 for determining a salient variable-factor relationship does not
take sampling variability into account. If the underlying assumptions for the maxi-
mum likelihood estimation are approximately satisfied, you can output standard error
estimates and the confidence intervals with METHOD=ML. You can then determine
the salience of the variable-factor relationship using the coverage displays. See the
section“Confidence Intervals and the Salience of Factor Loadings”on page 1327 for
more details.
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Rotation Method: Varimax

Variance Explained by Each Factor

Factor1 Factor2 Factor3

3.1024330 2.7684489 2.3294622

Final Communality Estimates: Total = 8.200344

Judgment
Communication Problem Learning Under Observational

Skills Solving Ability Pressure Skills

0.64036292 0.59791844 0.61924167 0.63972863 0.69237485

Willingness
to Confront Interest Interpersonal Desire for

Problems in People Sensitivity Self-Improvement

0.67538695 0.79833968 0.79951357 0.56879171

Physical
Appearance Dependability Ability Integrity

0.39403630 0.66056907 0.39504805 0.71903222

Figure 27.5. Variance Explained and Final Communality Estimates after Rotation

Figure 27.5displays the variance explained by each factor and the final communality
estimates after the orthogonal rotation. Even though the variances explained by the
rotated factors are different from that of the unrotated factor (compare withFigure
27.3), the cumulative variance explained by the common factors remains the same.
Note also that the final communalities for variables, as well as the total communality,
remain unchanged after rotation. Although rotating a factor solution will not increase
or decrease the statistical quality of the factor model, it may simplify the interpreta-
tions of the factors and redistribute the variance explained by the factors.

Syntax

You can specify the following statements with the FACTOR procedure:

PROC FACTOR < options > ;
VAR variables ;
PRIORS communalities ;
PARTIAL variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

Usually only the VAR statement is needed in addition to the PROC FACTOR state-
ment. The descriptions of the BY, FREQ, PARTIAL, PRIORS, VAR, and WEIGHT
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statements follow the description of the PROC FACTOR statement in alphabetical
order.

PROC FACTOR Statement

PROC FACTOR < options > ;

The options available with the PROC FACTOR statement are listed in the following
table and then are described in alphabetical order:

Table 27.1. Options Available in the PROC FACTOR Statement

Task Option
Data sets DATA=

OUT=
OUTSTAT=
TARGET=

Extract factors and communalities HEYWOOD
METHOD=
PRIORS=
RANDOM=
ULTRAHEYWOOD

Analyze data ALPHA=
COVARIANCE
COVER=
NOINT
SE
VARDEF=
WEIGHT

Specify number of factors MINEIGEN=
NFACTORS=
PROPORTION=

Specify numerical properties CONVERGE=
MAXITER=
SINGULAR=

Specify rotation method and GAMMA=
properties HKPOWER=

NORM=
NOPROMAXNORM
POWER=
PREROTATE=
RCONVERGE=
RITER=
ROTATE=
TAU=

Control displayed output ALL
CORR
EIGENVECTORS
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Table 27.1. (continued)

Task Option
FLAG=
FUZZ=
MSA
NOPRINT
NPLOT=
PLOT
PREPLOT
PRINT
REORDER
RESIDUALS
ROUND
SCORE
SCREE
SIMPLE

Exclude the correlation matrix NOCORR
from the OUTSTAT= data set

Miscellaneous NOBS=

ALL
displays all optional output except plots. When the input data set is TYPE=CORR,
TYPE=UCORR, TYPE=COV, TYPE=UCOV, or TYPE=FACTOR, simple statistics,
correlations, and MSA are not displayed.

ALPHA= p
specifies the level of confidence 1−p for interval construction. By default,p = 0.05,
corresponding to 1−p = 95% confidence intervals. Ifp is greater than one, it is
interpreted as a percentage and divided by 100. Because the coverage probability
is not controlled simultaneously, you may consider supplying a nonconventionalp
using methods such as Bonferroni adjustment.

CONVERGE=p
CONV=p

specifies the convergence criterion for the METHOD=PRINIT, METHOD=ULS,
METHOD=ALPHA, or METHOD=ML option. Iteration stops when the maximum
change in the communalities is less than the value of the CONVERGE= option. The
default value is 0.001. Negative values are not allowed.

CORR
C

displays the correlation matrix or partial correlation matrix.

COVARIANCE
COV

requests factoring of the covariance matrix instead of the correlation matrix. The
COV option can be used only with the METHOD=PRINCIPAL, METHOD=PRINIT,
METHOD=ULS, or METHOD=IMAGE option.
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COVER <=p>
CI <=p>

computes the confidence intervals and optionally specifies the value of factor loading
for coverage detection. By default,p = 0. The specified value is represented by
an asterisk ‘*’ in the coverage display. This is useful for determining the salience
of loadings. For example, if COVER=.4, a display ‘0*[ ]’ indicates that the entire
confidence interval is above 0.4, implying strong evidence for the salience of the
loading. See the section“Confidence Intervals and the Salience of Factor Loadings”
on page 1327 for more details.

DATA=SAS-data-set
specifies the input data set, which can be an ordinary SAS data set or a specially

structured SAS data set as described in the section“Input Data Set”beginning on
page 1322. If the DATA= option is omitted, the most recently created SAS data set
is used.

EIGENVECTORS
EV

displays the eigenvectors of the reduced correlation matrix, of which the diago-
nal elements are replaced with the communality estimates. When METHOD=ML,
the eigenvectors are for the weighted reduced correlation matrix. PROC FACTOR
chooses the solution that makes the sum of the elements of each eigenvector nonneg-
ative. If the sum of the elements is equal to zero, then the sign depends on how the
number is rounded off.

FLAG=p
flags absolute values larger thanp with an asterisk in the correlation and loading
matrices. Negative values are not allowed forp. Values printed in the matrices are
multiplied by 100 and rounded to the nearest integer (see the ROUND option). The
FLAG= option has no effect when standard errors or confidence intervals are also
printed.

FUZZ=p
prints correlations and factor loadings with absolute values less thanp printed as
missing. For partial correlations, the FUZZ= value is divided by 2. For residual
correlations, the FUZZ= value is divided by 4. The exact values in any matrix can
be obtained from the OUTSTAT= and ODS output data sets. Negative values are
not allowed. The FUZZ= option has no effect when standard errors or confidence
intervals are also printed.

GAMMA=p
specifies the orthomax weight used with the option ROTATE=ORTHOMAX or
PREROTATE=ORTHOMAX. Alternatively, you can use ROTATE=ORTHOMAX(p)
with p representing the orthomax weight. There is no restriction on valid values
for the orthomax weight, although the most common values are between 0 and the
number of variables. The default GAMMA= value is one, resulting in the varimax
rotation.
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HEYWOOD
HEY

sets to 1 any communality greater than 1, allowing iterations to proceed.

HKPOWER=p
HKP=p

specifies the power of the square roots of the eigenvalues used to rescale the eigen-
vectors for Harris-Kaiser (ROTATE=HK) rotation, assuming that the factors are ex-
tracted by the principal factor method. If the principal factor method is not used
for factor extraction, the eigenvectors are replaced by the normalized columns of the
unrotated factor matrix, and the eigenvalues replaced by the column normalizing con-
stants. HKPOWER= values between 0.0 and 1.0 are reasonable. The default value
is 0.0, yielding the independent cluster solution, in which each variable tends to have
a large loading on only one factor. An HKPOWER= value of 1.0 is equivalent to an
orthogonal rotation, with the varimax rotation as the default. You can also specify the
HKPOWER= option with ROTATE=QUARTIMAX, ROTATE=BIQUARTIMAX,
ROTATE=EQUAMAX, or ROTATE=ORTHOMAX, and so on. The only restriction
is that the Harris-Kaiser rotation must be associated with an orthogonal rotation.

MAXITER=n
specifies the maximum number of iterations for factor extraction. You can use the
MAXITER= option with the PRINIT, ULS, ALPHA, or ML methods. The default is
30.

METHOD=name
M=name

specifies the method for extracting factors. The default is METHOD=PRINCIPAL
unless the DATA= data set is TYPE=FACTOR, in which case the default is
METHOD=PATTERN. Valid values fornameare as follows:

ALPHA | A produces alpha factor analysis.

HARRIS | H yields Harris component analysis ofS−1RS−1 (Harris 1962), a
noniterative approximation to canonical component analysis.

IMAGE | I yields principal component analysis of the image covariance ma-
trix, not Kaiser’s (1963, 1970) or Kaiser and Rice’s (1974) image
analysis. A nonsingular correlation matrix is required.

ML | M performs maximum likelihood factor analysis with an algorithm
due, except for minor details, to Fuller (1987). The option
METHOD=ML requires a nonsingular correlation matrix.

PATTERN reads a factor pattern from a TYPE=FACTOR, TYPE=CORR,
TYPE=UCORR, TYPE=COV or TYPE=UCOV data set. If you
create a TYPE=FACTOR data set in a DATA step, only ob-
servations containing the factor pattern (–TYPE–=’PATTERN’)
and, if the factors are correlated, the interfactor correlations
(–TYPE–=’FCORR’) are required.

PRINCIPAL | PRIN | P yields principal component analysis if no PRIORS option or
statement is used or if you specify PRIORS=ONE; if you specify a
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PRIORS statement or a PRIORS= value other than PRIORS=ONE,
a principal factor analysis is performed.

PRINIT yields iterated principal factor analysis.

SCORE reads scoring coefficients (–TYPE–=’SCORE’) from a
TYPE=FACTOR, TYPE=CORR, TYPE=UCORR, TYPE=COV,
or TYPE=UCOV data set. The data set must also contain either
a correlation or a covariance matrix. Scoring coefficients are also
displayed if you specify the OUT= option.

ULS | U produces unweighted least squares factor analysis.

MINEIGEN=p
MIN=p

specifies the smallest eigenvalue for which a factor is retained. If you specify two
or more of the MINEIGEN=, NFACTORS=, and PROPORTION= options, the num-
ber of factors retained is the minimum number satisfying any of the criteria. The
MINEIGEN= option cannot be used with either the METHOD=PATTERN or the
METHOD=SCORE option. Negative values are not allowed. The default is 0 un-
less you omit both the NFACTORS= and the PROPORTION= options and one of the
following conditions holds:

• If you specify the METHOD=ALPHA or METHOD=HARRIS option, then
MINEIGEN=1.

• If you specify the METHOD=IMAGE option, then

MINEIGEN =
total image variance
number of variables

• For any other METHOD= specification, if prior communality estimates of 1.0
are used, then

MINEIGEN =
total weighted variance

number of variables

When an unweighted correlation matrix is factored, this value is 1.

MSA
produces the partial correlations between each pair of variables controlling for all
other variables (the negative anti-image correlations) and Kaiser’s measure of sam-
pling adequacy (Kaiser 1970; Kaiser and Rice 1974; Cerny and Kaiser 1977).

NFACTORS=n
NFACT=n
N=n

specifies the maximum number of factors to be extracted and determines the amount
of memory to be allocated for factor matrices. The default is the number of variables.
Specifying a number that is small relative to the number of variables can substantially
decrease the amount of memory required to run PROC FACTOR, especially with
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oblique rotations. If you specify two or more of the NFACTORS=, MINEIGEN=, and
PROPORTION= options, the number of factors retained is the minimum number sat-
isfying any of the criteria. If you specify the option NFACTORS=0, eigenvalues are
computed, but no factors are extracted. If you specify the option NFACTORS=−1,
neither eigenvalues nor factors are computed. You can use the NFACTORS= option
with the METHOD=PATTERN or METHOD=SCORE option to specify a smaller
number of factors than are present in the data set.

NOBS=n
specifies the number of observations. If the DATA= input data set is a raw data set,
nobsis defined by default to be the number of observations in the raw data set. The
NOBS= option overrides this default definition. If the DATA= input data set contains
a covariance, correlation, or scalar product matrix, the number of observations can be
specified either by using the NOBS= option in the PROC FACTOR statement or by
including a–TYPE–=’N’ observation in the DATA= input data set.

NOCORR
prevents the correlation matrix from being transferred to the OUTSTAT= data set
when you specify the METHOD=PATTERN option. The NOCORR option greatly
reduces memory requirements when there are many variables but few factors. The
NOCORR option is not effective if the correlation matrix is required for other re-
quested output; for example, if the scores or the residual correlations are displayed
(using SCORE, RESIDUALS, ALL options).

NOINT
omits the intercept from the analysis; covariances or correlations are not corrected for
the mean.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

NOPROMAXNORM | NOPMAXNORM
turns off the default row normalization of the pre-rotated factor pattern, which is used
in computing the promax target matrix.

NORM=COV | KAISER | NONE | RAW | WEIGHT
specifies the method for normalizing the rows of the factor pattern for rotation. If
you specify the option NORM=KAISER, Kaiser’s normalization is used(

∑
j p2

ij =
1). If you specify the option NORM=WEIGHT, the rows are weighted by the
Cureton-Mulaik technique (Cureton and Mulaik 1975). If you specify the option
NORM=COV, the rows of the pattern matrix are rescaled to represent covariances
instead of correlations. If you specify the option NORM=NONE or NORM=RAW,
normalization is not performed. The default is NORM=KAISER.

NPLOT=n
specifies the number of factors to be plotted. The default is to plot all factors. The
smallest allowable value is 2. If you specify the option NPLOT=n, all pairs of the
first n factors are plotted, producing a total ofn(n− 1)/2 plots.
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OUT=SAS-data-set
creates a data set containing all the data from the DATA= data set plus variables called
Factor1, Factor2, and so on, containing estimated factor scores. The DATA= data
set must contain multivariate data, not correlations or covariances. You must also
specify the NFACTORS= option to determine the number of factor score variables.
Note that OUT= option is disabled if you specify partial variables in the PARTIAL
statement. In order to use the OUT= option with partialed variables, you can first
regress the target variables on the partial variables. This can be done using PROC
REG or PROC IML. You can then factor analyze the residuals without the PARTIAL
statement. In this case, the OUT= option will not be disabled. If you want to create a
permanent SAS data set, you must specify a two-level name. Refer to “SAS Files” in
SAS Language Reference: Conceptsfor more information on permanent data sets.

OUTSTAT=SAS-data-set
specifies an output data set containing most of the results of the analysis. The output
data set is described in detail in the section“Output Data Sets”on page 1325. If
you want to create a permanent SAS data set, you must specify a two-level name.
Refer to “SAS Files” inSAS Language Reference: Conceptsfor more information on
permanent data sets.

PLOT
plots the factor pattern after rotation.

POWER=n
specifies the power to be used in computing the target pattern for the option
ROTATE=PROMAX. Valid values must be integers≥ 1. The default value
is 3. You can also specify the power= value in the ROTATE= option, e.g.,
ROTATE=PROMAX(4).

PREPLOT
plots the factor pattern before rotation.

PREROTATE=name
PRE=name

specifies the prerotation method for the option ROTATE=PROMAX. Any rota-
tion method other than PROMAX or PROCRUSTES can be used. The default is
PREROTATE=VARIMAX. If a previously rotated pattern is read using the option
METHOD=PATTERN, you should specify the PREROTATE=NONE option.

PRINT
displays the input factor pattern or scoring coefficients and related statistics. In
oblique cases, the reference and factor structures are computed and displayed.
The PRINT option is effective only with the option METHOD=PATTERN or
METHOD=SCORE.

PRIORS=name
specifies a method for computing prior communality estimates. You can specify nu-
meric values for the prior communality estimates by using the PRIORS statement.
Valid values fornameare as follows:
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ASMC | A sets the prior communality estimates proportional to the squared
multiple correlations but adjusted so that their sum is equal to that
of the maximum absolute correlations (Cureton 1968).

INPUT | I reads the prior communality estimates from the first observation
with either–TYPE–=’PRIORS’ or–TYPE–=’COMMUNAL’ in
the DATA= data set (which must be TYPE=FACTOR).

MAX | M sets the prior communality estimate for each variable to its maxi-
mum absolute correlation with any other variable.

ONE | O sets all prior communalities to 1.0.

RANDOM | R sets the prior communality estimates to pseudo-random numbers
uniformly distributed between 0 and 1.

SMC | S sets the prior communality estimate for each variable to its squared
multiple correlation with all other variables.

The default prior communality estimates are as follows:

METHOD= PRIORS=
PRINCIPAL ONE

PRINIT ONE

ALPHA SMC

ULS SMC

ML SMC

HARRIS (not applicable)

IMAGE (not applicable)

PATTERN (not applicable)

SCORE (not applicable)

By default, the options METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA,
and METHOD=ML stop iterating and set the number of factors to 0 if an estimated
communality exceeds 1. The options HEYWOOD and ULTRAHEYWOOD allow
processing to continue.

PROPORTION=p
PERCENT=p
P=p

specifies the proportion of common variance to be accounted for by the retained fac-
tors using the prior communality estimates. If the value is greater than one, it is in-
terpreted as a percentage and divided by 100. The options PROPORTION=0.75 and
PERCENT=75 are equivalent. The default value is 1.0 or 100%. You cannot specify
the PROPORTION= option with the METHOD=PATTERN or METHOD=SCORE
option. If you specify two or more of the PROPORTION=, NFACTORS=, and



1316 � Chapter 27. The FACTOR Procedure

MINEIGEN= options, the number of factors retained is the minimum number sat-
isfying any of the criteria.

RANDOM=n
specifies a positive integer as a starting value for the pseudo-random number gen-
erator for use with the option PRIORS=RANDOM. If you do not specify the
RANDOM= option, the time of day is used to initialize the pseudo-random number
sequence. Valid values must be integers≥ 1.

RCONVERGE=p
RCONV=p

specifies the convergence criterion for rotation cycles. Rotation stops when the scaled
change of the simplicity function value is less than the RCONVERGE= value. The
default convergence criterion is

|fnew − fold|/K < ε

wherefnew andfold are simplicity function values of the current cycle and the pre-
vious cycle, respectively,K = max(1, |fold|) is a scaling factor, andε is 1E-9 by
default and is modified by the RCONVERGE= value.

REORDER
RE

causes the rows (variables) of various factor matrices to be reordered on the output.
Variables with their highest absolute loading (reference structure loading for oblique
rotations) on the first factor are displayed first, from largest to smallest loading, fol-
lowed by variables with their highest absolute loading on the second factor, and so
on. The order of the variables in the output data set is not affected. The factors are
not reordered.

RESIDUALS
RES

displays the residual correlation matrix and the associated partial correlation matrix.
The diagonal elements of the residual correlation matrix are the unique variances.

RITER=n
specifies the maximum number of cyclesn for factor rotation. Except for promax and
Procrustes, you can use the RITER= option with all rotation methods. The defaultn
is the maximum between 100 and 10 times of the number of variables.

ROTATE=name
R=name

specifies the rotation method. The default is ROTATE=NONE.

Valid names for orthogonal rotations are as follows:

BIQUARTIMAX | BIQMAX specifies orthogonal biquartimax rotation. This corre-
sponds to the specification ROTATE=ORTHOMAX(.5).

EQUAMAX | E specifies orthogonal equamax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=number of
factors/2.
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FACTORPARSIMAX | FPA specifies orthogonal factor parsimax rotation. This
corresponds to the specification ROTATE=ORTHOMAX with
GAMMA= number of variables.

NONE | N specifies that no rotation be performed, leaving the original orthog-
onal solution.

ORTHCF(p1,p2) | ORCF(p1,p2) specifies the orthogonal Crawford-Ferguson rota-
tion with the weightsp1 andp2 for variable parsimony and factor
parsimony, respectively. See the definitions of weights in the sec-
tion “Simplicity Functions for Rotations”on page 1329.

ORTHGENCF(p1,p2,p3,p4) | ORGENCF(p1,p2,p3,p4) specifies the orthogonal
generalized Crawford-Ferguson rotation with the four weights
p1, p2, p3, andp4. See the definitions of weights in the section
“Simplicity Functions for Rotations”on page 1329.

ORTHOMAX<(p)> | ORMAX<(p)> specifies the orthomax rotation with or-
thomax weightp. If ROTATE=ORTHOMAX is used, the default
p value is 1 unless specified otherwise in the GAMMA= option.
Alternatively, ROTATE=ORTHOMAX(p) specifies p as the
orthomax weight or the GAMMA= value. See the definition of
the orthomax weight in the section“Simplicity Functions for
Rotations”on page 1329.

PARSIMAX | PA specifies orthogonal parsimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with

GAMMA =
nvar× (nfact− 1)
nvar+ nfact− 2

wherenvar is the number of variables, andnfact is the number of
factors.

QUARTIMAX | QMAX | Q specifies orthogonal quartimax rotation. This corre-
sponds to the specification ROTATE=ORTHOMAX(0).

VARIMAX | V specifies orthogonal varimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=1.

Valid names for oblique rotations are as follows:

BIQUARTIMIN | BIQMIN specifies biquartimin rotation. It corresponds to the
specification ROTATE=OBLIMIN(.5) or ROTATE=OBLIMIN
with TAU=.5.

COVARIMIN | CVMIN specifies covarimin rotation. It corresponds to the specifica-
tion ROTATE=OBLIMIN(1) or ROTATE=OBLIMIN with TAU=1.

HK<(p)> | H<(p)> specifies Harris-Kaiser case II orthoblique rotation. When
specifying this option, you can use the HKPOWER= option to
set the power of the square roots of the eigenvalues by which the
eigenvectors are scaled, assuming that the factors are extracted by
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the principal factor method. For other extraction methods, the un-
rotated factor pattern is column normalized. The power is then
applied to the column normalizing constants, instead of the eigen-
values. You can also use ROTATE=HK(p), with p representing
the HKPOWER= value. The default associated orthogonal rota-
tion with ROTATE=HK is the varimax rotation without Kaiser nor-
malization. You may associate the Harris-Kaiser with other or-
thogonal rotations using the ROTATE= option together with the
HKPOWER= option.

OBBIQUARTIMAX | OBIQMAX specifies oblique biquartimax rotation.

OBEQUAMAX | OE specifies oblique equamax rotation.

OBFACTORPARSIMAX | OFPA specifies oblique factor parsimax rotation.

OBLICF(p1,p2) | OBCF(p1,p2) xspecifies the oblique Crawford-Ferguson rotation
with the weightsp1 andp2 for variable parsimony and factor par-
simony, respectively. See the definitions of weights in the section
“Simplicity Functions for Rotations”on page 1329.

OBLIGENCF(p1,p2,p3,p4) | OBGENCF(p1,p2,p3,p4) specifies the oblique gener-
alized Crawford-Ferguson rotation with the four weightsp1, p2,
p3, andp4. See the definitions of weights in the section“Simplicity
Functions for Rotations”on page 1329.

OBLIMIN <(p)> | OBMIN<(p)> specifies the oblimin rotation with oblimin
weight p. If ROTATE=OBLIMIN is used, the defaultp value is
zero unless specified otherwise in the TAU= option. Alternatively,
ROTATE=OBLIMIN(p) specifiesp as the oblimin weight or the
TAU= value. See the definition of the oblimin weight in the section
“Simplicity Functions for Rotations”on page 1329.

OBPARSIMAX | OPA specifies oblique parsimax rotation.

OBQUARTIMAX | OQMAX specifies oblique quartimax rotation. This is the same
as the QUARTIMIN method.

OBVARIMAX | OV specifies oblique varimax rotation.

PROCRUSTES specifies oblique Procrustes rotation with the target pattern pro-
vided by the TARGET= data set. The unrestricted least squares
method is used with factors scaled to unit variance after rotation.

PROMAX<(p)> | P<(p)> specifies oblique promax rotation. You can use the
PREROTATE= option to set the desirable pre-rotation method, or-
thogonal or oblique. When using with ROTATE=PROMAX, the
POWER= option lets you specify the power for forming the target.
You can also use ROTATE=PROMAX(p), wherep represents the
POWER= value.

QUARTIMIN | QMIN specifies quartimin rotation. It is the same as the oblique
quartimax method. It also corresponds to the specification
ROTATE=OBLIMIN(0) or ROTATE=OBLIMIN with TAU=0.
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ROUND
prints correlation and loading matrices with entries multiplied by 100 and rounded
to the nearest integer. The exact values can be obtained from the OUTSTAT= and
ODS output data sets. The ROUND option also flags absolute values larger than the
FLAG= value with an asterisk in correlation and loading matrices (see the FLAG=
option). If the FLAG= option is not specified, the root mean square of all the values
in the matrix printed is used as the default FLAG= value. The ROUND option has no
effect when standard errors or confidence intervals are also printed.

SCORE
displays the factor scoring coefficients. The squared multiple correlation of each
factor with the variables is also displayed except in the case of unrotated principal
components. Unless you specify the NOINT option in PROC FACTOR, the scoring
coefficients should be applied to standardized variables–variables that are centered by
subtracting the original variable means and then divided by the original variable stan-
dard deviations. With the NOINT option, the scoring coefficients should be applied
to data without centering.

SCREE
displays a scree plot of the eigenvalues (Cattell 1966, 1978; Cattell and Vogelman
1977; Horn and Engstrom 1979).

SE
STDERR

computes standard errors for various classes of unrotated and rotated solutions under
the maximum likelihood estimation.

SIMPLE
S

displays means, standard deviations, and the number of observations.

SINGULAR=p
SING=p

specifies the singularity criterion, where0 < p < 1. The default value is 1E−8.

TARGET=SAS-data-set
specifies an input data set containing the target pattern for Procrustes rotation (see the
description of the ROTATE= option). The TARGET= data set must contain variables
with the same names as those being factored. Each observation in the TARGET=
data set becomes one column of the target factor pattern. Missing values are treated
as zeros. The–NAME– and–TYPE– variables are not required and are ignored if
present.

TAU=p
specifies the oblimin weight used with the option ROTATE=OBLIMIN or
PREROTATE=OBLIMIN. Alternatively, you can use ROTATE=OBLIMIN(p) with
p representing the oblimin weight. There is no restriction on valid values for
the oblimin weight, although for practical purposes a negative or zero value is
recommended. The default TAU= value is 0, resulting in the quartimin rotation.
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ULTRAHEYWOOD
ULTRA

allows communalities to exceed 1. The ULTRAHEYWOOD option can cause con-
vergence problems because communalities can become extremely large, and ill-
conditioned Hessians may occur.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of variances and covariances. The default
value is VARDEF=DF. The values and associated divisors are displayed in the fol-
lowing table wherei= 0 if the NOINT option is used andi= 1 otherwise, and where
k is the number of partial variables specified in the PARTIAL statement.

Value Description Divisor
DF degrees of freedom n− k − i

N number of observations n− k

WDF sum of weights DF
∑

i wi − k − i

WEIGHT | WGT sum of weights
∑

i wi − k

WEIGHT
factors a weighted correlation or covariance matrix. The WEIGHT option can be
used only with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS,
or METHOD=IMAGE option. The input data set must be of type CORR, UCORR,
COV, UCOV, or FACTOR, and the variable weights are obtained from an observation
with –TYPE–=’WEIGHT’.

BY Statement

BY variables ;

You can specify a BY statement with PROC FACTOR to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FACTOR procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in
Base SAS software). For more information on creating indexes and using the
BY statement with indexed datasets, refer to “SAS Files” inSAS Language
Reference: Concepts.
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If you specify the TARGET= option and the TARGET= data set does not contain any
of the BY variables, then the entire TARGET= data set is used as a Procrustean target
for each BY group in the DATA= data set.

If the TARGET= data set contains some but not all of the BY variables, or if some
BY variables do not have the same type or length in the TARGET= data set as in the
DATA= data set, then PROC FACTOR displays an error message and stops.

If all the BY variables appear in the TARGET= data set with the same type and length
as in the DATA= data set, then each BY group in the TARGET= data set is used as
a Procrustean target for the corresponding BY group in the DATA= data set. The
BY groups in the TARGET= data set must be in the same order as in the DATA=
data set. If you specify the NOTSORTED option in the BY statement, there must
be identical BY groups in the same order in both data sets. If you do not specify
the NOTSORTED option, some BY groups can appear in one data set but not in the
other.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values
in the observation, include the variable’s name in a FREQ statement. The procedure
then treats the data set as if each observation appearsn times, wheren is the value
of the FREQ variable for the observation. The total number of observations is con-
sidered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not
used in the analysis. If the value is not an integer, the value is truncated to an integer.

The WEIGHT and FREQ statements have a similar effect, except in determining the
number of observations for significance tests.

PARTIAL Statement

PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix, use
the PARTIAL statement to list the variables that are used to partial out the variables
in the analysis.
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PRIORS Statement

PRIORS communalities ;

The PRIORS statement specifies numeric values between 0.0 and 1.0 for the prior
communality estimates for each variable. The first numeric value corresponds to the
first variable in the VAR statement, the second value to the second variable, and so
on. The number of numeric values must equal the number of variables. For example,

proc factor;
var x y z;
priors .7 .8 .9;

run;

You can specify various methods for computing prior communality estimates with
the PRIORS= option of the PROC FACTOR statement. Refer to the description of
that option for more information on the default prior communality estimates.

VAR Statement

VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR state-
ment is omitted, all numeric variables not specified in other statements are analyzed.

WEIGHT Statement

WEIGHT variable ;

If you want to use relative weights for each observation in the input data set, specify
a variable containing weights in a WEIGHT statement. This is often done when the
variance associated with each observation is different and the values of the weight
variable are proportional to the reciprocals of the variances. If a variable value is
negative or is missing, it is excluded from the analysis.

Details

Input Data Set

The FACTOR procedure can read an ordinary SAS data set containing raw data
or a special data set specified as a TYPE=CORR, TYPE=UCORR, TYPE=SSCP,
TYPE=COV, TYPE=UCOV, or TYPE=FACTOR data set containing previously com-
puted statistics. A TYPE=CORR data set can be created by the CORR procedure or
various other procedures such as the PRINCOMP procedure. It contains means, stan-
dard deviations, the sample size, the correlation matrix, and possibly other statis-
tics if it is created by some procedure other than PROC CORR. A TYPE=COV
data set is similar to a TYPE=CORR data set but contains a covariance matrix. A
TYPE=UCORR or TYPE=UCOV data set contains a correlation or covariance ma-
trix that is not corrected for the mean. The default VAR variable list does not include
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Intercept if the DATA= data set is TYPE=SSCP. If theIntercept variable is explic-
itly specified in the VAR statement with a TYPE=SSCP data set, the NOINT option
is activated. A TYPE=FACTOR data set can be created by the FACTOR procedure
and is described in the section“Output Data Sets”on page 1325.

If your data set has many observations and you plan to run FACTOR several times,
you can save computer time by first creating a TYPE=CORR data set and using it as
input to PROC FACTOR.

proc corr data=raw out=correl; /* create TYPE=CORR data set */
proc factor data=correl method=ml; /* maximum likelihood */
proc factor data=correl; /* principal components */

The data set created by the CORR procedure is automatically given the TYPE=CORR
data set option, so you do not have to specify TYPE=CORR. However, if you use a
DATA step with a SET statement to modify the correlation data set, you must use the
TYPE=CORR attribute in the new data set. You can use a VAR statement with PROC
FACTOR when reading a TYPE=CORR data set to select a subset of the variables or
change the order of the variables.

Problems can arise from using the CORR procedure when there are missing data.
By default, PROC CORR computes each correlation from all observations that have
values present for the pair of variables involved (pairwise deletion). The resulting
correlation matrix may have negative eigenvalues. If you specify the NOMISS op-
tion with the CORR procedure, observations with any missing values are completely
omitted from the calculations (listwise deletion), and there is no danger of negative
eigenvalues.

PROC FACTOR can also create a TYPE=FACTOR data set, which includes all the
information in a TYPE=CORR data set, and use it for repeated analyses. For a
TYPE=FACTOR data set, the default value of the METHOD= option is PATTERN.
The following statements produce the same PROC FACTOR results as the previous
example:

proc factor data=raw method=ml outstat=fact; /* max. likelihood */
proc factor data=fact method=prin; /* principal components */

You can use a TYPE=FACTOR data set to try several different rotation methods on
the same data without repeatedly extracting the factors. In the following example, the
second and third PROC FACTOR statements use the data setfact created by the first
PROC FACTOR statement:

proc factor data=raw outstat=fact; /* principal components */
proc factor rotate=varimax; /* varimax rotation */
proc factor rotate=quartimax; /* quartimax rotation */

You can create a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set in a
DATA step. Be sure to specify the TYPE= option in parentheses after the data set
name in the DATA statement and include the–TYPE– and–NAME– variables. In
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a TYPE=CORR data set, only the correlation matrix (–TYPE–=’CORR’) is neces-
sary. It can contain missing values as long as every pair of variables has at least one
nonmissing value.

data correl(type=corr);
_TYPE_=’CORR’;
input _NAME_ $ x y z;
datalines;

x 1.0 . .
y .7 1.0 .
z .5 .4 1.0
;
proc factor;
run;

You can create a TYPE=FACTOR data set containing only a factor pattern
(–TYPE–=’PATTERN’) and use the FACTOR procedure to rotate it.

data pat(type=factor);
_TYPE_=’PATTERN’;
input _NAME_ $ x y z;
datalines;

factor1 .5 .7 .3
factor2 .8 .2 .8
;
proc factor rotate=promax prerotate=none;
run;

If the input factors are oblique, you must also include the interfactor correlation ma-
trix with –TYPE–=’FCORR’.

data pat(type=factor);
input _TYPE_ $ _NAME_ $ x y z;
datalines;

pattern factor1 .5 .7 .3
pattern factor2 .8 .2 .8
fcorr factor1 1.0 .2 .
fcorr factor2 .2 1.0 .
;
proc factor rotate=promax prerotate=none;
run;

Some procedures, such as the PRINCOMP and CANDISC procedures, pro-
duce TYPE=CORR or TYPE=UCORR data sets containing scoring coefficients
(–TYPE–=’SCORE’ or–TYPE–= ’USCORE’). These coefficients can be input to
PROC FACTOR and rotated by using the METHOD=SCORE option. The input data
set must contain the correlation matrix as well as the scoring coefficients.

proc princomp data=raw n=2 outstat=prin;
run;
proc factor data=prin method=score rotate=varimax;
run;
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Output Data Sets

The OUT= Data Set

The OUT= data set contains all the data in the DATA= data set plus new variables
calledFactor1, Factor2, and so on, containing estimated factor scores. Each esti-
mated factor score is computed as a linear combination of the standardized values
of the variables that are factored. The coefficients are always displayed if the OUT=
option is specified and they are labeled “Standardized Scoring Coefficients.”

The OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set
produced by the CORR procedure, but it is a TYPE=FACTOR data set and it contains
many results in addition to those produced by PROC CORR. The OUTSTAT= data
set contains observations with–TYPE–=’UCORR’ and–TYPE–=’USTD’ if you
specify the NOINT option.

The output data set contains the following variables:

• the BY variables, if any

• two new character variables,–TYPE– and–NAME–
• the variables analyzed, that is, those in the VAR statement, or, if there is no

VAR statement, all numeric variables not listed in any other statement.

Each observation in the output data set contains some type of statistic as indicated
by the–TYPE– variable. The–NAME– variable is blank except where otherwise
indicated. The values of the–TYPE– variable are as follows:

–TYPE– Contents

MEAN means

STD standard deviations

USTD uncorrected standard deviations

N sample size

CORR correlations. The–NAME– variable contains the name of the vari-
able corresponding to each row of the correlation matrix.

UCORR uncorrected correlations. The–NAME– variable contains the
name of the variable corresponding to each row of the uncorrected
correlation matrix.

IMAGE image coefficients. The–NAME– variable contains the name of
the variable corresponding to each row of the image coefficient
matrix.

IMAGECOV image covariance matrix. The–NAME– variable contains the
name of the variable corresponding to each row of the image co-
variance matrix.
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COMMUNAL final communality estimates

PRIORS prior communality estimates, or estimates from the last iteration
for iterative methods

WEIGHT variable weights

SUMWGT sum of the variable weights

EIGENVAL eigenvalues

UNROTATE unrotated factor pattern. The–NAME– variable contains the name
of the factor.

SE–UNROT standard error estimates for the unrotated loadings. The–NAME–
variable contains the name of the factor.

RESIDUAL residual correlations. The–NAME– variable contains the name of
the variable corresponding to each row of the residual correlation
matrix.

PRETRANS transformation matrix from prerotation. The–NAME– variable
contains the name of the factor.

PREFCORR pre-rotated interfactor correlations. The–NAME– variable con-
tains the name of the factor.

SE–PREFC standard error estimates for pre-rotated interfactor correlations.
The–NAME– variable contains the name of the factor.

PREROTAT pre-rotated factor pattern. The–NAME– variable contains the
name of the factor.

SE–PREPA standard error estimates for the pre-rotated loadings. The

–NAME– variable contains the name of the factor.

PRERCORR pre-rotated reference axis correlations. The–NAME– variable
contains the name of the factor.

PREREFER pre-rotated reference structure. The–NAME– variable contains
the name of the factor.

PRESTRUC pre-rotated factor structure. The–NAME– variable contains the
name of the factor.

SE–PREST standard error estimates for pre-rotated structure loadings. The

–NAME– variable contains the name of the factor.

PRESCORE pre-rotated scoring coefficients. The–NAME– variable contains
the name of the factor.

TRANSFOR transformation matrix from rotation. The–NAME– variable con-
tains the name of the factor.

FCORR interfactor correlations. The–NAME– variable contains the name
of the factor.

SE–FCORR standard error estimates for interfactor correlations. The–NAME–
variable contains the name of the factor.

PATTERN factor pattern. The–NAME– variable contains the name of the
factor.
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SE–PAT standard error estimates for the rotated loadings. The–NAME–
variable contains the name of the factor.

RCORR reference axis correlations. The–NAME– variable contains the
name of the factor.

REFERENC reference structure. The–NAME– variable contains the name of
the factor.

STRUCTUR factor structure. The–NAME– variable contains the name of the
factor.

SE–STRUC standard error estimates for structure loadings. The–NAME–
variable contains the name of the factor.

SCORE scoring coefficients to be applied to standardized variables. The

–NAME– variable contains the name of the factor.

USCORE scoring coefficients to be applied without subtracting the mean
from the raw variables. The–NAME– variable contains the name
of the factor.

Confidence Intervals and the Salience of Factor Loadings

The traditional approach to determining salient loadings (loadings that are consid-
ered large in absolute values) employs rules-of-thumb such as 0.3 or 0.4. However,
this does not utilize the statistical evidence efficiently. The asymptotic normality of
the distribution of factor loadings enables you to construct confidence intervals to
gauge the salience of factor loadings. To guarantee the range-respecting properties of
confidence intervals, a transformation procedure such as in CEFA (Browne, Cudeck,
Tateneni, and Mels 1998) is used. For example, because the orthogonal rotated factor
loadingθ must be bounded between−1 and+1, the Fisher transformation

ϕ =
1
2

log(
1 + θ

1− θ
)

is employed so thatϕ is an unbounded parameter. Assuming the asymptotic nor-
mality of ϕ̂, a symmetric confidence interval forϕ is constructed. Then, a back-
transformation on the confidence limits yields an asymmetric confidence interval for
θ. Applying the results of Browne (1982), a (1−α)100% confidence interval for the
orthogonal factor loadingθ is

(θ̂l =
a/b− 1
a/b + 1

, θ̂u =
a× b− 1
a× b + 1

)

where

a =
1 + θ̂

1− θ̂
, b = exp(zα/2 ×

2σ̂

1− θ̂2
)
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and θ̂ is the estimated factor loading,σ̂ is the standard error estimate of the factor
loading, andzα/2 is the(1− α/2)100 percentile point of a standard normal distribu-
tion.

Once the confidence limits are constructed, you can use the corresponding coverage
displays for determining the salience of the variable-factor relationship. In a coverage
display, the COVER= value is represented by an asterisk ‘*’. The following table
summarizes the various displays and their interpretations:

Table 27.2. Interpretations of the Coverage Displays

Positive
Estimate

Negative
Estimate

COVER=0
specified

Interpretation

[0]* *[0] The estimate is not significantly different from zero
and the CI covers a region of values that are smaller
in magnitude than the COVER= value. This is strong
statistical evidence for the non-salience of the variable-
factor relationship.

0[ ]* *[ ]0 The estimate is significantly different from zero but the
CI covers a region of values that are smaller in magni-
tude than the COVER= value. This is strong statistical
evidence for the non-salience of the variable-factor re-
lationship.

[0*] [*0] [0] The estimate is not significantly different from zero or
the COVER= value. The population value might have
been larger or smaller in magnitude than the COVER=
value. There is no statistical evidence for the salience
of the variable-factor relationship.

0[*] [*]0 The estimate is significantly different from zero but not
from the COVER= value. This is marginal statistical
evidence for the salience of the variable-factor relation-
ship.

0*[ ] [ ]*0 0[ ] or [ ]0 The estimate is significantly different from zero and the
CI covers a region of values that are larger in magni-
tude than the COVER= value. This is strong statistical
evidence for the salience of the variable-factor relation-
ship.

SeeExample 27.4on page 1369 for an illustration of the use of confidence intervals
for interpreting factors.
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Simplicity Functions for Rotations
To rotate a factor pattern is to apply a non-singular linear transformation to the unro-
tated factor pattern matrix. To arrive at an optimal transformation you must define a
so-called simplicity function for assessing the optimal point. For the promax or the
Procrustean transformation, the simplicity function is defined as the sum of squared
differences between the rotated factor pattern and the target matrix. Thus, the so-
lution of the optimal transformation is easily obtained by the familiar least-squares
method.

For the class of the generalized Crawford-Ferguson family (Jennrich 1973), the sim-
plicity function being optimized is

f = k1Z + k2H + k3V + k4Q

where

Z = (
∑

j

∑
i

b2
ij)

2, H =
∑

i

(
∑

j

b2
ij)

2

V =
∑

j

(
∑

i

b2
ij)

2, Q =
∑

j

∑
i

b4
ij

k1, k2, k3, andk4 are constants, andbij represents an element of the rotated pattern
matrix. Except for specialized research purposes, it is rare in practice to use this
simplicity function for rotation. However, it reduces to many well-known classes and
special cases of rotations. One of these is the Crawford-Ferguson family (Crawford
and Ferguson 1970), which minimizes

fcf = c1(H −Q) + c2(V −Q)

wherec1 andc2 are constants and(H −Q) represents variable (row) parsimony and
(V − Q) represents factor (column) parsimony. Therefore, the relative importance
of both the variable parsimony and of the factor parsimony is adjusted using the
constantsc1 andc2. The orthomax class (Carroll, see Harman 1976) maximizes the
function

for = pQ− γV

whereγ is the orthomax weight and is usually between 0 and the number of variables
p. The oblimin class minimizes the function

fob = p(H −Q)− τ(Z − V )

whereτ is the oblimin weight. For practical purposes, a negative or zero value forτ
is recommended.

All the above definitions are for rotations without row normalization. For rotations
with Kaiser normalization the definition ofbij is replaced bybij/hi, wherehi is the
communality of variablei.
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Missing Values

If the DATA= data set contains data (rather than a matrix or factor pattern), then
observations with missing values for any variables in the analysis are omitted from
the computations. If a correlation or covariance matrix is read, it can contain missing
values as long as every pair of variables has at least one nonmissing entry. Missing
values in a pattern or scoring coefficient matrix are treated as zeros.

Cautions

• The amount of time that FACTOR takes is roughly proportional to the cube
of the number of variables. Factoring 100 variables, therefore, takes about
1,000 times as long as factoring 10 variables. Iterative methods (PRINIT,
ALPHA, ULS, ML) can also take 100 times as long as noniterative methods
(PRINCIPAL, IMAGE, HARRIS).

• No computer program is capable of reliably determining the optimal number of
factors since the decision is ultimately subjective. You should not blindly ac-
cept the number of factors obtained by default; instead, use your own judgment
to make a decision.

• Singular correlation matrices cause problems with the options PRIORS=SMC
and METHOD=ML. Singularities can result from using a variable that is the
sum of other variables, coding too many dummy variables from a classification
variable, or having more variables than observations.

• If you use the CORR procedure to compute the correlation matrix and there
are missing data and the NOMISS option is not specified, then the correlation
matrix may have negative eigenvalues.

• If a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set is copied or
modified using a DATA step, the new data set does not automatically have
the same TYPE as the old data set. You must specify the TYPE= data set
option in the DATA statement. If you try to analyze a data set that has lost its
TYPE=CORR attribute, PROC FACTOR displays a warning message saying
that the data set contains–NAME– and–TYPE– variables but analyzes the
data set as an ordinary SAS data set.

• For a TYPE=FACTOR data set, the default is METHOD=PATTERN, not
METHOD=PRIN.

Factor Scores

The FACTOR procedure can compute estimated factor scores directly if you spec-
ify the NFACTORS= and OUT= options, or indirectly using the SCORE procedure.
The latter method is preferable if you use the FACTOR procedure interactively to
determine the number of factors, the rotation method, or various other aspects of the
analysis. To compute factor scores for each observation using the SCORE procedure,

• use the SCORE option in the PROC FACTOR statement

• create a TYPE=FACTOR output data set with the OUTSTAT= option
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• use the SCORE procedure with both the raw data and the TYPE=FACTOR
data set

• do not use the TYPE= option in the PROC SCORE statement

For example, the following statements could be used:

proc factor data=raw score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;

or

proc corr data=raw out=correl;
run;
proc factor data=correl score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;

A component analysis (principal, image, or Harris) produces scores with mean zero
and variance one. If you have done a common factor analysis, the true factor scores
have mean zero and variance one, but the computed factor scores are only estimates
of the true factor scores. These estimates have mean zero but variance equal to the
squared multiple correlation of the factor with the variables. The estimated factor
scores may have small nonzero correlations even if the true factors are uncorrelated.

Variable Weights and Variance Explained

A principal component analysis of a correlation matrix treats all variables as equally
important. A principal component analysis of a covariance matrix gives more weight
to variables with larger variances. A principal component analysis of a covariance
matrix is equivalent to an analysis of a weighted correlation matrix, where the weight
of each variable is equal to its variance. Variables with large weights tend to have
larger loadings on the first component and smaller residual correlations than variables
with small weights.

You may want to give weights to variables using values other than their variances.
Mulaik (1972) explains how to obtain a maximally reliable component by means of
a weighted principal component analysis. With the FACTOR procedure, you can
indirectly give arbitrary weights to the variables by using the COV option and rescal-
ing the variables to have variance equal to the desired weight, or you can give arbi-
trary weights directly by using the WEIGHT option and including the weights in a
TYPE=CORR data set.

Arbitrary variable weights can be used with the METHOD=PRINCIPAL,
METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. Alpha and
ML factor analyses compute variable weights based on the communalities (Harman
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1976, pp. 217-218). For alpha factor analysis, the weight of a variable is the
reciprocal of its communality. In ML factor analysis, the weight is the reciprocal of
the uniqueness. Harris component analysis uses weights equal to the reciprocal of
one minus the squared multiple correlation of each variable with the other variables.

For uncorrelated factors, the variance explained by a factor can be computed with or
without taking the weights into account. The usual method for computing variance
accounted for by a factor is to take the sum of squares of the corresponding column
of the factor pattern, yielding an unweighted result. If the square of each loading
is multiplied by the weight of the variable before the sum is taken, the result is the
weighted variance explained, which is equal to the corresponding eigenvalue except
in image analysis. Whether the weighted or unweighted result is more important
depends on the purpose of the analysis.

In the case of correlated factors, the variance explained by a factor can be com-
puted with or without taking the other factors into account. If you want to ignore
the other factors, the variance explained is given by the weighted or unweighted sum
of squares of the appropriate column of the factor structure since the factor struc-
ture contains simple correlations. If you want to subtract the variance explained by
the other factors from the amount explained by the factor in question (the Type II
variance explained), you can take the weighted or unweighted sum of squares of the
appropriate column of the reference structure because the reference structure contains
semipartial correlations. There are other ways of measuring the variance explained.
For example, given a prior ordering of the factors, you can eliminate from each factor
the variance explained by previous factors and compute a Type I variance explained.
Harman (1976, pp. 268-270) provides another method, which is based on direct and
joint contributions.

Heywood Cases and Other Anomalies

Since communalities are squared correlations, you would expect them always to lie
between 0 and 1. It is a mathematical peculiarity of the common factor model, how-
ever, that final communality estimates may exceed 1. If a communality equals 1,
the situation is referred to as a Heywood case, and if a communality exceeds 1, it is
an ultra-Heywood case. An ultra-Heywood case implies that some unique factor has
negative variance, a clear indication that something is wrong. Possible causes include

• bad prior communality estimates

• too many common factors

• too few common factors

• not enough data to provide stable estimates

• the common factor model is not an appropriate model for the data

An ultra-Heywood case renders a factor solution invalid. Factor analysts disagree
about whether or not a factor solution with a Heywood case can be considered legiti-
mate.
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Theoretically, the communality of a variable should not exceed its reliability.
Violation of this condition is called a quasi-Heywood case and should be regarded
with the same suspicion as an ultra-Heywood case.

Elements of the factor structure and reference structure matrices can exceed 1 only in
the presence of an ultra-Heywood case. On the other hand, an element of the factor
pattern may exceed 1 in an oblique rotation.

The maximum likelihood method is especially susceptible to quasi- or ultra-Heywood
cases. During the iteration process, a variable with high communality is given a high
weight; this tends to increase its communality, which increases its weight, and so on.

It is often stated that the squared multiple correlation of a variable with the other
variables is a lower bound to its communality. This is true if the common factor
model fits the data perfectly, but it is not generally the case with real data. A final
communality estimate that is less than the squared multiple correlation can, therefore,
indicate poor fit, possibly due to not enough factors. It is by no means as serious
a problem as an ultra-Heywood case. Factor methods using the Newton-Raphson
method can actually produce communalities less than 0, a result even more disastrous
than an ultra-Heywood case.

The squared multiple correlation of a factor with the variables may exceed 1, even
in the absence of ultra-Heywood cases. This situation is also cause for alarm. Alpha
factor analysis seems to be especially prone to this problem, but it does not occur
with maximum likelihood. If a squared multiple correlation is negative, there are too
many factors retained.

With data that do not fit the common factor model perfectly, you can expect some of
the eigenvalues to be negative. If an iterative factor method converges properly, the
sum of the eigenvalues corresponding to rejected factors should be 0; hence, some
eigenvalues are positive and some negative. If a principal factor analysis fails to
yield any negative eigenvalues, the prior communality estimates are probably too
large. Negative eigenvalues cause the cumulative proportion of variance explained
to exceed 1 for a sufficiently large number of factors. The cumulative proportion of
variance explained by the retained factors should be approximately 1 for principal
factor analysis and should converge to 1 for iterative methods. Occasionally, a single
factor can explain more than 100 percent of the common variance in a principal factor
analysis, indicating that the prior communality estimates are too low.

If a squared canonical correlation or a coefficient alpha is negative, there are too many
factors retained.

Principal component analysis, unlike common factor analysis, has none of these prob-
lems if the covariance or correlation matrix is computed correctly from a data set with
no missing values. Various methods for missing value correlation or severe rounding
of the correlations can produce negative eigenvalues in principal components.
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Time Requirements

n = number of observations

v = number of variables

f = number of factors

i = number of iterations during factor extraction

r = length of iterations during factor rotation

The time required to compute. . . is roughly proportional to
an overall factor analysis iv3

the correlation matrix nv2

PRIORS=SMC or ASMC v3

PRIORS=MAX v2

eigenvalues v3

final eigenvectors fv2

generalized Crawford-Ferguson rvf2

family of rotations,
PROMAX, or HK

ROTATE=PROCRUSTES vf2

Each iteration in the PRINIT or ALPHA method requires computation of eigenvalues
andf eigenvectors.

Each iteration in the ML or ULS method requires computation of eigenvalues and
v − f eigenvectors.

The amount of time that PROC FACTOR takes is roughly proportional to the cube
of the number of variables. Factoring 100 variables, therefore, takes about 1000
times as long as factoring 10 variables. Iterative methods (PRINIT, ALPHA, ULS,
ML) can also take 100 times as long as noniterative methods (PRINCIPAL, IMAGE,
HARRIS).

Displayed Output

PROC FACTOR output includes

• Mean and Std Dev (standard deviation) of each variable and the number of
observations, if you specify the SIMPLE option

• Correlations, if you specify the CORR option

• Inverse Correlation Matrix, if you specify the ALL option



Displayed Output � 1335

• Partial Correlations Controlling all other Variables (negative anti-image cor-
relations), if you specify the MSA option. If the data are appropriate for the
common factor model, the partial correlations should be small.

• Kaiser’s Measure of Sampling Adequacy (Kaiser 1970; Kaiser and Rice 1974;
Cerny and Kaiser 1977) both overall and for each variable, if you specify the
MSA option. The MSA is a summary of how small the partial correlations
are relative to the ordinary correlations. Values greater than 0.8 can be consid-
ered good. Values less than 0.5 require remedial action, either by deleting the
offending variables or by including other variables related to the offenders.

• Prior Communality Estimates, unless 1.0s are used or unless you spec-
ify the METHOD=IMAGE, METHOD=HARRIS, METHOD=PATTERN, or
METHOD=SCORE option

• Squared Multiple Correlations of each variable with all the other variables, if
you specify the METHOD=IMAGE or METHOD=HARRIS option

• Image Coefficients, if you specify the METHOD=IMAGE option

• Image Covariance Matrix, if you specify the METHOD=IMAGE option

• Preliminary Eigenvalues based on the prior communalities, if you spec-
ify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or
METHOD=ULS option. The table produced includes the Total and the
Average of the eigenvalues, the Difference between successive eigenvalues,
the Proportion of variation represented, and the Cumulative proportion of
variation.

• the number of factors that are retained, unless you specify the
METHOD=PATTERN or METHOD=SCORE option

• the Scree Plot of Eigenvalues, if you specify the SCREE option. The
preliminary eigenvalues are used if you specify the METHOD=PRINIT,
METHOD=ALPHA, METHOD=ML, or METHOD=ULS option.

• the iteration history, if you specify the METHOD=PRINIT,
METHOD=ALPHA, METHOD=ML, or METHOD=ULS option. The
table produced contains the iteration number (Iter); the Criterion being
optimized (Jöreskog 1977); the Ridge value for the iteration if you specify
the METHOD=ML or METHOD=ULS option; the maximum Change in any
communality estimate; and the Communalities.

• Significance tests, if you specify the option METHOD=ML, including
Bartlett’s Chi-square, df, and Prob> χ2 for H0: No common factors and H0:
factors retained are sufficient to explain the correlations. The variables should
have an approximate multivariate normal distribution for the probability
levels to be valid. Lawley and Maxwell (1971) suggest that the number
of observations should exceed the number of variables by fifty or more,
although Geweke and Singleton (1980) claim that as few as ten observations
are adequate with five variables and one common factor. Certain regularity
conditions must also be satisfied for Bartlett’sχ2 test to be valid (Geweke and
Singleton 1980), but in practice these conditions usually are satisfied. The
notation Prob>chi**2 means “the probability under the null hypothesis of



1336 � Chapter 27. The FACTOR Procedure

obtaining a greaterχ2 statistic than that observed.” The Chi-square value is
displayed with and without Bartlett’s correction.

• Akaike’s Information Criterion, if you specify the METHOD=ML option.
Akaike’s information criterion (AIC) (Akaike 1973, 1974, 1987) is a general
criterion for estimating the best number of parameters to include in a model
when maximum likelihood estimation is used. The number of factors that
yields the smallest value of AIC is considered best. Like the chi-square test,
AIC tends to include factors that are statistically significant but inconsequential
for practical purposes.

• Schwarz’s Bayesian Criterion, if you specify the METHOD=ML option.
Schwarz’s Bayesian Criterion (SBC) (Schwarz 1978) is another criterion, sim-
ilar to AIC, for determining the best number of parameters. The number of
factors that yields the smallest value of SBC is considered best; SBC seems to
be less inclined to include trivial factors than either AIC or the chi-square test.

• Tucker and Lewis’s Reliability Coefficient, if you specify the METHOD=ML
option (Tucker and Lewis 1973)

• Squared Canonical Correlations, if you specify the METHOD=ML option.
These are the same as the squared multiple correlations for predicting each
factor from the variables.

• Coefficient Alpha for Each Factor, if you specify the METHOD=ALPHA op-
tion

• Eigenvectors, if you specify the EIGENVECTORS or ALL option, unless you
also specify the METHOD=PATTERN or METHOD=SCORE option

• Eigenvalues of the (Weighted) (Reduced) (Image) Correlation or Covariance
Matrix, unless you specify the METHOD=PATTERN or METHOD=SCORE
option. Included are the Total and the Average of the eigenvalues, the
Difference between successive eigenvalues, the Proportion of variation rep-
resented, and the Cumulative proportion of variation.

• the Factor Pattern, which is equal to both the matrix of standardized regression
coefficients for predicting variables from common factors and the matrix of
correlations between variables and common factors since the extracted factors
are uncorrelated. Standard error estimates are included if the SE option is
specified with METHOD=ML. Confidence limits and coverage displays are
included if COVER= option is specified with METHOD=ML.

• Variance explained by each factor, both Weighted and Unweighted, if variable
weights are used

• Final Communality Estimates, including the Total communality; or Final
Communality Estimates and Variable Weights, including the Total commu-
nality, both Weighted and Unweighted, if variable weights are used. Final
communality estimates are the squared multiple correlations for predicting the
variables from the estimated factors, and they can be obtained by taking the
sum of squares of each row of the factor pattern, or a weighted sum of squares
if variable weights are used.

• Residual Correlations with Uniqueness on the Diagonal, if you specify the
RESIDUAL or ALL option
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• Root Mean Square Off-diagonal Residuals, both Over-all and for each variable,
if you specify the RESIDUAL or ALL option

• Partial Correlations Controlling Factors, if you specify the RESIDUAL or ALL
option

• Root Mean Square Off-diagonal Partials, both Over-all and for each variable,
if you specify the RESIDUAL or ALL option

• Plots of Factor Pattern for unrotated factors, if you specify the PREPLOT op-
tion. The number of plots is determined by the NPLOT= option.

• Variable Weights for Rotation, if you specify the NORM=WEIGHT option

• Factor Weights for Rotation, if you specify the HKPOWER= option

• Orthogonal Transformation Matrix, if you request an orthogonal rotation

• Rotated Factor Pattern, if you request an orthogonal rotation. Standard er-
ror estimates are included if the SE option is specified with METHOD=ML.
Confidence limits and coverage displays are included if COVER= option is
specified with METHOD=ML.

• Variance explained by each factor after rotation. If you request an orthogonal
rotation and if variable weights are used, both weighted and unweighted values
are produced.

• Target Matrix for Procrustean Transformation, if you specify the
ROTATE=PROMAX or ROTATE=PROCRUSTES option

• the Procrustean Transformation Matrix, if you specify the ROTATE=PROMAX
or ROTATE=PROCRUSTES option

• the Normalized Oblique Transformation Matrix, if you request an oblique rota-
tion, which, for the option ROTATE=PROMAX, is the product of the prerota-
tion and the Procrustean rotation

• Inter-factor Correlations, if you specify an oblique rotation. Standard er-
ror estimates are included if the SE option is specified with METHOD=ML.
Confidence limits and coverage displays are included if COVER= option is
specified with METHOD=ML.

• Rotated Factor Pattern (Std Reg Coefs), if you specify an oblique rotation,
giving standardized regression coefficients for predicting the variables from
the factors. Standard error estimates are included if the SE option is specified
with METHOD=ML. Confidence limits and coverage displays are included if
COVER= option is specified with METHOD=ML.

• Reference Axis Correlations if you specify an oblique rotation. These are the
partial correlations between the primary factors when all factors other than the
two being correlated are partialed out.

• Reference Structure (Semipartial Correlations), if you request an oblique rota-
tion. The reference structure is the matrix of semipartial correlations (Kerlinger
and Pedhazur 1973) between variables and common factors, removing from
each common factor the effects of other common factors. If the common fac-
tors are uncorrelated, the reference structure is equal to the factor pattern.
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• Variance explained by each factor eliminating the effects of all other factors,
if you specify an oblique rotation. Both Weighted and Unweighted values
are produced if variable weights are used. These variances are equal to the
(weighted) sum of the squared elements of the reference structure correspond-
ing to each factor.

• Factor Structure (Correlations), if you request an oblique rotation. The (pri-
mary) factor structure is the matrix of correlations between variables and com-
mon factors. If the common factors are uncorrelated, the factor structure is
equal to the factor pattern. Standard error estimates are included if the SE op-
tion is specified with METHOD=ML. Confidence limits and coverage displays
are included if COVER= option is specified with METHOD=ML.

• Variance explained by each factor ignoring the effects of all other factors, if you
request an oblique rotation. Both Weighted and Unweighted values are pro-
duced if variable weights are used. These variances are equal to the (weighted)
sum of the squared elements of the factor structure corresponding to each fac-
tor.

• Final Communality Estimates for the rotated factors if you specify the
ROTATE= option. The estimates should equal the unrotated communalities.

• Squared Multiple Correlations of the Variables with Each Factor, if you specify
the SCORE or ALL option, except for unrotated principal components

• Standardized Scoring Coefficients, if you specify the SCORE or ALL option

• Plots of the Factor Pattern for rotated factors, if you specify the PLOT option
and you request an orthogonal rotation. The number of plots is determined by
the NPLOT= option.

• Plots of the Reference Structure for rotated factors, if you specify the PLOT
option and you request an oblique rotation. The number of plots is determined
by the NPLOT= option. Included are the Reference Axis Correlation and the
Angle between the Reference Axes for each pair of factors plotted.

If you specify the ROTATE=PROMAX option, the output includes results for both
the prerotation and the Procrustean rotation.

ODS Table Names

PROC FACTOR assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 27.3. ODS Tables Produced in PROC FACTOR

ODS Table Name Description Option
AlphaCoef Coefficient alpha for each fac-

tor
METHOD=ALPHA

CanCorr Squared canonical correlations METHOD=ML
CondStdDev Conditional standard

deviations
SIMPLE w/PARTIAL
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Table 27.3. (continued)

ODS Table Name Description Option
ConvergenceStatus Convergence status METHOD=PRINIT, =ALPHA, =ML, or

=ULS
Corr Correlations CORR
Eigenvalues Eigenvalues default, SCREE
Eigenvectors Eigenvectors EIGENVECTORS
FactorWeightRotate Factor weights for rotation HKPOWER=
FactorPattern Factor pattern default
FactorStructure Factor structure ROTATE= any oblique rotation
FinalCommun Final communalities default
FinalCommunWgt Final communalities with

weights
METHOD=ML, METHOD=ALPHA

FitMeasures Measures of fit METHOD=ML
ImageCoef Image coefficients METHOD=IMAGE
ImageCov Image covariance matrix METHOD=IMAGE
ImageFactors Image factor matrix METHOD=IMAGE
InputFactorPattern Input factor pattern METHOD=PATTERN with PRINT or

ALL
InputScoreCoef Standardized input scoring

coefficients
METHOD=SCORE with PRINT or ALL

InterFactorCorr Inter-factor correlations ROTATE= any oblique rotation
InvCorr Inverse correlation matrix ALL
IterHistory Iteration history METHOD=PRINIT, =ALPHA, =ML, or

=ULS
MultipleCorr Squared multiple correlations METHOD=IMAGE or

METHOD=HARRIS
NormObliqueTrans Normalized oblique

transformation matrix
ROTATE= any oblique rotation

ObliqueRotFactPat Rotated factor pattern ROTATE= any oblique rotation
ObliqueTrans Oblique transformation matrix HKPOWER=
OrthRotFactPat Rotated factor pattern ROTATE= any orthogonal rotation
OrthTrans Orthogonal transformation

matrix
ROTATE= any orthogonal rotation

ParCorrControlFactor Partial correlations controlling
factors

RESIDUAL

ParCorrControlVar Partial correlations controlling
other variables

MSA

PartialCorr Partial correlations MSA, CORR w/PARTIAL
PriorCommunalEst Prior communality estimates PRIORS=, METHOD=ML,

METHOD=ALPHA
ProcrustesTarget Target matrix for Procrustean

transformation
ROTATE=PROCRUSTES,
ROTATE=PROMAX

ProcrustesTrans Procrustean transformation
matrix

ROTATE=PROCRUSTES,
ROTATE=PROMAX

RMSOffDiagPartials Root mean square off-diagonal
partials

RESIDUAL
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Table 27.3. (continued)

ODS Table Name Description Option
RMSOffDiagResids Root mean square off-diagonal

residuals
RESIDUAL

ReferenceAxisCorr Reference axis correlations ROTATE= any oblique rotation
ReferenceStructure Reference structure ROTATE= any oblique rotation
ResCorrUniqueDiag Residual correlations with

uniqueness on the diagonal
RESIDUAL

SamplingAdequacy Kaiser’s measure of sampling
adequacy

MSA

SignifTests Significance tests METHOD=ML
SimpleStatistics Simple statistics SIMPLE
StdScoreCoef Standardized scoring

coefficients
SCORE

VarExplain Variance explained default
VarExplainWgt Variance explained with

weights
METHOD=ML, METHOD=ALPHA

VarFactorCorr Squared multiple correlations
of the variables with each factor

SCORE

VarWeightRotate Variable weights for rotation NORM=WEIGHT, ROTATE=

Examples

Example 27.1. Principal Component Analysis

The following example analyzes socioeconomic data provided by Harman (1976).
The five variables represent total population, median school years, total employ-
ment, miscellaneous professional services, and median house value. Each observa-
tion represents one of twelve census tracts in the Los Angeles Standard Metropolitan
Statistical Area.

The first analysis is a principal component analysis. Simple descriptive statistics and
correlations are also displayed. This example producesOutput 27.1.1:

data SocioEconomics;
title ’Five Socioeconomic Variables’;
title2 ’See Page 14 of Harman: Modern Factor Analysis, 3rd Ed’;
input Population School Employment Services HouseValue;
datalines;

5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
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9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 11.4 4000 100 13000
;

proc factor data=SocioEconomics simple corr;
title3 ’Principal Component Analysis’;

run;

There are two large eigenvalues, 2.8733 and 1.7967, which together account for
93.4% of the standardized variance. Thus, the first two principal components pro-
vide an adequate summary of the data for most purposes. Three components, ex-
plaining 97.7% of the variation, should be sufficient for almost any application.
PROC FACTOR retains two components on the basis of the eigenvalues-greater-than-
one rule since the third eigenvalue is only 0.2148.

The first component has large positive loadings for all five variables. The correlation
with Services (0.93239) is especially high. The second component is a contrast of
Population (0.80642) andEmployment (0.72605) againstSchool (−0.54476) and
HouseValue (−0.55818), with a very small loading onServices (−0.10431).

The final communality estimates show that all the variables are well accounted for
by two components, with final communality estimates ranging from 0.880236 for
Services to 0.987826 forPopulation.

Output 27.1.1. Principal Component Analysis

Five Socioeconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed

Principal Component Analysis

The FACTOR Procedure

Means and Standard Deviations from 12 Observations

Variable Mean Std Dev

Population 6241.667 3439.9943
School 11.442 1.7865
Employment 2333.333 1241.2115
Services 120.833 114.9275
HouseValue 17000.000 6367.5313

Correlations

Population School Employment Services HouseValue

Population 1.00000 0.00975 0.97245 0.43887 0.02241
School 0.00975 1.00000 0.15428 0.69141 0.86307
Employment 0.97245 0.15428 1.00000 0.51472 0.12193
Services 0.43887 0.69141 0.51472 1.00000 0.77765
HouseValue 0.02241 0.86307 0.12193 0.77765 1.00000
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Output 27.1.1. (continued)

Principal Component Analysis

Initial Factor Method: Principal Components

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1

Eigenvalue Difference Proportion Cumulative

1 2.87331359 1.07665350 0.5747 0.5747
2 1.79666009 1.58182321 0.3593 0.9340
3 0.21483689 0.11490283 0.0430 0.9770
4 0.09993405 0.08467868 0.0200 0.9969
5 0.01525537 0.0031 1.0000

Factor Pattern

Factor1 Factor2

Population 0.58096 0.80642
School 0.76704 -0.54476
Employment 0.67243 0.72605
Services 0.93239 -0.10431
HouseValue 0.79116 -0.55818

Variance Explained by Each Factor

Factor1 Factor2

2.8733136 1.7966601

Final Communality Estimates: Total = 4.669974

Population School Employment Services HouseValue

0.98782629 0.88510555 0.97930583 0.88023562 0.93750041

Example 27.2. Principal Factor Analysis

The following example uses the data presented inExample 27.1, and performs a
principal factor analysis with squared multiple correlations for the prior communality
estimates (PRIORS=SMC).

To help determine if the common factor model is appropriate, Kaiser’s measure of
sampling adequacy (MSA) is requested, and the residual correlations and partial cor-
relations are computed (RESIDUAL). To help determine the number of factors, a
scree plot (SCREE) of the eigenvalues is displayed, and the PREPLOT option plots
the unrotated factor pattern.

The ROTATE= and REORDER options are specified to enhance factor interpretabil-
ity. The ROTATE=PROMAX option produces an orthogonal varimax prerotation
(default) followed by an oblique Procrustean rotation, and the REORDER option re-
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orders the variables according to their largest factor loadings. An OUTSTAT= data
set is created by PROC FACTOR and displayed inOutput 27.2.16.

proc factor data=SocioEconomics
priors=smc msa scree residual preplot
rotate=promax reorder plot
outstat=fact_all;

title3 ’Principal Factor Analysis with Promax Rotation’;
run;

proc print;
title3 ’Factor Output Data Set’;

run;

Output 27.2.1. Principal Factor Analysis

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Partial Correlations Controlling all other Variables

Population School Employment Services HouseValue

Population 1.00000 -0.54465 0.97083 0.09612 0.15871
School -0.54465 1.00000 0.54373 0.04996 0.64717
Employment 0.97083 0.54373 1.00000 0.06689 -0.25572
Services 0.09612 0.04996 0.06689 1.00000 0.59415
HouseValue 0.15871 0.64717 -0.25572 0.59415 1.00000

Kaiser’s Measure of Sampling Adequacy: Overall MSA = 0.57536759

Population School Employment Services HouseValue

0.47207897 0.55158839 0.48851137 0.80664365 0.61281377
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Output 27.2.1. (continued)

Principal Factor Analysis with Promax Rotation

Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Eigenvalues of the Reduced Correlation Matrix:
Total = 4.39280116 Average = 0.87856023

Eigenvalue Difference Proportion Cumulative

1 2.73430084 1.01823217 0.6225 0.6225
2 1.71606867 1.67650586 0.3907 1.0131
3 0.03956281 0.06408626 0.0090 1.0221
4 -.02452345 0.04808427 -0.0056 1.0165
5 -.07260772 -0.0165 1.0000

Output 27.2.1displays the results of the principal factor extraction.

If the data are appropriate for the common factor model, the partial correlations con-
trolling the other variables should be small compared to the original correlations. The
partial correlation between the variablesSchool andHouseValue, for example, is
0.65, slightly less than the original correlation of 0.86. The partial correlation be-
tweenPopulation andSchool is -0.54, which is much larger in absolute value than
the original correlation; this is an indication of trouble. Kaiser’s MSA is a summary,
for each variable and for all variables together, of how much smaller the partial cor-
relations are than the original correlations. Values of 0.8 or 0.9 are considered good,
while MSAs below 0.5 are unacceptable. The variablesPopulation, School, and
Employment have very poor MSAs. Only theServices variable has a good MSA.
The overall MSA of 0.58 is sufficiently poor that additional variables should be in-
cluded in the analysis to better define the common factors. A commonly used rule is
that there should be at least three variables per factor. In the following analysis, there
seems to be two common factors in these data, so more variables are needed for a
reliable analysis.

The SMCs are all fairly large; hence, the factor loadings do not differ greatly from
the principal component analysis.

The eigenvalues show clearly that two common factors are present. The first two
largest positive eigenvalues account for 101.31% of the common variance. This is
possible because the reduced correlation matrix, in general, needs not be positive
definite, and negative eigenvalues for the matrix are possible. The scree plot displays
a sharp bend at the third eigenvalue, reinforcing the preceding conclusion.
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Output 27.2.2. Scree Plot

Principal Factor Analysis with Promax Rotation

Initial Factor Method: Principal Factors

Scree Plot of Eigenvalues
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Output 27.2.3. Factor Pattern Matrix and Communalities

Principal Factor Analysis with Promax Rotation

Initial Factor Method: Principal Factors

Factor Pattern

Factor1 Factor2

Services 0.87899 -0.15847
HouseValue 0.74215 -0.57806
Employment 0.71447 0.67936
School 0.71370 -0.55515
Population 0.62533 0.76621

Variance Explained by Each Factor

Factor1 Factor2

2.7343008 1.7160687

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

As displayed inOutput 27.2.3, the principal factor pattern is similar to the principal
component pattern seen inExample 27.1. For example, the variableServices has the
largest loading on the first factor, and thePopulation variable has the smallest. The
variablesPopulation andEmployment have large positive loadings on the second
factor, and theHouseValue andSchool variables have large negative loadings.

The final communality estimates are all fairly close to the priors. Only the communal-
ity for the variableHouseValue increased appreciably, from 0.847019 to 0.884950.
Nearly 100% of the common variance is accounted for. The residual correlations
(off-diagonal elements) are low, the largest being 0.03 (Output 27.2.4). The partial
correlations are not quite as impressive, since the uniqueness values are also rather
small. These results indicate that the SMCs are good but not quite optimal commu-
nality estimates.
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Output 27.2.4. Residual and Partial Correlations

Principal Factor Analysis with Promax Rotation

Initial Factor Method: Principal Factors

Residual Correlations With Uniqueness on the Diagonal

Population School Employment Services HouseValue

Population 0.02189 -0.01118 0.00514 0.01063 0.00124
School -0.01118 0.18244 0.02151 -0.02390 0.01248
Employment 0.00514 0.02151 0.02800 -0.00565 -0.01561
Services 0.01063 -0.02390 -0.00565 0.20226 0.03370
HouseValue 0.00124 0.01248 -0.01561 0.03370 0.11505

Root Mean Square Off-Diagonal Residuals: Overall = 0.01693282

Population School Employment Services HouseValue

0.00815307 0.01813027 0.01382764 0.02151737 0.01960158

Partial Correlations Controlling Factors

Population School Employment Services HouseValue

Population 1.00000 -0.17693 0.20752 0.15975 0.02471
School -0.17693 1.00000 0.30097 -0.12443 0.08614
Employment 0.20752 0.30097 1.00000 -0.07504 -0.27509
Services 0.15975 -0.12443 -0.07504 1.00000 0.22093
HouseValue 0.02471 0.08614 -0.27509 0.22093 1.00000

Output 27.2.5. Root Mean Square Off-Diagonal Partials

Principal Factor Analysis with Promax Rotation

Initial Factor Method: Principal Factors

Root Mean Square Off-Diagonal Partials: Overall = 0.18550132

Population School Employment Services HouseValue

0.15850824 0.19025867 0.23181838 0.15447043 0.18201538
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Output 27.2.6. Unrotated Factor Pattern Plot

Principal Factor Analysis with Promax Rotation

Initial Factor Method: Principal Factors

Plot of Factor Pattern for Factor1 and Factor2
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As displayed inOutput 27.2.6, the unrotated factor pattern reveals two tight clus-
ters of variables, with the variablesHouseValue andSchool at the negative end of
Factor2 axis and the variablesEmployment andPopulation at the positive end. The
Services variable is in between but closer to theHouseValue andSchool variables.
A good rotation would put the reference axes through the two clusters.
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Output 27.2.7. Varimax Rotation: Transform Matrix and Rotated Pattern

Principal Factor Analysis with Promax Rotation

Prerotation Method: Varimax

Orthogonal Transformation Matrix

1 2

1 0.78895 0.61446
2 -0.61446 0.78895

Rotated Factor Pattern

Factor1 Factor2

HouseValue 0.94072 -0.00004
School 0.90419 0.00055
Services 0.79085 0.41509
Population 0.02255 0.98874
Employment 0.14625 0.97499

Output 27.2.8. Varimax Rotation: Variance Explained and Communalities

Principal Factor Analysis with Promax Rotation

Prerotation Method: Varimax

Variance Explained by Each Factor

Factor1 Factor2

2.3498567 2.1005128

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998
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Output 27.2.9. Varimax Rotated Factor Pattern Plot

Principal Factor Analysis with Promax Rotation

Prerotation Method: Varimax

Plot of Factor Pattern for Factor1 and Factor2
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Output 27.2.7, Output 27.2.8, andOutput 27.2.9display the results of the varimax
rotation. This rotation puts one axis through the variablesHouseValue andSchool
but misses thePopulation andEmployment variables slightly.
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Output 27.2.10. Promax Rotation: Procrustean Target and Transform Matrix

Principal Factor Analysis with Promax Rotation

Rotation Method: Promax (power = 3)

Target Matrix for Procrustean Transformation

Factor1 Factor2

HouseValue 1.00000 -0.00000
School 1.00000 0.00000
Services 0.69421 0.10045
Population 0.00001 1.00000
Employment 0.00326 0.96793

Procrustean Transformation Matrix

1 2

1 1.04116598 -0.0986534
2 -0.1057226 0.96303019

Output 27.2.11. Promax Rotation: Oblique Transform Matrix and Correlation

Principal Factor Analysis with Promax Rotation

Rotation Method: Promax (power = 3)

Normalized Oblique Transformation Matrix

1 2

1 0.73803 0.54202
2 -0.70555 0.86528

Inter-Factor Correlations

Factor1 Factor2

Factor1 1.00000 0.20188
Factor2 0.20188 1.00000
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Output 27.2.12. Promax Rotation: Rotated Factor Pattern and Correlations

Principal Factor Analysis with Promax Rotation

Rotation Method: Promax (power = 3)

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2

HouseValue 0.95558485 -0.0979201
School 0.91842142 -0.0935214
Services 0.76053238 0.33931804
Population -0.0790832 1.00192402
Employment 0.04799 0.97509085

Reference Axis Correlations

Factor1 Factor2

Factor1 1.00000 -0.20188
Factor2 -0.20188 1.00000

Output 27.2.13. Promax Rotation: Variance Explained and Factor Structure

Principal Factor Analysis with Promax Rotation

Rotation Method: Promax (power = 3)

Reference Structure (Semipartial Correlations)

Factor1 Factor2

HouseValue 0.93591 -0.09590
School 0.89951 -0.09160
Services 0.74487 0.33233
Population -0.07745 0.98129
Employment 0.04700 0.95501

Variance Explained by Each Factor Eliminating Other Factors

Factor1 Factor2

2.2480892 2.0030200

Factor Structure (Correlations)

Factor1 Factor2

HouseValue 0.93582 0.09500
School 0.89954 0.09189
Services 0.82903 0.49286
Population 0.12319 0.98596
Employment 0.24484 0.98478
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Output 27.2.14. Promax Rotation: Variance Explained and Final Communalities

Principal Factor Analysis with Promax Rotation

Rotation Method: Promax (power = 3)

Variance Explained by Each Factor Ignoring Other Factors

Factor1 Factor2

2.4473495 2.2022803

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998
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Output 27.2.15. Promax Rotated Factor Pattern Plot

Principal Factor Analysis with Promax Rotation

Rotation Method: Promax (power = 3)

Plot of Reference Structure for Factor1 and Factor2
Reference Axis Correlation = -0.2019 Angle = 101.6471
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The oblique promax rotation (Output 27.2.10throughOutput 27.2.15) places an axis
through the variablesPopulation andEmployment but misses theHouseValue and
School variables. Since an independent-cluster solution would be possible if it were
not for the variableServices, a Harris-Kaiser rotation weighted by the Cureton-
Mulaik technique should be used.



Example 27.2. Principal Factor Analysis � 1355

Output 27.2.16. Output Data Set

Factor Output Data Set

House
Obs _TYPE_ _NAME_ Population School Employment Services Value

1 MEAN 6241.67 11.4417 2333.33 120.833 17000.00
2 STD 3439.99 1.7865 1241.21 114.928 6367.53
3 N 12.00 12.0000 12.00 12.000 12.00
4 CORR Population 1.00 0.0098 0.97 0.439 0.02
5 CORR School 0.01 1.0000 0.15 0.691 0.86
6 CORR Employment 0.97 0.1543 1.00 0.515 0.12
7 CORR Services 0.44 0.6914 0.51 1.000 0.78
8 CORR HouseValue 0.02 0.8631 0.12 0.778 1.00
9 COMMUNAL 0.98 0.8176 0.97 0.798 0.88

10 PRIORS 0.97 0.8223 0.97 0.786 0.85
11 EIGENVAL 2.73 1.7161 0.04 -0.025 -0.07
12 UNROTATE Factor1 0.63 0.7137 0.71 0.879 0.74
13 UNROTATE Factor2 0.77 -0.5552 0.68 -0.158 -0.58
14 RESIDUAL Population 0.02 -0.0112 0.01 0.011 0.00
15 RESIDUAL School -0.01 0.1824 0.02 -0.024 0.01
16 RESIDUAL Employment 0.01 0.0215 0.03 -0.006 -0.02
17 RESIDUAL Services 0.01 -0.0239 -0.01 0.202 0.03
18 RESIDUAL HouseValue 0.00 0.0125 -0.02 0.034 0.12
19 PRETRANS Factor1 0.79 -0.6145 . . .
20 PRETRANS Factor2 0.61 0.7889 . . .
21 PREROTAT Factor1 0.02 0.9042 0.15 0.791 0.94
22 PREROTAT Factor2 0.99 0.0006 0.97 0.415 -0.00
23 TRANSFOR Factor1 0.74 -0.7055 . . .
24 TRANSFOR Factor2 0.54 0.8653 . . .
25 FCORR Factor1 1.00 0.2019 . . .
26 FCORR Factor2 0.20 1.0000 . . .
27 PATTERN Factor1 -0.08 0.9184 0.05 0.761 0.96
28 PATTERN Factor2 1.00 -0.0935 0.98 0.339 -0.10
29 RCORR Factor1 1.00 -0.2019 . . .
30 RCORR Factor2 -0.20 1.0000 . . .
31 REFERENC Factor1 -0.08 0.8995 0.05 0.745 0.94
32 REFERENC Factor2 0.98 -0.0916 0.96 0.332 -0.10
33 STRUCTUR Factor1 0.12 0.8995 0.24 0.829 0.94
34 STRUCTUR Factor2 0.99 0.0919 0.98 0.493 0.09

The output data set displayed inOutput 27.2.16can be used for Harris-Kaiser rota-
tion by deleting observations with–TYPE–=’PATTERN’ and–TYPE–=’FCORR’,
which are for the promax-rotated factors, and changing–TYPE–=’UNROTATE’ to

–TYPE–=’PATTERN’. In this way, the initial orthogonal factor pattern matrix is
saved in the observations with–TYPE–=’PATTERN’. The following factor analysis
will then read in the factor pattern in thefact2 data set as an initial factor solu-
tion, which will then be rotated by the Harris-Kaiser rotation with Cureton-Mulaik
weights.
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The following statements produceOutput 27.2.17:

data fact2(type=factor);
set fact_all;
if _TYPE_ in(’PATTERN’ ’FCORR’) then delete;
if _TYPE_=’UNROTATE’ then _TYPE_=’PATTERN’;

proc factor rotate=hk norm=weight reorder plot;
title3 ’Harris-Kaiser Rotation with Cureton-Mulaik Weights’;

run;

The results of the Harris-Kaiser rotation are displayed inOutput 27.2.17:

Output 27.2.17. Harris-Kaiser Rotation

Harris-Kaiser Rotation with Cureton-Mulaik Weights

The FACTOR Procedure
Rotation Method: Harris-Kaiser (hkpower = 0)

Variable Weights for Rotation

Population School Employment Services HouseValue

0.95982747 0.93945424 0.99746396 0.12194766 0.94007263

Oblique Transformation Matrix

1 2

1 0.73537 0.61899
2 -0.68283 0.78987

Inter-Factor Correlations

Factor1 Factor2

Factor1 1.00000 0.08358
Factor2 0.08358 1.00000
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Output 27.2.17. (continued)

Harris-Kaiser Rotation with Cureton-Mulaik Weights

Rotation Method: Harris-Kaiser (hkpower = 0)

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2

HouseValue 0.94048 0.00279
School 0.90391 0.00327
Services 0.75459 0.41892
Population -0.06335 0.99227
Employment 0.06152 0.97885

Reference Axis Correlations

Factor1 Factor2

Factor1 1.00000 -0.08358
Factor2 -0.08358 1.00000

Reference Structure (Semipartial Correlations)

Factor1 Factor2

HouseValue 0.93719 0.00278
School 0.90075 0.00326
Services 0.75195 0.41745
Population -0.06312 0.98880
Employment 0.06130 0.97543

Variance Explained by Each Factor Eliminating Other Factors

Factor1 Factor2

2.2628537 2.1034731
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Output 27.2.17. (continued)

Harris-Kaiser Rotation with Cureton-Mulaik Weights

Rotation Method: Harris-Kaiser (hkpower = 0)

Factor Structure (Correlations)

Factor1 Factor2

HouseValue 0.94071 0.08139
School 0.90419 0.07882
Services 0.78960 0.48198
Population 0.01958 0.98698
Employment 0.14332 0.98399

Variance Explained by Each Factor Ignoring Other Factors

Factor1 Factor2

2.3468965 2.1875158

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998
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Output 27.2.17. (continued)

Harris-Kaiser Rotation with Cureton-Mulaik Weights

Rotation Method: Harris-Kaiser (hkpower = 0)

Plot of Reference Structure for Factor1 and Factor2
Reference Axis Correlation = -0.0836 Angle = 94.7941

Factor1
1
E

.B

.8
D

.7

.6

.5

.4

.3

.2
F

.1 a
C c

-1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0t
A o

-.1 r
2

-.2

-.3

-.4

-.5

-.6

-.7

-.8

-.9

-1

Population=A School=B Employment=C Services=D HouseValue=E

In the results of the Harris-Kaiser rotation, the variableServices receives a small
weight, and the axes are placed as desired.
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Example 27.3. Maximum Likelihood Factor Analysis
This example uses maximum likelihood factor analyses for one, two, and three fac-
tors. It is already apparent from the principal factor analysis that the best number of
common factors is almost certainly two. The one- and three-factor ML solutions re-
inforce this conclusion and illustrate some of the numerical problems that can occur.
The following statements produceOutput 27.3.1:

proc factor data=SocioEconomics method=ml heywood n=1;
title3 ’Maximum Likelihood Factor Analysis with One Factor’;

run;

proc factor data=SocioEconomics method=ml heywood n=2;
title3 ’Maximum Likelihood Factor Analysis with Two Factors’;

run;

proc factor data=SocioEconomics method=ml heywood n=3;
title3 ’Maximum Likelihood Factor Analysis with Three Factors’;

run;

Output 27.3.1. Maximum Likelihood Factor Analysis

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues: Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369
2 13.0547191 12.7270798 0.1715 1.0084
3 0.3276393 0.6749199 0.0043 1.0127
4 -0.3472805 0.2722202 -0.0046 1.0081
5 -0.6195007 -0.0081 1.0000

Iteration Criterion Ridge Change Communalities

1 6.5429218 0.0000 0.1033 0.93828 0.72227 1.00000 0.71940
0.74371

2 3.1232699 0.0000 0.7288 0.94566 0.02380 1.00000 0.26493
0.01487

3 3.1232699 0.0313 0.0000 0.94566 0.02380 1.00000 0.26493
0.01487

Convergence criterion satisfied.
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Output 27.3.1. (continued)

Maximum Likelihood Factor Analysis with One Factor

Initial Factor Method: Maximum Likelihood

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 10 54.2517 <.0001
HA: At least one common factor
H0: 1 Factor is sufficient 5 24.4656 0.0002
HA: More factors are needed

Chi-Square without Bartlett’s Correction 34.355969
Akaike’s Information Criterion 24.355969
Schwarz’s Bayesian Criterion 21.931436
Tucker and Lewis’s Reliability Coefficient 0.120231

Squared Canonical Correlations

Factor1

1.0000000

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = -8.66E-15 Average = -2.165E-15

Eigenvalue Difference

1 Infty Infty
2 1.92716032 2.15547340
3 -.22831308 0.56464322
4 -.79295630 0.11293464
5 -.90589094
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Output 27.3.1. (continued)

Maximum Likelihood Factor Analysis with One Factor

Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1

Population 0.97244826
School 0.15428378
Employment 1
Services 0.51471836
HouseValue 0.12192599

Variance Explained by Each Factor

Factor Weighted Unweighted

Factor1 17.8010629 2.24926004

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 17.801063 Unweighted = 2.249260

Variable Communality Weight

Population 0.94565561 18.4011648
School 0.02380349 1.0243839
Employment 1.00000000 Infty
Services 0.26493499 1.3604239
HouseValue 0.01486595 1.0150903

Output 27.3.1displays the results of the analysis with one factor. The solution on the
second iteration is so close to the optimum that PROC FACTOR cannot find a better
solution, hence you receive this message:

Convergence criterion satisfied.

When this message appears, you should try rerunning PROC FACTOR with different
prior communality estimates to make sure that the solution is correct. In this case,
other prior estimates lead to the same solution or possibly to worse local optima, as
indicated by the information criteria or the Chi-square values.

The variableEmployment has a communality of 1.0 and, therefore, an infinite weight
that is displayed next to the final communality estimate as a missing/infinite value.
The first eigenvalue is also infinite. Infinite values are ignored in computing the total
of the eigenvalues and the total final communality.
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Output 27.3.2. Maximum Likelihood Factor Analysis: Two Factors

Maximum Likelihood Factor Analysis with Two Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues: Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369
2 13.0547191 12.7270798 0.1715 1.0084
3 0.3276393 0.6749199 0.0043 1.0127
4 -0.3472805 0.2722202 -0.0046 1.0081
5 -0.6195007 -0.0081 1.0000

Iteration Criterion Ridge Change Communalities

1 0.3431221 0.0000 0.0471 1.00000 0.80672 0.95058 0.79348
0.89412

2 0.3072178 0.0000 0.0307 1.00000 0.80821 0.96023 0.81048
0.92480

3 0.3067860 0.0000 0.0063 1.00000 0.81149 0.95948 0.81677
0.92023

4 0.3067373 0.0000 0.0022 1.00000 0.80985 0.95963 0.81498
0.92241

5 0.3067321 0.0000 0.0007 1.00000 0.81019 0.95955 0.81569
0.92187

Convergence criterion satisfied.
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Output 27.3.2. (continued)

Maximum Likelihood Factor Analysis with Two Factors

Initial Factor Method: Maximum Likelihood

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 10 54.2517 <.0001
HA: At least one common factor
H0: 2 Factors are sufficient 1 2.1982 0.1382
HA: More factors are needed

Chi-Square without Bartlett’s Correction 3.3740530
Akaike’s Information Criterion 1.3740530
Schwarz’s Bayesian Criterion 0.8891463
Tucker and Lewis’s Reliability Coefficient 0.7292200

Squared Canonical Correlations

Factor1 Factor2

1.0000000 0.9518891

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 19.7853157 Average = 4.94632893

Eigenvalue Difference Proportion Cumulative

1 Infty Infty
2 19.7853143 19.2421292 1.0000 1.0000
3 0.5431851 0.5829564 0.0275 1.0275
4 -0.0397713 0.4636411 -0.0020 1.0254
5 -0.5034124 -0.0254 1.0000
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Output 27.3.2. (continued)

Maximum Likelihood Factor Analysis with Two Factors

Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1 Factor2

Population 1.00000 0.00000
School 0.00975 0.90003
Employment 0.97245 0.11797
Services 0.43887 0.78930
HouseValue 0.02241 0.95989

Variance Explained by Each Factor

Factor Weighted Unweighted

Factor1 24.4329707 2.13886057
Factor2 19.7853143 2.36835294

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 44.218285 Unweighted = 4.507214

Variable Communality Weight

Population 1.00000000 Infty
School 0.81014489 5.2682940
Employment 0.95957142 24.7246669
Services 0.81560348 5.4256462
HouseValue 0.92189372 12.7996793

Output 27.3.2displays the results of the analysis using two factors. The analysis con-
verges without incident. This time, however, thePopulation variable is a Heywood
case.
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Output 27.3.3. Maximum Likelihood Factor Analysis: Three Factors

Maximum Likelihood Factor Analysis with Three Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues: Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369
2 13.0547191 12.7270798 0.1715 1.0084
3 0.3276393 0.6749199 0.0043 1.0127
4 -0.3472805 0.2722202 -0.0046 1.0081
5 -0.6195007 -0.0081 1.0000

Iteration Criterion Ridge Change Communalities

1 0.1798029 0.0313 0.0501 0.96081 0.84184 1.00000 0.80175
0.89716

2 0.0016405 0.0313 0.0678 0.98081 0.88713 1.00000 0.79559
0.96500

3 0.0000041 0.0313 0.0094 0.98195 0.88603 1.00000 0.80498
0.96751

4 0.0000000 0.0313 0.0006 0.98202 0.88585 1.00000 0.80561
0.96735

ERROR: Converged, but not to a proper optimum.
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Output 27.3.3. (continued)

Maximum Likelihood Factor Analysis with Three Factors

Initial Factor Method: Maximum Likelihood

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 10 54.2517 <.0001
HA: At least one common factor
H0: 3 Factors are sufficient -2 0.0000 .
HA: More factors are needed

Chi-Square without Bartlett’s Correction 0.0000003
Akaike’s Information Criterion 4.0000003
Schwarz’s Bayesian Criterion 4.9698136
Tucker and Lewis’s Reliability Coefficient 0.0000000

Squared Canonical Correlations

Factor1 Factor2 Factor3

1.0000000 0.9751895 0.6894465

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 41.5254193 Average = 10.3813548

Eigenvalue Difference Proportion Cumulative

1 Infty Infty
2 39.3054826 37.0854258 0.9465 0.9465
3 2.2200568 2.2199693 0.0535 1.0000
4 0.0000875 0.0002949 0.0000 1.0000
5 -0.0002075 -0.0000 1.0000
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Output 27.3.3. (continued)

Maximum Likelihood Factor Analysis with Three Factors

Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1 Factor2 Factor3

Population 0.97245 -0.11233 -0.15409
School 0.15428 0.89108 0.26083
Employment 1.00000 0.00000 0.00000
Services 0.51472 0.72416 -0.12766
HouseValue 0.12193 0.97227 -0.08473

Variance Explained by Each Factor

Factor Weighted Unweighted

Factor1 54.6115241 2.24926004
Factor2 39.3054826 2.27634375
Factor3 2.2200568 0.11525433

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 96.137063 Unweighted = 4.640858

Variable Communality Weight

Population 0.98201660 55.6066901
School 0.88585165 8.7607194
Employment 1.00000000 Infty
Services 0.80564301 5.1444261
HouseValue 0.96734687 30.6251078

The three-factor analysis displayed inOutput 27.3.3generates this message:

WARNING: Too many factors for a unique solution.

The number of parameters in the model exceeds the number of elements in the cor-
relation matrix from which they can be estimated, so an infinite number of different
perfect solutions can be obtained. The Criterion approaches zero at an improper op-
timum, as indicated by this message:

Converged, but not to a proper optimum.

The degrees of freedom for the chi-square test are−2, so a probability level cannot
be computed for three factors. Note also that the variableEmployment is a Heywood
case again.

The probability levels for the chi-square test are 0.0001 for the hypothesis of no
common factors, 0.0002 for one common factor, and 0.1382 for two common factors.
Therefore, the two-factor model seems to be an adequate representation. Akaike’s
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information criterion and Schwarz’s Bayesian criterion attain their minimum values
at two common factors, so there is little doubt that two factors are appropriate for
these data.

Example 27.4. Using Confidence Intervals to Locate Salient
Factor Loadings

This example illustrates how you can utilize the standard errors and confidence in-
tervals to understand the pattern of factor loadings under the maximum likelihood
estimation. There are nine tests and you want a three-factor solution for a correlation
matrix based on 200 observations. You apply quartimin rotation with (default) Kaiser
normalization. You define loadings with magnitudes greater than 0.45 to be salient
and use 90% confidence intervals to judge the salience.

data test(type=corr);
title ’Quartimin-Rotated Factor Solution with Standard Errors’;
input _name_ $ test1-test9;
_type_ = ’corr’;
datalines;

Test1 1 .561 .602 .290 .404 .328 .367 .179 -.268
Test2 .561 1 .743 .414 .526 .442 .523 .289 -.399
Test3 .602 .743 1 .286 .343 .361 .679 .456 -.532
Test4 .290 .414 .286 1 .677 .446 .412 .400 -.491
Test5 .404 .526 .343 .677 1 .584 .408 .299 -.466
Test6 .328 .442 .361 .446 .584 1 .333 .178 -.306
Test7 .367 .523 .679 .412 .408 .333 1 .711 -.760
Test8 .179 .289 .456 .400 .299 .178 .711 1 -.725
Test9 -.268 -.399 -.532 -.491 -.466 -.306 -.760 -.725 1
;

proc factor data=test method=ml reorder rotate=quartimin
nobs=200 n=3 se cover=.45 alpha=.1;
title2 ’A nine-variable-three-factor example’;

run;
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Output 27.4.1. QuartiminRotated Factor Solution with Standard Errors

Quartimin-Rotated Factor Solution with Standard Errors
A nine-variable-three-factor example

The FACTOR Procedure
Rotation Method: Quartimin

Inter-Factor Correlations
With 90% confidence limits

Estimate/StdErr/LowerCL/UpperCL

Factor1 Factor2 Factor3

Factor1 1.00000 0.41283 0.38304
0.00000 0.06267 0.06060

. 0.30475 0.27919

. 0.51041 0.47804

Factor2 0.41283 1.00000 0.47006
0.06267 0.00000 0.05116
0.30475 . 0.38177
0.51041 . 0.54986

Factor3 0.38304 0.47006 1.00000
0.06060 0.05116 0.00000
0.27919 0.38177 .
0.47804 0.54986 .

After the quartimin rotation, the correlation matrix for factors is shown inOutput
27.4.1. The factors are medium to highly correlated. The confidence intervals seem
to be very wide, suggesting that the estimation of factor correlations may not be
very accurate for this sample size. For example, the 90% confidence interval for the
correlation betweenFactor1 andFactor2 is (0.30, 0.51), a range of 0.21. You may
need a larger sample to get a narrower interval, or a better estimation.
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Output 27.4.2. Interpretations of Factors Using Rotated Factor Pattern

A nine-variable-three-factor example

Rotation Method: Quartimin

Rotated Factor Pattern (Standardized Regression Coefficients)
With 90% confidence limits; Cover |*| = 0.45?

Estimate/StdErr/LowerCL/UpperCL/Coverage Display

Factor1 Factor2 Factor3

test8 0.86810 -0.05045 0.00114
0.03282 0.03185 0.03087
0.80271 -0.10265 -0.04959
0.91286 0.00204 0.05187

0*[] *[0] [0]*

test7 0.73204 0.27296 0.01098
0.04434 0.05292 0.03838
0.65040 0.18390 -0.05211
0.79697 0.35758 0.07399

0*[] 0[]* [0]*

test9 -0.79654 -0.01230 -0.17307
0.03948 0.04225 0.04420

-0.85291 -0.08163 -0.24472
-0.72180 0.05715 -0.09955

[]*0 *[0] *[]0

test3 0.27715 0.91156 -0.19727
0.05489 0.04877 0.02981
0.18464 0.78650 -0.24577
0.36478 0.96481 -0.14778

0[]* 0*[] *[]0

test2 0.01063 0.71540 0.20500
0.05060 0.05148 0.05496

-0.07248 0.61982 0.11310
0.09359 0.79007 0.29342

[0]* 0*[] 0[]*

test1 -0.07356 0.63815 0.13983
0.04245 0.05380 0.05597

-0.14292 0.54114 0.04682
-0.00348 0.71839 0.23044

*[]0 0*[] 0[]*

test5 0.00863 0.03234 0.91282
0.04394 0.04387 0.04509

-0.06356 -0.03986 0.80030
0.08073 0.10421 0.96323

[0]* [0]* 0*[]

test4 0.22357 -0.07576 0.67925
0.05956 0.03640 0.05434
0.12366 -0.13528 0.57955
0.31900 -0.01569 0.75891

0[]* *[]0 0*[]

test6 -0.04295 0.21911 0.53183
0.05114 0.07481 0.06905

-0.12656 0.09319 0.40893
0.04127 0.33813 0.63578

*[0] 0[]* 0[*]
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The coverage displays inOutput 27.4.2show thatTest8, Test7, and Test9 have
salient relationships withFactor1. The coverage displays are either ‘0*[ ]’ or ‘[ ]*0’,
indicating that the entire 90% confidence intervals for the corresponding loadings
are beyond the salience value at 0.45. On the other hand, the coverage display for
Test3 on Factor1 is ‘0[ ]*’. This indicates that even though the loading estimate is
significantly larger than zero, it is not large enough to be salient. Similarly,Test3,
Test2, andTest1 have salient relationships withFactor2, while Test5 andTest4
have salient relationships withFactor3. For Test6, its relationship withFactor3
is a little bit ambiguous; the 90% confidence interval covers approximately values
between 0.40 and 0.64. This means that the population value might have been smaller
or larger than 0.45. It is marginal evidence for a salient relationship.
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Output 27.4.3. Interpretations of Factors Using Factor Structure

A nine-variable-three-factor example

Rotation Method: Quartimin

Factor Structure (Correlations)
With 90% confidence limits; Cover |*| = 0.45?

Estimate/StdErr/LowerCL/UpperCL/Coverage Display

Factor1 Factor2 Factor3

test8 0.84771 0.30847 0.30994
0.02871 0.06593 0.06263
0.79324 0.19641 0.20363
0.88872 0.41257 0.40904

0*[] 0[]* 0[]*

test7 0.84894 0.58033 0.41970
0.02688 0.05265 0.06060
0.79834 0.48721 0.31523
0.88764 0.66041 0.51412

0*[] 0*[] 0[*]

test9 -0.86791 -0.42248 -0.48396
0.02522 0.06187 0.05504

-0.90381 -0.51873 -0.56921
-0.81987 -0.31567 -0.38841

[]*0 [*]0 [*]0

test3 0.57790 0.93325 0.33738
0.05069 0.02953 0.06779
0.48853 0.86340 0.22157
0.65528 0.96799 0.44380

0*[] 0*[] 0[]*

test2 0.38449 0.81615 0.54535
0.06143 0.03106 0.05456
0.27914 0.75829 0.44946
0.48070 0.86126 0.62883

0[*] 0*[] 0[*]

test1 0.24345 0.67351 0.41162
0.06864 0.04284 0.05995
0.12771 0.59680 0.30846
0.35264 0.73802 0.50522

0[]* 0*[] 0[*]

test5 0.37163 0.46498 0.93132
0.06092 0.04979 0.03277
0.26739 0.37923 0.85159
0.46727 0.54282 0.96894

0[*] 0[*] 0*[]

test4 0.45248 0.33583 0.72927
0.05876 0.06289 0.04061
0.35072 0.22867 0.65527
0.54367 0.43494 0.78941

0[*] 0[]* 0*[]

test6 0.25122 0.45137 0.61837
0.07140 0.05858 0.05051
0.13061 0.34997 0.52833
0.36450 0.54232 0.69465

0[]* 0[*] 0*[]
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For oblique factor solutions, some researchers prefer to examine the factor struc-
ture loadings, which represent correlations, for determining salient relationships. In
Output 27.4.3, the factor structure loadings and the associated standard error esti-
mates and coverage displays are shown. The interpretations based on the factor struc-
ture matrix do not change much except forTest3 andTest9. Test9 now has a salient
correlation withFactor3. For Test3, it has salient correlations with bothFactor1
andFactor2. Fortunately, there are still tests that only have salient correlations with
eitherFactor1 or Factor2 (but not both). This would make interpretations of factors
less problematic.
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Chapter 28
The FASTCLUS Procedure
Overview

The FASTCLUS procedure performs a disjoint cluster analysis on the basis of dis-
tances computed from one or more quantitative variables. The observations are di-
vided into clusters such that every observation belongs to one and only one cluster;
the clusters do not form a tree structure as they do in the CLUSTER procedure. If
you want separate analyses for different numbers of clusters, you can run PROC
FASTCLUS once for each analysis. Alternatively, to do hierarchical clustering on
a large data set, use PROC FASTCLUS to find initial clusters, then use those initial
clusters as input to PROC CLUSTER.

By default, the FASTCLUS procedure uses Euclidean distances, so the cluster centers
are based on least-squares estimation. This kind of clustering method is often called
ak-means model, since the cluster centers are the means of the observations assigned
to each cluster when the algorithm is run to complete convergence. Each iteration
reduces the least-squares criterion until convergence is achieved.

Often there is no need to run the FASTCLUS procedure to convergence. PROC
FASTCLUS is designed to find good clusters (but not necessarily the best possible
clusters) with only two or three passes over the data set. The initialization method
of PROC FASTCLUS guarantees that, if there exist clusters such that all distances
between observations in the same cluster are less than all distances between obser-
vations in different clusters, and if you tell PROC FASTCLUS the correct number
of clusters to find, it can always find such a clustering without iterating. Even with
clusters that are not as well separated, PROC FASTCLUS usually finds initial seeds
that are sufficiently good so that few iterations are required. Hence, by default, PROC
FASTCLUS performs only one iteration.

The initialization method used by the FASTCLUS procedure makes it sensitive to
outliers. PROC FASTCLUS can be an effective procedure for detecting outliers be-
cause outliers often appear as clusters with only one member.

The FASTCLUS procedure can use anLp (leastpth powers) clustering criterion
(Spath 1985, pp. 62–63) instead of the least-squares (L2) criterion used ink-means
clustering methods. The LEAST=p option specifies the powerp to be used. Using the
LEAST= option increases execution time since more iterations are usually required,
and the default iteration limit is increased when you specify LEAST=p. Values ofp
less than 2 reduce the effect of outliers on the cluster centers compared with least-
squares methods; values ofp greater than 2 increase the effect of outliers.

The FASTCLUS procedure is intended for use with large data sets, with 100 or more
observations. With small data sets, the results may be highly sensitive to the order of
the observations in the data set.
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PROC FASTCLUS produces brief summaries of the clusters it finds. For more ex-
tensive examination of the clusters, you can request an output data set containing a
cluster membership variable.

Background

The FASTCLUS procedure combines an effective method for finding initial clusters
with a standard iterative algorithm for minimizing the sum of squared distances from
the cluster means. The result is an efficient procedure for disjoint clustering of large
data sets. PROC FASTCLUS was directly inspired by Hartigan’s (1975)leader algo-
rithm and MacQueen’s (1967)k-means algorithm. PROC FASTCLUS uses a method
that Anderberg (1973) callsnearest centroid sorting. A set of points calledcluster
seedsis selected as a first guess of the means of the clusters. Each observation is
assigned to the nearest seed to form temporary clusters. The seeds are then replaced
by the means of the temporary clusters, and the process is repeated until no further
changes occur in the clusters. Similar techniques are described in most references on
clustering (Anderberg 1973; Hartigan 1975; Everitt 1980; Spath 1980).

The FASTCLUS procedure differs from other nearest centroid sorting methods in the
way the initial cluster seeds are selected. The importance of initial seed selection is
demonstrated by Milligan (1980).

The clustering is done on the basis of Euclidean distances computed from one or
more numeric variables. If there are missing values, PROC FASTCLUS computes
an adjusted distance using the nonmissing values. Observations that are very close
to each other are usually assigned to the same cluster, while observations that are far
apart are in different clusters.

The FASTCLUS procedure operates in four steps:

1. Observations calledcluster seedsare selected.

2. If you specify the DRIFT option, temporary clusters are formed by assigning
each observation to the cluster with the nearest seed. Each time an observation
is assigned, the cluster seed is updated as the current mean of the cluster. This
method is sometimes calledincremental, on-line, or adaptivetraining.

3. If the maximum number of iterations is greater than zero, clusters are formed
by assigning each observation to the nearest seed. After all observations are
assigned, the cluster seeds are replaced by either the cluster means or other
location estimates (cluster centers) appropriate to the LEAST=p option. This
step can be repeated until the changes in the cluster seeds become small or zero
(MAXITER=n ≥ 1).

4. Final clusters are formed by assigning each observation to the nearest seed.

If PROC FASTCLUS runs to complete convergence, the final cluster seeds will equal
the cluster means or cluster centers. If PROC FASTCLUS terminates before complete
convergence, which often happens with the default settings, the final cluster seeds
may not equal the cluster means or cluster centers. If you want complete converegnce,
specify CONVERGE=0 and a large value for the MAXITER= option.
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The initial cluster seeds must be observations with no missing values. You can specify
the maximum number of seeds (and, hence, clusters) using the MAXCLUSTERS=
option. You can also specify a minimum distance by which the seeds must be sepa-
rated using the RADIUS= option.

PROC FASTCLUS always selects the first complete (no missing values) observation
as the first seed. The next complete observation that is separated from the first seed
by at least the distance specified in the RADIUS= option becomes the second seed.
Later observations are selected as new seeds if they are separated from all previous
seeds by at least the radius, as long as the maximum number of seeds is not exceeded.

If an observation is complete but fails to qualify as a new seed, PROC FASTCLUS
considers using it to replace one of the old seeds. Two tests are made to see if the
observation can qualify as a new seed.

First, an old seed is replaced if the distance between the observation and the closest
seed is greater than the minimum distance between seeds. The seed that is replaced
is selected from the two seeds that are closest to each other. The seed that is replaced
is the one of these two with the shortest distance to the closest of the remaining seeds
when the other seed is replaced by the current observation.

If the observation fails the first test for seed replacement, a second test is made. The
observation replaces the nearest seed if the smallest distance from the observation
to all seeds other than the nearest one is greater than the shortest distance from the
nearest seed to all other seeds. If the observation fails this test, PROC FASTCLUS
goes on to the next observation.

You can specify the REPLACE= option to limit seed replacement. You can omit the
second test for seed replacement (REPLACE=PART), causing PROC FASTCLUS to
run faster, but the seeds selected may not be as widely separated as those obtained by
the default method. You can also suppress seed replacement entirely by specifying
REPLACE=NONE. In this case, PROC FASTCLUS runs much faster, but you must
choose a good value for the RADIUS= option in order to get good clusters. This
method is similar to Hartigan’s (1975, pp. 74–78) leader algorithm and thesimple
cluster seeking algorithmdescribed by Tou and Gonzalez (1974, pp. 90–92).

Getting Started

The following example demonstrates how to use the FASTCLUS procedure to com-
pute disjoint clusters of observations in a SAS data set.

The data in this example are measurements taken on 159 freshwater fish caught from
the same lake (Laengelmavesi) near Tampere in Finland. This data set is available
from the Data Archive of theJournal of Statistics Education. The complete data set
is displayed inChapter 67, “The STEPDISC Procedure.”

The species (bream, parkki, pike, perch, roach, smelt, and whitefish), weight, three
different length measurements (measured from the nose of the fish to the beginning
of its tail, the notch of its tail, and the end of its tail), height, and width of each fish are
tallied. The height and width are recorded as percentages of the third length variable.
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Suppose that you want to group empirically the fish measurements into clusters and
that you want to associate the clusters with the species. You can use the FASTCLUS
procedure to perform a cluster analysis.

The following DATA step creates the SAS data setFish.

proc format;
value specfmt

1=’Bream’
2=’Roach’
3=’Whitefish’
4=’Parkki’
5=’Perch’
6=’Pike’
7=’Smelt’;

data Fish (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Species Weight Length1 Length2 Length3 HtPct

WidthPct @@;
if Weight <=0 or Weight = . then delete;
Weight3=Weight**(1/3);
Height=HtPct*Length3/(Weight3*100);
Width=WidthPct*Length3/(Weight3*100);
Length1=Length1/Weight3;
Length3=Length3/Weight3;
logLengthRatio=log(Length3/Length1);

format Species specfmt.;
symbol = put(Species, specfmt2.);
datalines;

1 242.0 23.2 25.4 30.0 38.4 13.4
1 290.0 24.0 26.3 31.2 40.0 13.8
1 340.0 23.9 26.5 31.1 39.8 15.1
1 363.0 26.3 29.0 33.5 38.0 13.3

... [155 more records]
;
run;

The double trailing at sign (@@) in the INPUT statement specifies that observations
are input from each line until all values are read. The variables are rescaled in order
to adjust for dimensionality. Because the new variablesWeight3–logLengthRatio
depend on the variableWeight, observations with missing values forWeight are not
added to the data set. Consequently, there are 157 observations in the SAS data set
Fish.

Variables with larger variances exert a larger influence in calculating the clusters.
In theFish data set, the variables are not measured in the same units and cannot be
assumed to have equal variance. Therefore, it is necessary to standardize the variables
before performing the cluster analysis.

The following statements standardize the variables and perform a cluster analysis on
the standardized data.
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proc standard data=Fish out=Stand mean=0 std=1;
var Length1 logLengthRatio Height Width Weight3;

proc fastclus data=Stand out=Clust
maxclusters=7 maxiter=100 ;

var Length1 logLengthRatio Height Width Weight3;
run;

The STANDARD procedure is first used to standardize all the analytical variables to
a mean of 0 and standard deviation of 1. The procedure creates the output data set
Stand to contain the transformed variables.

The FASTCLUS procedure then uses the data setStand as input and creates the data
setClust. This output data set contains the original variables and two new variables,
Cluster andDistance. The variableCluster contains the cluster number to which
each observation has been assigned. The variableDistance gives the distance from
the observation to its cluster seed.

It is usually desirable to try several values of the MAXCLUSTERS= option. A rea-
sonable beginning for this example is to use MAXCLUSTERS=7, since there are
seven species of fish represented in the data setFish.

The VAR statement specifies the variables used in the cluster analysis.

The results from this analysis are displayed in the following figures.

Fish Measurement Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=7 Maxiter=100 Converge=0.02

Initial Seeds

logLength
Cluster Length1 Ratio Height Width Weight3
-------------------------------------------------------------------------------------------------

1 1.388338414 -0.979577858 -1.594561848 -2.254050655 2.103447062
2 -1.117178039 -0.877218192 -0.336166276 2.528114070 1.170706464
3 2.393997461 -0.662642015 -0.930738701 -2.073879107 -1.839325419
4 -0.495085516 -0.964041012 -0.265106856 -0.028245072 1.536846394
5 -0.728772773 0.540096664 1.130501398 -1.207930053 -1.107018207
6 -0.506924177 0.748211648 1.762482687 0.211507596 1.368987826
7 1.573996573 -0.796593995 -0.824217424 1.561715851 -1.607942726

Criterion Based on Final Seeds = 0.3979

Figure 28.1. Initial Seeds Used in the FASTCLUS Procedure

Figure 28.1displays the table of initial seeds used for each variable and clus-
ter. The first line in the figure displays the option settings for REPLACE,
RADIUS, MAXCLUSTERS, and MAXITER. These options, with the exception
of MAXCLUSTERS and MAXITER, are set at their respective default values
(REPLACE=FULL, RADIUS=0). Both the MAXCLUSTERS= and MAXITER=
options are set in the PROC FASTCLUS statement.

Next, PROC FASTCLUS produces a table of summary statistics for the clusters.
Figure 28.2displays the number of observations in the cluster (frequency) and the
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root mean square standard deviation. The next two columns display the largest
Euclidean distance from the cluster seed to any observation within the cluster and
the number of the nearest cluster.

The last column of the table displays the distance between the centroid of the nearest
cluster and the centroid of the current cluster. A centroid is the point having coordi-
nates that are the means of all the observations in the cluster.

Fish Measurement Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=7 Maxiter=100 Converge=0.02

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 17 0.5064 1.7781 4 2.5106
2 19 0.3696 1.5007 4 1.5510
3 13 0.3803 1.7135 1 2.6704
4 13 0.4161 1.3976 7 1.4266
5 11 0.2466 0.6966 6 1.7301
6 34 0.3563 1.5443 5 1.7301
7 50 0.4447 2.3915 4 1.4266

Figure 28.2. Cluster Summary Table from the FASTCLUS Procedure

Figure 28.3displays the table of statistics for the variables. The table lists for each
variable the total standard deviation, the pooled within-cluster standard deviation and
theR2 value for predicting the variable from the cluster. The ratio of between-cluster
variance to within-cluster variance (R2 to 1−R2) appears in the last column.

Fish Measurement Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=7 Maxiter=100 Converge=0.02

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)
------------------------------------------------------------------------
Length1 1.00000 0.31428 0.905030 9.529606
logLengthRatio 1.00000 0.39276 0.851676 5.741989
Height 1.00000 0.20917 0.957929 22.769295
Width 1.00000 0.55558 0.703200 2.369270
Weight3 1.00000 0.47251 0.785323 3.658162
OVER-ALL 1.00000 0.40712 0.840631 5.274764

Pseudo F Statistic = 131.87

Approximate Expected Over-All R-Squared = 0.57420

Cubic Clustering Criterion = 37.808

WARNING: The two values above are invalid for correlated variables.

Figure 28.3. Statistics for Variables Used in the FASTCLUS Procedure

The pseudoF statistic, approximate expected overallR2, and cubic clustering
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criterion (CCC) are listed at the bottom of the figure. You can compare val-
ues of these statistics by running PROC FASTCLUS with different values for the
MAXCLUSTERS= option. TheR2 and CCC values are not valid for correlated vari-
ables.

Values of the cubic clustering criterion greater than 2 or 3 indicate good clusters.
Values between 0 and 2 indicate potential clusters, but they should be taken with
caution; large negative values may indicate outliers.

PROC FASTCLUS next produces the within-cluster means and standard deviations
of the variables, displayed inFigure 28.4.

Fish Measurement Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=7 Maxiter=100 Converge=0.02

Cluster Means

logLength
Cluster Length1 Ratio Height Width Weight3
-------------------------------------------------------------------------------------------------

1 1.747808245 -0.868605685 -1.327226832 -1.128760946 0.806373599
2 -0.405231510 -0.979113021 -0.281064162 1.463094486 1.060450065
3 2.006796315 -0.652725165 -1.053213440 -1.224020795 -1.826752838
4 -0.136820952 -1.039312574 -0.446429482 0.162596336 0.278560318
5 -0.850130601 0.550190242 1.245156076 -0.836585750 -0.567022647
6 -0.843912827 1.522291347 1.511408739 -0.380323563 0.763114370
7 -0.165570970 -0.048881276 -0.353723615 0.546442064 -0.668780782

Cluster Standard Deviations

logLength
Cluster Length1 Ratio Height Width Weight3
-------------------------------------------------------------------------------------------------

1 0.3418476428 0.3544065543 0.1666302451 0.6172880027 0.7944227150
2 0.3129902863 0.3592350778 0.1369052680 0.5467406493 0.3720119097
3 0.2962504486 0.1740941675 0.1736086707 0.7528475622 0.0905232968
4 0.3254364840 0.2836681149 0.1884592934 0.4543390702 0.6612055341
5 0.1781837609 0.0745984121 0.2056932592 0.2784540794 0.3832002850
6 0.2273744242 0.3385584051 0.2046010964 0.5143496067 0.4025849044
7 0.3734733622 0.5275768119 0.2551130680 0.5721303628 0.4223181710

Figure 28.4. Cluster Means and Standard Deviations from the FASTCLUS
Procedure

It is useful to study further the clusters calculated by the FASTCLUS procedure. One
method is to look at a frequency tabulation of the clusters with other classification
variables. The following statements invoke the FREQ procedure to crosstabulate the
empirical clusters with the variableSpecies:

proc freq data=Clust;
tables Species*Cluster;

run;

These statements produce a frequency table of the variableCluster versus the vari-
ableSpecies.

Figure 28.5displays the marked division between clusters.
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Fish Measurement Data

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 34

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21.66 | 0.00 | 21.66
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 19

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.10 | 12.10
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 38.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 6

| 0.00 | 1.27 | 0.00 | 0.64 | 0.00 | 0.00 | 1.91 | 3.82
| 0.00 | 33.33 | 0.00 | 16.67 | 0.00 | 0.00 | 50.00 |
| 0.00 | 10.53 | 0.00 | 7.69 | 0.00 | 0.00 | 6.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 11

| 0.00 | 0.00 | 0.00 | 0.00 | 7.01 | 0.00 | 0.00 | 7.01
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 0 | 17 | 0 | 12 | 0 | 0 | 27 | 56

| 0.00 | 10.83 | 0.00 | 7.64 | 0.00 | 0.00 | 17.20 | 35.67
| 0.00 | 30.36 | 0.00 | 21.43 | 0.00 | 0.00 | 48.21 |
| 0.00 | 89.47 | 0.00 | 92.31 | 0.00 | 0.00 | 54.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 17

| 10.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.83
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 0 | 13 | 0 | 0 | 0 | 1 | 14

| 0.00 | 0.00 | 8.28 | 0.00 | 0.00 | 0.00 | 0.64 | 8.92
| 0.00 | 0.00 | 92.86 | 0.00 | 0.00 | 0.00 | 7.14 |
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 2.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 17 19 13 13 11 34 50 157

10.83 12.10 8.28 8.28 7.01 21.66 31.85 100.00

Figure 28.5. Frequency Table of Cluster versus Species

For cases in which you have three or more clusters, you can use the CANDISC and
GPLOT procedures to obtain a graphical check on the distribution of the clusters. In
the following statements, the CANDISC and GPLOT procedures are used to compute
canonical variables and plot the clusters.

proc candisc data=Clust out=Can noprint;
class Cluster;
var Length1 logLengthRatio Height Width Weight3;

legend1 frame cframe=ligr label=none cborder=black
position=center value=(justify=center);

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
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proc gplot data=Can;
plot Can2*Can1=Cluster/frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
run;

First, the CANDISC procedure is invoked to perform a canonical discriminant analy-
sis using the data setClust and creating the output SAS data setCan. The NOPRINT
option suppresses display of the output. The CLASS statement specifies the variable
Cluster to define groups for the analysis. The VAR statement specifies the variables
used in the analysis.

Next, the GPLOT procedure plots the two canonical variables from PROC
CANDISC,Can1 andCan2. The PLOT statement specifies the variableCluster as
the identification variable.

Figure 28.6. Plot of Canonical Variables and Cluster Value
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The resulting plot (Figure 28.6) illustrates the spatial separation of the clusters calcu-
lated in the FASTCLUS procedure.

Syntax

The following statements are available in the FASTCLUS procedure:

PROC FASTCLUS MAXCLUSTERS=n | RADIUS=t < options > ;
VAR variables ;
ID variable ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

Usually you need only the VAR statement in addition to the PROC FASTCLUS state-
ment. The BY, FREQ, ID, VAR, and WEIGHT statements are described in alphabet-
ical order after the PROC FASTCLUS statement.

PROC FASTCLUS Statement

PROC FASTCLUS MAXCLUSTERS= n | RADIUS=t < options > ;

You must specify either the MAXCLUSTERS= or the RADIUS= argument in the
PROC FASTCLUS statement.

MAXCLUSTERS=n
MAXC=n

specifies the maximum number of clusters allowed. If you omit the
MAXCLUSTERS= option, a value of 100 is assumed.

RADIUS=t
R=t

establishes the minimum distance criterion for selecting new seeds. No observation
is considered as a new seed unless its minimum distance to previous seeds exceeds
the value given by the RADIUS= option. The default value is 0. If you specify the
REPLACE=RANDOM option, the RADIUS= option is ignored.

You can specify the following options in the PROC FASTCLUS statement.Table
28.1summarizes the options.
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Table 28.1. Options Available in the PROC FASTCLUS Statement
Task Options
Specify data set details CLUSTER=

DATA=
INSTAT=
MEAN=
OUT=
OUTITER
OUTSEED=
OUTSTAT=
SEED=

Specify distance dimension BINS=
HC=
HP=
IRLS
LEAST=

Select initial cluster seeds RANDOM=
REPLACE=

Compute final cluster seeds CONVERGE=
DELETE=
DRIFT
MAXCLUSTERS=
MAXITER=
RADIUS=
STRICT

Work with missing values IMPUTE
NOMISS

Specify variance divisor VARDEF

Control output DISTANCE
LIST
NOPRINT
SHORT
SUMMARY

The following list provides details on these options. The list is in alphabetical order.

BINS=n
specifies the number of bins used in the bin-sort algorithm for computing medians
for LEAST=1. By default, PROC FASTCLUS uses from 10 to 100 bins, depending
on the amount of memory available. Larger values use more memory and make each
iteration somewhat slower, but they may reduce the number of iterations. Smaller
values have the opposite effect. The minimum value ofn is 5.
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CLUSTER=name
specifies a name for the variable in the OUTSEED= and OUT= data sets that indicates
cluster membership. The default name for this variable isCLUSTER.

CONVERGE=c
CONV=c

specifies the convergence criterion. Any nonnegative value is allowed. The default
value is 0.0001 for all values ofp if LEAST=p is explicitly specified; otherwise, the
default value is 0.02. Iterations stop when the maximum relative change in the cluster
seeds is less than or equal to the convergence criterion and additional conditions
on the homotopy parameter, if any, are satisfied (see the HP= option). The relative
change in a cluster seed is the distance between the old seed and the new seed divided
by a scaling factor. If you do not specify the LEAST= option, the scaling factor is the
minimum distance between the initial seeds. If you specify the LEAST= option, the
scaling factor is anL1 scale estimate and is recomputed on each iteration. Specify
the CONVERGE= option only if you specify a MAXITER= value greater than 1.

DATA=SAS-data-set
specifies the input data set containing observations to be clustered. If you omit the
DATA= option, the most recently created SAS data set is used. The data must be
coordinates, not distances, similarities, or correlations.

DELETE=n
deletes cluster seeds to whichn or fewer observations are assigned. Deletion occurs
after processing for the DRIFT option is completed and after each iteration specified
by the MAXITER= option. Cluster seeds are not deleted after the final assignment
of observations to clusters, so in rare cases a final cluster may not have more thann
members. The DELETE= option is ineffective if you specify MAXITER=0 and do
not specify the DRIFT option. By default, no cluster seeds are deleted.

DISTANCE | DIST
computes distances between the cluster means.

DRIFT
executes the second of the four steps described in the section“Background”on page
1380. After initial seed selection, each observation is assigned to the cluster with the
nearest seed. After an observation is processed, the seed of the cluster to which it
is assigned is recalculated as the mean of the observations currently assigned to the
cluster. Thus, the cluster seeds drift about rather than remaining fixed for the duration
of the pass.

HC=c
HP=p1 <p2>

pertains to the homotopy parameter for LEAST=p, where1 < p < 2. You should
specify these options only if you encounter convergence problems using the default
values.

For 1 < p < 2, PROC FASTCLUS tries to optimize a perturbed variant of theLp

clustering criterion (Gonin and Money 1989, pp. 5–6). When the homotopy pa-
rameter is 0, the optimization criterion is equivalent to the clustering criterion. For
a large homotopy parameter, the optimization criterion approaches the least-squares
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criterion and is, therefore, easy to optimize. Beginning with a large homotopy pa-
rameter, PROC FASTCLUS gradually decreases it by a factor in the range [0.01,0.5]
over the course of the iterations. When both the homotopy parameter and the con-
vergence measure are sufficiently small, the optimization process is declared to have
converged.

If the initial homotopy parameter is too large or if it is decreased too slowly, the
optimization may require many iterations. If the initial homotopy parameter is too
small or if it is decreased too quickly, convergence to a local optimum is likely.

HC=c specifies the criterion for updating the homotopy parameter. The ho-
motopy parameter is updated when the maximum relative change in
the cluster seeds is less than or equal toc. The default is the minimum
of 0.01 and 100 times the value of the CONVERGE= option.

HP=p1 specifiesp1 as the initial value of the homotopy parameter. The default
is 0.05 if the modified Ekblom-Newton method is used; otherwise, it is
0.25.

HP=p1 p2 also specifiesp2 as the minimum value for the homotopy parameter,
which must be reached for convergence. The default is the minimum
of p1 and 0.01 times the value of the CONVERGE= option.

IMPUTE
requests imputation of missing values after the final assignment of observations to
clusters. If an observation has a missing value for a variable used in the cluster
analysis, the missing value is replaced by the corresponding value in the cluster seed
to which the observation is assigned. If the observation is not assigned to a cluster,
missing values are not replaced. If you specify the IMPUTE option, the imputed
values are not used in computing cluster statistics.

If you also request an OUT= data set, it contains the imputed values.

INSTAT=SAS-data-set
reads a SAS data set previously created by the FASTCLUS procedure using the
OUTSTAT= option. If you specify the INSTAT= option, no clustering iterations are
performed and no output is displayed. Only cluster assignment and imputation are
performed as an OUT= data set is created.

IRLS
causes PROC FASTCLUS to use an iteratively reweighted least-squares method in-
stead of the modified Ekblom-Newton method. If you specify the IRLS option, you
must also specify LEAST=p, where1 < p < 2. Use the IRLS option only if you
encounter convergence problems with the default method.

LEAST=p | MAX
L=p | MAX

causes PROC FASTCLUS to optimize anLp criterion, where1 ≤ p ≤ ∞ (Spath
1985, pp. 62–63). Infinity is indicated by LEAST=MAX. The value of this clustering
criterion is displayed in the iteration history.
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If you do not specify the LEAST= option, PROC FASTCLUS uses the least-squares
(L2) criterion. However, the default number of iterations is only 1 if you omit the
LEAST= option, so the optimization of the criterion is generally not completed. If
you specify the LEAST= option, the maximum number of iterations is increased to
allow the optimization process a chance to converge. See theMAXITER= option on
page 1393.

Specifying the LEAST= option also changes the default convergence criterion from
0.02 to 0.0001. See theCONVERGE= optionon page 1390.

When LEAST=2, PROC FASTCLUS tries to minimize the root mean square differ-
ence between the data and the corresponding cluster means.

When LEAST=1, PROC FASTCLUS tries to minimize the mean absolute difference
between the data and the corresponding cluster medians.

When LEAST=MAX, PROC FASTCLUS tries to minimize the maximum absolute
difference between the data and the corresponding cluster midranges.

For general values ofp, PROC FASTCLUS tries to minimize thepth root of the mean
of thepth powers of the absolute differences between the data and the corresponding
cluster seeds.

The divisor in the clustering criterion is either the number of nonmissing data used
in the analysis or, if there is a WEIGHT statement, the sum of the weights corre-
sponding to all the nonmissing data used in the analysis (that is, an observation with
n nonmissing data contributesn times the observation weight to the divisor). The
divisor is not adjusted for degrees of freedom.

The method for updating cluster seeds during iteration depends on the LEAST= op-
tion, as follows (Gonin and Money 1989).

LEAST=p Algorithm for Computing Cluster Seeds
p = 1 bin sort for median
1 < p < 2 modified Merle-Spath if you specify IRLS,

otherwise modified Ekblom-Newton
p = 2 arithmetic mean
2 < p < ∞ Newton
p = ∞ midrange

During the final pass, a modified Merle-Spath step is taken to compute the cluster
centers for1 ≤ p < 2 or 2 < p < ∞.

If you specify the LEAST=p option with a value other than 2, PROC FASTCLUS
computes pooled scale estimates analogous to the root mean square standard devia-
tion but based onpth power deviations instead of squared deviations.
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LEAST=p Scale Estimate
p = 1 mean absolute deviation
1 < p < ∞ root meanpth-power absolute deviation
p = ∞ maximum absolute deviation

The divisors for computing the mean absolute deviation or the root meanpth-power
absolute deviation are adjusted for degrees of freedom just like the divisors for com-
puting standard deviations. This adjustment can be suppressed by the VARDEF=
option.

LIST
lists all observations, giving the value of the ID variable (if any), the number of the
cluster to which the observation is assigned, and the distance between the observation
and the final cluster seed.

MAXITER=n
specifies the maximum number of iterations for recomputing cluster seeds. When
the value of the MAXITER= option is greater than 0, PROC FASTCLUS executes
the third of the four steps described in the“Background”section on page 1380. In
each iteration, each observation is assigned to the nearest seed, and the seeds are
recomputed as the means of the clusters.

The default value of the MAXITER= option depends on the LEAST=p option.

LEAST=p MAXITER=
not specified 1
p = 1 20
1 < p < 1.5 50
1.5 ≤ p < 2 20
p = 2 10
2 < p ≤ ∞ 20

MEAN=SAS-data-set
creates an output data set to contain the cluster means and other statistics for each
cluster. If you want to create a permanent SAS data set, you must specify a two-level
name. Refer to “SAS Data Files” inSAS Language Reference: Conceptsfor more
information on permanent data sets.

NOMISS
excludes observations with missing values from the analysis. However, if you also
specify the IMPUTE option, observations with missing values are included in the
final cluster assignments.
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NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OUT=SAS-data-set
creates an output data set to contain all the original data, plus the new variables
CLUSTER andDISTANCE. Refer to “SAS Data Files” inSAS Language Reference:
Conceptsfor more information on permanent data sets.

OUTITER
outputs information from the iteration history to the OUTSEED= data set, including
the cluster seeds at each iteration.

OUTSEED=SAS-data-set
OUTS=SAS-data-set

is another name for the MEAN= data set, provided because the data set may contain
location estimates other than means. The MEAN= option is still accepted.

OUTSTAT=SAS-data-set
creates an output data set to contain various statistics, especially those not included
in the OUTSEED= data set. Unlike the OUTSEED= data set, the OUTSTAT= data
set is not suitable for use as a SEED= data set in a subsequent PROC FASTCLUS
step.

RANDOM=n
specifies a positive integer as a starting value for the pseudo-random number gen-
erator for use with REPLACE=RANDOM. If you do not specify the RANDOM=
option, the time of day is used to initialize the pseudo-random number sequence.

REPLACE=FULL | PART | NONE | RANDOM
specifies how seed replacement is performed.

FULL requests default seed replacement as described in the section
“Background”on page 1380.

PART requests seed replacement only when the distance between the ob-
servation and the closest seed is greater than the minimum distance
between seeds.

NONE suppresses seed replacement.

RANDOM selects a simple pseudo-random sample of complete observations
as initial cluster seeds.

SEED=SAS-data-set
specifies an input data set from which initial cluster seeds are to be selected. If you
do not specify the SEED= option, initial seeds are selected from the DATA= data
set. The SEED= data set must contain the same variables that are used in the data
analysis.
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SHORT
suppresses the display of the initial cluster seeds, cluster means, and standard devia-
tions.

STRICT
STRICT=s

prevents an observation from being assigned to a cluster if its distance to the nearest
cluster seed exceeds the value of the STRICT= option. If you specify the STRICT
option without a numeric value, you must also specify the RADIUS= option, and its
value is used instead. In the OUT= data set, observations that are not assigned due to
the STRICT= option are given a negative cluster number, the absolute value of which
indicates the cluster with the nearest seed.

SUMMARY
suppresses the display of the initial cluster seeds, statistics for variables, cluster
means, and standard deviations.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor to be used in the calculation of variances and covariances. The
default value is VARDEF=DF. The possible values of the VARDEF= option and as-
sociated divisors are as follows.

Value Description Divisor
DF error degrees of freedom n− c

N number of observations n

WDF sum of weights DF (
∑

i wi)− c

WEIGHT | WGT sum of weights
∑

i wi

In the preceding definitions,c represents the number of clusters.

BY Statement

BY variables ;

You can specify a BY statement with PROC FASTCLUS to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FASTCLUS procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.
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• Create an index on the BY variables using the DATASETS procedure.

If you specify the SEED= option and the SEED= data set does not contain any of the
BY variables, then the entire SEED= data set is used to obtain initial cluster seeds for
each BY group in the DATA= data set.

If the SEED= data set contains some but not all of the BY variables, or if some BY
variables do not have the same type or length in the SEED= data set as in the DATA=
data set, then PROC FASTCLUS displays an error message and stops.

If all the BY variables appear in the SEED= data set with the same type and length as
in the DATA= data set, then each BY group in the SEED= data set is used to obtain
initial cluster seeds for the corresponding BY group in the DATA= data set. All BY
groups in the DATA= data set must also appear in the SEED= data set. The BY groups
in the SEED= data set must be in the same order as in the DATA= data set. If you
specify the NOTSORTED option in the BY statement, there must be exactly the same
BY groups in the same order in both data sets. If you do not specify NOTSORTED,
some BY groups can appear in the SEED= data set but not in the DATA= data set;
such BY groups are not used in the analysis.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values
in the observation, include the variable’s name in a FREQ statement. The procedure
then treats the data set as if each observation appearsn times, wheren is the value of
the FREQ variable for the observation.

If the value of the FREQ variable is missing or≤ 0, the observation is not used in the
analysis. The exact values of the FREQ variable are used in computations: frequency
values are not truncated to integers. The total number of observations is considered
to be equal to the sum of the FREQ variable when the procedure determines degrees
of freedom for significance probabilities.

The WEIGHT and FREQ statements have a similar effect, except in determining the
number of observations for significance tests.

ID Statement

ID variable ;

The ID variable, which can be character or numeric, identifies observations on the
output when you specify the LIST option.
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VAR Statement

VAR variables ;

The VAR statement lists the numeric variables to be used in the cluster analysis. If
you omit the VAR statement, all numeric variables not listed in other statements are
used.

WEIGHT Statement

WEIGHT variable ;

The values of the WEIGHT variable are used to compute weighted cluster means. The
WEIGHT and FREQ statements have a similar effect, except the WEIGHT statement
does not alter the degrees of freedom or the number of observations. The WEIGHT
variable can take nonintegral values. An observation is used in the analysis only if
the value of the WEIGHT variable is greater than zero.

Details

Updates in the FASTCLUS Procedure

Some FASTCLUS procedure options and statements have changed from previous
versions. The differences are as follows:

• Values of the FREQ variable are no longer truncated to integers. Noninteger
variables specified in the FREQ statement produce results different than in pre-
vious releases.

• The IMPUTE option produces different cluster standard deviations and related
statistics. When you specify the IMPUTE option, imputed values are no longer
used in computing cluster statistics. This change causes the cluster standard
deviations and other statistics computed from the standard deviations to be
different than in previous releases.

• The INSTAT= option reads a SAS data set previously created by the
FASTCLUS procedure using the OUTSTAT= option. If you specify the
INSTAT= option, no clustering iterations are performed and no output is
produced. Only cluster assignment and imputation are performed as an OUT=
data set is created.

• The OUTSTAT= data set contains additional information used for im-
putation. –TYPE–=SEED corresponds to values that are cluster
seeds. Observations previously designated–TYPE–=’SCALE’ are now

–TYPE–=’DISPERSION’.

Missing Values

Observations with all missing values are excluded from the analysis. If you
specify the NOMISS option, observations with any missing values are excluded.
Observations with missing values cannot be cluster seeds.
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The distance between an observation with missing values and a cluster seed is ob-
tained by computing the squared distance based on the nonmissing values, multiply-
ing by the ratio of the number of variables,n, to the number of variables having
nonmissing values,m, and taking the square root:

√( n

m

) ∑
(xi − si)2

where

n = number of variables

m = number of variables with nonmissing values

xi = value of theith variable for the observation

si = value of theith variable for the seed

If you specify the LEAST=p option with a powerp other than2 (the default), the
distance is computed using:

(( n

m

) ∑
(xi − si)p

) 1
p

The summation is taken over variables with nonmissing values.

The IMPUTE option fills in missing values in the OUT= output data set.

Output Data Sets

OUT= Data Set

The OUT= data set contains

• the original variables

• a new variable taking values from 1 to the value specified in the
MAXCLUSTERS= option, indicating the cluster to which each obser-
vation has been assigned. You can specify the variable name with the
CLUSTER= option; the default name isCLUSTER.

• a new variable,DISTANCE, giving the distance from the observation to its
cluster seed

If you specify the IMPUTE option, the OUT= data set also contains a new variable,

–IMPUTE– , giving the number of imputed values in each observation.
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OUTSEED= Data Set

The OUTSEED= data set contains one observation for each cluster. The variables are
as follows:

• the BY variables, if any

• a new variable giving the cluster number. You can specify the variable name
with the CLUSTER= option. The default name isCLUSTER.

• either the FREQ variable or a new variable called–FREQ– giving the number
of observations in the cluster

• the WEIGHT variable, if any

• a new variable,–RMSSTD– , giving the root mean square standard deviation
for the cluster. SeeChapter 23, “The CLUSTER Procedure,”for details.

• a new variable,–RADIUS– , giving the maximum distance between any ob-
servation in the cluster and the cluster seed

• a new variable,–GAP– , containing the distance between the current cluster
mean and the nearest other cluster mean. The value is the centroid distance
given in the output.

• a new variable,–NEAR– , specifying the cluster number of the nearest cluster

• the VAR variables giving the cluster means

If you specify the LEAST=p option with a value other than 2, the–RMSSTD– vari-
able is replaced by the–SCALE– variable, which contains the pooled scale estimate
analogous to the root mean square standard deviation but based onpth power devia-
tions instead of squared deviations:

LEAST=1 mean absolute deviation

LEAST=p root meanpth-power absolute deviation

LEAST=MAX maximum absolute deviation

If you specify the OUTITER option, there is one set of observations in the
OUTSEED= data set for each pass through the data set (that is, one set for initial
seeds, one for each iteration, and one for the final clusters). Also, several additional
variables appear:

–ITER– is the iteration number. For the initial seeds, the value is 0. For the
final cluster means or centers, the–ITER– variable is one greater
than the last iteration reported in the iteration history.

–CRIT– is the clustering criterion as described under the LEAST= option.

–CHANGE– is the maximum over clusters of the relative change in the cluster
seed from the previous iteration. The relative change in a cluster
seed is the distance between the old seed and the new seed divided
by a scaling factor. If you do not specify the LEAST= option, the
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scaling factor is the minimum distance between the initial seeds. If
you specify the LEAST= option, the scaling factor is anL1 scale
estimate and is recomputed on each iteration.

–HOMPAR– is the value of the homotopy parameter. This variable appears only
for LEAST=p with 1 < p < 2.

–BINSIZ– is the maximum bin size used for estimating medians. This variable
appears only for LEAST=1.

If you specify the OUTITER option, the variables–SCALE– or –RMSSTD– ,

–RADIUS– , –NEAR– , and–GAP– have missing values except for the last pass.

You can use the OUTSEED= data set as a SEED= input data set for a subsequent
analysis.

OUTSTAT= Data Set

The variables in the OUTSTAT= data set are as follows:

• BY variables, if any

• a new character variable,–TYPE– , specifying the type of statistic given by
other variables (seeTable 28.2andTable 28.3)

• a new numeric variable giving the cluster number. You can specify the variable
name with the CLUSTER= option. The default name isCLUSTER.

• a new numeric variable,OVER–ALL, containing statistics that apply over all
of the VAR variables

• the VAR variables giving statistics for particular variables

The values of–TYPE– for all LEAST= options are given in the following table.

Table 28.2. –TYPE– Values for all LEAST= Options

–TYPE– Contents of VAR variables Contents ofOVER–ALL

INITIAL Initial seeds Missing

CRITERION Missing Optimization criterion; see the
LEAST= option; this value is
displayed just before the “Cluster
Summary” table

CENTER Cluster centers; see the LEAST= op-
tion

Missing

SEED Cluster seeds: additional information
used for imputation
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Table 28.2. (continued)

–TYPE– Contents of VAR variables Contents ofOVER–ALL

DISPERSION Dispersion estimates for each cluster;
see the LEAST= option; these values
are displayed in a separate row with
title depending on the LEAST= option

Dispersion estimates pooled over
variables; see the LEAST= op-
tion; these values are displayed
in the “Cluster Summary” ta-
ble with label depending on the
LEAST= option

FREQ Frequency of each cluster omitting
observations with missing values for
the VAR variable; these values are not
displayed

Frequency of each cluster based
on all observations with any
nonmissing value; these values
are displayed in the “Cluster
Summary” table

WEIGHT Sum of weights for each cluster omit-
ting observations with missing values
for the VAR variable; these values are
not displayed

Sum of weights for each clus-
ter based on all observations with
any nonmissing value; these val-
ues are displayed in the “Cluster
Summary” table

Observations with–TYPE–=’WEIGHT’ are included only if you specify the
WEIGHT statement.

The–TYPE– values included only for least-squares clustering are given in the fol-
lowing table. Least-squares clustering is obtained by omitting the LEAST= option or
by specifying LEAST=2.

Table 28.3. –TYPE– Values for Least-Squares Clustering

–TYPE– Contents of VAR variables Contents ofOVER–ALL

MEAN Mean for the total sample; this is not
displayed

Missing

STD Standard deviation for the total sam-
ple; this is labeled “Total STD” in the
output

Standard deviation pooled over
all the VAR variables; this is la-
beled “Total STD” in the output

WITHIN–STD Pooled within-cluster standard
deviation

Within cluster standard deviation
pooled over clusters and all the
VAR variables

RSQ R2 for predicting the variable from the
clusters; this is labeled “R-Squared”
in the output

R2 pooled over all the VAR
variables; this is labeled “R-
Squared” in the output
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Table 28.3. (continued)

–TYPE– Contents of VAR variables Contents ofOVER–ALL

RSQ–RATIO R2

1−R2 ; this is labeled “RSQ/(1-RSQ)”
in the output

R2

1−R2 ; labeled “RSQ/(1-RSQ)”
in the output

PSEUDO–F Missing PseudoF statistic

ESRQ Missing Approximate expected value of
R2 under the null hypothesis of
a single uniform cluster

CCC Missing The cubic clustering criterion

Computational Resources

Let

n = number of observations

v = number of variables

c = number of clusters

p = number of passes over the data set

Memory

The memory required is approximately4(19v+12cv+10c+2max(c+1, v)) bytes.

If you request the DISTANCE option, an additional4c(c+1) bytes of space is needed.

Time

The overall time required by PROC FASTCLUS is roughly proportional tonvcp if c
is small with respect ton.

Initial seed selection requires one pass over the data set. If the observations are in
random order, the time required is roughly proportional to

nvc + vc2

unless you specify REPLACE=NONE. In that case, a complete pass may not be nec-
essary, and the time is roughly proportional tomvc, wherec ≤ m ≤ n.

The DRIFT option, each iteration, and the final assignment of cluster seeds each
require one pass, with time for each pass roughly proportional tonvc.

For greatest efficiency, you should list the variables in the VAR statement in order of
decreasing variance.
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Using PROC FASTCLUS
Before using PROC FASTCLUS, decide whether your variables should be standard-
ized in some way, since variables with large variances tend to have more effect on
the resulting clusters than those with small variances. If all variables are measured in
the same units, standardization may not be necessary. Otherwise, some form of stan-
dardization is strongly recommended. The STANDARD procedure can standardize
all variables to mean zero and variance one. The FACTOR or PRINCOMP proce-
dures can compute standardized principal component scores. The ACECLUS proce-
dure can transform the variables according to an estimated within-cluster covariance
matrix.

Nonlinear transformations of the variables may change the number of population
clusters and should, therefore, be approached with caution. For most applications,
the variables should be transformed so that equal differences are of equal practical
importance. An interval scale of measurement is required. Ordinal or ranked data are
generally not appropriate.

PROC FASTCLUS produces relatively little output. In most cases you should create
an output data set and use other procedures such as PRINT, PLOT, CHART, MEANS,
DISCRIM, or CANDISC to study the clusters. It is usually desirable to try sev-
eral values of the MAXCLUSTERS= option. Macros are useful for running PROC
FASTCLUS repeatedly with other procedures.

A simple application of PROC FASTCLUS with two variables to examine the 2- and
3-cluster solutions may proceed as follows:

proc standard mean=0 std=1 out=stan;
var v1 v2;

run;

proc fastclus data=stan out=clust maxclusters=2;
var v1 v2;

run;

proc plot;
plot v2*v1=cluster;

run;

proc fastclus data=stan out=clust maxclusters=3;
var v1 v2;

run;

proc plot;
plot v2*v1=cluster;

run;

If you have more than two variables, you can use the CANDISC procedure to com-
pute canonical variables for plotting the clusters, for example,

proc standard mean=0 std=1 out=stan;
var v1-v10;
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run;

proc fastclus data=stan out=clust maxclusters=3;
var v1-v10;

run;

proc candisc out=can;
var v1-v10;
class cluster;

run;

proc plot;
plot can2*can1=cluster;

run;

If the data set is not too large, it may also be helpful to use

proc sort;
by cluster distance;

run;
proc print;

by cluster;
run;

to list the clusters. By examining the values ofDISTANCE, you can determine if any
observations are unusually far from their cluster seeds.

It is often advisable, especially if the data set is large or contains outliers, to make
a preliminary PROC FASTCLUS run with a large number of clusters, perhaps 20
to 100. Use MAXITER=0 and OUTSEED=SAS-data-set. You can save time on
subsequent runs by selecting cluster seeds from this output data set using the SEED=
option.

You should check the preliminary clusters for outliers, which often appear as clusters
with only one member. Use a DATA step to delete outliers from the data set created by
the OUTSEED= option before using it as a SEED= data set in later runs. If there are
severe outliers, the subsequent PROC FASTCLUS runs should specify the STRICT
option to prevent the outliers from distorting the clusters.

You can use the OUTSEED= data set with the PLOT procedure to plot–GAP– by

–FREQ– . An overlay of –RADIUS– by –FREQ– provides a baseline against
which to compare the values of–GAP– . Outliers appear in the upper left area of the
plot, with large values of–GAP– and small–FREQ– values. Good clusters appear
in the upper right area, with large values of both–GAP– and –FREQ– . Good
potential cluster seeds appear in the lower right, as well as in the upper right, since
large–FREQ– values indicate high density regions. Small–FREQ– values in the
left part of the plot indicate poor cluster seeds because the points are in low density
regions. It often helps to remove all clusters with small frequencies even though the
clusters may not be remote enough to be considered outliers. Removing points in
low density regions improves cluster separation and provides visually sharper cluster
outlines in scatter plots.
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Displayed Output

Unless the SHORT or SUMMARY option is specified, PROC FASTCLUS displays

• Initial Seeds, cluster seeds selected after one pass through the data

• Change in Cluster Seeds for each iteration, if you specify MAXITER=n > 1

If you specify the LEAST=p option, with(1 < p < 2), and you omit the IRLS option,
an additional column is displayed in the Iteration History table. The column contains
a character to identify the method used in each iteration. PROC FASTCLUS chooses
the most efficient method to cluster the data at each iterative step, given the condition
of the data. Thus, the method chosen is data dependent. The possible values are
described as follows:

Value Method
N Newton’s Method
I or L iteratively weighted least squares (IRLS)
1 IRLS step, halved once
2 IRLS step, halved twice
3 IRLS step, halved three times

PROC FASTCLUS displays a Cluster Summary, giving the following for each clus-
ter:

• Cluster number

• Frequency, the number of observations in the cluster

• Weight, the sum of the weights of the observations in the cluster, if you specify
the WEIGHT statement

• RMS Std Deviation, the root mean square across variables of the cluster stan-
dard deviations, which is equal to the root mean square distance between ob-
servations in the cluster

• Maximum Distance from Seed to Observation, the maximum distance from the
cluster seed to any observation in the cluster

• Nearest Cluster, the number of the cluster with mean closest to the mean of the
current cluster

• Centroid Distance, the distance between the centroids (means) of the current
cluster and the nearest other cluster

A table of statistics for each variable is displayed unless you specify the SUMMARY
option. The table contains

• Total STD, the total standard deviation
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• Within STD, the pooled within-cluster standard deviation

• R-Squared, theR2 for predicting the variable from the cluster

• RSQ/(1 - RSQ), the ratio of between-cluster variance to within-cluster variance
(R2/(1−R2))

• OVER-ALL, all of the previous quantities pooled across variables

PROC FASTCLUS also displays

• PseudoF Statistic,

R2

c−1

1−R2

n−c

whereR2 is the observed overallR2, c is the number of clusters, andn is the
number of observations. The pseudoF statistic was suggested by Calinski
and Harabasz (1974). Refer to Milligan and Cooper (1985) and Cooper and
Milligan (1988) regarding the use of the pseudoF statistic in estimating
the number of clusters. SeeExample 23.2in Chapter 23, “The CLUSTER
Procedure,”for a comparison of pseudoF statistics.

• Observed Overall R-Squared, if you specify the SUMMARY option

• Approximate Expected Overall R-Squared, the approximate expected value of
the overallR2 under the uniform null hypothesis assuming that the variables
are uncorrelated. The value is missing if the number of clusters is greater than
one-fifth the number of observations.

• Cubic Clustering Criterion, computed under the assumption that the variables
are uncorrelated. The value is missing if the number of clusters is greater than
one-fifth the number of observations.

If you are interested in the approximate expectedR2 or the cubic clustering
criterion but your variables are correlated, you should cluster principal com-
ponent scores from the PRINCOMP procedure. Both of these statistics are
described by Sarle (1983). The performance of the cubic clustering criterion in
estimating the number of clusters is examined by Milligan and Cooper (1985)
and Cooper and Milligan (1988).

• Distances Between Cluster Means, if you specify the DISTANCE option

Unless you specify the SHORT or SUMMARY option, PROC FASTCLUS displays

• Cluster Means for each variable

• Cluster Standard Deviations for each variable
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ODS Table Names

PROC FASTCLUS assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 28.4. ODS Tables Produced in PROC FASTCLUS

ODS Table Name Description Statement Option
ApproxExpOverAllRSq Approximate expected over-all

R-squared, single number
PROC default

CCC CCC, Cubic Clustering
Criterion, single number

PROC default

ClusterList Cluster listing, obs, id, and dis-
tances

PROC LIST

ClusterSum Cluster summary, cluster num-
ber, distances

PROC PRINTALL

ClusterCenters Cluster centers PROC default
ClusterDispersion Cluster dispersion PROC default
ConvergenceStatus Convergence status PROC PRINTALL
Criterion Criterion based on final seeds,

single number
PROC default

DistBetweenClust Distance between clusters PROC default
InitialSeeds Initial seeds PROC default
IterHistory Iteration history, various statis-

tics for each iter
PROC PRINTALL

MinDist Minimum distance between ini-
tial seeds, single number

PROC PRINTALL

NumberOfBins Number of bins PROC default
ObsOverAllRSquare Observed over-all R-squared,

single number
PROC SUMMARY

PrelScaleEst Preliminary L(1) scale estimate,
single number

PROC PRINTALL

PseudoFStat Pseudo F statistic, single number PROC default
SimpleStatistics Simple statistics for input vari-

ables
PROC default

VariableStat Statistics for variables within
clusters

PROC default
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Examples

Example 28.1. Fisher’s Iris Data

The iris data published by Fisher (1936) have been widely used for examples in dis-
criminant analysis and cluster analysis. The sepal length, sepal width, petal length,
and petal width are measured in millimeters on fifty iris specimens from each of
three species,Iris setosa, I. versicolor,andI. virginica. Mezzich and Solomon (1980)
discuss a variety of cluster analyses of the iris data.

In this example, the FASTCLUS procedure is used to find two and, then, three clus-
ters. An output data set is created, and PROC FREQ is invoked to compare the
clusters with the species classification. SeeOutput 28.1.1andOutput 28.1.2for these
results. For three clusters, you can use the CANDISC procedure to compute canoni-
cal variables for plotting the clusters. SeeOutput 28.1.3for the results.

proc format;
value specname

1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

run;

data iris;
title ’Fisher (1936) Iris Data’;
input SepalLength SepalWidth PetalLength PetalWidth Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’

SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

symbol = put(species, specname10.);
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
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57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;

proc fastclus data=iris maxc=2 maxiter=10 out=clus;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

proc freq;
tables cluster*species;

run;

proc fastclus data=iris maxc=3 maxiter=10 out=clus;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

proc freq;
tables cluster*Species;

run;

proc candisc anova out=can;
class cluster;
var SepalLength SepalWidth PetalLength PetalWidth;
title2 ’Canonical Discriminant Analysis of Iris Clusters’;

run;
legend1 frame cframe=ligr label=none cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;

proc gplot data=Can;
plot Can2*Can1=Cluster/frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
title2 ’Plot of Canonical Variables Identified by Cluster’;

run;
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Output 28.1.1. Fisher’s Iris Data: PROC FASTCLUS with MAXC=2 and PROC
FREQ

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=10 Converge=0.02

Initial Seeds

Cluster SepalLength SepalWidth PetalLength PetalWidth
-------------------------------------------------------------------------------

1 43.00000000 30.00000000 11.00000000 1.00000000
2 77.00000000 26.00000000 69.00000000 23.00000000

Minimum Distance Between Initial Seeds = 70.85196

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=10 Converge=0.02

Iteration History

Relative Change
in Cluster Seeds

Iteration Criterion 1 2
----------------------------------------------

1 11.0638 0.1904 0.3163
2 5.3780 0.0596 0.0264
3 5.0718 0.0174 0.00766

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 5.0417

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 53 3.7050 21.1621 2 39.2879
2 97 5.6779 24.6430 1 39.2879

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)
---------------------------------------------------------------------
SepalLength 8.28066 5.49313 0.562896 1.287784
SepalWidth 4.35866 3.70393 0.282710 0.394137
PetalLength 17.65298 6.80331 0.852470 5.778291
PetalWidth 7.62238 3.57200 0.781868 3.584390
OVER-ALL 10.69224 5.07291 0.776410 3.472463

Pseudo F Statistic = 513.92

Approximate Expected Over-All R-Squared = 0.51539

Cubic Clustering Criterion = 14.806

WARNING: The two values above are invalid for correlated variables.
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Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=10 Converge=0.02

Cluster Means

Cluster SepalLength SepalWidth PetalLength PetalWidth
-------------------------------------------------------------------------------

1 50.05660377 33.69811321 15.60377358 2.90566038
2 63.01030928 28.86597938 49.58762887 16.95876289

Cluster Standard Deviations

Cluster SepalLength SepalWidth PetalLength PetalWidth
-------------------------------------------------------------------------------

1 3.427350930 4.396611045 4.404279486 2.105525249
2 6.336887455 3.267991438 7.800577673 4.155612484

Fisher (1936) Iris Data

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER(Cluster) Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 50 | 3 | 0 | 53
| 33.33 | 2.00 | 0.00 | 35.33
| 94.34 | 5.66 | 0.00 |
| 100.00 | 6.00 | 0.00 |

---------+--------+--------+--------+
2 | 0 | 47 | 50 | 97

| 0.00 | 31.33 | 33.33 | 64.67
| 0.00 | 48.45 | 51.55 |
| 0.00 | 94.00 | 100.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00

Output 28.1.2. Fisher’s Iris Data: PROC FASTCLUS with MAXC=3 and PROC
FREQ

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=3 Maxiter=10 Converge=0.02

Initial Seeds

Cluster SepalLength SepalWidth PetalLength PetalWidth
-------------------------------------------------------------------------------

1 58.00000000 40.00000000 12.00000000 2.00000000
2 77.00000000 38.00000000 67.00000000 22.00000000
3 49.00000000 25.00000000 45.00000000 17.00000000

Minimum Distance Between Initial Seeds = 38.23611
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Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=3 Maxiter=10 Converge=0.02

Iteration History

Relative Change in Cluster Seeds
Iteration Criterion 1 2 3
----------------------------------------------------------

1 6.7591 0.2652 0.3205 0.2985
2 3.7097 0 0.0459 0.0317
3 3.6427 0 0.0182 0.0124

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 3.6289

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 50 2.7803 12.4803 3 33.5693
2 38 4.0168 14.9736 3 17.9718
3 62 4.0398 16.9272 2 17.9718

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)
---------------------------------------------------------------------
SepalLength 8.28066 4.39488 0.722096 2.598359
SepalWidth 4.35866 3.24816 0.452102 0.825156
PetalLength 17.65298 4.21431 0.943773 16.784895
PetalWidth 7.62238 2.45244 0.897872 8.791618
OVER-ALL 10.69224 3.66198 0.884275 7.641194

Pseudo F Statistic = 561.63

Approximate Expected Over-All R-Squared = 0.62728

Cubic Clustering Criterion = 25.021

WARNING: The two values above are invalid for correlated variables.
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Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=3 Maxiter=10 Converge=0.02

Cluster Means

Cluster SepalLength SepalWidth PetalLength PetalWidth
-------------------------------------------------------------------------------

1 50.06000000 34.28000000 14.62000000 2.46000000
2 68.50000000 30.73684211 57.42105263 20.71052632
3 59.01612903 27.48387097 43.93548387 14.33870968

Cluster Standard Deviations

Cluster SepalLength SepalWidth PetalLength PetalWidth
-------------------------------------------------------------------------------

1 3.524896872 3.790643691 1.736639965 1.053855894
2 4.941550255 2.900924461 4.885895746 2.798724562
3 4.664100551 2.962840548 5.088949673 2.974997167

Fisher (1936) Iris Data

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER(Cluster) Species

Frequency|
Percent |
Row Pct |
Col Pct |Setosa |Versicol|Virginic| Total

| |or |a |
---------+--------+--------+--------+

1 | 50 | 0 | 0 | 50
| 33.33 | 0.00 | 0.00 | 33.33
| 100.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 |

---------+--------+--------+--------+
2 | 0 | 2 | 36 | 38

| 0.00 | 1.33 | 24.00 | 25.33
| 0.00 | 5.26 | 94.74 |
| 0.00 | 4.00 | 72.00 |

---------+--------+--------+--------+
3 | 0 | 48 | 14 | 62

| 0.00 | 32.00 | 9.33 | 41.33
| 0.00 | 77.42 | 22.58 |
| 0.00 | 96.00 | 28.00 |

---------+--------+--------+--------+
Total 50 50 50 150

33.33 33.33 33.33 100.00
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Output 28.1.3. Fisher’s Iris Data: PROC CANDISC and PROC GPLOT
Fisher (1936) Iris Data

Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Observations 150 DF Total 149
Variables 4 DF Within Classes 147
Classes 3 DF Between Classes 2

Class Level Information

Variable
CLUSTER Name Frequency Weight Proportion

1 _1 50 50.0000 0.333333
2 _2 38 38.0000 0.253333
3 _3 62 62.0000 0.413333

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Univariate Test Statistics

F Statistics, Num DF=2, Den DF=147

Total Pooled Between
Standard Standard Standard R-Square

Variable Label Deviation Deviation Deviation R-Square / (1-RSq) F Value Pr > F

SepalLength Sepal Length in mm. 8.2807 4.3949 8.5893 0.7221 2.5984 190.98 <.0001
SepalWidth Sepal Width in mm. 4.3587 3.2482 3.5774 0.4521 0.8252 60.65 <.0001
PetalLength Petal Length in mm. 17.6530 4.2143 20.9336 0.9438 16.7849 1233.69 <.0001
PetalWidth Petal Width in mm. 7.6224 2.4524 8.8164 0.8979 8.7916 646.18 <.0001

Average R-Square

Unweighted 0.7539604
Weighted by Variance 0.8842753

Multivariate Statistics and F Approximations

S=2 M=0.5 N=71

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.03222337 164.55 8 288 <.0001
Pillai’s Trace 1.25669612 61.29 8 290 <.0001
Hotelling-Lawley Trace 21.06722883 377.66 8 203.4 <.0001
Roy’s Greatest Root 20.63266809 747.93 4 145 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.



Example 28.1. Fisher’s Iris Data � 1415

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.976613 0.976123 0.003787 0.953774
2 0.550384 0.543354 0.057107 0.302923

Test of H0: The canonical correlations in the
Eigenvalues of Inv(E)*H current row and all that follow are zero

= CanRsq/(1-CanRsq)
Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F

1 20.6327 20.1981 0.9794 0.9794 0.03222337 164.55 8 288 <.0001
2 0.4346 0.0206 1.0000 0.69707749 21.00 3 145 <.0001

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Total Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.831965 0.452137
SepalWidth Sepal Width in mm. -0.515082 0.810630
PetalLength Petal Length in mm. 0.993520 0.087514
PetalWidth Petal Width in mm. 0.966325 0.154745

Between Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.956160 0.292846
SepalWidth Sepal Width in mm. -0.748136 0.663545
PetalLength Petal Length in mm. 0.998770 0.049580
PetalWidth Petal Width in mm. 0.995952 0.089883

Pooled Within Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.339314 0.716082
SepalWidth Sepal Width in mm. -0.149614 0.914351
PetalLength Petal Length in mm. 0.900839 0.308136
PetalWidth Petal Width in mm. 0.650123 0.404282
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Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Total-Sample Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.047747341 1.021487262
SepalWidth Sepal Width in mm. -0.577569244 0.864455153
PetalLength Petal Length in mm. 3.341309573 -1.283043758
PetalWidth Petal Width in mm. 0.996451144 0.900476563

Pooled Within-Class Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.0253414487 0.5421446856
SepalWidth Sepal Width in mm. -.4304161258 0.6442092294
PetalLength Petal Length in mm. 0.7976741592 -.3063023132
PetalWidth Petal Width in mm. 0.3205998034 0.2897207865

Raw Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length in mm. 0.0057661265 0.1233581748
SepalWidth Sepal Width in mm. -.1325106494 0.1983303556
PetalLength Petal Length in mm. 0.1892773419 -.0726814163
PetalWidth Petal Width in mm. 0.1307270927 0.1181359305

Class Means on Canonical Variables

CLUSTER Can1 Can2

1 -6.131527227 0.244761516
2 4.931414018 0.861972277
3 1.922300462 -0.725693908
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Example 28.2. Outliers

The second example involves data artificially generated to contain two clusters and
several severe outliers. A preliminary analysis specifies twenty clusters and outputs
an OUTSEED= data set to be used for a diagnostic plot. The exact number of ini-
tial clusters is not important; similar results could be obtained with ten or fifty initial
clusters. Examination of the plot suggests that clusters with more than five (again, the
exact number is not important) observations may yield good seeds for the main anal-
ysis. A DATA step deletes clusters with five or fewer observations, and the remaining
cluster means provide seeds for the next PROC FASTCLUS analysis.

Two clusters are requested; the LEAST= option specifies the mean absolute deviation
criterion (LEAST=1) . Values of the LEAST= option less than 2 reduce the effect of
outliers on cluster centers.

The next analysis also requests two clusters; the STRICT= option is specified to
prevent outliers from distorting the results. The STRICT= value is chosen to be close
to the–GAP– and–RADIUS– values of the larger clusters in the diagnostic plot;
the exact value is not critical.

A final PROC FASTCLUS run assigns the outliers to clusters. The results are dis-
played inOutput 28.2.1throughOutput 28.2.4.

/* Create artificial data set with two clusters */
/* and some outliers. */

data x;
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title ’Using PROC FASTCLUS to Analyze Data with Outliers’;
drop n;
do n=1 to 100;

x=rannor(12345)+2;
y=rannor(12345);
output;

end;
do n=1 to 100;

x=rannor(12345)-2;
y=rannor(12345);
output;

end;
do n=1 to 10;

x=10*rannor(12345);
y=10*rannor(12345);
output;

end;
run;

/* Run PROC FASTCLUS with many clusters and OUTSEED= output */
/* data set for diagnostic plot. */

title2 ’Preliminary PROC FASTCLUS Analysis with 20 Clusters’;
proc fastclus data=x outseed=mean1 maxc=20 maxiter=0 summary;

var x y;
run;

legend1 frame cframe=ligr label=none cborder=black
position=center value=(justify=center);

axis1 label=(angle=90 rotate=0) minor=none order=(0 to 10 by 2);
axis2 minor=none ;

proc gplot data=mean1;
plot _gap_*_freq_ _radius_*_freq_ /overlay frame
cframe=ligr vaxis=axis1 haxis=axis2 legend=legend1;

run;
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Output 28.2.1. Preliminary Analysis of Data with Outliers: PROC FASTCLUS and
PROC GPLOT

Using PROC FASTCLUS to Analyze Data with Outliers
Preliminary PROC FASTCLUS Analysis with 20 Clusters

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=20 Maxiter=0

Criterion Based on Final Seeds = 0.6873

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 8 0.4753 1.1924 19 1.7205
2 1 . 0 6 6.2847
3 44 0.6252 1.6774 5 1.4386
4 1 . 0 20 5.2130
5 38 0.5603 1.4528 3 1.4386
6 2 0.0542 0.1085 2 6.2847
7 1 . 0 14 2.5094
8 2 0.6480 1.2961 1 1.8450
9 1 . 0 7 9.4534

10 1 . 0 18 4.2514
11 1 . 0 16 4.7582
12 20 0.5911 1.6291 16 1.5601
13 5 0.6682 1.4244 3 1.9553
14 1 . 0 7 2.5094
15 5 0.4074 1.2678 3 1.7609
16 22 0.4168 1.5139 19 1.4936
17 8 0.4031 1.4794 5 1.5564
18 1 . 0 10 4.2514
19 45 0.6475 1.6285 16 1.4936
20 3 0.5719 1.3642 15 1.8999

Pseudo F Statistic = 207.58

Approximate Expected Over-All R-Squared = 0.96103

Cubic Clustering Criterion = -2.503

WARNING: The two values above are invalid for correlated variables.
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/* Remove low frequency clusters. */
data seed;

set mean1;
if _freq_>5;

run;

/* Run PROC FASTCLUS again, selecting seeds from the */
/* high frequency clusters in the previous analysis */
/* using LEAST=1 Clustering Criterion */

title2 ’PROC FASTCLUS Analysis Using LEAST= Clustering Criterion’;
title3 ’Values < 2 Reduce Effect of Outliers on Cluster Centers’;
proc fastclus data=x seed=seed maxc=2 least=1 out=out;

var x y;
run;

legend1 frame cframe=ligr label=none cborder=black
position=center value=(justify=center);

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;

proc gplot data=out;
plot y*x=cluster/frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
run;
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Output 28.2.2. Analysis of Data with Outliers using the LEAST= Option
Using PROC FASTCLUS to Analyze Data with Outliers

PROC FASTCLUS Analysis Using LEAST= Clustering Criterion
Values < 2 Reduce Effect of Outliers on Cluster Centers

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=20 Converge=0.0001 Least=1

Initial Seeds

Cluster x y
-------------------------------------------

1 2.794174248 -0.065970836
2 -2.027300384 -2.051208579

Minimum Distance Between Initial Seeds = 6.806712

Preliminary L(1) Scale Estimate = 2.796579

Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using LEAST= Clustering Criterion
Values < 2 Reduce Effect of Outliers on Cluster Centers

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=20 Converge=0.0001 Least=1

Number of Bins = 100

Iteration History

Relative Change
Maximum in Cluster Seeds

Iteration Criterion Bin Size 1 2
----------------------------------------------------------

1 1.3983 0.2263 0.4091 0.6696
2 1.0776 0.0226 0.00511 0.0452
3 1.0771 0.00226 0.00229 0.00234
4 1.0771 0.000396 0.000253 0.000144
5 1.0771 0.000396 0 0

Convergence criterion is satisfied.
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Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using LEAST= Clustering Criterion
Values < 2 Reduce Effect of Outliers on Cluster Centers

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=20 Converge=0.0001 Least=1

Criterion Based on Final Seeds = 1.0771

Cluster Summary

Mean Maximum Distance
Absolute from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Medians
-------------------------------------------------------------------------------------------------

1 102 1.1278 24.1622 2 4.2585
2 108 1.0494 14.8292 1 4.2585

Cluster Medians

Cluster x y
-------------------------------------------

1 1.923023887 0.222482918
2 -1.826721743 -0.286253041

Mean Absolute Deviations from Final Seeds

Cluster x y
-------------------------------------------

1 1.113465261 1.142120480
2 0.890331835 1.208370913

/* Run PROC FASTCLUS again, selecting seeds from the */
/* high frequency clusters in the previous analysis */
/* STRICT= prevents outliers from distorting the results. */
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title2 ’PROC FASTCLUS Analysis Using STRICT= to Omit Outliers’;
proc fastclus data=x seed=seed

maxc=2 strict=3.0 out=out outseed=mean2;
var x y;

run;

proc gplot data=out;
plot y*x=cluster/frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
run;

Output 28.2.3. Cluster Analysis with Outliers Omitted: PROC FASTCLUS and
PROC GPLOT

Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using STRICT= to Omit Outliers

The FASTCLUS Procedure
Replace=FULL Radius=0 Strict=3 Maxclusters=2 Maxiter=1

Initial Seeds

Cluster x y
-------------------------------------------

1 2.794174248 -0.065970836
2 -2.027300384 -2.051208579

Criterion Based on Final Seeds = 0.9515

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 99 0.9501 2.9589 2 3.7666
2 99 0.9290 2.8011 1 3.7666

12 Observation(s) were not assigned to a cluster because the minimum distance to a cluster seed
exceeded the STRICT= value.

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)
------------------------------------------------------------------
x 2.06854 0.87098 0.823609 4.669219
y 1.02113 1.00352 0.039093 0.040683
OVER-ALL 1.63119 0.93959 0.669891 2.029303

Pseudo F Statistic = 397.74

Approximate Expected Over-All R-Squared = 0.60615

Cubic Clustering Criterion = 3.197

WARNING: The two values above are invalid for correlated variables.
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Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using STRICT= to Omit Outliers

The FASTCLUS Procedure
Replace=FULL Radius=0 Strict=3 Maxclusters=2 Maxiter=1

Cluster Means

Cluster x y
-------------------------------------------

1 1.825111432 0.141211701
2 -1.919910712 -0.261558725

Cluster Standard Deviations

Cluster x y
-------------------------------------------

1 0.889549271 1.006965219
2 0.852000588 1.000062579

/* Run PROC FASTCLUS one more time with zero iterations */
/* to assign outliers and tails to clusters. */

title2 ’Final PROC FASTCLUS Analysis Assigning Outliers to ’
’Clusters’;

proc fastclus data=x seed=mean2 maxc=2 maxiter=0 out=out;
var x y;

run;

proc gplot data=out;
plot y*x=cluster/frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
run;
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Output 28.2.4. Final Analysis with Outliers Assigned to Clusters: PROC
FASTCLUS and PROC GPLOT

Using PROC FASTCLUS to Analyze Data with Outliers
Final PROC FASTCLUS Analysis Assigning Outliers to Clusters

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=0

Initial Seeds

Cluster x y
-------------------------------------------

1 1.825111432 0.141211701
2 -1.919910712 -0.261558725

Criterion Based on Final Seeds = 2.0594

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest Distance Between

Cluster Frequency Deviation to Observation Exceeded Cluster Cluster Centroids
--------------------------------------------------------------------------------------------------

1 103 2.2569 17.9426 2 4.3753
2 107 1.8371 11.7362 1 4.3753

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)
------------------------------------------------------------------
x 2.92721 1.95529 0.555950 1.252000
y 2.15248 2.14754 0.009347 0.009435
OVER-ALL 2.56922 2.05367 0.364119 0.572621

Pseudo F Statistic = 119.11

Approximate Expected Over-All R-Squared = 0.49090

Cubic Clustering Criterion = -5.338

WARNING: The two values above are invalid for correlated variables.

Using PROC FASTCLUS to Analyze Data with Outliers
Final PROC FASTCLUS Analysis Assigning Outliers to Clusters

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=2 Maxiter=0

Cluster Means

Cluster x y
-------------------------------------------

1 2.280017469 0.263940765
2 -2.075547895 -0.151348765

Cluster Standard Deviations

Cluster x y
-------------------------------------------

1 2.412264861 2.089922815
2 1.379355878 2.201567557
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The FREQ Procedure
Overview

The FREQ procedure produces one-way ton-way frequency and crosstabulation
(contingency) tables. For two-way tables, PROC FREQ computes tests and measures
of association. Forn-way tables, PROC FREQ does stratified analysis, computing
statistics within, as well as across, strata. Frequencies and statistics can also be out-
put to SAS data sets.

For one-way frequency tables, PROC FREQ can compute statistics to test for equal
proportions, specified proportions, or the binomial proportion. For contingency ta-
bles, PROC FREQ can compute various statistics to examine the relationships be-
tween two classification variables adjusting for any stratification variables. PROC
FREQ automatically displays the output in a report and can also save the output in a
SAS data set.

For some pairs of variables, you may want to examine the existence or the strength
of any association between the variables. To determine if an association exists, chi-
square tests are computed. To estimate the strength of an association, PROC FREQ
computes measures of association that tend to be close to zero when there is no asso-
ciation and close to the maximum (or minimum) value when there is perfect associa-
tion. The statistics for contingency tables include

• chi-square tests and measures

• measures of association

• risks (binomial proportions) and risk differences for2× 2 tables

• odds ratios and relative risks for2× 2 tables

• tests for trend

• tests and measures of agreement

• Cochran-Mantel-Haenszel statistics

PROC FREQ computes asymptotic standard errors, confidence intervals, and tests for
measures of association and measures of agreement. Exactp-values and confidence
intervals are available for various test statistics and measures. PROC FREQ also
performs stratified analyses that compute statistics within, as well as across, strata for
n-way tables. The statistics include Cochran-Mantel-Haenszel statistics and measures
of agreement.

In choosing measures of association to use in analyzing a two-way table, you should
consider the study design (which indicates whether the row and column variables are
dependent or independent), the measurement scale of the variables (nominal, ordinal,
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or interval), the type of association that each measure is designed to detect, and any
assumptions required for valid interpretation of a measure. You should exercise care
in selecting measures that are appropriate for your data.

Similar comments apply to the choice and interpretation of the test statistics. For
example, the Mantel-Haenszel chi-square statistic requires an ordinal scale for both
variables and is designed to detect a linear association. The Pearson chi-square, on
the other hand, is appropriate for all variables and can detect any kind of association,
but it is less powerful for detecting a linear association because its power is dispersed
over a greater number of degrees of freedom (except for2× 2 tables).

Several SAS procedures produce frequency counts; only PROC FREQ computes chi-
square tests for one-way ton-way tables and measures of association and agreement
for contingency tables. Other procedures to consider for counting are TABULATE,
CHART, and UNIVARIATE. When you want to fit models to categorical data, use a
procedure such as CATMOD, GENMOD, LOGISTIC, PHREG, or PROBIT.

For more information on selecting the appropriate statistical analyses, refer to Agresti
(1996) or Stokes, Davis, and Koch (1995).

Getting Started

Frequency Tables and Statistics

The FREQ procedure provides easy access to statistics for testing for association in a
crosstabulation table.

In this example, high school students applied for courses in a summer enrichment
program: these courses included journalism, art history, statistics, graphic arts, and
computer programming. The students accepted were randomly assigned to classes
with and without internships in local companies. The following table contains counts
of the students who enrolled in the summer program by gender and whether they were
assigned an internship slot.

Table 29.1. Summer Enrichment Data

Enrollment
Gender Internship Yes No Total
boys yes 35 29 64
boys no 14 27 41
girls yes 32 10 42
girls no 53 23 76

The SAS data setSummerSchool is created by inputting the summer enrichment
data as cell count data, or providing the frequency count for each combination
of variable values. The following DATA step statements create the SAS data set
SummerSchool.
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data SummerSchool;
input Gender $ Internship $ Enrollment $ Count @@;
datalines;

boys yes yes 35 boys yes no 29
boys no yes 14 boys no no 27
girls yes yes 32 girls yes no 10
girls no yes 53 girls no no 23
;

The variableGender takes the values ‘boys’ or ‘girls’, the variableInternship takes
the values ‘yes’ and ‘no’, and the variableEnrollment takes the values ‘yes’ and
‘no’. The variableCount contains the number of students corresponding to each
combination of data values. The double at sign (@@) indicates that more than one
observation is included on a single data line. In this DATA step, two observations are
included on each line.

Researchers are interested in whether there is an association between internship status
and summer program enrollment. The Pearson chi-square statistic is an appropriate
statistic to assess the association in the corresponding2 × 2 table. The following
PROC FREQ statements specify this analysis.

You specify the table for which you want to compute statistics with the TABLES
statement. You specify the statistics you want to compute with options after a slash
(/) in the TABLES statement.

proc freq data=SummerSchool order=data;
weight count;
tables Internship*Enrollment / chisq;

run;

The ORDER= option controls the order in which variable values are displayed in the
rows and columns of the table. By default, the values are arranged according to the
alphanumeric order of their unformatted values. If you specify ORDER=DATA, the
data are displayed in the same order as they occur in the input data set. Here, since
‘yes’ appears before ‘no’ in the data, ‘yes’ appears first in any table. Other options for
controlling order include ORDER=FORMATTED, which orders according to the for-
matted values, and ORDER=FREQUENCY, which orders by descending frequency
count.

In the TABLES statement,Internship*Enrollment specifies a table where the rows
are internship status and the columns are program enrollment. The CHISQ option
requests chi-square statistics for assessing association between these two variables.
Since the input data are in cell count form, the WEIGHT statement is required. The
WEIGHT statement names the variableCount, which provides the frequency of each
combination of data values.
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Figure 29.1presents the crosstabulation ofInternship andEnrollment. In each cell,
the values printed under the cell count are the table percentage, row percentage, and
column percentage, respectively. For example, in the first cell, 63.21 percent of those
offered courses with internships accepted them and 36.79 percent did not.

The FREQ Procedure

Table of Internship by Enrollment

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |yes |no | Total
---------+--------+--------+
yes | 67 | 39 | 106

| 30.04 | 17.49 | 47.53
| 63.21 | 36.79 |
| 50.00 | 43.82 |

---------+--------+--------+
no | 67 | 50 | 117

| 30.04 | 22.42 | 52.47
| 57.26 | 42.74 |
| 50.00 | 56.18 |

---------+--------+--------+
Total 134 89 223

60.09 39.91 100.00

Figure 29.1. Crosstabulation Table

Statistics for Table of Internship by Enrollment

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.8189 0.3655
Likelihood Ratio Chi-Square 1 0.8202 0.3651
Continuity Adj. Chi-Square 1 0.5899 0.4425
Mantel-Haenszel Chi-Square 1 0.8153 0.3666
Phi Coefficient 0.0606
Contingency Coefficient 0.0605
Cramer’s V 0.0606

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 67
Left-sided Pr <= F 0.8513
Right-sided Pr >= F 0.2213

Table Probability (P) 0.0726
Two-sided Pr <= P 0.4122

Sample Size = 223

Figure 29.2. Statistics Produced with the CHISQ Option
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Figure 29.2displays the statistics produced by the CHISQ option. The Pearson chi-
square statistic is labeled ‘Chi-Square’ and has a value of 0.8189 with 1 degree of
freedom. The associatedp-value is 0.3655, which means that there is no significant
evidence of an association between internship status and program enrollment. The
other chi-square statistics have similar values and are asymptotically equivalent. The
other statistics (Phi Coefficient, Contingency Coefficient, and Cramer’sV ) are mea-
sures of association derived from the Pearson chi-square. For Fisher’s exact test,
the two-sidedp-value is 0.4122, which also shows no association between internship
status and program enrollment.

The analysis, so far, has ignored gender. However, it may be of interest to ask whether
program enrollment is associated with internship status after adjusting for gender.
You can address this question by doing an analysis of a set of tables, in this case, by
analyzing the set consisting of one for boys and one for girls. The Cochran-Mantel-
Haenszel statistic is appropriate for this situation: it addresses whether rows and
columns are associated after controlling for the stratification variable. In this case,
you would be stratifying by gender.

The FREQ statements for this analysis are very similar to those for the first analysis,
except that there is a third variable,Gender, in the TABLES statement. When you
cross more than two variables, the two rightmost variables construct the rows and
columns of the table, respectively, and the leftmost variables determine the stratifica-
tion.

proc freq data=SummerSchool;
weight count;
tables Gender*Internship*Enrollment / chisq cmh;

run;

This execution of PROC FREQ first produces two individual crosstabulation tables
of Internship*Enrollment, one for boys and one for girls. Chi-square statistics are
produced for each individual table.Figure 29.3shows the results for boys. Note that
the chi-square statistic for boys is significant at theα = 0.05 level of significance.
Boys offered a course with an internship are more likely to enroll than boys who are
not.

If you look at the individual table for girls, displayed inFigure 29.4, you see that
there is no evidence of association for girls between internship offers and program
enrollment.
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The FREQ Procedure

Table 1 of Internship by Enrollment
Controlling for Gender=boys

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 27 | 14 | 41

| 25.71 | 13.33 | 39.05
| 65.85 | 34.15 |
| 48.21 | 28.57 |

---------+--------+--------+
yes | 29 | 35 | 64

| 27.62 | 33.33 | 60.95
| 45.31 | 54.69 |
| 51.79 | 71.43 |

---------+--------+--------+
Total 56 49 105

53.33 46.67 100.00

Statistics for Table 1 of Internship by Enrollment
Controlling for Gender=boys

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.2366 0.0396
Likelihood Ratio Chi-Square 1 4.2903 0.0383
Continuity Adj. Chi-Square 1 3.4515 0.0632
Mantel-Haenszel Chi-Square 1 4.1963 0.0405
Phi Coefficient 0.2009
Contingency Coefficient 0.1969
Cramer’s V 0.2009

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 27
Left-sided Pr <= F 0.9885
Right-sided Pr >= F 0.0311

Table Probability (P) 0.0196
Two-sided Pr <= P 0.0467

Sample Size = 105

Figure 29.3. Crosstabulation Table and Statistics for Boys
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Table 2 of Internship by Enrollment
Controlling for Gender=girls

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 23 | 53 | 76

| 19.49 | 44.92 | 64.41
| 30.26 | 69.74 |
| 69.70 | 62.35 |

---------+--------+--------+
yes | 10 | 32 | 42

| 8.47 | 27.12 | 35.59
| 23.81 | 76.19 |
| 30.30 | 37.65 |

---------+--------+--------+
Total 33 85 118

27.97 72.03 100.00

Statistics for Table 2 of Internship by Enrollment
Controlling for Gender=girls

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.5593 0.4546
Likelihood Ratio Chi-Square 1 0.5681 0.4510
Continuity Adj. Chi-Square 1 0.2848 0.5936
Mantel-Haenszel Chi-Square 1 0.5545 0.4565
Phi Coefficient 0.0688
Contingency Coefficient 0.0687
Cramer’s V 0.0688

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 23
Left-sided Pr <= F 0.8317
Right-sided Pr >= F 0.2994

Table Probability (P) 0.1311
Two-sided Pr <= P 0.5245

Sample Size = 118

Figure 29.4. Crosstabulation Table and Statistics for Girls
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These individual table results demonstrate the occasional problems with combining
information into one table and not accounting for information in other variables such
asGender. Figure 29.5contains the CMH results. There are three summary (CMH)
statistics; which one you use depends on whether your rows and/or columns have
an order inr × c tables. However, in the case of2 × 2 tables, ordering does not
matter and all three statistics take the same value. The CMH statistic follows the chi-
square distribution under the hypothesis of no association, and here, it takes the value
4.0186 with 1 degree of freedom. The associatedp-value is 0.0450, which indicates
a significant association at theα = 0.05 level.

Thus, when you adjust for the effect of gender in these data, there is an association
between internship and program enrollment. But, if you ignore gender, no association
is found. Note that the CMH option also produces other statistics, including estimates
and confidence limits for relative risk and odds ratios for2×2 tables and the Breslow-
Day Test. These results are not displayed here.

Summary Statistics for Internship by Enrollment
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.0186 0.0450
2 Row Mean Scores Differ 1 4.0186 0.0450
3 General Association 1 4.0186 0.0450

Total Sample Size = 223

Figure 29.5. Test for the Hypothesis of No Association

Agreement Study Example

Medical researchers are interested in evaluating the efficacy of a new treatment for a
skin condition. Dermatologists from participating clinics were trained to conduct the
study and to evaluate the condition. After the training, two dermatologists examined
patients with the skin condition from a pilot study and rated the same patients. The
possible evaluations are terrible, poor, marginal, and clear.Table 29.2contains the
data.
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Table 29.2. Skin Condition Data

Dermatologist 2
Dermatologist 1 Terrible Poor Marginal Clear
Terrible 10 4 1 0
Poor 5 10 12 2
Marginal 2 4 12 5
Clear 0 2 6 13

The dermatologists’ evaluations of the patients are contained in the variablesderm1
andderm2; the variablecount is the number of patients given a particular pair of
ratings. In order to evaluate the agreement of the diagnoses (a possible contribution
to measurement error in the study), thekappa coefficientis computed. You specify
the AGREE option in the TABLES statement and use the TEST statement to request
a test for the null hypothesis that their agreement is purely by chance. You specify
the keyword KAPPA to perform this test for the kappa coefficient. The results are
shown inFigure 29.6.

data SkinCondition;
input derm1 $ derm2 $ count;
datalines;

terrible terrible 10
terrible poor 4
terrible marginal 1
terrible clear 0
poor terrible 5
poor poor 10
poor marginal 12
poor clear 2
marginal terrible 2
marginal poor 4
marginal marginal 12
marginal clear 5
clear terrible 0
clear poor 2
clear marginal 6
clear clear 13
;

proc freq data=SkinCondition order=data;
weight count;
tables derm1*derm2 / agree noprint;
test kappa;

run;
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The FREQ Procedure

Statistics for Table of derm1 by derm2

Simple Kappa Coefficient
--------------------------------
Kappa 0.3449
ASE 0.0724
95% Lower Conf Limit 0.2030
95% Upper Conf Limit 0.4868

Test of H0: Kappa = 0

ASE under H0 0.0612
Z 5.6366
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Sample Size = 88

Figure 29.6. Agreement Study

The kappa coefficient has the value 0.3449, which indicates slight agreement be-
tween the dermatologists, and the hypothesis test confirms that you can reject the
null hypothesis of no agreement. This conclusion is further supported by the confi-
dence interval of (0.2030, 0.4868), which suggests that the true kappa is greater than
zero. The AGREE option also produces Bowker’s test for symmetry and the weighted
kappa coefficient, but that output is not shown.

Syntax

The following statements are available in PROC FREQ.

PROC FREQ < options > ;
BY variables ;
EXACT statistic-options < / computation-options > ;
OUTPUT < OUT=SAS-data-set > options ;
TABLES requests < / options > ;
TEST options ;
WEIGHT variable < / option > ;

The PROC FREQ statement is the only required statement for the FREQ procedure.
If you specify the following statements, PROC FREQ produces a one-way frequency
table for each variable in the most recently created data set.

proc freq;
run;

The rest of this section gives detailed syntax information for the BY, EXACT,
OUTPUT, TABLES, TEST, and WEIGHT statements in alphabetical order after the
description of the PROC FREQ statement.Table 29.3summarizes the basic functions
of each statement.
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Table 29.3. Summary of PROC FREQ Statements
Statement Description
BY calculates separate frequency or crosstabulation tables for each BY

group.
EXACT requests exact tests for specified statistics.
OUTPUT creates an output data set that contains specified statistics.
TABLES specifies frequency or crosstabulation tables and requests tests and

measures of association.
TEST requests asymptotic tests for measures of association and agree-

ment.
WEIGHT identifies a variable with values that weight each observation.

PROC FREQ Statement

PROC FREQ < options > ;

The PROC FREQ statement invokes the procedure.

The following table lists the options available in the PROC FREQ statement.
Descriptions follow in alphabetical order.

Table 29.4. PROC FREQ Statement Options
Option Description
DATA= specifies the input data set.
COMPRESS begins the next one-way table on the current page
FORMCHAR= specifies the outline and cell divider characters for the cells of the

crosstabulation table.
NLEVELS displays the number of levels for all TABLES variables
NOPRINT suppresses all displayed output.
ORDER= specifies the order for listing variable values.
PAGE displays one table per page.

You can specify the following options in the PROC FREQ statement.

COMPRESS
begins display of the next one-way frequency table on the same page as the preceding
one-way table if there is enough space to begin the table. By default, the next one-
way table begins on the current page only if the entire table fits on that page. The
COMPRESS option is not valid with the PAGE option.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC FREQ. If you omit the DATA=
option, the procedure uses the most recently created SAS data set.

FORMCHAR (1,2,7) =’ formchar-string’
defines the characters to be used for constructing the outlines and dividers for the
cells of contingency tables. The FORMCHAR= option can specify 20 different SAS
formatting characters used to display output; however, PROC FREQ uses only the
first, second, and seventh formatting characters. Therefore, the proper specification
for PROC FREQ is FORMCHAR(1,2,7)= ’formchar-string’. The formchar-string
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should be three characters long. The characters are used to denote (1) vertical sep-
arator, (2) horizontal separator, and (7) vertical-horizontal intersection. You can use
any character informchar-string, including hexadecimal characters. If you use hex-
adecimal characters, you must put anx after the closing quote. For information on
which hexadecimal codes to use for which characters, consult the documentation for
your hardware.

Specifying all blanks forformchar-stringproduces tables with no outlines or dividers:

formchar (1,2,7)=’ ’

If you do not specify the FORMCHAR= option, PROC FREQ uses the default
formchar (1,2,7)=’|-+’

Refer to the CALENDAR, PLOT, and TABULATE procedures in theBase SAS 9.1
Procedures Guidefor more information on form characters.

Table 29.5. Formatting Characters Used by PROC FREQ
Position Default Used to Draw
1 | vertical separators
2 - horizontal separators
7 + intersections of vertical and horizontal separators

NLEVELS
displays the “Number of Variable Levels” table. This table provides the number of
levels for each variable named in the TABLES statements. See the section“Number
of Variable Levels Table”on page 1517 for more information. PROC FREQ de-
termines the variable levels from the formatted variable values, as described in the
section“Grouping with Formats”on page 1465.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”.

Note: A NOPRINToption is also available in the TABLES statement. It suppresses
display of the crosstabulation tables but allows display of the requested statistics.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which the values of the frequency and crosstabulation table
variables are to be reported. The following table shows how PROC FREQ interprets
values of the ORDER= option.

DATA orders values according to their order in the input data set.

FORMATTED orders values by their formatted values. This order is operating-
environment dependent. By default, the order is ascending.

FREQ orders values by descending frequency count.

INTERNAL orders values by their unformatted values, which yields the same
order that the SORT procedure does. This order is operating-
environment dependent.

By default, ORDER=INTERNAL. The ORDER= option does not apply to missing
values, which are always ordered first.
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PAGE
displays only one table per page. Otherwise, PROC FREQ displays multiple tables
per page as space permits. The PAGE option is not valid with the COMPRESS option.

BY Statement

BY variables ;

You can specify a BY statement with PROC FREQ to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FREQ procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theBase SAS 9.1 Procedures Guide.

EXACT Statement

EXACT statistic-options < / computation-options > ;

The EXACT statement requests exact tests or confidence limits for the specified
statistics. Optionally, PROC FREQ computes Monte Carlo estimates of the exact
p-values. Thestatistic-optionsspecify the statistics for which to provide exact tests
or confidence limits. Thecomputation-optionsspecify options for the computation
of exact statistics.

CAUTION: PROC FREQ computes exact tests with fast and efficient algorithms
that are superior to direct enumeration. Exact tests are appropriate when a data set
is small, sparse, skewed, or heavily tied. For some large problems, computation of
exact tests may require a large amount of time and memory. Consider using asymp-
totic tests for such problems. Alternatively, when asymptotic methods may not be
sufficient for such large problems, consider using Monte Carlo estimation of exact
p-values. See the section“Computational Resources”on page 1511 for more infor-
mation.
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Statistic-Options

The statistic-optionsspecify the statistics for which exact tests or confidence lim-
its are computed. PROC FREQ can compute exactp-values for the following
hypothesis tests: chi-square goodness-of-fit test for one-way tables; Pearson chi-
square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher’s exact test,
Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar’s test for
two-way tables. PROC FREQ can also compute exactp-values for tests of the fol-
lowing statistics: Pearson correlation coefficient, Spearman correlation coefficient,
simple kappa coefficient, weighted kappa coefficient, and common odds ratio. PROC
FREQ can compute exactp-values for the binomial proportion test for one-way ta-
bles, as well as exact confidence limits for the binomial proportion. Additionally,
PROC FREQ can compute exact confidence limits for the odds ratio for2× 2 tables,
as well as exact confidence limits for the common odds ratio for stratified2×2 tables.

Table 29.6lists the availablestatistic-optionsand the exact statistics computed. Most
of the option names are identical to the corresponding options in the TABLES state-
ment and the OUTPUT statement. You can request exact computations for groups
of statistics by using options that are identical to the following TABLES statement
options: CHISQ, MEASURES, and AGREE. For example, when you specify the
CHISQ option in the EXACT statement, PROC FREQ computes exactp-values for
the Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square
tests. You request exactp-values for an individual test by specifying one of the
statistic-optionsshown inTable 29.6.

Table 29.6. EXACT Statement Statistic-Options

Option Exact Statistics Computed
AGREE McNemar’s test for2 × 2 tables, simple kappa coefficient, and

weighted kappa coefficient
BINOMIAL binomial proportion test for one-way tables
CHISQ chi-square goodness-of-fit test for one-way tables; Pearson chi-

square, likelihood-ratio chi-square, and Mantel-Haenszel chi-
square tests for two-way tables

COMOR confidence limits for the common odds ratio forh× 2× 2 tables;
common odds ratio test

FISHER Fisher’s exact test
JT Jonckheere-Terpstra test
KAPPA test for the simple kappa coefficient
LRCHI likelihood-ratio chi-square test
MCNEM McNemar’s test
MEASURES tests for the Pearson correlation and the Spearman correlation, and

the odds ratio confidence limits for2× 2 tables
MHCHI Mantel-Haenszel chi-square test
OR confidence limits for the odds ratio for2× 2 tables
PCHI Pearson chi-square test
PCORR test for the Pearson correlation coefficient
SCORR test for the Spearman correlation coefficient
TREND Cochran-Armitage test for trend
WTKAP test for the weighted kappa coefficient
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Computation-Options

Thecomputation-optionsspecify options for computation of exact statistics. You can
specify the followingcomputation-optionsin the EXACT statement.ALPHA= α
specifies the level of the confidence limits for Monte Carlop-value estimates. The
value of the ALPHA= option must be between 0 and 1, and the default is 0.01.
A confidence level ofα produces100(1 − α)% confidence limits. The default of
ALPHA=.01 produces 99% confidence limits for the Monte Carlo estimates. The
ALPHA= option invokes theMC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC FREQ can use to compute
an exactp-value. If the procedure does not complete the computation within the spec-
ified time, the computation terminates. The value of the MAXTIME= option must be
a positive number. The MAXTIME= option is valid for Monte Carlo estimation of
exactp-values, as well as for direct exactp-value computation.

See the section“Computational Resources”on page 1511 for more information.

MC
requests Monte Carlo estimation of exactp-values instead of direct exactp-value
computation. Monte Carlo estimation can be useful for large problems that require a
great amount of time and memory for exact computations but for which asymptotic
approximations may not be sufficient. See the section“Monte Carlo Estimation”on
page 1512 for more information.

The MC option is available for all EXACTstatistic-optionsexcept BINOMIAL,
COMOR, MCNEM, and OR. PROC FREQ computes only exact tests or confidence
limits for those statistics.

TheALPHA=, N=, andSEED=options also invoke the MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of the N=
option must be a positive integer, and the default is 10000 samples. Larger values
of n produce more precise estimates of exactp-values. Because larger values ofn
generate more samples, the computation time increases. The N= option invokes the
MC option.

POINT
requests exact point probabilities for the test statistics.

The POINT option is available for all the EXACT statementstatistic-optionsexcept
the OR option, which provides exact confidence limits as opposed to an exact test.
The POINT option is not available with theMC option.

SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation.
The value of the SEED= option must be an integer. If you do not specify the SEED=
option, or if the SEED= value is negative or zero, PROC FREQ uses the time of day
from the computer’s clock to obtain the initial seed. The SEED= option invokes the
MC option.
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Using TABLES Statement Options with the EXACT Statement

If you use only one TABLES statement, you do not need to specify options in the
TABLES statement that are identical to options appearing in the EXACT statement.
PROC FREQ automatically invokes the corresponding TABLES statement option
when you specify the option in the EXACT statement. However, when you use mul-
tiple TABLES statements and want exact computations, you must specify options in
the TABLES statement to compute the desired statistics. PROC FREQ then performs
exact computations for all statistics that are also specified in the EXACT statement.

OUTPUT Statement

OUTPUT < OUT= SAS-data-set > options ;

The OUTPUT statement creates a SAS data set containing statistics computed by
PROC FREQ. The variables contain statistics for each two-way table or stratum, as
well as summary statistics across all strata.

Only one OUTPUT statement is allowed for each execution of PROC FREQ. You
must specify a TABLES statement with the OUTPUT statement. If you use multiple
TABLES statements, the contents of the OUTPUT data set correspond to the last
TABLES statement. If you use multiple table requests in a TABLES statement, the
contents of the OUTPUT data set correspond to the last table request.

For more information, see the section“Output Data Sets”on page 1514.

Note that you can use the Output Delivery System (ODS) to create a SAS data set
from any piece of PROC FREQ output. For more information, seeTable 29.11on
page 1525 andChapter 14, “Using the Output Delivery System.”

You can specify the following options in an OUTPUT statement.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is named DATAn,
wheren is the smallest integer that makes the name unique.

options
specify the statistics that you want in the output data set. Available statistics are those
produced by PROC FREQ for each one-way or two-way table, as well as the summary
statistics across all strata. When you request a statistic, the OUTPUT data set contains
that estimate or test statistic plus any associated standard error, confidence limits,p-
values, and degrees of freedom. You can output statistics by using group options
identical to those specified in the TABLES statement: AGREE, ALL, CHISQ, CMH,
and MEASURES. Alternatively, you can request an individual statistic by specifying
one of the options shown in the following table.
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Table 29.7. OUTPUT Statement Options and Required TABLES Statement
Options

Option Output Data Set Statistics Required TABLES
Statement Option

AGREE McNemar’s test for2 × 2 tables, simple
kappa coefficient, and weighted kappa
coefficient; for square tables with more
than two response categories, Bowker’s
test of symmetry; for multiple strata,
overall simple and weighted kappa statis-
tics, and tests for equal kappas among
strata; for multiple strata with two re-
sponse categories, Cochran’sQ test

AGREE

AJCHI continuity-adjusted chi-square for2 × 2
tables

ALL or CHISQ

ALL all statistics under CHISQ, MEASURES,
and CMH, and the number of nonmissing
subjects

ALL

BDCHI Breslow-Day test ALL or CMH or CMH1
or CMH2

BIN | BINOMIAL for one-way tables, binomial proportion
statistics

BINOMIAL

CHISQ chi-square goodness-of-fit test for one-
way tables; for two-way tables, Pearson
chi-square, likelihood-ratio chi-square,
continuity-adjusted chi-square for2 ×
2 tables, Mantel-Haenszel chi-square,
Fisher’s exact test for2 × 2 tables, phi
coefficient, contingency coefficient, and
Cramer’sV

ALL or CHISQ

CMH Cochran-Mantel-Haenszel correlation,
row mean scores (ANOVA), and general
association statistics; for2 × 2 tables,
logit and Mantel-Haenszel adjusted odds
ratios, relative risks, and Breslow-Day
test

ALL or CMH

CMH1 same as CMH, but excludes general as-
sociation and row mean scores (ANOVA)
statistics

ALL or CMH or CMH1

CMH2 same as CMH, but excludes the general
association statistic

ALL or CMH or CMH2

CMHCOR Cochran-Mantel-Haenszel correlation
statistic

ALL or CMH or CMH1
or CMH2

CMHGA Cochran-Mantel-Haenszel general asso-
ciation statistic

ALL or CMH

CMHRMS Cochran-Mantel-Haenszel row mean
scores (ANOVA) statistic

ALL or CMH or CMH2



1448 � Chapter 29. The FREQ Procedure

Table 29.7. (continued)

Option Output Data Set Statistics Required TABLES
Statement Option

COCHQ Cochran’sQ AGREE
CONTGY contingency coefficient ALL or CHISQ
CRAMV Cramer’sV ALL or CHISQ
EQKAP test for equal simple kappas AGREE
EQWKP test for equal weighted kappas AGREE
FISHER | EXACT Fisher’s exact test ALL or CHISQ∗

GAMMA gamma ALL or MEASURES
JT Jonckheere-Terpstra test JT
KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b ALL or MEASURES
LAMCR lambda asymmetric(C|R) ALL or MEASURES
LAMDAS lambda symmetric ALL or MEASURES
LAMRC lambda asymmetric(R|C) ALL or MEASURES
LGOR adjusted logit odds ratio ALL or CMH or CMH1

or CMH2
LGRRC1 adjusted column 1 logit relative risk ALL or CMH or CMH1

or CMH2
LGRRC2 adjusted column 2 logit relative risk ALL or CMH or CMH1

or CMH2
LRCHI likelihood-ratio chi-square ALL or CHISQ
MCNEM McNemar’s test AGREE
MEASURES gamma, Kendall’s tau-b, Stuart’s

tau-c, Somers’ D(C|R), Somers’
D(R|C), Pearson correlation coefficient,
Spearman correlation coefficient, lambda
asymmetric(C|R), lambda asymmetric
(R|C), lambda symmetric, uncertainty
coefficient(C|R), uncertainty coefficient
(R|C), and symmetric uncertainty coef-
ficient; for 2 × 2 tables, odds ratio and
relative risks

ALL or MEASURES

MHCHI Mantel-Haenszel chi-square ALL or CHISQ
MHOR adjusted Mantel-Haenszel odds ratio ALL or CMH or CMH1

or CMH2
MHRRC1 adjusted column 1 Mantel-Haenszel rela-

tive risk
ALL or CMH or CMH1
or CMH2

MHRRC2 adjusted column 2 Mantel-Haenszel rela-
tive risk

ALL or CMH or CMH1
or CMH2

N number of nonmissing subjects for the
stratum

NMISS number of missing subjects for the stra-
tum

∗ALL and CHISQ compute Fisher’s exact test for2× 2 tables. Use the FISHER option to compute
Fisher’s exact test for generalrxc tables.
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Table 29.7. (continued)

Option Output Data Set Statistics Required TABLES
Statement Option

OR odds ratio ALL or MEASURES
or RELRISK

PCHI chi-square goodness-of-fit test for one-
way tables; for two-way tables, Pearson
chi-square

ALL or CHISQ

PCORR Pearson correlation coefficient ALL or MEASURES
PHI phi coefficient ALL or CHISQ
PLCORR polychoric correlation coefficient PLCORR
RDIF1 column 1 risk difference (row 1 - row 2) RISKDIFF
RDIF2 column 2 risk difference (row 1 - row 2) RISKDIFF
RELRISK odds ratio and relative risks for2 × 2 ta-

bles
ALL or MEASURES
or RELRISK

RISKDIFF risks and risk differences RISKDIFF
RISKDIFF1 column 1 risks and risk difference RISKDIFF
RISKDIFF2 column 2 risks and risk difference RISKDIFF
RRC1 column 1 relative risk ALL or MEASURES

or RELRISK
RRC2 column 2 relative risk ALL or MEASURES

or RELRISK
RSK1 column 1 risk (overall) RISKDIFF
RSK11 column 1 risk, for row 1 RISKDIFF
RSK12 column 2 risk, for row 1 RISKDIFF
RSK2 column 2 risk (overall) RISKDIFF
RSK21 column 1 risk, for row 2 RISKDIFF
RSK22 column 2 risk, for row 2 RISKDIFF
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’D(C|R) ALL or MEASURES
SMDRC Somers’D(R|C) ALL or MEASURES
STUTC Stuart’s tau-c ALL or MEASURES
TREND Cochran-Armitage test for trend TREND
TSYMM Bowker’s test of symmetry AGREE
U symmetric uncertainty coefficient ALL or MEASURES
UCR uncertainty coefficient(C|R) ALL or MEASURES
URC uncertainty coefficient(R|C) ALL or MEASURES
WTKAP weighted kappa coefficient AGREE

Using the TABLES Statement with the OUTPUT Statement
In order to specify that the OUTPUT data set contain a particular statistic, you must
have PROC FREQ compute the statistic by using the corresponding option in the
TABLES statement or the EXACT statement. For example, you cannot specify the
option PCHI (Pearson chi-square) in the OUTPUT statement without also specifying
a TABLES statement option or an EXACT statement option to compute the Pearson
chi-square. The TABLES statement option ALL or CHISQ computes the Pearson chi-
square. Additionally, if you have only one TABLES statement, the EXACT statement
option CHISQ or PCHI computes the Pearson chi-square.
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TABLES Statement

TABLES requests < / options > ;

The TABLES statement requests one-way ton-way frequency and crosstabulation
tables and statistics for those tables.

If you omit the TABLES statement, PROC FREQ generates one-way frequency tables
for all data set variables that are not listed in the other statements.

The following argument is required in the TABLES statement.

requests
specify the frequency and crosstabulation tables to produce. A request is composed
of one variable name or several variable names separated by asterisks. To request a
one-way frequency table, use a single variable. To request a two-way crosstabulation
table, use an asterisk between two variables. To request a multiway table (ann-way
table, wheren>2), separate the desired variables with asterisks. The unique values of
these variables form the rows, columns, and strata of the table.

For two-way to multiway tables, the values of the last variable form the crosstab-
ulation table columns, while the values of the next-to-last variable form the rows.
Each level (or combination of levels) of the other variables forms one stratum. PROC
FREQ produces a separate crosstabulation table for each stratum. For example, a
specification ofA*B*C*D in a TABLES statement producesk tables, wherek is the
number of different combinations of values forA andB. Each table lists the values
for C down the side and the values forD across the top.

You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ
builds all the table requests in one pass of the data, so that there is essentially no
loss of efficiency. You can also specify any number of table requests in a single
TABLES statement. To specify multiple table requests quickly, use a grouping syntax
by placing parentheses around several variables and joining other variables or variable
combinations. For example, the following statements illustrate grouping syntax.

Table 29.8. Grouping Syntax
Request Equivalent to
tablesA*(B C); tablesA*B A*C;
tables (A B)*(C D); tablesA*C B*C A*D B*D;
tables (A B C)*D; tablesA*D B*D C*D;
tablesA – – C; tablesA B C;
tables (A – – C)*D; tablesA*D B*D C*D;

Without Options

If you request a one-way frequency table for a variable without specifying options,
PROC FREQ produces frequencies, cumulative frequencies, percentages of the total
frequency, and cumulative percentages for each value of the variable. If you request a
two-way or ann-way crosstabulation table without specifying options, PROC FREQ
produces crosstabulation tables that include cell frequencies, cell percentages of the
total frequency, cell percentages of row frequencies, and cell percentages of column
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frequencies. The procedure excludes observations with missing values from the table
but displays the total frequency of missing observations below each table.

Options

The following table lists the options available with the TABLES statement.
Descriptions follow in alphabetical order.

Table 29.9. TABLES Statement Options

Option Description
Control Statistical Analysis
AGREE requests tests and measures of classification agreement
ALL requests tests and measures of association produced by CHISQ,

MEASURES, and CMH
ALPHA= sets the confidence level for confidence limits
BDT requests Tarone’s adjustment for the Breslow-Day test
BINOMIAL requests binomial proportion, confidence limits and test for one-

way tables
BINOMIALC requests BINOMIAL statistics with a continuity correction
CHISQ requests chi-square tests and measures of association based on chi-

square
CL requests confidence limits for the MEASURES statistics
CMH requests all Cochran-Mantel-Haenszel statistics
CMH1 requests the CMH correlation statistic, and adjusted relative risks

and odds ratios
CMH2 requests CMH correlation and row mean scores (ANOVA) statis-

tics, and adjusted relative risks and odds ratios
CONVERGE= specifies convergence criterion to compute polychoric correlation
FISHER requests Fisher’s exact test for tables larger than2× 2
JT requests Jonckheere-Terpstra test
MAXITER= specifies maximum number of iterations to compute polychoric

correlation
MEASURES requests measures of association and their asymptotic standard er-

rors
MISSING treats missing values as nonmissing
PLCORR requests polychoric correlation
RELRISK requests relative risk measures for2× 2 tables
RISKDIFF requests risks and risk differences for2× 2 tables
RISKDIFFC requests RISKDIFF statistics with a continuity correction
SCORES= specifies the type of row and column scores
TESTF= specifies expected frequencies for a one-way table chi-square test
TESTP= specifies expected proportions for a one-way table chi-square test
TREND requests Cochran-Armitage test for trend
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Table 29.9. (continued)

Option Description
Control Additional Table Information
CELLCHI2 displays each cell’s contribution to the total Pearson chi-square

statistic
CUMCOL displays the cumulative column percentage in each cell
DEVIATION displays the deviation of the cell frequency from the expected

value for each cell
EXPECTED displays the expected cell frequency for each cell
MISSPRINT displays missing value frequencies
SPARSE lists all possible combinations of variable levels even when a com-

bination does not occur
TOTPCT displays percentage of total frequency onn-way tables whenn > 2

Control Displayed Output
CONTENTS= specifies the HTML contents link for crosstabulation tables
CROSSLIST displays crosstabulation tables in ODS column format
FORMAT= formats the frequencies in crosstabulation tables
LIST displays two-way ton-way tables in list format
NOCOL suppresses display of the column percentage for each cell
NOCUM suppresses display of cumulative frequencies and cumulative per-

centages in one-way frequency tables and in list format
NOFREQ suppresses display of the frequency count for each cell
NOPERCENT suppresses display of the percentage, row percentage, and column

percentage in crosstabulation tables, or percentages and cumula-
tive percentages in one-way frequency tables and in list format

NOPRINT suppresses display of tables but displays statistics
NOROW suppresses display of the row percentage for each cell
NOSPARSE suppresses zero cell frequencies in the list display and in the OUT=

data set when ZEROS is specified
NOWARN suppresses log warning message for the chi-square test
PRINTKWT displays kappa coefficient weights
SCOROUT displays the row and the column scores

Create an Output Data Set
OUT= specifies an output data set to contain variable values and fre-

quency counts
OUTCUM includes the cumulative frequency and cumulative percentage in

the output data set for one-way tables
OUTEXPECT includes the expected frequency of each cell in the output data set
OUTPCT includes the percentage of column frequency, row frequency, and

two-way table frequency in the output data set
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You can specify the following options in a TABLES statement.

AGREE < (WT=FC) >
requests tests and measures of classification agreement for square tables. The
AGREE option provides McNemar’s test for2 × 2 tables and Bowker’s test of sym-
metry for tables with more than two response categories. The AGREE option also
produces the simple kappa coefficient, the weighted kappa coefficient, the asymptotic
standard errors for the simple and weighted kappas, and the corresponding confidence
limits. When there are multiple strata, the AGREE option provides overall simple and
weighted kappas as well as tests for equal kappas among strata. When there are mul-
tiple strata and two response categories, PROC FREQ computes Cochran’sQ test.
For more information, see the section“Tests and Measures of Agreement”on page
1493.

The (WT=FC) specification requests that PROC FREQ use Fleiss-Cohen weights to
compute the weighted kappa coefficient. By default, PROC FREQ uses Cicchetti-
Allison weights. See the section“Weighted Kappa Coefficient”on page 1496 for
more information. You can specify thePRINTKWT option to display the kappa
coefficient weights.

AGREE statistics are computed only for square tables, where the number of rows
equals the number of columns. If your table is not square due to observations with
zero weights, you can use theZEROSoption in the WEIGHT statement to include
these observations. For more details, see the section“Tables with Zero Rows and
Columns”on page 1499.

ALL
requests all of the tests and measures that are computed by theCHISQ, MEASURES,
andCMH options. The number of CMH statistics computed can be controlled by the
CMH1 andCMH2 options.

ALPHA= α
specifies the level of confidence limits. The value of the ALPHA= option must be be-
tween 0 and 1, and the default is 0.05. A confidence level ofα produces100(1−α)%
confidence limits. The default of ALPHA=0.05 produces 95% confidence limits.

ALPHA= applies to confidence limits requested by TABLES statement options.
There is a separateALPHA= option in the EXACT statement that sets the level of
confidence limits for Monte Carlo estimates of exactp-values, which are requested
in the EXACT statement.

BDT
requests Tarone’s adjustment in the Breslow-Day test for homogeneity of odds ratios.
(You must specify theCMH option to compute the Breslow-Day test.) See the section
“Breslow-Day Test for Homogeneity of the Odds Ratios”on page 1508 for more
information.

BINOMIAL < (P= value) | (LEVEL= level-number | level-value) >
requests the binomial proportion for one-way tables. The BINOMIAL option also
provides the asymptotic standard error, asymptotic and exact confidence intervals,
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and the asymptotic test for the binomial proportion. To request an exact test for the
binomial proportion, use the BINOMIAL option in theEXACT statement.

To specify the null hypothesis proportion for the test, use P=. If you omit P=value,
PROC FREQ uses 0.5 as the default for the test. By default, BINOMIAL computes
the proportion of observations for the first variable level that appears in the output.
To specify a different level, use LEVEL=level-numberor LEVEL=level-value, where
level-numberis the variable level’s number or order in the output, andlevel-valueis
the formatted value of the variable level.

To include a continuity correction in the asymptotic confidence interval and test, use
theBINOMIALC option instead of the BINOMIAL option.

See the section“Binomial Proportion”on page 1484 for more information.

BINOMIALC < (P= value) | (LEVEL= level-number | level-value) >
requests theBINOMIAL option statistics for one-way tables, and includes a conti-
nuity correction in the asymptotic confidence interval and the asymptotic test. The
BINOMIAL option statistics include the binomial proportion, the asymptotic stan-
dard error, asymptotic and exact confidence intervals, and the asymptotic test for the
binomial proportion. To request an exact test for the binomial proportion, use the
BINOMIAL option in theEXACT statement.

To specify the null hypothesis proportion for the test, use P=. If you omit P=value,
PROC FREQ uses 0.5 as the default for the test. By default BINOMIALC computes
the proportion of observations for the first variable level that appears in the output.
To specify a different level, use LEVEL=level-numberor LEVEL=level-value, where
level-numberis the variable level’s number or order in the output, andlevel-valueis
the formatted value of the variable level.

See the section“Binomial Proportion”on page 1484 for more information.

CELLCHI2
displays each crosstabulation table cell’s contribution to the total Pearson chi-square
statistic, which is computed as

(frequency− expected)2

expected

The CELLCHI2 option has no effect for one-way tables or for tables that are dis-
played with the LIST option.

CHISQ
requests chi-square tests of homogeneity or independence and measures of associa-
tion based on chi-square. The tests include the Pearson chi-square, likelihood-ratio
chi-square, and Mantel-Haenszel chi-square. The measures include the phi coeffi-
cient, the contingency coefficient, and Cramer’sV . For 2 × 2 tables, the CHISQ
option includes Fisher’s exact test and the continuity-adjusted chi-square. For one-
way tables, the CHISQ option requests a chi-square goodness-of-fit test for equal
proportions. If you specify the null hypothesis proportions with theTESTP=option,
then PROC FREQ computes a chi-square goodness-of-fit test for the specified pro-
portions. If you specify null hypothesis frequencies with theTESTF=option, PROC
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FREQ computes a chi-square goodness-of-fit test for the specified frequencies. See
the section“Chi-Square Tests and Statistics”on page 1469 for more information.

CL
requests confidence limits for theMEASURES statistics. If you omit the
MEASURES option, the CL option invokes MEASURES. The FREQ procedure
determines the confidence coefficient using theALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

For more information, see the section“Confidence Limits”on page 1475.

CMH
requests Cochran-Mantel-Haenszel statistics, which test for association between the
row and column variables after adjusting for the remaining variables in a multiway
table. In addition, for2 × 2 tables, PROC FREQ computes the adjusted Mantel-
Haenszel and logit estimates of the odds ratios and relative risks and the correspond-
ing confidence limits. For the stratified2 × 2 case, PROC FREQ computes the
Breslow-Day test for homogeneity of odds ratios. (To request Tarone’s adjustment
for the Breslow-Day test, use theBDT option.) TheCMH1 andCMH2 options con-
trol the number of CMH statistics that PROC FREQ computes. For more information,
see the section“Cochran-Mantel-Haenszel Statistics”on page 1500.

CMH1
requests the Cochran-Mantel-Haenszel correlation statistic and, for2 × 2 tables, the
adjusted Mantel-Haenszel and logit estimates of the odds ratios and relative risks
and the corresponding confidence limits. For the stratified2 × 2 case, PROC FREQ
computes the Breslow-Day test for homogeneity of odds ratios. Except for2 × 2
tables, the CMH1 option requires less memory than theCMH option, which can
require an enormous amount for large tables.

CMH2
requests the Cochran-Mantel-Haenszel correlation statistic, row mean scores
(ANOVA) statistic, and, for2 × 2 tables, the adjusted Mantel-Haenszel and logit
estimates of the odds ratios and relative risks and the corresponding confidence
limits. For the stratified2× 2 case, PROC FREQ computes the Breslow-Day test for
homogeneity of odds ratios. Except for tables with two columns, the CMH2 option
requires less memory than theCMH option, which can require an enormous amount
for large tables.

CONTENTS=link-text
specifies the text for the HTML contents file links to crosstabulation tables. For
information on HTML output, refer to theSAS Output Delivery System User’s Guide.
The CONTENTS= option affects only the HTML contents file, and not the HTML
body file.

If you omit the CONTENTS= option, by default, the HTML link text for crosstabu-
lation tables is “Cross-Tabular Freq Table.”

Note that links to all crosstabulation tables produced by a single TABLES statement
use the same text. To specify different text for different crosstabulation table links,
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request the tables in separate TABLES statements and use the CONTENTS= option
in each TABLES statement.

The CONTENTS= option affects only links to crosstabulation tables. It does not
affect links to other PROC FREQ tables. To specify link text for any other PROC
FREQ table, you can use PROC TEMPLATE to create a customized table defini-
tion. The CONTENTS–LABEL attribute in the DEFINE TABLE statement of PROC
TEMPLATE specifies the contents file link for the table. For detailed information,
refer to the chapter titled “The TEMPLATE Procedure” in theSAS Output Delivery
System User’s Guide.

CONVERGE=value
specifies the convergence criterion for computing the polychoric correlation when
you specify thePLCORRoption. The value of the CONVERGE= option must be a
positive number; by default, CONVERGE=0.0001. Iterative computation of the poly-
choric correlation stops when the convergence measure falls below the value of the
CONVERGE= option or when the number of iterations exceeds the value specified
in theMAXITER= option, whichever happens first.

See the section“Polychoric Correlation”on page 1482 for more information.

CROSSLIST
displays crosstabulation tables in ODS column format, instead of the default crosstab-
ulation cell format. In a CROSSLIST table display, the rows correspond to the
crosstabulation table cells, and the columns correspond to descriptive statistics such
as Frequency, Percent, and so on. See the section“Multiway Tables” on page 1518
for details on the contents of the CROSSLIST table.

The CROSSLIST table displays the same information as the default crosstabulation
table, but uses an ODS column format instead of the table cell format. Unlike the
default crosstabulation table, the CROSSLIST table has a table definition that you
can customize with PROC TEMPLATE. For more information, refer to the chapter
titled “The TEMPLATE Procedure” in theSAS Output Delivery System User’s Guide.

You can control the contents of a CROSSLIST table with the same options available
for the default crosstabulation table. These include theNOFREQ, NOPERCENT,
NOROW, and NOCOL options. You can request additional information in a
CROSSLIST table with theCELLCHI2, DEVIATION, EXPECTED, MISSPRINT,
andTOTPCToptions.

The FORMAT= option and theCUMCOL option have no effect for CROSSLIST
tables. You cannot specify both theLIST option and the CROSSLIST option in the
same TABLES statement.

You can use theNOSPARSEoption to suppress display of variable levels with zero
frequency in CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ
displays all levels of the column variable within each level of the row variable, includ-
ing any column variable levels with zero frequency for that row. And for multiway
tables displayed with the CROSSLIST option, the procedure displays all levels of
the row variable for each stratum of the table by default, including any row variable
levels with zero frequency for the stratum.
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CUMCOL
displays the cumulative column percentages in the cells of the crosstabulation table.

DEVIATION
displays the deviation of the cell frequency from the expected frequency for each cell
of the crosstabulation table. The DEVIATION option is valid for contingency tables
but has no effect on tables produced with the LIST option.

EXPECTED
displays the expected table cell frequencies under the hypothesis of independence (or
homogeneity). The EXPECTED option is valid for crosstabulation tables but has no
effect on tables produced with the LIST option.

FISHER | EXACT
requests Fisher’s exact test for tables that are larger than2 × 2. This test is also
known as the Freeman-Halton test. For more information, see the section“Fisher’s
Exact Test”on page 1472 and the“EXACT Statement”section on page 1443.

If you omit theCHISQoption in the TABLES statement, the FISHER option invokes
CHISQ. You can also request Fisher’s exact test by specifying the FISHER option in
theEXACT statement.

CAUTION: For tables with many rows or columns or with large total frequency,
PROC FREQ may require a large amount of time or memory to compute exactp-
values. See the section“Computational Resources”on page 1511 for more informa-
tion.

FORMAT=format-name
specifies a format for the following crosstabulation table cell values: frequency, ex-
pected frequency, and deviation. PROC FREQ also uses this format to display the
total row and column frequencies for crosstabulation tables.

You can specify any standard SAS numeric format or a numeric format defined
with the FORMAT procedure. The format length must not exceed 24. If you omit
FORMAT=, by default, PROC FREQ uses the BEST6. format to display frequencies
less than 1E6, and the BEST7. format otherwise.

To change formats for all other FREQ tables, you can use PROC TEMPLATE. For in-
formation on this procedure, refer to the chapter titled “The TEMPLATE Procedure”
in theSAS Output Delivery System User’s Guide.

JT
performs the Jonckheere-Terpstra test. For more information, see the section
“Jonckheere-Terpstra Test”on page 1491.

LIST
displays two-way ton-way tables in a list format rather than as crosstabulation tables.
PROC FREQ ignores the LIST option when you request statistical tests or measures
of association.
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MAXITER=number
specifies the maximum number of iterations for computing the polychoric correlation
when you specify thePLCORRoption. The value of the MAXITER= option must be
a positive integer; by default, MAXITER=20. Iterative computation of the polychoric
correlation stops when the number of iterations exceeds the value of the MAXITER=
option, or when the convergence measure falls below the value of theCONVERGE=
option, whichever happens first. For more information see the section“Polychoric
Correlation”on page 1482.

MEASURES
requests several measures of association and their asymptotic standard errors (ASE).
The measures include gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’D(C|R),
Somers’D(R|C), the Pearson and Spearman correlation coefficients, lambda (sym-
metric and asymmetric), uncertainty coefficients (symmetric and asymmetric). To
request confidence limits for these measures of association, you can specify theCL
option.

For 2 × 2 tables, the MEASURES option also provides the odds ratio, column
1 relative risk, column 2 relative risk, and the corresponding confidence limits.
Alternatively, you can obtain the odds ratio and relative risks, without the other mea-
sures of association, by specifying theRELRISKoption.

For more information, see the section“Measures of Association”on page 1474.

MISSING
treats missing values as nonmissing and includes them in calculations of percentages
and other statistics.

For more information, see the section“Missing Values”on page 1466.

MISSPRINT
displays missing value frequencies for all tables, even though PROC FREQ does not
use the frequencies in the calculation of statistics. For more information, see the
section“Missing Values”on page 1466.

NOCOL
suppresses the display of column percentages in cells of the crosstabulation table.

NOCUM
suppresses the display of cumulative frequencies and cumulative percentages for one-
way frequency tables and for crosstabulation tables in list format.

NOFREQ
suppresses the display of cell frequencies for crosstabulation tables. This also sup-
presses frequencies for row totals.

NOPERCENT
suppresses the display of cell percentages, row total percentages, and column total
percentages for crosstabulation tables. For one-way frequency tables and crosstabu-
lation tables in list format, the NOPERCENT option suppresses the display of per-
centages and cumulative percentages.
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NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all re-
quested tests and statistics. Use theNOPRINToption in the PROC FREQ statement
to suppress the display of all tables.

NOROW
suppresses the display of row percentages in cells of the crosstabulation table.

NOSPARSE
requests that PROC FREQ not invoke theSPARSEoption when you specify the
ZEROS option in the WEIGHT statement. The NOSPARSE option suppresses the
display of cells with a zero frequency count in the list output, and it also omits them
from the OUT= data set. By default, the ZEROS option invokes the SPARSE op-
tion, which displays table cells with a zero frequency count in theLIST output and
includes them in the OUT= data set. For more information, see the description of the
ZEROSoption.

ForCROSSLISTtables, the NOSPARSE option suppresses display of variable levels
with zero frequency. By default for CROSSLIST tables, PROC FREQ displays all
levels of the column variable within each level of the row variable, including any
column variable levels with zero frequency for that row. And for multiway tables
displayed with the CROSSLIST option, the procedure displays all levels of the row
variable for each stratum of the table by default, including any row variable levels
with zero frequency for the stratum.

NOWARN
suppresses the log warning message that the asymptotic chi-square test may not be
valid. By default, PROC FREQ displays this log message when more than 20 percent
of the table cells have expected frequencies less than five.

OUT=SAS-data-set
names the output data set that contains variable values and frequency counts. The
variableCOUNT contains the frequencies and the variablePERCENT contains the
percentages. If more than one table request appears in the TABLES statement, the
contents of the data set correspond to the last table request in the TABLES statement.
For more information, see the section“Output Data Sets”on page 1514 and see the
following descriptions for the optionsOUTCUM, OUTEXPECT, andOUTPCT.

OUTCUM
includes the cumulative frequency and the cumulative percentage for one-way tables
in the output data set when you specify theOUT= option in the TABLES statement.
The variableCUM–FREQ contains the cumulative frequency for each level of the
analysis variable, and the variableCUM–PCT contains the cumulative percentage
for each level. The OUTCUM option has no effect for two-way or multiway tables.

For more information, see the section“Output Data Sets”on page 1514.

OUTEXPECT
includes the expected frequency in the output data set for crosstabulation tables when
you specify theOUT= option in the TABLES statement. The variableEXPECTED
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contains the expected frequency for each table cell. The EXPECTED option is valid
for two-way or multiway tables, and has no effect for one-way tables.

For more information, see the section“Output Data Sets”on page 1514.

OUTPCT
includes the following additional variables in the output data set when you specify
theOUT= option in the TABLES statement for crosstabulation tables:

PCT–COL the percentage of column frequency

PCT–ROW the percentage of row frequency

PCT–TABL the percentage of stratum frequency, forn-way tables wheren > 2

The OUTPCT option is valid for two-way or multiway tables, and has no effect for
one-way tables.

For more information, see the section“Output Data Sets”on page 1514.

PLCORR
requests the polychoric correlation coefficient. For2× 2 tables, this statistic is more
commonly known as the tetrachoric correlation coefficient, and it is labeled as such
in the displayed output. If you omit theMEASURESoption, the PLCORR option in-
vokes MEASURES. For more information, see the section“Polychoric Correlation”
on page 1482 and the descriptions for theCONVERGE=andMAXITER= options in
this list.

PRINTKWT
displays the weights PROC FREQ uses to compute the weighted kappa coefficient.
You must also specify theAGREEoption, which requests the weighted kappa coef-
ficient. You can specify (WT=FC) with the AGREE option to request Fleiss-Cohen
weights. By default, PROC FREQ uses Cicchetti-Allison weights.

See the section“Weighted Kappa Coefficient”on page 1496 for more information.

RELRISK
requests relative risk measures and their confidence limits for2 × 2 tables. These
measures include the odds ratio and the column 1 and 2 relative risks. For more
information, see the section“Odds Ratio and Relative Risks for 2 x 2 Tables”on page
1488. You can also obtain the RELRISK measures by specifying theMEASURES
option, which produces other measures of association in addition to the relative risks.

RISKDIFF
requests column 1 and 2 risks (or binomial proportions), risk differences, and their
confidence limits for2 × 2 tables. See the section“Risks and Risk Differences”on
page 1486 for more information.

RISKDIFFC
requests theRISKDIFF option statistics for2 × 2 tables, and includes a continuity
correction in the asymptotic confidence limits. The RISKDIFF option statistics in-
clude the column 1 and 2 risks (or binomial proportions), risk differences, and their
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confidence limits. See the section“Risks and Risk Differences”on page 1486 for
more information.

SCORES=type
specifies the type of row and column scores that PROC FREQ uses with the Mantel-
Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted
kappa coefficient, and Cochran-Mantel-Haenszel statistics, wheretype is one of the
following (the default is SCORE=TABLE):

• MODRIDIT

• RANK

• RIDIT

• TABLE

By default, the row or column scores are the integers 1,2,... for character variables
and the actual variable values for numeric variables. Using other types of scores
yields nonparametric analyses. For more information, see the section“Scores”on
page 1468.

To display the row and column scores, you can use theSCOROUToption.

SCOROUT
displays the row and the column scores. You specify the score type with the
SCORES=option. PROC FREQ uses the scores when it calculates the Mantel-
Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted
kappa coefficient, or Cochran-Mantel-Haenszel statistics. The SCOROUT option
displays the row and column scores only when statistics are computed for two-way
tables. To store the scores in an output data set, use the Output Delivery System.

For more information, see the section“Scores”on page 1468.

SPARSE
lists all possible combinations of the variable values for ann-way table whenn > 1,
even if a combination does not occur in the data. The SPARSE option applies only
to crosstabulation tables displayed in list format and to the OUT= output data set.
Otherwise, if you do not use theLIST option or theOUT= option, the SPARSE
option has no effect.

When you specify the SPARSE and LIST options, PROC FREQ displays all combina-
tions of variable variables in the table listing, including those values with a frequency
count of zero. By default, without the SPARSE option, PROC FREQ does not display
zero-frequency values in list output. When you use the SPARSE and OUT= options,
PROC FREQ includes empty crosstabulation table cells in the output data set. By
default, PROC FREQ does not include zero-frequency table cells in the output data
set.

For more information, see the section“Missing Values”on page 1466.
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TESTF=(values)
specifies the null hypothesis frequencies for a one-way chi-square test for specified
frequencies. You can separatevalueswith blanks or commas. The sum of the fre-
quency values must equal the total frequency for the one-way table. The number of
TESTF= values must equal the number of variable levels in the one-way table. List
these values in the order in which the corresponding variable levels appear in the
output. If you omit theCHISQoption, the TESTF= option invokes CHISQ.

For more information, see the section“Chi-Square Test for One-Way Tables”on page
1470.

TESTP=(values)
specifies the null hypothesis proportions for a one-way chi-square test for specified
proportions. You can separatevalueswith blanks or commas. Specifyvaluesin prob-
ability form as numbers between 0 and 1, where the proportions sum to 1. Or specify
valuesin percentage form as numbers between 0 and 100, where the percentages sum
to 100. The number of TESTP= values must equal the number of variable levels in
the one-way table. List these values in the order in which the corresponding vari-
able levels appear in the output. If you omit theCHISQoption, the TESTP= option
invokes CHISQ.

For more information, see the section“Chi-Square Test for One-Way Tables”on page
1470.

TOTPCT
displays the percentage of total frequency in crosstabulation tables, forn-way ta-
bles wheren > 2. This percentage is also available with theLIST option or as the
PERCENT variable in theOUT= output data set.

TREND
performs the Cochran-Armitage test for trend. The table must be2×C or R×2. For
more information, see the section“Cochran-Armitage Test for Trend”on page 1490.

TEST Statement

TEST options ;

The TEST statement requests asymptotic tests for the specified measures of associa-
tion and measures of agreement. You must use a TABLES statement with the TEST
statement.

options
specify the statistics for which to provide asymptotic tests. The available statistics are
those measures of association and agreement listed inTable 29.10. The option names
are identical to those in the TABLES statement and the OUTPUT statement. You can
request all available tests for groups of statistics by using group options MEASURES
or AGREE. Or you can request tests individually by using one of the options shown
in Table 29.10.

For each measure of association or agreement that you specify, the TEST state-
ment provides an asymptotic test that the measure equals zero. When you request
an asymptotic test, PROC FREQ gives the asymptotic standard error under the null
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hypothesis, the test statistic, and thep-values. Additionally, PROC FREQ reports the
confidence limits for that measure. TheALPHA= option in the TABLES statement
determines the confidence level, which, by default, equals 0.05 and provides 95%
confidence limits. For more information, see the sections“Asymptotic Tests”on page
1475 and“Confidence Limits”on page 1475, and see“Statistical Computations”be-
ginning on page 1468 for sections describing the individual measures.

In addition to these asymptotic tests, exact tests for selected measures of association
and agreement are available with the EXACT statement. See the section“EXACT
Statement”on page 1443 for more information.

Table 29.10. TEST Statement Options and Required TABLES Statement Options

Option Asymptotic Tests Computed Required TABLES
Statement Option

AGREE simple kappa coefficient and weighted
kappa coefficient

AGREE

GAMMA gamma ALL or MEASURES
KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b ALL or MEASURES
MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c,

Somers’D(C|R), Somers’D(R|C), the
Pearson correlation, and the Spearman
correlation

ALL or MEASURES

PCORR Pearson correlation coefficient ALL or MEASURES
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’D(C|R) ALL or MEASURES
SMDRC Somers’D(R|C) ALL or MEASURES
STUTC Stuart’s tau-c ALL or MEASURES
WTKAP weighted kappa coefficient AGREE

WEIGHT Statement

WEIGHT variable < / option > ;

The WEIGHT statement specifies a numericvariablewith a value that represents the
frequency of the observation. The WEIGHT statement is most commonly used to
input cell count data. See the“Inputting Frequency Counts”section on page 1464 for
more information. If you use the WEIGHT statement, PROC FREQ assumes that an
observation representsn observations, wheren is the value ofvariable. The value of
the weight variable need not be an integer. When a weight value is missing, PROC
FREQ ignores the corresponding observation. When a weight value is zero, PROC
FREQ ignores the corresponding observation unless you specify the ZEROS option,
which includes observations with zero weights. If a WEIGHT statement does not
appear, each observation has a default weight of 1. The sum of the weight variable
values represents the total number of observations.

If any value of the weight variable is negative, PROC FREQ displays the frequencies
(as measured by the weighted values) but does not compute percentages and other
statistics. If you create an output data set using the OUT= option in the TABLES
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statement, PROC FREQ creates the PERCENT variable and assigns a missing value
for each observation. PROC FREQ also assigns missing values to the variables that
the OUTEXPECT and OUTPCT options create. You cannot create an output data
set using the OUTPUT statement since statistics are not computed when there are
negative weights.

Option

ZEROS
includes observations with zero weight values. By default, PROC FREQ ignores
observations with zero weights.

If you specify the ZEROS option, frequency and and crosstabulation tables display
any levels corresponding to observations with zero weights. Without the ZEROS
option, PROC FREQ does not process observations with zero weights, and so does
not display levels that contain only observations with zero weights.

With the ZEROS option, PROC FREQ includes levels with zero weights in the chi-
square goodness-of-fit test for one-way tables. Also, PROC FREQ includes any levels
with zero weights in binomial computations for one-way tables. This enables com-
putation of binomial estimates and tests when there are no observations with positive
weights in the specified level.

For two-way tables, the ZEROS option enables computation of kappa statistics when
there are levels containing no observations with positive weight. For more informa-
tion, see the section“Tables with Zero Rows and Columns”on page 1499.

Note that even with the ZEROS option, PROC FREQ does not compute the CHISQ
or MEASURES statistics for two-way tables when the table has a zero row or zero
column, because most of these statistics are undefined in this case.

The ZEROS option invokes theSPARSEoption in the TABLES statement, which
includes table cells with a zero frequency count in the list output and the OUT=
data set. By default, without the SPARSE option, PROC FREQ does not include
zero frequency cells in the list output or in the OUT= data set. If you specify the
ZEROS option in the WEIGHT statement but do not want the SPARSE option, you
can specify theNOSPARSEoption in the TABLES statement.

Details

Inputting Frequency Counts

PROC FREQ can use either raw data or cell count data to produce frequency and
crosstabulation tables.Raw data, also known as case-record data, report the data
as one record for each subject or sample member.Cell count datareport the data
as a table, listing all possible combinations of data values along with the frequency
counts. This way of presenting data often appears in published results.
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The following DATA step statements store raw data in a SAS data set:

data Raw;
input Subject $ R C @@;
datalines;

01 1 1 02 1 1 03 1 1 04 1 1 05 1 1
06 1 2 07 1 2 08 1 2 09 2 1 10 2 1
11 2 1 12 2 1 13 2 2 14 2 2 14 2 2
;

You can store the same data as cell counts using the following DATA step statements:

data CellCounts;
input R C Count @@;
datalines;

1 1 5 1 2 3
2 1 4 2 2 3
;

The variableR contains the values for the rows, and the variableC contains the values
for the columns. TheCount variable contains the cell count for each row and column
combination.

Both theRaw data set and theCellCounts data set produce identical frequency
counts, two-way tables, and statistics. With theCellCounts data set, you must use
a WEIGHT statement to specify that theCount variable contains cell counts. For
example, to create a two-way crosstabulation table, submit the following statements:

proc freq data=CellCounts;
weight Count;
tables R*C;

run;

Grouping with Formats

PROC FREQ groups a variable’s values according to its formatted values. If you
assign a format to a variable with a FORMAT statement, PROC FREQ formats the
variable values before dividing observations into the levels of a frequency or crosstab-
ulation table.

For example, suppose that a variableX has the values 1.1, 1.4, 1.7, 2.1, and 2.3. Each
of these values appears as a level in the frequency table. If you decide to round each
value to a single digit, include the following statement in the PROC FREQ step:

format X 1.;

Now the table lists the frequency count for formatted level 1 as two and formatted
level 2 as three.
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PROC FREQ treats formatted character variables in the same way. The formatted val-
ues are used to group the observations into the levels of a frequency table or crosstab-
ulation table. PROC FREQ uses the entire value of a character format to classify an
observation.

You can also use the FORMAT statement to assign formats that were created with
the FORMAT procedure to the variables. User-written formats determine the number
of levels for a variable and provide labels for a table. If you use the same data with
different formats, then you can produce frequency counts and statistics for different
classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines missing
and nonmissing values into one category, PROC FREQ treats the entire category of
formatted values as missing. For example, a questionnaire codes 1 as yes, 2 as no,
and 8 as a no answer. The following PROC FORMAT step creates a user-written
format:

proc format;
value Questfmt 1 =’Yes’

2 =’No’
8,.=’Missing’;

run;

When you use a FORMAT statement to assignQuestfmt. to a variable, the variable’s
frequency table no longer includes a frequency count for the response of 8. You
must use the MISSING or MISSPRINT option in the TABLES statement to list the
frequency for no answer. The frequency count for this level includes observations
with either a value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric
variables in ascending order based on internal (unformatted) variable values unless
you change the order with the ORDER= option. To list the values in ascending order
by formatted values, use ORDER=FORMATTED in the PROC FREQ statement.

For more information on the FORMAT statement, refer toSAS Language Reference:
Concepts.

Missing Values

By default, PROC FREQ excludes missing values before it constructs the frequency
and crosstabulation tables. PROC FREQ also excludes missing values before com-
puting statistics. However, the total frequency of observations with missing values is
displayed below each table. The following options change the way in which PROC
FREQ handles missing values:

MISSPRINT includes missing value frequencies in frequency or crosstabulation ta-
bles.

MISSING includes missing values in percentage and statistical calculations.
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The OUT= option in the TABLES statement includes an observation in the output
data set that contains the frequency of missing values. The NMISS option in the
OUTPUT statement creates a variable in the output data set that contains the number
of missing values.

Figure 29.7shows three ways in which PROC FREQ handles missing values. The
first table uses the default method; the second table uses the MISSPRINT option; and
the third table uses the MISSING option.

*** Default ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

*** MISSPRINT Option ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
. 2 . . .
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

*** MISSING Option ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
. 2 33.33 2 33.33
1 2 33.33 4 66.67
2 2 33.33 6 100.00

Figure 29.7. Missing Values in Frequency Tables

When a combination of variable values for a crosstabulation is missing, PROC FREQ
assigns zero to the frequency count for the table cell. By default, PROC FREQ omits
missing combinations in list format and in the output data set that is created in a
TABLES statement. To include the missing combinations, use the SPARSE option
with the LIST or OUT= option in the TABLES statement.

PROC FREQ treats missing BY variable values like any other BY variable value. The
missing values form a separate BY group. When the value of a WEIGHT variable is
missing, PROC FREQ excludes the observation from the analysis.
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Statistical Computations

Definitions and Notation

In this chapter, a two-way table represents the crosstabulation of variablesX andY.
Let the rows of the table be labeled by the valuesXi, i = 1, 2, . . . , R, and the columns
by Yj , j = 1, 2, . . . , C. Let nij denote the cell frequency in theith row and thejth
column and define the following:

ni· =
∑

j

nij (row totals)

n·j =
∑

i

nij (column totals)

n =
∑

i

∑
j

nij (overall total)

pij = nij/n (cell percentages)

pi· = ni·/n (row percentages)

p·j = n·j/n (column percentages)

Ri = score for rowi

Cj = score for columnj

R̄ =
∑

i

ni·Ri/n (average row score)

C̄ =
∑

j

n·jCj/n (average column score)

Aij =
∑
k>i

∑
l>j

nkl +
∑
k<i

∑
l<j

nkl

Dij =
∑
k>i

∑
l<j

nkl +
∑
k<i

∑
l>j

nkl

P =
∑

i

∑
j

nijAij (twice the number of concordances)

Q =
∑

i

∑
j

nijDij (twice the number of discordances)

Scores

PROC FREQ uses scores for the variable values when computing the Mantel-
Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted
kappa coefficient, and Cochran-Mantel-Haenszel statistics. The SCORES= option in
the TABLES statement specifies the score type that PROC FREQ uses. The available
score types are TABLE, RANK, RIDIT, and MODRIDIT scores. The default score
type is TABLE.
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For numeric variables, table scores are the values of the row and column levels. If the
row or column variables are formatted, then the table score is the internal numeric
value corresponding to that level. If two or more numeric values are classified into
the same formatted level, then the internal numeric value for that level is the smallest
of these values. For character variables, table scores are defined as the row numbers
and column numbers (that is, 1 for the first row, 2 for the second row, and so on).

Rank scores, which you can use to obtain nonparametric analyses, are defined by

Row scores: R1i =
∑
k<i

nk· + (ni· + 1)/2 i = 1, 2, . . . , R

Column scores: C1j =
∑
l<j

n·l + (n·j + 1)/2 j = 1, 2, . . . , C

Note that rank scores yield midranks for tied values.

Ridit scores (Bross 1958; Mack and Skillings 1980) also yield nonparametric analy-
ses, but they are standardized by the sample size. Ridit scores are derived from rank
scores as

R2i = R1i/n

C2j = C1j/n

Modified ridit (MODRIDIT) scores (van Elteren 1960; Lehmann 1975), which also
yield nonparametric analyses, represent the expected values of the order statistics for
the uniform distribution on (0,1). Modified ridit scores are derived from rank scores
as

R3i = R1i/(n + 1)

C3j = C1j/(n + 1)

Chi-Square Tests and Statistics

When you specify the CHISQ option in the TABLES statement, PROC FREQ per-
forms the following chi-square tests for each two-way table: Pearson chi-square,
continuity-adjusted chi-square for2 × 2 tables, likelihood-ratio chi-square, Mantel-
Haenszel chi-square, and Fisher’s exact test for2 × 2 tables. Also, PROC FREQ
computes the following statistics derived from the Pearson chi-square: the phi coeffi-
cient, the contingency coefficient, and Cramer’sV . PROC FREQ computes Fisher’s
exact test for generalR×C tables when you specify the FISHER (or EXACT) option
in the TABLES statement, or, equivalently, when you specify the FISHER option in
the EXACT statement.
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For one-way frequency tables, PROC FREQ performs a chi-square goodness-of-fit
test when you specify the CHISQ option. The other chi-square tests and statistics
described in this section are defined only for two-way tables and so are not computed
for one-way frequency tables.

All the two-way test statistics described in this section test the null hypothesis of
no association between the row variable and the column variable. When the sample
sizen is large, these test statistics are distributed approximately as chi-square when
the null hypothesis is true. When the sample size is not large, exact tests may be
useful. PROC FREQ computes exact tests for the following chi-square statistics when
you specify the corresponding option in the EXACT statement: Pearson chi-square,
likelihood-ratio chi-square, and Mantel-Haenszel chi-square. See the section“Exact
Statistics”beginning on page 1508 for more information.

Note that the Mantel-Haenszel chi-square statistic is appropriate only when both vari-
ables lie on an ordinal scale. The other chi-square tests and statistics in this section
are appropriate for either nominal or ordinal variables. The following sections give
the formulas that PROC FREQ uses to compute the chi-square tests and statistics. For
further information on the formulas and on the applicability of each statistic, refer to
Agresti (1996), Stokes, Davis, and Koch (1995), and the other references cited for
each statistic.

Chi-Square Test for One-Way Tables

For one-way frequency tables, the CHISQ option in the TABLES statement computes
a chi-square goodness-of-fit test. LetC denote the number of classes, or levels, in the
one-way table. Letfi denote the frequency of classi (or the number of observations
in classi) for i = 1, 2, ..., C. Then PROC FREQ computes the chi-square statistic as

QP =
C∑

i=1

(fi − ei)2

ei

whereei is the expected frequency for classi under the null hypothesis.

In the test for equal proportions, which is the default for the CHISQ option, the null
hypothesis specifies equal proportions of the total sample size for each class. Under
this null hypothesis, the expected frequency for each class equals the total sample
size divided by the number of classes,

ei = n / C for i = 1, 2, . . . , C

In the test for specified frequencies, which PROC FREQ computes when you in-
put null hypothesis frequencies using the TESTF= option, the expected frequencies
are those TESTF= values. In the test for specified proportions, which PROC FREQ
computes when you input null hypothesis proportions using the TESTP= option, the
expected frequencies are determined from the TESTP= proportionspi, as

ei = pi × n for i = 1, 2, . . . , C
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Under the null hypothesis (of equal proportions, specified frequencies, or specified
proportions), this test statistic has an asymptotic chi-square distribution, withC − 1
degrees of freedom. In addition to the asymptotic test, PROC FREQ computes the
exact one-way chi-square test when you specify the CHISQ option in the EXACT
statement.

Chi-Square Test for Two-Way Tables

The Pearson chi-square statistic for two-way tables involves the differences between
the observed and expected frequencies, where the expected frequencies are computed
under the null hypothesis of independence. The chi-square statistic is computed as

QP =
∑

i

∑
j

(nij − eij)2

eij

where

eij =
ni· n·j

n

When the row and column variables are independent,QP has an asymptotic chi-
square distribution with(R− 1)(C − 1) degrees of freedom. For large values ofQP ,
this test rejects the null hypothesis in favor of the alternative hypothesis of general
association. In addition to the asymptotic test, PROC FREQ computes the exact chi-
square test when you specify the PCHI or CHISQ option in the EXACT statement.

For a2 × 2 table, the Pearson chi-square is also appropriate for testing the equality
of two binomial proportions or, forR × 2 and2 × C tables, the homogeneity of
proportions. Refer to Fienberg (1980).

Likelihood-Ratio Chi-Square Test

The likelihood-ratio chi-square statistic involves the ratios between the observed and
expected frequencies. The statistic is computed as

G2 = 2
∑

i

∑
j

nij ln
(

nij

eij

)

When the row and column variables are independent,G2 has an asymptotic chi-
square distribution with(R − 1)(C − 1) degrees of freedom. In addition to the
asymptotic test, PROC FREQ computes the exact test when you specify the LRCHI
or CHISQ option in the EXACT statement.

Continuity-Adjusted Chi-Square Test

The continuity-adjusted chi-square statistic for2 × 2 tables is similar to the Pearson
chi-square, except that it is adjusted for the continuity of the chi-square distribution.
The continuity-adjusted chi-square is most useful for small sample sizes. The use of
the continuity adjustment is controversial; this chi-square test is more conservative,
and more like Fisher’s exact test, when your sample size is small. As the sample size
increases, the statistic becomes more and more like the Pearson chi-square.
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The statistic is computed as

QC =
∑

i

∑
j

[ max(0, |nij − eij | − 0.5) ]2

eij

Under the null hypothesis of independence,QC has an asymptotic chi-square distri-
bution with(R− 1)(C − 1) degrees of freedom.

Mantel-Haenszel Chi-Square Test

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is
a linear association between the row variable and the column variable. Both variables
must lie on an ordinal scale. The statistic is computed as

QMH = (n− 1)r2

wherer2 is the Pearson correlation between the row variable and the column vari-
able. For a description of the Pearson correlation, see the“Pearson Correlation
Coefficient” sectionon page 1479. The Pearson correlation and, thus, the Mantel-
Haenszel chi-square statistic use the scores that you specify in the SCORES= option
in the TABLES statement.

Under the null hypothesis of no association,QMH has an asymptotic chi-square
distribution with one degree of freedom. In addition to the asymptotic test, PROC
FREQ computes the exact test when you specify the MHCHI or CHISQ option in the
EXACT statement.

Refer to Mantel and Haenszel (1959) and Landis, Heyman, and Koch (1978).

Fisher’s Exact Test

Fisher’s exact test is another test of association between the row and column vari-
ables. This test assumes that the row and column totals are fixed, and then uses the
hypergeometric distribution to compute probabilities of possible tables with these
observed row and column totals. Fisher’s exact test does not depend on any large-
sample distribution assumptions, and so it is appropriate even for small sample sizes
and for sparse tables.

2 × 2 Tables

For2×2 tables, PROC FREQ gives the following information for Fisher’s exact test:
table probability, two-sidedp-value, left-sidedp-value, and right-sidedp-value. The
table probability equals the hypergeometric probability of the observed table, and is
in fact the value of the test statistic for Fisher’s exact test.

Wherep is the hypergeometric probability of a specific table with the observed row
and column totals, Fisher’s exactp-values are computed by summing probabilitiesp
over defined sets of tables,

PROB=
∑
A

p
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The two-sidedp-value is the sum of all possible table probabilties (for tables having
the observed row and column totals) that are less than or equal to the observed table
probability. So, for the two-sidedp-value, the setA includes all possible tables with
hypergeometric probabilities less than or equal to the probability of the observed
table. A small two-sidedp-value supports the alternative hypothesis of association
between the row and column variables.

One-sided tests are defined in terms of the frequency of the cell in the first row and
first column of the table, the (1,1) cell. Denoting the observed (1,1) cell frequency
by F , the left-sidedp-value for Fisher’s exact test is probability that the (1,1) cell
frequency is less than or equal toF . So, for the left-sidedp-value, the setA includes
those tables with a (1,1) cell frequency less than or equal toF . A small left-sidedp-
value supports the alternative hypothesis that the probability of an observation being
in the first cell is less than expected under the null hypothesis of independent row and
column variables.

Similarly, for a right-sided alternative hypothesis,A is the set of tables where the
frequency of the (1,1) cell is greater than or equal to that in the observed table. A
small right-sidedp-value supports the alternative that the probability of the first cell
is greater than that expected under the null hypothesis.

Because the (1,1) cell frequency completely determines the2 × 2 table when the
marginal row and column sums are fixed, these one-sided alternatives can be equiv-
alently stated in terms of other cell probabilities or ratios of cell probabilities. The
left-sided alternative is equivalent to an odds ratio greater than 1, where the odds ra-
tio equals (n11 n22 / n12 n21). Additionally, the left-sided alternative is equivalent to
the column 1 risk for row 1 being less than the column 1 risk for row 2,p1|1 < p1|2.
Similarly, the right-sided alternative is equivalent to the column 1 risk for row 1 being
greater than the column 1 risk for row 2,p1|1 > p1|2. Refer to Agresti (1996).

R × C Tables

Fisher’s exact test was extended to generalR × C tables by Freeman and Halton
(1951), and this test is also known as the Freeman-Halton test. ForR×C tables, the
two-sidedp-value is defined the same as it is for2× 2 tables. The setA contains all
tables withp less than or equal to the probability of the observed table. A smallp-
value supports the alternative hypothesis of association between the row and column
variables. ForR×C tables, Fisher’s exact test is inherently two-sided. The alternative
hypothesis is defined only in terms of general, and not linear, association. Therefore,
PROC FREQ does not provide right-sided or left-sidedp-values for generalR × C
tables.

ForR×C tables, PROC FREQ computes Fisher’s exact test using the network algo-
rithm of Mehta and Patel (1983), which provides a faster and more efficient solution
than direct enumeration. See the section“Exact Statistics”beginning on page 1508
for more details.
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Phi Coefficient

The phi coefficient is a measure of association derived from the Pearson chi-square
statistic. It has the range−1 ≤ φ ≤ 1 for 2 × 2 tables. Otherwise, the range is
0 ≤ φ ≤ min(

√
R− 1,

√
C − 1) (Liebetrau 1983). The phi coefficient is computed

as

φ =
n11 n22 − n12 n21√

n1· n2· n·1 n·2
for 2× 2 tables

φ =
√

QP /n otherwise

Refer to Fleiss (1981, pp. 59–60).

Contingency Coefficient

The contingency coefficient is a measure of association derived from the Pearson chi-
square. It has the range0 ≤ P ≤

√
(m− 1)/m, wherem = min(R,C) (Liebetrau

1983). The contingency coefficient is computed as

P =

√
QP

QP + n

Refer to Kendall and Stuart (1979, pp. 587–588).

Cramer’s V

Cramer’sV is a measure of association derived from the Pearson chi-square. It is
designed so that the attainable upper bound is always 1. It has the range−1 ≤ V ≤ 1
for 2× 2 tables; otherwise, the range is0 ≤ V ≤ 1. Cramer’sV is computed as

V = φ for 2× 2 tables

V =

√
QP /n

min(R− 1, C − 1)
otherwise

Refer to Kendall and Stuart (1979, p. 588).

Measures of Association

When you specify the MEASURES option in the TABLES statement, PROC FREQ
computes several statistics that describe the association between the two variables
of the contingency table. The following are measures of ordinal association that
consider whether the variableY tends to increase asX increases: gamma, Kendall’s
tau-b, Stuart’s tau-c, and Somers’D. These measures are appropriate for ordinal
variables, and they classify pairs of observations asconcordantor discordant. A pair
is concordant if the observation with the larger value ofX also has the larger value of
Y. A pair is discordant if the observation with the larger value ofX has the smaller
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value ofY. Refer to Agresti (1996) and the other references cited in the discussion of
each measure of association.

The Pearson correlation coefficient and the Spearman rank correlation coefficient are
also appropriate for ordinal variables. The Pearson correlation describes the strength
of the linear association between the row and column variables, and it is computed
using the row and column scores specified by the SCORES= option in the TABLES
statement. The Spearman correlation is computed with rank scores. The polychoric
correlation (requested by the PLCORR option) also requires ordinal variables and
assumes that the variables have an underlying bivariate normal distribution. The fol-
lowing measures of association do not require ordinal variables, but they are appro-
priate for nominal variables: lambda asymmetric, lambda symmetric, and uncertainty
coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in
the discussion of each measure of association. For each measure, PROC FREQ com-
putes an asymptotic standard error (ASE), which is the square root of the asymptotic
variance denoted byvar in the following sections.

Confidence Limits

If you specify the CL option in the TABLES statement, PROC FREQ computes
asymptotic confidence limits for all MEASURES statistics. The confidence coeffi-
cient is determined according to the value of the ALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

The confidence limits are computed as

est ± ( zα/2 × ASE )

whereest is the estimate of the measure,zα/2 is the 100(1 − α/2) percentile of
the standard normal distribution, and ASE is the asymptotic standard error of the
estimate.

Asymptotic Tests

For each measure that you specify in the TEST statement, PROC FREQ computes
an asymptotic test of the null hypothesis that the measure equals zero. Asymptotic
tests are available for the following measures of association: gamma, Kendall’s tau-b,
Stuart’s tau-c, Somers’D(R|C), Somers’D(C|R), the Pearson correlation coeffi-
cient, and the Spearman rank correlation coefficient. To compute an asymptotic test,
PROC FREQ uses a standardized test statisticz, which has an asymptotic standard
normal distribution under the null hypothesis. The standardized test statistic is com-
puted as

z =
est√

var0(est)

whereest is the estimate of the measure andvar0(est) is the variance of the estimate
under the null hypothesis. Formulas forvar0(est) are given in the discussion of each
measure of association.
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Note that the ratio ofest to
√

var0(est) is the same for the following measures:
gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’D(R|C), and Somers’D(C|R).
Therefore, the tests for these measures are identical. For example, thep-values for
the test ofH0: gamma= 0 equal thep-values for the test ofH0: tau-b = 0.

PROC FREQ computes one-sided and two-sidedp-values for each of these tests.
When the test statisticz is greater than its null hypothesis expected value of zero,
PROC FREQ computes the right-sidedp-value, which is the probability of a larger
value of the statistic occurring under the null hypothesis. A small right-sidedp-value
supports the alternative hypothesis that the true value of the measure is greater than
zero. When the test statistic is less than or equal to zero, PROC FREQ computes the
left-sidedp-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sidedp-value supports the alternative hypoth-
esis that the true value of the measure is less than zero. The one-sidedp-valueP1 can
be expressed as

P1 = Prob ( Z > z ) if z > 0

P1 = Prob ( Z < z ) if z ≤ 0

whereZ has a standard normal distribution. The two-sidedp-valueP2 is computed
as

P2 = Prob ( |Z| > |z| )

Exact Tests

Exact tests are available for two measures of association, the Pearson correlation co-
efficient and the Spearman rank correlation coefficient. If you specify the PCORR
option in the EXACT statement, PROC FREQ computes the exact test of the hypoth-
esis that the Pearson correlation equals zero. If you specify the SCORR option in the
EXACT statement, PROC FREQ computes the exact test of the hypothesis that the
Spearman correlation equals zero. See the section“Exact Statistics”beginning on
page 1508 for information on exact tests.

Gamma

The estimator of gamma is based only on the number of concordant and discordant
pairs of observations. It ignores tied pairs (that is, pairs of observations that have
equal values ofX or equal values ofY ). Gamma is appropriate only when both
variables lie on an ordinal scale. It has the range−1 ≤ Γ ≤ 1. If the two variables
are independent, then the estimator of gamma tends to be close to zero. Gamma is
estimated by

G =
P −Q

P + Q

with asymptotic variance

var =
16

(P + Q)4
∑

i

∑
j

nij(QAij − PDij)2
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The variance of the estimator under the null hypothesis that gamma equals zero is
computed as

var0(G) =
4

(P + Q)2

∑
i

∑
j

nij(Aij −Dij)2 − (P −Q)2/n


For 2 × 2 tables, gamma is equivalent to Yule’sQ. Refer to Goodman and Kruskal
(1979), Agresti (1990), and Brown and Benedetti (1977).

Kendall’s Tau- b

Kendall’s tau-b is similar to gamma except that tau-b uses a correction for ties. Tau-b
is appropriate only when both variables lie on an ordinal scale. Tau-b has the range
−1 ≤ τb ≤ 1. It is estimated by

tb =
P −Q
√

wrwc

with

var =
1

w4

∑
i

∑
j

nij(2wdij + tbvij)2 − n3t2b(wr + wc)2


where

w =
√

wrwc

wr = n2 −
∑

i

n2
i·

wc = n2 −
∑

j

n2
·j

dij = Aij −Dij

vij = ni·wc + n·jwr

The variance of the estimator under the null hypothesis that tau-b equals zero is com-
puted as

var0(tb) =
4

wrwc

∑
i

∑
j

nij(Aij −Dij)2 − (P −Q)2/n


Refer to Kendall (1955) and Brown and Benedetti (1977).
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Stuart’s Tau- c

Stuart’s tau-c makes an adjustment for table size in addition to a correction for ties.
Tau-c is appropriate only when both variables lie on an ordinal scale. Tau-c has the
range−1 ≤ τc ≤ 1. It is estimated by

tc =
m(P −Q)
n2(m− 1)

with

var =
4m2

(m− 1)2n4

∑
i

∑
j

nijd
2
ij − (P −Q)2/n


where

m = min(R,C)

dij = Aij −Dij

The variance of the estimator under the null hypothesis that tau-c equals zero is

var0(tc) = var

Refer to Brown and Benedetti (1977).

Somers’ D (C |R ) and D (R |C )

Somers’D(C|R) and Somers’D(R|C) are asymmetric modifications of tau-b. C|R
denotes that the row variableX is regarded as an independent variable, while the
column variableY is regarded as dependent. Similarly,R|C denotes that the column
variableY is regarded as an independent variable, while the row variableX is regarded
as dependent. Somers’D differs from tau-b in that it uses a correction only for pairs
that are tied on the independent variable. Somers’D is appropriate only when both
variables lie on an ordinal scale. It has the range−1 ≤ D ≤ 1. Formulas for Somers’
D(R|C) are obtained by interchanging the indices.

D(C|R) =
P −Q

wr

with

var =
4

w4
r

∑
i

∑
j

nij (wrdij − (P −Q)(n− ni·))
2
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where

wr = n2 −
∑

i

n2
i·

dij = Aij −Dij

The variance of the estimator under the null hypothesis thatD(C|R) equals zero is
computed as

var0(D(C|R)) =
4

w2
r

∑
i

∑
j

nij(Aij −Dij)2 − (P −Q)2/n


Refer to Somers (1962), Goodman and Kruskal (1979), and Liebetrau (1983).

Pearson Correlation Coefficient

PROC FREQ computes the Pearson correlation coefficient using the scores specified
in the SCORES= option. The Pearson correlation is appropriate only when both vari-
ables lie on an ordinal scale. It has the range−1 ≤ ρ ≤ 1. The Pearson correlation
coefficient is computed as

r =
v

w
=

ssrc√
ssrssc

with

var =
1

w4

∑
i

∑
j

nij

(
w(Ri − R̄)(Cj − C̄)− bijv

2w

)2

The row scoresRi and the column scoresCj are determined by the SCORES= option
in the TABLES statement, and

ssr =
∑

i

∑
j

nij(Ri − R̄)2

ssc =
∑

i

∑
j

nij(Cj − C̄)2

ssrc =
∑

i

∑
j

nij(Ri − R̄)(Cj − C̄)

bij = (Ri − R̄)2ssc + (Cj − C̄)2ssr

v = ssrc

w =
√

ssrssc
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Refer to Snedecor and Cochran (1989) and Brown and Benedetti (1977).

To compute an asymptotic test for the Pearson correlation, PROC FREQ uses a stan-
dardized test statisticr∗, which has an asymptotic standard normal distribution under
the null hypothesis that the correlation equals zero. The standardized test statistic is
computed as

r∗ =
r√

var0(r)

wherevar0(r) is the variance of the correlation under the null hypothesis.

var0(r) =

∑
i

∑
j nij(Ri − R̄)2(Cj − C̄)2 − ss2

rc/n

ssrssc

The asymptotic variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both
variables are continuous and normally distributed. Refer to Brown and Benedetti
(1977).

PROC FREQ also computes the exact test for the hypothesis that the Pearson correla-
tion equals zero when you specify the PCORR option in the EXACT statement. See
the section“Exact Statistics”beginning on page 1508 for information on exact tests.

Spearman Rank Correlation Coefficient

The Spearman correlation coefficient is computed using rank scoresR1i andC1j ,
defined in the section“Scores”beginning on page 1468. It is appropriate only when
both variables lie on an ordinal scale. It has the range−1 ≤ ρs ≤ 1. The Spearman
correlation coefficient is computed as

rs =
v

w

with

var =
1

n2w4

∑
i

∑
j

nij(zij − z̄)2

where

v =
∑

i

∑
j

nijR(i)C(j)

w =
1
12

√
FG

F = n3 −
∑

i

n3
i·
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G = n3 −
∑

j

n3
·j

R(i) = R1i − n/2

C(j) = C1j − n/2

z̄ =
1
n

∑
i

∑
j

nijzij

zij = wvij − vwij

vij = n

(
R(i)C(j) +

1
2

∑
l

nilC(l) +
1
2

∑
k

nkjR(k)+

∑
l

∑
k>i

nklC(l) +
∑

k

∑
l>j

nklR(k)


wij =

−n

96w

(
Fn2

·j + Gn2
i·
)

Refer to Snedecor and Cochran (1989) and Brown and Benedetti (1977).

To compute an asymptotic test for the Spearman correlation, PROC FREQ uses a
standardized test statisticr∗s , which has an asymptotic standard normal distribution
under the null hypothesis that the correlation equals zero. The standardized test statis-
tic is computed as

r∗s =
rs√

var0(rs)

wherevar0(rs) is the variance of the correlation under the null hypothesis.

var0(rs) =
1

n2w2

∑
i

∑
j

nij(vij − v̄)2

where

v̄ =
∑

i

∑
j

nijvij/n

The asymptotic variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both
variables are continuous and normally distributed. Refer to Brown and Benedetti
(1977).

PROC FREQ also computes the exact test for the hypothesis that the Spearman rank
correlation equals zero when you specify the SCORR option in the EXACT state-
ment. See the section“Exact Statistics”beginning on page 1508 for information on
exact tests.
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Polychoric Correlation

When you specify the PLCORR option in the TABLES statement, PROC FREQ
computes the polychoric correlation. This measure of association is based on the
assumption that the ordered, categorical variables of the frequency table have an un-
derlying bivariate normal distribution. For2× 2 tables, the polychoric correlation is
also known as the tetrachoric correlation. Refer to Drasgow (1986) for an overview
of polychoric correlation. The polychoric correlation coefficient is the maximum
likelihood estimate of the product-moment correlation between the normal variables,
estimating thresholds from the observed table frequencies. The range of the poly-
choric correlation is from -1 to 1. Olsson (1979) gives the likelihood equations and
an asymptotic covariance matrix for the estimates.

To estimate the polychoric correlation, PROC FREQ iteratively solves the likelihood
equations by a Newton-Raphson algorithm using the Pearson correlation coefficient
as the initial approximation. Iteration stops when the convergence measure falls be-
low the convergence criterion or when the maximum number of iterations is reached,
whichever occurs first. The CONVERGE= option sets the convergence criterion, and
the default value is 0.0001. The MAXITER= option sets the maximum number of
iterations, and the default value is 20.

Lambda Asymmetric

Asymmetric lambda,λ(C|R), is interpreted as the probable improvement in pre-
dicting the column variableY given knowledge of the row variableX. Asymmetric
lambda has the range0 ≤ λ(C|R) ≤ 1. It is computed as

λ(C|R) =
∑

i ri − r

n− r

with

var =
n−

∑
i ri

(n− r)3

(∑
i

ri + r − 2
∑

i

(ri | li = l)

)

where

ri = max
j

(nij)

r = max
j

(n·j)

Also, let li be the unique value ofj such thatri = nij , and letl be the unique value
of j such thatr = n·j .

Because of the uniqueness assumptions, ties in the frequencies or in the marginal
totals must be broken in an arbitrary but consistent manner. In case of ties,l is defined
here as the smallest value ofj such thatr = n·j . For a giveni, if there is at least one
valuej such thatnij = ri = cj , thenli is defined here to be the smallest such value
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of j. Otherwise, ifnil = ri, thenli is defined to be equal tol. If neither condition is
true, thenli is taken to be the smallest value ofj such thatnij = ri. The formulas for
lambda asymmetric(R|C) can be obtained by interchanging the indices.

Refer to Goodman and Kruskal (1979).

Lambda Symmetric

The nondirectional lambda is the average of the two asymmetric lambdas,λ(C|R)
andλ(R|C). Lambda symmetric has the range0 ≤ λ ≤ 1. Lambda symmetric is
defined as

λ =

∑
i ri +

∑
j cj − r − c

2n− r − c
=

w − v

w

with

var =
1

w4

wvy − 2w2

n−
∑

i

∑
j

(nij | j = li, i = kj)

− 2v2(n− nkl)


where

cj = max
i

(nij)

c = max
i

(ni·)

w = 2n− r − c

v = 2n−
∑

i

ri −
∑

j

cj

x =
∑

i

(ri | li = l) +
∑

j

(cj | kj = k) + rk + cl

y = 8n− w − v − 2x

Refer to Goodman and Kruskal (1979).

Uncertainty Coefficients ( C |R ) and (R |C )

The uncertainty coefficient,U(C|R), is the proportion of uncertainty (entropy) in
the column variableY that is explained by the row variableX. It has the range
0 ≤ U(C|R) ≤ 1. The formulas forU(R|C) can be obtained by interchanging
the indices.
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U(C|R) =
H(X) + H(Y )−H(XY )

H(Y )
=

v

w

with

var =
1

n2w4

∑
i

∑
j

nij

(
H(Y ) ln

(
nij

ni·

)
+ (H(X)−H(XY )) ln

(n·j
n

))2

where

v = H(X) + H(Y )−H(XY )

w = H(Y )

H(X) = −
∑

i

(ni·
n

)
ln
(ni·

n

)
H(Y ) = −

∑
j

(n·j
n

)
ln
(n·j

n

)

H(XY ) = −
∑

i

∑
j

(nij

n

)
ln
(nij

n

)

Refer to Theil (1972, pp. 115–120) and Goodman and Kruskal (1979).

Uncertainty Coefficient ( U )

The uncertainty coefficient,U , is the symmetric version of the two asymmetric coef-
ficients. It has the range0 ≤ U ≤ 1. It is defined as

U =
2(H(X) + H(Y )−H(XY ))

H(X) + H(Y )

with

var = 4
∑

i

∑
j

nij

(
H(XY ) ln

(ni·n·j
n2

)
− (H(X) + H(Y )) ln

(nij

n

))2
n2 (H(X) + H(Y ))4

Refer to Goodman and Kruskal (1979).

Binomial Proportion

When you specify the BINOMIAL option in the TABLES statement, PROC FREQ
computes a binomial proportion for one-way tables. By default this is the proportion
of observations in the first variable level, or class, that appears in the output. To
specify a different level, use the LEVEL= option.

p̂ = n1 / n
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wheren1 is the frequency for the first level andn is the total frequency for the one-
way table. The standard error for the binomial proportion is computed as

se(p̂) =
√

p̂ (1− p̂) / n

Using the normal approximation to the binomial distribution, PROC FREQ constructs
asymptotic confidence limits forp according to

p̂ ± ( zα/2 × se(p̂) )

wherezα/2 is the100(1 − α/2) percentile of the standard normal distribution. The
confidence levelα is determined by the ALPHA= option, which, by default, equals
0.05 and produces 95% confidence limits.

If you specify the BINOMIALC option, PROC FREQ includes a continuity correc-
tion of 1/2n in the asymptotic confidence limits forp. The purpose of this correction
is to adjust for the difference between the normal approximation and the binomial dis-
tribution, which is a discrete distribution. Refer to Fleiss (1981). With the continuity
correction, the asymptotic confidence limits forp are

p̂ ± ( zα/2 × se(p̂) + (1/2n) )

Additionally, PROC FREQ computes exact confidence limits for the binomial pro-
portion using theF distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996).

PROC FREQ computes an asymptotic test of the hypothesis that the binomial pro-
portion equalsp0, where the value ofp0 is specified by the P= option in the TABLES
statement. If you do not specify a value for the P= option, PROC FREQ usesp0 = 0.5
by default. The asymptotic test statistic is

z =
p̂− p0√

p0 (1− p0) / n

If you specify the BINOMIALC option, PROC FREQ includes a continuity correc-
tion in the asymptotic test statistic, towards adjusting for the difference between the
normal approximation and the discrete binomial distribution. Refer to Fleiss (1981).
The continuity correction of(1/2n) is subtracted from(p̂ − p0) in the numerator of
the test statisticz if (p̂− p0) is positive; otherwise, the continuity correction is added
to the numerator.

PROC FREQ computes one-sided and two-sidedp-values for this test. When the test
statisticz is greater than zero, its expected value under the null hypothesis, PROC
FREQ computes the right-sidedp-value, which is the probability of a larger value
of the statistic occurring under the null hypothesis. A small right-sidedp-value sup-
ports the alternative hypothesis that the true value of the proportion is greater than
p0. When the test statistic is less than or equal to zero, PROC FREQ computes the
left-sidedp-value, which is the probability of a smaller value of the statistic occurring



1486 � Chapter 29. The FREQ Procedure

under the null hypothesis. A small left-sidedp-value supports the alternative hypoth-
esis that the true value of the proportion is less thanp0. The one-sidedp-valueP1 can
be expressed as

P1 = Prob ( Z > z ) if z > 0

P1 = Prob ( Z < z ) if z ≤ 0

whereZ has a standard normal distribution. The two-sidedp-valueP2 is computed
as

P2 = Prob ( |Z| > |z| )

When you specify the BINOMIAL option in the EXACT statement, PROC FREQ
also computes an exact test of the null hypothesisH0: p = p0. To compute this exact
test, PROC FREQ uses the binomial probability function

Prob (X = x | p0) =
(

n
x

)
p x
0 (1− p0) (n−x) x = 0, 1, 2, . . . , n

where the variableX has a binomial distribution with parametersn andp0. To com-
puteProb(X ≤ n1), PROC FREQ sums these binomial probabilities overx from
zero ton1. To computeProb(X ≥ n1), PROC FREQ sums these binomial probabil-
ities overx from n1 to n. Then the exact one-sidedp-value is

P1 = min ( Prob(X ≤ n1 | p0), Prob(X ≥ n1 | p0) )

and the exact two-sidedp-value is

P2 = 2 × P1

Risks and Risk Differences

The RISKDIFF option in the TABLES statement provides estimates of risks (or bi-
nomial proportions) and risk differences for2×2 tables. This analysis may be appro-
priate when comparing the proportion of some characteristic for two groups, where
row 1 and row 2 correspond to the two groups, and the columns correspond to two
possible characteristics or outcomes. For example, the row variable might be a treat-
ment or dose, and the column variable might be the response. Refer to Collett (1991),
Fleiss (1981), and Stokes, Davis, and Koch (1995).

Let the frequencies of the2× 2 table be represented as follows.

Column 1 Column 2 Total
Row 1 n11 n12 n1·
Row 2 n21 n22 n2·
Total n·1 n·2 n
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The column 1 risk for row 1 is the proportion of row 1 observations classified in
column 1,

p1|1 = n11 / n1·

This estimates the conditional probability of the column 1 response, given the first
level of the row variable.

The column 1 risk for row 2 is the proportion of row 2 observations classified in
column 1,

p1|2 = n21 / n2·

and the overall column 1 risk is the proportion of all observations classified in
column 1,

p·1 = n·1 / n

The column 1 risk difference compares the risks for the two rows, and it is computed
as the column 1 risk for row 1 minus the column 1 risk for row 2,

(pdiff )1 = p1|1 − p1|2

The risks and risk difference are defined similarly for column 2.

The standard error of the column 1 risk estimate for rowi is computed as

se(p1|i) =
√

p1|i (1− p1|i) / ni·

The standard error of the overall column 1 risk estimate is computed as

se(p·1) =
√

p·1 (1− p·1) / n

If the two rows represent independent binomial samples, the standard error for the
column 1 risk difference is computed as

se ( (pdiff )1 ) =
√

var(p1|1) + var(p1|2)

The standard errors are computed in a similar manner for the column 2 risks and risk
difference.

Using the normal approximation to the binomial distribution, PROC FREQ constructs
asymptotic confidence limits for the risks and risk differences according to

est ± ( zα/2 × se(est) )
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whereest is the estimate,zα/2 is the100(1−α/2) percentile of the standard normal
distribution, andse(est) is the standard error of the estimate. The confidence levelα
is determined from the value of the ALPHA= option, which, by default, equals 0.05
and produces 95% confidence limits.

If you specify the RISKDIFFC option, PROC FREQ includes continuity corrections
in the asymptotic confidence limits for the risks and risk differences. Continuity cor-
rections adjust for the difference between the normal approximation and the discrete
binomial distribution. Refer to Fleiss (1981). Including a continuity correction, the
asymptotic confidence limits become

est ± ( zα/2 × se(est) + cc )

wherecc is the continuity correction. For the column 1 risk for row 1,cc = (1/2n1·);
for the column 1 risk for row 2,cc = (1/2n2·); for the overall column 1 risk,cc =
(1/2n); and for the column 1 risk difference,cc = ((1/n1· + 1/n2·)/2). Continuity
corrections are computed similarly for the column 2 risks and risk difference.

PROC FREQ computes exact confidence limits for the column 1, column 2, and over-
all risks using theF distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996). PROC FREQ does not provide exact confidence limits
for the risk differences. Refer to Agresti (1992) for a discussion of issues involved in
constructing exact confidence limits for differences of proportions.

Odds Ratio and Relative Risks for 2 x 2 Tables

Odds Ratio (Case-Control Studies)

The odds ratio is a useful measure of association for a variety of study designs. For a
retrospective design called acase-control study, the odds ratio can be used to estimate
the relative risk when the probability of positive response is small (Agresti 1990). In a
case-control study, two independent samples are identified based on a binary (yes-no)
response variable, and the conditional distribution of a binary explanatory variable is
examined, within fixed levels of the response variable. Refer to Stokes, Davis, and
Koch (1995) and Agresti (1996).

The odds of a positive response (column 1) in row 1 isn11/n12. Similarly, the odds
of a positive response in row 2 isn21/n22. The odds ratio is formed as the ratio of
the row 1 odds to the row 2 odds. The odds ratio for2× 2 tables is defined as

OR =
n11/n12

n21/n22
=

n11 n22

n12 n21

The odds ratio can be any nonnegative number. When the row and column variables
are independent, the true value of the odds ratio equals 1. An odds ratio greater than 1
indicates that the odds of a positive response are higher in row 1 than in row 2. Values
less than 1 indicate the odds of positive response are higher in row 2. The strength of
association increases with the deviation from 1.

The transformationG = (OR− 1)/(OR+ 1) transforms the odds ratio to the range
(−1, 1) with G = 0 when OR= 1; G = −1 when OR= 0; andG approaches 1
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as OR approaches infinity.G is the gamma statistic, which PROC FREQ computes
when you specify the MEASURES option.

The asymptotic100(1− α)% confidence limits for the odds ratio are(
OR · exp(−z

√
v), OR · exp(z

√
v)
)

where

v = var(ln OR) =
1

n11
+

1
n12

+
1

n21
+

1
n22

andz is the100(1−α/2) percentile of the standard normal distribution. If any of the
four cell frequencies are zero, the estimates are not computed.

When you specify option OR in the EXACT statement, PROC FREQ computes exact
confidence limits for the odds ratio. Because this is a discrete problem, the confidence
coefficient for these exact confidence limits is not exactly1− α but is at least1− α.
Thus, these confidence limits are conservative. Refer to Agresti (1992).

PROC FREQ computes exact confidence limits for the odds ratio with an algorithm
based on that presented by Thomas (1971). Refer also to Gart (1971). The following
two equations are solved iteratively for the lower and upper confidence limits,φ1 and
φ2.

n·1∑
i=n11

(
n1·
i

)(
n2·

n·1 − i

)
φi

1 /

n·1∑
i=0

(
n1·
i

)(
n2·

n·1 − i

)
φi

1 = α/2

n11∑
i=0

(
n1·
i

)(
n2·

n·1 − i

)
φi

2 /

n·1∑
i=0

(
n1·
i

)(
n2·

n·1 − i

)
φi

2 = α/2

When the odds ratio equals zero, which occurs when eithern11 = 0 or n22 = 0, then
PROC FREQ sets the lower exact confidence limit to zero and determines the upper
limit with level α. Similarly, when the odds ratio equals infinity, which occurs when
eithern12 = 0 or n21 = 0, then PROC FREQ sets the upper exact confidence limit
to infinity and determines the lower limit with levelα.

Relative Risks (Cohort Studies)

These measures of relative risk are useful incohort (prospective) study designs,
where two samples are identified based on the presence or absence of an explanatory
factor. The two samples are observed in future time for the binary (yes-no) response
variable under study. Relative risk measures are also useful in cross-sectional studies,
where two variable are observed simultaneously. Refer to Stokes, Davis, and Koch
(1995) and Agresti (1996).

The column 1 relative risk is the ratio of the column 1 risks for row 1 to row 2.
The column 1 risk for row 1 is the proportion of the row 1 observations classified in
column 1,

p1|1 = n11 / n1·
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Similarly, the column 1 risk for row 2 is

p1|2 = n21 / n2·

The column 1 relative risk is then computed as

RR1 =
p1|1

p1|2

A relative risk greater than 1 indicates that the probability of positive response is
greater in row 1 than in row 2. Similarly, a relative risk less than 1 indicates that
the probability of positive response is less in row 1 than in row 2. The strength of
association increases with the deviation from 1.

The asymptotic100(1− α)% confidence limits for the column 1 relative risk are

(
RR1 · exp(−z

√
v), RR1 · exp(z

√
v)
)

where

v = var(ln RR1) =
1− p1|1

n11
+

1− p1|2

n21

andz is the100(1−α/2) percentile of the standard normal distribution. If eithern11

or n21 is zero, the estimates are not computed.

PROC FREQ computes the column 2 relative risks in a similar manner.

Cochran-Armitage Test for Trend

The TREND option in the TABLES statement requests the Cochran-Armitage test
for trend, which tests for trend in binomial proportions across levels of a single fac-
tor or covariate. This test is appropriate for a contingency table where one variable
has two levels and the other variable is ordinal. The two-level variable represents
the response, and the other variable represents an explanatory variable with ordered
levels. When the contingency table has two columns andR rows, PROC FREQ tests
for trend across theR levels of the row variable, and the binomial proportion is com-
puted as the proportion of observations in the first column. When the table has two
rows andC columns, PROC FREQ tests for trend across theC levels of the column
variable, and the binomial proportion is computed as the proportion of observations
in the first row.

The trend test is based upon the regression coefficient for the weighted linear re-
gression of the binomial proportions on the scores of the levels of the explanatory
variable. Refer to Margolin (1988) and Agresti (1990). If the contingency table has
two columns andR rows, the trend test statistic is computed as

T =
∑R

i=1 ni1(Ri − R̄)√
p·1(1− p·1)s2
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where

s2 =
R∑

i=1

ni·(Ri − R̄)2

The row scoresRi are determined by the value of the SCORES= option in the
TABLES statement. By default, PROC FREQ uses table scores. For character vari-
ables, the table scores for the row variable are the row numbers (for example, 1 for
the first row, 2 for the second row, and so on). For numeric variables, the table score
for each row is the numeric value of the row level. When you perform the trend
test, the explanatory variable may be numeric (for example, dose of a test substance),
and these variable values may be appropriate scores. If the explanatory variable has
ordinal levels that are not numeric, you can assign meaningful scores to the variable
levels. Sometimes equidistant scores, such as the table scores for a character variable,
may be appropriate. For more information on choosing scores for the trend test, refer
to Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means that the
binomial proportionpi1 = ni1/ni· is the same for all levels of the explanatory vari-
able. Under this null hypothesis, the trend test statistic is asymptotically distributed as
a standard normal random variable. In addition to this asymptotic test, PROC FREQ
can compute the exact trend test, which you request by specifying the TREND option
in the EXACT statement. See the section“Exact Statistics”beginning on page 1508
for information on exact tests.

PROC FREQ computes one-sided and two-sidedp-values for the trend test. When the
test statistic is greater than its null hypothesis expected value of zero, PROC FREQ
computes the right-sidedp-value, which is the probability of a larger value of the
statistic occurring under the null hypothesis. A small right-sidedp-value supports
the alternative hypothesis of increasing trend in binomial proportions from row 1 to
row R. When the test statistic is less than or equal to zero, PROC FREQ outputs the
left-sidedp-value. A small left-sidedp-value supports the alternative of decreasing
trend.

The one-sidedp-valueP1 can be expressed as

P1 = Prob ( Trend Statistic > T ) if T > 0

P1 = Prob ( Trend Statistic < T ) if T ≤ 0

The two-sidedp-valueP2 is computed as

P2 = Prob ( |Trend Statistic| > |T | )

Jonckheere-Terpstra Test

The JT option in the TABLES statement requests the Jonckheere-Terpstra test, which
is a nonparametric test for ordered differences among classes. It tests the null hypoth-
esis that the distribution of the response variable does not differ among classes. It is
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designed to detect alternatives of ordered class differences, which can be expressed
asτ1 ≤ τ2 ≤ · · · ≤ τR (or τ1 ≥ τ2 ≥ · · · ≥ τR), with at least one of the inequalities
being strict, whereτi denotes the effect of classi. For such ordered alternatives, the
Jonckheere-Terpstra test can be preferable to tests of more general class difference al-
ternatives, such as the Kruskal–Wallis test (requested by the option WILCOXON in
the NPAR1WAY procedure). Refer to Pirie (1983) and Hollander and Wolfe (1973)
for more information about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a contingency table in which an ordi-
nal column variable represents the response. The row variable, which can be nominal
or ordinal, represents the classification variable. The levels of the row variable should
be ordered according to the ordering you want the test to detect. The order of vari-
able levels is determined by the ORDER= option in the PROC FREQ statement. The
default is ORDER=INTERNAL, which orders by unformatted values. If you specify
ORDER=DATA, PROC FREQ orders values according to their order in the input data
set. For more information on how to order variable levels, see theORDER= option
on page 1442.

The Jonckheere-Terpstra test statistic is computed by first formingR(R−1)/2 Mann-
Whitney countsMi,i′ , wherei < i′, for pairs of rows in the contingency table,

Mi,i′ = { number of times Xi,j < Xi′,j′ ,

j = 1, . . . , ni.; j′ = 1, . . . , ni′. }
+ 1

2 { number of times Xi,j = Xi′,j′ ,

j = 1, . . . , ni.; j′ = 1, . . . , ni′. }

whereXi,j is responsej in row i. Then the Jonckheere-Terpstra test statistic is com-
puted as

J =
∑
1≤i<

∑
i′≤R

Mi,i′

This test rejects the null hypothesis of no difference among classes for large values
of J . Asymptoticp-values for the Jonckheere-Terpstra test are obtained by using
the normal approximation for the distribution of the standardized test statistic. The
standardized test statistic is computed as

J∗ =
J − E0(J)√

var0(J)

whereE0(J) andvar0(J) are the expected value and variance of the test statistic
under the null hypothesis.

E0(J) =

(
n2 −

∑
i

n2
i·

)
/4

var0(J) = A/72 + B/ [36n(n− 1)(n− 2)] + C/ [8n(n− 1)]
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where

A = n(n− 1)(2n + 5)−
∑

i

ni·(ni· − 1)(2ni· + 5)−
∑

j

n·j(n·j − 1)(2n·j + 5)

B =

∑
i

ni·(ni· − 1)(ni· − 2)

∑
j

n·j(n·j − 1)(n·j − 2)



C =

∑
i

ni·(ni· − 1)

∑
j

n·j(n·j − 1)


In addition to this asymptotic test, PROC FREQ can compute the exact Jonckheere-
Terpstra test, which you request by specifying the JT option in the EXACT statement.
See the section“Exact Statistics”beginning on page 1508 for information on exact
tests.

PROC FREQ computes one-sided and two-sidedp-values for the Jonckheere-Terpstra
test. When the standardized test statistic is greater than its null hypothesis expected
value of zero, PROC FREQ computes the right-sidedp-value, which is the probability
of a larger value of the statistic occurring under the null hypothesis. A small right-
sidedp-value supports the alternative hypothesis of increasing order from row 1 to
row R. When the standardized test statistic is less than or equal to zero, PROC FREQ
computes the left-sidedp-value. A small left-sidedp-value supports the alternative
of decreasing order from row 1 to rowR.

The one-sidedp-valueP1 can be expressed as

P1 = Prob ( Std JT Statistic > J∗ ) if J∗ > 0

P1 = Prob ( Std JT Statistic < J∗ ) if J∗ ≤ 0

The two-sidedp-valueP2 is computed as

P2 = Prob ( |Std JT Statistic| > |J∗| )

Tests and Measures of Agreement

When you specify the AGREE option in the TABLES statement, PROC FREQ com-
putes tests and measures of agreement for square tables (that is, for tables where
the number of rows equals the number of columns). For two-way tables, these tests
and measures include McNemar’s test for2 × 2 tables, Bowker’s test of symmetry,
the simple kappa coefficient, and the weighted kappa coefficient. For multiple strata
(n-way tables, wheren > 2), PROC FREQ computes the overall simple kappa co-
efficient and the overall weighted kappa coefficient, as well as tests for equal kappas
(simple and weighted) among strata. Cochran’sQ is computed for multi-way tables
when each variable has two levels, that is, for2× 2× · · · × 2 tables.



1494 � Chapter 29. The FREQ Procedure

PROC FREQ computes the kappa coefficients (simple and weighted), their asymp-
totic standard errors, and their confidence limits when you specify the AGREE option
in the TABLES statement. If you also specify the KAPPA option in the TEST state-
ment, then PROC FREQ computes the asymptotic test of the hypothesis that simple
kappa equals zero. Similarly, if you specify the WTKAP option in the TEST state-
ment, PROC FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests described in this section, PROC FREQ computes
the exactp-value for McNemar’s test when you specify the option MCNEM in the
EXACT statement. For the kappa statistics, PROC FREQ computes the exact test
of the hypothesis that kappa (or weighted kappa) equals zero when you specify
the option KAPPA (or WTKAP) in the EXACT statement. See the section“Exact
Statistics”beginning on page 1508 for information on exact tests.

The discussion of each test and measures of agreement provides the formulas that
PROC FREQ uses to compute the AGREE statistics. For information on the use and
interpretation of these statistics, refer to Agresti (1990), Agresti (1996), Fleiss (1981),
and the other references cited for each statistic.

McNemar’s Test

PROC FREQ computes McNemar’s test for2×2 tables when you specify the AGREE
option. McNemar’s test is appropriate when you are analyzing data from matched
pairs of subjects with a dichotomous (yes-no) response. It tests the null hypothesis of
marginal homogeneity, orp1· = p·1. McNemar’s test is computed as

QM =
(n12 − n21)2

n12 + n21

Under the null hypothesis,QM has an asymptotic chi-square distribution with one
degree of freedom. Refer to McNemar (1947), as well as the references cited in the
preceding section. In addition to the asymptotic test, PROC FREQ also computes
the exactp-value for McNemar’s test when you specify the MCNEM option in the
EXACT statement.

Bowker’s Test of Symmetry

For Bowker’s test of symmetry, the null hypothesis is that the probabilities in the
square table satisfy symmetry or thatpij = pji for all pairs of table cells. When there
are more than two categories, Bowker’s test of symmetry is calculated as

QB =
∑∑

i<j

(nij − nji)2

nij + nji

For large samples,QB has an asymptotic chi-square distribution withR(R − 1)/2
degrees of freedom under the null hypothesis of symmetry of the expected counts.
Refer to Bowker (1948). For two categories, this test of symmetry is identical to
McNemar’s test.
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Simple Kappa Coefficient

The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater
agreement:

κ̂ =
Po − Pe

1− Pe

wherePo =
∑

i pii andPe =
∑

i pi.p.i. If the two response variables are viewed as
two independent ratings of then subjects, the kappa coefficient equals +1 when there
is complete agreement of the raters. When the observed agreement exceeds chance
agreement, kappa is positive, with its magnitude reflecting the strength of agreement.
Although this is unusual in practice, kappa is negative when the observed agreement
is less than chance agreement. The minimum value of kappa is between−1 and 0,
depending on the marginal proportions.

The asymptotic variance of the simple kappa coefficient can be estimated by the fol-
lowing, according to Fleiss, Cohen, and Everitt (1969):

var =
A + B − C

(1− Pe)2n

where

A =
∑

i

pii

[
1− (pi· + p·i)(1− κ̂)

]2

B = (1− κ̂)2
∑∑

i6=j
pij(p·i + pj·)2

and

C =
[
κ̂− Pe(1− κ̂)

]2

PROC FREQ computes confidence limits for the simple kappa coefficient according
to

κ̂ ± ( zα/2 ×
√

var )

wherezα/2 is the100(1 − α/2) percentile of the standard normal distribution. The
value ofα is determined by the value of the ALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses a stan-
dardized test statistiĉκ∗, which has an asymptotic standard normal distribution under
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the null hypothesis that kappa equals zero. The standardized test statistic is computed
as

κ̂∗ =
κ̂√

var0(κ̂)

wherevar0(κ̂) is the variance of the kappa coefficient under the null hypothesis.

var0(κ̂) =
Pe + P 2

e −
∑

i pi·p·i(pi· + p·i)
(1− Pe)2n

Refer to Fleiss (1981).

In addition to the asymptotic test for kappa, PROC FREQ computes the exact test
when you specify the KAPPA or AGREE option in the EXACT statement. See the
section“Exact Statistics”beginning on page 1508 for information on exact tests.

Weighted Kappa Coefficient

The weighted kappa coefficient is a generalization of the simple kappa coefficient,
using weights to quantify the relative difference between categories. For2×2 tables,
the weighted kappa coefficient equals the simple kappa coefficient. PROC FREQ
displays the weighted kappa coefficient only for tables larger than2 × 2. PROC
FREQ computes the weights from the column scores, using either the Cicchetti-
Allison weight type or the Fleiss-Cohen weight type, both of which are described
in the following section. The weightswij are constructed so that0 ≤ wij < 1 for all
i 6= j, wii = 1 for all i, andwij = wji. The weighted kappa coefficient is defined as

κ̂w =
Po(w) − Pe(w)

1− Pe(w)

where

Po(w) =
∑

i

∑
j

wijpij

and

Pe(w) =
∑

i

∑
j

wijpi·p·j

The asymptotic variance of the weighted kappa coefficient can be estimated by the
following, according to Fleiss, Cohen, and Everitt (1969):

var =

∑
i

∑
j pij

[
wij − (wi· + w·j)(1− κ̂w)

]2

−
[
κ̂w − Pe(w)(1− κ̂w)

]2

(1− Pe(w))2n
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where

wi· =
∑

j

p·jwij

and

w·j =
∑

i

pi·wij

PROC FREQ computes confidence limits for the weighted kappa coefficient accord-
ing to

κ̂w ± ( zα/2 ×
√

var )

wherezα/2 is the100(1 − α/2) percentile of the standard normal distribution. The
value ofα is determined by the value of the ALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses
a standardized test statisticκ̂∗

w, which has an asymptotic standard normal distribution
under the null hypothesis that weighted kappa equals zero. The standardized test
statistic is computed as

κ̂∗
w =

κ̂w√
var0(κ̂w)

wherevar0(κ̂w) is the variance of the weighted kappa coefficient under the null hy-
pothesis.

var0(κ̂w) =

∑
i

∑
j pi·p·j

[
wij − (wi· + w·j)

]2

− P 2
e(w)

(1− Pe(w))2n

Refer to Fleiss (1981).

In addition to the asymptotic test for weighted kappa, PROC FREQ computes the
exact test when you specify the WTKAP or AGREE option in the EXACT statement.
See the section“Exact Statistics”beginning on page 1508 for information on exact
tests.

Weights

PROC FREQ computes kappa coefficient weights using the column scores and one of
two available weight types. The column scores are determined by the SCORES= op-
tion in the TABLES statement. The two available weight types are Cicchetti-Allison
and Fleiss-Cohen, and PROC FREQ uses the Cicchetti-Allison type by default. If you
specify (WT=FC) with the AGREE option, then PROC FREQ uses the Fleiss-Cohen
weight type to construct kappa weights.
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PROC FREQ computes Cicchetti-Allison kappa coefficient weights using a form sim-
ilar to that given by Cicchetti and Allison (1971).

wij = 1− |Ci − Cj |
CC − C1

whereCi is the score for columni, andC is the number of categories or columns.
You can specify the score type using the SCORES= option in the TABLES state-
ment; if you do not specify the SCORES= option, PROC FREQ uses table scores.
For numeric variables, table scores are the values of the numeric row and column
headings. You can assign numeric values to the categories in a way that reflects their
level of similarity. For example, suppose you have four categories and order them
according to similarity. If you assign them values of 0, 2, 4, and 10, the following
weights are used for computing the weighted kappa coefficient:w12 = 0.8,w13 = 0.6,
w14 = 0, w23 = 0.8, w24 = 0.2, andw34 = 0.4. Note that when there are only two
categories (that is,C = 2), the weighted kappa coefficient is identical to the simple
kappa coefficient.

If you specify (WT=FC) with the AGREE option in the TABLES statement, PROC
FREQ computes Fleiss-Cohen kappa coefficient weights using a form similar to that
given by Fleiss and Cohen (1973).

wij = 1− (Ci − Cj)2

(CC − C1)2

For the preceding example, the weights used for computing the weighted kappa co-
efficient are:w12 = 0.96,w13 = 0.84,w14 = 0, w23 = 0.96,w24 = 0.36, andw34 =
0.64.

Overall Kappa Coefficient

When there are multiple strata, PROC FREQ combines the stratum-level estimates of
kappa into an overall estimate of the supposed common value of kappa. Assume there
areq strata, indexed byh = 1, 2, . . . , q, and letvar(κ̂h) denote the squared standard
error of κ̂h. Then the estimate of the overall kappa, according to Fleiss (1981), is
computed as

κ̂overall =
q∑

h=1

κ̂h

var(κ̂h)
/

q∑
h=1

1
var(κ̂h)

PROC FREQ computes an estimate of the overall weighted kappa in a similar manner.

Tests for Equal Kappa Coefficients

When there are multiple strata, the following chi-square statistic tests whether the
stratum-level values of kappa are equal.

QK =
q∑

h=1

(κ̂h − κ̂overall)2

var(κ̂h)
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Under the null hypothesis of equal kappas over theq strata,QK has an asymptotic
chi-square distribution withq − 1 degrees of freedom. PROC FREQ computes a test
for equal weighted kappa coefficients in a similar manner.

Cochran’s Q Test

Cochran’sQ is computed for multi-way tables when each variable has two levels,
that is, for2× 2 · · · × 2 tables. Cochran’sQ statistic is used to test the homogeneity
of the one-dimensional margins. Letm denote the number of variables andN denote
the total number of subjects. Then Cochran’sQ statistic is computed as

QC = (m− 1)
m
∑m

j=1 T 2
j − T 2

mT −
∑N

k=1 S2
k

whereTj is the number of positive responses for variablej, T is the total number
of positive responses over all variables, andSk is the number of positive responses
for subjectk. Under the null hypothesis, Cochran’sQ is an approximate chi-square
statistic withm − 1 degrees of freedom. Refer to Cochran (1950). When there are
only two binary response variables (m = 2), Cochran’sQ simplifies to McNemar’s
test. When there are more than two response categories, you can test for marginal
homogeneity using the repeated measures capabilities of the CATMOD procedure.

Tables with Zero Rows and Columns

The AGREE statistics are defined only for square tables, where the number of rows
equals the number of columns. If the table is not square, PROC FREQ does not
compute AGREE statistics. In the kappa statistic framework, where two independent
raters assign ratings to each ofn subjects, suppose one of the raters does not use all
possibler rating levels. If the corresponding table hasr rows but onlyr−1 columns,
then the table is not square, and PROC FREQ does not compute the AGREE statistics.
To create a square table in this situation, use the ZEROS option in the WEIGHT
statement, which requests that PROC FREQ include observations with zero weights
in the analysis. And input zero-weight observations to represent any rating levels that
are not used by a rater, so that the input data set has at least one observation for each
possible rater and rating combination. This includes all rating levels in the analysis,
whether or not all levels are actually assigned by both raters. The resulting table is a
square table,r × r, and so all AGREE statistics can be computed.

For more information, see the description of theZEROSoption. By default, PROC
FREQ does not process observations that have zero weights, because these observa-
tions do not contribute to the total frequency count, and because any resulting zero-
weight row or column causes many of the tests and measures of association to be
undefined. However, kappa statistics are defined for tables with a zero-weight row or
column, and the ZEROS option allows input of zero-weight observations so you can
construct the tables needed to compute kappas.
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Cochran-Mantel-Haenszel Statistics

For n-way crosstabulation tables, consider the following example:

proc freq;
tables A*B*C*D / cmh;

run;

The CMH option in the TABLES statement gives a stratified statistical analysis of the
relationship between C and D, after controlling for A and B. The stratified analysis
provides a way to adjust for the possible confounding effects of A and B without be-
ing forced to estimate parameters for them. The analysis produces Cochran-Mantel-
Haenszel statistics, and for2 × 2 tables, it includes estimation of the common odds
ratio, common relative risks, and the Breslow-Day test for homogeneity of the odds
ratios.

Let the number of strata be denoted byq, indexing the strata byh = 1, 2, . . . , q.
Each stratum contains a contingency table withX representing the row variable and
Y representing the column variable. For tableh, denote the cell frequency in rowi
and columnj by nhij , with corresponding row and column marginal totals denoted
by nhi. andnh.j , and the overall stratum total bynh.

Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily de-
fined in terms of matrices, the following notation is used. Vectors are presumed to be
column vectors unless they are transposed(′).

n′
hi = (nhi1, nhi2, . . . , nhiC) (1× C)

n′
h = (n′

h1,n
′
h2, . . . ,n

′
hR) (1×RC)

phi· = nhi·
nh

(1× 1)

ph·j = nh·j
nh

(1× 1)

P′
h∗· = (ph1·, ph2·, . . . , phR·) (1×R)

P′
h·∗ = (ph·1, ph·2, . . . , ph·C) (1× C)

Assume that the strata are independent and that the marginal totals of each stratum
are fixed. The null hypothesis,H0, is that there is no association betweenX andY
in any of the strata. The corresponding model is the multiple hypergeometric; this
implies that, underH0, the expected value and covariance matrix of the frequencies
are, respectively,

mh = E[nh | H0] = nh(Ph·∗ ⊗Ph∗·)

and

var[nh | H0] = c
(

(DPh·∗ −Ph·∗P′
h·∗)⊗ (DPh∗· −Ph∗·P′

h∗·)
)
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where

c =
n2

h

nh − 1

and where⊗ denotes Kronecker product multiplication andDa is a diagonal matrix
with elements ofa on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

QCMH = G′VG
−1G

where

G =
∑

h

Bh(nh −mh)

VG =
∑

h

Bh (Var(nh | H0))B′
h

and where

Bh = Ch ⊗Rh

is a matrix of fixed constants based on column scoresCh and row scoresRh. When
the null hypothesis is true, the CMH statistic has an asymptotic chi-square distribution
with degrees of freedom equal to the rank ofBh. If VG is found to be singular, PROC
FREQ prints a message and sets the value of the CMH statistic to missing.

PROC FREQ computes three CMH statistics using this formula for the generalized
CMH statistic, with different row and column score definitions for each statistic. The
CMH statistics that PROC FREQ computes are the correlation statistic, the ANOVA
(row mean scores) statistic, and the general association statistic. These statistics test
the null hypothesis of no association against different alternative hypotheses. The
following sections describe the computation of these CMH statistics.

CAUTION: The CMH statistics have low power for detecting an association in which
the patterns of association for some of the strata are in the opposite direction of the
patterns displayed by other strata. Thus, a nonsignificant CMH statistic suggests
either that there is no association or that no pattern of association has enough strength
or consistency to dominate any other pattern.

Correlation Statistic

The correlation statistic, popularized by Mantel and Haenszel (1959) and Mantel
(1963), has one degree of freedom and is known as the Mantel-Haenszel statistic.

The alternative hypothesis for the correlation statistic is that there is a linear associ-
ation betweenX andY in at least one stratum. If eitherX or Y does not lie on an
ordinal (or interval) scale, then this statistic is not meaningful.
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To compute the correlation statistic, PROC FREQ uses the formula for the general-
ized CMH statistic with the row and column scores determined by the SCORES=
option in the TABLES statement. See the section“Scores”on page 1468 for more
information on the available score types. The matrix of row scoresRh has dimension
1×R, and the matrix of column scoresCh has dimension1× C.

When there is only one stratum, this CMH statistic reduces to(n − 1)r2, wherer is
the Pearson correlation coefficient betweenX andY . When nonparametric (RANK
or RIDIT) scores are specified, then the statistic reduces to(n− 1)r2

s , wherers is the
Spearman rank correlation coefficient betweenX andY. When there is more than one
stratum, then this CMH statistic becomes a stratum-adjusted correlation statistic.

ANOVA (Row Mean Scores) Statistic

The ANOVA statistic can be used only when the column variableY lies on an ordinal
(or interval) scale so that the mean score ofY is meaningful. For the ANOVA statistic,
the mean score is computed for each row of the table, and the alternative hypothesis
is that, for at least one stratum, the mean scores of theR rows are unequal. In other
words, the statistic is sensitive to location differences among theR distributions of
Y.

The matrix of column scoresCh has dimension1 × C, the column scores are deter-
mined by the SCORES= option.

The matrix of row scoresRh has dimension(R− 1)×R and is created internally by
PROC FREQ as

Rh = [IR−1,−JR−1]

whereIR−1 is an identity matrix of rankR − 1, andJR−1 is an(R − 1) × 1 vector
of ones. This matrix has the effect of formingR − 1 independent contrasts of theR
mean scores.

When there is only one stratum, this CMH statistic is essentially an analysis of vari-
ance (ANOVA) statistic in the sense that it is a function of the variance ratioF statis-
tic that would be obtained from a one-way ANOVA on the dependent variableY. If
nonparametric scores are specified in this case, then the ANOVA statistic is a Kruskal-
Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a stratum-
adjusted ANOVA or Kruskal-Wallis test. In the special case where there is one subject
per row and one subject per column in the contingency table of each stratum, this
CMH statistic is identical to Friedman’s chi-square. SeeExample 29.8on page 1546
for an illustration.

General Association Statistic

The alternative hypothesis for the general association statistic is that, for at least one
stratum, there is some kind of association betweenX andY. This statistic is always
interpretable because it does not require an ordinal scale for eitherX or Y.
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For the general association statistic, the matrixRh is the same as the one used for the
ANOVA statistic. The matrixCh is defined similarly as

Ch = [IC−1,−JC−1]

PROC FREQ generates both score matrices internally. When there is only one stra-
tum, then the general association CMH statistic reduces toQP (n− 1)/n, whereQP

is the Pearson chi-square statistic. When there is more than one stratum, then the
CMH statistic becomes a stratum-adjusted Pearson chi-square statistic. Note that a
similar adjustment can be made by summing the Pearson chi-squares across the strata.
However, the latter statistic requires a large sample size in each stratum to support the
resulting chi-square distribution withq(R−1)(C−1) degrees of freedom. The CMH
statistic requires only a large overall sample size since it has only(R − 1)(C − 1)
degrees of freedom.

Refer to Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965);
Landis, Heyman, and Koch (1978).

Adjusted Odds Ratio and Relative Risk Estimates

The CMH option provides adjusted odds ratio and relative risk estimates for stratified
2×2 tables. For each of these measures, PROC FREQ computes the Mantel-Haenszel
estimate and the logit estimate. These estimates apply ton-way table requests in the
TABLES statement, when the row and column variables both have only two levels.

For example,

proc freq;
tables A*B*C*D / cmh;

run;

In this example, if the row and columns variablesC and D both have two levels,
PROC FREQ provides odds ratio and relative risk estimates, adjusting for the con-
founding variablesA andB.

The choice of an appropriate measure depends on the study design. For case-control
(retrospective) studies, the odds ratio is appropriate. For cohort (prospective) or cross-
sectional studies, the relative risk is appropriate. See the section“Odds Ratio and
Relative Risks for 2 x 2 Tables”beginning on page 1488 for more information on
these measures.

Throughout this section,z denotes the100(1−α/2) percentile of the standard normal
distribution.

Odds Ratio, Case-Control Studies

Mantel-Haenszel Estimator

The Mantel-Haenszel estimate of the common odds ratio is computed as

ORMH =
∑

h nh11 nh22/nh∑
h nh12 nh21/nh
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It is always computed unless the denominator is zero. Refer to Mantel and Haenszel
(1959) and Agresti (1990).

Using the estimated variance forlog(ORMH) given by Robins, Breslow, and
Greenland (1986), PROC FREQ computes the corresponding100(1 − α)% confi-
dence limits for the odds ratio as

( ORMH · exp(−zσ̂), ORMH · exp(zσ̂) )

where

σ̂2 = ˆvar[ ln(ORMH) ]

=
∑

h(nh11 + nh22)(nh11 nh22)/n2
h

2 (
∑

h nh11 nh22/nh)2

+
∑

h[(nh11 + nh22)(nh12 nh21) + (nh12 + nh21)(nh11 nh22)]/n2
h

2 (
∑

h nh11 nh22/nh) (
∑

h nh12 nh21/nh)

+
∑

h(nh12 + nh21)(nh12 nh21)/n2
h

2 (
∑

h nh12 nh21/nh)2

Note that the Mantel-Haenszel odds ratio estimator is less sensitive to smallnh than
the logit estimator.

Logit Estimator

The adjusted logit estimate of the odds ratio (Woolf 1955) is computed as

ORL = exp
(∑

h wh ln(ORh)∑
h wh

)
and the corresponding100(1− α)% confidence limits are(

ORL · exp

(
−z√∑

h wh

)
, ORL · exp

(
z√∑
h wh

))

where ORh is the odds ratio for stratumh, and

wh =
1

var(ln ORh)

If any cell frequency in a stratumh is zero, then PROC FREQ adds0.5 to each cell
of the stratum before computing ORh andwh (Haldane 1955), and prints a warning.

Exact Confidence Limits for the Common Odds Ratio

When you specify the COMOR option in the EXACT statement, PROC FREQ com-
putes exact confidence limits for the common odds ratio for stratified2 × 2 tables.
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This computation assumes that the odds ratio is constant over all the2 × 2 tables.
Exact confidence limits are constructed from the distribution ofS =

∑
h nh11, con-

ditional on the marginal totals of the2× 2 tables.

Because this is a discrete problem, the confidence coefficient for these exact confi-
dence limits is not exactly1 − α but is at least1 − α. Thus, these confidence limits
are conservative. Refer to Agresti (1992).

PROC FREQ computes exact confidence limits for the common odds ratio with an
algorithm based on that presented by Vollset, Hirji, and Elashoff (1991). Refer also
to Mehta, Patel, and Gray (1985).

Conditional on the marginal totals of2× 2 tableh, let the random variableSh denote
the frequency of table cell(1, 1). Given the row totalsnh1· andnh2· and column
totalsnh·1 andnh·2, the lower and upper bounds forSh arelh anduh,

lh = max ( 0, nh1· − nh·2 )
uh = min ( nh1·, nh·1 )

Let Csh
denote the hypergeometric coefficient,

Csh
=

(
nh·1
sh

)(
nh·2

nh1· − sh

)

and letφ denote the common odds ratio. Then the conditional distribution ofSh is

P ( Sh = sh | n1·, n·1, n·2 ) = Csh
φ sh /

x = uh∑
x = lh

Cx φ x

Summing over all the2× 2 tables, S =
∑

h Sh , and the lower and upper bounds
of S arel andu,

l =
∑

h

lh and u =
∑

h

uh

The conditional distribution of the sumS is

P ( S = s | nh1·, nh·1, nh·2; h = 1, . . . , q ) = Cs φ s /

x = u∑
x = l

Cx φ x

where

Cs =
∑

s1+....+sq = s

( ∏
h

Csh

)
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Let s0 denote the observed sum of cell (1,1) frequencies over theq tables. The fol-
lowing two equations are solved iteratively for lower and upper confidence limits for
the common odds ratio,φ1 andφ2,

x = u∑
x = so

Cx φ x
1 /

x = u∑
x = l

Cx φ x
1 = α/2

x = s0∑
x = l

Cx φ x
2 /

x = u∑
x = l

Cx φ x
2 = α/2

When the observed sums0 equals the lower boundl, then PROC FREQ sets the lower
exact confidence limit to zero and determines the upper limit with levelα. Similarly,
when the observed sums0 equals the upper boundu, then PROC FREQ sets the upper
exact confidence limit to infinity and determines the lower limit with levelα.

When you specify the COMOR option in the EXACT statement, PROC FREQ also
computes the exact test that the common odds ratio equals one. Settingφ = 1, the
conditional distribution of the sumS under the null hypothesis becomes

P0( S = s | nh1·, nh·1, nh·2; h = 1, . . . , q ) = Cs /
x = u∑
x = l

Cx

The point probability for this exact test is the probability of the observed sums0

under the null hypothesis, conditional on the marginals of the stratified2 × 2 tables,
and is denoted byP0(s0). The expected value ofS under the null hypothesis is

E0(S) =
x = u∑
x = l

x Cx /
x = u∑
x = l

Cx

The one-sided exactp-value is computed from the conditional distribution as
P0(S >= s0) or P0(S ≤ s0), depending on whether the observed sums0 is greater
or less thanE0(S).

P1 = P0( S >= s0 ) =
x = u∑
x = s0

Cx /

x = u∑
x = l

Cx if s0 > E0(S)

P1 = P0( S <= s0 ) =
x = s0∑
x = l

Cx /

x = u∑
x = l

Cx if s0 ≤ E0(S)

PROC FREQ computes two-sidedp-values for this test according to three different
definitions. A two-sidedp-value is computed as twice the one-sidedp-value, setting
the result equal to one if it exceeds one.

P a
2 = 2 × P1
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Additionally, a two-sidedp-value is computed as the sum of all probabilities less than
or equal to the point probability of the observed sums0, summing over all possible
values ofs, l ≤ s ≤ u.

P b
2 =

∑
l≤s≤u: P0(s)≤P0(s0)

P0(s)

Also, a two-sidedp-value is computed as the sum of the one-sidedp-value and the
corresponding area in the opposite tail of the distribution, equidistant from the ex-
pected value.

P c
2 = P0 ( |S − E0(S)| ≥ |s0 − E0(S)| )

Relative Risks, Cohort Studies

Mantel-Haenszel Estimator

The Mantel-Haenszel estimate of the common relative risk for column 1 is computed
as

RRMH =
∑

h nh11 nh2·/nh∑
h nh21 nh1·/nh

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel
(1959) and Agresti (1990).

Using the estimated variance forlog(RRMH) given by Greenland and Robins (1985),
PROC FREQ computes the corresponding100(1 − α)% confidence limits for the
relative risk as

( RRMH · exp(−zσ̂), RRMH · exp(zσ̂) )

where

σ̂2 = ˆvar[ ln(RRMH) ]

=
∑

h(nh1· nh2· nh·1 − nh11 nh21 nh)/n2
h

(
∑

h nh11 nh2·/nh) (
∑

h nh21 nh1·/nh)

Logit Estimator

The adjusted logit estimate of the common relative risk for column 1 is computed as

RRL = exp
(∑

h wh ln RRh∑
wh

)
and the corresponding100(1− α)% confidence limits are(

RRL exp

(
−z√∑

h wh

)
, RRL exp

(
z√∑
h wh

))
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where RRh is the column 1 relative risk estimate for stratumh, and

wh =
1

var(ln RRh)

If nh11 or nh21 is zero, then PROC FREQ adds0.5 to each cell of the stratum before
computing RRh andwh, and prints a warning. Refer to Kleinbaum, Kupper, and
Morgenstern (1982, Sections 17.4 and 17.5).

Breslow-Day Test for Homogeneity of the Odds Ratios

When you specify the CMH option, PROC FREQ computes the Breslow-Day test for
stratified analysis of2×2 tables. It tests the null hypothesis that the odds ratios for the
q strata are all equal. When the null hypothesis is true, the statistic has approximately
a chi-square distribution withq − 1 degrees of freedom. Refer to Breslow and Day
(1980) and Agresti (1996).

The Breslow-Day statistic is computed as

QBD =
∑

h

(nh11 − E(nh11 | ORMH))2

var(nh11 | ORMH)

whereE andvar denote expected value and variance, respectively. The summation
does not include any table with a zero row or column. If ORMH equals zero or if it
is undefined, then PROC FREQ does not compute the statistic and prints a warning
message.

For the Breslow-Day test to be valid, the sample size should be relatively large in
each stratum, and at least 80% of the expected cell counts should be greater than
5. Note that this is a stricter sample size requirement than the requirement for the
Cochran-Mantel-Haenszel test forq × 2 × 2 tables, in that each stratum sample size
(not just the overall sample size) must be relatively large. Even when the Breslow-
Day test is valid, it may not be very powerful against certain alternatives, as discussed
in Breslow and Day (1980).

If you specify the BDT option, PROC FREQ computes the Breslow-Day test with
Tarone’s adjustment, which subtracts an adjustment factor fromQBD to make the
resulting statistic asymptotically chi-square.

QBDT = QBD −
(
∑

h (nh11 − E(nh11 | ORMH)))2∑
h var(nh11 | ORMH)

Refer to Tarone (1985), Jones et al. (1989), and Breslow (1996).

Exact Statistics

Exact statistics can be useful in situations where the asymptotic assumptions are not
met, and so the asymptoticp-values are not close approximations for the truep-
values. Standard asymptotic methods involve the assumption that the test statistic
follows a particular distribution when the sample size is sufficiently large. When the
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sample size is not large, asymptotic results may not be valid, with the asymptotic
p-values differing perhaps substantially from the exactp-values. Asymptotic results
may also be unreliable when the distribution of the data is sparse, skewed, or heav-
ily tied. Refer to Agresti (1996) and Bishop, Fienberg, and Holland (1975). Exact
computations are based on the statistical theory of exact conditional inference for
contingency tables, reviewed by Agresti (1992).

In addition to computation of exactp-values, PROC FREQ provides the option of
estimating exactp-values by Monte Carlo simulation. This can be useful for problems
that are so large that exact computations require a great amount of time and memory,
but for which asymptotic approximations may not be sufficient.

PROC FREQ provides exactp-values for the following tests for two-way tables:
Pearson chi-square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher’s
exact test, Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar’s
test. PROC FREQ also computes exactp-values for tests of hypotheses that the fol-
lowing statistics equal zero: Pearson correlation coefficient, Spearman correlation
coefficient, simple kappa coefficient, and weighted kappa coefficient. Additionally,
PROC FREQ computes exact confidence limits for the odds ratio for2×2 tables. For
stratified2 × 2 tables, PROC FREQ computes exact confidence limits for the com-
mon odds ratio, as well as an exact test that the common odds ratio equals one. For
one-way frequency tables, PROC FREQ provides the exact chi-square goodness-of-
fit test (for equal proportions or for proportions or frequencies that you specify). Also
for one-way tables, PROC FREQ provides exact confidence limits for the binomial
proportion and an exact test for the binomial proportion value.

The following sections summarize the exact computational algorithms, define the
exactp-values that PROC FREQ computes, discuss the computational resource re-
quirements, and describe the Monte Carlo estimation option.

Computational Algorithms

PROC FREQ computes exactp-values for generalR×C tables using the network al-
gorithm developed by Mehta and Patel (1983). This algorithm provides a substantial
advantage over direct enumeration, which can be very time-consuming and feasible
only for small problems. Refer to Agresti (1992) for a review of algorithms for com-
putation of exactp-values, and refer to Mehta, Patel, and Tsiatis (1984) and Mehta,
Patel, and Senchaudhuri (1991) for information on the performance of the network
algorithm.

The reference set for a given contingency table is the set of all contingency tables
with the observed marginal row and column sums. Corresponding to this reference
set, the network algorithm forms a directed acyclic network consisting of nodes in a
number of stages. A path through the network corresponds to a distinct table in the
reference set. The distances between nodes are defined so that the total distance of a
path through the network is the corresponding value of the test statistic. At each node,
the algorithm computes the shortest and longest path distances for all the paths that
pass through that node. For statistics that can be expressed as a linear combination
of cell frequencies multiplied by increasing row and column scores, PROC FREQ
computes shortest and longest path distances using the algorithm given in Agresti,
Mehta, and Patel (1990). For statistics of other forms, PROC FREQ computes an
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upper bound for the longest path and a lower bound for the shortest path, following
the approach of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the
value of the test statistic to determine whether all paths through the node contribute
to thep-value, none of the paths through the node contribute to thep-value, or neither
of these situations occur. If all paths through the node contribute, thep-value is incre-
mented accordingly, and these paths are eliminated from further analysis. If no paths
contribute, these paths are eliminated from the analysis. Otherwise, the algorithm
continues, still processing this node and the associated paths. The algorithm finishes
when all nodes have been accounted for, incrementing thep-value accordingly, or
eliminated.

In applying the network algorithm, PROC FREQ uses full precision to represent all
statistics, row and column scores, and other quantities involved in the computations.
Although it is possible to use rounding to improve the speed and memory require-
ments of the algorithm, PROC FREQ does not do this since it can result in reduced
accuracy of thep-values.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test
by the method of Radlow and Alf (1975). PROC FREQ generates all possible one-
way tables with the observed total sample size and number of categories. For each
possible table, PROC FREQ compares its chi-square value with the value for the ob-
served table. If the table’s chi-square value is greater than or equal to the observed
chi-square, PROC FREQ increments the exactp-value by the probability of that ta-
ble, which is calculated under the null hypothesis using the multinomial frequency
distribution. By default, the null hypothesis states that all categories have equal pro-
portions. If you specify null hypothesis proportions or frequencies using the TESTP=
or TESTF= option in the TABLES statement, then PROC FREQ calculates the exact
chi-square test based on that null hypothesis.

For binomial proportions in one-way tables, PROC FREQ computes exact confidence
limits using theF distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996). PROC FREQ computes the exact test for a binomial
proportion (H0: p = p0) by summing binomial probabilities over all alternatives. See
the section“Binomial Proportion”on page 1484 for details. By default, PROC FREQ
usesp0 = 0.5 as the null hypothesis proportion. Alternatively, you can specify the
null hypothesis proportion with the P= option in the TABLES statement.

See the section“Odds Ratio and Relative Risks for 2 x 2 Tables”on page 1488 for
details on computation of exact confidence limits for the odds ratio for2 × 2 tables.
See the section“Exact Confidence Limits for the Common Odds Ratio” on page
1504 for details on computation of exact confidence limits for the common odds ratio
for stratified2× 2 tables.

Definition of p-Values

For several tests in PROC FREQ, the test statistic is nonnegative, and large values of
the test statistic indicate a departure from the null hypothesis. Such tests include the
Pearson chi-square, the likelihood-ratio chi-square, the Mantel-Haenszel chi-square,
Fisher’s exact test for tables larger than 2× 2 tables, McNemar’s test, and the one-
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way chi-square goodness-of-fit test. The exactp-value for these nondirectional tests
is the sum of probabilities for those tables having a test statistic greater than or equal
to the value of the observed test statistic.

There are other tests where it may be appropriate to test against either a one-sided or a
two-sided alternative hypothesis. For example, when you test the null hypothesis that
the true parameter value equals 0 (T = 0), the alternative of interest may be one-sided
(T ≤ 0, or T ≥ 0) or two-sided (T 6= 0). Such tests include the Pearson correla-
tion coefficient, Spearman correlation coefficient, Jonckheere-Terpstra test, Cochran-
Armitage test for trend, simple kappa coefficient, and weighted kappa coefficient. For
these tests, PROC FREQ outputs the right-sidedp-value when the observed value of
the test statistic is greater than its expected value. The right-sidedp-value is the sum
of probabilities for those tables having a test statistic greater than or equal to the
observed test statistic. Otherwise, when the test statistic is less than or equal to its
expected value, PROC FREQ outputs the left-sidedp-value. The left-sidedp-value
is the sum of probabilities for those tables having a test statistic less than or equal to
the one observed. The one-sidedp-valueP1 can be expressed as

P1 = Prob (Test Statistic ≥ t) if t > E0(T )

P1 = Prob (Test Statistic ≤ t) if t ≤ E0(T )

wheret is the observed value of the test statistic andE0(T ) is the expected value of
the test statistic under the null hypothesis. PROC FREQ computes the two-sidedp-
value as the sum of the one-sidedp-value and the corresponding area in the opposite
tail of the distribution of the statistic, equidistant from the expected value. The two-
sidedp-valueP2 can be expressed as

P2 = Prob ( |Test Statistic− E0(T ) | ≥ | t− E0(T ) | )

If you specify the POINT option in the EXACT statement, PROC FREQ also displays
exact point probabilities for the test statistics. The exact point probability is the exact
probability that the test statistic equals the observed value.

Computational Resources

PROC FREQ uses relatively fast and efficient algorithms for exact computations.
These recently developed algorithms, together with improvements in computer
power, make it feasible now to perform exact computations for data sets where pre-
viously only asymptotic methods could be applied. Nevertheless, there are still large
problems that may require a prohibitive amount of time and memory for exact com-
putations, depending on the speed and memory available on your computer. For large
problems, consider whether exact methods are really needed or whether asymptotic
methods might give results quite close to the exact results, while requiring much less
computer time and memory. When asymptotic methods may not be sufficient for
such large problems, consider using Monte Carlo estimation of exactp-values, as
described in the section“Monte Carlo Estimation”on page 1512.
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A formula does not exist that can predict in advance how much time and memory
are needed to compute an exactp-value for a certain problem. The time and memory
required depend on several factors, including which test is being performed, the total
sample size, the number of rows and columns, and the specific arrangement of the
observations into table cells. Generally, larger problems (in terms of total sample size,
number of rows, and number of columns) tend to require more time and memory.
Additionally, for a fixed total sample size, time and memory requirements tend to
increase as the number of rows and columns increases, since this corresponds to an
increase in the number of tables in the reference set. Also for a fixed sample size, time
and memory requirements increase as the marginal row and column totals become
more homogeneous. Refer to Agresti, Mehta, and Patel (1990) and Gail and Mantel
(1977).

At any time while PROC FREQ is computing exactp-values, you can terminate
the computations by pressing the system interrupt key sequence (refer to theSAS
Companionfor your system) and choosing to stop computations. After you terminate
exact computations, PROC FREQ completes all other remaining tasks. The proce-
dure produces the requested output and reports missing values for any exactp-values
that were not computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount
of time PROC FREQ uses for exact computations. You specify a MAXTIME= value
that is the maximum amount of clock time (in seconds) that PROC FREQ can use to
compute an exactp-value. If PROC FREQ does not finish computing an exactp-value
within that time, it terminates the computation and completes all other remaining
tasks.

Monte Carlo Estimation

If you specify the option MC in the EXACT statement, PROC FREQ computes Monte
Carlo estimates of the exactp-values instead of directly computing the exactp-values.
Monte Carlo estimation can be useful for large problems that require a great amount
of time and memory for exact computations but for which asymptotic approximations
may not be sufficient. To describe the precision of each Monte Carlo estimate, PROC
FREQ provides the asymptotic standard error and100(1−α)% confidence limits. The
confidence levelα is determined by the ALPHA= option in the EXACT statement,
which, by default, equals 0.01, and produces 99% confidence limits. The N=n option
in the EXACT statement specifies the number of samples that PROC FREQ uses for
Monte Carlo estimation; the default is 10000 samples. You can specify a larger value
for n to improve the precision of the Monte Carlo estimates. Because larger values
of n generate more samples, the computation time increases. Alternatively, you can
specify a smaller value ofn to reduce the computation time.

To compute a Monte Carlo estimate of an exactp-value, PROC FREQ generates a
random sample of tables with the same total sample size, row totals, and column to-
tals as the observed table. PROC FREQ uses the algorithm of Agresti, Wackerly, and
Boyett (1979), which generates tables in proportion to their hypergeometric proba-
bilities conditional on the marginal frequencies. For each sample table, PROC FREQ
computes the value of the test statistic and compares it to the value for the observed
table. When estimating a right-sidedp-value, PROC FREQ counts all sample tables



Computational Resources � 1513

for which the test statistic is greater than or equal to the observed test statistic. Then
thep-value estimate equals the number of these tables divided by the total number of
tables sampled.

P̂MC = M / N

M = number of samples with(Test Statistic≥ t)
N = total number of samples

t = observed Test Statistic

PROC FREQ computes left-sided and two-sidedp-value estimates in a similar man-
ner. For left-sidedp-values, PROC FREQ evaluates whether the test statistic for each
sampled table is less than or equal to the observed test statistic. For two-sidedp-
values, PROC FREQ examines the sample test statistics according to the expression
for P2 given in the section“Asymptotic Tests”on page 1475. The variableM is a
binomially distributed variable withN trials and success probabilityp. It follows that
the asymptotic standard error of the Monte Carlo estimate is

se(P̂MC) =
√

P̂MC(1− P̂MC)/(N − 1)

PROC FREQ constructs asymptotic confidence limits for thep-values according to

P̂MC ± zα/2 · se(P̂MC)

wherezα/2 is the100(1−α/2) percentile of the standard normal distribution, and the
confidence levelα is determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimatêPMC equals 0, then PROC FREQ computes the
confidence limits for thep-value as

( 0, 1− α(1/N) )

When the Monte Carlo estimatêPMC equals 1, then PROC FREQ computes the
confidence limits as

( α(1/N), 1 )

Computational Resources

For each variable in a table request, PROC FREQ stores all of the levels in memory.
If all variables are numeric and not formatted, this requires about 84 bytes for each
variable level. When there are character variables or formatted numeric variables,
the memory that is required depends on the formatted variable lengths, with longer
formatted lengths requiring more memory. The number of levels for each variable is
limited only by the largest integer that your operating environment can store.
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For any single crosstabulation table requested, PROC FREQ builds the entire table in
memory, regardless of whether the table has zero cell counts. Thus, if the numeric
variablesA, B, andC each have 10 levels, PROC FREQ requires 2520 bytes to store
the variable levels for the table requestA*B*C, as follows:

3 variables * 10 levels/variable * 84 bytes/level

In addition, PROC FREQ requires 8000 bytes to store the table cell frequencies

1000 cells * 8 bytes/cell

even though there may be only 10 observations.

When the variables have many levels or when there are many multiway tables, your
computer may not have enough memory to construct the tables. If PROC FREQ
runs out of memory while constructing tables, it stops collecting levels for the vari-
able with the most levels and returns the memory that is used by that variable. The
procedure then builds the tables that do not contain the disabled variables.

If there is not enough memory for your table request and if increasing the available
memory is impractical, you can reduce the number of multiway tables or variable
levels. If you are not using the CMH or AGREE option in the TABLES statement
to compute statistics across strata, reduce the number of multiway tables by using
PROC SORT to sort the data set by one or more of the variables or by using the
DATA step to create an index for the variables. Then remove the sorted or indexed
variables from the TABLES statement and include a BY statement that uses these
variables. You can also reduce memory requirements by using a FORMAT statement
in the PROC FREQ step to reduce the number of levels. Additionally, reducing the
formatted variable lengths reduces the amount of memory that is needed to store
the variable levels. For more information on using formats, see the“Grouping with
Formats”section on page 1465.

Output Data Sets

PROC FREQ produces two types of output data sets that you can use with other
statistical and reporting procedures. These data sets are produced as follows:

• Specifying a TABLES statement with an OUT= option creates an output data
set that contains frequency or crosstabulation table counts and percentages.

• Specifying an OUTPUT statement creates an output data set that contains
statistics.

PROC FREQ does not display the output data sets. Use PROC PRINT, PROC
REPORT, or any other SAS reporting tool to display an output data set.
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Contents of the TABLES Statement Output Data Set

The OUT= option in the TABLES statement creates an output data set that contains
one observation for each combination of the variable values (or table cell) in the last
table request. By default, each observation contains the frequency and percentage for
the table cell. When the input data set contains missing values, the output data set
also contains an observation with the frequency of missing values. The output data
set includes the following variables:

• BY variables

• table request variables, such asA, B, C, andD in the table requestA*B*C*D

• COUNT, a variable containing the cell frequency

• PERCENT, a variable containing the cell percentage

If you specify the OUTEXPECT and OUTPCT options in the TABLES statement,
the output data set also contains expected frequencies and row, column, and table
percentages, respectively. The additional variables are

• EXPECTED, a variable containing the expected frequency

• PCT–TABL, a variable containing the percentage of two-way table frequency,
for n-way tables wheren > 2

• PCT–ROW, a variable containing the percentage of row frequency

• PCT–COL, a variable containing the percentage of column frequency

If you specify the OUTCUM option in the TABLES statement, the output data set
also contains cumulative frequencies and cumulative percentages for one-way tables.
The additional variables are

• CUM–FREQ, a variable containing the cumulative frequency

• CUM–PCT, a variable containing the cumulative percentage

The OUTCUM option has no effect for two-way or multiway tables.

When you submit the following statements

proc freq;
tables A A*B / out=D;

run;

the output data setD contains frequencies and percentages for the last table request,
A*B. If A has two levels (1 and 2),B has three levels (1,2, and 3), and no table cell
count is zero or missing, the output data setD includes six observations, one for each
combination ofA andB. The first observation corresponds toA=1 andB=1; the sec-
ond observation corresponds toA=1 andB=2; and so on. The data set includes the
variablesCOUNT andPERCENT. The value ofCOUNT is the number of observa-
tions with the given combination ofA andB values. The value ofPERCENT is the
percent of the total number of observations having thatA andB combination.

When PROC FREQ combines different variable values into the same formatted level,
the output data set contains the smallest internal value for the formatted level. For



1516 � Chapter 29. The FREQ Procedure

example, suppose a variableX has the values 1.1., 1.4, 1.7, 2.1, and 2.3. When you
submit the statement

format X 1.;

in a PROC FREQ step, the formatted levels listed in the frequency table forX are 1
and 2. If you create an output data set with the frequency counts, the internal values
of X are 1.1 and 1.7. To report the internal values ofX when you display the output
data set, use a format of 3.1 withX.

Contents of the OUTPUT Statement Output Data Set
The OUTPUT statement creates a SAS data set containing the statistics that PROC
FREQ computes for the last table request. You specify which statistics to store in the
output data set. There is an observation with the specified statistics for each stratum
or two-way table. If PROC FREQ computes summary statistics for a stratified table,
the output data set also contains a summary observation with those statistics.

The OUTPUT data set can include the following variables.

• BY variables

• variables that identify the stratum, such asA and B in the table request
A*B*C*D

• variables that contain the specified statistics

The output data set also includes variables with thep-values and degrees of freedom,
asymptotic standard error (ASE), or confidence limits when PROC FREQ computes
these values for a specified statistic.

The variable names for the specified statistics in the output data set are the names
of the options enclosed in underscores. PROC FREQ forms variable names for the
correspondingp-values, degrees of freedom, or confidence limits by combining the
name of the option with the appropriate prefix from the following list:

DF– degrees of freedom
E– asymptotic standard error (ASE)
L– lower confidence limit
U– upper confidence limit
E0– ASE under the null hypothesis
Z– standardized value
P– p-value
P2– two-sidedp-value
PL– left-sidedp-value
PR– right-sidedp-value
XP– exactp-value
XP2– exact two-sidedp-value
XPL– exact left-sidedp-value
XPR– exact right-sidedp-value
XPT– exact point probability
XL– exact lower confidence limit
XR– exact upper confidence limit
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For example, variable names created for the Pearson chi-square, its degrees of free-
dom, itsp-values are–PCHI– , DF–PCHI, andP–PCHI, respectively.

If the length of the prefix plus the statistic option exceeds eight characters, PROC
FREQ truncates the option so that the name of the new variable is eight characters
long.

Displayed Output

Number of Variable Levels Table

If you specify theNLEVELS option in the PROC FREQ statement, PROC FREQ
displays the “Number of Variable Levels” table. This table provides the number of
levels for all variables named in the TABLES statements. PROC FREQ determines
the variable levels from the formatted variable values. See“Grouping with Formats”
for details. The “Number of Variable Levels” table contains the following informa-
tion:

• Variable name

• Levels, which is the total number of levels of the variable

• Number of Nonmissing Levels, if there are missing levels for any of the vari-
ables

• Number of Missing Levels, if there are missing levels for any of the variables

One-Way Frequency Tables

PROC FREQ displays one-way frequency tables for all one-way table requests in the
TABLES statements, unless you specify theNOPRINToption in the PROC statement
or theNOPRINT option in the TABLES statement. For a one-way table showing
the frequency distribution of a single variable, PROC FREQ displays the following
information:

• the name of the variable and its values

• Frequency counts, giving the number of observations that have each value

• specified Test Frequency counts, if you specify theCHISQ andTESTF=op-
tions to request a chi-square goodness-of-fit test for specified frequencies

• Percent, giving the percentage of the total number of observations with that
value. (TheNOPERCENToption suppresses this information.)

• specified Test Percents, if you specify theCHISQ and TESTP= options
to request a chi-square goodness-of-fit test for specified percents. (The
NOPERCENToption suppresses this information.)

• Cumulative Frequency counts, giving the sum of the frequency counts of that
value and all other values listed above it in the table. The last cumulative fre-
quency is the total number of nonmissing observations. (TheNOCUM option
suppresses this information.)

• Cumulative Percent values, giving the percentage of the total number of ob-
servations with that value and all others previously listed in the table. (The
NOCUM or theNOPERCENToption suppresses this information.)
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The one-way table also displays the Frequency Missing, or the number of observa-
tions with missing values.

Statistics for One-Way Frequency Tables

For one-way tables, two statistical options are available in theTABLES statement.
The CHISQ option provides a chi-square goodness-of-fit test, and theBINOMIAL
option provides binomial proportion statistics. PROC FREQ displays the following
information, unless you specify theNOPRINToption in the PROC statement:

• If you specify theCHISQoption for a one-way table, PROC FREQ provides a
chi-square goodness-of-fit test, displaying the Chi-Square statistic, the degrees
of freedom (DF), and the probability value (Pr > ChiSq). If you specify the
CHISQ option in theEXACT statement, PROC FREQ also displays the ex-
act probability value for this test. If you specify thePOINT option with the
CHISQ option in the EXACT statement, PROC FREQ displays the exact point
probability for the test statistic.

• If you specify theBINOMIAL option for a one-way table, PROC FREQ dis-
plays the estimate of the binomial Proportion, which is the proportion of obser-
vations in the first class listed in the one-way table. PROC FREQ also displays
the asymptotic standard error (ASE) and the asymptotic and exact confidence
limits for this estimate. For the binomial proportion test, PROC FREQ displays
the asymptotic standard error under the null hypothesis (ASE Under H0), the
standardized test statistic (Z), and the one-sided and two-sided probability val-
ues. If you specify the BINOMIAL option in theEXACT statement, PROC
FREQ also displays the exact one-sided and two-sided probability values for
this test. If you specify thePOINT option with the BINOMIAL option in the
EXACT statement, PROC FREQ displays the exact point probability for the
test.

Multiway Tables

PROC FREQ displays all multiway table requests in theTABLES statements, unless
you specify theNOPRINToption in the PROC statement or theNOPRINToption in
the TABLES statement.

For two-way to multiway crosstabulation tables, the values of the last variable in the
table request form the table columns. The values of the next-to-last variable form the
rows. Each level (or combination of levels) of the other variables forms one stratum.

There are three ways to display multiway tables in PROC FREQ. By default, PROC
FREQ displays multiway tables as separate two-way crosstabulation tables for each
stratum of the multiway table. Also by default, PROC FREQ displays these two-
way crosstabulation tables in table cell format. Alternatively, if you specify the
CROSSLISToption, PROC FREQ displays the two-way crosstabulation tables in
ODS column format. If you specify theLIST option, PROC FREQ displays multi-
way tables in list format.
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Crosstabulation Tables

By default, PROC FREQ displays two-way crosstabulation tables in table cell format.
The row variable values are listed down the side of the table, the column variable
values are listed across the top of the table, and each row and column variable level
combination forms a table cell.

Each cell of a crosstabulation table may contain the following information:

• Frequency, giving the number of observations that have the indicated values of
the two variables. (TheNOFREQoption suppresses this information.)

• the Expected cell frequency under the hypothesis of independence, if you spec-
ify the EXPECTEDoption

• the Deviation of the cell frequency from the expected value, if you specify the
DEVIATION option

• Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic,
if you specify theCELLCHI2 option

• Tot Pct, or the cell’s percentage of the total frequency, forn-way tables when
n > 2, if you specify theTOTPCToption

• Percent, the cell’s percentage of the total frequency. (TheNOPERCENToption
suppresses this information.)

• Row Pct, or the row percentage, the cell’s percentage of the total frequency
count for that cell’s row. (TheNOROWoption suppresses this information.)

• Col Pct, or column percentage, the cell’s percentage of the total frequency
count for that cell’s column. (TheNOCOLoption suppresses this information.)

• Cumulative Col%, or cumulative column percent, if you specify theCUMCOL
option

The table also displays the Frequency Missing, or the number of observations with
missing values.

CROSSLIST Tables

If you specify theCROSSLISToption, PROC FREQ displays two-way crosstabu-
lation tables with ODS column format. Using column format, a CROSSLIST table
provides the same information (frequencies, percentages, and other statistics) as the
default crosstabulation table with cell format. But unlike the default crosstabulation
table, a CROSSLIST table has a table definition that you can customize with PROC
TEMPLATE. For more information, refer to the chapter titled “The TEMPLATE
Procedure” in theSAS Output Delivery System User’s Guide.

In the CROSSLIST table format, the rows of the display correspond to the crosstab-
ulation table cells, and the columns of the display correspond to descriptive statistics
such as frequencies and percentages. Each table cell is identified by the values of
its TABLES row and column variable levels, with all column variable levels listed
within each row variable level. The CROSSLIST table also provides row totals, col-
umn totals, and overall table totals.
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For a crosstabulation table in the CROSSLIST format, PROC FREQ displays the
following information:

• the row variable name and values

• the column variable name and values

• Frequency, giving the number of observations that have the indicated values of
the two variables. (TheNOFREQoption suppresses this information.)

• the Expected cell frequency under the hypothesis of independence, if you spec-
ify the EXPECTEDoption

• the Deviation of the cell frequency from the expected value, if you specify the
DEVIATION option

• Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic,
if you specify theCELLCHI2 option

• Total Percent, or the cell’s percentage of the total frequency, forn-way tables
whenn > 2, if you specify theTOTPCToption

• Percent, the cell’s percentage of the total frequency. (TheNOPERCENToption
suppresses this information.)

• Row Percent, the cell’s percentage of the total frequency count for that cell’s
row. (TheNOROWoption suppresses this information.)

• Column Percent, the cell’s percentage of the total frequency count for that cell’s
column. (TheNOCOLoption suppresses this information.)

The table also displays the Frequency Missing, or the number of observations with
missing values.

LIST Tables

If you specify theLIST option in the TABLES statement, PROC FREQ displays
multiway tables in a list format rather than as crosstabulation tables. The LIST option
displays the entire multiway table in one table, instead of displaying a separate two-
way table for each stratum. The LIST option is not available when you also request
statistical options. Unlike the default crosstabulation output, the LIST output does
not display row percentages, column percentages, and optional information such as
expected frequencies and cell chi-squares.

For a multiway table in list format, PROC FREQ displays the following information:

• the variable names and values

• Frequency counts, giving the number of observations with the indicated com-
bination of variable values

• Percent, the cell’s percentage of the total number of observations. (The
NOPERCENToption suppresses this information.)

• Cumulative Frequency counts, giving the sum of the frequency counts of that
cell and all other cells listed above it in the table. The last cumulative fre-
quency is the total number of nonmissing observations. (TheNOCUM option
suppresses this information.)
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• Cumulative Percent values, giving the percentage of the total number of obser-
vations for that cell and all others previously listed in the table. (TheNOCUM
or theNOPERCENToption suppresses this information.)

The table also displays the Frequency Missing, or the number of observations with
missing values.

Statistics for Multiway Tables

PROC FREQ computes statistical tests and measures for crosstabulation tables, de-
pending on which statements and options you specify. You can suppress the display
of all these results by specifying the NOPRINT option in the PROC statement. With
any of the following information, PROC FREQ also displays the Sample Size and the
Frequency Missing.

• If you specify the SCOROUT option, PROC FREQ displays the Row Scores
and Column Scores that it uses for statistical computations. The Row Scores ta-
ble displays the row variable values and the Score corresponding to each value.
The Column Scores table displays the column variable values and the corre-
sponding Scores. PROC FREQ also identifies the score type used to compute
the row and column scores. You can specify the score type with the SCORES=
option in the TABLES statement.

• If you specify the CHISQ option, PROC FREQ displays the following statistics
for each two-way table: Pearson Chi-Square, Likelihood-Ratio Chi-Square,
Continuity-Adjusted Chi-Square (for2 × 2 tables), Mantel-Haenszel Chi-
Square, the Phi Coefficient, the Contingency Coefficient, and Cramer’sV . For
each test statistic, PROC FREQ also displays the degrees of freedom (DF) and
the probability value (Prob).

• If you specify the CHISQ option for2 × 2 tables, PROC FREQ also displays
Fisher’s exact test. The test output includes the cell (1,1) frequency (F), the
exact left-sided and right-sided probability values, the table probability (P),
and the exact two-sided probability value.

• If you specify the FISHER option in the TABLES statement (or, equivalently,
the FISHER option in the EXACT statement), PROC FREQ displays Fisher’s
exact test for tables larger than2 × 2. The test output includes the table prob-
ability (P) and the probability value. In addition, PROC FREQ displays the
CHISQ output listed earlier, even if you do not also specify the CHISQ option.

• If you specify the PCHI, LRCHI, or MHCHI option in the EXACT statement,
PROC FREQ also displays the corresponding exact test: Pearson Chi-Square,
Likelihood-Ratio Chi-Square, or Mantel-Haenszel Chi-Square, respectively.
The test output includes the test statistic, the degrees of freedom (DF), and
the asymptotic and exact probability values. If you also specify the POINT
option in the EXACT statement, PROC FREQ displays the point probability
for each exact test requested. If you specify the CHISQ option in the EXACT
statement, PROC FREQ displays exact probability values for all three of these
chi-square tests.
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• If you specify the MEASURES option, PROC FREQ displays the following
statistics and their asymptotic standard errors (ASE) for each two-way
table: Gamma, Kendall’s Tau-b, Stuart’s Tau-c, Somers’D(C|R), Somers’
D(R|C), Pearson Correlation, Spearman Correlation, Lambda Asymmetric
(C|R), Lambda Asymmetric(R|C), Lambda Symmetric, Uncertainty
Coefficient (C|R), Uncertainty Coefficient (R|C), and Uncertainty
Coefficient Symmetric. If you specify the CL option, PROC FREQ also
displays confidence limits for these measures.

• If you specify the PLCORR option, PROC FREQ displays the tetrachoric cor-
relation for2× 2 tables or the polychoric correlation for larger tables. In addi-
tion, PROC FREQ displays the MEASURES output listed earlier, even if you
do not also specify the MEASURES option.

• If you specify the option GAMMA, KENTB, STUTC, SMDCR, SMDRC,
PCORR, or SCORR in the TEST statement, PROC FREQ displays asymptotic
tests for Gamma, Kendall’s Tau-b, Stuart’s Tau-c, Somers’D(C|R), Somers’
D(R|C), the Pearson Correlation, or the Spearman Correlation, respectively.
If you specify the MEASURES option in the TEST statement, PROC FREQ
displays all these asymptotic tests. The test output includes the statistic, its
asymptotic standard error (ASE), Confidence Limits, the ASE under the null
hypothesis H0, the standardized test statistic (Z), and the one-sided and two-
sided probability values.

• If you specify the PCORR or SCORR option in the EXACT statement, PROC
FREQ displays asymptotic and exact tests for the Pearson Correlation or the
Spearman Correlation, respectively. The test output includes the correlation, its
asymptotic standard error (ASE), Confidence Limits, the ASE under the null
hypothesis H0, the standardized test statistic (Z), and the asymptotic and exact
one-sided and two-sided probability values. If you also specify the POINT
option in the EXACT statement, PROC FREQ displays the point probability
for each exact test requested.

• If you specify the RISKDIFF option for2 × 2 tables, PROC FREQ displays
the Column 1 and Column 2 Risk Estimates. For each column, PROC FREQ
displays Row 1 Risk, Row 2 Risk, Total Risk, and Risk Difference, together
with their asymptotic standard errors (ASE), Asymptotic Confidence Limits,
and Exact Confidence Limits. Exact confidence limits are not available for the
risk difference.

• If you specify the MEASURES option or the RELRISK option for2×2 tables,
PROC FREQ displays Estimates of the Relative Risk for Case-Control and
Cohort studies, together with their Confidence Limits. These measures are
also known as the Odds Ratio and the Column 1 and 2 Relative Risks. If you
specify the OR option in the EXACT statement, PROC FREQ also displays
Exact Confidence Limits for the Odds Ratio.

• If you specify the TREND option, PROC FREQ displays the Cochran-
Armitage Trend Test for tables that are2 × C or R × 2. For this test, PROC
FREQ gives the Statistic (Z) and the one-sided and two-sided probability val-
ues. If you specify the TREND option in the EXACT statement, PROC FREQ
also displays the exact one-sided and two-sided probability values for this test.
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If you specify the POINT option with the TREND option in the EXACT state-
ment, PROC FREQ displays the exact point probability for the test statistic.

• If you specify the JT option, PROC FREQ displays the Jonckheere-Terpstra
Test, showing the Statistic (JT), the standardized test statistic (Z), and the one-
sided and two-sided probability values. If you specify the JT option in the
EXACT statement, PROC FREQ also displays the exact one-sided and two-
sided probability values for this test. If you specify the POINT option with
the JT option in the EXACT statement, PROC FREQ displays the exact point
probability for the test statistic.

• If you specify the AGREE option and the PRINTKWT option, PROC FREQ
displays the Kappa Coefficient Weights for square tables greater than2× 2.

• If you specify the AGREE option, for two-way tables PROC FREQ displays
McNemar’s Test and the Simple Kappa Coefficient for2× 2 tables. For square
tables larger than2 × 2, PROC FREQ displays Bowker’s Test of Symmetry,
the Simple Kappa Coefficient, and the Weighted Kappa Coefficient. For
McNemar’s Test and Bowker’s Test of Symmetry, PROC FREQ displays the
Statistic (S), the degrees of freedom (DF), and the probability value (Pr > S).
If you specify the MCNEM option in the EXACT statement, PROC FREQ
also displays the exact probability value for McNemar’s test. If you specify
the POINT option with the MCNEM option in the EXACT statement, PROC
FREQ displays the exact point probability for the test statistic. For the sim-
ple and weighted kappa coefficients, PROC FREQ displays the kappa values,
asymptotic standard errors (ASE), and Confidence Limits.

• If you specify the KAPPA or WTKAP option in the TEST statement, PROC
FREQ displays asymptotic tests for the simple kappa coefficient or the
weighted kappa coefficient, respectively. If you specify the AGREE option
in the TEST statement, PROC FREQ displays both these asymptotic tests. The
test output includes the kappa coefficient, its asymptotic standard error (ASE),
Confidence Limits, the ASE under the null hypothesis H0, the standardized test
statistic (Z), and the one-sided and two-sided probability values.

• If you specify the KAPPA or WTKAP option in the EXACT statement, PROC
FREQ displays asymptotic and exact tests for the simple kappa coefficient or
the weighted kappa coefficient, respectively. The test output includes the kappa
coefficient, its asymptotic standard error (ASE), Confidence Limits, the ASE
under the null hypothesis H0, the standardized test statistic (Z), and the asymp-
totic and exact one-sided and two-sided probability values. If you specify the
POINT option in the EXACT statement, PROC FREQ displays the point prob-
ability for each exact test requested.

• If you specify the MC option in the EXACT statement, PROC FREQ displays
Monte Carlo estimates for all exactp-values requested bystatistic-optionsin
the EXACT statement. The Monte Carlo output includes thep-value Estimate,
its Confidence Limits, the Number of Samples used to compute the Monte
Carlo estimate, and the Initial Seed for random number generation.

• If you specify the AGREE option, for multiple strata PROC FREQ displays
Overall Simple and Weighted Kappa Coefficients, with their asymptotic stan-
dard errors (ASE) and Confidence Limits. PROC FREQ also displays Tests for
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Equal Kappa Coefficients, giving the Chi-Squares, degrees of freedom (DF),
and probability values (Pr > ChiSq) for the Simple Kappa and Weighted Kappa.
For multiple strata of2× 2 tables, PROC FREQ displays Cochran’sQ, giving
the Statistic (Q), the degrees of freedom (DF), and the probability value (Pr >
Q).

• If you specify the CMH option, PROC FREQ displays Cochran-Mantel-
Haenszel Statistics for the following three alternative hypotheses: Nonzero
Correlation, Row Mean Scores Differ (ANOVA Statistic), and General
Association. For each of these statistics, PROC FREQ gives the degrees of
freedom (DF) and the probability value (Prob). For2× 2 tables, PROC FREQ
also displays Estimates of the Common Relative Risk for Case-Control and
Cohort studies, together with their confidence limits. These include both
Mantel-Haenszel and Logit stratum-adjusted estimates of the common Odds
Ratio, Column 1 Relative Risk, and Column 2 Relative Risk. Also for2 × 2
tables, PROC FREQ displays the Breslow-Day Test for Homogeneity of the
Odds Ratios. For this test, PROC FREQ gives the Chi-Square, the degrees of
freedom (DF), and the probability value (Pr > ChiSq).

• If you specify the CMH option in the TABLES statement and also specify the
COMOR option in the EXACT statement, PROC FREQ displays exact confi-
dence limits for the Common Odds Ratio for multiple strata of2 × 2 tables.
PROC FREQ also displays the Exact Test of H0: Common Odds Ratio = 1.
The test output includes the Cell (1,1) Sum (S), Mean of S Under H0,
One-sided Pr <= S, and Point Pr = S. PROC FREQ also provides exact
two-sided probability values for the test, computed according to the following
three methods: 2 * One-sided, Sum of probabilities <= Point probability, and
Pr >= |S - Mean|.

ODS Table Names

PROC FREQ assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. For more information on ODS, seeChapter 14, “Using
the Output Delivery System.”

Table 29.11lists the ODS table names together with their descriptions and the options
required to produce the tables. Note that the ALL option in the TABLES statement
invokes the CHISQ, MEASURES, and CMH options.
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Table 29.11. ODS Tables Produced in PROC FREQ

ODS Table Name Description Statement Option
BinomialProp Binomial proportion TABLES BINOMIAL (one-way tables)
BinomialPropTest Binomial proportion test TABLES BINOMIAL (one-way tables)
BreslowDayTest Breslow-Day test TABLES CMH (h× 2× 2 tables)
CMH Cochran-Mantel-Haenszel

statistics
TABLES CMH

ChiSq Chi-square tests TABLES CHISQ
CochransQ Cochran’sQ TABLES AGREE (h× 2× 2 tables)
ColScores Column scores TABLES SCOROUT
CommonOddsRatioCL Exact confidence limits

for the common odds ratio
EXACT COMOR

CommonOddsRatioTest Common odds ratio exact test EXACT COMOR
CommonRelRisks Common relative risks TABLES CMH (h× 2× 2 tables)
CrossList Column format TABLES CROSSLIST

crosstabulation table (n-way table request,n > 1)
CrossTabFreqs Crosstabulation table TABLES (n-way table request,n > 1)
EqualKappaTest Test for equal simple kappas TABLES AGREE (h× 2× 2 tables)
EqualKappaTests Tests for equal kappas TABLES AGREE (h×r×r tables,r > 2)
FishersExact Fisher’s exact test EXACT FISHER

or TABLES FISHER or EXACT
or TABLES CHISQ (2× 2 tables)

FishersExactMC Monte Carlo estimates
for Fisher’s exact test

EXACT FISHER / MC

Gamma Gamma TEST GAMMA
GammaTest Gamma test TEST GAMMA
JTTest Jonckheere-Terpstra test TABLES JT
JTTestMC Monte Carlo estimates

for the JT exact test
EXACT JT / MC

KappaStatistics Kappa statistics TABLES AGREE
(r × r tables,r > 2, and
no TEST or EXACT KAPPA)

KappaWeights Kappa weights TABLES AGREE and PRINTKWT
List List format multiway table TABLES LIST
LRChiSq Likelihood-ratio

chi-square exact test
EXACT LRCHI

LRChiSqMC Monte Carlo exact test for
likelihood-ratio chi-square

EXACT LRCHI / MC

McNemarsTest McNemar’s test TABLES AGREE (2× 2 tables)
Measures Measures of association TABLES MEASURES
MHChiSq Mantel-Haenszel

chi-square exact test
EXACT MHCHI

MHChiSqMC Monte Carlo exact test for
Mantel-Haenszel chi-square

EXACT MHCHI / MC

NLevels Number of variable levels PROC NLEVELS
OddsRatioCL Exact confidence limits

for the odds ratio
EXACT OR

OneWayChiSq One-way chi-square test TABLES CHISQ (one-way tables)
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Table 29.11. (continued)

ODS Table Name Description Statement Option
OneWayChiSqMC Monte Carlo exact test

for one-way chi-square
EXACT CHISQ / MC (one-way tables)

OneWayFreqs One-way frequencies PROC (with no TABLES stmt)
or TABLES (one-way table request)

OverallKappa Overall simple kappa TABLES AGREE (h× 2× 2 tables)
OverallKappas Overall kappa coefficients TABLES AGREE (h×r×r tables,r > 2)
PearsonChiSq Pearson chi-square

exact test
EXACT PCHI

PearsonChiSqMC Monte Carlo exact test
for Pearson chi-square

EXACT PCHI / MC

PearsonCorr Pearson correlation TEST PCORR
or EXACT PCORR

PearsonCorrMC Monte Carlo exact test
for Pearson correlation

EXACT PCORR / MC

PearsonCorrTest Pearson correlation test TEST PCORR
or EXACT PCORR

RelativeRisks Relative risk estimates TABLES RELRISK or MEASURES
(2× 2 tables)

RiskDiffCol1 Column 1 risk estimates TABLES RISKDIFF (2× 2 tables)
RiskDiffCol2 Column 2 risk estimates TABLES RISKDIFF (2× 2 tables)
RowScores Row scores TABLES SCOROUT
SimpleKappa Simple kappa coefficient TEST KAPPA

or EXACT KAPPA
SimpleKappaMC Monte Carlo exact test

for simple kappa
EXACT KAPPA / MC

SimpleKappaTest Simple kappa test TEST KAPPA
or EXACT KAPPA

SomersDCR Somers’D(C|R) TEST SMDCR
SomersDCRTest Somers’D(C|R) test TEST SMDCR
SomersDRC Somers’D(R|C) TEST SMDRC
SomersDRCTest Somers’D(R|C) test TEST SMDRC
SpearmanCorr Spearman correlation TEST SCORR

or EXACT SCORR
SpearmanCorrMC Monte Carlo exact test

for Spearman correlation
EXACT SCORR / MC

SpearmanCorrTest Spearman correlation test TEST SCORR
or EXACT SCORR

SymmetryTest Test of symmetry TABLES AGREE
TauB Kendall’s tau-b TEST KENTB
TauBTest Kendall’s tau-b test TEST KENTB
TauC Stuart’s tau-c TEST STUTC
TauCTest Stuart’s tau-c test TEST STUTC
TrendTest Cochran-Armitage test

for trend
TABLES TREND
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Table 29.11. (continued)

ODS Table Name Description Statement Option
TrendTestMC Monte Carlo exact test

for trend
EXACT TREND / MC

WeightedKappa Weighted kappa TEST WTKAP
or EXACT WTKAP

WeightedKappaMC Monte Carlo exact test
for weighted kappa

EXACT WTKAP / MC

WeightedKappaTest Weighted kappa test TEST WTKAP
or EXACT WTKAP

Examples

Example 29.1. Creating an Output Data Set with Table Cell
Frequencies

The eye and hair color of children from two different regions of Europe are recorded
in the data setColor. Instead of recording one observation per child, the data are
recorded as cell counts, where the variableCount contains the number of children
exhibiting each of the 15 eye and hair color combinations. The data set does not
include missing combinations.

data Color;
input Region Eyes $ Hair $ Count @@;

label Eyes =’Eye Color’
Hair =’Hair Color’
Region=’Geographic Region’;

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

The following statements read theColor data set and create an output data set con-
taining the frequencies, percentages, and expected cell frequencies of the Eyes by
Hair two-way table. The TABLES statement requests three tables:Eyes andHair
frequency tables and anEyes by Hair crosstabulation table. The OUT= option
creates theFreqCnt data set, which contains the crosstabulation table frequencies.
The OUTEXPECT option outputs the expected cell frequencies toFreqCnt, and the
SPARSE option includes the zero cell counts. The WEIGHT statement specifies
thatCount contains the observation weights. These statements createOutput 29.1.1
throughOutput 29.1.3.
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proc freq data=Color;
weight Count;
tables Eyes Hair Eyes*Hair / out=FreqCnt outexpect sparse;
title1 ’Eye and Hair Color of European Children’;

run;
proc print data=FreqCnt noobs;

title2 ’Output Data Set from PROC FREQ’;
run;

Output 29.1.1displays the two frequency tables produced, one showing the distribu-
tion of eye color, and one showing the distribution of hair color. By default, PROC
FREQ lists the variables values in alphabetical order. The ’Eyes*Hair’ specification
produces a crosstabulation table, shown inOutput 29.1.2, with eye color defining the
table rows and hair color defining the table columns. A zero cell count for green eyes
and black hair indicates that this eye and hair color combination does not occur in the
data.

The output data set (Output 29.1.3) contains frequency counts and percentages for the
last table. The data set also includes an observation for the zero cell count (SPARSE)
and a variable with the expected cell frequency for each table cell (OUTEXPECT).

Output 29.1.1. Frequency Tables

Eye and Hair Color of European Children

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
----------------------------------------------------------
blue 222 29.13 222 29.13
brown 341 44.75 563 73.88
green 199 26.12 762 100.00

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent
-----------------------------------------------------------
black 22 2.89 22 2.89
dark 182 23.88 204 26.77
fair 228 29.92 432 56.69
medium 217 28.48 649 85.17
red 113 14.83 762 100.00
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Output 29.1.2. Crosstabulation Table

Eye and Hair Color of European Children

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency|
Percent |
Row Pct |
Col Pct |black |dark |fair |medium |red | Total
---------+--------+--------+--------+--------+--------+
blue | 6 | 51 | 69 | 68 | 28 | 222

| 0.79 | 6.69 | 9.06 | 8.92 | 3.67 | 29.13
| 2.70 | 22.97 | 31.08 | 30.63 | 12.61 |
| 27.27 | 28.02 | 30.26 | 31.34 | 24.78 |

---------+--------+--------+--------+--------+--------+
brown | 16 | 94 | 90 | 94 | 47 | 341

| 2.10 | 12.34 | 11.81 | 12.34 | 6.17 | 44.75
| 4.69 | 27.57 | 26.39 | 27.57 | 13.78 |
| 72.73 | 51.65 | 39.47 | 43.32 | 41.59 |

---------+--------+--------+--------+--------+--------+
green | 0 | 37 | 69 | 55 | 38 | 199

| 0.00 | 4.86 | 9.06 | 7.22 | 4.99 | 26.12
| 0.00 | 18.59 | 34.67 | 27.64 | 19.10 |
| 0.00 | 20.33 | 30.26 | 25.35 | 33.63 |

---------+--------+--------+--------+--------+--------+
Total 22 182 228 217 113 762

2.89 23.88 29.92 28.48 14.83 100.00

Output 29.1.3. OUT= Data Set

Output Data Set from PROC FREQ

Eyes Hair COUNT EXPECTED PERCENT

blue black 6 6.409 0.7874
blue dark 51 53.024 6.6929
blue fair 69 66.425 9.0551
blue medium 68 63.220 8.9239
blue red 28 32.921 3.6745
brown black 16 9.845 2.0997
brown dark 94 81.446 12.3360
brown fair 90 102.031 11.8110
brown medium 94 97.109 12.3360
brown red 47 50.568 6.1680
green black 0 5.745 0.0000
green dark 37 47.530 4.8556
green fair 69 59.543 9.0551
green medium 55 56.671 7.2178
green red 38 29.510 4.9869
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Example 29.2. Computing Chi-Square Tests for One-Way
Frequency Tables

This example examines whether the children’s hair color (fromExample 29.1on page
1527) has a specified multinomial distribution for the two regions. The hypothesized
distribution for hair color is 30% fair, 12% red, 30% medium, 25% dark, and 3%
black.

In order to test the hypothesis for each region, the data are first sorted byRegion.
Then the FREQ procedure uses a BY statement to produce a separate table for each
BY group (Region). The option ORDER=DATA orders the frequency table values
(hair color) by their order in the data set. The TABLES statement requests a fre-
quency table for hair color, and the option NOCUM suppresses the display of the
cumulative frequencies and percentages. The TESTP= option specifies the hypothe-
sized percentages for the chi-square test; the number of percentages specified equals
the number of table levels, and the percentages sum to 100. The following statements
produceOutput 29.2.1.

proc sort data=Color;
by Region;

run;
proc freq data=Color order=data;

weight Count;
tables Hair / nocum testp=(30 12 30 25 3);
by Region;
title ’Hair Color of European Children’;

run;

The frequency tables inOutput 29.2.1list the variable values (hair color) in the order
in which they appear in the data set. The “Test Percent” column lists the hypothesized
percentages for the chi-square test. Always check that you have ordered the TESTP=
percentages to correctly match the order of the variable levels.

PROC FREQ computes a chi-square statistic for each region. The chi-square statistic
is significant at the 0.05 level for Region 2 (p=0.0003) but not for Region 1. This
indicates a significant departure from the hypothesized percentages in Region 2.
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Output 29.2.1. One-Way Frequency Table with BY Groups

Hair Color of European Children

----------------------------- Geographic Region=1 ------------------------------

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent
-------------------------------------------
fair 76 30.89 30.00
red 19 7.72 12.00
medium 83 33.74 30.00
dark 65 26.42 25.00
black 3 1.22 3.00

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square 7.7602
DF 4
Pr > ChiSq 0.1008

Sample Size = 246

Hair Color of European Children

----------------------------- Geographic Region=2 ------------------------------

Hair Color

Test
Hair Frequency Percent Percent
-------------------------------------------
fair 152 29.46 30.00
red 94 18.22 12.00
medium 134 25.97 30.00
dark 117 22.67 25.00
black 19 3.68 3.00

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square 21.3824
DF 4
Pr > ChiSq 0.0003

Sample Size = 516
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Example 29.3. Computing Binomial Proportions for One-Way
Frequency Tables

The binomial proportion is computed as the proportion of observations for the first
level of the variable that you are studying. The following statements compute the
proportion of children with brown eyes (from the data set inExample 29.1on page
1527) and test this value against the hypothesis that the proportion is 50%. Also,
these statements test whether the proportion of children with fair hair is 28%.

proc freq data=Color order=freq;
weight Count;
tables Eyes / binomial alpha=.1;
tables Hair / binomial(p=.28);
title ’Hair and Eye Color of European Children’;

run;

The first TABLES statement produces a frequency table for eye color. The
BINOMIAL option computes the binomial proportion and confidence limits, and it
tests the hypothesis that the proportion for the first eye color level (brown) is 0.5. The
option ALPHA=.1 specifies that 90% confidence limits should be computed. The
second TABLES statement creates a frequency table for hair color and computes the
binomial proportion and confidence limits, but it tests that the proportion for the first
hair color (fair) is 0.28. These statements produceOutput 29.3.1andOutput 29.3.2.

The frequency table inOutput 29.3.1displays the variable values in order of descend-
ing frequency count. Since the first variable level is ’brown’, PROC FREQ computes
the binomial proportion of children with brown eyes. PROC FREQ also computes its
asymptotic standard error (ASE), and asymptotic and exact 90% confidence limits.
If you do not specify the ALPHA= option, then PROC FREQ computes the default
95% confidence limits.

Because the value ofZ is less than zero, PROC FREQ computes a left-sidedp-value
(0.0019). This smallp-value supports the alternative hypothesis that the true value of
the proportion of children with brown eyes is less than 50%.

Output 29.3.2displays the results from the second TABLES statement. PROC FREQ
computes the default 95% confidence limits since the ALPHA= option is not spec-
ified. The value ofZ is greater than zero, so PROC FREQ computes a right-sided
p-value (0.1188). This largep-value provides insufficient evidence to reject the null
hypothesis that the proportion of children with fair hair is 28%.
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Output 29.3.1. Binomial Proportion for Eye Color

Hair and Eye Color of European Children

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
----------------------------------------------------------
brown 341 44.75 341 44.75
blue 222 29.13 563 73.88
green 199 26.12 762 100.00

Binomial Proportion
for Eyes = brown

--------------------------------
Proportion 0.4475
ASE 0.0180
90% Lower Conf Limit 0.4179
90% Upper Conf Limit 0.4771

Exact Conf Limits
90% Lower Conf Limit 0.4174
90% Upper Conf Limit 0.4779

Test of H0: Proportion = 0.5

ASE under H0 0.0181
Z -2.8981
One-sided Pr < Z 0.0019
Two-sided Pr > |Z| 0.0038

Sample Size = 762
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Output 29.3.2. Binomial Proportion for Hair Color

Hair and Eye Color of European Children

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent
-----------------------------------------------------------
fair 228 29.92 228 29.92
medium 217 28.48 445 58.40
dark 182 23.88 627 82.28
red 113 14.83 740 97.11
black 22 2.89 762 100.00

Binomial Proportion
for Hair = fair

--------------------------------
Proportion 0.2992
ASE 0.0166
95% Lower Conf Limit 0.2667
95% Upper Conf Limit 0.3317

Exact Conf Limits
95% Lower Conf Limit 0.2669
95% Upper Conf Limit 0.3331

Test of H0: Proportion = 0.28

ASE under H0 0.0163
Z 1.1812
One-sided Pr > Z 0.1188
Two-sided Pr > |Z| 0.2375

Sample Size = 762
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Example 29.4. Analyzing a 2x2 Contingency Table

This example computes chi-square tests and Fisher’s exact test to compare the prob-
ability of coronary heart disease for two types of diet. It also estimates the relative
risks and computes exact confidence limits for the odds ratio.

The data setFatComp contains hypothetical data for a case-control study of high
fat diet and the risk of coronary heart disease. The data are recorded as cell counts,
where the variableCount contains the frequencies for each exposure and response
combination. The data set is sorted in descending order by the variablesExposure
and Response, so that the first cell of the2 × 2 table contains the frequency of
positive exposure and positive response. The FORMAT procedure creates formats to
identify the type of exposure and response with character values.

proc format;
value ExpFmt 1=’High Cholesterol Diet’

0=’Low Cholesterol Diet’;
value RspFmt 1=’Yes’

0=’No’;
run;

data FatComp;
input Exposure Response Count;
label Response=’Heart Disease’;
datalines;

0 0 6
0 1 2
1 0 4
1 1 11
;

proc sort data=FatComp;
by descending Exposure descending Response;

run;

In the following statements, the TABLES statement creates a two-way table, and the
option ORDER=DATA orders the contingency table values by their order in the data
set. The CHISQ option produces several chi-square tests, while the RELRISK option
produces relative risk measures. The EXACT statement creates the exact Pearson chi-
square test and exact confidence limits for the odds ratio. These statements produce
Output 29.4.1throughOutput 29.4.3.

proc freq data=FatComp order=data;
weight Count;
tables Exposure*Response / chisq relrisk;
exact pchi or;
format Exposure ExpFmt. Response RspFmt.;
title ’Case-Control Study of High Fat/Cholesterol Diet’;

run;
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Output 29.4.1. Contingency Table

Case-Control Study of High Fat/Cholesterol Diet

The FREQ Procedure

Table of Exposure by Response

Exposure Response(Heart Disease)

Frequency |
Percent |
Row Pct |
Col Pct |Yes |No | Total
-----------------+--------+--------+
High Cholesterol | 11 | 4 | 15

Diet | 47.83 | 17.39 | 65.22
| 73.33 | 26.67 |
| 84.62 | 40.00 |

-----------------+--------+--------+
Low Cholesterol | 2 | 6 | 8
Diet | 8.70 | 26.09 | 34.78

| 25.00 | 75.00 |
| 15.38 | 60.00 |

-----------------+--------+--------+
Total 13 10 23

56.52 43.48 100.00

The contingency table inOutput 29.4.1displays the variable values so that the first
table cell contains the frequency for the first cell in the data set, the frequency of
positive exposure and positive response.
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Output 29.4.2. Chi-Square Statistics

Case-Control Study of High Fat/Cholesterol Diet

Statistics for Table of Exposure by Response

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.9597 0.0259
Likelihood Ratio Chi-Square 1 5.0975 0.0240
Continuity Adj. Chi-Square 1 3.1879 0.0742
Mantel-Haenszel Chi-Square 1 4.7441 0.0294
Phi Coefficient 0.4644
Contingency Coefficient 0.4212
Cramer’s V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test
----------------------------------
Chi-Square 4.9597
DF 1
Asymptotic Pr > ChiSq 0.0259
Exact Pr >= ChiSq 0.0393

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9967
Right-sided Pr >= F 0.0367

Table Probability (P) 0.0334
Two-sided Pr <= P 0.0393

Sample Size = 23

Output 29.4.2displays the chi-square statistics. Since the expected counts in some
of the table cells are small, PROC FREQ gives a warning that the asymptotic chi-
square tests may not be appropriate. In this case, the exact tests are appropriate.
The alternative hypothesis for this analysis states that coronary heart disease is more
likely to be associated with a high fat diet, so a one-sided test is desired. Fisher’s
exact right-sided test analyzes whether the probability of heart disease in the high fat
group exceeds the probability of heart disease in the low fat group; since thisp-value
is small, the alternative hypothesis is supported.
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Output 29.4.3. Relative Risk

Case-Control Study of High Fat/Cholesterol Diet

Statistics for Table of Exposure by Response

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 8.2500 1.1535 59.0029
Cohort (Col1 Risk) 2.9333 0.8502 10.1204
Cohort (Col2 Risk) 0.3556 0.1403 0.9009

Odds Ratio (Case-Control Study)
-----------------------------------
Odds Ratio 8.2500

Asymptotic Conf Limits
95% Lower Conf Limit 1.1535
95% Upper Conf Limit 59.0029

Exact Conf Limits
95% Lower Conf Limit 0.8677
95% Upper Conf Limit 105.5488

Sample Size = 23

The odds ratio, displayed inOutput 29.4.3, provides an estimate of the relative risk
when an event is rare. This estimate indicates that the odds of heart disease is 8.25
times higher in the high fat diet group; however, the wide confidence limits indicate
that this estimate has low precision.

Example 29.5. Creating an Output Data Set Containing Chi-
Square Statistics

This example uses theColor data fromExample 29.1(page 1527) to output the
Pearson chi-square and the likelihood-ratio chi-square statistics to a SAS data set.
The following statements create a two-way table of eye color versus hair color.

proc freq data=Color order=data;
weight Count;
tables Eyes*Hair / chisq expected cellchi2 norow nocol;
output out=ChiSqData pchi lrchi n nmiss;
title ’Chi-Square Tests for 3 by 5 Table of Eye and Hair Color’;

run;
proc print data=ChiSqData noobs;

title1 ’Chi-Square Statistics for Eye and Hair Color’;
title2 ’Output Data Set from the FREQ Procedure’;

run;

The CHISQ option produces chi-square tests, the EXPECTED option displays ex-
pected cell frequencies in the table, and the CELLCHI2 option displays the cell con-
tribution to the chi-square. The NOROW and NOCOL options suppress the display
of row and column percents in the table.
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The OUTPUT statement creates the ChiSqData data set with eight variables: the N
option stores the number of nonmissing observations, the NMISS option stores the
number of missing observations, and the PCHI and LRCHI options store Pearson
and likelihood-ratio chi-square statistics, respectively, together with their degrees of
freedom andp-values.

The preceding statements produceOutput 29.5.1andOutput 29.5.2.

Output 29.5.1. Contingency Table

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

The FREQ Procedure

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency |
Expected |
Cell Chi-Square|
Percent |fair |red |medium |dark |black | Total
---------------+--------+--------+--------+--------+--------+
blue | 69 | 28 | 68 | 51 | 6 | 222

| 66.425 | 32.921 | 63.22 | 53.024 | 6.4094 |
| 0.0998 | 0.7357 | 0.3613 | 0.0772 | 0.0262 |
| 9.06 | 3.67 | 8.92 | 6.69 | 0.79 | 29.13

---------------+--------+--------+--------+--------+--------+
green | 69 | 38 | 55 | 37 | 0 | 199

| 59.543 | 29.51 | 56.671 | 47.53 | 5.7454 |
| 1.5019 | 2.4422 | 0.0492 | 2.3329 | 5.7454 |
| 9.06 | 4.99 | 7.22 | 4.86 | 0.00 | 26.12

---------------+--------+--------+--------+--------+--------+
brown | 90 | 47 | 94 | 94 | 16 | 341

| 102.03 | 50.568 | 97.109 | 81.446 | 9.8451 |
| 1.4187 | 0.2518 | 0.0995 | 1.935 | 3.8478 |
| 11.81 | 6.17 | 12.34 | 12.34 | 2.10 | 44.75

---------------+--------+--------+--------+--------+--------+
Total 228 113 217 182 22 762

29.92 14.83 28.48 23.88 2.89 100.00

The contingency table inOutput 29.5.1displays eye and hair color in the order in
which they appear in theColor data set. The Pearson chi-square statistic inOutput
29.5.2provides evidence of an association between eye and hair color (p=0.0073).
The cell chi-square values show that most of the association is due to more green-
eyed children with fair or red hair and fewer with dark or black hair. The opposite
occurs with the brown-eyed children.
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Output 29.5.2. Chi-Square Statistics

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

Statistics for Table of Eyes by Hair

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 8 20.9248 0.0073
Likelihood Ratio Chi-Square 8 25.9733 0.0011
Mantel-Haenszel Chi-Square 1 3.7838 0.0518
Phi Coefficient 0.1657
Contingency Coefficient 0.1635
Cramer’s V 0.1172

Sample Size = 762

Output 29.5.3. Output Data Set

Chi-Square Statistics for Eye and Hair Color
Output Data Set from the FREQ Procedure

N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424

The OUT= data set is displayed inOutput 29.5.3. It contains one observation with
the sample size, the number of missing values, and the chi-square statistics and cor-
responding degrees of freedom andp-values as inOutput 29.5.2.

Example 29.6. Computing Cochran-Mantel-Haenszel
Statistics for a Stratified Table

The data setMigraine contains hypothetical data for a clinical trial of migraine treat-
ment. Subjects of both genders receive either a new drug therapy or a placebo. Their
response to treatment is coded as ’Better’ or ’Same’. The data are recorded as cell
counts, and the number of subjects for each treatment and response combination is
recorded in the variableCount.

data Migraine;
input Gender $ Treatment $ Response $ Count @@;
datalines;

female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19
;
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The following statements create a three-way table stratified byGender, where
Treatment forms the rows andResponse forms the columns. The CMH option
produces the Cochran-Mantel-Haenszel statistics. For this stratified2× 2 table, esti-
mates of the common relative risk and the Breslow-Day test for homogeneity of the
odds ratios are also displayed. The NOPRINT option suppresses the display of the
contingency tables. These statements produceOutput 29.6.1throughOutput 29.6.3.

proc freq data=Migraine;
weight Count;
tables Gender*Treatment*Response / cmh noprint;
title ’Clinical Trial for Treatment of Migraine Headaches’;

run;

Output 29.6.1. Cochran-Mantel-Haenszel Statistics

Clinical Trial for Treatment of Migraine Headaches

The FREQ Procedure

Summary Statistics for Treatment by Response
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.3052 0.0040
2 Row Mean Scores Differ 1 8.3052 0.0040
3 General Association 1 8.3052 0.0040

Total Sample Size = 106

For a stratified2 × 2 table, the three CMH statistics displayed inOutput 29.6.1test
the same hypothesis. The significantp-value (0.004) indicates that the association
between treatment and response remains strong after adjusting for gender.
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Output 29.6.2. CMH Option: Relative Risks

Clinical Trial for Treatment of Migraine Headaches

Summary Statistics for Treatment by Response
Controlling for Gender

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 3.3132 1.4456 7.5934

(Odds Ratio) Logit 3.2941 1.4182 7.6515

Cohort Mantel-Haenszel 2.1636 1.2336 3.7948
(Col1 Risk) Logit 2.1059 1.1951 3.7108

Cohort Mantel-Haenszel 0.6420 0.4705 0.8761
(Col2 Risk) Logit 0.6613 0.4852 0.9013

Total Sample Size = 106

The CMH option also produces a table of relative risks, as shown inOutput 29.6.2.
Because this is a prospective study, the relative risk estimate assesses the effectiveness
of the new drug; the “Cohort (Col1 Risk)” values are the appropriate estimates for the
first column, or the risk of improvement. The probability of migraine improvement
with the new drug is just over two times the probability of improvement with the
placebo.

Output 29.6.3. CMH Option: Breslow-Day Test

Clinical Trial for Treatment of Migraine Headaches

Summary Statistics for Treatment by Response
Controlling for Gender

Breslow-Day Test for
Homogeneity of the Odds Ratios
------------------------------
Chi-Square 1.4929
DF 1
Pr > ChiSq 0.2218

Total Sample Size = 106

The largep-value for the Breslow-Day test (0.2218) inOutput 29.6.3indicates no
significant gender difference in the odds ratios.
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Example 29.7. Computing the Cochran-Armitage Trend Test

The data setPain contains hypothetical data for a clinical trial of a drug therapy
to control pain. The clinical trial investigates whether adverse responses increase
with larger drug doses. Subjects receive either a placebo or one of four drug doses.
An adverse response is recorded asAdverse=’Yes’; otherwise, it is recorded as
Adverse=’No’. The number of subjects for each drug dose and response combi-
nation is contained in the variableCount.

data pain;
input Dose Adverse $ Count @@;
datalines;

0 No 26 0 Yes 6
1 No 26 1 Yes 7
2 No 23 2 Yes 9
3 No 18 3 Yes 14
4 No 9 4 Yes 23
;

The TABLES statement in the following program produces a two-way table. The
MEASURES option produces measures of association, and the CL option produces
confidence limits for these measures. The TREND option tests for a trend across the
ordinal values of theDose variable with the Cochran-Armitage test. The EXACT
statement produces exactp-values for this test, and the MAXTIME= option termi-
nates the exact computations if they do not complete within 60 seconds. The TEST
statement computes an asymptotic test for Somer’sD(C|R). These statements pro-
duceOutput 29.7.1throughOutput 29.7.3.

proc freq data=Pain;
weight Count;
tables Dose*Adverse / trend measures cl;
test smdcr;
exact trend / maxtime=60;
title1 ’Clinical Trial for Treatment of Pain’;

run;
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Output 29.7.1. Contingency Table

Clinical Trial for Treatment of Pain

The FREQ Procedure

Table of Dose by Adverse

Dose Adverse

Frequency|
Percent |
Row Pct |
Col Pct |No |Yes | Total
---------+--------+--------+

0 | 26 | 6 | 32
| 16.15 | 3.73 | 19.88
| 81.25 | 18.75 |
| 25.49 | 10.17 |

---------+--------+--------+
1 | 26 | 7 | 33

| 16.15 | 4.35 | 20.50
| 78.79 | 21.21 |
| 25.49 | 11.86 |

---------+--------+--------+
2 | 23 | 9 | 32

| 14.29 | 5.59 | 19.88
| 71.88 | 28.13 |
| 22.55 | 15.25 |

---------+--------+--------+
3 | 18 | 14 | 32

| 11.18 | 8.70 | 19.88
| 56.25 | 43.75 |
| 17.65 | 23.73 |

---------+--------+--------+
4 | 9 | 23 | 32

| 5.59 | 14.29 | 19.88
| 28.13 | 71.88 |
| 8.82 | 38.98 |

---------+--------+--------+
Total 102 59 161

63.35 36.65 100.00

The “Row Pct” values inOutput 29.7.1show the expected increasing trend in the
proportion of adverse effects due to increasing dosage (from 18.75% to 71.88%).
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Output 29.7.2. Measures of Association

Clinical Trial for Treatment of Pain

Statistics for Table of Dose by Adverse

95%
Statistic Value ASE Confidence Limits
----------------------------------------------------------------------------
Gamma 0.5313 0.0935 0.3480 0.7146
Kendall’s Tau-b 0.3373 0.0642 0.2114 0.4631
Stuart’s Tau-c 0.4111 0.0798 0.2547 0.5675

Somers’ D C|R 0.2569 0.0499 0.1592 0.3547
Somers’ D R|C 0.4427 0.0837 0.2786 0.6068

Pearson Correlation 0.3776 0.0714 0.2378 0.5175
Spearman Correlation 0.3771 0.0718 0.2363 0.5178

Lambda Asymmetric C|R 0.2373 0.0837 0.0732 0.4014
Lambda Asymmetric R|C 0.1250 0.0662 0.0000 0.2547
Lambda Symmetric 0.1604 0.0621 0.0388 0.2821

Uncertainty Coefficient C|R 0.1261 0.0467 0.0346 0.2175
Uncertainty Coefficient R|C 0.0515 0.0191 0.0140 0.0890
Uncertainty Coefficient Symmetric 0.0731 0.0271 0.0199 0.1262

Somers’ D C|R
--------------------------------
Somers’ D C|R 0.2569
ASE 0.0499
95% Lower Conf Limit 0.1592
95% Upper Conf Limit 0.3547

Test of H0: Somers’ D C|R = 0

ASE under H0 0.0499
Z 5.1511
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Sample Size = 161

Output 29.7.2displays the measures of association produced by the MEASURES
option. Somer’sD(C|R) measures the association treating the column variable
(Adverse) as the response and the row variable (Dose) as a predictor. Because the
asymptotic 95% confidence limits do not contain zero, this indicates a strong posi-
tive association. Similarly, the Pearson and Spearman correlation coefficients show
evidence of a strong positive association, as hypothesized.
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Output 29.7.3. Trend Test

Clinical Trial for Treatment of Pain

Statistics for Table of Dose by Adverse

Cochran-Armitage Trend Test
-------------------------------
Statistic (Z) -4.7918

Asymptotic Test
One-sided Pr < Z <.0001
Two-sided Pr > |Z| <.0001

Exact Test
One-sided Pr <= Z 7.237E-07
Two-sided Pr >= |Z| 1.324E-06

Sample Size = 161

The Cochran-Armitage test (Output 29.7.3) supports the trend hypothesis. The small
left-sidedp-values for the Cochran-Armitage test indicate that the probability of the
Column 1 level (Adverse=’No’) decreases asDose increases or, equivalently, that
the probability of the Column 2 level (Adverse=’Yes’) increases asDose increases.
The two-sidedp-value tests against either an increasing or decreasing alternative.
This is an appropriate hypothesis when you want to determine whether the drug has
progressive effects on the probability of adverse effects but the direction is unknown.

Example 29.8. Computing Friedman’s Chi-Square Statistic

Friedman’s test is a nonparametric test for treatment differences in a randomized
complete block design. Each block of the design may be a subject or a homogeneous
group of subjects. If blocks are groups of subjects, the number of subjects in each
block must equal the number of treatments. Treatments are randomly assigned to
subjects within each block. If there is one subject per block, then the subjects are re-
peatedly measured once under each treatment. The order of treatments is randomized
for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH
statistic when the analysis uses rank scores (SCORES=RANK). The three-way table
uses subject (or subject group) as the stratifying variable, treatment as the row vari-
able, and response as the column variable. PROC FREQ handles ties by assigning
midranks to tied response values. If there are multiple subjects per treatment in each
block, the ANOVA CMH statistic is a generalization of Friedman’s test.

The data setHypnosis contains data from a study investigating whether hypnosis has
the same effect on skin potential (measured in millivolts) for four emotions (Lehmann
1975, p. 264). Eight subjects are asked to display fear, joy, sadness, and calmness
under hypnosis. The data are recorded as one observation per subject for each emo-
tion.
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data Hypnosis;
length Emotion $ 10;
input Subject Emotion $ SkinResponse @@;
datalines;

1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8
;

In the following statements, the TABLES statement creates a three-way table strat-
ified by Subject and a two-way table; the variablesEmotion andSkinResponse
form the rows and columns of each table. The CMH2 option produces the first two
Cochran-Mantel-Haenszel statistics, the option SCORES=RANK specifies that rank
scores are used to compute these statistics, and the NOPRINT option suppresses the
contingency tables. These statements produceOutput 29.8.1andOutput 29.8.2.

proc freq data=Hypnosis;
tables Subject*Emotion*SkinResponse

/ cmh2 scores=rank noprint;
run;

Output 29.8.1. CMH Statistics: Stratifying by Subject

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.2400 0.6242
2 Row Mean Scores Differ 3 6.4500 0.0917

Total Sample Size = 32

Because the CMH statistics inOutput 29.8.1are based on rank scores, the Row Mean
Scores Differ statistic is identical to Friedman’s chi-square (Q = 6.45). Thep-value
of 0.0917 indicates that differences in skin potential response for different emotions
are significant at the 10% level but not at the 5% level.
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Output 29.8.2. CMH Statistics: No Stratification

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.0001 0.9933
2 Row Mean Scores Differ 3 0.5678 0.9038

Total Sample Size = 32

When you do not stratify by subject, the Row Mean Scores Differ CMH statistic is
identical to a Kruskal-Wallis test and is not significant (p=0.9038 inOutput 29.8.2).
Thus, adjusting for subject is critical to reducing the background variation due to
subject differences.

Example 29.9. Testing Marginal Homogeneity with
Cochran’s Q

When a binary response is measured several times or under different conditions,
Cochran’sQ tests that the marginal probability of a positive response is unchanged
across the times or conditions. When there are more than two response categories,
you can use the CATMOD procedure to fit a repeated-measures model.

The data setDrugs contains data for a study of three drugs to treat a chronic disease
(Agresti 1990). Forty-six subjects receive drugs A, B, and C. The response to each
drug is either favorable (’F’) or unfavorable (’U’).

proc format;
value $ResponseFmt ’F’=’Favorable’

’U’=’Unfavorable’;

data drugs;
input Drug_A $ Drug_B $ Drug_C $ Count @@;
datalines;

F F F 6 U F F 2
F F U 16 U F U 4
F U F 2 U U F 6
F U U 4 U U U 6
;
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The following statements create one-way frequency tables of the responses to each
drug. The AGREE option produces Cochran’sQ and other measures of agreement for
the three-way table. These statements produceOutput 29.9.1throughOutput 29.9.3.

proc freq data=Drugs;
weight Count;
tables Drug_A Drug_B Drug_C / nocum;
tables Drug_A*Drug_B*Drug_C / agree noprint;
format Drug_A Drug_B Drug_C $ResponseFmt.;
title ’Study of Three Drug Treatments for a Chronic Disease’;

run;

Output 29.9.1. One-Way Frequency Tables

Study of Three Drug Treatments for a Chronic Disease

The FREQ Procedure

Drug_A Frequency Percent
------------------------------------
Favorable 28 60.87
Unfavorable 18 39.13

Drug_B Frequency Percent
------------------------------------
Favorable 28 60.87
Unfavorable 18 39.13

Drug_C Frequency Percent
------------------------------------
Favorable 16 34.78
Unfavorable 30 65.22

The one-way frequency tables inOutput 29.9.1provide the marginal response for
each drug. For drugs A and B, 61% of the subjects reported a favorable response
while 35% of the subjects reported a favorable response to drug C.
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Output 29.9.2. Measures of Agreement

Study of Three Drug Treatments for a Chronic Disease

Statistics for Table 1 of Drug_B by Drug_C
Controlling for Drug_A=Favorable

McNemar’s Test
------------------------
Statistic (S) 10.8889
DF 1
Pr > S 0.0010

Simple Kappa Coefficient
--------------------------------
Kappa -0.0328
ASE 0.1167
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1960

Sample Size = 28

Statistics for Table 2 of Drug_B by Drug_C
Controlling for Drug_A=Unfavorable

McNemar’s Test
-----------------------
Statistic (S) 0.4000
DF 1
Pr > S 0.5271

Simple Kappa Coefficient
--------------------------------
Kappa -0.1538
ASE 0.2230
95% Lower Conf Limit -0.5909
95% Upper Conf Limit 0.2832

Sample Size = 18

Study of Three Drug Treatments for a Chronic Disease

Summary Statistics for Drug_B by Drug_C
Controlling for Drug_A

Overall Kappa Coefficient
--------------------------------
Kappa -0.0588
ASE 0.1034
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1439

Test for Equal Kappa
Coefficients

--------------------
Chi-Square 0.2314
DF 1
Pr > ChiSq 0.6305

Total Sample Size = 46
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McNemar’s test (Output 29.9.2) shows strong discordance between drugs B and C
when the response to drug A is favorable. The small negative value of the simple
kappa indicates no agreement between drug B response and drug C response.

Output 29.9.3. Cochran’s Q

Study of Three Drug Treatments for a Chronic Disease

Summary Statistics for Drug_B by Drug_C
Controlling for Drug_A

Cochran’s Q, for Drug_A
by Drug_B by Drug_C

-----------------------
Statistic (Q) 8.4706
DF 2
Pr > Q 0.0145

Total Sample Size = 46

Cochran’sQ is statistically significant (p=0.0144 inOutput 29.9.3), which leads to
rejection of the hypothesis that the probability of favorable response is the same for
the three drugs.
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Overview

The GAM procedure fits generalized additive models as those models are defined by
Hastie and Tibshirani (1990). This procedure provides an array of powerful tools for
data analysis, based on nonparametric regression and smoothing techniques.

Nonparametric regression relaxes the usual assumption of linearity and enables you
to uncover structure in the relationship between the independent variables and the
dependent variable that might otherwise be missed. The SAS System provides many
procedures for nonparametric regression, such as the LOESS procedure for local re-
gression and the TPSPLINE procedure for thin-plate smoothing splines. The gener-
alized additive models fit by the GAM procedure combine

• an additivity assumption (Stone 1985) that enables relatively many nonpara-
metric relationships to be explored simultaneously with

• the distributional flexibility of generalized linear models (Nelder 1972)

Thus, you can use the GAM procedure when you have multiple independent variables
whose effect you want to model nonparametrically, or when the dependent variable is
not normally distributed. See the“Nonparametric Regression”section on page 1569
for more details on the form of generalized additive models.

The GAM procedure

• provides nonparametric estimates for additive models

• supports the use of multidimensional data

• supports multiple SCORE statements

• fits both generalized semiparametric additive models and generalized additive
models

• enables you to choose a particular model by specifying the model degrees of
freedom or smoothing parameter

Experimental graphics are now available with the GAM procedure. For more infor-
mation, see the“ODS Graphics”section on page 1581.
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Getting Started

The following example illustrates the use of the GAM procedure to explore in a
nonparametric way how two factors affect a response. The data come from a study
(Sockett et al. 1987) of the factors affecting patterns of insulin-dependent diabetes
mellitus in children. The objective is to investigate the dependence of the level of
serum C-peptide on various other factors in order to understand the patterns of resid-
ual insulin secretion. The response measurement is the logarithm of C-peptide con-
centration (pmol/ml) at diagnosis, and the predictor measurements are age and base
deficit (a measure of acidity):

title ’Patterns of Diabetes’;
data diabetes;

input Age BaseDeficit CPeptide @@;
logCP = log(CPeptide);
datalines;

5.2 -8.1 4.8 8.8 -16.1 4.1 10.5 -0.9 5.2
10.6 -7.8 5.5 10.4 -29.0 5.0 1.8 -19.2 3.4
12.7 -18.9 3.4 15.6 -10.6 4.9 5.8 -2.8 5.6

1.9 -25.0 3.7 2.2 -3.1 3.9 4.8 -7.8 4.5
7.9 -13.9 4.8 5.2 -4.5 4.9 0.9 -11.6 3.0

11.8 -2.1 4.6 7.9 -2.0 4.8 11.5 -9.0 5.5
10.6 -11.2 4.5 8.5 -0.2 5.3 11.1 -6.1 4.7
12.8 -1.0 6.6 11.3 -3.6 5.1 1.0 -8.2 3.9
14.5 -0.5 5.7 11.9 -2.0 5.1 8.1 -1.6 5.2
13.8 -11.9 3.7 15.5 -0.7 4.9 9.8 -1.2 4.8
11.0 -14.3 4.4 12.4 -0.8 5.2 11.1 -16.8 5.1

5.1 -5.1 4.6 4.8 -9.5 3.9 4.2 -17.0 5.1
6.9 -3.3 5.1 13.2 -0.7 6.0 9.9 -3.3 4.9

12.5 -13.6 4.1 13.2 -1.9 4.6 8.9 -10.0 4.9
10.8 -13.5 5.1
;
run;

The following statements perform the desired analysis. The PROC GAM state-
ment invokes the procedure and specifies thediabetes data set as input. The
MODEL statement specifieslogCP as the response variable and requests that uni-
variate smoothing splines with the default of4 degrees of freedom be used to model
the effect ofAge andBaseDeficit.

title ’Patterns of Diabetes’;
proc gam data=diabetes;

model logCP = spline(Age) spline(BaseDeficit);
run;

The results are shown inFigure 30.1andFigure 30.2.
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Patterns of Diabetes

The GAM Procedure
Dependent Variable: logCP

Smoothing Model Component(s): spline(Age) spline(BaseDeficit)

Summary of Input Data Set

Number of Observations 43
Number of Missing Observations 0
Distribution Gaussian
Link Function Identity

Iteration Summary and Fit Statistics

Final Number of Backfitting Iterations 5
Final Backfitting Criterion 5.542745E-10
The Deviance of the Final Estimate 0.4180791724

Figure 30.1. Summary Statistics

Figure 30.1shows two tables. The first table summarizes the input data set and the
distributional family used for the model, and the second one summarizes the conver-
gence criterion for backfitting.
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Patterns of Diabetes

The GAM Procedure
Dependent Variable: logCP

Smoothing Model Component(s): spline(Age) spline(BaseDeficit)

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 1.48141 0.05120 28.93 <.0001
Linear(Age) 0.01437 0.00437 3.28 0.0024
Linear(BaseDeficit) 0.00807 0.00247 3.27 0.0025

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs

Spline(Age) 0.995582 3.000000 0.011675 37
Spline(BaseDeficit) 0.995299 3.000000 0.012437 39

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(Age) 3.00000 0.150761 12.2605 0.0065
Spline(BaseDeficit) 3.00000 0.081273 6.6095 0.0854

Figure 30.2. Analysis of Model

Figure 30.2displays summary statistics for the model. It consists of three tables. The
first is the “Parameter Estimates” table for the parametric part of the model. It indi-
cates that the linear trends for bothAge andBaseDeficit are highly significant. The
second table is the summary of smoothing components of the nonparametric part of
the model. By default, each smoothing component has approximately 4 degrees of
freedom (DF). For univariate spline components, one DF is taken up by the (para-
metric) linear part of the model, so the remaining approximate DF is 3, and the main
point of this table is to present the smoothing parameter values that yield this DF for
each component. Finally, the third table shows the “Analysis of Deviance” table for
the nonparametric component of the model.

In order to explore the overall shape of the relationship between each factor and the
response, use the experimental graphics features of PROC GAM to plot the partial
predictions.
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ods html;
ods graphics on;

proc gam data=diabetes;
model logCP = spline(Age) spline(BaseDeficit);

run;

ods graphics off;
ods html close;

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement. For general information about ODS graphics, seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the GAM procedure, see the section“ODS Graphics”on page 1581.

Figure 30.3. Partial Predictions for each Predictor (Experimental)

Both plots show a strong quadratic pattern, with a possible indication of higher-order
behavior. Further investigation is required to determine whether these patterns are
real or not.
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Syntax

PROC GAM < option > ;
CLASS variables ;
MODEL dependent = < PARAM(effects) >

smoothing effects < /options > ;
SCORE data=SAS-data-set out=SAS-data-set ;
OUTPUT <out=SAS-data-set> keyword < · · ·keyword> ;
BY variables ;
ID variables ;
FREQ variable ;

The syntax of the GAM procedure is similar to that of other regression procedures
in the SAS System. The PROC GAM and MODEL statements are required. The
SCORE statement can appear multiple times; all other statements appear only once.

The syntax for PROC GAM is described in the following sections in alphabetical
order after the description of the PROC GAM statement.

PROC GAM Statement

PROC GAM < option > ;

The PROC GAM statement invokes the procedure. You can specify the following
option.

DATA=SAS-data-set
specifies the SAS data set to be read by PROC GAM. The default value is the most
recently created data set.

BY Statement

BY variables ;

You can specify a BY statement with PROC GAM to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in the order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the GAM procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index for the BY variables using the DATASETS procedure.
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the anal-
ysis. Typical class variables are TREATMENT, SEX, RACE, GROUP, and
REPLICATION. If the CLASS statement is used, it must appear before the MODEL
statement.

Classification variables can be either character or numeric. Class levels are deter-
mined from the formatted values of the CLASS variables. Thus, you can use formats
to group values into levels. Refer to the discussion of the FORMAT procedure in
theSAS Procedures Guide, and the discussions for the FORMAT statement and SAS
formats inSAS Language Reference: Dictionary.

FREQ Statement

FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation
in the DATA= data set. Specifically, ifn is the value of the FREQ variable for a given
observation, then that observation is usedn times.

The analysis produced using a FREQ statement reflects the expanded number of ob-
servations. You can produce the same analysis (without the FREQ statement) by first
creating a new data set that contains the expanded number of observations. For ex-
ample, if the value of the FREQ variable is 5 for the first observation, the first five
observations in the new data set are identical. Each observation in the old data set is
replicatedni times in the new data set, whereni is the value of the FREQ variable
for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.

The FREQ statement is not available when a loess smoother is included in the model.

ID Statement

ID variables ;

The variables in the ID statement are copied from the input data set to the OUT= data
set. If you omit the ID statement, only the variables used in the MODEL statement
and requested statistics are included in the output data set.
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MODEL Statement

MODEL dependent=<PARAM(effects)><smoothing effects> </options>;

MODEL event/trails=<PARAM(effects)> <smoothing effects> </options> ;

The MODEL statement specifies the dependent variable and the independent effects
you want to use to model its values. Specify the independent parametric variables
inside the parentheses of PARAM( ). The parametric variables can be either CLASS
variables or continuous variables. Class variables must be declared with a CLASS
statement. Interactions between variables can also be included as parametric effects.
The syntax for the specification of effects is the same as for the GLM procedure.

Any number of smoothing effects can be specified, as follows:

Smoothing Effect Meaning
SPLINE(variable<, df=number>) fit smoothing spline with the

variable and with DF=number
LOESS(variable<, df=number>) fit local regression with the

variable and with DF=number
SPLINE2(variable, variable<,df=number>) fit bivariate thin-plate smoothing spline

with DF=number

If you do not specify theDF=number option with a smoothing effect,DF=4 is used
by default, unless you specify theMETHOD=GCV model option. Note that for
univariate spline components, a degree of freedom is removed by default to account
for the linear portion of the model, so the value displayed in the Fit Summary and
Analysis of Deviance tables will be one less than the value you specify.

Both parametric effects and smoothing effects are optional, but at least one of them
must be present.

If only parametric variables are present, PROC GAM fits a parametric linear model
using the terms inside the parentheses of PARAM( ). If only smoothing effects are
present, PROC GAM fits a nonparametric additive model. If both types of effect are
present, PROC GAM fits a semiparametric model using the parametric effects as the
linear part of the model.

The following table shows how to specify various models for a dependent variabley
and independent variablesx, x1, andx2.
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Table 30.1. Syntax for Common GAM Models

Type of Model Syntax Mathematical Form
Parametric model y = param(x); E(y) = β0 + β1x
Nonparametric model y = spline(x); E(y) = β0 + s(x)
Nonparametric model y = loess(x); E(y) = β0 + s(x)
Semiparametric model y = param(x1) spline(x2);E(y) = β0 + β1x1 + s(x2)
Additive model y = spline(x1) spline(x2); E(y) = β0 + s1(x1) + s2(x2)
Thin-plate spline model y = spline2(x1,x2); E(y) = β0 + s(x1, x2)

You can specify the following options in the MODEL statement.

ALPHA= number
specifies the significance levelα of the confidence limits on the final nonparametric
component estimates when you request confidence limits to be included in the output
data set. Specifynumberas a value between 0 and 1. The default value is 0.05.
See the“OUTPUT Statement”section on page 1568 for more information on the
OUTPUT statement.

DIST=distribution-id
specifies the distribution family used in the model. Thedistribution-idcan be either
GAUSSIAN, BINOMIAL, BINARY, GAMMA, IGAUSSIAN, or POISSON. The
canonical link is used with those distributions. Although theoretically, alternative
links are possible, with nonparametric models the final fit is relatively insensitive to
the precise choice of link function. Therefore, only the canonical link for each dis-
tribution family is implemented in PROC GAM. The loess smoother is not available
for DIST=BINOMIAL when the number of trials is greater than 1.

EPSILON=number
specifies the convergence criterion for the backfitting algorithm. The default value is
1E−8.

EPSSCORE=number
specifies the convergence criterion for the local score algorithm. The default value is
1E−8.

ITPRINT
produces an iteration summary table for the smoothing effects.

MAXITER=number
specifies the maximum number of iterations for the backfitting algorithm. The default
value is50.

MAXITSCORE=number
specifies the maximum number of iterations for the local score algorithm. The default
value is100.
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METHOD=GCV
specifies that the value of the smoothing parameter should be selected by generalized
cross validation. If you specify bothMETHOD=GCV and theDF= option for the
smoothing effects, the user-specifiedDF= is used, and theMETHOD=GCV option
is ignored. See the“Selection of Smoothing Parameters”section on page 1575 for
more details on the GCV method.

NOTEST
requests that the procedure not produce the “Analysis of Deviance” table. This option
reduces the running time of the procedure.

OUTPUT Statement

OUTPUT OUT=SAS-data-set < keyword · · · keyword > ;

The OUTPUT statement creates a new SAS data set containing diagnostic measures
calculated after fitting the model.

You can request a variety of diagnostic measures that are calculated for each observa-
tion in the data set. The new data set contains the variables specified in the MODEL
statement in addition to the requested variables. If nokeywordis present, the data set
contains only the predicted values.

Details on the specifications in the OUTPUT statement are as follows.

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. This spec-
ification is required.

keyword
specifies the statistics to include in the output data set. The keywords and the statistics
they represent are as follows:

PREDICTED predicted values for each smoothing component and overall pre-
dicted values at design points

UCLM upper confidence limits for each predicted smoothing component

LCLM lower confidence limits for each predicted smoothing component

ADIAG diagonal element of the hat matrix associated with the observation
for each smoothing spline component

RESIDUAL residual standardized by its weights

STD standard deviation of the prediction for each smoothing component

ALL implies all preceding keywords

The names of the new variables that contain the statistics are formed by using a prefix
of one or more characters that identify the statistic, followed by an underscore (–),
followed by the variable name.
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The prefixes of the new variables are as follows:

Keywords Prefix
PRED P–
UCLM UCLM–
LCLM LCLM –
ADIAG ADIAG –
RESID R–
STD STD– for spline

STDP– for loess

For example, suppose that you have a dependent variabley and an independent
smoothing variablex, and you specify the keywords PRED and ADIAG. In this case,
the output SAS data set will contain the variablesP–y, P–x, andADIAG–x.

SCORE Statement

SCORE DATA=SAS-data-set OUT=SAS-data-set ;

The SCORE statement calculates predicted values for a new data set. The variables
generated by the SCORE statement use the same naming conventions with prefixes
as the OUTPUT statement. If you have multiple data sets to predict, you can specify
multiple SCORE statements. You must use a SCORE statement for each data set.

The following options must be specified in the SCORE statement.

DATA=SAS-data-set
specifies an input SAS data set containing all the variables included in independent
effects in the MODEL statement. The predicted response is computed for each ob-
servation in the SCORE DATA= data set.

OUT=SAS-data-set
specifies the name of the SAS data set to contain the predictions.

Details

Nonparametric Regression

Nonparametric regression relaxes the usual assumption of linearity and enables you to
explore the data more flexibly, uncovering structure in the data that might otherwise
be missed.

However, many forms of nonparametric regression do not perform well when the
number of independent variables in the model is large. The sparseness of data in
this setting causes the variances of the estimates to be unacceptably large unless the
sample size is extremely large. The problem of rapidly increasing variance for in-
creasing dimensionality is sometimes referred to as the “curse of dimensionality.”
Interpretability is another problem with nonparametric regression based on kernel
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and smoothing spline estimates. The information these estimates contain about the
relationship between the dependent and independent variables is often difficult to
comprehend.

To overcome these difficulties, Stone (1985) proposed additive models. These mod-
els estimate an additive approximation to the multivariate regression function. The
benefits of an additive approximation are at least twofold. First, since each of the in-
dividual additive terms is estimated using a univariate smoother, the curse of dimen-
sionality is avoided, at the cost of not being able to approximate universally. Second,
estimates of the individual terms explain how the dependent variable changes with
the corresponding independent variables.

To extend the additive model to a wide range of distribution families, Hastie and
Tibshirani (1990) proposed generalized additive models. These models enable the
mean of the dependent variable to depend on an additive predictor through a non-
linear link function. The models permit the response probability distribution to be
any member of the exponential family of distributions. Many widely used statistical
models belong to this general class; they include additive models for Gaussian data,
nonparametric logistic models for binary data, and nonparametric log-linear models
for Poisson data.

Additive Models and Generalized Additive Models

This section describes the methodology and the fitting procedure behind generalized
additive models.

Let Y be a response random variable andX1, X2, · · · , Xp be a set of predictor vari-
ables. A regression procedure can be viewed as a method for estimating the expected
value ofY given the values ofX1, X2, · · · , Xp. The standard linear regression model
assumes a linear form for the conditional expectation

E(Y |X1, X2, · · · , Xp) = β0 + β1X1 + β2X2 + · · · + βpXp

Given a sample, estimates ofβ0, β1, · · · , βp are usually obtained by the least squares
method.

The additive model generalizes the linear model by modeling the conditional expec-
tation as

E(Y |X1, X2, · · · , Xp) = s0 + s1(X1) + s2(X2) + · · · + sp(Xp)

wheresi(X), i = 1, 2, . . . , p are smooth functions.

In order to be estimable, the smooth functionssi have to satisfy standardized con-
ditions such asEsj(Xj) = 0. These functions are not given a parametric form but
instead are estimated in a nonparametric fashion.

While traditional linear models and additive models can be used in most statistical
data analysis, there are types of problems for which they are not appropriate. For



Backfitting and Local Scoring Algorithms � 1571

example, the normal distribution may not be adequate for modeling discrete responses
such as counts or bounded responses such as proportions.

Generalized additive models address these difficulties, extending additive models to
many other distributions besides just the normal. Thus, generalized additive models
can be applied to a much wider range of data analysis problems.

Similar to generalized linear models, generalized additive models consist of a ran-
dom component, an additive component, and a link function relating the two com-
ponents. The responseY , the random component, is assumed to have exponential
family density

fY (y; θ;φ) = exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)
}

whereθ is called the natural parameter andφ is the scale parameter. The mean of
the response variableµ is related to the set of covariatesX1, X2, · · · , Xp by a link
functiong. The quantity

η = s0 +
p∑

i=1

si(Xi)

defines the additive component, wheres1(·), · · · , sp(·) are smooth functions, and the
relationship betweenµ andη is defined byg(µ) = η. The most commonly used link
function is the canonical link, for whichη = θ.

Generalized additive models and generalized linear models can be applied in simi-
lar situations, but they serve different analytic purposes. Generalized linear models
emphasize estimation and inference for the parameters of the model, while general-
ized additive models focus on exploring data nonparametrically. Generalized additive
models are more suitable for exploring the data and visualizing the relationship be-
tween the dependent variable and the independent variables.

Backfitting and Local Scoring Algorithms

Much of the development and notation in this section follows Hastie and Tibshirani
(1986). Consider the estimation of the smoothing termss0, s1(·), · · · , sp(·) in the
additive model

η(X) = s0 +
p∑

i=1

sj(Xj)

whereE [sj(Xj)] = 0 for everyj. Since the algorithm for additive models is the basis
for fitting generalized additive models, the algorithm for additive models is discussed
first.

Many ways are available to approach the formulation and estimation of additive mod-
els. The backfitting algorithm is a general algorithm that can fit an additive model
using any regression-type fitting mechanisms.
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Define thejth set of partial residuals as

Rj = Y − s0 −
∑
k 6=j

sk(Xk)

then E(Rj |Xj) = sj(Xj). This observation provides a way for estimating each
smoothing functionsj(·) given estimates{ŝi(·), i 6= j} for all the others. The result-
ing iterative procedure is known as the backfitting algorithm (Friedman and Stuetzle
1981). The following formulation is taken from Hastie and Tibshirani (1986).

The Backfitting Algorithm

The unweighted form of the backfitting algorithm is as follows:

1. Initialization:
s0 = E(Y ), s1

1 = s1
2 = · · · = s1

p = 0,m = 0.

2. Iterate:
m = m + 1
for j = 1 to p do:

Rj = Y − s0 −
∑j−1

k=1 sm
k (Xk) −

∑p
k=j+1 sm−1

k (Xk)
sm
j = E(Rj |Xj).

3. Until:
RSS= Avg(Y − s0 −

∑p
j=1 sm

j (Xj))2 fails to decrease, or satisfies the con-
vergence criterion.

In the preceding notation,sm
j (·) denotes the estimate ofsj(·) at themth iteration.

It can be shown that with many smoothers (including linear regression, univari-
ate and bivariate splines, and combinations of these), RSS never increases at any
step. This implies that the algorithm always converges (Hastie and Tibshirani, 1986).
Note, however, that for distributions other than Gaussian, numerical instabilities with
weights may cause convergence problems. Even when the algorithm converges, the
individual functions need not be unique, since dependence among the covariates can
lead to more than one representation for the same fitted surface.

A weighted backfitting algorithm has the same form as for the unweighted case, ex-
cept that the smoothers are weighted. In PROC GAM, weights are used with non-
Gaussian data in the local scoring procedure described later in this section.

The GAM procedure uses the following condition as the convergence criterion for
the backfitting algorithm:

∑n
j=1

∑k
i=1(s

m−1
i (xj) − sm

i (xj))2

1 +
∑n

j=1

∑k
i=1(s

m−1
i (xj))2

≤ ε

whereε = 10−8 by default; you can change this with theEPSILON= option on the
MODEL statement.
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The algorithm so far described fits just additive models. The algorithm for general-
ized additive models is a little more complicated. Generalized additive models extend
generalized linear models in the same manner that additive models extend linear re-
gression models, that is, by replacing formα +

∑
j Xjβj with the additive form

α +
∑

j fj(Xj). Refer to“Generalized Linear Models Theory”in Chapter 31, “The
GENMOD Procedure,”for more information.

PROC GAM fits generalized additive models using a modified form of adjusted de-
pendent variable regression, as described for generalized linear models in McCullagh
and Nelder (1989), with the additive predictor taking the role of the linear predictor.
Hastie and Tibshirani (1986) call this thelocal scoring algorithm. Important compo-
nents of this algorithm depend on the link function for each distribution, as shown in
the following table.

Distribution Link Adjusted Dependent(Z) Weights(w)
Normal identity y 1
Bin(n, µ) logit η + (y − µ)/nµ(1 − µ) nµ(1 − µ)
Gamma −1/µ η + (y − µ)/µ2 µ2

Poisson log η + (y − µ)/µ µ
Inverse Gaussian 1/µ2 η − 2(y − µ)/µ3 µ3/4

Once the distribution and hence these quantities are defined, the local scoring algo-
rithm proceeds as follows:

The General Local Scoring Algorithm

1. Initialization:
si = g(E(y)), s0

1 = s0
2 = · · · = s0

p = 0,m = 0.

2. Iterate:
m = m + 1
Form the predictorηi, meanµi, weightswi, and adjusted dependent variablezi

based on the previous iteration

ηm−1
i = s0 +

p∑
j=1

sm−1
j (xij)

µm−1
i = g−1(ηm−1

i )

wi = (∂µi/∂ηi)
2
m−1 V −1

i

zi = ηm−1
i + (yi − µm−1

i ) (∂ηi/∂µi)m−1

Fit an additive model toZ using the backfitting algorithm with weightsW to
obtain estimated functionssm

j (·).
3. Until:

The convergence criterion is satisfied or the deviance fails to decrease. The
deviance is an extension to generalized models of the RSS; refer to“Goodness
of Fit” in Chapter 31, “The GENMOD Procedure,”for a definition.
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The GAM procedure uses the following condition as the convergence criterion for
local scoring:

∑n
j=1

∑k
i=1 w(xi)(sm−1

i (xj) − sm
i (xj))2∑n

j=1

∑k
i=1 w(xi) +

∑n
j=1

∑k
i=1 w(xi)(sm−1

i (xj))2
≤ εs

whereεs = 10−8 by default; you can change this with theEPSSCORE= option on
the MODEL statement.

The estimating procedure for generalized additive models consists of two loops.
Inside each step of the local scoring algorithm (outer loop), a weighted backfitting
algorithm (inner loop) is used until convergence or until the RSS fails to decrease.
Then, based on the estimates from this weighted backfitting algorithm, a new set of
weights is calculated and the next iteration of the scoring algorithm starts. The scor-
ing algorithm stops when the convergence criterion is satisfied or the deviance of the
estimates ceases to decrease.

Smoothers

A smoother is a tool for summarizing the trend of a response measurementY as a
function of one or more predictor measurementsX1, · · · , Xp. It produces an estimate
of the trend that is less variable thanY itself. An important property of a smoother
is its nonparametric nature. It does not assume a rigid form for the dependence ofY
onX1, · · · , Xp. This section gives a brief overview of the smoothers that can be used
with the GAM procedure.

Cubic Smoothing Spline

A smoothing spline is the solution to the following optimization problem: among all
functionsη(x) with two continuous derivatives, find one that minimizes the penalized
least square

n∑
i=1

(yi − η(xi))2 + λ

∫ b

a
(η

′′
(t))2dt

whereλ is a fixed constant, anda ≤ x1 ≤ · · · ≤ xn ≤ b. The first term measures
closeness to the data while the second term penalizes curvature in the function. It
can be shown that there exists an explicit, unique minimizer, and that minimizer is a
natural cubic spline with knots at the unique values ofxi.

The valueλ/(1 + λ) is thesmoothing parameter. Whenλ is large, the smoothing
parameter is close to 1, producing a smoother curve; small values ofλ, correspond-
ing to smoothing parameters near 0, are apt to produce rougher curves, more nearly
interpolating the data.
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Local Regression

Local regression was proposed by Cleveland, Devlin, and Grosse (1988). The idea of
local regression is that at a predictorx, the regression functionη(x) can be locally ap-
proximated by the value of a function in some specified parametric class. Such a local
approximation is obtained by fitting a regression surface to the data points within a
chosen neighborhood of the pointx. A weighted least squares algorithm is used to fit
linear functions of the predictors at the centers of neighborhoods. The radius of each
neighborhood is chosen so that the neighborhood contains a specified percentage of
the data points. The smoothing parameter for the local regression procedure, which
controls the smoothness of the estimated curve, is the fraction of the data in each local
neighborhood. Data points in a given local neighborhood are weighted by a smooth
decreasing function of their distance from the center of the neighborhood. Refer to
Chapter 41, “The LOESS Procedure,”for more details.

Thin-Plate Smoothing Spline

The thin-plate smoothing spline is a multivariate version of the cubic smoothing
spline. The theoretical foundations for the thin-plate smoothing spline are described
in Duchon (1976, 1977) and Meinguet (1979). Further results and applications are
given in Wahba and Wendelberger (1980). Refer toChapter 74, “The TPSPLINE
Procedure,”for more details.

Selection of Smoothing Parameters

CV and GCV

The smoothers discussed here have a single smoothing parameter. In choosing the
smoothing parameter, cross validation can be used. Cross validation works by leaving
points(xi, yi) out one at a time, estimating the squared residual for smooth function
atxi based on the remainingn−1 data points, and choosing the smoother to minimize
the sum of those squared residuals. This mimics the use of training and test samples
for prediction. The cross validation function is defined as

CV (λ) =
1
n

n∑
i=1

(yi − η̂−i
λ (xi))2

where η̂−i
λ (xi) indicates the fit atxi, computed by leaving out theith data point.

The quantitynCV (λ) is sometimes called the prediction sum of squares orPRESS
(Allen 1974).

All of the smoothers fit by the GAM procedure can be formulated as a linear combi-
nation of the sample responses

η̂(x) = A(λ)Y
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for some matrixA(λ), which depends onλ. (The matrixA(λ) depends onx and the
sample data, as well, but this dependence is suppressed in the preceding equation.)
Let aii be the diagonal elements ofA(λ). Then theCV function can be expressed as

CV (λ) =
1
n

n∑
i=1

(
(yi − η̂λ(xi))

1 − aii

)2

In most cases, it is very time consuming to compute the quantityaii. To solve this
computational problem, Wahba (1990) has proposed the generalized cross validation
function (GCV ) that can be used to solve a wide variety of problems involving se-
lection of a parameter to minimize the prediction risk.

TheGCV function is defined as

GCV (λ) =
n

∑n
i=1(yi − η̂λ(xi))2

(n − tr(A(λ)))2

The GCV formula simply replaces theaii with tr(A(λ))/n. Therefore, it can be
viewed as a weighted version ofCV . In most of the cases of interest,GCV is closely
related toCV but much easier to compute. Specify the METHOD=GCV option on
the MODEL statement in order to use theGCV function to choose the smoothing
parameters.

Degrees of Freedom

The estimated GAM model can be expressed as

η̂(X) = ŝ0 +
p∑

i=1

Ai(y, λ)Y

Because the weights are calculated based on previous iteration during the local scor-
ing iteration, the matricesAi may depend onY for non-Gaussian data. However, for
the final iteration, theAi matrix for the spline smoothers has the same role as the pro-
jection matrix in linear regression and therefore, nonparametric degrees of freedom
(DF) for theith spline smoother can be defined as

DF (smoother) = tr(Ai(y, λ))

For LOESS smoothersAi is not symmetric and so is not a projection matrix. In this
case PROC GAM uses

DF (smoother) = tr(Ai(y, λ)′(Ai(y, λ))

The GAM procedure gives you the option of specifying the degrees of freedom for
each individual smoothing component. If you choose a particular value for the de-
grees of freedom, then during every local scoring iteration the procedure will search
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for a corresponding smoothing parameter lambda that yields the specified value or
comes as close as possible. The final estimate for the smoother during this local
scoring iteration will be based on this lambda. Note that for univariate spline com-
ponents, an additional degree of freedom is removed by default to account for the
linear portion of the model, so the value displayed in the Fit Summary and Analysis
of Deviance tables will be one less than the value you specify.

Confidence Intervals for Smoothers

In the GAM procedure, curvewise confidence intervals for smoothing splines and
pointwise confidence intervals for loess are provided in the output dataset.

Curvewise Confidence Interval for Smoothing Spline

Viewing the spline model as a Bayesian model, Wahba (1983) proposed Bayesian
confidence intervals for smoothing spline estimates as follows:

ŝλ(xi) ± zα/2

√
σ̂2aii(λ)

whereaii(λ) is the ith diagonal element of theA(λ) matrix andzα/2 is the α/2
point of the normal distribution. The confidence intervals are interpreted as intervals
“across the function” as opposed to point-wise intervals.

Suppose that you fit a spline estimate to experimental data that consists of a true
function f and a random error term,εi. In repeated experiments, it is likely that
about100(1 − α)% of the confidence intervals cover the corresponding true values,
although some values are covered every time and other values are not covered by the
confidence intervals most of the time. This effect is more pronounced when the true
response curve or surface has small regions of particularly rapid change.

Pointwise Confidence Interval for Loess Smoothers

As defined in Cleveland, Devlin, and Grosse (1988), a standardized residual for a
loess smoother follows at distribution withρ degrees of freedom, whereρ is called
the “lookup degrees of freedom,” defined as

ρ = δ2
1/δ2

whereδ1 = Trace(I−A(λ))T (I−A(λ)) andδ2 = Trace((I−A(λ))T (I−A(λ)))2.
Therefore an approximate pointwise confidence interval atxi is

ŝλ(xi) ± tα/2;ρσ̂(xi)

whereσ̂(xi) is the estimate of the standard deviation.
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Distribution Family and Canonical Link

In general, there is not just one reasonable link function for a given response variable
distribution. For parametric models, the choice of link function can lead to substan-
tively different estimates and tests. However, the inherent flexibility of nonparametric
models makes them less likely to be sensitive to the precise choice of link function.
Thus, for simplicity and computational efficiency, the GAM procedure uses only the
canonical link for each distribution, as discussed below.

The Gaussian Model

With this model, the link function is the identity function, and the generalized additive
model is the additive model.

The Binomial Model

A binomial response model assumes that the proportion of successesY is such thatY
has aBin(n, p(x)) distribution. TheBin(n, p(x)) refers to the binomial distribution
with parametersn andp(x). Often the data are binary, in which casen = 1. The
canonical link is

g(p) = log
p

n − p
= η

The Poisson Model

The link function for the Poisson model is the log function. Assuming that the mean
of the Poisson distribution isµ(x), the dependence ofµ(x) and independent variable
x1, · · · , xk is

g(µ) = log(µ) = η

The Gamma Model

Let the mean of the Gamma distribution beµ(x). The canonical link function for
the Gamma distribution is -1/µ(x). Therefore, the relationship betweenµ(x) and the
independent variablex1, · · · , xk is

g(µ) = − 1
µ

= η

The Inverse Gaussian Model

Let the mean of the Inverse Gaussian distribution beµ(x). The canonical link func-
tion for inverse Gaussian distribution is1/µ2. Therefore, the relationship between
µ(x) and the independent variablex1, · · · , xk is

g(µ) =
1
µ2

= η
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Dispersion Parameter

Continuous distributions in the exponential family (Gaussian, Gamma, and Inverse
Gaussian) have a dispersion parameter that can be estimated by the scaled deviance.
For these continuous response distributions, PROC GAM incorporates this dispersion
parameter estimate into standard errors of the parameter estimates, prediction stan-
dard errors of spline components, and chi-square statistics. The discrete distributions
used in GAM (Binomial and Poisson) do not have a dispersion parameter. For more
details on the distributions, dispersion parameter, and deviance, refer to“Generalized
Linear Models Theory”in Chapter 31, “The GENMOD Procedure.”

Forms of Additive Models

Suppose thaty is a continuous variable andx1 andx2 are two explanatory variables
of interest. To fit an additive model, you can use a MODEL statement similar to that
used in many regression procedures in the SAS System:

model y = spline(x1) spline(x2);

This model statement requires the procedure to fit the following model:

η(x1, x2) = Intercept+ s1(x1) + s2(x2)

where thesi() terms denote nonparametric spline functions of the respective explana-
tory variables.

The GAM procedure can fit semiparametric models. The following MODEL state-
ment assumes a linear relation withx1 and an unknown functional relation withx2:

model y = param(x1) spline(x2);

If you want to fit a model containing a functional two-way interaction betweenx1
andx2, you can use the following MODEL statement:

model y = spline2(x1,x2);

In this case, the GAM procedure fits a model equivalent to that of PROC TPSPLINE.

Estimates from PROC GAM

PROC GAM provides the ability to fit both nonparametric and semiparametric mod-
els. In order to better understand the underlying trend of any given factor, PROC
GAM separates the linear trend from any general nonparametric trend during the fit-
ting as well as in the final report. This makes it easy for you to determine whether
the significance of a smoothing variable is associated with a simple linear trend or a
more complicated pattern.
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For example, suppose you want to fit a semiparametric model as

y = α0 + α1z + s1(x1) + s2(x2)

The GAM estimate for this model is

y = α0 + α1z + β1x1 + β2x2 + f1(x1) + f2(x2)

wheref1 andf2 are linear-adjusted nonparametric estimates of thes1 ands2 effects.
Thep-values forα0, α1, β1, andβ2 are reported in the parameter estimates table.β1

andβ2 are the estimates labeledLinear(x1) andLinear(x2) in the table. Thep-values
for f1 andf2 are reported in the analysis of deviance table.

Only f̂1, f̂2, andŷ are output to the output data set, with corresponding variable names
P–x1, P–x2, andP–y, respectively. For Gaussian data, the complete marginal pre-
diction for variablex1 is

β1x1 + P–x1

For non-Gaussian data, an appropriate transformation is required to get back to the
original data scale.

ODS Table Names

PROC GAM assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, refer toChapter 14, “Using the Output Delivery System.”

Table 30.2. ODS Tables Produced by PROC GAM

ODS Table Name Description Statement Option
ANODEV Analysis of Deviance table for

smoothing variables
PROC default

ClassSummary Summary of class variables PROC default
ConvergenceStatus Convergence status of the

local score algorithm
PROC default

InputSummary Input data summary PROC default
IterHistory Iteration history table MODEL ITPRINT
IterSummary Iteration summary PROC default
FitSummary Fit parameters and fit summary PROC default
ParameterEstimates Parameter estimation for regression

variables
PROC default

By referring to the names of such tables, you can use the ODS OUTPUT statement
to place one or more of these tables in output data sets.
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ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the GAM
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a fu-
ture release. To request these graphs you must specify the ODS GRAPHICS state-
ment in addition to the options indicated below. For more information on the ODS
GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”

When the ODS GRAPHICS are in effect, the GAM procedure will produce plots of
the partial predictions for each nonparametric predictor in the model. Use the PLOTS
option on the PROC GAM statement to control aspects of these plots.

PLOTS < (general-plot-options) > = keywords < (plot-options) >
specifies characteristics of the graphics produced when you use the experimental
ODS GRAPHICS statement. You can specify the followinggeneral-plot-options in
parentheses after the PLOTS option:

CLM specifies that smoothing component plots should include a 95%
confidence band. Note that producing this band can be computa-
tionally intensive for large data sets.

COMMONAXES specifies that smoothing component plots within a single graphics
panel should all have the same vertical axis limits. This enables
you to visually judge relative effect size.

UNPACK|UNPACKPANELS specifies that multiple smoothing component plots that
are collected into graphics panels should be additionally displayed
separately. Use this option if you want to access individual smooth-
ing component plots within the panel.

You can specify the following keywords as arguments to the PLOTS= option.

COMPONENTS < ( number-list|ALL ) > specifies that only particular smoothing
component plots should be produced. Plots for successive smooth-
ing components are named COMPONENT1, COMPONENT2, and
so on. For example, specifyPLOTS=COMPONENT(1 3) to pro-
duce only the first and the third smoothing component plots.

ODS Graph Names

PROC GAM assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed inTable 30.3.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”
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Table 30.3. ODS Graphics Produced by PROC GAM

ODS Graph Name Plot Description PLOTS= Option
Componenti Partial prediction curve for smooth-

ing componenti
Component

SmoothingComponentPaneli Paneli of multiple partial prediction
curves

By default, partial prediction plots for each component are displayed in panels of mul-
tiple plots namedSmoothingComponentPanel1, SmoothingComponentPanel2,
and so on. Use the PLOTS(UNPANEL) option on the PROC GAM statement to dis-
play these plots individually as well. Use the PLOTS(CLM) option to superimpose
confidence limits for the partial predictions.

Examples

Example 30.1. Generalized Additive Model with Binary Data

The following example illustrates the capabilities of the GAM procedure and com-
pares it to the GENMOD procedure.

The data used in this example are based on a study by Bell et al. (1994). Bell and
his associates studied the result of multiple-level thoracic and lumbar laminectomy,
a corrective spinal surgery commonly performed on children. The data in the study
consist of retrospective measurements on 83 patients. The specific outcome of in-
terest is the presence (1) or absence (0) of kyphosis, defined as a forward flexion of
the spine of at least 40 degrees from vertical. The available predictor variables are
Age in months at time of the operation, the starting of vertebrae levels involved in
the operation (StartVert), and the number of levels involved (NumVert). The goal of
this analysis is to identify risk factors for kyphosis. PROC GENMOD can be used to
investigate the relationship among kyphosis and the predictors. The following DATA
step creates the datakyphosis:

title ’Comparing PROC GAM with PROC GENMOD’;
data kyphosis;

input Age StartVert NumVert Kyphosis @@;
datalines;

71 5 3 0 158 14 3 0 128 5 4 1
2 1 5 0 1 15 4 0 1 16 2 0
61 17 2 0 37 16 3 0 113 16 2 0
59 12 6 1 82 14 5 1 148 16 3 0
18 2 5 0 1 12 4 0 243 8 8 0
168 18 3 0 1 16 3 0 78 15 6 0
175 13 5 0 80 16 5 0 27 9 4 0
22 16 2 0 105 5 6 1 96 12 3 1
131 3 2 0 15 2 7 1 9 13 5 0
12 2 14 1 8 6 3 0 100 14 3 0
4 16 3 0 151 16 2 0 31 16 3 0
125 11 2 0 130 13 5 0 112 16 3 0
140 11 5 0 93 16 3 0 1 9 3 0
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52 6 5 1 20 9 6 0 91 12 5 1
73 1 5 1 35 13 3 0 143 3 9 0
61 1 4 0 97 16 3 0 139 10 3 1
136 15 4 0 131 13 5 0 121 3 3 1
177 14 2 0 68 10 5 0 9 17 2 0
139 6 10 1 2 17 2 0 140 15 4 0
72 15 5 0 2 13 3 0 120 8 5 1
51 9 7 0 102 13 3 0 130 1 4 1
114 8 7 1 81 1 4 0 118 16 3 0
118 16 4 0 17 10 4 0 195 17 2 0
159 13 4 0 18 11 4 0 15 16 5 0
158 15 4 0 127 12 4 0 87 16 4 0
206 10 4 0 11 15 3 0 178 15 4 0
157 13 3 1 26 13 7 0 120 13 2 0
42 6 7 1 36 13 4 0
;

proc genmod;
model Kyphosis = Age StartVert NumVert

/ link=logit dist=binomial;
run;

Output 30.1.1. GENMOD Analysis: Partial Output

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

PROC GENMOD is modeling the probability that Kyphosis=’0’. One way to change
this to model the probability that Kyphosis=’1’ is to specify the DESCENDING
option in the PROC statement.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.2497 1.2424 -1.1853 3.6848 1.01 0.3145
Age 1 -0.0061 0.0055 -0.0170 0.0048 1.21 0.2713
StartVert 1 0.1972 0.0657 0.0684 0.3260 9.01 0.0027
NumVert 1 -0.3031 0.1790 -0.6540 0.0477 2.87 0.0904
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

The GENMOD analysis of the independent variable effects is shown inOutput 30.1.1.
Based on these results, the only significant factor isStartVert with a log odds ratio
of −0.1972. The variableNumVert has ap-value of 0.0904 with a log odds ratio of
0.3031.

The GENMOD procedure assumes a strict linear relationship between the response
and the predictors. The following SAS statements use PROC GAM to investigate a
less restrictive model, with moderately flexible spline terms for each of the predictors:
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title ’Comparing PROC GAM with PROC GENMOD’;
proc gam data=kyphosis;

model Kyphosis = spline(Age ,df=3)
spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;

The MODEL statement requests an additive model using a univariate smoothing
spline for each term. The optiondist=binomial with binary responses specifies a
logistic model. Each term is fit using a univariate smoothing spline with three de-
grees of freedom. Of these three degrees of freedom, one is taken up by the linear
portion of the fit and two are left for the nonlinear spline portion. Although this might
seem to be an unduly modest amount of flexibility, it is better to be conservative with
a data set this small.

Output 30.1.2andOutput 30.1.3list the output from PROC GAM.

Output 30.1.2. Summary Statistics

Comparing PROC GAM with PROC GENMOD

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Summary of Input Data Set

Number of Observations 83
Number of Missing Observations 0
Distribution Binomial
Link Function Logit

Iteration Summary and Fit Statistics

Number of local score iterations 9
Local score convergence criterion 2.6635657E-9
Final Number of Backfitting Iterations 1
Final Backfitting Criterion 5.2326588E-9
The Deviance of the Final Estimate 46.610922438



Example 30.1. Generalized Additive Model with Binary Data � 1585

Output 30.1.3. Model Fit Statistics

Comparing PROC GAM with PROC GENMOD

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -2.01533 1.45620 -1.38 0.1706
Linear(Age) 0.01213 0.00794 1.53 0.1308
Linear(StartVert) -0.18615 0.07628 -2.44 0.0171
Linear(NumVert) 0.38347 0.19102 2.01 0.0484

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs

Spline(Age) 0.999996 2.000000 328.512831 66
Spline(StartVert) 0.999551 2.000000 317.646685 16
Spline(NumVert) 0.921758 2.000000 20.144056 10

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(Age) 2.00000 10.494369 10.4944 0.0053
Spline(StartVert) 2.00000 5.494968 5.4950 0.0641
Spline(NumVert) 2.00000 2.184518 2.1845 0.3355

The critical part of the GAM results is the “Analysis of Deviance” table, shown in
Output 30.1.3. For each smoothing effect in the model, this table gives aχ2-test
comparing the deviance between the full model and the model without this variable.
In this case the analysis of deviance results indicates that the effect ofAge is highly
significant, the effect ofStartVert is nearly significant, and the effect ofNumVert
is insignificant at the 5% level. Plots of predictions against predictor can be used to
investigate why PROC GAM and PROC GENMOD produce different results. The
following statements use the experimental ODS GRAPHICS statement to produce
plots of the individual smoothing components. The CLM suboption for the PLOTS
option adds a curvewise Bayesian confidence band to each smoothing component,
while the COMMONAXES suboption forces all three smoothing component plots
to share the same vertical axis limits, allowing a visual judgment of nonparametric
effect size.
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ods html;
ods graphics on;

proc gam data=kyphosis plots(clm commonaxes);
model Kyphosis = spline(Age ,df=3)

spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;

ods graphics off;
ods html close;

For general information about ODS graphics, seeChapter 15, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the GAM pro-
cedure, see the section“ODS Graphics”on page 1581. The smoothing component
plots are displayed inOutput 30.1.4.

Output 30.1.4. Partial Prediction for Each Predictor (Experimental)

The plots show that the partial predictions corresponding to bothAge andStartVert
have a quadratic pattern, whileNumVert has a more complicated but weaker pattern.
However, in the plot forNumVert, notice that about half the vertical range of the
function is determined by the point at the upper extreme. It would be a good idea,
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therefore, to rerun the analysis without this point, to explore how much it affects the
conclusions. You can do this by simply including a WHERE clause when specifying
the data set for the GAM procedure, as in the following code:

ods html;
ods graphics on;

proc gam data=kyphosis(where=(NumVert^=14)) plots(clm commonaxes);
model Kyphosis = spline(Age ,df=3)

spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;

ods graphics off;
ods html close;

Output 30.1.5. Analysis After Removing NumVert=14

Comparing PROC GAM with PROC GENMOD

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(Age) 2.00000 10.587556 10.5876 0.0050
Spline(StartVert) 2.00000 5.477094 5.4771 0.0647
Spline(NumVert) 2.00000 3.209089 3.2091 0.2010

The analysis of deviance table from this reanalysis is shown inOutput 30.1.5, and
Output 30.1.6shows the recomputed partial predictor plots.
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Output 30.1.6. Partial Prediction After Removing NumVert=14 (Experimental)

Removing data pointNumVert=14 has little effect on either the analysis of deviance
results or the estimated curves forStartVert andNumVert. But the removal has a
noticeable effect on the variableNumVert, whose curve now also seems quadratic,
though it is much less pronounced than for the other two variables.

An important difference between the first analysis of this data with GENMOD and
the subsequent analysis with GAM is that GAM indicates that age is a significant
predictor of kyphosis. The difference is due to the fact that the GENMOD model
only includes a linear effect inAge whereas the GAM model allows a more complex
relationship, which the plots indicate is nearly quadratic. Having used the GAM
procedure to discover an appropriate form of the dependence ofKyphosis on each of
the three independent variables, you can use the GENMOD procedure to fit and assess
the corresponding parametric model. The following code fits a GENMOD model with
quadratic terms for all three variables, including tests for the joint linear and quadratic
effects of each variable. The resulting contrast tests are shown inOutput 30.1.7.
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title ’Comparing PROC GAM with PROC GENMOD’;
proc genmod data=kyphosis(where=(NumVert^=14));

model kyphosis = Age Age *Age
StartVert StartVert*StartVert
NumVert NumVert *NumVert
/link=logit dist=binomial;

contrast ’Age’ Age 1, Age*Age 1;
contrast ’StartVert’ StartVert 1, StartVert*StartVert 1;
contrast ’NumVert’ NumVert 1, NumVert*NumVert 1;

run;

Output 30.1.7. Joint Linear and Quadratic Tests

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

PROC GENMOD is modeling the probability that Kyphosis=’0’. One way to change
this to model the probability that Kyphosis=’1’ is to specify the DESCENDING
option in the PROC statement.

Contrast Results

Chi-
Contrast DF Square Pr > ChiSq Type

Age 2 13.63 0.0011 LR
StartVert 2 15.41 0.0005 LR
NumVert 2 3.56 0.1684 LR

The results for the quadratic GENMOD model are now quite consistent with the
GAM results.

From this example, you can see that PROC GAM is very useful in visualizing the
data and detecting the nonlinearity among the variables.

Example 30.2. Poisson Regression Analysis of Component
Reliability

In this example, the number of maintenance repairs on a complex system are mod-
eled as realizations of Poisson random variables. The system under investigation
has a large number of components, which occasionally break down and are replaced
or repaired. During a four-year period, the system was observed to be in a state of
steady operation, meaning that the rate of operation remained approximately con-
stant. A monthly maintenance record is available for that period, which tracks the
number of components removed for maintenance each month. The data are listed in
the following statements that create a SAS data set.
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title ’Analysis of Component Reliability’;
data equip;

input year month removals @@;
datalines;

1987 1 2 1987 2 4 1987 3 3
1987 4 3 1987 5 3 1987 6 8
1987 7 2 1987 8 6 1987 9 3
1987 10 9 1987 11 4 1987 12 10
1988 1 4 1988 2 6 1988 3 4
1988 4 4 1988 5 3 1988 6 5
1988 7 3 1988 8 4 1988 9 5
1988 10 3 1988 11 6 1988 12 3
1989 1 2 1989 2 6 1989 3 1
1989 4 5 1989 5 5 1989 6 4
1989 7 2 1989 8 2 1989 9 2
1989 10 5 1989 11 1 1989 12 10
1990 1 3 1990 2 8 1990 3 12
1990 4 7 1990 5 3 1990 6 2
1990 7 4 1990 8 3 1990 9 0
1990 10 6 1990 11 6 1990 12 6
;
run;

For planning purposes, it is of interest to understand the long- and short-term trends
in the maintenance needs of the system. Over the long term, it is suspected that
the quality of new components and repair work improves over time, so the number
of component removals would tend to decrease from year to year. It is not known
whether the robustness of the system is affected by seasonal variations in the operat-
ing environment, but this possibility is also of interest.

Because the maintenance record is in the form of counts, the number of removals are
modeled as realizations of Poisson random variables. Denote byλij the unobserved
component removal rate for yeari and monthj. Since the data were recorded at
regular intervals (from a system operating at a constant rate), eachλij is assumed to
be a function of year and month only.

A preliminary two-way analysis is performed using PROC GENMOD to make broad
inferences on repair trends. A log-link is specified for the model

log λij = µ + αY
i + αM

j

whereµ is a grand mean,αY
i is the effect of theith year, andαM

j is the effect of the
jth month. A CLASS statement declares the variablesyear andmonth as categorical.
Type III sum of squares are requested to test whether there is an overall effect of year
and/or month.

title2 ’Two-way model’;
proc genmod data=equip;

class year month;
model removals=year month

/ dist=Poisson link=log type3;
run;
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Output 30.2.1. PROC GENMOD Listing for Type III Analysis
Analysis of Component Reliability

Two-way model

The GENMOD Procedure

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

year 3 2.63 0.4527
month 11 21.12 0.0321

Output 30.2.1displays the listed Type III statistics for the fitted model. With the test
for year effects yielding ap-value of0.4527, there is no evidence of a long-term trend
in maintenance rates. Apparently, the quality of new or repaired components did not
change between 1987 and 1990. However, the test for monthly trends does yield a
smallp-value of0.0321, indicating that seasonal trends are just barely significant at
theα = 0.05 level.

The Type III tests indicate that theyear term may be dropped from the model. The
focus of the analysis is now on identifying the form of the underlying seasonal trend,
which is a task that PROC GAM is especially suited for. PROC GAM will be used
to fit both a reduced categorical model, withyear eliminated, and a nonparametric
spline model. Although PROC GENMOD also has the capability to fit categorical
models, as demonstrated above, PROC GAM will be used to fit both models for a
better comparison.

The following PROC GAM statements specify the reduced categorical model. For
this part of the analysis, a CLASS statement is again used to specify thatmonth
is a categorical variable. In the follow-up, the seasonal effect will be treated as a
nonparametric function ofmonth.

title2 ’One-way model’;
proc gam data=equip;

class month;
model removals=param(month)

/ dist=Poisson;
output out=est predicted;

run;

The following statements generate a plot of the estimated seasonal trend. Note that
the predicted values in the output data set correspond to thelogarithmsof theλij , and
so the exponential function is applied to put them on the scale of the original data.
The plot is displayed inOutput 30.2.2.
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proc sort data=est out=plot;
by month;

run;

data plot;
set plot;
P_removals = exp(P_removals);

run;

legend1 frame cframe=ligr cborder=black label=none
position=center;

axis1 minor=none order=(0 to 15 by 5)
label=(angle=90 rotate=0 "number of removals");

axis2 minor=none label=("month");
symbol1 color=black interpol=none value=dot;
symbol2 color=blue interpol=join value=none line=1;

title;
proc gplot data=plot;

plot removals*month=1 P_removals*month=2
/ overlay cframe=ligr legend=legend1 frame

vaxis=axis1 haxis=axis2;
run; quit;

Output 30.2.2. Predicted Seasonal Trend from a Parametric Model Fit Using a
CLASS Statement

The predicted repair rates shown inOutput 30.2.2form a jagged seasonal pattern.
Ignoring the month-to-month fluctuations, which are difficult to explain and may be
artifacts of random noise, the general removal rate trend starts by increasing at the
beginning of the year; the trend flattens out in February and then decreases through
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August; it flattens out again in September and begins an increasing trend that contin-
ues throughout the rest of the year.

One advantage of nonparametric regression is its ability to highlight general trends in
the data, such as those described above, and attribute local fluctuations to unexplained
random noise. The nonparametric regression model used by PROC GAM specifies
that the underlying removal ratesλj are of the form

log λj = β0 + β1Monthj + s(Monthj)

whereβ1 is a linear coefficient ands() is a nonparametric regression function.β1

ands() define the linear and nonparametric parts, respectively, of the seasonal trend.

The following statements request that PROC GAM fit a cubic spline model to the
monthly repair data. The output listing is displayed inOutput 30.2.3.

title ’Analysis of Component Reliability’;
title2 ’Spline model’;
proc gam data=equip;

model removals=spline(month)
/ dist=Poisson method=gcv;

run;

The METHOD=GCV option is used to determine an appropriate level of smoothing.
The keywords LCLM and UCLM in the OUTPUT statement request that lower and
upper 95% confidence bounds on eachs(Monthj) be included in the output data set.

Output 30.2.3. PROC GAM Listing for Cubic Spline Regression Using the
METHOD=GCV Option

Analysis of Component Reliability
Spline model

The GAM Procedure
Dependent Variable: removals

Smoothing Model Component(s): spline(month)

Summary of Input Data Set

Number of Observations 48
Number of Missing Observations 0
Distribution Poisson
Link Function Log

Iteration Summary and Fit Statistics

Number of local score iterations 5
Local score convergence criterion 7.241527E-12
Final Number of Backfitting Iterations 1
Final Backfitting Criterion 1.710339E-11
The Deviance of the Final Estimate 56.901543546
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Output 30.2.4. Model Fit Statistics

Spline model

The GAM Procedure
Dependent Variable: removals

Smoothing Model Component(s): spline(month)

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 1.34594 0.14509 9.28 <.0001
Linear(month) 0.02274 0.01893 1.20 0.2362

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs

Spline(month) 0.901512 1.879980 0.115848 12

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(month) 1.87998 8.877764 8.8778 0.0103

Notice in the listing ofOutput 30.2.4that the DF value chosen for the nonlinear por-
tion of the spline by minimizing GCV is about 1.88, which is smaller than the default
value of 3. This indicates that the spline model of the seasonal trend is relatively sim-
ple. As indicated by the “Analysis of Deviance” table, it is a significant feature of the
data: the table lists ap-value of0.0103 for the hypothesis of no seasonal trend. Note
also that the “Parameter Estimates” table lists ap-value of0.2362 for the hypothesis
of no linear factor in the seasonal trend.

The following statements use the experimental ODS GRAPHICS statement to plot
the smoothing component for the effect ofMonth on predicted repair rates.

ods html;
ods graphics on;

proc gam data=equip;
model removals=spline(month)

/ dist=Poisson method=gcv;
run;

ods graphics off;
ods html close;



Example 30.2. Poisson Regression Analysis of Component Reliability � 1595

For general information about ODS graphics, seeChapter 15, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the GAM pro-
cedure, see the section“ODS Graphics”on page 1581. The smoothing component
plot is displayed inOutput 30.2.5.

Output 30.2.5. Predicted Seasonal Trend from a Cubic Spline Model
(Experimental)

In Output 30.2.5, it is apparent that the pattern of repair rates follows the general pat-
tern observed inOutput 30.2.2. However, the plot ofOutput 30.2.5, is much cleaner
as the month-to-month fluctuations are smoothed out to reveal the broader seasonal
trend.

You can use the PLOTS(CLM) option to added a 95% confidence band to the plot of
s(Monthj), as in the following statements.

ods html; ods graphics on;

proc gam data=equip plots(clm);
model removals=spline(month)

/ dist=Poisson method=gcv;
run;

ods graphics off; ods html close;
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The plot is displayed inOutput 30.2.6.

Output 30.2.6. Estimated Nonparametric Factor of Seasonal Trend, Along with
95% Confidence Bounds (Experimental)

The smallp-value inOutput 30.2.1of 0.0321 for the hypothesis of no seasonal trend
indicates that the data exhibit significant seasonal structure. However,Output 30.2.6
is a graphical illustration of a degree of indistinctness in that structure. For instance,
the horizontal reference line at zero is entirely within the 95% confidence band; that
is, the estimated nonlinear part of the trend is relatively flat. Thus, despite evidence of
seasonality based on the parametric model, it is difficult to narrow down its significant
effects to a specific part of the year.

Example 30.3. Comparing PROC GAM with PROC LOESS

In an analysis of simulated data from a hypothetical chemistry experiment, additive
nonparametric regression performed by PROC GAM is compared to the unrestricted
multidimensional procedure of PROC LOESS.

In each repetition of the experiment, a catalyst is added to a chemical solution,
thereby inducing synthesis of a new material. The data are measurements of the tem-
perature of the solution, the amount of catalyst added, and the yield of the chemical
reaction. The following code reads and plots the raw data.
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data ExperimentA;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield @@;
datalines;

80 0.005 6.039 80 0.010 4.719 80 0.015 6.301
80 0.020 4.558 80 0.025 5.917 80 0.030 4.365
80 0.035 6.540 80 0.040 5.063 80 0.045 4.668
80 0.050 7.641 80 0.055 6.736 80 0.060 7.255
80 0.065 5.515 80 0.070 5.260 80 0.075 4.813
80 0.080 4.465 90 0.005 4.540 90 0.010 3.553
90 0.015 5.611 90 0.020 4.586 90 0.025 6.503
90 0.030 4.671 90 0.035 4.919 90 0.040 6.536
90 0.045 4.799 90 0.050 6.002 90 0.055 6.988
90 0.060 6.206 90 0.065 5.193 90 0.070 5.783
90 0.075 6.482 90 0.080 5.222 100 0.005 5.042

100 0.010 5.551 100 0.015 4.804 100 0.020 5.313
100 0.025 4.957 100 0.030 6.177 100 0.035 5.433
100 0.040 6.139 100 0.045 6.217 100 0.050 6.498
100 0.055 7.037 100 0.060 5.589 100 0.065 5.593
100 0.070 7.438 100 0.075 4.794 100 0.080 3.692
110 0.005 6.005 110 0.010 5.493 110 0.015 5.107
110 0.020 5.511 110 0.025 5.692 110 0.030 5.969
110 0.035 6.244 110 0.040 7.364 110 0.045 6.412
110 0.050 6.928 110 0.055 6.814 110 0.060 8.071
110 0.065 6.038 110 0.070 6.295 110 0.075 4.308
110 0.080 7.020 120 0.005 5.409 120 0.010 7.009
120 0.015 6.160 120 0.020 7.408 120 0.025 7.123
120 0.030 7.009 120 0.035 7.708 120 0.040 5.278
120 0.045 8.111 120 0.050 8.547 120 0.055 8.279
120 0.060 8.736 120 0.065 6.988 120 0.070 6.283
120 0.075 7.367 120 0.080 6.579 130 0.005 7.629
130 0.010 7.171 130 0.015 5.997 130 0.020 6.587
130 0.025 7.335 130 0.030 7.209 130 0.035 8.259
130 0.040 6.530 130 0.045 8.400 130 0.050 7.218
130 0.055 9.167 130 0.060 9.082 130 0.065 7.680
130 0.070 7.139 130 0.075 7.275 130 0.080 7.544
140 0.005 4.860 140 0.010 5.932 140 0.015 3.685
140 0.020 5.581 140 0.025 4.935 140 0.030 5.197
140 0.035 5.559 140 0.040 4.836 140 0.045 5.795
140 0.050 5.524 140 0.055 7.736 140 0.060 5.628
140 0.065 6.644 140 0.070 3.785 140 0.075 4.853
140 0.080 6.006
;

title2 ’Raw data’;
proc g3d data=ExperimentA;

plot Temperature*Catalyst=Yield
/ zmin=2 zmax=11;

run;

The plot is displayed inOutput 30.3.1.



1598 � Chapter 30. The GAM Procedure (Experimental)

Output 30.3.1. Surface Plot of Yield by Temperature and Amount of Catalyst

A surface fitted to the plot ofOutput 30.3.1by PROC LOESS will be of a very
general (and flexible) type, since the procedure requires only weak assumptions about
the structure of the dependencies among the data. PROC GAM, on the other hand,
makes stronger structural assumptions by restricting the fitted surface to an additive
form. These differences will be demonstrated in this example.

The following code requests that both PROC LOESS and PROC GAM fit surfaces to
the data.

ods output OutputStatistics=PredLOESS;
proc loess data=ExperimentA;

model Yield = Temperature Catalyst
/ scale=sd degree=2 select=gcv;

run;
ods output close;

proc gam data=ExperimentA;
model Yield = loess(Temperature) loess(Catalyst)

/ method=gcv;
output out=PredGAM;

run;

In both cases the smoothing parameter was chosen as the value that minimizes GCV.
This is performed automatically by PROC LOESS and PROC GAM.

The following code generates plots of the predicted yields, which are displayed in
Output 30.3.2.
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title2 ’PROC LOESS fitted surface’;
proc g3d data=PredLOESS;

format pred f6.3;
plot Temperature*Catalyst=pred

/ name=’LOESSA’ zmin=2 zmax=11;
run;

title2 ’PROC GAM additive fitted surface’;
proc g3d data=PredGAM;

format P_Yield f6.3;
plot Temperature*Catalyst=P_Yield

/ name=’GAMA’ zmin=2 zmax=11;
run;

goptions display;
proc greplay nofs tc=sashelp.templt template=v2;

igout=gseg;
treplay 1:loessa 2:gama;

run; quit;

Output 30.3.2. Fitted Regression Surfaces

Though both PROC LOESS and PROC GAM use the statistical technique loess, it
is apparent fromOutput 30.3.2that the manner in which it is applied is very differ-
ent. By smoothing out the data in local neighborhoods, PROC LOESS essentially
fits a surface to the data in pieces, one neighborhood at a time. The local regions
are treated independently, so separate areas of the fitted surface are only weakly re-
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lated. PROC GAM imposes additive structure, requiring that cross sections of the
fitted surface always have the same shape and thereby relating regions that have a
common value of the same individual regressor variable. Under that restriction, the
loess technique need not be applied to the entire multidimensional scatter plot, but
only to one-dimensional cross sections of the data.

The advantage of using additive model fitting is that its statistical power is directed
toward univariate smoothing, and so it is able to discern the finer details of any under-
lying structure in the data. Regression data may be very sparse when viewed in the
context of multidimensional space, even when every individual set of regressor val-
ues densely covers its range. This is the familiar curse of dimensionality. Sparse data
greatly restricts the effectiveness of nonparametric procedures, but additive model
fitting, when appropriate, is one way to overcome this limitation.

To examine these properties, plots of cross sections of unrestricted (PROC LOESS)
and additive (PROC GAM) fitted surfaces for the variableCatalyst are generated by
the following code. The code for creating the cross section plots and overlaying them
is somewhat complicated, so a macro %XPlot is employed to make it easy to create
this plot for the results of each procedure.

axis1 minor=none order=(2 to 11 by 2)
label=(angle=90 rotate=0 "Predicted Yield");

axis2 minor=none order=(0.005 to 0.080 by 0.025)
label=("Catalyst");

symbol1 color=blue interpol=join value=none
line=1 width=1;

%macro XPLOT(proc=,name=);

proc sort data=Pred&proc;
by Catalyst Temperature;

run;

data PredX&proc;
keep Pred80 Pred90 Pred100 Pred110 Pred120 Pred130

Pred140 Catalyst;
array xPred{8:14} Pred80 Pred90 Pred100 Pred110

Pred120 Pred130 Pred140;
retain Pred80 Pred90 Pred100 Pred110 Pred120

Pred130 Pred140;
set Pred&proc;
%if &proc=LOESS %then %do;

xPred{Temperature/10} = pred;
%end;
%else %if &proc=GAM %then %do;

xPred{Temperature/10} = P_Yield;
%end;
if abs(Temperature-140)<1 then output;

run;

proc gplot data=PredX&proc;
plot Pred140*Catalyst=1 Pred130*Catalyst=1
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Pred120*Catalyst=1 Pred110*Catalyst=1
Pred100*Catalyst=1 Pred90*Catalyst=1
Pred80*Catalyst=1
/ overlay cframe=ligr name=&name

vaxis=axis1 haxis=axis2;
run; quit;

%mend;

title;
title2 ’PROC LOESS fitted surface, cross sections’;
%XPLOT(proc=LOESS,name=’XLOESSA’);
title2 ’PROC GAM additive fitted surface, cross sections’;
%XPLOT(proc=GAM,name=’XGAMA’);

goptions display;
proc greplay nofs tc=sashelp.templt template=v2;

igout=gseg;
treplay 1:xloessa 2:xgama;

run; quit;

The plots are displayed inOutput 30.3.3.

Output 30.3.3. Cross sections of Fitted Regression Surfaces
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Notice that the graphs in the top panel (PROC LOESS) ofOutput 30.3.3have vary-
ing shapes, while every graph in the bottom panel (PROC GAM) is the same curve
shifted vertically. This illustrates precisely the kind of structural differences that dis-
tinguish additive models. A second important comparison to make inOutput 30.3.2
andOutput 30.3.3is the level of detail in the fitted regression surfaces. Cross sections
of the PROC LOESS surface are rather flat, but those of the additive surface have a
clear shape. In particular, the ridge nearCatalyst=0.055 is only vaguely evident in
the PROC LOESS surface, but it is plainly revealed by the additive procedure.

For an example of a situation where unrestricted multidimensional fitting is preferred
over additive regression, consider the following simulated data from a similar exper-
iment. The following code creates another SAS data set and plot.

data ExperimentB;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield @@;
datalines;

80 0.005 9.115 80 0.010 9.275 80 0.015 9.160
80 0.020 7.065 80 0.025 6.054 80 0.030 4.899
80 0.035 4.504 80 0.040 4.238 80 0.045 3.232
80 0.050 3.135 80 0.055 5.100 80 0.060 4.802
80 0.065 8.218 80 0.070 7.679 80 0.075 9.669
80 0.080 9.071 90 0.005 7.085 90 0.010 6.814
90 0.015 4.009 90 0.020 4.199 90 0.025 3.377
90 0.030 2.141 90 0.035 3.500 90 0.040 5.967
90 0.045 5.268 90 0.050 6.238 90 0.055 7.847
90 0.060 7.992 90 0.065 7.904 90 0.070 10.184
90 0.075 7.914 90 0.080 6.842 100 0.005 4.497

100 0.010 2.565 100 0.015 2.637 100 0.020 2.436
100 0.025 2.525 100 0.030 4.474 100 0.035 6.238
100 0.040 7.029 100 0.045 8.183 100 0.050 8.939
100 0.055 9.283 100 0.060 8.246 100 0.065 6.927
100 0.070 7.062 100 0.075 5.615 100 0.080 4.687
110 0.005 3.706 110 0.010 3.154 110 0.015 3.726
110 0.020 4.634 110 0.025 5.970 110 0.030 8.219
110 0.035 8.590 110 0.040 9.097 110 0.045 7.887
110 0.050 8.480 110 0.055 6.818 110 0.060 7.666
110 0.065 4.375 110 0.070 3.994 110 0.075 3.630
110 0.080 2.685 120 0.005 4.697 120 0.010 4.268
120 0.015 6.507 120 0.020 7.747 120 0.025 9.412
120 0.030 8.761 120 0.035 8.997 120 0.040 7.538
120 0.045 7.003 120 0.050 6.010 120 0.055 3.886
120 0.060 4.897 120 0.065 2.562 120 0.070 2.714
120 0.075 3.141 120 0.080 5.081 130 0.005 8.729
130 0.010 7.460 130 0.015 9.549 130 0.020 10.049
130 0.025 8.131 130 0.030 7.553 130 0.035 6.191
130 0.040 6.272 130 0.045 4.649 130 0.050 3.884
130 0.055 2.522 130 0.060 4.366 130 0.065 3.272
130 0.070 4.906 130 0.075 6.538 130 0.080 7.380
140 0.005 8.991 140 0.010 8.029 140 0.015 8.417
140 0.020 8.049 140 0.025 4.608 140 0.030 5.025
140 0.035 2.795 140 0.040 3.123 140 0.045 3.407
140 0.050 4.183 140 0.055 3.750 140 0.060 6.316
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140 0.065 5.799 140 0.070 7.992 140 0.075 7.835
140 0.080 8.985
;
run;

title2 ’Raw data’;
proc g3d data=ExperimentB;

plot Temperature*Catalyst=Yield
/ zmin=2 zmax=11;

run;

A plot of the raw data is displayed inOutput 30.3.4.

Output 30.3.4. Raw Data from Experiment B

Though the surface displayed inOutput 30.3.4is quite jagged, a distinct feature of
the plot is a large ridge that runs diagonally across its surface. One would expect that
the ridge would appear in the fitted regression surface of an appropriate nonparamet-
ric procedure. Nevertheless, between PROC LOESS and PROC GAM, only PROC
LOESS is able to capture this significant feature.

The SAS code for fitting the new data is essentially the same as that for the data set
from the first experiment. Similar toOutput 30.3.2, multivariate and additive fitted
surfaces for these data are displayed inOutput 30.3.5.
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Output 30.3.5. Fitted Regression Surfaces

It is clear fromOutput 30.3.5that the results of PROC LOESS and PROC GAM are
completely different. While the plot in the top panel resembles the raw data plot in
Output 30.3.4, the plot in the bottom panel is essentially featureless.

To understand what is happening, compare the scatter plots ofYield by Catalyst for
the two data sets in this example. These are generated by the following code and
displayed inOutput 30.3.6.

axis1 minor=none order=(2 to 11 by 2)
label=(angle=90 rotate=0 "Predicted Yield");

axis2 minor=none order=(0.005 to 0.080 by 0.025) label=("Catalyst");
symbol2 c=yellow v=dot i=none;

title2 ’Experiment A’;
proc gplot data=ExperimentA;

plot Yield*Catalyst=2
/ cframe=ligr name=’ExptA’

vaxis=axis1 haxis=axis2;
run; quit;

title2 ’Experiment B’;
proc gplot data=ExperimentB;

plot Yield*Catalyst=2
/ cframe=ligr name=’ExptB’

vaxis=axis1 haxis=axis2;
run; quit;
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proc greplay nofs tc=sashelp.templt template=v2;
igout=gseg;
treplay 1:expta 2:exptb;

run; quit;

Output 30.3.6. Scatterplots of Yield by Catalyst

The top panel ofOutput 30.3.6hints at the same kind of structure exhibited in the
fitted cross sections ofOutput 30.3.3. In PROC GAM, the additive model component
corresponding toCatalyst is fit to a similar scatter plot, with the partial residuals
computed in the backfitting algorithm, so it is able to capture the trend seen here. In
contrast, when the second data set is viewed from the perspective ofOutput 30.3.6,
the diagonal ridge apparent inOutput 30.3.4is washed out, and no clear structure
shows up in the scatter plot. As a result, the additive model fit produced by PROC
GAM is relatively featureless.
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Overview

The GENMOD procedure fits generalized linear models, as defined by Nelder and
Wedderburn (1972). The class of generalized linear models is an extension of tra-
ditional linear models that allows the mean of a population to depend on alinear
predictor through a nonlinearlink functionand allows the response probability dis-
tribution to be any member of an exponential family of distributions. Many widely
used statistical models are generalized linear models. These include classical linear
models with normal errors, logistic and probit models for binary data, and log-linear
models for multinomial data. Many other useful statistical models can be formu-
lated as generalized linear models by the selection of an appropriate link function
and response probability distribution. Refer to McCullagh and Nelder (1989) for a
discussion of statistical modeling using generalized linear models. The books by
Aitkin, Anderson, Francis, and Hinde (1989) and Dobson (1990) are also excellent
references with many examples of applications of generalized linear models. Firth
(1991) provides an overview of generalized linear models.

The analysis of correlated data arising from repeated measurements when the mea-
surements are assumed to be multivariate normal has been studied extensively.
However, the normality assumption may not always be reasonable; for example, dif-
ferent methodology must be used in the data analysis when the responses are discrete
and correlated. Generalized Estimating Equations (GEEs) provide a practical method
with reasonable statistical efficiency to analyze such data.

Liang and Zeger (1986) introduced GEEs as a method of dealing with correlated
data when, except for the correlation among responses, the data can be modeled as
a generalized linear model. For example, correlated binary and count data in many
cases can be modeled in this way.

The GENMOD procedure can fit models to correlated responses by the GEE method.
You can use PROC GENMOD to fit models with most of the correlation structures
from Liang and Zeger (1986) using GEEs. Refer to Liang and Zeger (1986), Diggle,
Liang, and Zeger (1994), and Lipsitz, Fitzmaurice, Orav, and Laird (1994) for more
details on GEEs.

Experimental graphics are now available with the GENMOD procedure for model
assessment. For more information, see the“ODS Graphics”section on page 1695.
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What Is a Generalized Linear Model?

A traditional linear model is of the form

yi = xi
′β + εi

whereyi is the response variable for theith observation. The quantityxi is a column
vector of covariates, or explanatory variables, for observationi that is known from
the experimental setting and is considered to be fixed, or nonrandom. The vector of
unknown coefficientsβ is estimated by a least squares fit to the datay. Theεi are
assumed to be independent, normal random variables with zero mean and constant
variance. The expected value ofyi, denoted byµi, is

µi = xi
′β

While traditional linear models are used extensively in statistical data analysis, there
are types of problems for which they are not appropriate.

• It may not be reasonable to assume that data are normally distributed. For
example, the normal distribution (which is continuous) may not be adequate
for modeling counts or measured proportions that are considered to be discrete.

• If the mean of the data is naturally restricted to a range of values, the traditional
linear model may not be appropriate, since the linear predictorxi

′β can take
on any value. For example, the mean of a measured proportion is between 0
and 1, but the linear predictor of the mean in a traditional linear model is not
restricted to this range.

• It may not be realistic to assume that the variance of the data is constant for all
observations. For example, it is not unusual to observe data where the variance
increases with the mean of the data.

A generalized linear model extends the traditional linear model and is, therefore,
applicable to a wider range of data analysis problems. A generalized linear model
consists of the following components:

• The linear component is defined just as it is for traditional linear models:

ηi = xi
′β

• A monotonic differentiable link functiong describes how the expected value
of yi is related to the linear predictorηi:

g(µi) = xi
′β

• The response variablesyi are independent fori = 1, 2,. . . and have a probability
distribution from an exponential family. This implies that the variance of the
response depends on the meanµ through avariance functionV :

var(yi) =
φV (µi)

wi
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whereφ is a constant andwi is a known weight for each observation. Thedis-
persion parameterφ is either known (for example, for the binomial or Poisson
distribution,φ = 1) or it must be estimated.

See the section“Response Probability Distributions”on page 1650 for the form of a
probability distribution from the exponential family of distributions.

As in the case of traditional linear models, fitted generalized linear models can be
summarized through statistics such as parameter estimates, their standard errors, and
goodness-of-fit statistics. You can also make statistical inference about the param-
eters using confidence intervals and hypothesis tests. However, specific inference
procedures are usually based on asymptotic considerations, since exact distribution
theory is not available or is not practical for all generalized linear models.

Examples of Generalized Linear Models

You construct a generalized linear model by deciding on response and explanatory
variables for your data and choosing an appropriate link function and response prob-
ability distribution. Some examples of generalized linear models follow. Explanatory
variables can be any combination of continuous variables, classification variables,
and interactions.

Traditional Linear Model

• response variable: a continuous variable

• distribution: normal

• link function: identity g(µ) = µ

Logistic Regression

• response variable: a proportion

• distribution: binomial

• link function: logit g(µ) = log
(

µ

1− µ

)

Poisson Regression in Log Linear Model

• response variable: a count

• distribution: Poisson

• link function: log g(µ) = log(µ)

Gamma Model with Log Link

• response variable: a positive, continuous variable

• distribution: gamma

• link function: log g(µ) = log(µ)
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The GENMOD Procedure

The GENMOD procedure fits a generalized linear model to the data by maximum
likelihood estimation of the parameter vectorβ. There is, in general, no closed form
solution for the maximum likelihood estimates of the parameters. The GENMOD
procedure estimates the parameters of the model numerically through an iterative
fitting process. The dispersion parameterφ is also estimated by maximum likelihood
or, optionally, by the residual deviance or by Pearson’s chi-square divided by the
degrees of freedom. Covariances, standard errors, and are computed for the estimated
parameters based on the asymptotic normality of maximum likelihood estimators.

A number of popular link functions and probability distributions are available in the
GENMOD procedure. The built-in link functions are

• identity: g(µ) = µ

• logit: g(µ) = log(µ/(1− µ))

• probit: g(µ) = Φ−1(µ), whereΦ is the standard normal cumulative distribu-
tion function

• power:g(µ) =
{

µλ if λ 6= 0
log(µ) if λ = 0

• log: g(µ) = log(µ)

• complementary log-log:g(µ) = log(− log(1− µ))

The available distributions and associated variance functions are

• normal:V (µ) = 1

• binomial (proportion):V (µ) = µ(1− µ)

• Poisson:V (µ) = µ

• gamma:V (µ) = µ2

• inverse Gaussian:V (µ) = µ3

• negative binomial:V (µ) = µ + kµ2

• multinomial

The negative binomial is a distribution with an additional parameterk in the variance
function. PROC GENMOD estimatesk by maximum likelihood, or you can option-
ally set it to a constant value. Refer to McCullagh and Nelder (1989, Chapter 11),
Hilbe (1994), or Lawless (1987) for discussions of the negative binomial distribution.

The multinomial distribution is sometimes used to model a response that can take
values from a number of categories. The binomial is a special case of the multinomial
with two categories. See the section“Multinomial Models” on page 1671 and refer
to McCullagh and Nelder (1989, Chapter 5) for a description of the multinomial
distribution.

In addition, you can easily define your own link functions or distributions through
DATA step programming statements used within the procedure.
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An important aspect of generalized linear modeling is the selection of explanatory
variables in the model. Changes in goodness-of-fit statistics are often used to eval-
uate the contribution of subsets of explanatory variables to a particular model. The
deviance, defined to be twice the difference between the maximum attainable log
likelihood and the log likelihood of the model under consideration, is often used as a
measure of goodness of fit. The maximum attainable log likelihood is achieved with
a model that has a parameter for every observation. See the section“Goodness of Fit”
on page 1656 for formulas for the deviance.

One strategy for variable selection is to fit a sequence of models, beginning with a
simple model with only an intercept term, and then include one additional explanatory
variable in each successive model. You can measure the importance of the additional
explanatory variable by the difference in deviances or fitted log likelihoods between
successive models. Asymptotic tests computed by the GENMOD procedure enable
you to assess the statistical significance of the additional term.

The GENMOD procedure enables you to fit a sequence of models, up through a
maximum number of terms specified in a MODEL statement. A table summarizes
twice the difference in log likelihoods between each successive pair of models. This
is called aType 1analysis in the GENMOD procedure, because it is analogous to
Type I (sequential) sums of squares in the GLM procedure. As with the PROC GLM
Type I sums of squares, the results from this process depend on the order in which
the model terms are fit.

The GENMOD procedure also generates aType 3analysis analogous to Type III sums
of squares in the GLM procedure. A Type 3 analysis does not depend on the order in
which the terms for the model are specified. A GENMOD procedure Type 3 analysis
consists of specifying a model and computing likelihood ratio statistics for Type III
contrasts for each term in the model. The contrasts are defined in the same way as
they are in the GLM procedure. The GENMOD procedure optionally computes Wald
statistics for Type III contrasts. This is computationally less expensive than likelihood
ratio statistics, but it is thought to be less accurate because the specified significance
level of hypothesis tests based on the Wald statistic may not be as close to the actual
significance level as it is for likelihood ratio tests.

A Type 3 analysis generalizes the use of Type III estimable functions in linear mod-
els. Briefly, a Type III estimable function (contrast) for an effect is a linear function
of the model parameters that involves the parameters of the effect and any interac-
tions with that effect. A test of the hypothesis that the Type III contrast for a main
effect is equal to 0 is intended to test the significance of the main effect in the pres-
ence of interactions. SeeChapter 32, “The GLM Procedure,”andChapter 11, “The
Four Types of Estimable Functions,”for more information about Type III estimable
functions. Also refer to Littell, Freund, and Spector (1991).

Additional features of the GENMOD procedure are

• likelihood ratio statistics for user-defined contrasts, that is, linear functions of
the parameters, andp-values based on their asymptotic chi-square distributions

• estimated values, standard errors, and confidence limits for user-defined con-
trasts and least-squares means
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• ability to create a SAS data set corresponding to most tables displayed by the
procedure (seeTable 31.3on page 1694)

• confidence intervals for model parameters based on either the profile likelihood
function or asymptotic normality

• syntax similar to that of PROC GLM for the specification of the response and
model effects, including interaction terms and automatic coding of classifica-
tion variables

• ability to fit GEE models for clustered response data

Getting Started

Poisson Regression

You can use the GENMOD procedure to fit a variety of statistical models. A typical
use of PROC GENMOD is to perform Poisson regression.

You can use the Poisson distribution to model the distribution of cell counts in a
multiway contingency table. Aitkin, Anderson, Francis, and Hinde (1989) have used
this method to model insurance claims data. Suppose the following hypothetical
insurance claims data are classified by two factors: age group (with two levels) and
car type (with three levels).

data insure;
input n c car$ age;
ln = log(n);
datalines;
500 42 small 1
1200 37 medium 1
100 1 large 1
400 101 small 2
500 73 medium 2
300 14 large 2
;

run;

In the preceding data set, the variablen represents the number of insurance policy-
holders and the variablec represents the number of insurance claims. The variable
car is the type of car involved (classified into three groups) and the variableage is
the age group of a policyholder (classified into two groups).

You can use PROC GENMOD to perform a Poisson regression analysis of these data
with a log link function. This type of model is sometimes called alog-linear model.

Assume that the number of claimsc has a Poisson probability distribution and that
its mean,µi, is related to the factorscar andage for observationi by
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log(µi) = log(ni) + xi
′β

= log(ni) + β0 +
cari(1)β1 + cari(2)β2 + cari(3)β3 +
agei(1)β4 + agei(2)β5

The indicator variablescari(j) andagei(j) are associated with thejth level of the
variablescar andage for observationi

cari(j) =
{

1 if car = j
0 if car 6= j

Theβs are unknown parameters to be estimated by the procedure. The logarithm of
the variablen is used as anoffset, that is, a regression variable with a constant coef-
ficient of 1 for each observation. A log linear relationship between the mean and the
factorscar andage is specified by the log link function. The log link function en-
sures that the mean number of insurance claims for each car and age group predicted
from the fitted model is positive.

The following statements invoke the GENMOD procedure to perform this analysis:

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln;

run;

The variablescar andage are specified as CLASS variables so that PROC GENMOD
automatically generates the indicator variables associated withcar andage.

The MODEL statement specifiesc as the response variable andcar andage as ex-
planatory variables. An intercept term is included by default. Thus, the model matrix
X (the matrix which has as itsith row the transpose of the covariate vector for theith
observation) consists of a column of 1s representing the intercept term and columns
of 0s and 1s derived from indicator variables representing the levels of thecar and
age variables.

That is, the model matrix is

X =



1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 1 0 1
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where the first column corresponds to the intercept, the next three columns corre-
spond to the variablecar, and the last two columns correspond to the variableage.

The response distribution is specified as Poisson, and the link function is chosen to
be log. That is, the Poisson mean parameterµ is related to the linear predictor by

log(µ) = xi
′β

The logarithm ofn is specified as an offset variable, as is common in this type of
analysis. In this case, the offset variable serves to normalize the fitted cell means to a
per policyholder basis, since the total number of claims, not individual policyholder
claims, are observed.

PROC GENMOD produces the following default output from the preceding state-
ments.

The GENMOD Procedure

Model Information

Data Set WORK.INSURE
Distribution Poisson
Link Function Log
Dependent Variable c
Offset Variable ln

Figure 31.1. Model Information

The “Model Information” table displayed inFigure 31.1provides information about
the specified model and the input data set.

Class Level Information

Class Levels Values

car 3 large medium small
age 2 1 2

Figure 31.2. Class Level Information

Figure 31.2displays the “Class Level Information” table, which identifies the levels
of the classification variables that are used in the model. Note thatcar is a charac-
ter variable, and the values are sorted in alphabetical order. This is the default sort
order, but you can select different sort orders with the ORDER= option in the PROC
GENMOD statement (see the ORDER= option on page 1625 for details).



Poisson Regression � 1619

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.8207 1.4103
Scaled Deviance 2 2.8207 1.4103
Pearson Chi-Square 2 2.8416 1.4208
Scaled Pearson X2 2 2.8416 1.4208
Log Likelihood 837.4533

Figure 31.3. Goodness Of Fit

The “Criteria For Assessing Goodness Of Fit” table displayed inFigure 31.3contains
statistics that summarize the fit of the specified model. These statistics are helpful in
judging the adequacy of a model and in comparing it with other models under consid-
eration. If you compare the deviance of 2.8207 with its asymptotic chi-square with 2
degrees of freedom distribution, you find that thep-value is 0.24. This indicates that
the specified model fits the data reasonably well.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -1.3168 0.0903 -1.4937 -1.1398 212.73
car large 1 -1.7643 0.2724 -2.2981 -1.2304 41.96
car medium 1 -0.6928 0.1282 -0.9441 -0.4414 29.18
car small 0 0.0000 0.0000 0.0000 0.0000 .
age 1 1 -1.3199 0.1359 -1.5863 -1.0536 94.34
age 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Parameter Estimates

Parameter Pr > ChiSq

Intercept <.0001
car large <.0001
car medium <.0001
car small .
age 1 <.0001
age 2 .
Scale

NOTE: The scale parameter was held fixed.

Figure 31.4. Analysis Of Parameter Estimates

Figure 31.4displays the “Analysis Of Parameter Estimates” table, which summarizes
the results of the iterative parameter estimation process. For each parameter in the
model, PROC GENMOD displays columns with the parameter name, the degrees of
freedom associated with the parameter, the estimated parameter value, the standard
error of the parameter estimate, the confidence intervals, and the Wald chi-square
statistic and associatedp-value for testing the significance of the parameter to the
model. If a column of the model matrix corresponding to a parameter is found to be
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linearly dependent, oraliased, with columns corresponding to parameters preceding
it in the model, PROC GENMOD assigns it zero degrees of freedom and displays a
value of zero for both the parameter estimate and its standard error.

This table includes a row for a scale parameter, even though there is no free scale
parameter in the Poisson distribution. See the“Response Probability Distributions”
section on page 1650 for the form of the Poisson probability distribution. PROC
GENMOD allows the specification of a scale parameter to fit overdispersed Poisson
and binomial distributions. In such cases, the SCALE row indicates the value of the
overdispersion scale parameter used in adjusting output statistics. See the section
“Overdispersion”on page 1659 for more on overdispersion and the meaning of the
SCALE parameter output by the GENMOD procedure. PROC GENMOD displays a
note indicating that the scale parameter is fixed, that is, not estimated by the iterative
fitting process.

It is usually of interest to assess the importance of the main effects in the model. Type
1 and Type 3 analyses generate statistical tests for the significance of these effects.
You can request these analyses with the TYPE1 and TYPE3 options in the MODEL
statement.

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln
type1
type3;

run;

The results of these analyses are summarized in the tables that follow.

The GENMOD Procedure

LR Statistics For Type 1 Analysis

Chi-
Source Deviance DF Square Pr > ChiSq

Intercept 175.1536
car 107.4620 2 67.69 <.0001
age 2.8207 1 104.64 <.0001

Figure 31.5. Type 1 Analysis

In the table for Type 1 analysis displayed inFigure 31.5, each entry in the deviance
column represents the deviance for the model containing the effect for that row and
all effects preceding it in the table. For example, the deviance corresponding tocar
in the table is the deviance of the model containing an intercept andcar. As more
terms are included in the model, the deviance decreases.

Entries in the chi-square column are likelihood ratio statistics for testing the signif-
icance of the effect added to the model containing all the preceding effects. The



Generalized Estimating Equations � 1621

chi-square value of 67.69 forcar represents twice the difference in log likelihoods
between fitting a model with only an intercept term and a model with an intercept
andcar. Since the scale parameter is set to 1 in this analysis, this is equal to the dif-
ference in deviances. Since two additional parameters are involved, this statistic can
be compared with a chi-square distribution with two degrees of freedom. The result-
ing p-value (labeled Pr>Chi) of less than 0.0001 indicates that this variable is highly
significant. Similarly, the chi-square value of 104.64 forage represents the differ-
ence in log likelihoods between the model with the intercept andcar and the model
with the intercept,car, andage. This effect is also highly significant, as indicated by
the smallp-value.

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

car 2 72.82 <.0001
age 1 104.64 <.0001

Figure 31.6. Type 3 Analysis

The Type 3 analysis results in the same conclusions as the Type 1 analysis. The Type
3 chi-square value for thecar variable, for example, is twice the difference between
the log likelihood for the model with the variablesIntercept, car, andage included
and the log likelihood for the model with thecar variable excluded. The hypothesis
tested in this case is the significance of the variablecar given that the variableage is
in the model. In other words, it tests the additional contribution ofcar in the model.

The values of the Type 3 likelihood ratio statistics for thecar and age variables
indicate that both of these factors are highly significant in determining the claims
performance of the insurance policyholders.

Generalized Estimating Equations

This section illustrates the use of the REPEATED statement to fit a GEE model,
using repeated measures data from the “Six Cities” study of the health effects of air
pollution (Ware et al. 1984). The data analyzed are the 16 selected cases in Lipsitz,
Fitzmaurice, et al. (1994). The binary response is the wheezing status of 16 children
at ages 9, 10, 11, and 12 years. The mean response is modeled as a logistic regression
model using the explanatory variables city of residence, age, and maternal smoking
status at the particular age. The binary responses for individual children are assumed
to be equally correlated, implying an exchangeable correlation structure.

The data set and SAS statements that fit the model by the GEE method are as follows:
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data six;
input case city$ @@;
do i=1 to 4;

input age smoke wheeze @@;
output;

end;
datalines;

1 portage 9 0 1 10 0 1 11 0 1 12 0 0
2 kingston 9 1 1 10 2 1 11 2 0 12 2 0
3 kingston 9 0 1 10 0 0 11 1 0 12 1 0
4 portage 9 0 0 10 0 1 11 0 1 12 1 0
5 kingston 9 0 0 10 1 0 11 1 0 12 1 0
6 portage 9 0 0 10 1 0 11 1 0 12 1 0
7 kingston 9 1 0 10 1 0 11 0 0 12 0 0
8 portage 9 1 0 10 1 0 11 1 0 12 2 0
9 portage 9 2 1 10 2 0 11 1 0 12 1 0

10 kingston 9 0 0 10 0 0 11 0 0 12 1 0
11 kingston 9 1 1 10 0 0 11 0 1 12 0 1
12 portage 9 1 0 10 0 0 11 0 0 12 0 0
13 kingston 9 1 0 10 0 1 11 1 1 12 1 1
14 portage 9 1 0 10 2 0 11 1 0 12 2 1
15 kingston 9 1 0 10 1 0 11 1 0 12 2 1
16 portage 9 1 1 10 1 1 11 2 0 12 1 0
;

run;

proc genmod data=six ;
class case city ;
model wheeze = city age smoke / dist=bin;
repeated subject=case / type=exch covb corrw;

run;

The CLASS statement and the MODEL statement specify the model for the mean of
thewheeze variable response as a logistic regression withcity, age, andsmoke as
independent variables, just as for an ordinary logistic regression.

The REPEATED statement invokes the GEE method, specifies the correlation
structure, and controls the displayed output from the GEE model. The option
SUBJECT=CASE specifies that individual subjects are identified in the input data set
by the variablecase. The SUBJECT= variablecase must be listed in the CLASS
statement. Measurements on individual subjects at ages 9, 10, 11, and 12 are in the
proper order in the data set, so the WITHINSUBJECT= option is not required. The
TYPE=EXCH option specifies an exchangeable working correlation structure, the
COVB option specifies that the parameter estimate covariance matrix be displayed,
and the CORRW option specifies that the final working correlation be displayed.

Initial parameter estimates for iterative fitting of the GEE model are computed as in
an ordinary generalized linear model, as described previously. Results of the initial
model fit displayed as part of the generated output are not shown here. Statistics
for the initial model fit such as parameter estimates, standard errors, deviances, and
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Pearson chi-squares do not apply to the GEE model, and are only valid for the initial
model fit. The following tables display information that applies to the GEE model fit.

Figure 31.7displays general information about the GEE model fit.

The GENMOD Procedure

GEE Model Information

Correlation Structure Exchangeable
Subject Effect case (16 levels)
Number of Clusters 16
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Figure 31.7. GEE Model Information

Figure 31.8displays the parameter estimate covariance matrices specified by the
COVB option. Both model-based and empirical covariances are produced.

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 5.74947 -0.22257 -0.53472 0.01655
Prm2 -0.22257 0.45478 -0.002410 0.01876
Prm4 -0.53472 -0.002410 0.05300 -0.01658
Prm5 0.01655 0.01876 -0.01658 0.19104

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 9.33994 -0.85104 -0.83253 -0.16534
Prm2 -0.85104 0.47368 0.05736 0.04023
Prm4 -0.83253 0.05736 0.07778 -0.002364
Prm5 -0.16534 0.04023 -0.002364 0.13051

Figure 31.8. GEE Parameter Estimate Covariance Matrices

The exchangeable working correlation matrix specified by the CORRW option is
displayed inFigure 31.9.

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.1648 0.1648 0.1648
Row2 0.1648 1.0000 0.1648 0.1648
Row3 0.1648 0.1648 1.0000 0.1648
Row4 0.1648 0.1648 0.1648 1.0000

Figure 31.9. GEE Working Correlation Matrix
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The parameter estimates table, displayed inFigure 31.10, contains parameter esti-
mates, standard errors, confidence intervals,Z scores, andp-values for the parameter
estimates. Empirical standard error estimates are used in this table. A table using
model-based standard errors can be created by using the REPEATED statement op-
tion MODELSE.

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -1.2751 3.0561 -7.2650 4.7148 -0.42 0.6765
city kingston -0.1223 0.6882 -1.4713 1.2266 -0.18 0.8589
city portage 0.0000 0.0000 0.0000 0.0000 . .
age 0.2036 0.2789 -0.3431 0.7502 0.73 0.4655
smoke 0.0935 0.3613 -0.6145 0.8016 0.26 0.7957

Figure 31.10. GEE Parameter Estimates Table

Syntax

You can specify the following statements in the GENMOD procedure. Items within
the<> are optional.

PROC GENMOD < options > ;
ASSESS | ASSESSMENT keyword < / options > ;
BY variables ;
CLASS variables ;
CONTRAST ’label’ effect values < . . . effect values > < /options > ;
DEVIANCE variable = expression ;
ESTIMATE ’label’ effect values < . . . effect values > < /options > ;
FREQ | FREQUENCY variable ;
FWDLINK variable = expression ;
INVLINK variable = expression ;
LSMEANS effects < / options > ;
MODEL response = < effects >< /options > ;
OUTPUT < OUT=SAS-data-set >

< keyword=name. . .keyword=name > ;
programming statements
REPEATED SUBJECT= subject-effect < / options > ;
WEIGHT | SCWGT variable ;
VARIANCE variable = expression ;

The PROC GENMOD statement invokes the procedure. All statements other than
the MODEL statement are optional. The CLASS statement, if present, must precede
the MODEL statement, and the CONTRAST statement must come after the MODEL
statement.
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PROC GENMOD Statement

PROC GENMOD < options > ;

The PROC GENMOD statement invokes the procedure. You can specify the follow-
ing options.

DATA=SAS-data-set
specifies the SAS data set containing the data to be analyzed. If you omit the DATA=
option, the procedure uses the most recently created SAS data set.

DESCENDING | DESCEND | DESC
specifies that the levels of the response variable for the ordinal multinomial model
and the binomial model with single variable response syntax be sorted in the reverse
of the default order. For example, if RORDER=FORMATTED (the default), the
DESCENDING option causes the levels to be sorted from highest to lowest instead
of from lowest to highest. If RORDER=FREQ, the DESCENDING option causes the
levels to be sorted from lowest frequency count to highest instead of from highest to
lowest.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters
long, wheren is a value between 20 and 200 characters. The default length is 20
characters.

ORDER=keyword
specifies the sorting order for the levels of the classification variables (specified in
the CLASS statement). This ordering determines which parameters in the model
correspond to each level in the data, so the ORDER= option may be useful when
you use the CONTRAST or ESTIMATE statement. Note that the ORDER= op-
tion applies to the levels for all classification variables. The exception is the default
ORDER=FORMATTED for numeric variables for which you have supplied no ex-
plicit format. In this case, the levels are ordered by their internal value. Note that this
represents a change from previous releases for how class levels are ordered. In re-
leases previous to Version 8, numeric class levels with no explicit format were ordered
by their BEST12. formatted values, and in order to revert to the previous ordering you
can specify this format explicitly for the affected classification variables. The change
was implemented because the former default behavior for ORDER=FORMATTED
often resulted in levels not being ordered numerically and usually required the user
to intervene with an explicit format or ORDER=INTERNAL to get the more natural
ordering. The following table displays the validkeywordsand describes how PROC
GENMOD interprets them.
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ORDER= keyword Levels Sorted by
DATA order of appearance in the input

data set

FORMATTED external formatted value, except
for numeric variables with no ex-
plicit format, which are sorted by
their unformatted (internal) value

FREQ descending frequency count; lev-
els with the most observations
come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and
ORDER=INTERNAL, the sort order is machine dependent. For more infor-
mation on sorting order, refer to the chapter titled “The SORT Procedure” in theSAS
Procedures Guide.

RORDER=keyword
specifies the sorting order for the levels of the response variable. This ordering deter-
mines which intercept parameter in the model corresponds to each level in the data. If
RORDER=FORMATTED for numeric variables for which you have supplied no ex-
plicit format, the levels are ordered by their internal values. Note that this represents
a change from previous releases for how class levels are ordered. In releases previ-
ous to Version 8, numeric class levels with no explicit format were ordered by their
BEST12. formatted values, and in order to revert to the previous ordering you can
specify this format explicitly for the response variable. The change was implemented
because the former default behavior for RORDER=FORMATTED often resulted in
levels not being ordered numerically and usually required the user to intervene with
an explicit format or RORDER=INTERNAL to get the more natural ordering. The
following table displays the validkeywordsand describes how PROC GENMOD in-
terprets them.

RORDER= keyword Levels Sorted by
DATA order of appearance in the input data set

FORMATTED external formatted value, except for nu-
meric variables with no explicit format,
which are sorted by their unformatted (in-
ternal) value

FREQ descending frequency count; levels with
the most observations come first in the
order

INTERNAL unformatted value
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By default, RORDER=FORMATTED. For RORDER=FORMATTED and
RORDER=INTERNAL, the sort order is machine dependent. The DESCENDING
option in the PROC GENMOD statement causes the response variable to be sorted
in the reverse of the order displayed in the previous table. For more information on
sorting order, refer to the chapter on the SORT procedure in theSAS Procedures
Guide.

The NOPRINT option, which suppresses displayed output in other SAS procedures,
is not available in the PROC GENMOD statement. However, you can use the Output
Delivery System (ODS) to suppress all displayed output, store all output on disk for
further analysis, or create SAS data sets from selected output. You can suppress
all displayed output with the statement ODS SELECT NONE;, and you can turn
displayed output back on with the statement ODS SELECT ALL;. SeeTable 31.3on
page 1694 for the names of output tables available from PROC GENMOD. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

ASSESS Statement (Experimental)

ASSESS|ASSESSMENT VAR=(effect) | LINK < / options > ;

The ASSESS statement computes and plots, using ODS graphics, model-checking
statistics based on aggregates of residuals. See the“Assessment of Models Based on
Aggregates of Residuals”section on page 1680 for details about the model assess-
ment methods available in GENMOD.

The types of aggregates available are cumulative residuals, moving sums of residuals,
and lowess smoothed residuals. If you do not specify which aggregate to use, the
assessments are based on cumulative sums. PROC GENMOD uses experimental
ODS graphics for graphical displays. For specific information about the experimental
graphics available in GENMOD, see the“ODS Graphics”section on page 1695.

You must specify either LINK or VAR= in order to create an analysis.

LINK
request the assessment of the link function by performing the analysis with respect to
the linear predictor.

VAR=(effect)
specifies the functional form of a covariate be checked by performing the analysis
with respect to the variable identified by the effect. The effect must be specified in
the MODEL statement, and must contain only continuous variables (variables not
listed in a CLASS statement).

You can specify the following options after the slash (/).

CRPANEL
requests a plot with four panels, each containing aggregates of the observed residuals
and two simulated curves, be created.
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LOWESS<(number)>
requests model assessment based on lowess smoothed residuals with optionalnumber
the fraction of data used.numbermust be between zero and one. Ifnumberis not
specified, the default value one-third is used.

NPATHS|NPATH|PATHS|PATH= number
specifies the number of simulated paths to plot on the default aggregate residuals plot.

RESAMPLE|RESAMPLES <=number>
specifies ap-value be computed based on 1,000 simulated paths, ornumberpaths, if
numberis specified.

SEED=number
specifies a seed for the normal random number generator used in creating simulated
realizations of aggregates of residuals for plots and estimatingp-values. Specifying
a seed allows you to produce identical graphs andp-values from run to run of the
procedure. If a seed is not specified, or ifnumberis negative or zero, a random
number seed is derived from the time of day.

WINDOW<(number)>
requests assessment based on a moving sum window of widthnumber. If numberis
not specified, a value of one-half of the range of thex-coordinate is used.

BY Statement

BY variables ;

You can specify a BY statement with PROC GENMOD to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

Since sorting the data changes the order in which PROC GENMOD reads the data,
this can affect the sorting order for the levels of classification variables if you have
specified ORDER=DATA in the PROC GENMOD statement. This, in turn, affects
specifications in the CONTRAST statement.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the GENMOD procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CLASS Statement

The CLASS statement names the classification variables to be used in the analysis.
The CLASS statement must precede the MODEL statement. You can specify vari-
ousv-optionsfor each variable by enclosing them in parentheses after the variable
name. You can also specify globalv-optionsfor the CLASS statement by placing
them after a slash (/). Globalv-optionsare applied to all the variables specified in
the CLASS statement. If you specify more than one CLASS statement, the global
v-optionsspecified on any one CLASS statement apply to all CLASS statements.
However, individual CLASS variablev-optionsoverride the globalv-options.

DESCENDING
DESC

reverses the sorting order of the classification variable.

MISSING
allows missing value (’.’ for a numeric variable and blanks for a character variables)
as a valid value for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of classification variables. This ordering de-
termines which parameters in the model correspond to each level in the data, so the
ORDER= option may be useful when you use the CONTRAST or ESTIMATE state-
ment. If ORDER=FORMATTED for numeric variables for which you have supplied
no explicit format, the levels are ordered by their internal values. Note that this rep-
resents a change from previous releases for how class levels are ordered. In releases
previous to Version 8, numeric class levels with no explicit format were ordered by
their BEST12. formatted values, and in order to revert to the previous ordering you
can specify this format explicitly for the affected classification variables. The change
was implemented because the former default behavior for ORDER=FORMATTED
often resulted in levels not being ordered numerically and usually required the user
to intervene with an explicit format or ORDER=INTERNAL to get the more natural
ordering. The following table shows how PROC GENMOD interprets values of the
ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, see the chapter
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on the SORT procedure in theSAS Procedures Guideand the discussion of BY-group
processing inSAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables.
Design matrix columns are created from CLASS variables according to the follow-
ing coding schemes. The default is PARAM=GLM. If PARAM=ORTHPOLY or
PARAM=POLY, and the CLASS levels are numeric, then theORDER=option in
the CLASS statement is ignored, and the internal, unformatted values are used. See
the“CLASS Variable Parameterization”section on page 1661 for further details.

EFFECT specifies effect coding

GLM specifies less-than-full-rank, reference-cell coding; this option
can only be used as a global option

ORDINAL
THERMOMETERspecifies the cumulative parameterization for an ordinal CLASS

variable.
POLYNOMIAL
POLY specifies polynomial coding

REFERENCE
REF specifies reference cell coding

ORTHEFFECT orthogonalizes PARAM=EFFECT

ORTHORDINAL
ORTHOTHERM orthogonalizes PARAM=ORDINAL

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL

ORTHREF orthogonalizes PARAM=REFERENCE

The EFFECT, POLYNOMIAL, REFERENCE, ORDINAL, and their orthogonal pa-
rameterizations are full rank. TheREF=option in the CLASS statement determines
the reference level for the EFFECT, REFERENCE, and their orthogonal parameteri-
zations.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and
their orthogonalizations. For an individual (but not a global) variable REF=option,
you can specify thelevel of the variable to use as the reference level. For a global
or individual variable REF=option, you can use one of the followingkeywords. The
default is REF=LAST.

FIRST designates the first ordered level as reference

LAST designates the last ordered level as reference
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TRUNCATE<=n>
specifies the lengthn of CLASS variable values to use in determining CLASS vari-
able levels. If you specify TRUNCATE without the lengthn, the first 16 characters of
the formatted values are used. When formatted values are longer than 16 characters,
you can use this option to revert to the levels as determined in releases previous to
Version 9. The default is to use the full formatted length of the CLASS variable. The
TRUNCATE option is only available as a global option.

CONTRAST Statement

CONTRAST ’label’ effect values < ,. . . effect values >< /options > ;

The CONTRAST statement provides a means for obtaining a test for a specified
hypothesis concerning the model parameters. This is accomplished by specifying a
matrix L for testing the hypothesisL′β = 0. You must be familiar with the details
of the model parameterization that PROC GENMOD uses. For more information,
see the“Parameterization Used in PROC GENMOD”section on page 1661 and the
“CLASS Variable Parameterization”section on page 1661. Computed statistics are
based on the asymptotic chi-square distribution of the likelihood ratio statistic, or
the generalized score statistic for GEE models, with degrees of freedom determined
by the number of linearly independent rows in theL matrix. You can request Wald
chi-square statistics with the Wald option in the CONTRAST statement.

There is no limit to the number of CONTRAST statements that you can specify, but
they must appear after the MODEL statement. Statistics for multiple CONTRAST
statements are displayed in a single table.

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast
specified. Labels can be up to 20 characters and must be enclosed in single
quotes.

effect identifies an effect that appears in the MODEL statement. The value
INTERCEPT or intercept can be used as an effect when an intercept is in-
cluded in the model. You do not need to include all effects that are included
in the MODEL statement.

values are constants that are elements of theL vector associated with the effect.

The rows ofL′ are specified in order and are separated by commas.

If you use the default less-than-full-rank GLM CLASS variable parameterization,
each row of theL matrix is checked for estimability. If PROC GENMOD finds a
contrast to be nonestimable, it displays missing values in corresponding rows in the
results. Refer to Searle (1971) for a discussion of estimable functions. If the elements
of L are not specified for an effect that contains a specified effect, then the elements of
the specified effect are distributed over the levels of the higher-order effect just as the
GLM procedure does for its CONTRAST and ESTIMATE statements. For example,
suppose that the model contains effects A and B and their interaction A*B. If you
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specify a CONTRAST statement involving A alone, theL matrix contains nonzero
terms for both A and A*B, since A*B contains A.

When you use any of the full-rank PARAM= CLASS variable options, all parameters
are directly estimable, and rows ofL are not checked for estimability.

If an effect is not specified in the CONTRAST statement, all of its coefficients in the
L matrix are set to 0. If too many values are specified for an effect, the extra ones are
ignored. If too few values are specified, the remaining ones are set to 0.

PROC GENMOD handles missing level combinations of classification variables in
the same manner as the GLM and MIXED procedures. Parameters corresponding to
missing level combinations are not included in the model. This convention can affect
the way in which you specify theL matrix in your CONTRAST statement.

If you specify the WALD option, the test of hypothesis is based on a Wald chi-
square statistic. If you omit the WALD option, the test statistic computed depends on
whether an ordinary generalized linear model or a GEE-type model is specified.

For an ordinary generalized linear model, the CONTRAST statement computes the
likelihood ratio statistic. This is defined to be twice the difference between the log
likelihood of the model unconstrained by the contrast and the log likelihood with the
model fitted under the constraint that the linear function of the parameters defined by
the contrast is equal to 0. Ap-value is computed based on the asymptotic chi-square
distribution of the chi-square statistic.

If you specify a GEE model with the REPEATED statement, the test is based on a
score statistic. The GEE model is fit under the constraint that the linear function of
the parameters defined by the contrast is equal to 0. The score chi-square statistic
is computed based on the generalized score function. See the“Generalized Score
Statistics”section on page 1680 for more information.

The degrees of freedom is the number of linearly independent constraints implied by
the CONTRAST statement, that is, the rank ofL.

You can specify the following options after a slash (/).

E
requests that theL matrix be displayed.

SINGULAR = number
tunes the estimability checking. Ifv is a vector, define ABS(v) to be the absolute
value of the element ofv with the largest absolute value. LetK′ be any row in the
contrast matrixL. Define C to be equal to ABS(K′) if ABS(K′) is greater than
0; otherwise, C equals 1. If ABS(K′ −K′T) is greater than C∗number, thenK is
declared nonestimable.T is the Hermite form matrix(X′X)−(X′X), and(X′X)−

represents a generalized inverse of the matrixX′X. The value fornumber must be
between 0 and 1; the default value is 1E−4.
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WALD
requests that a Wald chi-square statistic be computed for the contrast rather than the
default likelihood ratio or score statistic. The Wald statistic for testingL′β = 0 is
defined by

S = (L′β̂)′(L′ΣL)−(L′β̂)

whereβ̂ is the maximum likelihood estimate andΣ is its estimated covariance matrix.
The asymptotic distribution ofS is χ2

r , wherer is the rank ofL. Computedp-values
are based on this distribution.

If you specify a GEE model with the REPEATED statement,Σ is the empirical co-
variance matrix estimate.

DEVIANCE Statement

DEVIANCE variable = expression ;

You can specify a probability distribution other than those available in PROC
GENMOD by using the DEVIANCE and VARIANCE statements. You do not need
to specify the DEVIANCE or VARIANCE statements if you use the DIST= MODEL
statement option to specify a probability distribution. Thevariable identifies the de-
viance contribution from a single observation to the procedure, and it must be a valid
SAS variable name that does not appear in the input data set. Theexpressioncan
be any arithmetic expression supported by the DATA step language, and it is used
to define the functional dependence of the deviance on the mean and the response.
You use the automatic variables–MEAN– and–RESP– to represent the mean and
response in theexpression.

Alternatively, the deviance function can be defined using programming statements
(see the section“Programming Statements”on page 1645) and assigned to a variable,
which is then listed as theexpression. This form is convenient for using complex
statements such as if-then-else clauses.

The DEVIANCE statement is ignored unless the VARIANCE statement is also spec-
ified.

ESTIMATE Statement

ESTIMATE ’label’ effect values . . . < /options > ;

The ESTIMATE statement is similar to a CONTRAST statement, except only one-
row L′ matrices are permitted.

If you use the default less-than-full-rank GLM CLASS variable parameterization,
each row is checked for estimability. If PROC GENMOD finds a contrast to be
nonestimable, it displays missing values in corresponding rows in the results. Refer
to Searle (1971) for a discussion of estimable functions.

The actual estimate,L′β, its approximate standard error, and its confidence limits are
displayed. A Wald chi-square test thatL′β = 0 is also displayed.
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The approximate standard error of the estimate is computed as the square root of
L′Σ̂L, whereΣ̂ is the estimated covariance matrix of the parameter estimates. If you
specify a GEE model in the REPEATED statement,Σ̂ is the empirical covariance
matrix estimate.

If you specify the EXP option, thenexp(L′β), its standard error, and its confidence
limits are also displayed.

The construction of theL vector for an ESTIMATE statement follows the same rules
as listed under the CONTRAST statement.

You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA= number
requests that a confidence interval be constructed with confidence level1− number .
The value ofnumbermust be between 0 and 1; the default value is 0.05.

E
requests that theL matrix coefficients be displayed.

EXP
requests thatexp(L′β), its standard error, and its confidence limits be computed.

FREQ Statement

FREQ | FREQUENCY variable ;

Thevariablein the FREQ statement identifies a variable in the input data set contain-
ing the frequency of occurrence of each observation. PROC GENMOD treats each
observation as if it appearsn times, wheren is the value of the FREQ variable for the
observation. If it is not an integer, the frequency value is truncated to an integer. If it
is less than 1 or if it is missing, the observation is not used.

FWDLINK Statement

FWDLINK variable = expression ;

You can define a link function other than a built-in link function by using the
FWDLINK statement. If you use the MODEL statement option LINK= to spec-
ify a link function, you do not need to use the FWDLINK statement. Thevariable
identifies the link function to the procedure. Theexpressioncan be any arithmetic ex-
pression supported by the DATA step language, and it is used to define the functional
dependence on the mean.

Alternatively, the link function can be defined by using programming statements (see
the “Programming Statements”section on page 1645) and assigned to a variable,
which is then listed as theexpression. The second form is convenient for using com-
plex statements such as if-then-else clauses. The GENMOD procedure automatically
computes derivatives of the link function required for iterative fitting. You must spec-
ify the inverse of the link function in the INVLINK statement when you specify the
FWDLINK statement to define the link function. You use the automatic variable

–MEAN– to represent the mean in the precedingexpression.
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INVLINK Statement

INVLINK variable = expression ;

If you define a link function in the FWDLINK statement, then you must define the
inverse link function using the INVLINK statement. If you use the MODEL state-
ment option LINK= to specify a link function, you do not need to use the INVLINK
statement. Thevariable identifies the inverse link function to the procedure. The
expressioncan be any arithmetic expression supported by the DATA step language,
and it is used to define the functional dependence on the linear predictor.

Alternatively, the inverse link function can be defined using programming statements
(see the section“Programming Statements”on page 1645) and assigned to a vari-
able, which is then listed as theexpression. The second form is convenient for using
complex statements such as if-then-else clauses. The automatic variable–XBETA–
represents the linear predictor in the precedingexpression.

LSMEANS Statement

LSMEANS effects < / options > ;

The LSMEANS statement computes least-squares means (LS-means) corresponding
to the specified effects for the linear predictor part of the model. TheL matrix con-
structed to compute them is precisely the same as the one formed in PROC GLM.

The LSMEANS statement is not available for multinomial distribution models for
ordinal response data.

Each LS-mean is computed asL′β̂, whereL is the coefficient matrix associated with
the least-squares mean andβ̂ is the estimate of the parameter vector. The approximate
standard errors for the LS-mean is computed as the square root ofL′Σ̂L, whereΣ̂
is the estimated covariance matrix of the parameter estimates. If you specify a GEE
model in the REPEATED statement,Σ̂ is the empirical covariance matrix estimate.

LS-means can be computed for any effect in the MODEL statement that involves
CLASS variables. You can specify multiple effects in one LSMEANS statement or
multiple LSMEANS statements, and all LSMEANS statements must appear after the
MODEL statement.

As in the ESTIMATE statement, theL matrix is tested for estimability, and if this test
fails, PROC GENMOD displays “Non-est” for the LS-means entries.

Assuming the LS-mean is estimable, PROC GENMOD constructs a Wald chi-square
test to test the null hypothesis that the associated population quantity equals zero.

You can specify the following options in the LSMEANS statement after a slash (/).

ALPHA= number
requests that a confidence interval be constructed for each of the LS-means with
confidence level(1− number)× 100%. The value ofnumbermust be between 0
and 1; the default value is 0.05, corresponding to a 95% confidence interval.
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CL
requests that confidence limits be constructed for each of the LS-means. The confi-
dence level is 0.95 by default; this can be changed with the ALPHA= option.

CORR
displays the estimated correlation matrix of the LS-means as part of the “Least
Squares Means” table.

COV
displays the estimated covariance matrix of the LS-means as part of the “Least
Squares Means” table.

DIFF
requests that differences of the LS-means be displayed. All possible differences of
LS-means, standard errors, and a Wald chi-square test are computed. Confidence
limits are computed if the CL option is also specified.

E
requests that theL matrix coefficients for all LSMEANS effects be displayed.

MODEL Statement

MODEL response = < effects >< /options > ;

MODEL events/trials = < effects >< /options > ;

The MODEL statement specifies the response, or dependent variable, and the effects,
or explanatory variables. If you omit the explanatory variables, the procedure fits an
intercept-only model. An intercept term is included in the model by default. The
intercept can be removed with the NOINT option.

You can specify the response in the form of a single variable or in the form of a ratio
of two variables denotedevents/trials. The first form is applicable to all responses.
The second form is applicable only to summarized binomial response data. When
each observation in the input data set contains the number of events (for example,
successes) and the number of trials from a set of binomial trials, use theevents/trials
syntax.

In the events/trialsmodel syntax, you specify two variables that contain the event
and trial counts. These two variables are separated by a slash (/). The values of both
eventsand (trials−events) must be nonnegative, and the value of thetrials variable
must be greater than 0 for an observation to be valid. The variableeventsor trials
may take noninteger values.

When each observation in the input data set contains a single trial from a binomial
or multinomial experiment, use the first form of the preceding MODEL statements.
The response variable can be numeric or character. The ordering of response levels is
critical in these models. You can use the RORDER= option in the PROC GENMOD
statement to specify the response level ordering.

Responses for the Poisson distribution must be positive, but they can be noninteger
values.
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The effects in the MODEL statement consist of an explanatory variable or combi-
nation of variables. Explanatory variables can be continuous or classification vari-
ables. Classification variables can be character or numeric. Explanatory variables
representing nominal, or classification, data must be declared in a CLASS statement.
Interactions between variables can also be included as effects. Columns of the design
matrix are automatically generated for classification variables and interactions. The
syntax for specification of effects is the same as for the GLM procedure. See the
“Specification of Effects”section on page 1659 for more information. Also refer to
Chapter 32, “The GLM Procedure.”

You can specify the following options in the MODEL statement after a slash (/).

AGGREGATE= (variable-list)
AGGREGATE= variable

specifies the subpopulations on which the Pearson chi-square and the deviance are
calculated. This option applies only to the multinomial distribution or the binomial
distribution with binary (single trial syntax) response. It is ignored if specified for
other cases. Observations with common values in the given list of variables are re-
garded as coming from the same subpopulation. This affects the computation of the
deviance and Pearson chi-square statistics. Variables in the list can be any variables
in the input data set.

ALPHA | ALPH | A=number
sets the confidence coefficientfor parameter confidence intervals to 1−number. The
value ofnumbermust be between 0 and 1. The default value ofnumberis 0.05.

CICONV=number
sets the convergence criterion for profile likelihood confidence intervals. See the sec-
tion “Confidence Intervals for Parameters”on page 1666 for the definition of conver-
gence. The value ofnumbermust be between 0 and 1. By default, CICONV=1E−4.

CL
requests that confidence limits for predicted values be displayed. See the OBSTATS
option.

CODING=EFFECT | FULLRANK
specifies effect coding be used for all class variables in the model. This is the same
as specifying PARAM=EFFECT as a CLASS statement option.

CONVERGE=number
sets the convergence criterion. The value ofnumbermust be between 0 and 1. The
iterations are considered to have converged when the maximum change in the param-
eter estimates between iteration steps is less than the value specified. The change is a
relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is
an absolute change. By default, CONVERGE=1E−4. This convergence criterion is
used in parameter estimation for a single model fit, Type 1 statistics, and likelihood
ratio statistics for Type 3 analyses and CONTRAST statements.
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CONVH=number
sets the relative Hessian convergence criterion. The value ofnumbermust be be-
tween 0 and 1. After convergence is determined with the change in parameter crite-
rion specified with the CONVERGE= option, the quantitytc = g′H−1g

|f | is computed
and compared tonumber, whereg is the gradient vector,H is the Hessian matrix
for the model parameters, andf is the log-likelihood function. Iftc is greater than
number, a warning that the relative Hessian convergence criterion has been exceeded
is printed. This criterion detects the occasional case where the change in parameter
convergence criterion is satisfied, but a maximum in the log-likelihood function has
not been attained. By default, CONVH=1E−4.

CORRB
requests that the parameter estimate correlation matrix be displayed.

COVB
requests that the parameter estimate covariance matrix be displayed.

DIST | D | ERROR | ERR = keyword
specifies the built-in probability distribution to use in the model. If you specify the
DIST= option and you omit a user-defined link function, a default link function is
chosen as displayed in the following table. If you specify no distribution and no link
function, then the GENMOD procedure defaults to the normal distribution with the
identity link function.

DIST= Distribution Default Link Function
BINOMIAL | BIN | B binomial logit
GAMMA | GAM | G gamma inverse ( power(−1) )
IGAUSSIAN | IG inverse Gaussian inverse squared ( power(−2) )
MULTINOMIAL | MULT multinomial cumulative logit
NEGBIN | NB negative binomial log
NORMAL | NOR | N normal identity
POISSON| POI | P Poisson log

EXPECTED
requests that the expected Fisher information matrix be used to compute parameter
estimate covariances and the associated statistics. The default action is to use the
observed Fisher information matrix. See the SCORING= option.

ID=variable
causes the values ofvariable in the input data set to be displayed in the OBSTATS
table. If an explicit format forvariable has been defined, the formatted values are
displayed. If the OBSTATS option is not specified, this option has no effect.

INITIAL=numbers
sets initial values for parameter estimates in the model. The default initial parameter
values are weighted least squares estimates based on using the response data as the
initial mean estimate. This option can be useful in case of convergence difficulty. The
intercept parameter is initialized with the INTERCEPT= option and is not included
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here. The values are assigned to the variables in the MODEL statement in the same
order in which they appear in the MODEL statement. The order of levels for CLASS
variables is determined by the ORDER= option. Note that some levels of class vari-
ables can be aliased; that is, they correspond to linearly dependent parameters that
are not estimated by the procedure. Initial values must be assigned to all levels of
class variables, regardless of whether they are aliased or not. The procedure ignores
initial values corresponding to parameters not being estimated. If you specify a BY
statement, all class variables must take on the same number of levels in each BY
group. Otherwise, class variables in some of the BY groups are assigned incorrect
initial values. Types of INITIAL= specifications are illustrated in the following table.

Type of List Specification
list separated by blanks INITIAL = 3 4 5
list separated by commasINITIAL = 3, 4, 5
x to y INITIAL = 3 to 5
x to y by z INITIAL = 3 to 5 by 1
combination of list types INITIAL = 1, 3 to 5, 9

INTERCEPT=number
initializes the intercept term tonumberfor parameter estimation. If you specify both
the INTERCEPT= and the NOINT options, the intercept term is not estimated, but
an intercept term ofnumberis included in the model.

ITPRINT
displays the iteration history for all iterative processes: parameter estimation, fitting
constrained models for contrasts and Type 3 analyses, and profile likelihood confi-
dence intervals. The last evaluation of the gradient and the negative of the Hessian
(second derivative) matrix are also displayed for parameter estimation. This option
may result in a large amount of displayed output, especially if some of the optional
iterative processes are selected.

LINK = keyword
specifies the link function to use in the model. The keywords and their associated
built-in link functions are as follows.

LINK= Link Function
CUMCLL | CCLL cumulative complementary log-log
CUMLOGIT | CLOGIT cumulative logit
CUMPROBIT | CPROBIT cumulative probit
CLOGLOG| CLL complementary log-log
IDENTITY | ID identity
LOG log
LOGIT logit
PROBIT probit
POWER(number) | POW(number) power withλ= number
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If no LINK= option is supplied and there is a user-defined link function, the user-
defined link function is used. If you specify neither the LINK= option nor a user-
defined link function, then the default canonical link function is used if you specify
the DIST= option. Otherwise, if you omit the DIST= option, the identity link function
is used.

The cumulative link functions are appropriate only for the multinomial distribution.

LRCI
requests that two-sided confidence intervals for all model parameters be computed
based on the profile likelihood function. This is sometimes called the partially maxi-
mized likelihood function. See the“Confidence Intervals for Parameters”section on
page 1666 for more information on the profile likelihood function. This computation
is iterative and can consume a relatively large amount of CPU time. The confidence
coefficient can be selected with the ALPHA=numberoption. The resulting confi-
dence coefficient is 1−number. The default confidence coefficient is 0.95.

MAXITER=number
MAXIT=number

sets the maximum allowable number of iterations for all iterative computation pro-
cesses in PROC GENMOD. By default, MAXITER=50.

NOINT
requests that no intercept term be included in the model. An intercept is included
unless this option is specified.

NOSCALE
holds the scale parameter fixed. Otherwise, for the normal, inverse Gaussian, and
gamma distributions, the scale parameter is estimated by maximum likelihood. If
you omit the SCALE= option, the scale parameter is fixed at the value 1.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. This variable
cannot be a CLASS variable, and it cannot be the response variable or one of the
explanatory variables.

OBSTATS
specifies that an additional table of statistics be displayed. For each observation, the
following items are displayed:

• the value of the response variable (variables if the data are binomial), fre-
quency, and weight variables

• the values of the regression variables

• predicted mean,̂µ = g−1(η), whereη = xi
′β̂ is the linear predictor andg is

the link function. If there is an offset, it is included inxi
′β̂.

• estimate of the linear predictorxi
′β̂. If there is an offset, it is included inxi

′β̂.

• standard error of the linear predictorxi
′β̂

• the value of the Hessian weight at the final iteration
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• lower confidence limit of the predicted value of the mean. The confidence
coefficient is specified with the ALPHA= option. See the section“Confidence
Intervals on Predicted Values”on page 1669 for the computational method.

• upper confidence limit of the predicted value of the mean

• raw residual, defined asY − µ

• Pearson, or chi residual, defined as the square root of the contribution for the
observation to the Pearson chi-square, that is

Y − µ√
V (µ)/w

whereY is the response,µ is the predicted mean,w is the value of the prior
weight variable specified in a WEIGHT statement, and V(µ) is the variance
function evaluated atµ.

• the standardized Pearson residual

• deviance residual, defined as the square root of the deviance contribution for
the observation, with sign equal to the sign of the raw residual

• the standardized deviance residual

• the likelihood residual

The RESIDUALS, PREDICTED, XVARS, and CL options cause only subgroups of
the observation statistics to be displayed. You can specify more than one of these
options to include different subgroups of statistics.

The ID=variable option causes the values ofvariable in the input data set to be dis-
played in the table. If an explicit format forvariable has been defined, the formatted
values are displayed.

If a REPEATED statement is present, a table is displayed for the GEE model specified
in the REPEATED statement. Only the regression variables, response values, pre-
dicted values, confidence limits for the predicted values, linear predictor, raw residu-
als, and Pearson residuals for each observation in the input data set are available.

PREDICTED
PRED
P

requests that predicted values, the linear predictor, its standard error, and the Hessian
weight be displayed. See the OBSTATS option.

RESIDUALS
R

requests that residuals and standardized residuals be displayed. See the OBSTATS
option.
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SCALE=number
SCALE=PEARSON
SCALE=P
PSCALE
SCALE=DEVIANCE
SCALE=D
DSCALE

sets the value used for the scale parameter where the NOSCALE option is used.
For the binomial and Poisson distributions, which have no free scale parameter, this
can be used to specify anoverdispersedmodel. In this case, the parameter covari-
ance matrix and the likelihood function are adjusted by the scale parameter. See the
“Dispersion Parameter”section (page 1658) and the“Overdispersion”section (page
1659) for more information. If the NOSCALE option is not specified, thennumber
is used as an initial estimate of the scale parameter.

Specifying SCALE=PEARSON or SCALE=P is the same as specifying the PSCALE
option. This fixes the scale parameter at the value 1 in the estimation procedure. After
the parameter estimates are determined, the exponential family dispersion parameter
is assumed to be given by Pearson’s chi-square statistic divided by the degrees of
freedom, and all statistics such as standard errors and likelihood ratio statistics are
adjusted appropriately.

Specifying SCALE=DEVIANCE or SCALE=D is the same as specifying the
DSCALE option. This fixes the scale parameter at a value of 1 in the estimation
procedure.

After the parameter estimates are determined, the exponential family dispersion pa-
rameter is assumed to be given by the deviance divided by the degrees of freedom.
All statistics such as standard errors and likelihood ratio statistics are adjusted appro-
priately.

SCORING=number
requests that on iterations up tonumber, the Hessian matrix is computed using the
Fisher’s scoring method. For further iterations, the full Hessian matrix is computed.
The default value is 1. A value of 0 causes all iterations to use the full Hessian
matrix, and a value greater than or equal to the value of the MAXITER option causes
all iterations to use Fisher’s scoring. The value of the SCORING= option must be 0
or a positive integer.

SINGULAR=number
sets the tolerance for testing singularity of the information matrix and the crossprod-
ucts matrix. Roughly, the test requires that a pivot be at least this number times the
original diagonal value. By default,numberis 107 times the machine epsilon. The
defaultnumberis approximately10−9 on most machines.

TYPE1
requests that a Type 1, or sequential, analysis be performed. This consists of se-
quentially fitting models, beginning with the null (intercept term only) model and
continuing up to the model specified in the MODEL statement. The likelihood ratio
statistic between each successive pair of models is computed and displayed in a table.
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A Type 1 analysis is not available for GEE models, since there is no associated like-
lihood.

TYPE3
requests that statistics for Type 3 contrasts be computed for each effect specified in
the MODEL statement. The default analysis is to compute likelihood ratio statistics
for the contrasts or score statistics for GEEs. Wald statistics are computed if the
WALD option is also specified.

WALD
requests Wald statistics for Type 3 contrasts. You must also specify the TYPE3 option
in order to compute Type 3 Wald statistics.

WALDCI
requests that two-sided Wald confidence intervals for all model parameters be com-
puted based on the asymptotic normality of the parameter estimators. This compu-
tation is not as time consuming as the LRCI method, since it does not involve an
iterative procedure. However, it is not thought to be as accurate, especially for small
sample sizes. The confidence coefficient can be selected with the ALPHA= option in
the same way as for the LRCI option.

XVARS
requests that the regression variables be included in the OBSTATS table.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set >
< keyword=name . . . keyword=name > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in
the input data set and, optionally, the estimated linear predictors (XBETA) and their
standard error estimates, the weights for the Hessian matrix, predicted values of the
mean, confidence limits for predicted values, and residuals.

You can also request these statistics with the OBSTATS, PREDICTED,
RESIDUALS, CL, or XVARS options in the MODEL statement. You can
then create a SAS data set containing them with ODS OUTPUT commands. You
may prefer to specify the OUTPUT statement for requesting these statistics since

• the OUTPUT statement produces no tabular output

• the OUTPUT statement creates a SAS data set more efficiently than ODS. This
can be an advantage for large data sets.

• you can specify the individual statistics to be included in the SAS data set

If you use the multinomial distribution with one of the cumulative link functions for
ordinal data, the data set also contains variables named–ORDER– and–LEVEL–
that indicate the levels of the ordinal response variable and the values of the variable
in the input data set corresponding to the sorted levels. These variables indicate that
the predicted value for a given observation is the probability that the response variable
is as large as the value of theValue variable.
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The estimated linear predictor, its standard error estimate, and the predicted values
and their confidence intervals are computed for all observations in which the ex-
planatory variables are all nonmissing, even if the response is missing. By adding
observations with missing response values to the input data set, you can compute
these statistics for new observations or for settings of the explanatory variables not
present in the data without affecting the model fit.

The following list explains specifications in the OUTPUT statement.

OUT= SAS-data-set
specifies the output data set. If you omit the OUT=option, the output data set is
created and given a default name using the DATAn convention.

keyword=name
specifies the statistics to be included in the output data set and names the new vari-
ables that contain the statistics. Specify a keyword for each desired statistic (see
the following list of keywords), an equal sign, and the name of the new variable or
variables to contain the statistic. You can list only one variable after the equal sign.
Although you can use the OUTPUT statement without anykeyword=namespecifi-
cations, the output data set then contains only the original variables and, possibly,
the variablesLevel andValue (if you use the multinomial model with ordinal data).
Note that the residuals are not available for the multinomial model with ordinal data.
Formulas for the statistics are given in the section“Predicted Values of the Mean”on
page 1669 and the“Residuals”section on page 1669. The keywords allowed and the
statistics they represent are as follows:

HESSWGT diagonal element of the weight matrix used in computing the
Hessian matrix

LOWER | L lower confidence limit for the predicted value of the mean, or the
lower confidence limit for the probability that the response is less
than or equal to the value ofLevel or Value. The confidence coeffi-
cient is determined by the ALPHA=number option in the MODEL
statement as(1− number)× 100%. The default confidence coef-
ficient is 95%.

PREDICTED | PRED | PROB | Ppredicted value of the mean or the predicted prob-
ability that the response variable is less than or equal to the value
of Level or Value if the multinomial model for ordinal data is used
(in other words, Pr(Y ≤ Value), where Y is the response variable)

RESCHI Pearson (Chi) residual for identifying observations that are poorly
accounted for by the model

RESDEV deviance residual for identifying poorly fitted observations

RESLIK likelihood residual for identifying poorly fitted observations

STDXBETA standard error estimate of XBETA (see the XBETA keyword)

STDRESCHI standardized Pearson (Chi) residual for identifying observations
that are poorly accounted for by the model

STDRESDEV standardized deviance residual for identifying poorly fitted obser-
vations



Programming Statements � 1645

UPPER | U upper confidence limit for the predicted value of the mean, or the
lower confidence limit for the probability that the response is less
than or equal to the value ofLevel or Value. The confidence coeffi-
cient is determined by the ALPHA=number option in the MODEL
statement as(1− number)× 100%. The default confidence coef-
ficient is 95%.

XBETA estimate of the linear predictorxi
′β for observationi, orαj +xi

′β,
wherej is the corresponding ordered value of the response variable
for the multinomial model with ordinal data. If there is an offset, it
is included inxi

′β.

Programming Statements

Although the most commonly used link and probability distributions are available
as built-in functions, the GENMOD procedure enables you to define your own link
functions and response probability distributions using the FWDLINK, INVLINK,
VARIANCE, and DEVIANCE statements. The variables assigned in these state-
ments can have values computed in programming statements. These programming
statements can occur anywhere between the PROC GENMOD statement and the
RUN statement. Variable names used in programming statements must be unique.
Variables from the input data set may be referenced in programming statements.
The mean, linear predictor, and response are represented by the automatic variables

–MEAN– , –XBETA– , and–RESP– , which can be referenced in your program-
ming statements. Programming statements are used to define the functional depen-
dencies of the link function, the inverse link function, the variance function, and the
deviance function on the mean, linear predictor, and response variable.

The following code illustrates the use of programming statements. Even though you
usually request the Poisson distribution by specifying DIST=POISSON as a MODEL
statement option, you can define the variance and deviance functions for the Poisson
distribution by using the VARIANCE and DEVIANCE statements. For example, the
following code performs the same analysis as the Poisson regression example in the
“Getting Started”section on page 1616. The code must be in logical order for
computation, just as in a DATA step.

proc genmod ;
class car age;
a = _MEAN_;
y = _RESP_;
d = 2 * ( y * log( y / a ) - ( y - a ) );
variance var = a;
deviance dev = d;
model c = car age / link = log offset = ln;

run;

The variablesvar anddev are dummy variables used internally by the procedure to
identify the variance and deviance functions. Any valid SAS variable names can be
used.
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Similarly, the log link function and its inverse could be defined with the FWDLINK
and INVLINK statements.

fwdlink link = log(_MEAN_);
invlink ilink = exp(_XBETA_);

This code is for illustration, and it works well for most Poisson regression problems.
If, however, in the iterative fitting process, the mean parameter becomes too close
to 0, or a 0 response value occurs, an error condition occurs when the procedure
attempts to evaluate the log function. You can circumvent this kind of problem by
using if-then-else clauses or other conditional statements to check for possible error
conditions and appropriately define the functions for these cases.

Data set variables can be referenced in user definitions of the link function and re-
sponse distributions using programming statements and the FWDLINK, INVLINK,
DEVIANCE, and VARIANCE statements.

See the DEVIANCE, VARIANCE, FWDLINK, and INVLINK statements for more
information.

REPEATED Statement

REPEATED SUBJECT= subject-effect < / options > ;

The REPEATED statement specifies the covariance structure of multivariate re-
sponses for GEE model fitting in the GENMOD procedure. In addition, the
REPEATED statement controls the iterative fitting algorithm used in GEEs and spec-
ifies optional output. Other GENMOD procedure statements, such as the MODEL
and CLASS statements, are used in the same way as they are for ordinary generalized
linear models to specify the regression model for the mean of the responses.

SUBJECT=subject-effect
identifies subjects in the input data set. Thesubject-effectcan be a single variable,
an interaction effect, a nested effect, or a combination. Each distinct value, or level,
of the effect identifies a different subject, or cluster. Responses from different sub-
jects are assumed to be statistically independent, and responses within subjects are
assumed to be correlated. Asubject-effectmust be specified, and variables used in
defining thesubject-effectmust be listed in the CLASS statement. The input data set
does not need to be sorted by subject. See the SORTED option.

Theoptionscontrol how the model is fit and what output is produced. You can specify
the following options after a slash (/).

ALPHAINIT= numbers
specifies initial values for log odds ratio regression parameters if the LOGOR= option
is specified for binary data. If this option is not specified, an initial value of 0.01 is
used for all the parameters.
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CONVERGE=number
specifies the convergence criterion for GEE parameter estimation. If the maximum
absolute difference between regression parameter estimates is less than the value of
numberon two successive iterations, convergence is declared. If the absolute value of
a regression parameter estimate is greater than 0.08, then the absolute difference nor-
malized by the regression parameter value is used instead of the absolute difference.
The default value ofnumberis 0.0001.

CORRW
displays the estimated working correlation matrix.

CORRB
displays the estimated regression parameter correlation matrix. Both model-based
and empirical correlations are displayed.

COVB
displays the estimated regression parameter covariance matrix. Both model-based
and empirical covariances are displayed.

ECORRB
displays the estimated regression parameter empirical correlation matrix.

ECOVB
displays the estimated regression parameter empirical covariance matrix.

INTERCEPT=number
specifies either an initial or a fixed value of the intercept regression parameter in the
GEE model. If you specify the NOINT option in the MODEL statement, then the
intercept is fixed at the value ofnumber.

INITIAL=numbers
specifies initial values of the regression parameters estimation, other than the inter-
cept parameter, for GEE estimation. If this option is not specified, the estimated re-
gression parameters assuming independence for all responses are used for the initial
values.

LOGOR=log odds ratio structure keyword
specifies the regression structure of the log odds ratio used to model the association of
the responses from subjects for binary data. The response syntax must be of the single
variable type, the distribution must be binomial, and the data must be binary. The fol-
lowing table displays the log odds ratio structure keywords and the corresponding log
odds ratio regression structures. See the“Alternating Logistic Regressions”section
on page 1676 for definitions of the log odds ratio types and examples of specifying
log odds ratio models. You should specify either the LOGOR= or the TYPE= option,
but not both.

Table 31.1. Log Odds Ratio Regression Structures
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Keyword Log Odds Ratio
Regression Structure

EXCH exchangeable
FULLCLUST fully parameterized clusters
LOGORVAR(variable) indicator variable for specifying block effects
NESTK k-nested
NEST1 1-nested
ZFULL fully specifiedz-matrix specified in ZDATA= data set
ZREP single cluster specification for replicatedz-matrix specified

in ZDATA= data set
ZREP(matrix) single cluster specification for replicatedz-matrix

MAXITER=number
MAXIT=number

specifies the maximum number of iterations allowed in the iterative GEE estimation
process. The default number is 50.

MCORRB
displays the estimated regression parameter model-based correlation matrix.

MCOVB
displays the estimated regression parameter model-based covariance matrix.

MODELSE
displays an analysis of parameter estimates table using model-based standard errors.
By default, an “Analysis of Parameter Estimates” table based on empirical standard
errors is displayed.

RUPDATE=number
specifies the number of iterations between updates of the working correlation matrix.
For example, RUPDATE=5 specifies that the working correlation is updated once for
every five regression parameter updates. The default value ofnumber is 1; that is, the
working correlation is updated every time the regression parameters are updated.

SORTED
specifies that the input data are grouped by subject and sorted within subject. If this
option is not specified, then the procedure internally sorts bysubject-effectandwithin
subject-effect, if a within subject-effectis specified.

SUBCLUSTER=variable
SUBCLUST=variable

specifies a variable defining subclusters for the 1-nested ork-nested log odds ratio
association modeling structures.

TYPE | CORR=correlation-structure keyword
specifies the structure of the working correlation matrix used to model the correlation
of the responses from subjects. The following table displays the correlation structure
keywords and the corresponding correlation structures. The default working correla-
tion type is the independent (CORR=IND). See the“Details” section on page 1650 for
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definitions of the correlation matrix types. You should specify LOGOR= or TYPE=
but not both.

Table 31.2. Correlation Structure Types
Keyword Correlation Matrix Type
AR | AR(1) autoregressive(1)
EXCH | CS exchangeable
IND independent
MDEP(number) m-dependent withm=number
UNSTR | UN unstructured
USER | FIXED (matrix) fixed, user-specified correlation matrix

For example, you can specify a fixed4× 4 correlation matrix with the option

TYPE=USER( 1.0 0.9 0.8 0.6
0.9 1.0 0.9 0.8
0.8 0.9 1.0 0.9
0.6 0.8 0.9 1.0 )

V6CORR
specifies that the ‘Version 6’ method of computing the normalized Pearson chi-square
be used for working correlation estimation and for model-based covariance matrix
scale factor.

WITHINSUBJECT | WITHIN=within subject-effect
defines an effect specifying the order of measurements within subjects. Each distinct
level of thewithin subject-effectdefines a different response from the same subject.
If the data are in proper order within each subject, you do not need to specify this
option.

If some measurements do not appear in the data for some subjects, this option prop-
erly orders the existing measurements and treats the omitted measurements as missing
values. If the WITHINSUBJECT= option is not used in this situation, measurements
may be improperly ordered and missing values assumed for the last measurements in
a cluster.

Variables used in defining thewithin subject-effectmust be listed in the CLASS state-
ment.

YPAIR=variable-list
specifies the variables in the ZDATA= data set corresponding to pairs of responses
for log odds ratio association modeling.

ZDATA=SAS-data-set
specifies a SAS data set containing either the fullz-matrix for log odds ratio associ-
ation modeling or thez-matrix for a single complete cluster to be replicated for all
clusters.
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ZROW=variable-list
specifies the variables in the ZDATA= data set corresponding to rows of thez-matrix
for log odds ratio association modeling.

VARIANCE Statement

VARIANCE variable = expression ;

You can specify a probability distribution other than the built-in distributions by using
the VARIANCE and DEVIANCE statements. The variable namevariable identifies
the variance function to the procedure. Theexpressionis used to define the functional
dependence on the mean, and it can be any arithmetic expression supported by the
DATA step language. You use the automatic variable–MEAN– to represent the mean
in the expression.

Alternatively, you can define the variance function with programming statements,
as detailed in the section“Programming Statements”on page 1645. This form is
convenient for using complex statements such as if-then-else clauses. Derivatives of
the variance function for use during optimization are computed automatically. The
DEVIANCE statement must also appear when the VARIANCE statement is used to
define the variance function.

WEIGHT Statement

WEIGHT | SCWGT variable ;

The WEIGHT statement identifies a variable in the input data set to be used as the
exponential family dispersion parameter weight for each observation. The exponen-
tial family dispersion parameter is divided by the WEIGHT variable value for each
observation. This is true regardless of whether the parameter is estimated by the pro-
cedure or specified in the MODEL statement with the SCALE= option. It is also
true for distributions such as the Poisson and binomial that are not usually defined to
have a dispersion parameter. For these distributions, a WEIGHT variable weights the
overdispersion parameter, which has the default value of 1.

The WEIGHT variable does not have to be an integer; if it is less than or equal to 0
or if it is missing, the corresponding observation is not used.

Details

Generalized Linear Models Theory

This is a brief introduction to the theory of generalized linear models. See the
“References”section on page 1728 for sources of more detailed information.

Response Probability Distributions

In generalized linear models, the response is assumed to possess a probability distri-
bution of the exponential form. That is, the probability density of the responseY for



Generalized Linear Models Theory � 1651

continuous response variables, or the probability function for discrete responses, can
be expressed as

f(y) = exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)
}

for some functionsa, b, and c that determine the specific distribution. For fixed
φ, this is a one parameter exponential family of distributions. The functionsa and
c are such thata(φ) = φ/w andc = c(y, φ/w), wherew is a known weight for
each observation. A variable representingw in the input data set may be specified
in the WEIGHT statement. If no WEIGHT statement is specified,wi = 1 for all
observations.

Standard theory for this type of distribution gives expressions for the mean and vari-
ance ofY.

E(Y ) = b′(θ)

Var(Y ) =
b′′(θ)φ

w

where the primes denote derivatives with respect toθ. If µ represents the mean ofY,
then the variance expressed as a function of the mean is

Var(Y ) =
V (µ)φ

w

whereV is thevariance function.

Probability distributions of the responseY in generalized linear models are usually
parameterized in terms of the meanµ and dispersion parameterφ instead of thenat-
ural parameterθ. The probability distributions that are available in the GENMOD
procedure are shown in the following list. The PROC GENMOD scale parameter and
the variance ofY are also shown.

• Normal:

f(y) =
1√
2πσ

exp

[
−1

2

(
y − µ

σ

)2
]

for −∞ < y < ∞

φ = σ2

scale = σ

V ar(Y ) = σ2
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• Inverse Gaussian:

f(y) =
1√

2πy3σ
exp

[
− 1

2y

(
y − µ

µσ

)2
]

for 0 < y < ∞

φ = σ2

scale = σ

Var(Y ) = σ2µ3

• Gamma:

f(y) =
1

Γ(ν)y

(
yν

µ

)ν

exp
(
−yν

µ

)
for 0 < y < ∞

φ = ν−1

scale = ν

Var(Y ) =
µ2

ν

• Negative Binomial:

f(y) =
Γ(y + 1/k)

Γ(y + 1)Γ(1/k)
(kµ)y

(1 + kµ)y+1/k
for y = 0, 1, 2, . . .

dispersion = k

Var(Y ) = µ + kµ2

• Poisson:

f(y) =
µye−µ

y!
for y = 0, 1, 2, . . .

φ = 1

Var(Y ) = µ

• Binomial:

f(y) =
(

n

r

)
µr(1− µ)n−r for y =

r

n
, r = 0, 1, 2, . . . , n
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φ = 1

Var(Y ) =
µ(1− µ)

n

• Multinomial:

f(y1, y2, · · · , yk) =
m!

y1!y2! · · · yk!
py1
1 py2

2 · · · pyk
k

The negative binomial distribution contains a parameterk, called the negative bi-
nomial dispersion parameter. This is not the same as the generalized linear model
dispersionφ, but it is an additional distribution parameter that must be estimated or
set to a fixed value.

For the binomial distribution, the response is the binomial proportionY =
events/trials. The variance function isV (µ) = µ(1 − µ), and the binomial trials
parametern is regarded as a weightw.

If a weight variable is present,φ is replaced withφ/w, wherew is the weight variable.

PROC GENMOD works with a scale parameter that is related to the exponential fam-
ily dispersion parameterφ instead of withφ itself. The scale parameters are related
to the dispersion parameter as shown previously with the probability distribution def-
initions. Thus, the scale parameter output in the “Analysis of Parameter Estimates”
table is related to the exponential family dispersion parameter. If you specify a con-
stant scale parameter with the SCALE= option in the MODEL statement, it is also
related to the exponential family dispersion parameter in the same way.

Link Function

The meanµi of the response in theith observation is related to a linear predictor
through a monotonic differentiable link functiong.

g(µi) = xi
′β

Here,xi is a fixed known vector of explanatory variables, andβ is a vector of un-
known parameters.

Log-Likelihood Functions

Log-likelihood functions for the distributions that are available in the procedure are
parameterized in terms of the meansµi and the dispersion parameterφ. The termyi

represents the response for theith observation, andwi represents the known disper-
sion weight. The log-likelihood functions are of the form

L(y,µ, φ) =
∑

i

log (f(yi, µi, φ))
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where the sum is over the observations. The forms of the individual contributions

li = log (f(yi, µi, φ))

are shown in the following list; the parameterizations are expressed in terms of the
mean and dispersion parameters.

• Normal:

li = −1
2

[
wi(yi − µi)2

φ
+ log

(
φ

wi

)
+ log(2π)

]
• Inverse Gaussian:

li = −1
2

[
wi(yi − µi)2

yiµ2φ
+ log

(
φy3

i

wi

)
+ log(2π)

]
• Gamma:

li =
wi

φ
log

(
wiyi

φµi

)
− wiyi

φµi
− log(yi)− log

(
Γ

(
wi

φ

))
• Negative Binomial:

li = y log
(

kµ

wi

)
− (y + wi/k) log

(
1 +

kµ

wi

)
+ log

(
Γ(y + wi/k)

Γ(y + 1)Γ(wi/k)

)
• Poisson:

li =
wi

φ
[yi log(µi)− µi]

• Binomial:

li =
wi

φ
[ri log(pi) + (ni − ri) log(1− pi)]

• Multinomial:

li =
wi

φ

∑
j

yij log(µij)

For the binomial, multinomial, and Poisson distribution, terms involving binomial
coefficients or factorials of the observed counts are dropped from the computation
of the log-likelihood function since they do not affect parameter estimates or their
estimated covariances. The value ofφ used in computing the reported log-likelihood
is either the final estimated value, or the fixed value, if the dispersion parameter is
fixed.
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Maximum Likelihood Fitting

The GENMOD procedure uses a ridge-stabilized Newton-Raphson algorithm to max-
imize the log-likelihood functionL(y,µ, φ) with respect to the regression parame-
ters. By default, the procedure also produces maximum likelihood estimates of the
scale parameter as defined in the“Response Probability Distributions”section (page
1650) for the normal, inverse Gaussian, negative binomial, and gamma distributions.

On therth iteration, the algorithm updates the parameter vectorβr with

βr+1 = βr −H−1s

whereH is the Hessian (second derivative) matrix, ands is the gradient (first deriva-
tive) vector of the log-likelihood function, both evaluated at the current value of the
parameter vector. That is,

s = [sj ] =
[

∂L

∂βj

]
and

H = [hij ] =
[

∂2L

∂βi∂βj

]
In some cases, the scale parameter is estimated by maximum likelihood. In these
cases, elements corresponding to the scale parameter are computed and included ins
andH.

If ηi = xi
′β is the linear predictor for observationi andg is the link function, then

ηi = g(µi), so thatµi = g−1(xi
′β) is an estimate of the mean of theith observation,

obtained from an estimate of the parameter vectorβ.

The gradient vector and Hessian matrix for the regression parameters are given by

s =
∑

i

wi(yi − µi)xi

V (µi)g′(µi)φ

H = −X′WoX

whereX is the design matrix,xi is the transpose of theith row of X, andV is the
variance function. The matrixWo is diagonal with itsith diagonal element

woi = wei + wi(yi − µi)
V (µi)g′′(µi) + V ′(µi)g′(µi)

(V (µi))2(g′(µi))3φ

where

wei =
wi

φV (µi)(g′(µi))2



1656 � Chapter 31. The GENMOD Procedure

The primes denote derivatives ofg andV with respect toµ. The negative ofH is
called the observed information matrix. The expected value ofWo is a diagonal
matrixWe with diagonal valueswei. If you replaceWo with We, then the negative
of H is called the expected information matrix.We is the weight matrix for the
Fisher’s scoring method of fitting. EitherWo or We can be used in the update
equation. The GENMOD procedure uses Fisher’s scoring for iterations up to the
number specified by the SCORING option in the MODEL statement, and it uses the
observed information matrix on additional iterations.

Covariance and Correlation Matrix

The estimated covariance matrix of the parameter estimator is given by

Σ = −H−1

whereH is the Hessian matrix evaluated using the parameter estimates on the last
iteration. Note that the dispersion parameter, whether estimated or specified, is in-
corporated intoH. Rows and columns corresponding to aliased parameters are not
included inΣ.

The correlation matrix is the normalized covariance matrix. That is, ifσij is an
element ofΣ, then the corresponding element of the correlation matrix isσij/σiσj ,
whereσi =

√
σii.

Goodness of Fit

Two statistics that are helpful in assessing the goodness of fit of a given generalized
linear model are the scaled deviance and Pearson’s chi-square statistic. For a fixed
value of the dispersion parameterφ, the scaled deviance is defined to be twice the
difference between the maximum achievable log likelihood and the log likelihood at
the maximum likelihood estimates of the regression parameters.

Note that these statistics are not valid for GEE models.

If l(y,µ) is the log-likelihood function expressed as a function of the predicted mean
valuesµ and the vectory of response values, then the scaled deviance is defined by

D∗(y,µ) = 2(l(y,y)− l(y,µ))

For specific distributions, this can be expressed as

D∗(y,µ) =
D(y,µ)

φ

whereD is the deviance. The following table displays the deviance for each of the
probability distributions available in PROC GENMOD.
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Distribution Deviance
normal

∑
i wi(yi − µi)2

Poisson 2
∑

i wi

[
yi log

(
yi

µi

)
− (yi − µi)

]
binomial 2

∑
i wimi

[
yi log

(
yi

µi

)
+ (1− yi) log

(
1−yi

1−µi

)]
gamma 2

∑
i wi

[
− log

(
yi

µi

)
+ yi−µi

µi

]
inverse Gaussian

∑
i

wi(yi−µi)
2

µ2
i yi

multinomial
∑

i

∑
j wiyij log

(
yij

pijmi

)
negative binomial 2

∑
i

[
y log(y/µ)− (y + wi/k) log

(
y+wi/k
µ+wi/k

)]

In the binomial case,yi = ri/mi, whereri is a binomial count andmi is the binomial
number of trials parameter.

In the multinomial case,yij refers to the observed number of occurrences of thejth
category for theith subpopulation defined by the AGGREGATE= variable,mi is the
total number in theith subpopulation, andpij is the category probability.

Pearson’s chi-square statistic is defined as

X2 =
∑

i

wi(yi − µi)2

V (µi)

and the scaled Pearson’s chi-square isX2/φ.

The scaled version of both of these statistics, under certain regularity conditions, has
a limiting chi-square distribution, with degrees of freedom equal to the number of
observations minus the number of parameters estimated. The scaled version can be
used as an approximate guide to the goodness of fit of a given model. Use caution
before applying these statistics to ensure that all the conditions for the asymptotic
distributions hold. McCullagh and Nelder (1989) advise that differences in deviances
for nested models can be better approximated by chi-square distributions than the
deviances themselves.

In cases where the dispersion parameter is not known, an estimate can be used to
obtain an approximation to the scaled deviance and Pearson’s chi-square statistic.
One strategy is to fit a model that contains a sufficient number of parameters so that
all systematic variation is removed, estimateφ from this model, and then use this
estimate in computing the scaled deviance of sub-models. The deviance or Pearson’s
chi-square divided by its degrees of freedom is sometimes used as an estimate of the
dispersion parameterφ. For example, since the limiting chi-square distribution of the
scaled devianceD∗ = D/φ hasn− p degrees of freedom, wheren is the number of
observations andp the number of parameters, equatingD∗ to its mean and solving for
φ yields φ̂ = D/(n − p). Similarly, an estimate ofφ based on Pearson’s chi-square
X2 is φ̂ = X2/(n − p). Alternatively, a maximum likelihood estimate ofφ can be
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computed by the procedure, if desired. See the discussion in the“Type 1 Analysis”
section on page 1665 for more on the estimation of the dispersion parameter.

Dispersion Parameter

There are several options available in PROC GENMOD for handling the exponen-
tial distribution dispersion parameter. The NOSCALE and SCALE options in the
MODEL statement affect the way in which the dispersion parameter is treated. If you
specify the SCALE=DEVIANCE option, the dispersion parameter is estimated by the
deviance divided by its degrees of freedom. If you specify the SCALE=PEARSON
option, the dispersion parameter is estimated by Pearson’s chi-square statistic divided
by its degrees of freedom.

Otherwise, values of the SCALE and NOSCALE options and the resultant actions
are displayed in the following table.

NOSCALE SCALE=value Action
present present scale fixed atvalue
present not present scale fixed at 1
not present not present scale estimated by ML
not present present scale estimated by ML,

starting point atvalue

The meaning of the scale parameter displayed in the “Analysis Of Parameter
Estimates” table is different for the Gamma distribution than for the other distri-
butions. The relation of the scale parameter as used by PROC GENMOD to the
exponential family dispersion parameterφ is displayed in the following table. For
the binomial and Poisson distributions,φ is the overdispersion parameter, as defined
in the “Overdispersion” section, which follows.

Distribution Scale
normal

√
φ

inverse Gaussian
√

φ
gamma 1/φ
binomial

√
φ

Poisson
√

φ

In the case of the negative binomial distribution, PROC GENMOD reports the “dis-
persion” parameter estimated by maximum likelihood. This is the negative binomial
parameterk defined in the“Response Probability Distributions”section (page 1650).
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Overdispersion

Overdispersion is a phenomenon that sometimes occurs in data that are modeled with
the binomial or Poisson distributions. If the estimate of dispersion after fitting, as
measured by the deviance or Pearson’s chi-square, divided by the degrees of freedom,
is not near 1, then the data may beoverdispersedif the dispersion estimate is greater
than 1 orunderdispersedif the dispersion estimate is less than 1. A simple way to
model this situation is to allow the variance functions of these distributions to have a
multiplicative overdispersion factorφ.

• binomial:V (µ) = φµ(1− µ)

• Poisson:V (µ) = φµ

The models are fit in the usual way, and the parameter estimates are not affected by
the value ofφ. The covariance matrix, however, is multiplied byφ, and the scaled
deviance and log likelihoods used in likelihood ratio tests are divided byφ. The pro-
file likelihood function used in computing confidence intervals is also divided byφ.
If you specify an WEIGHT statement,φ is divided by the value of the WEIGHT vari-
able for each observation. This has the effect of multiplying the contributions of the
log-likelihood function, the gradient, and the Hessian by the value of the WEIGHT
variable for each observation.

The SCALE= option in the MODEL statement enables you to specify a value
of σ =

√
φ for the binomial and Poisson distributions. If you specify the

SCALE=DEVIANCE option in the MODEL statement, the procedure uses the
deviance divided by degrees of freedom as an estimate ofφ, and all statistics are
adjusted appropriately. You can use Pearson’s chi-square instead of the deviance by
specifying the SCALE=PEARSON option.

The function obtained by dividing a log-likelihood function for the binomial or
Poisson distribution by a dispersion parameter is not a legitimate log-likelihood func-
tion. It is an example of aquasi-likelihoodfunction. Most of the asymptotic theory
for log likelihoods also applies to quasi-likelihoods, which justifies computing stan-
dard errors and likelihood ratio statistics using quasi-likelihoods instead of proper
log likelihoods. Refer to McCullagh and Nelder (1989, Chapter 9) and McCullagh
(1983) for details on quasi-likelihood functions.

Although the estimate of the dispersion parameter is often used to indicate overdis-
persion or underdispersion, this estimate may also indicate other problems such as
an incorrectly specified model or outliers in the data. You should carefully assess
whether this type of model is appropriate for your data.

Specification of Effects

Each term in a model is called an effect. Effects are specified in the MODEL state-
ment in the same way as in the GLM procedure. You specify effects with a special
notation that uses variable names and operators. There are two types of variables,
classification(or class) variables andcontinuousvariables. There are two primary
types of operators,crossingandnesting. A third type, thebar operator, is used to
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simplify effect specification. Crossing is the type of operator most commonly used
in generalized linear models.

Variables that identify classification levels are calledclass variables in the SAS
System and are identified in a CLASS statement. These may also be calledcat-
egorical, qualitative, discrete,or nominal variables. Class variables can be either
character or numeric. The values of class variables are calledlevels. For example,
the class variableSex could have levels ‘male’ and ‘female’.

In a model, an explanatory variable that is not declared in a CLASS statement is
assumed to be continuous. Continuous variables must be numeric. For example, the
heights and weights of subjects in an experiment are continuous variables.

The types of effects most useful in generalized linear models are shown in the fol-
lowing list. Assume thatA, B, andC are class variables and thatX1 andX2 are
continuous variables.

• Regressor effects are specified by writing continuous variables by themselves:
X1, X2.

• Polynomial effects are specified by joining two or more continuous variables
with asterisks:X1*X2.

• Main effects are specified by writing class variables by themselves:A, B, C.

• Crossed effects (interactions) are specified by joining two or more class vari-
ables with asterisks:A*B, B*C, A*B*C.

• Nested effects are specified by following a main effect or crossed effect with a
class variable or list of class variables enclosed in parentheses:B(A), C(B A),
A*B(C). In the preceding example,B(A) is “B nested withinA.”

• Combinations of continuous and class variables can be specified in the same
way using the crossing and nesting operators.

The bar operator consists of two effects joined with a vertical bar (|). It is shorthand
notation for including the left-hand side, the right-hand side, and the cross between
them as effects in the model. For example,A | B is equivalent toA B A*B. The effects
in the bar operator can be class variables, continuous variables, or combinations of
effects defined using operators. Multiple bars are permitted. For example,A | B | C
meansA B C A*B A*C B*C A*B*C.

You can specify the maximum number of variables in any effect that results from bar
evaluation by specifying the maximum number, preceded by an @ sign. For example,
A | B | C@2 results in effects that involve two or fewer variables:A B C A*B A*C
B*C.

For further information on types of effects and their specification, seeChapter 32,
“The GLM Procedure.”
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Parameterization Used in PROC GENMOD

Design Matrix

The linear predictor part of a generalized linear model is

η = Xβ

whereβ is an unknown parameter vector andX is a known design matrix. By de-
fault, all models automatically contain an intercept term; that is, the first column of
X contains all 1s. Additional columns ofX are generated for classification vari-
ables, regression variables, and any interaction terms included in the model. PROC
GENMOD parameterizes main effects and interaction terms using the same ordering
rules that PROC GLM uses. This is important to understand when you want to con-
struct likelihood ratios for custom contrasts using the CONTRAST statement. See
Chapter 32, “The GLM Procedure,”for more details on model parameterization.

Some columns ofX can be linearly dependent on other columns due to specifying
an overparameterized model. For example, when you specify a model consisting of
an intercept term and a class variable, the column corresponding to any one of the
levels of the class variable is linearly dependent on the other columns ofX. PROC
GENMOD handles this in the same manner as PROC GLM. The columns ofX′X
are checked in the order in which the model is specified for dependence on preceding
columns. If a dependency is found, the parameter corresponding to the dependent
column is set to 0 along with its standard error to indicate that it is not estimated. The
order in which the levels of a class variable are checked for dependencies can be set
by the ORDER= option in the PROC GENMOD statement.

You can exclude the intercept term from the model by specifying the NOINT option
in the MODEL statement.

Missing Level Combinations

All levels of interaction terms involving classification variables may not be repre-
sented in the data. In that case, PROC GENMOD does not include parameters in the
model for the missing levels.

CLASS Variable Parameterization

Consider a model with one CLASS variableA with four levels, 1, 2, 5, and 7. Details
of the possible choices for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three dummy vari-
ables have a value of−1. For instance, if the reference level is 7
(REF=7), the design matrix columns forA are as follows.
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Effect Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 −1 −1 −1

Parameter estimates of CLASS main effects using the effect coding
scheme estimate the difference in the effect of each nonreference
level compared to the average effect over all four levels.

GLM As in PROC GLM, four columns are created to indicate group
membership. The design matrix columns forA are as follows.

GLM Coding
Design Matrix

A A1 A2 A5 A7
1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

Parameter estimates of CLASS main effects using the GLM cod-
ing scheme estimate the difference in the effects of each level com-
pared to the last level.

ORDINAL

THERMOMETER Three columns are created to indicate group membership of the
higher levels of the effect. For the first level of the effect (which
for A is 1), all three dummy variables have a value of 0. The design
matrix columns forA are as follows.

Ordinal Coding
Design Matrix

A A2 A5 A7
1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level. Parameter
estimates of CLASS main effects using the ORDINAL coding
scheme estimate the effect on the response as the ordinal factor
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is set to each succeeding level. When the parameters for an ordinal
main effect have the same sign, the response effect is monotonic
across the levels.

POLYNOMIAL

POLY Three columns are created. The first represents the linear term (x),
the second represents the quadratic term (x2), and the third repre-
sents the cubic term (x3), wherex is the level value. If the CLASS
levels are not numeric, they are translated into 1, 2, 3,. . . accord-
ing to their sorting order. The design matrix columns forA are as
follows.

Polynomial Coding
Design Matrix

A APOLY1 APOLY2 APOLY3
1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343

REFERENCE

REF Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three dummy vari-
ables have a value of 0. For instance, if the reference level is 7
(REF=7), the design matrix columns forA are as follows.

Reference Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects using the reference
coding scheme estimate the difference in the effect of each nonref-
erence level compared to the effect of the reference level.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=EFFECT. The design ma-
trix columns forA are as follows.
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Orthogonal Effect Coding
Design Matrix

A AOEFF1 AOEFF2 AOEFF3
1 1.41421 −0.81650 −0.57735
2 0.00000 1.63299 −0.57735
5 0.00000 0.00000 1.73205
7 −1.41421 −0.81649 −0.57735

ORTHORDINAL

ORTHOTHERM The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=ORDINAL. The design
matrix columns forA are as follows.

Orthogonal Ordinal Coding
Design Matrix

A AOORD1 AOORD2 AOORD3
1 −1.73205 0.00000 0.00000
2 0.57735 −1.63299 0.00000
5 0.57735 0.81650 −1.41421
7 0.57735 0.81650 1.41421

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=POLY. The design matrix
columns forA are as follows.

Orthogonal Polynomial Coding
Design Matrix

A AOPOLY1 AOPOLY2 AOPOLY5
1 −1.153 0.907 −0.921
2 −0.734 −0.540 1.473
5 0.524 −1.370 −0.921
7 1.363 1.004 0.368

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogo-
nalization to the columns for PARAM=REFERENCE. The design
matrix columns forA are as follows.

Orthogonal Reference Coding
Design Matrix

A AOREF1 AOREF2 AOREF3
1 1.73205 0.00000 0.00000
2 −0.57735 1.63299 0.00000
5 −0.57735 −0.81650 1.41421
7 −0.57735 −0.81650 −1.41421
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Type 1 Analysis

A Type 1 analysis consists of fitting a sequence of models, beginning with a simple
model with only an intercept term, and continuing through a model of specified com-
plexity, fitting one additional effect on each step. Likelihood ratio statistics, that is,
twice the difference of the log likelihoods, are computed between successive models.
This type of analysis is sometimes called an analysis of deviance since, if the disper-
sion parameter is held fixed for all models, it is equivalent to computing differences
of scaled deviances. The asymptotic distribution of the likelihood ratio statistics, un-
der the hypothesis that the additional parameters included in the model are equal to
0, is a chi-square with degrees of freedom equal to the difference in the number of
parameters estimated in the successive models. Thus, these statistics can be used in a
test of hypothesis of the significance of each additional term fit.

This type of analysis is not available for GEE models, since the deviance is not com-
puted for this type of model.

If the dispersion parameterφ is known, it can be included in the models; if it is un-
known, there are two strategies allowed by PROC GENMOD. The dispersion param-
eter can be estimated from a maximal model by the deviance or Pearson’s chi-square
divided by degrees of freedom, as discussed in the“Goodness of Fit”section on page
1656, and this value can be used in all models. An alternative is to consider the
dispersion to be an additional unknown parameter for each model and estimate it by
maximum likelihood on each step. By default, PROC GENMOD estimates scale by
maximum likelihood at each step.

A table of likelihood ratio statistics is produced, along with associatedp-values based
on the asymptotic chi-square distributions.

If you specify either the SCALE=DEVIANCE or the SCALE=PEARSON option in
the MODEL statement, the dispersion parameter is estimated using the deviance or
Pearson’s chi-square statistic, andF statistics are computed in addition to the chi-
square statistics for assessing the significance of each additional term in the Type 1
analysis. See the section“F Statistics”on page 1668 for a definition ofF statistics.

This Type 1 analysis has the general property that the results depend on the order in
which the terms of the model are fitted. The terms are fitted in the order in which
they are specified in the MODEL statement.

Type 3 Analysis

A Type 3 analysis is similar to the Type III sums of squares used in PROC GLM,
except that likelihood ratios are used instead of sums of squares. First, a Type III
estimable function is defined for an effect of interest in exactly the same way as in
PROC GLM. Then, maximum likelihood estimation is performed under the constraint
that the Type III function of the parameters is equal to 0, using constrained optimiza-
tion. Let the resulting constrained parameter estimates beβ̃ and the log likelihood be
l(β̃). Then the likelihood ratio statistic

S = 2(l(β̂)− l(β̃))
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whereβ̂ is the unconstrained estimate, has an asymptotic chi-square distribution un-
der the hypothesis that the Type III contrast is equal to 0, with degrees of freedom
equal to the number of parameters associated with the effect.

When a Type 3 analysis is requested, PROC GENMOD produces a table that con-
tains the likelihood ratio statistics, degrees of freedom, andp-values based on the
limiting chi-square distributions for each effect in the model. If you specify either the
DSCALE or PSCALE option in the MODEL statement,F statistics are also com-
puted for each effect.

Options for handling the dispersion parameter are the same as for a Type 1 analysis.
The dispersion parameter can be specified to be a known value, estimated from the
deviance or Pearson’s chi-square divided by degrees of freedom, or estimated by
maximum likelihood individually for the unconstrained and constrained models. By
default, PROC GENMOD estimates scale by maximum likelihood for each model fit.

The results of this type of analysis do not depend on the order in which the terms are
specified in the MODEL statement.

A Type 3 analysis can consume considerable computation time since a constrained
model is fitted for each effect. Wald statistics for Type 3 contrasts are computed if
you specify the WALD option. Wald statistics for contrasts use less computation time
than likelihood ratio statistics but may be less accurate indicators of the significance
of the effect of interest. The Wald statistic for testingL′β = 0, whereL is the
contrast matrix, is defined by

S = (L′β̂)′(L′Σ̂L)−(L′β̂)

whereβ is the maximum likelihood estimate andΣ is its estimated covariance matrix.
The asymptotic distribution ofS is chi-square withr degrees of freedom, wherer is
the rank ofL.

See Chapter 32, “The GLM Procedure,”and Chapter 11, “The Four Types of
Estimable Functions,”for more information about Type III estimable functions. Also
refer to Littell, Freund, and Spector (1991).

Generalized score tests for Type III contrasts are computed for GEE models if you
specify the TYPE3 option in the MODEL statement when a REPEATED statement
is also used. See the section“Generalized Score Statistics”on page 1680 for more
information on generalized score statistics. Wald tests are also available with the
Wald option in the CONTRAST statement.

Confidence Intervals for Parameters

Likelihood Ratio-Based Confidence Intervals

PROC GENMOD produces likelihood ratio-based confidence intervals, also known
as profile likelihood confidence intervals, for parameter estimates for generalized lin-
ear models. These are not computed for GEE models, since there is no likelihood for
this type of model. Suppose that the parameter vector isβ = [β0, β1, . . . , βp]′ and
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that you want a confidence interval forβj . The profile likelihood function forβj is
defined as

l∗(βj) = max
β̃

l(β)

whereβ̃ is the vectorβ with the jth element fixed atβj andl is the log likelihood
function. If l = l(β̂) is the log likelihood evaluated at the maximum likelihood
estimatêβ, then2(l − l∗(βj)) has a limiting chi-square distribution with one degree
of freedom ifβj is the true parameter value. A(1− α)100% confidence interval for
βj is {

βj : l∗(βj) ≥ l0 = l − 0.5χ2
1−α,1

}
whereχ2

1−α,1 is the100(1 − α) percentile of the chi-square distribution with one
degree of freedom. The endpoints of the confidence interval can be found by solving
numerically for values ofβj that satisfy equality in the preceding relation. PROC
GENMOD solves this by starting at the maximum likelihood estimate ofβ. The log
likelihood function is approximated with a quadratic surface, for which an exact so-
lution is possible. The process is iterated until convergence to an endpoint is attained.
The process is repeated for the other endpoint.

Convergence is controlled by the CICONV= option in the MODEL statement.
Supposeε is the number specified in the CICONV= option. The default value of
ε is 10−4. Let the parameter of interest beβj and definer = uj , the unit vector with
a 1 in positionj and 0s elsewhere. Convergence is declared on the current iteration if
the following two conditions are satisfied:

|l∗(βj)− l0| ≤ ε

(s + λr)′H−1(s + λr) ≤ ε

wherel∗(βj), s, andH are the log likelihood, the gradient, and the Hessian evaluated
at the current parameter vector andλ is a constant computed by the procedure. The
first condition for convergence means that the log-likelihood function must be within
ε of the correct value, and the second condition means that the gradient vector must
be proportional to the restriction vectorr.

When you request the LRCI option in the MODEL statement, PROC GENMOD
computes profile likelihood confidence intervals for all parameters in the model, in-
cluding the scale parameter, if there is one. The interval endpoints are displayed in a
table as well as the values of the remaining parameters at the solution.

Wald Confidence Intervals

You can request that PROC GENMOD produce Wald confidence intervals for the
parameters. The (1-α)100% Wald confidence interval for a parameterβ is defined as

β̂ ± z1−α/2σ̂
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wherezp is the100pth percentile of the standard normal distribution,β̂ is the param-
eter estimate, and̂σ is the estimate of its standard error.

F Statistics

Suppose thatD0 is the deviance resulting from fitting a generalized linear model and
thatD1 is the deviance from fitting a submodel. Then, under appropriate regularity
conditions, the asymptotic distribution of(D1 −D0)/φ is chi-square withr degrees
of freedom, wherer is the difference in the number of parameters between the two
models andφ is the dispersion parameter. Ifφ is unknown, and̂φ is an estimate ofφ
based on the deviance or Pearson’s chi-square divided by degrees of freedom, then,
under regularity conditions,(n − p)φ̂/φ has an asymptotic chi-square distribution
with n − p degrees of freedom. Here,n is the number of observations andp is the
number of parameters in the model that is used to estimateφ. Thus, the asymptotic
distribution of

F =
D1 −D0

rφ̂

is theF distribution withr andn−p degrees of freedom, assuming that(D1−D0)/φ

and(n− p)φ̂/φ are approximately independent.

ThisF statistic is computed for the Type 1 analysis, Type 3 analysis, and hypothesis
tests specified in CONTRAST statements when the dispersion parameter is estimated
by either the deviance or Pearson’s chi-square divided by degrees of freedom, as
specified by the DSCALE or PSCALE option in the MODEL statement. In the case
of a Type 1 analysis, model 0 is the higher-order model obtained by including one
additional effect in model 1. For a Type 3 analysis and hypothesis tests, model 0 is
the full specified model and model 1 is the sub-model obtained from constraining the
Type III contrast or the user-specified contrast to be 0.

Lagrange Multiplier Statistics

When you select the NOINT or NOSCALE option, restrictions are placed on the
intercept or scale parameters. Lagrange multiplier, or score, statistics are computed
in these cases. These statistics assess the validity of the restrictions, and they are
computed as

χ2 =
s2

V

wheres is the component of the score vector evaluated at the restricted maximum
corresponding to the restricted parameter andV = I11 − I12I−1

22 I21. The matrixI is
the information matrix, 1 refers to the restricted parameter, and 2 refers to the rest of
the parameters.

Under regularity conditions, this statistic has an asymptotic chi-square distribution
with one degree of freedom, andp-values are computed based on this limiting distri-
bution.
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If you setk = 0 in a negative binomial model,s is the score statistic of Cameron and
Trivedi (1998) for testing for overdispersion in a Poisson model against alternatives
of the formV (µ) = µ + kµ2.

Refer to Rao (1973, p. 417) for more details.

Predicted Values of the Mean

Predicted Values

A predicted value, or fitted value, of the meanµi corresponding to the vector of
covariatesxi is given by

µ̂i = g−1(x′iβ̂)

whereg is the link function, regardless of whetherxi corresponds to an observation
or not. That is, the response variable can be missing and the predicted value is still
computed for validxi. In the case wherexi does not correspond to a valid observa-
tion, xi is not checked for estimability. You should check the estimability ofxi in
this case in order to ensure the uniqueness of the predicted value of the mean. If there
is an offset, it is included in the predicted value computation.

Confidence Intervals on Predicted Values

Approximate confidence intervals for predicted values of the mean can be computed
as follows. The variance of the linear predictorηi = x′iβ̂ is estimated by

σ2
x = x′iΣxi

whereΣ is the estimated covariance ofβ̂.

Approximate100(1− α)% confidence intervals are computed as

g−1
(
x′iβ̂ ± z1−α/2σx

)
wherezp is the100p percentile of the standard normal distribution andg is the link
function. If either endpoint in the argument is outside the valid range of arguments
for the inverse link function, the corresponding confidence interval endpoint is set to
missing.

Residuals

The GENMOD procedure computes three kinds of residuals. The raw residual is
defined as

ri = yi − µi

whereyi is theith response andµi is the corresponding predicted mean.
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The Pearson residual is the square root of theith contribution to the Pearson’s chi-
square.

rPi = (yi − µi)
√

wi

V (µi)

Finally, the deviance residual is defined as the square root of the contribution of the
ith observation to the deviance, with the sign of the raw residual.

rDi =
√

di(sign(yi − µi))

The adjusted Pearson, deviance, and likelihood residuals are defined by Agresti
(1990), Williams (1987), and Davison and Snell (1991). These residuals are use-
ful for outlier detection and for assessing the influence of single observations on the
fitted model.

For the generalized linear model, the variance of theith individual observation is
given by

vi =
φV (µi)

wi

whereφ is the dispersion parameter,wi is a user-specified prior weight (if not speci-
fied,wi = 1), µi is the mean, andV (µi) is the variance function. Let

wei = v−1
i (g′(µi))−2

for the ith observation, whereg′(µi) is the derivative of the link function, evaluated
at µi. Let We be the diagonal matrix withwei denoting theith diagonal element.
The weight matrixWe is used in computing the expected information matrix.

Definehi as theith diagonal element of the matrix

W
1
2
e X(X′WeX)−1X′W

1
2
e

The Pearson residuals, standardized to have unit asymptotic variance, are given by

rPi =
yi − µi√
vi(1− hi)

The deviance residuals, standardized to have unit asymptotic variance, are given by

rDi =
sign(yi − µi)

√
di√

φ(1− hi)

wheredi is the square root of the contribution to the total deviance from observation
i, and sign(yi − µi) is 1 if yi − µi is positive and -1 ifyi − µi is negative. The
likelihood residuals are defined by

rGi = sign(yi − µi)
√

(1− hi)r2
Di + hir2

Pi
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Multinomial Models

This type of model applies to cases where an observation can fall into one ofk cate-
gories. Binary data occurs in the special case wherek = 2. If there aremi observa-
tions in a subpopulationi, then the probability distribution of the number falling into
thek categoriesyi = (yi1, yi2, · · · yik) can be modeled by the multinomial distribu-
tion, defined in the“Response Probability Distributions”section (page 1650), with∑

j yij = mi. The multinomial model is anordinal model if the categories have a
natural order.

The GENMOD procedure orders the response categories for ordinal multinomial
models from lowest to highest by default. This is different from the binomial distribu-
tion, where the response probability for the lowest of the two categories is modeled.
You can change the way GENMOD orders the response levels with the RORDER=
option in the PROC GENMOD statement. The order that GENMOD uses is shown
in the “Response Profiles” output table described in the section“Response Profile”
on page 1685.

The GENMOD procedure supports only the ordinal multinomial model. If
(pi1, pi2, · · · pik) are the category probabilities, the cumulative category proba-
bilities are modeled with the same link functions used for binomial data. Let
Pir =

∑r
j=1 pij , r = 1, 2, · · · , k − 1 be the cumulative category probabilities (note

thatPik = 1). The ordinal model is

g(Pir) = µr + xi
′β for r = 1, 2, · · · k − 1

whereµ1, µ2, · · ·µk−1 are intercept terms that depend only on the categories andxi

is a vector of covariates that does not include an intercept term. The logit, probit, and
complementary log-log link functionsg are available. These are obtained by specify-
ing the MODEL statement options DIST=MULTINOMIAL and LINK=CUMLOGIT
(cumulative logit), LINK=CUMPROBIT (cumulative probit), or LINK=CUMCLL
(cumulative complementary log-log). Alternatively,

Pir = F(µr + xi
′β) for r = 1, 2, · · · k − 1

whereF = g−1 is a cumulative distribution function for the logistic, normal, or
extreme value distribution.

PROC GENMOD estimates the intercept parametersµ1, µ2, · · ·µk−1 and regression
parametersβ by maximum likelihood.

The subpopulationsi are defined by constant values of the AGGREGATE= variable.
This has no effect on the parameter estimates, but it does affect the deviance and
Pearson chi-square statistics; it also affects parameter estimate standard errors if you
specify the SCALE=DEVIANCE or SCALE=PEARSON options.
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Generalized Estimating Equations

Letyij , j = 1, . . . , ni, i = 1, . . . ,K represent thejth measurement on theith subject.
There areni measurements on subjecti and

∑K
i=1 ni total measurements.

Correlated data are modeled using the same link function and linear predictor setup
(systematic component) as the independence case. The random component is de-
scribed by the same variance functions as in the independence case, but the covari-
ance structure of the correlated measurements must also be modeled. Let the vector
of measurements on theith subject beYi = [yi1, . . . , yini ]

′ with corresponding vec-
tor of meansµi = [µi1, . . . , µini ]

′ and letVi be the covariance matrix ofYi. Let the
vector of independent, or explanatory, variables for thejth measurement on theith
subject be

xij = [xij1, . . . , xijp]′

The Generalized Estimating Equation of Liang and Zeger (1986) for estimating the
p×1 vector of regression parametersβ is an extension of the independence estimating
equation to correlated data and is given by

S(β) =
K∑

i=1

D′
iV

−1
i (Yi − µi(β)) = 0

where

Di =
∂µi

∂β

Since

g(µij) = xij
′β

whereg is the link function, thep× ni matrix of partial derivatives of the mean with
respect to the regression parameters for theith subject is given by

D′
i =

∂µ′
i

∂β
=


xi11

g′(µi1)
. . .

xini1

g′(µini)
...

...
xi1p

g′(µi1)
. . .

xinip

g′(µini)


Working Correlation Matrix

Let Ri(α) be anni × ni “working” correlation matrix that is fully specified by the
vector of parametersα. The covariance matrix ofYi is modeled as

Vi = φA
1
2
i W

− 1
2

i R(α)W
− 1

2
i A

1
2
i
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whereAi is anni × ni diagonal matrix withv(µij) as thejth diagonal element and
Wi is anni × ni diagonal matrix withwij as thejth diagonal wherewij is a weight
specified with the WEIGHT statement. If there is no WEIGHT statement,wij = 1
for all i and j. If Ri(α) is the true correlation matrix ofYi, thenVi is the true
covariance matrix ofYi.

The working correlation matrix is usually unknown and must be estimated. It is es-
timated in the iterative fitting process using the current value of the parameter vector
β to compute appropriate functions of the Pearson residual

eij =
yij − µij√
v(µij)/wij

If you specify the working correlation asR0 = I, which is the identity matrix, the
GEE reduces to the independence estimating equation.

Following are the structures of the working correlation supported by the GENMOD
procedure and the estimators used to estimate the working correlations.
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Working Correlation Structure Estimator
Fixed

Corr(Yij , Yik) = rjk

whererjk is the jkth element of a constant,
user-specified correlation matrixR0.

The working correlation is not esti-
mated in this case.

Independent

Corr(Yij , Yik) =
{

1 j = k
0 j 6= k

The working correlation is not esti-
mated in this case.

m-dependent

Corr(Yij , Yi,j+t) =


1 t = 0
αt t = 1, 2, . . . ,m
0 t > m

α̂t =
1

(Kt − p)φ

K∑
i=1

∑
j≤ni−t

eijei,j+t

Kt =
K∑

i=1

(ni − t)

Exchangeable

Corr(Yij , Yik) =
{

1 j = k
α j 6= k

α̂ =
1

(N∗ − p)φ

K∑
i=1

∑
j<k

eijeik

N∗ = .5
K∑

i=1

ni(ni − 1)

Unstructured

Corr(Yij , Yik) =
{

1 j = k
αjk j 6= k

α̂jk =
1

(K − p)φ

K∑
i=1

eijeik

Autoregressive AR(1)

Corr(Yij , Yi,j+t) = αt

for t = 0, 1, 2, . . . , ni − j
α̂ =

1
(K1 − p)φ

K∑
i=1

∑
j≤ni−1

eijei,j+1

K1 =
K∑

i=1

(ni − 1)

Dispersion Parameter
The dispersion parameterφ is estimated by

φ̂ =
1

N − p

K∑
i=1

ni∑
j=1

e2
ij

whereN =
∑K

i=1 ni is the total number of measurements andp is the number of
regression parameters.
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The square root of̂φ is reported by PROC GENMOD as the scale parameter in the
“Analysis of GEE Parameter Estimates Model-Based Standard Error Estimates” out-
put table.

Fitting Algorithm

The following is an algorithm for fitting the specified model using GEEs. Note that
this is not in general a likelihood-based method of estimation, so that inferences based
on likelihoods are not possible for GEE methods.

1. Compute an initial estimate ofβ with an ordinary generalized linear model
assuming independence.

2. Compute the working correlationsR based on the standardized residuals, the
currentβ, and the assumed structure ofR.

3. Compute an estimate of the covariance:

Vi = φA
1
2
i W

− 1
2

i R̂(α)W
− 1

2
i A

1
2
i

4. Updateβ:

βr+1 = βr +

[
K∑

i=1

∂µi

∂β

′
V−1

i

∂µi

∂β

]−1 [
K∑

i=1

∂µi

∂β

′
V−1

i (Yi − µi)

]

5. Iterate steps 2-4 until convergence

Missing Data

Refer to Diggle, Liang, and Zeger (1994, Chapter 11) for a discussion of missing val-
ues in longitudinal data. Suppose that you intend to take measurementsYi1, . . . , Yin

for theith unit. Missing values for whichYij are missing wheneverYik is missing for
all j ≥ k are calleddropouts. Otherwise, missing values that occur intermixed with
nonmissing values areintermittentmissing values. The GENMOD procedure can
estimate the working correlation from data containing both types of missing values
using theall available pairsmethod, in which all nonmissing pairs of data are used
in the moment estimators of the working correlation parameters defined previously.

For example, for the unstructured working correlation model,

α̂jk =
1

(K ′ − p)φ

∑
eijeik

where the sum is over the units that have nonmissing measurements at timesj andk,
andK ′ is the number of units with nonmissing measurements atj andk. Estimates of
the parameters for other working correlation types are computed in a similar manner,
using available nonmissing pairs in the appropriate moment estimators.

The contribution of theith unit to the parameter update equation is computed by

omitting the elements of(Yi − µi), the columns ofD′
i = ∂µ

∂β

′
, and the rows and

columns ofVi corresponding to missing measurements.
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Parameter Estimate Covariances

Themodel-basedestimator of Cov(β̂) is given by

Σm(β̂) = I−1
0

where

I0 =
K∑

i=1

∂µi

∂β

′
V−1

i

∂µi

∂β

This is the GEE equivalent of the inverse of the Fisher information matrix that is of-
ten used in generalized linear models as an estimator of the covariance estimate of
the maximum likelihood estimator ofβ. It is a consistent estimator of the covari-
ance matrix of̂β if the mean model and the working correlation matrix are correctly
specified.

The estimator

Σe = I−1
0 I1I−1

0

is called theempirical, or robust, estimator of the covariance matrix ofβ̂ where

I1 =
K∑

i=1

∂µi

∂β

′
V−1

i Cov(Yi)V−1
i

∂µi

∂β

It has the property of being a consistent estimator of the covariance matrix ofβ̂,
even if the working correlation matrix is misspecified, that is, if Cov(Yi) 6= Vi. In
computingM, β andφ are replaced by estimates, and Cov(Yi) is replaced by the
estimate

(Yi − µi(β̂))(Yi − µi(β̂))′

Multinomial GEEs

Lipsitz, Kim, and Zhao (1994) and Miller, Davis, and Landis (1993) describe how to
extend GEEs to multinomial data. Currently, only the independent working correla-
tion is available for multinomial models in PROC GENMOD.

Alternating Logistic Regressions

If the responses are binary (that is, they take only two values), then there is an alterna-
tive method to account for the association among the measurements. The Alternating
Logistic Regressions (ALR) algorithm of Carey, Zeger, and Diggle (1993) models
the association between pairs of responses with log odds ratios, instead of with cor-
relations, as ordinary GEEs do.
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For binary data, the correlation between thejth andkth response is, by definition,

Corr(Yij , Yik) =
Pr(Yij = 1, Yik = 1)− µijµik√

µij(1− µij)µik(1− µik)

The joint probability in the numerator satisfies the following bounds, by elementary
properties of probability, sinceµij = Pr(Yij = 1):

max(0, µij + µik − 1) ≤ Pr(Yij = 1, Yik = 1) ≤ min(µij , µik)

The correlation, therefore, is constrained to be within limits that depend in a compli-
cated way on the means of the data.

The odds ratio, defined as

OR(Yij , Yik) =
Pr(Yij = 1, Yik = 1)Pr(Yij = 0, Yik = 0)
Pr(Yij = 1, Yik = 0)Pr(Yij = 0, Yik = 1)

is not constrained by the means and is preferred, in some cases, to correlations for
binary data.

The ALR algorithm seeks to model the logarithm of the odds ratio,
γijk = log(OR(Yij , Yik)), as

γijk = z′ijkα

whereα is aq×1 vector of regression parameters andzijk is a fixed, specified vector
of coefficients.

The parameterγijk can take any value in(−∞,∞) with γijk = 0 corresponding to
no association.

The log odds ratio, when modeled in this way with a regression model, can take
different values in subgroups defined byzijk. For example,zijk can define subgroups
within clusters, or it can define ‘block effects’ between clusters.

You specify a GEE model for binary data using log odds ratios by specifying a model
for the mean, as in ordinary GEEs, and a model for the log odds ratios. You can use
any of the link functions appropriate for binary data in the model for the mean, such
as logistic, probit, or complementary log-log. The ALR algorithm alternates between
a GEE step to update the model for the mean and a logistic regression step to update
the log odds ratio model. Upon convergence, the ALR algorithm provides estimates
of the regression parameters for the mean,β, the regression parameters for the log
odds ratios,α, their standard errors, and their covariances.
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Specifying Log Odds Ratio Models

Specifying a regression model for the log odds ratio requires you to specify rows
of the z-matrix zijk for each clusteri and each unique within-cluster pair(j, k).
The GENMOD procedure provides several methods of specifyingzijk. These are
controlled by the LOGOR=keyword and associated options in the REPEATED state-
ment. The supported keywords and the resulting log odds ratio models are described
as follows.

EXCH exchangeable log odds ratios. In this model, the log odds
ratio is a constant for all clustersi and pairs(j, k). The
parameterα is the common log odds ratio.

zijk = 1 for all i, j, k

FULLCLUST fully parameterized clusters. Each cluster is parameterized
in the same way, and there is a parameter for each unique
pair within clusters. If a complete cluster is of sizen, then
there aren(n−1)

2 parameters in the vectorα. For example,
if a full cluster is of size 4, then there are4×3

2 = 6 param-
eters, and thez-matrix is of the form

Z =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


The elements ofα correspond to log odds ratios for cluster
pairs in the following order:

Pair Parameter
(1,2) Alpha1
(1,3) Alpha2
(1,4) Alpha3
(2.3) Alpha4
(2,4) Alpha5
(3,4) Alpha6

LOGORVAR(variable) log odds ratios by cluster. The argumentvariableis a vari-
able name that defines the ‘block effects’ between clusters.
The log odds ratios are constant within clusters, but they
take a different value for each different value of thevari-
able. For example, ifCenter is a variable in the input
data set taking a different value fork treatment centers,
then specifying LOGOR=LOGORVAR(Center) requests a
model with different log odds ratios for each of thek cen-
ters, constant within center.
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NESTK k-nested log odds ratios. You must also specify the
SUBCLUST=variableoption to define subclusters within
clusters. Within each cluster, PROC GENMOD computes
a log odds ratio parameter for pairs having the same value
of variable for both members of the pair and one log odds
ratio parameter for each unique combination of different
values ofvariable.

NEST1 1-nested log odds ratios. You must also specify the
SUBCLUST=variableoption to define subclusters within
clusters. There are two log odds ratio parameters for this
model. Pairs having the same value ofvariablecorrespond
to one parameter; pairs having different values ofvariable
correspond to the other parameter. For example, if clusters
are hospitals and subclusters are wards within hospitals,
then patients within the same ward have one log odds ra-
tio parameter, and patients from different wards have the
other parameter.

ZFULL specifies the fullz-matrix. You must also specify a SAS
data set containing thez-matrix with the ZDATA=data-
set-nameoption. Each observation in the data set cor-
responds to one row of thez-matrix. You must spec-
ify the ZDATA data set as if all clusters are complete,
that is, as if all clusters are the same size and there
are no missing observations. The ZDATA data set has
K[nmax(nmax− 1)/2] observations, whereK is the num-
ber of clusters andnmax is the maximum cluster size. If
the members of clusteri are ordered as1, 2, · · · , n, then the
rows of thez-matrix must be specified for pairs in the order
(1, 2), (1, 3), · · · , (1, n), (2, 3), · · · , (2, n), · · · , (n− 1, n).
The variables specified in the REPEATED statement for
the SUBJECT effect must also be present in the ZDATA=
data set to identify clusters. You must specify variables
in the data set that define the columns of thez-matrix by
the ZROW=variable-listoption. If there areq columns, (q
variables invariable-list), then there areq log odds ratio
parameters. You can optionally specify variables indicat-
ing the cluster pairs corresponding to each row of thez-
matrix with the YPAIR=(variable1, variable2) option. If
you specify this option, the data from the ZDATA data set
is sorted within each cluster byvariable1andvariable2.
SeeExample 31.6for an example of specifying a fullz-
matrix.

ZREP replicatedz-matrix. You specifyz-matrix data exactly as
you do for the ZFULL case, except that you specify only
one complete cluster. Thez-matrix for the one cluster is
replicated for each cluster. The number of observations in
the ZDATA data set isnmax(nmax−1)

2 , wherenmax is the
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size of a complete cluster (a cluster with no missing obser-
vations). SeeExample 31.6for an example of specifying a
replicatedz-matrix.

ZREP(matrix) direct input of the replicatedz-matrix. You specify the
z-matrix for one cluster with the syntax LOGOR=ZREP
( (y1 y2)z1 z2 · · · zq, · · · ), where y1 and y2 are num-
bers representing a pair of observations and the values
z1, z2, · · · , zq make up the corresponding row of thez-

matrix. The number of rows specified isnmax(nmax−1)
2 ,

wherenmax is the size of a complete cluster (a cluster with
no missing observations). For example,

LOGOR = ZREP((1 2) 1 0,
(1 3) 1 0,
(1 4) 1 0,
(2 3) 1 1,
(2 4) 1 1,
(3 4) 1 1)

specifies the4×3
2 = 6 rows of thez-matrix for a cluster of

size 4 withq = 2 log odds ratio parameters. The log odds
ratio for pairs (1 2), (1 3), (1 4) isα1, and the log odds ratio
for pairs (2 3), (2 4), (3 4) isα1 + α2.

Generalized Score Statistics

Boos (1992) and Rotnitzky and Jewell (1990) describe score tests applicable to testing
Lβ = 0 in GEEs, whereL is a user-specifiedr × p contrast matrix or a contrast for
a Type 3 test of hypothesis.

Let β̃ be the regression parameters resulting from solving the GEE under the re-
stricted modelLβ = 0, and letS(β̃) be the generalized estimating equation values
at β̃.

The generalized score statistic is

T = S(β̃)′ΣmL′(LΣeL′)−1LΣmS(β̃)

whereΣm is the model-based covariance estimate andΣe is the empirical covariance
estimate. Thep-values forT are computed based on the chi-square distribution with
r degrees of freedom.

Assessment of Models Based on Aggregates of Residuals (Experimental)

Lin, Wei, and Ying (2002) present graphical and numerical methods for model as-
sessment based on the cumulative sums of residuals over certain coordinates (e.g.,
covariates or linear predictors) or some related aggregates of residuals. The distribu-
tions of these stochastic processes under the assumed model can be approximated by
the distributions of certain zero-mean Gaussian processes whose realizations can be
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generated by simulation. Each observed residual pattern can then be compared, both
graphically and numerically, with a number of realizations from the null distribution.
Such comparisons enable you to assess objectively whether the observed residual
pattern reflects anything beyond random fluctuation. These procedures are useful
in determining appropriate functional forms of covariates and link function. You
use the ASSESS|ASSESSMENT statement to perform this kind of model-checking
with cumulative sums of residuals, moving sums of residuals, or LOWESS smoothed
residuals. SeeExample 31.8andExample 31.9for examples of model assessment.

Let the model for the mean be

g(µi) = xi
′β

whereµi is the mean of the responseyi andxi is the vector of covariates for theith
observation. Denote the raw residual resulting from fitting the model as

ei = yi − µ̂i

and letxij be the value of thejth covariate in the model for observationi. Then
to check the functional form of thejth covariate, consider the cumulative sum of
residuals with respect toxij

Wj(x) =
1√
n

n∑
i=1

I(xij ≤ x)ei

whereI() is the indicator function. For anyx, Wj(x) is the sum of the residuals with
values ofxj less than or equal tox.

Denote the score, or gradient vector by

U(β) =
n∑

i=1

h(xi
′β)xi(yi − ν(xi

′β))

whereν(r) = g−1(r), and

h(r) =
1

g′(ν(r))V (ν(r))

Let J be the Fisher information matrix

J(β) = −∂U(β)
∂β′

Define

Ŵj(x) =
1√
n

n∑
i=1

[I(xij ≤ x) + η′(x; β̂)J−1(β̂)xih(xi
′β̂)]eiZi
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where

η(x;β) = −
n∑

i=1

I(xij ≤ x)
∂ν(xi

′β)
∂β

andZi are independentN(0, 1) random variables. Then the conditional distribution
of Ŵj(x), given(yi,xi), i = 1, . . . , n, under the null hypothesisH0 that the model
for the mean is correct, is the same asymptotically asn → ∞ as the unconditional
distribution ofWj(x) (Lin, Wei, and Ying, 2002).

You can approximate realizations from the null hypothesis distribution ofWj(x) by
repeatedly generating normal samplesZi, i = 1, . . . , n while holding(yi,xi), i =
1, . . . , n at their observed values and computingŴj(x) for each sample.

You can assess the functional form of covariatej by plotting a few realizations of
Ŵj(x) on the same plot as the observedWj(x) and visually comparing to see how
typical the observedWj(x) is of the null distribution samples.

You can supplement the graphical inspection method with a Kolmogorov-type supre-
mum test. Letsj be the observed value ofSj = supx |Wj(x)|. Thep-valuePr[Sj ≥
sj ] is approximated byPr[Ŝj ≥ sj ], whereŜj = supx |Ŵj(x)|. Pr[Ŝj ≥ sj ] is
estimated by generating realizations ofŴj(.) (1,000 is the default number of realiza-
tions).

You can check the link function instead of thejth covariate by using values of the
linear predictorxi

′β̂ in place of values of thejth covariatexij . The graphical and
numerical methods described above are then sensitive to inadequacies in the link
function.

An alternative aggregate of residuals is the moving sum statistic

Wj(x, b) =
1√
n

n∑
i=1

I(x− b ≤ xij ≤ x)ei

If you specify the keyword WINDOW(b), then the moving sum statistic with window
sizeb is used instead of the cumulative sum of residuals, withI(x − b ≤ xij ≤ x)
replacingI(xij ≤ x) above.

If you specify the keyword LOWESS(f ), LOWESS smoothed residuals are used in
the formulas above, wheref is the fraction of the data to be used at a given point.
If f is not specified,f = 1

3 is used. Define, for data(Yi, Xi), i = 1, . . . , n, r as the
nearest integer tonf andh as therth smallest among|Xi − x|, i = 1, . . . , n. Let

Ki(x) = K(
Xi − x

h
)

where

K(t) =
70
81

(1− |t|3)3I(−1 ≤ t ≤ 1)
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Define

wi(x) = Ki(x)[S2(x)− (Xi − x)S1(x)]

where

S1(x) =
n∑

i=1

Ki(x)(Xi − x)

S2(x) =
n∑

i=1

Ki(x)(Xi − x)2

Then the LOWESS estimate ofY atx is defined by

Ŷ (x) =
n∑

i=1

wi(x)∑n
i=1 wi(x)

Yi

LOWESS smoothed residuals for checking the functional form of thejth covariate
are defined by replacingYi with ei andXi with xij . To implement the graphical

and numerical assessment methods,I(xij ≤ x) is replaced with wi(x)∑n
i=1 wi(x)

in the

formulas forWj(x) andŴj(x).

You can perform the model checking described above for marginal models for de-
pendent responses fit by generalized estimating equations (GEEs). Letyik denote the
kth measurement on theith cluster,i = 1, . . . ,K, k = 1, . . . , ni, andxik the corre-
sponding vector of covariates. The marginal mean of the responseµik = E(yik) is
assumed to depend on the covariate vector by

g(µik) = x′ikβ

whereg is the link function.

Define the vector of residuals for theith cluster as

ei = (ei1, . . . , eini)
′ = (yi1 − µ̂i1, . . . , yini − µ̂ini)

′

You use the following extension ofWj(x) defined above to check the functional form
of thejth covariate:

Wj(x) =
1√
K

K∑
i=1

ni∑
k=1

I(xikj ≤ x)eik

wherexikj is thejth component ofxik.
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The null distribution ofWj(x) can be approximated by the conditional distribution
of

Ŵj(x) =
1√
K

K∑
i=1

{
ni∑

k=1

I(xikj ≤ x)eik + η′(x, β̂)I−1
0 D̂′

iV̂
−1
i ei

}
Zi

whereD̂i andV̂i are defined as in the section“Generalized Estimating Equations”
on page 1672 with the unknown parameters replaced by their estimated values,

η(x,β) = −
K∑

i=1

ni∑
k=1

I(xikj ≤ x)
∂µik

∂β

I0 =
K∑

i=1

D̂′
iV̂

−1
i D̂i

andZi, i = 1, . . . ,K, are independentN(0, 1) random variables. You replacexikj

with the linear predictorx′ikβ̂ in the preceding formulas to check the link function.

Displayed Output
The following output is produced by the GENMOD procedure. Note that some of the
tables are optional and appear only in conjunction with the REPEATED statement
and its options or with options in the MODEL statement. For details, see the section
“ODS Table Names”on page 1693.

Model Information

PROC GENMOD displays the following model information:

• data set name

• response distribution

• link function

• response variable name

• offset variable name

• frequency variable name

• scale weight variable name

• number of observations used

• number of events if events/trials format is used for response

• number of trials if events/trials format is used for response

• sum of frequency weights

• number of missing values in data set

• number of invalid observations (for example, negative or 0 response values
with gamma distribution or number of observations with events greater than
trials with binomial distribution)



Displayed Output � 1685

Class Level Information

If you use classification variables in the model, PROC GENMOD displays the lev-
els of classification variables specified in the CLASS statement and in the MODEL
statement. The levels are displayed in the same sorted order used to generate columns
in the design matrix.

Response Profile

If you specify an ordinal model for the multinomial distribution, a table titled
“Response Profile” is displayed containing the ordered values of the response variable
and the number of occurrences of the values used in the model.

Iteration History for Parameter Estimates

If you specify the ITPRINT model option, PROC GENMOD displays a table con-
taining the following for each iteration in the Newton-Raphson procedure for model
fitting:

• iteration number

• ridge value

• log likelihood

• values of all parameters in the model

Criteria for Assessing Goodness of Fit

PROC GENMOD displays the following criteria for assessing goodness of fit:

• degrees of freedom for deviance and Pearson’s chi-square, equal to the number
of observations minus the number of regression parameters estimated

• deviance

• deviance divided by degrees of freedom

• scaled deviance

• scaled deviance divided by degrees of freedom

• Pearson’s chi-square

• Pearson’s chi-square divided by degrees of freedom

• scaled Pearson’s chi-square

• scaled Pearson’s chi-square divided by degrees of freedom

• log likelihood

Last Evaluation of the Gradient

If you specify the model option ITPRINT, the GENMOD procedure displays the last
evaluation of the gradient vector.
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Last Evaluation of the Hessian

If you specify the model option ITPRINT, the GENMOD procedure displays the last
evaluation of the Hessian matrix.

Analysis of (Initial) Parameter Estimates

The “Analysis of (Initial) Parameter Estimates” table contains the results from fitting
a generalized linear model to the data. If you specify the REPEATED statement,
these GLM parameter estimates are used as initial values for the GEE solution. For
each parameter in the model, PROC GENMOD displays the following:

• the parameter name

− the variable name for continuous regression variables

− the variable name and level for classification variables and interactions
involving classification variables

− SCALE for the scale variable related to the dispersion parameter

• degrees of freedom for the parameter

• estimate value

• standard error

• Wald chi-square value

• p-value based on the chi-square distribution

• confidence limits (Wald or profile likelihood) for parameters

Estimated Covariance Matrix

If you specify the model option COVB, the GENMOD procedure displays the esti-
mated covariance matrix, defined as the inverse of the information matrix at the final
iteration. This is based on the expected information matrix if the EXPECTED option
is specified in the MODEL statement. Otherwise, it is based on the Hessian matrix
used at the final iteration. This is, by default, the observed Hessian unless altered by
the SCORING option in the MODEL statement.

Estimated Correlation Matrix

If you specify the CORRB model option, PROC GENMOD displays the esti-
mated correlation matrix. This is based on the expected information matrix if the
EXPECTED option is specified in the MODEL statement. Otherwise, it is based on
the Hessian matrix used at the final iteration. This is, by default, the observed Hessian
unless altered by the SCORING option in the MODEL statement.

Iteration History for LR Confidence Intervals

If you specify the ITPRINT and LRCI model options, PROC GENMOD displays
an iteration history table for profile likelihood-based confidence intervals. For each
parameter in the model, PROC GENMOD displays the following:
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• parameter identification number

• iteration number

• log likelihood value

• parameter values

Likelihood Ratio-Based Confidence Intervals for Parameters

If you specify the LRCI and the ITPRINT options in the MODEL statement, a table
is displayed summarizing profile likelihood-based confidence intervals for all param-
eters. The table contains the following for each parameter in the model:

• confidence coefficient

• parameter identification number

• lower and upper endpoints of confidence intervals for the parameter

• values of all other parameters at the solution

LR Statistics for Type 1 Analysis

If you specify the TYPE1 model option, a table containing the following is displayed
for each effect in the model:

• name of effect

• deviance for the model including the effect and all previous effects

• degrees of freedom for the effect

• likelihood ratio statistic for testing the significance of the effect

• p-value computed from the chi-square distribution with

effect degrees of freedom

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option in the
MODEL statement, columns containing the following are displayed:

• name of effect

• deviance for the model including the effect and all previous effects

• numerator degrees of freedom

• denominator degrees of freedom

• chi-square statistic for testing the significance of the effect

• p-value computed from the chi-square distribution with numerator degrees of
freedom

• F statistic for testing the significance of the effect

• p-value based on theF distribution
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Iteration History for Type 3 Contrasts

If you specify the model options ITPRINT and TYPE3, an iteration history table is
displayed for fitting the model with Type 3 contrast constraints for each effect. The
table contains the following:

• effect name

• iteration number

• ridge value

• log likelihood

• values of all parameters

LR Statistics for Type 3 Analysis

If you specify the TYPE3 model option, a table containing the following is displayed
for each effect in the model:

• name of the effect

• likelihood ratio statistic for testing the significance of the effect

• degrees of freedom for effect

• p-value computed from the chi-square distribution

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option in the
MODEL statement, columns containing the following are displayed:

• name of the effect

• likelihood ratio statistic for testing the significance of the effect

• F statistic for testing the significance of the effect

• numerator degrees of freedom

• denominator degrees of freedom

• p-value based on theF distribution

• p-value computed from the chi-square distribution with numerator degrees of
freedom

Wald Statistics for Type 3 Analysis

If you specify the TYPE3 and WALD model options, a table containing the following
is displayed for each effect in the model:

• name of effect

• degrees of freedom for effect

• Wald statistic for testing the significance of the effect

• p-value computed from the chi-square distribution
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Parameter Information

If you specify the ITPRINT, COVB, CORRB, WALDCI, or LRCI option in the
MODEL statement, or if you specify a CONTRAST statement, a table is displayed
that identifies parameters with numbers, rather than names, for use in tables and ma-
trices where a compact identifier for parameters is helpful. For each parameter, the
table contains the following:

• a number that identifies the parameter

• the parameter name, including level information for effects containing classifi-
cation variables

Observation Statistics

If you specify the OBSTATS option in the MODEL statement, PROC GENMOD
displays a table containing miscellaneous statistics. For each observation in the input
data set, the following are displayed:

• the value of the response variable, denoted by the variable name

• the predicted value of the mean, denoted by PRED

• the value of the linear predictor, denoted by XBETA. The value of an OFFSET
variable is added to the linear predictor.

• the estimated standard error of the linear predictor, denoted by STD

• the value of the negative of the weight in the Hessian matrix at the final iter-
ation, denoted by HESSWGT. This is the expected weight if the EXPECTED
option is specified in the MODEL statement. Otherwise, it is the weight used
in the final iteration. That is, it is the observed weight unless the SCORING=
option has been specified.

• approximate lower and upper endpoints for a confidence interval for the pre-
dicted value of the mean, denoted by LOWER and UPPER

• raw residual, denoted by RESRAW

• Pearson residual, denoted by RESCHI

• deviance residual, denoted by RESDEV

• standardized Pearson residual, denoted by STDRESCHI

• standardized deviance residual, denoted by STDRESDEV

• likelihood residual, denoted by RESLIK

ESTIMATE Statement Results

If you specify a REPEATED statement, the ESTIMATE statement results apply to
the specified GEE model. Otherwise, they apply to the specified generalized linear
model.

The following are displayed for each ESTIMATE statement:
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• contrast label

• estimated value of the contrast

• standard error of the estimate

• significance levelα

• (1− α)× 100% confidence intervals for contrast

• Wald chi-square statistic for the contrast

• p-value computed from the chi-square distribution

If you specify the EXP option, an additional row is displayed with statistics for the
exponentiated value of the contrast.

CONTRAST Coefficients

If you specify the CONTRAST or ESTIMATE statement and you specify the E op-
tion, a table titled “Coefficients For Contrastlabel” is displayed, wherelabel is the
label specified in the CONTRAST statement. The table contains the following:

• the contrast label

• the rows of the contrast matrix

Iteration History for Contrasts

If you specify the ITPRINT option, an iteration history table is displayed for fitting
the model with contrast constraints for each effect. The table contains the following
for each contrast defined in a CONTRAST statement:

• contrast label

• iteration number

• ridge value

• log likelihood

• values of all parameters

CONTRAST Statement Results

If you specify a REPEATED statement, the CONTRAST statement results apply to
the specified GEE model. Otherwise, they apply to the specified generalized linear
model.

The following are displayed for each CONTRAST statement:

• contrast label

• degrees of freedom for the contrast

• likelihood ratio, score, or Wald statistic for testing the significance of the con-
trast. Score statistics are used in GEE models, likelihood ratio statistics are
used in generalized linear models, and Wald statistics are used in both.
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• p-value computed from the chi-square distribution

• the type of statistic computed for this contrast: Wald, LR, or score

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option for
generalized linear models, columns containing the following are displayed:

• contrast label

• likelihood ratio statistic for testing the significance of the contrast

• F statistic for testing the significance of the contrast

• numerator degrees of freedom

• denominator degrees of freedom

• p-value based on theF distribution

• p-value computed from the chi-square distribution with numerator degrees of
freedom

LSMEANS Coefficients

If you specify the LSMEANS statement and you specify the E option, a table titled
“Coefficients foreffectLeast Squares Means” is displayed, whereeffectis the effect
specified in the LSMEANS statement. The table contains the following:

• the effect names

• the rows of least squares means coefficients

Least Squares Means

If you specify the LSMEANS statement a table titled “Least Squares Means” is dis-
played. The table contains the following:

• the effect names

• for each level of each effect,

− the least squares mean estimate

− standard error

− chi-square value

− p-value computed from the chi-square distribution

If you specify the DIFF option, a table titled “Differences of Least Squares Means”
is displayed containing corresponding statistics for the differences between the least
squares means for the levels of each effect.
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GEE Model Information

If you specify the REPEATED statement, the following are displayed:

• correlation structure of the working correlation matrix or the log odds ratio
structure

• within-subject effect

• subject effect

• number of clusters

• correlation matrix dimension

• minimum and maximum cluster size

Log Odds Ratio Parameter Information

If you specify the REPEATED statement and specify a log odds ratio model for binary
data with the LOGOR= option, then a table is displayed showing the correspondence
between data pairs and log odds ratio model parameters.

Iteration History for GEE Parameter Estimates

If you specify the REPEATED statement and the MODEL statement option ITPRINT,
an iteration history table for GEE parameter estimates is displayed. The table contains
the following:

• parameter identification number

• iteration number

• values of all parameters

Last Evaluation of the Generalized Gradient and Hessian

If you specify the REPEATED statement and select ITPRINT as a model option,
PROC GENMOD displays the last generalized gradient and Hessian matrix in the
GEE iterative parameter estimation process.

GEE Parameter Estimate Covariance Matrices

If you specify the REPEATED statement and the COVB option, PROC GENMOD
displays both model-based and empirical parameter estimate covariance matrices.

GEE Parameter Estimate Correlation Matrices

If you specify the REPEATED statement and the CORRB option, PROC GENMOD
displays both model-based and empirical parameter estimate covariance matrices.
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GEE Working Correlation Matrix

If you specify the REPEATED statement and the CORRW option, PROC GENMOD
displays the exchangeable working correlation matrix.

Analysis of GEE Parameter Estimates

If you specify the REPEATED statement, PROC GENMOD uses empirical standard
error estimates to compute and display the following for each parameter in the model:

• the parameter name

− the variable name for continuous regression variables

− the variable name and level for classification variables and interactions
involving classification variables

− “Scale” for the scale variable related to the dispersion parameter

• parameter estimate

• standard error

• 95% confidence interval

• Z score andp-value

If you specify the MODELSE option in the REPEATED statement, a table based on
model-based standard errors is also produced.

GEE Observation Statistics

If you specify the OBSTATS option in the REPEATED statement, PROC GENMOD
displays a table containing miscellaneous statistics. For each observation in the input
data set, the following are displayed:

• the value of the response variable and all other variables in the model, denoted
by the variable names

• the predicted value of the mean, denoted by PRED

• the value of the linear predictor, denoted by XBETA

• the standard error of the linear predictor, denoted by STD

• confidence limits for the predicted values, denoted by LOWER and UPPER

• raw residual, denoted by RESRAW

• Pearson residual, denoted by RESCHI

ODS Table Names

PROC GENMOD assigns a name to each table that it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 31.3. ODS Tables Produced in PROC GENMOD

ODS Table Name Description Statement Option
AssessmentSummary
(experimental)

Model assessment summary ASSESS default

ClassLevels Class variable levels CLASS default
Contrasts Tests of contrasts CONTRAST default
ContrastCoef Contrast coefficients CONTRAST E
ConvergenceStatus Convergence status MODEL default
CorrB Parameter estimate correla-

tion matrix
MODEL CORRB

CovB Parameter estimate covari-
ance matrix

MODEL COVB

Estimates Estimates of contrasts ESTIMATE default
EstimateCoef Contrast coefficients ESTIMATE E
GEEEmpPEst GEE parameter estimates

with empirical standard er-
rors

REPEATED default

GEELogORInfo GEE log odds ratio model
information

REPEATED LOGOR=

GEEModInfo GEE model information REPEATED default
GEEModPEst GEE parameter estimates

with model-based standard
errors

REPEATED MODELSE

GEENCorr GEE model-based correla-
tion matrix

REPEATED MCORRB

GEENCov GEE model-based covari-
ance matrix

REPEATED MCOVB

GEERCorr GEE empirical correlation
matrix

REPEATED ECORRB

GEERCov GEE empirical covariance
matrix

REPEATED ECOVB

GEEWCorr GEE working correlation
matrix

REPEATED CORRW

IterContrasts Iteration history for con-
trasts

MODEL
CONTRAST

ITPRINT

IterLRCI Iteration history for likeli-
hood ratio confidence inter-
vals

MODEL LRCI ITPRINT

IterParms Iteration history for param-
eter estimates

MODEL ITPRINT

IterParmsGEE Iteration history for GEE
parameter estimates

MODEL
REPEATED

ITPRINT

IterType3 Iteration history for Type 3
statistics

MODEL TYPE3 ITPRINT

LRCI Likelihood ratio confidence
intervals

MODEL LRCI ITPRINT
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Table 31.3. (continued)

ODS Table Name Description Statement Option
LSMeanCoef Coefficients for least

squares means
LSMEANS E

LSMeanDiffs Least squares means differ-
ences

LSMEANS DIFF

LSMeans Least squares means LSMEANS default
LagrangeStatistics Lagrange statistics MODEL NOINT | NOSCALE
LastGEEGrad Last evaluation of the gener-

alized gradient and Hessian
MODEL
REPEATED

ITPRINT

LastGradHess Last evaluation of the gradi-
ent and Hessian

MODEL ITPRINT

LinDep Linearly dependent rows of
contrasts

CONTRAST* default

ModelInfo Model information MODEL default
Modelfit Goodness-of-fit statistics MODEL default
NObs Number of observations

summary
default

NonEst Nonestimable rows of con-
trasts

CONTRAST* default

ObStats Observation-wise statistics MODEL OBSTATS | CL |
PREDICTED |
RESIDUALS | XVARS

ParameterEstimates Parameter estimates MODEL default
ParmInfo Parameter indices MODEL* default
ResponseProfiles Frequency counts for multi-

nomial models
MODEL DIST=MULTINOMIAL

Type1 Type 1 tests MODEL TYPE1
Type3 Type 3 tests MODEL TYPE3

*Depends on data.

ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the
GENMOD procedure. These graphics are experimental in this release, meaning that
both the graphical results and the syntax for specifying them are subject to change in
a future release.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the ASSESS statement and options. For more information on the ASSESS state-
ment, see the“ASSESS Statement”section on page 1627. For more information on
the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”
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ODS Graph Names

PROC GENMOD assigns a name to each graph it creates using ODS. You can use
these names to reference the graphs when using ODS. The names are listed inTable
31.4.

To request these graphs, you must specify the ODS GRAPHICS statement in addition
to the options indicated inTable 31.4.

Table 31.4. ODS Graphics Produced by PROC GENMOD

ODS Graph Name Description Statement Option
CumResidPanel Panel plot of aggregates of

residuals
ASSESS CRPANEL

CumulativeResiduals Model assessment based on
aggregates of residuals

ASSESS default

Examples
The following examples illustrate some of the capabilities of the GENMOD proce-
dure. These are not intended to represent definitive analyses of the data sets presented
here. You should refer to the texts cited in the“References”section on page 1728 for
guidance on complete analysis of data using generalized linear models.

Example 31.1. Logistic Regression
In an experiment comparing the effects of five different drugs, each drug is tested on
a number of different subjects. The outcome of each experiment is the presence or
absence of a positive response in a subject. The following artificial data represent the
number of responsesr in then subjects for the five different drugs, labeled A through
E. The response is measured for different levels of a continuous covariatex for each
drug. The drug type and the continuous covariatex are explanatory variables in this
experiment. The number of responsesr is modeled as a binomial random variable
for each combination of the explanatory variable values, with the binomial number of
trials parameter equal to the number of subjectsn and the binomial probability equal
to the probability of a response.

The following DATA step creates the data set.

data drug;
input drug$ x r n @@;
datalines;
A .1 1 10 A .23 2 12 A .67 1 9
B .2 3 13 B .3 4 15 B .45 5 16 B .78 5 13
C .04 0 10 C .15 0 11 C .56 1 12 C .7 2 12
D .34 5 10 D .6 5 9 D .7 8 10
E .2 12 20 E .34 15 20 E .56 13 15 E .8 17 20
;

run;
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A logistic regression for these data is a generalized linear model with response equal
to the binomial proportionr/n. The probability distribution is binomial, and the link
function is logit. For these data,drug andx are explanatory variables. The probit and
the complementary log-log link functions are also appropriate for binomial data.

PROC GENMOD performs a logistic regression on the data in the following SAS
statements:

proc genmod data=drug;
class drug;
model r/n = x drug / dist = bin

link = logit
lrci;

run;

Since these data are binomial, you use theevents/trials syntax to specify the response
in the MODEL statement. Profile likelihood confidence intervals for the regression
parameters are computed using the LRCI option.

General model and data information is produced inOutput 31.1.1.

Output 31.1.1. Model Information

The GENMOD Procedure

Model Information

Data Set WORK.DRUG
Distribution Binomial
Link Function Logit
Response Variable (Events) r
Response Variable (Trials) n

The five levels of the CLASS variable DRUG are displayed inOutput 31.1.2.

Output 31.1.2. Class Variable Levels

Class Level Information

Class Levels Values

drug 5 A B C D E

In the “Criteria For Assessing Goodness Of Fit” table displayed inOutput 31.1.3,
the value of the deviance divided by its degrees of freedom is less than 1. Ap-value
is not computed for the deviance; however, a deviance that is approximately equal
to its degrees of freedom is a possible indication of a good model fit. Asymptotic
distribution theory applies to binomial data as the number of binomial trials param-
etern becomes large for each combination of explanatory variables. McCullagh and
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Nelder (1989) caution against the use of the deviance alone to assess model fit. The
model fit for each observation should be assessed by examination of residuals. The
OBSTATS option in the MODEL statement produces a table of residuals and other
useful statistics for each observation.

Output 31.1.3. Goodness of Fit Criteria

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 12 5.2751 0.4396
Scaled Deviance 12 5.2751 0.4396
Pearson Chi-Square 12 4.5133 0.3761
Scaled Pearson X2 12 4.5133 0.3761
Log Likelihood -114.7732

In the “Analysis Of Parameter Estimates” table displayed inOutput 31.1.4, chi-square
values for the explanatory variables indicate that the parameter values other than the
intercept term are all significant. The scale parameter is set to 1 for the binomial
distribution. When you perform an overdispersion analysis, the value of the overdis-
persion parameter is indicated here. See the the section“Overdispersion”on page
1659 for a discussion of overdispersion.

Output 31.1.4. Parameter Estimates

Analysis Of Parameter Estimates

Likelihood Ratio
Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 0.2792 0.4196 -0.5336 1.1190 0.44 0.5057
x 1 1.9794 0.7660 0.5038 3.5206 6.68 0.0098
drug A 1 -2.8955 0.6092 -4.2280 -1.7909 22.59 <.0001
drug B 1 -2.0162 0.4052 -2.8375 -1.2435 24.76 <.0001
drug C 1 -3.7952 0.6655 -5.3111 -2.6261 32.53 <.0001
drug D 1 -0.8548 0.4838 -1.8072 0.1028 3.12 0.0773
drug E 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

The preceding table contains the profile likelihood confidence intervals for the ex-
planatory variable parameters requested with the LRCI option. Wald confidence in-
tervals are displayed by default. Profile likelihood confidence intervals are considered
to be more accurate than Wald intervals (refer to Aitkin et al. 1989), especially with
small sample sizes. You can specify the confidence coefficient with the ALPHA=
option in the MODEL statement. The default value of 0.05, corresponding to 95%
confidence limits, is used here. See the section“Confidence Intervals for Parameters”
on page 1666 for a discussion of profile likelihood confidence intervals.
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Example 31.2. Normal Regression, Log Link

Consider the following data, wherex is an explanatory variable, andy is the response
variable. It appears thaty varies nonlinearly withx and that the variance is approx-
imately constant. A normal distribution with a log link function is chosen to model
these data; that is,log(µi) = xi

′β so thatµi = exp(xi
′β).

data nor;
input x y;
datalines;
0 5
0 7
0 9
1 7
1 10
1 8
2 11
2 9
3 16
3 13
3 14
4 25
4 24
5 34
5 32
5 30
;

run;

The following SAS statements produce the analysis with the normal distribution and
log link:

proc genmod data=nor;
model y = x / dist = normal

link = log;

output out = Residuals
pred = Pred
resraw = Resraw
reschi = Reschi
resdev = Resdev
stdreschi = Stdreschi
stdresdev = Stdresdev
reslik = Reslik;

run;

The OUTPUT statement is specified to produce a data set that contains predicted
values and residuals for each observation. This data set can be useful for further
analysis, such as residual plotting.

The output from these statements is displayed inOutput 31.2.1.
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Output 31.2.1. Log Linked Normal Regression

The GENMOD Procedure

Model Information

Data Set WORK.NOR
Distribution Normal
Link Function Log
Dependent Variable y

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 14 52.3000 3.7357
Scaled Deviance 14 16.0000 1.1429
Pearson Chi-Square 14 52.3000 3.7357
Scaled Pearson X2 14 16.0000 1.1429
Log Likelihood -32.1783

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.7214 0.0894 1.5461 1.8966 370.76 <.0001
x 1 0.3496 0.0206 0.3091 0.3901 286.64 <.0001
Scale 1 1.8080 0.3196 1.2786 2.5566

NOTE: The scale parameter was estimated by maximum likelihood.

The PROC GENMOD scale parameter, in the case of the normal distribution, is
the standard deviation. By default, the scale parameter is estimated by maximum
likelihood. You can specify a fixed standard deviation by using the NOSCALE and
SCALE= options in the MODEL statement.
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Output 31.2.2. Data Set of Predicted Values and Residuals

Obs x y Pred Reschi Resdev Resraw Stdreschi Stdresdev Reslik

1 0 5 5.5921 -0.59212 -0.59212 -0.59212 -0.34036 -0.34036 -0.34036
2 0 7 5.5921 1.40788 1.40788 1.40788 0.80928 0.80928 0.80928
3 0 9 5.5921 3.40788 3.40788 3.40788 1.95892 1.95892 1.95892
4 1 7 7.9324 -0.93243 -0.93243 -0.93243 -0.54093 -0.54093 -0.54093
5 1 10 7.9324 2.06757 2.06757 2.06757 1.19947 1.19947 1.19947
6 1 8 7.9324 0.06757 0.06757 0.06757 0.03920 0.03920 0.03920
7 2 11 11.2522 -0.25217 -0.25217 -0.25217 -0.14686 -0.14686 -0.14686
8 2 9 11.2522 -2.25217 -2.25217 -2.25217 -1.31166 -1.31166 -1.31166
9 3 16 15.9612 0.03878 0.03878 0.03878 0.02249 0.02249 0.02249

10 3 13 15.9612 -2.96122 -2.96122 -2.96122 -1.71738 -1.71738 -1.71738
11 3 14 15.9612 -1.96122 -1.96122 -1.96122 -1.13743 -1.13743 -1.13743
12 4 25 22.6410 2.35897 2.35897 2.35897 1.37252 1.37252 1.37252
13 4 24 22.6410 1.35897 1.35897 1.35897 0.79069 0.79069 0.79069
14 5 34 32.1163 1.88366 1.88366 1.88366 1.22914 1.22914 1.22914
15 5 32 32.1163 -0.11634 -0.11634 -0.11634 -0.07592 -0.07592 -0.07592
16 5 30 32.1163 -2.11634 -2.11634 -2.11634 -1.38098 -1.38098 -1.38098

The data set of predicted values and residuals (Output 31.2.2) is created by the
OUTPUT statement. With this data set, you can construct residual plots using the
GPLOT procedure to aid in assessing model fit. Note that raw, Pearson, and deviance
residuals are equal in this example. This is a characteristic of the normal distribution
and is not true in general for other distributions.

Example 31.3. Gamma Distribution Applied to Life Data

Life data are sometimes modeled with the gamma distribution. Although PROC
GENMOD does not analyze censored data or provide other useful lifetime distri-
butions such as the Weibull or lognormal, it can be used for modeling complete (un-
censored) data with the gamma distribution, and it can provide a statistical test for
the exponential distribution against other gamma distribution alternatives. Refer to
Lawless (1982) or Nelson (1982) for applications of the gamma distribution to life
data.

The following data represent failure times of machine parts, some of which are man-
ufactured by manufacturer A and some by manufacturer B.

data A;
input lifetime@@ ;
mfg = ’A’;
datalines;
620 470 260 89 388 242
103 100 39 460 284 1285
218 393 106 158 152 477
403 103 69 158 818 947
399 1274 32 12 134 660
548 381 203 871 193 531
317 85 1410 250 41 1101
32 421 32 343 376 1512
1792 47 95 76 515 72
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1585 253 6 860 89 1055
537 101 385 176 11 565
164 16 1267 352 160 195
1279 356 751 500 803 560
151 24 689 1119 1733 2194
763 555 14 45 776 1
;

data B;
input lifetime@@ ;
mfg = ’B’;
datalines;
1747 945 12 1453 14 150
20 41 35 69 195 89
1090 1868 294 96 618 44
142 892 1307 310 230 30
403 860 23 406 1054 1935
561 348 130 13 230 250
317 304 79 1793 536 12
9 256 201 733 510 660
122 27 273 1231 182 289
667 761 1096 43 44 87
405 998 1409 61 278 407
113 25 940 28 848 41
646 575 219 303 304 38
195 1061 174 377 388 10
246 323 198 234 39 308
55 729 813 1216 1618 539
6 1566 459 946 764 794
35 181 147 116 141 19
380 609 546
;

data lifdat;
set A B;

run;

The following SAS statements use PROC GENMOD to compute Type 3 statistics
to test for differences between the two manufacturers in machine part life. Type 3
statistics are identical to Type 1 statistics in this case, since there is only one effect in
the model. The log link function is selected to ensure that the mean is positive.

proc genmod data = lifdat;
class mfg;
model lifetime = mfg / dist=gamma

link=log
type3;

run;

The output from these statements is displayed inOutput 31.3.1.
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Output 31.3.1. Gamma Model of Life Data

The GENMOD Procedure

Model Information

Data Set WORK.LIFDAT
Distribution Gamma
Link Function Log
Dependent Variable lifetime

Class Level Information

Class Levels Values

mfg 2 A B

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 199 287.0591 1.4425
Scaled Deviance 199 237.5335 1.1936
Pearson Chi-Square 199 211.6870 1.0638
Scaled Pearson X2 199 175.1652 0.8802
Log Likelihood -1432.4177

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 6.1302 0.1043 5.9257 6.3347 3451.61 <.0001
mfg A 1 0.0199 0.1559 -0.2857 0.3255 0.02 0.8985
mfg B 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 1 0.8275 0.0714 0.6987 0.9800

NOTE: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

mfg 1 0.02 0.8985

The p-value of 0.8985 for the chi-square statistic in the Type 3 table indicates that
there is no significant difference in the part life for the two manufacturers.

Using the following statements, you can refit the model without using the manufac-
turer as an effect. The LRCI option in the MODEL statement is specified to compute
profile likelihood confidence intervals for the mean life and scale parameters.
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proc genmod data = lifdat;
model lifetime = / dist=gamma

link=log
lrci;

run;

Output 31.3.2. Refitting of the Gamma Model: Omitting the mfg Effect

The GENMOD Procedure

Analysis Of Parameter Estimates

Likelihood Ratio
Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 6.1391 0.0775 5.9904 6.2956 6268.10 <.0001
Scale 1 0.8274 0.0714 0.6959 0.9762

NOTE: The scale parameter was estimated by maximum likelihood.

The intercept is the estimated log mean of the fitted gamma distribution, so that the
mean life of the parts is

µ = exp(INTERCEPT) = exp(6.1391) = 463.64

The SCALE parameter used in PROC GENMOD is the inverse of the gamma dis-
persion parameter, and it is sometimes called the gammaindex parameter. See the
“Response Probability Distributions”section on page 1650 for the definition of the
gamma probability density function. A value of 1 for the index parameter corre-
sponds to the exponential distribution . The estimated value of the scale parameter
is 0.8274. The 95% profile likelihood confidence interval for the scale parameter is
(0.6959, 0.9762), which does not contain 1. The hypothesis of an exponential distri-
bution for the data is, therefore, rejected at the 0.05 level. A confidence interval for
the mean life is

(exp(5.99), exp(6.30)) = (399.57, 542.18)

Example 31.4. Ordinal Model for Multinomial Data

This example illustrates how you can use the GENMOD procedure to fit a model to
data measured on an ordinal scale. The following statements create a SAS data set
calledicecream. The data set contains the results of a hypothetical taste test of three
brands of ice cream. The three brands are rated for taste on a five point scale from
very good (vg) to very bad (vb). An analysis is performed to assess the differences
in the ratings for the three brands. The variabletaste contains the ratings andbrand
contains the brands tested. The variablecount contains the number of testers rating
each brand in each category.

The following statements create theicecream data set.
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data icecream;
input count brand$ taste$;
datalines;
70 ice1 vg
71 ice1 g
151 ice1 m
30 ice1 b
46 ice1 vb
20 ice2 vg
36 ice2 g
130 ice2 m
74 ice2 b
70 ice2 vb
50 ice3 vg
55 ice3 g
140 ice3 m
52 ice3 b
50 ice3 vb
;

run;

The following statements fit a cumulative logit model to the ordinal data with the
variabletaste as the response and the variablebrand as a covariate. The variable
count is used as a FREQ variable.

proc genmod rorder=data;
freq count;
class brand;
model taste = brand / dist=multinomial

link=cumlogit
aggregate=brand
type1;

estimate ’LogOR12’ brand 1 -1 / exp;
estimate ’LogOR13’ brand 1 0 -1 / exp;
estimate ’LogOR23’ brand 0 1 -1 / exp;

run;

The AGGREGATE=BRAND option in the MODEL statement specifies the variable
brand as defining multinomial populations for computing deviances and Pearson chi-
squares. The RORDER=DATA option specifies that thetaste variable levels be or-
dered by their order of appearance in the input data set, that is, from very good (vg) to
very bad (vb). By default, the response is sorted in increasing ASCII order. Always
check the “Response Profiles” table to verify that response levels are appropriately
ordered. The TYPE1 option requests a Type 1 test for the significance of the covariate
brand.

If γj(x) = Pr(taste ≤ j) is the cumulative probability of thejth or lower taste
category, then the odds ratio comparingx1 to x2 is as follows:

γj(x1)/(1− γj(x1))
γj(x2)/(1− γj(x2))

= exp[(x1 − x2)′β]
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Refer to McCullagh and Nelder (1989, Chapter 5) for details on the cumulative logit
model. The ESTIMATE statements compute log odds ratios comparing each of
brands. The EXP option in the ESTIMATE statements exponentiates the log odds
ratios to form odds ratio estimates. Standard errors and confidence intervals are also
computed.

Output 31.4.1displays general information about the model and data, the levels of
the CLASS variablebrand, and the total number of occurrences of the ordered levels
of the response variabletaste.

Output 31.4.1. Ordinal Model Information

The GENMOD Procedure

Model Information

Data Set WORK.ICECREAM
Distribution Multinomial
Link Function Cumulative Logit
Dependent Variable taste
Frequency Weight Variable count

Class Level Information

Class Levels Values

brand 3 ice1 ice2 ice3

Response Profile

Ordered Total
Value taste Frequency

1 vg 140
2 g 162
3 m 421
4 b 156
5 vb 166

Output 31.4.2displays estimates of the intercept terms and covariates and associated
statistics. The intercept terms correspond to the four cumulative logits defined on
the taste categories in the order shown inOutput 31.4.1. That is,Intercept1 is the
intercept for the first cumulative logit,log( p1

1−p1
), Intercept2 is the intercept for the

second cumulative logitlog( p1+p2

1−(p1+p2)), and so forth.
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Output 31.4.2. Parameter Estimates

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept1 1 -1.8578 0.1219 -2.0967 -1.6189 232.35
Intercept2 1 -0.8646 0.1056 -1.0716 -0.6576 67.02
Intercept3 1 0.9231 0.1060 0.7154 1.1308 75.87
Intercept4 1 1.8078 0.1191 1.5743 2.0413 230.32
brand ice1 1 0.3847 0.1370 0.1162 0.6532 7.89
brand ice2 1 -0.6457 0.1397 -0.9196 -0.3719 21.36
brand ice3 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Parameter
Estimates

Parameter Pr > ChiSq

Intercept1 <.0001
Intercept2 <.0001
Intercept3 <.0001
Intercept4 <.0001
brand ice1 0.0050
brand ice2 <.0001
brand ice3 .
Scale

NOTE: The scale parameter was held fixed.

The Type 1 test displayed inOutput 31.4.3indicates thatBrand is highly significant;
that is, there are significant differences in the brands. The log odds ratios and odds
ratios in the “ESTIMATE Statement Results” table indicate the relative differences
between the brands. For example, the odds ratio of 2.8 in the “Exp(LogOR12)”
row indicates that the odds of brand 1 being in lower taste categories is 2.8 times
the odds of brand 2 being in lower taste categories. Since, in this ordering, the lower
categories represent the more favorable taste results, this indicates that brand 1 scored
significantly better than brand 2. This is also apparent from the data in this example.
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Output 31.4.3. Type 1 Tests and Odds Ratios

LR Statistics For Type 1 Analysis

Chi-
Source Deviance DF Square Pr > ChiSq

Intercepts 65.9576
brand 9.8654 2 56.09 <.0001

Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

LogOR12 1.0305 0.1401 0.05 0.7559 1.3050 54.11 <.0001
Exp(LogOR12) 2.8024 0.3926 0.05 2.1295 3.6878
LogOR13 0.3847 0.1370 0.05 0.1162 0.6532 7.89 0.0050
Exp(LogOR13) 1.4692 0.2013 0.05 1.1233 1.9217
LogOR23 -0.6457 0.1397 0.05 -0.9196 -0.3719 21.36 <.0001
Exp(LogOR23) 0.5243 0.0733 0.05 0.3987 0.6894

Example 31.5. GEE for Binary Data with Logit Link Function

Table 31.5displays a partial listing of a SAS data set of clinical trial data comparing
two treatments for a respiratory disorder. See “Gee Model for Binary Data” in the
SAS/STAT Sample Program Library for the complete data set. These data are from
Stokes, Davis, and Koch (1995), where a SAS macro is used to fit a GEE model. A
GEE model is fit, using the REPEATED statement in the GENMOD procedure.

Table 31.5. Respiratory Disorder Data
Patients in each of two centers are randomly assigned to groups receiving the active
treatment or a placebo. During treatment, respiratory status (coded here as 0=poor,
1=good) is determined for each of four visits. The variablescenter, treatment, sex,
andbaseline (baseline respiratory status) are classification variables with two levels.
The variableage (age at time of entry into the study) is a continuous variable.

Explanatory variables in the model areIntercept (xij1), treatment (xij2), center
(xij3), sex (xij4), age (xij6), andbaseline (xij6), so thatx′ij = [xij1, xij2, . . . , xij6]
is the vector of explanatory variables. Indicator variables for the classification ex-
planatory variables can be automatically generated by listing them in the CLASS
statement in PROC GENMOD. However, in order to be consistent with the analysis
in Stokes, Davis, and Koch (1995), the four classification explanatory variables are
coded as follows:

xij2 =
{

0 placebo
1 active

xij3 =
{

0 center 1
1 center 2

xij4 =
{

0 male
1 female

xij6 =
{

0 poor
1 good
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Supposeyij represents the respiratory status of patienti at thejth visit, j = 1, . . . , 4,
andµij = E(yij) represents the mean of the respiratory status. Since the response
data are binary, you can use the variance function for the binomial distribution
v(µij) = µij(1 − µij) and the logit link functiong(µij) = log(µij/(1 − µij)). The
model for the mean isg(µij) = xij

′β, whereβ is a vector of regression parameters
to be estimated.

Further manipulation of the data set creates an observation for each visit with the res-
piratory status at each visit represented by the binary variableoutcome and indicator
variables for treatment (active), center (center2), and sex (female). A partial listing
of the resulting data set is shown inOutput 31.5.1.

Output 31.5.1. Respiratory Disorder Data

Obs center id age baseline active center2 female visit outcome

1 1 1 46 0 0 0 0 1 0
2 1 1 46 0 0 0 0 2 0
3 1 1 46 0 0 0 0 3 0
4 1 1 46 0 0 0 0 4 0
5 1 2 28 0 0 0 0 1 0
6 1 2 28 0 0 0 0 2 0
7 1 2 28 0 0 0 0 3 0
8 1 2 28 0 0 0 0 4 0
9 1 3 23 1 1 0 0 1 1

10 1 3 23 1 1 0 0 2 1
11 1 3 23 1 1 0 0 3 1
12 1 3 23 1 1 0 0 4 1
13 1 4 44 1 0 0 0 1 1
14 1 4 44 1 0 0 0 2 1
15 1 4 44 1 0 0 0 3 1
16 1 4 44 1 0 0 0 4 0
17 1 5 13 1 0 0 1 1 1
18 1 5 13 1 0 0 1 2 1
19 1 5 13 1 0 0 1 3 1
20 1 5 13 1 0 0 1 4 1

The GEE solution is requested with the REPEATED statement in the GENMOD
procedure. The option SUBJECT=ID(CENTER) specifies that the observations in
a single cluster are uniquely identified bycenter and id within center. The op-
tion TYPE=UNSTR specifies the unstructured working correlation structure. The
MODEL statement specifies the regression model for the mean with the binomial
distribution variance function.

proc genmod data=resp descend;
class id center;
model outcome=center2 active female age baseline / dist=bin;
repeated subject=id(center) / corr=unstr corrw;

run;

These statements first produce the usual output (not shown) for fitting the general-
ized linear (GLM) model specified in the MODEL statement. The parameter esti-
mates from the GLM model are used as initial values for the GEE solution. The
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DESCEND option in the PROC GENMOD statement specifies that the probability
thatoutcome = 1 be modeled. If the DESCEND option had not been specified, the
probability thatoutcome = 0 would be modeled by default.

Information about the GEE model is displayed inOutput 31.5.2. The results of GEE
model fitting are displayed inOutput 31.5.3. If you specify no other options, the
standard errors, confidence intervals,Z scores, andp-values are based on empirical
standard error estimates. You can specify the MODELSE option in the REPEATED
statement to create a table based on model-based standard error estimates.

Output 31.5.2. Model Fitting Information

The GENMOD Procedure

GEE Model Information

Correlation Structure Unstructured
Subject Effect id(center) (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Output 31.5.3. Results of Model Fitting

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3351 0.2140 0.2953
Row2 0.3351 1.0000 0.4429 0.3581
Row3 0.2140 0.4429 1.0000 0.3964
Row4 0.2953 0.3581 0.3964 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.8882 0.4568 -1.7835 0.0071 -1.94 0.0519
center2 0.6558 0.3512 -0.0326 1.3442 1.87 0.0619
active 1.2442 0.3455 0.5669 1.9214 3.60 0.0003
female 0.1128 0.4408 -0.7512 0.9768 0.26 0.7981
age -0.0175 0.0129 -0.0427 0.0077 -1.36 0.1728
baseline 1.8981 0.3441 1.2237 2.5725 5.52 <.0001

The non-significance ofage and female make them candidates for omission from
the model.
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Example 31.6. Log Odds Ratios and the ALR Algorithm

Since the respiratory data inExample 31.5are binary, you can use the ALR algorithm
to model the log odds ratios instead of using working correlations to model associa-
tions. Here, a “fully parameterized cluster” model for the log odds ratio is fit. That is,
there is a log odds ratio parameter for each unique pair of responses within clusters,
and all clusters are parameterized identically. The following statements fit the same
regression model for the mean as inExample 31.5but use a regression model for the
log odds ratios instead of a working correlation. The LOGOR=FULLCLUST option
specifies a fully parameterized log odds ratio model.

proc genmod data=resp descend;
class id center;
model outcome=center2 active female age baseline / dist=bin;
repeated subject=id(center) / logor=fullclust;

run;

The results of fitting the model are displayed inOutput 31.6.1along with a table
that shows the correspondence between the log odds ratio parameters and the within
cluster pairs.

Output 31.6.1. Results of Model Fitting

The GENMOD Procedure

Log Odds Ratio
Parameter Information

Parameter Group

Alpha1 (1, 2)
Alpha2 (1, 3)
Alpha3 (1, 4)
Alpha4 (2, 3)
Alpha5 (2, 4)
Alpha6 (3, 4)

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.9266 0.4513 -1.8111 -0.0421 -2.05 0.0400
center2 0.6287 0.3486 -0.0545 1.3119 1.80 0.0713
active 1.2611 0.3406 0.5934 1.9287 3.70 0.0002
female 0.1024 0.4362 -0.7526 0.9575 0.23 0.8144
age -0.0162 0.0125 -0.0407 0.0084 -1.29 0.1977
baseline 1.8980 0.3404 1.2308 2.5652 5.58 <.0001
Alpha1 1.6109 0.4892 0.6522 2.5696 3.29 0.0010
Alpha2 1.0771 0.4834 0.1297 2.0246 2.23 0.0259
Alpha3 1.5875 0.4735 0.6594 2.5155 3.35 0.0008
Alpha4 2.1224 0.5022 1.1381 3.1068 4.23 <.0001
Alpha5 1.8818 0.4686 0.9634 2.8001 4.02 <.0001
Alpha6 2.1046 0.4949 1.1347 3.0745 4.25 <.0001
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You can fit the same model by fully specifying thez-matrix. The following statements
create a data set containing the fullz-matrix.

data zin;
keep id center z1-z6 y1 y2;
array zin(6) z1-z6;
set resp ;
by center id;
if first.id

then do;
t = 0;
do m = 1 to 4;

do n = m+1 to 4;
do j = 1 to 6;

zin(j) = 0;
end;

y1 = m;
y2 = n;
t + 1;
zin(t) = 1;
output;
end;

end;
end;

run;

proc print data=zin (obs=12);

Output 31.6.2displays the fullz-matrix for the first two clusters. Thez-matrix is
identical for all clusters in this example.

Output 31.6.2. Full z-Matrix Data Set

Obs z1 z2 z3 z4 z5 z6 center id y1 y2

1 1 0 0 0 0 0 1 1 1 2
2 0 1 0 0 0 0 1 1 1 3
3 0 0 1 0 0 0 1 1 1 4
4 0 0 0 1 0 0 1 1 2 3
5 0 0 0 0 1 0 1 1 2 4
6 0 0 0 0 0 1 1 1 3 4
7 1 0 0 0 0 0 1 2 1 2
8 0 1 0 0 0 0 1 2 1 3
9 0 0 1 0 0 0 1 2 1 4

10 0 0 0 1 0 0 1 2 2 3
11 0 0 0 0 1 0 1 2 2 4
12 0 0 0 0 0 1 1 2 3 4

The following statements fit the model for fully parameterized clusters by fully spec-
ifying thez-matrix. The results are identical to those shown previously.
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proc genmod data=resp descend;
class id center;
model outcome=center2 active female age baseline / dist=bin;
repeated subject=id(center) / logor=zfull

zdata=zin
zrow =(z1-z6)
ypair=(y1 y2) ;

run;

Example 31.7. Log-Linear Model for Count Data

These data, from Thall and Vail (1990), are concerned with the treatment of people
suffering from epileptic seizure episodes. These data are also analyzed in Diggle,
Liang, and Zeger (1994). The data consist of the number of epileptic seizures in
an eight-week baseline period, before any treatment, and in each of four two-week
treatment periods, in which patients received either a placebo or the drug Progabide
in addition to other therapy. A portion of the data is displayed inTable 31.6. See
“Gee Model for Count Data, Exchangeable Correlation” in the SAS/STAT Sample
Program Library for the complete data set.

Table 31.6. Epileptic Seizure Data
Patient ID Treatment Baseline Visit1 Visit2 Visit3 Visit4

104 Placebo 11 5 3 3 3
106 Placebo 11 3 5 3 3
107 Placebo 6 2 4 0 5

.

.

.
101 Progabide 76 11 14 9 8
102 Progabide 38 8 7 9 4
103 Progabide 19 0 4 3 0

.

.

.

Model the data as a log-linear model withV (µ) = µ (the Poisson variance function)
and

log(E(Yij)) = β0 + xi1β1 + xi2β2 +
xi1xi2β3 + log(tij)

where

• Yij = number of epileptic seizures in intervalj

• tij = length of intervalj
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• xi1 =
{

1 : weeks 8−16 (treatment)
0 : weeks 0−8 (baseline)

• xi2 =
{

1 : progabide group
0 : placebo group

The correlations between the counts are modeled asrij = α, i 6= j (exchange-
able correlations). For comparison, the correlations are also modeled as independent
(identity correlation matrix). In this model, the regression parameters have the inter-
pretation in terms of the log seizure rate displayed inTable 31.7.

Table 31.7. Interpretation of Regression Parameters
Treatment Visit log(E(Yij)/tij)
Placebo Baseline β0

1-4 β0 + β1

Progabide Baseline β0 + β2

1-4 β0 + β1 + β2 + β3

The difference between the log seizure rates in the pretreatment (baseline) period and
the treatment periods isβ1 for the placebo group andβ1+β3 for the Progabide group.
A value ofβ3 < 0 indicates a reduction in the seizure rate.

Output 31.7.1is a listing of the first 14 observations of the data, which are arranged
as one visit per observation:

Output 31.7.1. Partial Listing of the Seizure Data

Obs id y visit trt bline age

1 104 5 1 0 11 31
2 104 3 2 0 11 31
3 104 3 3 0 11 31
4 104 3 4 0 11 31
5 106 3 1 0 11 30
6 106 5 2 0 11 30
7 106 3 3 0 11 30
8 106 3 4 0 11 30
9 107 2 1 0 6 25

10 107 4 2 0 6 25
11 107 0 3 0 6 25
12 107 5 4 0 6 25
13 114 4 1 0 8 36
14 114 4 2 0 8 36

Some further data manipulations create an observation for the baseline measures, a
log time interval variable for use as an offset, and an indicator variable for whether
the observation is for a baseline measurement or a visit measurement. Patient 207 is
deleted as an outlier, as in the Diggle, Liang, and Zeger (1994) analysis.
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data new;
set thall;
output;
if visit=1 then do;

y=bline;
visit=0;
output;

end;
run;

data new;
set new;
if id ne 207;
if visit=0 then do;

x1=0;
ltime=log(8);

end;
else do;

x1=1;
ltime=log(2);

end;
run;

The GEE solution is requested by using the REPEATED statement in the GENMOD
procedure. The SUBJECT=ID option indicates that theid variable describes the ob-
servations for a single cluster, and the CORRW option displays the working correla-
tion matrix. The TYPE= option specifies the correlation structure; the value EXCH
indicates the exchangeable structure.

proc genmod data=new;
class id;
model y=x1 | trt / d=poisson offset=ltime;
repeated subject=id / corrw covb type=exch;

run;

These statements first produce the usual output from fitting a generalized linear model
(GLM) to these data. The estimates are used as initial values for the GEE solution.

Information about the GEE model is displayed inOutput 31.7.3. The results of fitting
the model are displayed inOutput 31.7.4. Compare these with the model of inde-
pendence displayed inOutput 31.7.2. The parameter estimates are nearly identical,
but the standard errors for the independence case are underestimated. The coefficient
of the interaction term,β3, is highly significant under the independence model and
marginally significant with the exchangeable correlations model.
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Output 31.7.2. Independence Model

The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
x1 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181
trt 1 -0.1080 0.0486 -0.2034 -0.0127 4.93 0.0264
x1*trt 1 -0.3016 0.0697 -0.4383 -0.1649 18.70 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Output 31.7.3. GEE Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect id (58 levels)
Number of Clusters 58
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Output 31.7.4. GEE Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
x1 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt -0.1080 0.1937 -0.4876 0.2716 -0.56 0.5770
x1*trt -0.3016 0.1712 -0.6371 0.0339 -1.76 0.0781
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Table 31.8displays the regression coefficients, standard errors, and normalized coeffi-
cients that result from fitting the model using independent and exchangeable working
correlation matrices.

Table 31.8. Results of Model Fitting
Variable Correlation Coef. Std. Error Coef./S.E.

Structure
Intercept Exchangeable 1.35 0.16 8.56

Independent 1.35 0.03 39.52
Visit (x1) Exchangeable 0.11 0.12 0.95

Independent 0.11 0.05 2.36
Treat(x2) Exchangeable −0.11 0.19 −0.56

Independent −0.11 0.05 −2.22
x1 ∗ x2 Exchangeable −0.30 0.17 −1.76

Independent −0.30 0.07 −4.32

The fitted exchangeable correlation matrix is specified with the CORRW option and
is displayed inOutput 31.7.5.

Output 31.7.5. Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.5941 0.5941 0.5941 0.5941
Row2 0.5941 1.0000 0.5941 0.5941 0.5941
Row3 0.5941 0.5941 1.0000 0.5941 0.5941
Row4 0.5941 0.5941 0.5941 1.0000 0.5941
Row5 0.5941 0.5941 0.5941 0.5941 1.0000

If you specify the COVB option, you produce both the model-based (naive) and the
empirical (robust) covariance matrices.Output 31.7.6contains these estimates.
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Output 31.7.6. Covariance Matrices

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01223 0.001520 -0.01223 -0.001520
Prm2 0.001520 0.01519 -0.001520 -0.01519
Prm3 -0.01223 -0.001520 0.02495 0.005427
Prm4 -0.001520 -0.01519 0.005427 0.03748

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152
Prm2 -0.001152 0.01348 0.001152 -0.01348
Prm3 -0.02476 0.001152 0.03751 -0.002999
Prm4 0.001152 -0.01348 -0.002999 0.02931

The two covariance estimates are similar, indicating an adequate correlation model.

Example 31.8. Model Assessment of Multiple Regression
Using Aggregates of Residuals (Experimental)

Neter et al. (1996, Section 8.2) describe a study of 54 patients undergoing a certain
kind of liver operation in a surgical unit. The data consist of the survival time and
certain covariates. After a model selection procedure, they arrived at the following
model

Y = β0 + β1X1 + β2X2 + β3X3 + ε

whereY is the logarithm (base 10) of the survival time,X1, X2, X3 areblood-clotting
score, prognostic index, andenzyme function, andε is a normal error term. A listing
of the SAS data set containing the data is shown inOutput 31.8.1. The variablesY,
X1, X2, X3 correspond toY , X1, X2, X3, andLogX1 is log(X1). The GENMOD fit
of the model is shown inOutput 31.8.2. The analysis first focuses on the adequacy of
the functional form ofX1, blood-clotting score.
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Output 31.8.1. Surgical Unit Example Data

Obs Y X1 X2 X3 LogX1

1 2.3010 6.7 62 81 0.82607
2 2.0043 5.1 59 66 0.70757
3 2.3096 7.4 57 83 0.86923
4 2.0043 6.5 73 41 0.81291
5 2.7067 7.8 65 115 0.89209
6 1.9031 5.8 38 72 0.76343
7 1.9031 5.7 46 63 0.75587
8 2.1038 3.7 68 81 0.56820
9 2.3054 6.0 67 93 0.77815

10 2.3075 3.7 76 94 0.56820
11 2.5172 6.3 84 83 0.79934
12 1.8129 6.7 51 43 0.82607
13 2.9191 5.8 96 114 0.76343
14 2.5185 5.8 83 88 0.76343
15 2.2253 7.7 62 67 0.88649
16 2.3365 7.4 74 68 0.86923
17 1.9395 6.0 85 28 0.77815
18 1.5315 3.7 51 41 0.56820
19 2.3324 7.3 68 74 0.86332
20 2.2355 5.6 57 87 0.74819
21 2.0374 5.2 52 76 0.71600
22 2.1335 3.4 83 53 0.53148
23 1.8451 6.7 26 68 0.82607
24 2.3424 5.8 67 86 0.76343
25 2.4409 6.3 59 100 0.79934
26 2.1584 5.8 61 73 0.76343
27 2.2577 5.2 52 86 0.71600
28 2.7589 11.2 76 90 1.04922
29 1.8573 5.2 54 56 0.71600
30 2.2504 5.8 76 59 0.76343
31 1.8513 3.2 64 65 0.50515
32 1.7634 8.7 45 23 0.93952
33 2.0645 5.0 59 73 0.69897
34 2.4698 5.8 72 93 0.76343
35 2.0607 5.4 58 70 0.73239
36 2.2648 5.3 51 99 0.72428
37 2.0719 2.6 74 86 0.41497
38 2.0792 4.3 8 119 0.63347
39 2.1790 4.8 61 76 0.68124
40 2.1703 5.4 52 88 0.73239
41 1.9777 5.2 49 72 0.71600
42 1.8751 3.6 28 99 0.55630
43 2.6840 8.8 86 88 0.94448
44 2.1847 6.5 56 77 0.81291
45 2.2810 3.4 77 93 0.53148
46 2.0899 6.5 40 84 0.81291
47 2.4928 4.5 73 106 0.65321
48 2.5999 4.8 86 101 0.68124
49 2.1987 5.1 67 77 0.70757
50 2.4914 3.9 82 103 0.59106
51 2.0934 6.6 77 46 0.81954
52 2.0969 6.4 85 40 0.80618
53 2.2967 6.4 59 85 0.80618
54 2.4955 8.8 78 72 0.94448
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Output 31.8.2. Regression Model for Linear X1

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 0.4836 0.0426 0.4001 0.5672 128.71 <.0001
X1 1 0.0692 0.0041 0.0612 0.0772 288.17 <.0001
X2 1 0.0093 0.0004 0.0085 0.0100 590.45 <.0001
X3 1 0.0095 0.0003 0.0089 0.0101 966.07 <.0001
Scale 0 0.0469 0.0000 0.0469 0.0469

NOTE: The scale parameter was estimated by the square root of Pearson’s
Chi-Square/DOF.

In order to assess the adequacy of the fitted multiple regression model, the ASSESS
statement in the following SAS statements was used to create the plots of cumulative
residuals againstX1 shown inOutput 31.8.3andOutput 31.8.4and the summary table
in Output 31.8.5. The RESAMPLE= keyword specifies that ap-value be computed
based on a sample of 10,000 simulated residual paths. A random number seed is
specified by the SEED= keyword for reproducibility. If you do not specify the seed,
one is derived from the time of day. The keyword CRPANEL specifies that the panel
of four cumulative residual plots shown inOutput 31.8.4be created, each with two
simulated paths. The single residual plot with 20 simulated paths inOutput 31.8.3is
created by default.

ods html;
ods graphics on;

proc genmod data=Surg;
model Y = X1 X2 X3 / scale=Pearson;
assess var=(X1) / resample=10000

seed=603708000
crpanel ;

run;

ods graphics off;
ods html close;

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement and the experimental ASSESS statement. For general
information about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”
For specific information about the graphics available in the GENMOD procedure,
see the“ODS Graphics”section on page 1695.
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Output 31.8.3. Cumulative Residual Plot for Linear X1 Fit (Experimental)
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Output 31.8.4. Cumulative Residual Panel Plot for Linear X1 Fit (Experimental)

Output 31.8.5. Summary of Model Assessment

Assessment Summary

Maximum
Assessment Absolute Pr >
Variable Value Replications Seed MaxAbsVal

X1 0.0380 10000 603708000 0.1084

Thep-value of 0.1084 reported onOutput 31.8.3andOutput 31.8.5suggests that a
more adequate model may be possible. The observed cumulative residuals onOutput
31.8.3andOutput 31.8.4, represented by the heavy lines, seem atypical of the sim-
ulated curves, represented by the light lines, reinforcing the conclusion that a more
appropriate functional form forX1 is possible.
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The cumulative residual plots inOutput 31.8.6provide guidance in determining a
more appropriate functional form. The four curves were created from simple forms
of model misspecification using simulated data. The mean models of the data and the
fitted model are shown inTable 31.9.

Output 31.8.6. Typical Cumulative Residual Patterns

Table 31.9. Model Misspecifications
Plot Data E(Y ) Fitted Model E(Y )
(a) log(X) X
(b) X + X2 X
(c) X + X2 + X3 X + X2

(d) I(X > 5) X

The observed cumulative residual pattern inOutput 31.8.3andOutput 31.8.4most re-
sembles the behavior of the curve in plot (a) ofOutput 31.8.6, indicating that log(X1)
might be a more appropriate term in the model thanX1.

The following SAS statements fit a model withLogX1 in place ofX1 and request a
model assessment.
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ods html;
ods graphics on;

proc genmod data=Surg;
model Y = LogX1 X2 X3 / scale=Pearson;
assess var=(LogX1) / resample=10000

seed=603708000;
run;

ods graphics off;
ods html close;

The revised model fit is shown inOutput 31.8.7, thep-value from the simulation is
0.4777, and the cumulative residuals plotted onOutput 31.8.8show no systematic
trend. The log-transformation forX1 is more appropriate. Under the revised model,
thep-values for testing the functional forms ofX2 andX3 are 0.20 and 0.63, and the
p-value for testing the linearity of the model is is 0.65. Thus, the revised model seems
reasonable.

Output 31.8.7. Multiple Regression Model With Log(X1)

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 0.1844 0.0504 0.0857 0.2832 13.41 0.0003
LogX1 1 0.9121 0.0491 0.8158 1.0083 345.05 <.0001
X2 1 0.0095 0.0004 0.0088 0.0102 728.62 <.0001
X3 1 0.0096 0.0003 0.0090 0.0101 1139.73 <.0001
Scale 0 0.0434 0.0000 0.0434 0.0434

NOTE: The scale parameter was estimated by the square root of Pearson’s
Chi-Square/DOF.
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Output 31.8.8. Cumulative Residual Plot With Log(X1)(Experimental)

Example 31.9. Assessment of a Marginal Model for Dependent
Data Using Aggregates of Residuals
(Experimental)

This example illustrates the use of cumulative residuals to assess the adequacy of a
marginal model for dependent data fit by generalized estimating equations (GEEs).
The assessment methods are applied to CD4 count data from an AIDS clinical trial
reported by Fischl et al. (1990), and reanalyzed by Lin, Wei, and Ying (2002). The
study randomly assigned 360 HIV patients to AZT and 351 to placebo. CD4 counts
were measured repeatedly over the course of the study. The data used here are the
4328 measurements taken in the first 40 weeks of the study.

The analysis focuses on the time trend of the response. The first model considered is

E(yik) = β0 + β1Tik + β2T
2
ik + β3RiTik + β4RiT

2
ik

whereTik is the time (in weeks) of thekth measurement on theith patient,yik is the
CD4 count atTik for theith patient, andRi is the indicator of AZT for theith patient.
Normal errors and an independent working correlation are assumed.
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The following SAS statements fit the preceding model, create the cumulative residual
plot in Output 31.9.1, and compute ap-value for the model.

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement and the experimental ASSESS statement. For general
information about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”
For specific information about the graphics available in the GENMOD procedure,
see the“ODS Graphics”section on page 1695.

Here, the SAS data set variablesTime, Time2, TrtTime, andTrtTime2 correspond to
Tik, T 2

ik, RiTik, andRiT
2
ik, respectively. The variableId identifies individual patients.

ods html;
ods graphics on;

proc genmod data=cd4;
class Id;
model Y = Time Time2 TrtTime TrtTime2;
repeated sub=Id;
assess var=(Time) / resample

seed=603708000;
run;

ods graphics off;
ods html close;
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Output 31.9.1. Cumulative Residual Plot for Quadratic Time Fit (Experimental)

The cumulative residual plot inOutput 31.9.1displays cumulative residuals versus
time for the model and 20 simulated realizations. The associatedp-value, also shown
onOutput 31.9.1, is 0.18. These results indicate that a more satisfactory model might
be possible. The observed cumulative residual pattern most resembles plot (c) in
Output 31.8.6, suggesting cubic time trends.

The following SAS statements fit the model, create the plot inOutput 31.9.2, and
compute ap-value for a model with the additional termsT 3

ik andRiT
3
ik.

ods html;
ods graphics on;

proc genmod data=cd4;
class Id;
model Y = Time Time2 Time3 TrtTime TrtTime2 TrtTime3;
repeated sub=Id;
assess var=(Time) / resample

seed=603708000;
run;

ods graphics off;
ods html close;
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Output 31.9.2. Cumulative Residual Plot for Cubic Time Fit (Experimental)

The observed cumulative residual pattern appears more typical of the simulated real-
izations, and thep-value is 0.45, indicating that the model with cubic time trends is
more appropriate.
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Chapter 32
The GLM Procedure
Overview

The GLM procedure uses the method of least squares to fit general linear models.
Among the statistical methods available in PROC GLM are regression, analysis of
variance, analysis of covariance, multivariate analysis of variance, and partial corre-
lation.

PROC GLM analyzes data within the framework of General linear models. PROC
GLM handles models relating one or several continuous dependent variables to one or
several independent variables. The independent variables may be eitherclassification
variables, which divide the observations into discrete groups, orcontinuousvariables.
Thus, the GLM procedure can be used for many different analyses, including

• simple regression

• multiple regression

• analysis of variance (ANOVA), especially for unbalanced data

• analysis of covariance

• response-surface models

• weighted regression

• polynomial regression

• partial correlation

• multivariate analysis of variance (MANOVA)

• repeated measures analysis of variance

PROC GLM Features

The following list summarizes the features in PROC GLM:

• PROC GLM enables you to specify any degree of interaction (crossed effects)
and nested effects. It also provides for polynomial, continuous-by-class, and
continuous-nesting-class effects.

• Through the concept of estimability, the GLM procedure can provide tests of
hypotheses for the effects of a linear model regardless of the number of missing
cells or the extent of confounding. PROC GLM displays the Sum of Squares
(SS) associated with each hypothesis tested and, upon request, the form of the
estimable functions employed in the test. PROC GLM can produce the general
form of all estimable functions.
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• The REPEATED statement enables you to specify effects in the model that
represent repeated measurements on the same experimental unit for the same
response, providing both univariate and multivariate tests of hypotheses.

• The RANDOM statement enables you to specify random effects in the model;
expected mean squares are produced for each Type I, Type II, Type III, Type
IV, and contrast mean square used in the analysis. Upon request,F tests using
appropriate mean squares or linear combinations of mean squares as error terms
are performed.

• The ESTIMATE statement enables you to specify anL vector for estimating a
linear function of the parametersLβ.

• The CONTRAST statement enables you to specify a contrast vector or matrix
for testing the hypothesis thatLβ = 0. When specified, the contrasts are also
incorporated into analyses using the MANOVA and REPEATED statements.

• The MANOVA statement enables you to specify both the hypothesis effects
and the error effect to use for a multivariate analysis of variance.

• PROC GLM can create an output data set containing the input dataset in addi-
tion to predicted values, residuals, and other diagnostic measures.

• PROC GLM can be used interactively. After specifying and running a model,
a variety of statements can be executed without recomputing the model param-
eters or sums of squares.

• For analysis involving multiple dependent variables but not the MANOVA
or REPEATED statements, a missing value in one dependent variable does
not eliminate the observation from the analysis for other dependent variables.
PROC GLM automatically groups together those variables that have the same
pattern of missing values within the data set or within a BY group. This en-
sures that the analysis for each dependent variable brings into use all possible
observations.

• Experimental graphics are now available with the GLM procedure. For more
information, see the“ODS Graphics”section on page 1846.

PROC GLM Contrasted with Other SAS Procedures

As described previously, PROC GLM can be used for many different analyses and
has many special features not available in other SAS procedures. However, for some
types of analyses, other procedures are available. As discussed in the“PROC GLM
for Unbalanced ANOVA”and“PROC GLM for Quadratic Least Squares Regression”
sections (beginning on page 1735), sometimes these other procedures are more effi-
cient than PROC GLM. The following procedures perform some of the same analyses
as PROC GLM:

ANOVA performs analysis of variance for balanced designs. The ANOVA
procedure is generally more efficient than PROC GLM for these
designs.
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MIXED fits mixed linear models by incorporating covariance structures in
the model fitting process. Its RANDOM and REPEATED state-
ments are similar to those in PROC GLM but offer different func-
tionalities.

NESTED performs analysis of variance and estimates variance components
for nested random models. The NESTED procedure is generally
more efficient than PROC GLM for these models.

NPAR1WAY performs nonparametric one-way analysis of rank scores. This can
also be done using the RANK procedure and PROC GLM.

REG performs simple linear regression. The REG procedure allows sev-
eral MODEL statements and gives additional regression diagnos-
tics, especially for detection of collinearity. PROC REG also cre-
ates plots of model summary statistics and regression diagnostics.

RSREG performs quadratic response-surface regression, and canonical and
ridge analysis. The RSREG procedure is generally recommended
for data from a response surface experiment.

TTEST compares the means of two groups of observations. Also, tests for
equality of variances for the two groups are available. The TTEST
procedure is usually more efficient than PROC GLM for this type
of data.

VARCOMP estimates variance components for a general linear model.

Getting Started

PROC GLM for Unbalanced ANOVA

Analysis of variance, or ANOVA, typically refers to partitioning the variation in a
variable’s values into variation between and within several groups or classes of ob-
servations. The GLM procedure can perform simple or complicated ANOVA for
balanced or unbalanced data.

This example discusses a2 × 2 ANOVA model. The experimental design is a full
factorial, in which each level of one treatment factor occurs at each level of the other
treatment factor. The data are shown in a table and then read into a SAS data set.

A
1 2

12 20
1

14 18
B

11 17
2

9
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title ’Analysis of Unbalanced 2-by-2 Factorial’;
data exp;

input A $ B $ Y @@;
datalines;

A1 B1 12 A1 B1 14 A1 B2 11 A1 B2 9
A2 B1 20 A2 B1 18 A2 B2 17
;

Note that there is only one value for the cell withA=‘A2’ and B=‘B2’. Since one
cell contains a different number of values from the other cells in the table, this is an
unbalanced design.

The following PROC GLM invocation produces the analysis.

proc glm;
class A B;
model Y=A B A*B;

run;

Both treatments are listed in the CLASS statement because they are classification
variables.A*B denotes the interaction of theA effect and theB effect. The results
are shown inFigure 32.1andFigure 32.2.

Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Class Level Information

Class Levels Values

A 2 A1 A2

B 2 B1 B2

Number of Observations Read 7
Number of Observations Used 7

Figure 32.1. Class Level Information

Figure 32.1displays information about the classes as well as the number of observa-
tions in the data set.Figure 32.2shows the ANOVA table, simple statistics, and tests
of effects.
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Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 91.71428571 30.57142857 15.29 0.0253

Error 3 6.00000000 2.00000000

Corrected Total 6 97.71428571

R-Square Coeff Var Root MSE Y Mean

0.938596 9.801480 1.414214 14.42857

Source DF Type I SS Mean Square F Value Pr > F

A 1 80.04761905 80.04761905 40.02 0.0080
B 1 11.26666667 11.26666667 5.63 0.0982
A*B 1 0.40000000 0.40000000 0.20 0.6850

Source DF Type III SS Mean Square F Value Pr > F

A 1 67.60000000 67.60000000 33.80 0.0101
B 1 10.00000000 10.00000000 5.00 0.1114
A*B 1 0.40000000 0.40000000 0.20 0.6850

Figure 32.2. ANOVA Table and Tests of Effects

The degrees of freedom may be used to check your data. The Model degrees of
freedom for a2 × 2 factorial design with interaction are(ab − 1), wherea is the
number of levels ofA andb is the number of levels ofB; in this case,(2× 2− 1) =
3. The Corrected Total degrees of freedom are always one less than the number of
observations used in the analysis; in this case,7− 1 = 6.

The overallF test is significant(F = 15.29, p = 0.0253), indicating strong evidence
that the means for the four differentA×B cells are different. You can further analyze
this difference by examining the individual tests for each effect.

Four types of estimable functions of parameters are available for testing hypotheses
in PROC GLM. For data with no missing cells, the Type III and Type IV estimable
functions are the same and test the same hypotheses that would be tested if the data
were balanced. Type I and Type III sums of squares are typically not equal when
the data are unbalanced; Type III sums of squares are preferred in testing effects in
unbalanced cases because they test a function of the underlying parameters that is
independent of the number of observations per treatment combination.

According to a significance level of5% (α = 0.05), theA*B interaction is not signif-
icant(F = 0.20, p = 0.6850). This indicates that the effect ofA does not depend on
the level ofB and vice versa. Therefore, the tests for the individual effects are valid,
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showing a significantA effect (F = 33.80, p = 0.0101) but no significantB effect
(F = 5.00, p = 0.1114).

PROC GLM for Quadratic Least Squares Regression

In polynomial regression, the values of a dependent variable (also called a response
variable) are described or predicted in terms of polynomial terms involving one or
more independent or explanatory variables. An example of quadratic regression in
PROC GLM follows. These data are taken fromDraper and Smith(1966, p. 57).
Thirteen specimens of 90/10 Cu-Ni alloys are tested in a corrosion-wheel setup in
order to examine corrosion. Each specimen has a certain iron content. The wheel is
rotated in salt sea water at 30 ft/sec for 60 days. Weight loss is used to quantify the
corrosion. Thefe variable represents the iron content, and theloss variable denotes
the weight loss in milligrams/square decimeter/day in the following DATA step.

title ’Regression in PROC GLM’;
data iron;

input fe loss @@;
datalines;

0.01 127.6 0.48 124.0 0.71 110.8 0.95 103.9
1.19 101.5 0.01 130.1 0.48 122.0 1.44 92.3
0.71 113.1 1.96 83.7 0.01 128.0 1.44 91.4
1.96 86.2
;

The GPLOT procedure is used to request a scatter plot of the response variable versus
the independent variable.

symbol1 c=blue;
proc gplot;

plot loss*fe / vm=1;
run;

The plot inFigure 32.3displays a strong negative relationship between iron content
and corrosion resistance, but it is not clear whether there is curvature in this relation-
ship.
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Figure 32.3. Plot of LOSS vs. FE

The following statements fit a quadratic regression model to the data. This enables
you to estimate the linear relationship between iron content and corrosion resistance
and test for the presence of a quadratic component. The intercept is automatically fit
unless the NOINT option is specified.

proc glm;
model loss=fe fe*fe;

run;

The CLASS statement is omitted because a regression line is being fitted. Unlike
PROC REG, PROC GLM allows polynomial terms in the MODEL statement.

Regression in PROC GLM

The GLM Procedure

Number of Observations Read 13
Number of Observations Used 13

Figure 32.4. Class Level Information

The preliminary information inFigure 32.4informs you that the GLM procedure has
been invoked and states the number of observations in the data set. If the model
involves classification variables, they are also listed here, along with their levels.
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Figure 32.5shows the overall ANOVA table and some simple statistics. The degrees
of freedom can be used to check that the model is correct and that the data have
been read correctly. The Model degrees of freedom for a regression is the number of
parameters in the model minus 1. You are fitting a model with three parameters in
this case,

loss = β0 + β1 × (fe) + β2 × (fe)2 + error

so the degrees of freedom are3− 1 = 2. The Corrected Total degrees of freedom are
always one less than the number of observations used in the analysis.

Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 3296.530589 1648.265295 164.68 <.0001

Error 10 100.086334 10.008633

Corrected Total 12 3396.616923

R-Square Coeff Var Root MSE loss Mean

0.970534 2.907348 3.163642 108.8154

Figure 32.5. ANOVA Table

The R2 indicates that the model accounts for 97% of the variation in LOSS. The
coefficient of variation (C.V.), Root MSE (Mean Square for Error), and mean of the
dependent variable are also listed.

The overallF test is significant(F = 164.68, p < 0.0001), indicating that the model
as a whole accounts for a significant amount of the variation in LOSS. Thus, it is
appropriate to proceed to testing the effects.

Figure 32.6contains tests of effects and parameter estimates. The latter are displayed
by default when the model contains only continuous variables.
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Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Source DF Type I SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 329.09 <.0001
fe*fe 1 2.763899 2.763899 0.28 0.6107

Source DF Type III SS Mean Square F Value Pr > F

fe 1 356.7572421 356.7572421 35.64 0.0001
fe*fe 1 2.7638994 2.7638994 0.28 0.6107

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 130.3199337 1.77096213 73.59 <.0001
fe -26.2203900 4.39177557 -5.97 0.0001
fe*fe 1.1552018 2.19828568 0.53 0.6107

Figure 32.6. Tests of Effects and Parameter Estimates

The t tests provided are equivalent to the Type IIIF tests. The quadratic term is
not significant(F = 0.28, p = 0.6107; t = 0.53, p = 0.6107) and thus can be
removed from the model; the linear term is significant(F = 35.64, p = 0.0001; t =
−5.97, p = 0.0001). This suggests that there is indeed a straight line relationship
betweenloss andfe.

Fitting the model without the quadratic term provides more accurate estimates for
β0 andβ1. PROC GLM allows only one MODEL statement per invocation of the
procedure, so the PROC GLM statement must be issued again. The statements used
to fit the linear model are

proc glm;
model loss=fe;

run;

Figure 32.7displays the output produced by these statements. The linear term is still
significant(F = 352.27, p < 0.0001). The estimated model is now

loss = 129.79− 24.02× fe
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Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 3293.766690 3293.766690 352.27 <.0001

Error 11 102.850233 9.350021

Corrected Total 12 3396.616923

R-Square Coeff Var Root MSE loss Mean

0.969720 2.810063 3.057780 108.8154

Source DF Type I SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 352.27 <.0001

Source DF Type III SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 352.27 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 129.7865993 1.40273671 92.52 <.0001
fe -24.0198934 1.27976715 -18.77 <.0001

Figure 32.7. Linear Model Output

Syntax

The following statements are available in PROC GLM.

PROC GLM < options > ;
CLASS variables < / option > ;
MODEL dependents=independents < / options > ;
ABSORB variables ;
BY variables ;
FREQ variable ;
ID variables ;
WEIGHT variable ;
CONTRAST ’label’ effect values < . . . effect values > < / options > ;
ESTIMATE ’label’ effect values < . . . effect values > < / options > ;
LSMEANS effects < / options > ;
MANOVA < test-options >< / detail-options > ;
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MEANS effects < / options > ;
OUTPUT < OUT=SAS-data-set >

keyword=names < . . . keyword=names > < / option > ;
RANDOM effects < / options > ;
REPEATED factor-specification < / options > ;
TEST < H=effects > E=effect < / options > ;

Although there are numerous statements and options available in PROC GLM, many
applications use only a few of them. Often you can find the features you need by
looking at an example or by quickly scanning through this section.

To use PROC GLM, the PROC GLM and MODEL statements are required. You
can specify only one MODEL statement (in contrast to the REG procedure, for ex-
ample, which allows several MODEL statements in the same PROC REG run). If
your model contains classification effects, the classification variables must be listed
in a CLASS statement, and the CLASS statement must appear before the MODEL
statement. In addition, if you use a CONTRAST statement in combination with a
MANOVA, RANDOM, REPEATED, or TEST statement, the CONTRAST state-
ment must be entered first in order for the contrast to be included in the MANOVA,
RANDOM, REPEATED, or TEST analysis.

The following table summarizes the positional requirements for the statements in the
GLM procedure.
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Table 32.1. Positional Requirements for PROC GLM Statements
Statement Must Appear Before the Must Appear After the
ABSORB first RUN statement

BY first RUN statement

CLASS MODEL statement

CONTRAST MANOVA, REPEATED, MODEL statement
or RANDOM statement

ESTIMATE MODEL statement

FREQ first RUN statement

ID first RUN statement

LSMEANS MODEL statement

MANOVA CONTRAST or
MODEL statement

MEANS MODEL statement

MODEL CONTRAST, ESTIMATE, CLASS statement
LSMEANS, or MEANS
statement

OUTPUT MODEL statement

RANDOM CONTRAST or
MODEL statement

REPEATED CONTRAST, MODEL,
or TEST statement

TEST MANOVA or MODEL statement
REPEATED statement

WEIGHT first RUN statement

The following table summarizes the function of each statement (other than the PROC
statement) in the GLM procedure:

Table 32.2. Statements in the GLM Procedure

Statement Description
ABSORB absorbs classification effects in a model
BY specifies variables to define subgroups for the analysis
CLASS declares classification variables
CONTRAST constructs and tests linear functions of the parameters
ESTIMATE estimates linear functions of the parameters
FREQ specifies a frequency variable
ID identifies observations on output
LSMEANS computes least-squares (marginal) means
MANOVA performs a multivariate analysis of variance
MEANS computes and optionally compares arithmetic means
MODEL defines the model to be fit
OUTPUT requests an output data set containing diagnostics for each obser-

vation
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Table 32.2. (continued)

Statement Description
RANDOM declares certain effects to be random and computes expected mean

squares
REPEATED performs multivariate and univariate repeated measures analysis of

variance
TEST constructs tests using the sums of squares for effects and the error

term you specify
WEIGHT specifies a variable for weighting observations

The rest of this section gives detailed syntax information for each of these statements,
beginning with the PROC GLM statement. The remaining statements are covered in
alphabetical order.

PROC GLM Statement

PROC GLM < options > ;

The PROC GLM statement starts the GLM procedure. You can specify the following
options in the PROC GLM statement:

ALPHA= p
specifies the level of significancep for 100(1− p)% confidence intervals. The value
must be between 0 and 1; the default value ofp = 0.05 results in 95% intervals. This
value is used as the default confidence level for limits computed by the following
options.

Statement Options
LSMEANS CL

MEANS CLM CLDIFF

MODEL CLI CLM CLPARM

OUTPUT UCL= LCL= UCLM= LCLM=

You can override the default in each of these cases by specifying the ALPHA= option
for each statement individually.

DATA=SAS-data-set
names the SAS data set used by the GLM procedure. By default, PROC GLM uses
the most recently created SAS data set.

MANOVA
requests the multivariate mode of eliminating observations with missing values. If
any of the dependent variables have missing values, the procedure eliminates that
observation from the analysis. The MANOVA option is useful if you use PROC
GLM in interactive mode and plan to perform a multivariate analysis.



1746 � Chapter 32. The GLM Procedure

MULTIPASS
requests that PROC GLM reread the input data set when necessary, instead of writing
the necessary values of dependent variables to a utility file. This option decreases
disk space usage at the expense of increased execution times, and is useful only in
rare situations where disk space is at an absolute premium.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters
long, wheren is a value between 20 and 200 characters. The default length is 20
characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
want only to create one or more output data sets with the procedure. Note that this
option temporarily disables the Output Delivery System (ODS); seeChapter 14,
“Using the Output Delivery System,”for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of all classification variables (specified in
the CLASS statement). This ordering determines which parameters in the model
correspond to each level in the data, so the ORDER= option may be useful when
you use CONTRAST or ESTIMATE statements. Note that the ORDER= option
applies to the levels for all classification variables. The exception is the default
ORDER=FORMATTED for numeric variables for which you have supplied no ex-
plicit format. In this case, the levels are ordered by their internal value. Note that this
represents a change from previous releases for how class levels are ordered. In re-
leases previous to Version 8, numeric class levels with no explicit format were ordered
by their BEST12. formatted values, and in order to revert to the previous ordering you
can specify this format explicitly for the affected classification variables. The change
was implemented because the former default behavior for ORDER=FORMATTED
often resulted in levels not being ordered numerically and usually required the user
to intervene with an explicit format or ORDER=INTERNAL to get the more natu-
ral ordering. The following table shows how PROC GLM interprets values of the
ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, see the chapter
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on the SORT procedure in theSAS Procedures Guide, and the discussion of BY-group
processing inSAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
names an output data set that contains sums of squares, degrees of freedom,F
statistics, and probability levels for each effect in the model, as well as for each
CONTRAST that uses the overall residual or error mean square (MSE) as the de-
nominator in constructing theF statistic. If you use the CANONICAL option in the
MANOVA statement and do not use an M= specification in the MANOVA statement,
the data set also contains results of the canonical analysis. See the section“Output
Data Sets”on page 1840 for more information.

ABSORB Statement
ABSORB variables ;

Absorption is a computational technique that provides a large reduction in time and
memory requirements for certain types of models. Thevariablesare one or more
variables in the input data set.

For a main effect variable that does not participate in interactions, you can absorb
the effect by naming it in an ABSORB statement. This means that the effect can be
adjusted out before the construction and solution of the rest of the model. This is
particularly useful when the effect has a large number of levels.

Several variables can be specified, in which case each one is assumed to be nested in
the preceding variable in the ABSORB statement.

Note: When you use the ABSORB statement, the data set (or each BY group, if a BY
statement appears) must be sorted by the variables in the ABSORB statement. The
GLM procedure cannot produce predicted values or least-squares means (LS-means)
or create an output data set of diagnostic values if an ABSORB statement is used. If
the ABSORB statement is used, it must appear before the first RUN statement or it is
ignored.

When you use an ABSORB statement and also use the INT option in the MODEL
statement, the procedure ignores the option but computes the uncorrected total sum
of squares (SS) instead of the corrected total sums of squares.

See the“Absorption” section on page 1799 for more information.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLM to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.
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• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the GLM procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

Since sorting the data changes the order in which PROC GLM reads observations, the
sorting order for the levels of the classification variables may be affected if you have
also specified ORDER=DATA in the PROC GLM statement. This, in turn, affects
specifications in CONTRAST and ESTIMATE statements.

If you specify the BY statement, it must appear before the first RUN statement or it
is ignored. When you use a BY statement, the interactive features of PROC GLM are
disabled.

When both BY and ABSORB statements are used, observations must be sorted first
by the variables in the BY statement, and then by the variables in the ABSORB
statement.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Contents. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables < / option > ;

The CLASS statement names the classification variables to be used in the
model. Typical class variables are TREATMENT, SEX, RACE, GROUP, and
REPLICATION. If you specify the CLASS statement, it must appear before the
MODEL statement.

By default, class levels are determined from the entire formatted values of the CLASS
variables. Note that this represents a slight change from previous releases in the way
in which class levels are determined. In releases prior to Version 9, class levels were
determined using no more than the first 16 characters of the formatted values. If
you wish to revert to this previous behavior you can use the TRUNCATE option on
the CLASS statement. In any case, you can use formats to group values into levels.
Refer to the discussion of the FORMAT procedure in theSAS Procedures Guide,
and the discussions for the FORMAT statement and SAS formats inSAS Language
Reference: Dictionary.

The GLM procedure displays a table summarizing the class variables and their levels,
and you can use this to check the ordering of levels and, hence, of the corresponding
parameters for main effects. If you need to check the ordering of parameters for
interaction effects, use the E option in the MODEL, CONTRAST, ESTIMATE, and
LSMEANS statements. See the“Parameterization of PROC GLM Models”section
on page 1787 for more information.
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You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE
specifies that class levels should be determined using only up to the first 16 characters
of the formatted values of CLASS variables. When formatted values are longer than
16 characters, you can use this option in order to revert to the levels as determined in
releases previous to Version 9.

CONTRAST Statement

CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement enables you to perform custom hypothesis tests by spec-
ifying an L vector or matrix for testing the univariate hypothesisLβ = 0 or the
multivariate hypothesisLBM = 0. Thus, to use this feature you must be familiar
with the details of the model parameterization that PROC GLM uses. For more in-
formation, see the“Parameterization of PROC GLM Models”section on page 1787.
All of the elements of theL vector may be given, or if only certain portions of the
L vector are given, the remaining elements are constructed by PROC GLM from the
context (in a manner similar to rule 4 discussed in the“Construction of Least-Squares
Means”section on page 1820).

There is no limit to the number of CONTRAST statements you can specify, but they
must appear after the MODEL statement. In addition, if you use a CONTRAST
statement and a MANOVA, REPEATED, or TEST statement, appropriate tests for
contrasts are carried out as part of the MANOVA, REPEATED, or TEST analy-
sis. If you use a CONTRAST statement and a RANDOM statement, the expected
mean square of the contrast is displayed. As a result of these additional analyses, the
CONTRAST statement must appear before the MANOVA, REPEATED, RANDOM,
or TEST statement.

In the CONTRAST statement,

label identifies the contrast on the output. A label is required for every
contrast specified. Labels must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement, or the
INTERCEPT effect. The INTERCEPT effect can be used when
an intercept is fitted in the model. You do not need to include all
effects that are in the MODEL statement.

values are constants that are elements of theL vector associated with the
effect.

You can specify the following options in the CONTRAST statement after a slash(/):

E
displays the entireL vector. This option is useful in confirming the ordering of pa-
rameters for specifyingL.
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E=effect
specifies an error term, which must be one of the effects in the model. The procedure
uses this effect as the denominator inF tests in univariate analysis. In addition, if you
use a MANOVA or REPEATED statement, the procedure uses the effect specified by
the E= option as the basis of theE matrix. By default, the procedure uses the overall
residual or error mean square (MSE) as an error term.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of the E= effect. If the E= option is specified and the ETYPE= option is not,
the procedure uses the highest type computed in the analysis.

SINGULAR=number
tunes the estimability checking. If ABS(L − LH) > C×numberfor any row in the
contrast, thenL is declared nonestimable.H is the(X′X)−X′X matrix, andC is
ABS(L) except for rows whereL is zero, and then it is 1. The default value for the
SINGULAR= option is10−4. Values for the SINGULAR= option must be between
0 and 1.

As stated previously, the CONTRAST statement enables you to perform custom hy-
pothesis tests. If the hypothesis is testable in the univariate case, SS(H0:Lβ = 0) is
computed as

(Lb)′(L(X′X)−L′)−1(Lb)

whereb = (X′X)−X′y. This is the sum of squares displayed on the analysis-of-
variance table.

For multivariate testable hypotheses, the usual multivariate tests are performed using

H = M′(LB)′(L(X′X)−L′)−1(LB)M

whereB = (X′X)−X′Y andY is the matrix of multivariate responses or dependent
variables. The degrees of freedom associated with the hypothesis is equal to the row
rank ofL. The sum of squares computed in this situation is equivalent to the sum of
squares computed using anL matrix with any row deleted that is a linear combination
of previous rows.

Multiple-degree-of-freedom hypotheses can be specified by separating the rows of
theL matrix with commas.

For example, for the model

proc glm;
class A B;
model Y=A B;

run;
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with A at 5 levels andB at 2 levels, the parameter vector is

(µ α1 α2 α3 α4 α5 β1 β2)

To test the hypothesis that the pooled A linear and A quadratic effect is zero, you can
use the followingL matrix:

L =
[

0 −2 −1 0 1 2 0 0
0 2 −1 −2 −1 2 0 0

]

The corresponding CONTRAST statement is

contrast ’A LINEAR & QUADRATIC’
a -2 -1 0 1 2,
a 2 -1 -2 -1 2;

If the first level ofA is a control level and you want a test of control versus others,
you can use this statement:

contrast ’CONTROL VS OTHERS’ a -1 0.25 0.25 0.25 0.25;

See the following discussion of the ESTIMATE statement and the“Specification of
ESTIMATE Expressions”section on page 1801 for rules on specification, construc-
tion, distribution, and estimability in the CONTRAST statement.

ESTIMATE Statement

ESTIMATE ’label’ effect values < . . . effect values > < / options > ;

The ESTIMATE statement enables you to estimate linear functions of the parameters
by multiplying the vectorL by the parameter estimate vectorb resulting inLb. All
of the elements of theL vector may be given, or, if only certain portions of the
L vector are given, the remaining elements are constructed by PROC GLM from the
context (in a manner similar to rule 4 discussed in the“Construction of Least-Squares
Means”section on page 1820).

The linear function is checked for estimability. The estimateLb, whereb =
(X′X)−X′y, is displayed along with its associated standard error,

√
L(X′X)−L′s2,

andt test. If you specify theCLPARM option in the MODEL statement (see page
1771), confidence limits for the true value are also displayed.

There is no limit to the number of ESTIMATE statements that you can specify, but
they must appear after the MODEL statement. In the ESTIMATE statement,

label identifies the estimate on the output. A label is required for every
contrast specified. Labels must be enclosed in quotes.
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effect identifies an effect that appears in the MODEL statement, or the
INTERCEPT effect. The INTERCEPT effect can be used as an
effect when an intercept is fitted in the model. You do not need to
include all effects that are in the MODEL statement.

values are constants that are the elements of theL vector associated with
the preceding effect. For example,

estimate ’A1 VS A2’ A 1 -1;

forms an estimate that is the difference between the parameters
estimated for the first and second levels of the CLASS variable A.

You can specify the following options in the ESTIMATE statement after a slash:

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can
be entered as integer numerators. For example, you can use

estimate ’1/3(A1+A2) - 2/3A3’ a 1 1 -2 / divisor=3;

instead of

estimate ’1/3(A1+A2) - 2/3A3’ a 0.33333 0.33333 -0.66667;

E
displays the entireL vector. This option is useful in confirming the ordering of pa-
rameters for specifyingL.

SINGULAR=number
tunes the estimability checking. If ABS(L− LH) > C×number, then theL vector
is declared nonestimable.H is the(X′X)−X′X matrix, andC is ABS(L) except for
rows whereL is zero, and then it is 1. The default value for the SINGULAR= option
is 10−4. Values for the SINGULAR= option must be between 0 and 1.

See also the“Specification of ESTIMATE Expressions”section on page 1801.

FREQ Statement

FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation
in the DATA= data set. Specifically, ifn is the value of the FREQ variable for a given
observation, then that observation is usedn times.

The analysis produced using a FREQ statement reflects the expanded number of ob-
servations. For example, means and total degrees of freedom reflect the expanded
number of observations. You can produce the same analysis (without the FREQ state-
ment) by first creating a new data set that contains the expanded number of observa-
tions. For example, if the value of the FREQ variable is 5 for the first observation,
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the first 5 observations in the new data set are identical. Each observation in the old
data set is replicatedni times in the new data set, whereni is the value of the FREQ
variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.

If you specify the FREQ statement, it must appear before the first RUN statement or
it is ignored.

ID Statement

ID variables ;

When predicted values are requested as a MODEL statement option, values of the
variables given in the ID statement are displayed beside each observed, predicted, and
residual value for identification. Although there are no restrictions on the length of ID
variables, PROC GLM may truncate the number of values listed in order to display
them on one line. The GLM procedure displays a maximum of five ID variables.

If you specify the ID statement, it must appear before the first RUN statement or it is
ignored.

LSMEANS Statement

LSMEANS effects < / options > ;

Least-squares means (LS-means) are computed for eacheffect listed in the
LSMEANS statement. You may specify only classification effects in the LSMEANS
statement—that is, effects that contain only classification variables. You may
also specify options to perform multiple comparisons. In contrast to the MEANS
statement, the LSMEANS statement performs multiple comparisons on interactions
as well as main effects.

LS-means arepredicted population margins; that is, they estimate the marginal means
over a balanced population. In a sense, LS-means are to unbalanced designs as class
and subclass arithmetic means are to balanced designs. Each LS-mean is computed as
L′b for a certain column vectorL, whereb is the vector of parameter estimates—that
is, the solution of the normal equations. For further information, see the section
“Construction of Least-Squares Means”on page 1820.

Multiple effects can be specified in one LSMEANS statement, or multiple
LSMEANS statements can be used, but they must all appear after the MODEL
statement. For example,

proc glm;
class A B;
model Y=A B A*B;
lsmeans A B A*B;

run;
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LS-means are displayed for each level of theA, B, andA*B effects.

You can specify the following options in the LSMEANS statement after a slash:

ADJUST=BON
ADJUST=DUNNETT
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE <( simoptions)>
ADJUST=SMM | GT2
ADJUST=TUKEY
ADJUST=T

requests a multiple comparison adjustment for thep-values and confidence limits
for the differences of LS-means. The ADJUST= option modifies the results of the
TDIFF and PDIFF options; thus, if you omit the TDIFF or PDIFF option then the
ADJUST= option has no effect. By default, PROC GLM analyzes all pairwise differ-
ences unless you specify ADJUST=DUNNETT, in which case PROC GLM analyzes
all differences with a control level. The default is ADJUST=T, which really signifies
no adjustment for multiple comparisons.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described
in the “Multiple Comparisons”section on page 1806 and inChapter 48, “The
MULTTEST Procedure.”When you specify ADJUST=TUKEY and your data are
unbalanced, PROC GLM uses the approximation described inKramer (1956) and
identifies the adjustment as “Tukey-Kramer” in the results. Similarly, when you
specify ADJUST=DUNNETT and the LS-means are correlated, PROC GLM uses
the factor-analytic covariance approximation described inHsu(1992) and identifies
the adjustment as “Dunnett-Hsu” in the results. The preceding references also de-
scribe the SCHEFFE and SMM adjustments.

The SIMULATE adjustment computes the adjustedp-values from the simulated dis-
tribution of the maximum or maximum absolute value of a multivariatet random
vector. The simulation estimatesq, the true(1 − α)th quantile, where1 − α is the
confidence coefficient. The defaultα is the value of the ALPHA= option in the PROC
GLM statement or 0.05 if that option is not specified. You can change this value with
the ALPHA= option in the LSMEANS statement.

The number of samples for the SIMULATE adjustment is set so that the tail area
for the simulatedq is within a certainaccuracy radiusγ of 1 − α with anaccuracy
confidenceof 100(1− ε)%. In equation form,

P (|F (q̂)− (1− α)| ≤ γ) = 1− ε

whereq̂ is the simulatedq andF is the true distribution function of the maximum;
refer toEdwards and Berry(1987) for details. By default,γ = 0.005 andε = 0.01 so
that the tail area of̂q is within 0.005 of 0.95 with 99% confidence.

You can specify the following simoptions in parentheses after the
ADJUST=SIMULATE option.
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ACC=value specifies the target accuracy radiusγ of a100(1− ε)% confidence
interval for the true probability content of the estimated(1 − α)th
quantile. The default value is ACC=0.005. Note that, if you also
specify the CVADJUSTsimoption, then the actual accuracy radius
will probably be substantially less than this target.

CVADJUST specifies that the quantile should be estimated by the control variate
adjustment method ofHsu and Nelson(1998) instead of simply as
the quantile of the simulated sample. Specifying the CVADJUST
option typically has the effect of significantly reducing the accu-
racy radiusγ of a 100 × (1 − ε)% confidence interval for the true
probability content of the estimated(1−α)th quantile. The control-
variate-adjusted quantile estimate takes roughly twice as long to
compute, but it is typically much more accurate than the sample
quantile.

EPS=value specifies the valueε for a100×(1−ε)% confidence interval for the
true probability content of the estimated(1 − α)th quantile. The
default value for the accuracy confidence is 99%, corresponding to
EPS=0.01.

NSAMP=n specifies the sample size for the simulation. By default,n is set
based on the values of the target accuracy radiusγ and accuracy
confidence100 × (1 − ε)true probability content of the estimated
(1 − α)th quantile. With the default values forγ, ε, andα (0.005,
0.01, and 0.05, respectively), NSAMP=12604 by default.

REPORT specifies that a report on the simulation should be displayed, in-
cluding a listing of the parameters, such asγ, ε, andα as well as
an analysis of various methods for estimating or approximating the
quantile.

SEED=number specifies an integer used to start the pseudo-random number gen-
erator for the simulation. If you do not specify a seed, or specify
a value less than or equal to zero, the seed is by default generated
from reading the time of day from the computer’s clock.

ALPHA= p
specifies the level of significancep for 100(1−p)% confidence intervals. This option
is useful only if you also specify the CL option, and, optionally, the PDIFF option.
By default,p is equal to the value of the ALPHA= option in the PROC GLM state-
ment or 0.05 if that option is not specified, This value is used to set the endpoints
for confidence intervals for the individual means as well as for differences between
means.

AT variable = value
AT (variable-list) = (value-list)
AT MEANS

enables you to modify the values of the covariates used in computing LS-means. By
default, all covariate effects are set equal to their mean values for computation of stan-
dard LS-means. The AT option enables you to set the covariates to whatever values
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you consider interesting. For more information, see the section“Setting Covariate
Values”on page 1821.

BYLEVEL
requests that PROC GLM process the OM data set by each level of the LS-mean
effect in question. For more details, see the entry for theOM option in this section.

CL
requests confidence limits for the individual LS-means. If you specify the PDIFF
option, confidence limits for differences between means are produced as well. You
can control the confidence level with the ALPHA= option. Note that, if you specify an
ADJUST= option, the confidence limits for the differences are adjusted for multiple
inference but the confidence intervals for individual means arenot adjusted.

COV
includes variances and covariances of the LS-means in the output data set specified
in the OUT= option in the LSMEANS statement. Note that this is the covariance
matrix for the LS-means themselves, not the covariance matrix for the differences
between the LS-means, which is used in the PDIFF computations. If you omit the
OUT= option, the COV option has no effect. When you specify the COV option, you
can specify only one effect in the LSMEANS statement.

E
displays the coefficients of the linear functions used to compute the LS-means.

E=effect
specifies an effect in the model to use as an error term. The procedure uses the mean
square for theeffectas the error mean square when calculating estimated standard
errors (requested with the STDERR option) and probabilities (requested with the
STDERR, PDIFF, or TDIFF option). Unless you specify STDERR, PDIFF or TDIFF,
the E= option is ignored. By default, if you specify the STDERR, PDIFF, or TDIFF
option and do not specify the E= option, the procedure uses the error mean square for
calculating standard errors and probabilities.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of the E= effect. If you specify the E= option but not the ETYPE= option, the
highest type computed in the analysis is used. If you omit the E= option, the ETYPE=
option has no effect.

NOPRINT
suppresses the normal display of results from the LSMEANS statement. This option
is useful when an output data set is created with the OUT= option in the LSMEANS
statement.

OBSMARGINS
OM

specifies a potentially different weighting scheme for computing LS-means coeffi-
cients. The standard LS-means have equal coefficients across classification effects;
however, the OM option changes these coefficients to be proportional to those found
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in the input data set. For more information, see the section“Changing the Weighting
Scheme”on page 1822.

The BYLEVEL option modifies the observed-margins LS-means. Instead of comput-
ing the margins across the entire data set, the procedure computes separate margins
for each level of the LS-mean effect in question. The resulting LS-means are actually
equal to raw means in this case. If you specify the BYLEVEL option, it disables the
AT option.

OUT=SAS-data-set
creates an output data set that contains the values, standard errors, and, optionally,
the covariances (see theCOV option) of the LS-means. For more information, see
the“Output Data Sets”section on page 1840.

PDIFF<=difftype>
requests thatp-values for differences of the LS-means be produced. The optional
difftypespecifies which differences to display. Possible values fordifftypeare ALL,
CONTROL, CONTROLL, and CONTROLU. The ALL value requests all pairwise
differences, and it is the default. The CONTROL value requests the differences with
a control that, by default, is the first level of each of the specified LS-mean effects.

To specify which levels of the effects are the controls, list the quoted formatted values
in parentheses after the keyword CONTROL. For example, if the effectsA, B, and
C are class variables, each having two levels, ’1’ and ’2’, the following LSMEANS
statement specifies the ’1’ ’2’ level ofA*B and the ’2’ ’1’ level ofB*C as controls:

lsmeans A*B B*C / pdiff=control(’1’ ’2’, ’2’ ’1’);

For multiple effect situations such as this one, the ordering of the list is significant,
and you should check the output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype.
For one-tailed results, use either the CONTROLL or CONTROLU difftype.

• PDIFF=CONTROLL tests whether the noncontrol levels are less than the con-
trol; you declare a noncontrol level to be significantly less than the control if
the associated upper confidence limit for the noncontrol level minus the control
is less than zero, and you ignore the associated lower confidence limits (which
are set to minus infinity).

• PDIFF=CONTROLU tests whether the noncontrol levels are greater than the
control; you declare a noncontrol level to be significantly greater than the con-
trol if the associated lower confidence limit for the noncontrol level minus the
control is greater than zero, and you ignore the associated upper confidence
limits (which are set to infinity).

The default multiple comparisons adjustment for eachdifftype is shown in the fol-
lowing table.
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difftype Default ADJUST=
Not specified T

ALL TUKEY
CONTROL

CONTROLL DUNNETT
CONTROLU

If no difftypeis specified, the default for the ADJUST= option is T (that is, no adjust-
ment); for PDIFF=ALL, ADJUST=TUKEY is the default; in all other instances, the
default value for the ADJUST= option is DUNNETT. If there is a conflict between
the PDIFF= and ADJUST= options, the ADJUST= option takes precedence.

For example, in order to compute one-sided confidence limits for differences with
a control, adjusted according to Dunnett’s procedure, the following statements are
equivalent:

lsmeans Treatment / pdiff=controll cl;
lsmeans Treatment / pdiff=controll cl adjust=dunnett;

SLICE = fixed-effect
SLICE = (fixed-effects)

specifies effects within which to test for differences between interaction LS-mean
effects. This can produce what are known as tests of simple effects (Winer 1971).
For example, suppose thatA*B is significant and you want to test for the effect ofA
within each level ofB. The appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This code tests for the simple main effects ofA for B, which are calculated by ex-
tracting the appropriate rows from the coefficient matrix for theA*B LS-means and
using them to form anF-test as performed by the CONTRAST statement.

SINGULAR=number
tunes the estimability checking. If ABS(L−LH) > C×numberfor any row, thenL
is declared nonestimable.H is the(X′X)−X′X matrix, andC is ABS(L) except for
rows whereL is zero, and then it is 1. The default value for the SINGULAR= option
is 10−4. Values for the SINGULAR= option must be between 0 and 1.

STDERR
produces the standard error of the LS-means and the probability level for the hypoth-
esisH0: LS-mean= 0.

TDIFF
produces thet values for all hypothesesH0: LS-mean(i) = LS-mean(j) and the
corresponding probabilities.
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MANOVA Statement
MANOVA < test-options >< / detail-options > ;

If the MODEL statement includes more than one dependent variable, you can perform
multivariate analysis of variance with the MANOVA statement. Thetest-optionsde-
fine which effects to test, while thedetail-optionsspecify how to execute the tests
and what results to display.

When a MANOVA statement appears before the first RUN statement, PROC GLM
enters a multivariate mode with respect to the handling of missing values; in addition
to observations with missing independent variables, observations withany missing
dependent variables are excluded from the analysis. If you want to use this mode
of handling missing values and do not need any multivariate analyses, specify the
MANOVA option in the PROC GLM statement.

If you use both the CONTRAST and MANOVA statements, the MANOVA statement
must appear after the CONTRAST statement.

Test Options

The following options can be specified in the MANOVA statement astest-optionsin
order to define which multivariate tests to perform.

H=effects | INTERCEPT | –ALL –
specifies effects in the preceding model to use as hypothesis matrices. For eachH
matrix (the SSCP matrix associated with an effect), the H= specification displays
the characteristic roots and vectors ofE−1H (whereE is the matrix associated with
the error effect), Hotelling-Lawley trace, Pillai’s trace, Wilks’ criterion, and Roy’s
maximum root criterion. By default, these statistics are tested with approximations
based on theF distribution. To test them with exact (but computationally intensive)
calculations, use the MSTAT=EXACT option.

Use the keyword INTERCEPT to produce tests for the intercept. To produce tests
for all effects listed in the MODEL statement, use the keyword–ALL – in place of a
list of effects. For background and further details, see the“Multivariate Analysis of
Variance”section on page 1823.

E=effect
specifies the error effect. If you omit the E= specification, the GLM procedure uses
the error SSCP (residual) matrix from the analysis.

M=equation,. . .,equation | (row-of-matrix,. . .,row-of-matrix)
specifies a transformation matrix for the dependent variables listed in the MODEL
statement. The equations in the M= specification are of the form

c1 × dependent-variable± c2 × dependent-variable

· · · ± cn × dependent-variable

where theci values are coefficients for the variousdependent-variables. If the value
of a given ci is 1, it can be omitted; in other words1 × Y is the same asY .
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Equations should involve two or more dependent variables. For sample syntax, see
the“Examples”section on page 1762.

Alternatively, you can input the transformation matrix directly by entering the ele-
ments of the matrix with commas separating the rows and parentheses surrounding
the matrix. When this alternate form of input is used, the number of elements in each
row must equal the number of dependent variables. Although these combinations
actually represent the columns of theM matrix, they are displayed by rows.

When you include an M= specification, the analysis requested in the MANOVA state-
ment is carried out for the variables defined by the equations in the specification, not
the original dependent variables. If you omit the M= option, the analysis is performed
for the original dependent variables in the MODEL statement.

If an M= specification is included without either the MNAMES= or PREFIX= option,
the variables are labeled MVAR1, MVAR2, and so forth, by default. For further
information, see the“Multivariate Analysis of Variance”section on page 1823.

MNAMES=names
provides names for the variables defined by the equations in the M= specification.
Names in the list correspond to the M= equations or to the rows of theM matrix (as
it is entered).

PREFIX=name
is an alternative means of identifying the transformed variables defined by the M=
specification. For example, if you specify PREFIX=DIFF, the transformed variables
are labeled DIFF1, DIFF2, and so forth.

Detail Options

You can specify the following options in the MANOVA statement after a slash as
detail-options.

CANONICAL
displays a canonical analysis of theH andE matrices (transformed by theM matrix,
if specified) instead of the default display of characteristic roots and vectors.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of theE matrix, the SSCP matrix associated with the E= effect. You need this
option if you use the E= specification to specify an error effect other than residual
error and you want to specify the type of sums of squares used for the effect. If you
specify ETYPE=n, the corresponding test must have been performed in the MODEL
statement, either by options SSn, En, or the default Type I and Type III tests. By de-
fault, the procedure uses an ETYPE= value corresponding to the highest type (largest
n) used in the analysis.

HTYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of theH matrix. See theETYPE=option for more details.
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MSTAT=FAPPROX
MSTAT=EXACT

specifies the method of evaluating the multivariate test statistics. The default is
MSTAT=FAPPROX, which specifies that the multivariate tests are evaluated using the
usual approximations based on theF distribution, as discussed in the “Multivariate
Tests” section inChapter 2, “Introduction to Regression Procedures.”Alternatively,
you can specify MSTAT=EXACT to compute exactp-values for three of the four
tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root) and an
improved F-approximation for the fourth (Pillai’s Trace). While MSTAT=EXACT
provides better control of the significance probability for the tests, especially for
Roy’s Greatest Root, computations for the exactp-values can be appreciably more
demanding, and are in fact infeasible for large problems (many dependent variables).
Thus, although MSTAT=EXACT is more accurate for most data, it is not the de-
fault method. For more information on the results of MSTAT=EXACT, see the
“Multivariate Analysis of Variance”section on page 1823.

ORTH
requests that the transformation matrix in the M= specification of the MANOVA state-
ment be orthonormalized by rows before the analysis.

PRINTE
displays the error SSCP matrixE. If the E matrix is the error SSCP (residual) ma-
trix from the analysis, the partial correlations of the dependent variables given the
independent variables are also produced.

For example, the statement

manova / printe;

displays the error SSCP matrix and the partial correlation matrix computed from the
error SSCP matrix.

PRINTH
displays the hypothesis SSCP matrixH associated with each effect specified by the
H= specification.

SUMMARY
produces analysis-of-variance tables for each dependent variable. When noM ma-
trix is specified, a table is displayed for each original dependent variable from the
MODEL statement; with anM matrix other than the identity, a table is displayed for
each transformed variable defined by theM matrix.
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Examples

The following statements provide several examples of using a MANOVA statement.

proc glm;
class A B;
model Y1-Y5=A B(A) / nouni;
manova h=A e=B(A) / printh printe htype=1 etype=1;
manova h=B(A) / printe;
manova h=A e=B(A) m=Y1-Y2,Y2-Y3,Y3-Y4,Y4-Y5

prefix=diff;
manova h=A e=B(A) m=(1 -1 0 0 0,

0 1 -1 0 0,
0 0 1 -1 0,
0 0 0 1 -1) prefix=diff;

run;

Since this MODEL statement requests no options for type of sums of squares, the
procedure uses Type I and Type III sums of squares. The first MANOVA statement
specifiesA as the hypothesis effect andB(A) as the error effect. As a result of the
PRINTH option, the procedure displays the hypothesis SSCP matrix associated with
theA effect; and, as a result of the PRINTE option, the procedure displays the error
SSCP matrix associated with theB(A) effect. The option HTYPE=1 specifies a Type I
H matrix, and the option ETYPE=1 specifies a Type IE matrix.

The second MANOVA statement specifiesB(A) as the hypothesis effect. Since no
error effect is specified, PROC GLM uses the error SSCP matrix from the analysis as
theE matrix. The PRINTE option displays thisE matrix. Since theE matrix is the
error SSCP matrix from the analysis, the partial correlation matrix computed from
this matrix is also produced.

The third MANOVA statement requests the same analysis as the first MANOVA state-
ment, but the analysis is carried out for variables transformed to be successive dif-
ferences between the original dependent variables. The option PREFIX=DIFF labels
the transformed variables as DIFF1, DIFF2, DIFF3, and DIFF4.

Finally, the fourth MANOVA statement has the identical effect as the third, but it uses
an alternative form of the M= specification. Instead of specifying a set of equations,
the fourth MANOVA statement specifies rows of a matrix of coefficients for the five
dependent variables.

As a second example of the use of the M= specification, consider the following:

proc glm;
class group;
model dose1-dose4=group / nouni;
manova h = group

m = -3*dose1 - dose2 + dose3 + 3*dose4,
dose1 - dose2 - dose3 + dose4,

-dose1 + 3*dose2 - 3*dose3 + dose4
mnames = Linear Quadratic Cubic
/ printe;

run;
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The M= specification gives a transformation of the dependent variablesdose1
throughdose4 into orthogonal polynomial components, and the MNAMES= option
labels the transformed variables LINEAR, QUADRATIC, and CUBIC, respectively.
Since the PRINTE option is specified and the default residual matrix is used as an
error term, the partial correlation matrix of the orthogonal polynomial components is
also produced.

MEANS Statement

MEANS effects < / options > ;

Within each group corresponding to each effect specified in the MEANS statement,
PROC GLM computes the arithmetic means and standard deviations of all contin-
uous variables in the model (both dependent and independent). You may specify
only classification effects in the MEANS statement—that is, effects that contain only
classification variables.

Note that the arithmetic means are not adjusted for other effects in the model; for
adjusted means, see the“LSMEANS Statement”section on page 1753. If you use
a WEIGHT statement, PROC GLM computes weighted means; see the“Weighted
Means”section on page 1820.

You may also specify options to perform multiple comparisons. However, the
MEANS statement performs multiple comparisons only for main effect means; for
multiple comparisons of interaction means, see the“LSMEANS Statement”section
on page 1753.

You can use any number of MEANS statements, provided that they appear after the
MODEL statement. For example, supposeA andB each have two levels. Then, if
you use the following statements

proc glm;
class A B;
model Y=A B A*B;
means A B / tukey;
means A*B;

run;

the means, standard deviations, and Tukey’s multiple comparisons tests are displayed
for each level of the main effectsA andB, and just the means and standard deviations
are displayed for each of the four combinations of levels forA*B. Since multiple
comparisons tests apply only to main effects, the single MEANS statement

means A B A*B / tukey;

produces the same results.

PROC GLM does not compute means for interaction effects containing continuous
variables. Thus, if you have the model
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class A;
model Y=A X A*X;

then the effectsX andA*X cannot be used in the MEANS statement. However, if
you specify the effectA in the means statement

means A;

then PROC GLM, by default, displays within-A arithmetic means of bothY andX.
Use the DEPONLY option to display means of only the dependent variables.

means A / deponly;

If you use a WEIGHT statement, PROC GLM computes weighted means and esti-
mates their variance as inversely proportional to the corresponding sum of weights
(see the“Weighted Means”section on page 1820). However, note that the statistical
interpretation of multiple comparison tests for weighted means is not well under-
stood. See the“Multiple Comparisons”section on page 1806 for formulas. The
following table summarizes categories of options available in the MEANS statement.
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Task Available options
Modify output DEPONLY

Perform multiple comparison tests BON
DUNCAN
DUNNETT
DUNNETTL
DUNNETTU
GABRIEL
GT2
LSD
REGWQ
SCHEFFE
SIDAK
SMM
SNK
T
TUKEY
WALLER

Specify additional details ALPHA=
for multiple comparison tests CLDIFF

CLM
E=
ETYPE=
HTYPE=
KRATIO=
LINES
NOSORT

Test for homogeneity of variances HOVTEST

Compensate for heterogeneous variances WELCH

These options are described in the following list.

ALPHA= p
specifies the level of significance for comparisons among the means. By default,p is
equal to the value of the ALPHA= option in the PROC GLM statement or 0.05 if that
option is not specified. You can specify any value greater than 0 and less than 1.

BON
performs Bonferronit tests of differences between means for all main effect means
in the MEANS statement. See theCLDIFF andLINES options for a discussion of
how the procedure displays results.

CLDIFF
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, GT2, T, LSD,
and TUKEY options as confidence intervals for all pairwise differences between
means, and the results of the DUNNETT, DUNNETTU, and DUNNETTL options
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as confidence intervals for differences with the control. The CLDIFF option is the
default for unequal cell sizes unless the DUNCAN, REGWQ, SNK, or WALLER
option is specified.

CLM
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, T, and LSD op-
tions as intervals for the mean of each level of the variables specified in the MEANS
statement. For all options except GABRIEL, the intervals are confidence intervals for
the true means. For the GABRIEL option, they arecomparison intervalsfor compar-
ing means pairwise: in this case, if the intervals corresponding to two means overlap,
then the difference between them is insignificant according to Gabriel’s method.

DEPONLY
displays only means for the dependent variables. By default, PROC GLM produces
means for all continuous variables, including continuous independent variables.

DUNCAN
performs Duncan’s multiple range test on all main effect means given in the MEANS
statement. See theLINES option for a discussion of how the procedure displays
results.

DUNNETT < (formatted-control-values) >
performs Dunnett’s two-tailedt test, testing if any treatments are significantly differ-
ent from a single control for all main effects means in the MEANS statement.

To specify which level of the effect is the control, enclose the formatted value in
quotes in parentheses after the keyword. If more than one effect is specified in the
MEANS statement, you can use a list of control values within the parentheses. By
default, the first level of the effect is used as the control. For example,

means A / dunnett(’CONTROL’);

where CONTROL is the formatted control value ofA. As another example,

means A B C / dunnett(’CNTLA’ ’CNTLB’ ’CNTLC’);

where CNTLA, CNTLB, and CNTLC are the formatted control values forA, B, and
C, respectively.

DUNNETTL < (formatted-control-value) >
performs Dunnett’s one-tailedt test, testing if any treatment is significantly less than
the control. Control level information is specified as described for theDUNNETT
option.

DUNNETTU < (formatted-control-value) >
performs Dunnett’s one-tailedt test, testing if any treatment is significantly greater
than the control. Control level information is specified as described for the
DUNNETT option.
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E=effect
specifies the error mean square used in the multiple comparisons. By default, PROC
GLM uses the overall residual or error mean square (MS). The effect specified with
the E= option must be a term in the model; otherwise, the procedure uses the residual
MS.

ETYPE=n
specifies the type of mean square for the error effect. When you specify E=effect, you
may need to indicate which type (1, 2, 3, or 4) of MS is to be used. Then value must
be one of the types specified in or implied by the MODEL statement. The default MS
type is the highest type used in the analysis.

GABRIEL
performs Gabriel’s multiple-comparison procedure on all main effect means in the
MEANS statement. See theCLDIFF andLINES options for discussions of how the
procedure displays results.

GT2
see theSMM option.

HOVTEST
HOVTEST=BARTLETT
HOVTEST=BF
HOVTEST=LEVENE < ( TYPE= ABS | SQUARE ) >
HOVTEST=OBRIEN < ( W=number )>

requests a homogeneity of variance test for the groups defined by the MEANS effect.
You can optionally specify a particular test; if you do not specify a test, Levene’s test
(Levene1960) with TYPE=SQUARE is computed. Note that this option is ignored
unless your MODEL statement specifies a simple one-way model.

The HOVTEST=BARTLETT option specifies Bartlett’s test (Bartlett1937), a modi-
fication of the normal-theory likelihood ratio test.

The HOVTEST=BF option specifies Brown and Forsythe’s variation of Levene’s test
(Brown and Forsythe1974).

The HOVTEST=LEVENE option specifies Levene’s test (Levene1960), which is
widely considered to be the standard homogeneity of variance test. You can use
the TYPE= option in parentheses to specify whether to use the absolute resid-
uals (TYPE=ABS) or the squared residuals (TYPE=SQUARE) in Levene’s test.
TYPE=SQUARE is the default.

The HOVTEST=OBRIEN option specifies O’Brien’s test (O’Brien 1979), which is
basically a modification of HOVTEST=LEVENE(TYPE=SQUARE). You can use
the W= option in parentheses to tune the variable to match the suspected kurtosis
of the underlying distribution. By default, W=0.5, as suggested byO’Brien (1979;
1981).

See the“Homogeneity of Variance in One-Way Models”section on page 1818 for
more details on these methods.Example 32.10on page 1892 illustrates the use of the
HOVTEST and WELCH options in the MEANS statement in testing for equal group
variances and adjusting for unequal group variances in a one-way ANOVA.
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HTYPE=n
specifies the MS type for the hypothesis MS. The HTYPE= option is needed only
when the WALLER option is specified. The default HTYPE= value is the highest
type used in the model.

KRATIO=value
specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test.
Reasonable values for the KRATIO= option are 50, 100, 500, which roughly cor-
respond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01, respectively.
By default, the procedure uses the value of 100.

LINES
presents results of the BON, DUNCAN, GABRIEL, REGWQ, SCHEFFE, SIDAK,
SMM, GT2, SNK, T, LSD, TUKEY, and WALLER options by listing the means in
descending order and indicating nonsignificant subsets by line segments beside the
corresponding means. The LINES option is appropriate for equal cell sizes, for which
it is the default. The LINES option is also the default if the DUNCAN, REGWQ,
SNK, or WALLER option is specified, or if there are only two cells of unequal size.
The LINES option cannot be used in combination with the DUNNETT, DUNNETTL,
or DUNNETTU option. In addition, the procedure has a restriction that no more than
24 overlapping groups of means can exist. If a mean belongs to more than 24 groups,
the procedure issues an error message. You can either reduce the number of levels of
the variable or use a multiple comparison test that allows the CLDIFF option rather
than the LINES option.

Note: If the cell sizes are unequal, the harmonic mean of the cell sizes is used to
compute the critical ranges. This approach is reasonable if the cell sizes are not
too different, but it can lead to liberal tests if the cell sizes are highly disparate. In
this case, you should not use the LINES option for displaying multiple comparisons
results; use the TUKEY and CLDIFF options instead.

LSD
see theT option.

NOSORT
prevents the means from being sorted into descending order when the CLDIFF or
CLM option is specified.

REGWQ
performs the Ryan-Einot-Gabriel-Welsch multiple range test on all main effect means
in the MEANS statement. See theLINES option for a discussion of how the proce-
dure displays results.

SCHEFFE
performs Scheffé’s multiple-comparison procedure on all main effect means in the
MEANS statement. See theCLDIFF andLINES options for discussions of how the
procedure displays results.
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SIDAK
performs pairwiset tests on differences between means with levels adjusted accord-
ing to Sidak’s inequality for all main effect means in the MEANS statement. See the
CLDIFF andLINES options for discussions of how the procedure displays results.

SMM
GT2

performs pairwise comparisons based on the studentized maximum modulus and
Sidak’s uncorrelated-t inequality, yielding Hochberg’s GT2 method when sample
sizes are unequal, for all main effect means in the MEANS statement. See the
CLDIFF andLINES options for discussions of how the procedure displays results.

SNK
performs the Student-Newman-Keuls multiple range test on all main effect means in
the MEANS statement. See theLINES option for discussions of how the procedure
displays results.

T
LSD

performs pairwiset tests, equivalent to Fisher’s least-significant-difference test in the
case of equal cell sizes, for all main effect means in the MEANS statement. See the
CLDIFF andLINES options for discussions of how the procedure displays results.

TUKEY
performs Tukey’s studentized range test (HSD) on all main effect means in the
MEANS statement. (When the group sizes are different, this is the Tukey-Kramer
test.) See theCLDIFF andLINES options for discussions of how the procedure dis-
plays results.

WALLER
performs the Waller-Duncank-ratio t test on all main effect means in the MEANS
statement. See theKRATIO= andHTYPE= options for information on controlling
details of the test, and the LINES option for a discussion of how the procedure dis-
plays results.

WELCH
requests the variance-weighted one-way ANOVA ofWelch (1951). This alternative
to the usual analysis of variance for a one-way model is robust to the assumption of
equal within-group variances. This option is ignored unless your MODEL statement
specifies a simple one-way model.

Note that using the WELCH option merely produces one additional table consisting
of Welch’s ANOVA. It does not affect all of the other tests displayed by the GLM
procedure, which still require the assumption of equal variance for exact validity.

See the“Homogeneity of Variance in One-Way Models”section on page 1818 for
more details on Welch’s ANOVA.Example 32.10on page 1892 illustrates the use of
the HOVTEST and WELCH options in the MEANS statement in testing for equal
group variances and adjusting for unequal group variances in a one-way ANOVA.
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MODEL Statement

MODEL dependents=independents < / options > ;

The MODEL statement names the dependent variables and independent effects. The
syntax of effects is described in the“Specification of Effects”section on page 1784.
For any model effect involving classification variables (interactions as well as main
effects), the number of levels can not exceed 32,767. If no independent effects are
specified, only an intercept term is fit. You can specify only one MODEL statement
(in contrast to the REG procedure, for example, which allows several MODEL state-
ments in the same PROC REG run).

The following table summarizes options available in the MODEL statement.

Task Options
Produce tests for the intercept INTERCEPT

Omit the intercept parameter from model NOINT

Produce parameter estimates SOLUTION

Produce tolerance analysis TOLERANCE

Suppress univariate tests and output NOUNI

Display estimable functions E
E1
E2
E3
E4
ALIASING

Control hypothesis tests performed SS1
SS2
SS3
SS4

Produce confidence intervals ALPHA=
CLI
CLM
CLPARM

Display predicted and residual values P

Display intermediate calculations INVERSE
XPX

Tune sensitivity SINGULAR=
ZETA=

These options are described in the following list.



MODEL Statement � 1771

ALIASING
specifies that the estimable functions should be displayed as analiasing structure,
for which each row says which linear combination of the parameters is estimated by
each estimable function; also, adds a column of the same information to the table
of parameter estimates, giving for each parameter the expected value of the estimate
associated with that parameter. This option is most useful in fractional factorial ex-
periments that can be analyzed without a CLASS statement.

ALPHA= p
specifies the level of significancep for 100(1−p)% confidence intervals. By default,
p is equal to the value of the ALPHA= option in the PROC GLM statement, or 0.05
if that option is not specified. You may use values between 0 and 1.

CLI
produces confidence limits for individual predicted values for each observation. The
CLI option is ignored if the CLM option is also specified.

CLM
produces confidence limits for a mean predicted value for each observation.

CLPARM
produces confidence limits for the parameter estimates (if the SOLUTION option is
also specified) and for the results of all ESTIMATE statements.

E
displays the general form of all estimable functions. This is useful for determining
the order of parameters when writing CONTRAST and ESTIMATE statements.

E1
displays the Type I estimable functions for each effect in the model and computes the
corresponding sums of squares.

E2
displays the Type II estimable functions for each effect in the model and computes
the corresponding sums of squares.

E3
displays the Type III estimable functions for each effect in the model and computes
the corresponding sums of squares.

E4
displays the Type IV estimable functions for each effect in the model and computes
the corresponding sums of squares.

INTERCEPT
INT

produces the hypothesis tests associated with the intercept as an effect in the model.
By default, the procedure includes the intercept in the model but does not display
associated tests of hypotheses. Except for producing the uncorrected total sum of
squares instead of the corrected total sum of squares, the INT option is ignored when
you use an ABSORB statement.
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INVERSE
I

displays the augmented inverse (or generalized inverse)X′X matrix:[
(X ′X)− (X ′X)−X ′Y

Y ′X(X ′X)− Y ′Y − Y ′X(X ′X)−X ′Y

]
The upper left-hand corner is the generalized inverse ofX′X, the upper right-hand
corner is the parameter estimates, and the lower right-hand corner is the error sum of
squares.

NOINT
omits the intercept parameter from the model.

NOUNI
suppresses the display of univariate statistics. You typically use the NOUNI option
with a multivariate or repeated measures analysis of variance when you do not need
the standard univariate results. The NOUNI option in a MODEL statement does not
affect the univariate output produced by the REPEATED statement.

P
displays observed, predicted, and residual values for each observation that does not
contain missing values for independent variables. The Durbin-Watson statistic is also
displayed when the P option is specified. The PRESS statistic is also produced if
either the CLM or CLI option is specified.

SINGULAR=number
tunes the sensitivity of the regression routine to linear dependencies in the design.
If a diagonal pivot element is less thanC × number as PROC GLM sweeps the
X′X matrix, the associated design column is declared to be linearly dependent with
previous columns, and the associated parameter is zeroed.

The C value adjusts the check to the relative scale of the variable. TheC value is
equal to the corrected sum of squares for the variable, unless the corrected sum of
squares is 0, in which caseC is 1. If you specify the NOINT option but not the
ABSORB statement, PROC GLM uses the uncorrected sum of squares instead.

The default value of the SINGULAR= option,10−7, may be too small, but this value
is necessary in order to handle the high-degree polynomials used in the literature to
compare regression routines.

SOLUTION
produces a solution to the normal equations (parameter estimates). PROC GLM dis-
plays a solution by default when your model involves no classification variables, so
you need this option only if you want to see the solution for models with classification
effects.

SS1
displays the sum of squares associated with Type I estimable functions for each effect.
These are also displayed by default.
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SS2
displays the sum of squares associated with Type II estimable functions for each
effect.

SS3
displays the sum of squares associated with Type III estimable functions for each
effect. These are also displayed by default.

SS4
displays the sum of squares associated with Type IV estimable functions for each
effect.

TOLERANCE
displays the tolerances used in the SWEEP routine. The tolerances are of the form
C/USS or C/CSS, as described in the discussion of theSINGULAR= option. The
tolerance value for the intercept is not divided by its uncorrected sum of squares.

XPX
displays the augmentedX′X crossproducts matrix:[

X ′X X ′Y
Y ′X Y ′Y

]
ZETA=value

tunes the sensitivity of the check for estimability for Type III and Type IV functions.
Any element in the estimable function basis with an absolute value less than the
ZETA= option is set to zero. The default value for the ZETA= option is10−8.

Although it is possible to generate data for which this absolute check can be defeated,
the check suffices in most practical examples. Additional research needs to be per-
formed to make this check relative rather than absolute.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set > keyword=names
< . . . keyword=names > < / option > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic mea-
sures calculated after fitting the model. At least one specification of the formkey-
word=namesis required.

All the variables in the original data set are included in the new data set, along with
variables created in the OUTPUT statement. These new variables contain the values
of a variety of diagnostic measures that are calculated for each observation in the
data set. If you want to create a permanent SAS data set, you must specify a two-
level name (refer toSAS Language Reference: Conceptsfor more information on
permanent SAS data sets).

Details on the specifications in the OUTPUT statement follow.

keyword=names
specifies the statistics to include in the output data set and provides names to the new
variables that contain the statistics. Specify a keyword for each desired statistic (see
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the following list of keywords), an equal sign, and the variable or variables to contain
the statistic.

In the output data set, the first variable listed after a keyword in the OUTPUT state-
ment contains that statistic for the first dependent variable listed in the MODEL state-
ment; the second variable contains the statistic for the second dependent variable in
the MODEL statement, and so on. The list of variables following the equal sign
can be shorter than the list of dependent variables in the MODEL statement. In this
case, the procedure creates the new names in order of the dependent variables in the
MODEL statement. See the“Examples”section on page 1775.

The keywords allowed and the statistics they represent are as follows:

COOKD Cook’sD influence statistic

COVRATIO standard influence of observation on covariance of parameter esti-
mates

DFFITS standard influence of observation on predicted value

H leverage,hi = xi(X′X)−1x′i

LCL lower bound of a100(1 − p)% confidence interval for an individ-
ual prediction. Thep-level is equal to the value of the ALPHA=
option in the OUTPUT statement or, if this option is not specified,
to the ALPHA= option in the PROC GLM statement. If neither of
these options is set thenp = 0.05 by default, resulting in the lower
bound for a 95% confidence interval. The interval also depends
on the variance of the error, as well as the variance of the param-
eter estimates. For the corresponding upper bound, see theUCL
keyword.

LCLM lower bound of a100(1−p)% confidence interval for the expected
value (mean) of the predicted value. Thep-level is equal to the
value of the ALPHA= option in the OUTPUT statement or, if this
option is not specified, to the ALPHA= option in the PROC GLM
statement. If neither of these options is set thenp = 0.05 by de-
fault, resulting in the lower bound for a 95% confidence interval.
For the corresponding upper bound, see theUCLM keyword.

PREDICTED | P predicted values

PRESS residual for theith observation that results from dropping it and
predicting it on the basis of all other observations. This is the resid-
ual divided by(1−hi) wherehi is theleverage, defined previously.

RESIDUAL | R residuals, calculated as ACTUAL− PREDICTED

RSTUDENT a studentized residual with the current observation deleted

STDI standard error of the individual predicted value

STDP standard error of the mean predicted value

STDR standard error of the residual

STUDENT studentized residuals, the residual divided by its standard error
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UCL upper bound of a100(1 − p)% confidence interval for an individ-
ual prediction. Thep-level is equal to the value of the ALPHA=
option in the OUTPUT statement or, if this option is not specified,
to the ALPHA= option in the PROC GLM statement. If neither of
these options is set thenp = 0.05 by default, resulting in the upper
bound for a 95% confidence interval. The interval also depends
on the variance of the error, as well as the variance of the param-
eter estimates. For the corresponding lower bound, see theLCL
keyword.

UCLM upper bound of a100(1−p)% confidence interval for the expected
value (mean) of the predicted value. Thep-level is equal to the
value of the ALPHA= option in the OUTPUT statement or, if this
option is not specified, to the ALPHA= option in the PROC GLM
statement. If neither of these options is set thenp = 0.05 by de-
fault, resulting in the upper bound for a 95% confidence interval.
For the corresponding lower bound, see theLCLM keyword.

OUT=SAS-data-set
gives the name of the new data set. By default, the procedure uses the DATAn con-
vention to name the new data set.

The following option is available in the OUTPUT statement and is specified after a
slash(/):

ALPHA= p
specifies the level of significancep for 100(1−p)% confidence intervals. By default,
p is equal to the value of the ALPHA= option in the PROC GLM statement or 0.05 if
that option is not specified. You may use values between 0 and 1.

See Chapter 2, “Introduction to Regression Procedures,”and the “Influence
Diagnostics”section on page 3898 inChapter 61, “The REG Procedure,”for de-
tails on the calculation of these statistics.

Examples

The following statements show the syntax for creating an output data set with a single
dependent variable.

proc glm;
class a b;
model y=a b a*b;
output out=new p=yhat r=resid stdr=eresid;

run;

These statements create an output data set namednew. In addition to all the variables
from the original data set,new contains the variableyhat, with values that are pre-
dicted values of the dependent variabley; the variableresid, with values that are the
residual values ofy; and the variableeresid, with values that are the standard errors
of the residuals.

The following statements show a situation with five dependent variables.
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proc glm;
by group;
class a;
model y1-y5=a x(a);
output out=pout predicted=py1-py5;

run;

Data setpout contains five new variables,py1 throughpy5. The values ofpy1 are
the predicted values ofy1; the values ofpy2 are the predicted values ofy2; and so
on.

For more information on the data set produced by the OUTPUT statement, see the
section“Output Data Sets”on page 1840.

RANDOM Statement

RANDOM effects < / options > ;

When some model effects are random (that is, assumed to be sampled from a normal
population of effects), you can specify these effects in the RANDOM statement in
order to compute the expected values of mean squares for various model effects and
contrasts and, optionally, to perform random effects analysis of variance tests. You
can use as many RANDOM statements as you want, provided that they appear after
the MODEL statement. If you use a CONTRAST statement with a RANDOM state-
ment and you want to obtain the expected mean squares for the contrast hypothesis,
you must enter the CONTRAST statement before the RANDOM statement.

Note: PROC GLM uses only the information pertaining to expected mean squares
when you specify the TEST option in the RANDOM statement and, even then,
only in the extraF tests produced by the RANDOM statement. Other features in
the GLM procedure—including the results of the LSMEANS and ESTIMATE state-
ments—assume that all effects are fixed, so that all tests and estimability checks for
these statements are based on a fixed effects model, even when you use a RANDOM
statement. Therefore, you should use the MIXED procedure to compute tests involv-
ing these features that take the random effects into account; see the section“PROC
GLM versus PROC MIXED for Random Effects Analysis”on page 1833 andChapter
46, “The MIXED Procedure,”for more information.

When you use the RANDOM statement, by default the GLM procedure produces the
Type III expected mean squares for model effects and for contrasts specified before
the RANDOM statement in the program code. In order to obtain expected values for
other types of mean squares, you need to specify which types of mean squares are
of interest in the MODEL statement. See the section“Computing Type I, II, and IV
Expected Mean Squares”on page 1835 for more information.

The list of effects in the RANDOM statement should contain one or more of the pure
classification effects specified in the MODEL statement (that is, main effects, crossed
effects, or nested effects involving only class variables). The coefficients correspond-
ing to each effect specified are assumed to be normally and independently distributed
with common variance. Levels in different effects are assumed to be independent.
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You can specify the following options in the RANDOM statement after a slash:

Q
displays all quadratic forms in the fixed effects that appear in the expected mean
squares. For some designs, large mixed-level factorials, for example, the Q option
may generate a substantial amount of output.

TEST
performs hypothesis tests for each effect specified in the model, using appropriate
error terms as determined by the expected mean squares.

Caution: PROC GLM does not automatically declare interactions to be random when
the effects in the interaction are declared random. For example,

random a b / test;

does not produce the same expected mean squares or tests as

random a b a*b / test;

To ensure correct tests, you need to list all random interactions and random main
effects in the RANDOM statement.

See the section“Random Effects Analysis”on page 1833 for more information on
the calculation of expected mean squares and tests and on the similarities and differ-
ences between the GLM and MIXED procedures. SeeChapter 3, “Introduction to
Analysis-of-Variance Procedures,”andChapter 46, “The MIXED Procedure,”for
more information on random effects.

REPEATED Statement

REPEATED factor-specification < / options > ;

When values of the dependent variables in the MODEL statement represent repeated
measurements on the same experimental unit, the REPEATED statement enables you
to test hypotheses about the measurement factors (often calledwithin-subject fac-
tors) as well as the interactions of within-subject factors with independent variables
in the MODEL statement (often calledbetween-subject factors). The REPEATED
statement provides multivariate and univariate tests as well as hypothesis tests for
a variety of single-degree-of-freedom contrasts. There is no limit to the number of
within-subject factors that can be specified.

The REPEATED statement is typically used for handling repeated measures designs
with one repeated response variable. Usually, the variables on the left-hand side of
the equation in the MODEL statement represent one repeated response variable. This
does not mean that only one factor can be listed in the REPEATED statement. For
example, one repeated response variable (hemoglobin count) might be measured 12
times (implying variables Y1 to Y12 on the left-hand side of the equal sign in the
MODEL statement), with the associated within-subject factors treatment and time
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(implying two factors listed in the REPEATED statement). See the“Examples”sec-
tion on page 1781 for an example of how PROC GLM handles this case. Designs
with two or more repeated response variables can, however, be handled with the
IDENTITY transformation; see page 1779 for more information, andExample 32.9
on page 1886 for an example of analyzing a doubly-multivariate repeated measures
design.

When a REPEATED statement appears, the GLM procedure enters a multivariate
mode of handling missing values. If any values for variables corresponding to each
combination of the within-subject factors are missing, the observation is excluded
from the analysis.

If you use a CONTRAST or TEST statement with a REPEATED statement, you must
enter the CONTRAST or TEST statement before the REPEATED statement.

The simplest form of the REPEATED statement requires only afactor-name. With
two repeated factors, you must specify thefactor-nameand number of levels (levels)
for each factor. Optionally, you can specify the actual values for the levels (level-
values), atransformationthat defines single-degree-of freedom contrasts, andoptions
for additional analyses and output. When you specify more than one within-subject
factor, thefactor-names(and associated level and transformation information) must
be separated by a comma in the REPEATED statement. These terms are described
in the following section, “Syntax Details.”

Syntax Details

You can specify the following terms in the REPEATED statement.

factor-specification
The factor-specificationfor the REPEATED statement can include any number of
individual factor specifications, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where

factor-name names a factor to be associated with the dependent variables. The
name should not be the same as any variable name that already
exists in the data set being analyzed and should conform to the
usual conventions of SAS variable names.

When specifying more than one factor, list the dependent variables
in the MODEL statement so that the within-subject factors defined
in the REPEATED statement are nested; that is, the first factor de-
fined in the REPEATED statement should be the one with values
that change least frequently.

levels gives the number of levels associated with the factor being defined.
When there is only one within-subject factor, the number of levels
is equal to the number of dependent variables. In this case,levels
is optional. When more than one within-subject factor is defined,
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however,levelsis required, and the product of the number of levels
of all the factors must equal the number of dependent variables in
the MODEL statement.

(level-values) gives values that correspond to levels of a repeated-measures
factor. These values are used to label output and as spacings
for constructing orthogonal polynomial contrasts if you specify
a POLYNOMIAL transformation. The number of values speci-
fied must correspond to the number of levels for that factor in the
REPEATED statement. Enclose thelevel-valuesin parentheses.

The following transformationkeywords define single-degree-of-freedom contrasts
for factors specified in the REPEATED statement. Since the number of contrasts
generated is always one less than the number of levels of the factor, you have some
control over which contrast is omitted from the analysis by which transformation you
select. The only exception is the IDENTITY transformation; this transformation is
not composed of contrasts and has the same degrees of freedom as the factor has
levels. By default, the procedure uses the CONTRAST transformation.

CONTRAST < (ordinal-reference-level ) > generates contrasts between levels of
the factor and a reference level. By default, the procedure uses
the last level as the reference level; you can optionally specify a
reference level in parentheses after the keyword CONTRAST. The
reference level corresponds to the ordinal value of the level rather
than the level value specified. For example, to generate contrasts
between the first level of a factor and the other levels, use

contrast(1)

HELMERT generates contrasts between each level of the factor and the mean
of subsequent levels.

IDENTITY generates an identity transformation corresponding to the associ-
ated factor. This transformation isnot composed of contrasts; it
hasn degrees of freedom for ann-level factor, instead ofn − 1.
This can be used for doubly-multivariate repeated measures.

MEAN < (ordinal-reference-level ) > generates contrasts between levels of the
factor and the mean of all other levels of the factor. Specifying
a reference level eliminates the contrast between that level and the
mean. Without a reference level, the contrast involving the last
level is omitted. See theCONTRASTtransformation for an exam-
ple.

POLYNOMIAL generates orthogonal polynomial contrasts. Level values, if pro-
vided, are used as spacings in the construction of the polynomials;
otherwise, equal spacing is assumed.

PROFILE generates contrasts between adjacent levels of the factor.

You can specify the following options in the REPEATED statement after a slash.
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CANONICAL
performs a canonical analysis of theH andE matrices corresponding to the trans-
formed variables specified in the REPEATED statement.

HTYPE=n
specifies the type of theH matrix used in the multivariate tests and the type of sums
of squares used in the univariate tests. See theHTYPE= option in the specifications
for the MANOVA statement for further details.

MEAN
generates the overall arithmetic means of the within-subject variables.

MSTAT=FAPPROX
MSTAT=EXACT

specifies the method of evaluating the test statistics for the multivariate analysis. The
default is MSTAT=FAPPROX, which specifies that the multivariate tests are evalu-
ated using the usual approximations based on theF distribution, as discussed in the
“Multivariate Tests” section inChapter 2, “Introduction to Regression Procedures.”
Alternatively, you can specify MSTAT=EXACT to compute exactp-values for three
of the four tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest
Root) and an improved F-approximation for the fourth (Pillai’s Trace). While
MSTAT=EXACT provides better control of the significance probability for the tests,
especially for Roy’s Greatest Root, computations for the exactp-values can be appre-
ciably more demanding, and are in fact infeasible for large problems (many dependent
variables). Thus, although MSTAT=EXACT is more accurate for most data, it is not
the default method. For more information on the results of MSTAT=EXACT, see the
“Multivariate Analysis of Variance”section on page 1823.

NOM
displays only the results of the univariate analyses.

NOU
displays only the results of the multivariate analyses.

PRINTE
displays theE matrix for each combination of within-subject factors, as well as par-
tial correlation matrices for both the original dependent variables and the variables
defined by the transformations specified in the REPEATED statement. In addition,
the PRINTE option provides sphericity tests for each set of transformed variables. If
the requested transformations are not orthogonal, the PRINTE option also provides a
sphericity test for a set of orthogonal contrasts.

PRINTH
displays theH (SSCP) matrix associated with each multivariate test.

PRINTM
displays the transformation matrices that define the contrasts in the analysis. PROC
GLM always displays theM matrix so that the transformed variables are defined by
the rows, not the columns, of the displayedM matrix. In other words, PROC GLM
actually displaysM′.
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PRINTRV
displays the characteristic roots and vectors for each multivariate test.

SUMMARY
produces analysis-of-variance tables for each contrast defined by the within-subject
factors. Along with tests for the effects of the independent variables specified in the
MODEL statement, a term labeled MEAN tests the hypothesis that the overall mean
of the contrast is zero.

Examples

When specifying more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors defined in the REPEATED statement are
nested; that is, the first factor defined in the REPEATED statement should be the one
with values that change least frequently. For example, assume that three treatments
are administered at each of four times, for a total of twelve dependent variables on
each experimental unit. If the variables are listed in the MODEL statement asY1
throughY12, then the following REPEATED statement

proc glm;
classes group;
model Y1-Y12=group / nouni;
repeated trt 3, time 4;

run;

implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Value oftrt 1 1 1 1 2 2 2 2 3 3 3 3

Value oftime 1 2 3 4 1 2 3 4 1 2 3 4

The REPEATED statement always produces a table like the preceding one. For more
information, see the section“Repeated Measures Analysis of Variance”on page 1825.

TEST Statement

TEST < H=effects > E=effect < / options > ;

Although anF value is computed for all sums of squares in the analysis using the
residual MS as an error term, you may request additionalF tests using other effects
as error terms. You need a TEST statement when a nonstandard error structure (as in a
split-plot design) exists. Note, however, that this may not be appropriate if the design
is unbalanced, since in most unbalanced designs with nonstandard error structures,
mean squares are not necessarily independent with equal expectations under the null
hypothesis.
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Caution: The GLM procedure does not check any of the assumptions underlying
theF statistic. When you specify a TEST statement, you assume sole responsibility
for the validity of theF statistic produced. To help validate a test, you can use
the RANDOM statement and inspect the expected mean squares, or you can use the
TEST option of the RANDOM statement.

You may use as many TEST statements as you want, provided that they appear after
the MODEL statement.

You can specify the following terms in the TEST statement.

H=effects specifies which effects in the preceding model are to be used as
hypothesis (numerator) effects.

E=effect specifies one, and only one, effect to use as the error (denominator)
term. The E= specification is required.

By default, the sum of squares type for all hypothesis sum of squares and error sum
of squares is the highest type computed in the model. If the hypothesis type or error
type is to be another type that was computed in the model, you should specify one or
both of the following options after a slash.

ETYPE=n
specifies the type of sum of squares to use for the error term. The type must be a type
computed in the model (n=1, 2, 3, or 4 ).

HTYPE=n
specifies the type of sum of squares to use for the hypothesis. The type must be a
type computed in the model (n=1, 2, 3, or 4).

This example illustrates the TEST statement with a split-plot model:

proc glm;
class a b c;
model y=a b(a) c a*c b*c(a);
test h=a e=b(a)/ htype=1 etype=1;
test h=c a*c e=b*c(a) / htype=1 etype=1;

run;

WEIGHT Statement

WEIGHT variable ;

When a WEIGHT statement is used, a weighted residual sum of squares

∑
i

wi(yi − ŷi)2

is minimized, wherewi is the value of the variable specified in the WEIGHT state-
ment,yi is the observed value of the response variable, andŷi is the predicted value
of the response variable.
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If you specify the WEIGHT statement, it must appear before the first RUN statement
or it is ignored.

An observation is used in the analysis only if the value of the WEIGHT statement
variable is nonmissing and greater than zero.

The WEIGHT statement has no effect on degrees of freedom or number of obser-
vations, but it is used by the MEANS statement when calculating means and per-
forming multiple comparison tests (as described in the“MEANS Statement”section
beginning on page 1763). The normal equations used when a WEIGHT statement is
present are

X′WXβ = X′WY

whereW is a diagonal matrix consisting of the values of the variable specified in the
WEIGHT statement.

If the weights for the observations are proportional to the reciprocals of the error vari-
ances, then the weighted least-squares estimates are best linear unbiased estimators
(BLUE).

Details

Statistical Assumptions for Using PROC GLM

The basic statistical assumption underlying the least-squares approach to general lin-
ear modeling is that the observed values of each dependent variable can be written
as the sum of two parts: a fixed componentx′β, which is a linear function of the
independent coefficients, and a random noise, or error, componentε:

y = x′β + ε

The independent coefficientsx are constructed from the model effects as described
in the “Parameterization of PROC GLM Models”section on page 1787. Further,
the errors for different observations are assumed to be uncorrelated with identical
variances. Thus, this model can be written

E(Y ) = Xβ, Var(Y ) = σ2I

whereY is the vector of dependent variable values,X is the matrix of independent
coefficients,I is the identity matrix, andσ2 is the common variance for the errors. For
multiple dependent variables, the model is similar except that the errors for different
dependent variables within the same observation are not assumed to be uncorrelated.
This yields a multivariate linear model of the form

E(Y ) = XB, Var(vec(Y )) = Σ⊗ I
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whereY and B are now matrices, with one column for each dependent variable,
vec(Y ) stringsY out by rows, and⊗ indicates the Kronecker matrix product.

Under the assumptions thus far discussed, the least-squares approach provides esti-
mates of the linear parameters that are unbiased and have minimum variance among
linear estimators. Under the further assumption that the errors have a normal (or
Gaussian) distribution, the least-squares estimates are the maximum likelihood esti-
mates and their distribution is known. All of the significance levels (“p values”) and
confidence limits calculated by the GLM procedure require this assumption of nor-
mality in order to be exactly valid, although they are good approximations in many
other cases.

Specification of Effects

Each term in a model, called aneffect, is a variable or combination of variables.
Effects are specified with a special notation using variable names and operators.
There are two kinds of variables:classification(or class) variablesandcontinuous
variables. There are two primary operators:crossingandnesting. A third operator,
thebar operator, is used to simplify effect specification.

In an analysis-of-variance model, independent variables must be variables that iden-
tify classification levels. In the SAS System, these are calledclass variablesand are
declared in the CLASS statement. (They can also be calledcategorical, qualitative,
discrete, or nominal variables.) Class variables can be eithernumericor character.
The values of a class variable are calledlevels. For example, the class variableSex
has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is
assumed to be continuous. Continuous variables, which must be numeric, are used for
response variables and covariates. For example, the heights and weights of subjects
are continuous variables.

Types of Effects

There are seven different types of effects used in the GLM procedure. In the following
list, assume thatA, B, C, D, andE are class variables and thatX1, X2, andY are
continuous variables:

• Regressor effects are specified by writing continuous variables by themselves:
X1 X2.

• Polynomial effects are specified by joining two or more continuous variables
with asterisks:X1*X1 X1*X2.

• Main effects are specified by writing class variables by themselves:A B C.

• Crossed effects (interactions) are specified by joining class variables with as-
terisks:A*B B*C A*B*C.
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• Nested effects are specified by following a main effect or crossed effect with a
class variable or list of class variables enclosed in parentheses. The main effect
or crossed effect is nested within the effects listed in parentheses:

B(A) C(B*A) D*E(C*B*A) .

In this example,B(A) is read “B nested withinA.”

• Continuous-by-class effects are written by joining continuous variables and
class variables with asterisks:X1*A.

• Continuous-nesting-class effects consist of continuous variables followed by a
class variable interaction enclosed in parentheses:X1(A) X1*X2(A*B).

One example of the general form of an effect involving several variables is

X1*X2*A*B*C(D*E)

This example contains crossed continuous terms by crossed classification terms
nested within more than one class variable. The continuous list comes first, followed
by the crossed list, followed by the nesting list in parentheses. Note that asterisks can
appear within the nested list but not immediately before the left parenthesis. For de-
tails on how the design matrix and parameters are defined with respect to the effects
specified in this section, see the section“Parameterization of PROC GLM Models”
on page 1787.

The MODEL statement and several other statements use these effects. Some exam-
ples of MODEL statements using various kinds of effects are shown in the following
table;a, b, andc represent class variables, andy, y1, y2, x, andz represent continu-
ous variables.

Specification Kind of Model
model y=x; simple regression

model y=x z; multiple regression

model y=x x*x; polynomial regression

model y1 y2=x z; multivariate regression

model y=a; one-way ANOVA

model y=a b c; main effects model

model y=a b a*b; factorial model (with interaction)

model y=a b(a) c(b a); nested model

model y1 y2=a b; multivariate analysis of variance (MANOVA)

model y=a x; analysis-of-covariance model

model y=a x(a); separate-slopes model

model y=a x x*a; homogeneity-of-slopes model
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The Bar Operator
You can shorten the specification of a large factorial model using the bar operator.
For example, two ways of writing the model for a full three-way factorial model are

proc glm; and proc glm;
class A B C; class A B C;
model Y=A B C A*B model Y=A|B|C;

A*C B*C A*B*C; run;
run;

When the bar (|) is used, the right- and left-hand sides become effects, and the cross of
them becomes an effect. Multiple bars are permitted. The expressions are expanded
from left to right, using rules 2–4 given inSearle(1971, p. 390).

• Multiple bars are evaluated left to right. For instance,A|B|C is evaluated as
follows.

A | B | C → { A | B } | C

→ { A B A*B } | C

→ A B A*B C A*C B*C A*B*C

• Crossed and nested groups of variables are combined. For example,
A(B) | C(D) generatesA*C(B D), among other terms.

• Duplicate variables are removed. For example,A(C) | B(C) generates
A*B(C C), among other terms, and the extraC is removed.

• Effects are discarded if a variable occurs on both the crossed and nested parts
of an effect. For instance,A(B) | B(D E) generatesA*B(B D E), but this effect
is eliminated immediately.

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by specifying that maximum number, preceded by an
@ sign, at the end of the bar effect. For example, the specificationA | B | C@2
would result in only those effects that contain 2 or fewer variables: in this case,
A B A*B C A*C andB*C.

The following table gives more examples of using the bar and at operators.

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)
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Using PROC GLM Interactively

You can use the GLM procedure interactively. After you specify a model with a
MODEL statement and run PROC GLM with a RUN statement, you can execute a
variety of statements without reinvoking PROC GLM.

The “Syntax” section (page 1742) describes which statements can be used interac-
tively. These interactive statements can be executed singly or in groups by following
the single statement or group of statements with a RUN statement. Note that the
MODEL statement cannot be repeated; PROC GLM allows only one MODEL state-
ment.

If you use PROC GLM interactively, you can end the GLM procedure with a DATA
step, another PROC step, an ENDSAS statement, or a QUIT statement.

When you are using PROC GLM interactively, additional RUN statements do not end
the procedure but tell PROC GLM to execute additional statements.

When you specify a WHERE statement with PROC GLM, it should appear before
the first RUN statement. The WHERE statement enables you to select only certain
observations for analysis without using a subsetting DATA step. For example, the
statement where group ne 5 omits observations with GROUP=5 from the
analysis. Refer toSAS Language Reference: Dictionaryfor details on this statement.

When you specify a BY statement with PROC GLM, interactive processing is not
possible; that is, once the first RUN statement is encountered, processing proceeds
for each BY group in the data set, and no further statements are accepted by the
procedure.

Interactivity is also disabled when there are different patterns of missing values
among the dependent variables. For details, see the“Missing Values” section on
page 1836.

Parameterization of PROC GLM Models

The GLM procedure constructs a linear model according to the specifications in the
MODEL statement. Each effect generates one or more columns in a design matrix
X. This section shows precisely howX is built.

Intercept

All models include a column of 1s by default to estimate an intercept parameterµ.
You can use the NOINT option to suppress the intercept.

Regression Effects

Regression effects (covariates) have the values of the variables copied into the design
matrix directly. Polynomial terms are multiplied out and then installed inX.
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Main Effects

If a class variable hasm levels, PROC GLM generatesm columns in the design
matrix for its main effect. Each column is an indicator variable for one of the levels
of the class variable. The default order of the columns is the sort order of the values
of their levels; this order can be controlled with the ORDER= option in the PROC
GLM statement, as shown in the following table.

Data Design Matrix
A B

A B µ A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

There are more columns for these effects than there are degrees of freedom for them;
in other words, PROC GLM is using an over-parameterized model.

Crossed Effects

First, PROC GLM reorders the terms to correspond to the order of the variables in the
CLASS statement; thus,B*A becomesA*B if A precedesB in the CLASS statement.
Then, PROC GLM generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the cross
index faster than the leftmost variables. No columns are generated corresponding to
combinations of levels that do not occur in the data.

Data Design Matrix
A B A*B

A B µ A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In this matrix, main-effects columns are not linearly independent of crossed-effect
columns; in fact, the column space for the crossed effects contains the space of the
main effect.
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Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design
columns generated by the following statements are the same (but the ordering of the
columns is different):

model y=a b(a); (B nested within A)

model y=a a*b; (omitted main effect for B)

The nesting operator in PROC GLM is more a notational convenience than an opera-
tion distinct from crossing. Nested effects are characterized by the property that the
nested variables never appear as main effects. The order of the variables within nest-
ing parentheses is made to correspond to the order of these variables in the CLASS
statement. The order of the columns is such that variables outside the parentheses in-
dex faster than those inside the parentheses, and the rightmost nested variables index
faster than the leftmost variables.

Data Design Matrix
A B(A)

A B µ A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Continuous-Nesting-Class Effects
When a continuous variable nests with a class variable, the design columns are con-
structed by multiplying the continuous values into the design columns for the class
effect.

Data Design Matrix
A X(A)

X A µ A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate slope forX within each level ofA.
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Continuous-by-Class Effects

Continuous-by-class effects generate the same design columns as continuous-nesting-
class effects. The two models differ by the presence of the continuous variable as a
regressor by itself, in addition to being a contributor toX*A.

Data Design Matrix
A X*A

X A µ X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

Continuous-by-class effects are used to test the homogeneity of slopes. If the
continuous-by-class effect is nonsignificant, the effect can be removed so that the
response with respect toX is the same for all levels of the class variables.

General Effects

An example that combines all the effects is

X1*X2*A*B*C(D E)

The continuous list comes first, followed by the crossed list, followed by the nested
list in parentheses.

The sequencing of parameters is important to learn if you use the CONTRAST or
ESTIMATE statement to compute or test some linear function of the parameter esti-
mates.

Effects may be retitled by PROC GLM to correspond to ordering rules. For example,
B*A(E D) may be retitledA*B(D E) to satisfy the following:

• Class variables that occur outside parentheses (crossed effects) are sorted in the
order in which they appear in the CLASS statement.

• Variables within parentheses (nested effects) are sorted in the order in which
they appear in a CLASS statement.

The sequencing of the parameters generated by an effect can be described by which
variables have their levels indexed faster:

• Variables in the crossed part index faster than variables in the nested list.
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• Within a crossed or nested list, variables to the right index faster than variables
to the left.

For example, suppose a model includes four effects—A, B, C, andD—each having
two levels, 1 and 2. If the CLASS statement is

class A B C D;

then the order of the parameters for the effectB*A(C D), which is retitledA*B(C D),
is as follows.

A1B1C1D1

A1B2C1D1

A2B1C1D1

A2B2C1D1

A1B1C1D2

A1B2C1D2

A2B1C1D2

A2B2C1D2

A1B1C2D1

A1B2C2D1

A2B1C2D1

A2B2C2D1

A1B1C2D2

A1B2C2D2

A2B1C2D2

A2B2C2D2

Note that first the crossed effectsB andA are sorted in the order in which they appear
in the CLASS statement so thatA precedesB in the parameter list. Then, for each
combination of the nested effects in turn, combinations ofA andB appear. TheB
effect changes fastest because it is rightmost in the (renamed) cross list. ThenA
changes next fastest. TheD effect changes next fastest, andC is the slowest since it
is leftmost in the nested list.

When numeric class variables are used, their levels are sorted by their charac-
ter format, which may not correspond to their numeric sort sequence. Therefore,
it is advisable to include a format for numeric class variables or to use the
ORDER=INTERNAL option in the PROC GLM statement to ensure that levels are
sorted by their internal values.

Degrees of Freedom

For models with classification (categorical) effects, there are more design columns
constructed than there are degrees of freedom for the effect. Thus, there are lin-
ear dependencies among the columns. In this event, the parameters are not jointly
estimable; there is an infinite number of least-squares solutions. The GLM pro-
cedure uses a generalized (g2) inverse to obtain values for the estimates; see the



1792 � Chapter 32. The GLM Procedure

“Computational Method”section on page 1840 for more details. The solution values
are not produced unless the SOLUTION option is specified in the MODEL statement.
The solution has the characteristic that estimates are zero whenever the design col-
umn for that parameter is a linear combination of previous columns. (Strictly termed,
the solution values should not be called estimates, since the parameters may not be
formally estimable.) With this full parameterization, hypothesis tests are constructed
to test linear functions of the parameters that are estimable.

Other procedures (such as the CATMOD procedure) reparameterize models to full
rank using certain restrictions on the parameters. PROC GLM does not reparame-
terize, making the hypotheses that are commonly tested more understandable. See
Goodnight(1978a) for additional reasons for not reparameterizing.

PROC GLM does not actually construct the entire design matrixX; rather, a rowxi

of X is constructed for each observation in the data set and used to accumulate the
crossproduct matrixX′X =

∑
i x

′
ixi.

Hypothesis Testing in PROC GLM

SeeChapter 11, “The Four Types of Estimable Functions,”for a complete discussion
of the four standard types of hypothesis tests.

Example

To illustrate the four types of tests and the principles upon which they are based,
consider a two-way design with interaction based on the following data:

B
1 2

1 23.5 28.7
23.7

A 2 8.9 5.6
8.9

3 10.3 13.6
12.5 14.6

Invoke PROC GLM and specify all the estimable functions options to examine what
the GLM procedure can test. The following statements are followed by the summary
ANOVA table. SeeFigure 32.8.

data example;
input a b y @@;
datalines;

1 1 23.5 1 1 23.7 1 2 28.7 2 1 8.9 2 2 5.6
2 2 8.9 3 1 10.3 3 1 12.5 3 2 13.6 3 2 14.6
;

proc glm;
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class a b;
model y=a b a*b / e e1 e2 e3 e4;

run;

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 520.4760000 104.0952000 49.66 0.0011

Error 4 8.3850000 2.0962500

Corrected Total 9 528.8610000

R-Square Coeff Var Root MSE y Mean

0.984145 9.633022 1.447843 15.03000

Figure 32.8. Summary ANOVA Table from PROC GLM

The following sections show the general form of estimable functions and discuss the
four standard tests, their properties, and abbreviated output for the two-way crossed
example.

Estimability

Figure 32.9is the general form of estimable functions for the example. In order to be
testable, a hypothesis must be able to fit within the framework displayed here.

The GLM Procedure

General Form of Estimable Functions

Effect Coefficients

Intercept L1

a 1 L2
a 2 L3
a 3 L1-L2-L3

b 1 L5
b 2 L1-L5

a*b 1 1 L7
a*b 1 2 L2-L7
a*b 2 1 L9
a*b 2 2 L3-L9
a*b 3 1 L5-L7-L9
a*b 3 2 L1-L2-L3-L5+L7+L9

Figure 32.9. General Form of Estimable Functions
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If a hypothesis is estimable, theLs in the preceding scheme can be set to values that
match the hypothesis. All the standard tests in PROC GLM can be shown in the
preceding format, with some of theLs zeroed and some set to functions of otherLs.

The following sections show how many of the hypotheses can be tested by comparing
the model sum-of-squares regression from one model to a submodel. The notation
used is

SS(B effects|A effects) = SS(B effects, A effects)− SS(A effects)

where SS(A effects) denotes the regression model sum of squares for the model con-
sisting of A effects. This notation is equivalent to the reduction notation defined
by Searle(1971) and summarized inChapter 11, “The Four Types of Estimable
Functions.”

Type I Tests

Type I sums of squares (SS), also calledsequential sums of squares, are the incre-
mental improvement in error sums of squares as each effect is added to the model.
They can be computed by fitting the model in steps and recording the difference in
error sum of squares at each step.

Source Type I SS
A SS(A | µ)
B SS(B | µ,A)

A ∗B SS(A ∗B |µ,A,B)

Type I sums of squares are displayed by default because they are easy to obtain and
can be used in various hand calculations to produce sum of squares values for a series
of different models.Nelder(1994) and others have argued that Type I and II sums are
essentially the only appropriate ones for testing ANOVA effects; however, refer also
to the discussion of Nelder’s article, especiallyRodriguez et al.(1995) andSearle
(1995).

The Type I hypotheses have these properties:

• Type I sum of squares for all effects add up to the model sum of squares. None
of the other sum of squares types have this property, except in special cases.

• Type I hypotheses can be derived from rows of the Forward-Dolittle trans-
formation ofX′X (a transformation that reducesX′X to an upper triangular
matrix by row operations).

• Type I sum of squares are statistically independent of each other under the
usualassumptionthat the true residual errors are independent and identically
normally distributed (see page 1783).

• Type I hypotheses depend on the order in which effects are specified in the
MODEL statement.
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• Type I hypotheses are uncontaminated by parameters corresponding to effects
that precede the effect being tested; however, the hypotheses usually involve
parameters for effects following the tested effect in the model. For example, in
the model

Y=A B;

the Type I hypothesis forB does not involveA parameters, but the Type I
hypothesis forA does involveB parameters.

• Type I hypotheses are functions of the cell counts for unbalanced data; the
hypotheses are not usually the same hypotheses that are tested if the data are
balanced.

• Type I sums of squares are useful for polynomial models where you want to
know the contribution of a term as though it had been made orthogonal to pre-
ceding effects. Thus, in polynomial models, Type I sums of squares correspond
to tests of the orthogonal polynomial effects.

The Type I estimable functions and associated tests for the example are shown in
Figure 32.10. (This combines tables from several pages of output.)

The GLM Procedure

Type I Estimable Functions

----------------Coefficients----------------
Effect a b a*b

Intercept 0 0 0

a 1 L2 0 0
a 2 L3 0 0
a 3 -L2-L3 0 0

b 1 0.1667*L2-0.1667*L3 L5 0
b 2 -0.1667*L2+0.1667*L3 -L5 0

a*b 1 1 0.6667*L2 0.2857*L5 L7
a*b 1 2 0.3333*L2 -0.2857*L5 -L7
a*b 2 1 0.3333*L3 0.2857*L5 L9
a*b 2 2 0.6667*L3 -0.2857*L5 -L9
a*b 3 1 -0.5*L2-0.5*L3 0.4286*L5 -L7-L9
a*b 3 2 -0.5*L2-0.5*L3 -0.4286*L5 L7+L9
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The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

a 2 494.0310000 247.0155000 117.84 0.0003
b 1 10.7142857 10.7142857 5.11 0.0866
a*b 2 15.7307143 7.8653571 3.75 0.1209

Figure 32.10. Type I Estimable Functions and Associated Tests

Type II Tests

The Type II tests can also be calculated by comparing the error sums of squares (SS)
for subset models. The Type II SS are the reduction in error SS due to adding the
term after all other terms have been added to the model except terms that contain the
effect being tested. An effect is contained in another effect if it can be derived by
deleting variables from the latter effect. For example,A andB are both contained in
A*B. For this model

Source Type II SS
A SS(A | µ,B)
B SS(B | µ,A)

A ∗B SS(A ∗B | µ,A,B)

Type II SS have these properties:

• Type II SS do not necessarily sum to the model SS.

• The hypothesis for an effect does not involve parameters of other effects except
for containing effects (which it must involve to be estimable).

• Type II SS are invariant to the ordering of effects in the model.

• For unbalanced designs, Type II hypotheses for effects that are contained in
other effects are not usually the same hypotheses that are tested if the data are
balanced. The hypotheses are generally functions of the cell counts.

The Type II estimable functions and associated tests for the example are shown in
Figure 32.11. (Again, this combines tables from several pages of output.)
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The GLM Procedure

Type II Estimable Functions

----------------Coefficients----------------
Effect a b a*b

Intercept 0 0 0

a 1 L2 0 0
a 2 L3 0 0
a 3 -L2-L3 0 0

b 1 0 L5 0
b 2 0 -L5 0

a*b 1 1 0.619*L2+0.0476*L3 0.2857*L5 L7
a*b 1 2 0.381*L2-0.0476*L3 -0.2857*L5 -L7
a*b 2 1 -0.0476*L2+0.381*L3 0.2857*L5 L9
a*b 2 2 0.0476*L2+0.619*L3 -0.2857*L5 -L9
a*b 3 1 -0.5714*L2-0.4286*L3 0.4286*L5 -L7-L9
a*b 3 2 -0.4286*L2-0.5714*L3 -0.4286*L5 L7+L9

The GLM Procedure

Dependent Variable: y

Source DF Type II SS Mean Square F Value Pr > F

a 2 499.1202857 249.5601429 119.05 0.0003
b 1 10.7142857 10.7142857 5.11 0.0866
a*b 2 15.7307143 7.8653571 3.75 0.1209

Figure 32.11. Type II Estimable Functions and Associated Tests

Type III and Type IV Tests

Type III and Type IV sums of squares (SS), sometimes referred to aspartial sums of
squares, are considered by many to be the most desirable; seeSearle(1987, Section
4.6). These SS cannot, in general, be computed by comparing model SS from sev-
eral models using PROC GLM’s parameterization. However, they can sometimes
be computed by reduction for methods that reparameterize to full rank, when such a
reparameterization effectively imposes Type III linear constraints on the parameters.
In PROC GLM, they are computed by constructing a hypothesis matrixL and then
computing the SS associated with the hypothesisLβ = 0. As long as there are no
missing cells in the design, Type III and Type IV SS are the same.

These are properties of Type III and Type IV SS:

• The hypothesis for an effect does not involve parameters of other effects except
for containing effects (which it must involve to be estimable).

• The hypotheses to be tested are invariant to the ordering of effects in the model.
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• The hypotheses are the same hypotheses that are tested if there are no missing
cells. They are not functions of cell counts.

• The SS do not generally add up to the model SS and, in some cases, can exceed
the model SS.

The SS are constructed from the general form of estimable functions. Type III and
Type IV tests are different only if the design has missing cells. In this case, the Type
III tests have an orthogonality property, while the Type IV tests have a balancing
property. These properties are discussed inChapter 11, “The Four Types of Estimable
Functions.” For this example, since the data contains observations for all pairs of
levels of A and B, Type IV tests are identical to the Type III tests that are shown in
Figure 32.12. (This combines tables from several pages of output.)

The GLM Procedure

Type III Estimable Functions

-------------Coefficients-------------
Effect a b a*b

Intercept 0 0 0

a 1 L2 0 0
a 2 L3 0 0
a 3 -L2-L3 0 0

b 1 0 L5 0
b 2 0 -L5 0

a*b 1 1 0.5*L2 0.3333*L5 L7
a*b 1 2 0.5*L2 -0.3333*L5 -L7
a*b 2 1 0.5*L3 0.3333*L5 L9
a*b 2 2 0.5*L3 -0.3333*L5 -L9
a*b 3 1 -0.5*L2-0.5*L3 0.3333*L5 -L7-L9
a*b 3 2 -0.5*L2-0.5*L3 -0.3333*L5 L7+L9

The GLM Procedure

Dependent Variable: y

Source DF Type III SS Mean Square F Value Pr > F

a 2 479.1078571 239.5539286 114.28 0.0003
b 1 9.4556250 9.4556250 4.51 0.1009
a*b 2 15.7307143 7.8653571 3.75 0.1209

Figure 32.12. Type III Estimable Functions and Associated Tests



Absorption � 1799

Absorption

Absorption is a computational technique used to reduce computing resource needs
in certain cases. The classic use of absorption occurs when a blocking factor with a
large number of levels is a term in the model.

For example, the statements

proc glm;
absorb herd;
class a b;
model y=a b a*b;

run;

are equivalent to

proc glm;
class herd a b;
model y=herd a b a*b;

run;

The exception to the previous statements is that the Type II, Type III, or Type IV SS
for HERD are not computed when HERD is absorbed.

The algorithm for absorbing variables is similar to the one used by the NESTED
procedure for computing a nested analysis of variance. As each new row of[X|Y ]
(corresponding to the nonabsorbed independent effects and the dependent variables)
is constructed, it is adjusted for the absorbed effects in a Type I fashion. The effi-
ciency of the absorption technique is due to the fact that this adjustment can be done
in one pass of the data and without solving any linear equations, assuming that the
data have been sorted by the absorbed variables.

Several effects can be absorbed at one time. For example, these statements

proc glm;
absorb herd cow;
class a b;
model y=a b a*b;

run;

are equivalent to

proc glm;
class herd cow a b;
model y=herd cow(herd) a b a*b;

run;
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When you use absorption, the size of theX′X matrix is a function only of the effects
in the MODEL statement. The effects being absorbed do not contribute to the size of
theX′X matrix.

For the preceding example,a andb can be absorbed:

proc glm;
absorb a b;
class herd cow;
model y=herd cow(herd);

run;

Although the sources of variation in the results are listed as

a b(a) herd cow(herd)

all types of estimable functions forherd andcow(herd) are free ofa, b, anda*b
parameters.

To illustrate the savings in computing using the ABSORB statement, PROC GLM is
run on generated data with 1147 degrees of freedom in the model with the following
statements:

data a;
do herd=1 to 40;

do cow=1 to 30;
do treatment=1 to 3;

do rep=1 to 2;
y = herd/5 + cow/10 + treatment + rannor(1);
output;

end;
end;

end;
end;

proc glm;
class herd cow treatment;
model y=herd cow(herd) treatment;

run;

This analysis would have required over 6 megabytes of memory for theX′X matrix
had PROC GLM solved it directly. However, in the following statements, the GLM
procedure needs only a4× 4 matrix for the intercept and treatment because the other
effects are absorbed.

proc glm;
absorb herd cow;
class treatment;
model y = treatment;

run;
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These statements produce the results shown inFigure 32.13.

The GLM Procedure

Class Level Information

Class Levels Values

treatment 3 1 2 3

Number of Observations Read 7200
Number of Observations Used 7200

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1201 49465.40242 41.18685 41.57 <.0001

Error 5998 5942.23647 0.99070

Corrected Total 7199 55407.63889

R-Square Coeff Var Root MSE y Mean

0.892754 13.04236 0.995341 7.631598

Source DF Type I SS Mean Square F Value Pr > F

herd 39 38549.18655 988.44068 997.72 <.0001
cow(herd) 1160 6320.18141 5.44843 5.50 <.0001
treatment 2 4596.03446 2298.01723 2319.58 <.0001

Source DF Type III SS Mean Square F Value Pr > F

treatment 2 4596.034455 2298.017228 2319.58 <.0001

Figure 32.13. Absorption of Effects

Specification of ESTIMATE Expressions

Consider the model

E(Y ) = β0 + β1x1 + β2x2 + β3x3.

The corresponding MODEL statement for PROC GLM is

model y=x1 x2 x3;
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To estimate the difference between the parameters forx1 andx2,

β1 − β2 = ( 0 1 −1 0 )β, whereβ = ( β0 β1 β2 β3 )′

you can use the following ESTIMATE statement:

estimate ’B1-B2’ x1 1 x2 -1;

To predicty atx1 = 1, x2 = 0, andx3 = −2, you can estimate

β0 + β1 − 2β3 = ( 1 1 0 −2 )β

with the following ESTIMATE statement:

estimate ’B0+B1-2B3’ intercept 1 x1 1 x3 -2;

Now consider models involving class variables such as

model y=A B A*B;

with the associated parameters:

(
µ α1 α2 α3 β1 β2 γ11 γ12 γ21 γ22 γ31 γ32

)
The LS-mean for the first level ofA is Lβ, where

L = ( 1 | 1 0 0 | 0.5 0.5 | 0.5 0.5 0 0 0 0 )

You can estimate this with the following ESTIMATE statement:

estimate ’LS-mean(A1)’ intercept 1 A 1 B 0.5 0.5 A*B 0.5 0.5;

Note in this statement that only one element ofL is specified following theA effect,
even thoughA has three levels. Whenever the list of constants following an effect
name is shorter than the effect’s number of levels, zeros are used as the remaining
constants. (If the list of constants is longer than the number of levels for the effect,
the extra constants are ignored, and a warning message is displayed.)

To estimate theA linear effect in the preceding model, assuming equally spaced levels
for A, you can use the followingL:

L = ( 0 | −1 0 1 | 0 0 | −0.5 −0.5 0 0 0.5 0.5 )



Specification of ESTIMATE Expressions � 1803

The ESTIMATE statement for thisL is written as

estimate ’A Linear’ A -1 0 1;

If you do not specify the elements ofL for an effect that contains a specified effect,
then the elements of the specified effect are equally distributed over the correspond-
ing levels of the higher-order effect. In addition, if you specify the intercept in an
ESTIMATE or CONTRAST statement, it is distributed over all classification effects
that are not contained by any other specified effect. The distribution of lower-order
coefficients to higher-order effect coefficients follows the same general rules as in the
LSMEANS statement, and it is similar to that used to construct Type IV tests. In the
previous example, the−1 associated withα1 is divided by the numbern1j of γ1j

parameters; then eachγ1j coefficient is set to−1/n1j . The 1 associated withα3 is
distributed among theγ3j parameters in a similar fashion. In the event that an unspec-
ified effect contains several specified effects, only that specified effect with the most
factors in common with the unspecified effect is used for distribution of coefficients
to the higher-order effect.

Numerous syntactical expressions for the ESTIMATE statement were considered,
including many that involved specifying the effect and level information associated
with each coefficient. For models involving higher-level effects, the requirement of
specifying level information can lead to very bulky specifications. Consequently, the
simpler form of the ESTIMATE statement described earlier was implemented. The
syntax of this ESTIMATE statement puts a burden on you to know a priori the order
of the parameter list associated with each effect. You can use the ORDER= option
in the PROC GLM statement to ensure that the levels of the classification effects are
sorted appropriately.

Note: If you use the ESTIMATE statement with unspecified effects, use theE option
to make sure that the actualL constructed by the preceding rules is the one you
intended.

A Check for Estimability

EachL is checked for estimability using the relationship:L = LH whereH =
(X′X)−X′X. TheL vector is declared nonestimable, if for anyi

ABS(Li − (LH)i) >

{
ε if Li = 0 or

ε× ABS(Li) otherwise

whereε = 10−4 by default; you can change this with the SINGULAR= option.
Continued fractions (like 1/3) should be specified to at least six decimal places, or the
DIVISOR parameter should be used.
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Comparing Groups

An important task in analyzing data with classification effects is to estimate the typ-
ical response for each level of a given effect; often, you also want to compare these
estimates to determine which levels are equivalent in terms of the response. You can
perform this task in two ways with the GLM procedure: with direct, arithmetic group
means; and with so-calledleast-squares means(LS-means).

Means Versus LS-Means

Computing and comparing arithmetic means—either simple or weighted within-
group averages of the input data—is a familiar and well-studied statistical process.
This is the right approach to summarizing and comparing groups for one-way and
balanced designs. However, in unbalanced designs with more than one effect, the
arithmetic mean for a group may not accurately reflect the “typical” response for that
group, since it does not take other effects into account.

For example, consider the following analysis of an unbalanced two-way design:

data twoway;
input Treatment Block y @@;
datalines;

1 1 17 1 1 28 1 1 19 1 1 21 1 1 19
1 2 43 1 2 30 1 2 39 1 2 44 1 2 44
1 3 16
2 1 21 2 1 21 2 1 24 2 1 25
2 2 39 2 2 45 2 2 42 2 2 47
2 3 19 2 3 22 2 3 16
3 1 22 3 1 30 3 1 33 3 1 31
3 2 46
3 3 26 3 3 31 3 3 26 3 3 33 3 3 29 3 3 25
;

title1 "Unbalanced Two-way Design";
ods select ModelANOVA Means LSMeans;
proc glm data=twoway;

class Treatment Block;
model y = Treatment|Block;

means Treatment;
lsmeans Treatment;

run;
ods select all;

The ANOVA results are shown inFigure 32.14.
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Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

Treatment 2 8.060606 4.030303 0.24 0.7888
Block 2 2621.864124 1310.932062 77.95 <.0001
Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Source DF Type III SS Mean Square F Value Pr > F

Treatment 2 266.130682 133.065341 7.91 0.0023
Block 2 1883.729465 941.864732 56.00 <.0001
Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Figure 32.14. ANOVA Results for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure

Level of --------------y--------------
Treatment N Mean Std Dev

1 11 29.0909091 11.5104695
2 11 29.1818182 11.5569735
3 11 30.1818182 6.3058414

Figure 32.15. Treatment Means for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure
Least Squares Means

Treatment y LSMEAN

1 25.6000000
2 28.3333333
3 34.4444444

Figure 32.16. Treatment LS-means for Unbalanced Two-Way Design

No matter how you look at it, this data exhibits a strong effect due to the blocks (F -
testp < 0.0001) and no significant interaction between treatments and blocks (F -test
p > 0.7). But the lack of balance affects how the treatment effect is interpreted: in
a main-effects-only model, there are no significant differences between the treatment
means themselves (Type IF -testp > 0.7), but there are highly significant differences
between the treatment means corrected for the block effects (Type IIIF -testp <
0.01).

LS-means are, in effect, within-group means appropriately adjusted for the other ef-
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fects in the model. More precisely, they estimate the marginal means for a balanced
population (as opposed to the unbalanced design). For this reason, they are also called
estimated population marginal meansby Searle et al.(1980). In the same way that
the Type IF -test assesses differences between the arithmetic treatment means (when
the treatment effect comes first in the model), the Type IIIF -test assesses differences
between the LS-means. Accordingly, for the unbalanced two-way design, the dis-
crepancy between the Type I and Type III tests is reflected in the arithmetic treatment
means and treatment LS-means, as shown inFigure 32.15andFigure 32.16. See the
section“Construction of Least-Squares Means”on page 1820 for more on LS-means.

Note that, while the arithmetic means are always uncorrelated (under the usualas-
sumptionsfor analysis of variance; see page 1783), the LS-means may not be. This
fact complicates the problem of multiple comparisons for LS-means; see the follow-
ing section.

Multiple Comparisons

When comparing more than two means, an ANOVAF -test tells you whether the
means are significantly different from each other, but it does not tell you which
means differ from which other means. Multiple comparison procedures (MCPs), also
calledmean separation tests, give you more detailed information about the differ-
ences among the means. The goal in multiple comparisons is to compare the average
effects of three or more “treatments” (for example, drugs, groups of subjects) to de-
cide which treatments are better, which ones are worse, and by how much, while
controlling the probability of making an incorrect decision. A variety of multiple
comparison methods are available with the MEANS and LSMEANS statement in the
GLM procedure.

The following classification is due toHsu (1996). Multiple comparison procedures
can be categorized in two ways: by the comparisons they make and by the strength
of inference they provide. With respect to which comparisons are made, the GLM
procedure offers two types:

• comparisons between all pairs of means

• comparisons between a control and all other means

The strength of inference says what can be inferred about the structure of the means
when a test is significant; it is related to what type of error rate the MCP controls.
MCPs available in the GLM procedure provide one of the following types of infer-
ence, in order from weakest to strongest.

• Individual: differences between means, unadjusted for multiplicity

• Inhomogeneity: means are different

• Inequalities: which means are different

• Intervals: simultaneous confidence intervals for mean differences

Methods that control only individual error rates are not true MCPs at all. Methods that
yield the strongest level of inference, simultaneous confidence intervals, are usually
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preferred, since they enable you not only to say which means are different but also
to put confidence bounds onhow muchthey differ, making it easier to assess the
practical significance of a difference. They are also less likely to lead nonstatisticians
to the invalid conclusion that nonsignificantly different sample means imply equal
population means. Interval MCPs are available for both arithmetic means and LS-
means via the MEANS and LSMEANS statements, respectively.∗

Table 32.3andTable 32.4display MCPs available in PROC GLM for all pairwise
comparisons and comparisons with a control, respectively, along with associated
strength of inference and the syntax (when applicable) for both the MEANS and
the LSMEANS statements.

Table 32.3. Multiple Comparisons Procedures for All Pairwise Comparison
Strength of Syntax

Method Inference MEANS LSMEANS
Student’st Individual T PDIFF ADJUST=T
Duncan Individual DUNCAN
Student-Newman-Keuls Inhomogeneity SNK
REGWQ Inequalities REGWQ
Tukey-Kramer Intervals TUKEY PDIFF ADJUST=TUKEY
Bonferroni Intervals BON PDIFF ADJUST=BON
Sidak Intervals SIDAK PDIFF ADJUST=SIDAK
Scheffé Intervals SCHEFFE PDIFF ADJUST=SCHEFFE
SMM Intervals SMM PDIFF ADJUST=SMM
Gabriel Intervals GABRIEL
Simulation Intervals PDIFF ADJUST=SIMULATE

Table 32.4. Multiple Comparisons Procedures for Comparisons with a Control
Strength of Syntax

Method Inference MEANS LSMEANS
Student’st Individual PDIFF=CONTROL ADJUST=T
Dunnett Intervals DUNNETT PDIFF=CONTROL ADJUST=DUNNETT
Bonferroni Intervals PDIFF=CONTROL ADJUST=BON
Sidak Intervals PDIFF=CONTROL ADJUST=SIDAK
Scheffé Intervals PDIFF=CONTROL ADJUST=SCHEFFE
SMM Intervals PDIFF=CONTROL ADJUST=SMM
Simulation Intervals PDIFF=CONTROL ADJUST=SIMULATE

Note: One-sided Dunnett’s tests are also available from the MEANS statement with
the DUNNETTL and DUNNETTU options and from the LSMEANS statement with
PDIFF=CONTROLL and PDIFF=CONTROLU.

Details of these multiple comparison methods are given in the following sections.

Pairwise Comparisons

All the methods discussed in this section depend on the standardized pairwise differ-
encestij = (ȳi − ȳj)/σ̂ij , where

∗The Duncan-Waller method does not fit into the preceding scheme, since it is based on the Bayes
risk rather than any particular error rate.
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• i andj are the indices of two groups

• ȳi andȳj are the means or LS-means for groupsi andj

• σ̂ij is the square-root of the estimated variance ofȳi−ȳj . For simple arithmetic
means,σ̂2

ij = s2(1/ni + 1/nj), whereni andnj are the sizes of groupsi
and j, respectively, ands2 is the mean square for error, withν degrees of
freedom. For weighted arithmetic means,σ̂2

ij = s2(1/wi + 1/wj), wherewi

andwj are the sums of the weights in groupsi andj, respectively. Finally,
for LS-means defined by the linear combinationsl′ib andl′jb of the parameter
estimates,̂σ2

ij = s2l′i(X
′X)−lj .

Furthermore, all of the methods are discussed in terms of significance tests of the
form

|tij | ≥ c(α)

wherec(α) is some constant depending on the significance level. Such tests can be
inverted to form confidence intervals of the form

(ȳi − ȳj)− σ̂ijc(α) ≤ µi − µj ≤ (ȳi − ȳj) + σ̂ijc(α)

The simplest approach to multiple comparisons is to do at test on every pair of means
(the T option in the MEANS statement, ADJUST=T in the LSMEANS statement).
For the ith andjth means, you can reject the null hypothesis that the population
means are equal if

|tij | ≥ t(α; ν)

whereα is the significance level,ν is the number of error degrees of freedom, and
t(α; ν) is the two-tailed critical value from a Student’st distribution. If the cell sizes
are all equal to, say,n, the preceding formula can be rearranged to give

|ȳi − ȳj | ≥ t(α; ν)s

√
2
n

the value of the right-hand side being Fisher’s least significant difference (LSD).

There is a problem with repeatedt tests, however. Suppose there are ten means and
eacht test is performed at the 0.05 level. There are 10(10-1)/2=45 pairs of means
to compare, each with a 0.05 probability of a type 1 error (a false rejection of the
null hypothesis). The chance of making at least one type 1 error is much higher than
0.05. It is difficult to calculate the exact probability, but you can derive a pessimistic
approximation by assuming that the comparisons are independent, giving an upper
bound to the probability of making at least one type 1 error (the experimentwise error
rate) of

1− (1− 0.05)45 = 0.90
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The actual probability is somewhat less than 0.90, but as the number of means in-
creases, the chance of making at least one type 1 error approaches 1.

If you decide to control the individual type 1 error rates for each comparison, you
are controlling the individual or comparisonwise error rate. On the other hand, if
you want to control the overall type 1 error rate for all the comparisons, you are con-
trolling the experimentwise error rate. It is up to you to decide whether to control
the comparisonwise error rate or the experimentwise error rate, but there are many
situations in which the experimentwise error rate should be held to a small value.
Statistical methods for comparing three or more means while controlling the proba-
bility of making at least one type 1 error are calledmultiple comparisons procedures.

It has been suggested that the experimentwise error rate can be held to theα level by
performing the overall ANOVAF -test at theα level and making further comparisons
only if the F -test is significant, as in Fisher’s protected LSD. This assertion is false
if there are more than three means (Einot and Gabriel1975). Consider again the
situation with ten means. Suppose that one population mean differs from the others
by such a sufficiently large amount that the power (probability of correctly rejecting
the null hypothesis) of theF -test is near 1 but that all the other population means are
equal to each other. There will be9(9 − 1)/2 = 36 t tests of true null hypotheses,
with an upper limit of 0.84 on the probability of at least one type 1 error. Thus,
you must distinguish between the experimentwise error rate under the complete null
hypothesis, in which all population means are equal, and the experimentwise error
rate under a partial null hypothesis, in which some means are equal but others differ.
The following abbreviations are used in the discussion:

CER comparisonwise error rate

EERC experimentwise error rate under the complete null hypothesis

MEER maximum experimentwise error rate under any complete or partial null hy-
pothesis

These error rates are associated with the differentstrengths of inferencediscussed on
page 1806: individual tests control the CER; tests for inhomogeneity of means control
the EERC; tests that yield confidence inequalities or confidence intervals control the
MEER. A preliminaryF -test controls the EERC but not the MEER.

You can control the MEER at theα level by setting the CER to a sufficiently small
value. The Bonferroni inequality (Miller 1981) has been widely used for this purpose.
If

CER =
α

c

wherec is the total number of comparisons, then the MEER is less thanα. Bonferroni
t tests (the BON option in the MEANS statement, ADJUST=BON in the LSMEANS
statement) withMEER < α declare two means to be significantly different if

|tij | ≥ t(ε; ν)
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where

ε =
2α

k(k − 1)

for comparison ofk means.

Sidak(1967) has provided a tighter bound, showing that

CER = 1− (1− α)1/c

also ensures thatMEER ≤ α for any set ofc comparisons. A Sidakt test (Games
1977), provided by the SIDAK option, is thus given by

|tij | ≥ t(ε; ν)

where

ε = 1− (1− α)
2

k(k−1)

for comparison ofk means.

You can use the Bonferroni additive inequality and the Sidak multiplicative inequality
to control the MEER for any set of contrasts or other hypothesis tests, not just pair-
wise comparisons. The Bonferroni inequality can provide simultaneous inferences in
any statistical application requiring tests of more than one hypothesis. Other meth-
ods discussed in this section for pairwise comparisons can also be adapted for general
contrasts (Miller 1981).

Scheffé(1953; 1959) proposes another method to control the MEER for any set of
contrasts or other linear hypotheses in the analysis of linear models, including pair-
wise comparisons, obtained with the SCHEFFE option. Two means are declared
significantly different if

|tij | ≥
√

(k − 1)F (α; k − 1, ν)

whereF (α; k − 1, ν) is theα-level critical value of anF distribution withk − 1
numerator degrees of freedom andν denominator degrees of freedom.

Scheffé’s test is compatible with the overall ANOVAF -test in that Scheffé’s method
never declares a contrast significant if the overallF -test is nonsignificant. Most other
multiple comparison methods can find significant contrasts when the overallF -test
is nonsignificant and, therefore, suffer a loss of power when used with a preliminary
F -test.

Scheffé’s method may be more powerful than the Bonferroni or Sidak methods if
the number of comparisons is large relative to the number of means. For pairwise
comparisons, Sidakt tests are generally more powerful.
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Tukey (1952; 1953) proposes a test designed specifically for pairwise comparisons
based on the studentized range, sometimes called the “honestly significant difference
test,” that controls the MEER when the sample sizes are equal.Tukey (1953) and
Kramer (1956) independently propose a modification for unequal cell sizes. The
Tukey or Tukey-Kramer method is provided by the TUKEY option in the MEANS
statement and the ADJUST=TUKEY option in the LSMEANS statement. This
method has fared extremely well in Monte Carlo studies (Dunnett1980). In addition,
Hayter (1984) gives a proof that the Tukey-Kramer procedure controls the MEER
for means comparisons, andHayter(1989) describes the extent to which the Tukey-
Kramer procedure has been proven to control the MEER for LS-means comparisons.
The Tukey-Kramer method is more powerful than the Bonferroni, Sidak, or Scheffé
methods for pairwise comparisons. Two means are considered significantly different
by the Tukey-Kramer criterion if

|tij | ≥ q(α; k, ν)

whereq(α; k, ν) is theα-level critical value of a studentized range distribution ofk
independent normal random variables withν degrees of freedom.

Hochberg(1974) devised a method (the GT2 or SMM option) similar to Tukey’s,
but it uses the studentized maximum modulus instead of the studentized range and
employsSidak(1967) uncorrelatedt inequality. It is proven to hold the MEER at a
level not exceedingα with unequal sample sizes. It is generally less powerful than
the Tukey-Kramer method and always less powerful than Tukey’s test for equal cell
sizes. Two means are declared significantly different if

|tij | ≥ m(α; c, ν)

wherem(α; c, ν) is theα-level critical value of the studentized maximum modulus
distribution ofc independent normal random variables withν degrees of freedom and
c = k(k − 1)/2.

Gabriel (1978) proposes another method (the GABRIEL option) based on the stu-
dentized maximum modulus. This method is applicable only to arithmetic means. It
rejects if

|ȳi − ȳj |

s

(
1√
2ni

+ 1√
2nj

) ≥ m(α; k, ν)

For equal cell sizes, Gabriel’s test is equivalent to Hochberg’s GT2 method. For
unequal cell sizes, Gabriel’s method is more powerful than GT2 but may become
liberal with highly disparate cell sizes (refer also toDunnett(1980)). Gabriel’s test is
the only method for unequal sample sizes that lends itself to a graphical representation
as intervals around the means. Assumingȳi > ȳj , you can rewrite the preceding
inequality as

ȳi −m(α; k, ν)
s√
2ni

≥ ȳj + m(α; k, ν)
s√
2nj
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The expression on the left does not depend onj, nor does the expression on the
right depend oni. Hence, you can form what Gabriel calls an(l, u)-interval around
each sample mean and declare two means to be significantly different if their(l, u)-
intervals do not overlap. SeeHsu (1996, section 5.2.1.1) for a discussion of other
methods of graphically representing all pair-wise comparisons.

Comparing All Treatments to a Control

One special case of means comparison is that in which the only comparisons that need
to be tested are between a set of new treatments and a single control. In this case, you
can achieve better power by using a method that is restricted to test only comparisons
to the single control mean.Dunnett (1955) proposes a test for this situation that
declares a mean significantly different from the control if

|ti0| ≥ d(α; k, ν, ρ1, . . . , ρk−1)

where ȳ0 is the control mean andd(α; k, ν, ρ1, . . . , ρk−1) is the critical value of
the “many-to-onet statistic” (Miller 1981; Krishnaiah and Armitage1966) for k
means to be compared to a control, withν error degrees of freedom and correlations
ρ1, . . . , ρk−1, ρi = ni/(n0 + ni). The correlation terms arise because each of the
treatment means is being compared to the same control. Dunnett’s test holds the
MEER to a level not exceeding the statedα.

Approximate and Simulation-based Methods

Both Tukey’s and Dunnett’s tests are based on the same general quantile calculation:

qt(α, ν,R) = {q 3 P (max(|t1|, . . . , |tn|) > q) = α}

where theti have a joint multivariatet distribution withν degrees of freedom and
correlation matrixR. In general, evaluatingqt(α, ν,R) requires repeated numerical
calculation of an(n + 1)-fold integral. This is usually intractable, but the problem
reduces to a feasible 2-fold integral whenR has a certain symmetry in the case of
Tukey’s test, and afactor analytic structure(cf. Hsu1992) in the case of Dunnett’s
test. TheR matrix has the required symmetry for exact computation of Tukey’s test
if the tis are studentized differences between

• k(k − 1)/2 pairs ofk uncorrelated means with equal variances—that is, equal
sample sizes

• k(k−1)/2 pairs ofk LS-means from avariance-balanceddesign (for example,
a balanced incomplete block design)

Refer toHsu(1992; 1996) for more information. TheR matrix has the factor analytic
structure for exact computation of Dunnett’s test if thetis are studentized differences
between

• k−1 means and a control mean, all uncorrelated. (Dunnett’s one-sided methods
depend on a similar probability calculation, without the absolute values.) Note
that it is not required that the variances of the means (that is, the sample sizes)
be equal.
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• k−1 LS-means and a control LS-mean from either avariance-balanceddesign,
or a design in which the other factors areorthogonalto the treatment factor (for
example, a randomized block design with proportional cell frequencies).

However, other important situations that donot result in a correlation matrixR that
has the structure for exact computation include

• all pairwise differences with unequal sample sizes

• differences between LS-means in many unbalanced designs

In these situations, exact calculation ofqt(α, ν,R) is intractable in general. Most of
the preceding methods can be viewed as using various approximations forqt(α, ν,R).
When the sample sizes are unequal, the Tukey-Kramer test is equivalent to another
approximation. For comparisons with a control when the correlationR does not have
a factor analytic structure,Hsu (1992) suggests approximatingR with a matrixR∗

that does have such a structure and correspondingly approximatingqt(α, ν,R) with
qt(α, ν,R∗). When you request Dunnett’s test for LS-means (the PDIFF=CONTROL
and ADJUST=DUNNETT options), the GLM procedure automatically uses Hsu’s
approximation when appropriate.

Finally, Edwards and Berry(1987) suggest calculatingqt(α, ν,R) by simulation.
Multivariate t vectors are sampled from a distribution with the appropriateν andR
parameters, andEdwards and Berry(1987) suggest estimatingqt(α, ν,R) by q̂, theα
percentile of the observed values ofmax(|t1|, . . . , |tn|). Sufficient samples are gen-
erated for the trueP (max(|t1|, . . . , |tn|) > q̂) to be within a certain accuracy radius
γ of α with accuracy confidence100(1 − ε). You can approximateqt(α, ν,R) by
simulation for comparisons between LS-means by specifying ADJUST=SIM (with
either PDIFF=ALL or PDIFF=CONTROL). By default,γ = 0.005 andε = 0.01,
so that the tail area of̂q is within 0.005 ofα with 99% confidence. You can use the
ACC= and EPS= options with ADJUST=SIM to resetγ andε, or you can use the
NSAMP= option to set the sample size directly. You can also control the random
number sequence with the SEED= option.

Hsu and Nelson(1998) suggest a more accurate simulation method for estimating
qt(α, ν,R), using a control variate adjustment technique. The same independent,
standardized normal variates that are used to generate multivariatet vectors from a
distribution with the appropriateν andR parameters are also used to generate multi-
variatet vectors from a distribution for which the exact value ofqt(α, ν,R) is known.
max(|t1|, . . . , |tn|) for the second sample is used as a control variate for adjusting
the quantile estimate based on the first sample; refer toHsu and Nelson(1998) for
more details. The control variate adjustment has the drawback that it takes some-
what longer than the crude technique ofEdwards and Berry(1987), but it typically
yields an estimate that is many times more accurate. In most cases, if you are using
ADJUST=SIM, then you should specify ADJUST=SIM(CVADJUST). You can also
specify ADJUST=SIM(CVADJUST REPORT) to display a summary of the simula-
tion that includes, among other things, the actual accuracy radiusγ, which should be
substantially smaller than the target accuracy radius (0.005 by default).
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Multiple-Stage Tests

You can use all of the methods discussed so far to obtain simultaneous confidence
intervals (Miller 1981). By sacrificing the facility for simultaneous estimation, you
can obtain simultaneous tests with greater power using multiple-stage tests (MSTs).
MSTs come in both step-up and step-down varieties (Welsch1977). The step-down
methods, which have been more widely used, are available in SAS/STAT software.

Step-down MSTs first test the homogeneity of all of the means at a levelγk. If the
test results in a rejection, then each subset ofk − 1 means is tested at levelγk−1;
otherwise, the procedure stops. In general, if the hypothesis of homogeneity of a set
of p means is rejected at theγp level, then each subset ofp− 1 means is tested at the
γp−1 level; otherwise, the set ofp means is considered not to differ significantly and
none of its subsets are tested. The many varieties of MSTs that have been proposed
differ in the levelsγp and the statistics on which the subset tests are based. Clearly,
the EERC of a step-down MST is not greater thanγk, and the CER is not greater than
γ2, but the MEER is a complicated function ofγp, p = 2, . . . , k.

With unequal cell sizes, PROC GLM uses the harmonic mean of the cell sizes as the
common sample size. However, since the resulting operating characteristics can be
undesirable, MSTs are recommended only for the balanced case. When the sample
sizes are equal and if the range statistic is used, you can arrange the means in as-
cending or descending order and test only contiguous subsets. But if you specify the
F statistic, this shortcut cannot be taken. For this reason, only range-based MSTs
are implemented. It is common practice to report the results of an MST by writing
the means in such an order and drawing lines parallel to the list of means spanning
the homogeneous subsets. This form of presentation is also convenient for pairwise
comparisons with equal cell sizes.

The best known MSTs are the Duncan (the DUNCAN option) and Student-Newman-
Keuls (the SNK option) methods (Miller 1981). Both use the studentized range statis-
tic and, hence, are calledmultiple range tests. Duncan’s method is often called the
“new” multiple range test despite the fact that it is one of the oldest MSTs in current
use.

The Duncan and SNK methods differ in theγp values used. For Duncan’s method,
they are

γp = 1− (1− α)p−1

whereas the SNK method uses

γp = α

Duncan’s method controls the CER at theα level. Its operating characteristics ap-
pear similar to those of Fisher’s unprotected LSD or repeatedt tests at levelα
(Petrinovich and Hardyck1969). Since repeatedt tests are easier to compute, easier
to explain, and applicable to unequal sample sizes, Duncan’s method is not recom-
mended. Several published studies (for example,Carmer and Swanson(1973)) have
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claimed that Duncan’s method is superior to Tukey’s because of greater power with-
out considering that the greater power of Duncan’s method is due to its higher type 1
error rate (Einot and Gabriel1975).

The SNK method holds the EERC to theα level but does not control the MEER (Einot
and Gabriel1975). Consider ten population means that occur in five pairs such that
means within a pair are equal, but there are large differences between pairs. If you
make the usual sampling assumptions and also assume that the sample sizes are very
large, all subset homogeneity hypotheses for three or more means are rejected. The
SNK method then comes down to five independent tests, one for each pair, each at
theα level. Lettingα be 0.05, the probability of at least one false rejection is

1− (1− 0.05)5 = 0.23

As the number of means increases, the MEER approaches 1. Therefore, the SNK
method cannot be recommended.

A variety of MSTs that control the MEER have been proposed, but these methods are
not as well known as those of Duncan and SNK. An approach developed byRyan
(1959; 1960), Einot and Gabriel(1975), andWelsch(1977) sets

γp =

{
1− (1− α)p/k for p < k − 1

α for p ≥ k − 1

You can use range statistics, leading to what is called the REGWQ method after
the authors’ initials. If you assume that the sample means have been arranged in
descending order from̄y1 throughȳk, the homogeneity of means̄yi, . . . , ȳj , i < j, is
rejected by REGWQ if

ȳi − ȳj ≥ q(γp; p, ν)
s√
n

wherep = j − i + 1 and the summations are overu = i, . . . , j (Einot and Gabriel
1975). To ensure that the MEER is controlled, the current implementation checks
whetherq(γp; p, ν) is monotonically increasing inp. If not, then a set of critical
values that are increasing inp is substituted instead.

REGWQ appears to be the most powerful step-down MST in the current literature
(for example,Ramsey1978). Use of a preliminaryF -test decreases the power of
all the other multiple comparison methods discussed previously except for Scheffé’s
test.

Bayesian Approach

Waller and Duncan(1969) andDuncan(1975) take an approach to multiple com-
parisons that differs from all the methods previously discussed in minimizing the
Bayes risk under additive loss rather than controlling type 1 error rates. For each
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pair of population meansµi andµj , null (H ij
0 ) and alternative(H ij

a ) hypotheses are
defined:

H ij
0 : µi − µj ≤ 0

H ij
a : µi − µj > 0

For anyi, j pair, letd0 indicate a decision in favor ofH ij
0 andda indicate a decision

in favor of H ij
a , and letδ = µi − µj . The loss function for the decision on thei, j

pair is

L(d0 | δ) =

{
0 if δ ≤ 0

δ if δ > 0

L(da | δ) =

{
−kδ if δ ≤ 0

0 if δ > 0

wherek represents a constant that you specify rather than the number of means.
The loss for the joint decision involving all pairs of means is the sum of the losses
for each individual decision. The population means are assumed to have a normal
prior distribution with unknown variance, the logarithm of the variance of the means
having a uniform prior distribution. For thei, j pair, the null hypothesis is rejected if

ȳi − ȳj ≥ tBs

√
2
n

wheretB is the Bayesiant value (Waller and Kemp1976) depending onk, theF
statistic for the one-way ANOVA, and the degrees of freedom forF . The value oftB
is a decreasing function ofF , so the Waller-Duncan test (specified by the WALLER
option) becomes more liberal asF increases.

Recommendations

In summary, if you are interested in several individual comparisons and are not con-
cerned about the effects of multiple inferences, you can use repeatedt tests or Fisher’s
unprotected LSD. If you are interested in all pairwise comparisons or all comparisons
with a control, you should use Tukey’s or Dunnett’s test, respectively, in order to make
the strongest possible inferences. If you have weaker inferential requirements and,
in particular, if you don’t want confidence intervals for the mean differences, you
should use the REGWQ method. Finally, if you agree with the Bayesian approach
and Waller and Duncan’s assumptions, you should use the Waller-Duncan test.

Interpretation of Multiple Comparisons

When you interpret multiple comparisons, remember that failure to reject the hypoth-
esis that two or more means are equal should not lead you to conclude that the popu-
lation means are, in fact, equal. Failure to reject the null hypothesis implies only that
the difference between population means, if any, is not large enough to be detected
with the given sample size. A related point is that nonsignificance is nontransitive:
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that is, given three sample means, the largest and smallest may be significantly dif-
ferent from each other, while neither is significantly different from the middle one.
Nontransitive results of this type occur frequently in multiple comparisons.

Multiple comparisons can also lead to counter-intuitive results when the cell sizes
are unequal. Consider four cells labeled A, B, C, and D, with sample means in the
order A>B>C>D. If A and D each have two observations, and B and C each have
10,000 observations, then the difference between B and C may be significant, while
the difference between A and D is not.

Simple Effects

Suppose you use the following statements to fit a full factorial model to a two-way
design:

data twoway;
input A B Y @@;
datalines;

1 1 10.6 1 1 11.0 1 1 10.6 1 1 11.3
1 2 -0.2 1 2 1.3 1 2 -0.2 1 2 0.2
1 3 0.1 1 3 0.4 1 3 -0.4 1 3 1.0
2 1 19.7 2 1 19.3 2 1 18.5 2 1 20.4
2 2 -0.2 2 2 0.5 2 2 0.8 2 2 -0.4
2 3 -0.9 2 3 -0.1 2 3 -0.2 2 3 -1.7
3 1 29.7 3 1 29.6 3 1 29.0 3 1 30.2
3 2 1.5 3 2 0.2 3 2 -1.5 3 2 1.3
3 3 0.2 3 3 0.4 3 3 -0.4 3 3 -2.2
;
proc glm data=twoway;

class A B;
model Y = A B A*B;

run;

Partial results for the analysis of variance are shown inFigure 32.17. The Type I and
Type III results are the same because this is a balanced design.

The GLM Procedure

Dependent Variable: Y

Source DF Type I SS Mean Square F Value Pr > F

A 2 219.905000 109.952500 165.11 <.0001
B 2 3206.101667 1603.050833 2407.25 <.0001
A*B 4 487.103333 121.775833 182.87 <.0001

Source DF Type III SS Mean Square F Value Pr > F

A 2 219.905000 109.952500 165.11 <.0001
B 2 3206.101667 1603.050833 2407.25 <.0001
A*B 4 487.103333 121.775833 182.87 <.0001

Figure 32.17. Two-way Design with Significant Interaction
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The interactionA*B is significant, indicating that the effect ofA depends on the level
of B. In some cases, you may be interested in looking at the differences between
predicted values acrossA for different levels ofB. Winer (1971) calls this thesimple
effectsof A. You can compute simple effects with the LSMEAN statement by spec-
ifying the SLICE= option. In this case, since the GLM procedure is interactive, you
can compute the simple effects ofA by submitting the following statements after the
preceding statements.

lsmeans A*B / slice=B;
run;

The results are shownFigure 32.18. Note thatA has a significant effect forB=1 but
not forB=2 andB=3.

The GLM Procedure
Least Squares Means

A B Y LSMEAN

1 1 10.8750000
1 2 0.2750000
1 3 0.2750000
2 1 19.4750000
2 2 0.1750000
2 3 -0.7250000
3 1 29.6250000
3 2 0.3750000
3 3 -0.5000000

The GLM Procedure
Least Squares Means

A*B Effect Sliced by B for Y

Sum of
B DF Squares Mean Square F Value Pr > F

1 2 704.726667 352.363333 529.13 <.0001
2 2 0.080000 0.040000 0.06 0.9418
3 2 2.201667 1.100833 1.65 0.2103

Figure 32.18. Interaction LS-means and Simple Effects

Homogeneity of Variance in One-Way Models

One of the usualassumptionsfor the GLM procedure is that the underlying errors
are all uncorrelated with homogeneous variances (see page 1783). You can test this
assumption in PROC GLM by using the HOVTEST option in the MEANS statement,
requesting ahomogeneity of variancetest. This section discusses the computational
details behind these tests. Note that the GLM procedure allows homogeneity of vari-
ance testing for simple one-way models only. Homogeneity of variance testing for
more complex models is a subject of current research.
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Bartlett(1937) proposes a test for equal variances that is a modification of the normal-
theory likelihood ratio test (the HOVTEST=BARTLETT option). While Bartlett’s
test has accurate Type I error rates and optimal power when the underlying distribu-
tion of the data is normal, it can be very inaccurate if that distribution is even slightly
nonnormal (Box 1953). Therefore, Bartlett’s test is not recommended for routine use.

An approach that leads to tests that are much more robust to the underlying distribu-
tion is to transform the original values of the dependent variable to derive adispersion
variableand then to perform analysis of variance on this variable. The significance
level for the test of homogeneity of variance is thep-value for the ANOVAF-test on
the dispersion variable. All of the homogeneity of variance tests available in PROC
GLM except Bartlett’s use this approach.

Levene’s test (Levene1960) is widely considered to be the standard homogeneity of
variance test (the HOVTEST=LEVENE option). Levene’s test is of the dispersion-
variable-ANOVA form discussed previously, where the dispersion variable is either

z2
ij = (yij − ȳi)2 (TYPE=SQUARE, the default)

zij = |yij − ȳi| (TYPE=ABS)

O’Brien (1979) proposes a test (HOVTEST=OBRIEN) that is basically a modifica-
tion of Levene’sz2

ij , using the dispersion variable

zW
ij =

(W + ni − 2)ni(yij − ȳi)2 −W (ni − 1)σ2
i

(ni − 1)(ni − 2)

whereni is the size of theith group andσ2
i is its sample variance. You can use

the W= option in parentheses to tune O’Brien’szW
ij dispersion variable to match the

suspected kurtosis of the underlying distribution. The choice of the value of the W=
option is rarely critical. By default, W=0.5, as suggested byO’Brien (1979; 1981).

Finally, Brown and Forsythe(1974) suggest using the absolute deviations from the
groupmedians:

zBF
ij = |yij −mi|

wheremi is the median of theith group. You can use the HOVTEST=BF option to
specify this test.

Simulation results (Conover et al.1981; Olejnik and Algina1987) show that, while
all of these ANOVA-based tests are reasonably robust to the underlying distribution,
the Brown-Forsythe test seems best at providing power to detect variance differences
while protecting the Type I error probability. However, since the within-group medi-
ans are required for the Brown-Forsythe test, it can be resource intensive if there are
very many groups or if some groups are very large.

If one of these tests rejects the assumption of homogeneity of variance, you should
use Welch’s ANOVA instead of the usual ANOVA to test for differences between



1820 � Chapter 32. The GLM Procedure

group means. However, this conclusion holds only if you use one of the robust ho-
mogeneity of variance tests (that is, not for HOVTEST=BARTLETT); even then, any
homogeneity of variance test has too little power to be relied upon always to detect
when Welch’s ANOVA is appropriate. Unless the group variances are extremely dif-
ferent or the number of groups is large, the usual ANOVA test is relatively robust
when the groups are all about the same size. AsBox (1953) notes, “To make the
preliminary test on variances is rather like putting to sea in a rowing boat to find out
whether conditions are sufficiently calm for an ocean liner to leave port!”

Example 32.10on page 1892 illustrates the use of the HOVTEST and WELCH op-
tions in the MEANS statement in testing for equal group variances and adjusting for
unequal group variances in a one-way ANOVA.

Weighted Means

In previous releases, if you specified a WEIGHT statement and one or more of the
multiple comparisons options, PROC GLM estimated the variance of the difference
between weighted group means for groupi andj as

MSE ×
(

1
ni

+
1
nj

)
where MSE is the (weighted) mean square for error andni is the size of groupi.
This variance is involved in all of the multiple comparison methods. Beginning with
Release 6.12, the variance of the difference between weighted group means for group
i andj is computed as

MSE ×
(

1
wi

+
1
wj

)
wherewi is the sum of the weights for the observations in groupi.

Construction of Least-Squares Means

To construct a least-squares mean (LS-mean) for a given level of a given effect, con-
struct a row vectorL according to the following rules and use it in an ESTIMATE
statement to compute the value of the LS-mean:

1. Set all Li corresponding to covariates (continuous variables) to their mean
value.

2. Consider effects contained by the given effect. Set theLi corresponding to
levels associated with the given level equal to 1. Set all otherLi in these effects
equal to 0. (SeeChapter 11, “The Four Types of Estimable Functions,”for a
definition ofcontaining.)

3. Consider the given effect. Set theLi corresponding to the given level equal to
1. Set theLi corresponding to other levels equal to 0.

4. Consider the effects that contain the given effect. If these effects are not nested
within the given effect, then set theLi corresponding to the given level to1/k,
wherek is the number of such columns. If these effects are nested within the
given effect, then set theLi corresponding to the given level to1/(k1k2), where



Comparing Groups � 1821

k1 is the number of nested levels within this combination of nested effects, and
k2 is the number of such combinations. ForLi corresponding to other levels,
use 0.

5. Consider the other effects not yet considered. If there are no nested factors,
then set allLi corresponding to this effect to1/j, wherej is the number of
levels in the effect. If there are nested factors, then set allLi corresponding to
this effect to1/(j1j2), wherej1 is the number of nested levels within a given
combination of nested effects andj2 is the number of such combinations.

The consequence of these rules is that the sum of the Xs within any classification
effect is 1. This set of Xs forms a linear combination of the parameters that is checked
for estimability before it is evaluated.

For example, consider the following model:

proc glm;
class A B C;
model Y=A B A*B C Z;
lsmeans A B A*B C;

run;

AssumeA has 3 levels,B has 2 levels, andC has 2 levels, and assume that every
combination of levels ofA andB exists in the data. Assume also thatZ is a continuous
variable with an average of 12.5. Then the least-squares means are computed by the
following linear combinations of the parameter estimates:

A B A*B C
µ 1 2 3 1 2 11 12 21 22 31 32 1 2 Z

LSM( ) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1/2 1/2 12.5

LSM(A1) 1 1 0 0 1/2 1/2 1/2 1/2 0 0 0 0 1/2 1/2 12.5
LSM(A2) 1 0 1 0 1/2 1/2 0 0 1/2 1/2 0 0 1/2 1/2 12.5
LSM(A3) 1 0 0 1 1/2 1/2 0 0 0 0 1/2 1/2 1/2 1/2 12.5

LSM(B1) 1 1/3 1/3 1/3 1 0 1/3 0 1/3 0 1/3 0 1/2 1/2 12.5
LSM(B2) 1 1/3 1/3 1/3 0 1 0 1/3 0 1/3 0 1/3 1/2 1/2 12.5

LSM(AB11) 1 1 0 0 1 0 1 0 0 0 0 0 1/2 1/2 12.5
LSM(AB12) 1 1 0 0 0 1 0 1 0 0 0 0 1/2 1/2 12.5
LSM(AB21) 1 0 1 0 1 0 0 0 1 0 0 0 1/2 1/2 12.5
LSM(AB22) 1 0 1 0 0 1 0 0 0 1 0 0 1/2 1/2 12.5
LSM(AB31) 1 0 0 1 1 0 0 0 0 0 1 0 1/2 1/2 12.5
LSM(AB32) 1 0 0 1 0 1 0 0 0 0 0 1 1/2 1/2 12.5

LSM(C1) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1 0 12.5
LSM(C2) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 0 1 12.5
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Setting Covariate Values

By default, all covariate effects are set equal to their mean values for computation of
standard LS-means. The AT option in the LSMEANS statement enables you to set
the covariates to whatever values you consider interesting.

If there is an effect containing two or more covariates, the AT option sets the ef-
fect equal to the product of the individual means rather than the mean of the product
(as with standard LS-means calculations). The AT MEANS option leaves covariates
equal to their mean values (as with standard LS-means) and incorporates this adjust-
ment to crossproducts of covariates.

As an example, the following is a model with a classification variableA and two
continuous variables,x1 andx2:

class A;
model y = A x1 x2 x1*x2;

The coefficients for the continuous effects with various AT specifications are shown
in the following table.

Syntax x1 x2 x1*x2
lsmeans A; x1 x2 x1x2

lsmeans A / at means; x1 x2 x1 · x2

lsmeans A / at x1=1.2; 1.2 x2 1.2 · x2

lsmeans A / at (x1 x2)=(1.2 0.3); 1.2 0.3 1.2 · 0.3

For the first two LSMEANS statements, theA LS-mean coefficient forx1 is x1 (the
mean ofx1) and forx2 is x2 (the mean ofx2). However, for the first LSMEANS
statement, the coefficient forx1*x2 is x1x2, but for the second LSMEANS statement
the coefficient isx1 · x2. The third LSMEANS statement sets the coefficient forx1
equal to1.2 and leaves that forx2 atx2, and the final LSMEANS statement sets these
values to1.2 and0.3, respectively.

If you specify a WEIGHT variable, then weighted means are used for the covariate
values. Also, observations with missing dependent variables are included in comput-
ing the covariate means, unless these observations form a missing cell. You can use
the E option in conjunction with the AT option to check that the modified LS-means
coefficients are the ones you desire.

The AT option is disabled if you specify the BYLEVEL option, in which case the
coefficients for the covariates are set equal to their means within each level of the
LS-mean effect in question.

Changing the Weighting Scheme

The standard LS-means have equal coefficients across classification effects; however,
the OM option in the LSMEANS statement changes these coefficients to be propor-
tional to those found in the input data set. This adjustment is reasonable when you
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want your inferences to apply to a population that is not necessarily balanced but has
the margins observed in the original data set.

In computing the observed margins, PROC GLM uses all observations for which
there are no missing independent variables, including those for which there are miss-
ing dependent variables. Also, if there is a WEIGHT variable, PROC GLM uses
weighted margins to construct the LS-means coefficients. If the analysis data set is
balanced or if you specify a simple one-way model, the LS-means will be unchanged
by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of com-
puting the margins across the entire data set, PROC GLM computes separate margins
for each level of the LS-mean effect in question. The resulting LS-means are actually
equal to raw means in this case. The BYLEVEL option disables the AT option if it is
specified.

Note that the MIXED procedure implements a more versatile form of the OM option,
enabling you to specifying an alternative data set over which to compute observed
margins. If you use the BYLEVEL option, too, then this data set is effectively the
“population” over which the population marginal means are computed. SeeChapter
46, “The MIXED Procedure,”for more information.

You may want to use the E option in conjunction with either the OM or BYLEVEL
option to check that the modified LS-means coefficients are the ones you desire. It is
possible that the modified LS-means are not estimable when the standard ones are, or
vice versa.

Multivariate Analysis of Variance
If you fit several dependent variables to the same effects, you may want to make
tests jointly involving parameters of several dependent variables. Suppose you have
p dependent variables,k parameters for each dependent variable, andn observations.
The models can be collected into one equation:

Y = Xβ + ε

whereY is n × p, X is n × k, β is k × p, andε is n × p. Each of thep models can
be estimated and tested separately. However, you may also want to consider the joint
distribution and test thep models simultaneously.

For multivariate tests, you need to make some assumptions about the errors. Withp
dependent variables, there aren × p errors that are independent across observations
but not across dependent variables. Assume

vec(ε) ∼ N(0, In ⊗Σ)

where vec(ε) stringsε out by rows,⊗ denotes Kronecker product multiplication, and
Σ is p× p. Σ can be estimated by

S =
e′e

n− r
=

(Y −Xb)′(Y −Xb)
n− r
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whereb = (X′X)−X′Y, r is the rank of theX matrix, ande is the matrix of
residuals.

If S is scaled to unit diagonals, the values inS are calledpartial correlations of the
Ys adjusting for the Xs. This matrix can be displayed by PROC GLM if PRINTE is
specified as a MANOVA option.

The multivariate general linear hypothesis is written

LβM = 0

You can form hypotheses for linear combinations across columns, as well as across
rows ofβ.

The MANOVA statement of the GLM procedure tests special cases whereL corre-
sponds to Type I, Type II, Type III, or Type IV tests, andM is thep × p identity
matrix. These tests are joint tests that the given type of hypothesis holds for all de-
pendent variables in the model, and they are often sufficient to test all hypotheses of
interest.

Finally, when these special cases are not appropriate, you can specify your ownL and
M matrices by using the CONTRAST statement before the MANOVA statement and
the M= specification in the MANOVA statement, respectively. Another alternative
is to use a REPEATED statement, which automatically generates a variety ofM
matrices useful in repeated measures analysis of variance. See the“REPEATED
Statement”section on page 1777 and the“Repeated Measures Analysis of Variance”
section on page 1825 for more information.

One useful way to think of a MANOVA analysis with anM matrix other than the
identity is as an analysis of a set of transformed variables defined by the columns of
theM matrix. You should note, however, that PROC GLM always displays theM
matrix in such a way that the transformed variables are defined by the rows, not the
columns, of the displayedM matrix.

All multivariate tests carried out by the GLM procedure first construct the matricesH
andE corresponding to the numerator and denominator, respectively, of a univariate
F -test.

H = M′(Lb)′(L(X′X)−L′)−1(Lb)M

E = M′(Y′Y − b′(X′X)b)M

The diagonal elements ofH andE correspond to the hypothesis and error SS for
univariate tests. When theM matrix is the identity matrix (the default), these tests
are for the original dependent variables on the left-hand side of the MODEL state-
ment. When anM matrix other than the identity is specified, the tests are for trans-
formed variables defined by the columns of theM matrix. These tests can be studied
by requesting the SUMMARY option, which produces univariate analyses for each
original or transformed variable.
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Four multivariate test statistics, all functions of the eigenvalues ofE−1H (or (E +
H)−1H), are constructed:

• Wilks’ lambda = det(E)/det(H + E)

• Pillai’s trace = trace(H(H + E)−1)

• Hotelling-Lawley trace = trace(E−1H)

• Roy’s maximum root =λ, largest eigenvalue ofE−1H

By default, all four are reported withp-values based onF approximations, as dis-
cussed in the “Multivariate Tests” section inChapter 2, “Introduction to Regression
Procedures.” Alternatively, if you specify MSTAT=EXACT on the associated
MANOVA or REPEATED statement,p-values for three of the four tests are computed
exactly (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s Greatest Root), and
the p-values for the fourth (Pillai’s trace) are based on anF -approximation that is
more accurate than the default. See the “Multivariate Tests” section inChapter
2, “Introduction to Regression Procedures,”for more details on the exact calcula-
tions.

Repeated Measures Analysis of Variance

When several measurements are taken on the same experimental unit (person, plant,
machine, and so on), the measurements tend to be correlated with each other. When
the measurements represent qualitatively different things, such as weight, length, and
width, this correlation is best taken into account by use of multivariate methods, such
as multivariate analysis of variance. When the measurements can be thought of as
responses to levels of an experimental factor of interest, such as time, treatment, or
dose, the correlation can be taken into account by performing a repeated measures
analysis of variance.

PROC GLM provides both univariate and multivariate tests for repeated measures
for one response. For an overall reference on univariate repeated measures, refer to
Winer (1971). The multivariate approach is covered inCole and Grizzle(1966). For
a discussion of the relative merits of the two approaches, seeLaTour and Miniard
(1983).

Another approach to analysis of repeated measures is via general mixed models. This
approach can handle balanced as well as unbalanced or missing within-subject data,
and it offers more options for modeling the within-subject covariance. The main
drawback of the mixed models approach is that it generally requires iteration and,
thus, may be less computationally efficient. For further details on this approach, see
Chapter 46, “The MIXED Procedure,”andWolfinger and Chang(1995).

Organization of Data for Repeated Measures Analysis

In order to deal efficiently with the correlation of repeated measures, the GLM proce-
dure uses the multivariate method of specifying the model, even if only a univariate
analysis is desired. In some cases, data may already be entered in the univariate mode,
with each repeated measure listed as a separate observation along with a variable that
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represents the experimental unit (subject) on which measurement is taken. Consider
the following data setold:

SUBJ GROUP TIME Y
1 1 1 15
1 1 2 19
1 1 3 25
2 1 1 21
2 1 2 18
2 1 3 17
1 2 1 14
1 2 2 12
1 2 3 16
2 2 1 11
2 2 2 20

.

.

.
10 3 1 14
10 3 2 18
10 3 3 16

There are three observations for each subject, corresponding to measurements taken
at times 1, 2, and 3. These data could be analyzed using the following statements:

proc glm data=old;
class group subj time;
model y=group subj(group) time group*time;
test h=group e=subj(group);

run;

However, this analysis assumes subjects’ measurements are uncorrelated across time.
A repeated measures analysis does not make this assumption. It uses a data setnew:

GROUP Y1 Y2 Y3
1 15 19 25
1 21 18 17
2 14 12 16
2 11 20 21

.

.

.
3 14 18 16

In the data setnew, the three measurements for a subject are all in one observation.
For example, the measurements for subject 1 for times 1, 2, and 3 are 15, 19, and
25. For these data, the statements for a repeated measures analysis (assuming default
options) are
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proc glm data=new;
class group;
model y1-y3=group / nouni;
repeated time;

run;

To convert the univariate form of repeated measures data to the multivariate form,
you can use a program like the following:

proc sort data=old;
by group subj;

run;

data new(keep=y1-y3 group);
array yy(3) y1-y3;
do time=1 to 3;

set old;
by group subj;
yy(time)=y;
if last.subj then return;

end;
run;

Alternatively, you could use PROC TRANSPOSE to achieve the same results with a
program like this one:

proc sort data=old;
by group subj;

run;

proc transpose out=new(rename=(_1=y1 _2=y2 _3=y3));
by group subj;
id time;

run;

Refer to the discussions inSAS Language Reference: Conceptsfor more information
on rearrangement of data sets.

Hypothesis Testing in Repeated Measures Analysis

In repeated measures analysis of variance, the effects of interest are

• between-subject effects (such as GROUP in the previous example)

• within-subject effects (such as TIME in the previous example)

• interactions between the two types of effects (such as GROUP*TIME in the
previous example)
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Repeated measures analyses are distinguished from MANOVA because of interest
in testing hypotheses about the within-subject effects and the within-subject-by-
between-subject interactions.

For tests that involve only between-subjects effects, both the multivariate and uni-
variate approaches give rise to the same tests. These tests are provided for all effects
in the MODEL statement, as well as for any CONTRASTs specified. The ANOVA
table for these tests is labeled “Tests of Hypotheses for Between Subjects Effects”
on the PROC GLM results. These tests are constructed by first adding together the
dependent variables in the model. Then an analysis of variance is performed on the
sum divided by the square root of the number of dependent variables. For example,
the statements

model y1-y3=group;
repeated time;

give a one-way analysis of variance using(Y 1 + Y 2 + Y 3)/
√

3 as the dependent
variable for performing tests of hypothesis on the between-subject effect GROUP.
Tests for between-subject effects are equivalent to tests of the hypothesisLβM = 0,
whereM is simply a vector of 1s.

For within-subject effects and for within-subject-by-between-subject interaction ef-
fects, the univariate and multivariate approaches yield different tests. These tests
are provided for the within-subject effects and for the interactions between these ef-
fects and the other effects in the MODEL statement, as well as for any CONTRASTs
specified. The univariate tests are displayed in a table labeled “Univariate Tests of
Hypotheses for Within Subject Effects.” Results for multivariate tests are displayed
in a table labeled “Repeated Measures Analysis of Variance.”

The multivariate tests provided for within-subjects effects and interactions involving
these effects are Wilks’ Lambda, Pillai’s Trace, Hotelling-Lawley Trace, and Roy’s
maximum root. For further details on these four statistics, see the “Multivariate Tests”
section inChapter 2, “Introduction to Regression Procedures.”As an example, the
statements

model y1-y3=group;
repeated time;

produce multivariate tests for the within-subject effect TIME and the interaction
TIME*GROUP.

The multivariate tests for within-subject effects are produced by testing the hypothe-
sisLβM = 0, where theL matrix is the usual matrix corresponding to Type I, Type
II, Type III, or Type IV hypotheses tests, and theM matrix is one of several matrices
depending on the transformation that you specify in the REPEATED statement. The
only assumption required for valid tests is that the dependent variables in the model
have a multivariate normal distribution with a common covariance matrix across the
between-subject effects.
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The univariate tests for within-subject effects and interactions involving these effects
require some assumptions for the probabilities provided by the ordinaryF -tests to
be correct. Specifically, these tests require certain patterns of covariance matrices,
known as Type H covariances (Huynh and Feldt1970). Data with these patterns in the
covariance matrices are said to satisfy the Huynh-Feldt condition. You can test this
assumption (and the Huynh-Feldt condition) by applying a sphericity test (Anderson
1958) to any set of variables defined by an orthogonal contrast transformation. Such
a set of variables is known as a set of orthogonal components. When you use the
PRINTE option in the REPEATED statement, this sphericity test is applied both to the
transformed variables defined by the REPEATED statement and to a set of orthogonal
components if the specified transformation is not orthogonal. It is the test applied to
the orthogonal components that is important in determining whether your data have
Type H covariance structure. When there are only two levels of the within-subject
effect, there is only one transformed variable, and a sphericity test is not needed. The
sphericity test is labeled “Test for Sphericity” on the output.

If your data satisfy the preceding assumptions, use the usualF -tests to test univariate
hypotheses for the within-subject effects and associated interactions.

If your data do not satisfy the assumption of Type H covariance, an adjustment to
numerator and denominator degrees of freedom can be used. Two such adjustments,
based on a degrees of freedom adjustment factor known asε (epsilon) (Box 1954),
are provided in PROC GLM. Both adjustments estimateε and then multiply the nu-
merator and denominator degrees of freedom by this estimate before determining
significance levels for theF -tests. Significance levels associated with the adjusted
tests are labeled “Adj Pr > F” on the output. The first adjustment, initially proposed
for use in data analysis byGreenhouse and Geisser(1959), is labeled “Greenhouse-
Geisser Epsilon” and represents the maximum-likelihood estimate of Box’sε factor.
Significance levels associated with adjustedF -tests are labeled “G-G” on the output.
Huynh and Feldt(1976) have shown that the G-G estimate tends to be biased down-
ward (that is, too conservative), especially for small samples, and they have proposed
an alternative estimator that is constructed using unbiased estimators of the numera-
tor and denominator of Box’sε. Huynh and Feldt’s estimator is labeled “Huynh-Feldt
Epsilon” on the PROC GLM output, and the significance levels associated with ad-
justedF -tests are labeled “H-F.” Althoughε must be in the range of 0 to 1, the H-F
estimator can be outside this range. When the H-F estimator is greater than 1, a value
of 1 is used in all calculations for probabilities, and the H-F probabilities are not ad-
justed. In summary, if your data do not meet the assumptions, use adjustedF -tests.
However, when you strongly suspect that your data may not have Type H covariance,
all these univariate tests should be interpreted cautiously. In such cases, you should
consider using the multivariate tests instead.

The univariate sums of squares for hypotheses involving within-subject effects can
be easily calculated from theH andE matrices corresponding to the multivariate
tests described in the“Multivariate Analysis of Variance”section on page 1823. If
theM matrix is orthogonal, the univariate sums of squares is calculated as the trace
(sum of diagonal elements) of the appropriateH matrix; if it is not orthogonal, PROC
GLM calculates the trace of theH matrix that results from an orthogonalM matrix
transformation. The appropriate error term for the univariateF -tests is constructed
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in a similar way from the error SSCP matrix and is labeled Error(factorname), where
factornameindicates theM matrix that is used in the transformation.

When the design specifies more than one repeated measures factor, PROC GLM com-
putes theM matrix for a given effect as the direct (Kronecker) product of theM
matrices defined by the REPEATED statement if the factor is involved in the effect
or as a vector of 1s if the factor is not involved. The test for the main effect of
a repeated-measures factor is constructed using anL matrix that corresponds to a
test that the mean of the observation is zero. Thus, the main effect test for repeated
measures is a test that the means of the variables defined by theM matrix are all
equal to zero, while interactions involving repeated-measures effects are tests that the
between-subjects factors involved in the interaction have no effect on the means of
the transformed variables defined by theM matrix. In addition, you can specify other
L matrices to test hypotheses of interest by using the CONTRAST statement, since
hypotheses defined by CONTRAST statements are also tested in the REPEATED
analysis. To see which combinations of the original variables the transformed vari-
ables represent, you can specify the PRINTM option in the REPEATED statement.
This option displays the transpose ofM, which is labeled as M in the PROC GLM
results. The tests produced are the same for any choice of transformation(M) ma-
trix specified in the REPEATED statement; however, depending on the nature of the
repeated measurements being studied, a particular choice of transformation matrix,
coupled with the CANONICAL or SUMMARY option, can provide additional in-
sight into the data being studied.

Transformations Used in Repeated Measures Analysis of Variance

As mentioned in the specifications of the REPEATED statement, several differentM
matrices can be generated automatically, based on the transformation that you specify
in the REPEATED statement. Remember that both the univariate and multivariate
tests that PROC GLM performs are unaffected by the choice of transformation; the
choice of transformation is important only when you are trying to study the nature
of a repeated measures effect, particularly with the CANONICAL and SUMMARY
options. If one of these matrices does not meet your needs for a particular analysis,
you may want to use the M= option in the MANOVA statement to perform the tests
of interest.

The following sections describe the transformations available in the REPEATED
statement, provide an example of theM matrix that is produced, and give guide-
lines for the use of the transformation. As in the PROC GLM output, the displayed
matrix is labeled M. This is theM′ matrix.

CONTRAST Transformation

This is the default transformation used by the REPEATED statement. It is useful
when one level of the repeated measures effect can be thought of as a control level
against which the others are compared. For example, if five drugs are administered
to each of several animals and the first drug is a control or placebo, the statements

proc glm;
model d1-d5= / nouni;
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repeated drug 5 contrast(1) / summary printm;
run;

produce the followingM matrix:

M =


−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1


When you examine the analysis of variance tables produced by the SUMMARY op-
tion, you can tell which of the drugs differed significantly from the placebo.

POLYNOMIAL Transformation

This transformation is useful when the levels of the repeated measure represent quan-
titative values of a treatment, such as dose or time. If the levels are unequally
spaced,level valuescan be specified in parentheses after the number of levels in
the REPEATED statement. For example, if five levels of a drug corresponding to 1,
2, 5, 10 and 20 milligrams are administered to different treatment groups, represented
by the variablegroup, the statements

proc glm;
class group;
model r1-r5=group / nouni;
repeated dose 5 (1 2 5 10 20) polynomial / summary printm;

run;

produce the followingM matrix.

M =


−0.4250 −0.3606 −0.1674 0.1545 0.7984

0.4349 0.2073 −0.3252 −0.7116 0.3946
−0.4331 0.1366 0.7253 −0.5108 0.0821

0.4926 −0.7800 0.3743 −0.0936 0.0066


The SUMMARY option in this example provides univariate ANOVAs for the vari-
ables defined by the rows of thisM matrix. In this case, they represent the linear,
quadratic, cubic, and quartic trends for dose and are labeled dose–1, dose–2, dose–3,
and dose–4, respectively.

HELMERT Transformation

Since the Helmert transformation compares a level of a repeated measure to the mean
of subsequent levels, it is useful when interest lies in the point at which responses
cease to change. For example, if four levels of a repeated measures factor represent
responses to treatments administered over time to males and females, the statements
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proc glm;
class sex;
model resp1-resp4=sex / nouni;
repeated trtmnt 4 helmert / canon printm;

run;

produce the followingM matrix:

M =

 1 −0.33333 −0.33333 −0.33333
0 1 −0.50000 −0.50000
0 0 1 −1


MEAN Transformation

This transformation can be useful in the same types of situations in which the
CONTRAST transformation is useful. If you substitute the following statement for
the REPEATED statement shown in the “CONTRAST Transformation” section,

repeated drug 5 mean / printm;

the followingM matrix is produced:

M =


1 −0.25 −0.25 −0.25 −0.25

−0.25 1 −0.25 −0.25 −0.25
−0.25 −0.25 1 −0.25 −0.25
−0.25 −0.25 −0.25 1 −0.25


As with the CONTRAST transformation, if you want to omit a level other than the
last, you can specify it in parentheses after the keyword MEAN in the REPEATED
statement.

PROFILE Transformation

When a repeated measure represents a series of factors administered over time, but
a polynomial response is unreasonable, a profile transformation may prove useful.
As an example, consider a training program in which four different methods are em-
ployed to teach students at several different schools. The repeated measure is the
score on tests administered after each of the methods is completed. The statements

proc glm;
class school;
model t1-t4=school / nouni;
repeated method 4 profile / summary nom printm;

run;
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produce the followingM matrix:

M =

 1 −1 0 0
0 1 −1 0
0 0 1 −1


To determine the point at which an improvement in test scores takes place, you can
examine the analyses of variance for the transformed variables representing the dif-
ferences between adjacent tests. These analyses are requested by the SUMMARY
option in the REPEATED statement, and the variables are labeled METHOD.1,
METHOD.2, and METHOD.3.

Random Effects Analysis

When some model effects are random (that is, assumed to be sampled from a normal
population of effects), you can specify these effects in the RANDOM statement in
order to compute the expected values of mean squares for various model effects and
contrasts and, optionally, to perform random effects analysis of variance tests.

PROC GLM versus PROC MIXED for Random Effects Analysis

Other SAS procedures that can be used to analyze models with random effects in-
clude the MIXED and VARCOMP procedures. Note that, for these procedures, the
random effects specification is an integral part of the model, affecting how both ran-
dom and fixed effects are fit; for PROC GLM, the random effects are treated in apost
hoc fashion after the complete fixed effect model is fit. This distinction affects other
features in the GLM procedure, such as the results of the LSMEANS and ESTIMATE
statements. These features assume that all effects are fixed, so that all tests and es-
timability checks for these statements are based on a fixed effects model, even when
you use a RANDOM statement. Standard errors for estimates and LS-means based
on the fixed effects model may be significantly smaller than those based on a true
random effects model; in fact, some functions that are estimable under a true random
effects model may not even be estimable under the fixed effects model. Therefore,
you should use the MIXED procedure to compute tests involving these features that
take the random effects into account; seeChapter 46, “The MIXED Procedure,”for
more information.

Note that, for balanced data, the test statistics computed when you specify the TEST
option on the RANDOM statement have an exactF distribution only when the design
is balanced; for unbalanced designs, thep values for theF-tests are approximate. For
balanced data, the values obtained by PROC GLM and PROC MIXED agree; for
unbalanced data, they usually do not.

Computation of Expected Mean Squares for Random Effects

The RANDOM statement in PROC GLM declares one or more effects in the model
to be random rather than fixed. By default, PROC GLM displays the coefficients of
the expected mean squares for all terms in the model. In addition, when you specify
the TEST option in the RANDOM statement, the procedure determines what tests are
appropriate and providesF ratios and probabilities for these tests.
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The expected mean squares are computed as follows. Consider the model

Y = X0β0 + X1β1 + · · ·+ Xkβk + ε

whereβ0 represents the fixed effects andβ1,β2, · · · , ε represent the random effects.
Random effects are assumed to be normally and independently distributed. For any
L in the row space ofX = (X0 | X1 | X2 | · · · | Xk), the expected value of the sum
of squares forLβ is

E(SSL) = β′
0C

′
0C0β0 + SSQ(C1)σ2

1 + SSQ(C2)σ2
2 + · · ·+ SSQ(Ck)σ2

k + rank(L)σ2
ε

whereC is of the same dimensions asL and is partitioned as theX matrix. In other
words,

C = (C0 | C1 | · · · | Ck)

Furthermore,C = ML, whereM is the inverse of the lower triangular Cholesky
decomposition matrix ofL(X′X)−L′. SSQ(A) is defined as tr(A′A).

For the model in the following MODEL statement

model Y=A B(A) C A*C;
random B(A);

with B(A) declared as random, the expected mean square of each effect is displayed
as

Var(Error)+ constant× Var(B(A)) + Q(A, C, A ∗ C)

If any fixed effects appear in the expected mean square of an effect, the letter Q
followed by the list of fixed effects in the expected value is displayed. The actual
numeric values of the quadratic form (Q matrix) can be displayed using the Q option.

To determine appropriate means squares for testing the effects in the model, the TEST
option in the RANDOM statement performs the following.

1. First, it forms a matrix of coefficients of the expected mean squares of those
effects that were declared to be random.

2. Next, for each effect in the model, it determines the combination of these ex-
pected mean squares that produce an expectation that includes all the terms in
the expected mean square of the effect of interest except the one corresponding
to the effect of interest. For example, if the expected mean square of an effect
A*B is

Var(Error)+ 3× Var(A) + Var(A ∗ B)
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PROC GLM determines the combination of other expected mean squares in the
model that has expectation

Var(Error)+ 3× Var(A)

3. If the preceding criterion is met by the expected mean square of a single effect
in the model (as is often the case in balanced designs), theF test is formed
directly. In this case, the mean square of the effect of interest is used as the nu-
merator, the mean square of the single effect with an expected mean square that
satisfies the criterion is used as the denominator, and the degrees of freedom
for the test are simply the usual model degrees of freedom.

4. When more than one mean square must be combined to achieve the appropri-
ate expectation, an approximation is employed to determine the appropriate
degrees of freedom (Satterthwaite1946). When effects other than the effect of
interest are listed after the Q in the output, tests of hypotheses involving the
effect of interest are not valid unless all other fixed effects involved in it are as-
sumed to be zero. When tests such as these are performed by using the TEST
option in the RANDOM statement, a note is displayed reminding you that fur-
ther assumptions are necessary for the validity of these tests. Remember that
although the tests are not valid unless these assumptions are made, this does
not provide a basis for these assumptions to be true. The particulars of a given
experiment must be examined to determine whether the assumption is reason-
able.

Refer toGoodnight and Speed(1978), Milliken and Johnson(1984, Chapters 22 and
23), andHocking(1985) for further theoretical discussion.

Sum-to-Zero Assumptions

The formulation and parameterization of the expected mean squares for random ef-
fects in mixed models is an ongoing item of controversy in the statistical literature.
Confusion arises over whether or not to assume that terms involving fixed effects sum
to zero. Cornfield and Tukey(1956), Winer (1971), and others assume that they do
sum to zero;Searle(1971), Hocking(1973), and others (including PROC GLM) do
not.

Different assumptions about these sum-to-zero constraints can lead to different ex-
pected mean squares for certain terms, and hence to differentF andp values.

For arguments in favor of not assuming that terms involving fixed effects sum to zero,
see Section 9.7 ofSearle(1971) and Sections 1 and 4 ofMcLean et al.(1991). Other
references areHartley and Searle(1969) andSearle et al.(1992).

Computing Type I, II, and IV Expected Mean Squares

When you use the RANDOM statement, by default the GLM procedure produces
the Type III expected mean squares for model effects and for contrasts specified be-
fore the RANDOM statement. In order to obtain expected values for other types of
mean squares, you need to specify which types of mean squares are of interest in
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the MODEL statement. For example, in order to obtain the Type IV expected mean
squares for effects in the RANDOM and CONTRAST statements, specify the SS4
option in the MODEL statement. If you want both Type III and Type IV expected
mean squares, specify both the SS3 and SS4 options in the MODEL statement. Since
the estimable function basis is not automatically calculated for Type I and Type II SS,
the E1 (for Type I) or E2 (for Type II) option must be specified in the MODEL state-
ment in order for the RANDOM statement to produce the expected mean squares for
the Type I or Type II sums of squares. Note that it is important to list the fixed effects
first in the MODEL statement when requesting the Type I expected mean squares.

For example, suppose you have a two-way design with factorsA and B in which
the main effect forB and the interaction are random. In order to compute the Type
III expected mean squares (in addition to the fixed-effect analysis), you can use the
following statements:

proc glm;
class A B;
model Y = A B A*B;
random B A*B;

run;

If you use the SS4 option in the MODEL statement,

proc glm;
class A B;
model Y = A B A*B / ss4;
random B A*B;

run;

then only the Type IV expected mean squares are computed (as well as the Type IV
fixed-effect tests). For the Type I expected mean squares, you can use the following
statements:

proc glm;
class A B;
model Y = A B A*B / e1;
random B A*B;

run;

For each of these cases, in order to perform random effect analysis of variance tests
for each effect specified in the model, you need to specify the TEST option in the
RANDOM statement, as follows:

proc glm;
class A B;
model Y = A B A*B;
random B A*B / test;

run;

The GLM procedure automatically determines the appropriate error term for each
test, based on the expected mean squares.
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Missing Values

For an analysis involving one dependent variable, PROC GLM uses an observation if
values are nonmissing for that dependent variable and all the class variables.

For an analysis involving multiple dependent variables without the MANOVA or
REPEATED statement, or without the MANOVA option in the PROC GLM state-
ment, a missing value in one dependent variable does not eliminate the observation
from the analysis of other nonmissing dependent variables. On the other hand, for an
analysis with the MANOVA or REPEATED statement, or with the MANOVA option
in the PROC GLM statement, PROC GLM uses an observation if values are nonmiss-
ing for all dependent variables and all the variables used in independent effects.

During processing, the GLM procedure groups the dependent variables by their pat-
tern of missing values across observations so that sums and crossproducts can be
collected in the most efficient manner.

If your data have different patterns of missing values among the dependent variables,
interactivity is disabled. This can occur when some of the variables in your data set
have missing values and

• you do not use the MANOVA option in the PROC GLM statement

• you do not use a MANOVA or REPEATED statement before the first RUN
statement

Note that the REG procedure handles missing values differently in this case; see
Chapter 61, “The REG Procedure,”for more information.

Computational Resources

Memory

For large problems, most of the memory resources are required for holding theX′X
matrix of the sums and crossproducts. The section“Parameterization of PROC GLM
Models” on page 1787 describes how columns of theX matrix are allocated for
various types of effects. For each level that occurs in the data for a combination of
class variables in a given effect, a row and column forX′X is needed.

The following example illustrates the calculation. SupposeA has 20 levels,B has 4
levels, andC has 3 levels. Then consider the model

proc glm;
class A B C;
model Y1 Y2 Y3=A B A*B C A*C B*C A*B*C X1 X2;

run;

TheX′X matrix (bordered byX′Y andY′Y) can have as many as 425 rows and
columns:
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1 for the intercept term

20 for A

4 for B

80 for A*B

3 for C

60 for A*C

12 for B*C

240 for A*B*C

2 for X1 andX2 (continuous variables)

3 for Y1, Y2, andY3 (dependent variables)

The matrix has 425 rows and columns only if all combinations of levels occur for each
effect in the model. Form rows and columns,8m2 bytes are needed for crossprod-
ucts. In this case,8 · 4252 = 1, 445, 000 bytes, or about1, 445, 000/1024 = 1411K.

The required memory grows as the square of the number of columns ofX; most of the
memory is for theA*B*C interaction. WithoutA*B*C, you have 185 columns and
need 268K forX′X. Without eitherA*B*C or A*B, you need 86K. IfA is recoded
to have ten levels, then the full model has only 220 columns and requires 378K.

The second time that a large amount of memory is needed is when Type III, Type
IV, or contrast sums of squares are being calculated. This memory requirement is a
function of the number of degrees of freedom of the model being analyzed and the
maximum degrees of freedom for any single source. Let Rank equal the sum of the
model degrees of freedom, MaxDF be the maximum number of degrees of freedom
for any single source, andNy be the number of dependent variables in the model.
Then the memory requirement in bytes is(

8×
(

Rank × (Rank + 1)
2

))
+ (Ny × Rank)

+
(

MaxDF× (MaxDF+ 1)
2

)
+ (Ny ×MaxDF)

Unfortunately, these quantities are not available when theX′X matrix is being con-
structed, so PROC GLM may occasionally request additional memory even after you
have increased the memory allocation available to the program.

If you have a large model that exceeds the memory capacity of your computer, these
are your options:

• Eliminate terms, especially high-level interactions.

• Reduce the number of levels for variables with many levels.

• Use the ABSORB statement for parts of the model that are large.
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• Use the REPEATED statement for repeated measures variables.

• Use PROC ANOVA or PROC REG rather than PROC GLM, if your design
allows.

A related limitation is that for any model effect involving classification variables (in-
teractions as well as main effects), the number of levels can not exceed 32,767. This
is because GLM internally indexes effect levels using signed short (16-bit) integers,
for which the maximum value is215 − 1 = 32, 767.

CPU Time

Typically, if the GLM procedure requires a lot of CPU time, it will be for one of
several reasons. Suppose that the input data hasn rows (observations) and the model
hasE effects which together produce a design matrixX with m columns. Then ifm
or n is relatively large, the procedure may spend a lot of time in any of the following
areas:

• collecting the sums of squares and crossproducts

• solving the normal equations

• computing the Type III tests

The time required for collecting sums and crossproducts is difficult to calculate be-
cause it is a complicated function of the model. The worst case occurs if all columns
are continuous variables, involvingnm2/2 multiplications and additions. If the
columns are levels of a classification, then onlym sums may be needed, but a sig-
nificant amount of time may be spent in look-up operations. Solving the normal
equations requires time for approximatelym3/2 multiplications and additions, and
the number of operations required to compute the Type III tests is also proportional
to bothE andm3.

Suppose that you know that Type IV sums of squares are appropriate for the model
you are analyzing (for example, if your design has no missing cells). You can specify
the SS4 option in your MODEL statement, which saves CPU time by requesting the
Type IV sums of squares instead of the more computationally burdensome Type III
sums of squares. This proves especially useful if you have a factor in your model that
has many levels and is involved in several interactions.

If the operating system enables SAS to run parallel computational threads on multiple
CPUs, then both the solution of the normal equations and the computation of Type
III tests can take advantage of this to reduce the computational time for large models.
In solving the normal equations, the fundamental row sweep operations (Goodnight
1979) are performed in parallel. In computing the Type III tests, both the orthogo-
nalization for the estimable functions and the sums of squares calculation have been
parallelized.

The reduction in computational time due to parallel processing depends on the size
of the model, the number of processors, and the parallel architecture of the operating
system. If the model is large enough that the overwhelming proportion of CPU time
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for the procedure is accounted for in solving the normal equations and/or computing
the Type III tests, then you can expect a reduction in computational time approxi-
mately inversely proportional to the number of CPUs. However, as you increase the
number of processors, the efficiency of this scaling can be reduced by several effects.
One mitigating factor is a purely mathematical one known as “Amdahl’s Law”, which
is related to the fact that only part of the processing time for the procedure can be par-
allelized. Even taking Amdahl’s Law into account, the parallelization efficiency can
be reduced by cache effects related to how fast the multiple processors can access
memory. SeeCohen(2002) for a discussion of these issues. For additional infor-
mation on parallel processing in SAS, refer to the chapter on “Support for Parallel
Processing” inSAS Language Reference: Concepts.

Computational Method

Let X represent then × p design matrix andY then × 1 vector of dependent vari-
ables. (See the section“Parameterization of PROC GLM Models”on page 1787 for
information on howX is formed from your model specification.)

The normal equationsX′Xβ = X′Y are solved using a modified sweep routine
that produces a generalized (g2) inverse(X′X)− and a solutionb = (X′X)−X′y
(Pringle and Raynor1971).

For each effect in the model, a matrixL is computed such that the rows ofL are
estimable. Tests of the hypothesisLβ = 0 are then made by first computing

SS(Lβ = 0) = (Lb)′(L(X′X)−L′)−1(Lb)

and then computing the associatedF value using the mean squared error.

Output Data Sets

OUT= Data Set Created by the OUTPUT Statement

The OUTPUT statement produces an output data set that contains the following:

• all original data from the SAS data set input to PROC GLM

• the new variables corresponding to the diagnostic measures specified with
statistics keywords in the OUTPUT statement (PREDICTED=, RESIDUAL=,
and so on).

With multiple dependent variables, a name can be specified for any of the diagnostic
measures for each of the dependent variables in the order in which they occur in the
MODEL statement.

For example, suppose that the input data setA contains the variablesy1, y2, y3, x1,
andx2. Then you can use the following statements:
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proc glm data=A;
model y1 y2 y3=x1;
output out=out p=y1hat y2hat y3hat

r=y1resid lclm=y1lcl uclm=y1ucl;
run;

The output data setout containsy1, y2, y3, x1, x2, y1hat, y2hat, y3hat, y1resid,
y1lcl, andy1ucl. The variablex2 is output even though it is not used by PROC GLM.
Although predicted values are generated for all three dependent variables, residuals
are output for only the first dependent variable.

When any independent variable in the analysis (including all class variables) is miss-
ing for an observation, then all new variables that correspond to diagnostic measures
are missing for the observation in the output data set.

When a dependent variable in the analysis is missing for an observation, then some
new variables that correspond to diagnostic measures are missing for the observa-
tion in the output data set, and some are still available. Specifically, in this case,
the new variables that correspond to COOKD, COVRATIO, DFFITS, PRESS, R,
RSTUDENT, STDR, and STUDENT are missing in the output data set. The vari-
ables corresponding to H, LCL, LCLM, P, STDI, STDP, UCL, and UCLM are not
missing.

OUT= Data Set Created by the LSMEANS Statement

The OUT= option in the LSMEANS statement produces an output data set that con-
tains

• the unformatted values of each classification variable specified in any effect in
the LSMEANS statement

• a new variable,LSMEAN, which contains the LS-mean for the specified levels
of the classification variables

• a new variable,STDERR, which contains the standard error of the LS-mean

The variances and covariances among the LS-means are also output when the COV
option is specified along with the OUT= option. In this case, only one effect can be
specified in the LSMEANS statement, and the following variables are included in the
output data set:

• new variables,COV1, COV2, . . . , COVn, wheren is the number of levels of
the effect specified in the LSMEANS statement. These variables contain the
covariances of each LS-mean with each other LS-mean.

• a new variable,NUMBER, which provides an index for each observation to
identify the covariances that correspond to that observation. The covariances
for the observation withNUMBER equal ton can be found in the variable
COVn.
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OUTSTAT= Data Set

The OUTSTAT= option in the PROC GLM statement produces an output data set that
contains

• the BY variables, if any

• –TYPE– , a new character variable.–TYPE– may take the values ‘SS1’,
‘SS2’, ‘SS3’, ‘SS4’, or ‘CONTRAST’, corresponding to the various types
of sums of squares generated, or the values ‘CANCORR’, ‘STRUCTUR’, or
‘SCORE’, if a canonical analysis is performed through the MANOVA state-
ment and no M= matrix is specified.

• –SOURCE– , a new character variable. For each observation in the data set,

–SOURCE– contains the name of the model effect or contrast label from
which the corresponding statistics are generated.

• –NAME– , a new character variable. For each observation in the data set,

–NAME– contains the name of one of the dependent variables in the model or,
in the case of canonical statistics, the name of one of the canonical variables
(CAN1, CAN2, and so forth).

• four new numeric variables:SS, DF, F, and PROB, containing sums of
squares, degrees of freedom,F values, and probabilities, respectively, for each
model or contrast sum of squares generated in the analysis. For observations
resulting from canonical analyses, these variables have missing values.

• if there is more than one dependent variable, then variables with the same
names as the dependent variables represent

− for –TYPE–=SS1, SS2, SS3, SS4, or CONTRAST, the crossproducts of
the hypothesis matrices

− for –TYPE–=CANCORR, canonical correlations for each variable

− for –TYPE–=STRUCTUR, coefficients of the total structure matrix

− for –TYPE–=SCORE, raw canonical score coefficients

The output data set can be used to perform special hypothesis tests (for example, with
the IML procedure in SAS/IML software), to reformat output, to produce canonical
variates (through the SCORE procedure), or to rotate structure matrices (through the
FACTOR procedure).

Displayed Output

The GLM procedure produces the following output by default:

• The overall analysis-of-variance table breaks down the Total Sum of Squares
for the dependent variable into the portion attributed to the Model and the por-
tion attributed to Error.

• The Mean Square term is the Sum of Squares divided by the degrees of freedom
(DF).
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• The Mean Square for Error is an estimate ofσ2, the variance of the true errors.

• TheF Value is the ratio produced by dividing the Mean Square for the Model
by the Mean Square for Error. It tests how well the model as a whole (adjusted
for the mean) accounts for the dependent variable’s behavior. AnF -test is a
joint test to determine that all parameters except the intercept are zero.

• A small significance probability, Pr > F, indicates that some linear function of
the parameters is significantly different from zero.

• R-Square,R2, measures how much variation in the dependent variable can be
accounted for by the model.R2, which can range from 0 to 1, is the ratio of the
sum of squares for the model divided by the sum of squares for the corrected
total. In general, the larger the value ofR2, the better the model’s fit.

• Coef Var, the coefficient of variation, which describes the amount of variation
in the population, is 100 times the standard deviation estimate of the depen-
dent variable, Root MSE (Mean Square for Error), divided by the Mean. The
coefficient of variation is often a preferred measure because it is unitless.

• Root MSE estimates the standard deviation of the dependent variable (or equiv-
alently, the error term) and equals the square root of the Mean Square for Error.

• Mean is the sample mean of the dependent variable.

These tests are used primarily in analysis-of-variance applications:

• The Type I SS (sum of squares) measures incremental sums of squares for the
model as each variable is added.

• The Type III SS is the sum of squares for a balanced test of each effect, adjusted
for every other effect.

These items are used primarily in regression applications:

• The Estimates for the model Parameters (the intercept and the coefficients)

• t Value is the Student’st value for testing the null hypothesis that the parameter
(if it is estimable) equals zero.

• The significance level, Pr > |t|, is the probability of getting a larger value oft
if the parameter is truly equal to zero. A very small value for this probability
leads to the conclusion that the independent variable contributes significantly
to the model.

• The Standard Error is the square root of the estimated variance of the estimate
of the true value of the parameter.

Other portions of output are discussed in the following examples.
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ODS Table Names

PROC GLM assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 32.5. ODS Tables Produced in PROC GLM

ODS Table Name Description Statement / Option
Aliasing Type 1,2,3,4 aliasing structure MODEL / (E1 E2 E3 or E4) and

ALIASING
AltErrContrasts ANOVA table for contrasts with

alternative error
CONTRAST / E=

AltErrTests ANOVA table for tests with alter-
native error

TEST / E=

Bartlett Bartlett’s homogeneity of vari-
ance test

MEANS / HOVTEST=BARTLETT

CLDiffs Multiple comparisons of pair-
wise differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLDiffsInfo Information for multiple compar-
isons of pairwise differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison
interval

MEANS / CLM

CLMeansInfo Information for multiple com-
parison of means with confi-
dence/comparison interval

MEANS / CLM

CanAnalysis Canonical analysis (MANOVA or REPEATED)
/ CANONICAL

CanCoef Canonical coefficients (MANOVA or REPEATED)
/ CANONICAL

CanStructure Canonical structure (MANOVA or REPEATED)
/ CANONICAL

CharStruct Characteristic roots and vectors (MANOVA / not CANONICAL) or
(REPEATED / PRINTRV)

ClassLevels Classification variable levels CLASS statement
ContrastCoef L matrix for contrast CONTRAST / EST
Contrasts ANOVA table for contrasts CONTRAST statement
DependentInfo Simultaneously analyzed depen-

dent variables
default when there are multiple depen-
dent variables with different patterns
of missing values

Diff PDiff matrix of Least-Squares
Means

LSMEANS / PDIFF

Epsilons Greenhouse-Geisser and Huynh-
Feldt epsilons

REPEATED statement

ErrorSSCP Error SSCP matrix (MANOVA or REPEATED)
/ PRINTE

EstFunc Type 1,2,3,4 estimable functions MODEL / (E1 E2 E3 or E4)
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Table 32.5. (continued)

ODS Table Name Description Statement / Option
Estimates Estimate statement results ESTIMATE statement
ExpectedMeanSquares Expected mean squares RANDOM statement
FitStatistics R-Square, C.V., Root MSE, and

dependent mean
default

GAliasing General form of aliasing
structure

MODEL / E and ALIASING

GEstFunc General form of estimable
functions

MODEL / E

HOVFTest Homogeneity of variance
ANOVA

MEANS / HOVTEST

HypothesisSSCP Hypothesis SSCP matrix (MANOVA or REPEATED)
/ PRINTH

InvXPX inv(X’X) matrix MODEL / INVERSE
LSMeanCL Confidence interval for LS-

means
LSMEANS / CL

LSMeanCoef Coefficients of Least-Squares
Means

LSMEANS / E

LSMeanDiffCL Confidence interval for LS-mean
differences

LSMEANS / PDIFF and CL

LSMeans Least-Squares means LSMEANS statement
MANOVATransform Multivariate transformation

matrix
MANOVA / M=

MCLines Multiple comparisons LINES
output

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MCLinesInfo Information for multiple compar-
ison LINES output

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MCLinesRange Ranges for multiple range MC
tests

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MatrixRepresentation X matrix element
representation

as needed for other options

Means Group means MEANS statement
ModelANOVA ANOVA for model terms default
MultStat Multivariate tests MANOVA statement
NObs Number of observations default
OverallANOVA Over-all ANOVA default
ParameterEstimates Estimated linear model

coefficients
MODEL / SOLUTION

PartialCorr Partial correlation matrix (MANOVA or REPEATED)
/ PRINTE
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Table 32.5. (continued)

ODS Table Name Description Statement / Option
PredictedInfo Predicted values info MODEL / PREDICTED or CLM or

CLI
PredictedValues Predicted values MODEL / PREDICTED or CLM or

CLI
QForm Quadratic form for expected

mean squares
RANDOM / Q

RandomModelANOVA Random effect tests RANDOM / TEST
RepeatedLevelInfo Correspondence between depen-

dents and repeated measures lev-
els

REPEATED statement

RepeatedTransform Repeated Measures
Transformation Matrix

REPEATED / PRINTM

SimDetails Details of difference quantile
simulation

LSMEANS
/ ADJUST=SIMULATE(REPORT)

SimResults Evaluation of difference quantile
simulation

LSMEANS
/ ADJUST=SIMULATE(REPORT)

SlicedANOVA Sliced effect ANOVA table LSMEANS / SLICE
Sphericity Sphericity tests REPEATED / PRINTE
Tests Summary ANOVA for specified

MANOVA H= effects
MANOVA / H= SUMMARY

Tolerances X’X Tolerances MODEL / TOLERANCE
Welch Welch’s ANOVA MEANS / WELCH
XPX X’X matrix MODEL / XPX

ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the GLM
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release. To request these graphs you must specify the ODS GRAPHICS statement
with an appropriate model, as discussed in the following. For more information on
the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”

When the ODS GRAPHICS are in effect, then for particular models the GLM proce-
dure will produce default graphics.

• If you specify an analysis of covariance model, with one classification variable
and one continuous variable, the GLM procedure will produce an analysis of
covariance plot of the response values versus the covariate values, with lines
representing the fitted relationship within each classification level. For an ex-
ample of the analysis of covariance plot, seeExample 32.4on page 1860.

• If you specify a one-way analysis of variance model, with just one independent
classification variable, the GLM procedure will produce a grouped box plot of
the response values versus the classification levels. For an example of the box
plot, see the“One-Way Layout with Means Comparisons”section on page 424.
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ODS Graph Names

PROC GLM assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed inTable 32.6.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

Table 32.6. ODS Graphics Produced by PROC GLM

ODS Graph Name Plot Description
ANCOVAPlot Analysis of covariance plot
BoxPlot Box plot

Examples

Example 32.1. Balanced Data from Randomized Complete
Block with Means Comparisons and Contrasts

The following example, reported byStenstrom(1940), analyzes an experiment to
investigate how snapdragons grow in various soils. To eliminate the effect of local
fertility variations, the experiment is run in blocks, with each soil type sampled in
each block. Since these data are balanced, the Type I and Type III SS are the same
and are equal to the traditional ANOVA SS.

First, the standard analysis is shown followed by an analysis that uses the SOLUTION
option and includes MEANS and CONTRAST statements. The ORDER=DATA op-
tion in the second PROC GLM statement is used so that the ordering of coefficients
in the CONTRAST statement can correspond to the ordering in the input data. The
SOLUTION option requests a display of the parameter estimates, which are only pro-
duced by default if there are no CLASS variables. A MEANS statement is used to re-
quest a table of the means with two multiple comparison procedures requested. In ex-
periments with focused treatment questions, CONTRAST statements are preferable
to general means comparison methods. The following statements produceOutput
32.1.1throughOutput 32.1.6:

title ’Balanced Data from Randomized Complete Block’;
data plants;

input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;
end;

datalines;
Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
O’Neill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;
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proc glm;
class Block Type;
model StemLength = Block Type;

run;

proc glm order=data;
class Block Type;
model StemLength = Block Type / solution;

/*----------------------------------clrn-cltn-knox-onel-cpst-wbsh-wstr */
contrast ’Compost vs. others’ Type -1 -1 -1 -1 6 -1 -1;
contrast ’River soils vs. non’ Type -1 -1 -1 -1 0 5 -1,

Type -1 4 -1 -1 0 0 -1;
contrast ’Glacial vs. drift’ Type -1 0 1 1 0 0 -1;
contrast ’Clarion vs. Webster’ Type -1 0 0 0 0 0 1;
contrast ’’Knox vs. O’Neill’’ Type 0 0 1 -1 0 0 0;
run;

means Type / waller regwq;
run;

Output 32.1.1. Classes and Levels for Randomized Complete Blocks

Balanced Data from Randomized Complete Block

The GLM Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Type 7 Clarion Clinton Compost Knox O’Neill Wabash Webster

Number of Observations Read 21
Number of Observations Used 21
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Output 32.1.2. Analysis of Variance for Randomized Complete Blocks

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 8 142.1885714 17.7735714 10.80 0.0002

Error 12 19.7428571 1.6452381

Corrected Total 20 161.9314286

R-Square Coeff Var Root MSE StemLength Mean

0.878079 3.939745 1.282668 32.55714

Source DF Type I SS Mean Square F Value Pr > F

Block 2 39.0371429 19.5185714 11.86 0.0014
Type 6 103.1514286 17.1919048 10.45 0.0004

Source DF Type III SS Mean Square F Value Pr > F

Block 2 39.0371429 19.5185714 11.86 0.0014
Type 6 103.1514286 17.1919048 10.45 0.0004

This analysis shows that the stem length is significantly different for the different soil
types. In addition, there are significant differences in stem length between the three
blocks in the experiment.

Output 32.1.3. Standard Analysis Again

Balanced Data from Randomized Complete Block

The GLM Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Type 7 Clarion Clinton Compost Knox O’Neill Wabash Webster

Number of Observations Read 21
Number of Observations Used 21

The GLM procedure is invoked again, this time with the ORDER=DATA option.
This enables you to write accurate contrast statements more easily because you know



1850 � Chapter 32. The GLM Procedure

the order SAS is using for the levels of the variableType. The standard analysis is
displayed again.

Output 32.1.4. Contrasts and Solutions

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Contrast DF Contrast SS Mean Square F Value Pr > F

Compost vs. others 1 29.24198413 29.24198413 17.77 0.0012
River soils vs. non 2 48.24694444 24.12347222 14.66 0.0006
Glacial vs. drift 1 22.14083333 22.14083333 13.46 0.0032
Clarion vs. Webster 1 1.70666667 1.70666667 1.04 0.3285
Knox vs. O’Neill 1 1.81500000 1.81500000 1.10 0.3143

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 29.35714286 B 0.83970354 34.96 <.0001
Block 1 3.32857143 B 0.68561507 4.85 0.0004
Block 2 1.90000000 B 0.68561507 2.77 0.0169
Block 3 0.00000000 B . . .
Type Clarion 1.06666667 B 1.04729432 1.02 0.3285
Type Clinton -0.80000000 B 1.04729432 -0.76 0.4597
Type Knox 3.80000000 B 1.04729432 3.63 0.0035
Type O’Neill 2.70000000 B 1.04729432 2.58 0.0242
Type Compost -1.43333333 B 1.04729432 -1.37 0.1962
Type Wabash 4.86666667 B 1.04729432 4.65 0.0006
Type Webster 0.00000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter ’B’ are not uniquely estimable.

Output 32.1.4shows the tests for contrasts that you specified as well as the estimated
parameters. The contrast label, degrees of freedom, sum of squares, Mean Square, F
Value, and Pr > F are shown for each contrast requested. In this example, the contrast
results show that at the 5% significance level,

• the stem length of plants grown in compost soil is significantly different from
the average stem length of plants grown in other soils

• the stem length of plants grown in river soils is significantly different from the
average stem length of those grown in nonriver soils

• the average stem length of plants grown in glacial soils (Clarion and Webster)
is significantly different from the average stem length of those grown in drift
soils (Knox and O’Neill)

• stem lengths for Clarion and Webster are not significantly different

• stem lengths for Knox and O’Neill are not significantly different
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In addition to the estimates for the parameters of the model, the results oft tests
about the parameters are also displayed. The ‘B’ following the parameter estimates
indicates that the estimates are biased and do not represent a unique solution to the
normal equations.

Output 32.1.5. Waller-Duncan tests

Balanced Data from Randomized Complete Block

The GLM Procedure

Waller-Duncan K-ratio t Test for StemLength

NOTE: This test minimizes the Bayes risk under additive loss and certain other
assumptions.

Kratio 100
Error Degrees of Freedom 12
Error Mean Square 1.645238
F Value 10.45
Critical Value of t 2.12034
Minimum Significant Difference 2.2206

Means with the same letter are not significantly different.

Waller Grouping Mean N Type

A 35.967 3 Wabash
A
A 34.900 3 Knox
A

B A 33.800 3 O’Neill
B
B C 32.167 3 Clarion

C
D C 31.100 3 Webster
D C
D C 30.300 3 Clinton
D
D 29.667 3 Compost
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Output 32.1.6. Ryan-Einot-Gabriel-Welsch Multiple Range Test

Balanced Data from Randomized Complete Block

The GLM Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for StemLength

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 12
Error Mean Square 1.645238

Number of Means 2 3 4 5 6 7
Critical Range 2.9876649 3.2838329 3.4396257 3.5402242 3.5402242 3.6653734

Means with the same letter are not significantly different.

REGWQ Grouping Mean N Type

A 35.967 3 Wabash
A

B A 34.900 3 Knox
B A
B A C 33.800 3 O’Neill
B C
B D C 32.167 3 Clarion

D C
D C 31.100 3 Webster
D
D 30.300 3 Clinton
D
D 29.667 3 Compost

The final two pages of output (Output 32.1.5andOutput 32.1.6) present results of the
Waller-Duncan and REGWQ multiple comparison procedures. For each test, notes
and information pertinent to the test are given on the output. TheType means are
arranged from highest to lowest. Means with the same letter are not significantly
different. For this example, while some pairs of means are significantly different,
there are no clear equivalence classes among the different soils.
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Example 32.2. Regression with Mileage Data

A car is tested for gas mileage at various speeds to determine at what speed the car
achieves the greatest gas mileage. A quadratic model is fit to the experimental data.
The following statements produceOutput 32.2.1throughOutput 32.2.5:

title ’Gasoline Mileage Experiment’;
data mileage;

input mph mpg @@;
datalines;

20 15.4
30 20.2
40 25.7
50 26.2 50 26.6 50 27.4
55 .
60 24.8
;

proc glm;
model mpg=mph mph*mph / p clm;
output out=pp p=mpgpred r=resid;

axis1 minor=none major=(number=5);
axis2 minor=none major=(number=8);
symbol1 c=black i=none v=plus;
symbol2 c=black i=spline v=none;
proc gplot data=pp;

plot mpg*mph=1 mpgpred*mph=2 / overlay haxis=axis1
vaxis=axis2;

run;

Output 32.2.1. Observations for Standard Regression Analysis

Gasoline Mileage Experiment

The GLM Procedure

Number of Observations Read 8
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Output 32.2.2. Standard Analysis of Variance for Regression

Gasoline Mileage Experiment

The GLM Procedure

Dependent Variable: mpg

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 111.8086183 55.9043091 77.96 0.0006

Error 4 2.8685246 0.7171311

Corrected Total 6 114.6771429

R-Square Coeff Var Root MSE mpg Mean

0.974986 3.564553 0.846836 23.75714

Source DF Type I SS Mean Square F Value Pr > F

mph 1 85.64464286 85.64464286 119.43 0.0004
mph*mph 1 26.16397541 26.16397541 36.48 0.0038

Source DF Type III SS Mean Square F Value Pr > F

mph 1 41.01171219 41.01171219 57.19 0.0016
mph*mph 1 26.16397541 26.16397541 36.48 0.0038

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -5.985245902 3.18522249 -1.88 0.1334
mph 1.305245902 0.17259876 7.56 0.0016
mph*mph -0.013098361 0.00216852 -6.04 0.0038

The overallF statistic is significant. The tests ofmph andmph*mph in the Type I
sums of squares show that both the linear and quadratic terms in the regression model
are significant. The model fits well, with anR2 of 0.97. The table of parameter
estimates indicates that the estimated regression equation is

mpg = −5.9852 + 1.3052×mph− 0.0131×mph2
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Output 32.2.3. Results of Requesting the P and CLM Options

1 15.40000000 14.88032787 0.51967213
2 20.20000000 21.38360656 -1.18360656
3 25.70000000 25.26721311 0.43278689
4 26.20000000 26.53114754 -0.33114754
5 26.60000000 26.53114754 0.06885246
6 27.40000000 26.53114754 0.86885246
7 * . 26.18073770 .
8 24.80000000 25.17540984 -0.37540984

95% Confidence Limits for
Observation Mean Predicted Value

1 12.69701317 17.06364257
2 20.01727192 22.74994119
3 23.87460041 26.65982582
4 25.44573423 27.61656085
5 25.44573423 27.61656085
6 25.44573423 27.61656085
7 * 24.88679308 27.47468233
8 23.05954977 27.29126990

* Observation was not used in this analysis

The P and CLM options in the MODEL statement produce the table shown inOutput
32.2.3. For each observation, the observed, predicted, and residual values are shown.
In addition, the 95% confidence limits for a mean predicted value are shown for each
observation. Note that the observation with a missing value formph is not used in
the analysis, but predicted and confidence limit values are shown.

Output 32.2.4. Additional Results of Requesting the P and CLM Options

Gasoline Mileage Experiment

The GLM Procedure

Sum of Residuals 0.00000000
Sum of Squared Residuals 2.86852459
Sum of Squared Residuals - Error SS -0.00000000
PRESS Statistic 23.18107335
First Order Autocorrelation -0.54376613
Durbin-Watson D 2.94425592

The final portion of output gives some additional information on the residuals. The
Press statistic gives the sum of squares of predicted residual errors, as described in
Chapter 2, “Introduction to Regression Procedures.”The First Order Autocorrelation
and the Durbin-WatsonD statistic, which measures first-order autocorrelation, are
also given.
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Output 32.2.5. Plot of Mileage Data

Output 32.2.5shows the actual and predicted values for the data. The quadratic rela-
tionship betweenmpg andmph is evident.

Example 32.3. Unbalanced ANOVA for Two-Way Design with
Interaction

This example uses data fromKutner(1974, p. 98) to illustrate a two-way analysis of
variance. The original data source isAfifi and Azen(1972, p. 166). These statements
produceOutput 32.3.1andOutput 32.3.2.
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/*---------------------------------------------------------*/
/* Note: Kutner’s 24 for drug 2, disease 1 changed to 34. */
/*---------------------------------------------------------*/
title ’Unbalanced Two-Way Analysis of Variance’;
data a;

input drug disease @;
do i=1 to 6;

input y @;
output;

end;
datalines;

1 1 42 44 36 13 19 22
1 2 33 . 26 . 33 21
1 3 31 -3 . 25 25 24
2 1 28 . 23 34 42 13
2 2 . 34 33 31 . 36
2 3 3 26 28 32 4 16
3 1 . . 1 29 . 19
3 2 . 11 9 7 1 -6
3 3 21 1 . 9 3 .
4 1 24 . 9 22 -2 15
4 2 27 12 12 -5 16 15
4 3 22 7 25 5 12 .
;

proc glm;
class drug disease;
model y=drug disease drug*disease / ss1 ss2 ss3 ss4;

run;

Output 32.3.1. Classes and Levels for Unbalanced Two-Way Design

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Class Level Information

Class Levels Values

drug 4 1 2 3 4

disease 3 1 2 3

Number of Observations Read 72
Number of Observations Used 58
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Output 32.3.2. Analysis of Variance for Unbalanced Two-Way Design

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 4259.338506 387.212591 3.51 0.0013

Error 46 5080.816667 110.452536

Corrected Total 57 9340.155172

R-Square Coeff Var Root MSE y Mean

0.456024 55.66750 10.50964 18.87931

Source DF Type I SS Mean Square F Value Pr > F

drug 3 3133.238506 1044.412835 9.46 <.0001
disease 2 418.833741 209.416870 1.90 0.1617
drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type II SS Mean Square F Value Pr > F

drug 3 3063.432863 1021.144288 9.25 <.0001
disease 2 418.833741 209.416870 1.90 0.1617
drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type III SS Mean Square F Value Pr > F

drug 3 2997.471860 999.157287 9.05 <.0001
disease 2 415.873046 207.936523 1.88 0.1637
drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type IV SS Mean Square F Value Pr > F

drug 3 2997.471860 999.157287 9.05 <.0001
disease 2 415.873046 207.936523 1.88 0.1637
drug*disease 6 707.266259 117.877710 1.07 0.3958

Note the differences between the four types of sums of squares. The Type I sum
of squares fordrug essentially tests for differences between the expected values of
the arithmetic mean response for different drugs, unadjusted for the effect of dis-
ease. By contrast, the Type II sum of squares fordrug measure the differences be-
tween arithmetic means for each drug after adjusting fordisease. The Type III sum
of squares measures the differences between predicted drug means over a balanced
drug×disease population—that is, between the LS-means fordrug. Finally, the Type
IV sum of squares is the same as the Type III sum of squares in this case, since there
is data for every drug-by-disease combination.
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No matter which sum of squares you prefer to use, this analysis shows a significant
difference among the four drugs, while the disease effect and the drug-by-disease
interaction are not significant. As the previous discussion indicates, Type III sums
of squares correspond to differences between LS-means, so you can follow up the
Type III tests with a multiple comparisons analysis of thedrug LS-means. Since the
GLM procedure is interactive, you can accomplish this by submitting the following
statements after the previous ones that performed the ANOVA.

lsmeans drug / pdiff=all adjust=tukey;
run;

Both the LS-means themselves and a matrix of adjustedp-values for pairwise differ-
ences between them are displayed; seeOutput 32.3.3.

Output 32.3.3. LS-Means for Unbalanced ANOVA

Unbalanced Two-Way Analysis of Variance

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

LSMEAN
drug y LSMEAN Number

1 25.9944444 1
2 26.5555556 2
3 9.7444444 3
4 13.5444444 4

Unbalanced Two-Way Analysis of Variance

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for effect drug
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: y

i/j 1 2 3 4

1 0.9989 0.0016 0.0107
2 0.9989 0.0011 0.0071
3 0.0016 0.0011 0.7870
4 0.0107 0.0071 0.7870

The multiple comparisons analysis shows that drugs 1 and 2 have very similar effects,
and that drugs 3 and 4 are also insignificantly different from each other. Evidently,
the main contribution to the significant drug effect is the difference between the 1/2
pair and the 3/4 pair.
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Example 32.4. Analysis of Covariance

Analysis of covariance combines some of the features of both regression and analysis
of variance. Typically, a continuous variable (the covariate) is introduced into the
model of an analysis-of-variance experiment.

Data in the following example are selected from a larger experiment on the use of
drugs in the treatment of leprosy (Snedecor and Cochran1967, p. 422).

Variables in the study are

Drug - two antibiotics (A and D) and a control (F)
PreTreatment - a pre-treatment score of leprosy bacilli
PostTreatment - a post-treatment score of leprosy bacilli

Ten patients are selected for each treatment (Drug), and six sites on each patient are
measured for leprosy bacilli.

The covariate (a pretreatment score) is included in the model for increased precision
in determining the effect of drug treatments on the posttreatment count of bacilli.

The following code creates the data set, performs a parallel-slopes analysis of covari-
ance with PROC GLM, and computes Drug LS-means. These statements produce
Output 32.4.1.

data drugtest;
input Drug $ PreTreatment PostTreatment @@;
datalines;

A 11 6 A 8 0 A 5 2 A 14 8 A 19 11
A 6 4 A 10 13 A 6 1 A 11 8 A 3 0
D 6 0 D 6 2 D 7 3 D 8 1 D 18 18
D 8 4 D 19 14 D 8 9 D 5 1 D 15 9
F 16 13 F 13 10 F 11 18 F 9 5 F 21 23
F 16 12 F 12 5 F 12 16 F 7 1 F 12 20
;

proc glm;
class Drug;
model PostTreatment = Drug PreTreatment / solution;
lsmeans Drug / stderr pdiff cov out=adjmeans;

run;

proc print data=adjmeans;
run;
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Output 32.4.1. Overall Analysis of Variance

The GLM Procedure

Class Level Information

Class Levels Values

Drug 3 A D F

Number of Observations Read 30
Number of Observations Used 30

The GLM Procedure

Dependent Variable: PostTreatment

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 871.497403 290.499134 18.10 <.0001

Error 26 417.202597 16.046254

Corrected Total 29 1288.700000

R-Square Coeff Var Root MSE PostTreatment Mean

0.676261 50.70604 4.005778 7.900000

This model assumes that the slopes relating posttreatment scores to pretreatment
scores are parallel for all drugs. You can check this assumption by including the
class-by-covariate interaction,Drug*PreTreatment, in the model and examining the
ANOVA test for the significance of this effect. This extra test is omitted in this ex-
ample, but it is insignificant, justifying the equal-slopes assumption.

In Output 32.4.2, the Type I SS forDrug (293.6) gives the between-drug sums of
squares that are obtained for the analysis-of-variance modelPostTreatment=Drug.
This measures the difference between arithmetic means of posttreatment scores for
different drugs, disregarding the covariate. The Type III SS forDrug (68.5537) gives
the Drug sum of squares adjusted for the covariate. This measures the differences
betweenDrug LS-means, controlling for the covariate. The Type I test is highly sig-
nificant (p = 0.001), but the Type III test is not. This indicates that, while there is
a statistically significant difference between the arithmetic drug means, this differ-
ence is reduced to below the level of background noise when you take the pretreat-
ment scores into account. From the table of parameter estimates, you can derive the
least-squares predictive formula model for estimating posttreatment score based on
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pretreatment score and drug.

post =


(−0.435 +−3.446) + 0.987 · pre, if Drug=A
(−0.435 +−3.337) + 0.987 · pre, if Drug=D
−0.435 + 0.987 · pre, if Drug=F

Output 32.4.2. Tests and Parameter Estimates

The GLM Procedure

Dependent Variable: PostTreatment

Source DF Type I SS Mean Square F Value Pr > F

Drug 2 293.6000000 146.8000000 9.15 0.0010
PreTreatment 1 577.8974030 577.8974030 36.01 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Drug 2 68.5537106 34.2768553 2.14 0.1384
PreTreatment 1 577.8974030 577.8974030 36.01 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -0.434671164 B 2.47135356 -0.18 0.8617
Drug A -3.446138280 B 1.88678065 -1.83 0.0793
Drug D -3.337166948 B 1.85386642 -1.80 0.0835
Drug F 0.000000000 B . . .
PreTreatment 0.987183811 0.16449757 6.00 <.0001

NOTE: The X’X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter ’B’ are not uniquely estimable.

Output 32.4.3displays the LS-means, which are, in a sense, the means adjusted for
the covariate. The STDERR option in the LSMEANS statement causes the standard
error of the LS-means and the probability of getting a largert value under the hypoth-
esisH0: LS-mean= 0 to be included in this table as well. Specifying the PDIFF op-
tion causes all probability values for the hypothesisH0: LS-mean(i) = LS-mean(j)
to be displayed, where the indexesi andj are numbered treatment levels.
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Output 32.4.3. LS-means

The GLM Procedure
Least Squares Means

Post
Treatment Standard LSMEAN

Drug LSMEAN Error Pr > |t| Number

A 6.7149635 1.2884943 <.0001 1
D 6.8239348 1.2724690 <.0001 2
F 10.1611017 1.3159234 <.0001 3

Least Squares Means for effect Drug
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: PostTreatment

i/j 1 2 3

1 0.9521 0.0793
2 0.9521 0.0835
3 0.0793 0.0835

NOTE: To ensure overall protection level, only probabilities associated with
pre-planned comparisons should be used.

The OUT= and COV options in the LSMEANS statement create a data set of the
estimates, their standard errors, and the variances and covariances of the LS-means,
which is displayed inOutput 32.4.4

Output 32.4.4. LS-means Output Data Set

Obs _NAME_ Drug LSMEAN STDERR NUMBER COV1 COV2 COV3

1 PostTreatment A 6.7150 1.28849 1 1.66022 0.02844 -0.08403
2 PostTreatment D 6.8239 1.27247 2 0.02844 1.61918 -0.04299
3 PostTreatment F 10.1611 1.31592 3 -0.08403 -0.04299 1.73165

The experimental graphics features of PROC GLM enable you to visualize the fitted
analysis of covariance model.

ods html;
ods graphics on;

proc glm;
class Drug;
model PostTreatment = Drug PreTreatment;

run;

ods graphics off;
ods html close;
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When you specify the experimental ODS GRAPHICS statement and fit an analysis
of covariance model, the GLM procedure output includes an analysis of covariance
plot, as inOutput 32.4.5. For general information about ODS graphics seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the GLM procedure, see the section“ODS Graphics”on page 1846.

Output 32.4.5. Analysis of Covariance Plot (Experimental)

The plot makes it clear that the control (drug F) has higher post-treatment scores
across the range of pre-treatment scores, while the fitted models for the two antibi-
otics (drugs A and D) nearly coincide.

Example 32.5. Three-Way Analysis of Variance with Contrasts

This example uses data fromCochran and Cox(1957, p. 176) to illustrate the analysis
of a three-way factorial design with replication, including the use of the CONTRAST
statement with interactions, the OUTSTAT= data set, and the SLICE= option in the
LSMEANS statement.

The object of the study is to determine the effects of electric current on denervated
muscle. The variables are
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Rep the replicate number, 1 or 2

Time the length of time the current is applied to the muscle, ranging from
1 to 4

Current the level of electric current applied, ranging from 1 to 4

Number the number of treatments per day, ranging from 1 to 3

MuscleWeight the weight of the denervated muscle

The following code producesOutput 32.5.1throughOutput 32.5.4.

data muscles;
do Rep=1 to 2;

do Time=1 to 4;
do Current=1 to 4;

do Number=1 to 3;
input MuscleWeight @@;
output;

end;
end;

end;
end;
datalines;

72 74 69 61 61 65 62 65 70 85 76 61
67 52 62 60 55 59 64 65 64 67 72 60
57 66 72 72 43 43 63 66 72 56 75 92
57 56 78 60 63 58 61 79 68 73 86 71
46 74 58 60 64 52 71 64 71 53 65 66
44 58 54 57 55 51 62 61 79 60 78 82
53 50 61 56 57 56 56 56 71 56 58 69
46 55 64 56 55 57 64 66 62 59 58 88
;

proc glm outstat=summary;
class Rep Current Time Number;
model MuscleWeight = Rep Current|Time|Number;
contrast ’Time in Current 3’

Time 1 0 0 -1 Current*Time 0 0 0 0 0 0 0 0 1 0 0 -1,
Time 0 1 0 -1 Current*Time 0 0 0 0 0 0 0 0 0 1 0 -1,
Time 0 0 1 -1 Current*Time 0 0 0 0 0 0 0 0 0 0 1 -1;

contrast ’Current 1 versus 2’ Current 1 -1;
lsmeans Current*Time / slice=Current;

run;

proc print data=summary;
run;

The first CONTRAST statement examines the effects ofTime within level 3 of
Current. This is also called thesimple effectof Time within Current*Time. Note
that, since there are three degrees of freedom, it is necessary to specify three rows
in the CONTRAST statement, separated by commas. Since the parameterization that
PROC GLM uses is determined in part by the ordering of the variables in the CLASS
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statement,Current is specified beforeTime so that theTime parameters are nested
within theCurrent*Time parameters; thus, theCurrent*Time contrast coefficients
in each row are simply theTime coefficients of that row within the appropriate level
of Current.

The second CONTRAST statement isolates a single degree of freedom effect corre-
sponding to the difference between the first two levels ofCurrent. You can use such
a contrast in a large experiment where certain preplanned comparisons are important,
but you want to take advantage of the additional error degrees of freedom available
when all levels of the factors are considered.

The LSMEANS statement with the SLICE= option is an alternative way to test for
the simple effect ofTime within Current*Time. In addition to listing the LS-means
for each current strength and length of time, it gives a table ofF -tests for differences
between the LS-means acrossTime within eachCurrent level. In some cases, this
can be a way to disentangle a complex interaction.

Output 32.5.1. Overall Analysis

The GLM Procedure

Class Level Information

Class Levels Values

Rep 2 1 2

Current 4 1 2 3 4

Time 4 1 2 3 4

Number 3 1 2 3

Number of Observations Read 96
Number of Observations Used 96

The GLM Procedure

Dependent Variable: MuscleWeight

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 48 5782.916667 120.477431 1.77 0.0261

Error 47 3199.489583 68.074246

Corrected Total 95 8982.406250

R-Square Coeff Var Root MSE MuscleWeight Mean

0.643805 13.05105 8.250712 63.21875

The output, shown inOutput 32.5.2andOutput 32.5.3, indicates that the main effects
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for Rep, Current, andNumber are significant (withp-values of 0.0045, <0.0001,
and 0.0461, respectively), butTime is not significant, indicating that, in general, it
doesn’t matter how long the current is applied. None of the interaction terms are
significant, nor are the contrasts significant. Notice that the row in the sliced ANOVA
table corresponding to level 3 of current matches the “Time in Current 3” contrast.

Output 32.5.2. Individual Effects and Contrasts

The GLM Procedure

Dependent Variable: MuscleWeight

Source DF Type I SS Mean Square F Value Pr > F

Rep 1 605.010417 605.010417 8.89 0.0045
Current 3 2145.447917 715.149306 10.51 <.0001
Time 3 223.114583 74.371528 1.09 0.3616
Current*Time 9 298.677083 33.186343 0.49 0.8756
Number 2 447.437500 223.718750 3.29 0.0461
Current*Number 6 644.395833 107.399306 1.58 0.1747
Time*Number 6 367.979167 61.329861 0.90 0.5023
Current*Time*Number 18 1050.854167 58.380787 0.86 0.6276

Source DF Type III SS Mean Square F Value Pr > F

Rep 1 605.010417 605.010417 8.89 0.0045
Current 3 2145.447917 715.149306 10.51 <.0001
Time 3 223.114583 74.371528 1.09 0.3616
Current*Time 9 298.677083 33.186343 0.49 0.8756
Number 2 447.437500 223.718750 3.29 0.0461
Current*Number 6 644.395833 107.399306 1.58 0.1747
Time*Number 6 367.979167 61.329861 0.90 0.5023
Current*Time*Number 18 1050.854167 58.380787 0.86 0.6276

Contrast DF Contrast SS Mean Square F Value Pr > F

Time in Current 3 3 34.83333333 11.61111111 0.17 0.9157
Current 1 versus 2 1 99.18750000 99.18750000 1.46 0.2334

Output 32.5.3. Simple Effects of Time

The GLM Procedure
Least Squares Means

Current*Time Effect Sliced by Current for MuscleWeight

Sum of
Current DF Squares Mean Square F Value Pr > F

1 3 271.458333 90.486111 1.33 0.2761
2 3 120.666667 40.222222 0.59 0.6241
3 3 34.833333 11.611111 0.17 0.9157
4 3 94.833333 31.611111 0.46 0.7085
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The SS,F statistics, andp-values can be stored in an OUTSTAT= data set, as shown
in Output 32.5.4.

Output 32.5.4. Contents of the OUTSTAT= Data Set

Obs _NAME_ _SOURCE_ _TYPE_ DF SS F PROB

1 MuscleWeight ERROR ERROR 47 3199.49 . .
2 MuscleWeight Rep SS1 1 605.01 8.8875 0.00454
3 MuscleWeight Current SS1 3 2145.45 10.5054 0.00002
4 MuscleWeight Time SS1 3 223.11 1.0925 0.36159
5 MuscleWeight Current*Time SS1 9 298.68 0.4875 0.87562
6 MuscleWeight Number SS1 2 447.44 3.2864 0.04614
7 MuscleWeight Current*Number SS1 6 644.40 1.5777 0.17468
8 MuscleWeight Time*Number SS1 6 367.98 0.9009 0.50231
9 MuscleWeight Current*Time*Number SS1 18 1050.85 0.8576 0.62757

10 MuscleWeight Rep SS3 1 605.01 8.8875 0.00454
11 MuscleWeight Current SS3 3 2145.45 10.5054 0.00002
12 MuscleWeight Time SS3 3 223.11 1.0925 0.36159
13 MuscleWeight Current*Time SS3 9 298.68 0.4875 0.87562
14 MuscleWeight Number SS3 2 447.44 3.2864 0.04614
15 MuscleWeight Current*Number SS3 6 644.40 1.5777 0.17468
16 MuscleWeight Time*Number SS3 6 367.98 0.9009 0.50231
17 MuscleWeight Current*Time*Number SS3 18 1050.85 0.8576 0.62757
18 MuscleWeight Time in Current 3 CONTRAST 3 34.83 0.1706 0.91574
19 MuscleWeight Current 1 versus 2 CONTRAST 1 99.19 1.4570 0.23344

Example 32.6. Multivariate Analysis of Variance

The following example employs multivariate analysis of variance (MANOVA) to
measure differences in the chemical characteristics of ancient pottery found at four
kiln sites in Great Britain. The data are fromTubb et al.(1980), as reported inHand
et al.(1994).

For each of 26 samples of pottery, the percentages of oxides of five metals are mea-
sured. The following statements create the data set and invoke the GLM procedure
to perform a one-way MANOVA. Additionally, it is of interest to know whether the
pottery from one site in Wales (Llanederyn) differs from the samples from other sites;
a CONTRAST statement is used to test this hypothesis.

data pottery;
title1 "Romano-British Pottery";
input Site $12. Al Fe Mg Ca Na;
datalines;

Llanederyn 14.4 7.00 4.30 0.15 0.51
Llanederyn 13.8 7.08 3.43 0.12 0.17
Llanederyn 14.6 7.09 3.88 0.13 0.20
Llanederyn 11.5 6.37 5.64 0.16 0.14
Llanederyn 13.8 7.06 5.34 0.20 0.20
Llanederyn 10.9 6.26 3.47 0.17 0.22
Llanederyn 10.1 4.26 4.26 0.20 0.18
Llanederyn 11.6 5.78 5.91 0.18 0.16
Llanederyn 11.1 5.49 4.52 0.29 0.30
Llanederyn 13.4 6.92 7.23 0.28 0.20
Llanederyn 12.4 6.13 5.69 0.22 0.54
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Llanederyn 13.1 6.64 5.51 0.31 0.24
Llanederyn 12.7 6.69 4.45 0.20 0.22
Llanederyn 12.5 6.44 3.94 0.22 0.23
Caldicot 11.8 5.44 3.94 0.30 0.04
Caldicot 11.6 5.39 3.77 0.29 0.06
IslandThorns 18.3 1.28 0.67 0.03 0.03
IslandThorns 15.8 2.39 0.63 0.01 0.04
IslandThorns 18.0 1.50 0.67 0.01 0.06
IslandThorns 18.0 1.88 0.68 0.01 0.04
IslandThorns 20.8 1.51 0.72 0.07 0.10
AshleyRails 17.7 1.12 0.56 0.06 0.06
AshleyRails 18.3 1.14 0.67 0.06 0.05
AshleyRails 16.7 0.92 0.53 0.01 0.05
AshleyRails 14.8 2.74 0.67 0.03 0.05
AshleyRails 19.1 1.64 0.60 0.10 0.03
;
proc glm data=pottery;

class Site;
model Al Fe Mg Ca Na = Site;
contrast ’Llanederyn vs. the rest’ Site 1 1 1 -3;
manova h=_all_ / printe printh;

run;

After the summary information, displayed inOutput 32.6.1, PROC GLM produces
the univariate analyses for each of the dependent variables, as shown inOutput 32.6.2
to Output 32.6.6. These analyses show that sites are significantly different for all
oxides individually. You can suppress these univariate analyses by specifying the
NOUNI option in the MODEL statement.

Output 32.6.1. Summary Information on Groups

Romano-British Pottery

The GLM Procedure

Class Level Information

Class Levels Values

Site 4 AshleyRails Caldicot IslandThorns Llanederyn

Number of Observations Read 26
Number of Observations Used 26



1870 � Chapter 32. The GLM Procedure

Output 32.6.2. Univariate Analysis of Variance for Aluminum Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Al

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 175.6103187 58.5367729 26.67 <.0001

Error 22 48.2881429 2.1949156

Corrected Total 25 223.8984615

R-Square Coeff Var Root MSE Al Mean

0.784330 10.22284 1.481525 14.49231

Source DF Type I SS Mean Square F Value Pr > F

Site 3 175.6103187 58.5367729 26.67 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 175.6103187 58.5367729 26.67 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 58.58336640 58.58336640 26.69 <.0001
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Output 32.6.3. Univariate Analysis of Variance for Iron Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Fe

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 134.2216158 44.7405386 89.88 <.0001

Error 22 10.9508457 0.4977657

Corrected Total 25 145.1724615

R-Square Coeff Var Root MSE Fe Mean

0.924567 15.79171 0.705525 4.467692

Source DF Type I SS Mean Square F Value Pr > F

Site 3 134.2216158 44.7405386 89.88 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 134.2216158 44.7405386 89.88 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 71.15144132 71.15144132 142.94 <.0001
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Output 32.6.4. Univariate Analysis of Variance for Calcium Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Mg

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 103.3505270 34.4501757 49.12 <.0001

Error 22 15.4296114 0.7013460

Corrected Total 25 118.7801385

R-Square Coeff Var Root MSE Mg Mean

0.870099 26.65777 0.837464 3.141538

Source DF Type I SS Mean Square F Value Pr > F

Site 3 103.3505270 34.4501757 49.12 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 103.3505270 34.4501757 49.12 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 56.59349339 56.59349339 80.69 <.0001
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Output 32.6.5. Univariate Analysis of Variance for Magnesium Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Ca

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 0.20470275 0.06823425 29.16 <.0001

Error 22 0.05148571 0.00234026

Corrected Total 25 0.25618846

R-Square Coeff Var Root MSE Ca Mean

0.799032 33.01265 0.048376 0.146538

Source DF Type I SS Mean Square F Value Pr > F

Site 3 0.20470275 0.06823425 29.16 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 0.20470275 0.06823425 29.16 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 0.03531688 0.03531688 15.09 0.0008
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Output 32.6.6. Univariate Analysis of Variance for Sodium Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Na

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 0.25824560 0.08608187 9.50 0.0003

Error 22 0.19929286 0.00905877

Corrected Total 25 0.45753846

R-Square Coeff Var Root MSE Na Mean

0.564424 60.06350 0.095178 0.158462

Source DF Type I SS Mean Square F Value Pr > F

Site 3 0.25824560 0.08608187 9.50 0.0003

Source DF Type III SS Mean Square F Value Pr > F

Site 3 0.25824560 0.08608187 9.50 0.0003

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 0.23344446 0.23344446 25.77 <.0001

The PRINTE option in the MANOVA statement displays the elements of the error
matrix, also called the Error Sums of Squares and Crossproducts matrix. SeeOutput
32.6.7. The diagonal elements of this matrix are the error sums of squares from the
corresponding univariate analyses.

The PRINTE option also displays the partial correlation matrix associated with the E
matrix. In this example, none of the oxides are very strongly correlated; the strongest
correlation (r = 0.488) is between magnesium oxide and calcium oxide.
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Output 32.6.7. Error SSCP Matrix and Partial Correlations

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

Al Fe Mg Ca Na

Al 48.288142857 7.0800714286 0.6080142857 0.1064714286 0.5889571429
Fe 7.0800714286 10.950845714 0.5270571429 -0.155194286 0.0667585714
Mg 0.6080142857 0.5270571429 15.429611429 0.4353771429 0.0276157143
Ca 0.1064714286 -0.155194286 0.4353771429 0.0514857143 0.0100785714
Na 0.5889571429 0.0667585714 0.0276157143 0.0100785714 0.1992928571

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 22 Al Fe Mg Ca Na

Al 1.000000 0.307889 0.022275 0.067526 0.189853
0.1529 0.9196 0.7595 0.3856

Fe 0.307889 1.000000 0.040547 -0.206685 0.045189
0.1529 0.8543 0.3440 0.8378

Mg 0.022275 0.040547 1.000000 0.488478 0.015748
0.9196 0.8543 0.0180 0.9431

Ca 0.067526 -0.206685 0.488478 1.000000 0.099497
0.7595 0.3440 0.0180 0.6515

Na 0.189853 0.045189 0.015748 0.099497 1.000000
0.3856 0.8378 0.9431 0.6515

The PRINTH option produces the SSCP matrix for the hypotheses being tested (Site
and the contrast); seeOutput 32.6.8andOutput 32.6.9. Since the Type III SS are the
highest level SS produced by PROC GLM by default, and since the HTYPE= option
is not specified, the SSCP matrix forSite gives the Type IIIH matrix. The diag-
onal elements of this matrix are the model sums of squares from the corresponding
univariate analyses.

Four multivariate tests are computed, all based on the characteristic roots and vectors
of E−1H. These roots and vectors are displayed along with the tests. All four tests
can be transformed to variates that haveF distributions under the null hypothesis.
Note that the four tests all give the same results for the contrast, since it has only
one degree of freedom. In this case, the multivariate analysis matches the univariate
results: there is an overall difference between the chemical composition of samples
from different sites, and the samples from Llanederyn are different from the average
of the other sites.
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Output 32.6.8. Hypothesis SSCP Matrix and Multivariate Tests for Overall Site
Effect

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for Site

Al Fe Mg Ca Na

Al 175.61031868 -149.295533 -130.8097066 -5.889163736 -5.372264835
Fe -149.295533 134.22161582 117.74503516 4.8217865934 5.3259491209
Mg -130.8097066 117.74503516 103.35052703 4.2091613187 4.7105458242
Ca -5.889163736 4.8217865934 4.2091613187 0.2047027473 0.154782967
Na -5.372264835 5.3259491209 4.7105458242 0.154782967 0.2582456044

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Site

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent Al Fe Mg Ca Na

34.1611140 96.39 0.09562211 -0.26330469 -0.05305978 -1.87982100 -0.47071123
1.2500994 3.53 0.02651891 -0.01239715 0.17564390 -4.25929785 1.23727668
0.0275396 0.08 0.09082220 0.13159869 0.03508901 -0.15701602 -1.39364544
0.0000000 0.00 0.03673984 -0.15129712 0.20455529 0.54624873 -0.17402107
0.0000000 0.00 0.06862324 0.03056912 -0.10662399 2.51151978 1.23668841

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall Site Effect
H = Type III SSCP Matrix for Site

E = Error SSCP Matrix

S=3 M=0.5 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.01230091 13.09 15 50.091 <.0001
Pillai’s Trace 1.55393619 4.30 15 60 <.0001
Hotelling-Lawley Trace 35.43875302 40.59 15 29.13 <.0001
Roy’s Greatest Root 34.16111399 136.64 5 20 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
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Output 32.6.9. Hypothesis SSCP Matrix and Multivariate Tests for Differences
Between Llanederyn and the Rest

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

H = Contrast SSCP Matrix for Llanederyn vs. the rest

Al Fe Mg Ca Na

Al 58.583366402 -64.56230291 -57.57983466 -1.438395503 -3.698102513
Fe -64.56230291 71.151441323 63.456352116 1.5851961376 4.0755256878
Mg -57.57983466 63.456352116 56.593493386 1.4137558201 3.6347541005
Ca -1.438395503 1.5851961376 1.4137558201 0.0353168783 0.0907993915
Na -3.698102513 4.0755256878 3.6347541005 0.0907993915 0.2334444577

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SSCP Matrix for Llanederyn vs. the rest

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent Al Fe Mg Ca Na

16.1251646 100.00 -0.08883488 0.25458141 0.08723574 0.98158668 0.71925759
0.0000000 0.00 -0.00503538 0.03825743 -0.17632854 5.16256699 -0.01022754
0.0000000 0.00 0.00162771 -0.08885364 -0.01774069 -0.83096817 2.17644566
0.0000000 0.00 0.04450136 -0.15722494 0.22156791 0.00000000 0.00000000
0.0000000 0.00 0.11939206 0.10833549 0.00000000 0.00000000 0.00000000

MANOVA Test Criteria and Exact F Statistics for the Hypothesis
of No Overall Llanederyn vs. the rest Effect

H = Contrast SSCP Matrix for Llanederyn vs. the rest
E = Error SSCP Matrix

S=1 M=1.5 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.05839360 58.05 5 18 <.0001
Pillai’s Trace 0.94160640 58.05 5 18 <.0001
Hotelling-Lawley Trace 16.12516462 58.05 5 18 <.0001
Roy’s Greatest Root 16.12516462 58.05 5 18 <.0001

Example 32.7. Repeated Measures Analysis of Variance

This example uses data fromCole and Grizzle(1966) to illustrate a commonly occur-
ring repeated measures ANOVA design. Sixteen dogs are randomly assigned to four
groups. (One animal is removed from the analysis due to a missing value for one de-
pendent variable.) Dogs in each group receive either morphine or trimethaphan (vari-
ableDrug) and have either depleted or intact histamine levels (variableDepleted)
before receiving the drugs. The dependent variable is the blood concentration of his-
tamine at 0, 1, 3, and 5 minutes after injection of the drug. Logarithms are applied to
these concentrations to minimize correlation between the mean and the variance of
the data.

The following SAS statements perform both univariate and multivariate repeated
measures analyses and produceOutput 32.7.1throughOutput 32.7.7:
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data dogs;
input Drug $12. Depleted $ Histamine0 Histamine1

Histamine3 Histamine5;
LogHistamine0=log(Histamine0);
LogHistamine1=log(Histamine1);
LogHistamine3=log(Histamine3);
LogHistamine5=log(Histamine5);
datalines;

Morphine N .04 .20 .10 .08
Morphine N .02 .06 .02 .02
Morphine N .07 1.40 .48 .24
Morphine N .17 .57 .35 .24
Morphine Y .10 .09 .13 .14
Morphine Y .12 .11 .10 .
Morphine Y .07 .07 .06 .07
Morphine Y .05 .07 .06 .07
Trimethaphan N .03 .62 .31 .22
Trimethaphan N .03 1.05 .73 .60
Trimethaphan N .07 .83 1.07 .80
Trimethaphan N .09 3.13 2.06 1.23
Trimethaphan Y .10 .09 .09 .08
Trimethaphan Y .08 .09 .09 .10
Trimethaphan Y .13 .10 .12 .12
Trimethaphan Y .06 .05 .05 .05
;
proc glm;

class Drug Depleted;
model LogHistamine0--LogHistamine5 =

Drug Depleted Drug*Depleted / nouni;
repeated Time 4 (0 1 3 5) polynomial / summary printe;

run;

The NOUNI option in the MODEL statement suppresses the individual ANOVA ta-
bles for the original dependent variables. These analyses are usually of no interest in
a repeated measures analysis. The POLYNOMIAL option in the REPEATED state-
ment indicates that the transformation used to implement the repeated measures anal-
ysis is an orthogonal polynomial transformation, and the SUMMARY option requests
that the univariate analyses for the orthogonal polynomial contrast variables be dis-
played. The parenthetical numbers (0 1 3 5) determine the spacing of the orthogonal
polynomials used in the analysis. The output is displayed inOutput 32.7.1through
Output 32.7.7.
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Output 32.7.1. Summary Information on Groups

The GLM Procedure

Class Level Information

Class Levels Values

Drug 2 Morphine Trimethaphan

Depleted 2 N Y

Number of Observations Read 16
Number of Observations Used 15

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

Time_N represents the nth degree polynomial contrast for Time

Contrast Variable: Time_1

Contrast Variable: Time_2

Contrast Variable: Time_3

The “Repeated Measures Level Information” table gives information on the repeated
measures effect; it is displayed inOutput 32.7.2. In this example, the within-subject
(within-dog) effect isTime, which has the levels 0, 1, 3, and 5.

Output 32.7.2. Repeated Measures Levels

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Log Log Log Log
Dependent Variable Histamine0 Histamine1 Histamine3 Histamine5

Level of Time 0 1 3 5

The multivariate analyses for within-subject effects and related interactions are dis-
played inOutput 32.7.3. For the example, the first table displayed shows that the
TIME effect is significant. In addition, theTime*Drug*Depleted interaction is sig-
nificant, as shown in the fourth table. This means that the effect ofTime on the blood
concentration of histamine is different for the fourDrug*Depleted combinations
studied.
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Output 32.7.3. Multivariate Tests of Within-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Time Effect
H = Type III SSCP Matrix for Time

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.11097706 24.03 3 9 0.0001
Pillai’s Trace 0.88902294 24.03 3 9 0.0001
Hotelling-Lawley Trace 8.01087137 24.03 3 9 0.0001
Roy’s Greatest Root 8.01087137 24.03 3 9 0.0001

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Time*Drug Effect
H = Type III SSCP Matrix for Time*Drug

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.34155984 5.78 3 9 0.0175
Pillai’s Trace 0.65844016 5.78 3 9 0.0175
Hotelling-Lawley Trace 1.92774470 5.78 3 9 0.0175
Roy’s Greatest Root 1.92774470 5.78 3 9 0.0175

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Time*Depleted Effect
H = Type III SSCP Matrix for Time*Depleted

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.12339988 21.31 3 9 0.0002
Pillai’s Trace 0.87660012 21.31 3 9 0.0002
Hotelling-Lawley Trace 7.10373567 21.31 3 9 0.0002
Roy’s Greatest Root 7.10373567 21.31 3 9 0.0002

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Time*Drug*Depleted Effect
H = Type III SSCP Matrix for Time*Drug*Depleted

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.19383010 12.48 3 9 0.0015
Pillai’s Trace 0.80616990 12.48 3 9 0.0015
Hotelling-Lawley Trace 4.15915732 12.48 3 9 0.0015
Roy’s Greatest Root 4.15915732 12.48 3 9 0.0015

Output 32.7.4displays tests of hypotheses for between-subject (between-dog) effects.
This section tests the hypotheses that the differentDrugs, Depleteds, and their in-
teractions have no effects on the dependent variables, while ignoring the within-dog
effects. From this analysis, there is a significant between-dog effect forDepleted
(p-value=0.0229). The interaction and the main effect forDrug are not significant
(p-values=0.1734 and 0.1281, respectively).
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Output 32.7.4. Tests of Between-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

Drug 1 5.99336243 5.99336243 2.71 0.1281
Depleted 1 15.44840703 15.44840703 6.98 0.0229
Drug*Depleted 1 4.69087508 4.69087508 2.12 0.1734
Error 11 24.34683348 2.21334850

Univariate analyses for within-subject (within-dog) effects and related interactions
are displayed inOutput 32.7.6. The results for this example are the same as for the
multivariate analyses; this is not always the case. In addition, before the univariate
analyses are used to make conclusions about the data, the result of the sphericity test
(requested with the PRINTE option in the REPEATED statement and displayed in
Output 32.7.5) should be examined. If the sphericity test is rejected, use the adjusted
G-G or H-F probabilities. See the“Repeated Measures Analysis of Variance”section
on page 1825 for more information.

Output 32.7.5. Sphericity Test

The GLM Procedure
Repeated Measures Analysis of Variance

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.1752641 16.930873 0.0046
Orthogonal Components 5 0.1752641 16.930873 0.0046

Output 32.7.6. Univariate Tests of Within-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Adj Pr > F
Source DF Type III SS Mean Square F Value Pr > F G - G H - F

Time 3 12.05898677 4.01966226 53.44 <.0001 <.0001 <.0001
Time*Drug 3 1.84429514 0.61476505 8.17 0.0003 0.0039 0.0008
Time*Depleted 3 12.08978557 4.02992852 53.57 <.0001 <.0001 <.0001
Time*Drug*Depleted 3 2.93077939 0.97692646 12.99 <.0001 0.0005 <.0001
Error(Time) 33 2.48238887 0.07522391

Greenhouse-Geisser Epsilon 0.5694
Huynh-Feldt Epsilon 0.8475

Output 32.7.7is produced by the SUMMARY option in the REPEATED statement.
If the POLYNOMIAL option is not used, a similar table is displayed using the de-
fault CONTRAST transformation. The linear, quadratic, and cubic trends forTime,
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labeled as ‘Time–1’, ‘Time–2’, and ‘Time–3’, are displayed, and in each case, the
Source labeled ‘Mean’ gives a test for the respective trend.

Output 32.7.7. Tests of Between-Subject Effects for Transformed Variables

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

Time_N represents the nth degree polynomial contrast for Time

Contrast Variable: Time_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2.00963483 2.00963483 34.99 0.0001
Drug 1 1.18069076 1.18069076 20.56 0.0009
Depleted 1 1.36172504 1.36172504 23.71 0.0005
Drug*Depleted 1 2.04346848 2.04346848 35.58 <.0001
Error 11 0.63171161 0.05742833

Contrast Variable: Time_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 5.40988418 5.40988418 57.15 <.0001
Drug 1 0.59173192 0.59173192 6.25 0.0295
Depleted 1 5.94945506 5.94945506 62.86 <.0001
Drug*Depleted 1 0.67031587 0.67031587 7.08 0.0221
Error 11 1.04118707 0.09465337

Contrast Variable: Time_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 4.63946776 4.63946776 63.04 <.0001
Drug 1 0.07187246 0.07187246 0.98 0.3443
Depleted 1 4.77860547 4.77860547 64.94 <.0001
Drug*Depleted 1 0.21699504 0.21699504 2.95 0.1139
Error 11 0.80949018 0.07359002

Example 32.8. Mixed Model Analysis of Variance Using the
RANDOM Statement

Milliken and Johnson(1984) present an example of an unbalanced mixed model.
Three machines, which are considered as a fixed effect, and six employees, which are
considered a random effect, are studied. Each employee operates each machine for
either one, two, or three different times. The dependent variable is an overall rating,
which takes into account the number and quality of components produced.

The following statements form the data set and perform a mixed model analysis of
variance by requesting the TEST option in the RANDOM statement. Note that the
machine*person interaction is declared as a random effect; in general, when an
interaction involves a random effect, it too should be declared as random. The results
of the analysis are shown inOutput 32.8.1throughOutput 32.8.4.

data machine;
input machine person rating @@;
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datalines;
1 1 52.0 1 2 51.8 1 2 52.8 1 3 60.0 1 4 51.1 1 4 52.3
1 5 50.9 1 5 51.8 1 5 51.4 1 6 46.4 1 6 44.8 1 6 49.2
2 1 64.0 2 2 59.7 2 2 60.0 2 2 59.0 2 3 68.6 2 3 65.8
2 4 63.2 2 4 62.8 2 4 62.2 2 5 64.8 2 5 65.0 2 6 43.7
2 6 44.2 2 6 43.0 3 1 67.5 3 1 67.2 3 1 66.9 3 2 61.5
3 2 61.7 3 2 62.3 3 3 70.8 3 3 70.6 3 3 71.0 3 4 64.1
3 4 66.2 3 4 64.0 3 5 72.1 3 5 72.0 3 5 71.1 3 6 62.0
3 6 61.4 3 6 60.5
;

proc glm data=machine;
class machine person;
model rating=machine person machine*person;
random person machine*person / test;

run;

The TEST option in the RANDOM statement requests that PROC GLM determine
the appropriateF -tests based onperson andmachine*person being treated as ran-
dom effects. As you can see inOutput 32.8.4, this requires that a linear combination
of mean squares be constructed to test both themachine andperson hypotheses;
thus,F -tests using Satterthwaite approximations are used.

Output 32.8.1. Summary Information on Groups

The GLM Procedure

Class Level Information

Class Levels Values

machine 3 1 2 3

person 6 1 2 3 4 5 6

Number of Observations Read 44
Number of Observations Used 44
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Output 32.8.2. Fixed-Effect Model Analysis of Variance

The GLM Procedure

Dependent Variable: rating

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 17 3061.743333 180.102549 206.41 <.0001

Error 26 22.686667 0.872564

Corrected Total 43 3084.430000

R-Square Coeff Var Root MSE rating Mean

0.992645 1.560754 0.934111 59.85000

Source DF Type I SS Mean Square F Value Pr > F

machine 2 1648.664722 824.332361 944.72 <.0001
person 5 1008.763583 201.752717 231.22 <.0001
machine*person 10 404.315028 40.431503 46.34 <.0001

Source DF Type III SS Mean Square F Value Pr > F

machine 2 1238.197626 619.098813 709.52 <.0001
person 5 1011.053834 202.210767 231.74 <.0001
machine*person 10 404.315028 40.431503 46.34 <.0001

Output 32.8.3. Expected Values of Type III Mean Squares

The GLM Procedure

Source Type III Expected Mean Square

machine Var(Error) + 2.137 Var(machine*person) + Q(machine)

person Var(Error) + 2.2408 Var(machine*person) + 6.7224
Var(person)

machine*person Var(Error) + 2.3162 Var(machine*person)
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Output 32.8.4. Mixed Model Analysis of Variance

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: rating

Source DF Type III SS Mean Square F Value Pr > F

machine 2 1238.197626 619.098813 16.57 0.0007

Error 10.036 375.057436 37.370384
Error: 0.9226*MS(machine*person) + 0.0774*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

person 5 1011.053834 202.210767 5.17 0.0133

Error 10.015 392.005726 39.143708
Error: 0.9674*MS(machine*person) + 0.0326*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

machine*person 10 404.315028 40.431503 46.34 <.0001

Error: MS(Error) 26 22.686667 0.872564

Note that you can also use the MIXED procedure to analyze mixed models. The
following statements use PROC MIXED to reproduce the mixed model analysis of
variance; the relevant part of the PROC MIXED results is shown inOutput 32.8.5

proc mixed data=machine method=type3;
class machine person;
model rating = machine;
random person machine*person;

run;



1886 � Chapter 32. The GLM Procedure

Output 32.8.5. PROC MIXED Mixed Model Analysis of Variance (Partial Output)

The Mixed Procedure

Type 3 Analysis of Variance

Sum of
Source DF Squares Mean Square

machine 2 1238.197626 619.098813
person 5 1011.053834 202.210767
machine*person 10 404.315028 40.431503
Residual 26 22.686667 0.872564

Type 3 Analysis of Variance

Source Expected Mean Square

machine Var(Residual) + 2.137 Var(machine*person) + Q(machine)
person Var(Residual) + 2.2408 Var(machine*person) + 6.7224 Var(person)
machine*person Var(Residual) + 2.3162 Var(machine*person)
Residual Var(Residual)

Type 3 Analysis of Variance

Error
Source Error Term DF F Value Pr > F

machine 0.9226 MS(machine*person) 10.036 16.57 0.0007
+ 0.0774 MS(Residual)

person 0.9674 MS(machine*person) 10.015 5.17 0.0133
+ 0.0326 MS(Residual)

machine*person MS(Residual) 26 46.34 <.0001
Residual . . . .

The advantage of PROC MIXED is that it offers more versatility for mixed models;
the disadvantage is that it can be less computationally efficient for large data sets. See
Chapter 46, “The MIXED Procedure,”for more details.

Example 32.9. Analyzing a Doubly-multivariate Repeated
Measures Design

This example shows how to analyze a doubly-multivariate repeated measures design
by using PROC GLM with an IDENTITY factor in the REPEATED statement. Note
that this differs from previous releases of PROC GLM, in which you had to use a
MANOVA statement to get a doubly repeated measures analysis.

Two responses, Y1 and Y2, are each measured three times for each subject (pretreat-
ment, posttreatment, and in a later follow-up). Each subject receives one of three
treatments; A, B, or the control. In PROC GLM, you use a REPEATED factor of
type IDENTITY to identify the different responses and another repeated factor to
identify the different measurement times. The repeated measures analysis includes
multivariate tests for time and treatment main effects, as well as their interactions,
across responses. The following statements produceOutput 32.9.1throughOutput
32.9.3.
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data Trial;
input Treatment $ Repetition PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2;
datalines;

A 1 3 13 9 0 0 9
A 2 0 14 10 6 6 3
A 3 4 6 17 8 2 6
A 4 7 7 13 7 6 4
A 5 3 12 11 6 12 6
A 6 10 14 8 13 3 8
B 1 9 11 17 8 11 27
B 2 4 16 13 9 3 26
B 3 8 10 9 12 0 18
B 4 5 9 13 3 0 14
B 5 0 15 11 3 0 25
B 6 4 11 14 4 2 9
Control 1 10 12 15 4 3 7
Control 2 2 8 12 8 7 20
Control 3 4 9 10 2 0 10
Control 4 10 8 8 5 8 14
Control 5 11 11 11 1 0 11
Control 6 1 5 15 8 9 10
;

proc glm data=Trial;
class Treatment;
model PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2 = Treatment / nouni;
repeated Response 2 identity, Time 3;

run;
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Output 32.9.1. A Doubly-multivariate Repeated Measures Design

The GLM Procedure

Class Level Information

Class Levels Values

Treatment 3 A B Control

Number of Observations Read 18
Number of Observations Used 18

The levels of the repeated factors are displayed inOutput 32.9.2. Note that
RESPONSE is 1 for all the Y1 measurements and 2 for all the Y2 measurements,
while the three levels ofTime identify the pretreatment, posttreatment, and follow-up
measurements within each response. The multivariate tests for within-subject effects
are displayed inOutput 32.9.3.

Output 32.9.2. Repeated Factor Levels

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable PreY1 PostY1 FollowY1 PreY2 PostY2 FollowY2

Level of Response 1 1 1 2 2 2
Level of Time 1 2 3 1 2 3
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Output 32.9.3. Within-subject Tests

The GLM Procedure
Repeated Measures Analysis of Variance

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Response Effect
H = Type III SSCP Matrix for Response

E = Error SSCP Matrix

S=1 M=0 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.02165587 316.24 2 14 <.0001
Pillai’s Trace 0.97834413 316.24 2 14 <.0001
Hotelling-Lawley Trace 45.17686368 316.24 2 14 <.0001
Roy’s Greatest Root 45.17686368 316.24 2 14 <.0001

MANOVA Test Criteria and F Approximations for the Hypothesis of no Response*Treatment Effect
H = Type III SSCP Matrix for Response*Treatment

E = Error SSCP Matrix

S=2 M=-0.5 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.72215797 1.24 4 28 0.3178
Pillai’s Trace 0.27937444 1.22 4 30 0.3240
Hotelling-Lawley Trace 0.38261660 1.31 4 15.818 0.3074
Roy’s Greatest Root 0.37698780 2.83 2 15 0.0908

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Response*Time Effect
H = Type III SSCP Matrix for Response*Time

E = Error SSCP Matrix

S=1 M=1 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.14071380 18.32 4 12 <.0001
Pillai’s Trace 0.85928620 18.32 4 12 <.0001
Hotelling-Lawley Trace 6.10662362 18.32 4 12 <.0001
Roy’s Greatest Root 6.10662362 18.32 4 12 <.0001

MANOVA Test Criteria and F Approximations for the
Hypothesis of no Response*Time*Treatment Effect

H = Type III SSCP Matrix for Response*Time*Treatment
E = Error SSCP Matrix

S=2 M=0.5 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.22861451 3.27 8 24 0.0115
Pillai’s Trace 0.96538785 3.03 8 26 0.0151
Hotelling-Lawley Trace 2.52557514 3.64 8 15 0.0149
Roy’s Greatest Root 2.12651905 6.91 4 13 0.0033

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

The table for Response*Treatment tests for an overall treatment effect
across the two responses; likewise, the tables forResponse*Time and
Response*Treatment*Time test for time and the treatment-by-time interac-
tion, respectively. In this case, there is a strong main effect for time and possibly for
the interaction, but not for treatment.
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In previous releases (before the IDENTITY transformation was introduced), in or-
der to perform a doubly repeated measures analysis, you had to use a MANOVA
statement with a customized transformation matrix M. You might still want to use
this approach to see details of the analysis, such as the univariate ANOVA for each
transformed variate. The following statements demonstrate this approach by using
the MANOVA statement to test for the overall main effect of time and specifying the
SUMMARY option.

proc glm data=Trial;
class Treatment;
model PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2 = Treatment / nouni;
manova h=intercept m=prey1 - posty1,

prey1 - followy1,
prey2 - posty2,
prey2 - followy2 / summary;

run;

The M matrix used to perform the test for time effects is displayed inOutput 32.9.4,
while the results of the multivariate test are given inOutput 32.9.5. Note that the test
results are the same as for theResponse*Time effect inOutput 32.9.3.

Output 32.9.4. M Matrix to Test for Time Effect (Repeated Measure)

The GLM Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

PreY1 PostY1 FollowY1 PreY2 PostY2 FollowY2

MVAR1 1 -1 0 0 0 0
MVAR2 1 0 -1 0 0 0
MVAR3 0 0 0 1 -1 0
MVAR4 0 0 0 1 0 -1
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Output 32.9.5. Tests for Time Effect (Repeated Measure)

The GLM Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Intercept

E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent MVAR1 MVAR2 MVAR3 MVAR4

6.10662362 100.00 -0.00157729 0.04081620 -0.04210209 0.03519437
0.00000000 0.00 0.00796367 0.00493217 0.05185236 0.00377940
0.00000000 0.00 -0.03534089 -0.01502146 -0.00283074 0.04259372
0.00000000 0.00 -0.05672137 0.04500208 0.00000000 0.00000000

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall Intercept Effect
on the Variables Defined by the M Matrix Transformation

H = Type III SSCP Matrix for Intercept
E = Error SSCP Matrix

S=1 M=1 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.14071380 18.32 4 12 <.0001
Pillai’s Trace 0.85928620 18.32 4 12 <.0001
Hotelling-Lawley Trace 6.10662362 18.32 4 12 <.0001
Roy’s Greatest Root 6.10662362 18.32 4 12 <.0001

The SUMMARY option in the MANOVA statement creates an ANOVA table for
each transformed variable as defined by the M matrix. MVAR1 and MVAR2 contrast
the pretreatment measurement for Y1 with the posttreatment and follow-up measure-
ments for Y1, respectively; MVAR3 and MVAR4 are the same contrasts for Y2.
Output 32.9.6displays these univariate ANOVA tables and shows that the contrasts
are all strongly significant except for the pre-versus-post difference for Y2.
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Output 32.9.6. Summary Output for the Test for Time Effect

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR1

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 512.0000000 512.0000000 22.65 0.0003
Error 15 339.0000000 22.6000000

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR2

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 813.3888889 813.3888889 32.87 <.0001
Error 15 371.1666667 24.7444444

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR3

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 68.0555556 68.0555556 3.49 0.0814
Error 15 292.5000000 19.5000000

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR4

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 800.0000000 800.0000000 26.43 0.0001
Error 15 454.0000000 30.2666667

Example 32.10. Testing for Equal Group Variances

This example demonstrates how you can test for equal group variances in a one-way
design. The data come from the University of Pennsylvania Smell Identification Test
(UPSIT), reported inO’Brien and Heft(1995). The study is undertaken to explore
how age and gender are related to sense of smell. A total of 180 subjects 20 to
89 years old are exposed to 40 different odors: for each odor, subjects are asked to
choose which of four words best describes the odor. The Freeman-Tukey modified
arcsine transformation (Bishop et al.1975) is applied to the proportion of correctly
identified odors to arrive at an olfactory index. For the following analysis, subjects
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are divided into five age groups:

agegroup =


1 if age ≤ 25
2 if 25 < age ≤ 40
3 if 40 < age ≤ 55
4 if 55 < age ≤ 70
5 if 70 < age

The following statements create a data set namedupsit, containing the age group and
olfactory index for each subject.

data upsit;
input agegroup smell @@;
datalines;

1 1.381 1 1.322 1 1.162 1 1.275 1 1.381 1 1.275 1 1.322
1 1.492 1 1.322 1 1.381 1 1.162 1 1.013 1 1.322 1 1.322
1 1.275 1 1.492 1 1.322 1 1.322 1 1.492 1 1.322 1 1.381
1 1.234 1 1.162 1 1.381 1 1.381 1 1.381 1 1.322 1 1.381
1 1.322 1 1.381 1 1.275 1 1.492 1 1.275 1 1.322 1 1.275
1 1.381 1 1.234 1 1.105
2 1.234 2 1.234 2 1.381 2 1.322 2 1.492 2 1.234 2 1.381
2 1.381 2 1.492 2 1.492 2 1.275 2 1.492 2 1.381 2 1.492
2 1.322 2 1.275 2 1.275 2 1.275 2 1.322 2 1.492 2 1.381
2 1.322 2 1.492 2 1.196 2 1.322 2 1.275 2 1.234 2 1.322
2 1.098 2 1.322 2 1.381 2 1.275 2 1.492 2 1.492 2 1.381
2 1.196
3 1.381 3 1.381 3 1.492 3 1.492 3 1.492 3 1.098 3 1.492
3 1.381 3 1.234 3 1.234 3 1.129 3 1.069 3 1.234 3 1.322
3 1.275 3 1.230 3 1.234 3 1.234 3 1.322 3 1.322 3 1.381
4 1.322 4 1.381 4 1.381 4 1.322 4 1.234 4 1.234 4 1.234
4 1.381 4 1.322 4 1.275 4 1.275 4 1.492 4 1.234 4 1.098
4 1.322 4 1.129 4 0.687 4 1.322 4 1.322 4 1.234 4 1.129
4 1.492 4 0.810 4 1.234 4 1.381 4 1.040 4 1.381 4 1.381
4 1.129 4 1.492 4 1.129 4 1.098 4 1.275 4 1.322 4 1.234
4 1.196 4 1.234 4 0.585 4 0.785 4 1.275 4 1.322 4 0.712
4 0.810
5 1.322 5 1.234 5 1.381 5 1.275 5 1.275 5 1.322 5 1.162
5 0.909 5 0.502 5 1.234 5 1.322 5 1.196 5 0.859 5 1.196
5 1.381 5 1.322 5 1.234 5 1.275 5 1.162 5 1.162 5 0.585
5 1.013 5 0.960 5 0.662 5 1.129 5 0.531 5 1.162 5 0.737
5 1.098 5 1.162 5 1.040 5 0.558 5 0.960 5 1.098 5 0.884
5 1.162 5 1.098 5 0.859 5 1.275 5 1.162 5 0.785 5 0.859
;

Older people are more at risk for problems with their sense of smell, and this should
be reflected in significant differences in the mean of the olfactory index across the
different age groups. However, many older people also have an excellent sense of
smell, which implies that the older age groups should have greater variability. In
order to test this hypothesis and to compute a one-way ANOVA for the olfactory
index that is robust to the possibility of unequal group variances, you can use the
HOVTEST and WELCH options in the MEANS statement for the GLM procedure,
as shown in the following code.
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proc glm data=upsit;
class agegroup;
model smell = agegroup;
means agegroup / hovtest welch;

run;

Output 32.10.1, Output 32.10.2, andOutput 32.10.3display the usual ANOVA test
for equal age group means, Levene’s test for equal age group variances, and Welch’s
test for equal age group means, respectively. The hypotheses of age effects for mean
and variance of the olfactory index are both confirmed.

Output 32.10.1. Usual ANOVA Test for Age Group Differences in Mean Olfactory
Index

The GLM Procedure

Dependent Variable: smell

Source DF Type I SS Mean Square F Value Pr > F

agegroup 4 2.13878141 0.53469535 16.65 <.0001

Output 32.10.2. Levene’s Test for Age Group Differences in Olfactory Variability

The GLM Procedure

Levene’s Test for Homogeneity of smell Variance
ANOVA of Squared Deviations from Group Means

Sum of Mean
Source DF Squares Square F Value Pr > F

agegroup 4 0.0799 0.0200 6.35 <.0001
Error 175 0.5503 0.00314

Output 32.10.3. Welch’s Test for Age Group Differences in Mean Olfactory Index

The GLM Procedure

Welch’s ANOVA for smell

Source DF F Value Pr > F

agegroup 4.0000 13.72 <.0001
Error 78.7489
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Example 32.11. Analysis of a Screening Design

Yin and Jillie (1987) describe an experiment on a nitride etch process for a sin-
gle wafer plasma etcher. The experiment is run using four factors: cathode power
(power), gas flow (flow), reactor chamber pressure (pressure), and electrode gap
(gap). Of interest are the main effects and interaction effects of the factors on
the nitride etch rate (rate). The following statements create a SAS data set named
HalfFraction, containing the factor settings and the observed etch rate for each of
eight experimental runs.

data HalfFraction;
input power flow pressure gap rate;
datalines;

0.8 4.5 125 275 550
0.8 4.5 200 325 650
0.8 550.0 125 325 642
0.8 550.0 200 275 601
1.2 4.5 125 325 749
1.2 4.5 200 275 1052
1.2 550.0 125 275 1075
1.2 550.0 200 325 729
;

Notice that each of the factors has just two values. This is a common experimental
design when the intent is to screen from the many factors thatmight affect the re-
sponse the few that actuallydo. Since there are24 = 16 different possible settings
of four two-level factors, this design with only eight runs is called a “half fraction.”
The eight runs are chosen specifically to provide unambiguous information on main
effects at the cost of confounding interaction effects with each other.

One way to analyze this data is simply to use PROC GLM to compute an analysis of
variance, including both main effects and interactions in the model. The following
statements demonstrate this approach.

proc glm data=HalfFraction;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2;

run;

The ‘@2’ notation on the model statement includes all main effects and two-factor
interactions between the factors. The output is shown inOutput 32.11.1.
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Output 32.11.1. Analysis of Variance for Nitride Etch Process Half Fraction

The GLM Procedure

Class Level Information

Class Levels Values

power 2 0.8 1.2

flow 2 4.5 550

pressure 2 125 200

gap 2 275 325

Number of Observations Read 8
Number of Observations Used 8

The GLM Procedure

Dependent Variable: rate

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 280848.0000 40121.1429 . .

Error 0 0.0000 .

Corrected Total 7 280848.0000

R-Square Coeff Var Root MSE rate Mean

1.000000 . . 756.0000

Source DF Type I SS Mean Square F Value Pr > F

power 1 168780.5000 168780.5000 . .
flow 1 264.5000 264.5000 . .
power*flow 1 200.0000 200.0000 . .
pressure 1 32.0000 32.0000 . .
power*pressure 1 1300.5000 1300.5000 . .
flow*pressure 1 78012.5000 78012.5000 . .
gap 1 32258.0000 32258.0000 . .
power*gap 0 0.0000 . . .
flow*gap 0 0.0000 . . .
pressure*gap 0 0.0000 . . .

Source DF Type III SS Mean Square F Value Pr > F

power 1 168780.5000 168780.5000 . .
flow 1 264.5000 264.5000 . .
power*flow 0 0.0000 . . .
pressure 1 32.0000 32.0000 . .
power*pressure 0 0.0000 . . .
flow*pressure 0 0.0000 . . .
gap 1 32258.0000 32258.0000 . .
power*gap 0 0.0000 . . .
flow*gap 0 0.0000 . . .
pressure*gap 0 0.0000 . . .
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Notice that there are no error degrees of freedom. This is because there are 10 effects
in the model (4 main effects plus 6 interactions) but only 8 observations in the data
set. This is another cost of using a fractional design: not only is it impossible to
estimate all the main effects and interactions, but there is also no information left to
estimate the underlying error rate in order to measure the significance of the effects
that are estimable.

Another thing to notice inOutput 32.11.1is the difference between the Type I and
Type III ANOVA tables. The rows corresponding to main effects in each are the same,
but no Type III interaction tests are estimable, while some Type I interaction tests are
estimable. This indicates that there isaliasing in the design: some interactions are
completely confounded with each other.

In order to analyze this confounding, you should examine the aliasing structure of
the design using the ALIASING option in the MODEL statement. Before doing so,
however, it is advisable tocodethe design, replacing low and high levels of each
factor with the values -1 and +1, respectively. This puts each factor on an equal
footing in the model and makes the aliasing structure much more interpretable. The
following statements code the data, creating a new data set namedCoded.

data Coded; set HalfFraction;
power = -1*(power =0.80) + 1*(power =1.20);
flow = -1*(flow =4.50) + 1*(flow =550 );
pressure = -1*(pressure=125 ) + 1*(pressure=200 );
gap = -1*(gap =275 ) + 1*(gap =325 );

run;

The following statements use the GLM procedure to reanalyze the coded design,
displaying the parameter estimates as well as the functions of the parameters that
they each estimate.

proc glm data=Coded;
model rate=power|flow|pressure|gap@2 / solution aliasing;

run;

The parameter estimates table is shown inOutput 32.11.2.
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Output 32.11.2. Parameter Estimates and Aliases for Nitride Etch Process Half
Fraction

The GLM Procedure

Dependent Variable: rate

Standard
Parameter Estimate Error t Value Pr > |t| Expected Value

Intercept 756.0000000 . . . Intercept
power 145.2500000 . . . power
flow 5.7500000 . . . flow
power*flow -5.0000000 B . . . power*flow + pressure*gap
pressure 2.0000000 . . . pressure
power*pressure -12.7500000 B . . . power*pressure + flow*gap
flow*pressure -98.7500000 B . . . flow*pressure + power*gap
gap -63.5000000 . . . gap
power*gap 0.0000000 B . . .
flow*gap 0.0000000 B . . .
pressure*gap 0.0000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a generalized inverse was used to solve
the normal equations. Terms whose estimates are followed by the letter ’B’ are not
uniquely estimable.

Looking at the “Expected Value” column, notice that, while each of the main effects
is unambiguously estimated by its associated term in the model, the expected values
of the interaction estimates are more complicated. For example, the relatively large
effect (-98.75) corresponding toflow*pressure actually estimates the combined ef-
fect of flow*pressure andpower*gap. Without further information, it is impossi-
ble to disentangle these aliased interactions; however, since the main effects of both
power andgap are large and those forflow andpressure are small, it is reasonable
to suspect thatpower*gap is the more “active” of the two interactions.

Fortunately, eight more runs are available for this experiment (the other half fraction.)
The following statements create a data set containing these extra runs and add it to the
previous eight, resulting in a full24 = 16 run replicate. Then PROC GLM displays
the analysis of variance again.
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data OtherHalf;
input power flow pressure gap rate;
datalines;

0.8 4.5 125 325 669
0.8 4.5 200 275 604
0.8 550.0 125 275 633
0.8 550.0 200 325 635
1.2 4.5 125 275 1037
1.2 4.5 200 325 868
1.2 550.0 125 325 860
1.2 550.0 200 275 1063
;
data FullRep;

set HalfFraction OtherHalf;
run;

proc glm data=FullRep;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2;

run;

The results are displayed inOutput 32.11.3.
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Output 32.11.3. Analysis of Variance for Nitride Etch Process Full Replicate

The GLM Procedure

Class Level Information

Class Levels Values

power 2 0.8 1.2

flow 2 4.5 550

pressure 2 125 200

gap 2 275 325

Number of Observations Read 16
Number of Observations Used 16

The GLM Procedure

Dependent Variable: rate

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 10 521234.1250 52123.4125 25.58 0.0011

Error 5 10186.8125 2037.3625

Corrected Total 15 531420.9375

R-Square Coeff Var Root MSE rate Mean

0.980831 5.816175 45.13715 776.0625

Source DF Type I SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001
flow 1 217.5625 217.5625 0.11 0.7571
power*flow 1 18.0625 18.0625 0.01 0.9286
pressure 1 10.5625 10.5625 0.01 0.9454
power*pressure 1 1.5625 1.5625 0.00 0.9790
flow*pressure 1 7700.0625 7700.0625 3.78 0.1095
gap 1 41310.5625 41310.5625 20.28 0.0064
power*gap 1 94402.5625 94402.5625 46.34 0.0010
flow*gap 1 2475.0625 2475.0625 1.21 0.3206
pressure*gap 1 248.0625 248.0625 0.12 0.7414

Source DF Type III SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001
flow 1 217.5625 217.5625 0.11 0.7571
power*flow 1 18.0625 18.0625 0.01 0.9286
pressure 1 10.5625 10.5625 0.01 0.9454
power*pressure 1 1.5625 1.5625 0.00 0.9790
flow*pressure 1 7700.0625 7700.0625 3.78 0.1095
gap 1 41310.5625 41310.5625 20.28 0.0064
power*gap 1 94402.5625 94402.5625 46.34 0.0010
flow*gap 1 2475.0625 2475.0625 1.21 0.3206
pressure*gap 1 248.0625 248.0625 0.12 0.7414
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With sixteen runs, the analysis of variance tells the whole story: all effects are es-
timable and there are five degrees of freedom left over to estimate the underlying
error. The main effects ofpower andgap and their interaction are all significant, and
no other effects are. Notice that the Type I and Type III ANOVA tables are the same;
this is because the design is orthogonal and all effects are estimable.

This example illustrates the use of the GLM procedure for the model analysis of
a screening experiment. Typically, there is much more involved in performing an
experiment of this type, from selecting the design points to be studied to graphically
assessing significant effects, optimizing the final model, and performing subsequent
experimentation. Specialized tools for this are available in SAS/QC software, in
particular the ADX Interface and the FACTEX and OPTEX procedures. Refer to
SAS/QC User’s Guidefor more information.
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Chapter 33
The GLMMOD Procedure
Overview

The GLMMOD procedure constructs the design matrix for a general linear model; it
essentially constitutes the model-building front end for the GLM procedure. You can
use the GLMMOD procedure in conjunction with other SAS/STAT software regres-
sion procedures or with SAS/IML software to obtain specialized analyses for general
linear models that you cannot obtain with the GLM procedure.

While some of the regression procedures in SAS/STAT software provide for general
linear effects modeling with classification variables and interaction or polynomial
effects, many others do not. For such procedures, you must specify the model directly
in terms of distinct variables. For example, if you want to use the REG procedure to
fit a polynomial model, you must first create the crossproduct and power terms as
new variables, usually in a DATA step. Alternatively, you can use the GLMMOD
procedure to create a data set that contains the design matrix for a model as specified
using the effects modeling facilities of the GLM procedure.

Note that the TRANSREG procedure provides alternative methods to construct de-
sign matrices for full-rank and less-than-full-rank models, polynomials, and splines.
SeeChapter 75, “The TRANSREG Procedure,”for more information.

Getting Started

A One-Way Design

A one-way analysis of variance considers one treatment factor with two or more treat-
ment levels. This example employs PROC GLMMOD together with PROC REG to
perform a one-way analysis of variance to study the effect of bacteria on the nitrogen
content of red clover plants. The treatment factor is bacteria strain, and it has six lev-
els. Red clover plants are inoculated with the treatments, and nitrogen content is later
measured in milligrams. The data are derived from an experiment byErdman(1946)
and are analyzed in Chapters 7 and 8 ofSteel and Torrie(1980). PROC GLMMOD
is used to create the design matrix. The following DATA step creates the SAS data
setClover.
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title ’Nitrogen Content of Red Clover Plants’;
data Clover;

input Strain $ Nitrogen @@;
datalines;

3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;

The variableStrain contains the treatment levels, and the variableNitrogen contains
the response. The following statements produce the design matrix:

proc glmmod data=Clover;
class Strain;
model Nitrogen = Strain;

run;

The classification variable, or treatment factor, is specified in the CLASS statement.
The MODEL statement defines the response and independent variables. The design
matrix produced corresponds to the model

Yi,j = µ + αi + εi,j

wherei = 1, . . . , 6, andj = 1, . . . , 5.

Figure 33.1andFigure 33.2display the output produced by these statements.Figure
33.1displays information about the data set, which is useful for checking your data.
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Nitrogen Content of Red Clover Plants

The GLMMOD Procedure

Class Level Information

Class Levels Values

Strain 6 3DOK1 3DOK13 3DOK4 3DOK5 3DOK7 COMPOS

Number of Observations Read 30
Number of Observations Used 30

Nitrogen Content of Red Clover Plants

The GLMMOD Procedure

Parameter Definitions

Name of
Column Associated CLASS Variable Values
Number Effect Strain

1 Intercept
2 Strain 3DOK1
3 Strain 3DOK13
4 Strain 3DOK4
5 Strain 3DOK5
6 Strain 3DOK7
7 Strain COMPOS

Figure 33.1. Class Level Information and Parameter Definitions

The design matrix, shown inFigure 33.2, consists of seven columns: one for the mean
and six for the treatment levels. The vector of responses,Nitrogen, is also displayed.
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Nitrogen Content of Red Clover Plants

The GLMMOD Procedure

Design Points

Observation Column Number
Number Nitrogen 1 2 3 4 5 6 7

1 19.4 1 1 0 0 0 0 0
2 32.6 1 1 0 0 0 0 0
3 27.0 1 1 0 0 0 0 0
4 32.1 1 1 0 0 0 0 0
5 33.0 1 1 0 0 0 0 0
6 17.7 1 0 0 0 1 0 0
7 24.8 1 0 0 0 1 0 0
8 27.9 1 0 0 0 1 0 0
9 25.2 1 0 0 0 1 0 0

10 24.3 1 0 0 0 1 0 0
11 17.0 1 0 0 1 0 0 0
12 19.4 1 0 0 1 0 0 0
13 9.1 1 0 0 1 0 0 0
14 11.9 1 0 0 1 0 0 0
15 15.8 1 0 0 1 0 0 0
16 20.7 1 0 0 0 0 1 0
17 21.0 1 0 0 0 0 1 0
18 20.5 1 0 0 0 0 1 0
19 18.8 1 0 0 0 0 1 0
20 18.6 1 0 0 0 0 1 0
21 14.3 1 0 1 0 0 0 0
22 14.4 1 0 1 0 0 0 0
23 11.8 1 0 1 0 0 0 0
24 11.6 1 0 1 0 0 0 0
25 14.2 1 0 1 0 0 0 0
26 17.3 1 0 0 0 0 0 1
27 19.4 1 0 0 0 0 0 1
28 19.1 1 0 0 0 0 0 1
29 16.9 1 0 0 0 0 0 1
30 20.8 1 0 0 0 0 0 1

Figure 33.2. Design Matrix

Usually, you will find PROC GLMMOD most useful for the data sets it can cre-
ate rather than for its displayed output. For example, the following statements use
PROC GLMMOD to save the design matrix for the clover study to the data set
CloverDesign instead of displaying it.

proc glmmod data=Clover outdesign=CloverDesign noprint;
class Strain;
model Nitrogen = Strain;

run;

Now you can use the REG procedure to analyze the data, as the following statements
demonstrate:

proc reg data=CloverDesign;
model Nitrogen = Col2-Col7;

run;
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The results are shown inFigure 33.3.

Nitrogen Content of Red Clover Plants

The REG Procedure
Model: MODEL1

Dependent Variable: Nitrogen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 847.04667 169.40933 14.37 <.0001
Error 24 282.92800 11.78867
Corrected Total 29 1129.97467

Root MSE 3.43346 R-Square 0.7496
Dependent Mean 19.88667 Adj R-Sq 0.6975
Coeff Var 17.26515

NOTE: Model is not full rank. Least-squares solutions for the parameters are
not unique. Some statistics will be misleading. A reported DF of 0 or B
means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a
linear combination of other variables as shown.

Col7 = Intercept - Col2 - Col3 - Col4 - Col5 - Col6

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept B 18.70000 1.53549 12.18 <.0001
Col2 Strain 3DOK1 B 10.12000 2.17151 4.66 <.0001
Col3 Strain 3DOK13 B -5.44000 2.17151 -2.51 0.0194
Col4 Strain 3DOK4 B -4.06000 2.17151 -1.87 0.0738
Col5 Strain 3DOK5 B 5.28000 2.17151 2.43 0.0229
Col6 Strain 3DOK7 B 1.22000 2.17151 0.56 0.5794
Col7 Strain COMPOS 0 0 . . .

Figure 33.3. Regression Analysis

Syntax

The following statements are available in PROC GLMMOD.

PROC GLMMOD < options > ;
BY variables ;
CLASS variables ;
FREQ variable ;
MODEL dependents=independents / < options > ;
WEIGHT variable ;
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The PROC GLMMOD and MODEL statements are required. If classification effects
are used, the class variables must be declared in a CLASS statement, and the CLASS
statement must appear before the MODEL statement.

PROC GLMMOD Statement

PROC GLMMOD < options > ;

The PROC GLMMOD statement invokes the GLMMOD procedure. It has the fol-
lowing options:

DATA=SAS-data-set
specifies the SAS data set to be used by the GLMMOD procedure. If you do not
specify the DATA= option, the most recently created SAS data set is used.

NAMELEN=n
specifies the maximum length for an effect name. Effect names are listed in the table
of parameter definitions and stored in the EFFNAME variable in the OUTPARM=
data set. By default,n = 20. You can specify20 < n ≤ 200 if 20 characters are not
enough to distinguish between effects, which may be the case if the model includes a
high-order interaction between variables with relatively long, similar names.

NOPRINT
suppresses the normal display of results. This option is generally useful only when
one or more output data sets are being produced by the GLMMOD procedure. Note
that this option temporarily disables the Output Delivery System (ODS); seeChapter
14, “Using the Output Delivery System,”for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which you want the levels of the classification variables (spec-
ified in the CLASS statement) to be sorted. This ordering determines which pa-
rameters in the model correspond to each level in the data. Note that the ORDER=
option applies to the levels for all classification variables. The exception is the de-
fault ORDER=FORMATTED for numeric variables for which you have supplied no
explicit format. In this case, the levels are ordered by their internal (numeric) value.
Note that this represents a change from previous releases for how class levels are
ordered. In releases previous to Version 8, numeric class levels with no explicit for-
mat were ordered by their BEST12. formatted values, and in order to revert to the
previous ordering you can specify this format explicitly for the affected classifica-
tion variables. The change was implemented because the former default behavior for
ORDER=FORMATTED often resulted in levels not being ordered numerically and
usually required the user to intervene with an explicit format or ORDER=INTERNAL
to get the more natural ordering.

The ORDER= option can take the following values.
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Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

If you omit the ORDER= option, PROC GLMMOD orders by the external formatted
value.

OUTPARM=SAS-data-set
names an output data set to contain the information regarding the association between
model effects and design matrix columns.

OUTDESIGN=SAS-data-set
names an output data set to contain the columns of the design matrix.

PREFIX=name
specifies a prefix to use in naming the columns of the design matrix in the
OUTDESIGN= data set. The default prefix isCol and the column name is formed
by appending the column number to the prefix, so that by default the columns are
namedCol1, Col2, and so on. If you specify the ZEROBASED option, the column
numbering starts at zero, so that with the default value of PREFIX= the columns of
the design matrix in the OUTDESIGN= data set are namedCol0, Col1, and so on.

ZEROBASED
specifies that the numbering for the columns of the design matrix in the
OUTDESIGN= data set should begin at 0. By default it begins at 1, so that
with the default value of PREFIX= the columns of the design matrix in the
OUTDESIGN= data set are namedCol1, Col2, and so on. If you use the
ZEROBASED option, the column names are insteadCol0, Col1, and so on.

BY Statement

BY variables ;

You can specify a BY statement with the GLMMOD procedure to obtain separate
designs for observations in groups defined by the BY variables. When you specify
a BY statement, the procedure expects the input DATA= data set to be sorted in the
order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.
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• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the GLMMOD procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables < option > ;

The CLASS statement names the classification variables to be used in the analysis.
Typical classification variables areTreatment, Sex, Race, Group, andReplication.
If you specify the CLASS statement, it must appear before the MODEL statement.

By default, class levels are determined from the entire formatted values of the CLASS
variables. Note that this represents a slight change from previous releases in the way
in which class levels are determined. In releases prior to Version 9, class levels were
determined using no more than the first 16 characters of the formatted values. If
you wish to revert to this previous behavior you can use the TRUNCATE option on
the CLASS statement. In any case, you can use formats to group values into levels.
Refer to the discussion of the FORMAT procedure in theSAS Procedures Guide
and the discussions for the FORMAT statement and SAS formats inSAS Language
Reference: Dictionary.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE
specifies that class levels should be determined using only up to the first 16 characters
of the formatted values of CLASS variables. When formatted values are longer than
16 characters, you can use this option in order to revert to the levels as determined in
releases previous to Version 9.

FREQ and WEIGHT Statements

FREQ variable ;

WEIGHT variable ;

FREQ and WEIGHT variables are transferred to the output data sets without change.
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MODEL Statement

MODEL dependents=independents / < options > ;

The MODEL statement names the dependent variables and independent effects. For
the syntax of effects, see the“Specification of Effects”section on page 1784 in
Chapter 32, “The GLM Procedure.”

You can specify the following option in the MODEL statement after a slash (/).

NOINT
requests that the intercept parameter not be included in the model.

Details

Displayed Output

For each pass of the data (that is, for each BY group and for each pass required by
the pattern of missing values for the dependent variables), the GLMMOD procedure
displays the definitions of the columns of the design matrix along with the following:

• the number of the column

• the name of the associated effect

• the values that the class variables take for this level of the effect

The design matrix itself is also displayed, along with the following:

• the observation number

• the dependent variable values

• the FREQ and WEIGHT values, if any

• the columns of the design matrix

Missing Values

If some variables have missing values for some observations, then PROC GLMMOD
handles missing values in the same way as PROC GLM; see the“Missing Values”
section on page 1837 inChapter 32, “The GLM Procedure,”for further details.

OUTPARM= Data Set

An output data set containing information regarding the association between model
effects and design matrix columns is created whenever you specify the OUTPARM=
option in the PROC GLMMOD statement. The OUTPARM= data set contains an
observation for each column of the design matrix with the following variables:

• a numeric variable,–COLNUM– , identifying the number of the column of the
design matrix corresponding to this observation
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• a character variable,EFFNAME, containing the name of the effect that gener-
ates the column of the design matrix corresponding to this observation

• the CLASS variables, with the values they have for the column corresponding
to this observation, or blanks if they are not involved with the effect associated
with this column

If there are BY-group variables or if the pattern of missing values for the dependent
variables requires it, the single data set defines several design matrices. In this case,
for each of these design matrices, the OUTPARM= data set also contains the follow-
ing:

• the current values of the BY variables, if you specify a BY statement

• a numeric variable,–YPASS– , containing the current pass of the data, if the
pattern of missing values for the dependent variables requires multiple passes

OUTDESIGN= Data Set

An output data set containing the design matrix is created whenever you specify the
OUTDESIGN= option in the PROC GLMMOD statement. The OUTDESIGN= data
set contains an observation for each observation in the DATA= data set, with the
following variables:

• the dependent variables

• the FREQ variable, if any

• the WEIGHT variable, if any

• a variable for each column of the design matrix, with names COL1, COL2, and
so forth

If there are BY-group variables or if the pattern of missing values for the dependent
variables requires it, the single data set contains several design matrices. In this case,
for each of these, the OUTDESIGN= data set also contains the following:

• the current values of the BY variables, if you specify a BY statement

• a numeric variable,–YPASS– , containing the current pass of the data, if the
pattern of missing values for the dependent variables requires multiple passes

ODS Table Names

PROC GLMMOD assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 33.1. ODS Tables Produced in PROC GLMMOD

ODS Table Name Description Statement
ClassLevels Table of class levels CLASS statement
DependentInfo Simultaneously analyzed

dependent variables
default when there are multiple
dependent variables

DesignPoints Design matrix default
NObs Number of observations default
Parameters Parameters and associated

column numbers
default

Examples

Example 33.1. A Two-Way Design

The following program uses the GLMMOD procedure to produce the design matrix
for a two-way design. The two classification factors have seven and three levels,
respectively, so the design matrix contains1 + 7 + 3 + 21 = 32 columns in all.

data Plants;
input Type $ @;
do Block=1 to 3;

input StemLength @;
output;
end;

datalines;
Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
O’Neill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;
proc glmmod outparm=Parm outdesign=Design;

class Type Block;
model StemLength = Type|Block;

run;

proc print data=Parm;
run;

proc print data=Design;
run;
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Output 33.1.1. A Two-Way Design

The GLMMOD Procedure

Class Level Information

Class Levels Values

Type 7 Clarion Clinton Compost Knox O’Neill Wabash Webster

Block 3 1 2 3

Number of Observations Read 21
Number of Observations Used 21

The GLMMOD Procedure

Parameter Definitions

Name of
Column Associated CLASS Variable Values
Number Effect Type Block

1 Intercept
2 Type Clarion
3 Type Clinton
4 Type Compost
5 Type Knox
6 Type O’Neill
7 Type Wabash
8 Type Webster
9 Block 1

10 Block 2
11 Block 3
12 Type*Block Clarion 1
13 Type*Block Clarion 2
14 Type*Block Clarion 3
15 Type*Block Clinton 1
16 Type*Block Clinton 2
17 Type*Block Clinton 3
18 Type*Block Compost 1
19 Type*Block Compost 2
20 Type*Block Compost 3
21 Type*Block Knox 1
22 Type*Block Knox 2
23 Type*Block Knox 3
24 Type*Block O’Neill 1
25 Type*Block O’Neill 2
26 Type*Block O’Neill 3
27 Type*Block Wabash 1
28 Type*Block Wabash 2
29 Type*Block Wabash 3
30 Type*Block Webster 1
31 Type*Block Webster 2
32 Type*Block Webster 3
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The GLMMOD Procedure

Design Points

Observation Stem Column Number
Number Length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 32.7 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
2 32.3 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
3 31.5 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
4 32.1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
5 29.7 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
6 29.1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
7 35.7 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
8 35.9 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
9 33.1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

10 36.0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
11 34.2 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
12 31.2 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
13 31.8 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
14 28.0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
15 29.2 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
16 38.2 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
17 37.8 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
18 31.9 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
19 32.5 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
20 31.1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
21 29.7 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Design Points

Observation Column Number
Number 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Output 33.1.2. The OUTPARM= Data Set

Obs _COLNUM_ EFFNAME Type Block

1 1 Intercept
2 2 Type Clarion
3 3 Type Clinton
4 4 Type Compost
5 5 Type Knox
6 6 Type O’Neill
7 7 Type Wabash
8 8 Type Webster
9 9 Block 1

10 10 Block 2
11 11 Block 3
12 12 Type*Block Clarion 1
13 13 Type*Block Clarion 2
14 14 Type*Block Clarion 3
15 15 Type*Block Clinton 1
16 16 Type*Block Clinton 2
17 17 Type*Block Clinton 3
18 18 Type*Block Compost 1
19 19 Type*Block Compost 2
20 20 Type*Block Compost 3
21 21 Type*Block Knox 1
22 22 Type*Block Knox 2
23 23 Type*Block Knox 3
24 24 Type*Block O’Neill 1
25 25 Type*Block O’Neill 2
26 26 Type*Block O’Neill 3
27 27 Type*Block Wabash 1
28 28 Type*Block Wabash 2
29 29 Type*Block Wabash 3
30 30 Type*Block Webster 1
31 31 Type*Block Webster 2
32 32 Type*Block Webster 3
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Output 33.1.3. The OUTDESIGN= Data Set

S
t
e
m
L
e C C C C C C C C C C C C C C C C C C C C C C C
n C C C C C C C C C o o o o o o o o o o o o o o o o o o o o o o o

O g o o o o o o o o o l l l l l l l l l l l l l l l l l l l l l l l
b t l l l l l l l l l 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3
s h 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

1 32.7 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 32.3 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 31.5 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 32.1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 29.7 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 29.1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 35.7 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 35.9 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
9 33.1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 36.0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
11 34.2 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
12 31.2 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13 31.8 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 28.0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 29.2 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
16 38.2 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
17 37.8 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
18 31.9 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
19 32.5 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
20 31.1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
21 29.7 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Example 33.2. Factorial Screening

Screening experiments are undertaken to select from among the many possible factors
that might affect a response the few that actually do, either simply (main effects) or
in conjunction with other factors (interactions). One method of selecting significant
factors is forward model selection, in which the model is built by successively adding
the most statistically significant effects. Forward selection is an option in the REG
procedure, but the REG procedure does not allow you to specify interactions directly
(as the GLM procedure does, for example). You can use the GLMMOD procedure
to create the screening model for a design and then use the REG procedure on the
results to perform the screening.
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The following statements create the SAS data setScreening, which contains the
results of a screening experiment:

title ’PROC GLMMOD and PROC REG for Forward Selection Screening’;
data Screening;

input a b c d e y;
datalines;

-1 -1 -1 -1 1 -6.688
-1 -1 -1 1 -1 -10.664
-1 -1 1 -1 -1 -1.459
-1 -1 1 1 1 2.042
-1 1 -1 -1 -1 -8.561
-1 1 -1 1 1 -7.095
-1 1 1 -1 1 0.553
-1 1 1 1 -1 -2.352

1 -1 -1 -1 -1 -4.802
1 -1 -1 1 1 5.705
1 -1 1 -1 1 14.639
1 -1 1 1 -1 2.151
1 1 -1 -1 1 5.884
1 1 -1 1 -1 -3.317
1 1 1 -1 -1 4.048
1 1 1 1 1 15.248

;
run;

The data set contains a single dependent variable (y) and five independent factors (a,
b, c, d, ande). The design is a half-fraction of the full25 factorial, the precise half-
fraction having been chosen to provide uncorrelated estimates of all main effects and
two-factor interactions.

The following statements use the GLMMOD procedure to create a design matrix
data set containing all the main effects and two factor interactions for the preceding
screening design.

ods output DesignPoints = DesignMatrix;
proc glmmod data=Screening;

model y = a|b|c|d|e@2;
run;

Notice that the preceding statements use ODS to create the design matrix data set,
instead of the OUTDESIGN= option in the PROC GLMMOD statement. The results
are equivalent, but the columns of the data set produced by ODS have names that are
directly related to the names of their corresponding effects.

Finally, the following statements use the REG procedure to perform forward model
selection for the screening design. Two MODEL statements are used, one without
the selection options (which produces the regression analysis for the full model) and
one with the selection options.
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proc reg data=DesignMatrix;
model y = a--d_e;
model y = a--d_e / selection = forward

details = summary
slentry = 0.05;

run;

Output 33.2.1. PROC REG Full Model Fit

PROC GLMMOD and PROC REG for Forward Selection Screening

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 15 861.48436 57.43229 . .
Error 0 0 .
Corrected Total 15 861.48436

Root MSE . R-Square 1.0000
Dependent Mean 0.33325 Adj R-Sq .
Coeff Var .

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 0.33325 . . .
a 1 4.61125 . . .
b 1 0.21775 . . .
a_b a*b 1 0.30350 . . .
c 1 4.02550 . . .
a_c a*c 1 0.05150 . . .
b_c b*c 1 -0.20225 . . .
d 1 -0.11850 . . .
a_d a*d 1 0.12075 . . .
b_d b*d 1 0.18850 . . .
c_d c*d 1 0.03200 . . .
e 1 3.45275 . . .
a_e a*e 1 1.97175 . . .
b_e b*e 1 -0.35625 . . .
c_e c*e 1 0.30900 . . .
d_e d*e 1 0.30750 . . .
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Output 33.2.2. PROC REG Screening Results

PROC GLMMOD and PROC REG for Forward Selection Screening

The REG Procedure
Model: MODEL2

Dependent Variable: y

Summary of Forward Selection

Variable Number Partial Model
Step Entered Label Vars In R-Square R-Square C(p) F Value Pr > F

1 a 1 0.3949 0.3949 . 9.14 0.0091
2 c 2 0.3010 0.6959 . 12.87 0.0033
3 e 3 0.2214 0.9173 . 32.13 0.0001
4 a_e a*e 4 0.0722 0.9895 . 75.66 <.0001

Output 33.2.1andOutput 33.2.2contain the results of the REG analysis. The full
model has 16 parameters (the intercept + 5 main effects + 10 interactions). These
are all estimable, but since there are only 16 observations in the design, there are no
degrees of freedom left to estimate error; consequently, there is no way to use the full
model to test for the statistical significance of effects. However, the forward selection
method chooses only four effects for the model: the main effects of factorsa, c, and
e, and the interaction betweena ande. Using this reduced model enables you to
estimate the underlying level of noise, although note that the selection method biases
this estimate somewhat.
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Chapter 34
The GLMPOWER Procedure
Overview

Power and sample size analysis optimizes the resource usage and design of a
study, improving chances of conclusive results with maximum efficiency. The
GLMPOWER procedure performs prospective power analysis for linear models, with
a variety of goals:

• determining the sample size required to get a significant result with adequate
probability (power)

• characterizing the power of a study to detect a meaningful effect

• conducting what-if analyses to assess sensitivity of the power or required sam-
ple size to other factors

Hereprospectiveindicates that the analysis pertains to planning for a future study.
This is in contrast toretrospectiveanalysis for a past study, which is not supported by
this procedure.

The statistical analyses that are covered include Type III tests and contrasts of fixed
class effects in univariate linear models, optionally with covariates. The covariates
can be continuous or categorical. Tests and contrasts involving random effects are
not supported. For power and sample size analyses in a variety of other statistical
situations, seeChapter 57, “The POWER Procedure.”

Input for PROC GLMPOWER includes the components considered in study plan-
ning:

• design (including subject profiles and their allocation weights)

• statistical model

• contrasts of class effects

• significance level (alpha)

• surmised response means for subject profiles (often called “cell means”)

• surmised variability

• power

• sample size

In order to identify power or sample size as the result parameter, you designate it by
a missing value in the input. The procedure calculates this result value over one or
more scenarios of input values for all other components.
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You specify the design and the cell means using anexemplary data set, a data set of ar-
tificial values constructed to represent the intended sampling design and the surmised
response means in the underlying population. You specify the model and contrasts
using MODEL and CONTRAST statements similar to those in the GLM, ANOVA,
and MIXED procedures. You specify the remaining parameters with the POWER
statement, which is similar to analysis statements in the POWER procedure.

In addition to tabular results, PROC GLMPOWER produces graphs. You can pro-
duce the most common types of plots easily with default settings and use a variety
of options for more customized graphics. For example, you can control the choice
of axis variables, axis ranges, number of plotted points, mapping of graphical fea-
tures (such as color, line style, symbol, and panel) to analysis parameters, and legend
appearance.

The GLMPOWER procedure is one of several tools available in SAS/STAT software
for power and sample size analysis. PROC POWER covers a variety of more basic
analyses such ast tests, equivalence tests, confidence intervals, binomial proportions,
multiple regression, and one-way ANOVA. The Power and Sample Size application
provides a user interface and implements many of the analyses supported in the pro-
cedures.

The following sections of this chapter describe how to use PROC GLMPOWER and
discuss the underlying statistical methodology. The“Getting Started”section on page
1930 introduces PROC GLMPOWER with examples of power computation for a two-
way analysis of variance. The“Syntax” section on page 1935 describes the syntax
of the procedure. The“Details” section on page 1945 summarizes the methods em-
ployed by PROC GLMPOWER and provides details on several special topics. The
“Examples”section on page 1951 illustrates the use of the GLMPOWER procedure
with several applications.

For more discussion and examples on power and sample size analysis for linear mod-
els, refer to Castelloe and O’Brien (2001), O’Brien and Shieh (1992), Muller et al.
(1992), and O’Brien and Muller (1993). For additional discussion on general power
and sample size concepts, refer to Castelloe (2000), Muller and Benignus (1992), and
Lenth (2001).

Getting Started

Simple Two-Way ANOVA

This example demonstrates how to use PROC GLMPOWER to compute and plot
power for each effect test in a two-way analysis of variance (ANOVA).

Suppose you are planning an experiment to study the effect of light exposure on the
growth of two varieties of flowers. The planned data analysis is a two-way ANOVA
with flower height (measured at two weeks) as the response and a model consisting
of the effects of light exposure, flower variety, and their interaction. You want to
calculate the power of each effect test using a balanced design with a total of 60
specimens (10 for each combination of exposure and variety) andα = 0.05 for each
test.
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As a first step, create anexemplary data setdescribing your conjectures about the
underlying population means. You believe that the mean flower height for each com-
bination of variety and exposure level (i.e., for each design profile, or for eachcell in
the design) roughly followsTable 34.1.

Table 34.1. Mean Flower Height (in cm) by Variety and Exposure
Exposure

Variety 1 2 3
1 14 16 21
2 10 15 16

The following statements create a data setExemplary containing these cell means.

data Exemplary;
do Variety = 1 to 2;

do Exposure = 1 to 3;
input Height @@;
output;

end;
end;
datalines;

14 16 21
10 15 16

;
run;

You also conjecture that the error standard deviation is about 5 cm.

Use the DATA= option in the PROC GLMPOWER statement to specifyExemplary
as the exemplary data set. Identify the class variables (Variety andExposure) using
the CLASS statement. Specify the model using the MODEL statement. Use the
POWER statement to specify power as the result parameter and provide values for
the other analysis parameters, error standard deviation and total sample size.

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 5
ntotal = 60
power = .;

run;

The MODEL statement defines the full model including both main effects and the
interaction. The POWER= option in the POWER statement identifies power as the
result parameter with a missing value (POWER=.). The STDDEV= option specifies
an error standard deviation of 5, and the NTOTAL= option specifies a total sample
size of 60. The default value for the ALPHA= option sets the significance level to
α = 0.05.

Figure 34.1shows the output.
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The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable Height
Error Standard Deviation 5
Total Sample Size 60
Alpha 0.05
Error Degrees of Freedom 54

Computed Power

Test
Index Source DF Power

1 Variety 1 0.718
2 Exposure 2 0.957
3 Variety*Exposure 2 0.191

Figure 34.1. Sample Size Analysis for Two-Way ANOVA

The power is about 0.72 for the test of the Variety effect. In other words, there is a
probability of 0.72 that the test of the Variety effect will produce a significant result
(given the assumptions for the means and error standard deviation). The power is
0.96 for the test of the Exposure effect and 0.19 for the interaction test.

Now, suppose you want to account for some of your uncertainty in conjecturing the
true error standard deviation by evaluating the power at reasonable low and high
values, 4 and 6.5. You also want to plot power for sample sizes between 30 and 90.
The following statements perform the analysis:

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

The PLOT statement with the X=N option requests a plot with sample size on the
x-axis. (The result parameter, here power, is always plotted on the other axis.) The
MIN= and MAX= options in the PLOT statement specify the sample size range.

Figure 34.2shows the output, andFigure 34.3shows the plot.
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The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable Height
Total Sample Size 60
Alpha 0.05
Error Degrees of Freedom 54

Computed Power

Std Test
Index Source Dev DF Power

1 Variety 4.0 1 0.887
2 Variety 6.5 1 0.496
3 Exposure 4.0 2 0.996
4 Exposure 6.5 2 0.793
5 Variety*Exposure 4.0 2 0.280
6 Variety*Exposure 6.5 2 0.130

Figure 34.2. Sample Size Analysis for Two-Way ANOVA with Input Ranges

Figure 34.3. Plot of Power versus Sample Size for Two-Way ANOVA with Input
Ranges

Figure 34.2reveals that the power ranges from about 0.130 to 0.996 for the different
effect tests and scenarios for standard deviation, with a sample size of 60. InFigure
34.3, the line style identifies the effect test, and the plotting symbol identifies the
standard deviation. The locations of the plotting symbols identify actual computed
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powers; the curves are linear interpolations of these points. Note that the computed
points in the plot occur at sample size multiples of 6, because there are 6 cells in the
design (and by default, sample sizes are rounded to produce integer cell sizes).

Incorporating Contrasts, Unbalanced Designs, and Multiple
Means Scenarios

Suppose you want to compute power for the two-way ANOVA described in“Simple
Two-Way ANOVA,” but you want to

• Try an unbalanced sample size allocation with respect to Exposure, using twice
as many samples for levels 2 and 3 as for level 1.

• Consider an additional, less optimistic scenario for the cell means, shown in
Table 34.2.

• Test a contrast of Exposure comparing levels 1 and 3.

Table 34.2. Additional Cell Means Scenario
Exposure

Variety 1 2 3
1 15 16 20
2 11 14 15

To specify the unbalanced design and the additional cell means scenario, you can add
two new variables to the exemplary data set (Weight for the sample size weights,
andHeightNew for the new cell means scenario). Rename the original cell means
scenario toHeightOrig.

data Exemplary;
input Variety $ Exposure $ HeightOrig HeightNew Weight;
datalines;

1 1 14 15 1
1 2 16 16 2
1 3 21 20 2
2 1 10 11 1
2 2 15 14 2
2 3 16 15 2

;
run;

In PROC GLMPOWER, specify the name of the weight variable using the WEIGHT
statement, and specify the name of the cell means variables as dependent variables in
the MODEL statement. Use the CONTRAST statement to specify the contrast as you
would in PROC GLM. The following statements perform the sample size analysis.

proc glmpower data=Exemplary;
class Variety Exposure;
model HeightOrig HeightNew = Variety | Exposure;
weight Weight;
contrast ’Exposure=1 vs Exposure=3’ Exposure 1 0 -1;
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power
stddev = 5
ntotal = 60
power = .;

run;

Figure 34.4shows the output.

The GLMPOWER Procedure

Fixed Scenario Elements

Weight Variable Weight
Error Standard Deviation 5
Total Sample Size 60
Alpha 0.05
Error Degrees of Freedom 54

Computed Power

Test
Index Dependent Type Source DF Power

1 HeightOrig Effect Variety 1 0.672
2 HeightOrig Effect Exposure 2 0.911
3 HeightOrig Effect Variety*Exposure 2 0.217
4 HeightOrig Contrast Exposure=1 vs Exposure=3 1 0.951
5 HeightNew Effect Variety 1 0.754
6 HeightNew Effect Exposure 2 0.633
7 HeightNew Effect Variety*Exposure 2 0.137
8 HeightNew Contrast Exposure=1 vs Exposure=3 1 0.705

Figure 34.4. Sample Size Analysis for More Complex Two-Way ANOVA

The power of the contrast of Exposure levels 1 and 3 is about 0.95 for the original
cell means scenario (HeightOrig) and only 0.71 for the new one (HeightNew). The
power is higher for the test of Variety, but lower for the tests of Exposure and of
Variety*Exposure for the new cell means scenario compared to the original one. Note
also for theHeightOrig scenario that the power for the unbalanced design (Figure
34.4) compared to the balanced design (Figure 34.1) is slightly lower for the tests of
Variety and Exposure, but slightly higher for the test of Variety*Exposure.

Syntax
The following statements are available in PROC GLMPOWER.

PROC GLMPOWER < options > ;
CLASS variables ;
MODEL dependent-variables = effects ;
WEIGHT variable ;
CONTRAST ’label’ effect values < . . . effect values > < / options > ;
POWER < options > ;
PLOT < plot-options > < / graph-options > ;
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The PROC GLMPOWER statement, the MODEL statement, and the POWER state-
ment are required. If your model contains classification effects, the classification
variables must be listed in a CLASS statement, and the CLASS statement must ap-
pear before the MODEL statement. In addition, CONTRAST statements must appear
after the MODEL statement. PLOT statements must appear after the POWER state-
ment defining the analysis for the plot.

You can use multiple CONTRAST, POWER, and PLOT statements. Each
CONTRAST statement defines a separate contrast. Each POWER statement
produces a separate analysis and uses the information contained in the CLASS,
MODEL, WEIGHT, and all CONTRAST statements. Each PLOT statement refers
to the previous POWER statement and generates a separate graph (or set of graphs).

Table 34.3summarizes the basic functions of each statement in PROC GLMPOWER.
The syntax of each statement inTable 34.3is described in the following pages.

Table 34.3. Statements in the GLMPOWER Procedure

Statement Description
PROC GLMPOWER invokes procedure and specifies exemplary data set

CLASS declares classification variables

CONTRAST defines linear tests of model parameters

MODEL defines model and specifies dependent variable(s)
used for cell means scenarios

WEIGHT specifies variable for allocating sample sizes to dif-
ferent subject profiles

POWER identifies parameter to solve for and provides one
or more scenarios for values of other analysis
parameters

PLOT displays graphs for preceding POWER statement

PROC GLMPOWER Statement

PROC GLMPOWER < options > ;

The PROC GLMPOWER statement invokes the GLMPOWER procedure. You can
specify the following options.

DATA=SAS-data-set
names a SAS data set to be used as the exemplary data set, which is an artificial
data set constructed to represent the intended sampling design and the conjectured
response means for the underlying population.

PLOTONLY
specifies that only graphical results from the PLOT statement should be produced.
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CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis.
Classification variables can be either character or numeric.

CONTRAST Statement

CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement enables you to define custom hypothesis tests by specify-
ing anL vector or matrix for testing the hypothesisLβ = 0. Thus, to use this feature
you must be familiar with the details of the model parameterization used in PROC
GLM. For more information, see the“Parameterization of PROC GLM Models”sec-
tion on page 1787 ofChapter 32, “The GLM Procedure.”All of the elements of theL
vector may be given, or if only certain portions of theL vector are given, the remain-
ing elements are constructed by PROC GLMPOWER from the context (in a manner
similar to rule 4 discussed in the“Construction of Least-Squares Means”section on
page 1820 ofChapter 32, “The GLM Procedure”).

There is no limit to the number of CONTRAST statements you can specify. Each
sample size analysis includes tests for all CONTRAST statements.

In the CONTRAST statement,

label identifies the contrast on the output. A label is required for every
contrast specified. Labels must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement, or the
INTERCEPT effect. You do not need to include all effects that are
in the MODEL statement.

values are constants that are elements of theL vector associated with the
effect.

You can specify the following option in the CONTRAST statement after a slash(/):

SINGULAR=number
tunes the estimability checking. If ABS(L − LH) > C×numberfor any row in the
contrast, thenL is declared nonestimable.H is the(X′X)−X′X matrix, andC is
ABS(L) except for rows whereL is zero, and then it is 1. The default value for the
SINGULAR= option is10−4. Values for the SINGULAR= option must be between
0 and 1.

The CONTRAST statement enables you to perform custom hypothesis tests. If the
hypothesis is estimable, then the sum of squares due to it, SS(H0:Lβ = 0), is com-
puted as

(Lb)′(L(X′X)−L′)−1(Lb)

whereb = (X′X)−X′y is the estimated solution vector.
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The degrees of freedom associated with the hypothesis is equal to the row rank of
L. The sum of squares computed in this situation is equivalent to the sum of squares
computed using anL matrix with any row deleted that is a linear combination of
previous rows.

Multiple-degree-of-freedom hypotheses can be specified by separating the rows of
theL matrix with commas.

MODEL Statement

MODEL dependent-variables = classification-effects ;

The MODEL statement serves two basic purposes.

• Thedependent-variables specify scenarios for the cell means.

• Theclassification-effects specify the model effects.

The classification-effects specification defines the model effects. You can include
main effects and interactions using the effects notation of PROC GLM; see the
“Specification of Effects”section on page 1784 inChapter 32, “The GLM Procedure”
for further details.

All variables in theclassification-effects specification must be contained in the
CLASS statement, since power and sample size analyses cover only tests and con-
trasts of class effects. You can account for covariates in the model by using
the NCOVARIATES=, CORRXY=, and PROPVARREDUCTION= options in the
POWER statement.

Each dependent variable refers to a set of surmised cell means in the exemplary data
set (named by the DATA= option of the PROC GLMPOWER statement). These cell
means are response means for all of the subject profiles. Multiple dependent variables
correspond to multiple scenarios for these cell means. All models are univariate; the
GLMPOWER procedure currently does not support multivariate analyses.

The MODEL statement is required. You can specify only one MODEL statement.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement names a variable that provides a profile weight (“cell
weight”) for each observation in the exemplary data set specified by the DATA= op-
tion in the PROC GLMPOWER statement.

If the WEIGHT statement is not used, then a balanced design is assumed with default
cell weights of 1.
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POWER Statement

POWER < options > ;

The POWER statement performs power and sample size analyses for the Type III test
of each effect in the model defined by the MODEL statements and for the contrasts
defined by all CONTRAST statements.

Summary of Options

Table 34.4summarizes categories of options available in the POWER statement.

Table 34.4. Summary of Options in the POWER Statement

Task Options
Specify significance level ALPHA=

Specify covariates CORRXY=
NCOVARIATES=
PROPVARREDUCTION=

Specify error standard deviation STDDEV=

Specify sample size NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 34.5summarizes the valid result parameters.

Table 34.5. Summary of Result Parameters in the POWER Statement

Solve for Syntax
Power POWER = .

Sample size NTOTAL = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of each test. The default is 0.05, corresponding to
the usual 0.05× 100% = 5% level of significance. Note that this is a test-wise sig-
nificance level with the same value for all tests, not incorporating any corrections for
multiple testing. See the“Specifying Value Lists in the POWER Statement”section
on page 1945 for information on specifying thenumber-list.

CORRXY=number-list
specifies the multiple correlationρ between all covariates and the response. The er-
ror standard deviation given by the STDDEV= option is consequently reduced by
multiplying it by a factor of(1 − ρ2)

1
2 , provided that the number of covariates (as

determined by the NCOVARIATES= option) is greater than zero. You cannot use
the CORRXY= and the PROPVARREDUCTION= options simultaneously. See the
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“Specifying Value Lists in the POWER Statement”section on page 1945 for infor-
mation on specifying thenumber-list.

NCOVARIATES=number-list
NCOVARIATE=number-list
NCOVS=number-list
NCOV=number-list

specifies the number of additional degrees of freedom to accommodate covariate
effects— both class and continuous— not listed in the MODEL statement. The error
degrees of freedom is consequently reduced by the value of the NCOVARIATES=
option, and the error standard deviation (whose unadjusted value is provided with
the STDDEV= option) is reduced according to the value of the CORRXY= or
PROPVARREDUCTION= option. See the“Specifying Value Lists in the POWER
Statement”section on page 1945 for information on specifying thenumber-list.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 1946 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). Values for the sample size must be no smaller than the model
degrees of freedom (counting the covariates). See the“Specifying Value Lists in the
POWER Statement”section on page 1945 for information on specifying thenumber-
list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces the following order.

• weight variable (from the WEIGHT statement)

• source (contrasts from CONTRAST statements, and model effects)

• ALPHA

• dependent variable (from the MODEL statement, representing scenarios for
cell means)

• NCOVARIATES

• CORRXY

• PROPVARREDUCTION

• STDDEV

• NTOTAL

• POWER
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The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the POWER statement.
The OUTPUTORDER=REVERSE option arranges the parameters in the output in
the reverse of the order that their corresponding options are specified in the POWER
statement.

POWER= number-list
specifies the desired power of each test or requests a solution for the power with a
missing value (POWER=.). The power is expressed as a probability (for example,
0.9) rather than a percentage. Note that this is a test-wise power with the same value
for all tests, without any correction for multiple testing. See the“Specifying Value
Lists in the POWER Statement”section on page 1945 for information on specifying
thenumber-list.

PROPVARREDUCTION=number-list
PVRED=number-list

specifies the proportional reduction (ρ) in total R2 incurred by the covariates; in
other words, the amount of additional variation explained by the covariates. The er-
ror standard deviation given by the STDDEV= option is consequently reduced by
multiplying it by a factor of(1 − ρ)

1
2 , provided that the number of covariates (as

determined by the NCOVARIATES= option) is greater than zero. You cannot use
the PROPVARREDUCTION= and the CORRXY= options simultaneously. See the
“Specifying Value Lists in the POWER Statement”section on page 1945 for infor-
mation on specifying thenumber-list.

STDDEV=number-list
specifies the error standard deviation, or root MSE. If covariates are specified using
the NCOVARIATES= option, then the STDDEV= option denotes the error standard
deviation before accounting for these covariates. See the“Specifying Value Lists
in the POWER Statement”section on page 1945 for information on specifying the
number-list.

Restrictions on Option Combinations

For the relationship between covariates and response, specify either the multiple cor-
relation (using the CORRXY= option) or the proportional reduction in totalR2 (using
the PROPVARREDUCTION= option).
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PLOT Statement

PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis
defined by the previous POWER statement. Theplot-options define the plot charac-
teristics, and thegraph-options are SAS/GRAPH-style options.

Options

You can specify the followingplot-options in the PLOT statement.

INTERPOL=JOIN
INTERPOL=NONE

specifies the type of curve to draw through the computed points. The
INTERPOL=JOIN option connects computed points by straight lines. The
INTERPOL=NONE option leaves computed points unconnected.

KEY= BYCURVE < ( bycurve-options ) >
KEY= BYFEATURE < ( byfeature-options ) >
KEY= ONCURVES

specifies the style of key (or “legend”) for the plot. The default is
KEY=BYFEATURE, which specifies a key with a column of entries for each
plot feature (line style, color, and/or symbol). Each entry shows the mapping
between a value of the feature and the value(s) of the analysis parameter(s) linked to
that feature. The KEY=BYCURVE option specifies a key with each row identifying
a distinct curve in the plot. The KEY=ONCURVES option places a curve-specific
label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the
KEY=BYCURVE option.

NUMBERS=OFF

NUMBERS=ON specifies how the key should identify curves. If NUMBERS=OFF,
then the key includes symbol, color, and line style samples to iden-
tify the curves. If NUMBERS=ON, then the key includes numbers
matching numeric labels placed adjacent to the curves. The default
is NUMBERS=ON.

POS=BOTTOM

POS=INSET specifies the position of the key. The POS=BOTTOM option places
the key below the x-axis. The POS=INSET option places the key
inside the plotting region and attempts to choose the least crowded
corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after
KEY=BYFEATURE option.
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POS=BOTTOM

POS=INSET specifies the position of the key. The POS=BOTTOM option places
the key below the x-axis. The POS=INSET option places the key
inside the plotting region and attempts to choose the least crowded
corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS
MARKERS=COMPUTED
MARKERS=NICE
MARKERS=NONE

specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations corre-
sponding to the values of the relevant input parameter from the POWER statement
preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the
locations of actual computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corre-
sponding to the argument axis).

The MARKERS=NONE option disables plotting symbols.

MAX=number
specifies the maximum of the range of values for the parameter associated with the
“argument” axis (the axis that isnot representing the parameter being solved for). The
default is the maximum value occurring for this parameter in the POWER statement
preceding the PLOT statement.

MIN=number
specifies the minimum of the range of values for the parameter associated with the
“argument” axis (the axis that isnot representing the parameter being solved for). The
default is the minimum value occurring for this parameter in the POWER statement
preceding the PLOT statement.

NPOINTS=number
NPTS=number

specifies the number of values for the parameter associated with the “argument” axis
(the axis that isnot representing the parameter being solved for). You cannot use
the NPOINTS= and STEP= options simultaneously. The default value for typical
situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argu-
ment” axis (the axis that isnot representing the parameter being solved for). You
cannot use the STEP= and NPOINTS= options simultaneously. By default, the
NPOINTS= option is used instead of the STEP= option.
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VARY ( feature < BY parameter-list > ... feature < BY parameter-list > )
specifies how plot features should be linked to varying analysis parameters. Available
plot features are COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to
a separate plot with a heading identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names separated by spaces. Each name
must match the name of an analysis option used in the POWER statement preceding
the PLOT statement,or one of the following keywords: SOURCE (for the tests) and
DEPENDENT (for the cell means scenarios). Also, the name must be theprimary
name for the analysis option, that is, the one listed first in the syntax description.

If you omit the< BY parameter-list > portion for a feature, then one or more multi-
valued parameters from the analysis will be automatically selected for you.

X=N
X=POWER

specifies a plot with the requested type of parameter on the x-axis and the parameter
being solved for on the y-axis. When X=N, sample size is assigned to the x-axis.
When X=POWER, power is assigned to the x-axis. You cannot use the X= and Y=
options simultaneously. The default is X=POWER, unless the result parameter is
power, in which case the default is X=N.

XOPTS= ( x-options )
specifies plot characteristics pertaining to the x-axis.

You can specify the followingx-options in parentheses.

CROSSREF=NO

CROSSREF=YESspecifies whether the reference lines defined by the REF=x-
option should be crossed with a reference line on the y-axis that
indicates the solution point on the curve.

REF=number-list specifies locations for reference lines extending from the x-axis
across the entire plotting region. See the“Specifying Value Lists
in the POWER Statement”section on page 1945 for information
on specifying thenumber-list.

Y=N
Y=POWER

specifies a plot with the requested type of parameter on the y-axis and the parameter
being solved for on the x-axis. When Y=N, sample size is assigned to the y-axis.
When Y=POWER, power is assigned to the y-axis. You cannot use the Y= and X=
options simultaneously. By default, the X= option is used instead of the Y= option.

YOPTS= ( y-options )
specifies plot characteristics pertaining to the y-axis.

You can specify the followingy-options in parentheses.
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CROSSREF=NO

CROSSREF=YESspecifies whether the reference lines defined by the REF=y-
option should be crossed with a reference line on the x-axis that
indicates the solution point on the curve.

REF=number-list specifies locations for reference lines extending from the y-axis
across the entire plotting region. See the“Specifying Value Lists
in the POWER Statement”section on page 1945 for information
on specifying thenumber-list.

You can specify the followinggraph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description”
field of the graphics catalog. The description does not appear on the plots. By default,
PROC GLMPOWER assigns a description either of the form “Y versusX” (for a
single-panel plot) or of the form “Y versusX (S),” whereY is the parameter on the y-
axis,X is the parameter on the x-axis, andS is a description of the subset represented
on the current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The default
name is PLOTn, wheren is the number of the plot statement within the current invo-
cation of PROC GLMPOWER. If the name duplicates the name of an existing entry,
SAS/GRAPH software adds a number to the duplicate name to create a unique entry,
for example, PLOT11 and PLOT12 for the second and third panels of a multipanel
plot generated in the first PLOT statement in an invocation of PROC GLMPOWER.

Details

Specifying Value Lists in the POWER Statement

To specify one or more scenarios for an analysis parameter (or set of parameters) in
the POWER statement, you provide a list of values for the option that corresponds to
the parameter(s). To identify the parameter you wish to solve for, you place missing
values in the appropriate list.

Scenarios for scalar-valued parameters, such as power, are represented by anumber-
list.

Number-lists

A number-list can be one of two things: a series of one or more numbers expressed
in the form of one or more DOLISTs, or a missing value indicator ( . ).

The DOLIST format is the same as in the DATA step language. For example, you
can specify four scenarios (30, 50, 70, and 100) for a total sample size in any of the
following ways.

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100
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A missing value identifies a parameter as the result parameter; it is valid only with
options representing parameters you can solve for in a given analysis. For example,
you can request a solution for NTOTAL:

NTOTAL = .

Sample Size Adjustment Options

By default, PROC GLMPOWER rounds sample sizes conservatively (down in the
input, up in the output) so that all total sizesand sample sizes for individual design
profiles are integers. This is generally considered conservative because it selects the
closest realistic design providingat mostthe power of the (possibly fractional) input
or mathematically optimized design. In addition, all design profile sizes are adjusted
to be multiples of their corresponding weights. If a design profile is present more than
once in the exemplary data set, then the weights for that design profile are summed.
For example, if a particular design profile is present twice in the exemplary data
set with weight values 2 and 6, then all sample sizes for this design profile become
multiples of2 + 6 = 8.

With the NFRACTIONAL option, sample size input is not rounded, and sample size
output is reported in two versions, a raw “fractional” version and a “ceiling” version
rounded up to the nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted
(“actual”) sample sizes are reported. Whenever computed output sample sizes are
adjusted, both the original input (“nominal”) power and the achieved (“actual”) power
at the adjusted sample size are reported.

Error and Information Output

The Error column in the main output table explains reasons for missing results and
flags numerical results that are bounds rather than exact answers.

The Information column provides further details about Error entries, warnings about
any boundary conditions detected, and notes about any adjustments to input. Note
that the Information column is hidden by default in the main output. You can view it
by using the ODS OUTPUT statement to save the output as a dataset and the PRINT
procedure. For example, the following SAS statements print both the Error and Info
columns for a power computation in a one-way ANOVA.

data MyExemp;
input A $ Y1 Y2;
datalines;

1 10 11
2 12 11
3 15 11

;
run;
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proc glmpower data=MyExemp;
class A;
model Y1 Y2 = A;
power

stddev = 2
ntotal = 3 10
power = .;

ods output output=Power;
proc print noobs data=Power;

var NominalNTotal NTotal Dependent Power Error Info;
run;

The output is shown inFigure 34.5.

Nominal
NTotal NTotal Dependent Power Error Info

3 3 Y1 . Invalid input Error DF=0
10 9 Y1 0.557 Input N adjusted

3 3 Y2 . Invalid input Error DF=0 / No effect
10 9 Y2 0.050 Input N adjusted / No effect

Figure 34.5. Error and Information Columns

The sample size of 3 specified with the NTOTAL= option leads to an “Invalid input”
message in the Error column and an “Error DF=0” message in the Info column, be-
cause a sample size of 3 is so small that there are no degrees of freedom left for the
error term. The sample size of 10 leads to an “Input N adjusted” message in the Info
column, because it is rounded down to 9 to produce integer group sizes of 3 per cell.
The cell means scenario represented by the dependent variableY2 leads to a “No
effect” message to appear in the Info column, because the means in this scenario are
all equal.

Displayed Output

If you use the PLOTONLY option in the PROC GLMPOWER statement, the pro-
cedure only displays graphical output. Otherwise, the displayed output of the
GLMPOWER procedure includes the following:

• the “Fixed Scenario Elements” table, which shows all applicable single-valued
analysis parameters, in the following order: the weight variable, the source
of the test, parameters input explicitly, parameters supplied with defaults, and
ancillary results

• an output table showing the following when applicable (in order): the index of
the scenario, the source of the test, all multivalued input, ancillary results, the
primary computed result, and error descriptions

• plots (if requested)

Ancillary results include the following:
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• Actual Power, the achieved power, if it differs from the input (Nominal) power
value

• fractional sample size, if the NFRACTIONAL option is used in the analysis
statement

If sample size is the result parameter and the NFRACTIONAL option is used in
the analysis statement, then both “Fractional” and “Ceiling” sample size results are
displayed. Fractional sample sizes correspond to the “Nominal” values of power or
precision probability. Ceiling sample sizes are simply the fractional sample sizes
rounded up to the nearest integer; they correspond to “Actual” values of power or
precision probability.

ODS Table Names

PROC GLMPOWER assigns a name to each table that it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed inTable 34.6. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 34.6. ODS Tables Produced in PROC GLMPOWER

ODS Table Name Description Statement
FixedElements factoid with single-valued analy-

sis parameters
default

Output all input and computed analysis
parameters, error messages, and
information messages for each
scenario

default

PlotContent data contained in plots, includ-
ing analysis parameters and in-
dices identifying plot features.
(Note: This table is saved as
a dataset and not displayed in
PROC GLMPOWER output.)

PLOT

The ODS path names are created as follows:

• Glmpower.Power< n >.FixedElements

• Glmpower.Power< n >.Output

• Glmpower.Power< n >.PlotContent

• Glmpower.Power< n >.Plot< m >

where

• The Plot< m > objects are the graphs.

• The< n > indexing the Power statement is only used if there is more than one
instance.
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• The< n > indexing the plots increases with every panel in every plot state-
ment, resetting to 1 only at new analysis statements.

Computational Methods and Formulas

This section describes the approaches used in PROC GLMPOWER to compute power
and sample size.

Contrasts in Fixed-Effect Univariate Models

The univariate linear model has the form

y = Xβ + ε

wherey is theN×1 vector of responses,X is theN×p design matrix,β is thep×1
vector of model parameters corresponding to the columns ofX, andε is anN × 1
vector of errors with

ε1, . . . , εN ∼ N(0, σ2) (i.i.d.)

In PROC GLMPOWER, the model parametersβ are not specified directly, but rather
indirectly asy?, which represents either conjectured response means or typical re-
sponse values for each design profile. They? values are manifested as the dependent
variable in the MODEL statement. The vectorβ is obtained fromy? according to the
least squares equation,

β = (X′X)−1X′y?

Note that, in general, there is not a 1 to 1 mapping betweeny? andβ. Many different
scenarios fory? may lead to the sameβ. If you specifyy? with the intention of
representing cell means, keep in mind that PROC GLMPOWER allows scenarios that
arenot valid cell means according to the model specified in the MODEL statement.
For example, ify? exhibits an interaction effect but the corresponding interaction
term is left out of the model, then the cell means (Xβ) derived fromβ differ from
y?. In particular, the cell means thus derived are the projection ofy? onto the model
space.

It is convenient in power analysis to parameterize the design matrixX in three parts,
{Ẍ,w, N}, defined as follows:

1. Theq × p essence design matriẍX is the collection of unique rows ofX. Its
rows are sometimes referred to as “design profiles.” Here,q ≤ N is defined
simply as the number of unique rows ofX.

2. Theq × 1 weight vectorw reveals the relative proportions of design profiles.
Row i of Ẍ is to be included in the designwi times for everywj times rowj is
included. The weights are assumed to be standardized (i.e., sum up to 1).
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3. The total sample size isN . This is the number of rows inX. If you gather
Nwi = ni copies of theith row of Ẍ, for i = 1, . . . , q, then you end up with
X.

It is useful to express the the crossproduct matrixX′X in terms of these three parts,

X′X = NẌ′diag(w)Ẍ

since this factors out the portion (N ) depending on sample size and the portion
(Ẍ′diag(w)Ẍ) depending only on the design structure.

A general linear hypothesis for the univariate model has the form

H0 : Lβ = θ0

HA : Lβ 6= θ0

whereL is anrL × p contrast matrix (assumed to be full rank), andθ0 is the null
value (usually just a vector of zeroes). Note that effect tests are just contrasts using
special forms ofL. Thus, this scheme covers both effect tests and custom contrasts.

The test statistic is

F =

(
SSH
rL

)
σ̂2

where

SSH =
1
N

(
Lβ̂ − θ0

)′ (
L

(
X′X

)−1 L′
)−1 (

Lβ̂ − θ0

)
β̂ = (X′X)−1X′y

σ̂2 =
1

DFE

(
y −Xβ̂

)′ (
y −Xβ̂

)
whereDFE = N − rank(X). Note thatDFE = N − p if X has full rank.

UnderH0, F ∼ F (rL,DFE). UnderHA, F is distributed asF (rL,DFE, λ) with
noncentrality

λ = N (Lβ − θ0)′
(
L

(
Ẍ′diag(w)Ẍ

)−1
L′

)−1

(Lβ − θ0) σ−2

Muller and Peterson (1984) give the exact power of the test as

power= P (F (rL,DFE, λ) ≥ F1−α(rL,DFE))

Sample size is computed by inverting the power equation.

Refer to Muller et al. (1992) and O’Brien and Shieh (1992) for additional discussion.
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Adjustments for Covariates

If you specify covariates in the model (whether continuous or categorical), then two
adjustments are made in order to compute approximate power in the presence of the
covariates. Letnν denote the number of covariates (counting dummy variables for
categorical covariates individually). In other words,nν is the total degrees of freedom
used by the covariates. The adjustments are the following:

1. The error degrees of freedom decreases bynν .

2. The error standard deviationσ shrinks by a factor of(1 − ρ2)
1
2 (if the

CORRXY= option to specify the correlationρ between covariates and re-
sponse) or(1− r)

1
2 (if the PROPVARREDUCTION= option is used to specify

the proportional reduction in totalR2 incurred by the covariates). Letσ? rep-
resent the updated value ofσ.

As a result of these changes, the power is computed as

power= P (F (rL,DFE − nν , λ
?) ≥ F1−α(rL, N − rx − nν))

whereλ? is calculated usingσ? rather thanσ:

λ? = N (Lβ − θ0)′
(
L

(
Ẍ′diag(w)Ẍ

)−1
L′

)−1

(Lβ − θ0) (σ?)−2

Examples

Example 34.1. One-Way ANOVA

This example deals with the same situation as inExample 57.1on page 3536 of
Chapter 57, “The POWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reduc-
ing lactic acid buildup for long-distance runners. You are planning a similar study in
which you will allocate five different fluids to runners on a 10-mile course and mea-
sure lactic acid buildup immediately after the race. The fluids consist of water and
two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two con-
centrations, low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any
particular fluid is about 3.75, and that the expected lactic acid values will correspond
roughly toTable 34.7. You are least familiar with the LZ1 drink and hence decide to
consider a range of reasonable values for that mean.

Table 34.7. Mean Lactic Acid Buildup by Fluid
Water EZD1 EZD2 LZ1 LZ2
35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown inTable 34.8with appropriate
contrast coefficients.
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Table 34.8. Planned Comparisons
Contrast Coefficients

Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 -1 -1 -1 -1
EZD versus LZ 0 1 1 -1 -1
EZD1 versus EZD2 0 1 -1 0 0
LZ1 versus LZ2 0 0 0 1 -1

For each of these contrasts you want to determine the sample size required to achieve
a power of 0.9 for detecting an effect with magnitude in accord withTable 34.7.
You are not yet attempting to choose a single sample size for the study, but rather
checking the range of sample sizes needed for individual contrasts. You plan to test
each contrast atα = 0.025. In the interests of reducing costs, you will provide twice
as many runners with water as with any of the electrolytes; that is, you will use a
sample size weighting scheme of 2:1:1:1:1.

Before calling PROC GLMPOWER, you need to create theexemplary data setto
specify means and weights for the design profiles:

data Fluids;
input Fluid $ LacticAcid1 LacticAcid2 CellWgt;
datalines;

Water 35.6 35.6 2
EZD1 33.7 33.7 1
EZD2 30.2 30.2 1
LZ1 29 28 1
LZ2 25.9 25.9 1

;
run;

The variableLacticAcid1 represents the cell means scenario with the larger LZ1
mean (29), andLacticAcid2 represents the scenario with the smaller LZ1 mean (28).
The variableCellWgt contains the sample size allocation weights.

Use the DATA= option in the PROC GLMPOWER statement to specifyFluids as the
exemplary data set. The following statements perform the sample size analysis:

proc glmpower data=Fluids;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = .
power = 0.9;

run;
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The CLASS statement identifiesFluid as a classification variable. The MODEL
statement specifies the model and the two cell means scenariosLacticAcid1 and
LacticAcid2. The WEIGHT statement identifiesCellWgt as the weight variable.
The CONTRAST statement specifies the contrasts. Since PROC GLMPOWER pro-
cesses class levels in order of formatted values, the contrast coefficients correspond to
the following order: EZD1, EZD2, LZ1, LZ2, Water. The POWER statement speci-
fies total sample size as the result parameter and provides values for the other analysis
parameters (error standard deviation, alpha, and power).

Output 34.1.1displays the results.

Output 34.1.1. Sample Sizes for One-Way ANOVA Contrasts

The GLMPOWER Procedure

Fixed Scenario Elements

Weight Variable CellWgt
Alpha 0.025
Error Standard Deviation 3.75
Nominal Power 0.9

Computed N Total

Test Error Actual N
Index Dependent Type Source DF DF Power Total

1 LacticAcid1 Effect Fluid 4 25 0.958 30
2 LacticAcid1 Contrast Water vs. others 1 25 0.947 30
3 LacticAcid1 Contrast EZD vs. LZ 1 55 0.929 60
4 LacticAcid1 Contrast EZD1 vs. EZD2 1 169 0.901 174
5 LacticAcid1 Contrast LZ1 vs. LZ2 1 217 0.902 222
6 LacticAcid2 Effect Fluid 4 25 0.972 30
7 LacticAcid2 Contrast Water vs. others 1 19 0.901 24
8 LacticAcid2 Contrast EZD vs. LZ 1 43 0.922 48
9 LacticAcid2 Contrast EZD1 vs. EZD2 1 169 0.901 174

10 LacticAcid2 Contrast LZ1 vs. LZ2 1 475 0.902 480

The sample sizes range from 24 for the comparison of water versus electrolytes to
480 for the comparison of LZ1 versus LZ2, both assuming the smaller LZ1 mean.
The sample size for the latter comparison is relatively large because the small mean
difference of28−25.9 = 2.1 is hard to detect. PROC GLMPOWER also includes the
effect test forFluid. Note that, in this case, it is equivalent to TEST=OVERALL–F
in the ONEWAYANOVA statement of PROC POWER, since there is only one effect
in the model.

The Nominal Power of 0.9 in the Fixed Scenario Elements table inOutput 34.1.1
represents the input target power, and the Actual Power column in the Computed N
Total table is the power at the sample size (N Total) adjusted to achieve the specified
sample weighting. Note that all of the sample sizes are rounded up to multiples of 6
to preserve integer group sizes (since the group weights add up to 6). You can use the
NFRACTIONAL option in the POWER statement to compute raw fractional sample
sizes.
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Suppose you want to plot the required sample size for the range of power val-
ues from 0.5 to 0.95. First, define the analysis by specifying the same state-
ments as before, but add the PLOTONLY option to the PROC GLMPOWER
statement to disable the nongraphical results. Next, specify the PLOT state-
ment with X=POWER to request a plot with power on the x-axis. (The re-
sult parameter, here sample size, is always plotted on the other axis.) Use the
MIN= and MAX= options in the PLOT statement to specify the power range.

proc glmpower data=Fluids plotonly;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = .
power = 0.9;

plot x=power min=.5 max=.95;
run;

SeeOutput 34.1.2for the resulting plot.

Output 34.1.2. Plot of Sample Size versus Power for One-Way ANOVA Contrasts
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In Output 34.1.2, the line style identifies the test, and the plotting symbol identifies the
cell means scenario. The plotting symbol locations identify actual computed powers;
the curves are linear interpolations of these points. The plot shows that the required
sample size is highest for the test of LZ1 versus LZ2 that was previously found to
require the most resources, in either cell means scenario.

Note that some of the plotted points inOutput 34.1.2are unevenly spaced. This is
because the plotted points are theroundedsample size results at their correspond-
ing actual power levels. The range specified with the MIN= and MAX= values
in the PLOT statement correspond tonominalpower levels. In some cases, actual
power is substantially higher than nominal power. To obtain plots with evenly spaced
points (but withfractional sample sizes at the computed points), you can use the
NFRACTIONAL option in the POWER statement preceding the PLOT statement.

Finally, suppose you want to plot the power for the range of sample sizes you will
likely consider for the study (the range of 24 to 480 that achieves 0.9 power for differ-
ent comparisons). In the POWER statement, identify power as the result (POWER=.),
and specify NTOTAL=24. Specify the PLOT statement with X=N to request a plot
with sample size on the x-axis.

proc glmpower data=Fluids plotonly;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = 24
power = .;

plot x=n min=24 max=480;
run;

Note that the value specified with the NTOTAL=24 option is not used. It is over-
ridden in the plot by the MIN= and MAX= options in the PLOT statement, and the
PLOTONLY option in the PROC GLMPOWER statement disables nongraphical re-
sults. But the NTOTAL= option (along with a value) is still needed in the POWER
statement as a placeholder, to identify the desired parameterization for sample size.

SeeOutput 34.1.3for the plot.
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Output 34.1.3. Plot of Power versus Sample Size for One-Way ANOVA Contrasts

AlthoughOutput 34.1.2andOutput 34.1.3surface essentially the same computations
for practical power ranges, they each provide a different quick visual assessment.
Output 34.1.2reveals the range of required sample sizes for powers of interest, and
Output 34.1.3reveals the range of achieved powers for sample sizes of interest.

Example 34.2. Two-Way ANOVA with Covariate

Suppose you can enhance the planned study discussed inExample 34.1on page 1951
in two ways:

• Incorporate results from races at two different altitudes (“high” and “low”).

• Measure the body mass index of each runner before the race.

This is equivalent to adding a second fixed effect and a continuous covariate to your
model.

Since lactic acid buildup is more pronounced at higher altitudes, you will include
altitude as a factor in the model along with fluid, extending the one-way ANOVA
to a two-way ANOVA. In doing so, you expect to lower the residual standard de-
viation from about 3.75 to 3.5 (in addition to generalizing the study results). You
assume there is negligible interaction between fluid and altitude and plan to use a
main-effects-only model. You conjecture that the mean lactic acid buildup follows
Table 34.9.
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Table 34.9. Mean Lactic Acid Buildup by Fluid and Altitude
Fluid

Altitude Water EZD1 EZD2 LZ1 LZ2
High 36.9 35.0 31.5 30 27.1
Low 34.3 32.4 28.9 27 24.7

By including a measurement of body mass index as a covariate in the study, you hope
to further reduce the error variability. The extent of this reduction in variability is
commonly expressed in two alternative ways: (1) the correlation between the covari-
ates and the response or (2) the proportional reduction in totalR2 incurred by the
covariates. You prefer the former and guess that the correlation between body mass
index and lactic acid buildup is between 0.2 and 0.3. You specify these estimates
with the NCOVARIATES= and CORRXY= options in the POWER statement. The
covariate is not included in the MODEL statement.

You are interested in the same four fluid comparisons as inExample 34.1, shown in
Table 34.8on page 1951, except this time you want to marginalize over the effect of
altitude.

For each of these contrasts, you want to determine the sample size required to achieve
a power of 0.9 to detect an effect with magnitude according toTable 34.9. You are not
yet attempting to choose a single sample size for the study, but rather checking the
range of sample sizes needed by individual contrasts. You plan to test each contrast
atα = 0.025. You will provide twice as many runners with water as with any of the
electrolytes, and you predict that you can study approximately 2/3 as many runners at
the high altitude than at the low altitude. The resulting planned sample size weighting
scheme is shown inTable 34.10. Since the scheme is only approximate, you use the
NFRACTIONAL option in the POWER statement to disable the rounding of sample
sizes up to integers satisfying the weights exactly.

Table 34.10. Approximate Sample Size Allocation Weights
Fluid

Altitude Water EZD1 EZD2 LZ1 LZ2
High 4 2 2 2 2
Low 6 3 3 3 3

First, you create the exemplary data set to specify means and weights for the design
profiles:
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data Fluids2;
input Altitude $ Fluid $ LacticAcid CellWgt;
datalines;

High Water 36.9 4
High EZD1 35.0 2
High EZD2 31.5 2
High LZ1 30 2
High LZ2 27.1 2
Low Water 34.3 6
Low EZD1 32.4 3
Low EZD2 28.9 3
Low LZ1 27 3
Low LZ2 24.7 3

;
run;

The variablesAltitude, Fluid, andLacticAcid specify the factors and cell means in
Table 34.9. The variableCellWgt contains the sample size allocation weights in
Table 34.10.

Use the DATA= option in the PROC GLMPOWER statement to specifyFluids2 as
the exemplary data set. The following statements perform the sample size analysis:

proc glmpower data=Fluids2;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = .
power = 0.9;

run;

The CLASS statement identifiesAltitude and Fluid as classification variables.
The MODEL statement specifies the model, and the WEIGHT statement identifies
CellWgt as the weight variable. The CONTRAST statement specifies the contrasts
in Table 34.8on page 1951. As inExample 34.1, the order of the contrast coeffi-
cients corresponds to the formatted class levels (EZD1, EZD2, LZ1, LZ2, Water).
The POWER statement specifies total sample size as the result parameter and pro-
vides values for the other analysis parameters. The NCOVARIATES= option speci-
fies the single covariate (body mass index), and the CORRXY= option specifies the
two scenarios for its correlation with lactic acid buildup (0.2 and 0.3).Output 34.2.1
displays the results.
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Output 34.2.1. Sample Sizes for Two-Way ANOVA Contrasts

The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable LacticAcid
Weight Variable CellWgt
Alpha 0.025
Number of Covariates 1
Std Dev Without Covariate Adjustment 3.5
Nominal Power 0.9

Computed Ceiling N Total

Adj
Corr Std Test Error Fractional

Index Type Source XY Dev DF DF N Total

1 Effect Altitude 0.2 3.43 1 84 90.418451
2 Effect Altitude 0.3 3.34 1 79 85.862649
3 Effect Altitude 0.0 3.50 1 88 94.063984
4 Effect Fluid 0.2 3.43 4 16 22.446173
5 Effect Fluid 0.3 3.34 4 15 21.687544
6 Effect Fluid 0.0 3.50 4 17 23.055716
7 Contrast Water vs. others 0.2 3.43 1 15 21.720195
8 Contrast Water vs. others 0.3 3.34 1 14 20.848805
9 Contrast Water vs. others 0.0 3.50 1 16 22.422381

10 Contrast EZD vs. LZ 0.2 3.43 1 35 41.657424
11 Contrast EZD vs. LZ 0.3 3.34 1 33 39.674037
12 Contrast EZD vs. LZ 0.0 3.50 1 37 43.246415
13 Contrast EZD1 vs. EZD2 0.2 3.43 1 139 145.613657
14 Contrast EZD1 vs. EZD2 0.3 3.34 1 132 138.173983
15 Contrast EZD1 vs. EZD2 0.0 3.50 1 145 151.565917
16 Contrast LZ1 vs. LZ2 0.2 3.43 1 268 274.055008
17 Contrast LZ1 vs. LZ2 0.3 3.34 1 253 259.919126
18 Contrast LZ1 vs. LZ2 0.0 3.50 1 279 285.363976

Computed Ceiling N Total

Actual Ceiling
Index Power N Total

1 0.902 91
2 0.901 86
3 0.903 95
4 0.912 23
5 0.908 22
6 0.919 24
7 0.905 22
8 0.903 21
9 0.910 23

10 0.903 42
11 0.903 40
12 0.906 44
13 0.901 146
14 0.902 139
15 0.901 152
16 0.901 275
17 0.900 260
18 0.901 286

The sample sizes inOutput 34.2.1range from 21 for the comparison of water ver-
sus electrolytes (assuming a correlation of 0.3 between body mass and lactic acid
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buildup) to 275 for the comparison of LZ1 versus LZ2 (assuming a correlation of
0.2). PROC GLMPOWER also includes the effect tests forAltitude andFluid. Note
that the required sample sizes for this study are lower than those for the study in
Example 34.1.

Note that the error standard deviation has been reduced from 3.5 to 3.43 (when corre-
lation is 0.2) or 3.34 (when correlation is 0.3) in the approximation of the effect of the
body mass index covariate. The error degrees of freedom has also been automatically
adjusted, lowered by 1 (the number of covariates).

Suppose you want to plot the required sample size for the range of power values from
0.5 to 0.95. First, define the analysis by specifying the same statements as before,
but add the PLOTONLY option to the PROC GLMPOWER statement to disable the
nongraphical results. Next, specify the PLOT statement with X=POWER to request a
plot with power on the x-axis. Sample size is automatically placed on the y-axis. Use
the MIN= and MAX= options in the PLOT statement to specify the power range.

proc glmpower data=Fluids2 plotonly;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = .
power = 0.9;

plot x=power min=.5 max=.95;
run;

SeeOutput 34.2.2for the plot.
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Output 34.2.2. Plot of Sample Size versus Power for Two-Way ANOVA Contrasts

In Output 34.1.2, the line style identifies the test, and the plotting symbol identifies
the scenario for the correlation between covariate and response. The plotting symbol
locations identify actual computed powers; the curves are linear interpolations of
these points. As inExample 34.1, the required sample size is highest for the test of
LZ1 versus LZ2.

Finally, suppose you want to plot the power for the range of sample sizes you will
likely consider for the study (the range of 21 to 275 that achieves 0.9 power for differ-
ent comparisons). In the POWER statement, identify power as the result (POWER=.),
and specify NTOTAL=21. Specify the PLOT statement with X=N to request a plot
with sample size on the x-axis.
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proc glmpower data=Fluids2 plotonly;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = 21
power = .;

plot x=n min=21 max=275;
run;

The MAX=275 option in the PLOT statement sets the maximum sample size value.
The MIN= option automatically defaults to the value of 21 from the NTOTAL= option
in the POWER statement.

SeeOutput 34.2.3for the plot.

Output 34.2.3. Plot of Power versus Sample Size for Two-Way ANOVA Contrasts

AlthoughOutput 34.2.2andOutput 34.2.3surface essentially the same computations
for practical power ranges, they each provide a different quick visual assessment.
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Output 34.2.2reveals the range of required sample sizes for powers of interest, and
Output 34.2.3reveals the range of powers achieved for sample sizes of interest.
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Chapter 35
The INBREED Procedure
Overview

The INBREED procedure calculates the covariance or inbreeding coefficients for a
pedigree. PROC INBREED is unique in that it handles very large populations.

The INBREED procedure has two modes of operation. One mode carries out analysis
on the assumption that all the individuals belong to the same generation. The other
mode divides the population into nonoverlapping generations and analyzes each gen-
eration separately, assuming that the parents of individuals in the current generation
are defined in the previous generation.

PROC INBREED also computes averages of the covariance or inbreeding coefficients
within sex categories if the sex of individuals is known.

Getting Started

This section demonstrates how you can use the INBREED procedure to calculate the
inbreeding or covariance coefficients for a pedigree, how you can control the analysis
mode if the population consists of nonoverlapping generations, and how you can
obtain averages within sex categories.

For you to use PROC INBREED effectively, your input data set must have a definite
format. The following sections first introduce this format for a fictitious population
and then demonstrate how you can analyze this population using the INBREED pro-
cedure.

The Format of the Input Data Set

The SAS data set used as input to the INBREED procedure must contain an observa-
tion for each individual. Each observation must include one variable identifying the
individual and two variables identifying the individual’s parents. Optionally, an ob-
servation can contain a known covariance coefficient and a character variable defining
the gender of the individual.

For example, consider the following data:

data Population;
input Individual $ Parent1 $ Parent2 $

Covariance Sex $ Generation;
datalines;
MARK GEORGE LISA . M 1
KELLY SCOTT LISA . F 1
MIKE GEORGE AMY . M 1
. MARK KELLY 0.50 . 1
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DAVID MARK KELLY . M 2
MERLE MIKE JANE . F 2
JIM MARK KELLY 0.50 M 2
MARK MIKE KELLY . M 2
;

It is important to order the pedigree observations so that individuals are defined before
they are used as parents of other individuals. The family relationships between indi-
viduals cannot be ascertained correctly unless you observe this ordering. Also, older
individuals must precede younger ones. For example, ‘MARK’ appears as the first
parent of ‘DAVID’ at observation 5; therefore, his observation needs to be defined
prior to observation 5. Indeed, this is the case (see observation 1). Also, ‘DAVID’ is
older than ‘JIM’, whose observation appears after the observation for ‘DAVID’, as is
appropriate.

In populations with distinct, nonoverlapping generations, the older generation (par-
ents) must precede the younger generation. For example, the individuals defined in
Generation=1 appear as parents of individuals defined inGeneration=2.

PROC INBREED produces warning messages when a parent cannot be found. For
example, ‘JANE’ appears as the second parent of the individual ‘MERLE’ even
though there are no previous observations defining her own parents. If the popu-
lation is treated as an overlapping population, that is, if the generation grouping is
ignored, then the procedure inserts an observation for ‘JANE’ with missing parents
just before the sixth observation, which defines ‘MERLE’ as follows:

JANE . . . F 2
MERLE MIKE JANE . F 2

However, if generation grouping is taken into consideration, then ‘JANE’ is defined
as the last observation inGeneration=1, as follows:

MIKE GEORGE AMY . M 1
JANE . . . F 1

In this latter case, however, the observation for ‘JANE’ is inserted after the compu-
tations are reported for the first generation. Therefore, she does not appear in the
covariance/inbreeding matrix, even though her observation is used in computations
for the second generation (see theexampleon page 1970).

If the data for an individual are duplicated, only the first occurrence of the data is used
by the procedure, and a warning message is displayed to note the duplication. For
example, individual ‘MARK’ is defined twice, at observations 1 and 8. If generation
grouping is ignored, then this is an error and observation 8 is skipped. However, if the
population is processed with respect to two distinct generations, then ‘MARK’ refers
to two different individuals, one inGeneration=1 and the other inGeneration=2.

If a covariance is to be assigned between two individuals, then those individuals must
be defined prior to the assignment observation. For example, a covariance of 0.50



Performing the Analysis � 1969

can be assigned between ‘MARK’ and ‘KELLY’ since they are previously defined.
Note that assignment statements must have different formats depending on whether
the population is processed with respect to generations (see the“DATA= Data Set”
section on page 1976 for further information). For example, while observation 4 is
valid for nonoverlapping generations, it is invalid for a processing mode that ignores
generation grouping. In this latter case, observation 7 indicates a valid assignment,
and observation 4 is skipped.

The latest covariance specification between any given two individuals overrides the
previous one between the same individuals.

Performing the Analysis

To compute the covariance coefficients for the overlapping generation mode, use the
following statements:

proc inbreed data=Population covar matrix init=0.25;
run;

Here, the DATA= option names the SAS data set to be analyzed, and the COVAR
and MATRIX options tell the procedure to output the covariance coefficients matrix.
If you omit the COVAR option, the inbreeding coefficients are output instead of the
covariance coefficients.

Note that the PROC INBREED statement also contains the INIT= option. This option
gives an initial covariance between any individual and unknown individuals. For
example, the covariance between any individual and ‘JANE’ would be 0.25, since
‘JANE’ is unknown, except when ‘JANE’ appears as a parent (seeFigure 35.1).
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The INBREED Procedure

Covariance Coefficients

Individual Parent1 Parent2 GEORGE LISA MARK SCOTT KELLY

GEORGE 1.1250 0.2500 0.6875 0.2500 0.2500
LISA 0.2500 1.1250 0.6875 0.2500 0.6875
MARK GEORGE LISA 0.6875 0.6875 1.1250 0.2500 0.5000
SCOTT 0.2500 0.2500 0.2500 1.1250 0.6875
KELLY SCOTT LISA 0.2500 0.6875 0.5000 0.6875 1.1250
AMY 0.2500 0.2500 0.2500 0.2500 0.2500
MIKE GEORGE AMY 0.6875 0.2500 0.4688 0.2500 0.2500
DAVID MARK KELLY 0.4688 0.6875 0.8125 0.4688 0.8125
JANE 0.2500 0.2500 0.2500 0.2500 0.2500
MERLE MIKE JANE 0.4688 0.2500 0.3594 0.2500 0.2500
JIM MARK KELLY 0.4688 0.6875 0.8125 0.4688 0.8125

Covariance Coefficients

Individual Parent1 Parent2 AMY MIKE DAVID JANE MERLE

GEORGE 0.2500 0.6875 0.4688 0.2500 0.4688
LISA 0.2500 0.2500 0.6875 0.2500 0.2500
MARK GEORGE LISA 0.2500 0.4688 0.8125 0.2500 0.3594
SCOTT 0.2500 0.2500 0.4688 0.2500 0.2500
KELLY SCOTT LISA 0.2500 0.2500 0.8125 0.2500 0.2500
AMY 1.1250 0.6875 0.2500 0.2500 0.4688
MIKE GEORGE AMY 0.6875 1.1250 0.3594 0.2500 0.6875
DAVID MARK KELLY 0.2500 0.3594 1.2500 0.2500 0.3047
JANE 0.2500 0.2500 0.2500 1.1250 0.6875
MERLE MIKE JANE 0.4688 0.6875 0.3047 0.6875 1.1250
JIM MARK KELLY 0.2500 0.3594 0.8125 0.2500 0.3047

Covariance Coefficients

Individual Parent1 Parent2 JIM

GEORGE 0.4688
LISA 0.6875
MARK GEORGE LISA 0.8125
SCOTT 0.4688
KELLY SCOTT LISA 0.8125
AMY 0.2500
MIKE GEORGE AMY 0.3594
DAVID MARK KELLY 0.8125
JANE 0.2500
MERLE MIKE JANE 0.3047
JIM MARK KELLY 1.2500

Number of Individuals 11

Figure 35.1. Analysis for an Overlapping Population

In the previous example, PROC INBREED treats the population as a single gener-
ation. However, you may want to process the population with respect to distinct,
nonoverlapping generations. To accomplish this, you need to identify the generation
variable in a CLASS statement, as shown by the following statements.

proc inbreed data=Population covar matrix init=0.25;
class Generation;

run;
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Note that, in this case, the covariance matrix is displayed separately for each genera-
tion (seeFigure 35.2).

The INBREED Procedure

Generation = 1

Covariance Coefficients

Individual Parent1 Parent2 MARK KELLY MIKE

MARK GEORGE LISA 1.1250 0.5000 0.4688
KELLY SCOTT LISA 0.5000 1.1250 0.2500
MIKE GEORGE AMY 0.4688 0.2500 1.1250

Number of Individuals 3

The INBREED Procedure

Generation = 2

Covariance Coefficients

Individual Parent1 Parent2 DAVID MERLE JIM MARK

DAVID MARK KELLY 1.2500 0.3047 0.8125 0.5859
MERLE MIKE JANE 0.3047 1.1250 0.3047 0.4688
JIM MARK KELLY 0.8125 0.3047 1.2500 0.5859
MARK MIKE KELLY 0.5859 0.4688 0.5859 1.1250

Number of Individuals 4

Figure 35.2. Analysis for a Nonoverlapping Population

You may also want to see covariance coefficient averages within sex categories. This
is accomplished by indicating the variable defining the gender of individuals in a
GENDER statement and by adding the AVERAGE option to the PROC INBREED
statement. For example, the following statements produce the covariance coefficient
averages shown inFigure 35.3.

proc inbreed data=Population covar average init=0.25;
class Generation;
gender Sex;

run;
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The INBREED Procedure

Generation = 1

Averages of Covariance Coefficient Matrix in Generation 1

On Diagonal Below Diagonal

Male X Male 1.1250 0.4688
Male X Female . 0.3750
Female X Female 1.1250 0.0000
Over Sex 1.1250 0.4063

Number of Males 2
Number of Females 1
Number of Individuals 3

The INBREED Procedure

Generation = 2

Averages of Covariance Coefficient Matrix in Generation 2

On Diagonal Below Diagonal

Male X Male 1.2083 0.6615
Male X Female . 0.3594
Female X Female 1.1250 0.0000
Over Sex 1.1875 0.5104

Number of Males 3
Number of Females 1
Number of Individuals 4

Figure 35.3. Averages within Sex Categories for a Nonoverlapping Generation

Syntax

The following statements are available in PROC INBREED.

PROC INBREED < options > ;
BY variables ;
CLASS variable ;
GENDER variable ;
MATINGS individual-list1 / mate-list <, . . . > ;
VAR variables ;

The PROC INBREED statement is required. Items within angle brackets (< >) are
optional. The syntax of each statement is described in the following sections.
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PROC INBREED Statement

PROC INBREED < options > ;

You can specify the following options in the PROC INBREED statement.

AVERAGE
A

produces a table of averages of coefficients for each pedigree of offspring. The
AVERAGE option is used together with theGENDERstatement to average the in-
breeding/covariance coefficients within sex categories.

COVAR
C

specifies that all coefficients output consist of covariance coefficients rather than in-
breeding coefficients.

DATA=SAS-data-set
names the SAS data set to be used byPROC INBREED. If you omit the DATA=
option, the most recently created SAS data set is used.

IND
I

displays the individuals’ inbreeding coefficients (diagonal of the inbreeding coeffi-
cients matrix) for each pedigree of offspring. If you also specify theCOVAR option,
the individuals’ covariance coefficients (diagonal of the covariance coefficients ma-
trix) are displayed.

INDL
displays individuals’ coefficients for only the last generation of a multiparous popu-
lation.

INIT=cov
specifies the covariance valuecov if any of the parents are unknown; a value of 0 is
assumed if you do not specify the INIT= option.

MATRIX
M

displays the inbreeding coefficient matrix for each pedigree of offspring. If you also
specify theCOVAR option, the covariance matrices are displayed instead of inbreed-
ing coefficients matrices.

MATRIXL
displays coefficients for only the last generation of a multiparous population.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS).

For more information on ODS, seeChapter 14, “Using the Output Delivery System.”
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OUTCOV=SAS-data-set
names an output data set to contain the inbreeding coefficients. When theCOVAR
option is also specified, covariance estimates are output to the OUTCOV= data set
instead of inbreeding coefficients.

BY Statement

BY variables ;

You can specify a BY statement withPROC INBREEDto obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the inputDATA= data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Use the SORT procedure with a similar BY statement to sort the data.

• Use the BY statement options NOTSORTED or DESCENDING in the
BY statement for the INBREED procedure. As a cautionary note, the
NOTSORTED option does not mean that the data are unsorted but rather that
the data are arranged in groups (according to values of the BY variables), and
these groups are not necessarily in alphabetical or increasing numeric order.

• Use the DATASETS procedure (in base SAS software) to create an index on
the BY variables.

For more information on the BY statement, see the discussion inSAS Language
Reference: Concepts.

CLASS Statement

CLASS variable ;

To analyze the population within nonoverlapping generations, you must specify the
variable that identifies generations in a CLASS statement. Values of the generation
variable, calledgeneration numbers, must be integers, but generations are assumed
to occur in the order of their input in the input data set rather than in numerical order
of the generation numbers. The name of an individual needs to be unique only within
its generation.

When theMATRIXL option or theINDL option is specified, each generation requires
a unique generation number in order for the specified option to work correctly. If
generation numbers are not unique, all the generations with a generation number that
is the same as the last generation’s are output.
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GENDER Statement

GENDER variable ;

The GENDER statement specifies a variable that indicates the sex of the individuals.
Values of the sex variable must be character beginning with ‘M’ or ‘F’, for male or
female. The GENDER statement is needed only when you specify theAVERAGEop-
tion to average the inbreeding/covariance coefficients within sex categories or when
you want to include a gender variable in theOUTCOV=data set.

PROC INBREEDmakes the following assumptions regarding the gender of individ-
uals:

• The first parent is always assumed to be the male. See the“VAR Statement”
section on page 1975.

• The second parent is always assumed to be the female. See the“VAR
Statement”section on page 1975.

• If the gender of an individual is missing or invalid, this individual is assumed
to be a female unless the population is overlapping and this individual appears
as the first parent in a later observation.

Any contradictions to these rules are reported in the SAS log.

MATINGS Statement

MATINGS individual-list1 / mate-list1 <, . . . ,individual-listn / mate-listn >;

You can specify the MATINGS statement withPROC INBREEDto specify selected
matings of individuals. Each individual given inindividual-list is mated with each
individual given inmate-list. You can write multiple mating specifications if you
separate them by commas or asterisks. The procedure reports the inbreeding coeffi-
cients or covariances for each pair of mates. For example, you can use the following
statement to specify the mating of an individual named ‘DAVID’ with an individual
named ‘JANE’:

matings david / jane;

VAR Statement

VAR individual parent1 parent2 < covariance > ;

The VAR statement specifies three or four variables: the first variable contains an
individual’s name, the second variable contains the name of the individual’s first par-
ent, and the third variable contains the name of the individual’s second parent. An
optional fourth variable assigns a known value to the covariance of the individual’s
first and second parents in the current generation.

The first three variables in the VAR statement can be either numeric or character;
however, only the first 12 characters of a character variable are recognized by the
procedure. The fourth variable, if specified, must be numeric.
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If you omit the VAR statement, then the procedure uses the first three unaddressed
variables as the names of the individual and its parents. (Unaddressed variables are
those that are not referenced in any otherPROC INBREEDstatement.) If the in-
put data set contains an unaddressed fourth variable, then it becomes the covariance
variable.

Details

Missing Values

A missing value for a parent implies that the parent is unknown. Unknown parents
are assumed to be unrelated and not inbred unless you specify theINIT= option (see
the INIT= option on page 1973).

When the value of the variable identifying the individual is missing, the observation
is not added to the list of individuals. However, for a multiparous population, an
observation with a missing individual is valid and is used for assigning covariances.

Missing covariance values are determined from theINIT=cov option, if specified.
Observations with missing generation variables are excluded.

If the gender of an individual is missing, it is determined from the order in which it is
listed on the first observation defining its progeny for an overlapping population. If it
appears as the first parent, it is set to ‘M’; otherwise, it is set to ‘F’. When the gender
of an individual cannot be determined, it is assigned a default value of ‘F’.

DATA= Data Set

Each observation in the input data set should contain necessary information such as
the identification of an individual and the first and second parents of an individual.
In addition, if aCLASSstatement is specified, each observation should contain the
generation identification; and, if aGENDERstatement is specified, each observation
should contain the gender of an individual. Optionally, each observation may also
contain the covariance between the first and the second parents. Depending on how
many statements are specified with the procedure, there should be enough variables
in the input data set containing this information.

If you omit the VAR statement, then the procedure uses the first threeunaddressed
variablesin the input data set as the names of the individual and his or her parents.
Unaddressed variables in the input data set are those variables that are not refer-
enced by the procedure in any other statements, such asCLASS, GENDER, or BY
statements. If the input data set contains an unaddressed fourth variable, then the
procedure uses it as the covariance variable.

If the individuals given by the variables associated with the first and second parents
are not in the population, they are added to the population. However, if they are in
the population, they must be defined prior to the observation that gives their progeny.

When there is aCLASS statement, the functions of defining new individuals and
assigning covariances must be separated. This is necessary because the parents of
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any given individual are defined in the previous generation, while covariances are
assigned between individuals in the current generation.

Therefore, there could be two types of observations for a multiparous population:

• one to define new individuals in the current generation whose parents have been
defined in the previous generation, as in the following, where the missing value
is for the covariance variable:

MARK GEORGE LISA . M 1
KELLY SCOTT LISA . F 1

• one to assign covariances between two individuals in the current generation,
as in the following, where the individual’s name is missing, ‘MARK’ and
‘KELLY’ are in the current generation, and the covariance coefficient between
these two individuals is 0.50:

. MARK KELLY 0.50 . 1

Note that the observations defining individuals must precede the observation assign-
ing a covariance value between them. For example, if a covariance is to be assigned
between ‘MARK’ and ‘KELLY’, then both of them should be defined prior to the
assignment observation.

Computational Details

This section describes the rules that the INBREED procedure uses to compute the
covariance and inbreeding coefficients. Each computational rule is explained by an
example referring to the fictitious population introduced in the“Getting Started”sec-
tion on page 1967.

Coancestry (or Kinship Coefficient)

To calculate the inbreeding coefficient and the covariance coefficients, use the degree
of relationship by descent between the two parents, which is calledcoancestryor
kinship coefficient(Falconer and Mackay 1996, p.85), orcoefficient of parentage
(Kempthorne 1957, p.73). Denote the coancestry between individuals X and Y by
fXY . For information on how to calculate the coancestries among a population, see
the section “Calculation of Coancestry.”

Covariance Coefficient (or Coefficient of Relationship)

The covariance coefficient between individuals X and Y is defined by

Cov(X,Y) = 2fXY

wherefXY is the coancestry between X and Y. The covariance coefficient is some-
times called thecoefficient of relationshipor the theoretical correlation(Falconer
and Mackay 1996, p.153; Crow and Kimura 1970, p.134). If a covariance coefficient
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cannot be calculated from the individuals in the population, it is assigned to an initial
value. The initial value is set to 0 if the INIT= option is not specified or tocov if
INIT=cov. Therefore, the corresponding initial coancestry is set to 0 if the INIT=
option is not specified or to12cov if INIT= cov.

Inbreeding Coefficients

The inbreeding coefficient of an individual is the probability that the pair of alle-
les carried by the gametes that produced it are identical by descent (Falconer and
Mackay 1996, Chapter 5; Kempthorne 1957, Chapter 5). For individual X, denote its
inbreeding coefficient byFX. The inbreeding coefficient of an individual is equal to
the coancestry between its parents. For example, if X has parents A and B, then the
inbreeding coefficient of X is

FX = fAB

Calculation of Coancestry

Given individuals X and Y, assume that X has parents A and B and that Y has parents
C and D. For nonoverlapping generations, the basic rule to calculate the coancestry
between X and Y is given by the following formula (Falconer and Mackay 1996,
p.86):

fXY =
1
4

(
fAC + fAD + fBC + fBD

)
And the inbreeding coefficient for an offspring of X and Y, called Z, is the coancestry
between X and Y:

FZ = fXY

JIM              DAVID   MARK             MERLE

SCOTT         LISA             GEORGE              AMY

MARK          KELLY                    MIKE     JANE
Generation 1

Generation 2

Figure 35.4. Inbreeding Relationship for Nonoverlapping Population

For example, inFigure 35.4, ‘JIM’ and ‘MARK’ from Generation 2 are progenies
of ‘MARK’ and ‘KELLY’ and of ‘MIKE’ and ‘KELLY’ from Generation 1, respec-
tively. The coancestry between ‘JIM’ and ‘MARK’ is
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fJIM,MARK =
1
4

(
fMARK,MIKE + fMARK, KELLY +

fKELLY, MIKE + fKELLY, KELLY

)

From the covariance matrix forGeneration=1 in Figure 35.2(page 1971) and the
relationship that coancestry is half of the covariance coefficient,

fJIM, MARK =
1
4

(
0.4688

2
+

0.5
2

+
0.25
2

+
1.125

2

)
= 0.29298

For overlapping generations, if X is older than Y, then thebasic rule(on page 1978)
can be simplified to

FZ = fXY =
1
2

(
fXC + fXD

)
That is, the coancestry between X and Y is the average of coancestries between older
X with younger Y’s parents. For example, inFigure 35.5, the coancestry between
‘KELLY’ and ‘DAVID’ is

fKELLY,DAVID =
1
2

(
fKELLY,MARK + fKELLY, KELLY

)

KELLY

GEORGE

LISA

MARK

SCOTT

AMY

MIKE

DAVID

JANE

MERLE

JIM

Figure 35.5. Inbreeding Relationship for Overlapping Population

This is so because ‘KELLY’ is defined before ‘DAVID’; therefore, ‘KELLY’ is not
younger than ‘DAVID’, and the parents of ‘DAVID’ are ‘MARK’ and ‘KELLY’. The
covariance coefficient values Cov(KELLY,MARK) and Cov(KELLY,KELLY) from
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the matrix inFigure 35.1on page 1970 yield that the coancestry between ‘KELLY’
and ‘DAVID’ is

fKELLY, DAVID =
1
2

(
0.5
2

+
1.125

2

)
= 0.40625

The numerical values for some initial coancestries must be known in order to use
these rule. Either the parents of the first generation have to be unrelated, withf = 0
if the INIT= option is not specified in the PROC statement, or their coancestries
must have an initial value of12cov, wherecov is set by the INIT= option. Then
the subsequent coancestries among their progenies and the inbreeding coefficients of
their progenies in the rest of the generations are calculated using these initial values.

Special rules need to be considered in the calculations of coancestries for the follow-
ing cases.

Self-Mating

The coancestry for an individual X with itself,fXX , is the inbreeding coefficient of
a progeny that is produced by self-mating. The relationship between the inbreeding
coefficient and the coancestry for self-mating is

fXX =
1
2

(
1 + FX

)
The inbreeding coefficientFX can be replaced by the coancestry between X’s parents
A and B,fAB, if A and B are in the population:

fXX =
1
2

(
1 + fAB

)
If X’s parents are not in the population, thenFX is replaced by the initial value12cov
if cov is set by the INIT= option, orFX is replaced by 0 if the INIT= option is not
specified. For example, the coancestry of ‘JIM’ with himself is

fJIM,JIM =
1
2

(
1 + fMARK, KELLY

)
where ‘MARK’ and ‘KELLY’ are the parents of ‘JIM’. Since the covariance coeffi-
cient Cov(MARK,KELLY) is 0.5 inFigure 35.1on page 1970 and also in the covari-
ance matrix for GENDER=1 inFigure 35.2on page 1971, the coancestry of ‘JIM’
with himself is

fJIM,JIM =
1
2

(
1 +

0.5
2

)
= 0.625

When INIT=0.25, then the coancestry of ‘JANE’ with herself is

fJANE,JANE=
1
2

(
1 +

0.25
2

)
= 0.5625

because ‘JANE’ is not an offspring in the population.
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Offspring and Parent Mating

Assuming that X’s parents are A and B, the coancestry between X and A is

fXA =
1
2

(
fAB + fAA

)
The inbreeding coefficient for an offspring of X and A, denoted by Z, is

FZ = fXA =
1
2

(
fAB + fAA

)
For example, ‘MARK’ is an offspring of ‘GEORGE’ and ‘LISA’, so the coancestry
between ‘MARK’ and ‘LISA’ is

fMARK, LISA =
1
2

(
fLISA,GEORGE+ fLISA, LISA

)
From the covariance coefficient matrix inFigure 35.1 on page 1970,
fLISA,GEORGE = 0.25/2 = 0.125, fLISA,LISA = 1.125/2 = 0.5625, so
that

fMARK, LISA =
1
2

(0.125 + 0.5625) = 0.34375

Thus, the inbreeding coefficient for an offspring of ‘MARK’ and ‘LISA’ is 0.34375.

Full Sibs Mating

This is a special case for the basic rule given at the beginning of the section
“Calculation of Coancestry”on page 1978. If X and Y are full sibs with same parents
A and B, then the coancestry between X and Y is

fXY =
1
4

(
2fAB + fAA + fBB

)
and the inbreeding coefficient for an offspring of A and B, denoted by Z, is

FZ = fXY =
1
4

(
2fAB + fAA + fBB

)
For example, ‘DAVID’ and ‘JIM’ are full sibs with parents ‘MARK’ and ‘KELLY’,
so the coancestry between ‘DAVID’ and ‘JIM’ is

fDAVID, JIM =
1
4

(
2fMARK,KELLY + fMARK, MARK + fKELLY, KELLY

)
Since the coancestry is half of the covariance coefficient, from the covariance matrix
in Figure 35.1on page 1970,

fDAVID,JIM =
1
4

(
2 × 0.5

2
+

1.125
2

+
1.125

2

)
= 0.40625
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Unknown or Missing Parents

When individuals or their parents are unknown in the population, their coancestries
are assigned by the value12cov if cov is set by the INIT= option or by the value 0 if
the INIT= option is not specified. That is, if either A or B is unknown, then

fAB =
1
2

cov

For example, ‘JANE’ is not in the population, and since ‘JANE’ is assumed to be
defined just before the observation at which ‘JANE’ appears as a parent (that is, be-
tween observations 4 and 5), then ‘JANE’ is not older than ‘SCOTT’. The coancestry
between ‘JANE’ and ‘SCOTT’ is then obtained by using thesimplified basic rule(see
page 1979):

fSCOTT,JANE=
1
2

(
fSCOTT,· + fSCOTT,·

)
Here, dots (·) indicate JANE’s unknown parents. Therefore,fSCOTT,· is replaced by
1
2cov, wherecov is set by the INIT= option. If INIT=0.25, then

fSCOTT,JANE=
1
2

(
0.25
2

+
0.25
2

)
= 0.125

For a more detailed discussion on the calculation of coancestries, inbreeding coeffi-
cients, and covariance coefficients, refer to Falconer and Mackay (1996), Kempthorne
(1957), and Crow and Kimura (1970).

OUTCOV= Data Set

The OUTCOV= data set has the following variables:

• a list of BY variables, if there is aBY statement

• the generation variable, if there is aCLASSstatement

• the gender variable, if there is aGENDERstatement

• –Type– , a variable indicating the type of observation. The valid values of
the–Type– variable are ‘COV’ for covariance estimates and ‘INBREED’ for
inbreeding coefficients.

• –Panel– , a variable indicating the panel number used when populations de-
limited by BY groups contain different numbers of individuals. If there aren
individuals in the first BY group and if any subsequent BY group contains a
larger population, then its covariance/inbreeding matrix is divided into panels,
with each panel containingn columns of data. If you put these panels side by
side in increasing–Panel– number order, then you can reconstruct the covari-
ance or inbreeding matrix.



OUTCOV= Data Set � 1983

• –Col– , a variable used to name columns of the inbreeding or covariance ma-
trix. The values of this variable start with ‘COL’, followed by a number indi-
cating the column number. The names of the individuals corresponding to any
given columni can be found by reading the individual’s name across the row
that has a–Col– value of ‘COLi’. When the inbreeding or covariance matrix
is divided into panels, all the rows repeat for the firstn columns, all the rows
repeat for the nextn columns, and so on.

• the variable containing the names of the individuals, that is, the first variable
listed in theVAR statement

• the variable containing the names of the first parents, that is, the second variable
listed in theVAR statement

• the variable containing the names of the second parents, that is, the third vari-
able listed in theVAR statement

• a list of covariance variablesCol1-Coln, wheren is the maximum number of
individuals in the first population

The functions of the variables–Panel– and–Col– can best be demonstrated by an
example. Assume that there are three individuals in the first BY group and that, in the
current BY group (Byvar=2), there are five individuals with the following covariance
matrix.

COV 1 2 3 4 5
1 Cov(1,1) Cov(1,2) Cov(1,3) Cov(1,4) Cov(1,5)
2 Cov(2,1) Cov(2,2) Cov(2,3) Cov(2,4) Cov(2,5)
3 Cov(3,1) Cov(3,2) Cov(3,3) Cov(3,4) Cov(3,5)
4 Cov(4,1) Cov(4,2) Cov(4,3) Cov(4,4) Cov(4,5)
5 Cov(5,1) Cov(5,2) Cov(5,3) Cov(5,4) Cov(5,5)

Panel 1 Panel 2

Then the OUTCOV= data set appears as follows.

Byvar –Panel– –Col– Individual Parent Parent2 Col1 Col2 Col3
2 1 COL1 1 Cov(1,1) Cov(1,2) Cov(1,3)
2 1 COL2 2 Cov(2,1) Cov(2,2) Cov(2,3)
2 1 COL3 3 Cov(3,1) Cov(3,2) Cov(3,3)
2 1 4 Cov(4,1) Cov(4,2) Cov(4,3)
2 1 5 Cov(5,1) Cov(5,2) Cov(5,3)
2 2 1 Cov(1,4) Cov(1,5) .
2 2 2 Cov(2,4) Cov(2,5) .
2 2 3 Cov(3,4) Cov(3,5) .
2 2 COL1 4 Cov(4,4) Cov(4,5) .
2 2 COL2 5 Cov(5,4) Cov(5,5) .
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Notice that the first three columns go to the first panel (–Panel–=1), and the remain-
ing two go to the second panel (–Panel–=2). Therefore, in the first panel, ‘COL1’,
‘COL2’, and ‘COL3’ correspond to individuals 1, 2, and 3, respectively, while in the
second panel, ‘COL1’ and ‘COL2’ correspond to individuals 4 and 5, respectively.

Displayed Output

The INBREED procedure can output either covariance coefficients or inbreeding co-
efficients. Note that the following items can be produced for each generation if gen-
erations do not overlap.

The output produced by PROC INBREED can be any or all of the following items:

• a matrix of coefficients

• coefficients of the individuals

• coefficients for selected matings

ODS Table Names

PROC INBREEDassigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

For more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 35.1. ODS Tables Produced in PROC INBREED

ODS Table Name Description Statement Option
AvgCovCoef Averages of covariance

coefficient matrix
GENDER COVAR and AVERAGE

AvgInbreedingCoef Averages of inbreeding
coefficient matrix

GENDER AVERAGE

CovarianceCoefficient Covariance coefficient
table

PROC COVAR and MATRIX

InbreedingCoefficient Inbreeding coefficient
table

PROC MATRIX

IndividualCovCoef Covariance coefficients
of individuals

PROC IND and COVAR

IndividualInbreedingCoef Inbreeding coefficients
of individuals

PROC IND

MatingCovCoef Covariance coefficients
of matings

MATINGS COVAR

MatingInbreedingCoef Inbreeding coefficients
of matings

MATINGS

NumberOfObservations Number of observations PROC
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Examples

Example 35.1. Monoecious Population Analysis

The following example shows a covariance analysis within nonoverlapping genera-
tions for a monoecious population. Parents of generation 1 are unknown and therefore
assumed to be unrelated. The result appears inOutput 35.1.1.

data Monoecious;
input Generation Individual Parent1 Parent2 Covariance @@;
datalines;

1 1 . . . 1 2 . . . 1 3 . . .
2 1 1 1 . 2 2 1 2 . 2 3 2 3 .
3 1 1 2 . 3 2 1 3 . 3 3 2 1 .
3 4 1 3 . 3 . 2 3 0.50 3 . 4 3 1.135
;

title ’Inbreeding within Nonoverlapping Generations’;
proc inbreed ind covar matrix data=Monoecious;

class Generation;
run;

Output 35.1.1. Monoecious Population Analysis
Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 1

Covariance Coefficients

Individual Parent1 Parent2 1 2 3

1 1.0000 . .
2 . 1.0000 .
3 . . 1.0000

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 1

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1.0000
2 1.0000
3 1.0000

Number of Individuals 3
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Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 2

Covariance Coefficients

Individual Parent1 Parent2 1 2 3

1 1 1 1.5000 0.5000 .
2 1 2 0.5000 1.0000 0.2500
3 2 3 . 0.2500 1.0000

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 2

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1 1 1.5000
2 1 2 1.0000
3 2 3 1.0000

Number of Individuals 3
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Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 3

Covariance Coefficients

Individual Parent1 Parent2 1 2 3 4

1 1 2 1.2500 0.5625 0.8750 0.5625
2 1 3 0.5625 1.0000 1.1349 0.6250
3 2 1 0.8750 1.1349 1.2500 1.1349
4 1 3 0.5625 0.6250 1.1349 1.0000

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 3

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1 2 1.2500
2 1 3 1.0000
3 2 1 1.2500
4 1 3 1.0000

Number of Individuals 4

Note that, since the parents of the first generation are unknown, off-diagonal elements
of the covariance matrix are all 0s and on-diagonal elements are all 1s. If there is an
INIT=cov value, then the off-diagonal elements would be equal tocov, while on-
diagonal elements would be equal to1 + cov/2.

In the third generation, individuals 2 and 4 are full siblings, so they belong to the same
family. Since PROC INBREED computes covariance coefficients between families,
the second and fourth columns of inbreeding coefficients are the same, except that
their intersections with the second and fourth rows are reordered. Notice that, even
though there is an observation to assign a covariance of 0.50 between individuals 2
and 3 in the third generation, the covariance between 2 and 3 is set to 1.135, the same
value assigned between 4 and 3. This is because families get the same covariances,
and later specifications override previous ones.

Example 35.2. Pedigree Analysis

In the following example, an inbreeding analysis is performed for a complicated pedi-
gree. This analysis includes computing selective matings of some individuals and
inbreeding coefficients of all individuals. Also, inbreeding coefficients are averaged
within sex categories. The result appears inOutput 35.2.1.
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data Swine;
input Swine_Number $ Sire $ Dam $ Sex $;
datalines;

3504 2200 2501 M
3514 2521 3112 F
3519 2521 2501 F
2501 2200 3112 M
2789 3504 3514 F
3501 2521 3514 M
3712 3504 3514 F
3121 2200 3501 F
;

title ’Least Related Matings’;
proc inbreed data=Swine ind average;

var Swine_Number Sire Dam;
matings 2501 / 3501 3504 ,

3712 / 3121;
gender Sex;

run;

Note the following fromOutput 35.2.1:

• Observation 4, which definesSwine–Number=2501, should precede the first
and third observations where the progeny for 2501 are given. PROC INBREED
ignores observation 4 since it is given out of order. As a result, the parents of
2501 are missing or unknown.

• The first column in the “Inbreeding Averages” table corresponds to the aver-
ages taken over the on-diagonal elements of the inbreeding coefficients matrix,
and the second column gives averages over the off-diagonal elements.
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Output 35.2.1. Pedigree Analysis
Least Related Matings

The INBREED Procedure

Inbreeding Coefficients of Individuals

Swine_
Number Sire Dam Coefficient

2200 .
2501 .
3504 2200 2501 .
2521 .
3112 .
3514 2521 3112 .
3519 2521 2501 .
2789 3504 3514 .
3501 2521 3514 0.2500
3712 3504 3514 .
3121 2200 3501 .

Least Related Matings

The INBREED Procedure

Inbreeding Coefficients of Matings

Sire Dam Coefficient

2501 3501 .
2501 3504 0.2500
3712 3121 0.1563

Averages of Inbreeding Coefficient Matrix

Inbreeding Coancestry

Male X Male 0.0625 0.1042
Male X Female . 0.1362
Female X Female 0.0000 0.1324
Over Sex 0.0227 0.1313

Number of Males 4
Number of Females 7
Number of Individuals 11

Example 35.3. Pedigree Analysis with BY Groups
This example demonstrates the structure of the OUTCOV= data set created by PROC
INBREED. Note that the first BY group has three individuals, while the second has
five. Therefore, the covariance matrix for the second BY group is broken up into two
panels, as shown inOutput 35.3.1.

data Swine;
input Group Swine_Number $ Sire $ Dam $ Sex $;
datalines;

1 2789 3504 3514 F
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2 2501 2200 3112 .
2 3504 2501 3782 M
;

proc inbreed data=Swine covar noprint outcov=Covariance
init=0.4;

var Swine_Number Sire Dam;
gender Sex;
by Group;

run;

title ’Printout of OUTCOV= data set’;
proc print data=Covariance;

format Col1-Col3 4.2;
run;

Output 35.3.1. Pedigree Analysis with BY Groups
Printout of OUTCOV= data set

Swine_
OBS Group Sex _TYPE_ _PANEL_ _COL_ Number Sire Dam COL1 COL2 COL3

1 1 M COV 1 COL1 3504 1.20 0.40 0.80
2 1 F COV 1 COL2 3514 0.40 1.20 0.80
3 1 F COV 1 COL3 2789 3504 3514 0.80 0.80 1.20
4 2 M COV 1 COL1 2200 1.20 0.40 0.80
5 2 F COV 1 COL2 3112 0.40 1.20 0.80
6 2 M COV 1 COL3 2501 2200 3112 0.80 0.80 1.20
7 2 F COV 1 3782 0.40 0.40 0.40
8 2 M COV 1 3504 2501 3782 0.60 0.60 0.80
9 2 M COV 2 2200 0.40 0.60 .

10 2 F COV 2 3112 0.40 0.60 .
11 2 M COV 2 2501 2200 3112 0.40 0.80 .
12 2 F COV 2 COL1 3782 1.20 0.80 .
13 2 M COV 2 COL2 3504 2501 3782 0.80 1.20 .
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Chapter 36
The KDE Procedure
Overview

The KDE procedure performs either univariate or bivariate kernel density estima-
tion. Statisticaldensity estimationinvolves approximating a hypothesized probabil-
ity density function from observed data.Kernel density estimationis a nonparametric
technique for density estimation in which a known density function (thekernel) is
averaged across the observed data points to create a smooth approximation. Refer to
Silverman(1986) for a thorough review and discussion.

PROC KDE uses a Gaussian density as the kernel, and its assumed variance deter-
mines the smoothness of the resulting estimate. PROC KDE outputs the kernel den-
sity estimate into a SAS data set, which you can then use with other procedures for
plotting or analysis. PROC KDE also computes a variety of common statistics, in-
cluding estimates of the percentiles of the hypothesized probability density function.

Experimental graphics are now available with the KDE procedure. For more infor-
mation, see the“ODS Graphics”section on page 2009.

Getting Started

The following example illustrates the basic features of PROC KDE. Assume that
1000 observations are simulated from a bivariate normal density with means(0, 0),
variances(10, 10), and covariance9. The SAS DATA step to accomplish this is as
follows:

data bivnormal;
seed = 1283470;
do i = 1 to 1000;

z1 = rannor(seed);
z2 = rannor(seed);
z3 = rannor(seed);
x = 3*z1+z2;
y = 3*z1+z3;
output;

end;
drop seed;

run;
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The following statements request a bivariate kernel density estimate for the variables
x andy.

ods html;
ods graphics on;

proc kde data=bivnormal;
bivar x y / plots=contour surface;

run;

ods graphics off;
ods html close;

A contour plot and a surface plot of the estimate are displayed inFigure 36.1and
Figure 36.2, respectively. Note that the correlation of0.9 in the original data results
in oval-shaped contours. These graphical displays are requested by specifying the
experimental ODS GRAPHICS statement and the experimentalPLOTS=option in
the BIVAR statement. For general information about ODS graphics, seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the KDE procedure, see the“ODS Graphics”section on page 2009.

Figure 36.1. Contour Plot of Estimated Density (Experimental)
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Figure 36.2. Surface Plot of Estimated Density (Experimental)

The default output tables for this analysis are as follows.

Inputs

Data Set WORK.BIVNORMAL
Number of Observations Used 1000
Variable 1 x
Variable 2 y
Bandwidth Method Simple Normal

Reference

The “Inputs” table lists basic information about the density fit, including the input
data set, the number of observations, and the variables. The bandwidth method is the
technique used to select the amount of smoothing in the estimate. A simple normal
reference rule is used for bivariate smoothing.

Controls

x y

Grid Points 60 60
Lower Grid Limit -11.25 -10.05
Upper Grid Limit 9.1436 9.0341
Bandwidth Multiplier 1 1
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The “Controls” table lists the primary numbers controlling the kernel density fit. Here
a 60 × 60 grid is fit to the entire range of the data, and no adjustment is made to the
default bandwidth.

Syntax
You can use the following statements with the KDE procedure.

PROC KDE < options > ;
BIVAR <(> variable < (v-options) > variable < (v-options) > <)>

< . . . <(> variable < (v-options) > variable < (v-options) > <)>
> < / options > ;

UNIVAR variable < (v-options) > < . . . variable < (v-options) > >
< / options > ;

BY variables ;
FREQ variable ;
WEIGHT variable ;

The PROC KDE statement invokes the procedure. The BIVAR statement requests
that one or more bivariate kernel density estimates be computed. The UNIVAR state-
ment requests one or more univariate kernel density estimates.

PROC KDE Statement
PROC KDE < options >;

The PROC KDE statement invokes the procedure and specifies the input data set.

DATA=SAS-data-set
specifies the input SAS data set to be used by PROC KDE. The default is the most
recently created data set.

Note: The following options, which were available in the PROC KDE statement in
Version 8, are now obsolete. These options are now available in the UNIVAR and
BIVAR statements.

Version 8 SAS 9
PROC KDE option UNIVAR option BIVAR option
BWM=numlist BWM=number BWM=number
GRIDL=numlist GRIDL=number GRIDL=number
GRIDU=numlist GRIDU=number GRIDU=number
LEVELS LEVELS
METHOD METHOD
NGRID=numlist NGRID=number NGRID=number
OUT OUT OUT
PERCENTILES PERCENTILES PERCENTILES
SJPIMAX SJPIMAX
SJPIMIN SJPIMIN
SJPINUM SJPINUM
SJPITOL SJPITOL
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BIVAR Statement

The basic syntax for the BIVAR statement is

BIVAR variable1 variable2 ;

This statement requests a bivariate kernel density estimate for the variablesvariable1
andvariable2.

The general form of this syntax is as follows:

BIVAR <(> variable < (v-options) > variable < (v-options) > <)>
< . . . <(> variable < (v-options) > variable < (v-options) > <)>
> < / options > ;

The BIVAR statement lists variables in the input data set for which bivariate kernel
density estimates are to be computed. You can specify a list of variables or a list of
variable pairs, where each pair is enclosed in parentheses. If you specify a variable
list, a kernel density estimate is computed for each distinct combination of two vari-
ables in the list. If you specify variable pairs, a kernel density estimate is computed
for each pair.

For example, if you specify

bivar x y z;

then a bivariate kernel density estimate is computed for each of the pairs (x, y), (x,
z), and (y, z). On the other hand, if you specify

bivar (x y) (z w);

then only two bivariate kernel density estimates are computed, one for (x, y) and one
for (z, w).

You can specify variousv-optionsfor each variable by enclosing them in parenthe-
ses after the variable name. You can also specify globaloptionsamong the BIVAR
statement options following a slash (/). Globaloptionsare applied to all the variables
specified in the BIVAR statement. However, individual variablev-optionsoverride
the globaloptions.

Note: The VAR statement for PROC KDE in Version 8 is now obsolete. The VAR
statement has been replaced by the UNIVAR and the BIVAR statements, which pro-
vide more control and flexibility for specifying the variables to be analyzed.

You can specify the followingoptionsin the BIVAR statement (as noted, someop-
tionscan be used asv-options).
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BIVSTATS
requests the covariance and correlation between the two variables.

BWM=number
specifies the bandwidth multiplier for the kernel density estimate. The default value
is 1. Larger multipliers produce a smoother estimate, and smaller ones produce a
rougher estimate. You can specify BWM= as av-option.

GRIDL=number
specifies the lower grid limit for the kernel density estimate. The default value equals
the minimum observed values of the variables. You can specify GRIDL= as av-
option.

GRIDU=number
specifies the upper grid limit for the kernel density estimate. The default value equals
the maximum observed values of the variables. You can specify GRIDU= as av-
option.

LEVELS
LEVELS=numlist

requests a table of levels for contours of the bivariate density. The contours are de-
fined in such a way that the density has a constant level along each contour, and the
volume enclosed by each contour corresponds to a specified percent. In other words,
the contours correspond to slices or levels of the density surface taken along the den-
sity axis. You can use the LEVELS= option to specify the percents. By default, the
percents are 1, 5, 10, 50, 90, 95, 99, and 100. The table also provides the minimum
and maximum values for each contour along the directions of the two data variables.

NGRID=number
NG=number

specifies the number of grid points associated with a variable in the BIVAR statement.
The default value is 60. You can specify NGRID= as av-option.

OUT=SAS-data-set
specifies the output SAS data set containing the kernel density estimate. This output
data set contains the following variables:

• var1, whose value is the name of the first variable in a bivariate kernel density
estimate

• var2, whose value is the name of the second variable in a bivariate kernel
density estimate

• value1, with values corresponding to grid coordinates for the first variable

• value2, with values corresponding to grid coordinates for the second variable

• density, with values equal to kernel density estimates at the associated grid
point

• count, containing the number of original observations contained in the bin
corresponding to a grid point
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PERCENTILES
PERCENTILES=numlist

lists percentiles to be computed for each BIVAR variable. The default percentiles are
0.5, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99, and 99.5.

UNISTATS
requests standard univariate statistics for each variable, as well as statistics associated
with the density estimate.

UNIVAR Statement

UNIVAR variable < (v-options) > < . . . variable < (v-options) > >
< / options > ;

The UNIVAR statement lists variables in the input data set for which univariate kernel
density estimates are to be computed. You can specify variousv-optionsfor each
variable by enclosing them in parentheses after the variable name. You can also
specify globaloptionsamong the UNIVAR statement options following a slash (/).
Global optionsare applied to all the variables specified in the UNIVAR statement.
However, individual variablev-optionsoverride the globaloptions.

Note: The VAR statement for PROC KDE in Version 8 is now obsolete. The VAR
statement has been replaced by the UNIVAR and the BIVAR statements, which pro-
vide more control and flexibility for specifying the variables to be analyzed.

You can specify the followingoptions in the UNIVAR statement (as noted, some
optionscan be used asv-options.)

BWM=number
specifies the bandwidth multiplier for the kernel density estimate. The default value
is 1. Larger multipliers produce a smoother estimate, and smaller ones produce a
rougher estimate. You can specify BWM= as av-option.

GRIDL=number
specifies the lower grid limit for the kernel density estimate. The default value equals
the minimum observed values of the variables. You can specify GRIDL= as av-
option.

GRIDU=number
specifies the upper grid limit for the kernel density estimate. The default value equals
the maximum observed values of the variables. You can specify GRIDU= as av-
option.

METHOD=SJPI | SNR | SROT | OS
specifies the method used to compute the bandwidth. Available methods are Sheather-
Jones plug-in (SJPI), simple normal reference (SNR), Silverman’s rule of thumb
(SROT), and oversmoothed (OS). Refer toJones, Marron, and Sheather(1996) for
a description of each of these methods. SJPI is the default method.
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NGRID=number
NG=number

specifies the number of grid points associated with a variable in the UNIVAR state-
ment. The default value is 401. You can specify NGRID= as av-option.

OUT=SAS-data-set
specifies the output SAS data set containing the kernel density estimate. This output
data set contains the following variables:

• var, whose value is the name of the variable in the kernel density estimate

• value, with values corresponding to grid coordinates for the variable

• density, with values equal to kernel density estimates at the associated grid
point

• count, containing the number of original observations contained in the bin
corresponding to a grid point

PERCENTILES
PERCENTILES=numlist

lists percentiles to be computed for each UNIVAR variable. The default percentiles
are 0.5, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99, and 99.5.

SJPIMAX=number
specifies the maximum grid value in determining the Sheather-Jones plug-in band-
width. The default value is two times the oversmoothed estimate.

SJPIMIN=number
specifies the minimum grid value in determining the Sheather-Jones plug-in band-
width. The default value is the maximum value divided by 18.

SJPINUM=number
specifies the number of grid values used in determining the Sheather-Jones plug-in
bandwidth. The default is 21.

SJPITOL=number
specifies the tolerance for termination of the bisection algorithm used in computing
the Sheather-Jones plug-in bandwidth. The default value is 0.001.

UNISTATS
requests standard univariate statistics for each variable, as well as statistics associated
with the density estimate.

Examples

Suppose you have the variablesx1, x2, x3, x4 in the SAS data setMyData. You
can request a kernel density estimate for each of these variables with the following
statements.

proc kde data=MyData;
univar x1 x2 x3 x4;

run;
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You can also specify different bandwidths and other options for each variable. For ex-
ample, the following statements request kernel density estimates using Silverman’s
rule of thumb (SROT) method for all variables. The option NGRID=200 applies
to the variablesx1, x3, and x4, but thev-option NGRID=100 is applied tox2.
Bandwidth multipliers of 2 and 0.5 are specified for the variablesx1 and x2, re-
spectively.

proc kde data=MyData;
univar x1 (bwm=2)

x2 (bwm=0.5 ngrid=100)
x3 x4 / ngrid=200 method=srot;

run;

BY Statement

BY variables ;

You can specify a BY statement with PROC KDE to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the KDE procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion in theSAS
Language Reference: Concepts. For more information on the DATASETS proce-
dure, refer to the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement specifies a variable that provides frequencies for each observa-
tion in the DATA= data set. Specifically, ifn is the value of the FREQ variable for
a given observation, then that observation is usedn times. If the value of the FREQ
variable is missing or is less than 1, the observation is not used in the analysis. If the
value is not an integer, only the integer portion is used.
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WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a variable that weights the observations in comput-
ing the kernel density estimate. Observations with higher weights have more influ-
ence in the computations. If an observation has a nonpositive or missing weight, then
the entire observation is omitted from the analysis. You should be cautious in using
data sets with extreme weights, as they can produce unreliable results.

Details

Computational Overview

The two main computational tasks of PROC KDE are automatic bandwidth selection
and the construction of a kernel density estimate once a bandwidth has been selected.
The primary computational tools used to accomplish these tasks are binning, con-
volutions, and the fast Fourier transform. The following sections provide analytical
details on these topics, beginning with the density estimates themselves.

Kernel Density Estimates

A weighted univariate kernel density estimate involves a variableX and a weight
variableW . Let (Xi,Wi), i = 1, 2, . . . , n denote a sample ofX andW of sizen.
The weighted kernel density estimate off(x), the density ofX, is as follows.

f̂(x) =
1∑n

i=1 Wi

n∑
i=1

Wiϕh(x−Xi)

whereh is the bandwidth and

ϕh(x) =
1√
2πh

exp
(
− x2

2h2

)
is the standard normal density rescaled by the bandwidth. Ifh → 0 andnh → ∞,
then the optimal bandwidth is

hAMISE =
[

1
2
√

πn
∫

(f ′′)2

]1/5

This optimal value is unknown, and so approximations methods are required. For a
derivation and discussion of these results, refer toSilverman(1986, Chapter 3) and
Jones, Marron, and Sheather(1996).

For the bivariate case, letX = (X, Y ) be a bivariate random element taking values
in R2 with joint density functionf(x, y), (x, y) ∈ R2, and letXi = (Xi, Yi), i =
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1, 2, . . . , n be a sample of sizen drawn from this distribution. The kernel density
estimate off(x, y) based on this sample is

f̂(x, y) =
1
n

n∑
i=1

ϕh(x−Xi, y − Yi)

=
1

nhXhY

n∑
i=1

ϕ

(
x−Xi

hX
,
y − Yi

hY

)

where(x, y) ∈ R2, hX > 0 andhY > 0 are the bandwidths andϕh(x, y) is the
rescaled normal density

ϕh(x, y) =
1

hXhY
ϕ

(
x

hX
,

y

hY

)

whereϕ(x, y) is the standard normal density function

ϕ(x, y) =
1
2π

exp
(
−x2 + y2

2

)

Under mild regularity assumptions aboutf(x, y), the mean integrated squared error
(MISE) of f̂(x, y) is

MISE(hX , hY ) = E
∫

(f̂ − f)2

=
1

4πnhXhY
+

h4
X

4

∫ (
∂2f

∂X2

)2

dxdy

+
h4

Y

4

∫ (
∂2f

∂Y 2

)2

dxdy + O

(
h4

X + h4
Y +

1
nhXhY

)
ashX → 0, hY → 0 andnhXhY →∞.

Now set

AMISE(hX , hY ) =
1

4πnhXhY
+

h4
X

4

∫ (
∂2f

∂X2

)2

dxdy

+
h4

Y

4

∫ (
∂2f

∂Y 2

)2

dxdy

which is the asymptotic mean integrated squared error (AMISE). For fixedn, this has
minimum at(hAMISE–X , hAMISE–Y ) defined as

hAMISE–X =

[∫
( ∂2f

∂X2 )2

4nπ

]1/6 [∫
( ∂2f

∂X2 )2∫
( ∂2f

∂Y 2 )2

]2/3
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and

hAMISE–Y =

[∫
( ∂2f

∂Y 2 )2

4nπ

]1/6 [∫
( ∂2f

∂Y 2 )2∫
( ∂2f

∂X2 )2

]2/3

These are the optimal asymptotic bandwidths in the sense that they minimize MISE.
However, as in the univariate case, these expressions contain the second derivatives
of the unknown densityf being estimated, and so approximations are required. Refer
to Wand and Jones(1993) for further details.

Binning

Binning, or assigning data to discrete categories, is an effective and fast method for
large data sets (Fan and Marron1994). When the sample sizen is large, direct eval-
uation of the kernel estimatêf at any point would involven kernel evaluations, as
shown in the preceding formulas. To evaluate the estimate at each point of a grid of
sizeg would thus requireng kernel evaluations. When you useg = 401 in the uni-
variate case org = 60 × 60 = 3600 in the bivariate case andn ≥ 1000, the amount
of computation can be prohibitively large. With binning, however, the computational
order is reduced tog, resulting in a much quicker algorithm that is nearly as accurate
as direct evaluation.

To bin a set of weighted univariate dataX1, X2, . . . , Xn to a grid x1, x2, . . . , xg,
simply assign each sampleXi, together with its weightWi, to the nearest grid point
xj (also called the bin center). When binning is completed, each grid pointxi has
an associated numberci, which is the sum total of all the weights that correspond to
sample points that have been assigned toxi. Thesecis are known as thebin counts.

This procedure replaces the data(Xi,Wi), i = 1, 2, . . . , n with the smaller set
(xi, ci), i = 1, 2, . . . , g, and the estimation is carried out with this new data. This is
so-calledsimple binning,versus the finerlinear binningdescribed inWand(1994).
PROC KDE uses simple binning for the sake of faster and easier implementation.
Also, it is assumed that the bin centersx1, x2, . . . , xg are equally spaced and in in-
creasing order. In addition, assume for notational convenience that

∑n
i=1 Wi = n

and, therefore,
∑g

i=1 ci = n.

If you replace the data(Xi,Wi), i = 1, 2, . . . , n with (xi, ci), i = 1, 2, . . . , g, the
weighted estimator̂f then becomes

f̂(x) =
1
n

g∑
i=1

ciϕh(x− xi)

with the same notation as used previously. To evaluate this estimator at theg points
of the same grid vectorgrid = (x1, x2, . . . , xg)′ is to calculate

f̂(xi) =
1
n

g∑
j=1

cjϕh(xi − xj)
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for i = 1, 2, . . . , g. This can be rewritten as

f̂(xi) =
1
n

g∑
j=1

cjϕh(|i− j|δ)

whereδ = x2 − x1 is the increment of the grid.

The same idea of binning works similarly with bivariate data, where you estimatef̂
over the grid matrixgrid = gridX × gridY as follows.

grid =


x1,1 x1,2 . . . x1,gY

x2,1 x2,2 . . . x2,gY

...
xgX ,1 xgX ,2 . . . xgX ,gY


wherexi,j = (xi, yi), i = 1, 2, . . . , gX , j = 1, 2, . . . , gY , and the estimates are

f̂(xi,j) =
1
n

gX∑
k=1

gY∑
l=1

ck,lϕh(|i− k|δX , |j − l|δY )

whereδX = x2 − x1 andδY = y2 − y1 are the increments of the grid.

Convolutions

The formulas for the binned estimatorf̂ in the previous subsection are in the form of
a convolution product between two matrices, one of which contains the bin counts,
the other of which contains the rescaled kernels evaluated at multiples of grid incre-
ments. This section defines these two matrices explicitly, and shows thatf̂ is their
convolution.

Beginning with the weighted univariate case, define the following matrices:

K =
1
n

(ϕh(0), ϕh(δ), . . . , ϕh((g − 1)δ))′

C = (c1, c2, . . . , cg)′

The first thing to note is that many terms inK are negligible. The termϕh(iδ) is
taken to be0 when|iδ/h| ≥ 5, so you can define

l = min(g − 1,floor(5h/δ))

as the maximum integer multiple of the grid increment to get nonzero evaluations of
the rescaled kernel. Herefloor(x) denotes the largest integer less than or equal tox.

Next, letp be the smallest power of2 that is greater thang + l + 1,

p = 2ceil(log2(g+l+1))
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whereceil(x) denotes the smallest integer greater than or equal tox.

Modify K as follows:

K =
1
n

(ϕh(0), ϕh(δ), . . . , ϕh(lδ), 0, . . . , 0︸ ︷︷ ︸
p−2l−1

, ϕh(lδ), . . . , ϕh(δ))′

Essentially, the negligible terms ofK are omitted, and the rest aresymmetrized(ex-
cept for one term). The whole matrix is then padded to sizep × 1 with zeros in the
middle. The dimensionp is a highly composite number, that is, one that decomposes
into many factors, leading to the most efficient fast Fourier transform operation (refer
to Wand1994).

The third operation is to pad the bin count matrixC with zeros to the same size asK:

C = (c1, c2, . . . , cg, 0, . . . , 0︸ ︷︷ ︸
p−g

)′

The convolutionK ∗ C is then ap× 1 matrix, and the preceding formulas show that
its firstg entries are exactly the estimatesf̂(xi), i = 1, 2, . . . , g.

For bivariate smoothing, the matrixK is defined similarly as

K =



κ0,0 κ0,1 . . . κ0,lY 0 κ0,lY . . . κ0,1

κ1,0 κ1,1 . . . κ1,lY 0 κ1,lY . . . κ1,1
...

κlX ,0 κlX ,1 . . . κlX ,lY 0 κlX ,lY . . . κlX ,1

0 0 . . . 0 0 0 . . . 0
κlX ,0 κlX ,1 . . . κlX ,lY 0 κlX ,lY . . . κlX ,1

...
κ1,0 κ1,1 . . . κ1,lY 0 κ1,lY . . . κ1,1


pX×pY

wherelX = min(gX − 1,floor(5hX/δX)), pX = 2ceil(log2(gX+lX+1)), and so forth,
andκi,j = 1

nϕh(iδX , jδY ) i = 0, 1, . . . , lX , j = 0, 1, . . . , lY .

The bin count matrixC is defined as

C =



c1,1 c1,2 . . . c1,gY 0 . . . 0
c2,1 c2,2 . . . c2,gY 0 . . . 0

...
cgX ,1 cgX ,2 . . . cgX ,gY 0 . . . 0

0 0 . . . 0 0 . . . 0
...
0 0 . . . 0 0 . . . 0


pX×pY

As with the univariate case, thegX × gY upper-left corner of the convolutionK ∗ C
is the matrix of the estimateŝf(grid).

Most of the results in this subsection are found inWand(1994).
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Fast Fourier Transform

As shown in the last subsection, kernel density estimates can be expressed as a sub-
matrix of a certain convolution. The fast Fourier transform (FFT) is a computationally
effective method for computing such convolutions. For a reference on this material,
refer toPress et al.(1988).

Thediscrete Fourier transformof a complex vectorz = (z0, . . . , zN−1) is the vector
Z = (Z0, . . . , ZN−1), where

Zj =
N−1∑
l=0

zle
2πilj/N , j = 0, . . . , N − 1

andi is the square root of−1. The vectorz can be recovered fromZ by applying the
inverse discrete Fourier transformformula

zl = N−1
N−1∑
j=0

Zje
−2πilj/N , l = 0, . . . , N − 1

Discrete Fourier transforms and their inverses can be computed quickly using the FFT
algorithm, especially whenN is highly composite; that is, it can be decomposed into
many factors, such as a power of2. By theDiscrete Convolution Theorem, the con-
volution of two vectors is the inverse Fourier transform of the element-by-element
product of their Fourier transforms. This, however, requires certain periodicity as-
sumptions, which explains why the vectorsK andC require zero-padding. This is
to avoidwrap-aroundeffects (refer toPress et al.1988, pp. 410–411). The vectorK
is actually mirror-imaged so that the convolution ofC andK will be the vector of
binned estimates. Thus, ifS denotes the inverse Fourier transform of the element-by-
element product of the Fourier transforms ofK andC, then the firstg elements ofS
are the estimates.

The bivariate Fourier transform of anN1×N2 complex matrix having(l1 +1, l2 +1)
entry equal tozl1l2 is theN1 ×N2 matrix with (j1 + 1, j2 + 1) entry given by

Zj1j2 =
N1−1∑
l1=0

N2−1∑
l2=0

zl1l2e
2πi(l1j1/N1+l2j2/N2)

and the formula of the inverse is

zl1l2 = (N1N2)−1
N1−1∑
j1=0

N2−1∑
j2=0

Zj1j2e
−2πi(l1j1/N1+l2j2/N2)

The same Discrete Convolution Theorem applies, and zero-padding is needed for
matricesC andK. In the case ofK, the matrix is mirror-imaged twice. Thus, if
S denotes the inverse Fourier transform of the element-by-element product of the
Fourier transforms ofK andC, then the upper-leftgX × gY corner ofS contains the
estimates.
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Bandwidth Selection

Several different bandwidth selection methods are available in PROC KDE in the
univariate case. Following the recommendations ofJones, Marron, and Sheather
(1996), the default method follows a plug-in formula of Sheather and Jones.

This method solves the fixed-point equation

h =

 R(ϕ)

nR
(
f̂

′′
g(h)

) (∫
x2ϕ(x)dx

)2

1/5

whereR(ϕ) =
∫

ϕ2(x)dx.

PROC KDE solves this equation by first evaluating it on a grid of values spaced
equally on a log scale. The largest two values from this grid that bound a solution are
then used as starting values for a bisection algorithm.

The simple normal reference rule works by assumingf̂ is Gaussian in the preceding
fixed-point equation. This results in

h = σ̂[4/(3n)]1/5

whereσ̂ is the sample standard deviation.

Silverman’s rule of thumb (Silverman1986, section 3.4.2) is computed as

h = 0.9 min[σ̂, (Q3 −Q1)/1.34]n−1/5

whereQ3 andQ1 are the third and first sample quartiles, respectively.

The oversmoothed bandwidth is computed as

h = 3σ̂[1/(70
√

πn)]1/5

When you specify a WEIGHT variable, PROC KDE uses weighted versions ofQ3,
Q1, and σ̂ in the preceding expressions. The weighted quartiles are computed as
weighted order statistics, and the weighted variance takes the form

σ̂2 =
∑n

i=1 Wi(Xi − X̄)2∑n
i=1 Wi

whereX̄ = (
∑n

i=1 WiXi)/(
∑n

i=1 Wi) is the weighted sample mean.

For the bivariate case,Wand and Jones(1993) note that automatic bandwidth selec-
tion is both difficult and computationally expensive. Their study of various ways of
specifying a bandwidth matrix also shows that using two bandwidths, one in each
coordinate’s direction, is often adequate. PROC KDE enables you to adjust the two
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bandwidths by specifying a multiplier for the default bandwidths recommended by
Bowman and Foster(1993):

hX = σ̂Xn−1/6

hY = σ̂Y n−1/6

Hereσ̂X andσ̂Y are the sample standard deviations ofX andY , respectively. These
are the optimal bandwidths for two independent normal variables that have the same
variances asX andY . They are, therefore, conservative in the sense that they tend to
oversmooth the surface.

You can specify the BWM= option to adjust the aforementioned bandwidths to pro-
vide the appropriate amount of smoothing for your application.

ODS Table Names

PROC KDE assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 36.1. ODS Tables Produced in PROC KDE

ODS Table Name Description Statement Option
BivariateStatistics Bivariate statistics BIVAR BIVSTATS
Controls Control variables default
Inputs Input information default
Levels Levels of density estimate BIVAR LEVELS
Percentiles Percentiles of data BIVAR / UNIVAR PERCENTILES
UnivariateStatistics Basic statistics BIVAR / UNIVAR UNISTATS

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the KDE procedure.
These graphics are experimental in this release, meaning that both the graphical re-
sults and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement in addition
to the following options. For more information on the ODS GRAPHICS statement,
seeChapter 15, “Statistical Graphics Using ODS.”

Bivariate Plots

You can specify the PLOTS= option in the BIVAR statement to request graphical
displays of bivariate kernel density estimates.
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PLOTS= option1 < option2 . . . >
requests one or more plots of the bivariate kernel density estimate. The following
table shows the available plotoptions.

Option Plot Description
ALL all available displays

CONTOUR contour plot of bivariate density estimate

CONTOURSCATTER contour plot of bivariate density estimate overlaid
with scatter plot of data

HISTOGRAM bivariate histogram of data

HISTSURFACE bivariate histogram overlaid with bivariate kernel
density estimate

SCATTER scatter plot of data

SURFACE surface plot of bivariate kernel density estimate

By default, if you enable ODS graphics and you do not specify the PLOTS= option,
then the BIVAR statement creates a contour plot. If you specify the PLOTS= option,
you get only the requested plots.

Univariate Plots

You can specify the PLOTS= option in the UNIVAR statement to request graphical
displays of univariate kernel density estimates.

PLOTS= option1 < option2 . . . >
requests one or more plots of the univariate kernel density estimate. The following
table shows the available plotoptions.

Option Plot Description
DENSITY univariate kernel density estimate curve

HISTDENSITY univariate histogram of data overlaid with kernel den-
sity estimate curve

HISTOGRAM univariate histogram of data

By default, if you enable ODS graphics and you do not specify the PLOTS= op-
tion, then the UNIVAR statement creates a histogram overlaid with a kernel density
estimate. If you specify the PLOTS= option, you get only the requested plots.

ODS Graph Names

PROC KDE assigns a name to each graph it creates using the Output Delivery System
(ODS). You can use these names to reference the graphs when using ODS. The names
are listed inTable 36.2.
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To request these graphs you must specify the ODS GRAPHICS statement in addition
to the options indicated inTable 36.2. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

Table 36.2. ODS Graphics Produced by PROC KDE

ODS Graph Name Plot Description Statement PLOTS= Option
BivariateHistogram Bivariate histogram of data BIVAR HISTOGRAM

Contour Contour plot of bivariate kernel den-
sity estimate

BIVAR CONTOUR

ContourScatter Contour plot of bivariate kernel den-
sity estimate overlaid with scatter
plot

BIVAR CONTOURSCATTER

Density Univariate kernel density estimate
curve

UNIVAR DENSITY

HistDensity Univariate histogram overlaid with
kernel density estimate curve

UNIVAR HISTDENSITY

Histogram Univariate histogram of data UNIVAR HISTOGRAM

HistSurface Bivariate histogram overlaid with
surface plot of bivariate kernel den-
sity estimate

BIVAR HISTSURFACE

ScatterPlot Scatter plot of data BIVAR SCATTER

SurfacePlot Surface plot of bivariate kernel den-
sity estimate

BIVAR SURFACE

Binning of Bivariate Histogram

Let (Xi, Yi), i = 1, 2, . . . , n be a sample of sizen drawn from a bivariate distribution.
For the marginal distribution ofXi, i = 1, 2, . . . , n, the number of bins (NbinsX ) in
the bivariate histogram is calculated according to the formula

NbinsX = ceil (rangeX/widthX)

whereceil(x) denotes the smallest integer greater than or equal tox,

rangeX = max
1≤i≤n

(Xi)− min
1≤i≤n

(Xi)

and the optimal bin width is obtained, followingScott(1992, p. 84), as

widthX = 3.504 σ̂X(1− ρ̂2)3/8n−1/4

Here,σ̂X andρ̂ are the sample variance and the sample correlation coefficient, respec-
tively. When you specify a WEIGHT variable, PROC KDE uses weighted versions
of σ̂X andρ̂ in the preceding expressions.

Similar formulas are used to compute the number of bins for the marginal distribution
of Yi, i = 1, 2, . . . , n. Further details can be found inScott(1992).

Notice that if |ρ̂| > 0.99, thenNbinsX is calculated as in the univariate case (see
Terrell and Scott1985). In this caseNbinsY = NbinsX .



2012 � Chapter 36. The KDE Procedure

Examples

Example 36.1. Computing a Basic Kernel Density Estimate

The following example illustrates the basic functionality of the UNIVAR statement.
The effective channel length (in microns) is measured for 1225 field effect transistors.
The channel lengths are saved as values of the variablelength in a SAS data set
namedchannel; refer to the filekdex2.sas in the SAS Sample Library.

data channel;
input length @@;

datalines;
0.91 1.01 0.95 1.13 1.12 0.86 0.96 1.17 1.36 1.10
0.98 1.27 1.13 0.92 1.15 1.26 1.14 0.88 1.03 1.00
0.98 0.94 1.09 0.92 1.10 0.95 1.05 1.05 1.11 1.15

...

1.80 2.35 2.23 1.96 2.16 2.08 2.06 2.03 2.18 1.83
2.13 2.05 1.90 2.07 2.15 1.96 2.15 1.89 2.15 2.04
1.95 1.93 2.22 1.74 1.91
;

The following statements request a kernel density estimate of the variablelength.

ods html;
ods graphics on;

proc kde data=channel;
univar length;

run;

ods graphics off;
ods html close;

You can see a histogram with an overlaid kernel density estimate inOutput 36.1.1.
This graph is requested by specifying the experimental ODS GRAPHICS statement
prior to the PROC KDE statements. For general information about ODS graphics,
seeChapter 15, “Statistical Graphics Using ODS.”For specific information about
the graphics available in the KDE procedure, see the“ODS Graphics”section on
page 2009.
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Output 36.1.1. Histogram with Overlaid Kernel Density Estimate (Experimental)

The default output tables for this analysis are the “Inputs” and the “Controls” tables.

Inputs

Data Set WORK.CHANNEL
Number of Observations Used 1225
Variable length
Bandwidth Method Sheather-Jones

Plug In

The “Inputs” table lists basic information about the density fit, including the input
data set, the number of observations, the variable used, and the bandwidth method.
The default bandwidth method is the Sheather-Jones plug-in.

Controls

length

Grid Points 401
Lower Grid Limit 0.58
Upper Grid Limit 2.43
Bandwidth Multiplier 1
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The “Controls” table lists the primary numbers controlling the kernel density fit. Here
the default number of grid points is used and no adjustment is made to the default
bandwidth.

Example 36.2. Changing the Bandwidth

Continuing with the previous example, you can specify different bandwidth multi-
pliers that determine the smoothness of the kernel density estimate. The following
statements show kernel density estimates for the variablelength by specifying two
different bandwidth multipliers with the BWM= option.Output 36.2.1shows an over-
smoothed estimate because the bandwidth multiplier is2. Output 36.2.2is created by
specifying BWM=0.25, so it is an undersmoothed estimate.

ods html;
ods graphics on;

proc kde data=channel;
univar length(bwm=2) length(bwm=0.25);

run;

ods graphics off;
ods html close;

Output 36.2.1. Histogram with Oversmoothed Kernel Density Estimate
(Experimental)
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Output 36.2.2. Histogram with Undersmoothed Kernel Density Estimate
(Experimental)

Example 36.3. Changing the Bandwidth (Bivariate)

Recall the analysis from the“Getting Started”section on page 1993. Suppose that
you would like a slightly smoother estimate. You could then rerun the analysis with
a larger bandwidth:

ods html;
ods graphics on;

proc kde data=bivnormal;
bivar x y / bwm=2;

run;

ods graphics off;
ods html close;

The BWM= option requests bandwidth multipliers of 2 for bothx andy. By specify-
ing the experimental ODS GRAPHICS statement you can visualize the results of this
fit immediately in a contour plot, as shown inOutput 36.3.1.
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Output 36.3.1. Contour Plot of Estimated Density with Additional Smoothing
(Experimental)

Multiple Bandwidths

You can also specify multiple bandwidths with only one run of the KDE procedure.
Notice that by specifying pairs of variables inside parentheses, a kernel density esti-
mate is computed for each pair. In the following statements the first kernel density is
computed with the default bandwidth, but the second specifies a bandwidth multiplier
of 0.5 for the variablex and a multiplier of 2 for the variabley. The effect of the latter
options is shown inOutput 36.3.2.

ods html;
ods graphics on;

proc kde data=bivnormal;
bivar (x y)

(x (bwm=0.5) y (bwm=2));
run;

ods graphics off;
ods html close;
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Output 36.3.2. Contour Plot of Estimated Density with Different Smoothing for x
and y (Experimental)

Example 36.4. Requesting Additional Output Tables

The following example illustrates how to request output tables with summary statis-
tics in addition to the default output tables.

Using the same data as in the“Getting Started”section on page 1993, the following
statements request univariate and bivariate summary statistics, percentiles, and levels
of the kernel density estimate.

proc kde data=bivnormal;
bivar x y / bivstats levels percentiles unistats;

run;

The KDE Procedure

Univariate Statistics

x y

Mean -0.075 -0.070
Variance 9.73 9.93
Standard Deviation 3.12 3.15
Range 20.39 19.09
Interquartile Range 4.46 4.51
Bandwidth 0.99 1.00
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The “Univariate Statistics” table contains standard univariate statistics for each vari-
able, as well as statistics associated with the density estimate. Note that the estimated
variances for bothx andy are fairly close to the true values of 10.

Bivariate Statistics

Covariance 8.88
Correlation 0.90

The “Bivariate Statistics” table lists the covariance and correlation between the two
variables. Note that the estimated correlation is equal to its true value to two decimal
places.

Percentiles

x y

0.5 -7.71 -8.44
1.0 -7.08 -7.46
2.5 -6.17 -6.31
5.0 -5.28 -5.23

10.0 -4.18 -4.11
25.0 -2.24 -2.30
50.0 -0.11 -0.058
75.0 2.22 2.21
90.0 3.81 3.94
95.0 4.88 5.22
97.5 6.03 5.94
99.0 6.90 6.77
99.5 7.71 7.07

The “Percentiles” table lists percentiles for each variable.

Levels

Lower Upper Lower Upper
Percent Density for x for x for y for y

1 0.001181 -8.14 8.45 -8.76 8.39
5 0.003031 -7.10 7.07 -7.14 6.77

10 0.004989 -6.41 5.69 -6.49 6.12
50 0.01591 -3.64 3.96 -3.58 3.86
90 0.02388 -1.22 1.19 -1.32 0.95
95 0.02525 -0.88 0.50 -0.99 0.62
99 0.02608 -0.53 0.16 -0.67 0.30

100 0.02629 -0.19 -0.19 -0.35 -0.35

The “Levels” table lists contours of the density corresponding to percentiles of the
bivariate data, and the minimum and maximum values of each variable on those con-
tours. For example, 5% of the observed data have a density value less than 0.0030.
The minimumx andy values on this contour are−7.10 and−7.14, respectively (the
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Lower for x andLower for y columns), and the maximum values are7.07 and6.77,
respectively (theUpper for x andUpper for y columns).

You can also request “Percentiles” or “Levels” tables with specific percentiles. For
example,

proc kde data=bivnormal;
bivar x y / levels=2.5, 50, 97.5

percentiles=2.5, 25, 50, 75, 97.5;
run;

The KDE Procedure

Percentiles

x y

2.5 -6.17 -6.31
25.0 -2.24 -2.30
50.0 -0.11 -0.058
75.0 2.22 2.21
97.5 6.03 5.94

Levels

Lower Upper Lower Upper
Percent Density for x for x for y for y

2.5 0.001914 -7.79 8.11 -7.79 7.74
50.0 0.01591 -3.64 3.96 -3.58 3.86
97.5 0.02573 -0.88 0.50 -0.99 0.30

Example 36.5. Using Output Data Set to Produce Graphics

You can create a SAS data set containing the kernel density estimate by specifying the
OUT= option. Using the same 1000 simulated observations from a bivariate normal
density as in the“Getting Started”section on page 1993, you can specify

proc kde data=bivnormal;
bivar x y / levels

out=MyOut;
run;

The output data setMyOut from this analysis contains 3600 points containing the
kernel density estimate. The variablesvalue1 andvalue2 of this data set contain the
grid values of thex andy variables, respectively. The variabledensity is the kernel
density estimate. You can generate surface and contour plots of this estimate using
SAS/GRAPH as follows:
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proc g3d data=MyOut;
plot value2*value1=density;

run;

proc gcontour data=MyOut;
plot value2*value1=density;

run;

Output 36.5.1andOutput 36.5.2display these plots.

Output 36.5.1. Surface Plot of the Bivariate Kernel Density Estimate
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Output 36.5.2. Contour Plot of the Bivariate Kernel Density Estimate

Levels

Lower Upper Lower Upper
Percent Density for x for x for y for y

1 0.001181 -8.14 8.45 -8.76 8.39
5 0.003031 -7.10 7.07 -7.14 6.77

10 0.004989 -6.41 5.69 -6.49 6.12
50 0.01591 -3.64 3.96 -3.58 3.86
90 0.02388 -1.22 1.19 -1.32 0.95
95 0.02525 -0.88 0.50 -0.99 0.62
99 0.02608 -0.53 0.16 -0.67 0.30

100 0.02629 -0.19 -0.19 -0.35 -0.35

The “Levels” table lists contours of the density corresponding to percentiles of the
bivariate data, and the minimum and maximum values of each variable on those con-
tours. For example, 5% of the observed data have a density value less than0.0030.
You can use the results from the “Levels” table to plot specific contours correspond-
ing to percentiles of the data. You can use the values from theDensity column of this
table with PROC GCONTOUR to plot the 1, 5, 10, 50, 90, 95, and 99 percent levels
of the density; this plot is displayed inOutput 36.5.3.

proc gcontour data=MyOut;
plot value2*value1=density / levels=0.0012 0.0030 0.0050 0.0159

0.0239 0.0253 0.0261;
run;
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Output 36.5.3. Contour Plot of the Bivariate Kernel Density Estimate with Levels
Corresponding to Percentiles

The next-to-outermost contour ofOutput 36.5.3represents an approximate 95% el-
lipsoid forx andy.

Example 36.6. Univariate KDE Graphics (Experimental)

This a continuation ofExample 36.1, used here to illustrate the experimental ODS
graphics. The following statements request the available univariate plots in PROC
KDE.

ods html;
ods graphics on;

proc kde data=channel;
univar length / plots=density histogram histdensity;

run;

ods graphics off;
ods html close;
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Output 36.6.1. Histogram (Experimental)

Output 36.6.2. Kernel Density Estimate (Experimental)
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Output 36.6.3. Histogram with Overlaid Kernel Density Estimate (Experimental)

Output 36.6.1, Output 36.6.2, andOutput 36.6.3show a histogram, a kernel den-
sity estimate, and a histogram with an overlaid kernel density estimate, respec-
tively. These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement and the experimentalPLOTS=option in the UNIVAR state-
ment. For general information about ODS graphics, seeChapter 15, “Statistical
Graphics Using ODS.”For specific information about the graphics available in the
KDE procedure, see the“ODS Graphics”section on page 2009.

Example 36.7. Bivariate KDE Graphics (Experimental)

This example illustrates the available bivariate graphics in PROC KDE. Theoctane
dataset comes fromRodriguez and Taniguchi(1980), where it is used for predicting
customer octane satisfaction using trained-rater observations. The variables in this
data set areRater andCustomer. Either variable may have missing values. Refer to
the filekdex3.sas in the SAS Sample Library.

data octane;
input Rater Customer;
label Rater = ’Rater’

Customer = ’Customer’;
datalines;
94.5 92.0
94.0 88.0
94.0 90.0

...
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93.0 87.0
88.0 84.0

.H 90.0
;

The following statements request all the available bivariate plots in PROC KDE.

ods html;
ods graphics on;

proc kde data=octane;
bivar Rater Customer / plots=all;

run;

ods graphics off;
ods html close;

Output 36.7.1shows a scatter plot of the data,Output 36.7.2shows a bivariate his-
togram of the data,Output 36.7.3shows a contour plot of bivariate density estimate,
Output 36.7.4shows a contour plot of bivariate density estimate overlaid with a scat-
ter plot of data,Output 36.7.5shows a surface plot of bivariate kernel density esti-
mate, andOutput 36.7.6shows a bivariate histogram overlaid with a bivariate kernel
density estimate. These graphical displays are requested by specifying the exper-
imental ODS GRAPHICS statement and the experimentalPLOTS= option in the
BIVAR statement. For general information about ODS graphics, seeChapter 15,
“Statistical Graphics Using ODS.”For specific information about the graphics avail-
able in the KDE procedure, see the“ODS Graphics”section on page 2009.
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Output 36.7.1. Scatter Plot (Experimental)

Output 36.7.2. Bivariate Histogram (Experimental)
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Output 36.7.3. Contour Plot (Experimental)

Output 36.7.4. Contour Plot with Overlaid Scatter Plot (Experimental)
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Output 36.7.5. Surface Plot (Experimental)

Output 36.7.6. Bivariate Histogram with Overlaid Surface Plot (Experimental)
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Chapter 37
The KRIGE2D Procedure
Overview

The KRIGE2D procedure performs ordinary kriging in two dimensions. PROC
KRIGE2D can handle anisotropic and nested semivariogram models. Four semi-
variogram models are supported: the Gaussian, exponential, spherical, and power
models. A single nugget effect is also supported.

You can specify the locations of kriging estimates in a GRID statement, or they can
be read from a SAS data set. The grid specification is most suitable for a regular grid;
the data set specification can handle any irregular pattern of points.

Local kriging is supported through the specification of a radius around a grid point
or the specification of the number of nearest neighbors to use in the kriging system.
When you perform local kriging, a separate kriging system is solved at each grid
point using a neighborhood of the data point established by the radius or number
specification.

The KRIGE2D procedure writes the kriging estimates and associated standard errors
for each grid to an output data set. When you perform local kriging, PROC KRIGE2D
writes the neighborhood information for each grid point to an additional, optional data
set. The KRIGE2D procedure does not produce any displayed output.

Introduction to Spatial Prediction

Spatial prediction, in general, is any prediction method that incorporates spatial de-
pendence. A simple and popular spatial prediction method is ordinary kriging.

Ordinary kriging requires a model of the spatial continuity, or dependence. This is
typically in the form of a covariance or semivariogram.

Spatial prediction, then, involves two steps. First, you model the covariance or semi-
variogram of the spatial process. This involves choosing both a mathematical form
and the values of the associated parameters. Second, you use this dependence model
in solving the kriging system at a specified set of spatial points, resulting in predicted
values and associated standard errors.

The KRIGE2D procedure performs the second of these steps using ordinary kriging
of two-dimensional data.



2034 � Chapter 37. The KRIGE2D Procedure

Getting Started

Spatial Prediction Using Kriging, Contour Plots

After an appropriate variogram model is chosen, there are a number of choices in-
volved in producing the kriging surface. In order to illustrate these choices, the var-
iogram model in the the section“Getting Started”on page 4852 section ofChapter
80, “The VARIOGRAM Procedure,”is used. This model is Gaussian,

γz(h) = c0

[
1− exp

(
−h2

a2
0

)]

with a scale ofc0 = 7.5 and a range ofa0 = 30.

The first choice is whether to use local or global kriging. Local kriging uses only data
points in the neighborhood of a grid point; global kriging uses all data points.

The most important consideration in this decision is the spatial covariance structure.
Global kriging is appropriate when the correlation rangeε is approximately equal to
the length of the spatial domain. The correlation rangeε is the distancerε at which
the covariance is 5% of its value at zero. That is,

CZ(rε) = .05Cz(0)

For a Gaussian model,rε is
√

3a0 ≈ 52 (thousand ft). The data points are scattered
uniformly throughout a100× 100 (106 ft2) area. Hence, the linear dimension of the
data is nearly double theε range. This indicates that local kriging rather than global
kriging is appropriate.

Local kriging is performed by using only data points within a specified radius of
each grid point. In this example, a radius of 60 (thousand ft) is used. Other choices
involved in local kriging are the minimum and maximum number of data points in
each neighborhood (around a grid point). The minimum number is left at the default
value of20; the maximum number defaults to all observations in the data set.

The last step in contouring the data is to decide on the grid point locations. A con-
venient area that encompasses all the data points is a square of length 100 (thousand
ft). The spacing of the grid points depends on the use of the contouring; a spacing of
five distance units (thousand ft) is chosen for plotting purposes.

The following SAS code inputs the data and computes the kriged surface using these
parameter and grid choices. The kriged surface is plotted inFigure 37.1, and the
associated standard errors are plotted inFigure 37.2. The standard errors are smaller
where more data are available.
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data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

proc krige2d data=thick outest=est;
pred var=thick r=60;
model scale=7.5 range=30 form=gauss;
coord xc=east yc=north;
grid x=0 to 100 by 5 y=0 to 100 by 5;

run;

proc g3d data=est;
title ’Surface Plot of Kriged Coal Seam Thickness’;
scatter gyc*gxc=estimate / grid;
label gyc = ’North’

gxc = ’East’
estimate = ’Thickness’
;

run;

proc g3d data=est;
title ’Surface Plot of Standard Errors of Kriging Estimates’;
scatter gyc*gxc=stderr / grid;
label gyc = ’North’

gxc = ’East’
stderr = ’Std Error’
;

run;
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Figure 37.1. Surface Plot of Kriged Coal Seam Thickness
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Figure 37.2. Surface Plot of Standard Errors of Kriging Estimates

Syntax

The following statements are available in PROC KRIGE2D.

PROC KRIGE2D options ;
COORDINATES | COORD coordinate-variables ;
GRID grid-options ;
PREDICT | PRED | P predict-options ;
MODEL model-options ;

The PREDICT and MODEL statements are hierarchical; the PREDICT statement is
followed by one or more MODEL statements. All the MODEL statements follow-
ing a PREDICT statement use the variable and neighborhood specifications in that
PREDICT statement.

You must specify at least one PREDICT statement and one MODEL statement. You
must supply a single COORDINATES statement to identify thex andy coordinate
variables in the input data set. You must also specify a single GRID statement to
include the grid information.
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The following table outlines the options available in PROC KRIGE2D classified by
function.

Table 37.1. Options Available in the KRIGE2D Procedure

Task Statement Option

Data Set Options
specify input data set PROC KRIGE2D DATA=
specify grid data set GRID GDATA=
specify model data set MODEL MDATA=
write kriging estimates and standard errors PROC KRIGE2D OUTEST=
write neighborhood information for each grid
point

PROC KRIGE2D OUTNBHD=

Declaring the Role of Variables
specify the variables to be estimated (kriged) PREDICT VAR=
specify the x and y coordinate variables in the
DATA= data set

COORDINATES XC= YC=

specify the x and y coordinate variables in the
GDATA= data set

GRID XC= YC=

Controlling Kriging Neighborhoods
specify the radius of a neighborhood for all grid
points

PREDICT RADIUS=

specify the number of neighbors for all grid points PREDICT NUMPOINTS=
specify the maximum of neighbors for all grid
points

PREDICT MAXPOINTS=

specify the minimum of neighbors for all grid
points

PREDICT MINPOINTS=

specify action when maximum not met PREDICT NODECREMENT
specify action when minimum not met PREDICT NOINCREMENT

Controlling the Semivariogram Model
specify a nugget effect MODEL NUGGET=
specify a functional form MODEL FORM=
specify a range parameter MODEL RANGE=
specify a scale parameter MODEL SCALE=
specify an angle for an anisotropic model MODEL ANGLE=
specify a minor-major axis ratio for an anisotropic
model

MODEL RATIO=

PROC KRIGE2D Statement

PROC KRIGE2D options ;

You can specify the following options in the PROC KRIGE2D statement.

DATA=SAS-data-set
specifies a SAS data set containing thex andy coordinate variables and the VAR=
variables in the PREDICT statement.
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OUTEST=SAS-data-set
OUTE=SAS-data-set

specifies a SAS data set in which to store the kriging estimates, standard errors and
grid location. For details, see the section“OUTEST=SAS-data-set ” on page 2060.

OUTNBHD=SAS-data-set
OUTN=SAS-data-set

specifies a SAS data set in which to store the neighborhood information for each grid
point. Information is written to this data set only if one or more PREDICT statements
have options specifying local kriging. For details, see the section“OUTNBHD=SAS-
data-set ” on page 2060.

SINGULARMSG=number
SMSG=number

controls the number of warning messages displayed for a singular matrix. When
local kriging is performed, a separate kriging system is solved for each grid point.
Anytime a singular matrix is encountered, a warning message is displayed up to a
total of SINGULARMSG=n times. The default is SINGULARMSG=10.

COORDINATES Statement

COORDINATES | COORD coordinate-variables ;

The following two options specify the names of the variables in the DATA= data set
containing the values of thex andy coordinates of the data.

Only one COORDINATES statement is allowed, and it is applied to all PREDICT
statements. In other words, it is assumed that all the VAR= variables in all PREDICT
statements have the samex andy coordinates.

This is not a limitation. Since each VAR= variable is processed separately, obser-
vations for which the current VAR= variable is missing are excluded. With the next
VAR= variable, the entire data are read again, this time excluding missing values in
this next variable. Hence, a single run of PROC KRIGE2D can be used for variables
measured at different locations without overlap.

XCOORD= (variable-name)
XC= (variable-name)

specifies the name of the variable containing thex coordinate of the data locations in
the DATA= data set.

YCOORD= (variable-name)
YC= (variable-name)

specifies the name of the variable containing they coordinate of the data locations in
the DATA= data set.
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GRID Statement

GRID grid-options ;

You can use the following options to specify the grid of spatial locations for the
kriging estimates. The grid specification is applied to all PREDICT and MODEL
statements.

There are two basic methods for specifying the grid. You can specify thex andy
coordinates explicitly, or they can be read from a SAS data set. The options for the
explicit specification of grid locations are as follows.

X=number
X=x1, . . . , xm

X=x1 to xm

X=x1 to xm by δx
specifies thex coordinate of the grid locations.

Y=number
Y=y1, . . . , ym

Y=y1 to ym

Y=y1 to ym by δy
specifies they coordinate of the grid locations.

For example, the following two GRID statements are equivalent.

grid x=1,2,3,4,5 y=0,2,4,6,8,10;
grid x=1 to 5 y=0 to 10 by 2;

To specify grid locations from a SAS data set, you must give the name of the data set
and the variables containing the values of thex andy coordinates.

GRIDDATA=SAS-data-set
GDATA=SAS-data-set

specifies a SAS data set containing thex andy grid coordinates.

XCOORD= (variable-name)
XC= (variable-name)

specifies the name of the variable containing thex coordinate of the grid locations in
the GRIDDATA= data set.

YCOORD= (variable-name)
YC= (variable-name)

specifies the name of the variable containing they coordinate of the grid locations in
the GRIDDATA= data set.
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PREDICT Statement

PREDICT | PRED | P predict-options ;

You can specify the following options in a PREDICT statement.

MAXPOINTS=number
MAXPOINTS=number
MAXP=number

specifies the maximum number of data points in a neighborhood. You specify this
option in conjunction with the RADIUS= option. When the number of data points in
the neighborhood formed at a given grid point by the RADIUS= option is greater than
the MAXPOINTS= value, the RADIUS= value is decreased just enough to honor the
MAXPOINTS= value unless you specify the NODECREMENT option.

MINPOINTS=number
MINP=number
MIN=number

specifies the minimum number of data points in a neighborhood. You specify this
option in conjunction with the RADIUS= option. When the number of data points in
the neighborhood formed at a given grid point by the RADIUS= option is less than
the MINPOINTS= value, the RADIUS= value is increased just enough to honor the
MINPOINTS= value unless you specify the NOINCREMENT option. The default is
MINPOINTS=20. If enough data are available, this value should be increased to 30
to improve estimation.

NODECREMENT | NODECR
requests that the RADIUS= value not be decremented when the MAX= value is
exceeded at a grid point. This option is relevant only when you specify both a
RADIUS= value and a MAXPOINTS= value. In this case, when the number of
points in the neighborhood constructed from the RADIUS= specification is greater
than the MAXPOINTS= value, the RADIUS= value is decremented enough to honor
the MAXPOINTS= value, and the kriging system is solved for this grid point. If you
specify the NODECREMENT option, no decrementing is done, estimation is skipped
at this grid point, and a message is written to the log.

NOINCREMENT | NOINCR
requests that the RADIUS= value not be incremented when the MIN= value is
not met at a grid point. This option is relevant only when you specify both a
RADIUS= value and a MINPOINTS= number. In this case, when the number of
points in the neighborhood constructed from the RADIUS= specification is less than
the MINPOINTS= value, the RADIUS= value is incremented enough to honor the
MINPOINTS= value, and the kriging system is solved for this grid point. If you
specify the NOINCREMENT option, no incrementing is done, estimation is skipped
at this grid point, and a message is written to the log.

NUMPOINTS=number
NPOINTS=number
NPTS=number
NP=number
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specifies the exact size of a neighborhood. This option is incompatible with all other
PREDICT statement options controlling the neighborhood; it must appear by itself.

RADIUS=number
R=number

specifies the radius to use in a local kriging regression. When you specify this option,
a separate kriging system is solved at each grid point by finding the neighborhood
of this grid point consisting of all data points within the distance specified by the
RADIUS= value. See theMAXPOINTS= andMINPOINTS=options for additional
control on the neighborhood.

VAR= variable-name
specifies the single numeric variable used in the kriging system.

MODEL Statement

MODEL model-options ;

You can use the following options to specify a semivariogram or covariance model.
The specified model is used in the kriging system defined by the most previous
PREDICT statement.

There are two ways to specify a semivariogram or covariance model. In the first
method, you specify the required parameters SCALE, RANGE, and FORM, and
possibly the optional parameters NUGGET, ANGLE, and RATIO, explicitly in the
MODEL statement.

In the second method, you specify an MDATA= data set. This data set contains
variables corresponding to the required SCALE, RANGE, and FORM parameters,
and, optionally, variables for the NUGGET, ANGLE, and RATIO parameters.

The two methods are exclusive; either you specify all parameters explicitly, or they
all are read from the MDATA= data set.

ANGLE=angle
ANGLE= (angle1,. . . ,anglek)

specifies the angle of the major axis for anisotropic models, measured in degrees
clockwise from the N-S axis. In the case of a nested semivariogram model, you can
specify an angle for each nesting. The default is ANGLE=0.

FORM=SPHERICAL | EXPONENTIAL | GAUSSIAN | POWER
FORM=SPH | EXP | GAUSS | PW

specifies the functional form of the semivariogram model. All the supported models
are two-parameter models (SCALE= and RANGE=). A FORM= value is required; in
the case of a nested semivariogram model, you must specify a form for each nesting.

See the section“Theoretical Semivariogram Models”beginning on page 2045 for
details on how the FORM= forms are determined.
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MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semi-
variogram model. The MDATA= data set must contain variables named SCALE,
RANGE, and FORM, and it can optionally contain variables NUGGET, ANGLE,
and RATIO.

The FORM variable must be a character variable, assuming only the values allowed in
the explicit FORM= syntax described previously. The RANGE and SCALE variables
must be numeric. The optional variables ANGLE, RATIO, and NUGGET must also
be numeric if present.

The number of observations present in the MDATA= data set corresponds to the level
of nesting of the semivariogram model. For example, to specify a nonnested model
using a spherical covariance, an MDATA= data set might look like

data md1;
input scale range form $;
datalines;
25 10 SPH

run;

The PROC KRIGE2D statement to use the MDATA= specification is of the form

proc krige2d data=...;
pred var=....;
model mdata=md1;

run;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc krige2d data=...;
pred var=....;
model scale=25 range=10 form=sph;

run;

The following MDATA= data set is an example of an anisotropic nested model:

data md1;
input scale range form $ nugget angle ratio;
datalines;
20 8 S 5 35 0.7
12 3 G 5 0 0.8
4 1 G 5 45 0.5
;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:
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proc krige2d data=...;
pred var=....;
model scale=(20,12,4) range=(8,3,1) form=(S,G,G)

angle=(35,0,45) ratio=(0.7,0.8,0.5) nugget=5;
run;

This example is somewhat artificial in that it is usually hard to detect different
anisotropy directions and ratios for different nestings using an experimental semi-
variogram. Note that the NUGGET value is the same for all nestings. This is always
the case; the nugget effect is a single additive term for all models. For further de-
tails, see the section“Theoretical and Computational Details of the Semivariogram”
on page 4872 in the chapter on the VARIOGRAM procedure.

NUGGET=number
specifies the nugget effect for the model. The nugget effect is due to a discontinuity
in the semivariogram as determined by plotting the sample semivariogram (see the
chapter on the VARIOGRAM procedure for details). For models without any nugget
effect, this option is left out; the default is NUGGET=0.

RANGE=range
RANGE=(range1,. . . ,rangek)

specifies the range parameter in semivariogram models. In the case of a nested semi-
variogram model, you must specify a range for each nesting.

The range parameter is the divisor in the exponent in all supported models except the
power model. It has the units of distance or distance squared for these models, and it
is related to the correlation scale for the underlying spatial process. See the section
“Theoretical Semivariogram Models”beginning on page 2045 for details on how the
RANGE= values are determined.

RATIO=ratio
RATIO=(ratio1,. . . ,ratiok)

specifies the ratio of the length of the minor axis to the length of the major axis for
anisotropic models. The value of the RATIO= option must be between 0 and 1. In
the case of a nested semivariogram model, you can specify a ratio for each nesting.
The default is RATIO=1.

SCALE=scale
SCALE= (scale1,. . . ,scalek)

specifies the scale parameter in semivariogram models. In the case of a nested semi-
variogram model, you must specify a scale for each nesting.

The scale parameter is the multiplicative factor in all supported models; it has the
same units as the variance of the VAR= variable in the preceding PREDICT state-
ment. See the section“Theoretical Semivariogram Models”beginning on page 2045
for details on how the SCALE= values are determined.

SINGULAR=number
gives the singularity criteria for solving kriging systems. The larger the value of the
SINGULAR= option, the easier it is for a kriging system to be declared singular.
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The default is SINGULAR=1E-7. See the section“Details of Ordinary Kriging”
beginning on page 2056 for more detailed information.

Details

Theoretical Semivariogram Models

PROC VARIOGRAM computes the sample, or experimental semivariogram.
Prediction of the spatial process at unsampled locations by techniques such as
ordinary kriging requires a theoretical semivariogram or covariance.

When you use PROC VARIOGRAM and PROC KRIGE2D to perform spatial predic-
tion, you must determine a suitable theoretical semivariogram based on the sample
semivariogram. While there are various methods of fitting semivariogram models,
such as least squares, maximum likelihood, and robust methods (Cressie 1993, sec-
tion 2.6), these techniques are not appropriate for data sets resulting in a small number
of variogram points. Instead, a visual fit of the variogram points to a few standard
models is often satisfactory. Even when there are sufficient variogram points, a visual
check against a fitted theoretical model is appropriate (Hohn 1988, p. 25ff).

In some cases, a plot of the experimental semivariogram suggests that a single the-
oretical model is inadequate. Nested models, anisotropic models, and the nugget
effect increase the scope of theoretical models available. All of these concepts are
discussed in this section. The specification of the final theoretical model is provided
by the syntax of PROC KRIGE2D.

Note the general flow of investigation. After a suitable choice is made of
the LAGDIST= and MAXLAG= options and, possibly, the NDIR= option (or a
DIRECTIONS statement), the experimental semivariogram is computed. Potential
theoretical models, possibly incorporating nesting, anisotropy, and the nugget effect,
are computed by a DATA step, then they are plotted against the experimental semi-
variogram and evaluated. A suitable theoretical model is thus found visually, and
the specification of the model is used in PROC KRIGE2D. This flow is illustrated in
Figure 37.3; also see the“Getting Started”section on page 4852 in the chapter on the
VARIOGRAM procedure for an illustration in a simple case.
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Pairwise Distance Distribution

PROC VARIOGRAM using

NHCLASS=, NOVAR options

Sufficient number of

pairs in each lag class ?

Determine LAGDIST= and

MAXLAG= values

Use PROC VARIOGRAM to

compute and plot sample variogram

Use DATA step to plot sample Select candidate variogram forms
and parametersand theoretical variograms

no

yes

Figure 37.3. Flowchart for Variogram Selection

Four theoretical models are supported by PROC KRIGE2D: the spherical, Gaussian,
exponential, and power models. For the first three types, the parametersa0 andc0,
corresponding to the RANGE= and SCALE= options in the MODEL statement in
PROC KRIGE2D, have the same dimensions and have similar affects on the shape of
γz(h), as illustrated in the following paragraph.

In particular, the dimension ofc0 is the same as the dimension of the variance of the
spatial process {Z(r), r ∈ D ⊂ R2}. The dimension ofa0 is length with the same
units as h.

These three model forms are now examined in more detail.

The Spherical Semivariogram Model

The form of the spherical model is

γz(h) =

{
c0

[
3
2

h
a0
− 1

2( h
a0

)3
]
, for h ≤ a0

c0, for h > a0

The shape is displayed inFigure 37.4using rangea0 = 1 and scalec0 = 4.
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Figure 37.4. Spherical Semivariogram Model with Parameters a0 = 1 and c0 = 4

The vertical line ath = 1 is the “effective range” as defined by Duetsch and Journel
(1992), or the “rangeε” defined by Christakos (1992). This quantity, denotedrε, is
theh-value where the covariance is approximately zero. For the spherical model, it is
exactlyzero; for the Gaussian and exponential models, the definition ofrε is modified
slightly.

The horizontal line at 4.0 variance units (corresponding toc0 = 4) is called the “sill.”
In the case of the spherical model,γz(h) actually reaches this value. For the other
two model forms, the sill is a horizontal asymptote.

The Gaussian Semivariogram Model

The form of the Gaussian model is

γz(h) = c0

[
1− exp

(
−h2

a2
0

)]
The shape is displayed inFigure 37.5using rangea0 = 1 and scalec0 = 4.
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Figure 37.5. Gaussian Semivariogram Model with Parameters a0 = 1 and c0 = 4

The vertical line ath = rε =
√

3 is the effective range, or the rangeε (that is, the
h-value where the covariance is approximately 5% of its value at zero).

The horizontal line at 4.0 variance units (corresponding toc0 = 4) is the sill;γz(h)
approaches the sill asymptotically.

The Exponential Semivariogram Model

The form of the exponential model is

γz(h) = c0

[
1− exp

(
− h

a0

)]
The shape is displayed inFigure 37.6using rangea0 = 1 and scalec0 = 4.
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Figure 37.6. Exponential Semivariogram Model with Parameters a0 = 1 and
c0 = 4

The vertical line ath = rε = 3 is the effective range, or the rangeε (that is, the
h-value where the covariance is approximately 5% of its value at zero).

The horizontal line at 4.0 variance units (corresponding toc0 = 4) is the sill, as in the
other model forms.

It is noted fromFigure 37.5andFigure 37.6that the major distinguishing feature of
the Gaussian and exponential forms is the shape in the neighborhood of the origin
h = 0. In general, small lags are important in determining an appropriate theoretical
form based on a sample semivariogram.

The Power Semivariogram Model

The form of the power model is

γz(h) = c0h
a0

For this model, the parametera0 is a dimensionless quantity, with typical values
0 < a0 < 2. Note that the value ofa0 = 1 yields a straight line. The parameterc0

has dimensions of the variance, as in the other models. There is no sill for the power
model. The shape of the power model witha0 = 0.4 andc0 = 4 is displayed in
Figure 37.7.
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Figure 37.7. Power Semivariogram Model with Parameters a0 = 0.4 and c0 = 4

Nested Models

For a given set of spatial data, a plot of an experimental semivariogram may not
seem to fit any one of the theoretical models. In such a case, the covariance structure
of the spatial process may be a sum of two or more covariances. This is common
in geologic applications where there are correlations at different length scales. At
small lag distancesh, the smaller scale correlations dominate, while the large scale
correlations dominate at larger lag distances.

As an illustration, consider two semivariogram models, an exponential and a spheri-
cal.

γz,1(h) = c0,1 exp(− h

a0,1
)

and

γz,2(h) =

{
c0,2

[
3
2

h
a0,2

− 1
2( h

a0,2
)3
]
, for h ≤ a0,2

c0,2, for h > a0,2

}

with c0,1 = 1, a0,1 = 2.5, c0,2 = 2, anda0,2 = 1. If both of these correlation
structures are present in a spatial process {Z(r), r ∈ D}, then a plot of the experi-
mental semivariogram would resemble the sum of these two semivariograms. This is
illustrated inFigure 37.8.
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Figure 37.8. Sum of Exponential and Spherical Structures at Different Scales

This sum ofγ1(h) andγ2(h) in Figure 37.8does not resemble anysingletheoretical
semivariogram; however, the shape ath = 1 is similar to a spherical. The asymptotic
approach to a sill at three variance units, along with the shape aroundh = 0, indicates
an exponential structure. Note that the sill value is the sum of the individual sills
c0,1 = 1 andc0,2 = 2.

Refer to Hohn (1988, p. 38ff) for further examples of nested correlation structures.

The Nugget Effect

For all the variogram models considered previously, the following property holds:

γz(0) = lim
h↓0

γz(h) = 0

However, a plot of the experimental semivariogram may indicate a discontinuity at
h = 0; that is,γz(h) → cn > 0 ash → 0, while γz(0) = 0. The quantitycn is called
the “nugget effect”; this term is from mining geostatistics where nuggets literally
exist, and it represents variations at a much smaller scale than any of the measured
pairwise distances, that is, at distancesh � hmin, where

hmin = min
i,j

hij = min
i,j
| ri − rj |

There are conceptual and theoretical difficulties associated with a nonzero nugget
effect; refer to Cressie (1993, section 2.3.1) and Christakos (1992, section 7.4.3) for
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details. There is nopractical difficulty however; you simply visually extrapolate the
experimental semivariogram ash → 0. The importance of availability of data at
small lag distances is again illustrated.

As an example, an exponential semivariogram with a nugget effectcn has the form

γz(h) = cn + c0

[
1− exp

(
− h

a0

)]
, h > 0

and

γz(0) = 0

This is illustrated inFigure 37.9for parametersa0 = 1, c0 = 4, and nugget effect
cn = 1.5.

Figure 37.9. Exponential Semivariogram Model with a Nugget Effect cn = 1.5

You can specify the nugget effect in PROC KRIGE2D with the NUGGET= option in
the MODEL statement. It is a separate, additive term independent of direction; that
is, it is isotropic. There is a way to approximate an anisotropic nugget effect; this is
described in the following section.
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Anisotropic Models

In all the theoretical models considered previously, the lag distanceh entered as a
scalar value. This implies that the correlation between the spatial process at two
point pairsP1, P2 is dependentonly on the separation distanceh =| P1P2 |, not on
the orientation of the two points. A spatial process {Z(r), r ∈ D} with this property
is called isotropic, as is the associated covariance or semivariogram.

However, real spatial phenomena often show directional effects. Particularly in ge-
ologic applications, measurements along a particular direction may be highly corre-
lated, while the perpendicular direction shows little or no correlation. Such processes
are called anisotropic. Refer to Journel and Huijbregts (1978, section III.B.4) for
more details.

There are two types of anisotropy. The simplest type occurs when the same covari-
anceformand scale parameterc0 is present in all directions but the rangea0 changes
with direction. In this case, there is a single sill, but the semivariogram reaches the
sill in a shorter lag distance along a certain direction.

This type of anisotropy is called “geometric” and is discussed in the following sec-
tion.

Geometric Anisotropy

Geometric anisotropy is illustrated inFigure 37.10, where an anisotropic Gaussian
semivariogram is plotted. The two curves displayed in this figure are generated using
a0 = 1 in the NE–SW direction anda0 = 3 in the SE–NW direction.

Figure 37.10. Geometric Anisotropy with Major Axis along E–W Direction
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As you can see from the figure, the SE–NW curve gets “close” to the sill at approx-
imatelyh = 2, while the NE–SW curve does so ath = 6. The ratio of the shorter
to longer distance is26 = 1

3 . This is the value to use in the RATIO= parameter in
the MODEL statement in PROC KRIGE2D. Since the longer, or major, axis is in
the NE–SW direction, the ANGLE= parameter in the MODEL statement in PROC
KRIGE2D should be45o (all angles are measured clockwise from north).

The terminology associated with geometric anisotropy is that of ellipses. To see how
this comes about, consider the following hypothetical set of calculations.

Let {Z(r), r ∈ D} be a geometrically anisotropic process, and assume that there are
sufficient data points to calculate an experimental semivariogram at a large number
of angle classesθ ∈ {0, δθ, 2δθ, · · · , 180o}. At each of these anglesθ, the experi-
mental semivariogram is plotted and the effective rangerε is recorded. A diagram,
in polar coordinates, of(rε, θ) yields an ellipse, with the major axis in the direction
of the largestrε and the minor axis perpendicular. Denote the largestrε by rmax

ε , the
smallest byrmin

ε , and their ratio by

R =
rmin
ε

rmax
ε

By a rotation, a new set of axes are aligned along the major and minor axis. Then,
a rescaling elongates the minor axis so its length equals that of the major axis of the
ellipse.

First, the angleθ of the major axis of the ellipse (measured clockwise from north) is
transformed to standard Cartesian orientation or counter-clockwise from the x-axis
(east). Letϕ = 90o − θ denote the transformed angle. The matrix to transform the
distanceh is in terms ofϕ and the ratioR and it is given by

H =
(

cos(ϕ) sin(ϕ)
− sin(ϕ)/R cos(ϕ)/R

)

For a given point pairP1P2, with coordinates(x1, y1), (x2, y2), the transformed in-
terpair distance is computed by first transforming the componentsδx = x1 − x2 and
δy = y1 − y2 by(

δx′

δy′

)
= H

(
δx
δy

)
The transformed interpair distance is then

h′ =
√

(δx′)2 + (δy′)2

The original semivariogram, a function ofboth h and θ, is then transformed to a
function only ofh′:

γ̂(h′) = γ(h, θ)



Anisotropic Models � 2055

This single semivariogram is then used for kriging purposes.

The interpretation of the major/minor axis in the case of geometric anisotropy is
that the direction of the major axis is the direction in which the spatial process
{Z(r), r ∈ D} is most highly correlated; the process is least correlated in the per-
pendicular direction.

In some cases, these directions are known a priori. This can occur in mining appli-
cations where the geology of a region is known in advance. In most cases, however,
nothing is known about possible anisotropy. Depending on the amount of data avail-
able, using four to six directions is usually sufficient to determine the presence of
anisotropy and find the approximate major/minor axis directions.

The most convenient way of performing this is to use the NDIR= option in the
COMPUTE statement in PROC VARIOGRAM to obtain a separate experimental
semivariogram for each direction. After determining the direction of the major axis,
use a DIRECTIONS statement on a subsequent run of PROC VARIOGRAM with
this direction and its perpendicular direction. For example, if the initial run of PROC
VARIOGRAM with NDIR=6 in the COMPUTE statement indicates thatθ = 45o is
the major axis (has the largestrε), then rerun PROC VARIOGRAM with

DIRECTIONS 45,135;

Then, determine the ratio ofrε for the minor and major axis for the RATIO= parame-
ter in the COMPUTE statement of PROC KRIGE2D. This ratio is≤ 1 for modeling
geometric anisotropy. In the other type of anisotropy,zonalanisotropy, the RATIO=
parameter is set to a large number for reasons explained in the following section.

Zonal Anisotropy

In zonal anisotropy, either theformcovariance structure or the parameterc0 (or both)
is different in different directions. In particular, the sill is different for different direc-
tions. In geologic applications, this is the more common type of anisotropy. It is not
possible to transform such a structure into an isotropic semivariogram.

Instead, nesting and geometric anisotropy are used together to approximate zonal
anisotropy. For example, suppose the spatial process has a correlation structure in
the N–S direction described byγz,1, a spherical model with sill atc0 = 6 and range
a0 = 2, while in the E–W direction the correlation structure, described byγz,2, is
again a spherical model but with sill atc0 = 3 and rangea0 = 1.

You can approximate this structure in PROC KRIGE2D by specifying two nested
models with large RATIO= values. In particular, the appropriate MODEL statement
is

MODEL FORM=(S,S) ANGLE=(0,90) SCALE=(6,3)
RANGE=(2,1) RATIO=(1E8,1E8);

The large values of the RATIO= parameter for each nested structure have the effect
of an “infinite” range parameter in the direction of the minor axis. Hence, there is no
variation inγz,1 in the E–W direction and no variation inγz,2 in the N–S direction.
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Anisotropic Nugget Effect

Note that an isotropic nugget effect can be approximated by using nested models,
with one of the nested models having a small range. Applying a geometric anisotropy
specification to this nested structure results in an anisotropic nugget effect.

Details of Ordinary Kriging

Introduction

There are three common characteristics often observed with spatial data (that is, data
indexed by their spatial locations).

(i) slowly varying, large-scale variations in the measured values

(ii) irregular, small-scale variations

(iii) similarity of measurements at locations close together

As an illustration, consider a hypothetical example in which an organic solvent leaks
from an industrial site and spreads over a large area. Assume the solvent is absorbed
and immobilized into the subsoil above any ground-water level, so you can ignore
any time dependence.

For you to find the areal extent and the concentration values of the solvent, measure-
ments are required. Although the problem is inherently three-dimensional, if you
measure total concentration in a column of soil or take a depth-averaged concentra-
tion, it can be handled reasonably well with two-dimensional techniques.

You usually assume that measured concentrations are higher closer to the source and
decrease at larger distances from the source. On top of this smooth variation, there
are small-scale variations in the measured concentrations, due perhaps to the inherent
variability of soil properties.

You also tend to suspect that measurements made close together yield similar con-
centration values, while measurements made far apart can have very different values.

These physically reasonable qualitative statements have no explicit probabilistic con-
tent, and there are a number of numerical smoothing techniques, such as inverse
distance weighting and splines, that make use of large-scale variations and “close
distance-close value” characteristics of spatial data to interpolate the measured con-
centrations for contouring purposes.

While characteristics (i) and (iii) are handled by such smoothing methods, character-
istic (ii), the small-scale residual variation in the concentration field, is not accounted
for.

There may be situations, due to the use of the prediction map or due to the relative
magnitude of the irregular fluctuations, where you cannot ignore these small-scale
irregular fluctuations. In other words, the smoothed or estimated values of the con-
centration field alone are not a sufficient characterization; you also need the possible
spread around these contoured values.
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Spatial Random Fields

One method of incorporating characteristic (ii) into the construction of a contour map
is to model the concentration field as a spatial random field (SRF). The mathematical
details of SRF models are given in a number of texts, for example, Cressie (1993)
and Christakos (1992). The mathematics of SRFs are formidable. However, under
certain simplifying assumptions, they produce classical linear estimators with very
simple properties, allowing easy implementation for prediction purposes. These esti-
mators, primarily ordinary kriging (OK), give both a prediction and a standard error
of prediction at unsampled locations. This allows the construction of a map of both
predicted values and level of uncertainty about the predicted values.

The key assumption in applying the SRF formalism is that the measurements come
from a single realization of the SRF. However, in most geostatistical applications, the
focus is on a single, unique realization. This is unlike most other situations in stochas-
tic modeling in which there will be future experiments or observational activities (at
least conceptually) under similar circumstances. This renders many traditional ideas
of statistical inference ambiguous and somewhat counterintuitive.

There are additional logical and methodological problems in applying a stochastic
model to a unique but partly unknown natural process; refer to the introduction in
Matheron (1971) and Cressie (1993, section 2.3). These difficulties have resulted in
attempts to frame the estimation problem in a completely deterministic way (Isaaks
and Srivastava 1988; Journel 1985).

Additional problems with kriging, and with spatial estimation methods in general,
are related to the necessary assumption of ergodicity of the spatial process. This
assumption is required to estimate the covariance or semivariogram from sample data.
Details are provided in Cressie (1993, pp. 52–58).

Despite these difficulties, ordinary kriging remains a popular and widely used tool in
modeling spatial data, especially in generating surface plots and contour maps. An
abbreviated derivation of the OK estimator for point estimation and the associated
standard error is discussed in the following section. Full details are given in Journel
and Huijbregts (1978), Christakos (1992), and Cressie (1993).

Ordinary Kriging

Denote the SRF byZ(r), r ∈ D ⊂ R2. Following the notation in Cressie (1993), the
following model forZ(r) is assumed:

Z(r) = µ + ε(r)

Here,µ is the fixed, unknown mean of the process, andε(r) is a zero mean SRF
representing the variation around the mean.

In most practical applications, an additional assumption is required in order to esti-
mate the covarianceCz of theZ(r) process. This assumption is second-order station-
arity:

Cz(r1, r2) = E[ε(r1)ε(r2)] = Cz(r1 − r2)
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This requirement can be relaxed slightly when you are using the semivariogram in-
stead of the covariance. In this case, second-order stationarity is required of the
differencesε(r1)− ε(r2) rather thanε(r):

γZ(r1, r2) =
1
2
E[ε(r1)− ε(r2)]2 = γZ(r1 − r2)

By performing local kriging, the spatial processes represented by the previous equa-
tion for Z(r) are more general than they appear. In local kriging, at an unsampled
locationr0, a separate model is fit using only data in a neighborhood ofr0. This has
the effect of fitting a separate meanµ at each point, and it is similar to the “kriging
with trend” (KT) method discussed in Journel and Rossi (1989).

Given theN measurementsZ(r1), . . . , Z(rN ) at known locationsr1, . . . , rN , you
want to obtain an estimatêZ of Z at an unsampled locationr0. When the following
three requirements are imposed on the estimatorẐ, the OK estimator is obtained.

(i) Ẑ is linear inZ(r1), · · · , Z(rN ).

(ii) Ẑ is unbiased.

(ii) Ẑ minimizes the mean-square prediction errorE(Z(r0)− Ẑ(r0))2.

Linearity requires the following form for̂Z(r0):

Ẑ(r0) =
N∑

i=1

λiZ(ri)

Applying the unbiasedness condition to the preceding equation yields

EẐ(r0) = µ ⇒ µ =
N∑

i=1

λiEZ(ri) ⇒

N∑
i=1

λiµ = µ ⇒
N∑

i=1

λi = 1

Finally, the third condition requires a constrained linear optimization involving
λ1, · · · , λN and a Lagrange parameter2m. This constrained linear optimization can
be expressed in terms of the functionL(λ1, · · · , λN ,m) given by

L = E

(
Z(r0)−

N∑
i=1

λiZ(ri)

)2

− 2m

(
N∑

i=1

λi − 1

)
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Define theN × 1 column vectorλ by

λ = (λ1, · · · , λN )T

and the(N + 1)× 1 column vectorλ0 by

λ0 = (λ1, · · · , λN ,m)T =
(

λ
m

)
The optimization is performed by solving

∂L

∂λ0
= 0

in terms ofλ1, · · · , λN andm.

The resulting matrix equation can be expressed in terms of either the covariance
Cz(r) or semivariogramγz(r). In terms of the covariance, the preceding equation
results in the following matrix equation:

Cλ0 = C0

where

C =


Cz(0) Cz(r1 − r2) · · · Cz(r1 − rN ) 1

Cz(r2 − r1) Cz(0) · · · Cz(r2 − rN ) 1
...

Cz(rN − r1) Cz(rN − r2) · · · Cz(0) 1
1 1 · · · 1 0


and

C0 =


Cz(r0 − r1)
Cz(r0 − r2)

...
Cz(r0 − rN )

1


The solution to the previous matrix equation is

λ̂0 = C−1C0

Using this solution forλ andm, the ordinary kriging estimate atr0 is

Ẑ(r0) = λ1Z(r1) + · · ·+ λNZ(rN )
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with associated prediction error

σz(r0) = Cz(0)− λ′c0 + m

wherec0 is C0 with the1 in the last row removed, making it anN × 1 vector.

These formulas are used in the best linear unbiased prediction (BLUP) of ran-
dom variables (Robinson 1991). Further details are provided in Cressie (1993, pp.
119–123).

Because of possible numeric problems when solving the previous matrix equation,
Duetsch and Journel (1992) suggest replacing the last row and column of1s in the
preceding matrixC by Cz(0), keeping the0 in the (N + 1, N + 1) position and
similarly replacing the last element in the preceding right-hand vectorC0 with Cz(0).
This results in an equivalent system but avoids numeric problems whenCz(0) is large
or small relative to1.

Output Data Sets

The KRIGE2D procedure produces two data sets: the OUTEST=SAS-data-set and
the OUTNBHD=SAS-data-set. These data sets are described as follows.

OUTEST=SAS-data-set

The OUTEST= data set contains the kriging estimates and the associated standard
errors. The OUTEST= data set contains the following variables:

• ESTIMATE, which is the kriging estimate for the current variable

• GXC, which is the x-coordinate of the grid point at which the kriging estimate
is made

• GYC, which is the y-coordinate of the grid point at which the kriging estimate
is made

• LABEL, which is the label for the current PREDICT/MODEL combination
producing the kriging estimate. If you do not specify a label, default labels of
the form Predj.Modelk are used.

• NPOINTS, which is the number of points used in the estimation. This number
varies for each grid point if local kriging is performed.

• STDERR, which is the standard error of the kriging estimate

• VARNAME, which is the variable name

OUTNBHD=SAS-data-set

When you specify the RADIUS= option or the NUMPOINTS= option in the
PREDICT statement, local kriging is performed. Local kriging is simply ordinary
kriging at a given grid location using only those data points in a neighborhood de-
fined by the RADIUS= value or the NUMPOINTS= value.



Computational Resources � 2061

The OUTNBHD= data set contains one observation for each data point in each neigh-
borhood. Hence, this data set can be large. For example, if the grid specification
results in 1,000 grid points and each grid point has a neighborhood of 100 points, the
resulting OUTNBHD= data set contains 100,000 points.

The OUTNBHD= data set contains the following variables:

• GXC, which is the x-coordinate of the grid point

• GYC, which is the y-coordinate of the grid point

• LABEL, which is the label for the current PREDICT/MODEL combination. If
you do not specify a label, default labels of the form Predj.Modelk are used.

• NPOINTS, which is the number of points used in the estimation

• RADIUS, which is the radius used for each neighborhood

• VALUE, which is the value of the variable at the current data point

• VARNAME, which is the variable name of the current variable

• XC, which is the x-coordinate of the current data point

• YC, which is the y-coordinate of the current data point

Computational Resources

To generate a predicted value at a single grid point usingN data points, PROC
KRIGE2D must solve the following kriging system:

Cλ0 = C0

whereC is (N + 1)× (N + 1), and the right-hand side vectorC0 is (N + 1)× 1.

Holding the matrix and vector associated with this system in core requires approx-
imately N2

2 doubles (with typically eight bytes per double). The CPU time used in
solving the system is proportional toN3. For largeN , this time dominates the time
to compute the(N+1)(N+2)

2 elements of the covariance matrixC from the specified
covariance or variogram model. This latter computation is proportional toN2.

For local kriging, the kriging system is set up and solved for each grid point. Part
of the set up process involves determining the neighborhood of each grid point. A
fast K-D tree algorithm is used to determine neighborhoods. ForG grid points, the
dominant CPU time factor is setting up and solving theG kriging systems. TheN in
the preceding algorithm is the number of data points in a given neighborhood, and it
can differ for each grid point.

In global kriging, the entire input data set and all grid points are used to set up and
solve the single system

Cλ0 = C0
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AgainC is (N +1)× (N +1), butλ0 is now(N +1)×G, whereG is the number of
grid points, andN is the number of nonmissing observations in the input data set. The
right-hand side matrixC0 is (N + 1)×G. Memory requirements are approximately
N2

2 + GN doubles. The CPU time used in solving the system is still dominated by
theN3 factorization of the left-hand side.

Example

Example 37.1. Investigating the Effect of Model Specification
on Prediction

In the “Getting Started”section of the chapter on the VARIOGRAM procedure, a
particular variogram is chosen for the coal seam thickness data. The chosen vari-
ogram is Gaussian with a scale (sill) ofc0 = 7.5, and a range ofa0 = 30. This choice
of the variogram is based on a visual fit—a comparison of the plots of the regular
and robust sample variograms and the Gaussian variogram for various scale (sill) and
range values.

Another possible choice of model is the spherical variogram with the same scale (sill)
of c0 = 7.5 but with a range ofa0 = 60. This choice of range is again based on a
visual fit; while not as good as the Gaussian model, the fit is reasonable.

It is generally held that spatial prediction is robust against model specification, while
the standard error computation is not so robust.

This example investigates the effect of using these different models on the prediction
and associated standard errors.

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
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86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

/*- Run KRIGE2D on original Gaussian model ------------*/
proc krige2d data=thick outest=est1;

pred var=thick r=60;
model scale=7.5 range=30 form=gauss;
coord xc=east yc=north;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

/*- Run KRIGE2D using Spherical Model, modified range -*/
proc krige2d data=thick outest=est2;

pred var=thick r=60;
model scale=7.5 range=60 form=spherical;
coord xc=east yc=north;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

data compare ;
merge est1(rename=(estimate=g_est stderr=g_std))

est2(rename=(estimate=s_est stderr=s_std));
est_dif=g_est-s_est;
std_dif=g_std-s_std;

run;

proc print data=compare;
title ’Comparison of Gaussian and Spherical Models’;
title2 ’Differences of Estimates and Standard Errors’;
var gxc gyc npoints g_est s_est est_dif g_std s_std

std_dif;
run;



2064 � Chapter 37. The KRIGE2D Procedure

Output 37.1.1. Comparison of Gaussian and Spherical Models
Comparison of Gaussian and Spherical Models

Differences of Estimates and Standard Errors: First 50 Observations

Obs GXC GYC NPOINTS g_est s_est est_dif g_std s_std std_dif

1 0 0 23 43.9408 42.6700 1.27087 0.68260 2.05947 -1.37687
2 0 10 28 41.6828 41.6780 0.00483 0.55909 2.03464 -1.47554
3 0 20 31 38.9601 39.7285 -0.76843 0.30185 1.93478 -1.63293
4 0 30 32 36.1701 37.3275 -1.15739 0.12705 1.54844 -1.42139
5 0 40 39 33.8376 35.4320 -1.59440 0.04872 1.37821 -1.32949
6 0 50 38 32.8375 34.3930 -1.55550 0.02983 1.22584 -1.19602
7 0 60 35 33.9576 34.3155 -0.35785 0.00195 0.54122 -0.53927
8 0 70 30 36.9502 37.6669 -0.71673 0.04006 1.20451 -1.16444
9 0 80 31 41.1097 41.1016 0.00812 0.04705 0.99544 -0.94839

10 0 90 28 43.6671 42.5216 1.14546 0.10236 1.57357 -1.47121
11 0 100 23 41.9443 42.6511 -0.70681 0.53646 2.20792 -1.67146
12 10 0 25 44.6795 44.1959 0.48355 0.07833 1.09743 -1.01910
13 10 10 31 42.8397 42.7496 0.09008 0.10982 1.46686 -1.35703
14 10 20 34 40.3120 40.3634 -0.05140 0.05315 1.54889 -1.49574
15 10 30 39 37.7593 37.7648 -0.00544 0.00889 0.94136 -0.93247
16 10 40 44 35.6365 35.5471 0.08940 0.00595 0.75920 -0.75325
17 10 50 44 35.0603 34.7042 0.35612 0.01564 1.05033 -1.03469
18 10 60 41 36.0716 35.4737 0.59794 0.01321 1.18277 -1.16957
19 10 70 36 38.1196 38.1040 0.01565 0.00315 0.89157 -0.88842
20 10 80 33 41.2799 41.0734 0.20644 0.02446 1.22772 -1.20326
21 10 90 30 43.2193 42.8904 0.32890 0.05988 1.49438 -1.43450
22 10 100 26 41.0358 43.1350 -2.09918 0.19050 1.93434 -1.74384
23 20 0 29 44.4890 44.4359 0.05317 0.06179 1.23618 -1.17439
24 20 10 35 43.3391 43.2938 0.04531 0.00526 0.95512 -0.94986
25 20 20 39 41.1293 40.9885 0.14079 0.00675 1.18544 -1.17870
26 20 30 43 38.6060 38.5300 0.07598 0.00898 1.08973 -1.08075
27 20 40 49 36.5013 36.5275 -0.02623 0.03037 1.33620 -1.30583
28 20 50 49 36.1158 35.7959 0.31990 0.02535 1.31986 -1.29451
29 20 60 49 36.8115 36.5397 0.27182 0.00835 1.11490 -1.10656
30 20 70 39 38.4308 38.5182 -0.08746 0.00257 0.89419 -0.89162
31 20 80 36 41.0601 41.0449 0.01511 0.00766 1.18548 -1.17781
32 20 90 33 43.1788 43.1073 0.07144 0.00613 0.94924 -0.94311
33 20 100 27 42.7757 43.4689 -0.69313 0.06770 1.52094 -1.45324
34 30 0 35 43.3601 43.9579 -0.59779 0.04662 1.32306 -1.27644
35 30 10 39 43.1539 43.1448 0.00912 0.00245 0.72413 -0.72167
36 30 20 44 41.2400 41.2166 0.02336 0.00528 1.10234 -1.09706
37 30 30 52 38.9296 39.0178 -0.08816 0.00489 1.04501 -1.04012
38 30 40 57 37.2813 37.3412 -0.05992 0.00804 0.89242 -0.88438
39 30 50 57 36.7198 36.7558 -0.03597 0.00652 0.83517 -0.82865
40 30 60 55 37.2047 37.3407 -0.13597 0.00682 1.00330 -0.99648
41 30 70 48 38.8856 38.8919 -0.00628 0.00285 1.01430 -1.01145
42 30 80 43 41.0627 41.0663 -0.00359 0.00260 0.97336 -0.97077
43 30 90 36 43.0969 43.0465 0.05038 0.00194 0.51312 -0.51118
44 30 100 29 44.5840 43.3474 1.23663 0.13593 1.57267 -1.43674
45 40 0 36 42.8186 43.5157 -0.69706 0.01976 1.25689 -1.23713
46 40 10 40 42.8970 42.9168 -0.01984 0.00301 0.95163 -0.94862
47 40 20 52 41.1025 41.1824 -0.07989 0.00193 0.96204 -0.96012
48 40 30 60 39.3288 39.2992 0.02960 0.00451 1.05561 -1.05111
49 40 40 67 38.2096 37.9680 0.24161 0.01791 1.29139 -1.27349
50 40 50 68 37.3139 37.5055 -0.19150 0.04039 1.51095 -1.47056

The predicted values at each of the grid locations do not differ greatly for the two
variogram models. However, the standard error of prediction for the spherical model
is substantially larger than the Gaussian model.
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Chapter 38
The LATTICE Procedure
Overview

The LATTICE procedure computes the analysis of variance and analysis of simple
covariance for data from an experiment with a lattice design. PROC LATTICE ana-
lyzes balanced square lattices, partially balanced square lattices, and some rectangu-
lar lattices.

In balanced square lattices, the number of treatments is equal to the square of the
number of units per block. Incomplete blocks are grouped to form mutually orthog-
onal replications. The number of replicates in the basic plan is always 1 plus the
number of units per block.

The partially balanced square lattices are similar to balanced lattices, although the
number of replicates may vary. Partially balanced designs are constructed of the
replicates in the basic plan, but not all replicates are included the same number of
times, and some may not be included at all.

In rectangular lattices, there arek units per block andk(k +1) treatments. As in square
lattices, blocks are grouped to form mutually orthogonal replicates in the basic plan.
PROC LATTICE can analyze simple rectangular lattices (two orthogonal replica-
tions) and triple rectangular lattices (three orthogonal replications). The experiment
can include several repetitions of the basic plan.

The LATTICE procedure determines from the data set which type of design has been
used. It also checks to see if the design is valid and displays an appropriate message
if it is not.

Getting Started

An example of a balanced square design is an experiment to investigate the effects of
nine diets on the growth rate of pigs.

In some breeds of pigs, past experience has shown that a large part of the total vari-
ation in growth rates between animals can be attributed to the litter. Therefore, this
experiment is planned so that litter differences do not contribute to the intrablock
error.

First, the pigs are separated into sets of three litter-mates. Each block is assigned two
sets of the three litter-mates. In a given block, one pig from each set receives a diet.
Therefore, the experimental unit is a pair of pigs feeding in a particular pen on one of
the nine diets. The response variable, growth rate, is the sum of the growth rates for
the two pigs in a particular pen. To get the adjusted diet mean per pig, the adjusted
treatment mean for the pen must be divided by 2.
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The special numeric SAS variables namedGroup, Block, Treatmnt, andRep must
be used to define the design. In this example, theTreatmnt variable ranges from 1 to 9
and indicates the particular diet. TheBlock variable is 1, 2, or 3 and indicates the pen
containing the two pigs. TheGroup variable ranges from 1 to 4 and specifies which
replication within the basic plan includes the experimental unit. In this example, you
would not use theRep variable since the entire basic plan is not replicated.

You can use the following DATA step and PROC LATTICE statement to analyze this
experiment. The response variable isWeight.

title ’Examining the Growth Rate of Pigs’;
data Pigs;

input Group Block Treatmnt Weight @@;
datalines;

1 1 1 2.20 1 1 2 1.84 1 1 3 2.18
1 2 4 2.05 1 2 5 0.85 1 2 6 1.86
1 3 7 0.73 1 3 8 1.60 1 3 9 1.76
2 1 1 1.19 2 1 4 1.20 2 1 7 1.15
2 2 2 2.26 2 2 5 1.07 2 2 8 1.45
2 3 3 2.12 2 3 6 2.03 2 3 9 1.63
3 1 1 1.81 3 1 5 1.16 3 1 9 1.11
3 2 2 1.76 3 2 6 2.16 3 2 7 1.80
3 3 3 1.71 3 3 4 1.57 3 3 8 1.13
4 1 1 1.77 4 1 6 1.57 4 1 8 1.43
4 2 2 1.50 4 2 4 1.60 4 2 9 1.42
4 3 3 2.04 4 3 5 0.93 4 3 7 1.78
;

proc lattice data=Pigs;
var Weight;

run;

The SAS code produces the output shown inFigure 38.1.
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Examining the Growth Rate of Pigs

The Lattice Procedure

Analysis of Variance for Weight

Sum of Mean
Source DF Squares Square

Replications 3 0.07739 0.02580
Blocks within Replications (Adj.) 8 1.4206 0.1776

Component B 8 1.4206 0.1776
Treatments (Unadj.) 8 3.2261 0.4033
Intra Block Error 16 1.2368 0.07730
Randomized Complete Block Error 24 2.6574 0.1107
Total 35 5.9609 0.1703

Additional Statistics for Weight

Description Value

Variance of Means in Same Block 0.04593
LSD at .01 Level 0.6259
LSD at .05 Level 0.4543
Efficiency Relative to RCBD 120.55

Examining the Growth Rate of Pigs

The Lattice Procedure

Adjusted Treatment
Means for Weight

Treatment Mean

1 1.8035
2 1.7544
3 1.9643
4 1.7267
5 0.9393
6 1.8448
7 1.3870
8 1.4347
9 1.5004

Figure 38.1. Output from Example LATTICE Procedure

Diet 3 yields the highest mean growth rate at 1.9643 pounds for the two pigs (0.9822
per pig), while diet 5 has the lowest rate at 0.9393 (0.4696 per pig). The efficiency
of the experiment relative to a randomized complete block design is 120.55 percent,
so using the lattice design increased precision, producing more accurate estimates of
the treatment effects. The different elements of the LATTICE procedure’s output are
discussed in the“Displayed Output”section on page 2074.
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Syntax

The following statements are available in PROC LATTICE.

PROC LATTICE < options >;
BY variables ;
VAR variables ;

Three specific numeric SAS variables,Group, Block, andTreatmnt, mustbe present
in the data set to which PROC LATTICE is applied. A fourth numeric variable named
Rep must be present when the design involves repetition of the entire basic plan. (See
the“Input Data Set”section on page 2073 for more information.)

Every numeric variable other thanGroup, Block, Treatmnt, or Rep in the input
SAS data set may be considered a response variable. A VAR statement tells PROC
LATTICE that only the variables listed in the VAR statement are to be considered re-
sponse variables. If the VAR statement is omitted, then all numeric variables, exclud-
ing Group, Block, Treatmnt, andRep, are considered response variables. PROC
LATTICE performs an analysis for each response variable.

PROC LATTICE Statement

PROC LATTICE < options >;

You can specify the following options in the PROC LATTICE statement.

DATA=SAS-data-set
names the SAS data set to be used by PROC LATTICE. If you omit the DATA=
option, the most recently created SAS data set is used.

COVARIANCE
COV

calculates sums of products for every possible pair of response variables. A sum of
products is given for each source of variation in the analysis of variance table. For
each pair of response variables, the one appearing later in the data set (or in the VAR
statement) is the covariable.

BY Statement

BY variables ;

You can specify a BY statement with PROC LATTICE to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:



Input Data Set � 2073

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the LATTICE procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

VAR Statement

VAR variables ;

The VAR statement specifies the response variables. If you do not include a VAR
statement, all numeric variables in the data set are considered response variables (ex-
ceptGroup, Block, Treatmnt, andRep).

Details

Input Data Set

Four numeric SAS variables,Group, Block, Treatmnt, andRep, are used in the
input data set to define the lattice design. TheGroup, Block, andTreatmnt variables
are required in the data set to which PROC LATTICE is applied. TheRep variable
must be present when the design involves repetition of the entire basic plan.

Group specifies which orthogonal replication in the basic plan includes the ex-
perimental unit. Values ofGroup must be 1, 2, . . . ,n, wheren is the
number of replicates in the basic plan.

Block specifies the block in which the experimental unit is present. Values
of Block must be 1, 2, . . . ,m, wherem is the number of blocks in a
replication.

Treatmnt specifies which treatment was applied to the experimental unit. Values
of Treatmnt must be 1, 2, . . . ,i, wherei is the number of treatments in
a replication.

Rep specifies which repetition of the basic plan includes the experimental
unit. Values ofRep must be 1, 2, . . . ,p, wherep is the number of
replications of the entire basic plan. Thus, the experiment has a total of
np replicates.
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Missing Values

If a value ofGroup, Block, Treatmnt, or Rep is missing, the analysis is not per-
formed and an appropriate error message is displayed.

If a value of a response variable is missing, this entire variable is dropped from the
analysis. If other response variables exist that do not have missing values, they are
analyzed.

Displayed Output

For each response variable, PROC LATTICE displays

• an “Analysis of Variance” table and related statistics, including the following
as separate sources of variations:

− Replications

− Blocks within Replications (adjusted for treatments)

− Treatments (unadjusted)

− Intra Block Error

− Randomized Complete Block Error

The Blocks within Replications sum of squares is further broken down into
“Component A” and “Component B.” If there is no repetition of the basic plan,
the Component B sum of squares is the same as the Blocks within Replications
sum of squares. If there is repetition of the basic plan, the Component A sum
of squares reflects the variation among blocks that contain the same treatments.

The source of variation called Randomized Complete Block Error is the sum
of the Blocks within Replications sum of squares and the Intra Block Error
sum of squares. It is the appropriate error term if the experimental design is
a randomized complete block design, with the replications filling the roles of
complete blocks.

• two values for the Variance of Means. For some lattice designs, these are only
approximations. The first value is applicable when the two treatments appear
in the same block; the other (when it appears) applies when the two treatments
never appear in the same block (a possibility in partially balanced and rectan-
gular designs).

• an Average of Variance. Except with small designs, it is sufficient to use this
average variance of means for tests between treatments (whether the two treat-
ments appear in the same block or not); refer to Cochran and Cox (1957).
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• the Least Significant Differences (LSDs) at the .01 and .05 levels of signifi-
cance, based on the Average of Variance

• Efficiency Relative to RCBD, the efficiency of the lattice design relative to a
randomized complete block design. The efficiency is the ratio of the random-
ized complete block mean squared error to the effective error variance; refer to
Cochran and Cox (1957).

• the Adjusted Treatment Means. These are adjusted for blocks if the relative
precision is greater than 105 percent.

When you specify the COVARIANCE option, PROC LATTICE produces Sums of
Products and the Mean Product for each source of variation in the analysis of variance
table.

ODS Table Names

PROC LATTICE assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 38.1. ODS Tables Produced in PROC LATTICE

ODS Table Name Description PROC LATTICE Option
ANOVA Analysis of variance default
AdjTreatmentMeans Adjusted treatment means default
Statistics Additional statistics default
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Example

Example 38.1. Analysis of Variance through PROC LATTICE

In the following example, from Cochran and Cox (1957, p. 406), the data are yields
(Yield) in bushels per acre of 25 varieties (Treatmnt) of soybeans. The data are
collected in two replications (Group) of 25 varieties in five blocks (Block) containing
five varieties each. This is an example of a partially balanced square lattice design.

data Soy;
do Group = 1 to 2;

do Block = 1 to 5;
do Plot = 1 to 5;

input Treatmnt Yield @@;
output;

end;
end;

end;
drop Plot;
datalines;

1 6 2 7 3 5 4 8 5 6
6 16 7 12 8 12 9 13 10 8
11 17 12 7 13 7 14 9 15 14
16 18 17 16 18 13 19 13 20 14
21 14 22 15 23 11 24 14 25 14
1 24 6 13 11 24 16 11 21 8
2 21 7 11 12 14 17 11 22 23
3 16 8 4 13 12 18 12 23 12
4 17 9 10 14 30 19 9 24 23
5 15 10 15 15 22 20 16 25 19
;

proc print data=Soy;
id Treatmnt;

run;

proc lattice data=Soy;
run;

The results from these statements are shown inOutput 38.1.1andOutput 38.1.2.
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Output 38.1.1. Displayed Output from PROC PRINT
Treatmnt Group Block Yield

1 1 1 6
2 1 1 7
3 1 1 5
4 1 1 8
5 1 1 6
6 1 2 16
7 1 2 12
8 1 2 12
9 1 2 13

10 1 2 8
11 1 3 17
12 1 3 7
13 1 3 7
14 1 3 9
15 1 3 14
16 1 4 18
17 1 4 16
18 1 4 13
19 1 4 13
20 1 4 14
21 1 5 14
22 1 5 15
23 1 5 11
24 1 5 14
25 1 5 14

1 2 1 24
6 2 1 13

11 2 1 24
16 2 1 11
21 2 1 8

2 2 2 21
7 2 2 11

12 2 2 14
17 2 2 11
22 2 2 23

3 2 3 16
8 2 3 4

13 2 3 12
18 2 3 12
23 2 3 12

4 2 4 17
9 2 4 10

14 2 4 30
19 2 4 9
24 2 4 23

5 2 5 15
10 2 5 15
15 2 5 22
20 2 5 16
25 2 5 19
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Output 38.1.2. Displayed Output from PROC LATTICE
The Lattice Procedure

Analysis of Variance for Yield

Sum of Mean
Source DF Squares Square

Replications 1 212.18 212.18
Blocks within Replications (Adj.) 8 501.84 62.7300

Component B 8 501.84 62.7300
Treatments (Unadj.) 24 559.28 23.3033
Intra Block Error 16 218.48 13.6550
Randomized Complete Block Error 24 720.32 30.0133
Total 49 1491.78 30.4445

Additional Statistics for Yield

Description Value

Variance of Means in Same Block 15.7915
Variance of Means in Different Bloc 17.9280
Average of Variance 17.2159
LSD at .01 Level 12.1189
LSD at .05 Level 8.7959
Efficiency Relative to RCBD 174.34

The Lattice Procedure

Adjusted Treatment
Means for Yield

Treatment Mean

1 19.0681
2 16.9728
3 14.6463
4 14.7687
5 12.8470
6 13.1701
7 9.0748
8 6.7483
9 8.3707

10 8.4489
11 23.5511
12 12.4558
13 12.6293
14 20.7517
15 19.3299
16 12.6224
17 10.5272
18 10.7007
19 7.3231
20 11.4013
21 11.6259
22 18.5306
23 12.2041
24 17.3265
25 15.4048
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The efficiency of the experiment relative to a randomized complete block design is
174.34 percent. Precision is gained using the lattice design via the recovery of in-
trablock error information, enabling more accurate estimates of the treatment effects.
Variety 8 of soybean had the lowest adjusted treatment mean (6.7483 bushels per
acre), while variety 11 of soybean had the highest adjusted treatment mean (23.5511
bushels per acre).
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Chapter 39
The LIFEREG Procedure
Overview

The LIFEREG procedure fits parametric models to failure time data that can be right-,
left-, or interval-censored. The models for the response variable consist of a linear
effect composed of the covariates and a random disturbance term. The distribution
of the random disturbance can be taken from a class of distributions that includes the
extreme value, normal, logistic, and, by using a log transformation, the exponential,
Weibull, lognormal, loglogistic, and three-parameter gamma distributions.

The model assumed for the responsey is

y = Xβ + σε

wherey is a vector of response values, often the log of the failure times,X is a ma-
trix of covariates or independent variables (usually including an intercept term),β is
a vector of unknown regression parameters,σ is an unknown scale parameter, andε
is a vector of errors assumed to come from a known distribution (such as the standard
normal distribution). The distribution may depend on additional shape parameters.
These models are equivalent to accelerated failure time models when the log of the
response is the quantity being modeled. The effect of the covariates in an acceler-
ated failure time model is to change the scale, and not the location, of a baseline
distribution of failure times.

The LIFEREG procedure estimates the parameters by maximum likelihood using a
Newton-Raphson algorithm. PROC LIFEREG estimates the standard errors of the
parameter estimates from the inverse of the observed information matrix.

The accelerated failure time model assumes that the effect of independent variables
on an event time distribution is multiplicative on the event time. Usually, the scale
function is exp(xc

′βc), wherexc is the vector of covariate values (not including
the intercept term) andβc is a vector of unknown parameters. Thus, ifT0 is an
event time sampled from the baseline distribution corresponding to values of zero
for the covariates, then the accelerated failure time model specifies that, if the vector
of covariates isxc, the event time isT = exp(xc

′βc)T0. If y = log(T ) andy0 =
log(T0), then

y = xc
′βc + y0

This is a linear model withy0 as the error term.

In terms of survival or exceedance probabilities, this model is

Pr(T > t | xc) = Pr(T0 > exp(−xc
′βc)t)
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The probability on the left-hand side of the equal sign is evaluated given the valuexc

for the covariates, and the right-hand side is computed using the baseline probability
distribution but at a scaled value of the argument. The right-hand side of the equation
represents the value of the baseline Survival Function evaluated atexp(−xc

′βc)t.

Usually, an intercept parameter and a scale parameter are allowed in the model. In
terms of the original untransformed event times, the effects of the intercept term and
the scale term are to scale the event time and power the event time, respectively. That
is, if

log(T0) = µ + σ log(Tε)

then

T0 = exp(µ)T σ
ε

Although it is possible to fit these models to the original response variable using
the NOLOG option, it is more common to model the log of the response variable.
Because of this log transformation, zero values for the observed failure times are
not allowed unless the NOLOG option is specified. Similarly, small values for the
observed failure times lead to large negative values for the transformed response. The
NOLOG option should only be used if you want to fit a distribution appropriate for
the untransformed response, the extreme value instead of the Weibull, for example.

The parameter estimates for the normal distribution are sensitive to large negative
values, and care must be taken that the fitted model is not unduly influenced by them.
Likewise, values that are extremely large even after the log transformation have a
strong influence in fitting the extreme value (Weibull) and normal distributions. You
should examine the residuals and check the effects of removing observations with
large residuals or extreme values of covariates on the model parameters. The logistic
distribution gives robust parameter estimates in the sense that the estimates have a
bounded influence function.

The standard errors of the parameter estimates are computed from large sample nor-
mal approximations using the observed information matrix. In small samples, these
approximations may be poor. Refer to Lawless (1982) for additional discussion and
references. You can sometimes construct better confidence intervals by transforming
the parameters. For example, large sample theory is often more accurate forlog(σ)
than σ. Therefore, it may be more accurate to construct confidence intervals for
log(σ) and transform these into confidence intervals forσ. The parameter estimates
and their estimated covariance matrix are available in an output SAS data set and
can be used to construct additional tests or confidence intervals for the parameters.
Alternatively, tests of parameters can be based on log-likelihood ratios. Refer to Cox
and Oakes (1984) for a discussion of the merits of some possible test methods includ-
ing score, Wald, and likelihood ratio tests. It is believed that likelihood ratio tests are
generally more reliable in small samples than tests based on the information matrix.

The log-likelihood function is computed using the log of the failure time as a re-
sponse. This log likelihood differs from the log likelihood obtained using the failure
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time as the response by an additive term of
∑

log(ti), where the sum is over the non-
censored failure times. This term does not depend on the unknown parameters and
does not affect parameter or standard error estimates. However, many published val-
ues of log likelihoods use the failure time as the basic response variable and, hence,
differ by the additive term from the value computed by the LIFEREG procedure.

The classic Tobit model (Tobin 1958) also fits into this class of models but with data
usually censored on the left. The data considered by Tobin in his original paper came
from a survey of consumers where the response variable is the ratio of expenditures
on durable goods to the total disposable income. The two explanatory variables are
the age of the head of household and the ratio of liquid assets to total disposable
income. Because many observations in this data set have a value of zero for the
response variable, the model fit by Tobin is

y = max(x′β + ε, 0)

which is a regression model with left censoring.x′ = (1,xc
′).

Getting Started
The following examples demonstrate how you can use the LIFEREG procedure to fit
a parametric model to failure time data.

Suppose you have a response variabley that represents failure time,censor is a
binary variable withcensor=0 indicating censored values, andx1 andx2 are two
linearly independent variables. The following statements perform a typical acceler-
ated failure time model analysis. Higher-order effects such as interactions and nested
effects are allowed in the independent variables list, but are not shown in this exam-
ple.

proc lifereg;
model y*censor(0) = x1 x2;

run;

PROC LIFEREG can operate on interval-censored data. The model syntax for speci-
fying the censored interval is

proc lifereg;
model (begin, end) = x1 x2;

run;

You can also model binomial data using theevents/trialssyntax for the response, as
illustrated in the following statements:

proc lifereg;
model r/n=x1 x2;

run;

The variablen represents the number of trials and the variabler represents the number
of events.
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Modeling Right-Censored Failure Time Data

The following example demonstrates how you can use the LIFEREG procedure to fit
a model to right-censored failure time data.

Suppose you conduct a study of two headache pain relievers. You divide patients into
two groups, with each group receiving a different type of pain reliever. You record
the time taken (in minutes) for each patient to report headache relief. Because some
of the patients never report relief for the entire study, some of the observations are
censored.

The following DATA step creates the SAS data setheadache:

data headache;
input minutes group censor @@;
datalines;

11 1 0 12 1 0 19 1 0 19 1 0
19 1 0 19 1 0 21 1 0 20 1 0
21 1 0 21 1 0 20 1 0 21 1 0
20 1 0 21 1 0 25 1 0 27 1 0
30 1 0 21 1 1 24 1 1 14 2 0
16 2 0 16 2 0 21 2 0 21 2 0
23 2 0 23 2 0 23 2 0 23 2 0
25 2 1 23 2 0 24 2 0 24 2 0
26 2 1 32 2 1 30 2 1 30 2 0
32 2 1 20 2 1
;

The data setheadache contains the variableminutes, which represents the reported
time to headache relief, the variablegroup, the group to which the patient is assigned,
and the variablecensor, a binary variable indicating whether the observation is cen-
sored. Valid values of the variablecensor are 0 (no) and 1 (yes). The following
figure shows the first five records of the data setheadache.

Obs minutes group censor

1 11 1 0
2 12 1 0
3 19 1 0
4 19 1 0
5 19 1 0

Figure 39.1. Headache Data
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The following statements invoke the LIFEREG procedure:

proc lifereg;
class group;
model minutes*censor(1)=group;
output out=new cdf=prob;

run;

The CLASS statement specifies the variablegroup as the classification variable.
The MODEL statement syntax indicates that the response variableminutes is right-
censored when the variablecensor takes the value 1. The MODEL statement spec-
ifies the variablegroup as the single explanatory variable. Because the MODEL
statement does not specify the DISTRIBUTION= option, the LIFEREG procedure
fits the default type 1 extreme value distribution using log(minutes) as the response.
This is equivalent to fitting the Weibull distribution.

The OUTPUT statement creates the output data setnew. In addition to the variables
in the original data setheadache, the SAS data setnew also contains the variable
prob. This new variable is created by the CDF= option to contain the estimates of
the cumulative distribution function evaluated at the observed response.

The results of this analysis are displayed in the following figures.

The LIFEREG Procedure

Model Information

Data Set WORK.HEADACHE
Dependent Variable Log(minutes)
Censoring Variable censor
Censoring Value(s) 1
Number of Observations 38
Noncensored Values 30
Right Censored Values 8
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Weibull
Log Likelihood -9.37930239

Class Level Information

Name Levels Values

group 2 1 2

Figure 39.2. Model Fitting Information from the LIFEREG Procedure

Figure 39.2displays the class level information and model fitting information. There
are 30 noncensored observations and 8 right-censored observations. The log likeli-
hood for the Weibull distribution is -9.3793. The log-likelihood value can be used to
compare the goodness of fit for different models.



2088 � Chapter 39. The LIFEREG Procedure

The LIFEREG Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.3091 0.0589 3.1938 3.4245 3161.70 <.0001
group 1 1 -0.1933 0.0786 -0.3473 -0.0393 6.05 0.0139
group 2 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 1 0.2122 0.0304 0.1603 0.2809
Weibull Shape 1 4.7128 0.6742 3.5604 6.2381

Figure 39.3. Model Parameter Estimates from the LIFEREG Procedure

The table of parameter estimates is displayed inFigure 39.3. Both the intercept and
the slope parameter for the variablegroup are significantly different from 0 at the
0.05 level. Because the variablegroup has only one degree of freedom, parameter
estimates are given for only one level of the variablegroup (group=1). However, the
estimate for the intercept parameter provides a baseline forgroup=2. The resulting
model is

log(minutes) =
{

3.30911843− 0.1933025 for group=1
3.30911843 for group=2

Note that the Weibull shape parameter for this model is the reciprocal of the extreme
value scale parameter estimate shown inFigure 39.3(1/0.21219 = 4.7128).

The following statements produce a graph of the cumulative distribution values versus
the variableminutes. The LEGEND1 statement defines the appearance of the legend
that displays on the plot. The two AXIS statements define the appearance of the plot
axes. The SYMBOL statements control the plotting symbol, color, and method of
smoothing.

legend1 frame cframe=ligr cborder=black
position=center value=(justify=center);

axis1 label=(angle=90 rotate=0 ’Estimated CDF’) minor=none;
axis2 minor=none;

symbol1 c=white i=spline;
symbol2 c=yellow i=spline;

proc sort data=new;
by prob;

proc gplot data=new;
plot prob*minutes=group/ frame cframe=ligr

legend=legend1 vaxis=axis1 haxis=axis2;
run;

The SORT procedure sorts the data setnew by the variableprob. Then the GPLOT
procedure plots the variableprob versus the variableminutes using the grouping
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variable as the identification variable. The LEGEND=, VAXIS=, and HAXIS= op-
tions specify the previously defined legend and axis statements.

Figure 39.4displays the estimated cumulative distribution function for each group.

Figure 39.4. Plot of the Estimated Cumulative Distribution Function

Syntax

The following statements are available in PROC LIFEREG.

PROC LIFEREG < options > ;
BY variables ;
CLASS variables ;
INSET <keyword-list> < / options > ;
MODEL response=<effects> < / options > ;
OUTPUT < OUT=SAS-data-set >

keyword=name < . . . keyword=name >
< options > ;

PROBPLOT < / options > ;
WEIGHT variable ;

The PROC LIFEREG statement invokes the procedure. The MODEL statement is
required and specifies the variables used in the regression part of the model as well
as the distribution used for the error, or random, component of the model. Only a
single MODEL statement can be used with one invocation of the LIFEREG proce-
dure. If multiple MODEL statements are present, only the last is used. Main effects
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and interaction terms can be specified in the MODEL statement, similar to the GLM
procedure. Initial values can be specified in the MODEL statement or in an INEST=
data set. If no initial values are specified, the starting estimates are obtained by or-
dinary least squares. The CLASS statement determines which explanatory variables
are treated as categorical. The WEIGHT statement identifies a variable with values
that are used to weight the observations. Observations with zero or negative weights
are not used to fit the model, although predicted values can be computed for them.
The OUTPUT statement creates an output data set containing predicted values and
residuals.

PROC LIFEREG Statement

PROC LIFEREG < options > ;

The PROC LIFEREG statement invokes the procedure. You can specify the following
options in the PROC LIFEREG statement.

COVOUT
writes the estimated covariance matrix to the OUTEST= data set if convergence is
attained.

DATA=SAS-data-set
specifies the input SAS data set used by PROC LIFEREG. By default, the most re-
cently created SAS data set is used.

GOUT=graphics-catalog
specifies a graphics catalog in which to save graphics output.

INEST= SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters in
the model. See the section“INEST= Data Set”on page 2121 for a detailed description
of the contents of the INEST= data set.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

NOPRINT
suppresses the display of the output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the classification variables (specified in the
CLASS statement). This ordering determines which parameters in the model corre-
spond to each level in the data. The following table illustrates how PROC LIFEREG
interprets values of the ORDER= option.
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Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED formatted value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, refer to the
chapter titled “The SORT Procedure” in theSAS Procedures Guide.

OUTEST=SAS-data-set
specifies an output SAS data set containing the parameter estimates, the maximized
log likelihood, and, if the COVOUT option is specified, the estimated covariance
matrix. See the section“OUTEST= Data Set”on page 2121 for a detailed description
of the contents of the OUTEST= data set.

XDATA= SAS-data-set
specifies an input SAS data set that contains values for all the independent variables
in the MODEL statement and variables in the CLASS statement for probability plot-
ting. If there are covariates specified in a MODEL statement and a probability plot
is requested with a PROBPLOT statement, you specify fixed values for the effects in
the MODEL statement with the XDATA= data set. See the section“XDATA= Data
Set”on page 2122 for a detailed description of the contents of the XDATA= data set.

BY Statement

BY variables ;

You can specify a BY statement with PROC LIFEREG to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the LIFEREG procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.



2092 � Chapter 39. The LIFEREG Procedure

CLASS Statement

CLASS variables ;

Variables that are classification variables rather than quantitative numeric variables
must be listed in the CLASS statement. For each explanatory variable listed in the
CLASS statement, indicator variables are generated for the levels assumed by the
CLASS variable. If the CLASS statement is used, it must appear before the MODEL
statement.

INSET Statement

INSET < keyword-list > < / options>;

The box or table of summary information produced on plots made with the
PROBPLOTstatement is called aninset. You can use the INSET statement to cus-
tomize the information that is displayed in the inset box as well as to customize the
appearance of the inset box. To supply the information that is displayed in the inset
box, you specifykeywordscorresponding to the information that you want shown.
For example, the following statements produce a probability plot with the number of
observations, the number of right-censored observations, the name of the distribution,
and the estimated Weibull shape parameter in the inset.

proc lifereg data=epidemic;
model life = dose / dist = Weibull;
probplot ;
inset nobs right dist shape;

run;

By default, inset entries are identified with appropriate labels. However, you can
provide a customized label by specifying thekeywordfor that entry followed by the
equal sign (=) and the label in quotes. For example, the following INSET statement
produces an inset containing the number of observations and the name of the distri-
bution, labeled “Sample Size” and “Distribution” in the inset.

inset nobs=’Sample Size’ dist=’Distribution’;

If you specify a keyword that does not apply to the plot you are creating, then the
keyword is ignored.

If you specify more than one INSET statement, only the first one is used.

The following table lists keywords available in the INSET statement to display sum-
mary statistics, distribution parameters, and distribution fitting information.
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Table 39.1. INSET Statement Keywords
CONFIDENCE confidence coefficient for all confidence intervals

DIST name of the distribution

INTERVAL number of interval-censored observations

LEFT number of left-censored observations

NOBS number of observations

NMISS number of observations with missing values

RIGHT number of right-censored observations

SCALE value of the scale parameter

SHAPE value of the shape parameter

UNCENSORED number of uncensored observations

The following optionscontrol the appearance of the box. Alloptionsare specified
after the slash (/) in the INSET statement.

CFILL=color
specifies the color for the filling box.

CFILLH=color
specifies the color for the filling box header.

CFRAME=color
specifies the color for the frame.

CHEADER=color
specifies the color for text in the header.

CTEXT=color
specifies the color for the text.

FONT=font
specifies the software font for the text.

HEIGHT=value
specifies the height of the text.

HEADER=’quoted string’
specifies text for the header or box title.

NOFRAME
omits the frame around the box.

POS= value<DATA | PERCENT>
determines the position of the inset. Thevaluecan be a compass point (N, NE, E,
SE, S, SW, W, NW) or a pair of coordinates (x, y) enclosed in parentheses. The
coordinates can be specified in screen percent units or axis data units. The default is
screen percent units.
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REFPOINT= name
specifies the reference point for an inset that is positioned by a pair of coordinates
with the POS= option. You use the REFPOINT= option in conjunction with the POS=
coordinates. The REFPOINT= option specifies which corner of the inset frame you
have specified with coordinates (x, y), and it can take the value of BR (bottom right),
BL (bottom left), TR (top right), or TL (top left). The default is REFPOINT=BL.
If the inset position is specified as a compass point, then the REFPOINT= option is
ignored.

MODEL Statement

<label:> MODEL response<*censor(list)>=effects < / options > ;

<label:> MODEL (lower,upper)=effects < / options > ;

<label:> MODEL events/trials=effects < / options > ;

Only a single MODEL statement can be used with one invocation of the LIFEREG
procedure. If multiple MODEL statements are present, only the last is used. The
optional label is used to label the model estimates in the output SAS data set and
OUTEST= data set.

The first MODEL syntax is appropriate for right censoring. The variableresponse
is possibly right-censored. If theresponsevariable can be right-censored, then a
second variable, denotedcensor, must appear after theresponsevariable with a list
of parenthesized values, separated by commas or blanks, to indicate censoring. That
is, if the censorvariable takes on a value given in the list, theresponseis a right-
censored value; otherwise, it is an observed value.

The second MODEL syntax specifies two variables,lower andupper, that contain
values of the endpoints of the censoring interval. If the two values are the same (and
not missing), it is assumed that there is no censoring and the actual response value is
observed. If the lower value is missing, then the upper value is used as a left-censored
value. If the upper value is missing, then the lower value is taken as a right-censored
value. If both values are present and the lower value is less than the upper value, it
is assumed that the values specify a censoring interval. If the lower value is greater
than the upper value or both values are missing, then the observation is not used in
the analysis although predicted values can still be obtained if none of the covariates
are missing. The following table summarizes the ways of specifying censoring.

lower upper Comparison Interpretation
not missing not missing equal no censoring

not missing not missing lower < upper censoring interval

missing not missing upper used as left-
censoring value

not missing missing lower used as right-
censoring value

not missing not missing lower > upper observation not used

missing missing observation not used
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The third MODEL syntax specifies two variables that contain count data for a binary
response. The value of the first variable,events, is the number of successes. The
value of the second variable,trials, is the number of tries. The values of bothevents
and (trials-events) must be nonnegative, andtrials must be positive for the response
to be valid. The values of the two variables do not need to be integers and are not
modified to be integers.

The effectsfollowing the equal sign are the covariates in the model. Higher-order
effects, such as interactions and nested terms, are allowed in the list, similar to the
GLM procedure. Variable names and combinations of variable names representing
higher-order terms are allowed to appear in this list. Class variables can be used as
effects, and indicator variables are generated for the class levels. If you do not specify
any covariates following the equal sign, an intercept-only model is fit.

Examples of three valid MODEL statements are

a: model time*flag(1,3)=temp;

b: model (start, finish)=;

c: model r/n=dose;

Model statementa indicates that the response is contained in a variable namedtime
and that, if the variableflag takes on the values 1 or 3, the observation is right-
censored. The explanatory variable istemp, which could be a class variable. Model
statementb indicates that the response is known to be in the interval between the
values of the variablesstart andfinish and that there are no covariates except for a
default intercept term. Model statementc indicates a binary response, with the vari-
abler containing the number of responses and the variablen containing the number
of trials.

The following options can appear in the MODEL statement.
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Task Option
Model specification

set the significance level ALPHA=
specify distribution type for failure time DISTRIBUTION=
request no log transformation of response NOLOG
initial estimate for intercept term INTERCEPT=
hold intercept term fixed NOINT
initial estimates for regression parameters INITIAL=
initialize scale parameter SCALE=
hold scale parameter fixed NOSCALE
initialize first shape parameter SHAPE1=
hold first shape parameter fixed NOSHAPE1

Model fitting
set convergence criterion CONVERGE=
set maximum iterations MAXITER=
set tolerance for testing singularity SINGULAR=

Output
display estimated correlation matrix CORRB
display estimated covariance matrix COVB
display iteration history, final gradient, ITPRINT

and second derivative matrix

ALPHA= value
sets the significance level for the confidence intervals for regression parameters and
estimated survival probabilities. The value must be between 0 and 1. By default,
ALPHA = 0.05.

CONVERGE=value
sets the convergence criterion. Convergence is declared when the maximum change
in the parameter estimates between Newton-Raphson steps is less than the value spec-
ified. The change is a relative change if the parameter is greater than 0.01 in absolute
value; otherwise, it is an absolute change. By default, CONVERGE=1E−8.

CONVG=value
sets the relative Hessian convergence criterion.valuemust be between 0 and 1. After
convergence is determined with the change in parameter criterion specified with the
CONVERGE= option, the quantitytc = g′H−1g

|f | is computed and compared tovalue,
whereg is the gradient vector,H is the Hessian matrix for the model parameters,
andf is the log-likelihood function. Iftc is greater thanvalue, a warning that the
relative Hessian convergence criterion has been exceeded is displayed. This criterion
detects the occasional case where the change in parameter convergence criterion is
satisfied, but a maximum in the log-likelihood function has not been attained. By
default, CONVG=1E−4.
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CORRB
produces the estimated correlation matrix of the parameter estimates.

COVB
produces the estimated covariance matrix of the parameter estimates.

DISTRIBUTION=distribution-type
DIST=distribution-type
D=distribution-type

specifies the distribution type assumed for the failure time. By default, PROC
LIFEREG fits a type 1 extreme value distribution to the log of the response. This
is equivalent to fitting the Weibull distribution, since the scale parameter for the ex-
treme value distribution is related to a Weibull shape parameter and the intercept
is related to the Weibull scale parameter in this case. When the NOLOG option is
specified, PROC LIFEREG models the untransformed response with a type 1 ex-
treme value distribution as the default. See the section“Supported Distributions”on
page 2111 for descriptions of the distributions. The following are valid values for
distribution-type:

EXPONENTIAL the exponential distribution, which is treated as a restricted
Weibull distribution

GAMMA a generalized gamma distribution (Lawless, 1982, p. 240). The
standard two-parameter gamma distribution is not available in
PROC LIFEREG.

LLOGISTIC a loglogistic distribution

LNORMAL a lognormal distribution

LOGISTIC a logistic distribution (equivalent to LLOGISTIC when the
NOLOG option is specified)

NORMAL a normal distribution (equivalent to LNORMAL when the
NOLOG option is specified)

WEIBULL a Weibull distribution. If NOLOG is specified, it fits a type 1
extreme value distribution to the raw, untransformed data.

By default, PROC LIFEREG transforms the response with the natural logarithm
before fitting the specified model when you specify the GAMMA, LLOGISTIC,
LNORMAL, or WEIBULL option. You can suppress the log transformation with
the NOLOG option. The following table summarizes the resulting distributions when
the preceding distribution options are used in combination with the NOLOG option.
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DISTRIBUTION= NOLOG specified? Resulting distribution
EXPONENTIAL No Exponential
EXPONENTIAL Yes One-parameter extreme value
GAMMA No Generalized gamma
GAMMA Yes Generalized gamma with untransformed responses
LOGISTIC No Logistic
LOGISTIC Yes Logistic (NOLOG has no effect)
LLOGISTIC No Log-logistic
LLOGISTIC Yes Logistic
LNORMAL No Lognormal
LNORMAL Yes Normal
NORMAL No Normal
NORMAL Yes Normal (NOLOG has no effect)
WEIBULL No Weibull
WEIBULL Yes Extreme value

INITIAL=values
sets initial values for the regression parameters. This option can be helpful in the case
of convergence difficulty. Specified values are used to initialize the regression coeffi-
cients for the covariates specified in the MODEL statement. The intercept parameter
is initialized with the INTERCEPT= option and is not included here. The values are
assigned to the variables in the MODEL statement in the same order in which they
are listed in the MODEL statement. Note that a class variable requiresk − 1 values
when the class variable takes onk different levels. The order of the class levels is de-
termined by the ORDER= option. If there is no intercept term, the first class variable
requiresk initial values. If a BY statement is used, all class variables must take on
the same number of levels in each BY group or no meaningful initial values can be
specified. The INITIAL= option can be specified as follows.

Type of List Specification
list separated by blanks initial=3 4 5

list separated by commas initial=3,4,5

x to y initial=3 to 5

x to y by z initial=3 to 5 by 1

combination of methods initial=1,3 to 5,9

By default, PROC LIFEREG computes initial estimates with ordinary least squares.
See the section“Computational Method”on page 2108 for details.

Note: The INITIAL= option is overwritten by the INEST= option. See the section
“INEST= Data Set”on page 2121 for details.
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INTERCEPT=value
initializes the intercept term tovalue. By default, the intercept is initialized by an
ordinary least squares estimate.

ITPRINT
displays the iteration history, the final evaluation of the gradient, and the final eval-
uation of the negative of the second derivative matrix, that is, the negative of the
Hessian.

MAXITER=n
sets the maximum allowable number of iterations during the model estimation. By
default, MAXITER=50.

NOINT
holds the intercept term fixed. Because of the usual log transformation of the re-
sponse, the intercept parameter is usually a scale parameter for the untransformed
response, or a location parameter for a transformed response.

NOLOG
requests that no log transformation of the response variable be performed. By de-
fault, PROC LIFEREG models the log of the response variable for the GAMMA,
LLOGISTIC, LOGNORMAL, and WEIBULL distribution options.

NOSCALE
holds the scale parameter fixed. Note that if the log transformation has been applied
to the response, the effect of the scale parameter is a power transformation of the
original response. If no SCALE= value is specified, the scale parameter is fixed at
the value 1.

NOSHAPE1
holds the first shape parameter, SHAPE1, fixed. If no SHAPE1= value is specified,
SHAPE1 is fixed at a value that depends on the DISTRIBUTION type.

SCALE=value
initializes the scale parameter tovalue. If the Weibull distribution is specified, this
scale parameter is the scale parameter of the type 1 extreme value distribution, not the
Weibull scale parameter. Note that, with a log transformation, the exponential model
is the same as a Weibull model with the scale parameter fixed at the value 1.

SHAPE1=value
initializes the first shape parameter tovalue. If the specified distribution does not
depend on this parameter, then this option has no effect. The only distribution that
depends on this shape parameter is the generalized gamma distribution. See the
“Supported Distributions”section on page 2111 for descriptions of the parameteriza-
tions of the distributions.

SINGULAR=value
sets the tolerance for testing singularity of the information matrix and the crossprod-
ucts matrix for the initial least-squares estimates. Roughly, the test requires that
a pivot be at least this value times the original diagonal value. By default,
SINGULAR=1E−12.
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OUTPUT Statement

OUTPUT <OUT=SAS-data-set> keyword=name <. . .keyword=name>
;

The OUTPUT statement creates a new SAS data set containing statistics calculated
after fitting the model. At least one specification of the formkeyword=nameis re-
quired.

All variables in the original data set are included in the new data set, along with the
variables created as options to the OUTPUT statement. These new variables contain
fitted values and estimated quantiles. If you want to create a permanent SAS data set,
you must specify a two-level name (refer toSAS Language Reference: Conceptsfor
more information on permanent SAS data sets). Each OUTPUT statement applies to
the preceding MODEL statement. SeeExample 39.1for illustrations of the OUTPUT
statement.

The following specifications can appear in the OUTPUT statement:

OUT=SAS-data-setspecifies the new data set. By default, the procedure uses the
DATAn convention to name the new data set.

keyword=name specifies the statistics to include in the output data set and gives
names to the new variables. Specify a keyword for each desired
statistic (see the following list of keywords), an equal sign, and
the variable to contain the statistic.

The keywords allowed and the statistics they represent are as follows:

CENSORED specifies an indicator variable to signal censoring. The variable
takes on the value 1 if the observation is censored; otherwise, it is
0.

CDF specifies a variable to contain the estimates of the cumulative dis-
tribution function evaluated at the observed response. See the
“Predicted Values”section on page 2114 for more information.

CONTROL specifies a variable in the input data set to control the estimation of
quantiles. SeeExample 39.1for an illustration. If the specified
variable has the value of 1, estimates for all the values listed in the
QUANTILE= list are computed for that observation in the input
data set; otherwise, no estimates are computed. If no CONTROL=
variable is specified, all quantiles are estimated for all observations.
If the response variable in the MODEL statement is binomial, then
this option has no effect.

CRESIDUAL | CRES specifies a variable to contain the Cox-Snell residuals

− log(S(ui))
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whereS is the standard survival function and

ui =
yi − x′ib

σ

If the response variable in the corresponding model statement is
binomial, then the residuals are not computed, and this variable
contains missing values.

SRESIDUAL | SRESspecifies a variable to contain the standardized residuals

yi − x′ib
σ

If the response variable in the corresponding model statement is
binomial, then the residuals are not computed, and this variable
contains missing values.

PREDICTED | P specifies a variable to contain the quantile estimates. If the re-
sponse variable in the corresponding model statement is bino-
mial, then this variable contains the estimated probabilities,1 −
F (−x′b).

QUANTILES | QUANTILE | Q gives a list of values for which quantiles are calcu-
lated. The values must be between 0 and 1, noninclusive. For each
value, a corresponding quantile is estimated. This option is not
used if the response variable in the corresponding MODEL state-
ment is binomial. The QUANTILES option can be specified as
follows.

Type of List Specification
list separated by blanks .2 .4 .6 .8

list separated by commas .2,.4,.6,.8

x to y .2 to .8

x to y by z .2 to .8 by .1

combination of methods .1,.2 to .8 by .2

By default, QUANTILES=0.5. When the response is not bino-
mial, a numeric variable,–PROB– , is added to the OUTPUT data
set whenever the QUANTILES= option is specified. The variable

–PROB– gives the probability value for the quantile estimates.
These are the values taken from the QUANTILES= list and are
given as values between 0 and 1, not as values between 0 and 100.

STD–ERR | STD specifies a variable to contain the estimates of the standard er-
rors of the estimated quantiles orx′b. If the response used in the
MODEL statement is a binomial response, then these are the stan-
dard errors ofx′b. Otherwise, they are the standard errors of the



2102 � Chapter 39. The LIFEREG Procedure

quantile estimates. These estimates can be used to compute con-
fidence intervals for the quantiles. However, if the model is fit to
the log of the event time, better confidence intervals can usually
be computed by transforming the confidence intervals for the log
response. SeeExample 39.1for such a transformation.

XBETA specifies a variable to contain the computed value ofx′b, wherex
is the covariate vector andb is the vector of parameter estimates.

PROBPLOT Statement

PROBPLOT | PPLOT < / options > ;

You can use the PROBPLOT statement to create a probability plot from lifetime data.
The data can be uncensored, right-censored, or arbitrarily censored. You can specify
any number of PROBPLOT statements after a MODEL statement. The syntax used
for the response in the MODEL statement determines the type of censoring assumed
in creating the probability plot. The model fit with the MODEL statement is plotted
along with the data. If there are covariates in the model, they are set to constant values
specified in the XDATA= data set when creating the probability plot. If no XDATA=
data set is specified, continuous variables are set to their overall mean values and
categorical variables specified in the CLASS statement are set to their highest levels.

You can specify the following options to control the content, layout, and appearance
of a probability plot.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an ANNOTATE data set, as described inSAS/GRAPH Software: Reference,
that enables you to add features to the probability plot. The ANNOTATE= data set
you specify in the PROBPLOT statement is used for all plots created by the statement.

CAXIS=color
CAXES=color

specifies the color used for the axes and tick marks. This option overrides any
COLOR= specifications in an AXIS statement. The default is the first color in the
device color list.

CCENSOR=color
specifies the color for filling the censor plot area. The default is the first color in the
device color list.

CENBIN
plots censored data as frequency counts (rounding-off for non-integer frequency)
rather than as individual points.

CENCOLOR=color
specifies the color for the censor symbol. The default is the first color in the device
color list.



PROBPLOT Statement � 2103

CENSYMBOL=symbol| (symbol list)
specifies symbols for censored values. Thesymbolis one of the symbol names (plus,
star, square, diamond, triangle, hash, paw, point, dot, and circle) or a letter (A–Z). If
you do not specify the CENSYMBOL= option, the symbol used for censored values
is the same as for failures.

CFIT=color
specifies the color for the fitted probability line and confidence curves. The default is
the first color in the device color list.

CFRAME=color
CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded
by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color
CH=color

specifies the color for lines requested by the HREF= option. The default is the first
color in the device color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color
specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color
CV=color

specifies the color for lines requested by the VREF= option. The default is the first
color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters, that appears in the PROC GREPLAY
master menu. The default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts
for axis labels in an AXIS statement. The FONT= font takes precedence over the
FTEXT= font specified in the most recent GOPTIONS statement. Hardware charac-
ters are used by default.

HCL
computes and draws confidence limits for the predicted probabilities in the horizontal
direction.

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in
percentage).
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HLOWER=value
specifies the lower limit on the lifetime axis scale. The HLOWER= option specifies
valueas the lower lifetime axis tick mark. The tick mark interval and the upper axis
limit are determined automatically.

HOFFSET=value
specifies the offset for the horizontal axis. The default value is 1.

HUPPER=value
specifiesvalueas the upper lifetime axis tick mark. The tick mark interval and the
lower axis limit are determined automatically.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is
specified, a second reference line perpendicular to the vertical axis is drawn that
intersects the fit line at the same point as the horizontal axis reference line. If a
horizontal axis reference line label is specified, the intersecting vertical axis reference
line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=,
and LHREF= options.

HREFLABELS= ’label1’ . . . ’labeln’
HREFLABEL= ’label1’ . . . ’labeln’
HREFLAB= ’label1’ . . . ’labeln’

specifies labels for the lines requested by the HREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

HREFLABPOS= n
specifies the vertical position of labels for HREF= lines. The following table shows
the valid values forn and the corresponding label placements.

n label placement
1 top
2 staggered from top
3 bottom
4 staggered from bottom
5 alternating from top
6 alternating from bottom

INBORDER
requests a border around probability plots.

INTERTILE=value
specifies the distance between tiles.

ITPRINTEM
displays the iteration history for the Turnbull algorithm.
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JITTER=value
specifies the amount to jitter overlaying plot symbols, in units of symbol width.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves
are drawn by connecting solid lines (linetype = 1), and confidence limits are drawn
by connecting dashed lines (linetype = 3).

LGRID=linetype
specifies a line style for all grid lines.linetypeis between 1 and 46. The default is 35.

LHREF=linetype
LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2,
which produces a dashed line.

LVREF=linetype
LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2,
which produces a dashed line.

MAXITEM=n1 <,n2> n1
specifies the maximum number of iterations allowed for the Turnbull algorithm.
Iteration history will be displayed in increments ofn2 if requested with the
ITPRINTEM option. See the section“Arbitrarily Censored Data”on page 2119 for
details.

NAME=’string’
specifies a name for the plot, up to eight characters, that appears in the PROC
GREPLAY master menu. The default is ’LIFEREG’.

NOCENPLOT
suppresses the plotting of censored data points.

NOCONF
suppresses the default percentile confidence bands on the probability plot.

NODATA
suppresses plotting of the estimated empirical probability plot.

NOFIT
suppresses the fitted probability (percentile) line and confidence bands.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.
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NOHTICK
suppresses horizontal tick marks.

NOPOLISH
suppresses setting small interval probabilities to zero in the Turnbull algorithm.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

NPINTERVALS= interval type
specifies one of the two kinds of confidence limits for the estimated cumu-
lative probabilities, pointwise (NPINTERVALS=POINT) or simultaneous
(NPINTERVALS=SIMUL), requested by the PPOUT option to be displayed
in the tabular output.

PCTLIST=value-list
specifies the list of percentages for which to compute percentile estimates.value-list
must be a list of values separated by blanks or commas. Each value in the list must
be between 0 and 100.

PLOWER=value
specifies the lower limit on the probability axis scale. The PLOWER= option spec-
ifies valueas the lower probability axis tick mark. The tick mark interval and the
upper axis limit are determined automatically.

PRINTPROBS
displays intervals and associated probabilities for the Turnbull algorithm.

PUPPER=value
specifies the upper limit on the probability axis scale. The PUPPER= option specifies
valueas the upper probability axis tick mark. The tick mark interval and the lower
axis limit are determined automatically.

PPOS=character-list
specifies the plotting position type. See the section“Probability Plotting” on page
2116 for details.

PPOS Method
EXPRANK expected ranks
MEDRANK median ranks
MEDRANK1 median ranks (exact formula)
KM Kaplan-Meier
MKM modified Kaplan-Meier (default)

PPOUT
specifies that a table of the cumulative probabilities plotted on the probability plot
be displayed. Kaplan-Meier estimates of the cumulative probabilities are also dis-
played, along with standard errors and confidence limits. The confidence limits can
be pointwise or simultaneous, as specified by the NPINTERVALS= option.
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PROBLIST=value-list
specifies the list of initial values for the Turnbull algorithm.

ROTATE
requests probability plots with probability scale on the horizontal axis.

SQUARE
makes the layout of the probability plots square.

TOLLIKE= value
specifies the criterion for convergence in the Turnbull algorithm.

TOLPROB=value
specifies the criterion for setting the interval probability to zero in the Turnbull algo-
rithm.

VAXISLABEL=‘ string’
specifies a label for the vertical axis.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is spec-
ified, a second reference line perpendicular to the horizontal axis is drawn that inter-
sects the fit line at the same point as the vertical axis reference line. If a vertical axis
reference line label is specified, the intersecting horizontal axis reference line is la-
beled with the horizontal axis value. See also the entries for the CVREF=, LVREF=,
and VREFLABELS= options.

VREFLABELS= ’label1’ . . . ’labeln’
VREFLABEL= ’label1’ . . . ’labeln’
VREFLAB= ’label1’ . . . ’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

VREFLABPOS= n
specifies the horizontal position of labels for VREF= lines. The valid values forn and
the corresponding label placements are shown in the following table.

n label placement
1 left
2 right

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.
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WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

WEIGHT Statement

WEIGHT variable ;

If you want to use weights for each observation in the input data set, place the weights
in a variable in the data set and specify the name in a WEIGHT statement. The values
of the WEIGHT variable can be nonintegral and are not truncated. Observations with
nonpositive or missing values for the weight variable do not contribute to the fit of
the model. The WEIGHT variable multiplies the contribution to the log likelihood
for each observation.

Details

Missing Values

Any observation with missing values for the dependent variable is not used in the
model estimation unless it is one and only one of the values in an interval specifica-
tion. Also, if one of the explanatory variables or the censoring variable is missing, the
observation is not used. For any observation to be used in the estimation of a model,
only the variables needed in that model have to be nonmissing. Predicted values are
computed for all observations with no missing explanatory variable values. If the
censoring variable is missing, the CENSORED= variable in the OUT= SAS data set
is also missing.

Model Specification

Main effects as well as interaction terms are allowed in the model specification, simi-
lar to the GLM procedure. For numeric variables, a main effect is a linear term equal
to the value of the variable unless the variable appears in the CLASS statement. For
variables listed in the CLASS statement, PROC LIFEREG creates indicator variables
(variables taking the values zero or one) for every level of the variable except the
last level. If there is no intercept term, the first class variable has indicator variables
created for all levels including the last level. The levels are ordered according to the
ORDER= option. Estimates of a main effect depend upon other effects in the model
and, therefore, are adjusted for the presence of other effects in the model.

Computational Method

By default, the LIFEREG Procedure computes initial values for the parameters using
ordinary least squares (OLS) ignoring censoring. This might not be the best set of
starting values for a given set of data. For example, if there are extreme values in your
data the OLS fit may be excessively influenced by the extreme observations, causing
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an overflow or convergence problems. SeeExample 39.3for one way to deal with
convergence problems.

You can specify the INITIAL= option in the MODEL statement to override these
starting values. You can also specify the INTERCEPT=, SCALE=, and SHAPE=
options to set initial values of the intercept, scale, and shape parameters. For models
with multilevel interaction effects, it is a little difficult to use the INITIAL= option to
provide starting values for all parameters. In this case, you can use the INEST= data
set. See the section“INEST= Data Set”on page 2121 for detail. The INEST= data
set overrides all previous specifications for starting values of parameters.

The rank of the design matrixX is estimated before the model is fit. Columns ofX
that are judged linearly dependent on other columns have the corresponding param-
eters set to zero. The test for linear dependence is controlled by the SINGULAR=
option in the MODEL statement. Variables are included in the model in the order in
which they are listed in the MODEL statement with the nonclass variables included
in the model before any class variables.

The log-likelihood function is maximized by means of a ridge-stabilized Newton-
Raphson algorithm. The maximized value of the log likelihood can take positive or
negative values, depending on the specified model and the values of the maximum
likelihood estimates of the model parameters.

If convergence of the maximum likelihood estimates is attained, a Type III chi-square
test statistic is computed for each effect, testing whether there is any contribution
from any of the levels of the effect. This statistic is computed as a quadratic form in
the appropriate parameter estimates using the corresponding submatrix of the asymp-
totic covariance matrix estimate. Refer toChapter 32, “The GLM Procedure,”and
Chapter 11, “The Four Types of Estimable Functions,”for more information about
Type III estimable functions.

The asymptotic covariance matrix is computed as the inverse of the observed informa-
tion matrix. Note that if the NOINT option is specified and class variables are used,
the first class variable contains a contribution from an intercept term. The results are
displayed in an ODS table namedType3Analysis.

Chi-square tests for individual parameters are Wald tests based on the observed infor-
mation matrix and the parameter estimates. If an effect has a single degree of freedom
in the parameter estimates table, the chi-square test for this parameter is equivalent to
the Type III test for this effect.

In releases previous to Version 8.2, a multiple degree of freedom statistic was com-
puted for each effect to test for contribution from any level of the effect. In general,
the Type III test statistic in a main effect only model (no interaction terms) will be
equal to the previously computed effect statistic, unless there are collinearities among
the effects. If there are collinearities, the Type III statistic will adjust for them, and
the value of the Type III statistic and the number of degrees of freedom might not be
equal to those of the previous effect statistic.

Suppose there aren observations from the modely = Xβ +σε, whereX is ann×k
matrix of covariate values (including the intercept),y is a vector of responses, and
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ε is a vector of errors with survival functionS, cumulative distribution functionF ,
and probability density functionf . That is,S(t) = Pr(εi > t), F (t) = Pr(εi ≤ t),
andf(t) = dF (t)/dt, whereεi is a component of the error vector. Then, if all the
responses are observed, the log likelihood,L, can be written as

L =
∑

log
(

f(ui)
σ

)
whereui = 1

σ (yi − x′iβ).

If some of the responses are left, right, or interval censored, the log likelihood can be
written as

L =
∑

log
(

f(ui)
σ

)
+
∑

log (S(ui)) +
∑

log (F (ui)) +
∑

log (F (ui)− F (vi))

with the first sum over uncensored observations, the second sum over right-censored
observations, the third sum over left-censored observations, the last sum over interval-
censored observations, and

vi =
1
σ

(zi − x′iβ)

wherezi is the lower end of a censoring interval.

If the response is specified in the binomial format,events/trials, then the log-
likelihood function is

L =
∑

ri log(Pi) + (ni − ri) log(1− Pi)

whereri is the number of events andni is the number of trials for theith observation.
In this case,Pi = 1−F (−x′iβ). For the symmetric distributions, logistic and normal,
this is the same asF (x′iβ). Additional information on censored and limited depen-
dent variable models can be found in Kalbfleisch and Prentice (1980) and Maddala
(1983).

The estimated covariance matrix of the parameter estimates is computed as the neg-
ative inverse ofI, which is the information matrix of second derivatives ofL with
respect to the parameters evaluated at the final parameter estimates. IfI is not posi-
tive definite, a positive definite submatrix ofI is inverted, and the remaining rows and
columns of the inverse are set to zero. If some of the parameters, such as the scale
and intercept, are restricted, the corresponding elements of the estimated covariance
matrix are set to zero. The standard error estimates for the parameter estimates are
taken as the square roots of the corresponding diagonal elements.

For restrictions placed on the intercept, scale, and shape parameters, one-degree-of-
freedom Lagrange multiplier test statistics are computed. These statistics are com-
puted as

χ2 =
g2

V
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whereg is the derivative of the log likelihood with respect to the restricted parameter
at the restricted maximum and

V = I11 − I12I−1
22 I21

where the 1 subscripts refer to the restricted parameter and the 2 subscripts refer
to the unrestricted parameters. The information matrix is evaluated at the restricted
maximum. These statistics are asymptotically distributed as chi-squares with one de-
gree of freedom under the null hypothesis that the restrictions are valid, provided that
some regularity conditions are satisfied. See Rao (1973, p. 418) for a more complete
discussion. It is possible for these statistics to be missing if the observed information
matrix is not positive definite. Higher degree-of-freedom tests for multiple restric-
tions are not currently computed.

A Lagrange multiplier test statistic is computed to test this constraint. Notice that this
test statistic is comparable to the Wald test statistic for testing that the scale is one.
The Wald statistic is the result of squaring the difference of the estimate of the scale
parameter from one and dividing this by the square of its estimated standard error.

Supported Distributions

For each distribution, the baseline survival function (S) and the probability density
function(f ) are listed for the additive random disturbance (y0 or log(T0)) with loca-
tion parameterµ and scale parameterσ. See the section“Overview” on page 2083.
These distributions apply when the log of the response is modeled (this is the default
analysis). The corresponding survival function (G) and its density function (g) are
given for the untransformed baseline distribution (T0).

For example, for the WEIBULL distribution,S(w) andf(w) are the survival function
and the probability density function for the extreme value distribution (distribution of
the log of the response) whileG(t) andg(t) are the survival function and the proba-
bility density function of a Weibull distribution (using the untransformed response).

The chosen baseline functions define the meaning of the intercept, scale, and shape
parameters. Only the gamma distribution has a free shape parameter in the following
parameterizations. Notice that some of the distributions do not have mean zero and
thatσ is not, in general, the standard deviation of the baseline distribution.

Additionally, it is worth mentioning that, for the Weibull distribution, the acceler-
ated failure time model is also a proportional-hazards model. However, the param-
eterization for the covariates differs by a multiple of the scale parameter from the
parameterization commonly used for the proportional hazards model.

The distributions supported in the LIFEREG procedure follow.µ = Intercept andσ
= Scale in the output.
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Exponential

S(w) = exp(− exp(w − µ))

f(w) = exp(w − µ) exp(− exp(w − µ))

G(t) = exp(−αt)

g(t) = α exp(−αt)

whereexp(−µ) = α .

Generalized Gamma

S(w) = S′(u), f(w) = σ−1f ′(u), G(t) = G′(v), g(t) = v
tσg′(v). u = w−µ

σ ,

v = exp( log(t)−µ
σ ), and

S′(u) =


1− Γ(δ−2,δ−2 exp(δu))

Γ(δ−2)
if δ > 0

Γ(δ−2,δ−2 exp(δu))
Γ(δ−2)

if δ < 0

f ′(u) =
|δ|

Γ (δ−2)
(
δ−2 exp(δu)

)δ−2

exp
(
− exp(δu)δ−2

)

G′(v) =


1− Γ(δ−2,δ−2vδ)

Γ(δ−2)
if δ > 0

Γ(δ−2,δ−2vδ)
Γ(δ−2)

if δ < 0

g′(v) =
|δ|

vΓ (δ−2)

(
δ−2vδ

)δ−2

exp
(
−vδδ−2

)

whereΓ(a) denotes the complete gamma function,Γ(a, z) denotes the incomplete
gamma function, andδ is a free shape parameter. Theδ parameter is referred
to asShape by PROC LIFEREG. Refer to Lawless, 1982, p.240 and Klein and
Moeschberger, 1997, p.386 for a description of the generalized gamma distribution.

Loglogistic

S(w) =
(

1 + exp
(

w − µ

σ

))−1

f(w) =
exp

(w−µ
σ

)
σ
(
1 + exp

(w−µ
σ

))2
G(t) =

1
1 + αtγ
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g(t) =
αγtγ−1

(1 + αtγ)2

whereγ = 1/σ andα = exp(−µ/σ).

Lognormal

S(w) = 1− Φ
(

w − µ

σ

)

f(w) =
1√
2πσ

exp

(
−1

2

(
w − µ

σ

)2
)

G(t) = 1− Φ
(

log(t)− µ

σ

)

g(t) =
1√

2πσt
exp

(
−1

2

(
log(t)− µ

σ

)2
)

whereΦ is the cumulative distribution function for the normal distribution.

Weibull

S(w) = exp
(
−exp

(
w − µ

σ

))

f(w) =
1
σ

exp
(

w − µ

σ

)
exp

(
− exp

(
w − µ

σ

))
G(t) = exp (−αtγ)

g(t) = γαtγ−1 exp (−αtγ)

whereσ = 1/γ andα = exp(−µ/σ).

If your parameterization is different from the ones shown here, you can still use the
procedure to fit your model. For example, a common parameterization for the Weibull
distribution is

g(t;λ, β) =
(

β

λ

)β ( t

α

)β−1

exp

(
−
(

t

λ

)β
)

G(t;λ, β) = exp

(
−
(

t

λ

)β
)
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so thatλ = exp(µ) andβ = 1/σ.

Again note that the expected value of the baseline log response is, in general, not
zero and that the distributions are not symmetric in all cases. Thus, for a given set of
covariates,x, the expected value of the log response is not alwaysx′β.

Some relations among the distributions are as follows:

• The gamma withShape=1 is a Weibull distribution.

• The gamma withShape=0 is a lognormal distribution.

• The Weibull withScale=1 is an exponential distribution.

Predicted Values

For a given set of covariates,x (including the intercept term), thepth quantile of the
log response,yp, is given by

yp = x′β + σup

whereup is thepth quantile of the baseline distribution. The estimated quantile is
computed by replacing the unknown parameters with their estimates, including any
shape parameters on which the baseline distribution might depend. The estimated
quantile of the original response is obtained by taking the exponential of the esti-
mated log quantile unless the NOLOG option is specified in the preceding MODEL
statement.

The standard errors of the quantile estimates are computed using the estimated covari-
ance matrix of the parameter estimates and a Taylor series expansion of the quantile
estimate. The standard error is computed as

STD =
√

z′Vz

whereV is the estimated covariance matrix of the parameter vector(β′, σ, δ)′, andz
is the vector

z =

 x

ûp

σ̂
∂up

∂δ


whereδ is the vector of the shape parameters. Unless the NOLOG option is specified,
this standard error estimate is converted into a standard error estimate forexp(yp)
asexp(ŷp)STD. It may be more desirable to compute confidence limits for the log
response and convert them back to the original response variable than to use the
standard error estimates forexp(yp) directly. SeeExample 39.1for a 90% confidence
interval of the response constructed by exponentiating a confidence interval for the
log response.
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The variable,CDF, is computed as

CDFi = F (ui)

where the residual

ui =
(

yi − x′ib
σ̂

)
andF is the baseline cumulative distribution function.

Confidence Intervals

Confidence intervals are computed for all model parameters and are reported in the
“Analysis of Parameter Estimates” table. The confidence coefficient can be speci-
fied with the ALPHA=α MODEL statement option, resulting in a(1 − α) × 100%
two-sided confidence coefficient. The default confidence coefficient is 95%, corre-
sponding toα = .05.

Regression Parameters

A two-sided(1 − α) × 100% confidence interval[βiL, βiU ] for the regression pa-
rameterβi is based on the asymptotic normality of the maximum likelihood estimator
β̂i and is computed by

βiL = β̂i − z1−α/2(SEβ̂i
)

βiU = β̂i + z1−α/2(SEβ̂i
)

whereSEβ̂i
is the estimated standard error ofβ̂i, andzp is thep × 100% percentile

of the standard normal distribution.

Scale Parameter

A two-sided(1−α)× 100% confidence interval[σL, σU ] for the scale parameterσ
in the location-scale model is based on the asymptotic normality of the logarithm of
the maximum likelihood estimatorlog(σ̂), and is computed by

σL = σ̂/ exp[z1−α/2(SEσ̂)/σ̂]

σU = σ̂ exp[z1−α/2(SEσ̂)/σ̂]

Refer to Meeker and Escobar (1998) for more information.
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Weibull Scale and Shape Parameters

The Weibull distribution scale parameterη and shape parameterβ are obtained by
transforming the extreme value location parameterµ and scale parameterσ:

η = exp(µ)

β = 1/σ

Consequently, two-sided(1 − α) × 100% confidence intervals for the Weibull scale
and shape parameters are computed as

[ηL, ηU ] = [exp(µL), exp(µU )]

[βL, βU ] = [1/σU , 1/σL]

Gamma Shape Parameter

A two-sided(1 − α) × 100% confidence interval for the 3-parameter gamma shape
parameterδ is computed by

[δL, δU ] = [δ̂ − z1−α/2(SEδ̂), δ̂ + z1−α/2(SEδ̂)]

Probability Plotting

Probability plots are useful tools for the display and analysis of lifetime data.
Probability plots use an inverse distribution scale so that a cumulative distribution
function (CDF) plots as a straight line. A nonparametric estimate of the CDF of
the lifetime data will plot approximately as a straight line, thus providing a visual
assessment of goodness-of-fit.

You can use the PROBPLOT statement in LIFEREG to create probability plots of data
that are complete, right-censored, interval-censored, or a combination of censoring
types (arbitrarily censored). A line representing the maximum likelihood fit from the
MODEL statement and pointwise parametric confidence bands for the cumulative
probabilities are also included on the plot.

A random variableY belongs to alocation-scalefamily of distributions if its CDFF
is of the form

Pr{Y ≤ y} = F (y) = G

(
y − µ

σ

)

whereµ is the location parameter andσ is the scale parameter. Here,G is a CDF
that cannot depend on any unknown parameters, andG is the CDF ofY if µ = 0
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andσ = 1. For example, ifY is a normal random variable with meanµ and standard
deviationσ,

G(u) = Φ(u) =
∫ u

−∞

1√
2π

exp(−u2

2
) du

and

F (y) = Φ
(

y − µ

σ

)
The normal, extreme value, and logistic distributions are location-scale models. The
3-parameter gamma distribution is a location-scale model if the shape parameterδ
is fixed. If T has a lognormal, Weibull, or log-logistic distribution, thenlog(T ) has
a distribution that is a location-scale model. Probability plots are constructed for
lognormal, Weibull, and log-logistic distributions by usinglog(T ) instead ofT in the
plots.

Let y(1) ≤ y(2) ≤ . . . ≤ y(n) be ordered observations of a random sample with
distribution functionF (y). A probability plot is a plot of the pointsy(i) against

mi = G−1(ai), whereai = F̂ (yi) is an estimate of the CDFF (y(i)) = G
(

y(i)−µ

σ

)
.

The nonparametric CDF estimatesai are sometimes calledplotting positions. The
axis on which the pointsmi are plotted is usually labeled with a probability scale (the
scale ofai).

If F is one of the location-scale distributions, theny is the lifetime; otherwise, the
log of the lifetime is used to transform the distribution to a location-scale model.

If the data actually have the stated distribution, thenF̂ ≈ F ,

mi = G−1(F̂ (yi)) ≈ G−1(G
(

y(i) − µ

σ

)
) =

y(i) − µ

σ

and points(y(i),mi) should fall approximately on a straight line.

There are several ways to compute the nonparametric CDF estimates used in proba-
bility plots from lifetime data. These are discussed in the next two sections.

Complete and Right-Censored Data

The censoring times must be taken into account when you compute plotting positions
for right-censored data. The modified Kaplan-Meier method described in the follow-
ing section is the default method for computing nonparametric CDF estimates for
display on probability plots. Refer to Abernethy (1996), Meeker and Escobar (1998),
and Nelson (1982) for discussions of the methods described in the following sections.



2118 � Chapter 39. The LIFEREG Procedure

Expected Ranks, Kaplan-Meier, and Modified Kaplan-Meier Methods

Let y(1) ≤ y(2) ≤ . . . ≤ y(n) be ordered observations of a random sample including
failure times and censor times. Order the data in increasing order. Label all the data
with reverse ranksri, with r1 = n, . . . , rn = 1. For the lifetime (not censoring time)
corresponding to reverse rankri, compute the survival function estimate

Si =
[

ri

ri + 1

]
Si−1

with S0 = 1. The expected rank plotting position is computed asai = 1 − Si . The
option PPOS=EXPRANK specifies the expected rank plotting position.

For the Kaplan-Meier method,

Si =
[
ri − 1

ri

]
Si−1

The Kaplan-Meier plotting position is then computed asa′i = 1 − Si. The option
PPOS=KM specifies the Kaplan-Meier plotting position.

For the modified Kaplan-Meier method, use

S′
i =

Si + Si−1

2

whereSi is computed from the Kaplan-Meier formula withS0 = 1. The plotting
position is then computed asa′′i = 1 − S′

i. The option PPOS=MKM specifies the
modified Kaplan-Meier plotting position. If the PPOS option is not specified, the
modified Kaplan-Meier plotting position is used as the default method.

For complete samples,ai = i/(n+1) for the expected rank method,a′i = i/n for the
Kaplan-Meier method, anda′′i = (i− .5)/n for the modified Kaplan-Meier method.
If the largest observation is a failure for the Kaplan-Meier estimator, thenFn = 1 and
the point is not plotted.

Median Ranks

Let y(1) ≤ y(2) ≤ . . . ≤ y(n) be ordered observations of a random sample including
failure times and censor times. A failure order numberji is assigned to theith failure:
ji = ji−1 + ∆, wherej0 = 0. The increment∆ is initially 1 and is modified when a
censoring time is encountered in the ordered sample. The new increment is computed
as

∆ =
(n + 1)− previous failure order number

1 + number of items beyond previous censored item

The plotting position is computed for theith failure time as

ai =
ji − .3
n + .4
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For complete samples, the failure order numberji is equal toi, the order of the failure
in the sample. In this case, the preceding equation forai is an approximation to the
median plotting position computed as the median of theith-order statistic from the
uniform distribution on (0, 1). In the censored case,ji is not necessarily an integer,
but the preceding equation still provides an approximation to the median plotting
position. The PPOS=MEDRANK option specifies the median rank plotting position.

Arbitrarily Censored Data

The LIFEREG procedure can create probability plots for data that consists of com-
binations of exact, left-censored, right-censored, and interval-censored lifetimes, that
is, arbitrarily censored data. The LIFEREG procedure uses an iterative algorithm
developed by Turnbull (1976) to compute a nonparametric maximum likelihood esti-
mate of the cumulative distribution function for the data. Since the technique is max-
imum likelihood, standard errors of the cumulative probability estimates are com-
puted from the inverse of the associated Fisher information matrix. This algorithm
is an example of the expectation-maximization (EM) algorithm. The default initial
estimate assigns equal probabilities to each interval. You can specify different initial
values with the PROBLIST= option. Convergence is determined if the change in the
log likelihood between two successive iterations is less than delta, where the default
value of delta is10−8. You can specify a different value for delta with the TOLLIKE=
option. Iterations will be terminated if the algorithm does not converge after a fixed
number of iterations. The default maximum number of iterations is 1000. Some data
may require more iterations for convergence. You can specify the maximum allowed
number of iterations with the MAXITEM= option in the PROBPLOT statement. The
iteration history of the log likelihood is displayed if you specify the ITPRINTEM
option. The iteration history of the estimated interval probabilities are also displayed
if you specify both options ITPRINTEM and PRINTPROBS.

If an interval probability is smaller than a tolerance (10−6 by default) after conver-
gence, the probability is set to zero, the interval probabilities are renormalized so that
they add to one, and iterations are restarted. Usually the algorithm converges in just
a few more iterations. You can change the default value of the tolerance with the
TOLPROB= option. You can specify the NOPOLISH option to avoid setting small
probabilities to zero and restarting the algorithm.

If you specify the ITPRINTEM option, a table summarizing the Turnbull estimate of
the interval probabilities is displayed. The columns labeled “Reduced Gradient” and
“Lagrange Multiplier” are used in checking final convergence of the maximum like-
lihood estimate. The Lagrange multipliers must all be greater than or equal to zero,
or the solution is not maximum likelihood. Refer to Gentleman and Geyer (1994) for
more details of the convergence checking. Also refer to Meeker and Escobar (1998,
chap. 3) for more information.

SeeExample 39.6on page 2142 for an illustration.

Nonparametric Confidence Intervals

You can use the PPOUT option in the PROBPLOT statement to create a table con-
taining the nonparametric CDF estimates computed by the selected method, Kaplan-
Meier CDF estimates, standard errors of the Kaplan-Meier estimator, and nonpara-
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metric confidence limits for the CDF. The confidence limits are either pointwise
or simultaneous, depending on the value of the NPINTERVALS= option in the
PROBPLOT statement. The method used in the LIFEREG procedure for computa-
tion of approximate pointwise and simultaneous confidence intervals for cumulative
failure probabilities relies on the Kaplan-Meier estimator of the cumulative distribu-
tion function of failure time and approximate standard deviation of the Kaplan-Meier
estimator. For the case of arbitrarily censored data, the Turnbull algorithm, discussed
previously, provides an extension of the Kaplan-Meier estimator. Both the Kaplan-
Meier and the Turnbull estimators provide an estimate of the standard error of the
CDF estimator, sêF , that is used in computing confidence intervals.

Pointwise Confidence Intervals

Approximate(1−α)100% pointwise confidence intervals are computed as in Meeker
and Escobar (1998, section 3.6) as

[FL, FU ] =

[
F̂

F̂ + (1− F̂ )w
,

F̂

F̂ + (1− F̂ )/w

]

where

w = exp

[
z1−α/2seF̂
(F̂ (1− F̂ ))

]

wherezp is thepth quantile of the standard normal distribution.

Simultaneous Confidence Intervals

Approximate(1−α)100% simultaneous confidence bands valid over the lifetime in-
terval(ta, tb) are computed as the “Equal Precision” case of Nair (1984) and Meeker
and Escobar (1998, section 3.8) as

[FL, FU ] =

[
F̂

F̂ + (1− F̂ )w
,

F̂

F̂ + (1− F̂ )/w

]

where

w = exp

[
ea,b,1−α/2seF̂
(F̂ (1− F̂ ))

]

where the factorx = ea,b,1−α/2 is the solution of

x exp(−x2/2) log
[
(1− a)b
(1− b)a

]
/
√

8π = α/2
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The time interval(ta, tb) over which the bands are valid depends in a complicated
way on the constantsa and b defined in Nair (1984),0 < a < b < 1. a and
b are chosen by default so that the confidence bands are valid between the low-
est and highest times corresponding to failures in the case of multiply censored
data, or, to the lowest and highest intervals for which probabilities are computed
for arbitrarily censored data. You can optionally specifya andb directly with the
NPINTERVALS=SIMULTANEOUS(a, b) option in the PROBPLOT statement.

INEST= Data Set

If specified, the INEST= data set specifies initial estimates for all the parameters in the
model. The INEST= data set must contain the intercept variable (namedIntercept)
and all independent variables in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables,
and there must be at least one observation for each BY group. If there is more than
one observation in one BY group, the first one read is used for that BY group.

If the INEST= data set also contains the–TYPE– variable, only observations with

–TYPE– value ’PARMS’ are used as starting values. Combining the INEST= data
set and the MAXITER= option in the MODEL statement, partial scoring can be done,
such as predicting on a validation data set by using the model built from a training
data set.

You can specify starting values for the iterative algorithm in the INEST= data set.
This data set overwrites the INITIAL= option in the MODEL statement, which is a
little difficult to use for models including multilevel interaction effects. The INEST=
data set has the same structure as the OUTEST= data set but is not required to have
all the variables or observations that appear in the OUTEST= data set. One simple
use of the INEST= option is passing the previous OUTEST= data set directly to the
next model as an INEST= data set, assuming that the two models have the same
parameterization. SeeExample 39.3on page 2133 for an illustration.

OUTEST= Data Set

The OUTEST= data set contains parameter estimates and the log likelihood for the
model. You can specify a label in the MODEL statement to distinguish between the
estimates for different modeling using the LIFEREG procedure. If the COVOUT
option is specified, the OUTEST= data set also contains the estimated covariance
matrix of the parameter estimates. Note that, if the LIFEREG procedure does not
converge, the parameter estimates are set to missing in the OUTEST data set.

The OUTEST= data set contains all variables specified in the MODEL statement and
the BY statement. One observation consists of parameter values for the model with
the dependent variable having the value−1. If the COVOUT option is specified, there
are additional observations containing the rows of the estimated covariance matrix.
For these observations, the dependent variable contains the parameter estimate for the
corresponding row variable. The following variables are also added to the data set:
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–MODEL– a character variable containing the label of the MODEL statement,
if present. Otherwise, the variable’s value is blank.

–NAME– a character variable containing the name of the dependent variable
for the parameter estimates observations or the name of the row for
the covariance matrix estimates

–TYPE– a character variable containing the type of the observation, either
PARMS for parameter estimates or COV for covariance estimates

–DIST– a character variable containing the name of the distribution mod-
eled

–LNLIKE– a numeric variable containing the last computed value of the log
likelihood

INTERCEPT a numeric variable containing the intercept parameter estimates and
covariances

–SCALE– a numeric variable containing the scale parameter estimates and
covariances

–SHAPE1– a numeric variable containing the first shape parameter estimates
and covariances if the specified distribution has additional shape
parameters

Any BY variables specified are also added to the OUTEST= data set.

XDATA= Data Set

The XDATA= data set is used for plotting the predicted probability when there are
covariates specified in a MODEL statement and a probability plot is specified with a
PROBPLOT statement. SeeExample 39.4on page 2136 for an illustration.

The XDATA= data set is an input SAS data set that contains values for all the indepen-
dent variables in the MODEL statement and variables in the CLASS statement.The
XDATA= data set has the same structure as the DATA= data set but is not required to
have all the variables or observations that appear in the DATA= data set.

The XDATA= data set must contain all the independent variables in the MODEL
statement and variables in the CLASS statement. Even though variables in the
CLASS statement may not be used, valid values are required for these variables in the
XDATA= data set. Missing values are not allowed. Missing values are not allowed
in the XDATA= data set for any of the independent variables either. Missing values
are allowed for the dependent variables and other variables if they are included in the
XDATA= data set.

If BY processing is used, the XDATA= data set should also include the BY variables,
and there must be at least one valid observation for each BY group. If there is more
than one valid observation in a BY group, the last one read is used for that BY group.

If there is no XDATA= data set in the PROC LIFEREG statement, by default, the
LIFEREG procedure will use the overall mean for effects containing a continuous
variable (or variables) and the highest level of a single classification variable as ref-
erence level. The rules are summarized as follows:
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• If the effect contains a continuous variable (or variables), the overall mean of
this effect (not the variables) is used.

• If the effect is a single classification variable, the highest level of the variable
is used.

Computational Resources

Let p be the number of parameters estimated in the model. The minimum working
space (in bytes) needed is

16p2 + 100p

However, if sufficient space is available, the input data set is also kept in memory;
otherwise, the input data set is reread for each evaluation of the likelihood function
and its derivatives, with the resulting execution time of the procedure substantially
increased.

Let n be the number of observations used in the model estimation. Each evaluation
of the likelihood function and its first and second derivatives requiresO(np2) multi-
plications and additions,n individual function evaluations for the log density or log
distribution function, andn evaluations of the first and second derivatives of the func-
tion. The calculation of each updating step from the gradient and Hessian requires
O(p3) multiplications and additions. TheO(v) notation means that, for large values
of the argument,v, O(v) is approximately a constant timesv.

Displayed Output

For each model, PROC LIFEREG displays

• the name of the Data Set

• the name of the Dependent Variable

• the name of the Censoring Variable

• the Censoring Value(s) that indicate a censored observation

• the number of Noncensored and Censored Values

• the final estimate of the maximized log likelihood

• the iteration history and the Last Evaluation of the Gradient and Hessian if the
ITPRINT option is specified (not shown)

For each explanatory variable in the model, the LIFEREG procedure displays

• the name of the Variable

• the degrees of freedom (DF) associated with the variable in the model

• the Estimate of the parameter

• the standard error (Std Err) estimate from the observed information matrix



2124 � Chapter 39. The LIFEREG Procedure

• an approximate chi-square statistic for testing that the parameter is zero (the
class variables also have an overall chi-square test statistic computed that pre-
cedes the individual level parameters)

• the probability of a larger chi-square value (Pr>Chi)

• the Label of the variable or, if the variable is a class level, the Value of the class
variable

If there are constrained parameters in the model, such as the scale or intercept, then
PROC LIFEREG displays a Lagrange multiplier test for the constraint.

ODS Table Names

PROC LIFEREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 39.2. ODS Tables Produced in PROC LIFEREG

ODS Table Name Description Statement Option
ClassLevels Class variable levels CLASS default∗

ConvergenceStatus Convergence status MODEL default
CorrB Parameter estimate correlation matrix MODEL CORRB
CovB Parameter estimate covariance matrix MODEL COVB
EMIterHistory Iteration history for Turnbull algorithm PROBPLOT ITPRINTEM
IterHistory Iteration history MODEL ITPRINT
LagrangeStatistics Lagrange statistics MODEL NOINT | NOSCALE
LastGrad Last evaluation of the gradient MODEL ITPRINT
LastHess Last evaluation of the Hessian MODEL ITPRINT
ModelInfo Model information MODEL default
NObs Observations Summary PROC default
ParameterEstimates Parameter estimates MODEL default
ParmInfo Parameter indices MODEL default
ProbEstimates Nonparametric CDF estimates PROBPLOT PPOUT
Turnbull Probability estimates from Turnbull algo-

rithm
PROBPLOT ITPRINTEM

Type3Analysis Type 3 tests MODEL default∗

∗ Depends on data.

Examples

Example 39.1. Motorette Failure

This example fits a Weibull model and a lognormal model to the example given in
Kalbfleisch and Prentice (1980, p. 5). An output data set calledmodels is specified
to contain the parameter estimates. By default, the natural log of the variabletime
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is used by the procedure as the response. After this log transformation, the Weibull
model is fit using the extreme value baseline distribution, and the lognormal is fit
using the normal baseline distribution.

Since the extreme value and normal distributions do not contain any shape parame-
ters, the variableSHAPE1 is missing in themodels data set. An additional output
data set,out, is created that contains the predicted quantiles and their standard errors
for values of the covariate corresponding totemp=130 andtemp=150. This is done
with thecontrol variable, which is set to 1 for only two observations.

Using the standard error estimates obtained from the output data set, approximate
90% confidence limits for the predicted quantities are then created in a subsequent
DATA step for the log response. The logs of the predicted values are obtained because
the values of the P= variable in the OUT= data set are in the same units as the original
response variable,time. The standard errors of the quantiles of the log(time) are
approximated (using a Taylor series approximation) by the standard deviation oftime
divided by the mean value oftime. These confidence limits are then converted back
to the original scale by the exponential function. The following statements produce
Output 39.1.1throughOutput 39.1.5.

title ’Motorette Failures With Operating Temperature as a Covariate’;
data motors;

input time censor temp @@;
if _N_=1 then

do;
temp=130;
time=.;
control=1;
z=1000/(273.2+temp);
output;
temp=150;
time=.;
control=1;
z=1000/(273.2+temp);
output;

end;
if temp>150;
control=0;
z=1000/(273.2+temp);
output;
datalines;

8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150
8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150
1764 1 170 2772 1 170 3444 1 170 3542 1 170 3780 1 170
4860 1 170 5196 1 170 5448 0 170 5448 0 170 5448 0 170

408 1 190 408 1 190 1344 1 190 1344 1 190 1440 1 190
1680 0 190 1680 0 190 1680 0 190 1680 0 190 1680 0 190

408 1 220 408 1 220 504 1 220 504 1 220 504 1 220
528 0 220 528 0 220 528 0 220 528 0 220 528 0 220

;

proc print data=motors;
run;

proc lifereg data=motors outest=modela covout;
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a: model time*censor(0)=z;
output out=outa quantiles=.1 .5 .9 std=std p=predtime

control=control;
run;

proc lifereg data=motors outest=modelb covout;
b: model time*censor(0)=z / dist=lnormal;

output out=outb quantiles=.1 .5 .9 std=std p=predtime
control=control;

run;

data models;
set modela modelb;

run;

proc print data=models;
id _model_;
title ’fitted models’;

run;

data out;
set outa outb;

run;

data out1;
set out;
ltime=log(predtime);
stde=std/predtime;
upper=exp(ltime+1.64*stde);
lower=exp(ltime-1.64*stde);

run;

proc print;
id temp;
title ’quantile estimates and confidence limits’;

run;
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Output 39.1.1. Motorette Failure Data
Motorette Failures With Operating Temperature as a Covariate

Obs time censor temp control z

1 . 0 130 1 2.48016
2 . 0 150 1 2.36295
3 1764 1 170 0 2.25632
4 2772 1 170 0 2.25632
5 3444 1 170 0 2.25632
6 3542 1 170 0 2.25632
7 3780 1 170 0 2.25632
8 4860 1 170 0 2.25632
9 5196 1 170 0 2.25632

10 5448 0 170 0 2.25632
11 5448 0 170 0 2.25632
12 5448 0 170 0 2.25632
13 408 1 190 0 2.15889
14 408 1 190 0 2.15889
15 1344 1 190 0 2.15889
16 1344 1 190 0 2.15889
17 1440 1 190 0 2.15889
18 1680 0 190 0 2.15889
19 1680 0 190 0 2.15889
20 1680 0 190 0 2.15889
21 1680 0 190 0 2.15889
22 1680 0 190 0 2.15889
23 408 1 220 0 2.02758
24 408 1 220 0 2.02758
25 504 1 220 0 2.02758
26 504 1 220 0 2.02758
27 504 1 220 0 2.02758
28 528 0 220 0 2.02758
29 528 0 220 0 2.02758
30 528 0 220 0 2.02758
31 528 0 220 0 2.02758
32 528 0 220 0 2.02758

Output 39.1.2. Motorette Failure: Model A
The LIFEREG Procedure

Model Information

Data Set WORK.MOTORS
Dependent Variable Log(time)
Censoring Variable censor
Censoring Value(s) 0
Number of Observations 30
Noncensored Values 17
Right Censored Values 13
Left Censored Values 0
Interval Censored Values 0
Missing Values 2
Name of Distribution Weibull
Log Likelihood -22.95148315

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

z 1 99.5239 <.0001

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -11.8912 1.9655 -15.7435 -8.0389 36.60 <.0001
z 1 9.0383 0.9060 7.2626 10.8141 99.52 <.0001
Scale 1 0.3613 0.0795 0.2347 0.5561
Weibull Shape 1 2.7679 0.6091 1.7982 4.2605
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Output 39.1.3. Motorette Failure: Model B
The LIFEREG Procedure

Model Information

Data Set WORK.MOTORS
Dependent Variable Log(time)
Censoring Variable censor
Censoring Value(s) 0
Number of Observations 30
Noncensored Values 17
Right Censored Values 13
Left Censored Values 0
Interval Censored Values 0
Missing Values 2
Name of Distribution Lognormal
Log Likelihood -24.47381031

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

z 1 42.0001 <.0001

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -10.4706 2.7719 -15.9034 -5.0377 14.27 0.0002
z 1 8.3221 1.2841 5.8052 10.8389 42.00 <.0001
Scale 1 0.6040 0.1107 0.4217 0.8652

Output 39.1.4. Motorette Failure: Fitted Models
fitted models

_MODEL_ _NAME_ _TYPE_ _DIST_ _STATUS_ _LNLIKE_ time Intercept z _SCALE_

A time PARMS Weibull 0 Converged -22.9515 -1.0000 -11.8912 9.03834 0.36128
A Intercept COV Weibull 0 Converged -22.9515 -11.8912 3.8632 -1.77878 0.03448
A z COV Weibull 0 Converged -22.9515 9.0383 -1.7788 0.82082 -0.01488
A Scale COV Weibull 0 Converged -22.9515 0.3613 0.0345 -0.01488 0.00632
B time PARMS Lognormal 0 Converged -24.4738 -1.0000 -10.4706 8.32208 0.60403
B Intercept COV Lognormal 0 Converged -24.4738 -10.4706 7.6835 -3.55566 0.03267
B z COV Lognormal 0 Converged -24.4738 8.3221 -3.5557 1.64897 -0.01285
B Scale COV Lognormal 0 Converged -24.4738 0.6040 0.0327 -0.01285 0.01226

Output 39.1.5. Motorette Failure: Quantile Estimates and Confidence Limits
quantile estimates and confidence limits

temp time censor control z _PROB_ predtime std ltime stde upper lower

130 . 0 1 2.48016 0.1 16519.27 5999.85 9.7123 0.36320 29969.51 9105.47
130 . 0 1 2.48016 0.5 32626.65 9874.33 10.3929 0.30265 53595.71 19861.63
130 . 0 1 2.48016 0.9 50343.22 15044.35 10.8266 0.29884 82183.49 30838.80
150 . 0 1 2.36295 0.1 5726.74 1569.34 8.6529 0.27404 8976.12 3653.64
150 . 0 1 2.36295 0.5 11310.68 2299.92 9.3335 0.20334 15787.62 8103.28
150 . 0 1 2.36295 0.9 17452.49 3629.28 9.7672 0.20795 24545.37 12409.24
130 . 0 1 2.48016 0.1 12033.19 5482.34 9.3954 0.45560 25402.68 5700.09
130 . 0 1 2.48016 0.5 26095.68 11359.45 10.1695 0.43530 53285.36 12779.95
130 . 0 1 2.48016 0.9 56592.19 26036.90 10.9436 0.46008 120349.65 26611.42
150 . 0 1 2.36295 0.1 4536.88 1443.07 8.4200 0.31808 7643.71 2692.83
150 . 0 1 2.36295 0.5 9838.86 2901.15 9.1941 0.29487 15957.38 6066.36
150 . 0 1 2.36295 0.9 21336.97 7172.34 9.9682 0.33615 37029.72 12294.62
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Example 39.2. Computing Predicted Values for a Tobit Model
The LIFEREG Procedure can be used to perform a Tobit analysis. The Tobit model,
described by Tobin (1958), is a regression model for left-censored data assuming a
normally distributed error term. The model parameters are estimated by maximum
likelihood. PROC LIFEREG provides estimates of the parameters of the distribution
of the uncensoreddata. Refer to Greene (1993) and Maddala (1983) for a more
complete discussion of censored normal data and related distributions. This example
shows how you can use PROC LIFEREG and the DATA step to compute two of the
three types of predicted values discussed there.

Consider a continuous random variable Y, and a constant C. If you were to sample
from the distribution of Y but discard values less than (greater than) C, the distribution
of the remaining observations would betruncated on the left (right). If you were to
sample from the distribution of Y and report values less than (greater than) C as C,
the distribution of the sample would be left (right)censored.

The probability density function of the truncated random variableY′ is given by

fY′(y) =
fY(y)

Pr(Y > C)
for y > C

wherefY(y) is the probability density function of Y. PROC LIFEREG cannot com-
pute the proper likelihood function to estimate parameters or predicted values for a
truncated distribution.

Suppose the model being fit is specified as follows:

Y∗
i = x′iβ + εi

whereεi is a normal error term with zero mean and standard deviationσ.

Define the censored random variableYi as

Yi = 0 if Y∗
i ≤ 0

Yi = Y∗
i if Y∗

i > 0

This is the Tobit model for left-censored normal data.Y∗
i is sometimes called the

latent variable. PROC LIFEREG estimates parameters of the distribution ofY∗
i by

maximum likelihood.

You can use the LIFEREG procedure to compute predicted values based on the mean
functions of the latent and observed variables. The mean of the latent variableY∗

i

is x′iβ and you can compute values of the mean for different settings ofxi by spec-
ifying XBETA=variable-namein an OUTPUT statement. Estimates ofx′iβ for each
observation will be written to the OUT= data set. Predicted values of the observed
variableYi can be computed based on the mean

E(Yi) = Φ
(

x′iβ
σ

)
(x′iβ + σλi)
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where

λi =
φ(x′iβ/σ)
Φ(x′iβ/σ)

φ andΦ represent the normal probability density and cumulative distribution func-
tions.

Although the distribution ofεi in the Tobit model is often assumed normal, you can
use other distributions for the Tobit model in the LIFEREG procedure by specifying
a distribution with the DISTRIBUTION= option in the MODEL statement. One dis-
tribution should be mentioned is the logistic distribution. For this distribution, the
MLE has bounded influence function with respect to the response variable, but not
the design variables. If you believe your data has outliers in the response direction,
you might try this distribution for some robust estimation of the Tobit model.

With the logistic distribution the predicted values of the observed variableYi can be
computed based on the mean ofY∗

i

E(Yi) = σ ln(1 + exp(x′iβ/σ))

The following table shows a subset of the Mroz (1987) data set. In this data,Hours is
the number of hours the wife worked outside the household in a given year,Yrs–Ed is
the years of education, andYrs–Exp is the years of work experience. A Tobit model
will be fit to the hours worked with years of education and experience as covariates.

Hours Yrs–Ed Yrs–Exp
0 8 9
0 8 12
0 9 10
0 10 15
0 11 4
0 11 6
1000 12 1
1960 12 29
0 13 3
2100 13 36
3686 14 11
1920 14 38
0 15 14
1728 16 3
1568 16 19
1316 17 7
0 17 15
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If the wife was not employed (worked 0 hours), her hours worked will be left-
censored at zero. In order to accommodate left censoring in PROC LIFEREG, you
need two variables to indicate censoring status of observations. You can think of these
variables as lower and upper endpoints of interval censoring. If there is no censoring,
set both variables to the observed value ofHours. To indicate left censoring, set the
lower endpoint to missing and the upper endpoint to the censored value, zero in this
case.

The following statements create a SAS data set with the variablesHours, Yrs–Ed,
andYrs–Exp from the preceding data. A new variable,Lower is created such that
Lower=. if Hours=0 andLower=Hours if Hours>0.

data subset;
input Hours Yrs_Ed Yrs_Exp @@;
if Hours eq 0

then Lower=.;
else Lower=Hours;

datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;

The following statements fit a normal regression model to the left-censoredHours
data usingYrs–Ed andYrs–Exp as covariates. You will need the estimated standard
deviation of the normal distribution to compute the predicted values of the censored
distribution from the preceding formulas. The data setOUTEST contains the stan-
dard deviation estimate in a variable named–SCALE– . You also need estimates of
x′iβ. These are contained in the data setOUT as the variableXbeta

proc lifereg data=subset outest=OUTEST(keep=_scale_);
model (lower, hours) = yrs_ed yrs_exp / d=normal;
output out=OUT xbeta=Xbeta;

run;

Output 39.2.1shows the results of the model fit. These tables show parameter esti-
mates for the uncensored, or latent variable, distribution.
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Output 39.2.1. Parameter Estimates from PROC LIFEREG
The LIFEREG Procedure

Model Information

Data Set WORK.SUBSET
Dependent Variable Lower
Dependent Variable Hours
Number of Observations 17
Noncensored Values 8
Right Censored Values 0
Left Censored Values 9
Interval Censored Values 0
Name of Distribution Normal
Log Likelihood -74.9369977

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -5598.64 2850.248 -11185.0 -12.2553 3.86 0.0495
Yrs_Ed 1 373.1477 191.8872 -2.9442 749.2397 3.78 0.0518
Yrs_Exp 1 63.3371 38.3632 -11.8533 138.5276 2.73 0.0987
Scale 1 1582.870 442.6732 914.9433 2738.397

The following statements combine the two data sets created by PROC LIFEREG
to compute predicted values for the censored distribution. The OUTEST= data set
contains the estimate of the standard deviation from the uncensored distribution, and
the OUT= data set contains estimates ofx′iβ.

data predict;
drop lambda _scale_ _prob_;
set out;
if _n_ eq 1 then set outest;
lambda = pdf(’NORMAL’,Xbeta/_scale_)

/ cdf(’NORMAL’,Xbeta/_scale_);
Predict = cdf(’NORMAL’, Xbeta/_scale_)

* (Xbeta + _scale_*lambda);
label Xbeta=’MEAN OF UNCENSORED VARIABLE’

Predict = ’MEAN OF CENSORED VARIABLE’;
run;

proc print data=predict noobs label;
var hours lower yrs: xbeta predict;

run;

Output 39.2.2shows the original variables, the predicted means of the uncensored
distribution, and the predicted means of the censored distribution.
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Output 39.2.2. Predicted Means from PROC LIFEREG
MEAN OF MEAN OF

UNCENSORED CENSORED
Hours Lower Yrs_Ed Yrs_Exp VARIABLE VARIABLE

0 . 8 9 -2043.42 73.46
0 . 8 12 -1853.41 94.23
0 . 9 10 -1606.94 128.10
0 . 10 15 -917.10 276.04
0 . 11 4 -1240.67 195.76
0 . 11 6 -1113.99 224.72

1000 1000 12 1 -1057.53 238.63
1960 1960 12 29 715.91 1052.94

0 . 13 3 -557.71 391.42
2100 2100 13 36 1532.42 1672.50
3686 3686 14 11 322.14 805.58
1920 1920 14 38 2032.24 2106.81

0 . 15 14 885.30 1170.39
1728 1728 16 3 561.74 951.69
1568 1568 16 19 1575.13 1708.24
1316 1316 17 7 1188.23 1395.61

0 . 17 15 1694.93 1809.97

Example 39.3. Overcoming Convergence Problems by
Specifying Initial Values

This example illustrates the use of parameter initial value specification to help over-
come convergence difficulties.

The following statements create a data set and request a Weibull regression model be
fit to the data.

data raw;
input censor x c1 @@;
datalines;

0 16 0.00 0 17 0.00 0 18 0.00
0 17 0.04 0 18 0.04 0 18 0.04
0 23 0.40 0 22 0.40 0 22 0.40
0 33 4.00 0 34 4.00 0 35 4.00
1 54 40.00 1 54 40.00 1 54 40.00
1 54 400.00 1 54 400.00 1 54 400.00
;
run;

proc print;
run;

title ’OLS (default) initial values’;
proc lifereg data=raw;

model x*censor(1) = c1 / distribution = weibull itprint;
run;

Output 39.3.1shows the data set contents.
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Output 39.3.1. Contents of the Data Set
Obs censor x c1

1 0 16 0.00
2 0 17 0.00
3 0 18 0.00
4 0 17 0.04
5 0 18 0.04
6 0 18 0.04
7 0 23 0.40
8 0 22 0.40
9 0 22 0.40

10 0 33 4.00
11 0 34 4.00
12 0 35 4.00
13 1 54 40.00
14 1 54 40.00
15 1 54 40.00
16 1 54 400.00
17 1 54 400.00
18 1 54 400.00

Convergence was not attained in 50 iterations for this model, as the messages to the
log indicate:

WARNING: Convergence was not attained in 50 iterations. You may want to
increase the maximum number of iterations (MAXITER= option) or
change the convergence criteria (CONVERGE = value) in the MODEL
statement.

WARNING: The procedure is continuing in spite of the above warning. Results
shown are based on the last maximum likelihood iteration. Validity
of the model fit is questionable.

The first line (iter=0) of the iteration history table, inOutput 39.3.2, shows the default
initial ordinary least squares (OLS) estimates of the parameters.

Output 39.3.2. Initial Least Squares
OLS (default) initial values

Iter Ridge Loglike Intercept c1 Scale

0 0 -22.891088 3.2324769714 0.0020664542 0.3995754195

The log logistic distribution is more robust to large values of the response than the
Weibull, so one approach to improving the convergence performance is to fit a log
logistic distribution, and if this converges, use the resulting parameter estimates as
initial values in a subsequent fit of a model with the Weibull distribution.

The following statements fit a log logistic distribution to the data.

proc lifereg data=raw;
model x*censor(1) = c1 / distribution = llogistic;

run;

The algorithm converges, and the maximum likelihood estimates for the log logistic
distribution are shown inOutput 39.3.3
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Output 39.3.3. Estimates from the Log Logistic Distribution
The LIFEREG Procedure

Model Information

Data Set WORK.RAW
Dependent Variable Log(x)
Censoring Variable censor
Censoring Value(s) 1
Number of Observations 18
Noncensored Values 12
Right Censored Values 6
Left Censored Values 0
Interval Censored Values 0
Name of Distribution LLogistic
Log Likelihood 12.093136846

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 2.8983 0.0318 2.8360 2.9606 8309.43 <.0001
c1 1 0.1592 0.0133 0.1332 0.1852 143.85 <.0001
Scale 1 0.0498 0.0122 0.0308 0.0804

The following statements re-fit the Weibull model using the maximum likelihood
estimates from the log logistic fit as initial values.

proc lifereg data=raw outest=outest;
model x*censor(1) = c1 / itprint distribution = weibull

intercept=2.898 initial=0.16 scale=0.05;
output out=out xbeta=xbeta;

run;

Examination of the resulting output inOutput 39.3.4shows that the convergence
problem has been solved by specifying different initial values.

As an example, the following invocation of PROC LIFEREG, using the INEST= data
set providing starting values for the three parameters, is equivalent to the previous
invocation.

data in;
input intercept c1 scale;
datalines;

2.898 0.16 0.05
;
proc lifereg data=raw inest=in outest=outest;

model x*censor(1) = c1 / itprint distribution = weibull;
output out=out xbeta=xbeta;

run;
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Output 39.3.4. Final Estimates from the Weibull Distribution
The LIFEREG Procedure

Model Information

Data Set WORK.RAW
Dependent Variable Log(x)
Censoring Variable censor
Censoring Value(s) 1
Number of Observations 18
Noncensored Values 12
Right Censored Values 6
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Weibull
Log Likelihood 11.232023272

Algorithm converged.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 2.9699 0.0326 2.9059 3.0338 8278.86 <.0001
c1 1 0.1435 0.0165 0.1111 0.1758 75.43 <.0001
Scale 1 0.0844 0.0189 0.0544 0.1308
Weibull Shape 1 11.8526 2.6514 7.6455 18.3749

Example 39.4. Analysis of Arbitrarily Censored Data with
Interaction Effects

The following artificial data are for a study of the natural recovery time of mice
after injection of a certain toxin. 20 mice were grouped by sex (sex: 1 = Male, 2 =
Female) with equal sizes. Their ages (in days) were recorded at the injection. Their
recovery times (in minutes) were also recorded. Toxin density in blood was used to
decide whether a mouse recovered. Mice were checked at two times for recovery.
If a mouse had recovered at the first time, the observation is left-censored, and no
further measurement is made. The variabletime1 is set to missing andtime2 is set
to the measurement time to indicate left-censoring. If a mouse had not recovered at
the first time, it was checked later at a second time. If it had recovered by the second
measurement time, the observation is interval-censored and the variabletime1 is set
to the first measurement time andtime2 is set to the second measurement time. If
there was no recovery at the second measurement, the observation is right-censored,
and time1 is set to the second measurement time andtime2 is set to missing to
indicate right-censoring.

The following statements create a SAS data set containing the data from the experi-
ment and fit a Weibull model with age, sex, and age and sex interaction as covariates.

title ’Natural Recovery Time’;
data mice;

input sex age time1 time2 ;
datalines;

1 57 631 631
1 45 . 170
1 54 227 227
1 43 143 143
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1 64 916 .
1 67 691 705
1 44 100 100
1 59 730 .
1 47 365 365
1 74 1916 1916
2 79 1326 .
2 75 837 837
2 84 1200 1235
2 54 . 365
2 74 1255 1255
2 71 1823 .
2 65 537 637
2 33 583 683
2 77 955 .
2 46 577 577
;

data xrow1;
input sex age time1 time2 ;
datalines;

1 50 . .
;

data xrow2;
input sex age time1 time2 ;
datalines;

2 60.6 . .
;

proc lifereg data=mice xdata=xrow1;
class sex ;
model (time1, time2) = age sex age*sex / dist=Weibull;

probplot / nodata
font = swiss
plower=.5
vref(intersect) = 75
vreflab = ’75 Percent’
vreflabpos = 2
cfit=blue
cframe=ligr
;

inset / cfill = white
ctext = blue;

run;

Standard output is shown inOutput 39.4.1. Tables containing general model informa-
tion, Type III tests for the main effects and interaction terms, and parameter estimates
are created.
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Output 39.4.1. Parameter Estimates for the Interaction Model
Natural Recovery Time

The LIFEREG Procedure

Model Information

Data Set WORK.MICE
Dependent Variable Log(time1)
Dependent Variable Log(time2)
Number of Observations 20
Noncensored Values 9
Right Censored Values 5
Left Censored Values 2
Interval Censored Values 4
Name of Distribution Weibull
Log Likelihood -25.91033295

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

age 1 33.8496 <.0001
sex 1 14.0245 0.0002
age*sex 1 10.7196 0.0011

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 5.4110 0.5549 4.3234 6.4986 95.08 <.0001
age 1 0.0250 0.0086 0.0081 0.0419 8.42 0.0037
sex 1 1 -3.9808 1.0630 -6.0643 -1.8974 14.02 0.0002
sex 2 0 0.0000 0.0000 0.0000 0.0000 . .
age*sex 1 1 0.0613 0.0187 0.0246 0.0980 10.72 0.0011
age*sex 2 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 1 0.4087 0.0900 0.2654 0.6294
Weibull Shape 1 2.4468 0.5391 1.5887 3.7682

The following two plots display the predicted probability against the recovery time
for two different populations.Output 39.4.2is created with the PROBPLOT state-
ment with the option XDATA=xrow1, which specifies the population withsex = 1,
age = 50. Although the SAS statements are not shown ,Output 39.4.3is created
with the PROBPLOT statement with the option XDATA=xrow2, which specifies the
population withsex = 2, age = 60.6. These are the default values that the LIFEREG
procedure would use for the probability plot if the XDATA= option had not been
specified. Reference lines are used to display specified predicted probability points
and their relative locations on the plot.
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Output 39.4.2. Probability Plot for Recovery Time with sex = 1, age = 50

Output 39.4.3. Probability Plot for Recovery Time with sex = 2, age = 60.6
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Example 39.5. Probability Plotting–Right Censoring
The following statements create a SAS data set containing observed and right-
censored lifetimes of 70 diesel engine fans (Nelson 1982, p. 318).

title ’Engine Fan Lifetime Study’;
data fan;

input lifetime censor@@;
lifetime = lifetime / 1000;
label lifetime = Lifetime;
datalines;

450 0 460 1 1150 0 1150 0 1560 1
1600 0 1660 1 1850 1 1850 1 1850 1
1850 1 1850 1 2030 1 2030 1 2030 1
2070 0 2070 0 2080 0 2200 1 3000 1
3000 1 3000 1 3000 1 3100 0 3200 1
3450 0 3750 1 3750 1 4150 1 4150 1
4150 1 4150 1 4300 1 4300 1 4300 1
4300 1 4600 0 4850 1 4850 1 4850 1
4850 1 5000 1 5000 1 5000 1 6100 1
6100 0 6100 1 6100 1 6300 1 6450 1
6450 1 6700 1 7450 1 7800 1 7800 1
8100 1 8100 1 8200 1 8500 1 8500 1
8500 1 8750 1 8750 0 8750 1 9400 1
9900 1 10100 1 10100 1 10100 1 11500 1
;

run;

Some of the fans had not failed at the time the data were collected, and the unfailed
units have right-censored lifetimes. The variable LIFETIME represents either a fail-
ure time or a censoring time in thousands of hours. The variable CENSOR is equal
to 0 if the value of LIFETIME is a failure time, and it is equal to 1 if the value is
a censoring time. The following statements use the LIFEREG procedure to produce
the probability plot with an inset for the engine lifetimes.

symbol v=dot c=white;
proc lifereg;

model lifetime*censor( 1 ) = / d = weibull;
probplot

cencolor = red
cframe = ligr
cfit = blue
ppout
npintervals=simul
;

inset /
cfill = white
ctext = blue;

run;

The resulting graphical output is shown inOutput 39.5.1. The estimated CDF, a line
representing the maximum likelihood fit, and pointwise parametric confidence bands
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are plotted in the body ofOutput 39.5.1. The values of right-censored observations
are plotted along the top of the graph. The “Cumulative Probability Estimates” table
is also created inOutput 39.5.2.

Output 39.5.1. Probability Plot for the Fan Data

Output 39.5.2. CDF Estimates
The LIFEREG Procedure

Cumulative Probability Estimates
Simultaneous Kaplan-

95% Confidence Kaplan- Meier
Cumulative Limits Meier Standard

Lifetime Probability Lower Upper Estimate Error

0.45 0.0071 0.0007 0.2114 0.0143 0.0142
1.15 0.0215 0.0033 0.2114 0.0288 0.0201
1.15 0.0360 0.0073 0.2168 0.0433 0.0244

1.6 0.0506 0.0125 0.2304 0.0580 0.0282
2.07 0.0666 0.0190 0.2539 0.0751 0.0324
2.07 0.0837 0.0264 0.2760 0.0923 0.0361
2.08 0.1008 0.0344 0.2972 0.1094 0.0392

3.1 0.1189 0.0436 0.3223 0.1283 0.0427
3.45 0.1380 0.0535 0.3471 0.1477 0.0460

4.6 0.1602 0.0653 0.3844 0.1728 0.0510
6.1 0.1887 0.0791 0.4349 0.2046 0.0581

8.75 0.2488 0.0884 0.6391 0.2930 0.0980
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Example 39.6. Probability Plotting–Arbitrarily Censoring

Table 39.3contains microprocessor failure data from Nelson (1990). Units were
inspected at predetermined time intervals. The data consist of inspection interval
endpoints (in hours) and the number of units failing in each interval. A missing (.)
lower endpoint indicates left censoring, and a missing upper endpoint indicates right
censoring. These can be thought of as semi-infinite intervals with a lower (upper)
endpoint of negative (positive) infinity for left (right) censoring.

Table 39.3. Interval-Censored Data
Lower Upper Number
Endpoint Endpoint Failed
. 6 6
6 12 2
24 48 2
24 . 1
48 168 1
48 . 839
168 500 1
168 . 150
500 1000 2
500 . 149
1000 2000 1
1000 . 147
2000 . 122

The following SAS program will compute the Turnbull estimate and create a lognor-
mal probability plot.

data micro;
input t1 t2 f ;
datalines;
. 6 6
6 12 2
12 24 0
24 48 2
24 . 1
48 168 1
48 . 839
168 500 1
168 . 150
500 1000 2
500 . 149
1000 2000 1
1000 . 147
2000 . 122
;

symbol v=dot c=white;
proc lifereg data=micro;

model ( t1 t2 ) = / d=lognormal intercept=25 scale=5;
weight f;
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probplot
cframe = ligr
cfit = blue
pupper = 10
itprintem
printprobs
maxitem = (1000,25)
ppout;

inset / cfill = white;
run;

The two initial values INTERCEPT= 25 and SCALE= 5 in the MODEL statement
are used to aid convergence in the model-fitting algorithm.

The following tables are created by the PROBPLOT statement in addition to the stan-
dard tabular output from the MODEL statement.Output 39.6.1shows the iteration
history for the Turnbull estimate of the CDF for the microprocessor data. With both
options ITPRINTEM and PRINTPROBS specified in the PROBPLOT statement,
this table contains the log likelihoods and interval probabilities for every 25th iter-
ation and the last iteration. It would only contain the log likelihoods if the option
PRINTPROBS were not specified.

Output 39.6.1. Iteration History for the Turnbull Estimate
The LIFEREG Procedure

Iteration History for the Turnbull Estimate of the CDF
Iteration Loglikelihood (., 6) (6, 12) (24, 48) (48, 168)

(168, 500) (500, 1000) (1000, 2000) (2000, .)

0 -1133.4051 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125

25 -104.16622 0.00421644 0.00140548 0.00140648 0.00173338
0.00237846 0.00846094 0.04565407 0.93474475

50 -101.15151 0.00421644 0.00140548 0.00140648 0.00173293
0.00234891 0.00727679 0.01174486 0.96986811

75 -101.06641 0.00421644 0.00140548 0.00140648 0.00173293
0.00234891 0.00727127 0.00835638 0.9732621

100 -101.06534 0.00421644 0.00140548 0.00140648 0.00173293
0.00234891 0.00727125 0.00801814 0.97360037

125 -101.06533 0.00421644 0.00140548 0.00140648 0.00173293
0.00234891 0.00727125 0.00798438 0.97363413

130 -101.06533 0.00421644 0.00140548 0.00140648 0.00173293
0.00234891 0.00727125 0.007983 0.97363551
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Output 39.6.2. Summary for the Turnbull Algorithm
The LIFEREG Procedure

Lower Upper Reduced Lagrange
Lifetime Lifetime Probability Gradient Multiplier

. 6 0.0042 0 0
6 12 0.0014 0 0

24 48 0.0014 0 0
48 168 0.0017 0 0

168 500 0.0023 0 0
500 1000 0.0073 -7.219342E-9 0

1000 2000 0.0080 -0.037063236 0
2000 . 0.9736 0.0003038877 0

The table inOutput 39.6.2summarizes the Turnbull estimates of the interval proba-
bilities, the reduced gradients, and Lagrange multipliers as described in the section
“Arbitrarily Censored Data”on page 2119.

Output 39.6.3. Final CDF Estimates for Turnbull Algorithm
The LIFEREG Procedure

Cumulative Probability Estimates
Pointwise 95%

Confidence
Lower Upper Cumulative Limits Standard

Lifetime Lifetime Probability Lower Upper Error

6 6 0.0042 0.0019 0.0094 0.0017
12 24 0.0056 0.0028 0.0112 0.0020
48 48 0.0070 0.0038 0.0130 0.0022

168 168 0.0088 0.0047 0.0164 0.0028
500 500 0.0111 0.0058 0.0211 0.0037

1000 1000 0.0184 0.0094 0.0357 0.0063
2000 2000 0.0264 0.0124 0.0553 0.0101

Output 39.6.3shows the final estimate of the CDF, along with standard errors and
nonparametric confidence limits. Two kinds of nonparametric confidence limits,
pointwise or simultaneous, are available. The default is the pointwise nonparametric
confidence limits. You can specify the simultaneous nonparametric confidence limits
by the NPINTERVALS= SIMUL option.

Output 39.6.4shows the CDF estimates, the maximum likelihood fit, and the point-
wise parametric confidence limits plotted on a lognormal probability plot.
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Output 39.6.4. Lognormal Probability Plot for the Microprocessor Data
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Chapter 40
The LIFETEST Procedure
Overview

A common feature of lifetime or survival data is the presence of right-censored ob-
servations due either to withdrawal of experimental units or to termination of the
experiment. For such observations, you know only that the lifetime exceeded a given
value; the exact lifetime remains unknown. Such data cannot be analyzed by ignoring
the censored observations because, among other considerations, the longer-lived units
are generally more likely to be censored. The analysis methodology must correctly
use the censored observations as well as the uncensored observations.

Several texts that discuss the survival analysis methodology areCollett (1994), Cox
and Oakes(1984), Kalbfleisch and Prentice(1980), Klein and Moeschberger(1997),
Lawless(1982), and Lee (1992). Users interested in the theory should consult
Fleming and Harrington(1991) andAndersen et al.(1992).

Usually, a first step in the analysis of survival data is the estimation of the distribu-
tion of the survival times. Survival times are often calledfailure times, andevent
times are uncensored survival times. The survival distribution function (SDF), also
known as the survivor function, is used to describe the lifetimes of the population of
interest. The SDF evaluated att is the probability that an experimental unit from the
population will have a lifetime exceedingt, that is

S(t) = Pr(T > t)

whereS(t) denotes the survivor function andT is the lifetime of a randomly selected
experimental unit. The LIFETEST procedure can be used to compute nonparametric
estimates of the survivor function either by the product-limit method (also called the
Kaplan-Meier method) or by the life-table method (also called the acturial method).

Some functions closely related to the SDF are the cumulative distribution function
(CDF), the probability density function (PDF), and the hazard function. The CDF,
denotedF (t), is defined as1 − S(t) and is the probability that a lifetime does not
exceedt. The PDF, denotedf(t), is defined as the derivative ofF (t), and the hazard
function, denotedh(t), is defined asf(t)/S(t). If the life-table method is chosen,
the estimates of the probability density function and the hazard function can also
be computed. Plots of these estimates can be produced by a graphical or line printer
device, or by launching the experimental graphics based on the output delivery system
(ODS). For specific information about the experimental graphics that is available in
PROC LIFETEST, see the section“ODS Graphics”on page 2190.

An important task in the analysis of survival data is the comparison of survival curves.
It is of interest to determine whether the underlying populations ofk (k ≥ 2) sam-
ples have identical survivor functions. PROC LIFETEST provides nonparametic
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k-sample tests based on weighted comparisons of the estimated hazard rate of the
individual population under the null and alternative hypotheses. Corresponding to
various weight functions, a variety of tests can be specified, which include the log-
rank test, Wilcoxon test, Tarone-Ware test, Peto-Peto test, modified Peto-Peto test,
and the Fleming-HarringtonGρ family of tests. PROC LIFETEST also provides cor-
responding trend tests to detect ordered alternatives. Stratified tests can be specified
to adjust for prognostic factors that affect the events rates in the various populations.
A likelihood ratio test, based on an underlying exponential model, is also included to
compare the survival curves of the samples.

There are other prognostic variables called covariates that are thought to be related
to the failure time. These covariates can also be used to construct statistics to test
for association between the covariates and the lifetime variable. PROC LIFETEST
can compute two such test statistics: censored data linear rank statistics based on the
exponential scores and the Wilcoxon scores. The corresponding tests are known as
the log-rank test and the Wilcoxon test, respectively. These tests are computed by
pooling over any defined strata, thus adjusting for the stratum variables.

Getting Started

You can use the LIFETEST procedure to compute nonparametric estimates of the sur-
vivor functions, to compare survival curves, and to compute rank tests for association
of the failure time variable with covariates.

For simple analyses, only the PROC LIFETEST and TIME statements are required.
Consider a sample of survival data. Suppose that the time variable isT and the cen-
soring variable isC with value 1 indicating censored observations. The following
statements compute the product-limit estimate for the sample:

proc lifetest;
time t*c(1);

run;

You can use the STRATA statement to divide the data into various strata. A separate
survivor function is then estimated for each stratum, and tests of the homogeneity
of strata are performed. However, if the GROUP= option is also specified in the
STRATA statement, the GROUP= variable is used to identify the samples whose
survivor functions are to be compared and the STRATA variables are used to define
the strata for the stratified tests. You can specify covariates in the TEST statement.
PROC LIFETEST computes linear rank statistics to test the effects of these covariates
on survival.

For example, consider the results of a small randomized trial on rats. Suppose you
randomize 40 rats that have been exposed to a carcinogen into two treatment groups
(Drug X andPlacebo). The event of interest is death from cancer induced by the
carcinogen. The response is the time from randomization to death. Four rats died of
other causes; their survival times are regarded as censored observations. Interest lies
in whether the survival distributions differ between the two treatments.
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The data setExposed contains four variables:Days (survival time in days from
treatment to death),Status (censoring indicator variable: 0 if censored and 1 if not
censored),Treatment (treatment indicator), andSex (gender: F if female and M if
male).

proc format;
value Rx 1=’Drug X’ 0=’Placebo’;

data exposed;
input Days Status Treatment Sex $ @@;
format Treatment Rx.;
datalines;

179 1 1 F 378 0 1 M
256 1 1 F 355 1 1 M
262 1 1 M 319 1 1 M
256 1 1 F 256 1 1 M
255 1 1 M 171 1 1 F
224 0 1 F 325 1 1 M
225 1 1 F 325 1 1 M
287 1 1 M 217 1 1 F
319 1 1 M 255 1 1 F
264 1 1 M 256 1 1 F
237 0 0 F 291 1 0 M
156 1 0 F 323 1 0 M
270 1 0 M 253 1 0 M
257 1 0 M 206 1 0 F
242 1 0 M 206 1 0 F
157 1 0 F 237 1 0 M
249 1 0 M 211 1 0 F
180 1 0 F 229 1 0 F
226 1 0 F 234 1 0 F
268 0 0 M 209 1 0 F
;

PROC LIFETEST is invoked to compute the product-limit estimate of the survivor
function for each treatment and to compare the survivor functions between the two
treatments.

ods html;
ods graphics on;

proc lifetest data=Exposed;
time Days*Status(0);
strata Treatment;

run;

ods graphics off;
ods html close;

In the TIME statement, the survival time variable,Days, is crossed with the censoring
variable,Status, with the value 0 indicating censoring. That is, the values ofDays
are considered censored if the corresponding values ofStatus are 0; otherwise, they
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are considered as event times. In the STRATA statement, the variableTreatment is
specified, which indicates that the data are to be divided into strata based on the val-
ues ofTreatment. PROC LIFETEST computes the product-limit estimate for each
stratum and tests whether the survivor functions are identical across strata. The ex-
perimental ODS GRAPHICS statement is specified to display the estimated survivor
functions.

The results of the analysis are displayed in the following figures.

Figure 40.1displays the product-limit survival estimate for theDrug X group
(Treatment=1). The figure lists, for each observed time, the survival estimate, fail-
ure rate, standard error of the estimate, number of failures, and number of subjects
remaining in the study.

The LIFETEST Procedure

Stratum 1: Treatment = Drug X

Product-Limit Survival Estimates

Survival
Standard Number Number

Days Survival Failure Error Failed Left

0.000 1.0000 0 0 0 20
171.000 0.9500 0.0500 0.0487 1 19
179.000 0.9000 0.1000 0.0671 2 18
217.000 0.8500 0.1500 0.0798 3 17
224.000* . . . 3 16
225.000 0.7969 0.2031 0.0908 4 15
255.000 . . . 5 14
255.000 0.6906 0.3094 0.1053 6 13
256.000 . . . 7 12
256.000 . . . 8 11
256.000 . . . 9 10
256.000 0.4781 0.5219 0.1146 10 9
262.000 0.4250 0.5750 0.1135 11 8
264.000 0.3719 0.6281 0.1111 12 7
287.000 0.3188 0.6813 0.1071 13 6
319.000 . . . 14 5
319.000 0.2125 0.7875 0.0942 15 4
325.000 . . . 16 3
325.000 0.1063 0.8938 0.0710 17 2
355.000 0.0531 0.9469 0.0517 18 1
378.000* 0.0531 . . 18 0

NOTE: The marked survival times are censored observations.

Figure 40.1. Survivor Function Estimate for the Drug X-Treated Rats

Figure 40.2displays summary statistics of survival times for theDrug X group. It
contains estimates of the 25th, 50th, and 75th percentiles and the corresponding 95%
confidence limits.

The median survival time for rats in this treatment is 256 days. The mean and standard
error are also displayed; however, it is noted that these values are underestimated
because the largest observed time is censored and the estimation is restricted to the
largest event time.
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Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 319.000 262.000 325.000
50 256.000 255.000 319.000
25 255.000 217.000 256.000

Mean Standard Error

271.131 11.877

NOTE: The mean survival time and its standard error were underestimated because
the largest observation was censored and the estimation was restricted to the

largest event time.

Figure 40.2. Summary Statistics of Survival Times for Drug X-Treated Rats

Stratum 2: Treatment = Placebo

Product-Limit Survival Estimates

Survival
Standard Number Number

Days Survival Failure Error Failed Left

0.000 1.0000 0 0 0 20
156.000 0.9500 0.0500 0.0487 1 19
157.000 0.9000 0.1000 0.0671 2 18
180.000 0.8500 0.1500 0.0798 3 17
206.000 . . . 4 16
206.000 0.7500 0.2500 0.0968 5 15
209.000 0.7000 0.3000 0.1025 6 14
211.000 0.6500 0.3500 0.1067 7 13
226.000 0.6000 0.4000 0.1095 8 12
229.000 0.5500 0.4500 0.1112 9 11
234.000 0.5000 0.5000 0.1118 10 10
237.000 0.4500 0.5500 0.1112 11 9
237.000* . . . 11 8
242.000 0.3937 0.6063 0.1106 12 7
249.000 0.3375 0.6625 0.1082 13 6
253.000 0.2812 0.7188 0.1038 14 5
257.000 0.2250 0.7750 0.0971 15 4
268.000* . . . 15 3
270.000 0.1500 0.8500 0.0891 16 2
291.000 0.0750 0.9250 0.0693 17 1
323.000 0 1.0000 0 18 0

NOTE: The marked survival times are censored observations.

Figure 40.3. Survivor Function Estimate for Placebo-Treated Rats

Figure 40.3andFigure 40.4display the survival estimates and the summary statistics
of the survival times forPlacebo (Treatment=0). The median survival time for rats
in this treatment is 235 days.
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Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 257.000 237.000 291.000
50 235.500 209.000 253.000
25 207.500 180.000 234.000

Mean Standard Error

235.156 10.211

Figure 40.4. Summary Statistics of Survival Times for Placebo-Treated Rats

A summary of the number of censored and event observations is shown inFigure
40.5. The figure lists, for each stratum, the number of event and censored observa-
tions, and the percentage of censored observations.

Summary of the Number of Censored and Uncensored Values

Percent
Stratum Treatment Total Failed Censored Censored

1 Drug X 20 18 2 10.00
2 Placebo 20 18 2 10.00

----------------------------------------------------------------
Total 40 36 4 10.00

Figure 40.5. Number of Event and Censored Observations

Results of the comparison of survival curves between the two treatments are shown in
Figure 40.6. The rank tests for homogeneity indicate a significant difference between
the treatments (p=0.0175 for the log-rank test andp=0.0249 for the Wilcoxon test).
Rats treated withDrug X live significantly longer than those treated withPlacebo.
The log-rank test, which places more weight on larger survival times, is more sig-
nificant than the Wilcoxon test, which places more weight on early survival times.
As noted earlier, the exponential model is not appropriate for the given survival data;
consequently, the result of the likelihood ratio test should be ignored.

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 5.6485 1 0.0175
Wilcoxon 5.0312 1 0.0249
-2Log(LR) 0.1983 1 0.6561

Figure 40.6. Results of the 2-sample Tests
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Figure 40.7displays the graph of the product-limit survivor function estimates versus
survival time. The two treatments differ primarily at larger survival times.

Figure 40.7. Plot of Estimated Survivor Functions (Experimental)

This graphical display is requested by specifying the experimental ODS GRAPHICS
statement. For general information about ODS graphics, seeChapter 15, “Statistical
Graphics Using ODS.”For specific information about the graphics available in the
LIFETEST procedure, see the section“ODS Graphics”on page 2190.

Next, suppose male rats and female rats are thought to have different survival rates,
and you want to assess the treatment effect while adjusting for the gender differences.
By specifying the variableSex in the STRATA statement as a stratifying variable
and by specifying the variableTreatment in the GROUP= option, you can carry
out a stratified test to testTreatment while adjusting forSex. The test statistics are
computed by pooling over the strata defined by the values ofSex, thus controlling for
the effect ofSex. The NOTABLE option is added to the PROC LIFETEST statement
to avoid estimating a survival curve for each gender.

proc lifetest data=Exposed notable;
time Days*Status(0);
strata Sex / group=Treatment;

run;
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Results of the stratified tests are shown inFigure 40.8. The treatment effect is
statistically significant for both the log-rank test (p=0.0071) and the Wilcoxon test
(p=0.0150). As compared to the results of the unstratified tests inFigure 40.6, the
significance of the treatment effect has been sharpened by controlling for the effect
of the gender of the subjects.

The LIFETEST Procedure

Stratified Test of Equality over Group

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 7.2466 1 0.0071
Wilcoxon 5.9179 1 0.0150

Figure 40.8. Results of the Stratified 2-sample Tests

SinceTreatment is a binary variable, another way to study the effect ofTreatment
is to carry out a censored linear rank test withTreatment as an independent variable.
Although this test is less popular than the2-sample test, nevertheless, in situations
where the independent variables are continuous and are difficult to discretize, it may
be infeasible to perform thek-sample test. To compute the censored linear rank
statistics to test theTreatment effect,Treatment is specified in the TEST statement.

proc lifetest data=Exposed notable;
time Days*Status(0);
test Treatment;

run;

The LIFETEST Procedure

Univariate Chi-Squares for the Wilcoxon Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

Treatment 3.9525 1.7524 5.0875 0.0241

Univariate Chi-Squares for the Log-Rank Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

Treatment 6.2708 2.6793 5.4779 0.0193

Figure 40.9. Results of Linear Rank Tests of Treatment

Results of the linear rank tests are shownFigure 40.9. Thep-values are very similar
to those of the2-sample tests inFigure 40.6.
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With Sex as a prognostic factor that you want to control, you can compute a stratified
linear rank statistic to test the effect ofTreatment by specifyingSex in the STRATA
statement andTreatment in the TEST statement. The NOTEST option is specified
in the STRATA statement to suppress thek-sample tests forSex.

proc lifetest data=Exposed notable;
time Days*Status(0);
strata Sex / notest;
test Treatment;

run;

The LIFETEST Procedure

Univariate Chi-Squares for the Wilcoxon Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

Treatment 4.2372 1.7371 5.9503 0.0147

Univariate Chi-Squares for the Log-Rank Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

Treatment 6.8021 2.5419 7.1609 0.0075

Figure 40.10. Result of Stratified Linear Rank Tests of Treatment

Results of the stratified linear rank tests are shown inFigure 40.10. Thep-values are
very similar to those of the stratified2-sample tests inFigure 40.8.

Syntax

The following statements are available in PROC LIFETEST:

PROC LIFETEST < options > ;
TIME variable < *censor(list) > ;
BY variables ;
FREQ variable ;
ID variables ;
STRATA variable < (list) > < . . . variable < (list) > > ;
SURVIVAL options ;
TEST variables ;

The simplest use of PROC LIFETEST is to request the nonparametric estimates of
the survivor function for a sample of survival times. In such a case, only the PROC
LIFETEST statement and the TIME statement are required. You can use the STRATA
statement to divide the data into various strata. A separate survivor function is then
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estimated for each stratum, and tests of the homogeneity of strata are performed.
However, if the GROUP= option is also specify in the STRATA statement, stratified
tests are carried out to test thek samples defined by the GROUP= variable while
controlling for the effect of the STRATA variables. You can use the SURVIVAL
statement to output the estimates of the survivor function into a SAS data set. You
can specify covariates in the TEST statement. PROC LIFETEST computes linear
rank statistics to test the effects of these covariates on survival.

The PROC LIFETEST statement invokes the procedure. All statements except the
TIME statement are optional, and there is no required order for the statements fol-
lowing the PROC LIFETEST statement. The TIME statement is used to specify
the variables that define the survival time and censoring indicator. The STRATA
statement specifies a variable or set of variables defining the strata for the analysis.
The SURVIVAL statement enables you to specify a transformation to be used in the
computation of the confidence intervals; it also enables you to output simultaneous
confidence intervals. The TEST statement specifies a list of numeric covariates to be
tested for their association with the response survival time. Each variable is tested
individually, and a joint test statistic is also computed. The ID statement provides a
list of variables whose values are used to identify observations in the product-limit
estimates of the survival function. When only the TIME statement appears, no strata
are defined and no tests of homogeneity are performed.

PROC LIFETEST Statement

PROC LIFETEST < options > ;

The PROC LIFETEST statement invokes the procedure. The following options can
appear in the PROC LIFETEST statement and are described in alphabetic order. If
no options are requested, PROC LIFETEST computes and displays product-limit es-
timates of the survival distribution within each stratum and tests the equality of the
survival functions across strata.

Table 40.1. Summary of PROC LIFETEST Statement Options

Task Options Description
Specify Data Set DATA= specifies the input SAS data set

OUTSURV= names an output data set to contain survival
estimates and confidence limits

OUTTEST= names an output data set to contain rank test
statistics for association of survival time with
covariates limits

Estimate Survival METHOD= specifies method to compute survivor func-
tion

ALPHA= sets confidence level for survival estimates
INTERVALS= specifies interval endpoints for life-table esti-

mates
NINTERVAL= specifies number of intervals for life-table es-

timates
WIDTH= specifies width of intervals for life-table

estimates
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Table 40.1. (continued)

Task Options Description
Plot Survival PLOTS= specifies plots

MAXTIME= sets maximum value of time variable for plot-
ting

Traditional
High-Resolution
Graphics

ANNOTATE= specifies an annotate data set that adds fea-
tures to plots

CENSOREDSYMBOL= defines symbol used for censored observa-
tions in plots

DESCRIPTION= specifies string that appears in the description
field of the PROC GREPLAY master menu
for the plots

EVENTSYMBOL= specifies symbol used for event observations
in plots

GOUT= specifies graphics catalog name for saving
graphics output

LANNOTATE= specifies an input data set that contains vari-
ables for local annotation

Line Printer Plots LINEPRINTER specifies that plots are produced by line
printer

FORMCHAR(1,2,7,9)= defines characters used for line printer plot
axes

NOCENSPLOT suppresses the plot of censored observations

Control Output NOPRINT suppresses display of printed output
NOTABLE suppresses display of survival function esti-

mates
INTERVALS= displays only the product-limit estimate for

the smallest time within each specified inter-
val

TIMELIST= specifies a list of time points at which the
Kaplan-Meier estimates are displayed

REDUCEOUT specifies that only INTERVAL= or
TIMELIST= observations are listed in
the OUTSURV= data set

Miscellaneous ALPHAQT= sets confidence level for survival time quar-
tiles

MISSING allows missing values to be a stratum level
SINGULAR= sets tolerance for testing singularity of covari-

ance matrix of rank statistics
TIMELIM= specifies the time limit used to estimate the

mean survival time and its standard error
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ALPHA= value
specifies a number between 0.0001 and 0.9999 that sets the confidence level for the
confidence intervals for the survivor function. The confidence level for the interval
is 1 - ALPHA. For example, the option ALPHA=0.05 requests a 95% confidence
interval for the SDF at each time point. The default value is 0.05.

ALPHAQT= value
specifies a number between 0.0001 and 0.9999 that sets the level for the confidence
intervals for the quartiles of the survival time. The confidence level for the interval is
1 - ALPHAQT. For example, the option ALPHAQT=0.05 requests a 95% confidence
interval for the quantiles of the survival time. The default value is 0.05.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an input data set that contains appropriate variables for annotation of the
traditional high-resolution graphics. The ANNOTATE= option enables you to add
features (for example, labels explaining extreme observations) to plots produced on
graphics devices. The ANNOTATE= option cannot be used if theLINEPRINTERop-
tion or the experimental ODS GRAPHICS statement is specified. The data set spec-
ified must be an ANNOTATE= type data set, as described inSAS/GRAPH Software:
Reference.

The data set specified with the ANNOTATE= option in the PROC LIFETEST state-
ment is “global” in the sense that the information in this data set is displayed on every
plot produced by a single invocation of PROC LIFETEST.

CENSOREDSYMBOL=name | ’string’
CS=name | ’string’

specifies the symbol value for the censored observations in the traditional high-
resolution graphics. The value,nameor ’string’ , is the symbol value specification
allowed in SAS/GRAPH software. The default is CS=CIRCLE. If you want to omit
plotting the censored observations, specify CS=NONE. The CENSOREDSYMBOL=
option cannot be used if theLINEPRINTER option or the experimental ODS
GRAPHICS statement is specified.

DATA=SAS-data-set
names the SAS data set used by PROC LIFETEST. By default, the most recently
created SAS data set is used.

DESCRIPTION=’string ’
DES=’string ’

specifies a descriptive string of up to 40 characters that appears in the “Description”
field of the traditional high-resolution graphics catalog. The description does not
appear on the plots. By default, PROC LIFETEST assigns a description of the form
PLOT OFvnamevs hname, wherevnameandhnameare the names of they variable
and thex variable, respectively. The DESCRIPTION= option cannot be used if the
LINEPRINTERoption or the experimental ODS GRAPHICS is specified.
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EVENTSYMBOL=name | ’string’
ES=name | ’string’

specifies the symbol value for the event observations in the traditional high-resolution
graphics. The value,nameor ’string’ , is the symbol value specification allowed in
SAS/GRAPH software. The default is ES=NONE. The EVENTSYMBOL= option
cannot be used if theLINEPRINTERoption or the experimental ODS GRAPHICS
statement is specified.

FORMCHAR(1,2,7,9)=’string’
defines the characters used for constructing the vertical and horizontal axes of the
line printer plots. The string should be four characters. The first and second char-
acters define the vertical and horizontal bars, respectively, which are also used in
drawing thestepsof the product-limit survival function. The third character defines
the tick mark for the axes, and the fourth character defines the lower left corner
of the plot. If the FORMCHAR option in PROC LIFETEST is not specified, the
value supplied, if any, with the system option FORMCHAR= is used. The default
is FORMCHAR(1,2,7,9)=’|-+-’. Any character or hexadecimal string can be used to
customize the plot appearance. To send the plot output to a printer with the IBM
graphics character set (1 or 2) or display it directly on your PC screen, you can use
the following hexadecimal representation

formchar(1,2,7,9)=’B3C4C5C0’x

or system option

formchar=’B3C4DAC2BFC3C5B4C0C1D9’x

Refer to the chapter titled “The PLOT Procedure,” in theSAS Procedures Guideor
the section “System Options” inSAS Language Reference: Dictionaryfor further
information.

GOUT=graphics-catalog
specifies the graphics catalog for saving traditional high-resolution graphics output
from PROC LIFETEST. The default is WORK.GSEG. The GOUT= option cannot
be used if theLINEPRINTER option or the experimental ODS GRAPHICS state-
ment is specified. For more information, refer to the chapter titled “The GREPLAY
Procedure” inSAS/GRAPH Software: Reference.

INTERVALS=values
specifies a list of interval endpoints for the life-table method. These endpoints must
all be nonnegative numbers. The initial interval is assumed to start at zero whether or
not zero is specified in the list. Each interval contains its lower endpoint but does not
contain its upper endpoint. When this option is used with the product-limit method, it
reduces the number of survival estimates displayed by displaying only the estimates
for the smallest time within each specified interval. The INTERVALS= option can be
specified in any of the following ways:
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list separated by blanks intervals=1 3 5 7

list separated by commas intervals=1,3,5,7

x to y intervals=1 to 7

x to y by z intervals=1 to 7 by 1

combination of the above intervals=1,3 to 5,7

For example, the specification

intervals=5,10 to 30 by 10

produces the set of intervals

{[0, 5), [5, 10), [10, 20), [20, 30), [30,∞)}

LANNOTATE= SAS-data-set
LANN=SAS-data-set

specifies an input data set that contains variables for local annotation of traditional
high-resolution graphics. You can use the LANNOTATE= option to specify a dif-
ferent annotation for each BY group, in which case the BY variables must be in-
cluded in the LANNOTATE= data set. The LANNOTATE= option cannot be used if
theLINEPRINTERoption or the experimental ODS GRAPHICS statement is spec-
ified. The data set specified must be anANNOTATE= type data set, as described in
SAS/GRAPH Software: Reference.

If there is no BY-group processing, theANNOTATE= and LANNOTATE= options
have the same effects.

LINEPRINTER
LS

specifies that plots are produced by a line printer instead of by a graphical device.
This option cannot be used if the experimental ODS GRAPHICS statement is speci-
fied.

MAXTIME=value
specifies the maximum value of the time variable allowed on the plots so that outlying
points do not determine the scale of the time axis of the plots. This parameter only
affects the displayed plots and has no effect on the calculations.

METHOD=type
specifies the method used to compute the survival function estimates. Valid values
for typeare as follows.

PL | KM specifies that product-limit (PL) or Kaplan-Meier (KM) estimates
are computed.

ACT | LIFE | LT specifies that life-table (or actuarial) estimates are computed.
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By default, METHOD=PL.

MISSING
allows missing values for numeric variables and blank values for character variables
as valid stratum levels. See the section“Missing Values”on page 2171 for details.

By default, PROC LIFETEST does not use observations with missing values for any
stratum variables.

NINTERVAL=value
specifies the number of intervals used to compute the life-table estimates of
the survivor function. This parameter is overridden by theWIDTH= option or
the INTERVALS= option. When you specify the NINTERVAL= option, PROC
LIFETEST tries to find an interval that results in round numbers for the endpoints.
Consequently, the number of intervals may be different from the number requested.
Use theINTERVALS= option to control the interval endpoints. The default is
NINTERVAL=10.

NOCENSPLOT
NOCENS

requests that the plot of censored observations be suppressed when thePLOTS=op-
tion is specified. This option is not needed when the life-table method is used to
compute the survival estimates, since the plot of censored observations is not pro-
duced.

NOPRINT
suppresses the display of output. This option is useful when only an output data set
is needed. Note that this option temporarily disables the Output Delivery System
(ODS).

For more information, seeChapter 14, “Using the Output Delivery System.”

NOTABLE
suppresses the display of survival function estimates. Only the number of censored
and event times, plots, and test results are displayed.

OUTSURV=SAS-data-set
OUTS=SAS-data-set

creates an output SAS data set to contain the estimates of the survival function and
corresponding confidence limits for all strata. See the section“Output Data Sets”on
page 2183 for more information on the contents of the OUTSURV= SAS data set.

OUTTEST=SAS-data-set
OUTT=SAS-data-set

creates an output SAS data set to contain the overall chi-square test statistic for as-
sociation with failure time for the variables in the TEST statement, the values of the
univariate rank test statistics for each variable in the TEST statement, and the esti-
mated covariance matrix of the univariate rank test statistics. See the section“Output
Data Sets”on page 2183 for more information on the contents of the OUTTEST=
SAS data set.
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PLOTS= ( type <(NAME=name)> <, ..., type <(NAME=name)> > )
creates plots of survival estimates or censored observations, wheretypeis the type of
plot andnameis a catalog entry name of up to eight characters. Valid values oftype
are as follows:

CENSORED | C specifies a plot of censored observations by strata (product-limit
method only).

SURVIVAL | S specifies a plot of the estimated SDF versus time.

LOGSURV | LS specifies a plot of the− log(estimated SDF) versus time.

LOGLOGS | LLS specifies a plot of thelog(− log(estimated SDF)) versus
log(time).

HAZARD | H specifies a plot of the estimated hazard function versus time
(life-table method only).

PDF | P specifies a plot of the estimated probability density function ver-
sus time (life-table method only).

Parentheses are required in specifying the plots. For example,

plots = (s)

requests a plot of the estimated survivor function versus time, and

plots = (s(name=Surv2), h(name=Haz2))

requests a plot of the estimated survivor function versus time and a plot of the es-
timated hazard function versus time, withSurv2 andHaz2 as their catalog names,
respectively.

REDUCEOUT
specifies that theOUTSURV=data set contains only those observations that are in-
cluded in theINTERVALS= or TIMELIST= option. This option has no effect if the
OUTSURV=option is not specified. It also has no effect if neither theINTERVALS=
option nor theTIMELIST= option is specified.

SINGULAR=value
specifies the tolerance for testing singularity of the covariance matrix for the rank test
statistics. The test requires that a pivot for sweeping a covariance matrix be at least
this number times a norm of the matrix. The default value is 1E-12.

TIMELIM=time-limit
specifies the time limit used in the estimation of the mean survival time and its stan-
dard error. The mean survival time can be shown to be the area under the Kaplan-
Meier survival curve. However, if the largest observed time in the data is censored,
the area under the survival curve is not a closed area. In such a situation, you can
choose a time limitL and estimate the mean survival curve limited to a timeL (Lee
1992, pp. 72–76). This option is ignored if the largest observed time is an event time.
Valid time-limit values are as follows:
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EVENT | LET specifies that the time limitL is the largest event time in the
data. TIMELIM=EVENT is the default.

OBSERVED | LOT specifies that the time limitL is the largest observed time in
the data.

number specifies that the time limitL is the givennumber. Thenumber
must be positive and at least as large as the largest event time in
the data.

TIMELIST=number-list
specifies a list of time points at which the Kaplan-Meier estimates are displayed. The
time points are listed in the column labeled as Timelist. Since the Kaplan-Meier
survival curve is a decreasing step function, each given time point falls in an interval
that has a constant survival estimate. The event time that corresponds to the beginning
of the time interval is displayed along with its survival estimate.

WIDTH=value
sets the width of the intervals used in the life-table calculation of the survival function.
This parameter is overridden by theINTERVALS= option.

BY Statement

BY variables ;

You can specify a BY statement with PROC LIFETEST to obtain separate analyses
on observations in groups defined by the BY variables.

The BY statement is more efficient than the STRATA statement for defining strata
in large data sets. However, if you use the BY statement to define strata, PROC
LIFETEST does not pool over strata for testing the association of survival time with
covariates nor does it test for homogeneity across the BY groups.

Interval size is computed separately for each BY group. When intervals are deter-
mined by default, they may be different for each BY group. To make intervals the
same for each BY group, use the INTERVALS= option in the PROC LIFETEST
statement.

When a BY statement appears, the procedure expects the input data set to be sorted
in order of the BY variables. If your input data set is not sorted in ascending order,
use one of the following alternatives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the LIFETEST procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

The variable in the FREQ statement identifies a variable containing the frequency
of occurrence of each observation. PROC LIFETEST treats each observation as if it
appearedn times, wheren is the value of the FREQ variable for the observation. The
FREQ statement is useful for producing life tables when the data are already in the
form of a summary data set. If not an integer, the frequency value is truncated to an
integer. If the frequency value is less than one, the observation is not used.

ID Statement

ID variables ;

The ID variable values are used to label the observations of the product-limit survival
function estimates. SAS format statements can be used to format the values of the ID
variables.

STRATA Statement

STRATA variable < (list) > < . . . variable < (list) > > < /options >;

The STRATA statement indicates which variables determine strata levels for the com-
putations. The strata are formed according to the nonmissing values of the designated
strata variables. The MISSING option can be used to allow missing values as a valid
stratum level. Other options enable you to specify variousk-sample tests, trend tests
and stratified tests.

In the preceding syntax,variable is a variable whose values determine the stratum
levels andlist is a list of endpoints for a numeric variable. The values forvariable
can be formatted or unformatted. If the variable is a character variable, or if the
variable is numeric and no list appears, then the strata are defined by the unique
values of the strata variable. More than one variable can be specified in the STRATA
statement, and each numeric variable can be followed by a list. Each interval contains
its lower endpoint but does not contain its upper endpoint. The corresponding strata
are formed by the combination of levels. If a variable is numeric and is followed by
a list, then the levels for that variable correspond to the intervals defined by the list.
The initial interval is assumed to start at−∞ and the final interval is assumed to end
at∞.

The specification of STRATA variables can have any of the following forms:
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list separated by blanks strata age(5 10 20 30)

list separated by commas strata age(5,10,20,30)

x to y strata age(5 to 10)

x to y by z strata age(5 to 30 by 10)

combination of the above strata age(5,10 to 50 by 10)

For example, the specification

strata age(5,20 to 50 by 10) sex;

indicates the following levels for theAge variable

{(−∞, 5), [5, 20), [20, 30), [30, 40), [40, 50), [50,∞)}

This statement also specifies that the age strata is further subdivided by values of the
variableSex. In this example, there are 6 age groups by 2 sex groups, forming a total
of 12 strata.

The specification of several variables (for example,A B C) is equivalent to the
A*B*C. . . syntax of the TABLES statement in the FREQ procedure. The number
of strata levels usually grows very rapidly with the number of STRATA variables, so
you must be cautious when specifying the list of STRATA variables.

The following options can appear in the STRATA statement after a slash (“/”). Other
than the MISSING option, these options are dedicated to the tests of the two or more
samples of survival data.

GROUP=variable
specifies the variable whose formatted values identify the various samples whose
underlying survival curves are to be compared. The tests are stratified on the levels
of the STRATA variables. For instance, in a multicenter trial in which two forms
of therapy are to be compared, you specify the variable identifying therapies as the
GROUP= variable and the variable identifying centers as the STRATA variable, in
order to perform a stratified2-sample test to compare the therapies while controlling
the effect of the centers.

MISSING
allows missing values to be a stratum level or a valid value of the GROUP= variable.

NODETAIL
suppresses the display of the rank statistics and the corresponding covariance matrices
for various strata. If the TREND option is specified, the display of the scores for
computing the trend tests is suppressed.

NOTEST
suppresses thek-sample tests, stratified tests, and trend tests
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TREND
computes the trend tests for testing the null hypothesis that thek population hazards
rate are the same versus an ordered alternatives. If there is only one STRATA variable
and the variable is numeric, the unformatted values of the variable are used as the
scores; otherwise, the scores are1, 2, . . . , in the given order of the strata.

TEST=(list)
enables you to select the weight functions for thek-sample tests, stratified tests,
or trend tests. You can specify alist containing one or more of the following key-
words.

LOGRANK specifies the log-rank test

WILCOXON specifies the Wilcoxon test. The test is also referred to as the
Gehan test or the Breslow test.

TARONE specifies the Tarone-Ware test

PETO specifies the Peto-Peto test. The test is also referred to as the
Peto-Peto-Prentice test.

MODPETO specifies the modified Peto-Peto test

FLEMING(ρ1, ρ2) specifies the family of tests inHarrington and Fleming(1982),
whereρ1 andρ2 are nonegative numbers. FLEMING(ρ1,ρ2)
reduces to the Fleming-HarringtonGρ family (Fleming
and Harrington1981) when ρ2=0, which you can specify
FLEMING(ρ) with one argument. Whenρ=0, the test becomes
the log-rank test. Whenρ=1, the test should be very close to
the Peto-Peto test.

LR specifies the likelihood ratio test based on the exponential
model.

ALL specifies all the nonparametric tests withρ1=1 andρ2=0 for the
FLEMING(. , .) test.

By default, TEST=(LOGRANK WILCOXON LR) for thek-sample tests, and
TEST=(LOGRANK WILCOXON) for stratified and trend tests.

SURVIVAL Statement

SURVIVAL options ;

The SURVIVAL statement creates an output SAS data set containing the results of the
estimation of the survivor function. Although you can use the OUTSURV= option in
the PROC LIFETEST statement to produce the output data set, the SURVIVAL state-
ment enables you to output confidence bands and to specify a transformation of sur-
vival time in the computation of the pointwise confidence intervals and the confidence
bands. Options in the PROC LIFETEST statements (ALPHA=, INTERVALS=,
REDUCEOUT, and TIMELIST=) that applies to the OUTSURV= data can also be
specified in the SURVIVAL statements. You can plot these survival estimates using
the experimental ODS graphics (see the section“ODS Graphics”on page 2190).
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Table 40.2. Summary of SURVIVAL Statement Options

Task Options Description
Specify Data Set OUT= specifies the output SAS data set

Specify Transformation CONFTYPE= specifies the transformation for the compu-
tation of pointwise and simultaneous confi-
dence intervals for the survivor function

Specify Confidence Bands CONFBAND= specifies the confidence bands to be output
BANDMAX= specifies the maximum time for the confi-

dence bands
BANDMIN= specifies the minimum time for the confi-

dence bands

Standard Errors STDERR outputs the standard errors

BANDMAXTIME= value
BANDMAX= value

specifies the maximum time for the confidence bands. The default is the largest
observed event time. If the specified BANDMAX= time exceeds the largest observed
event time, it is truncated to the largest observed event time.

BANDMINTIME=value
BANDMIN=value

specifies the minimum time for the confidence bands. The default is the smallest
observed event time. For the equal precision band, if the BANDMIN= value is less
than the smallest observed event time, it is defaulted to the smallest observed event
time.

CONFBAND=keyword
specifies the confidence bands to output. Confidence bands are available only for the
product-limit method. You can use the followingkeywords:

ALL outputs both the Hall-Wellner and the equal precision confidence
bands.

EP outputs the equal precision confidence band.

HW outputs the Hall and Wellner confidence band.

CONFTYPE=keyword
specifies the transformation applied toS(t) to obtain the pointwise confidence inter-
vals as well as the confidence bands. The followingkeywordscan be used and the
default is CONFTYPE=LOGLOG.

ASINSQRT the arcsine-square root transformation

g(x) = sin−1(
√

x)
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LOGLOG the log-log transformation

g(x) = log(− log(x))

This is also referred to as the log cumulative hazard transformation
since it is applying the logarithmic functionlog(.) to the cumula-
tive hazard function.Collett (1994) andLachin (2000) refer it as
the complementary log-log transformation.

LINEAR the identity transformation

g(x) = x

LOG the logarithmic transformation

g(x) = log(x)

LOGIT the logit transformation

g(x) = log
(

x

1− x

)

OUT=SAS-Data-Set
names the SAS data set that contains the survival estimates. If the OUT= option
is omitted, PROC LIFETEST creates an output SAS data set with the default name
DATAn. If you do not want to create this output SAS data set, set OUT=–NULL–.

STDERR
specifies that the standard error of the survivor function (SDF–STDERR) be out-
put. If the life-table method is used, the standard error of the density function
(PDF–STDERR) and the standard error of the hazard function (HAZ–STDERR) are
also output.

TEST Statement

TEST variables ;

The TEST statement specifies a list of numeric (continuous) covariates that you want
tested for association with the failure time.

Two sets of rank statistics are computed. These rank statistics and their variances are
pooled over all strata. Univariate (marginal) test statistics are displayed for each of
the covariates.

Additionally, a sequence of test statistics for joint effects of covariates is displayed.
The first element of the sequence is the largest univariate test statistic. Other variables
are then added on the basis of the largest increase in the joint test statistic. The process
continues until all the variables have been added or until the remaining variables are
linearly dependent on the previously added variables.

See the section“Rank Tests for the Association of Survival Time with Covariates”on
page 2180 for more information.
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TIME Statement

TIME variable < *censor(list) > ;

The TIME statement is required. It is used to indicate the failure time variable, where
variable is the name of the failure time variable that can be optionally followed by
an asterisk, the name of the censoring variable, and a parenthetical list of values that
correspond to right censoring. The censoring values should be numeric, nonmissing
values. For example, the statement

time T*Flag(1,2);

identifies the variableT as containing the values of the event or censored time. If the
variableFlag has value 1 or 2, the corresponding value ofT is a right-censored value.

Details

Missing Values

Observations with a missing value for either the failure time or the censoring variable
are not used in the analysis. If a stratum variable value is missing, survival function
estimates are computed for the strata labeled by the missing value, but these data are
not used in any rank tests. However, the MISSING option can be used to request
that missing values be treated as valid stratum values. If any variable specified in the
TEST statement has a missing value, that observation is not used in the calculation of
the rank statistics.

Computational Formulas

Product-Limit Method

Let t1 < t2 < · · · < tk represent the distinct event times. For eachi = 1, . . . , k, let
ni be the number of surviving units, the size of the risk set, just prior toti. Let di be
the number of units that fail atti, and letsi = ni − di.

The product-limit estimate of the SDF atti is the cumulative product

Ŝ(ti) =
i∏

j=1

(
1− dj

nj

)

Notice that the estimator is defined to be right continuous; that is, the events atti are
included in the estimate ofS(ti). The corresponding estimate of the standard error is
computed using Greenwood’s formula (Kalbfleisch and Prentice1980) as

σ̂
(
Ŝ(ti)

)
= Ŝ(ti)

√√√√ i∑
j=1

dj

njsj
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The first sample quartile of the survival time distribution is given by

q0.25 =
1
2
(inf

{
t : 1− Ŝ(t) ≥ 0.25

}
+ sup

{
t : 1− Ŝ(t) ≤ 0.25

}
)

Confidence intervals for the quartiles are based on the sign test (Brookmeyer and
Crowley1982). The100(1−α)% confidence interval for the first quartile is given by

I0.25 =
{

t : (1− Ŝ(t)− 0.25)2 ≤ cασ̂2
(
Ŝ(t)

)}
wherecα is the upperα percentile of a central chi-squared distribution with 1 degree
of freedom. The second and third sample quartiles and the corresponding confidence
intervals are calculated by replacing the 0.25 in the last two equations by 0.50 and
0.75, respectively.

The estimated mean survival time is

µ̂ =
k∑

i=1

Ŝ(ti−1)(ti − ti−1)

wheret0 is defined to be zero. When the largest observed time is censored, this sum
underestimates the mean. The standard error ofµ̂ is estimated as

σ̂(µ̂) =

√√√√ m

m− 1

k−1∑
i=1

A2
i

nisi

where

Ai =
k−1∑
j=i

Ŝ(tj)(tj+1 − tj)

m =
k∑

j=1

dj

If the largest observed time is not an event, you can use the TIMELIM= option to
specify a time limitL and estimate the mean survival time limited to the timeL and
its standard error by replacingk by k + 1 with tk+1 = L.

Life-Table Method

The life-table estimates are computed by counting the numbers of censored and
uncensored observations that fall into each of the time intervals[ti−1, ti), i =
1, 2, . . . , k + 1, wheret0 = 0 andtk+1 = ∞. Let ni be the number of units entering
the interval[ti−1, ti), and letdi be the number of events occurring in the interval. Let
bi = ti − ti−1, and letn′i = ni − wi/2, wherewi is the number of units censored in
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the interval. Theeffective sample sizeof the interval[ti−1, ti) is denoted byn′i. Let
tmi denote the midpoint of[ti−1, ti).

The conditional probability of an event in[ti−1, ti) is estimated by

q̂i =
di

n′i

and its estimated standard error is

σ̂ (q̂i) =

√
q̂ip̂i

n′i

wherep̂i = 1− q̂i.

The estimate of the survival function atti is

Ŝ(ti) =
{

1 i = 0
Ŝ(ti−1)pi−1 i > 0

and its estimated standard error is

σ̂
(
Ŝ(ti)

)
= Ŝ(ti)

√√√√ i−1∑
j=1

q̂j

n′j p̂j

The density function attmi is estimated by

f̂(tmi) =
Ŝ(ti)q̂i

bi

and its estimated standard error is

σ̂
(
f̂(tmi)

)
= f̂(tmi)

√√√√ i−1∑
j=1

q̂j

n′j p̂j
+

p̂i

n′iq̂i

The estimated hazard function attmi is

ĥ(tmi) =
2q̂i

bi(1 + p̂i)

and its estimated standard error is

σ̂
(
ĥ(tmi)

)
= ĥ(tmi)

√
1− (biĥ(tmi)/2)2

n′iq̂i
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Let [tj−1, tj) be the interval in whichŜ(tj−1) ≥ Ŝ(ti)/2 > Ŝ(tj). The median
residual lifetime atti is estimated by

M̂i = tj−1 − ti + bj
Ŝ(tj−1)− Ŝ(ti)/2
Ŝ(tj−1)− Ŝ(tj)

and the corresponding standard error is estimated by

σ̂(M̂i) =
Ŝ(ti)

2f̂(tmj)
√

n′i

Interval Determination

If you want to determine the intervals exactly, use the INTERVALS= option in the
PROC LIFETEST statement to specify the interval endpoints. Use the WIDTH=
option to specify the width of the intervals, thus indirectly determining the number of
intervals. If neither the INTERVALS= option nor the WIDTH= option is specified in
the life-table estimation, the number of intervals is determined by the NINTERVAL=
option. The width of the time intervals is 2, 5, or 10 times an integer (possibly a
negative integer) power of 10. Letc = log10(maximum observed time/number of
intervals), and letb be the largest integer not exceedingc. Let d = 10c−b and let

a = 2× I(d ≤ 2) + 5× I(2 < d ≤ 5) + 10× I(d > 5)

with I being the indicator function. The width is then given by

width = a× 10b

By default, NINTERVAL=10.

Pointwise Confidence Limits Added to the Output Data Set

Pointwise confidence limits are computed for the survivor function, and for the den-
sity function and hazard function when the life-table method is used. Letα be spec-
ified by the ALPHA= option. Letzα/2 be the critical value for the standard normal
distribution. That is,Φ(−zα/2) = α/2, whereΦ is the cumulative distribution func-
tion of the standard normal random variable.

Survival Function

When the computation of confidence limits for the survivor functionS(t) is based on
the asymptotic normality of the survival estimatorŜ(t), the approximate confidence
interval may include impossible values outside the range [0,1] at extreme values of
t. This problem can be avoided by applying the asymptotic normality to a transfor-
mation ofS(t) for which the range is unrestricted. In addition, certain transformed
confidence intervals forS(t) perform better than the usual linear confidence intervals
(Borgan and Liestøl1990). The CONFTYPE= option enables you to pick one of
the following transformations: the log-log function (Kalbfleisch and Prentice1980),
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the arcsine-square root function (Nair 1984), the logit function (Meeker and Escobar
1998), the log function, and the linear function.

Let g be the tranformation that is being applied to the survivor functionS(t). By the
delta method, the standard error ofg(Ŝ(t)) is estimated by

τ(t) = σ̂(g(Ŝ(t)) = g′(Ŝ(t))σ̂(Ŝ(t))

whereg′ is the first derivative of the functiong. The 100(1-α)% confidence interval
for S(t) is given by

g−1

(
g(Ŝ(t))± zα

2
g′(Ŝ(t))σ̂(Ŝ(t))

)

whereg−1 is the inverse function ofg.

Arcsine-Square Root Transformation

The estimated variance ofsin−1(
√

Ŝ(t)) is τ̂2(t) = σ̂2[Ŝ(t)]

4Ŝ(t)[1−Ŝ(t)]
. The 100(1-α)%

confidence interval forS(t) is given by

sin2{max[0, sin−1(
√

Ŝ(t))− zα
2
τ̂(t)]} ≤ S(t) ≤ sin2{min[

π

2
, sin−1(

√
Ŝ(t)) + zα

2
τ̂(t)]}

Linear Transformation

This is the same as having no transformation in whichg is the identity. The 100(1-
α)% confidence interval forS(t) is given by

Ŝ(t)− zα
2
σ̂(S(t))) ≤ S(t) ≤ Ŝ(t) + zα

2
σ̂(S(t)))

Log Transformation

The estimated variance oflog(Ŝ(t)) is τ̂2(t) = σ̂2(Ŝ(t))

Ŝ2(t)
. The 100(1-α)% confidence

interval forS(t) is given by

Ŝ(t) exp(zα
2
τ̂(t)) ≤ S(t) ≤ Ŝ(t) exp(−zα

2
τ̂(t))

Log-log Transformation

The estimated variance oflog(− log(Ŝ(t)) is τ̂2(t) = σ̂2[Ŝ(t)]

[Ŝ(t) log(Ŝ(t))]2
. The 100(1-α)%

confidence interval forS(t) is given by

[Ŝ(t)]exp(z α
2

τ̂(t)) ≤ S(t) ≤ [Ŝ(t)]exp(−z α
2

τ̂(t))
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Logit Transformation

The estimated variance oflog( Ŝ(t)

1−Ŝ(t)
) is τ̂2(t) = σ̂2(Ŝ(t))

Ŝ2(t)[1−Ŝ(t)]2
. The 100(1-α)% con-

fidence limits forS(t) are given by

Ŝ(t)
Ŝ(t) + (1− Ŝ(t)) exp(zα

2
τ̂(t))

≤ S(t) ≤ Ŝ(t)
Ŝ(t) + (1− Ŝ(t)) exp(−zα

2
τ̂(t))

Density and Hazard Functions

For the life-table method, a 100(1-α)% confidence interval for hazard function or
density function at timet is computed as

ĝ(t)± zα/2σ̂[ĝ(t)]

whereĝ(t) is the estimate of either the hazard function or the density function at time
t, andσ̂[ĝ(t)] is the corresponding standard error estimate.

Simultaneous Confidence Intervals for Kaplan-Meier Curve

The pointwise confidence interval for the survivor functionS(t) is valid for a single
fixed time at which the inference is to be made. In some applications, it is of interest
to find the upper and lower confidence bands that guarantee, with a given confidence
level, that the survivor function falls within the band for allt in some interval.Hall
and Wellner(1980) andNair (1984) provide two different approaches for deriving
the confidence bands. An excellent review can be found inKlein and Moeschberger
(1997). You can use CONFBAND= option in the SURVIVAL statement to select
the confidence bands. The EP confidence band provides confidence bounds that are
proportional to the pointwise confidence interval, while those of the HW band are
not proportional to the pointwise confidence bounds. The maximum time,tU , for
the bands can be specified by the BANDMAX= option; the minimum time,tL, can
be specified by the BANDMIN= option. Transformations that are used to improve
the pointwise confidence intervals can be applied to improve the confidence bands.
It may turn out that the upper and lower bounds of the confidence bands are not
decreasing intL < t < tU , which is contrary to the nonincreasing characteristic of
survivor function.Meeker and Escobar(1998) suggest making an adjustment so that
the bounds do not increase: if the upper bound is increasing on the right, it is made flat
from the minimum totU ; if the lower bound is increasing from the right, it is made
flat from tL to the maximum. PROC LIFETEST does not make any adjustment for
the nondecreasing behavior of the confidence bands in the OUT= data set. However,
the adjustment was made in the display of the confidence bands using ODS graphics.

For Kaplan-Meier estimation, lett1 < t2 < . . . < tD be theD distinct events times,
and that at timeti, there aredi events. LetYi be the number of individuals who
are at risk at timeti. The variance of̂S(t), given by the Greenwood formula, is
σ̂2[Ŝ(t)] = σ2

S(t)Ŝ2(t) where

σ2
S(t) =

∑
ti≤t

di

Yi(Yi − di)
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Let tL < tU be the time range for the confidence band so thattU is less than or equal
to the largest event time. For the Hall-Wellner band,tL can be zero, but for the equal
precison band,tL is greater than or equal to the smallest event time. Let

aL =
nσ2

S(tL)
1 + nσ2

S(tL)
and aU =

nσ2
S(tU )

1 + nσ2
S(tU )

Let {W 0(u), 0 ≤ u ≤ 1} be a Brownian bridge.

Hall-Wellner Band

The 100(1-α)% HW band ofHall and Wellner(1980) is

Ŝ(t)− hα(aL, aU )n−
1
2 [1 + nσ2

S(t)]Ŝ(t)
≤ S(t) ≤
Ŝ(t) + hα(aL, aU )n−

1
2 [1 + nσ2

S(t)]Ŝ(t)

for all tL ≤ t ≤ tU , wherehα(aL, aU ) is given by

α = Pr{ sup
aL≤u≤aU

|W 0(u)| > hα(aL, aU )}

The critical values are computed from the results inChung(1986).

Note that the given confidence band has a formula similar to that of the (linear) point-
wise confidence interval wherehα(aL, aU ) andn−

1
2 [1 + nσ2

S(t)]Ŝ(t) in the former
correspond tozα

2
and σ̂(Ŝ(t)) in the latter, respectively. You can obtain the other

transformations (arcsine-square root, log-log, log, and logit) for the confidence bands
by replacingzα

2
andτ̂(t) in the corresponding pointwise confidence interval formula

by hα(aL, aU ) and the followinĝτ(t), respectively.

Arcsine-Square Root Transformation

τ̂(t) =
1 + nσ2

S(t)
2

√
S(t)

n[1− S(t)]

Log Transformation

τ̂(t) =
1 + nσ2

S(t)√
n

Log-log Transformation

τ̂(t) =
1 + nσ2

S(t)
√

n| log[Ŝ(t)]|

Logit Transformation

τ̂(t) =
1 + nσ2

S(t)
√

n[1− Ŝ(t)]
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Equal Precision Band

The 100(1-α)% EP band ofNair (1984) is

Ŝ(t)− eα(aL, aU )Ŝ(t)σS(t) ≤ S(t) ≤ Ŝ(t) + eα(aL, aU )Ŝ(t)σS(t)

for all tL ≤ t ≤ tU , whereeα(aL, aU ) is given by

α = Pr{ sup
aL≤u≤aU

|W 0(u)|
[u(1− u)]

1
2

> eα(aL, aU )}

PROC LIFETEST uses the approximation ofMiller and Siegmund(1982, Equation
8) to approximate the tail probability in whicheα(aL, aU ) is obtained by solvingx in

4xφ(x)
x

+ φ(x)
(

x− 1
x

)
log

[
aU (1− aL)
aL(1− aU )

]
= α

whereφ() is the standard normal density. Note that the given confidence bounds are
proportional to the pointwise confidence intervals. As a matter of fact, this confidence
band and the (linear) pointwise confidence interval have the same formula except for
the critical values (zα

2
for the pointwise confidence interval andeα(aL, aU ) for the

band). You can obtain the other transformations (arcsine-square root, log-log, log,
and logit) for the confidence bands by replacingzα

2
by eα(aL, aU ) in the formulae of

the pointwise confidence intervals.

Comparison of Two or More Groups of Survival Data

Letk be the number of groups. LetSi(t) be the underlying surivor functionith group,
i = 1, . . . , k. The null and alternative hypotheses to be tested are

H0 : S1(t) = S2(t) = . . . = Sk(t) for all t ≤ τ

versus

H1 : at least one of theSi(t)’s is different for somet ≤ τ

respectively, whereτ is the largest observed time. Lett1 < t2 < . . . < tD be the
distinct event times in the pooled sample. At timeti, let W (ti) be a positive weight
function, and letnij anddij be the size of the risk set and the number of events in the
jth sample, respectively. Letni =

∑k
j=1 nij , di =

∑k
j=1 dij andsi = ni − di.

Nonparametric tests

The rank statistics (Klein and Moeschberger1997, Section 7.3) for testingH0 versus
H1 have the form of ak-vectorv = (v1, v2, . . . , vk)′ with

vj =
D∑

i=1

W (ti)
{

dij −
nijdi

ni

}
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and the estimated covariance matrix,V = (Vjl), is given by

Vjl =
D∑

i=1

W 2(ti)
{

disi(ninilδjl − nijnil)
n2

i (ni − 1)

}

whereδjl is 1 if j = l and 0 otherwise. The termvj can be interpreted as a weighted
sum of observed minus expected numbers of failure under the null hypothesis of
identical survival curves. The overall test statistic for homogeneity isv′V−v, where
V− denotes a generalized inverse ofV. This statistic is treated as having a chi-
square distribution with degrees of freedom equal to the rank ofV for the purposes
of computing an approximate probability level. The choices of the weight function
W (ti) are given in the following table:

Test W (ti)
log-rank 1.0
Wilcoxon ni

Tarone-Ware
√

ni

Peto-Peto S̃(ti)
modified Peto-Peto S̃(ti) ni

ni+1

Harrington-Fleming (p,q) [Ŝ(ti)]p[1− Ŝ(ti)]q, p ≥ 0, q ≥ 0

whereŜ(t) is the product-limit estimate att for the pooled sample, and̃S(t) is a
survivor function estimate close tôS(t) given by

S̃(t) =
∏
ti≤t

(
1− di

ni + 1

)

Likelihood Ratio Test

The likelihood ratio test statistic (Lawless1982) for testH0 versusH1 assumes that
the data in the various samples are exponentially distributed and tests that the scale
parameters are equal. The test statistic is computed as

Z = 2N log
(

T

N

)
− 2

k∑
j=1

Nj log
(

Tj

Nj

)

whereNj is the total number of events in thejth stratum,N =
∑k

j=1 Nj , Tj is the

total time on test in thejth stratum, andT =
∑k

j=1 Tj . The approximate probability
value is computed by treatingZ as having a chi-square distribution withc−1 degrees
of freedom.

Trend Tests

Trend tests (Klein and Moeschberger1997, Section 7.4) have more power to detect
ordered alternatives as
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H2 : S1(t) ≥ S2(t) ≥ . . . ≥ Sk(t), t ≤ τ, with at least one inequality

Let a1 < a2 < . . . < ak be a sequence of scores associated with thek samples. The
test statistic and its standard error are given by

k∑
j=1

ajvj and
k∑

j=1

k∑
l=1

ajalVjl

respectively. UnderH0, thez−score

Z =

∑k
j=1 ajvj√

{
∑k

j=1

∑k
l=1 ajalVjl}

has, asymptotically, a standard normal distribution.

Stratified Tests

Suppose the test is to be stratified onM levels of a set of STRATA variables. Based
only on the data of thesth stratum (s = 1 . . .M ), let vs be the test statistic (Klein
and Moeschberger1997, Section 7.5) for thesth stratum, and letVs be its covariance
matrix. A global test statistic is constructed as

χ2 =
( M∑

i=1

vs

)′( M∑
i=1

Vs

)−1( M∑
i=1

vs

)

Under the null hypothesis, the test statistic has aχ2 distribution with the same df as
the individual test for each stratum.

Rank Tests for the Association of Survival Time with Covariates

The rank tests for the association of covariates (Kalbfleisch and Prentice1980,
Chapter 6) are more general cases of the rank tests for homogeneity. In this sec-
tion, the indexα is used to label all observations,α = 1, 2, . . . , n, and the indicesi, j
range only over the observations that correspond to events,i, j = 1, 2, . . . , k. The
ordered event times are denoted ast(i), the corresponding vectors of covariates are
denoted asz(i), and the ordered times, both censored and event times, are denoted as
tα.

The rank test statistics have the form

v =
n∑

α=1

cα,δαzα

wheren is the total number of observations,cα,δα are rank scores, which can be either
log-rank or Wilcoxon rank scores,δα is 1 if the observation is an event and 0 if the
observation is censored, andzα is the vector of covariates in the TEST statement for
the αth observation. Notice that the scores,cα,δα , depend on the censoring pattern
and that the terms are summed up over all observations.
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The log-rank scores are

cα,δα =
∑

(j:t(j)≤tα)

(
1
nj

− δα

)

and the Wilcoxon scores are

cα,δα = 1− (1 + δα)
∏

(j:t(j)≤tα)

nj

nj + 1

wherenj is the number at risk just prior tot(j).

The estimates used for the covariance matrix of the log-rank statistics are

V =
k∑

i=1

Vi

ni

whereVi is the corrected sum of squares and crossproducts matrix for the risk set at
time t(i); that is,

Vi =
∑

(α:tα≥t(i))

(zα − z̄i)′(zα − z̄i)

where

z̄i =
∑

(α:tα≥t(i))

zα

ni

The estimate used for the covariance matrix of the Wilcoxon statistics is

V =
k∑

i=1

ai(1− a∗i )(2z(i)z
′
(i) + Si)− (a∗i − ai)

aixix′i +
k∑

j=i+1

aj(xix′j + xjx′i)


where

ai =
i∏

j=1

nj

nj + 1

a∗i =
i∏

j=1

nj + 1
nj + 2

Si =
∑

(α:t(i+1)>tα>t(i))

zαz′α

xi = 2z(i) +
∑

(α:t(i+1)>tα>t(i))

zα
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In the case of tied failure times, the statisticsv are averaged over the possible or-
derings of the tied failure times. The covariance matrices are also averaged over the
tied failure times. Averaging the covariance matrices over the tied orderings produces
functions with appropriate symmetries for the tied observations; however, the actual
variances of thev statistics would be smaller than the preceding estimates. Unless
the proportion of ties is large, it is unlikely that this will be a problem.

The univariate tests for each covariate are formed from each component ofv and
the corresponding diagonal element ofV asv2

i /Vii. These statistics are treated as
coming from a chi-square distribution for calculation of probability values.

The statisticv′V−v is computed by sweeping each pivot of theV matrix in the order
of greatest increase to the statistic. The corresponding sequence of partial statistics
is tabulated. Sequential increments for including a given covariate and the corre-
sponding probabilities are also included in the same table. These probabilities are
calculated as the tail probabilities of a chi-square distribution with one degree of free-
dom. Because of the selection process, these probabilities should not be interpreted
asp-values.

If desired for data screening purposes, the output data set requested by the
OUTTEST= option can be treated as a sum of squares and crossproducts matrix
and processed by the REG procedure using the option METHOD=RSQUARE. Then
the sets of variables of a given size can be found that give the largest test statistics.
Example 40.1illustrates this process.

Computer Resources

The data are first read and sorted into strata. If the data are originally sorted by
failure time and censoring state, with smaller failure times coming first and event
values preceding censored values in cases of ties, the data can be processed by strata
without additional sorting. Otherwise, the data are read into memory by strata and
sorted.

Memory Requirements

For a given BY group, define

N the total number of observations

V the number of STRATA variables

C the number of covariates listed on the TEST statement

L total length of the ID variables in bytes

S number of strata

n maximum number of observations within strata

b 12 + 8C + L

m1 (112 + 16V )× S

m2 50× b× S
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m3 (50 + n)× (b + 4)

m4 8(C + 4)2

m5 20N + 8S × (S + 4)

The memory, in bytes, required to process the BY-group is at least

m1 + max(m2,m3) + m4

The test of equality of survival functions across strata requires additional memory
(m5 bytes). However, if this additional memory is not available, PROC LIFETEST
skips the test for equality of survival functions and finishes the other computations.
Additional memory is required for the PLOTS= option. Temporary storage of16n
bytes is required to store the product-limit estimates for plotting.

Output Data Sets

OUTSURV= Data Set

You can specify either the OUTSURV= option in the PROC LIFETEST statement to
create an output data set containing the following columns:

• any specified BY variables

• any specified STRATA variables, their values coming from either their original
values or the midpoints of the stratum intervals if endpoints are used to define
strata (semi-infinite intervals are labeled by their finite endpoint)

• STRATUM, a numeric variable that numbers the strata

• the time variable as given in the TIME statement. In the case of the product-
limit estimates, it contains the observed failure or censored times. For the
life-table estimates, it contains the lower endpoints of the time intervals.

• SURVIVAL, a variable containing the survivor function estimates

• CONFTYPE, a variable containing the name of the transformation applied
to the survival time in the computation of confidence intervals (if the OUT=
option is specified in the SURVIVAL statement)

• SDF–LCL, a variable containing the lower limits of the pointwise confidence
intervals for the survivor function

• SDF–UCL, a variable containing the upper limits of the pointwise confidence
intervals for the survivor function

If the estimation uses the product-limit method, then the data set also contains

• –CENSOR– , an indicator variable that has a value 1 for a censored observa-
tion and a value 0 for an event observation
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If the estimation uses the life-table method, then the data set also contains

• MIDPOINT, a variable containing the value of the midpoint of the time interval

• PDF, a variable containing the density function estimates

• PDF–LCL, a variable containing the lower endpoint of the PDF confidence
interval

• PDF–UCL, a variable containing the upper endpoint of the PDF confidence
interval

• HAZARD, a variable containing the hazard estimates

• HAZ–LCL, a variable containing the lower endpoint of the hazard confidence
interval

• HAZ–UCL, a variable containing the upper endpoint of the hazard confidence
interval

Each survival function contains an initial observation with the value 1 for the SDF
and the value 0 for the time. The output data set contains an observation for each
distinct failure time if the product-limit method is used or an observation for each
time interval if the life-table method is used. The product-limit survival estimates are
defined to be right continuous; that is, the estimates at a given time include the factor
for the failure events that occur at that time.

Labels are assigned to all the variables in the output data set except the BY variable
and the STRATA variable.

OUT= Data Set

The OUT= option in the SURVIVAL statement creates an output data set containing
all the variables listed in the OUTSURV= data set specified in the PROC LIFETEST
statement with the additional variable

• CONFTYPE, a variable containing the type of transform used in the compu-
tation of the confidence intervals and bands for the survivor function

If the product-limit method is used, the OUT= data set also contains

• SDF–STDERR, a variable containing the standard error of the survivor func-
tion estimator (if the STDERR option is specified in the SURVIVAL statement)

• HW–LCL, a variable containing the lower limits of the Hall-Wellner confi-
dence bands (if the CONFBAND=HW or CONFBAND=ALL is specified in
the SURVIVAL statement)

• HW–UCL, a variable containing the upper limits of the Hall-Wellner confi-
dence bands (if the CONFBAND=HW or CONFBAND=ALL is specified in
the SURVIVAL statement)

• EP–LCL, a variable containing the lower limits of the equal precision confi-
dence bands (if the CONFBAND=EP or CONFBAND=ALL is specified in the
SURVIVAL statement)
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• EP–UCL, a variable containing the upper limits of the equal precision confi-
dence bands (if the CONFBAND=EP or CONFBAND=ALL is specified in the
SURVIVAL statement)

In this release, the OUTSURV= data set is not created if you specify both the
OUTSURV= option in the PROC LIFETEST statement and the OUT= option in the
PROC statement.

OUTTEST= Data Set

The OUTTEST= option in the LIFETEST statement creates an output data set con-
taining the rank statistics for testing the association of failure time with covariates. It
contains

• any specified BY variables

• –TYPE– , a character variable of length 8 that labels the type of rank test,
either “LOG-RANK” or “WILCOXON”

• –NAME– , a character variable of length 8 that labels the rows of the covari-
ance matrix and the test statistics

• the TIME variable, containing the overall test statistic in the observation that
has–NAME– equal to the name of the time variable and the univariate test
statistics under their respective covariates.

• all variables listed in the TEST statement

The output is in the form of a symmetric matrix formed by the covariance matrix of
the rank statistics bordered by the rank statistics and the overall chi-square statistic.
If the value of–NAME– is the name of a variable in the TEST statement, the ob-
servation contains a row of the covariance matrix and the value of the rank statistic
in the time variable. If the value of–NAME– is the name of the TIME variable, the
observation contains the values of the rank statistics in the variables from the TEST
list and the value of the overall chi-square test statistic in the TIME variable.

Two complete sets of statistics labeled by the–TYPE– variable are produced, one
for the log-rank test and one for the Wilcoxon test.

Displayed Output

If you use the NOPRINT option in the PROC LIFETEST statement, the procedure
does not display any output.

For each stratum, the LIFETEST procedure displays the following unless the
NOTABLE option is specified.

• if you specify the STRATA statement, the values of the stratum variables

• if you request the product-limit estimate, the “Product-Limit Survival
Estimates” table, which displays

− the observed (event or censored) time
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− the estimate of the survivor function

− the estimate of the cumulative distribution function of the failure time

− the standard error estimate of the estimated survivor function

− the number of event times that have been observed

− the number of event or censored times that remain to be observed

− if you specify the FREQ statement, the frequency of the observed event
or censored times

− if you specify the ID statement, the values of the ID variables

• if you request the product-limit estimate, the “Quartile Estimates” table, which
contains

− point estimates of the quartiles of the failure times

− lower and upper confidence limits for the quartiles

• if you requested the product-limit estimate, the estimated mean survival time
and its estimated standard error

• if you requested the life-table estimate, the “Life Table Survival Estimates”
table, which displays

− time intervals into which the failure and censored times are distributed;
each interval is from the lower limit, up to but not including the upper
limit. If the upper limit is infinity, the missing value is printed.

− the number of events that occur in the interval

− the number of censored observations that fall into the interval

− the effective sample size for the interval

− the estimate of conditional probability of events (failures) in the interval

− the standard error of the estimated conditional probability of events

− the estimate of the survival function at the beginning of the interval

− the estimate of the cumulative distribution function of the failure time at
the beginning of the interval

− the standard error estimate of the estimated survival function

− the estimate of the median residual lifetime, which is the amount of time
elapsed before reducing the number of at-risk units to one-half. This is
also known as themedian future lifetimein Elandt-Johnson and Johnson
(1980).

− the estimated standard error of the estimated median residual lifetime

− the density function estimated at the midpoint of the interval

− the standard error estimate of the estimated density

− the hazard rate estimated at the midpoint of the interval

− the standard error estimate of the estimated hazard

The following results, processed across all strata, are displayed:

• the “Summary of the Number of Censored and Uncensored Values” table,
which contains
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− if the STRATA statement is specified, the stratum identification

− the total number of observations

− the number of event observations

− the number of censored observations

− the percentage of censored observations

• the “Rank Statistics” table that contains the test statistics of the nonparametric
k-sample tests or stratifiedk-sample tests

• the covariance matrix for the LOGRANKk-sample statistics

• the covariance matrix for the WILCOXONk-sample statistics

• the covariance matrix for the TARONEk-sample statistics (if requested)

• the covariance matrix for the PETOk-sample statistics (if requested)

• the covariance matrix for the MODPETOk-sample statistics (if requested)

• the covariance matrix for the FLEMINGk-sample statistics (if requested)

• the “Test of Equality over Strata” table, which displays the results of the non-
parametrick-sample test and the likelihood ratio test that is based on the ex-
ponential distribution (if the GROUP= option is not specified in the STRATA
statement)

• the “Stratified Test of Equality over Group” table, which displays the results of
the stratifiedk-sample tests for the GROUP= variable (if the GROUP= option
in the STRATA statement is specified)

• the “Scores for Trend Test” tables, which displays the set of scores used to
contruct the trend tests (if the TREND option is specified in the STRATA state-
ment)

• the “Trend Tests” tables, which displays the results of the trend tests (if the
TREND option is specified in the STRATA statement)

• the line printer plot or traditional high resolution graph of the estimated sur-
vivor function against failure time (if requested)

• the line printer plot or traditional high resolution graph of the negative log of
the estimated survivor function against failure time (if requested)

• the line printer plot or traditional high resolution graph of the log of the negative
log of the estimated survivor function against the log of the failure time (if
requested)

• the line printer plot or traditional high resolution graph of the estimated hazard
function against failure time (if requested and only for life-table method)

• the line printer plot or traditional high resolution graph of the estimated density
function against failure time (if requested and only for life-table method)

If you specify the TEST statement, the PROC LIFETEST also displays

• the “Univariate Chi-Squares for the Log-Rank Test” table, which contains the
log-rank test results for individual variables in the TEST statement
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• the “Covariance Matrix for the Log-Rank Statistics” table

• the “Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test” table,
which contains

− the sequence of partial chi-square statistics for the log-rank test in the
order of the greatest increase to the overall test statistic

− the degrees of freedom of the partial chi-square statistics

− the approximate probability values of the partial chi-square statistics

− the chi-square increments for including the given variables

− the probability values of the chi-square increments

• the “Univariate Chi-Squares for the Wilcoxon Test” table, which contains the
log-rank test results for individual variables in the TEST statement

• the “Covariance Matrix for the Wilcoxon Statistics” table

• the “Forward Stepwise Sequence of Chi-Squares for the Wilcoxon Test” table,
which contains

− the sequence of partial chi-square statistics for the Wilcoxon test in the
order of the greatest increase to the overall test statistic

− the degrees of freedom of the partial chi-square statistics

− the approximate probability values of the partial chi-square statistics

− the chi-square increments for including the given variables

− the probability values of the chi-square increments

ODS Table Names

PROC LIFETEST assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 40.3. ODS Tables Produced in PROC LIFETEST

ODS Table Name Description Statement Option
CensorPlot line printer plot of censored ob-

servations
PROC PLOT=(C|S|LS|LLS),

METHOD=PL, and
LINEPRINTER

CensoredSummary number of event and censored
observations

PROC METHOD=PL

DensityPlot traditional high-resolution or line
printer plot of the density func-
tion

PROC PLOT=(D) and
METHOD=LT

HazardPlot traditional high-resolution graph
or line printer plot of the hazard
function

PROC PLOT=(H) and
METHOD=LT

FlemingHomCov covariance matrix fork-sample
FLEMING statistics

STRATA TEST=(FLEMING)
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Table 40.3. (continued)

ODS Table Name Description Statement Option
HomStats test statistics fork-sample tests STRATA
HomTests results ofk-sample tests STRATA
LifetableEstimates life-table survival estimates PROC METHOD=LT
LogForStepSeq forward stepwise sequence for

the log-rank statistics for associ-
ation

TEST

LogHomCov covariance matrix fork-sample
LOGRANK statistics

STRATA TEST=(LOGRANK)

LogLogSurvivalPlot traditional high-resolution graph
or line printer plot of the log of
the negative log survivor func-
tion

PROC PLOT=(LLS)

LogSurvivalPlot GSET or line printer plot of the
log survivor function

PROC PLOT=(LS)

LogTestCov covariance matrix for log-rank
statistics for association

TEST

LogUniChisq univariate chi-squares for log-
rank statistic for association

TEST

Means mean and Standard Error of sur-
vival times

PROC METHOD=PL

ModPetoHomCov covariance matrix fork-sample
MODPETO statistics

STRATA TEST=(MODPETO)

NObs Number of observations default
PetoHomCov covariance matrix fork-sample

PETO statistics
STRATA TEST=(PETO)

ProductLimitEstimates product-limit survival estimates PROC METHOD=PL
Quartiles quartiles of the survival distribu-

tion
PROC METHOD=PL

SurvivalPlot traditional high-resolution graph
or line printer plot of the survivor
function

PROC PLOT=(S)

TaroneHomCov covariance matrix fork-sample
TARONE statistics

STRATA TEST=(TARONE)

TrendScores scores used to construct trend
tests

STRATA TREND

TrendTests results of Trend Tests STRATA TREND
WilForStepSeq forward stepwise sequence for

the log-rank statistics for associ-
ation

TEST

WilHomCov covariance matrix fork-sample
WILCOXON statistics

STRATA TEST=(WILCOXON)

WilTestCov covariance matrix for log-rank
statistics for association

TEST

WilUniChiSq univariate chi-squares for
Wilcoxon statistic for association

TEST
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ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the
LIFETEST procedure. These graphics are experimental in this release, meaning that
both the graphical results and the syntax for specifying them are subject to change in
a future release.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the PLOTS= option. For general information about ODS GRAPHICS, seeChapter
15, “Statistical Graphics Using ODS.”

You can specify the PLOTS=option in the SURVIVAL statement to request graphical
displays of survival distribution and related function estimates:

PLOTS=(type <,type,...,type>)
requests one or more plots of the survival estimates, wheretype is the type of plot.
The following table shows the valid values oftype.

Type Plot Description
CL | PCL pointwise confidence limits for the survival function

DENSITY | PDF estimated density function (life-table method only)

EPB equal precision bands for survivorship (product-limit
method only)

HAZARD | HAZ estimated hazard function (life-table method only)

HWB Hall-Wellner confidence bands for survivorship
(product-limit method only)

LOGLOGS | LLS log of negative log of estimated survivor function ver-
sus log of time

LOGSURV | LS negative log of estimated survivor function

STRATUM a panel of three plots and a table of summary statis-
tics for each stratum. For the product-limit method,
the panel contains a plot of the product-limit esti-
mates, a plot of the Hall-Wellner band, and a plot
of the equal precision band. Pointwise confidence
limits and the product-limit estimates are also plotted
along with the confidence bands. For the life-table
method, the panel contains a plot of life-table esti-
mates, a plot of the estimated hazard function, and a
plot of the estimated density. Corresponding point-
wise confidence limits are also plotted along with the
survival estimates.

SURVIVAL | S estimated survivor function. Censored times are plot-
ted as a plus sign on the product-limit curve.
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You can use the ALPHA=, BANDMIN=, BANDMAX=, and CONFTYPE= options
in the SURVIVAL statement to modify the confidence limits and confidence bands.
To restrict the display of the plots up to a certain limit on the time scale, specify the
following option in the SURVIVAL statement.

MAXTIME=value
specifies the maximum value of the time variable allowed on the plots so that outlying
points do not determine the scale of the time axis of the plots.

ODS Graph Names

PROC LIFETEST assigns a name to each graph it creates using the Output Delivery
System (ODS). You can use these names to reference the graphs when using ODS.
The names are listed inTable 40.4.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the options indicated inTable 40.4. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

Table 40.4. ODS Graphics Produced by PROC LIFETEST

ODS Graph Name Plot Description Statement PLOTS=(type)
Density Density estimate based on life-table

method
SURVIVAL PDF

EqualPrecision Equal precision band overlaid with
the estimated survival curve

SURVIVAL EPB

HallWellner Hall and Wellner band overlaid with
the estimated survival curve

SURVIVAL HWB

Hazard Hazard estimate based on the life-
table method

SURVIVAL HAZ

LogNegLogSurvival Log of negative log of the estimated
survival function

SURVIVAL LLS

NegLogSurvival Negative log of the estimated sur-
vival function

SURVIVAL LS

Survival Estimated survival curve SURVIVAL S

SurvivalCL Pointwise confidence limits overlaid
with estimated survival curve

SURVIVAL CL

Examples

Example 40.1. Product-Limit Estimates and Tests of
Association for the VA Lung Cancer Data

This example uses the data presented in Appendix I ofKalbfleisch and Prentice
(1980). The response variable,SurvTime, is the survival time in days of a lung
cancer patient. Negative values ofSurvTime are censored values. The covariates are
Cell (type of cancer cell),Therapy (type of therapy: standard or test),Prior (prior
therapy: 0=no, 10=yes),Age (age in years),DiagTime (time in months from diag-
nosis to entry into the trial), andKps (performance status). A censoring indicator
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variableCensor is created from the data, with value 1 indicating a censored time
and value 0 an event time. Since there are only two types of therapy, an indicator vari-
able,Treatment, is constructed for therapy type, with value 0 for standard therapy
and value 1 for test therapy.

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label SurvTime=’failure or censoring time’

Kps=’karnofsky index’
DiagTime=’months till randomization’
Age=’age in years’
Prior=’prior treatment?’
Cell=’cell type’
Therapy=’type of treatment’
Treatment=’treatment indicator’;

M=Column;
input Check $ @@;
if M>Column then M=1;
if Check=’s’|Check=’t’ then input @M Therapy $ Cell $ ;
else input @M SurvTime Kps DiagTime Age Prior @@;
if SurvTime > .;
censor=(SurvTime<0);
SurvTime=abs(SurvTime);
Treatment=(Therapy=’test’);
cards;

standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10

118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small

30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0

27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0
392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0

95 80 4 34 0
standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0

30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10
test small
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25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0

8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0
140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0

45 40 3 69 0 80 40 4 63 0
test large

52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

PROC LIFETEST is invoked to compute the product-limit estimate of the survivor
function for each type of cancer cell and to analyze the effects of the variablesAge,
Prior, DiagTime, Kps, andTreatment on the survival of the patients. These prog-
nostic factors are specified in the TEST statement, and the variableCell is specified in
the STRATA statement. Traditional high-resolution graphs of the product-limit esti-
mates, the log estimates, and the negative log-log estimates are requested through the
PLOTS= option in the PROC LIFETEST statement. Because of a few large survival
times, a MAXTIME of 600 is used to set the scale of the time axis; that is, the time
scale extends from 0 to a maximum of 600 days in the plots. The variableTherapy
is specified in the ID statement to identify the type of therapy for each observation in
the product-limit estimates. The OUTTEST option specifies the creation of an output
data set namedTest to contain the rank test matrices for the covariates.

symbol1 c=blue; symbol2 c=orange; symbol3 c=green;
symbol4 c=red; symbol5 c=cyan; symbol6 c=black;
title ’VA Lung Cancer Data’;
proc lifetest data=VALung plots=(s,ls,lls) outtest=Test maxtime=600;

time SurvTime*Censor(1);
id Therapy;
strata Cell;
test Age Prior DiagTime Kps Treatment;

run;

Output 40.1.1throughOutput 40.1.4display the product-limit estimates of the sur-
vivor functions for the four cell types. Summary statistics of the survival times are
also shown. The median survival times are 51 days, 156 days, 51 days, and 118 days
for patients with adeno cells, large cells, small cells, and squamous cells, respectively.
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Output 40.1.1. Estimation Results for Cell=adeno

Stratum 1: Cell = adeno

Product-Limit Survival Estimates

Survival
Standard Number Number

SurvTime Survival Failure Error Failed Left Therapy

0.000 1.0000 0 0 0 27
3.000 0.9630 0.0370 0.0363 1 26 standard
7.000 0.9259 0.0741 0.0504 2 25 test
8.000 . . . 3 24 standard
8.000 0.8519 0.1481 0.0684 4 23 test

12.000 0.8148 0.1852 0.0748 5 22 standard
18.000 0.7778 0.2222 0.0800 6 21 test
19.000 0.7407 0.2593 0.0843 7 20 test
24.000 0.7037 0.2963 0.0879 8 19 test
31.000 0.6667 0.3333 0.0907 9 18 test
35.000 0.6296 0.3704 0.0929 10 17 standard
36.000 0.5926 0.4074 0.0946 11 16 test
45.000 0.5556 0.4444 0.0956 12 15 test
48.000 0.5185 0.4815 0.0962 13 14 test
51.000 0.4815 0.5185 0.0962 14 13 test
52.000 0.4444 0.5556 0.0956 15 12 test
73.000 0.4074 0.5926 0.0946 16 11 test
80.000 0.3704 0.6296 0.0929 17 10 test
83.000* . . . 17 9 test
84.000 0.3292 0.6708 0.0913 18 8 test
90.000 0.2881 0.7119 0.0887 19 7 test
92.000 0.2469 0.7531 0.0850 20 6 standard
95.000 0.2058 0.7942 0.0802 21 5 standard

117.000 0.1646 0.8354 0.0740 22 4 standard
132.000 0.1235 0.8765 0.0659 23 3 standard
140.000 0.0823 0.9177 0.0553 24 2 test
162.000 0.0412 0.9588 0.0401 25 1 standard
186.000 0 1.0000 0 26 0 test

NOTE: The marked survival times are censored observations.

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 92.000 73.000 140.000
50 51.000 31.000 90.000
25 19.000 8.000 45.000

Mean Standard Error

65.556 10.127
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Output 40.1.2. Estimation Results for Cell=large

Stratum 2: Cell = large

Product-Limit Survival Estimates

Survival
Standard Number Number

SurvTime Survival Failure Error Failed Left Therapy

0.000 1.0000 0 0 0 27
12.000 0.9630 0.0370 0.0363 1 26 standard
15.000 0.9259 0.0741 0.0504 2 25 test
19.000 0.8889 0.1111 0.0605 3 24 test
43.000 0.8519 0.1481 0.0684 4 23 test
49.000 0.8148 0.1852 0.0748 5 22 test
52.000 0.7778 0.2222 0.0800 6 21 test
53.000 0.7407 0.2593 0.0843 7 20 test

100.000 0.7037 0.2963 0.0879 8 19 standard
103.000 0.6667 0.3333 0.0907 9 18 standard
105.000 0.6296 0.3704 0.0929 10 17 standard
111.000 0.5926 0.4074 0.0946 11 16 test
133.000 0.5556 0.4444 0.0956 12 15 test
143.000 0.5185 0.4815 0.0962 13 14 standard
156.000 0.4815 0.5185 0.0962 14 13 standard
162.000 0.4444 0.5556 0.0956 15 12 standard
164.000 0.4074 0.5926 0.0946 16 11 test
177.000 0.3704 0.6296 0.0929 17 10 standard
182.000* . . . 17 9 standard
200.000 0.3292 0.6708 0.0913 18 8 standard
216.000 0.2881 0.7119 0.0887 19 7 standard
231.000 0.2469 0.7531 0.0850 20 6 test
250.000 0.2058 0.7942 0.0802 21 5 standard
260.000 0.1646 0.8354 0.0740 22 4 standard
278.000 0.1235 0.8765 0.0659 23 3 standard
340.000 0.0823 0.9177 0.0553 24 2 test
378.000 0.0412 0.9588 0.0401 25 1 test
553.000 0 1.0000 0 26 0 standard

NOTE: The marked survival times are censored observations.

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 231.000 164.000 340.000
50 156.000 103.000 216.000
25 53.000 43.000 133.000

Mean Standard Error

170.506 25.098
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Output 40.1.3. Estimation Results for Cell=small

Stratum 3: Cell = small

Product-Limit Survival Estimates

Survival
Standard Number Number

SurvTime Survival Failure Error Failed Left Therapy

0.000 1.0000 0 0 0 48
2.000 0.9792 0.0208 0.0206 1 47 test
4.000 0.9583 0.0417 0.0288 2 46 standard
7.000 . . . 3 45 standard
7.000 0.9167 0.0833 0.0399 4 44 test
8.000 0.8958 0.1042 0.0441 5 43 test

10.000 0.8750 0.1250 0.0477 6 42 standard
13.000 . . . 7 41 standard
13.000 0.8333 0.1667 0.0538 8 40 test
16.000 0.8125 0.1875 0.0563 9 39 standard
18.000 . . . 10 38 standard
18.000 0.7708 0.2292 0.0607 11 37 standard
20.000 . . . 12 36 standard
20.000 0.7292 0.2708 0.0641 13 35 test
21.000 . . . 14 34 standard
21.000 0.6875 0.3125 0.0669 15 33 test
22.000 0.6667 0.3333 0.0680 16 32 standard
24.000 0.6458 0.3542 0.0690 17 31 test
25.000 . . . 18 30 test
25.000 0.6042 0.3958 0.0706 19 29 test
27.000 0.5833 0.4167 0.0712 20 28 standard
29.000 0.5625 0.4375 0.0716 21 27 test
30.000 0.5417 0.4583 0.0719 22 26 standard
31.000 0.5208 0.4792 0.0721 23 25 standard
51.000 . . . 24 24 standard
51.000 0.4792 0.5208 0.0721 25 23 test
52.000 0.4583 0.5417 0.0719 26 22 standard
54.000 . . . 27 21 standard
54.000 0.4167 0.5833 0.0712 28 20 standard
56.000 0.3958 0.6042 0.0706 29 19 standard
59.000 0.3750 0.6250 0.0699 30 18 standard
61.000 0.3542 0.6458 0.0690 31 17 test
63.000 0.3333 0.6667 0.0680 32 16 standard
80.000 0.3125 0.6875 0.0669 33 15 test
87.000 0.2917 0.7083 0.0656 34 14 test
95.000 0.2708 0.7292 0.0641 35 13 test
97.000* . . . 35 12 standard
99.000 . . . 36 11 test
99.000 0.2257 0.7743 0.0609 37 10 test

103.000* . . . 37 9 test
117.000 0.2006 0.7994 0.0591 38 8 standard
122.000 0.1755 0.8245 0.0567 39 7 standard
123.000* . . . 39 6 standard
139.000 0.1463 0.8537 0.0543 40 5 standard
151.000 0.1170 0.8830 0.0507 41 4 standard
153.000 0.0878 0.9122 0.0457 42 3 standard
287.000 0.0585 0.9415 0.0387 43 2 standard
384.000 0.0293 0.9707 0.0283 44 1 standard
392.000 0 1.0000 0 45 0 standard

NOTE: The marked survival times are censored observations.

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 99.000 59.000 151.000
50 51.000 25.000 61.000
25 20.000 13.000 25.000
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Output 40.1.3. (continued)
Mean Standard Error

78.981 14.837

Output 40.1.4. Estimation Results for Cell=squamous
Stratum 4: Cell = squamous

Product-Limit Survival Estimates

Survival
Standard Number Number

SurvTime Survival Failure Error Failed Left Therapy

0.000 1.0000 0 0 0 35
1.000 . . . 1 34 test
1.000 0.9429 0.0571 0.0392 2 33 test
8.000 0.9143 0.0857 0.0473 3 32 standard

10.000 0.8857 0.1143 0.0538 4 31 standard
11.000 0.8571 0.1429 0.0591 5 30 standard
15.000 0.8286 0.1714 0.0637 6 29 test
25.000 0.8000 0.2000 0.0676 7 28 test
25.000* . . . 7 27 standard
30.000 0.7704 0.2296 0.0713 8 26 test
33.000 0.7407 0.2593 0.0745 9 25 test
42.000 0.7111 0.2889 0.0772 10 24 standard
44.000 0.6815 0.3185 0.0794 11 23 test
72.000 0.6519 0.3481 0.0813 12 22 standard
82.000 0.6222 0.3778 0.0828 13 21 standard
87.000* . . . 13 20 test

100.000* . . . 13 19 standard
110.000 0.5895 0.4105 0.0847 14 18 standard
111.000 0.5567 0.4433 0.0861 15 17 test
112.000 0.5240 0.4760 0.0870 16 16 test
118.000 0.4912 0.5088 0.0875 17 15 standard
126.000 0.4585 0.5415 0.0876 18 14 standard
144.000 0.4257 0.5743 0.0873 19 13 standard
201.000 0.3930 0.6070 0.0865 20 12 test
228.000 0.3602 0.6398 0.0852 21 11 standard
231.000* . . . 21 10 test
242.000 0.3242 0.6758 0.0840 22 9 test
283.000 0.2882 0.7118 0.0820 23 8 test
314.000 0.2522 0.7478 0.0793 24 7 standard
357.000 0.2161 0.7839 0.0757 25 6 test
389.000 0.1801 0.8199 0.0711 26 5 test
411.000 0.1441 0.8559 0.0654 27 4 standard
467.000 0.1081 0.8919 0.0581 28 3 test
587.000 0.0720 0.9280 0.0487 29 2 test
991.000 0.0360 0.9640 0.0352 30 1 test
999.000 0 1.0000 0 31 0 test

NOTE: The marked survival times are censored observations.

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 357.000 201.000 467.000
50 118.000 72.000 242.000
25 33.000 11.000 111.000

Mean Standard Error

230.225 48.475
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The distribution of event and censored observations among the four cell types is sum-
marized inOutput 40.1.5.

Output 40.1.5. Summary of Censored and Uncensored Values

Summary of the Number of Censored and Uncensored Values

Percent
Stratum Cell Total Failed Censored Censored

1 adeno 27 26 1 3.70
2 large 27 26 1 3.70
3 small 48 45 3 6.25
4 squamous 35 31 4 11.43

---------------------------------------------------------------
Total 137 128 9 6.57

The graph of the estimated survivor functions is shown inOutput 40.1.6. The adeno
cell curve and the small cell curve are much closer to each other than to the large
cell curve or the squamous cell curve. The survival rates of the adeno cell patients
and the small cell patients decrease rapidly to approximately 29% in 90 days. Shapes
of the large cell curve and the squamous cell curve are quite different, although both
decrease less rapidly than those of the adeno and small cells. The squamous cell curve
decreases more rapidly initially than the large cell curve, but the role is reversed in
the later period.

Output 40.1.6. Graph of the Estimated Survivor Functions
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Output 40.1.7. Graph of Negative Log of the Estimated Survivor Functions

Output 40.1.8. Graph of Log of the Negative Log of the Estimated Survivor
Functions
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The graph of the negative log of the estimated survivor functions is displayed in
Output 40.1.7. Output 40.1.8displays the log of the negative log of the estimated
survivor functions against the log of time.

Results of the homogeneity tests across cell types are given inOutput 40.1.9. The
log-rank and Wilcoxon statistics and their corresponding covariance matrices are dis-
played. Also given is a table that consists of the approximate chi-square statistics,
degrees of freedom, andp-values for the log-rank, Wilcoxon, and likelihood ratio
tests. All three tests indicate strong evidence of a significant difference among the
survival curves for the four types of cancer cells (p < 0.001).

Output 40.1.9. Homogeneity Tests Across Strata

Rank Statistics

Cell Log-Rank Wilcoxon

adeno 10.306 697.0
large -8.549 -1085.0
small 14.898 1278.0
squamous -16.655 -890.0

Covariance Matrix for the Log-Rank Statistics

Cell adeno large small squamous

adeno 12.9662 -4.0701 -4.4087 -4.4873
large -4.0701 24.1990 -7.8117 -12.3172
small -4.4087 -7.8117 21.7543 -9.5339
squamous -4.4873 -12.3172 -9.5339 26.3384

Covariance Matrix for the Wilcoxon Statistics

Cell adeno large small squamous

adeno 121188 -34718 -46639 -39831
large -34718 151241 -59948 -56576
small -46639 -59948 175590 -69002
squamous -39831 -56576 -69002 165410

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 25.4037 3 <.0001
Wilcoxon 19.4331 3 0.0002
-2Log(LR) 33.9343 3 <.0001

Results of the log-rank test of the prognostic variables are shown inOutput 40.1.10.
The univariate test results correspond to testing each prognostic factor marginally.
The joint covariance matrix of these univariate test statistics is also displayed. In
computing the overall chi-square statistic, the partial chi-square statistics following a
forward stepwise entry approach are tabulated.
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Consider the log-rank test inOutput 40.1.10. Since the univariate test forKps has
the largest chi-square (43.4747) among all the covariates,Kps is entered first. At
this stage, the partial chi-square and the chi-square increment forKps are the same
as the univariate chi-square. Among all the covariates not in the model (Age, Prior,
DiagTime, Treatment), Treatment has the largest approximate chi-square incre-
ment (1.7261) and is entered next. The approximate chi-square for the model con-
tainingKps andTreatment is 43.4747+1.7261=45.2008 with 2 degrees of freedom.
The third covariate entered isAge. The fourth isPrior, and the fifth isDiagTime.
The overall chi-square statistic on the last line of output is the partial chi-square for
including all the covariates. It has a value of 46.4200 with 5 degrees of freedom,
which is highly significant (p < 0.0001).

Output 40.1.10. Log-Rank Test of the Prognostic Factors

Univariate Chi-Squares for the Log-Rank Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square Label

Age -40.7383 105.7 0.1485 0.7000 age in years
Prior -19.9435 46.9836 0.1802 0.6712 prior treatment?
DiagTime -115.9 97.8708 1.4013 0.2365 months till randomization
Kps 1123.1 170.3 43.4747 <.0001 karnofsky index
Treatment -4.2076 5.0407 0.6967 0.4039 treatment indicator

Covariance Matrix for the Log-Rank Statistics

Variable Age Prior DiagTime Kps Treatment

Age 11175.4 -301.2 -892.2 -2948.4 119.3
Prior -301.2 2207.5 2010.9 78.6 13.9
DiagTime -892.2 2010.9 9578.7 -2295.3 21.9
Kps -2948.4 78.6 -2295.3 29015.6 61.9
Treatment 119.3 13.9 21.9 61.9 25.4

Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test

Pr > Chi-Square Pr >
Variable DF Chi-Square Chi-Square Increment Increment

Kps 1 43.4747 <.0001 43.4747 <.0001
Treatment 2 45.2008 <.0001 1.7261 0.1889
Age 3 46.3012 <.0001 1.1004 0.2942
Prior 4 46.4134 <.0001 0.1122 0.7377
DiagTime 5 46.4200 <.0001 0.00665 0.9350

Variable Label

Kps karnofsky index
Treatment treatment indicator
Age age in years
Prior prior treatment?
DiagTime months till randomization
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You can establish this forward stepwise entry of prognostic factors by passing the
matrix corresponding to the log-rank test to the RSQUARE method in the REG pro-
cedure. PROC REG finds the sets of variables that yield the largest chi-square statis-
tics.

data RSq;
set Test;
if _type_=’LOG RANK’;

_type_=’cov’;

proc print data=RSq;

proc reg data=RSq(type=COV);
model SurvTime=Age Prior DiagTime Kps Treatment

/ selection=rsquare;
title ’All Possible Subsets of Covariates for the

log-rank Test’;
run;

Output 40.1.11displays the univariate statistics and their covariance matrix for the
log-rank test.

Output 40.1.11. Log-Rank Statistics and Covariance Matrix

Obs _TYPE_ _NAME_ SurvTime Age Prior DiagTime Kps Treatment

1 cov SurvTime 46.42 -40.74 -19.94 -115.86 1123.14 -4.208
2 cov Age -40.74 11175.44 -301.23 -892.24 -2948.45 119.297
3 cov Prior -19.94 -301.23 2207.46 2010.85 78.64 13.875
4 cov DiagTime -115.86 -892.24 2010.85 9578.69 -2295.32 21.859
5 cov Kps 1123.14 -2948.45 78.64 -2295.32 29015.62 61.945
6 cov Treatment -4.21 119.30 13.87 21.86 61.95 25.409

Results of the best subset regression are shown inOutput 40.1.12. The variableKps
generates the largest univariate test statistic among all the covariates, the pairKps
andAge generate the largest test statistic among any other pairs of covariates, and
so on. The entry order of covariates is identical to that of PROC LIFETEST.
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Output 40.1.12. Best Subset Regression from the REG Procedure

All Possible Subsets of Covariates for the log-rank Test

The REG Procedure
Model: MODEL1

Dependent Variable: SurvTime

R-Square Selection Method

Number in
Model R-Square Variables in Model

1 0.9366 Kps
1 0.0302 DiagTime
1 0.0150 Treatment
1 0.0039 Prior
1 0.0032 Age

----------------------------------------------------------
2 0.9737 Kps Treatment
2 0.9472 Age Kps
2 0.9417 Prior Kps
2 0.9382 DiagTime Kps
2 0.0434 DiagTime Treatment
2 0.0353 Age DiagTime
2 0.0304 Prior DiagTime
2 0.0181 Prior Treatment
2 0.0159 Age Treatment
2 0.0075 Age Prior

----------------------------------------------------------
3 0.9974 Age Kps Treatment
3 0.9774 Prior Kps Treatment
3 0.9747 DiagTime Kps Treatment
3 0.9515 Age Prior Kps
3 0.9481 Age DiagTime Kps
3 0.9418 Prior DiagTime Kps
3 0.0456 Age DiagTime Treatment
3 0.0438 Prior DiagTime Treatment
3 0.0355 Age Prior DiagTime
3 0.0192 Age Prior Treatment

----------------------------------------------------------
4 0.9999 Age Prior Kps Treatment
4 0.9976 Age DiagTime Kps Treatment
4 0.9774 Prior DiagTime Kps Treatment
4 0.9515 Age Prior DiagTime Kps
4 0.0459 Age Prior DiagTime Treatment

----------------------------------------------------------
5 1.0000 Age Prior DiagTime Kps Treatment
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Example 40.2. Confidence Bands for Survival of Bone Marrow
Transplant Patients (Experimental)

This example uses the data of 137 bone marrow transplant patients extracted from
Klein and Moeschberger(1997). At the time of transplant, each patient is classified
into one of three risk categories: ALL (Acute Lymphoblastic Leukemia), low-risk
AML (Acute Myeloctic Leukemia), and high-risk AML. The endpoint of interest is
the disease-free survival, which is the time to death or relapse or the end of the study
in days. The data are saved in the SAS data setBMT. In this data set, the variable
Group represents the Patient’s risk category, the variableT represents the disease-
free survival time, and the variableStatus is the censoring indicator with value 1
indicating an event time and value 0 a censored time.

proc format;
value risk 1=’ALL’ 2=’low-risk AML’ 3=’high-risk AML’;

data BMT;
input Group T Status @@;
format Group risk.;
label T=’Time to Relapse’;
datalines;

1 2081 0 1 1602 0 1 1496 0 1 1462 0 1 1433 0
1 1377 0 1 1330 0 1 996 0 1 226 0 1 1199 0
1 1111 0 1 530 0 1 1182 0 1 1167 0 1 418 1
1 383 1 1 276 1 1 104 1 1 609 1 1 172 1
1 487 1 1 662 1 1 194 1 1 230 1 1 526 1
1 122 1 1 129 1 1 74 1 1 122 1 1 86 1
1 466 1 1 192 1 1 109 1 1 55 1 1 1 1
1 107 1 1 110 1 1 332 1 2 2569 0 2 2506 0
2 2409 0 2 2218 0 2 1857 0 2 1829 0 2 1562 0
2 1470 0 2 1363 0 2 1030 0 2 860 0 2 1258 0
2 2246 0 2 1870 0 2 1799 0 2 1709 0 2 1674 0
2 1568 0 2 1527 0 2 1324 0 2 957 0 2 932 0
2 847 0 2 848 0 2 1850 0 2 1843 0 2 1535 0
2 1447 0 2 1384 0 2 414 1 2 2204 1 2 1063 1
2 481 1 2 105 1 2 641 1 2 390 1 2 288 1
2 421 1 2 79 1 2 748 1 2 486 1 2 48 1
2 272 1 2 1074 1 2 381 1 2 10 1 2 53 1
2 80 1 2 35 1 2 248 1 2 704 1 2 211 1
2 219 1 2 606 1 3 2640 0 3 2430 0 3 2252 0
3 2140 0 3 2133 0 3 1238 0 3 1631 0 3 2024 0
3 1345 0 3 1136 0 3 845 0 3 422 1 3 162 1
3 84 1 3 100 1 3 2 1 3 47 1 3 242 1
3 456 1 3 268 1 3 318 1 3 32 1 3 467 1
3 47 1 3 390 1 3 183 1 3 105 1 3 115 1
3 164 1 3 93 1 3 120 1 3 80 1 3 677 1
3 64 1 3 168 1 3 74 1 3 16 1 3 157 1
3 625 1 3 48 1 3 273 1 3 63 1 3 76 1
3 113 1 3 363 1
;
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Klein and Moeschberger(1997, Section 4.4) describe in detail how to compute
the Hall and Wellner (HW) and equal precision (EP) confidence bands. Now you
can use the SURVIVAL statement in PROC LIFETEST to obtain these confidence
bands. In the following code, PROC LIFETEST is invoked to compute the product-
limit estimates of the disease-free survival. The SURVIVAL statement is included
to create an output SAS data set (namedOut1) that contains the survival func-
tion estimates and to plot them with the experimental graphics using the ODS. To
obtain both the HW and EP confidence bands in the OUT= data set, you specify
the CONFBAND=ALL option. The BANDMIN=100 and BANDMAX=600 op-
tions restrict the confidence bands for the survivor functionS(t) over the range
100 ≤ t ≤ 600. The CONFTYPE=ASINSQRT option is specified to apply the
arcsine-square root transform to the survivor function in computing the pointwise
confidence intervals and the confidence bands. The experimental ODS graphics state-
ment is specified to display the graphics using ODS. The specific plots to be dis-
played are specified by the PLOTS=(STRATUM, SURVIVAL, HWB) option, which
includes a panel of plots for each stratum, a plot of the survivor functions estimates
for all strata, and a plot of the Hall-Wellner bands for all strata. Since most of the
events occur within 800 days, MAXTIME=800 is specified to restrict the display to
such time.

ods html;
ods graphics on;

proc lifetest data=BMT noprint;
time T * Status(0);
survival out=Out1

confband=all bandmin=100 bandmax=600 maxtime=800
conftype=asinsqrt
plots=(stratum, survival, hwb);

strata Group;
run;

ods graphics off;
ods html close;

proc contents data=Out1;
run;

The HW confidence bands for disease-free survival are represented by the variables
HW–LCL and HW–UCL in the Out1 data set, and the EP confidence bands are
represented by the variablesEP–LCL andEP–UCL. Other variables in theOut1
data set are shown in the printed output of PROC CONTENTS inOutput 40.2.1.
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Output 40.2.1. Variables in the Out1 Data Set

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

5 CONFTYPE Char 8 Transform for Survival Confidence Interval
10 EP_LCL Num 8 Equal Precision Band Lower 95.00% Limit
11 EP_UCL Num 8 Equal Precision Band Upper 95.00% Limit

1 Group Num 8 RISK.
8 HW_LCL Num 8 Hall-Wellner Band Lower 95.00% Limit
9 HW_UCL Num 8 Hall-Wellner Band Upper 95.00% Limit
6 SDF_LCL Num 8 SDF Lower 95.00% Confidence Limit
7 SDF_UCL Num 8 SDF Upper 95.00% Confidence Limit

12 STRATUM Num 8 Stratum Number
4 SURVIVAL Num 8 Survival Distribution Function Estimate
2 T Num 8 Time to Relapse
3 _CENSOR_ Num 8 Censoring Flag: 0=Failed 1=Censored

Output 40.2.2. Panel Plot for ALL Patients (Experimental)
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The panel plot for the ALL patients is shown inOutput 40.2.2. The upper left cell in
this 2×2 matrix plot displays the estimated survival curve, the upper right cell shows
a table of summary statistics, the lower left cell displays the Hall-Wellner band, and
the lower right cell displays the equal precision band. Pointwise confidence limits
are plotted along with the confidence bands. As expected, the confidence bands are
much wider than the set of the pointwise confidence intervals. The EP confidence
band appears to be slightly wider than the HW confidence band for survival time
over 200 days. The panel plots for the low-risk and high-risk AML patients are not
shown here.

Output 40.2.3. Product-Limit Estimates of Survival of Bone Marrow Transplant
Patients (Experimental)

Output 40.2.3shows a plot of the estimated survival curves for the three leukemia
groups. Censored observations are plotted as a plus sign. It appears that the low-
risk AML patients have the best prognosis while the high-risk AML patients have the
worse prognosis, with the ALL patients in between.Output 40.2.4shows a plot of
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the Hall-Wellner bands for the three leukemia groups. The band for the ALL patients
overlaps with those of the low-risk and high-risk AML patients, but there is very
little overlapping between the band for the low-risk AML patients and the band for
the high-risk patients. One would expect the low-risk AML patients to live much
longer than the high-risk AML patients.

Output 40.2.4. Hall-Wellner Bands for the Survival of Bone Marrow Transplant
Patients (Experimental)

The graphical display inOutput 40.2.2as well as those shown inOutput 40.2.3and
Output 40.2.4are requested by specifying the experimental ODS GRAPHICS state-
ment and the experimental PLOTS= option in the SURVIVAL statement. For general
information about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”
For specific information about the graphics available in the LIFETEST procedure,
see the section“ODS Graphics”on page 2190.
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Example 40.3. Life-Table Estimates for Males with Angina
Pectoris

The data in this example come fromLee (1992, p. 91) and represent the survival
rate of males with angina pectoris. Survival time is measured as years from the time
of diagnosis. The data are read as number of events and number of withdrawals in
each one-year time interval for 16 intervals. Three variables are constructed from the
data:Years (an artificial time variable with values that are the midpoints of the time
intervals),Censored (a censoring indicator variable with value 1 indicating censored
observations and value 0 indicating event observations), andFreq (the frequency
variable). Two observations are created for each interval, one representing the event
observations and the other representing the censored observations.

title ’Survival of Males with Angina Pectoris’;
data males;

keep Freq Years Censored;
retain Years -.5;
input fail withdraw @@;
Years + 1;
Censored=0;
Freq=fail;
output;
Censored=1;
Freq=withdraw;
output;
datalines;

456 0 226 39 152 22 171 23 135 24 125 107
83 133 74 102 51 68 42 64 43 45 34 53
18 33 9 27 6 23 0 30

;

PROC LIFETEST is invoked to compute the various life-table survival estimates, the
median residual time, and their standard errors. The life-table method of comput-
ing estimates is requested by specifying METHOD=LT. The intervals are specified
by the INTERVAL= option. Traditional high-resolution graphs of the life-table esti-
mate, negative log of the estimate, negative log-log of the estimate, estimated density
function, and estimated hazard function are requested by the PLOTS= option. No
tests for homogeneity are carried out because the data are not stratified.

symbol1 c=blue;
proc lifetest data=males method=lt intervals=(0 to 15 by 1)

plots=(s,ls,lls,h,p);
time Years*Censored(1);
freq Freq;

run;
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Results of the life-table estimation are shown inOutput 40.3.1. The five-year survival
rate is 0.5193 with a standard error of 0.0103. The estimated median residual lifetime,
which is 5.33 years initially, has reached a maximum of 6.34 years at the beginning
of the second year and decreases gradually to a value lower than the initial 5.33 years
at the beginning of the seventh year.

Output 40.3.1. Life-Table Survivor Function Estimate

Survival of Males with Angina Pectoris

Life Table Survival Estimates

Conditional
Effective Conditional Probability Survival Median

Interval Number Number Sample Probability Standard Standard Residual
[Lower, Upper) Failed Censored Size of Failure Error Survival Failure Error Lifetime

0 1 456 0 2418.0 0.1886 0.00796 1.0000 0 0 5.3313
1 2 226 39 1942.5 0.1163 0.00728 0.8114 0.1886 0.00796 6.2499
2 3 152 22 1686.0 0.0902 0.00698 0.7170 0.2830 0.00918 6.3432
3 4 171 23 1511.5 0.1131 0.00815 0.6524 0.3476 0.00973 6.2262
4 5 135 24 1317.0 0.1025 0.00836 0.5786 0.4214 0.0101 6.2185
5 6 125 107 1116.5 0.1120 0.00944 0.5193 0.4807 0.0103 5.9077
6 7 83 133 871.5 0.0952 0.00994 0.4611 0.5389 0.0104 5.5962
7 8 74 102 671.0 0.1103 0.0121 0.4172 0.5828 0.0105 5.1671
8 9 51 68 512.0 0.0996 0.0132 0.3712 0.6288 0.0106 4.9421
9 10 42 64 395.0 0.1063 0.0155 0.3342 0.6658 0.0107 4.8258

10 11 43 45 298.5 0.1441 0.0203 0.2987 0.7013 0.0109 4.6888
11 12 34 53 206.5 0.1646 0.0258 0.2557 0.7443 0.0111 .
12 13 18 33 129.5 0.1390 0.0304 0.2136 0.7864 0.0114 .
13 14 9 27 81.5 0.1104 0.0347 0.1839 0.8161 0.0118 .
14 15 6 23 47.5 0.1263 0.0482 0.1636 0.8364 0.0123 .
15 . 0 30 15.0 0 0 0.1429 0.8571 0.0133 .

Evaluated at the Midpoint of the Interval

Median PDF Hazard
Interval Standard Standard Standard

[Lower, Upper) Error PDF Error Hazard Error

0 1 0.1749 0.1886 0.00796 0.208219 0.009698
1 2 0.2001 0.0944 0.00598 0.123531 0.008201
2 3 0.2361 0.0646 0.00507 0.09441 0.007649
3 4 0.2361 0.0738 0.00543 0.119916 0.009154
4 5 0.1853 0.0593 0.00495 0.108043 0.009285
5 6 0.1806 0.0581 0.00503 0.118596 0.010589
6 7 0.1855 0.0439 0.00469 0.1 0.010963
7 8 0.2713 0.0460 0.00518 0.116719 0.013545
8 9 0.2763 0.0370 0.00502 0.10483 0.014659
9 10 0.4141 0.0355 0.00531 0.112299 0.017301

10 11 0.4183 0.0430 0.00627 0.155235 0.023602
11 12 . 0.0421 0.00685 0.17942 0.030646
12 13 . 0.0297 0.00668 0.149378 0.03511
13 14 . 0.0203 0.00651 0.116883 0.038894
14 15 . 0.0207 0.00804 0.134831 0.054919
15 . . . . . .

The breakdown of event and censored observation in the data is shown inOutput
40.3.2. Note that 32.8% of the patients have withdrawn from the study.
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Output 40.3.2. Summary of Censored and Event Observations

Survival of Males with Angina Pectoris

Summary of the Number of Censored and Uncensored Values

Percent
Total Failed Censored Censored

2418 1625 793 32.80

NOTE: There were 2 observations with missing values, negative time values or frequency values less than 1.

Output 40.3.3displays the graph of the life-table survivor function estimate. The
median survival time, read from the survivor function curve, is 5.33 years, and the
25th and 75th percentiles are 1.04 and 11.13 years, respectively.

Output 40.3.3. Life-Table Survivor Function Estimate
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An exponential model may be appropriate for the survival of these male patients with
angina pectoris since the curve of the negative log of the survivor function estimate
versus the survival time (Output 40.3.4) approximates a straight line through the ori-
gin. Note that the graph of the log of the negative log of the survivor function estimate
versus the log of time (Output 40.3.5) is practically a straight line.

Output 40.3.4. Negative Log of Survivor Function Estimate

As discussed inLee (1992), the graph of the estimated hazard function (Output
40.3.6) shows that the death rate is highest in the first year of diagnosis. From the
end of the first year to the end of the tenth year, the death rate remains relatively
constant, fluctuating between 0.09 and 0.12. The death rate is generally higher after
the tenth year. This could indicate that a patient who has survived the first year has a
better chance than a patient who has just been diagnosed. The profile of the median
residual lifetimes also supports this interpretation.
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Output 40.3.5. Log of Negative Log of Survivor Function Estimate

Output 40.3.6. Hazard Function Estimate
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The density estimate is shown in (Output 40.3.7). Visually, it resembles that of an
exponential distribution.

Output 40.3.7. Density Function Estimate
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Chapter 41
The LOESS Procedure
Overview

The LOESS procedure implements a nonparametric method for estimating regression
surfaces pioneered byCleveland, Devlin, and Grosse(1988), Cleveland and Grosse
(1991), andCleveland, Grosse, and Shyu(1992). the LOESS procedure allows great
flexibility because no assumptions about the parametric form of the regression surface
are needed.

The SAS System provides many regression procedures such as the GLM, REG, and
NLIN procedures for situations in which you can specify a reasonable parametric
model for the regression surface. You can use the LOESS procedure for situations
in which you do not know a suitable parametric form of the regression surface.
Furthermore, the LOESS procedure is suitable when there are outliers in the data
and a robust fitting method is necessary.

The main features of the LOESS procedure are as follows:

• fits nonparametric models

• supports the use of multidimensional data

• supports multiple dependent variables

• supports both direct and interpolated fitting using kd trees

• performs statistical inference

• performs automatic smoothing parameter selection

• performs iterative reweighting to provide robust fitting when there are outliers
in the data

• supports multiple SCORE statements

Experimental graphics are now available with the LOESS procedure. For more infor-
mation, refer to the“ODS Graphics”section on page 2248.

Local Regression and the Loess Method

Assume that fori = 1 to n, theith measurementyi of the responsey and the corre-
sponding measurementxi of the vectorx of p predictors are related by

yi = g(xi) + εi

whereg is the regression function andεi is a random error. The idea of local regres-
sion is that at a predictorx, the regression functiong(x) can be locally approximated
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by the value of a function in some specified parametric class. Such a local approxi-
mation is obtained by fitting a regression surface to the data points within a chosen
neighborhood of the pointx.

In the loess method, weighted least squares is used to fit linear or quadratic functions
of the predictors at the centers of neighborhoods. The radius of each neighborhood
is chosen so that the neighborhood contains a specified percentage of the data points.
The fraction of the data, called thesmoothing parameter,in each local neighborhood
controls the smoothness of the estimated surface. Data points in a given local neigh-
borhood are weighted by a smooth decreasing function of their distance from the
center of the neighborhood.

In a direct implementation, such fitting is done at each point at which the regression
surface is to be estimated. A much faster computational procedure is to perform such
local fitting at a selected sample of points in predictor space and then to blend these
local polynomials to obtain a regression surface.

You can use the LOESS procedure to perform statistical inference provided the error
distribution satisfies some basic assumptions. In particular, such analysis is appropri-
ate when theεi are i.i.d. normal random variables with mean 0. By using the iterative
reweighting, the LOESS procedure can also provide statistical inference when the
error distribution is symmetric but not necessarily normal. Furthermore, by doing
iterative reweighting, you can use the LOESS procedure to perform robust fitting in
the presence of outliers in the data.

While all output of the LOESS procedure can be optionally displayed, most often the
LOESS procedure is used to produce output data sets that will be viewed and ma-
nipulated by other SAS procedures. PROC LOESS uses the Output Delivery System
(ODS) to place results in output data sets. This is a departure from older SAS proce-
dures that provide OUTPUT statements to create SAS data sets from analysis results.

Getting Started

Scatter Plot Smoothing

The following data from the Connecticut Tumor Registry presents age-adjusted num-
bers of melanoma incidences per 100,000 people for 37 years from 1936 to 1972
(Houghton, Flannery, and Viola1980).

data Melanoma;
input Year Incidences @@;
format Year d4.0;
format DepVar d4.1;

datalines;
1936 0.9 1937 0.8 1938 0.8 1939 1.3
1940 1.4 1941 1.2 1942 1.7 1943 1.8
1944 1.6 1945 1.5 1946 1.5 1947 2.0
1948 2.5 1949 2.7 1950 2.9 1951 2.5
1952 3.1 1953 2.4 1954 2.2 1955 2.9
1956 2.5 1957 2.6 1958 3.2 1959 3.8



Scatter Plot Smoothing � 2221

1960 4.2 1961 3.9 1962 3.7 1963 3.3
1964 3.7 1965 3.9 1966 4.1 1967 3.8
1968 4.7 1969 4.4 1970 4.8 1971 4.8
1972 4.8
;

The following PROC GPLOT statements produce the simple scatter plot of these data
displayed inFigure 41.1.

symbol1 color=black value=dot ;
proc gplot data=Melanoma;

title1 ’Scatter Plot of Melanoma Data’;
plot Incidences*Year;

run;

Figure 41.1. Scatter Plot of Incidences versus Year for the Melanoma Data

Suppose that you want to smooth the response variableIncidences as a function of
the variableYear. The following PROC LOESS statements request this analysis:

proc loess data=Melanoma;
model Incidences=Year/details(OutputStatistics);

run;

You use the PROC LOESS statement to invoke the procedure and specify the data set.
The MODEL statement names the dependent and independent variables. You use op-
tions in the MODEL statement to specify fitting parameters and control the displayed
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output. For example, the MODEL statement option DETAILS(OutputStatistics) re-
quests that the “Output Statistics” table be included in the displayed output. By de-
fault, this table is not displayed.

The results are displayed inFigure 41.2andFigure 41.3.

Loess Fit of Melanoma Data

The LOESS Procedure

Independent Variable Scaling

Scaling applied: None

Statistic Year

Minimum Value 1936
Maximum Value 1972

Loess Fit of Melanoma Data

The LOESS Procedure
Dependent Variable: Incidences

Optimal Smoothing
Criterion

Smoothing
AICC Parameter

-1.17277 0.25676

Loess Fit of Melanoma Data

The LOESS Procedure
Selected Smoothing Parameter: 0.257

Dependent Variable: Incidences

Fit Summary

Fit Method kd Tree
Blending Linear
Number of Observations 37
Number of Fitting Points 37
kd Tree Bucket Size 1
Degree of Local Polynomials 1
Smoothing Parameter 0.25676
Points in Local Neighborhood 9
Residual Sum of Squares 2.03105
Trace[L] 8.62243
GCV 0.00252
AICC -1.17277

Figure 41.2. Output from PROC LOESS
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Loess Fit of Melanoma Data

The LOESS Procedure
Selected Smoothing Parameter: 0.257

Dependent Variable: Incidences

Output Statistics

Predicted
Obs Year Incidences Incidences

1 1936 0.9 0.76235
2 1937 0.8 0.88992
3 1938 0.8 1.01764
4 1939 1.3 1.14303
5 1940 1.4 1.28654
6 1941 1.2 1.44528
7 1942 1.7 1.53482
8 1943 1.8 1.57895
9 1944 1.6 1.62058

10 1945 1.5 1.68627
11 1946 1.5 1.82449
12 1947 2.0 2.04976
13 1948 2.5 2.30981
14 1949 2.7 2.53653
15 1950 2.9 2.68921
16 1951 2.5 2.70779
17 1952 3.1 2.64837
18 1953 2.4 2.61468
19 1954 2.2 2.58792
20 1955 2.9 2.57877
21 1956 2.5 2.71078
22 1957 2.6 2.96981
23 1958 3.2 3.26005
24 1959 3.8 3.54143
25 1960 4.2 3.73482
26 1961 3.9 3.78186
27 1962 3.7 3.74362
28 1963 3.3 3.70904
29 1964 3.7 3.72917
30 1965 3.9 3.82382
31 1966 4.1 4.00515
32 1967 3.8 4.18573
33 1968 4.7 4.35152
34 1969 4.4 4.50284
35 1970 4.8 4.64413
36 1971 4.8 4.78291
37 1972 4.8 4.91602

Figure 41.3. Output from PROC LOESS continued

Usually, such displayed results are of limited use. Most frequently the results are
needed in an output data set so that they can be displayed graphically and analyzed
further. For example, to place the “Output Statistics” table shown inFigure 41.3in
an output data set, you use the ODS OUTPUT statement as follows:

proc loess data=Melanoma;
model Incidences=Year;
ods output OutputStatistics=Results;

run;
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The statement

ods output OutputStatistics=Results;

requests that the “Output Statistics” table that appears inFigure 41.2be placed in a
SAS data set namedResults. Note also that the DETAILS(OutputStatistics) option
that caused this table to be included in the displayed output need not be specified.

The PRINT procedure displays the first five observations of this data set:

title1 ’First 5 Observations of the Results Data Set’;
proc print data=Results(obs=5);

id obs;
run;

First 5 Observations of the Results Data Set

Dep
Obs Year Var Pred

1 1936 0.9 0.76235
2 1937 0.8 0.88992
3 1938 0.8 1.01764
4 1939 1.3 1.14303
5 1940 1.4 1.28654

Figure 41.4. PROC PRINT Output of the Results Data Set

You can now produce a scatter plot including the fitted loess curve as follows:

symbol1 color=black value=dot;
symbol2 color=black interpol=join value=none;

/* macro used in subsequent examples */
%let opts=vaxis=axis1 hm=3 vm=3 overlay;

axis1 label=(angle=90 rotate=0);

proc gplot data=Results;
title1 ’Melanoma Data with Default LOESS Fit’;
plot DepVar*Year Pred*Year/ &opts;

run;
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Figure 41.5. Default Loess Fit for Melanoma Data

The smoothing parameter value used in the loess fit shown inFigure 41.5was ob-
tained with a default method of selecting this value. This method minimizes a bias
corrected AIC criterion (Hurvich, Simonoff, and Tsai1998), which balances the
residual sum of squares against the smoothness of the fit.

You can find the selected smoothing parameter value in the “Smoothing Criterion”
table shown inFigure 41.2. Note that with this smoothing parameter value, the loess
fit captures the increasing trend in the data as well the periodic pattern in the data,
which is related to an 11-year sunspot activity cycle.

You can obtain a summary of all the models that PROC LOESS evaluated in choosing
this smoothing parameter value in the “Model Summary” table. You request this
optionally displayed table by adding the choice, ModelSummary, in the DETAILS
option in the model statement as follows:

proc loess data=Melanoma;
model Incidences=Year/details(OutputStatistics ModelSummary);
ods output OutputStatistics=Results;

run;

Note that this example shows that you can request more than one optional table using
the DETAILS option. The requested “Model Summary” table is shown inFigure 41.6
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Loess Fit of Melanoma Data

The LOESS Procedure
Dependent Variable: Incidences

Model Summary

Smoothing Local
Parameter Points Residual SS GCV AICC

0.41892 15 3.42229 0.00339 -0.96252
0.68919 25 4.05838 0.00359 -0.93459
0.31081 11 2.51054 0.00279 -1.12034
0.20270 7 1.58513 0.00239 -1.12221
0.17568 6 1.56896 0.00241 -1.09706
0.28378 10 2.50487 0.00282 -1.10402
0.20270 7 1.58513 0.00239 -1.12221
0.25676 9 2.03105 0.00252 -1.17277
0.22973 8 2.02965 0.00256 -1.15145
0.25676 9 2.03105 0.00252 -1.17277

Figure 41.6. Model Summary Table

Rather than use an automatic method for selecting the smoothing parameter value,
you may want to examine loess fits for a range of values. You do this by using the
SMOOTH= option in the MODEL statement as follows:

proc loess data=Melanoma;
model Incidences=Year/smooth=0.1 0.2 0.3 0.4 residual;
ods output OutputStatistics=Results;

run;

The RESIDUAL option causes the residuals to be added to the “Output Statistics”
table. PROC PRINT displays the first five observations of this data set:

proc print data=Results(obs=5);
id obs;

run;

First 5 Observations of the Results Data Set

Smoothing Dep
Obs Parameter Year Var Pred Residual

1 0.1 1936 0.9 0.90000 0
2 0.1 1937 0.8 0.80000 0
3 0.1 1938 0.8 0.80000 0
4 0.1 1939 1.3 1.30000 0
5 0.1 1940 1.4 1.40000 0

Figure 41.7. PROC PRINT Output of the Results Data Set
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Note that the fits for all the smoothing parameters are placed in single data set and
that ODS has added a SmoothingParameter variable to this data set that you can use
to distinguish each fit.

The following statements display the loess fits obtained in a 2 by 2 plot grid:

goptions nodisplay;
proc gplot data=Results;

by SmoothingParameter;
plot DepVar*Year=1 Pred*Year/ &opts name=’fit’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:fit 2:fit2 3:fit1 4:fit3;

run; quit;

Figure 41.8. Loess Fits with a Range of Smoothing Parameters

If you examine the plots inFigure 41.8, you see that a good fit is obtained with
smoothing parameter value0.2. You can gain further insight in how to choose the
smoothing parameter value by examining scatter plots of the fit residuals versus the
year. To aid the interpretation of these scatter plots, you can again use PROC LOESS
to smooth the responseResidual as a function ofYear.
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proc loess data=Results;
by SmoothingParameter;
ods output OutputStatistics=residout;
model Residual=Year / smooth=0.3;

run;

axis1 label = (angle=90 rotate=0)
order = (-0.8 to 0.8 by 0.4);

goptions nodisplay;
proc gplot data=residout;

by SmoothingParameter;
format DepVar 3.1;
plot DepVar*Year Pred*Year / &opts vref=0 lv=2 vm=1

name=’resids’;
run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:resids 2:resids2 3:resids1 4:resids3;

run; quit;

Figure 41.9. Scatter Plots of Residuals versus Year

Looking at the scatter plots inFigure 41.9confirms that the choice 0.2 is reasonable.
With smoothing parameter value 0.1, there is gross overfitting in the sense that the
original data are exactly interpolated. The loess fits on theResidual versusYear
scatter plots for smoothing parameter values 0.3 and 0.4 reveal that there is a periodic
trend in the residuals that is much weaker when the value 0.2. This suggests that
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when the smoothing parameter value is above 0.3, an overly smooth fit is obtained
that misses essential features in the original data.

Having now decided on a loess fit, you may want to obtain confidence limits for
your model predictions. This is done by adding the CLM option in the MODEL
statement. By default 95% limits are produced, but this can be changed by using
the ALPHA= option in the MODEL statement. The following statements add 90%
confidence limits to theResults data set and display the results graphically:

proc loess data=Melanoma;
model Incidences=Year/smooth=0.2 residual clm

alpha=0.1;
ods output OutputStatistics=Results;

run;

symbol3 color=green interpol=join value=none;
symbol4 color=green interpol=join value=none;
axis1 label = (angle=90 rotate=0)

order = (0 to 6);
title1 ’Age-adjusted Melanoma Incidences for 37 Years’;

proc gplot data=Results;
plot DepVar*Year Pred*Year LowerCl*Year UpperCL*Year

/ &opts;
run;

Figure 41.10. Loess fit of Melanoma Data with 90% Confidence Bands
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Syntax

The following statements are available in PROC LOESS:

PROC LOESS <DATA=SAS-data-set> ;
MODEL dependents=regressors < / options > ;
ID variables ;
BY variables ;
WEIGHT variable ;
SCORE DATA=SAS-data-set < ID=(variable list) > < / options > ;

The PROC LOESS and MODEL statements are required. The BY, WEIGHT, and
ID statements are optional. The SCORE statement is optional, and more than one
SCORE statement can be used.

The statements used with the LOESS procedure, in addition to the PROC LOESS
statement, are as follows.

BY specifies variables to define subgroups for the analysis.

ID names variables to identify observations in the displayed output.

MODEL specifies the dependent and independent variables in the loess
model, details and parameters for the computational algorithm, and
the required output.

SCORE specifies a data set containing observations to be scored.

WEIGHT declares a variable to weight observations.

PROC LOESS Statement

PROC LOESS <DATA=SAS-data-set> ;

The PROC LOESS statement is required. The only option in this statement is the
DATA= option, which names a data set to use for the loess model.

BY Statement

BY variables ;

You can specify a BY statement with PROC LOESS to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in the order of the BY variables.
Thevariablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.
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• Specify the BY statement option NOTSORTED. The NOTSORTED option
does not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in Base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

ID Statement

ID variables ;

The ID statement is optional, and more than one ID statement can be used. The vari-
ables listed in any of the ID statements are displayed in the “Output Statistics” table
beside each observation. Any variables specified as a regressor or dependent variable
in the MODEL statement already appear in the “Output Statistics” table and are not
treated as ID variables, even if they appear in the variable list of an ID statement.

MODEL Statement

MODEL dependents=independent variables < / options > ;

The MODEL statement names the dependent variables and the independent variables.
Variables specified in the MODEL statement must be numeric variables in the data
set being analyzed.

Table 41.1lists the options available in the MODEL statement.

Table 41.1. Model Statement Options

Option Description
Fitting Parameters
DIRECT specifies direct fitting at every data point
SMOOTH= specifies the list of smoothing values
DEGREE= specifies the degree of local polynomials (1 or 2)
DROPSQUARE= specifies the variables whose squares are to be dropped from

local quadratic polynomials
BUCKET= specifies the number of points in kd tree buckets
ITERATIONS= specifies the number of reweighting iterations
DFMETHOD= specifies the method of computing lookup degrees of freedom
SELECT= specifies that automatic smoothing parameter selection be done
TRACEL displays the trace of the smoothing matrix
Residuals and Confidence limits
ALL requests the following options:

CLM, RESIDUAL, STD, SCALEDINDEP
CLM displays100(1− α)% confidence interval for the mean

predicted value
RESIDUAL displays residual statistics
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Table 41.1. (continued)

Option Description
STD displays estimated prediction standard deviation
T displayst statistics
INTERP= specifies the degree of polynomials used in blending
Display Options
DETAILS= specifies which tables are to be displayed
Other options
ALPHA= sets significance value for confidence intervals
SCALE= specifies the method used to scale the regressor variables
SCALEDINDEP displays scaled independent variable coordinates

The following options are available in the MODEL statement after a slash (/).

ALL
requests all these options: CLM, RESIDUAL, SCALEDINDEP, STD, and T.

ALPHA= number
sets the significance level used for the construction of confidence intervals for the
current MODEL statement. The value must be between 0 and 1; the default value of
0.05 results in 95% intervals.

BUCKET=number
specifies the maximum number of points in the leaf nodes of the kd tree. The default
value used iss ∗ n/5, wheres is a smoothing parameter value specified using the
SMOOTH= option andn is the number of observations being used in the current BY
group. The BUCKET= option is ignored if the DIRECT option is specified.

CLM
requests that100(1−α) confidence limits on the mean predicted value be added to the
“Output Statistics” table. By default, 95% limits are computed; the ALPHA= option
in the MODEL statement can be used to change theα-level. The use of this op-
tion implicitly selects the model option DFMETHOD=EXACT if the DFMETHOD=
option has not been explicitly used.

DEGREE= 1 | 2
sets the degree of the local polynomials to use for each local regression. The valid
values are1 for local linear fitting or2 for local quadratic fitting, with1 being the
default.

DETAILS < ( tables ) >
selects which tables to display, wheretables is one or more of KDTREE,
MODELSUMMARY, OUTPUTSTATISTICS, and PREDATVERTICES:

• KDTREE displays the kd tree structure.

• MODELSUMMARY displays the fit criteria for all smoothing parameter val-
ues that are specified in the SMOOTH= option in the MODEL statement, or
which are fit with automatic smoothing parameter selection.
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• OUTPUTSTATISTICS displays the predicted values and other requested statis-
tics at the points in the input data set.

• PREDATVERTICES displays fitted values and coordinates of the kd tree ver-
tices where the local least squares fitting is done.

The KDTREE and PREDATVERTICES specifications are ignored if the DIRECT
option is specified in the MODEL statement. Specifying the option DETAILS with
no qualifying list outputs all tables.

DFMETHOD= NONE | EXACT | APPROX < (approx-options) >
specifies the method used to calculate the “lookup” degrees of freedom used in per-
forming statistical inference. The default is DFMETHOD=NONE, unless you spec-
ify any of the MODEL statement options ALL, CLM, or T, or any SCORE statement
CLM option, in which case the default is DFMETHOD=EXACT.

You can specify the following approx-options in parentheses after the
DFMETHOD=APPROX option:

QUANTILE=number specifies that the smallest 100(number)% of the nonzero coef-
ficients in the smoothing matrix is set to zero in computing the approximate
lookup degrees of freedom. The default value is QUANTILE=0.9.

CUTOFF=number specifies that coefficients in the smoothing matrix whose magni-
tude is less than the specified value are set to zero in computing the approx-
imate lookup degrees of freedom. Using the CUTOFF= option overrides
the QUANTILE= option.

See the“Sparse and Approximate Degrees of Freedom Computation”section on page
2246 for a description of the method used when the DFMETHOD=APPROX option
is specified.

DIRECT
specifies that local least squares fits are to be done at every point in the input data
set. When the direct option is not specified, a computationally faster method is used.
This faster method performs local fitting at vertices of a kd tree decomposition of the
predictor space followed by blending of the local polynomials to obtain a regression
surface.

DROPSQUARE=(variables)
specifies the quadratic monomials to exclude from the local quadratic fits. This option
is ignored unless the DEGREE=2 option has been specified. For example,

model z=x y / degree=2 dropsquare=(y)

uses the monomials1, x, y, x2, andxy in performing the local fitting.
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INTERP= LINEAR | CUBIC
specifies the degree of the interpolating polynomials used for blending local poly-
nomial fits at the kd tree vertices. This option is ignored if the DIRECT option is
specified in the model statement. INTERP=CUBIC is not supported for models with
more than two regressors. The default is INTERP=LINEAR.

ITERATIONS=number
specifies the number of iterative reweighting steps to be done. Such iterations are
appropriate when there are outliers in the data or when the error distribution is a
symmetric long-tailed distribution. The default number of iterations is 1.

RESIDUAL | R
specifies that residuals are to be included in the “Output Statistics” table.

SCALE= NONE | SD < (number) >
specifies the scaling method to be applied to scale the regressors. The default is
NONE, in which case no scaling is applied. A specification of SD(number) indicates
that a trimmed standard deviation is to be used as a measure of scale, wherenumber
is the trimming fraction. A specification of SD with no qualification defaults to 10%
trimmed standard deviation.

SCALEDINDEP
specifies that scaled regressor coordinates be included in the output tables. This op-
tion is ignored if the SCALE= model option is not used or if SCALE=NONE is
specified.

SELECT=criterion < ( <GLOBAL> <STEPS> <RANGE( lower,upper)> )>
SELECT=DFCriterion ( target <GLOBAL> <STEPS> <RANGE( lower,upper)> )

specifies that automatic smoothing parameter selection be done using the namedcri-
terion or DFCriterion. Valid values for thecriterion are

AICC specifies theAICC criterion (Hurvich, Simonoff, and Tsai1998).

AICC1 specifies theAICC1 criterion (Hurvich, Simonoff, and Tsai1998).

GCV specifies the generalized cross-validation criterion (Craven and Wahba
1979).

The DFCriterion specifies the measure used to estimate the model degrees of free-
dom. The measures implemented in PROC LOESS all depend on prediction matrix
L relating the observed and predicted values of the dependent variable. Valid values
are

DF1 specifies Trace(L).

DF2 specifies Trace(LT L).

DF3 specifies2Trace(L)− Trace(LT L).

For both types of selection, the smoothing parameter value is selected to yield a mini-
mum of an optimization criterion. If you specifycriterion as one of AICC, AICC1, or
GCV, the optimization criterion is the specifiedcriterion. If you specifyDFCriterion
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as one of DF1, DF2, or DF3, the optimization criterion is| DFCriterion − target |,
wheretarget is a specified target degree of freedom value. Note that if you specify
a DFCriterion, then you must also specify a target value. See the section“Automatic
Smoothing Parameter Selection”on page 2243 for definitions and properties of the
selection criteria.

The selection is done as follows:

• If you specify the SMOOTH=value-list option, then PROC LOESS selects the
largest value in this list that yields the global minimum of the specified opti-
mization criterion.

• If you do not specify the SMOOTH= option, then PROC LOESS finds a local
minimum of the specified optimization criterion using a golden section search
of values less than or equal to one.

You can specify the following modifiers in parentheses after the specified criterion to
alter the behavior of the SELECT= option:

GLOBAL specifies that a global minimum be found within the range
of smoothing parameter values examined. This modifier
has no effect if you also specify the SMOOTH= option in
the MODEL statement.

STEPS specifies that all models evaluated in the selection process
be displayed.

RANGE(lower,upper) specifies that only smoothing parameter values greater
than or equal tolower and less than or equal toupper be
examined.

For models with one dependent variable, if you specify neither the SELECT=
nor the SMOOTH= options in the MODEL statement, then PROC LOESS uses
SELECT=AICC.

The following table summarizes how the smoothing parameter values are chosen
for various combinations of the SMOOTH= option, the SELECT= option, and the
SELECT= option modifiers.

Table 41.2. Smoothing Parameter Value(s) Used for Combinations of SMOOTH=
and SELECT= OPTIONS for Models with One Dependent Variable

Syntax Search Method Search Domain
default golden section using AICC (0, 1]
SMOOTH=list no selection values inlist
SMOOTH=list SELECT=criterion global values inlist
SMOOTH=list SELECT=criterion ( RANGE(l, u) ) global values inlist within [l, u]
SELECT=criterion golden section (0, 1]
SELECT=criterion ( RANGE(l,u) ) golden section [l, u]
SELECT=criterion ( GLOBAL ) global (0, 1]
SELECT=criterion ( GLOBAL RANGE(l, u) ) global [l, u]
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Some examples of using the SELECT= option are

SELECT=GCV specifies selection using the GCVcriterion.

SELECT=DF1(6.3) specifies selection using the DF1DFCriterion with tar-
get value6.3.

SELECT=AICC(STEPS) specifies selection using the AICCcriterion showing
all step details.

SELECT=DF2(7 GLOBAL) specifies selection using the DF2DFCriterion with tar-
get value7 using a global search algorithm.

Note: The SELECT= option cannot be used for models with more than one depen-
dent variable.

SMOOTH=value-list
specifies a list of positive smoothing parameter values. If you do not SELECT=
option in the MODEL statement, then a separate fit is obtained for each SMOOTH=
value specified. If you do specify the SELECT= option, then models with all values
specified in the SMOOTH= list are examined, and PROC LOESS selects the value
that minimizes the criterion specified in the SELECT= option.

For models with two or more dependent variables, if the SMOOTH= option is not
specified in the MODEL statement, then SMOOTH=0.5 is used as a default.

STD
specifies that standardized errors are to be included in the “Output Statistics” table.

T
specifies thatt statistics are to be included in the “Output Statistics” table.

TRACEL
specifies that the trace of the prediction matrix as well as the GCV and AICC statistics
are to be included in the “FIT Summary” table. The use of any of the MODEL
statement options ALL, CLM, DFMETHOD=EXACT, DIRECT, SELECT=, or T
implicitly selects the TRACEL option.

SCORE Statement

SCORE <DATA=SAS-data-set> < ID=(variable list) > < / options > ;

The fitted loess model is used to score the data in the specified SAS data set. This
data set must contain all the regressor variables specified in the MODEL statement.
Furthermore, when a BY statement is used, the score data set must also contain all the
BY variables sorted in the order of the BY variables. A SCORE statement is optional,
and more than one SCORE statement can be used. SCORE statements cannot be
used if the DIRECT option is specified in the MODEL statement. The optional ID=
(variable list) specifies ID variables to be included in the “Score Results” table.
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You find the results of the SCORE statement in the “Score Results” table. This table
contains all the data in the data set named in the SCORE statement, including ob-
servations with missing values. However, only those observations with nonmissing
regressor variables are scored. If no data set is named in the SCORE statement, the
data set named in the PROC LOESS statement is scored. You use the PRINT option
in the SCORE statement to request that the “Score Results” table be displayed. You
can place the “Score Results” table in an output data set using an ODS OUTPUT
statement even if this table is not displayed.

The following options are available in the SCORE statement after a slash (/).

CLM
requests that100(1−α) confidence limits on the mean predicted value be added to the
“Score Results” table. By default the 95% limits are computed; the ALPHA= option
in the MODEL statement can be used to change theα-level. The use of this op-
tion implicitly selects the model option DFMETHOD=EXACT if the DFMETHOD=
option has not been explicitly used.

PRINT < (variables )>
specifies that the “Score Results” table is to be displayed. By default only the vari-
ables named in the MODEL statement, the variables listed in the ID list in the SCORE
statement, and the scored dependent variables are displayed. The optional list in the
PRINT option specifies additional variables in the score data set that are to be in-
cluded in the displayed output. Note however that all columns in the SCORE data
set are placed in the SCORE results table, even if you do not request that they be
included in the displayed output.

SCALEDINDEP
specifies that scaled regressor coordinates be included in the SCORE results table.
This option is ignored if the SCALE= model option is not used or if SCALE=NONE
is specified.

STEPS
requests that all models evaluated during smoothing parameter value selection be
scored, provided that the SELECT= option together with the STEPS modifier is spec-
ified in the MODEL statement. By default only the selected model is scored.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a variable in the input data set that contains values
to be used as a priori weights for a loess fit.

The values of the weight variable must be nonnegative. If an observation’s weight is
zero, negative, or missing, the observation is deleted from the analysis.
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Details

Missing Values
PROC LOESS deletes any observation with missing values for any variable speci-
fied in the MODEL statement. This enables the procedure to reuse the kd tree for
all the dependent variables that appear in the MODEL statement. If you have mul-
tiple dependent variables with different missing value structures for the same set of
independent variables, you may want to use separate PROC LOESS steps for each
dependent variable.

Output Data Sets
PROC LOESS assigns a name to each table it creates. You can use the ODS OUTPUT
statement to place one or more of these tables in output data sets. See the sec-
tion “ODS Table Names”on page 2248 for a list of the table names created by
PROC LOESS. For detailed information on ODS, seeChapter 14, “Using the Output
Delivery System.”

For example, the following statements create an output data set named MyOutStats
containing the OutputStatistics table and an output data set named MySummary con-
taining the FitSummary table.

proc loess data=Melanoma;
model Incidences=Year;
ods output OutputStatistics = MyOutStats

FitSummary = MySummary;
run;

Often, a single MODEL statement describes more than one model. For example,
the following statements fit eight different models (4 smoothing parameter values for
each dependent variable).

proc loess data=notReal;
model y1 y2 = x1 x2 x3/smooth =0.1 to 0.7 by 0.2;
ods output OutputStatistics = MyOutStats;

run;

The eight OutputStatistics tables for these models are stacked in a single data set
called MyOutStats. The data set contains a column named DepVarName and a col-
umn named SmoothingParameter that distinguish each model (seeFigure 41.4on
page 2224 for an example). If you want the OutputStatistics table for each model
to be in its own data set, you can do so by using the MATCH–ALL option in the
ODS OUTPUT statement. The following statements create eight data sets named
MyOutStats, MyOutStats1, ... , MyOutStats7.

proc loess data=notReal;
model y1 y2 = x1 x2 x3/smooth =0.1 to 0.7 by 0.2;
ods output OutputStatistics(match_all) = MyOutStats;

run;
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For further options available in the ODS OUTPUT statement, seeChapter 14, “Using
the Output Delivery System.”

Only the ScaleDetails and FitSummary tables are displayed by default. The other
tables are optionally displayed by using the DETAILS option in the MODEL state-
ment and the PRINT option in the SCORE statement. Note that it is not necessary to
display a table in order for that table to be used in an ODS OUTPUT statement. For
example, the following statements display the OutputStatistics and kdTree tables but
place the OutputStatistics and PredAtVertices tables in output data sets.

proc loess data=Melanoma;
model Incidences=Year/details(OutputStatistics kdTree);
ods output OutputStatistics = MyOutStats

PredAtVertices = MyVerticesOut;
run;

Using the DETAILS option alone causes all tables to be displayed.

The MODEL statement options CLM, RESIDUAL, STD, SCALEDINDEP, and T
control which optional columns are added to the OutputStatistics table. For exam-
ple, to obtain an OutputStatistics output data set containing residuals and confidence
limits in addition to the model variables and predicted value, you need to specify the
RESIDUAL and CLM options in the MODEL statement as in the following example:

proc loess data=Melanoma;
model Incidences=Year/residual clm;
ods output OutputStatistics = MyOutStats;

run;

Finally, note that the ALL option in the MODEL statement includes all optional
columns in the output. Also, ID columns can be added to the OutputStatistics ta-
ble by using the ID statement.

Data Scaling

The loess algorithm to obtain a predicted value at a given point in the predictor space
proceeds by doing a least squares fit using all data points that are close to the given
point. Thus the algorithm depends critically on the metric used to define closeness.
This has the consequence that if you have more than one predictor variable and these
predictor variables have significantly different scales, then closeness depends almost
entirely on the variable with the largest scaling. It also means that merely changing
the units of one of your predictors can significantly change the loess model fit.

To circumvent this problem, it is necessary to standardize the scale of the indepen-
dent variables in the loess model. The SCALE= option in the MODEL statement
is provided for this purpose. PROC LOESS uses a symmetrically trimmed standard
deviation as the scale estimate for each independent variable of the loess model. This
is a robust scale estimator in that extreme values of a variable are discarded before



2240 � Chapter 41. The LOESS Procedure

estimating the data scaling. For example, to compute a 10% trimmed standard devia-
tion of a sample, you discard the smallest and largest 5% of the data and compute the
standard deviation of the remaining 90% of the data points. In this case, the trimming
fraction is0.1.

For example, the following statements specify that the variablesTemperature and
Catalyst are scaled before performing the loess fitting. In this case, because the
trimming fraction is0.1, the scale estimate used for each of these variables is a 10%
trimmed standard deviation.

model Yield=Temperature Catalyst / scale = SD(0.1);

The default trimming fraction used by PROC LOESS is0.1 and need not be specified
by the SCALE= option. Thus the following MODEL statement is equivalent to the
previous MODEL statement.

model Yield=Temperature Catalyst / scale = SD;

If the SCALE= option is not specified, no scaling of the independent variables is
done. This is appropriate when there is only a single independent variable or when
all the independent variables are a priori scaled similarly.

When the SCALE= option is specified, the scaling details for each independent vari-
able are added to the ScaleDetails table (seeOutput 41.3.2on page 2265 for an ex-
ample). By default, this table contains only the minimum and maximum values of
each independent variable in the model. Finally, note that when the SCALE= option
is used, specifying the SCALEDINDEP option in the MODEL statement adds the
scaled values of the independent variables to the OutputStatistics and PredAtVertices
tables. If the SCALEDINDEP option is specified in the SCORE statement then scaled
values of the independent variables are included in the ScoreResults table. By default,
only the unscaled values are placed in these tables.

Direct versus Interpolated Fitting

Local regression to obtain a predicted value at a given point in the predictor space is
done by doing a least squares fit using all data points in a local neighborhood of the
given point. This method is computationally expensive because a local neighborhood
must be determined and a least squares problem solved for each point at which a
fitted value is required. A faster method is to obtain such fits at a representative
sample of points in the predictor space and to obtain fitted values at all other points
by interpolation.

PROC LOESS can fit models using either of these two paradigms. By default, PROC
LOESS uses fitting at a sample of points and interpolation. The method fitting a
local model at every data point is selected by specifying the DIRECT option in the
MODEL statement.
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kd Trees and Blending

PROC LOESS uses a kd tree to divide the box (also called theinitial cell or bucket)
enclosing all the predictor data points into rectangular cells. The vertices of these
cells are the points at which local least squares fitting is done.

Starting from the initial cell, the direction of the longest cell edge is selected as the
split direction. The median of this coordinate of the data in the cell is the split value.
The data in the starting cell are partitioned into two child cells. The left child consists
of all data from the parent cell whose coordinate in the split direction is less than the
split value. The above procedure is repeated for each child cell that has more than a
prespecified number of points, called thebucket sizeof the kd tree.

You can specify the bucket size with the BUCKET= option in the MODEL statement.
If you do not specify the BUCKET= option, the default value used is the largest
integer less than or equal tons/5, wheren is the number of observations ands is
the value of the smoothing parameter. Note that if fitting is being done for a range of
smoothing parameter values, the bucket size may change for each value.

The set of vertices of all the cells of the kd tree are the points at which PROC LOESS
performs its local fitting. The fitted value at an original data point (or at any other
point within the original data cell) is obtained by blending the fitted values at the
vertices of the kd tree cell that contains that data point.

The univariate blending methods available in PROC LOESS are linear and cubic
polynomial interpolation, with linear interpolation being the default. You can request
cubic interpolation by specifying the INTERP=CUBIC option in the MODEL state-
ment. In this case, PROC LOESS uses the unique cubic polynomial whose values
and first derivatives match those of the fitted local polynomials evaluated at the two
endpoints of the kd tree cell edge.

In the multivariate case, such univariate interpolating polynomials are computed on
each edge of the kd-tree cells, and are combined using blending functions (Gordon
1971). In the case of two regressors, if you specify INTERP=CUBIC in the MODEL
statement, PROC LOESS uses Hermite cubic polynomials as blending functions. If
you do not specify INTERP=CUBIC, or if you specify a model with more than two
regressors, then PROC LOESS uses linear polynomials as blending functions. In
these cases, the blending method reduces to tensor product interpolation from the2p

vertices of each kd tree cell, wherep is the number of regressors.

While the details of the kd tree and the fitted values at the vertices of the kd tree
are implementation details that seldom need to be examined, PROC LOESS does
provide options for their display. Each kd tree subdivision of the data used by PROC
LOESS is placed in the “kdTree” table. The predicted values at the vertices of each
kd tree are placed in the “PredAtVertices” table. You can request these tables using
the DETAILS option in the MODEL statement.
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Local Weighting

The size of the local neighborhoods that PROC LOESS uses in performing local
fitting is determined by the smoothing parameter values. Whens < 1, the local
neighborhood used at a pointx contains thes fraction of the data points closest to the
pointx. Whens ≥ 1, all data points are used.

Supposeq denotes the number of points in the local neighborhoods andd1, d2, . . . , dq

denote the distances in increasing order of theq points closest tox. The point at
distancedi from x is given a weightwi in the local regression that decreases as the
distance fromx increases. PROC LOESS uses a tricube weight function to define

wi =
32
5

(
1− (

di

dq
)3

)3

If s > 1, thendq is replaced bydqs
1/p in the previous formula, wherep is the number

of predictors in the model.

Finally, note that if a weight variable has been specified using a WEIGHT statement,
thenwi is multiplied by the corresponding value of the specified weight variable.

Iterative Reweighting

PROC LOESS can do iterative reweighting to improve the robustness of the fit in the
presence of outliers in the data. Iterative reweighting is also appropriate when statis-
tical inference is requested and the error distribution is symmetric but not Gaussian.

The number of iterations is specified by the ITERATIONS= option in the MODEL
statement. The default is ITERATIONS=1, which corresponds to no reweighting.

At iterations beyond the first iteration, the local weightswi of the previous section
are replaced byriwi whereri is a weight that decreases as the residual of the fitted
value at the previous iteration at the point corresponding todi increases. Refer to
Cleveland and Grosse(1991) andCleveland, Grosse, and Shyu(1992) for details.

Specifying the Local Polynomials

PROC LOESS uses linear or quadratic polynomials in doing the local least squares fit-
ting. The option DEGREE = in the MODEL statement is used to specify the degree of
the local polynomials used by PROC LOESS, with DEGREE = 1 being the default. In
addition, when DEGREE = 2 is specified, the MODEL statement DROPSQUARE=
option can be used to exclude specific monomials during the least squares fitting.

For example, the following statements use the monomials1, x1, x2, x1*x2, and
x2*x2 for the local least squares fitting.

proc loess data=notReal;
model y= x1 x2/ degree=2 dropsquare=(x1);

run;
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Statistical Inference

If you denote theith measurement of the response byyi and the corresponding mea-
surement of predictors byxi, then

yi = g(xi) + εi

whereg is the regression function andεi are independent random errors with mean
zero. If the errors are normally distributed with constant variance, then you can obtain
confidence intervals for the predictions from PROC LOESS. You can also obtain
confidence limits in the case whereεi is heteroscedastic butaiεi has constant variance
andai are a priori weights that are specified using the WEIGHT statement of PROC
LOESS. You can do inference in the case in which the error distribution is symmetric
by using iterative reweighting.

Formulae for doing statistical inference under the preceding conditions can be found
in Cleveland and Grosse(1991) andCleveland, Grosse, and Shyu(1992). The main
result of their analysis is that a standardized residual for a loess model follows at
distribution withρ degrees of freedom, whereρ is called the “lookup degrees of free-
dom.”ρ is a function of the smoothing matrixL, which defines the linear relationship
between the fitted and observed dependent variable values of a loess model.

The determination ofρ is computationally expensive and is not done by default. It
is computed if you specify the DFMETHOD=EXACT or DFMETHOD=APPROX
option in the MODEL statement. It is also computed if you specify any of the options
CLM, STD, or T in the MODEL statement.

If you specify the CLM option in the MODEL statement, confidence limits are added
to the OutputStatistics table. By default, 95% limits are computed, but you can
change this by using the ALPHA= option in the MODEL statement.

Automatic Smoothing Parameter Selection

There are several methodologies for automatic smoothing parameter selection. One
class of methods chooses the smoothing parameter value to minimize a criterion that
incorporates both the tightness of the fit and model complexity. Such a criterion can
usually be written as a function of the error mean square,σ̂2, and a penalty function
designed to decrease with increasing smoothness of the fit. This penalty function is
usually defined in terms of the matrixL such that

ŷ = Ly

wherey is the vector of observed values andŷ is the corresponding vector of pre-
dicted values of the dependent variable. Examples of specific criteria are general-
ized cross-validation (Craven and Wahba1979) and the Akaike information criterion
(Akaike 1973). These classical selectors have two undesirable properties when used
with local polynomial and kernel estimators: they tend to undersmooth and tend to be
non-robust in the sense that small variations of the input data can change the choice
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of smoothing parameter value significantly.Hurvich, Simonoff, and Tsai(1998) ob-
tained several bias-corrected AIC criteria that limit these unfavorable properties and
perform comparably with theplug-in selectors(Ruppert, Sheather, and Wand1995).
PROC LOESS provides automatic smoothing parameter selection using two of these
bias-corrected AIC criteria, namedAICC1 and AICC in Hurvich, Simonoff, and
Tsai(1998), and generalized cross-validation, denoted by the acronym GCV.

The relevant formulae are

AICC1 = n log(σ̂2) + n
δ1/δ2(n + ν1)

δ2
1/δ2 − 2

AICC = log(σ̂2) + 1 +
2 (Trace(L) + 1)
n− Trace(L)− 2

GCV =
nσ̂2

(n− Trace(L))2

wheren is the number of observations and

δ1 ≡ Trace(I − L)T (I − L)

δ2 ≡ Trace
(
(I − L)T (I − L)

)2

ν1 ≡ Equivalent Number of Parameters

≡ Trace(LT L)

Note that the values ofδ1, δ2, and the “Equivalent Number of Parameters” are re-
ported in the “Fit Summary” table.

You invoke these methods for automatic smoothing parameter selection by specify-
ing the SELECT=criterion option in the MODEL statement, wherecriterion is one
of AICC1, AICC, or GCV. PROC LOESS evaluates the specified criterion for a se-
quence of smoothing parameter values and selects the value in this sequence that
minimizes the specified criterion. If multiple values yield the optimum, then the
largest of these values is selected.

A second class of methods seeks to set an approximate measure of model degrees
of freedom to a specified target value. These methods are useful for making mean-
ingful comparisons between loess fits and other nonparametric and parametric fits.
The approximate model degrees of freedom in a nonparametric fit is a number that is
analogous to the number of free parameters in a parametric model. There are three
commonly used measures of model degrees of freedom in nonparametric models.
These criteria are Trace(L), Trace(LT L), and2TraceL− Trace(LT L). A discussion
of their properties can be found inHastie and Tibshirani(1990). You invoke these
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methods by specifying the SELECT=DFCriterion(target) option in the MODEL state-
ment, whereDFCriterion is one of DF1, DF2, or DF3. The criterion that is minimized
is given in the following table:

Table 41.3. Minimization Criteria for Degree of Freedom Based Smoothing
Parameter Value Selection

Syntax Minimization Criterion
SELECT=DF1(target) | Trace(L)− target |
SELECT=DF2(target) | Trace(LT L)− target |
SELECT=DF3(target) |2Trace(L)− Trace(LT L)− target |

The results are summarized in the “Smoothing Criterion” table. This table
is displayed whenever automatic smoothing parameter selection is performed.
You can obtain details of the sequence of models examined by specifying the
DETAILS(MODELSUMMARY) option in the model statement to display the
“Model Summary” table.

There are several ways in which you can control the sequence of models examined
by PROC LOESS. If you specify the SMOOTH=value-list option in the MODEL
statement, then only the values in this list are examined in performing the selection.
For example, the following statements select the model that minimizes the AICC1
criterion among the three models with smoothing parameter values0.1, 0.3, and0.4:

proc loess data=notReal;
model y= x1/ smooth=0.1 0.3 0.4 select=AICC1;

run;

If you do not specify the SMOOTH= option in the model statement, then by default
PROC LOESS uses a golden section search method to find a local minimum of the
specified criterion in the range(0, 1]. You can use the RANGE(lower,upper) modifier
in the SELECT= option to change the interval in which the golden section search is
performed. For example, the following statements request a golden section search to
find a local minimizer of the GCV criterion for smoothing parameter values in the
interval [0.1,0.5]:

proc loess data=notReal;
model y= x1/select=GCV( range(0.1,0.5) );

run;

If you want to be sure of obtaining a global minimum in the range of smoothing
parameter values examined, you can specify the GLOBAL modifier in the SELECT=
option. For example, the following statements request that a global minimizer of the
AICC criterion be obtained for smoothing parameter values in the interval[0.2, 0.8]:

proc loess data=notReal;
model y= x1/select=AICC( global range(0.2,0.8) );

run;
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Note that even though the smoothing parameter is a continuous variable, a given
range of smoothing parameter values corresponds to a finite set of local models. For
example, for a data set with 100 observations, the range[0.2, 0.4] corresponds to
models with20, 21, 22, . . . , 40 points in the local neighborhoods. If the GLOBAL
modifier is specified, all possible models in the range are evaluated sequentially.

Note that by default PROC LOESS displays a “Fit Summary” and other optionally
requested tables only for the selected model. You can request that these tables be
displayed for all models in the selection process by adding the STEPS modifier in
the SELECT= option. Also note that by default scoring requested with SCORE state-
ments is done only for the selected model. However, if you specify the STEPS in
both the MODEL and SCORE statements, then all models evaluated in the selection
process are scored.

In terms of computation,AICC , GCV , and DF1 depend on the smoothing matrixL
only through its trace. In the direct method, this trace can be computed efficiently. In
the interpolated method using kd trees, there is some additional computational cost
but the overall work is not significant compared to the rest of the computation. In con-
trast, the quantitiesδ1, δ2, andν1, which appear in theAICC1 criterion, and the DF2
and DF3 criteria, depend on the entireL matrix and for this reason, the time needed
to compute these quantities dominates the time required for the model fitting. Hence
SELECT=AICC1, SELECT=DF2, and SELECT=DF3 are much more computation-
ally expensive than SELECT=AICC, SELECT=GCV, and SELECT=DF1, especially
when combined with the GLOBAL modifier.Hurvich, Simonoff, and Tsai(1998)
note thatAICC can be regarded as an approximation ofAICC1 and that “theAICC

selector generally performs well in all circumstances.”

For models with one dependent variable, PROC LOESS uses SELECT=AICC as its
default, if you specify neither the SMOOTH= nor SELECT= options in the MODEL
statement. With two or more dependent variables, automatic smoothing parameter
selection needs to be done separately for each dependent variable. For this reason
automatic smoothing parameter selection is not available for models with multiple
dependent variables. In such cases you should use a separate PROC LOESS step for
each dependent variable, if you want to use automatic smoothing parameter selection.

Sparse and Approximate Degrees of Freedom Computation

As noted in the“Statistical Inference”section on page 2243, obtaining confidence
limits in loess models requires the computation of the “lookup degrees of freedom.”
This in turn requires the computation of

δ2 ≡ Trace
(
(I − L)T (I − L)

)2

whereL is the LOESS smoothing matrix (see the“Automatic Smoothing Parameter
Selection”section on page 2243).

The work in a direct implementation of this formula grows asn3, wheren is the
number of observations in analysis. For largen, this work dominates the time needed
to fit the loess model itself. To alleviate this computational bottleneck,Cleveland
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and Grosse(1991) andCleveland, Grosse, and Shyu(1992) developed approximate
methods for estimating this quantity in terms of more readily computable statistics.
A different approach to obtaining a computationally cheap estimate ofδ2 has been
implemented in PROC LOESS.

For large data sets with significant local structure, the LOESS model is often used
with small values of the smoothing parameter. Recalling that the smoothing param-
eter defines the fraction of the data used in each local regression, this means that the
loess fit at any point in regressor space depends on only a small fraction of the data.
This is reflected in the smoothing matrixL whose(i, j)th entry is nonzero only if
the ith andjth observations lie in at least one common local neighborhood. Hence
the smoothing matrix is a sparse matrix (has mostly zero entries) in such cases. By
exploiting this sparsity PROC LOESS now computesδ2 orders of magnitude faster
than in previous implementations.

When each local neighborhood contains a large subset of the data, i.e., when the
smoothing parameter is large, then it is no longer true that the smoothing matrix is
sparse. However, since a point in a local neighborhood is given a local weight that
decreases with its distance from the center of the neighborhood, many of the coeffi-
cients in the smoothing matrix turn out to be nonzero but with orders of magnitude
smaller than that of the larger coefficients in the matrix. The approximate method for
computingδ2 that has been implemented in PROC LOESS exploits these disparities
in magnitudes of the elements in the smoothing matrix by setting the small elements
to zero. This creates a sparse approximation of the smoothing matrix to which the
fast sparse methods can be applied.

In order to decide the threshold at which elements in the smoothing matrix are set
to zero, PROC LOESS samples the elements in the smoothing matrix to obtain the
value of the element in a specified lower quantile in this sample. The magnitude of
the element at this quantile is used as a cutoff value, and all elements in the smoothing
matrix whose magnitude is less than this cutoff are set to zero for the approximate
computation. By default all elements in the lower90th percentile are set to zero. You
can use the DFMETHOD=APPROX(QUANTILE= ) option in the MODEL state-
ment to change this value. As you increase the value for the quantile to be zeroed, you
speed up the degrees of freedom computation at the expense of increasing approxi-
mation errors. You can also use the DFMETHOD=APPROX(CUTOFF= ) option in
the MODEL statement to specify the cutoff value directly.

For small data sets, the approximate computation is not needed and would be rougher
than for larger data sets. Hence PROC LOESS performs the exact computation for
analyses with less than 500 points, even if DFMETHOD=APPROX is specified in
the model statement. Also, for small values of the smoothing parameter, elements in
the lower specified quantile may already all be zero. In such cases the approximate
method is the same as the exact method. PROC LOESS labels as approximate any
statistics that depend on the approximate computation ofδ2 only in the cases where
the approximate computation was used and is different from the exact computation.
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Scoring Data Sets

One or more SCORE statements can be used with PROC LOESS. A data set that
includes all the variables specified in the MODEL and BY statements must be spec-
ified in each SCORE statement. Score results are placed in the ScoreResults table.
This table is not displayed by default, but specifying the PRINT option in the SCORE
statement produces this table. If you specify the CLM option in the SCORE state-
ment, confidence intervals are included in the ScoreResults table.

Note that scoring is not supported when the DIRECT option is specified in the
MODEL statement. Scoring at a point specified in a score data set is done by first
finding the cell in the kd tree containing this point and then interpolating the scored
value from the predicted values at the vertices of this cell. This methodology pre-
cludes scoring any points that are not contained in the box that surrounds the data
used in fitting the loess model.

ODS Table Names

PROC LOESS assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 41.4. ODS Tables Produced by PROC LOESS

ODS Table Name Description Statement Option
FitSummary Specified fit parameters and

fit summary
default

kdTree Structure of kd tree used MODEL DETAILS(kdTree)
ModelSummary Summary of all models eval-

uated
MODEL DETAILS(ModelSummary)

OutputStatistics Coordinates and fit results at
input data points

MODEL DETAILS(OutputStatistics)

PredAtVertices Coordinates and fitted values
at kd tree vertices

MODEL DETAILS(PredAtVertices)

ScaleDetails Extent and scaling of the in-
dependent variables

default

ScoreResults Coordinates and fit results at
scoring points

SCORE PRINT

SmoothingCriterion Criterion value and selected
smoothing parameter

MODEL SELECT

ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the LOESS
procedure. These graphics are experimental in this release, meaning that both the
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graphical results and the syntax for specifying them are subject to change in a future
release.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

When the ODS GRAPHICS are in effect, the LOESS procedure produces a variety
of plots. For models with multiple dependent variables, separate plots are produced
for each dependent variable. For models where multiple smoothing parameters are
requested with the SMOOTH= option in the MODEL statement and smoothing pa-
rameter value selection is not requested, then separate plots are produced for each
smoothing parameter. If smoothing parameter value selection is requested with the
SELECT=option in the MODEL statement, then the plots are produced for the se-
lected model only. However, if the STEPS qualifier is included with the SELECT=
option, then plots are produced for all smoothing parameters examined in the selec-
tion process.

The plots available are as follows:

• When smoothing parameter value selection is performed, the procedure dis-
plays a scatterplot of the value of SELECTION= criterion versus the smoothing
parameter value for all smoothing parameter values examined in the selection
process.

• With a single regressor, the procedure displays a scatterplot of the input data
with the fitted LOESS curve overlayed. If the CLM option is specified in the
model statement, then a confidence band at the significance level specified in
the ALPHA= option is included in the plot. For each SCORE statement a
scatterplot of the scored LOESS fit at the requested points is displayed.

• When you specify the RESIDUAL option in the MODEL statement, the pro-
cedure displays a panel containing plots of the residual versus each of the re-
gressors in the model, and also a summary panel of fit diagnostics:

– residuals versus the predicted values

– histogram of the residuals

– a normal quantile plot of the residuals

– a “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of
the centered fit and the residuals. This plot “shows how much variation
in the data is explained by the fit and how much remains in the residuals”
(Cleveland1993).

– dependent variable values versus the predicted values

Note that plots in the Fit Diagnostics panel can be requested individually by
specifying the PLOTS(UNPACKPANELS) option in the PROC LOESS state-
ment.
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PLOTS (general-plot-options)
specifies characteristics of the graphics produced when you use the experimental
ODS GRAPHICS statement. You can specify the followinggeneral-plot-options in
parentheses after the PLOTS option:

UNPACK|UNPACKPANELS specifies that plots in the Fit Diagnostics Panel should
be displayed separately. Use this option if you want to access indi-
vidual diagnostic plots within the panel.

MAXPOINTS=number | NONE specifies that plots with elements that require pro-
cessing more thannumber points are suppressed. The default
is MAXPOINTS=5000. This cutoff is ignored if you specify
MAXPOINTS=NONE.

ODS Graph Names

PROC LOESS assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed inTable 41.5.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

Table 41.5. ODS Graphics Produced by PROC LOESS

ODS Graph Name Plot Description PLOTS Option
ActualByPredicted Dependent variable versus LOESS

fit
UNPACKPANELS

DiagnosticsPanel Panel of fit diagnostics
FitPlot Loess curve overlayed on scatterplot

of data
QQPlot Normal quantile plot residuals UNPACKPANELS
ResidualByPredicted Residuals versus LOESS fit UNPACKPANELS
ResidualHistogram Histogram of fit residuals UNPACKPANELS
ResidualPaneli Paneli of residuals versus regressors
RFPlot Side-by-side plots of quantiles of

centered fit and residuals
UNPACKPANELS

ScorePlot Loess fit evaluated at scoring points
SelectionCriterionPlot Selection criterion versus smoothing

parameter
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Examples

Example 41.1. Engine Exhaust Emissions

Investigators studied the exhaust emissions of a one cylinder engine (Brinkman
1981). The SAS data setGas contains the results data. The dependent variable,
NOx, measures the concentration, in micrograms per joule, of nitric oxide and ni-
trogen dioxide normalized by the amount of work of the engine. The independent
variable,E, is a measure of the richness of the air and fuel mixture.

data Gas;
input NOx E;
format NOx f3.1;
format E f3.1;

datalines;
4.818 0.831
2.849 1.045
3.275 1.021
4.691 0.97
4.255 0.825
5.064 0.891
2.118 0.71
4.602 0.801
2.286 1.074
0.97 1.148
3.965 1
5.344 0.928
3.834 0.767
1.99 0.701
5.199 0.807
5.283 0.902
3.752 0.997
0.537 1.224
1.64 1.089
5.055 0.973
4.937 0.98
1.561 0.665
;

The following PROC GPLOT statements produce the simple scatter plot of these data,
displayed inOutput 41.1.1.

symbol1 color=black value=dot ;
proc gplot data=Gas;

plot NOx*E;
run;
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Output 41.1.1. Scatter Plot of Gas Data

The following statements fit two loess models for these data. Because this is a small
data set, it is reasonable to do direct fitting at every data point. As there is substan-
tial curvature in the data, quadratic local polynomials are used. An ODS OUTPUT
statement creates two output data sets containing the “Output Statistics” and “Fit
Summary” tables.

proc loess data=Gas;
ods output OutputStatistics = GasFit

FitSummary=Summary;
model NOx = E / degree=2 direct smooth = 0.6 1.0

alpha=.01 all details;
run;

The “Fit Summary” table for smoothing parameter value 0.6, shown inOutput 41.1.2,
records the fitting parameters specified and some overall fit statistics.



Example 41.1. Engine Exhaust Emissions � 2253

Output 41.1.2. Fit Summary Table

The LOESS Procedure
Smoothing Parameter: 0.6
Dependent Variable: NOx

Fit Summary

Fit Method Direct
Number of Observations 22
Degree of Local Polynomials 2
Smoothing Parameter 0.60000
Points in Local Neighborhood 13
Residual Sum of Squares 1.71852
Trace[L] 6.42184
GCV 0.00708
AICC -0.45637
AICC1 -9.39715
Delta1 15.12582
Delta2 14.73089
Equivalent Number of Parameters 5.96950
Lookup Degrees of Freedom 15.53133
Residual Standard Error 0.33707

The matrixL referenced in the “Fit Summary” table is the smoothing matrix. This
matrix satisfies

ŷ = Ly

wherey is the vector of observed values andŷ is the corresponding vector of predicted
values of the dependent variable. The quantities

δ1 ≡ Trace(I − L)T (I − L)

δ2 ≡ Trace
(
(I − L)T (I − L)

)2

ρ ≡ Lookup Degrees of Freedom

≡ δ2
1/δ2

in the “Fit Summary” table are used in doing statistical inference.

The equivalent number of parameters and residual standard error in the “Fit
Summary” table are defined by

Equivalent Number of Parameters≡ TraceLT L

Residual Standard Error≡
√

Residual SS/δ1

The “Output Statistics” table for smoothing parameter value 0.6 is shown inOutput
41.1.3. Note that, as the ALL option in the MODEL statement is specified, this table
includes all the relevant optional columns. Furthermore, because the ALPHA=0.01
option is specified in the MODEL statement, the confidence limits in this table are
99% limits.
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Output 41.1.3. Output Statistics Table

The LOESS Procedure
Smoothing Parameter: 0.6
Dependent Variable: NOx

Output Statistics

Estimated
Predicted Prediction

Obs E NOx NOx Std Deviation Residual t Value

1 0.8 4.8 4.87377 0.15528 -0.05577 -0.36
2 1.0 2.8 2.81984 0.15380 0.02916 0.19
3 1.0 3.3 3.48153 0.15187 -0.20653 -1.36
4 1.0 4.7 4.73249 0.13923 -0.04149 -0.30
5 0.8 4.3 4.82305 0.15278 -0.56805 -3.72
6 0.9 5.1 5.18561 0.19337 -0.12161 -0.63
7 0.7 2.1 2.51120 0.15528 -0.39320 -2.53
8 0.8 4.6 4.48267 0.15285 0.11933 0.78
9 1.1 2.3 2.12619 0.16683 0.15981 0.96

10 1.1 1.0 0.97120 0.18134 -0.00120 -0.01
11 1.0 4.0 4.09987 0.13477 -0.13487 -1.00
12 0.9 5.3 5.31258 0.17283 0.03142 0.18
13 0.8 3.8 3.84572 0.14929 -0.01172 -0.08
14 0.7 2.0 2.26578 0.16712 -0.27578 -1.65
15 0.8 5.2 4.58394 0.15363 0.61506 4.00
16 0.9 5.3 5.24741 0.19319 0.03559 0.18
17 1.0 3.8 4.16979 0.13478 -0.41779 -3.10
18 1.2 0.5 0.53059 0.32170 0.00641 0.02
19 1.1 1.6 1.83157 0.17127 -0.19157 -1.12
20 1.0 5.1 4.66733 0.13735 0.38767 2.82
21 1.0 4.9 4.52385 0.13556 0.41315 3.05
22 0.7 1.6 1.19888 0.26774 0.36212 1.35

Output Statistics

Obs 99% Confidence Limits

1 4.41841 5.32912
2 2.36883 3.27085
3 3.03617 3.92689
4 4.32419 5.14079
5 4.37503 5.27107
6 4.61855 5.75266
7 2.05585 2.96655
8 4.03444 4.93089
9 1.63697 2.61541

10 0.43942 1.50298
11 3.70467 4.49507
12 4.80576 5.81940
13 3.40794 4.28350
14 1.77571 2.75584
15 4.13342 5.03445
16 4.68089 5.81393
17 3.77457 4.56502
18 -0.41278 1.47397
19 1.32933 2.33380
20 4.26456 5.07010
21 4.12632 4.92139
22 0.41375 1.98401
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Plots of the data points and fitted models with 99% confidence bands are shown in
Output 41.1.4.

proc sort data=GasFit;
by SmoothingParameter E;

run;

symbol1 color=black value=dot ;
symbol2 color=black interpol=spline value=none;
symbol3 color=green interpol=spline value=none;
symbol4 color=green interpol=spline value=none;

%let opts=vaxis=axis1 hm=3 vm=3 overlay;

goptions nodisplay hsize=3.75;
axis1 label=(angle=90 rotate=0);

proc gplot data=GasFit;
by SmoothingParameter;
plot (DepVar Pred LowerCL UpperCL)*E/ &opts name=’fitGas’;

run; quit;

goptions display hsize=0 hpos=0;
proc greplay nofs tc=sashelp.templt template=h2;

igout gseg;
treplay 1:fitGas 2:fitGas1;

run; quit;

Output 41.1.4. Loess Fits with 99% Confidence Bands for Gas Data

It is evident from the preceding figure that the better fit is obtained with smoothing
parameter value 0.6. Scatter plots of the fit residuals confirm this observation. Note
also that PROC LOESS is again used to produce theResidual variable on these plots.
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proc loess data=GasFit;
by SmoothingParameter;
ods output OutputStatistics=residout;
model Residual=E;

run;

axis1 label = (angle=90 rotate=0)
order = (-1 to 1 by 0.5);

goptions nodisplay hsize=3.75;
proc gplot data=residout;

by SmoothingParameter;
format DepVar 3.1;
plot DepVar*E Pred*E/ &opts vref=0 lv=2 vm=1

name=’resGas’;
run; quit;

goptions display hsize=0 hpos=0;
proc greplay nofs tc=sashelp.templt template=h2;

igout gseg;
treplay 1:resGas 2:resGas1;

run; quit;

Output 41.1.5. Scatter Plots of Loess Fit Residuals

The residual plots show that with smoothing parameter value 1, the loess model ex-
hibits a lack of fit. Analysis of variance can be used to compare the model with
smoothing parameter value 1, which serves as the null model, to the model with
smoothing parameter value 0.6.

The statistic

F =
(rss(n) − rss)/(δ(n)

1 − δ1)
rss/δ1
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has a distribution that is well approximated by anF distribution with

ν =
(δ(n)

1 − δ1)2

δ
(n)
2 − δ2

numerator degrees of freedom andρ denominator degrees of freedom (Cleveland and
Grosse1991). Here quantities with superscriptn refer to the null model, rss is the
residual sum of squares, andδ1, δ2, andρ are as previously defined.

The “Fit Summary” tables contain the information needed to carry out such an analy-
sis. These tables have been captured in the output data set namedSummary using an
ODS OUTPUT statement. The following statements extract the relevant information
from this data set and carry out the analysis of variance:

data h0 h1;
set Summary(keep=SmoothingParameter Label1 nValue1

where=(Label1 in (’Residual Sum of Squares’,’Delta1’,
’Delta2’,’Lookup Degrees of Freedom’)));

if SmoothingParameter = 1 then output h0;
else output h1;

run;

proc transpose data=h0(drop=SmoothingParameter Label1) out=h0;

data h0(drop=_NAME_); set h0;
rename Col1 = RSSNull

Col2 = delta1Null
Col3 = delta2Null;

proc transpose data=h1(drop=SmoothingParameter Label1) out=h1;

data h1(drop=_NAME_); set h1;
rename Col1 = RSS Col2 = delta1

Col3 = delta2 Col4 = rho;

data ftest; merge h0 h1;
nu = (delta1Null - delta1)**2 / (delta2Null - delta2);
Numerator = (RSSNull - RSS)/(delta1Null - delta1);
Denominator = RSS/delta1;
FValue = Numerator / Denominator;
PValue = 1 - ProbF(FValue, nu, rho);
label nu = ’Num DF’

rho = ’Den DF’
FValue = ’F Value’
PValue = ’Pr > F’;

proc print data=ftest label;
var nu rho Numerator Denominator FValue PValue;
format nu rho FValue 7.2 PValue 6.4;

run;

The results are shown inOutput 41.1.6.
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Output 41.1.6. Test ANOVA for LOESS MODELS of Gas Data

Obs Num DF Den DF Numerator Denominator F Value Pr > F

1 2.67 15.53 1.05946 0.11362 9.32 0.0012

The highly significantp-value confirms that the loess model with smoothing param-
eter value0.6 provides a better fit than the model with smoothing parameter value
1.

Example 41.2. Sulfate Deposits in the USA for 1990

The following data set contains measurements in grams per square meter of sulfate
(SO4) deposits during 1990 at 179 sites throughout the 48 states.

data SO4;
input Latitude Longitude SO4 @@;

datalines;
32.45833 87.24222 1.403 34.28778 85.96889 2.103
33.07139 109.86472 0.299 36.07167 112.15500 0.304
31.95056 112.80000 0.263 33.60500 92.09722 1.950
.
. more data lines
.
42.92889 109.78667 0.182 43.22278 109.99111 0.161
43.87333 104.19222 0.306 44.91722 110.42028 0.210
45.07611 72.67556 2.646
;

The following statements produce the two scatter plots of the SO4 data shown in
Output 41.2.1andOutput 41.2.2:

symbol1 color=black value=dot ;
proc gplot data=SO4;

plot Latitude*Longitude/hreverse;
run;

proc g3d data=SO4;
format SO4 f4.1;
scatter Longitude*Latitude=SO4 /

shape=’balloon’
size=0.35
rotate=80
tilt=60;

run;
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Output 41.2.1. Locations of Sulfate Measurements

Output 41.2.2. Scatter Plot of SO4 Data
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From these scatter plots, it is clear that the largest concentrations are in the northeast-
ern United States. These plots also indicate that a nonparametric surface, such as a
loess fit, is appropriate for these data.

The sulfate measurements are irregularly spaced. The following statements create
a SAS data set containing a regular grid of points that will be used in the SCORE
statement:

data PredPoints;
do Latitude = 26 to 46 by 1;

do Longitude = 79 to 123 by 1;
output;

end;
end;

The following statements fit loess models for two values of the smoothing parameter
and save the results in output data sets:

proc loess data=SO4;
ods Output ScoreResults=ScoreOut

OutputStatistics=StatOut;
model SO4=Latitude Longitude/smooth=0.15 0.4 residual;
score data=PredPoints;

run;

Notice that even though there are two predictors in the model, the SCALE= option
is not appropriate because the predictors (Latitude and Longitude) are identically
scaled.

Output 41.2.3shows scatter plots of the fit residuals versus each of the predictors
for the two smoothing parameter values specified. A loess fit of the residuals is also
shown on these scatter plots and is obtained using PROC LOESS with the StatOut
data set generated by the previous PROC LOESS step.

proc loess data=StatOut;
by SmoothingParameter;
ods output OutputStatistics=ResidLatOut;
model residual=Latitude;

run;
proc loess data=StatOut;

by SmoothingParameter;
ods output OutputStatistics=ResidLongOut;
model residual=Longitude;

run;
proc sort data=ResidLatOut;

by SmoothingParameter Latitude;
run;
proc sort data=ResidLongOut;

by SmoothingParameter Longitude;
run;
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goptions nodisplay;
symbol1 color=black value=dot ;
symbol2 color=black interpol=join value=none;
%let opts = vaxis=axis1 overlay vref=0 lv=2;
axis1 label = (angle=90 rotate=0);

proc gplot data=ResidLatOut;
by smoothingParameter;
format DepVar 3.1;
plot (DepVar Pred) * Latitude / &opts name=’lat’;

run;

proc gplot data=ResidLongOut;
by smoothingParameter;
format DepVar 3.1;
plot (DepVar Pred) * Longitude / &opts name=’long’;

run;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:long 2:long1 3:lat 4:lat1;

run; quit ;

Output 41.2.3. Scatter Plots of Loess Fit Residuals
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The scatter plots inOutput 41.2.3reveal that, with smoothing parameter value 0.4,
there is significant information in the data that is not being captured by the loess
model. By contrast, the residuals for the more localized smoothing parameter value
0.15 show a better fit.

The ScoreOut data set contains the model predictions at the grid defined in the
PredPoints data set. The following statements request a fitted surface and a con-
tour plot of this surface with a smoothing parameter value 0.15:

proc g3d data=ScoreOut(where= (smoothingParameter=0.15));
format Latitude f4.0;
format Longitude f4.0;
format p_SO4 f4.1;
plot Longitude*Latitude=p_SO4/tilt=60 rotate=80;

run;

proc gcontour data=ScoreOut(where= (smoothingParameter=0.15));
format latitude f4.0;
format longitude f4.0;
format p_SO4 f4.1;
plot Latitude*Longitude = p_SO4/hreverse;

run;

Output 41.2.4. LOESS Fit of SO4 Data
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Output 41.2.5. Contour Plot of LOESS Fit of SO4 Data

Example 41.3. Catalyst Experiment

The following data set records the results of an experiment to determine how the yield
of a chemical reaction varies with temperature and amount of a catalyst used.

data Experiment;
input Temperature Catalyst Yield;

datalines;
80 0.000 6.842
80 0.002 7.944
.
. more data lines
.

140 0.078 4.012
140 0.080 5.212

;

Researchers know that about 10% of the yield measurements are corrupted due to
an intermittent equipment problem. This can be seen in the surface plot of raw data
shown inOutput 41.3.1.

proc g3d data=Experiment;
plot Temperature*Catalyst=Yield/zmin=0 zmax=25 zticknum=6;

run;
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Output 41.3.1. Surface Plot of Experiment Data

A robust fitting method is needed to estimate the underlying surface in the presence of
data outliers. The following statements invoke PROC LOESS with iterative reweight-
ing to fit a surface to these data:

proc loess data=Experiment;
ods output OutputStatistics=Results;
model Yield = Temperature Catalyst /

scale=sd(0.1)
iterations=3;

run;

The ITERATIONS=3 option in the MODEL statement requests two iteratively
reweighted iterations. Note the use of the SCALE=SD(0.1) option in the MODEL
statement. This specifies that the independent variables in the model are to be divided
by their respective 10% trimmed standard deviations before the fitted model is com-
puted. This is appropriate as the independent variablesTemperature andCatalyst
are not similarly scaled. The “Scale Details” table produced by PROC LOESS is
shown inOutput 41.3.2.
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Output 41.3.2. Scale Details Table

The LOESS Procedure

Independent Variable Scaling

Scaling applied: 10% trimmed standard deviation

Statistic Temperature Catalyst

Minimum Value 80 0.000
Maximum Value 140 0.080
Trimmed Mean 110 0.040
Trimmed Standard Deviation 14 0.019

The following statements use the G3D procedure to plot the fitted surface shown in
Output 41.3.3.

proc g3d data=Results;
format Temperature f4.0;
format Catalyst f6.3;
format pred f5.2;
plot Temperature*Catalyst=pred/zmin=0 zmax=10 zticknum=3;

run;

Output 41.3.3. Fitted Surface Plot for Experiment Data
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Example 41.4. Automatic Smoothing Parameter Selection

The following data set contains measurements of monthly averaged atmospheric pres-
sure differences between Easter Island and Darwin, Australia, for a period of 168
months (National Institute of Standards and Technology1998):

data ENSO;
input Pressure @@;
Month=_N_;
format Pressure 4.1;
format Month 3.0;

datalines;
12.9 11.3 10.6 11.2 10.9 7.5 7.7 11.7
12.9 14.3 10.9 13.7 17.1 14.0 15.3 8.5

5.7 5.5 7.6 8.6 7.3 7.6 12.7 11.0
12.7 12.9 13.0 10.9 10.4 10.2 8.0 10.9
13.6 10.5 9.2 12.4 12.7 13.3 10.1 7.8

4.8 3.0 2.5 6.3 9.7 11.6 8.6 12.4
10.5 13.3 10.4 8.1 3.7 10.7 5.1 10.4
10.9 11.7 11.4 13.7 14.1 14.0 12.5 6.3

9.6 11.7 5.0 10.8 12.7 10.8 11.8 12.6
15.7 12.6 14.8 7.8 7.1 11.2 8.1 6.4

5.2 12.0 10.2 12.7 10.2 14.7 12.2 7.1
5.7 6.7 3.9 8.5 8.3 10.8 16.7 12.6

12.5 12.5 9.8 7.2 4.1 10.6 10.1 10.1
11.9 13.6 16.3 17.6 15.5 16.0 15.2 11.2
14.3 14.5 8.5 12.0 12.7 11.3 14.5 15.1
10.4 11.5 13.4 7.5 0.6 0.3 5.5 5.0

4.6 8.2 9.9 9.2 12.5 10.9 9.9 8.9
7.6 9.5 8.4 10.7 13.6 13.7 13.7 16.5

16.8 17.1 15.4 9.5 6.1 10.1 9.3 5.3
11.2 16.6 15.6 12.0 11.5 8.6 13.8 8.7

8.6 8.6 8.7 12.8 13.2 14.0 13.4 14.8
;

The following PROC GPLOT statements produce the simple scatter plot of these data,
displayed inOutput 41.4.1:

symbol1 color=black value=dot ;
proc gplot data=ENSO;

plot Pressure*Month /
hminor = 0
vminor = 0
vaxis = axis1
frame;
axis1 label = ( r=0 a=90 ) order=(0 to 20 by 4);;

run;
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Output 41.4.1. Scatter Plot of ENSO Data

You can compute a loess fit and plot the results for these data using the following
statements:

ods output OutputStatistics=ENSOstats;

proc loess data=ENSO;
model Pressure=Month ;

run;

symbol1 color=black value=dot h=2.5 pct;
symbol2 color=black interpol=join value=none width=2;
proc gplot data=ENSOstats;

plot (depvar pred)*Month / overlay
hminor = 0
vminor = 0
vaxis = axis1
frame;
axis1 label = ( r=0 a=90 ) order=(0 to 20 by 4);

run; quit;
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The “Smoothing Criterion” and “Fit Summary” tables are shown inOutput 41.4.2
and the fit is plotted inOutput 41.4.3.

Output 41.4.2. Output from PROC LOESS

The LOESS Procedure
Dependent Variable: Pressure

Optimal Smoothing
Criterion

Smoothing
AICC Parameter

3.41105 0.22321

The LOESS Procedure
Selected Smoothing Parameter: 0.223

Dependent Variable: Pressure

Fit Summary

Fit Method kd Tree
Blending Linear
Number of Observations 168
Number of Fitting Points 33
kd Tree Bucket Size 7
Degree of Local Polynomials 1
Smoothing Parameter 0.22321
Points in Local Neighborhood 37
Residual Sum of Squares 1654.27725
Trace[L] 8.74180
GCV 0.06522
AICC 3.41105

The smoothing parameter value used for the loess fit shown inOutput 41.4.3was cho-
sen using the default method of PROC LOESS, namely a golden section minimization
of the AICC criterion over the interval(0, 1]. The fit seems to be oversmoothed. What
accounts for this poor fit?



Example 41.4. Automatic Smoothing Parameter Selection � 2269

Output 41.4.3. Oversmoothed Loess Fit for the ENSO Data

One possibility is that the golden section search has found a local rather than a global
minimum of the AICC criterion. You can test this by redoing the fit requesting a
global minimum. It is also helpful to plot the AICC criterion as a function of the
smoothing parameter value used. You do this with the following statements:

ods output ModelSummary=ENSOsummary;

proc loess data=ENSO;
model Pressure=Month/select=AICC(global);

run;

proc sort data=ENSOsummary;
by smooth;

run;

symbol1 color=black interpol=join value=none width=2;
proc gplot data=ENSOsummary;

format AICC f4.1; format smooth f4.1;
plot AICC*Smooth /

hminor = 0 vminor = 0 vaxis = axis1 frame;
axis1 label = ( r=0 a=90 );

run; quit;

The results are shown inOutput 41.4.4.
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Output 41.4.4. AICC versus Smoothing Parameter Showing Local Minima

The explanation for the oversmoothed fit inOutput 41.4.3is now apparent. The
golden section search algorithm found the local minimum that occurs near the value
0.22 of the smoothing parameter rather than the global minimum that occurs near
0.06. Note that if you restrict the range of smoothing parameter values examined
to lie below 0.2, then the golden section search finds the global minimum as the
following statements demonstrate:

ods output OutputStatistics=ENSOstats;

proc loess data=ENSO;
model Pressure=Month/select=AICC( range(0.03,0.2) );

run;

symbol1 color=black value=dot h=2.5 pct;
symbol2 color=black interpol=join value=none width=2;
proc gplot data=ENSOstats;

plot (depvar pred)*Month / overlay
hminor = 0
vminor = 0
vaxis = axis1
frame;
axis1 label = ( r=0 a=90 ) order=(0 to 20 by 4);

run; quit;

The fit obtained is shown inOutput 41.4.5.
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Output 41.4.5. Loess Fit for the ENSO Data

The loess fit shown inOutput 41.4.5clearly shows an annual cycle in the data. An
interesting question is whether there is some phenomenon captured in the data that
would explain the presence of the local minimum near 0.22 in the AICC curve. Note
that there is some evidence of a cycle of about 42 months in the oversmoothed fit in
Output 41.4.3. You can see this cycle because the strong annual cycle inOutput 41.4.5
has been smoothed out. The physical phenomenon that accounts for the existence of
this cycle has been identified as the periodic warming of the Pacific Ocean known as
“El Niño.”

Example 41.5. ODS Graphics

This example highlights the use of ODS for creating statistical graphs with the
LOESS procedure. The ENSO example is revisited to show how these graphics can
be used to enrich the analysis and simplify the process for obtaining functionally
equivalent plots to those previously presented with this example.

To request these plots you to need to specify the experimental ODS GRAPHICS
statement. For general information about ODS graphics seeChapter 15, “Statistical
Graphics Using ODS.”The following statements produce the default plots:



2272 � Chapter 41. The LOESS Procedure

ods html;
ods graphics on;

proc loess data=ENSO;
model Pressure=Month/select=AICC( range(0.03,0.4) global) clm

alpha=0.01;
run;

ods graphics off;
ods html close;

Output 41.5.1. Smoothing Parameter Selection (Experimental)

Note thatOutput 41.5.1has points corresponding to all models with smoothing pa-
rameters between 0.03 and 0.4, as these models were requested in the SELECT=
option. By default, only the models evaluated in the golden section search for the
optimal smoothing parameter appear on this plot.
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Output 41.5.2. LOESS Fit of ENSO Data (Experimental)

The fit plot shown inOutput 41.5.2is produced for models with a single regressor.
Note thatOutput 41.5.2includes the 99% confidence band that was requested in the
MODEL statement using the CLM and ALPHA= options.

Diagnostic plots are produced when the RESIDUAL option is included in the model
statement. The following statements produce these diagnostic plots:

ods html;
ods graphics on;

proc loess data=ENSO;
model Pressure=Month/smooth = 0.0565 residual;

run;

ods graphics off;
ods html close;
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Output 41.5.3. Residuals by Regressors (Experimental)

The residuals inOutput 41.5.3do not exhibit any obvious patterns, suggesting that
the signal in the data has been successfully modeled.

Additional information about the LOESS fit can be seen in the plots in the fit diag-
nostics panel that is also produced whenever the RESIDUAL option is specified in
the MODEL statement.Output 41.5.4shows this panel for the optimal smoothing
parameter.
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Output 41.5.4. Fit Diagnostics Panel (Experimental)

These diagnostic plots all suggest that the fit obtained is appropriate for these data:

• The plot of residuals versus predicted value shows no obvious pattern.

• The residual histogram with overlayed normal density supports the assumption
of gaussian errors.

• The normal quantile plot is consistent with the assumption of gaussian errors.

• The “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the
centered fit and the residuals shows that the spread in the residuals is no greater
than the spread in the centered fit. For inappropriate models, the spread of the
residuals in such a plot is often greater than the spread of the centered fit.

• The plot of the dependent variable versus the predicted values is centered
around a 45 degree line and shows no obvious outliers.

If you want to obtain the plots in the Diagnostics Panel as individual plots, you can do
so by specifying the PLOTS(UNPACKPANELS) option in the PROC LOESS state-
ment. The following statements provide an example:
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ods html;
ods graphics on;

proc loess data=ENSO plots(unpackpanels);
model Pressure=Month/smooth = 0.0565 residual;

run;

ods graphics off;
ods html close;

Output 41.5.5. Residual Histogram (Experimental)

The residual histogram is shown inOutput 41.5.5.
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Chapter 42
The LOGISTIC Procedure
Overview

Binary responses (for example, success and failure), ordinal responses (for example,
normal, mild, and severe), and nominal responses (for example, major TV networks
viewed at a certain hour) arise in many fields of study. Logistic regression analysis
is often used to investigate the relationship between these discrete responses and a
set of explanatory variables. Several texts that discuss logistic regression are Collett
(1991), Agresti (1990), Cox and Snell (1989), Hosmer and Lemeshow (2000), and
Stokes, Davis, and Koch (2000).

For binary response models, the response,Y , of an individual or an experimental
unit can take on one of two possible values, denoted for convenience by 1 and 2 (for
example,Y = 1 if a disease is present, otherwiseY = 2). Supposex is a vector
of explanatory variables andπ = Pr(Y = 1 | x) is the response probability to be
modeled. The linear logistic model has the form

logit(π) ≡ log
(

π

1− π

)
= α+ β′x

whereα is the intercept parameter andβ is the vector of parameters. Notice that
the LOGISTIC procedure, by default, models the probability of thelower response
levels.

The logistic model shares a common feature with a more general class of linear mod-
els, that a functiong = g(µ) of the mean of the response variable is assumed to be
linearly related to the explanatory variables. Since the meanµ implicitly depends on
the stochastic behavior of the response, and the explanatory variables are assumed to
be fixed, the functiong provides the link between the random (stochastic) component
and the systematic (deterministic) component of the response variableY . For this
reason, Nelder and Wedderburn (1972) refer tog(µ) as a link function. One advan-
tage of the logit function over other link functions is that differences on the logistic
scale are interpretable regardless of whether the data are sampled prospectively or ret-
rospectively (McCullagh and Nelder 1989, Chapter 4). Other link functions that are
widely used in practice are the probit function and the complementary log-log func-
tion. The LOGISTIC procedure enables you to choose one of these link functions,
resulting in fitting a broader class of binary response models of the form

g(π) = α+ β′x

For ordinal response models, the response,Y , of an individual or an experimental
unit may be restricted to one of a (usually small) number,k + 1(k ≥ 1), of ordinal
values, denoted for convenience by1, . . . , k, k + 1. For example, the severity of
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coronary disease can be classified into three response categories as 1=no disease,
2=angina pectoris, and 3=myocardial infarction. The LOGISTIC procedure fits a
common slopes cumulative model, which is a parallel lines regression model based on
the cumulative probabilities of the response categories rather than on their individual
probabilities. The cumulative model has the form

g(Pr(Y ≤ i | x)) = αi + β′x, i = 1, . . . , k

whereα1, . . . , αk arek intercept parameters, andβ is the vector of parameters. This
model has been considered by many researchers. Aitchison and Silvey (1957) and
Ashford (1959) employ a probit scale and provide a maximum likelihood analysis;
Walker and Duncan (1967) and Cox and Snell (1989) discuss the use of the log-odds
scale. For the log-odds scale, the cumulative logit model is often referred to as the
proportional oddsmodel.

For nominal response logistic models, where thek + 1 possible responses have no
natural ordering, the logit model can also be extended to ageneralized logitmodel,
which has the form

log
(

Pr(Y = i | x)
Pr(Y = k + 1 | x)

)
= αi + β′ix, i = 1, . . . , k

where theα1, . . . , αk arek intercept parameters, and theβ1, . . . ,βk arek vectors
of parameters. These models were introduced by McFadden (1974) as thediscrete
choicemodel, and they are also known asmultinomialmodels.

The LOGISTIC procedure fits linear logistic regression models for discrete response
data by the method of maximum likelihood. It can also perform conditional logistic
regression for binary response data and exact conditional logistic regression for bi-
nary and nominal response data. The maximum likelihood estimation is carried out
with either the Fisher-scoring algorithm or the Newton-Raphson algorithm. You can
specify starting values for the parameter estimates. The logit link function in the lo-
gistic regression models can be replaced by the probit function, the complementary
log-log function, or the generalized logit function.

The LOGISTIC procedure enables you to specify categorical variables (also known
as CLASS variables) or continuous variables as explanatory variables. You can also
specify more complex model terms such as interactions and nested terms in the same
way as in the GLM procedure. Any term specified in the model is referred to as
aneffect, whether it is a continuous variable, a CLASS variable, an interaction, or a
nested term.

The LOGISTIC procedure allows either a full-rank parameterization or a less-than-
full-rank parameterization. The full-rank parameterization offers eight coding meth-
ods: effect, reference, ordinal, polynomial, and orthogonalizations of these. The
effect coding is the same method that is used in the CATMOD procedure. The less-
than-full-rank parameterization is the same coding as that used in the GLM proce-
dure.

The LOGISTIC procedure provides four effect selection methods: forward selection,
backward elimination, stepwise selection, and best subset selection. The best subset
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selection is based on the likelihood score statistic. This method identifies a specified
number of best models containing one, two, three effects, and so on, up to a single
model containing effects for all the explanatory variables.

The LOGISTIC procedure has some additional options to control how to move ef-
fects in and out of a model with various model-building strategies such as forward
selection, backward elimination, or stepwise selection. When there are no interaction
terms, a main effect can enter or leave a model in a single step based on thep-value
of the score or Wald statistic. When there are interaction terms, the selection process
also depends on whether you want to preserve model hierarchy. These additional op-
tions enable you to specify whether model hierarchy is to be preserved, how model
hierarchy is applied, and whether a single effect or multiple effects can be moved in
a single step.

Odds ratio estimates are displayed along with parameter estimates. You can also spec-
ify the change in the explanatory variables for which odds ratio estimates are desired.
Confidence intervals for the regression parameters and odds ratios can be computed
based either on the profile likelihood function or on the asymptotic normality of the
parameter estimators.

Various methods to correct for overdispersion are provided, including Williams’
method for grouped binary response data. The adequacy of the fitted model can be
evaluated by various goodness-of-fit tests, including the Hosmer-Lemeshow test for
binary response data.

Like many procedures in SAS/STAT software that enable the specification of CLASS
variables, the LOGISTIC procedure provides aCONTRASTstatement for specify-
ing customized hypothesis tests concerning the model parameters. The CONTRAST
statement also provides estimation of individual rows of contrasts, which is particu-
larly useful for obtaining odds ratio estimates for various levels of the CLASS vari-
ables.

You can perform a conditional logistic regression on binary response data by spec-
ifying the STRATA statement. This enables you to perform matched-set and case-
control analyses. The number of events and nonevents can vary across the strata.
Many of the features available with the unconditional analysis are also available with
a conditional analysis.

The LOGISTIC procedure enables you to perform exact conditional logistic regres-
sion using the method of Hirji, Mehta, and Patel (1987) and Mehta, Patel, and
Senchaudhuri (1992) by specifying one or moreEXACT statements. You can test
individual parameters or conduct a joint test for several parameters. The procedure
computes two exact tests: the exact conditional score test and the exact conditional
probability test. You can request exact estimation of specific parameters and corre-
sponding odds ratios where appropriate. Both point estimates and confidence inter-
vals are provided.

Further features of the LOGISTIC procedure enable you to

• control the ordering of the response categories

• compute a generalizedR2 measure for the fitted model
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• reclassify binary response observations according to their predicted response
probabilities

• test linear hypotheses about the regression parameters

• create a data set for producing a receiver operating characteristic curve for each
fitted model

• create a data set containing the estimated response probabilities, residuals, and
influence diagnostics

• score a data set using a previously fitted model

Experimental graphics are now available with the LOGISTIC procedure. For more
information, see the“ODS Graphics”section on page 2388.

The remaining sections of this chapter describe how to use PROC LOGISTIC and
discuss the underlying statistical methodology. The“Getting Started”section in-
troduces PROC LOGISTIC with an example for binary response data. The“Syntax”
section (page 2289) describes the syntax of the procedure. The“Details” section
(page 2329) summarizes the statistical technique employed by PROC LOGISTIC.
The“Examples”section (page 2391) illustrates the use of the LOGISTIC procedure
with 10 applications.

For more examples and discussion on the use of PROC LOGISTIC, refer to Stokes,
Davis, and Koch (2000), Allison (1999), and SAS Institute Inc. (1995).

Getting Started

The LOGISTIC procedure is similar in use to the other regression procedures in the
SAS System. To demonstrate the similarity, suppose the response variabley is binary
or ordinal, andx1 andx2 are two explanatory variables of interest. To fit a logistic
regression model, you can use a MODEL statement similar to that used in the REG
procedure:

proc logistic;
model y=x1 x2;

run;

The response variabley can be either character or numeric. PROC LOGISTIC enu-
merates the total number of response categories and orders the response levels ac-
cording to the response variable optionORDER=in the MODEL statement. The
procedure also allows the input of binary response data that are grouped:

proc logistic;
model r/n=x1 x2;

run;

Here,n represents the number of trials andr represents the number of events.
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The following example illustrates the use of PROC LOGISTIC. The data, taken from
Cox and Snell (1989, pp. 10–11), consist of the number,r, of ingots not ready for
rolling, out of n tested, for a number of combinations of heating time and soaking
time. The following invocation of PROC LOGISTIC fits the binary logit model to
the grouped data:

data ingots;
input Heat Soak r n @@;
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

proc logistic data=ingots;
model r/n=Heat Soak;

run;

The results of this analysis are shown in the following tables.

The LOGISTIC Procedure

Model Information

Data Set WORK.INGOTS
Response Variable (Events) r
Response Variable (Trials) n
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 19
Number of Observations Used 19
Sum of Frequencies Read 387
Sum of Frequencies Used 387

Figure 42.1. Binary Logit Model

PROC LOGISTIC first lists background information inFigure 42.1about the fitting
of the model. Included are the name of the input data set, the response variable(s)
used, the number of observations used, and the link function used.
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Response Profile

Ordered Binary Total
Value Outcome Frequency

1 Event 12
2 Nonevent 375

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Figure 42.2. Response Profile with Events/Trials Syntax

The “Response Profile” table (Figure 42.2) lists the response categories (which are
Event and Nonevent when grouped data are input), their ordered values, and their
total frequencies for the given data.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 108.988 101.346
SC 112.947 113.221
-2 Log L 106.988 95.346

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.6428 2 0.0030
Score 15.1091 2 0.0005
Wald 13.0315 2 0.0015

Figure 42.3. Fit Statistics and Hypothesis Tests

The “Model Fit Statistics” table (Figure 42.3) contains the Akaike Information
Criterion (AIC), the Schwarz Criterion (SC), and the negative of twice the log likeli-
hood (-2 Log L) for the intercept-only model and the fitted model. AIC and SC can
be used to compare different models, and the ones with smaller values are preferred.
Results of the likelihood ratio test and the efficient score test for testing the joint sig-
nificance of the explanatory variables (Soak andHeat) are included in the “Testing
Global Null Hypothesis: BETA=0” table (Figure 42.3).



Getting Started � 2287

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -5.5592 1.1197 24.6503 <.0001
Heat 1 0.0820 0.0237 11.9454 0.0005
Soak 1 0.0568 0.3312 0.0294 0.8639

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Heat 1.085 1.036 1.137
Soak 1.058 0.553 2.026

Figure 42.4. Parameter Estimates and Odds Ratios

The “Analysis of Maximum Likelihood Estimates” table inFigure 42.4lists the pa-
rameter estimates, their standard errors, and the results of the Wald test for individual
parameters. The odds ratio for each effect parameter, estimated by exponentiating
the corresponding parameter estimate, is shown in the “Odds Ratios Estimates” table
(Figure 42.4), along with 95% Wald confidence intervals.

Using the parameter estimates, you can calculate the estimated logit ofπ as

−5.5592 + 0.082× Heat+ 0.0568× Soak

If Heat=7 andSoak=1, then logit(π̂) = −4.9284. Using this logit estimate, you
can calculatêπ as follows:

π̂ = 1/(1 + e4.9284) = 0.0072

This gives the predicted probability of the event (ingot not ready for rolling) for
Heat=7 andSoak=1. Note that PROC LOGISTIC can calculate these statistics
for you; use the OUTPUT statement with thePREDICTED=option.

Association of Predicted Probabilities and Observed Responses

Percent Concordant 64.4 Somers’ D 0.460
Percent Discordant 18.4 Gamma 0.555
Percent Tied 17.2 Tau-a 0.028
Pairs 4500 c 0.730

Figure 42.5. Association Table

Finally, the “Association of Predicted Probabilities and Observed Responses” table
(Figure 42.5) contains four measures of association for assessing the predictive abil-
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ity of a model. They are based on the number of pairs of observations with dif-
ferent response values, the number of concordant pairs, and the number of discor-
dant pairs, which are also displayed. Formulas for these statistics are given in the
“Rank Correlation of Observed Responses and Predicted Probabilities”section on
page 2350.

To illustrate the use of an alternative form of input data, the following program cre-
ates the INGOTS data set with new variablesNotReady andFreq instead ofn and
r. The variableNotReady represents the response of individual units; it has a value
of 1 for units not ready for rolling (event) and a value of 0 for units ready for rolling
(nonevent). The variableFreq represents the frequency of occurrence of each com-
bination ofHeat, Soak, andNotReady. Note that, compared to the previous data
set,NotReady=1 impliesFreq=r, andNotReady=0 impliesFreq=n−r.

data ingots;
input Heat Soak NotReady Freq @@;
datalines;

7 1.0 0 10 14 1.0 0 31 14 4.0 0 19 27 2.2 0 21 51 1.0 1 3
7 1.7 0 17 14 1.7 0 43 27 1.0 1 1 27 2.8 1 1 51 1.0 0 10
7 2.2 0 7 14 2.2 1 2 27 1.0 0 55 27 2.8 0 21 51 1.7 0 1
7 2.8 0 12 14 2.2 0 31 27 1.7 1 4 27 4.0 1 1 51 2.2 0 1
7 4.0 0 9 14 2.8 0 31 27 1.7 0 40 27 4.0 0 15 51 4.0 0 1
;

The following SAS statements invoke PROC LOGISTIC to fit the same model using
the alternative form of the input data set.

proc logistic data=ingots;
model NotReady(event=’1’) = Soak Heat;
freq Freq;

run;

Results of this analysis are the same as the previous one. The displayed output for
the two runs are identical except for the background information of the model fit and
the “Response Profile” table shown inFigure 42.6.

The LOGISTIC Procedure

Response Profile

Ordered Total
Value NotReady Frequency

1 0 375
2 1 12

Probability modeled is NotReady=1.

Figure 42.6. Response Profile with Single-Trial Syntax
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By default, Ordered Values are assigned to the sorted response values in ascending
order, and PROC LOGISTIC models the probability of the response level that corre-
sponds to the Ordered Value 1. There are several methods to change these defaults;
the preceding statements specify the response variable optionEVENT= to model the
probability of NotReady=1 as displayed inFigure 42.6. See the“Response Level
Ordering”section on page 2329 for more details.

Syntax

The following statements are available in PROC LOGISTIC:

PROC LOGISTIC < options >;
BY variables ;
CLASS variable <(v-options)> <variable <(v-options)>... >

< / v-options >;
CONTRAST ’label’ effect values <,... effect values >< / options >;
EXACT < ’label’ >< Intercept >< effects >< / options > ;
FREQ variable ;
MODEL events/trials = < effects >< / options >;
MODEL variable < (variable–options) > = < effects >< / options >;
OUTPUT < OUT=SAS-data-set >

< keyword=name. . .keyword=name >< / option >;
SCORE < options >;
STRATA effects < / options >;
< label: > TEST equation1 < , . . . , < equationk >>< / option >;
UNITS independent1=list1 < . . . independentk=listk >< / option > ;
WEIGHT variable < / option >;

The PROC LOGISTIC and MODEL statements are required; only one MODEL state-
ment can be specified. The CLASS statement (if used) must precede the MODEL
statement, and the CONTRAST, EXACT, and STRATA statements (if used) must
follow the MODEL statement. The rest of this section provides detailed syntax infor-
mation for each of the preceding statements, beginning with the PROC LOGISTIC
statement. The remaining statements are covered in alphabetical order.
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PROC LOGISTIC Statement

PROC LOGISTIC < options > ;

The PROC LOGISTIC statement starts the LOGISTIC procedure and optionally
identifies input and output data sets and suppresses the display of results.

ALPHA= α
specifies the level of significanceα for 100(1−α)% confidence intervals. The value
α must be between 0 and 1; the default value is 0.05, which results in 95% intervals.
This value is used as the default confidence level for limits computed by the following
options.

Statement Options
CONTRAST ESTIMATE=

EXACT ESTIMATE=

MODEL CLODDS= CLPARM=

OUTPUT UCL= LCL=

SCORE CLM

You can override the default in each of these cases by specifying the ALPHA= option
for each statement individually.

COVOUT
adds the estimated covariance matrix to theOUTEST=data set. For the COVOUT
option to have an effect, the OUTEST= option must be specified. See the section
“OUTEST= Output Data Set”on page 2374 for more information.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. If you omit the DATA=
option, the procedure uses the most recently created SAS data set. TheINMODEL=
option cannot be specified with this option.

DESCENDING
DESC

reverses the sorting order for the levels of the response variable. If both the
DESCENDING andORDER=options are specified, PROC LOGISTIC orders the
levels according to the ORDER= option and then reverses that order. This option
has the same effect as the response variable optionDESCENDINGin the MODEL
statement. See the“Response Level Ordering”section on page 2329 for more detail.

EXACTONLY
requests only the exact analyses. The asymptotic analysis that PROC LOGISTIC
usually performs is suppressed.
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EXACTOPTIONS(options)
specifies options that apply to everyEXACT statement in the program. The following
options are available:

ADDTOBS adds the observed sufficient statistic to the sampled exact distribu-
tion if the statistic was not sampled. This option has no effect unless the
METHOD=NETWORKMC option is specified and theESTIMATE option is
specified in the EXACT statement. If the observed statistic has not been sam-
pled, then the parameter estimate does not exist; by specifying this option, you
can produce (biased) estimates.

MAXTIME=seconds specifies the maximum clock time (in seconds) that PROC
LOGISTIC can use to calculate the exact distributions. If the limit is exceeded,
the procedure halts all computations and prints a note to the LOG. The default
maximum clock time is seven days.

METHOD=keyword specifies which exact conditional algorithm to use for every
EXACT statement specified. You can specify one of the followingkeywords:

DIRECT invokes the multivariate shift algorithm of Hirji, Mehta, and Patel
(1987). This method directly builds the exact distribution, but it may
require an excessive amount of memory in its intermediate stages.
METHOD=DIRECT is invoked by default when you are conditioning out
at most the intercept, or when the LINK=GLOGIT option is specified in
the MODEL statement.

NETWORK invokes an algorithm similar to that described in Mehta, Patel,
and Senchaudhuri (1992). This method builds a network for each pa-
rameter that you are conditioning out, combines the networks, then uses
the multivariate shift algorithm to create the exact distribution. The
NETWORK method can be faster and require less memory than the
DIRECT method. The NETWORK method is invoked by default for most
analyses.

NETWORKMC invokes the hybrid network and Monte Carlo algorithm of
Mehta, Patel, and Senchaudhuri (2000). This method creates a network
then samples from that network; this method does not reject any of the
samples at the cost of using a large amount of memory to create the
network. METHOD=NETWORKMC is most useful for producing pa-
rameter estimates for problems that are too large for the DIRECT and
NETWORK methods to handle and for which asymptotic methods are
invalid; for example, for sparse data on a large grid.

N=n specifies the number of Monte Carlo samples to take when
METHOD=NETWORKMC. By defaultn = 10, 000. If the procedure
cannot obtainn samples due to a lack of memory, then a note is printed in
the LOG (the number of valid samples is also reported in the listing) and the
analysis continues.

Note that the number of samples used to produce any particular statistic may
be smaller thann. For example, letX1 andX2 be continuous variables, de-
note their joint distribution byf(X1, X2), and letf(X1|X2 = x2) denote the
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marginal distribution ofX1 conditioned on the observed value ofX2. If you
request the JOINT test ofX1 andX2, thenn samples are used to generate the
estimatef̂(X1, X2) of f(X1, X2), from which the test is computed. However,
the parameter estimate forX1 is computed from the subset of̂f(X1, X2) hav-
ing X2 = x2, and this subset need not containn samples. Similarly, the dis-
tribution for each level of a classification variable is created by extracting the
appropriate subset from the joint distribution for the CLASS variable. The sam-
ple sizes used to compute the statistics are written to the ODS OUTPUT data
set of the tables.

In some cases, the marginal sample size may be too small to admit accurate
estimation of a particular statistic; a note is printed in the LOG when a marginal
sample size is less than 100. Increasingn will increase the number of samples
used in a marginal distribution; however, if you want to control the sample size
exactly, you can:

• Remove the JOINT option from the EXACT statement.

• Create dummy variables in a DATA step to represent the levels of
a CLASS variable, and specify them as independent variables in the
MODEL statement.

ONDISK uses disk-space instead of random access memory to build the exact con-
ditional distribution. Use this option to handle larger problems at the cost of
slower processing.

SEED=n specifies the initial seed for the random number generator used to take the
Monte Carlo samples for METHOD=NETWORKMC. The value of the SEED=
option must be an integer. If you do not specify a seed, or if you specify a value
less than or equal to zero, then PROC LOGISTIC uses the time of day from
the computer’s clock to generate an initial seed. The seed is displayed in the
“Model Information” table.

STATUSN=n prints a status line in the LOG after everyn Monte Carlo samples for
METHOD=NETWORKMC. The number of samples taken and the current ex-
actp-value for testing the significance of the model are displayed. You can use
this status line to track the progress of the computation of the exact conditional
distributions.

STATUSTIME=seconds specifies the time interval (in seconds) for printing a status
line in the LOG. You can use this status line to track the progress of the com-
putation of the exact conditional distributions. The time interval you specify is
approximate; the actual time interval will vary. By default, no status reports are
produced.

INEST=SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the
model. BY-group processing is allowed in setting up the INEST= data set. See the
section“INEST= Input Data Set”on page 2376 for more information.
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INMODEL=SAS-data-set
specifies the name of the SAS data set that contains the model information needed for
scoring new data. This INMODEL= data set is theOUTMODEL= data set saved in
a previous PROC LOGISTIC call. TheDATA= option cannot be specified with this
option; instead, specify the data sets to be scored in theSCOREstatements.

When the INMODEL= data set is specified, FORMAT statements are not allowed;
variables in theDATA= andPRIOR=data sets should be formatted within the data
sets. If a SCORE statement is specified in the same run as fitting the model, FORMAT
statements should be specified after the SCORE statement in order for the formats to
apply to all the DATA= and PRIOR= data sets in the SCORE statement.

You can specify the BY statement provided the INMODEL= data set is created under
the same BY-group processing.

The CLASS, EXACT, MODEL, OUTPUT, TEST, and UNIT statements are not avail-
able with the INMODEL= option.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

NOCOV
specifies that the covariance matrix is not saved in theOUTMODEL= data set. The
covariance matrix is needed for computing the confidence intervals for the posterior
probabilities in theOUT= data set in the SCORE statement. Specifying this option
will reduce the size of the OUTMODEL= data set.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output
Delivery System (ODS); seeChapter 14, “Using the Output Delivery System,”for
more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
RORDER=DATA | FORMATTED | INTERNAL

specifies the sorting order for the levels of the response variable. See the response
variable optionORDER=in the MODEL statement for more information.

OUTDESIGN=SAS-data-set
specifies the name of the data set that contains design matrix for the model. The
data set contains the same number of observations as the corresponding DATA= data
set and includes the response variable (with the same format as in the input data),
the FREQ variable, the WEIGHT variable, the OFFSET variable, and the design
variables for the covariates, including the Intercept variable of constant value 1 unless
the NOINT option in the MODEL statement is specified.

OUTDESIGNONLY
suppresses the model fitting and only creates the OUTDESIGN= data set. This option
is ignored if the OUTDESIGN= option is not specified.
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OUTEST= SAS-data-set
creates an output SAS data set that contains the final parameter estimates and, option-
ally, their estimated covariances (see the precedingCOVOUT option). The output
data set also includes a variable named–LNLIKE– , which contains the log likeli-
hood.

See the section“OUTEST= Output Data Set”on page 2374 for more information.

OUTMODEL=SAS-data-set
specifies the name of the SAS data set that contains the information about the fitted
model. This data set contains sufficient information to score new data without having
to refit the model. It is solely used as the input to theINMODEL= option in a sub-
sequent PROC LOGISTIC call.Note: information is stored in this data set in a very
compact form, hence you should not modify it manually.

SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum and max-
imum) for each continuous explanatory variable; and for each CLASS variable in-
volved in the modeling, the frequency counts of the classification levels are displayed.
The SIMPLE option generates a breakdown of the simple descriptive statistics or fre-
quency counts for the entire data set and also for individual response categories.

TRUNCATE
specifies that class levels should be determined using no more than the first 16 char-
acters of the formatted values of CLASS, response, and strata variables. When for-
matted values are longer than 16 characters, you can use this option to revert to the
levels as determined in releases previous to Version 9. This option invokes the same
option in theCLASSstatement.

BY Statement

BY variables ;

You can specify a BY statement with PROC LOGISTIC to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables. Thevariablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the LOGISTIC procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).
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If a SCOREstatement is specified, then define theprimary data setto be theDATA=
or theINMODEL=data set in the PROC LOGISTIC statement, and define thesec-
ondary data setto be theDATA= data set andPRIOR=data set in the SCORE state-
ment. The primary data set contains all of the BY variables, and the secondary data
set must contain either all of them or none of them. If the secondary data set con-
tains all the BY-variables, matching is carried out between the primary and secondary
data sets. If the secondary data set does not contain any of the BY-variables, the en-
tire secondary data set is used for every BY-group in the primary data set and the
BY-variables are added to the output data sets specified in the SCORE statement.

Caution: The order of your response and classification variables is determined by
combining data across all BY groups; however, the observed levels may change be-
tween BY groups. This may affect the value of the reference level for these variables,
and hence your interpretation of the model and the parameters.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variable <(v-options)><variable <(v-options)>... >
< / v-options > ;

The CLASS statement names the classification variables to be used in the analysis.
The CLASS statement must precede the MODEL statement. You can specify vari-
ousv-optionsfor each variable by enclosing them in parentheses after the variable
name. You can also specify globalv-optionsfor the CLASS statement by placing
them after a slash (/). Globalv-optionsare applied to all the variables specified in
the CLASS statement. If you specify more than one CLASS statement, the global
v-optionsspecified on any one CLASS statement apply to all CLASS statements.
However, individual CLASS variablev-optionsoverride the globalv-options.

CPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable name be used
in creating names for the corresponding design variables. The default is32 −
min(32,max(2, f)), wheref is the formatted length of the CLASS variable.

DESCENDING
DESC

reverses the sorting order of the classification variable. If both the DESCENDING
andORDER=options are specified, PROC LOGISTIC orders the categories accord-
ing to the ORDER= option and then reverses that order.

LPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable label be used
in creating labels for the corresponding design variables. The default is256 −
min(256,max(2, f)), wheref is the formatted length of the CLASS variable.
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MISSING
allows missing value (’.’ for a numeric variable and blanks for a character variables)
as a valid value for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of classification variables. By default,
ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER=FORMATTED is in effect for
numeric variables for which you have supplied no explicit format, the levels are or-
dered by their internal values. This ordering determines which parameters in the
model correspond to each level in the data, so the ORDER= option may be useful
when you use the CONTRAST statement.

The following table shows how PROC LOGISTIC interprets values of the ORDER=
option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

For more information on sorting order, see the chapter on the SORT procedure in the
SAS Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables.
Design matrix columns are created from CLASS variables according to the follow-
ing coding schemes. The default is PARAM=EFFECT. If PARAM=ORTHPOLY or
PARAM=POLY, and the CLASS levels are numeric, then theORDER=option in the
CLASS statement is ignored, and the internal, unformatted values are used. See the
“CLASS Variable Parameterization”section on page 2331 for further details.

EFFECT specifies effect coding

GLM specifies less-than-full-rank reference cell coding; this option can
only be used as a global option

ORDINAL specifies the cumulative parameterization for an ordinal CLASS
variable.

POLYNOMIAL
POLY specifies polynomial coding
REFERENCE
REF specifies reference cell coding
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ORTHEFFECT orthogonalizes PARAM=EFFECT

ORTHORDINAL orthogonalizes PARAM=ORDINAL

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL

ORTHREF orthogonalizes PARAM=REFERENCE

The EFFECT, POLYNOMIAL, REFERENCE, ORDINAL, and their orthogonal pa-
rameterizations are full rank. TheREF=option in the CLASS statement determines
the reference level for the EFFECT, REFERENCE, and their orthogonal parameteri-
zations.

Parameter names for a CLASS predictor variable are constructed by concatenating
the CLASS variable name with the CLASS levels. However, for the POLYNOMIAL
and orthogonal parameterizations, parameter names are formed by concatenating the
CLASS variable name and keywords that reflect the parameterization.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and
their orthogonalizations. For an individual (but not a global) variable REF=option,
you can specify thelevel of the variable to use as the reference level. For a global
or individual variable REF=option, you can use one of the followingkeywords. The
default is REF=LAST.

FIRST designates the first ordered level as reference

LAST designates the last ordered level as reference

TRUNCATE
specifies that class levels should be determined using no more than the first 16 char-
acters of the formatted values of CLASS, response, and strata variables. When for-
matted values are longer than 16 characters, you can use this option to revert to the
levels as determined in releases previous to Version 9. The TRUNCATE option is
only available as a global option. This option invokes the same option in thePROC
LOGISTICstatement.

CONTRAST Statement

CONTRAST ’label’ row-description <,...row-description >< / options > ;

where arow-description is: effect values <,...effect values>

The CONTRAST statement provides a mechanism for obtaining customized hypoth-
esis tests. It is similar to the CONTRAST and ESTIMATE statements in PROC GLM
and PROC CATMOD, depending on the coding schemes used with any classification
variables involved.

The CONTRAST statement enables you to specify a matrix,L, for testing the hy-
pothesisLθ = 0, whereθ is the parameter vector. You must be familiar with the
details of the model parameterization that PROC LOGISTIC uses (for more infor-
mation, see the PARAM= option in the section“CLASS Statement”on page 2295).
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Optionally, the CONTRAST statement enables you to estimate each row,l′iθ, of Lθ
and test the hypothesisl′iθ = 0. Computed statistics are based on the asymptotic
chi-square distribution of the Wald statistic.

There is no limit to the number of CONTRAST statements that you can specify, but
they must appear after the MODEL statement.

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast
specified, and it must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. The name
INTERCEPT can be used as an effect when one or more intercepts are in-
cluded in the model. You do not need to include all effects that are included
in the MODEL statement.

values are constants that are elements of theL matrix associated with the effect.
To correctly specify your contrast, it is crucial to know the ordering of
parameters within each effect and the variable levels associated with any
parameter. The “Class Level Information” table shows the ordering of lev-
els within variables. TheE option, described later in this section, enables
you to verify the proper correspondence ofvaluesto parameters.

The rows ofL are specified in order and are separated by commas. Multiple degree-
of-freedom hypotheses can be tested by specifying multiplerow-descriptions. For
any of the full-rank parameterizations, if an effect is not specified in the CONTRAST
statement, all of its coefficients in theL matrix are set to 0. If too many values are
specified for an effect, the extra ones are ignored. If too few values are specified, the
remaining ones are set to 0.

When you use effect coding (by default or by specifying PARAM=EFFECT in the
CLASS statement), all parameters are directly estimable (involve no other param-
eters). For example, suppose an effect coded CLASS variableA has four levels.
Then there are three parameters (α1, α2, α3) representing the first three levels, and
the fourth parameter is represented by

−α1 − α2 − α3

To test the first versus the fourth level ofA, you would test

α1 = −α1 − α2 − α3

or, equivalently,

2α1 + α2 + α3 = 0

which, in the formLθ = 0, is

[
2 1 1

]  α1

α2

α3

 = 0
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Therefore, you would use the following CONTRAST statement:

contrast ’1 vs. 4’ A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

α1 + α2

2
= α3

or, equivalently,

α1 + α2 − 2α3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1&2 vs. 3’ A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example,

contrast ’1 vs. 2 ’ A 1 -1 0;
contrast ’1&2 vs. 4 ’ A 3 3 2;
contrast ’1&2 vs. 3&4’ A 2 2 0;
contrast ’Main Effect’ A 1 0 0,

A 0 1 0,
A 0 0 1;

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM
in the CLASS statement), each row is checked for estimability. If PROC LOGISTIC
finds a contrast to be nonestimable, it displays missing values in corresponding rows
in the results. PROC LOGISTIC handles missing level combinations of classification
variables in the same manner as PROC GLM. Parameters corresponding to missing
level combinations are not included in the model. This convention can affect the way
in which you specify theL matrix in your CONTRAST statement. If the elements of
L are not specified for an effect that contains a specified effect, then the elements of
the specified effect are distributed over the levels of the higher-order effect just as the
GLM procedure does for its CONTRAST and ESTIMATE statements. For example,
suppose that the model contains effects A and B and their interaction A*B. If you
specify a CONTRAST statement involving A alone, theL matrix contains nonzero
terms for both A and A*B, since A*B contains A.

The degrees of freedom is the number of linearly independent constraints implied by
the CONTRAST statement, that is, the rank ofL.

You can specify the following options after a slash (/).
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ALPHA= α
specifies the level of significanceα for the100(1−α)% confidence interval for each
contrast when the ESTIMATE option is specified. The valueαmust be between 0 and
1. By default,α is equal to the value of theALPHA= option in the PROC LOGISTIC
statement, or 0.05 if that option is not specified.

E
displays theL matrix.

ESTIMATE=keyword
requests that each individual contrast (that is, each row,l′iθ, of Lθ) or exponentiated
contrast (el

′
iθ) be estimated and tested. PROC LOGISTIC displays the point esti-

mate, its standard error, a Wald confidence interval, and a Wald chi-square test for
each contrast. The significance level of the confidence interval is controlled by the
ALPHA= option. You can estimate the contrast or the exponentiated contrast (el

′
iθ),

or both, by specifying one of the followingkeywords:

PARM specifies that the contrast itself be estimated

EXP specifies that the exponentiated contrast be estimated

BOTH specifies that both the contrast and the exponentiated contrast be
estimated

SINGULAR = number
tunes the estimability check. This option is ignored when the full-rank parameteri-
zation is used. Ifv is a vector, define ABS(v) to be the largest absolute value of the
elements ofv. For a row vectorl′ of the contrast matrixL, definec to be equal to
ABS(l) if ABS(l) is greater than 0; otherwise,c equals 1. If ABS(l′− l′T ) is greater
thanc ∗ number, thenl is declared nonestimable. TheT matrix is the Hermite form
matrixI−0 I0, whereI−0 represents a generalized inverse of the information matrixI0

of the null model. The value fornumber must be between 0 and 1; the default value
is 1E−4.

EXACT Statement

EXACT <’label’>< Intercept >< effects >< / options > ;

The EXACT statement performs exact tests of the parameters for the specified effects
and optionally estimates the parameters and outputs the exact conditional distribu-
tions. You can specify the keyword INTERCEPT and any effects in the MODEL
statement. Inference on the parameters of the specified effects is performed by condi-
tioning on the sufficient statistics of all the other model parameters (possibly includ-
ing the intercept).

You can specify several EXACT statements, but they must follow the MODEL state-
ment. Each statement can optionally include an identifying label. If several EXACT
statements are specified, any statement without a label will be assigned a label of the
form “Exactn”, where “n” indicates thenth EXACT statement. The label is included
in the headers of the displayed exact analysis tables.
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If a STRATA statement is also specified, then a stratified exact conditional logistic
regression is performed. The model contains a different intercept for each stratum,
and these intercepts are conditioned out of the model along with any other nuisance
parameters (essentially, any parameters specified in the MODEL statement which are
not in the EXACT statement).

If the LINK=GLOGIT option is specified in the MODEL statement, then the
EXACTOPTION optionMETHOD=DIRECT is invoked by default and a general-
ized logit model is fit. Since each effect specified in the MODEL statement addsk
parameters to the model (wherek+1 is the number of response levels), exact analysis
of the generalized logit model using this method is limited to rather small problems.

The CONTRAST, OUTPUT, SCORE, TEST, and UNITS statements are not avail-
able with an exact analysis. Exact analyses are not performed when you specify a
WEIGHT statement, a link other than LINK=LOGIT or LINK=GLOGIT, an offset
variable, the NOFIT option, or a model-selection method. Exact estimation is not
available for ordinal response models.

The following options can be specified in each EXACT statement after a slash (/):

ALPHA= α
specifies the level of significanceα for 100(1−α)% confidence limits for the param-
eters or odds ratios. The valueα must be between 0 and 1. By default,α is equal to
the value of theALPHA= option in the PROC LOGISTIC statement, or 0.05 if that
option is not specified.

ESTIMATE < =keyword >
estimates the individual parameters (conditional on all other parameters) for the ef-
fects specified in the EXACT statement. For each parameter, a point estimate, a
confidence interval, and ap-value for a two-sided test that the parameter is zero are
displayed. Note that the two-sidedp-value is twice the one-sidedp-value. You can
optionally specify one of the following keywords:

PARM specifies that the parameters be estimated. This is the default.

ODDS specifies that the odds ratios be estimated. For classification variables, use
of the reference parameterization is recommended.

BOTH specifies that the parameters and odds ratios be estimated

JOINT
performs the joint test that all of the parameters are simultaneously equal to zero,
individual hypothesis tests for the parameter of each continuous variable, and joint
tests for the parameters of each classification variable. The joint test is indicated in
the “Conditional Exact Tests” table by the label “Joint.”

JOINTONLY
performs only the joint test of the parameters. The test is indicated in the “Conditional
Exact Tests” table by the label “Joint.” When this option is specified, individual tests
for the parameters of each continuous variable and joint tests for the parameters of
the classification variables are not performed.
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CLTYPE=EXACT | MIDP
requests either the exact or mid-p confidence intervals for the parameter estimates.
By default, the exact intervals are produced. The confidence coefficient can be
specified with theALPHA= option. The mid-p interval can be modified with the
MIDPFACTOR=option. See the“Inference for a Single Parameter”section on page
2373 for details.

MIDPFACTOR=δ1 | (δ1, δ2)
sets the tie factors used to produce the mid-p hypothesis statistics and the mid-p
confidence intervals.δ1 modifies both the hypothesis tests and confidence intervals,
while δ2 affects only the hypothesis tests. By default,δ1 = 0.5 andδ2 = 1.0. See the
“Hypothesis Tests”section on page 2371 and the“Inference for a Single Parameter”
section on page 2373 for details.

ONESIDED
requests one-sided confidence intervals andp-values for the individual parameter es-
timates and odds ratios. The one-sidedp-value is the smaller of the left and right
tail probabilities for the observed sufficient statistic of the parameter under the null
hypothesis that the parameter is zero. The two-sidedp-values (default) are twice the
one-sidedp-values. See the“Inference for a Single Parameter”section on page 2373
for more details.

OUTDIST=SAS-data-set
names the SAS data set containing the exact conditional distributions. This data set
contains all of the exact conditional distributions required to process the correspond-
ing EXACT statement. The data set contains the possible sufficient statistics for the
parameters of the effects specified in the EXACT statement, the counts, and, when
hypothesis tests are performed on the parameters, the probability of occurrence and
the score value for each sufficient statistic. When you request an OUTDIST= data
set, the observed sufficient statistics are displayed in the “Sufficient Statistics” table.
See the“OUTDIST= Output Data Set”section on page 2377 for more information.

EXACT Statement Examples

• In the following example, two exact tests are computed: one forx1 and the
other forx2. The test forx1 is based on the exact conditional distribution of
the sufficient statistic for thex1 parameter given the observed values of the
sufficient statistics for the intercept,x2, andx3 parameters; likewise, the test
for x2 is conditional on the observed sufficient statistics for the intercept,x1,
andx3:

proc logistic;
model y= x1 x2 x3;
exact ’lab1’ x1 x2;

run;

• You can specify multiple EXACT statements in the same PROC LOGISTIC
invocation. PROC LOGISTIC determines, from all the EXACT statements,
the distinct conditional distributions that need to be evaluated. For example,
there is only one exact conditional distribution for the following two EXACT
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statements, and it would be a waste of resources to compute the same exact
conditional distribution twice:

exact ’One’ x1 / estimate=parm;
exact ’Two’ x1 / estimate=parm onesided;

• For each EXACT statement, individual tests for the parameters of the specified
effects are computed unless the JOINTONLY option is specified. Consider the
following EXACT statements:

exact ’E12’ x1 x2 / estimate;
exact ’E1’ x1 / estimate;
exact ’E2’ x2 / estimate;
exact ’J12’ x1 x2 / joint;

In the E12 statement, the parameters forx1 andx2 are estimated and tested
separately. Specifying the E12 statement is equivalent to specifying both the
E1 and E2 statements. In the J12 statement, the joint test for the parameters of
x1 andx2 is computed as well as the individual tests forx1 andx2.

All exact conditional distributions for the tests and estimates computed in a
single EXACT statement are output to the corresponding OUTDIST= data set.
For example, consider the following EXACT statements:

exact ’O1’ x1 / outdist=o1;
exact ’OJ12’ x1 x2 / jointonly outdist=oj12;
exact ’OA12’ x1 x2 / joint outdist=oa12;
exact ’OE12’ x1 x2 / estimate outdist=oe12;

The O1 statement outputs a single exact conditional distribution. The OJ12
statement outputs only the joint distribution forx1 andx2. The OA12 state-
ment outputs three conditional distributions: one forx1, one forx2, and one
jointly for x1 andx2. The OE12 statement outputs two conditional distribu-
tions: one forx1 and the other forx2. Data setoe12 contains both thex1 and
x2 variables; the distribution forx1 has missing values in thex2 column while
the distribution forx2 has missing values in thex1 column.

See the“OUTDIST= Output Data Set”section on page 2377 for more infor-
mation.

FREQ Statement

FREQ variable ;

Thevariable in the FREQ statement identifies a variable that contains the frequency
of occurrence of each observation. PROC LOGISTIC treats each observation as if it
appearsn times, wheren is the value of the FREQ variable for the observation. If it
is not an integer, the frequency value is truncated to an integer. If the frequency value
is less than 1 or missing, the observation is not used in the model fitting. When the
FREQ statement is not specified, each observation is assigned a frequency of 1.

If a SCOREstatement is specified, then the FREQ variable is used for computing fit
statistics and the ROC curve, but they are not required for scoring. If theDATA= data
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set in the SCORE statement does not contain the FREQ variable, the frequency values
are assumed to be 1 and a warning message is issued in the LOG. If you fit a model
and perform the scoring in the same run, the same FREQ variable is used for fitting
and scoring. If you fit a model in a previous run and input it with theINMODEL=
option in the current run, then the FREQ variable can be different from the one used
in the previous run; however, if a FREQ variable was not specified in the previous
run you can still specify a FREQ variable in the current run.

MODEL Statement

MODEL events/trials= < effects >< / options > ;

MODEL variable < (variable–options) >= < effects >< / options > ;

The MODEL statement names the response variable and the explanatory effects,
including covariates, main effects, interactions, and nested effects; see the section
“Specification of Effects”on page 1784 ofChapter 32, “The GLM Procedure,”for
more information. If you omit the explanatory effects, the procedure fits an intercept-
only model.Model optionscan be specified after a slash (/).

Two forms of the MODEL statement can be specified. The first form, referred to as
single-trial syntax, is applicable to binary, ordinal, and nominal response data. The
second form, referred to asevents/trialssyntax, is restricted to the case of binary
response data. Thesingle-trial syntax is used when each observation in the DATA=
data set contains information on only a single trial, for instance, a single subject
in an experiment. When each observation contains information on multiple binary-
response trials, such as the counts of the number of subjects observed and the number
responding, thenevents/trialssyntax can be used.

In the events/trialssyntax, you specify two variables that contain count data for a
binomial experiment. These two variables are separated by a slash. The value of
the first variable,events, is the number of positive responses (or events). The value
of the second variable,trials, is the number of trials. The values of botheventsand
(trials−events) must be nonnegative and the value oftrials must be positive for the
response to be valid.

In thesingle-trialsyntax, you specify one variable (on the left side of the equal sign)
as the response variable. This variable can be character or numeric.Optionsspecific
to the response variable can be specified immediately after the response variable with
a pair of parentheses around them.

For both forms of the MODEL statement, explanatoryeffectsfollow the equal sign.
Variables can be either continuous or classification variables. Classification variables
can be character or numeric, and they must be declared in the CLASS statement.
When an effect is a classification variable, the procedure enters a set of coded columns
into the design matrix instead of directly entering a single column containing the
values of the variable.
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Response Variable Options

You can specify the following options by enclosing them in a pair of parentheses after
the response variable.

DESCENDING | DESC
reverses the order of the response categories. If both the DESCENDING and
ORDER= options are specified, PROC LOGISTIC orders the response categories
according to the ORDER= option and then reverses that order. See the“Response
Level Ordering”section on page 2329 for more detail.

EVENT=’category’ | keyword
specifies the event category for the binary response model. PROC LOGISTIC mod-
els the probability of the event category. The EVENT= option has no effect when
there are more than two response categories. You can specify the value (formatted
if a format is applied) of the event category in quotes or you can specify one of the
following keywords. The default is EVENT=FIRST.

FIRST designates the first ordered category as the event

LAST designates the last ordered category as the event

One of the most common sets of response levels is {0,1}, with 1 representing the
event for which the probability is to be modeled. Consider the example whereY
takes the values 1 and 0 for event and nonevent, respectively, andExposure is the
explanatory variable. To specify the value 1 as the event category, use the MODEL
statement

model Y(event=’1’) = Exposure;

ORDER= DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the response variable. By default,
ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER=FORMATTED is in effect for
numeric variables for which you have supplied no explicit format, the levels are or-
dered by their internal values.

The following table shows the interpretation of the ORDER= values.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value
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For more information on sorting order, see the chapter on the SORT procedure in the
SAS Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

REFERENCE=’category’ | keyword
REF=’category’ | keyword

specifies the reference category for the generalized logit model and the binary re-
sponse model. For the generalized logit model, each nonreference category is con-
trasted with the reference category. For the binary response model, specifying one
response category as the reference is the same as specifying the other response cate-
gory as the event category. You can specify the value (formatted if a format is applied)
of the reference category in quotes or you can specify one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered category as the reference

LAST designates the last ordered category as the reference

Model Options

Table42.1summarizes the options available in the MODEL statement, which can be
specified after a slash (/).

Table 42.1. Model Statement Options

Option Description
Model Specification Options
LINK= specifies link function
NOINT suppresses intercept
NOFIT suppresses model fitting
OFFSET= specifies offset variable
SELECTION= specifies effect selection method

Effect Selection Options
BEST= controls the number of models displayed for SCORE selection
DETAILS requests detailed results at each step
FAST uses fast elimination method
HIERARCHY= specifies whether and how hierarchy is maintained and whether a single

effect or multiple effects are allowed to enter or leave the model per step
INCLUDE= specifies number of effects included in every model
MAXSTEP= specifies maximum number of steps for STEPWISE selection
SEQUENTIAL adds or deletes effects in sequential order
SLENTRY= specifies significance level for entering effects
SLSTAY= specifies significance level for removing effects
START= specifies number of variables in first model
STOP= specifies number of variables in final model
STOPRES adds or deletes variables by residual chi-square criterion

Model-Fitting Specification Options
ABSFCONV= specifies absolute function convergence criterion
FCONV= specifies relative function convergence criterion
GCONV= specifies relative gradient convergence criterion
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Table 42.1. (continued)

Option Description
XCONV= specifies relative parameter convergence criterion
MAXFUNCTION= specifies maximum number of function calls for the conditional analysis
MAXITER= specifies maximum number of iterations
NOCHECK suppresses checking for infinite parameters
RIDGING= specifies the technique used to improve the log-likelihood function when

its value is worse than that of the previous step
SINGULAR= specifies tolerance for testing singularity
TECHNIQUE= specifies iterative algorithm for maximization

Options for Confidence Intervals
ALPHA= specifiesα for the100(1− α)% confidence intervals
CLPARM= computes confidence intervals for parameters
CLODDS= computes confidence intervals for odds ratios
PLCONV= specifies profile likelihood convergence criterion

Options for Classifying Observations
CTABLE displays classification table
PEVENT= specifies prior event probabilities
PPROB= specifies probability cutpoints for classification

Options for Overdispersion and Goodness-of-Fit Tests
AGGREGATE= determines subpopulations for Pearson chi-square and deviance
SCALE= specifies method to correct overdispersion
LACKFIT requests Hosmer and Lemeshow goodness-of-fit test

Options for ROC Curves
OUTROC= names the output data set
ROCEPS= specifies probability grouping criterion

Options for Regression Diagnostics
INFLUENCE displays influence statistics
IPLOTS requests index plots

Options for Display of Details
CORRB displays correlation matrix
COVB displays covariance matrix
EXPB displays exponentiated values of estimates
ITPRINT displays iteration history
NODUMMYPRINT suppresses “Class Level Information” table
PARMLABEL displays parameter labels
RSQUARE displays generalizedR2

STB displays standardized estimates
Computational Options
NOLOGSCALE performs calculations using normal scaling

The following list describes these options.
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ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small
change in the log-likelihood function in subsequent iterations,

|li − li−1| < value

where li is the value of the log-likelihood function at iterationi. See the section
“Convergence Criteria”on page 2338.

AGGREGATE
AGGREGATE= (variable-list)

specifies the subpopulations on which the Pearson chi-square test statistic and the
likelihood ratio chi-square test statistic (deviance) are calculated. Observations with
common values in the given list of variables are regarded as coming from the same
subpopulation. Variables in the list can be any variables in the input data set.
Specifying the AGGREGATE option is equivalent to specifying the AGGREGATE=
option with a variable list that includes all explanatory variables in the MODEL state-
ment. The deviance and Pearson goodness-of-fit statistics are calculated only when
the SCALE= option is specified. Thus, the AGGREGATE (or AGGREGATE=) op-
tion has no effect if theSCALE= option is not specified. See the section“Rescaling
the Covariance Matrix”on page 2354 for more detail.

ALPHA= α
sets the level of significanceα for 100(1 − α)% confidence intervals for regression
parameters or odds ratios. The valueα must be between 0 and 1. By default,α is
equal to the value of theALPHA= option in the PROC LOGISTIC statement, or 0.05
if the option is not specified. This option has no effect unless confidence limits for
the parameters or odds ratios are requested.

BEST=n
specifies thatnmodels with the highest score chi-square statistics are to be displayed
for each model size. It is used exclusively with the SCORE model selection method.
If the BEST= option is omitted and there are no more than ten explanatory variables,
then all possible models are listed for each model size. If the option is omitted and
there are more than ten explanatory variables, then the number of models selected for
each model size is, at most, equal to the number of explanatory variables listed in the
MODEL statement.

CLODDS=PL | WALD | BOTH
requests confidence intervals for the odds ratios. Computation of these confidence in-
tervals is based on the profile likelihood (CLODDS=PL) or based on individual Wald
tests (CLODDS=WALD). By specifying CLODDS=BOTH, the procedure computes
two sets of confidence intervals for the odds ratios, one based on the profile likelihood
and the other based on the Wald tests. The confidence coefficient can be specified
with theALPHA= option.
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CLPARM=PL | WALD | BOTH
requests confidence intervals for the parameters. Computation of these confidence
intervals is based on the profile likelihood (CLPARM=PL) or individual Wald tests
(CLPARM=WALD). By specifying CLPARM=BOTH, the procedure computes two
sets of confidence intervals for the parameters, one based on the profile likelihood and
the other based on individual Wald tests. The confidence coefficient can be specified
with theALPHA= option. See the“Confidence Intervals for Parameters”section on
page 2345 for more information.

CORRB
displays the correlation matrix of the parameter estimates.

COVB
displays the covariance matrix of the parameter estimates.

CTABLE
classifies the input binary response observations according to whether the predicted
event probabilities are above or below some cutpoint valuez in the range(0, 1). An
observation is predicted as an event if the predicted event probability exceedsz. You
can supply a list of cutpoints other than the default list by using thePPROB= option
(page 2315). The CTABLE option is ignored if the data have more than two response
levels. Also, false positive and negative rates can be computed as posterior proba-
bilities using Bayes’ theorem. You can use thePEVENT= option to specify prior
probabilities for computing these rates. For more information, see the“Classification
Table” section on page 2352.

DETAILS
produces a summary of computational details for each step of the effect selection pro-
cess. It produces the “Analysis of Effects Not in the Model” table before displaying
the effect selected for entry for FORWARD or STEPWISE selection. For each model
fitted, it produces the “Type 3 Analysis of Effects” table if the fitted model involves
CLASS variables, the “Analysis of Maximum Likelihood Estimates” table, and mea-
sures of association between predicted probabilities and observed responses. For the
statistics included in these tables, see the“Displayed Output”section on page 2381.
The DETAILS option has no effect when SELECTION=NONE.

EXPB
EXPEST

displays the exponentiated values (eβ̂i) of the parameter estimateŝβi in the “Analysis
of Maximum Likelihood Estimates” table for the logit model. These exponentiated
values are the estimated odds ratios for the parameters corresponding to the continu-
ous explanatory variables.

FAST
uses a computational algorithm of Lawless and Singhal (1978) to compute a first-
order approximation to the remaining slope estimates for each subsequent elim-
ination of a variable from the model. Variables are removed from the model
based on these approximate estimates. The FAST option is extremely efficient
because the model is not refitted for every variable removed. The FAST op-
tion is used when SELECTION=BACKWARD and in the backward elimina-
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tion steps when SELECTION=STEPWISE. The FAST option is ignored when
SELECTION=FORWARD or SELECTION=NONE.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small
relative change in the log-likelihood function in subsequent iterations,

|li − li−1|
|li−1|+ 1E−6

< value

whereli is the value of the log likelihood at iterationi. See the section“Convergence
Criteria” on page 2338.

GCONV=value
specifies the relative gradient convergence criterion. Convergence requires that the
normalized prediction function reduction is small,

g′iIigi

|li|+ 1E−6
< value

whereli is the value of the log-likelihood function,gi is the gradient vector, andIi is
the (expected) information matrix, all at iterationi. This is the default convergence
criterion, and the default value is 1E−8. See the section“Convergence Criteria”on
page 2338.

HIERARCHY=keyword
HIER=keyword

specifies whether and how the model hierarchy requirement is applied and whether
a single effect or multiple effects are allowed to enter or leave the model in one
step. You can specify that only CLASS effects, or both CLASS and interval ef-
fects, be subject to the hierarchy requirement. The HIERARCHY= option is ignored
unless you also specify one of the following options: SELECTION=FORWARD,
SELECTION=BACKWARD, or SELECTION=STEPWISE.

Model hierarchy refers to the requirement that, for any term to be in the model, all
effects contained in the term must be present in the model. For example, in order
for the interaction A*B to enter the model, the main effects A and B must be in the
model. Likewise, neither effect A nor B can leave the model while the interaction
A*B is in the model.

The keywords you can specify in the HIERARCHY= option are as follows:

NONE Model hierarchy is not maintained. Any single effect can enter or
leave the model at any given step of the selection process.

SINGLE Only one effect can enter or leave the model at one time, subject to
the model hierarchy requirement. For example, suppose that you
specify the main effects A and B and the interaction A*B in the
model. In the first step of the selection process, either A or B can
enter the model. In the second step, the other main effect can enter
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the model. The interaction effect can enter the model only when
both main effects have already been entered. Also, before A or
B can be removed from the model, the A*B interaction must first
be removed. All effects (CLASS and interval) are subject to the
hierarchy requirement.

SINGLECLASS This is the same as HIERARCHY=SINGLE except that only
CLASS effects are subject to the hierarchy requirement.

MULTIPLE More than one effect can enter or leave the model at one time,
subject to the model hierarchy requirement. In a forward selection
step, a single main effect can enter the model, or an interaction can
enter the model together with all the effects that are contained in the
interaction. In a backward elimination step, an interaction itself,
or the interaction together with all the effects that the interaction
contains, can be removed. All effects (CLASS and interval) are
subject to the hierarchy requirement.

MULTIPLECLASS This is the same as HIERARCHY=MULTIPLE except that only
CLASS effects are subject to the hierarchy requirement.

The default value is HIERARCHY=SINGLE, which means that model hierarchy is
to be maintained for all effects (that is, both CLASS and interval effects) and that
only a single effect can enter or leave the model at each step.

INCLUDE=n
includes the first n effects in the MODEL statement in every model.
By default, INCLUDE=0. The INCLUDE= option has no effect when
SELECTION=NONE.

Note that the INCLUDE= andSTART= options perform different tasks: the
INCLUDE= option includes the firstn effects variables in every model, whereas the
START= option only requires that the firstn effects appear in the first model.

INFLUENCE
displays diagnostic measures for identifying influential observations in the case of
a binary response model. It has no effect otherwise. For each observation, the
INFLUENCE option displays the case number (which is the sequence number of
the observation), the values of the explanatory variables included in the final model,
and the regression diagnostic measures developed by Pregibon (1981). For a discus-
sion of these diagnostic measures, see the“Regression Diagnostics”section on page
2359. When aSTRATA statement is specified, the diagnostics are computed follow-
ing Storer and Crowley (1985); see the“Regression Diagnostic Details”section on
page 2367 for details.

IPLOTS
produces an index plot for each regression diagnostic statistic. An index plot is a
scatterplot with the regression diagnostic statistic represented on the y-axis and the
case number on the x-axis. SeeExample 42.6on page 2422 for an illustration.
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ITPRINT
displays the iteration history of the maximum-likelihood model fitting. The ITPRINT
option also displays the last evaluation of the gradient vector and the final change in
the−2 Log Likelihood.

LACKFIT
LACKFIT<(n)>

performs the Hosmer and Lemeshow goodness-of-fit test (Hosmer and Lemeshow
2000) for the case of a binary response model. The subjects are divided into approx-
imately ten groups of roughly the same size based on the percentiles of the estimated
probabilities. The discrepancies between the observed and expected number of ob-
servations in these groups are summarized by the Pearson chi-square statistic, which
is then compared to a chi-square distribution witht degrees of freedom, wheret is the
number of groups minusn. By default,n=2. A smallp-value suggests that the fitted
model is not an adequate model. See the“The Hosmer-Lemeshow Goodness-of-Fit
Test” section on page 2356 for more information.

LINK=keyword
L=keyword

specifies the link function linking the response probabilities to the linear predictors.
You can specify one of the following keywords. The default is LINK=LOGIT.

CLOGLOG the complementary log-log function. PROC LOGISTIC fits the bi-
nary complementary log-log model when there are two response
categories and fits the cumulative complementary log-log model
when there are more than two response categories. Aliases:
CCLOGLOG, CCLL, CUMCLOGLOG.

GLOGIT the generalized logit function. PROC LOGISTIC fits the general-
ized logit model where each nonreference category is contrasted
with the reference category. You can use the response variable op-
tion REF=to specify the reference category.

LOGIT the log odds function. PROC LOGISTIC fits the binary logit model
when there are two response categories and fits the cumulative logit
model when there are more than two response categories. Aliases:
CLOGIT, CUMLOGIT.

PROBIT the inverse standard normal distribution function. PROC
LOGISTIC fits the binary probit model when there are two
response categories and fits the cumulative probit model when
there are more than two response categories. Aliases: NORMIT,
CPROBIT, CUMPROBIT.

See the section“Link Functions and the Corresponding Distributions”on page 2334
for details.
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MAXFUNCTION=n
specifies the maximum number of function calls to perform when maximizing the
conditional likelihood. This option is only valid when aSTRATA statement is speci-
fied. The default values are

• 125 when the number of parametersp < 40

• 500 when40 ≤ p < 400

• 1000 whenp ≥ 400

Since the optimization is terminated only after completing a full iteration, the number
of function calls that are actually performed can exceedn. If convergence is not
attained, the displayed output and all output data sets created by the procedure contain
results based on the last maximum likelihood iteration.

MAXITER=n
specifies the maximum number of iterations to perform. By default, MAXITER=25.
If convergence is not attained inn iterations, the displayed output and all output data
sets created by the procedure contain results that are based on the last maximum
likelihood iteration.

MAXSTEP=n
specifies the maximum number of times any explanatory variable is added to or
removed from the model when SELECTION=STEPWISE. The default number is
twice the number of explanatory variables in the MODEL statement. When the
MAXSTEP= limit is reached, the stepwise selection process is terminated. All statis-
tics displayed by the procedure (and included in output data sets) are based on the
last model fitted. The MAXSTEP= option has no effect when SELECTION=NONE,
FORWARD, or BACKWARD.

NOCHECK
disables the checking process to determine whether maximum likelihood estimates of
the regression parameters exist. If you are sure that the estimates are finite, this option
can reduce the execution time if the estimation takes more than eight iterations. For
more information, see the“Existence of Maximum Likelihood Estimates”section on
page 2338.

NODUMMYPRINT
NODESIGNPRINT
NODP

suppresses the “Class Level Information” table, which shows how the design matrix
columns for the CLASS variables are coded.

NOINT
suppresses the intercept for the binary response model, the first intercept for the or-
dinal response model (which forces all intercepts to be nonnegative), or all intercepts
for the generalized logit model. This can be particularly useful in conditional logistic
analysis; seeExample 42.10on page 2443.
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NOFIT
performs the global score test without fitting the model. The global score test evalu-
ates the joint significance of the effects in the MODEL statement. No further analyses
are performed. If the NOFIT option is specified along with other MODEL statement
options, NOFIT takes effect and all other options except LINK=, TECHNIQUE=,
and OFFSET= are ignored.

NOLOGSCALE
specifies that computations for the conditional and exact conditional logistic model
should be computed using normal scaling. Log-scaling can handle numerically larger
problems than normal scaling; however, computations in the log-scale are slower than
computations in normal-scale.

OFFSET= name
names the offset variable. The regression coefficient for this variable will be fixed
at 1.

OUTROC=SAS-data-set
OUTR=SAS-data-set

creates, for binary response models, an output SAS data set that contains the data
necessary to produce the receiver operating characteristic (ROC) curve. See the sec-
tion “OUTROC= Output Data Set”on page 2378 for the list of variables in this data
set.

PARMLABEL
displays the labels of the parameters in the “Analysis of Maximum Likelihood
Estimates” table.

PEVENT= value
PEVENT= (list )

specifies one prior probability or a list of prior probabilities for the event of interest.
The false positive and false negative rates are then computed as posterior probabili-
ties by Bayes’ theorem. The prior probability is also used in computing the rate of
correct prediction. For each prior probability in the given list, a classification table
of all observations is computed. By default, the prior probability is the total sample
proportion of events. The PEVENT= option is useful for stratified samples. It has no
effect if the CTABLE option is not specified. For more information, see the section
“False Positive and Negative Rates Using Bayes’ Theorem”on page 2353. Also see
thePPROB= optionfor information on how thelist is specified.

PLCL
is the same as specifyingCLPARM=PL.

PLCONV= value
controls the convergence criterion for confidence intervals based on the profile likeli-
hood function. The quantityvaluemust be a positive number, with a default value of
1E−4. The PLCONV= option has no effect if profile likelihood confidence intervals
(CLPARM=PL) are not requested.
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PLRL
is the same as specifyingCLODDS=PL.

PPROB=value
PPROB= (list )

specifies one critical probability value (or cutpoint) or a list of critical probability
values for classifying observations with theCTABLE option. Eachvaluemust be
between 0 and 1. A response that has a cross validated predicted probability greater
than or equal to the current PPROB= value is classified as an event response. The
PPROB= option is ignored if the CTABLE option is not specified.

A classification table for each of several cutpoints can be requested by specifying a
list. For example,

pprob= (0.3, 0.5 to 0.8 by 0.1)

requests a classification of the observations for each of the cutpoints 0.3, 0.5, 0.6, 0.7,
and 0.8. If the PPROB= option is not specified, the default is to display the classi-
fication for a range of probabilities from the smallest estimated probability (rounded
down to the nearest 0.02) to the highest estimated probability (rounded up to the
nearest 0.02) with 0.02 increments.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique used to improve the log-likelihood function when its value
in the current iteration is less than that in the previous iteration. If you spec-
ify the RIDGING=ABSOLUTE option, the diagonal elements of the negative
(expected) Hessian are inflated by adding the ridge value. If you specify the
RIDGING=RELATIVE option, the diagonal elements are inflated by a factor of
1 plus the ridge value. If you specify the RIDGING=NONE option, the crude
line search method of taking half a step is used instead of ridging. By default,
RIDGING=RELATIVE.

RISKLIMITS
RL
WALDRL

is the same as specifyingCLODDS=WALD.

ROCEPS= number
specifies the criterion for grouping estimated event probabilities that are close to each
other for the ROC curve. In each group, the difference between the largest and the
smallest estimated event probabilities does not exceed the given value. The value for
number must be between 0 and 1; the default value is 1E−4. The smallest estimated
probability in each group serves as a cutpoint for predicting an event response. The
ROCEPS= option has no effect if theOUTROC=option is not specified.

RSQUARE
RSQ

requests a generalizedR2 measure for the fitted model. For more information, see
the“Generalized Coefficient of Determination”section on page 2342.
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SCALE= scale
enables you to supply the value of the dispersion parameter or to specify the method
for estimating the dispersion parameter. It also enables you to display the “Deviance
and Pearson Goodness-of-Fit Statistics” table. To correct for overdispersion or un-
derdispersion, the covariance matrix is multiplied by the estimate of the dispersion
parameter. Valid values forscaleare as follows:

D | DEVIANCE specifies that the dispersion parameter be estimated by
the deviance divided by its degrees of freedom.

P | PEARSON specifies that the dispersion parameter be estimated by
the Pearson chi-square statistic divided by its degrees of
freedom.

WILLIAMS <( constant)> specifies that Williams’ method be used to model
overdispersion. This option can be used only with
the events/trialssyntax. An optionalconstantcan be
specified as the scale parameter; otherwise, a scale
parameter is estimated under the full model. A set
of weights is created based on this scale parameter
estimate. These weights can then be used in fitting
subsequent models of fewer terms than the full model.
When fitting these submodels, specify the computed
scale parameter asconstant. SeeExample 42.9on page
2438 for an illustration.

N | NONE specifies that no correction is needed for the dispersion
parameter; that is, the dispersion parameter remains as
1. This specification is used for requesting the deviance
and the Pearson chi-square statistic without adjusting for
overdispersion.

constant sets the estimate of the dispersion parameter to be the
square of the givenconstant. For example, SCALE=2
sets the dispersion parameter to 4. The valueconstant
must be a positive number.

You can use theAGGREGATE (or AGGREGATE=) option to define the subpop-
ulations for calculating the Pearson chi-square statistic and the deviance. In the
absence of the AGGREGATE (or AGGREGATE=) option, each observation is re-
garded as coming from a different subpopulation. For theevents/trialssyntax, each
observation consists ofn Bernoulli trials, wheren is the value of thetrials vari-
able. Forsingle-trial syntax, each observation consists of a single response, and for
this setting it is not appropriate to carry out the Pearson or deviance goodness-of-
fit analysis. Thus, PROC LOGISTIC ignores specifications SCALE=P, SCALE=D,
and SCALE=N whensingle-trial syntax is specified without the AGGREGATE (or
AGGREGATE=) option.

The “Deviance and Pearson Goodness-of-Fit Statistics” table includes the Pearson
chi-square statistic, the deviance, their degrees of freedom, the ratio of each statistic
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divided by its degrees of freedom, and the correspondingp-value. For more informa-
tion, see the“Overdispersion”section on page 2354.

SELECTION=BACKWARD | B
| FORWARD | F
| NONE | N
| STEPWISE | S
| SCORE

specifies the method used to select the variables in the model. BACKWARD requests
backward elimination, FORWARD requests forward selection, NONE fits the com-
plete model specified in the MODEL statement, and STEPWISE requests stepwise
selection. SCORE requests best subset selection. By default, SELECTION=NONE.
For more information, see the“Effect Selection Methods”section on page 2340.

SEQUENTIAL
SEQ

forces effects to be added to the model in the order specified in the MODEL state-
ment or eliminated from the model in the reverse order specified in the MODEL
statement. The model-building process continues until the next effect to be added has
an insignificant adjusted chi-square statistic or until the next effect to be deleted has
a significant Wald chi-square statistic. The SEQUENTIAL option has no effect when
SELECTION=NONE.

SINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix (Newton-
Raphson algorithm) or the expected value of the Hessian matrix (Fisher-scoring al-
gorithm). The Hessian matrix is the matrix of second partial derivatives of the log-
likelihood function. The test requires that a pivot for sweeping this matrix be at least
this number times a norm of the matrix. Values of the SINGULAR= option must be
numeric. By default,valueis the machine epsilon times107, which is approximately
10−9 on most machines.

SLENTRY=value
SLE=value

specifies the significance level of the score chi-square for entering an effect into the
model in the FORWARD or STEPWISE method. Values of the SLENTRY= option
should be between 0 and 1, inclusive. By default, SLENTRY=0.05. The SLENTRY=
option has no effect when SELECTION=NONE, SELECTION=BACKWARD, or
SELECTION=SCORE.

SLSTAY=value
SLS=value

specifies the significance level of the Wald chi-square for an effect to stay in the model
in a backward elimination step. Values of the SLSTAY= option should be between
0 and 1, inclusive. By default, SLSTAY=0.05. The SLSTAY= option has no effect
when SELECTION=NONE, SELECTION=FORWARD, or SELECTION=SCORE.
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START=n
begins the FORWARD, BACKWARD, or STEPWISE effect selection process with
the firstn effects listed in the MODEL statement. The value ofn ranges from 0 to
s, wheres is the total number of effects in the MODEL statement. The default value
of n is s for the BACKWARD method and 0 for the FORWARD and STEPWISE
methods. Note that START=n specifies only that the firstn effects appear in the
first model, whileINCLUDE=n requires that the firstn effects be included in every
model. For the SCORE method, START=n specifies that the smallest models contain
n effects, wheren ranges from 1 tos; the default value is 1. The START= option has
no effect when SELECTION=NONE.

STB
displays the standardized estimates for the parameters for the continuous explana-
tory variables in the “Analysis of Maximum Likelihood Estimates” table. The stan-
dardized estimate ofβi is given byβ̂i/(s/si), wheresi is the total sample standard
deviation for theith explanatory variable and

s =


π/
√

3 Logistic
1 Normal
π/
√

6 Extreme-value

For the intercept parameters and parameters associated with a CLASS variable, the
standardized estimates are set to missing.

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method)
number of effects to be included in the final model. The effect selection process is
stopped whenn effects are found. The value ofn ranges from 0 tos, wheres is
the total number of effects in the MODEL statement. The default value ofn is s
for the FORWARD method and 0 for the BACKWARD method. For the SCORE
method, STOP=n specifies that the largest models containn effects, wheren ranges
from 1 to s; the default value ofn is s. The STOP= option has no effect when
SELECTION=NONE or STEPWISE.

STOPRES
SR

specifies that the removal or entry of effects be based on the value of the residual
chi-square. If SELECTION=FORWARD, then the STOPRES option adds the ef-
fects into the model one at a time until the residual chi-square becomes insignif-
icant (until thep-value of the residual chi-square exceeds the SLENTRY=value).
If SELECTION=BACKWARD, then the STOPRES option removes effects from the
model one at a time until the residual chi-square becomes significant (until thep-value
of the residual chi-square becomes less than theSLSTAY= value). The STOPRES
option has no effect when SELECTION=NONE or SELECTION=STEPWISE.

TECHNIQUE=FISHER | NEWTON
TECH=FISHER | NEWTON

specifies the optimization technique for estimating the regression parameters.
NEWTON (or NR) is the Newton-Raphson algorithm and FISHER (or FS) is the
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Fisher-scoring algorithm. Both techniques yield the same estimates, but the esti-
mated covariance matrices are slightly different except for the case when the LOGIT
link is specified for binary response data. The default is TECHNIQUE=FISHER.
See the section“Iterative Algorithms for Model-Fitting”on page 2336 for details.

WALDCL
CL

is the same as specifyingCLPARM=WALD.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small
relative parameter change in subsequent iterations,

max
j

|δ(i)j | < value

where

δ
(i)
j =

 θ
(i)
j − θ

(i−1)
j |θ(i−1)

j | < 0.01
θ
(i)
j −θ

(i−1)
j

θ
(i−1)
j

otherwise

and θ(i)
j is the estimate of thejth parameter at iterationi. See the section

“Convergence Criteria”on page 2338.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set >< options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in
the input data set and, optionally, the estimated linear predictors and their standard er-
ror estimates, the estimates of the cumulative or individual response probabilities, and
the confidence limits for the cumulative probabilities. Regression diagnostic statis-
tics and estimates of cross validated response probabilities are also available for bi-
nary response models. Formulas for the statistics are given in the“Linear Predictor,
Predicted Probability, and Confidence Limits”section on page 2350, the“Regression
Diagnostics”section on page 2359, and, for conditional logistic regression, in the
“Conditional Logistic Regression”section on page 2365.

If you use thesingle-trial syntax, the data set also contains a variable named

–LEVEL– , which indicates the level of the response that the given row of output is
referring to. For instance, the value of the cumulative probability variable is the prob-
ability that the response variable is as large as the corresponding value of–LEVEL– .
For details, see the section“OUT= Output Data Set in the OUTPUT Statement”on
page 2376.

The estimated linear predictor, its standard error estimate, all predicted probabili-
ties, and the confidence limits for the cumulative probabilities are computed for all
observations in which the explanatory variables have no missing values, even if the
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response is missing. By adding observations with missing response values to the in-
put data set, you can compute these statistics for new observations or for settings of
the explanatory variables not present in the data without affecting the model fit.

OUT= SAS-data-set
names the output data set. If you omit the OUT= option, the output data set is created
and given a default name using the DATAn convention.

The following sections explain options in the OUTPUT statement, divided intostatis-
tic options for any type of categorical responses, statistic options only for binary re-
sponse, andother options. The statistic options specify the statistics to be included
in the output data set and name the new variables that contain the statistics. If a
STRATA statement is specified, only thePREDICTED=, DFBETAS=, andH= op-
tions are available; see the“Regression Diagnostic Details”section on page 2367 for
details.

Statistic Options for Any Type of Categorical Response

LOWER=name
L=name

names the variable containing the lower confidence limits forπ, whereπ is the prob-
ability of the event response ifevents/trialssyntax orsingle-trial syntax with binary
response is specified; for a cumulative model,π is cumulative probability (that is, the
probability that the response is less than or equal to the value of–LEVEL–); for the
generalized logit model, it is the individual probability (that is, the probability that
the response category is represented by the value of–LEVEL–). See theALPHA=
option to set the confidence level.

PREDICTED=name
PRED=name
PROB=name
P=name

names the variable containing the predicted probabilities. For theevents/trialssyntax
or single-trial syntax with binary response, it is the predicted event probability. For
a cumulative model, it is the predicted cumulative probability (that is, the probability
that the response variable is less than or equal to the value of–LEVEL–); and for
the generalized logit model, it is the predicted individual probability (that is, the
probability of the response category represented by the value of–LEVEL–).

PREDPROBS=(keywords)
requests individual, cumulative, or cross validated predicted probabilities.
Descriptions of thekeywordsare as follows.

INDIVIDUAL | I requests the predicted probability of each response level. For a
response variableY with three levels, 1, 2, and 3, the individual
probabilities are Pr(Y=1), Pr(Y=2), and Pr(Y=3).

CUMULATIVE | C requests the cumulative predicted probability of each response
level. For a response variableY with three levels, 1,2, and 3, the
cumulative probabilities are Pr(Y≤1), Pr(Y≤2), and Pr(Y≤3). The
cumulative probability for the last response level always has the
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constant value of 1. For generalized logit models, the cumulative
predicted probabilities are not computed and are set to missing.

CROSSVALIDATE | XVALIDATE | X requests the cross validated individual pre-
dicted probability of each response level. These probabilities are
derived from the leave-one-out principle; that is, dropping the data
of one subject and reestimating the parameter estimates. PROC
LOGISTIC uses a less expensive one-step approximation to com-
pute the parameter estimates. This option is only valid for binary
response models; for nominal and ordinal models, the cross vali-
dated probabilities are not computed and are set to missing.

See the“Details of the PREDPROBS= Option”section on page 2322 at the end of
this section for further details.

STDXBETA=name
names the variable containing the standard error estimates ofXBETA (the definition
of which follows).

UPPER=name
U=name

names the variable containing the upper confidence limits forπ, whereπ is the prob-
ability of the event response ifevents/trialssyntax orsingle-trial syntax with binary
response is specified; for a cumulative model,π is cumulative probability (that is, the
probability that the response is less than or equal to the value of–LEVEL–); for the
generalized logit model, it is the individual probability (that is, the probability that
the response category is represented by the value of–LEVEL–). See theALPHA=
option to set the confidence level.

XBETA=name
names the variable containing the estimates of the linear predictorαi + β′x, wherei
is the corresponding ordered value of–LEVEL– .

Statistic Options Only for Binary Response

C=name
specifies the confidence interval displacement diagnostic that measures the influence
of individual observations on the regression estimates.

CBAR=name
specifies the another confidence interval displacement diagnostic, which measures
the overall change in the global regression estimates due to deleting an individual
observation.

DFBETAS= –ALL –
DFBETAS=var-list

specifies the standardized differences in the regression estimates for assessing the ef-
fects of individual observations on the estimated regression parameters in the fitted
model. You can specify a list of up tos + 1 variable names, wheres is the num-
ber of explanatory variables in the MODEL statement, or you can specify just the
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keyword –ALL –. In the former specification, the first variable contains the stan-
dardized differences in the intercept estimate, the second variable contains the stan-
dardized differences in the parameter estimate for the first explanatory variable in
the MODEL statement, and so on. In the latter specification, the DFBETAS statis-
tics are named DFBETA–xxx , wherexxx is the name of the regression parame-
ter. For example, if the model contains two variables X1 and X2, the specifica-
tion DFBETAS=–ALL – produces three DFBETAS statistics: DFBETA–Intercept,
DFBETA–X1, and DFBETA–X2. If an explanatory variable is not included in the
final model, the corresponding output variable named in DFBETAS=var-list contains
missing values.

DIFCHISQ=name
specifies the change in the chi-square goodness-of-fit statistic attributable to deleting
the individual observation.

DIFDEV=name
specifies the change in the deviance attributable to deleting the individual observation.

H=name
specifies the diagonal element of the hat matrix for detecting extreme points in the
design space.

RESCHI=name
specifies the Pearson (Chi) residual for identifying observations that are poorly ac-
counted for by the model.

RESDEV=name
specifies the deviance residual for identifying poorly fitted observations.

Other Options

You can specify the following option after a slash.

ALPHA= α
sets the level of significanceα for 100(1−α)% confidence limits for the appropriate
response probabilities. The valueα must be between 0 and 1. By default,α is equal
to the value of theALPHA= option in the PROC LOGISTIC statement, or 0.05 if that
option is not specified.

Details of the PREDPROBS= Option

You can request any of the three given types of predicted probabilities. For example,
you can request both the individual predicted probabilities and the cross validated
probabilities by specifying PREDPROBS=(I X).

When you specify the PREDPROBS= option, two automatic variables–FROM– and

–INTO– are included for thesingle-trial syntax and only one variable,–INTO– , is
included for theevents/trialssyntax. The–FROM– variable contains the formatted
value of the observed response. The variable–INTO– contains the formatted value
of the response level with the largest individual predicted probability.

If you specify PREDPROBS=INDIVIDUAL, the OUTPUT data set containsk addi-
tional variables representing the individual probabilities, one for each response level,
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wherek is the maximum number of response levels across all BY-groups. The names
of these variables have the formIP–xxx, wherexxx represents the particular level.
The representation depends on the following situations.

• If you specifyevents/trialssyntax,xxx is either ‘Event’ or ‘Nonevent’. Thus,
the variable containing the event probabilities is namedIP–Event and the vari-
able containing the nonevent probabilities is namedIP–Nonevent.

• If you specify thesingle-trial syntax with more than one BY group,xxx is
1 for the first ordered level of the response, 2 for the second ordered level
of the response,. . ., and so forth, as given in the “Response Profile” table.
The variable containing the predicted probabilities Pr(Y=1) is namedIP–1,
whereY is the response variable. Similarly,IP–2 is the name of the variable
containing the predicted probabilities Pr(Y=2), and so on.

• If you specify thesingle-trial syntax with no BY-group processing,xxx is the
left-justified formatted value of the response level (the value may be truncated
so thatIP–xxx does not exceed 32 characters.) For example, ifY is the re-
sponse variable with response levels ‘None’, ‘Mild’, and ‘Severe’, the vari-
ables representing individual probabilities Pr(Y=’None’), P(Y=’Mild’), and
P(Y=’Severe’) are namedIP–None, IP–Mild, andIP–Severe, respectively.

If you specify PREDPROBS=CUMULATIVE, the OUTPUT data set containsk ad-
ditional variables representing the cumulative probabilities, one for each response
level, wherek is the maximum number of response levels across all BY-groups.
The names of these variables have the formCP–xxx, where xxx represents the
particular response level. The naming convention is similar to that given by
PREDPROBS=INDIVIDUAL. The PREDPROBS=CUMULATIVE values are the
same as those output by the PREDICT=keyword, but are arranged in variables on
each output observation rather than in multiple output observations.

If you specify PREDPROBS=CROSSVALIDATE, the OUTPUT data set contains
k additional variables representing the cross validated predicted probabilities of
the k response levels, wherek is the maximum number of response levels across
all BY-groups. The names of these variables have the formXP–xxx, wherexxx
represents the particular level. The representation is the same as that given by
PREDPROBS=INDIVIDUAL except that for theevents/trialssyntax there are four
variables for the cross validated predicted probabilities instead of two:

XP–EVENT–R1E is the cross validated predicted probability of an event when a
current event trial is removed.

XP–NONEVENT–R1E is the cross validated predicted probability of a nonevent
when a current event trial is removed.

XP–EVENT–R1N is the cross validated predicted probability of an event when a
current nonevent trial is removed.

XP–NONEVENT–R1N is the cross validated predicted probability of a nonevent
when a current nonevent trial is removed.
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The cross validated predicted probabilities are precisely those used in the CTABLE
option. See the“Predicted Probability of an Event for Classification”section on page
2352 for details of the computation.

SCORE Statement

SCORE < options > ;

The SCORE statement creates a data set that contains all the data in theDATA=
data set together with posterior probabilities and, optionally, prediction confidence
intervals. Fit statistics are displayed on request. If you have binary response data, the
SCORE statement can be used to create the OUTROC= data set containing data for
the ROC curve. You can specify several SCORE statements. FREQ, WEIGHT, and
BY statements can be used with the SCORE statements.

See the“Scoring Data Sets”section on page 2362 for more information, and see
Example 42.13on page 2462 for an illustration of how to use this statement.

You can specify the following options:

ALPHA= α
specifies the significance levelα for 100(1 − α)% confidence intervals. By default,
α is equal to the value of theALPHA= option in the PROC LOGISTIC statement, or
0.05 if that option is not specified. This option has no effect unless the CLM option
in the SCORE statement is requested.

CLM
outputs the Wald-test-based confidence limits for the predicted probabilities. This
option is not available when theINMODEL= data set is created with theNOCOV
option.

DATA=SAS-data-set
names the SAS data set that you want to score. If you omit the DATA= option in
the SCORE statement, then scoring is performed on theDATA= input data set in the
PROC LOGISTIC statement, if specified; otherwise, the DATA=–LAST– data set is
used.

It is not necessary for the DATA= data set in the SCORE statement to contain the
response variable unless you are specifying theFITSTAT or OUTROC=option.

Only those variables involved in the fitted model effects are required in the DATA=
data set in the SCORE statement. For example, the following code uses forward
selection to select effects.

proc logistic data=Neuralgia outmodel=sasuser.Model;
class Treatment Sex;
model Pain(event=’Yes’)= Treatment|Sex Age

/ selection=forward sle=.01;
run;
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SupposeTreatment andAge are the effects selected for the final model. You can
score a data set which does not contain the variableSex since the effectSex is not
in the model that the scoring is based on.

proc logistic inmodel=sasuser.Model;
score data=Neuralgia(drop=Sex);

run;

FITSTAT
displays a table of fit statistics. Four statistics are computed: total frequency, total
weight, log likelihood, and misclassification rate.

OUT=SAS-data-set
names the SAS data set that contains the predicted information. If you omit the OUT=
option, the output data set is created and given a default name using the DATAn
convention.

OUTROC=SAS-data-set
names the SAS data set that contains the ROC curve for theDATA= data set. The
ROC curve is computed only for binary response data. See the section“OUTROC=
Output Data Set”on page 2378 for the list of variables in this data set.

PRIOR=SAS-data-set
names the SAS data set that contains the priors of the response categories. The priors
may be values proportional to the prior probabilities; thus, they do not necessarily
sum to one. This data set should include a variable named–PRIOR– that contains the
prior probabilities. For events/trials MODEL syntax, this data set should also include
an –OUTCOME– variable that contains the values EVENT and NONEVENT; for
single-trial MODEL syntax, this data set should include the response variable that
contains the unformatted response categories. SeeExample 42.13on page 2462 for
an example.

PRIOREVENT=value
specifies the prior event probability for a binary response model. If both PRIOR= and
PRIOREVENT= options are specified, the PRIOR= option takes precedence.

ROCEPS=value
specifies the criterion for grouping estimated event probabilities that are close to each
other for the ROC curve. In each group, the difference between the largest and the
smallest estimated event probability does not exceed the given value. Thevaluemust
be between 0 and 1; the default value is 1E−4. The smallest estimated probability
in each group serves as a cutpoint for predicting an event response. The ROCEPS=
option has no effect if theOUTROC=option is not specified.
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STRATA Statement

STRATA variable <(option)>< variable <(option)>...>< / options > ;

The STRATA statement names thevariablesthat definestrataor matched setsto use
in a stratified conditional logistic regressionof binary response data. Observations
having the same variable levels are in the same matched set. At least one variable
must be specified to invoke the stratified analysis, and the usual unconditional asymp-
totic analysis is not performed. The stratified logistic model has the form

logit(πhi) = αh + x′hiβ

whereπhi is the event probability for theith observation in stratumh having covari-
atesxhi, and where the stratum-specific interceptsαh are the nuisance parameters
which are to be conditioned out.

STRATA variables can also be specified in the MODEL statement as classification or
continuous covariates; however, the effects are nondegenerate only when crossed with
a non-stratification variable. Specifying several STRATA statements is the same as
specifying one STRATA statement containing all the strata variables. The STRATA
variables can be either character or numeric, and the formatted values of the STRATA
variables determine the levels. Thus, you can use also use formats to group values
into levels. See the discussion of the FORMAT procedure in theSAS Procedures
Guide.

If an EXACT statement is also specified, then a stratifiedexactconditional logistic
regression is performed.

The SCORE and WEIGHT statements are not available with a STRATA state-
ment. The following MODEL options are also not supported with a STRATA
statement: CLPARM=PL, CLODDS=PL, CTABLE, LACKFIT, LINK=, NOFIT,
OUTMODEL=, OUTROC=, and SCALE=.

The “Strata Summary” table is displayed by default; it displays the number of strata
which have a specific number of events and nonevents. For example, if you are
analyzing a 1:5 matched study, this table enables you to verify that every stratum in
the analysis has exactly one event and five non-events. Strata containing only events
or only non-events are reported in this table, but such strata are uninformative and are
not used in the analysis. (Note that you can use the response variable optionEVENT=
to identify the events; otherwise, the first ordered response category is the event.)

The following option can be specified for a stratification variable by enclosing the
option in parentheses after the variable name, or it can be specified globally for all
STRATA variables after a slash (/).

MISSING
treats missing values (‘.’, ‘.A’,...,‘.Z’ for numeric variables and blanks for character
variables) as valid STRATA variable values.

The following strata options are also available after the slash.
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NOSUMMARY
suppresses the display of the “Strata Summary” table.

INFO
displays the “Strata Information” table, which includes the stratum number, levels of
the STRATA variables that define the stratum, the number of events, the number of
nonevents, and the total frequency for each stratum. Since the number of strata can
be very large, this table is only displayed on request.

TEST Statement

< label: > TEST equation1 < , . . . , < equationk >>< / option > ;

The TEST statement tests linear hypotheses about the regression coefficients. The
Wald test is used to test jointly the null hypotheses (H0:Lθ = c) specified in a single
TEST statement. Whenc = 0 you should specify aCONTRASTstatement instead.

Eachequationspecifies a linear hypothesis (a row of theL matrix and the corre-
sponding element of thec vector); multipleequationsare separated by commas. The
label, which must be a valid SAS name, is used to identify the resulting output and
should always be included. You can submit multiple TEST statements.

The form of anequationis as follows:

term < ±term . . . > < = ±term < ±term . . . >>

whereterm is a parameter of the model, or a constant, or a constant times a param-
eter. For a binary response model, the intercept parameter is named INTERCEPT;
for an ordinal response model, the intercept parameters are named INTERCEPT,
INTERCEPT2, INTERCEPT3, and so on. See the“Parameter Names in the
OUTEST= Data Set”section on page 2375 for details on parameter naming con-
ventions. When no equal sign appears, the expression is set to 0. The following code
illustrates possible uses of the TEST statement:

proc logistic;
model y= a1 a2 a3 a4;
test1: test intercept + .5 * a2 = 0;
test2: test intercept + .5 * a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;

Note that the first and second TEST statements are equivalent, as are the third and
fourth TEST statements.

You can specify the following option in the TEST statement after a slash(/).

PRINT
displays intermediate calculations in the testing of the null hypothesisH0:Lθ =
c. This includesLV̂(θ̂)L′ bordered by(Lθ̂ − c) and [LV̂(θ̂)L′]−1 bordered by
[LV̂(θ̂)L′]−1(Lθ̂−c), whereθ̂ is the maximum likelihood estimator ofθ andV̂(θ̂)
is the estimated covariance matrix ofθ̂.
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For more information, see the“Testing Linear Hypotheses about the Regression
Coefficients”section on page 2358.

UNITS Statement

UNITS independent1 = list1 < . . . independentk = listk >< / option > ;

The UNITS statement enables you to specify units of change for the continuous ex-
planatory variables so that customized odds ratios can be estimated. An estimate
of the corresponding odds ratio is produced for each unit of change specified for an
explanatory variable. The UNITS statement is ignored for CLASS variables. If the
CLODDS= option is specified in the MODEL statement, the corresponding confi-
dence limits for the odds ratios are also displayed.

The termindependentis the name of an explanatory variable andlist represents a list
of units of change, separated by spaces, that are of interest for that variable. Each
unit of change in a list has one of the following forms:

• number

• SD or−SD

• number* SD

wherenumberis any nonzero number, and SD is the sample standard deviation of the
corresponding independent variable. For example,X = −2 requests an odds ratio
that represents the change in the odds when the variableX is decreased by two units.
X = 2∗SD requests an estimate of the change in the odds whenX is increased by
two sample standard deviations.

You can specify the following option in the UNITS statement after a slash(/).

DEFAULT= list
gives a list of units of change for all explanatory variables that are not specified in
the UNITS statement. Each unit of change can be in any of the forms described
previously. If the DEFAULT= option is not specified, PROC LOGISTIC does not
produce customized odds ratio estimates for any explanatory variable that is not listed
in the UNITS statement.

For more information, see the“Odds Ratio Estimation”section on page 2347.

WEIGHT Statement

WEIGHT variable < / option > ;

When a WEIGHT statement appears, each observation in the input data set is
weighted by the value of the WEIGHT variable. The values of the WEIGHT vari-
able can be nonintegral and are not truncated. Observations with negative, zero, or
missing values for the WEIGHT variable are not used in the model fitting. When the
WEIGHT statement is not specified, each observation is assigned a weight of 1.

If a SCOREstatement is specified, then the WEIGHT variable is used for computing
fit statistics and the ROC curve, but it is not required for scoring. If theDATA= data
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set in the SCORE statement does not contain the WEIGHT variable, the weights are
assumed to be 1 and a warning message is issued in the LOG. If you fit a model and
perform the scoring in the same run, the same WEIGHT variable is used for fitting
and scoring. If you fit a model in a previous run and input it with theINMODEL=
option in the current run, then the WEIGHT variable can be different from the one
used in the previous run; however, if a WEIGHT variable was not specified in the
previous run you can still specify a WEIGHT variable in the current run.

The following option can be added to the WEIGHT statement after a slash (/).

NORMALIZE
NORM

causes the weights specified by the WEIGHT variable to be normalized so that they
add up to the actual sample size. With this option, the estimated covariance matrix of
the parameter estimators is invariant to the scale of the WEIGHT variable.

Details

Missing Values
Any observation with missing values for the response, offset, strata, or explanatory
variables is excluded from the analysis; however, missing values are valid for vari-
ables specified with the MISSING option in theCLASSor STRATA statements. The
estimated linear predictor and its standard error estimate, the fitted probabilities and
confidence limits, and the regression diagnostic statistics are not computed for any
observation with missing offset or explanatory variable values. However, if only the
response value is missing, the linear predictor, its standard error, the fitted individual
and cumulative probabilities, and confidence limits for the cumulative probabilities
can be computed and output to a data set using the OUTPUT statement.

Response Level Ordering
Response level ordering is important because, by default, PROC LOGISTIC models
the probability of response levels withlower Ordered Value. Ordered Values are
assigned to response levels in ascending sorted order (that is, the lowest response
level is assigned Ordered Value 1, the next lowest is assigned Ordered Value 2, and
so on) and are displayed in the “Response Profiles” table. If your response variable
Y takes values in{1, . . . , k + 1}, then, by default, the functions modeled with the
cumulative model are

logit(Pr(Y ≤ i|x)), i = 1, . . . , k

and for the generalized logit model the functions modeled are

log
(

Pr(Y = i|x)
Pr(Y = k + 1|x)

)
, i = 1, . . . , k

where the highest Ordered ValueY = k + 1 is the reference level. You can change
which probabilities are modeled by specifying theEVENT=, REF=, DESCENDING,
or ORDER=response variable options in the MODEL statement.
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For binary response data with event and nonevent categories, if your event category
has a higher Ordered Value, then the nonevent is modeled and, since the default
response function modeled is

logit(π) = log
(

π

1− π

)
whereπ is the probability of the response level assigned Ordered Value 1, and since

logit(π) = −logit(1− π)

the effect of reversing the order of the two response values is to change the signs of
α andβ in the model logit(π) = α+ β′x.

For example, suppose the binary response variableY takes the values 1 and 0 for event
and nonevent, respectively, andExposure is the explanatory variable. By default,
PROC LOGISTIC assigns Ordered Value 1 to response levelY=0, and Ordered Value
2 to response levelY=1. As a result, PROC LOGISTIC models the probability of
the nonevent (Ordered Value=1) category. To model the event without changing the
values of the variableY, you can do the following:

• Explicitly state which response level is to be modeled using the response vari-
able optionEVENT= in the MODEL statement,

model Y(event=’1’) = Exposure;

• Specify the response variable optionREF= in the MODEL statement as the
nonevent category for the response variable. This option is most useful for
generalized logit models.

model Y(ref=’0’) = Exposure;

• Specify the response variable optionDESCENDINGin the MODEL statement,

model Y(descending)=Exposure;

• Assign a format toY such that the first formatted value (when the formatted
values are put in sorted order) corresponds to the event. For this example,Y=1
is assigned formatted value ‘event’ andY=0 is assigned formatted value ‘non-
event’. SinceORDER=FORMATTED by default, Ordered Value 1 is assigned
to response levelY=1 so the procedure models the event.

proc format;
value Disease 1=’event’ 0=’nonevent’;

run;
proc logistic;

format Y Disease.;
model Y=Exposure;

run;
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CLASS Variable Parameterization

Consider a model with one CLASS variableA with four levels, 1, 2, 5, and 7. Details
of the possible choices for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three design vari-
ables have a value of−1. For instance, if the reference level is 7
(REF=’7’), the design matrix columns forA are as follows.

Effect Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 −1 −1 −1

Parameter estimates of CLASS main effects using the effect coding
scheme estimate the difference in the effect of each nonreference
level compared to the average effect over all 4 levels.

Caution: PROC LOGISTIC initially parameterizes the CLASS
variables by looking at the levels of the variables across the com-
plete data set. If you have anunbalancedreplication of levels
across variables, then the design matrix and the parameter interpre-
tation may be different from what you expect. For instance, sup-
pose that in addition to the four-level variableA discussed above,
you have another variableB with two levels, where the fourth level
of A only occurs with the first level ofB. If your model contains
the effectA(B), then the design forA within the second level ofB
will not be a differential effect. In particular, the design will look
like the following.

Effect Coding
Design Matrix

A(B=1) A(B=2)
B A A1 A2 A5 A1 A2 A5
1 1 1 0 0 0 0 0
1 2 0 1 0 0 0 0
1 5 0 0 1 0 0 0
1 7 −1 −1 −1 0 0 0
2 1 0 0 0 1 0 0
2 2 0 0 0 0 1 0
2 5 0 0 0 0 0 1
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PROC LOGISTIC will then detect linear dependency among the
last three design variables and set the parameter for A5(B=2) to
zero, resulting in an interpretation of these parameters as if they
were reference- or dummy-coded. The GLM or REFERENCE pa-
rameterization may be more appropriate for such problems.

GLM As in PROC GLM, four columns are created to indicate group
membership. The design matrix columns forA are as follows.

GLM Coding
Design Matrix

A A1 A2 A5 A7
1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

Parameter estimates of CLASS main effects using the GLM cod-
ing scheme estimate the difference in the effects of each level com-
pared to the last level.

ORDINAL Three columns are created to indicate group membership of the
higher levels of the effect. For the first level of the effect (which
for A is 1), all three design variables have a value of 0. The design
matrix columns forA are as follows.

Ordinal Coding
Design Matrix

A A2 A5 A7
1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level. Parameter
estimates of CLASS main effects using the ORDINAL coding
scheme estimate the effect on the response as the ordinal factor
is set to each succeeding level. When the parameters for an ordinal
main effect have the same sign, the response effect is monotonic
across the levels.
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POLYNOMIAL

POLY Three columns are created. The first represents the linear term (x),
the second represents the quadratic term (x2), and the third repre-
sents the cubic term (x3), wherex is the level value. If the CLASS
levels are not numeric, they are translated into 1, 2, 3,. . . accord-
ing to their sorting order. The design matrix columns forA are as
follows.

Polynomial Coding
Design Matrix

A APOLY1 APOLY2 APOLY3
1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343

REFERENCE

REF Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three design vari-
ables have a value of 0. For instance, if the reference level is 7
(REF=’7’), the design matrix columns forA are as follows.

Reference Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects using the reference
coding scheme estimate the difference in the effect of each nonref-
erence level compared to the effect of the reference level.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=EFFECT. The design ma-
trix columns forA are as follows.

Orthogonal Effect Coding
Design Matrix

A AOEFF1 AOEFF2 AOEFF3
1 1.41421 −0.81650 −0.57735
2 0.00000 1.63299 −0.57735
5 0.00000 0.00000 1.73205
7 −1.41421 −0.81649 −0.57735
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ORTHORDINAL The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=ORDINAL. The design
matrix columns forA are as follows.

Orthogonal Ordinal Coding
Design Matrix

A AOORD1 AOORD2 AOORD3
1 −1.73205 0.00000 0.00000
2 0.57735 −1.63299 0.00000
5 0.57735 0.81650 −1.41421
7 0.57735 0.81650 1.41421

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=POLY. The design matrix
columns forA are as follows.

Orthogonal Polynomial Coding
Design Matrix

A AOPOLY1 AOPOLY2 AOPOLY5
1 −1.153 0.907 −0.921
2 −0.734 −0.540 1.473
5 0.524 −1.370 −0.921
7 1.363 1.004 0.368

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogo-
nalization to the columns for PARAM=REFERENCE. The design
matrix columns forA are as follows.

Orthogonal Reference Coding
Design Matrix

A AOREF1 AOREF2 AOREF3
1 1.73205 0.00000 0.00000
2 −0.57735 1.63299 0.00000
5 −0.57735 −0.81650 1.41421
7 −0.57735 −0.81650 −1.41421

Link Functions and the Corresponding Distributions

Four link functions are available in the LOGISTIC procedure. The logit function is
the default. To specify a different link function, use theLINK= option in the MODEL
statement. The link functions and the corresponding distributions are as follows:
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• The logit function

g(p) = log(p/(1− p))

is the inverse of the cumulative logistic distribution function, which is

F (x) = 1/(1 + exp(−x)) = exp(x)/(1 + exp(x))

• The probit (or normit) function

g(p) = Φ−1(p)

is the inverse of the cumulative standard normal distribution function, which is

F (x) = Φ(x) = (2π)−1/2

∫ x

−∞
exp(−z2/2)dz

Traditionally, the probit function contains the additive constant 5, but through-
out PROC LOGISTIC, the terms probit and normit are used interchangeably.

• The complementary log-log function

g(p) = log(− log(1− p))

is the inverse of the cumulative extreme-value function (also called the
Gompertz distribution), which is

F (x) = 1− exp(− exp(x))

• The generalized logit function extends the binary logit link to a vector of levels
(p1, . . . , pk+1) by contrasting each level with a fixed level

g(pi) = log(pi/pk+1) i = 1, . . . , k

The variances of the normal, logistic, and extreme-value distributions are not the
same. Their respective means and variances are

Distribution Mean Variance
Normal 0 1
Logistic 0 π2/3
Extreme-value −γ π2/6

whereγ is the Euler constant. In comparing parameter estimates using different link
functions, you need to take into account the different scalings of the corresponding
distributions and, for the complementary log-log function, a possible shift in location.
For example, if the fitted probabilities are in the neighborhood of 0.1 to 0.9, then the
parameter estimates using the logit link function should be aboutπ/

√
3 larger than

the estimates from the probit link function.
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Determining Observations for Likelihood Contributions
If you useevents/trialsMODEL syntax, each observation is split into two obser-
vations. One has response value 1 with a frequency equal to the frequency of the
original observation (which is 1 if the FREQ statement is not used) times the value
of the eventsvariable. The other observation has response value 2 and a frequency
equal to the frequency of the original observation times the value of (trials − events).
These two observations will have the same explanatory variable values and the same
FREQ and WEIGHT values as the original observation.

For eithersingle-trial or events/trialssyntax, letj index all observations. In other
words, forsingle-trialsyntax,j indexes the actual observations. And, forevents/trials
syntax,j indexes the observations after splitting (as described previously). If your
data set has 30 observations and you usesingle-trial syntax,j has values from 1 to
30; if you useevents/trialssyntax,j has values from 1 to 60.

Suppose the response variable in a cumulative response model can take on the ordered
values1, . . . , k, k+1 wherek is an integer≥ 1. The likelihood for thejth observation
with ordered response valueyj and explanatory variables vectorxj is given by

Lj =


F (α1 + β′xj) yj = 1
F (αi + β′xj)− F (αi−1 + β′xj) 1 < yj = i ≤ k
1− F (αk + β′xj) yj = k + 1

whereF (·) is the logistic, normal, or extreme-value distribution function,α1, . . . , αk

are ordered intercept parameters, andβ is the slope parameter vector.

For the generalized logit model, letting thek + 1st level be the reference level, the
interceptsα1, . . . , αk are unordered and the slope vectorβi varies with each logit.
The likelihood for thejth observation with ordered response valueyj and explanatory
variables vectorxj is given by

Lj = Pr(Y = yj |xj) =


eαi+x′jβi

1 +
∑k

m=1 e
αm+x′jβm

1 ≤ yj = i ≤ k

1

1 +
∑k

m=1 e
αm+x′jβm

yj = k + 1

Iterative Algorithms for Model-Fitting
Two iterative maximum likelihood algorithms are available in PROC LOGISTIC.
The default is the Fisher-scoring method, which is equivalent to fitting by iteratively
reweighted least squares. The alternative algorithm is the Newton-Raphson method.
Both algorithms give the same parameter estimates; however, the estimated covari-
ance matrix of the parameter estimators may differ slightly. This is due to the fact
that the Fisher-scoring method is based on the expected information matrix while the
Newton-Raphson method is based on the observed information matrix. In the case of
a binary logit model, the observed and expected information matrices are identical,
resulting in identical estimated covariance matrices for both algorithms. For a gener-
alized logit model, only the Newton-Raphson technique is available. You can use the
TECHNIQUE=option to select a fitting algorithm.
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Iteratively Reweighted Least-Squares Algorithm (Fisher Scoring)

Consider the multinomial variableZj = (Z1j , . . . , Zkj)′ such that

Zij =
{

1 if Yj = i
0 otherwise

With πij denoting the probability that thejth observation has response valuei, the
expected value ofZj is πj = (π1j , . . . , πkj)′, andπ(k+1)j = 1 −

∑k
i=1 πij . The

covariance matrix ofZj is Vj , which is the covariance matrix of a multinomial ran-
dom variable for one trial with parameter vectorπj . Letθ be the vector of regression
parameters; in other words,θ = (α1, . . . , αk,β

′)′. Let Dj be the matrix of par-
tial derivatives ofπj with respect toθ. The estimating equation for the regression
parameters is

∑
j

D′
jWj(Zj − πj) = 0

whereWj = wjfjV−
j , wj andfj are the WEIGHT and FREQ values of thejth

observation, andV−
j is a generalized inverse ofVj . PROC LOGISTIC choosesV−

j

as the inverse of the diagonal matrix withπj as the diagonal.

With a starting value ofθ0, the maximum likelihood estimate ofθ is obtained itera-
tively as

θm+1 = θm + (
∑

j

D′
jWjDj)−1

∑
j

D′
jWj(Zj − πj)

whereDj , Wj , andπj are evaluated atθm. The expression after the plus sign is
the step size. If the likelihood evaluated atθm+1 is less than that evaluated atθm,
thenθm+1 is recomputed by step-halving or ridging. The iterative scheme continues
until convergence is obtained, that is, untilθm+1 is sufficiently close toθm. Then the
maximum likelihood estimate ofθ is θ̂ = θm+1.

The covariance matrix of̂θ is estimated by

ĉov(θ̂) = (
∑

j

D̂′
jŴjD̂j)−1

whereD̂j andŴj are, respectively,Dj andWj evaluated at̂θ.

By default, starting values are zero for the slope parameters, and for the intercept
parameters, starting values are the observed cumulative logits (that is, logits of the
observed cumulative proportions of response). Alternatively, the starting values may
be specified with theINEST=option.
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Newton-Raphson Algorithm

For cumulative models, let the parameter vector beθ = (α1, . . . , αk,β
′)′, and for the

generalized logit model denoteθ = (α1, . . . , αk,β
′
1, . . . ,β

′
k)
′. The gradient vector

and the Hessian matrix are given, respectively, by

g =
∑

j

wjfj
∂lj
∂θ

H =
∑

j

−wjfj
∂2lj

∂θ2

where lj = logLj is the log likelihood for thejth observation. With a starting
value ofθ0, the maximum likelihood estimatêθ of θ is obtained iteratively until
convergence is obtained:

θm+1 = θm + H−1g

whereH andg are evaluated atθm. If the likelihood evaluated atθm+1 is less than
that evaluated atθm, thenθm+1 is recomputed by step-halving or ridging.

The covariance matrix of̂θ is estimated by

ĉov(θ̂) = Ĥ−1

whereĤ is H evaluated at̂θ.

Convergence Criteria

Four convergence criteria are allowed, namely,ABSFCONV=, FCONV=, GCONV=,
andXCONV=. If you specify more than one convergence criterion, the optimization
is terminated as soon as one of the criteria is satisfied. If none of the criteria is
specified, the default is GCONV=1E−8.

If you specify aSTRATA statement, then all unspecified (or non-default) criteria are
also compared to zero. For example, only specifying the criterion XCONV=1e−8
but attaining FCONV=0 terminates the optimization even if the XCONV= criterion
is not satisfied, because the log likelihood has reached its maximum.

Existence of Maximum Likelihood Estimates

The likelihood equation for a logistic regression model does not always have a finite
solution. Sometimes there is a nonunique maximum on the boundary of the parameter
space, at infinity. The existence, finiteness, and uniqueness of maximum likelihood
estimates for the logistic regression model depend on the patterns of data points in
the observation space (Albert and Anderson 1984; Santner and Duffy 1986). The
existence checks are not performed for conditional logistic regression.
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Consider a binary response model. LetYj be the response of theith subject and
let xj be the vector of explanatory variables (including the constant 1 associated
with the intercept). There are three mutually exclusive and exhaustive types of data
configurations: complete separation, quasi-complete separation, and overlap.

Complete Separation There is a complete separation of data points if there
exists a vectorb that correctly allocates all observa-
tions to their response groups; that is,{

b′xj > 0 Yj = 1
b′xj < 0 Yj = 2

This configuration gives nonunique infinite estimates.
If the iterative process of maximizing the likelihood
function is allowed to continue, the log likelihood di-
minishes to zero, and the dispersion matrix becomes
unbounded.

Quasi-Complete Separation The data are not completely separable but there is a
vectorb such that{

b′xj ≥ 0 Yj = 1
b′xj ≤ 0 Yj = 2

and equality holds for at least one subject in each
response group. This configuration also yields non-
unique infinite estimates. If the iterative process of
maximizing the likelihood function is allowed to con-
tinue, the dispersion matrix becomes unbounded and
the log likelihood diminishes to a nonzero constant.

Overlap If neither complete nor quasi-complete separation ex-
ists in the sample points, there is an overlap of sample
points. In this configuration, the maximum likelihood
estimates exist and are unique.

Complete separation and quasi-complete separation are problems typically encoun-
tered with small data sets. Although complete separation can occur with any type of
data, quasi-complete separation is not likely with truly continuous explanatory vari-
ables.

The LOGISTIC procedure uses a simple empirical approach to recognize the data
configurations that lead to infinite parameter estimates. The basis of this approach is
that any convergence method of maximizing the log likelihood must yield a solution
giving complete separation, if such a solution exists. In maximizing the log likeli-
hood, there is no checking for complete or quasi-complete separation if convergence
is attained in eight or fewer iterations. Subsequent to the eighth iteration, the proba-
bility of the observed response is computed for each observation. If the probability
of the observed response is one for all observations, there is a complete separation
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of data points and the iteration process is stopped. If the complete separation of data
has not been determined and an observation is identified to have an extremely large
probability (≥0.95) of the observed response, there are two possible situations. First,
there is overlap in the data set, and the observation is an atypical observation of its
own group. The iterative process, if allowed to continue, will stop when a maxi-
mum is reached. Second, there is quasi-complete separation in the data set, and the
asymptotic dispersion matrix is unbounded. If any of the diagonal elements of the
dispersion matrix for the standardized observations vectors (all explanatory variables
standardized to zero mean and unit variance) exceeds 5000, quasi-complete separa-
tion is declared and the iterative process is stopped. If either complete separation or
quasi-complete separation is detected, a warning message is displayed in the proce-
dure output.

Checking for quasi-complete separation is less foolproof than checking for complete
separation. TheNOCHECK option in the MODEL statement turns off the process
of checking for infinite parameter estimates. In cases of complete or quasi-complete
separation, turning off the checking process typically results in the procedure fail-
ing to converge. The presence of a WEIGHT statement also turns off the checking
process.

Effect Selection Methods

Five effect-selectionmethods are available. The simplest method (and the default)
is SELECTION=NONE, for which PROC LOGISTIC fits the complete model as
specified in the MODEL statement. The other four methods are FORWARD for
forward selection, BACKWARD for backward elimination, STEPWISE for stepwise
selection, and SCORE for best subsets selection. These methods are specified with
the SELECTION= option in the MODEL statement. Intercept parameters are forced
to stay in the model unless theNOINT option is specified.

When SELECTION=FORWARD, PROC LOGISTIC first estimates parameters for
effects forced into the model. These effects are the intercepts and the firstn ex-
planatory effects in the MODEL statement, wheren is the number specified by the
START=or INCLUDE= option in the MODEL statement (n is zero by default). Next,
the procedure computes the score chi-square statistic for each effect not in the model
and examines the largest of these statistics. If it is significant at theSLENTRY=
level, the corresponding effect is added to the model. Once an effect is entered in
the model, it is never removed from the model. The process is repeated until none of
the remaining effects meet the specified level for entry or until theSTOP=value is
reached.

When SELECTION=BACKWARD, parameters for the complete model as specified
in the MODEL statement are estimated unless theSTART=option is specified. In that
case, only the parameters for the intercepts and the firstn explanatory effects in the
MODEL statement are estimated, wheren is the number specified by the START=
option. Results of the Wald test for individual parameters are examined. The least
significant effect that does not meet theSLSTAY= level for staying in the model is re-
moved. Once an effect is removed from the model, it remains excluded. The process
is repeated until no other effect in the model meets the specified level for removal or
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until the STOP=value is reached. Backward selection is often less successful than
forward or stepwise selection because the full model fit in the first step is the model
most likely to result in a complete or quasi-complete separation of response values as
described in the previous section.

The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD
option except that effects already in the model do not necessarily remain. Effects
are entered into and removed from the model in such a way that each forward selec-
tion step may be followed by one or more backward elimination steps. The stepwise
selection process terminates if no further effect can be added to the model or if the ef-
fect just entered into the model is the only effect removed in the subsequent backward
elimination.

For SELECTION=SCORE, PROC LOGISTIC uses the branch and bound algorithm
of Furnival and Wilson (1974) to find a specified number of models with the highest
likelihood score (chi-square) statistic for all possible model sizes, from 1, 2, 3 effect
models, and so on, up to the single model containing all of the explanatory effects.
The number of models displayed for each model size is controlled by theBEST=
option. You can use theSTART= option to impose a minimum model size, and you
can use theSTOP=option to impose a maximum model size. For instance, with
BEST=3, START=2, and STOP=5, the SCORE selection method displays the best
three models (that is, the three models with the highest score chi-squares) containing
2, 3, 4, and 5 effects. The SELECTION=SCORE option is not available for models
with CLASS variables.

The optionsFAST, SEQUENTIAL, andSTOPREScan alter the default criteria for
entering or removing effects from the model when they are used with the FORWARD,
BACKWARD, or STEPWISE selection methods.

Model Fitting Information

Suppose the model containss explanatory effects. For thejth observation, let̂πj be
the estimated probability of the observed response. The three criteria displayed by
the LOGISTIC procedure are calculated as follows:

• −2 Log Likelihood:

−2 Log L = −2
∑

j

wjfj log(π̂j)

wherewj andfj are the weight and frequency values of thejth observation.
For binary response models usingevents/trialsMODEL syntax, this is equiva-
lent to

−2 Log L = −2
∑

j

wjfj{rj log(π̂j) + (nj − rj) log(1− π̂j)}

whererj is the number of events,nj is the number of trials, and̂πj is the
estimated event probability.
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• Akaike Information Criterion:

AIC = −2 Log L + 2p

wherep is the number of parameters in the model. For cumulative response
models,p = k + s wherek is the total number of response levels minus one,
ands is the number of explanatory effects. For the generalized logit model,
p = k(s+ 1).

• Schwarz Criterion:

SC= −2 Log L + p log(
∑

j

fj)

wherep is as defined previously.

The−2 Log Likelihood statistic has a chi-square distribution under the null hypothe-
sis (that all the explanatory effects in the model are zero) and the procedure produces
a p-value for this statistic. The AIC and SC statistics give two different ways of ad-
justing the−2 Log Likelihood statistic for the number of terms in the model and the
number of observations used. These statistics should be used when comparing differ-
ent models for the same data (for example, when you use the METHOD=STEPWISE
option in the MODEL statement); lower values of the statistic indicate a more desir-
able model.

Generalized Coefficient of Determination

Cox and Snell (1989, pp. 208–209) propose the following generalization of the coef-
ficient of determination to a more general linear model:

R2 = 1−
{
L(0)

L(θ̂)

} 2
n

whereL(0) is the likelihood of the intercept-only model,L(θ̂) is the likelihood of
the specified model, andn is the sample size. The quantityR2 achieves a maximum
of less than one for discrete models, where the maximum is given by

R2
max = 1− {L(0)}

2
n

Nagelkerke (1991) proposes the following adjusted coefficient, which can achieve a
maximum value of one:

R̃2 =
R2

R2
max

Properties and interpretation ofR2 andR̃2 are provided in Nagelkerke (1991). In the
“Testing Global Null Hypothesis: BETA=0” table,R2 is labeled as “RSquare” and
R̃2 is labeled as “Max-rescaled RSquare.” Use theRSQUAREoption to requestR2

andR̃2.
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Score Statistics and Tests

To understand the general form of the score statistics, letU(θ) be the vector of first
partial derivatives of the log likelihood with respect to the parameter vectorθ, and let
H(θ) be the matrix of second partial derivatives of the log likelihood with respect to
θ. That is,U(θ) is the gradient vector, andH(θ) is the Hessian matrix. LetI(θ) be
either−H(θ) or the expected value of−H(θ). Consider a null hypothesisH0. Let
θ̂0 be the MLE ofθ underH0. The chi-square score statistic for testingH0 is defined
by

U′(θ̂0)I−1(θ̂0)U(θ̂0)

and it has an asymptoticχ2 distribution withr degrees of freedom underH0, where
r is the number of restrictions imposed onθ byH0.

Residual Chi-Square

When you use SELECTION=FORWARD, BACKWARD, or STEPWISE, the pro-
cedure calculates a residual score chi-square score statistic and reports the statistic,
its degrees of freedom, and thep-value. This section describes how the statistic is
calculated.

Suppose there ares explanatory effects of interest. The full cumulative response
model has a parameter vector

θ = (α1, . . . , αk, β1, . . . , βs)′

whereα1, . . . , αk are intercept parameters, andβ1, . . . , βs are the common slope
parameters for the explanatory effects, and the full generalized logit model has a
parameter vector

θ = (α1, . . . , αk,β
′
1, . . . ,β

′
k)
′ with

β′i = (βi1, . . . , βis), i = 1, . . . , k

whereβij is the slope parameter for thejth effect in theith logit.

Consider the null hypothesisH0:βt+1 = . . . = βs = 0 wheret < s for the cu-
mulative response model, andH0:βi,t+1 = . . . = βis = 0, t < s, i = 1, . . . , k for
the generalized logit model. For the reduced model witht explanatory effects, let
α̂1, . . . , α̂k be the MLEs of the unknown intercept parameters, letβ̂1, . . . , β̂t be the

MLEs of the unknown slope parameters, and letβ̂
′
i(t) = (β̂i1, . . . , β̂it), i = 1, . . . , k

be those for the generalized logit model. The residual chi-square is the chi-square
score statistic testing the null hypothesisH0; that is, the residual chi-square is

U′(θ̂0)I−1(θ̂0)U(θ̂0)
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where for the cumulative response modelθ̂0 = (α̂1, . . . , α̂k, β̂1, . . . , β̂t, 0, . . . , 0)′,
and for the generalized logit modelθ̂0 = (α̂1, . . . , α̂k, β̂

′
1(t),0

′
(s−t), . . . β̂

′
k(t),0

′
(s−t))

′.
where0(s−t) denote a vector ofs− t zeros.

The residual chi-square has an asymptotic chi-square distribution withs−t degrees of
freedom (k(s− t) for the generalized logit model). A special case is the global score
chi-square, where the reduced model consists of thek intercepts and no explanatory
effects. The global score statistic is displayed in the “Testing Global Null Hypothesis:
BETA=0” table. The table is not produced when theNOFIT option is used, but the
global score statistic is displayed.

Testing Individual Effects Not in the Model

These tests are performed in the FORWARD or STEPWISE method, and are dis-
played when theDETAILS option is specified. In the displayed output, the tests are
labeled “Score Chi-Square” in the “Analysis of Effects Not in the Model” table and
in the “Summary of Stepwise (Forward) Selection” table. This section describes how
the tests are calculated.

Suppose thatk intercepts andt explanatory variables (sayv1, . . . , vt) have been fitted
to a model and thatvt+1 is another explanatory variable of interest. Consider a full
model with thek intercepts andt+1 explanatory variables (v1, . . . , vt, vt+1) and a re-
duced model withvt+1 excluded. The significance ofvt+1 adjusted forv1, . . . , vt can
be determined by comparing the corresponding residual chi-square with a chi-square
distribution with one degree of freedom (k degrees of freedom for the generalized
logit model).

Testing the Parallel Lines Assumption

For an ordinal response, PROC LOGISTIC performs a test of the parallel lines
assumption. In the displayed output, this test is labeled “Score Test for the
Equal Slopes Assumption” when theLINK= option is NORMIT or CLOGLOG.
When LINK=LOGIT, the test is labeled as “Score Test for the Proportional Odds
Assumption” in the output. For small sample sizes, this test may be too liberal
(Stokes, Davis, and Koch 2000). This section describes the methods used to calculate
the test.

For this test the number of response levels,k + 1, is assumed to be strictly greater
than 2. LetY be the response variable taking values1, . . . , k, k + 1. Suppose there
ares explanatory variables. Consider the general cumulative model without making
the parallel lines assumption

g(Pr(Y ≤ i | x)) = (1,x′)θi, 1 ≤ i ≤ k

whereg(·) is the link function, andθi = (αi, βi1, . . . , βis)′ is a vector of unknown
parameters consisting of an interceptαi ands slope parametersβi1, . . . , βis. The
parameter vector for this general cumulative model is

θ = (θ′1, . . . ,θ
′
k)
′
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Under the null hypothesis of parallelismH0:β1m = β2m = · · · = βkm, 1 ≤ m ≤ s,
there is a single common slope parameter for each of thes explanatory variables. Let
β1, . . . , βs be the common slope parameters. Letα̂1, . . . , α̂k and β̂1, . . . , β̂s be the
MLEs of the intercept parameters and the common slope parameters. Then, under
H0, the MLE ofθ is

θ̂0 = (θ̂
′
1, . . . , θ̂

′
k)
′ with θ̂i = (α̂i, β̂1, . . . , β̂s)′ 1 ≤ i ≤ k

and the chi-squared score statisticU′(θ̂0)I−1(θ̂0)U(θ̂0) has an asymptotic chi-
square distribution withs(k − 1) degrees of freedom. This tests the parallel lines
assumption by testing the equality of separate slope parameters simultaneously for
all explanatory variables.

Confidence Intervals for Parameters

There are two methods of computing confidence intervals for the regression param-
eters. One is based on the profile likelihood function, and the other is based on
the asymptotic normality of the parameter estimators. The latter is not as time-
consuming as the former, since it does not involve an iterative scheme; however,
it is not thought to be as accurate as the former, especially with small sample size.
You use theCLPARM= option to request confidence intervals for the parameters.

Likelihood Ratio-Based Confidence Intervals

The likelihood ratio-based confidence interval is also known as the profile likelihood
confidence interval. The construction of this interval is derived from the asymp-
totic χ2 distribution of the generalized likelihood ratio test (Venzon and Moolgavkar
1988). Suppose that the parameter vector isβ = (β0, β1, . . . , βs)′ and you want to
compute a confidence interval forβj . The profile likelihood function forβj = γ is
defined as

l∗j (γ) = max
β∈Bj(γ)

l(β)

whereBj(γ) is the set of allβ with the jth element fixed atγ, andl(β) is the log-
likelihood function forβ. If lmax = l(β̂) is the log likelihood evaluated at the
maximum likelihood estimatêβ, then2(lmax − l∗j (βj)) has a limiting chi-square
distribution with one degree of freedom ifβj is the true parameter value. Let
l0 = lmax − .5χ2

1(1 − α), whereχ2
1(1 − α) is the100(1 − α) percentile of the chi-

square distribution with one degree of freedom. A100(1 − α)% confidence interval
for βj is

{γ : l∗j (γ) ≥ l0}

The endpoints of the confidence interval are found by solving numerically for values
of βj that satisfy equality in the preceding relation. To obtain an iterative algorithm
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for computing the confidence limits, the log-likelihood function in a neighborhood of
β is approximated by the quadratic function

l̃(β + δ) = l(β) + δ′g +
1
2
δ′Vδ

whereg = g(β) is the gradient vector andV = V(β) is the Hessian matrix. The
incrementδ for the next iteration is obtained by solving the likelihood equations

d

dδ
{l̃(β + δ) + λ(e′jδ − γ)} = 0

whereλ is the Lagrange multiplier,ej is thejth unit vector, andγ is an unknown
constant. The solution is

δ = −V−1(g + λej)

By substituting thisδ into the equatioñl(β + δ) = l0, you can estimateλ as

λ = ±
(

2(l0 − l(β) + 1
2g

′V−1g)
e′jV−1ej

) 1
2

The upper confidence limit forβj is computed by starting at the maximum likelihood
estimate ofβ and iterating with positive values ofλ until convergence is attained.
The process is repeated for the lower confidence limit using negative values ofλ.

Convergence is controlled by valueε specified with the PLCONV= option in the
MODEL statement (the default value ofε is 1E−4). Convergence is declared on the
current iteration if the following two conditions are satisfied:

|l(β)− l0| ≤ ε

and

(g + λej)′V−1(g + λej) ≤ ε

Wald Confidence Intervals

Wald confidence intervals are sometimes called the normal confidence intervals. They
are based on the asymptotic normality of the parameter estimators. The100(1−α)%
Wald confidence interval forβj is given by

β̂j ± z1−α/2σ̂j

wherezp is the100pth percentile of the standard normal distribution,β̂j is the maxi-
mum likelihood estimate ofβj , andσ̂j is the standard error estimate ofβ̂j .
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Odds Ratio Estimation
Consider a dichotomous response variable with outcomesevent and nonevent.
Consider a dichotomous risk factor variable X that takes the value 1 if the risk factor
is present and 0 if the risk factor is absent. According to the logistic model, the log
odds function,g(X), is given by

g(X) ≡ log
(

Pr(event| X)
Pr(nonevent| X)

)
= β0 + β1X

The odds ratioψ is defined as the ratio of the odds for those with the risk factor
(X = 1) to the odds for those without the risk factor (X = 0). The log of the odds
ratio is given by

log(ψ) ≡ log(ψ(X = 1, X = 0)) = g(X = 1)− g(X = 0) = β1

The parameter,β1, associated with X represents the change in the log odds from
X = 0 toX = 1. So, the odds ratio is obtained by simply exponentiating the value
of the parameter associated with the risk factor. The odds ratio indicates how the odds
of eventchange as you changeX from 0 to 1. For instance,ψ = 2 means that the
odds of an event whenX = 1 are twice the odds of an event whenX = 0.

Suppose the values of the dichotomous risk factor are coded as constantsa and b
instead of 0 and 1. The odds whenX = a becomeexp(β0 +aβ1), and the odds when
X = b becomeexp(β0 + bβ1). The odds ratio corresponding to an increase inX
from a to b is

ψ = exp[(b− a)β1] = [exp(β1)]b−a ≡ [exp(β1)]c

Note that for anya and b such thatc = b − a = 1, ψ = exp(β1). So the odds
ratio can be interpreted as the change in the odds for any increase of one unit in the
corresponding risk factor. However, the change in odds for some amount other than
one unit is often of greater interest. For example, a change of one pound in body
weight may be too small to be considered important, while a change of 10 pounds
may be more meaningful. The odds ratio for a change inX from a to b is estimated
by raising the odds ratio estimate for a unit change inX to the power ofc = b− a as
shown previously.

For a polytomous risk factor, the computation of odds ratios depends on how the risk
factor is parameterized. For illustration, suppose thatRace is a risk factor with four
categories: White, Black, Hispanic, and Other.

For the effect parameterization scheme (PARAM=EFFECT) with White as the refer-
ence group, the design variables forRace are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White −1 −1 −1
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The log odds for Black is

g(Black) = β0 + β1(X1 = 1) + β2(X2 = 0) + β3(X3 = 0)
= β0 + β1

The log odds for White is

g(White) = β0 + β1(X1 = −1) + β2(X2 = −1) + β3(X3 = −1))
= β0 − β1 − β2 − β3

Therefore, the log odds ratio of Black versus White becomes

log(ψ(Black,White)) = g(Black)− g(White)
= 2β1 + β2 + β3

For the reference cell parameterization scheme (PARAM=REF) with White as the
reference cell, the design variables for race are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White 0 0 0

The log odds ratio of Black versus White is given by

log(ψ(Black,White))
= g(Black)− g(White)
= (β0 + β1(X1 = 1) + β2(X2 = 0)) + β3(X3 = 0))−

(β0 + β1(X1 = 0) + β2(X2 = 0) + β3(X3 = 0))
= β1

For the GLM parameterization scheme (PARAM=GLM), the design variables are as
follows.

Design Variables
Race X1 X2 X3 X4

Black 1 0 0 0
Hispanic 0 1 0 0

Other 0 0 1 0
White 0 0 0 1
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The log odds ratio of Black versus White is

log(ψ(Black,White))
= g(Black)− g(White)
= (β0 + β1(X1 = 1) + β2(X2 = 0) + β3(X3 = 0) + β4(X4 = 0))−

(β0 + β1(X1 = 0) + β2(X2 = 0) + β3(X3 = 0) + β4(X4 = 1))
= β1 − β4

Consider the hypothetical example of heart disease among race in Hosmer and
Lemeshow (2000, p 56). The entries in the following contingency table represent
counts.

Race
Disease Status White Black Hispanic Other

Present 5 20 15 10
Absent 20 10 10 10

The computation of odds ratio of Black versus White for various parameterization
schemes is tabulated in the following table.

Odds Ratio of Heart Disease Comparing Black to White
Parameter Estimates

PARAM β̂1 β̂2 β̂3 β̂4 Odds Ratio Estimation
EFFECT 0.7651 0.4774 0.0719 exp(2× 0.7651 + 0.4774 + 0.0719) = 8
REF 2.0794 1.7917 1.3863 exp(2.0794) = 8
GLM 2.0794 1.7917 1.3863 0.0000exp(2.0794) = 8

Since the log odds ratio (log(ψ)) is a linear function of the parameters, the Wald
confidence interval forlog(ψ) can be derived from the parameter estimates and the
estimated covariance matrix. Confidence intervals for the odds ratios are obtained
by exponentiating the corresponding confidence intervals for the log odd ratios. In
the displayed output of PROC LOGISTIC, the “Odds Ratio Estimates” table contains
the odds ratio estimates and the corresponding 95% Wald confidence intervals. For
continuous explanatory variables, these odds ratios correspond to a unit increase in
the risk factors.

To customize odds ratios for specific units of change for a continuous risk factor, you
can use theUNITS statement to specify a list of relevant units for each explanatory
variable in the model. Estimates of these customized odds ratios are given in a sepa-
rate table. Let(Lj , Uj) be a confidence interval forlog(ψ). The corresponding lower
and upper confidence limits for the customized odds ratioexp(cβj) are exp(cLj)
andexp(cUj), respectively (forc > 0), or exp(cUj) andexp(cLj), respectively (for
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c < 0). You use theCLODDS= option to request the confidence intervals for the
odds ratios.

For a generalized logit model, odds ratios are computed similarly, exceptk odds
ratios are computed for each effect, corresponding to thek logits in the model.

Rank Correlation of Observed Responses and Predicted
Probabilities

The predicted mean score of an observation is the sum of the Ordered Values (shown
in the Response Profile table) minus one, weighted by the corresponding predicted
probabilities for that observation; that is, the predicted means score=

∑k+1
i=1 (i−1)π̂i,

wherek + 1 is the number of response levels andπ̂i is the predicted probability of
theith (ordered) response.

A pair of observations with different observed responses is said to beconcordantif
the observation with the lower ordered response value has a lower predicted mean
score than the observation with the higher ordered response value. If the observation
with the lower ordered response value has a higher predicted mean score than the
observation with the higher ordered response value, then the pair isdiscordant. If the
pair is neither concordant nor discordant, it is atie. Enumeration of the total numbers
of concordant and discordant pairs is carried out by categorizing the predicted mean
score into intervals of lengthk/500 and accumulating the corresponding frequencies
of observations.

LetN be the sum of observation frequencies in the data. Suppose there is a total oft
pairs with different responses,nc of them are concordant,nd of them are discordant,
andt − nc − nd of them are tied. PROC LOGISTIC computes the following four
indices of rank correlation for assessing the predictive ability of a model:

c = (nc + 0.5(t− nc − nd))/t
Somers’D = (nc − nd)/t
Goodman-Kruskal Gamma= (nc − nd)/(nc + nd)
Kendall’s Tau-a = (nc − nd)/(0.5N(N − 1))

Note thatc also gives an estimate of the area under the receiver operating character-
istic (ROC) curve when the response is binary (Hanley and McNeil 1982).

For binary responses, the predicted mean score is equal to the predicted probability
for Ordered Value 2. As such, the preceding definition of concordance is consistent
with the definition used in previous releases for the binary response model.

Linear Predictor, Predicted Probability, and Confidence
Limits

This section describes how predicted probabilities and confidence limits are
calculated using the maximum likelihood estimates (MLEs) obtained from
PROC LOGISTIC. For a specific example, see the“Getting Started”section on page
2284. Predicted probabilities and confidence limits can be output to a data set with
the OUTPUT statement.
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Cumulative Response Models

For a vector of explanatory variablesx, the linear predictor

ηi = g(Pr(Y ≤ i | x)) = αi + β′x 1 ≤ i ≤ k

is estimated by

η̂i = α̂i + β̂
′
x

whereα̂i andβ̂ are the MLEs ofαi andβ. The estimated standard error ofηi is σ̂(η̂i),
which can be computed as the square root of the quadratic form(1,x′)V̂b(1,x′)′

whereV̂b is the estimated covariance matrix of the parameter estimates. The asymp-
totic 100(1− α)% confidence interval forηi is given by

η̂i ± zα/2σ̂(η̂i)

wherezα/2 is the100(1− α/2) percentile point of a standard normal distribution.

The predicted value and the100(1 − α)% confidence limits for Pr(Y ≤ i | x) are
obtained by back-transforming the corresponding measures for the linear predictor.

Link Predicted Probability 100(1-α) Confidence Limits

LOGIT 1/(1 + e−η̂i) 1/(1 + e−η̂i±zα/2σ̂(η̂i))

PROBIT Φ(η̂i) Φ(η̂i ± zα/2σ̂(η̂i))

CLOGLOG 1− e−eη̂i 1− e−eη̂i±zα/2σ̂(η̂i)

Generalized Logit Model

For a vector of explanatory variablesx, letπi denote the probability of obtaining the
response valuei:

πi =

 πk+1e
αi+x′βi 1 ≤ i ≤ k

1

1 +
∑k

i=1 e
αi+x′βi

i = k + 1

By thedelta method,

σ2(πi) =
(
∂πi

∂θ

)′
V(θ)

∂πi

∂θ

A 100(1−α)% confidence level forπi is given by

π̂i ± zα/2σ̂(π̂i)

whereπ̂i is the estimated expected probability of responsei, andσ̂(π̂i) is obtained
by evaluatingσ(πi) atθ = θ̂.
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Classification Table

For binary response data, the response is either anevent or a nonevent. In
PROC LOGISTIC, the response with Ordered Value 1 is regarded as theevent, and
the response with Ordered Value 2 is thenonevent. PROC LOGISTIC models the
probability of theevent. From the fitted model, a predictedeventprobability can
be computed for each observation. The method to compute a reduced-bias estimate
of the predicted probability is given in the“Predicted Probability of an Event for
Classification”section on page 2352, which follows. If the predictedeventproba-
bility exceeds some cutpoint valuez ∈ [0, 1], the observation is predicted to be an
eventobservation; otherwise, it is predicted as anonevent. A 2 × 2 frequency ta-
ble can be obtained by cross-classifying the observed and predicted responses. The
CTABLE option produces this table, and thePPROB=option selects one or more
cutpoints. Each cutpoint generates a classification table. If thePEVENT=option is
also specified, a classification table is produced for each combination of PEVENT=
and PPROB= values.

The accuracy of the classification is measured by itssensitivity(the ability to pre-
dict aneventcorrectly) and specificity (the ability to predict anoneventcorrectly).
Sensitivityis the proportion ofeventresponses that were predicted to beevents.
Specificityis the proportion ofnoneventresponses that were predicted to benon-
events. PROC LOGISTIC also computes three other conditional probabilities:false
positive rate, false negative rate, andrate of correct classification. The false posi-
tive rate is the proportion of predictedeventresponses that were observed asnon-
events. Thefalse negative rateis the proportion of predictednoneventresponses that
were observed asevents. Given prior probabilities specified with the PEVENT= op-
tion, these conditional probabilities can be computed as posterior probabilities using
Bayes’ theorem.

Predicted Probability of an Event for Classification

When you classify a set of binary data, if the same observations used to fit the model
are also used to estimate the classification error, the resulting error-count estimate
is biased. One way of reducing the bias is to remove the binary observation to be
classified from the data, reestimate the parameters of the model, and then classify the
observation based on the new parameter estimates. However, it would be costly to fit
the model leaving out each observation one at a time. The LOGISTIC procedure pro-
vides a less expensive one-step approximation to the preceding parameter estimates.
Let b be the MLE of the parameter vector(α,β′)′ based on all observations. Letbj

denote the MLE computed without thejth observation. The one-step estimate ofbj

is given by

b1
j = b− wj(yj − π̂j)

1− hjj
V̂b

(
1
xj

)

where

yj is 1 for an event response and 0 otherwise
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wj is the WEIGHT value

π̂j is the predicted event probability based onb

hjj is thehat diagonal element(defined on page 2359) withnj = 1 andrj = yj

V̂b is the estimated covariance matrix ofb

False Positive and Negative Rates Using Bayes’ Theorem

Supposen1 of n individuals experience an event, for example, a disease. Let this
group be denoted byC1, and let the group of the remainingn2 = n− n1 individuals
who do not have the disease be denoted byC2. The jth individual is classified as
giving a positive response if the predicted probability of disease (π̂∗j ) is large. The
probability π̂∗j is the reduced-bias estimate based on a one-step approximation given
in the preceding section. For a given cutpointz, thejth individual is predicted to give
a positive response if̂π∗j ≥ z.

Let B denote the event that a subject has the disease andB̄ denote the event of
not having the disease. LetA denote the event that the subject responds positively,
and letĀ denote the event of responding negatively. Results of the classification are
represented by two conditional probabilities,Pr(A|B) andPr(A|B̄), wherePr(A|B)
is the sensitivity, andPr(A|B̄) is one minus the specificity.

These probabilities are given by

Pr(A|B) =

∑
j∈C1 I(π̂

∗
j ≥ z)

n1

Pr(A|B̄) =

∑
j∈C2 I(π̂

∗
j ≥ z)

n2

whereI(·) is the indicator function.

Bayes’ theorem is used to compute the error rates of the classification. For a given
prior probabilityPr(B) of the disease, the false positive ratePF+ and the false neg-
ative ratePF− are given by Fleiss (1981, pp. 4–5) as follows:

PF+ = Pr(B̄|A) =
Pr(A|B̄)[1− Pr(B)]

Pr(A|B̄) + Pr(B)[Pr(A|B)− Pr(A|B̄)]

PF− = Pr(B|Ā) =
[1− Pr(A|B)]Pr(B)

1− Pr(A|B̄)− Pr(B)[Pr(A|B)− Pr(A|B̄)]

The prior probabilityPr(B) can be specified by thePEVENT= option. If the
PEVENT= option is not specified, the sample proportion of diseased individuals is
used; that is,Pr(B) = n1/n. In such a case, the false positive rate and the false
negative rate reduce to

PF+ =

∑
j∈C2 I(π̂

∗
j ≥ z)∑

j∈C1 I(π̂
∗
j ≥ z) +

∑
j∈C2 I(π̂

∗
j ≥ z)

PF− =

∑
j∈C1 I(π̂

∗
j < z)∑

j∈C1 I(π̂
∗
j < z) +

∑
j∈C2 I(π̂

∗
j < z)
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Note that for a stratified sampling situation in whichn1 andn2 are chosen a priori,
n1/n is not a desirable estimate ofPr(B). For such situations, thePEVENT=option
should be specified.

Overdispersion

For a correctly specified model, the Pearson chi-square statistic and the deviance,
divided by their degrees of freedom, should be approximately equal to one. When
their values are much larger than one, the assumption of binomial variability may
not be valid and the data are said to exhibit overdispersion. Underdispersion, which
results in the ratios being less than one, occurs less often in practice.

When fitting a model, there are several problems that can cause the goodness-of-fit
statistics to exceed their degrees of freedom. Among these are such problems as out-
liers in the data, using the wrong link function, omitting important terms from the
model, and needing to transform some predictors. These problems should be elimi-
nated before proceeding to use the following methods to correct for overdispersion.

Rescaling the Covariance Matrix

One way of correcting overdispersion is to multiply the covariance matrix by a disper-
sion parameter. This method assumes that the sample sizes in each subpopulation are
approximately equal. You can supply the value of the dispersion parameter directly,
or you can estimate the dispersion parameter based on either the Pearson chi-square
statistic or the deviance for the fitted model.

The Pearson chi-square statisticχ2
P and the devianceχ2

D are given by

χ2
P =

m∑
i=1

k+1∑
j=1

(rij − niπ̂ij)2

niπ̂ij

χ2
D = 2

m∑
i=1

k+1∑
j=1

rij log
(

rij
niπ̂ij

)

wherem is the number of subpopulation profiles,k + 1 is the number of response
levels,rij is the total weight (sum of the product of the frequencies and the weights)
associated withjth level responses in theith profile,ni =

∑k+1
j=1 rij , andπ̂ij is the

fitted probability for thejth level at theith profile. Each of these chi-square statistics
hasmk− p degrees of freedom, wherep is the number of parameters estimated. The
dispersion parameter is estimated by

σ̂2 =


χ2

P /(mk − p) SCALE=PEARSON
χ2

D/(mk − p) SCALE=DEVIANCE
(constant)2 SCALE=constant

In order for the Pearson statistic and the deviance to be distributed as chi-square,
there must be sufficient replication within the subpopulations. When this is not true,
the data are sparse, and thep-values for these statistics are not valid and should be
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ignored. Similarly, these statistics, divided by their degrees of freedom, cannot serve
as indicators of overdispersion. A large difference between the Pearson statistic and
the deviance provides some evidence that the data are too sparse to use either statistic.

You can use theAGGREGATE (or AGGREGATE=) option to define the subpop-
ulation profiles. If you do not specify this option, each observation is regarded as
coming from a separate subpopulation. Forevents/trialssyntax, each observation
representsn Bernoulli trials, wheren is the value of thetrials variable; forsingle-
trial syntax, each observation represents a single trial. Without the AGGREGATE
(or AGGREGATE=) option, the Pearson chi-square statistic and the deviance are cal-
culated only forevents/trialssyntax.

Note that the parameter estimates are not changed by this method. However, their
standard errors are adjusted for overdispersion, affecting their significance tests.

Williams’ Method

Suppose that the data consist ofn binomial observations. For theith observation, let
ri/ni be the observed proportion and letxi be the associated vector of explanatory
variables. Suppose that the response probability for theith observation is a random
variablePi with mean and variance

E(Pi) = πi and V (Pi) = φπi(1− πi)

wherepi is the probability of the event, andφ is a nonnegative but otherwise unknown
scale parameter. Then the mean and variance ofri are

E(ri) = niπi and V (ri) = niπi(1− πi)[1 + (ni − 1)φ]

Williams (1982) estimates the unknown parameterφ by equating the value of
Pearson’s chi-square statistic for the full model to its approximate expected value.
Supposew∗i is the weight associated with theith observation. The Pearson chi-square
statistic is given by

χ2 =
n∑

i=1

w∗i (ri − niπ̂i)2

niπ̂i(1− π̂i)

Let g′(·) be the first derivative of the link functiong(·). The approximate expected
value ofχ2 is

Eχ2 =
n∑

i=1

w∗i (1− w∗i vidi)[1 + φ(ni − 1)]

wherevi = ni/(πi(1 − πi)[g′(πi)]2) anddi is the variance of the linear predictor
α̂i + x′iβ̂. The scale parameterφ is estimated by the following iterative procedure.
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At the start, letw∗i = 1 and letπi be approximated byri/ni, i = 1, 2, . . . , n. If you
apply these weights and approximated probabilities toχ2 andEχ2 and then equate
them, an initial estimate ofφ is therefore

φ̂0 =
χ2 − (n− p)∑

i(ni − 1)(1− vidi)

wherep is the total number of parameters. The initial estimates of the weights become
ŵ∗i0 = [1 + (ni − 1)φ̂0]−1. After a weighted fit of the model,̂β is recalculated, and
so isχ2. Then a revised estimate ofφ is given by

φ̂1 =
χ2 −

∑
iw

∗
i (1− w∗i vidi)

w∗i (ni − 1)(1− w∗i vidi)

The iterative procedure is repeated untilχ2 is very close to its degrees of freedom.

Onceφ has been estimated bŷφ under the full model, weights of(1 + (ni − 1)φ̂)−1

can be used in fitting models that have fewer terms than the full model. SeeExample
42.9on page 2438 for an illustration.

The Hosmer-Lemeshow Goodness-of-Fit Test

Sufficient replication within subpopulations is required to make the Pearson and de-
viance goodness-of-fit tests valid. When there are one or more continuous predic-
tors in the model, the data are often too sparse to use these statistics. Hosmer and
Lemeshow (2000) proposed a statistic that they show, through simulation, is dis-
tributed as chi-square when there is no replication in any of the subpopulations. This
test is only available for binary response models.

First, the observations are sorted in increasing order of their estimated event probabil-
ity. The event is the response level specified in the response variable optionEVENT=,
or the response level which is not specified in theREF=option, or, if neither of these
options were specified, then the event is the response level identified in the “Response
Profiles” table as “Ordered Value 1”. The observations are then divided into approx-
imately ten groups according to the following scheme. LetN be the total number of
subjects. LetM be the target number of subjects for each group given by

M = [0.1×N + 0.5]

where[x] represents the integral value ofx. If thesingle-trialsyntax is used, blocks of
subjects are formed of observations with identical values of the explanatory variables.
Blocks of subjects are not divided when being placed into groups.

Suppose there aren1 subjects in the first block andn2 subjects in the second block.
The first block of subjects is placed in the first group. Subjects in the second block
are added to the first group if

n1 < M and n1 + [0.5× n2] ≤M
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Otherwise, they are placed in the second group. In general, suppose subjects of the
(j-1)th block have been placed in thekth group. Letc be the total number of subjects
currently in thekth group. Subjects for thejth block (containingnj subjects) are also
placed in thekth group if

c < M and c+ [0.5× nj ] ≤M

Otherwise, thenj subjects are put into the next group. In addition, if the number of
subjects in the last group does not exceed[0.05×N ] (half the target group size), the
last two groups are collapsed to form only one group.

Note that the number of groups,g, may be smaller than 10 if there are fewer than 10
patterns of explanatory variables. There must be at least three groups in order for the
Hosmer-Lemeshow statistic to be computed.

The Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating the
Pearson chi-square statistic from the2×g table of observed and expected frequencies,
whereg is the number of groups. The statistic is written

χ2
HL =

g∑
i=1

(Oi −Niπ̄i)2

Niπ̄i(1− π̄i)

whereNi is the total frequency of subjects in theith group,Oi is the total frequency
of event outcomes in theith group, and̄πi is the average estimated predicted proba-
bility of an event outcome for theith group. The Hosmer-Lemeshow statistic is then
compared to a chi-square distribution with(g − n) degrees of freedom, where the
value ofn can be specified in theLACKFIT option in the MODEL statement. The
default isn = 2. Large values ofχ2

HL (and smallp-values) indicate a lack of fit of
the model.

Receiver Operating Characteristic Curves

In a sample ofn individuals, supposen1 individuals are observed to have a certain
condition or event. Let this group be denoted byC1, and let the group of the remain-
ing n2 = n − n1 individuals who do not have the condition be denoted byC2. Risk
factors are identified for the sample, and a logistic regression model is fitted to the
data. For thejth individual, an estimated probabilitŷπj of the event of interest is cal-
culated. Note that thêπj are computed as shown in the“Linear Predictor, Predicted
Probability, and Confidence Limits”section on page 2350 and are not the cross vali-
dated estimates discussed in the“Classification Table”section on page 2352.

Suppose then individuals undergo a test for predicting the event and the test is based
on the estimated probability of the event. Higher values of this estimated probabil-
ity are assumed to be associated with the event. A receiver operating characteristic
(ROC) curve can be constructed by varying the cutpoint that determines which es-
timated event probabilities are considered to predict the event. For each cutpointz,
the following measures can be output to a data set using theOUTROC=option in the
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MODEL statement or theOUTROC=option in the SCORE statement:

–POS–(z) =
∑
i∈C1

I(π̂i ≥ z)

–NEG–(z) =
∑
i∈C2

I(π̂i < z)

–FALPOS–(z) =
∑
i∈C2

I(π̂i ≥ z)

–FALNEG–(z) =
∑
i∈C1

I(π̂i < z)

–SENSIT–(z) = –POS–(z)
n1

–1MSPEC–(z) = –FALPOS–(z)
n2

whereI(·) is the indicator function.

Note that–POS–(z) is the number of correctly predicted event responses,–NEG–(z)
is the number of correctly predicted nonevent responses,–FALPOS–(z) is the num-
ber of falsely predicted event responses,–FALNEG–(z) is the number of falsely
predicted nonevent responses,–SENSIT–(z) is the sensitivity of the test, and

–1MSPEC–(z) is one minus the specificity of the test.

A plot of the ROC curve can be constructed by using the PLOT or GPLOT proce-
dure with the OUTROC= data set and plotting sensitivity (–SENSIT–) against 1-
specificity (–1MSPEC–); seeExample 42.7on page 2429 for an illustration. The
area under the ROC curve, as determined by the trapezoidal rule, is estimated by the
statisticc in the “Association of Predicted Probabilities and Observed Responses”
table.

Testing Linear Hypotheses about the Regression
Coefficients

Linear hypotheses forθ are expressed in matrix form as

H0:Lθ = c

whereL is a matrix of coefficients for the linear hypotheses, andc is a vector of
constants. The vector of regression coefficientsθ includes slope parameters as well
as intercept parameters. The Wald chi-square statistic for testingH0 is computed as

χ2
W = (Lθ̂ − c)′[LV̂(θ̂)L′]−1(Lθ̂ − c)

whereV̂(θ̂) is the estimated covariance matrix. UnderH0, χ2
W has an asymptotic

chi-square distribution withr degrees of freedom, wherer is the rank ofL.
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Regression Diagnostics

For binary response data, regression diagnostics developed by Pregibon (1981) can
be requested by specifying theINFLUENCE option. For diagnostics available with
conditional logistic regression, see the“Regression Diagnostic Details”section on
page 2367.

This section uses the following notation:

rj , nj rj is the number of event responses out ofnj trials for thejth
observation. Ifevents/trialssyntax is used,rj is the value ofevents
andnj is the value oftrials. For single-trial syntax,nj = 1, and
rj = 1 if the ordered response is 1, andrj = 0 if the ordered
response is 2.

wj is the weight of thejth observation.

πj is the probability of an event response for thejth observation given
by πj = F (α + β′xj), whereF (·) is the inverse link function
defined on page 2335.

b is the maximum likelihood estimate (MLE) of(α,β′)′.

V̂b is the estimated covariance matrix ofb.

p̂j , q̂j p̂j is the estimate ofπj evaluated atb, andq̂j = 1− p̂j .

Pregibon suggests using the index plots of several diagnostic statistics to identify in-
fluential observations and to quantify the effects on various aspects of the maximum
likelihood fit. In an index plot, the diagnostic statistic is plotted against the observa-
tion number. In general, the distributions of these diagnostic statistics are not known,
so cutoff values cannot be given for determining when the values are large. However,
the IPLOTSand INFLUENCE options provide displays of the diagnostic values al-
lowing visual inspection and comparison of the values across observations. In these
plots, if the model is correctly specified and fits all observations well, then no extreme
points should appear.

The next five sections give formulas for these diagnostic statistics.

Hat Matrix Diagonal

The diagonal elements of the hat matrix are useful in detecting extreme points in the
design space where they tend to have larger values. Thejth diagonal element is

hjj =

{
w̃j(1,x′j)V̂b(1,x′j)

′ Fisher-Scoring
ŵj(1,x′j)V̂b(1,x′j)

′ Newton-Raphson

where

w̃j =
wjnj

p̂j q̂j [g′(p̂j)]2

ŵj = w̃j +
wj(rj − nj p̂j)[p̂j q̂jg

′′(p̂j) + (q̂j − p̂j)g′(p̂j)]
(p̂j q̂j)2[g′(p̂j)]3



2360 � Chapter 42. The LOGISTIC Procedure

andg′(·) andg′′(·) are the first and second derivatives of the link functiong(·), re-
spectively.

For a binary response logit model, the hat matrix diagonal elements are

hjj = wjnj p̂j q̂j(1,x′j)V̂b

(
1
xj

)
If the estimated probability is extreme (less than 0.1 and greater than 0.9, approxi-
mately), then the hat diagonal may be greatly reduced in value. Consequently, when
an observation has a very large or very small estimated probability, its hat diago-
nal value is not a good indicator of the observation’s distance from the design space
(Hosmer and Lemeshow 2000, p 171).

Pearson Residuals and Deviance Residuals

Pearson and Deviance residuals are useful in identifying observations that are not
explained well by the model. Pearson residuals are components of the Pearson chi-
square statistic and deviance residuals are components of the deviance. The Pearson
residual for thejth observation is

χj =
√
wj(rj − nj p̂j)√

nj p̂j q̂j

The Pearson chi-square statistic is the sum of squares of the Pearson residuals. The
deviance residual for thejth observation is

dj =


−

√
−2wjnj log(q̂j) if rj = 0

±
√

2wj [rj log( rj

nj p̂j
) + (nj − rj) log(nj−rj

nj q̂j
)] if 0 < rj < nj√

−2wjnj log(p̂j) if rj = nj

where the plus (minus) in± is used ifrj/nj is greater (less) than̂pj . The deviance is
the sum of squares of the deviance residuals.

DFBETAS

For each parameter estimate, the procedure calculates a DFBETAS diagnostic for
each observation. The DFBETAS diagnostic for an observation is the standardized
difference in the parameter estimate due to deleting the observation, and it can be
used to assess the effect of an individual observation on each estimated parameter of
the fitted model. Instead of re-estimating the parameter every time an observation
is deleted, PROC LOGISTIC uses the one-step estimate. See the section“Predicted
Probability of an Event for Classification”on page 2352. For thejth observation, the
DFBETAS are given by

DFBETASij = ∆ib1
j/σ̂(bi)
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wherei = 0, 1, . . . , s, σ̂(bi) is the standard error of theith component ofb, and∆ib1
j

is theith component of the one-step difference

∆b1
j =

wj(rj − nj p̂j)
1− hjj

V̂b

(
1
xj

)

∆b1
j is the approximate change (b− b1

j ) in the vector of parameter estimates due to
the omission of thejth observation. The DFBETAS are useful in detecting observa-
tions that are causing instability in the selected coefficients.

C and CBAR

C and CBAR are confidence interval displacement diagnostics that provide scalar
measures of the influence of individual observations onb. These diagnostics are
based on the same idea as the Cook distance in linear regression theory, and by using
the one-step estimate, C and CBAR for thejth observation are computed as

Cj = χ2
jhjj/(1− hjj)2

and

Cj = χ2
jhjj/(1− hjj)

respectively.

Typically, to use these statistics, you plot them against an index (as the IPLOT option
does) and look for outliers.

DIFDEV and DIFCHISQ

DIFDEV and DIFCHISQ are diagnostics for detecting ill-fitted observations; in other
words, observations that contribute heavily to the disagreement between the data and
the predicted values of the fitted model. DIFDEV is the change in the deviance due
to deleting an individual observation while DIFCHISQ is the change in the Pearson
chi-square statistic for the same deletion. By using the one-step estimate, DIFDEV
and DIFCHISQ for thejth observation are computed as

DIFDEV = d2
j + Cj

and

DIFCHISQ= Cj/hjj
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Scoring Data Sets

Scoring a data set, which is especially important for predictive modeling, means ap-
plying a previously fitted model to a new data set in order to compute the conditional,
or posterior, probabilities of each response category given the values of the explana-
tory variables in each observation.

The SCOREstatement enables you to score new data sets and output the scored
values and, optionally, the corresponding confidence limits into a SAS data set. If the
response variable is included in the new data set, then you can request fit statistics for
the data, which is especially useful for test or validation data. If the response is binary,
you can also create a SAS data set containing thereceiver operating characteristic
(ROC) curve. You can specify multiple SCORE statements in the same invocation of
PROC LOGISTIC.

By default, the posterior probabilities are based on implicit prior probabilities that are
proportional to the frequencies of the response categories in thetraining data(the data
used to fit the model). Explicit prior probabilities should be specified when the sam-
ple proportions of the response categories in the training data differ substantially from
the operational data to be scored. For example, to detect a rare category, it is com-
mon practice to use a training set in which the rare categories are over-represented;
without prior probabilities that reflect the true incidence rate, the predicted posterior
probabilities for the rare category will be too high. By specifying the correct priors,
the posterior probabilities are adjusted appropriately.

The model fit to theDATA= data set in the PROC LOGISTIC statement is the de-
fault model used for the scoring. Alternatively, you can save a fit model on one
run of PROC LOGISTIC and use it to score new data on a subsequent run. The
OUTMODEL= option in the PROC LOGISTIC statement saves the model informa-
tion in a SAS data set. Specifying this data set in theINMODEL= option of a new
PROC LOGISTIC run will score theDATA= data set in the SCORE statement with-
out refitting the model.

The rest of this section provides some computational details about the scoring.

Posterior Probabilities and Confidence Limits

LetF be the inverse link function. That is,

F (t) =


1

1+exp(−t) logistic

Φ(t) normal
1− exp(− exp(t)) complementary log-log

The first derivative ofF is given by

F ′(t) =


exp(−t)

(1+exp(−t))2
logistic

φ(t) normal
exp(t) exp(− exp(t)) complementary log-log
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Suppose there arek + 1 response categories. LetY be the response variable with
levels1, . . . , k + 1. Letx = (x0, x1, . . . , xp)′ be a(p+ 1)-vector of covariates, with
x0 ≡ 1. Let θ be the vector of regression parameters.

Posterior probabilities are given by

Pn(i) =
Po(i)

p̃n(i)

po(i)∑
j Po(j)

p̃n(j)

po(j)

i = 1, . . . , k + 1

where the old posterior probabilities (Po) are the conditional probabilities of the re-
sponse categories givenx, and the old priors (po) are the sample proportions of re-
sponse categories of the training data. To simplify notation, absorb the old priors into
the new priors; that is

pn(i) =
p̃n(i)
po(i)

i = 1, . . . , k + 1

The posterior probabilities are functions ofθ and their estimates are obtained by
substitutingθ by its MLE θ̂. The variances of the estimated posterior probabilities
are given by thedelta methodas follows:

V ar(P̂n(i)) =
[
∂Pn(i)
∂θ

]′
V ar(θ̂)

[
∂Pn(i)
∂θ

]
where

∂Pn(i)
∂θ

=
∂Po(i)

∂θ pn(i)∑
j Po(j)pn(j)

−
Po(i)pn(i)

∑
j

∂Po(j)
∂θ pn(j)

[
∑

j Po(j)pn(j)]2

A 100(1-α) percent confidence interval for Pn(i) is

P̂n(i)± z1−α/2

√
V̂ ar(P̂n(i))

wherezτ is the upper 100τ percentile of the standard normal distribution.

Cumulative Response Model

Letα1, . . . , αk be the intercept parameters and letβ be the vector of slope parameters.
Denoteθ = (α1, . . . , αk,β

′)′. Let

ηi = ηi(θ) = αi + x′β, i = 1, . . . , k

Estimates ofη1, . . . , ηk are obtained by substituting the maximum likelihood estimate
θ̂ for θ.
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The predicted probabilities of the responses are

P̂o(i) = P̂r(Y = i) =


F (η̂1) i = 1
F (η̂i)− F (η̂i−1) i = 2, . . . , k
1− F (η̂k) i = k + 1

Fori = 1, . . . , k, letδi(x) be a (k+1) column vector withith entry equal to 1,k+1th
entry equal tox, and all other entries 0. The derivative of Po(i) with respect toθ are

∂Po(i)
∂θ

=


F ′(α1 + x′β)δ1(x) i = 1
F ′(αi + x′β)δi(x)− F ′(αi−1 + x′β)δi−1(x) i = 2, . . . , k
−F ′(αk + x′β)δk(x) i = k + 1

Generalized Logit Model

Consider the last response level (Y=k+1) as the reference. Letβ1, . . . ,βk be the
parameter vectors for the firstk logits, respectively. Denoteθ = (β′1, . . . ,β

′
k)
′. Let

η = (η1, . . . , ηk)′ with

ηi = ηi(θ) = x′βi i = 1, . . . , k

Estimates ofη1, . . . , ηk are obtained by substituting the maximum likelihood estimate
θ̂ for θ.

The predicted probabilities are

P̂o(k + 1) ≡ Pr(Y = k + 1|x) =
1

1 +
∑k

l=1 exp(η̂l)

P̂o(i) ≡ Pr(Y = i|x) = P̂o(k + 1) exp(ηi), i = 1, . . . , k

The derivative of Po(i) with respect toθ are

∂Po(i)
∂θ

=
∂η

∂θ

∂Po(i)
∂η

= (Ik ⊗ x)
(
∂Po(i)
∂η1

, · · · , ∂Po(i)
∂ηk

)′
where

∂Po(i)
∂ηj

=
{

Po(i)(1− Po(i)) j = i
−Po(i)Po(j) otherwise
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Special Case of Binary Response Model with No Priors

Let β be the vector of regression parameters. Let

η = η(β) = x′β

The variance of̂η is given by

V ar(η̂) = x′V ar(β̂)x

A 100(1-α) percent confidence interval forη is

η̂ ± z1−α/2

√
V̂ ar(η̂)

Estimates of Po(1) and confidence intervals for the Po(1) are obtained by back-
transformingη̂ and the confidence intervals forη, respectively. That is,

P̂o(1) = F (η̂)

and the confidence intervals are

F

(
η̂ ± z1−α/2

√
V̂ ar(η̂)

)

Conditional Logistic Regression

The method of maximum likelihood described in the preceding sections relies on
large-sample asymptotic normality for the validity of estimates and especially of their
standard errors. When you do not have a large sample size compared to the number of
parameters, this approach may be inappropriate resulting in biased inferences. This
situation typically arises when your data are stratified and you fit intercepts to each
stratum so that the number of parameters is of the same order as the sample size.
For example, in a 1:1 matched pairs study withn pairs andp covariates, you would
estimaten− 1 intercept parameters andp slope parameters. Taking the stratification
into account by “conditioning out” (and not estimating) the stratum-specific inter-
cepts gives consistent and asymptotically normal MLEs for the slope coefficients.
See Breslow and Day (1980) and Stokes, Davis, and Koch (2000) for more infor-
mation. If your nuisance parameters are not just stratum-specific intercepts, you can
perform anexact conditional logistic regression.

Computational Details

For each stratumh, h = 1, . . . ,H, number the observations asi = 1, . . . , nh

so that hi indexes theith observation in thehth stratum. Denote thep
covariates for observationhi as xhi and its binary response asyhi, let
y = (y11, . . . , y1n1 , . . . , yH1, . . . , yHnH

)′, Xh = (xh1 . . .xhnh
)′, and

X = (X′
1 . . .X

′
H)′. Let the dummy variableszh, h = 1, . . . ,H, be indicator
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functions for the strata (zh = 1 if the observation is in stratumh), denote
zhi = (z1, . . . , zH) for observationhi, Zh = (zh1 . . . zhnh

)′, andZ = (Z′1 . . .Z
′
H)′.

DenoteX
∗

= (Z||X) and x∗hi = (z′hi||x′hi)
′. Arrange the observations in each

stratumh so thatyhi = 1 for i = 1, . . . ,mh, andyhi = 0 for i = mh+1, . . . , nh.
Suppose all observations have unit frequency.

Consider thebinary logistic regression modelon page 2405 written as

logit(π) = X
∗
θ

where the parameter vectorθ = (α′,β′)′ consists ofα = (α1, . . . , αH)′, αh is
the intercept for stratumh, h = 1, . . . ,H, andβ is the parameter vector for thep
covariates.

From the“Determining Observations for Likelihood Contributions”section on page
2336, you can write the likelihood contribution of observationhi, i = 1, . . . , nh, h =
1, . . . ,H, as

Lhi(θ) =
eyhix

∗
hi
′θ

1 + ex
∗
hi
′θ

whereyhi = 1 when the response takes Ordered Value 1, andyhi = 0 otherwise.

The full likelihood is

L(θ) =
H∏

h=1

nh∏
i=1

Lhi(θ) =
ey

′X
∗
θ∏H

h=1

∏nh
i=1

(
1 + ex

∗
hi
′θ

)
Unconditional likelihood inference is based on maximizing this likelihood function.

When your nuisance parameters are the stratum-specific intercepts(α1, . . . , αH)′,
andβ are your parameters of interest, “conditioning out” the nuisance parameters
produces the following conditional likelihood (Lachin 2000)

L(β) =
H∏

h=1

Lh(β) =
H∏

h=1

∏mh
i=1 exp(x′hiβ)∑∏jmh
j=j1

exp(x′hjβ)

where the summation is over all
(

nh
mh

)
subsets{j1, . . . , jmh

} ofmh observations cho-
sen from thenh observations in stratumh. Note that the nuisance parameters have
been factored out of this equation.

For conditional asymptotic inference, maximum likelihood estimatesβ̂ of the regres-
sion parameters are obtained by maximizing the conditional likelihood, and asymp-
totic results are applied to the conditional likelihood function and the maximum like-
lihood estimators. A relatively fast method for computing this conditional likelihood
and its derivatives is given by Gail, Lubin, and Rubinstein (1981) and Howard (1972).
The default optimization techniques, which are the same as those implemented by the
NLP procedure in SAS/OR software, are
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• Newton-Raphson with ridging when the number of parametersp < 40

• quasi-Newton when40 ≤ p < 400

• conjugate gradient whenp ≥ 400

Sometimes the log likelihood converges but the estimates diverge. This condition is
flagged by having inordinately large standard errors for some of your parameter esti-
mates, and can be monitored by specifying theITPRINToption. Unfortunately, broad
existence criteria such as those discussed in the“Existence of Maximum Likelihood
Estimates”section on page 2338 do not exist for this model. It may be possible to
circumvent such a problem by standardizing your independent variables before fitting
the model.

Regression Diagnostic Details

Diagnostics are used to indicate observations that may have undue influence on the
model fit, or which may be outliers. Further investigation should be performed before
removing such an observation from the data set.

The derivations in this section follow Storer and Crowley’s (1985) method of aug-
menting the logistic regression model, which provides an estimate of the “one-step”
DFBETAS estimates advocated by Pregibon (1984). The method also provides es-
timates of conditional stratum-specific predicted values, residuals, and leverage for
each observation.

Following Storer and Crowley (1985), the log-likelihood contribution can be written
as

lh = log(Lh) = y′hγh − a(γh) where

a(γh) = log

∑ jmh∏
j=j1

exp(γhj)


and theh subscript on matrices indicates the submatrix for the stratum,γ ′h =
(γh1, . . . , γhnh

), andγhi = x′hiβ. Then the gradient and information matrix are

g(β) =
{
∂lh
∂β

}H

h=1

= X′(y − π)

Λ(β) =
{
∂2lh

∂β2

}H

h=1

= X′diag(U1, . . . ,UH)X

where

πhi =
∂a(γh)
∂γhi

=

∑
j(i)

∏jmh
j=j1

exp(γhj)∑∏jmh
j=j1

exp(γhj)

πh = (πh1, . . . , πhnh
)
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Uh =
∂2a(γh)
∂γ2

h

=
{
∂2a(γh)
∂γhi∂γhj

}
= {aij}

aij =

∑
k(i,j)

∏kmh
k=k1

exp(γhk)∑∏kmh
k=k1

exp(γhk)
− ∂a(γh)

∂γhi

∂a(γh)
∂γhj

= πhij − πhiπhj

whereπhi is the conditional stratum-specific probability that subjecti in stratumh is
a case, the summation onj(i) is over all subsets from{1, . . . , nh} of sizemh that
contain the indexi, and the summation onk(i, j) is over all subsets from{1, . . . , nh}
of sizemh that contain the indicesi andj.

To produce the true one-step estimateβ1
hi, start at the MLÊβ, delete thehith obser-

vation, and take one-step of the Newton-Raphson algorithm using the reduced data
set. Note that if there is only one event or one nonevent in a stratum, deletion of that
single observation is equivalent to deletion of the entire stratum. The augmentation
method does not take this into account.

The augmented model is

logit(Pr(yhi = 1|xhi)) = x′hiβ + z′hiγ

wherezhi = (0, . . . , 0, 1, 0, . . . , 0)′ has a1 in the hith coordinate, and useβ0 =
(β̂, 0)′ as the initial estimate for(β, γ)′. The gradient and information matrix before
the step are

g(β0) =
[

X′

z′hi

]
(y − π) =

[
0

yhi − πhi

]
Λ(β0) =

[
X′

z′hi

]
U [X zhi] =

[
Λ(β) X′Uzhi

z′hiUX z′hiUzhi

]

Inserting theβ0 and(X′, z′hi)
′ into the Gail, Lubin, and Rubinstein (1981) algorithm

provides the appropriate estimates ofg(β0) andΛ(β0). Indicate these estimates with
π̂ = π(β̂), Û = U(β̂), ĝ, andΛ̂.

DFBETA is computed from the information matrix as

∆hiβ = β0 − β1
hi

= −Λ̂
−1

(β0)ĝ(β0)

= −Λ̂
−1

(β̂)(X′Ûzhi)M−1z′hi(y − π̂) where

M = (z′hiÛzhi)− (z′hiÛX)Λ̂
−1

(β̂)(X′Ûzhi)

For each observation in the dataset, a DFBETA statistic is computed for each param-
eterβj , 1 ≤ j ≤ p, and standardized by the standard error ofβj from the full data set
to produce the estimate of DFBETAS.
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The estimated residualsehi = yhi − π̂hi are obtained from̂g(β0), and the weights,
or predicted probabilities, are then̂πhi = yhi − ehi. The residuals are standardized
and reported as (estimated) Pearson residuals:

rhi − nhiπ̂hi√
nhiπ̂hi(1− π̂hi)

whererhi is the number of events in the observation andnhi is the number of trials.

The estimated leverage is defined as

hhi =
trace{(z′hiÛX)Λ̂

−1
(β̂)(X′Ûzhi)}

trace{z′hiÛzhi}

This definition of leverage produces different values from those defined by Pregibon
(1984), Moolgavkar, Lustbader, and Venzon (1985), and Hosmer and Lemeshow
(2000); however, it has the advantage that no extra computations beyond those for
the DFBETAS are required.

For events/trials MODEL syntax, treat each observation as two observations (the first
for the nonevents and the second for the events) with frequenciesfh,2i−1 = nhi− rhi

andfh,2i = rhi, and augment the model with a matrixZhi = [zh,2i−1zh,2i] instead
of a singlezhi vector. Writingγhi = x′hiβfhi in the preceding section results in the
following gradient and information matrix.

g(β0) =

 0
fh,2i−1(yh,2i−1 − πh,2i−1)

fh,2i(yh,2i − πh,2i)


Λ(β0) =

[
Λ(β) X′diag(f)Udiag(f)Zhi

Z′hidiag(f)Udiag(f)X Z′hidiag(f)Udiag(f)Zhi

]

The predicted probabilities are thenπ̂hi = yh,2i − eh,2i/rh,2i, while the leverage and
the DFBETAs are produced fromΛ(β0) in a similar fashion as for the preceding
single-trial equations.

Exact Conditional Logistic Regression

The theory of exact conditional logistic regression analysis was originally laid out
by Cox (1970), and the computational methods employed in PROC LOGISTIC are
described in Hirji, Mehta, and Patel (1987), Hirji (1992), and Mehta, Patel, and
Senchaudhuri (1992). Other useful references for the derivations include Cox and
Snell (1989), Agresti (1990), and Mehta and Patel (1995).

Exact conditional inference is based on generating the conditional distribution for the
sufficient statistics of the parameters of interest. This distribution is called theper-
mutationor exact conditionaldistribution. Using the notation in the“Computational
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Details” section on page 2365, follow Mehta and Patel (1995) and first note that the
sufficient statisticsT = (T1, . . . , Tp) for θ are

Tj =
n∑

i=1

yixij , j = 1, . . . , p

Denote a vector of observable sufficient statistics ast = (t1, . . . , tp)′.

The probability density function (pdf) forT can be created by summing over all
binary sequencesy that generate an observablet and lettingC(t) = ||{y : y′X =
t′}|| denote the number of sequencesy that generatet

Pr(T = t) =
C(t) exp(t′θ)∏n

i=1[1 + exp(x′iθ)]

In order to condition out the stratum parameters, partition the parameter vector
θ = (θ′0,θ

′
1)
′, whereθ0 is a p0 × 1 vector of the nuisance parameters, andθ1 is

the parameter vector for the remainingp1 = p− p0 parameters of interest. Likewise,
partition X into X0 andX1, T into T0 andT1, andt into t0 and t1. The nui-
sance parameters can be removed from the analysis by conditioning on their sufficient
statistics to create the conditional likelihood ofT1 givenT0 = t0

Pr(T1 = t1|T0 = t0) =
Pr(T = t)

Pr(T0 = t0)

= fθ1(t1|t0) =
C(t0, t1) exp(t′1θ1)∑
uC(t0,u) exp(u′θ1)

whereC(t0,u) is the number of vectorsy such thaty′X0 = t0 andy′X1 = u. Note
that the nuisance parameters have factored out of this equation, and thatC(t0, t1) is
a constant.

The goal of the exact conditional analysis is to determine how likely the observed re-
sponsey0 is with respect to all2n possible responsesy = (y1, . . . , yn)′. One way to
proceed is to generate everyy vector for whichy′X0 = t0, and count the number of
vectorsy for whichy′X1 is equal to each uniquet1. Generating the conditional dis-
tribution from complete enumeration of the joint distribution is conceptually simple;
however, this method becomes computationally infeasible very quickly. For example,
if you had only30 observations, you’d have to scan through230 differenty vectors.

Several algorithms are available in PROC LOGISTIC to generate the exact dis-
tribution. All of the algorithms are based on the following observation. Given
any y = (y1, . . . , yn)′ and a designX = (x1, . . . ,xn)′, let y(i) = (y1, . . . , yi)′

andX(i) = (x1, . . . ,xi)′ be the firsti rows of each matrix. Write the sufficient
statistic based on thesei rows ast′(i) = y′(i)X(i). A recursion relation results:
t(i+1) = t(i) + yi+1xi+1.
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The following methods are available.

• The multivariate shift algorithmdeveloped by Hirji, Mehta, and Patel (1987)
steps through the recursion relation by adding one observation at a time and
building an intermediate distribution at each step. If it determines thatt(i)

for the nuisance parameters could eventually equalt, thent(i) is added to the
intermediate distribution.

• Hirji (1992) extends the multivariate shift algorithm to generalized logit mod-
els. Since the generalized logit model fits a new set of parameters to each
logit, the number of parameters in the model can easily get too large for this
algorithm to handle. Note for these models that the hypothesis tests for each
effect are computed across the logit functions, while individual parameters are
estimated for each logit function.

• A network algorithm described in Mehta, Patel, and Senchaudhuri (1992)
builds a network for each parameter that you are conditioning out in order to
identify feasibleyi for they vector. These networks are combined and the set
of feasibleyi is further reduced, then the multivariate shift algorithm uses this
knowledge to build the exact distribution without adding as many intermediate
t(i+1) as the multivariate shift algorithm does.

• Mehta, Patel, and Senchaudhuri (2000) devised a hybrid Monte-Carlo and net-
work algorithm that extends their 1992 algorithm by sampling from the com-
bined network to build the exact distribution.

The bulk of the computation time and memory for these algorithms is consumed by
the creation of the networks and the exact joint distribution. After the joint distri-
bution for a set of effects is created, the computational effort required to produce
hypothesis tests and parameter estimates for any subset of the effects is (relatively)
trivial.

Hypothesis Tests

Consider testing the null hypothesisH0:β1 = 0 against the alternativeHA:β1 6= 0,
conditional onT0 = t0. Under the null hypothesis, the test statistic for theexact
probability testis justfβ1=0(t1|t0), while the correspondingp-value is the probabil-
ity of getting a less likely (more extreme) statistic,

p(t1|t0) =
∑
u∈Ωp

f0(u|t0)

whereΩp = {u: there existy with y′X1 = u, y′X0 = t0, and f0(u|t0) ≤
f0(t1|t0)}.

For theexact conditional scores test, the conditional meanµ1 and variance matrix
Σ1 of theT1 (conditional onT0 = t0) are calculated, and the score statistic for the
observed value,

s = (t1 − µ1)
′Σ−1

1 (t1 − µ1)
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is compared to the score for each member of the distribution

S(T1) = (T1 − µ1)
′Σ−1

1 (T1 − µ1)

The resultingp-value is

p(t1|t0) = Pr(S ≥ s) =
∑
u∈Ωs

f0(u|t0)

whereΩs = {u: there existy with y′X1 = u, y′X0 = t0, andS(u) ≥ s}.

The mid-p statistic, defined as

p(t1|t0)−
1
2
f0(t1|t0)

was proposed by Lancaster (1961) to compensate for the discreteness of a distribu-
tion. Refer to Agresti (1992) for more information. However, to allow for more
flexibility in handling ties, you can write the mid-p statistic as (based on a suggestion
by LaMotte 2002 and generalizing Vollset, Hirji, and Afifi 1991)

∑
u∈Ω<

f0(u|t0) + δ1f0(t1|t0) + δ2
∑

u∈Ω=

f0(u|t0)

where, fori ∈ {p, s}, Ω< is Ωi using strict inequalities, andΩ= is Ωi using equalities
with the added restriction thatu 6= t1. Letting(δ1, δ2) = (0.5, 1.0) yields Lancaster’s
mid-p.

Caution: When the exact distribution has ties and METHOD=NETWORKMC is
specified, the Monte Carlo algorithm estimatesp(t|t0) with error, and hence it cannot
determine precisely which values contribute to the reportedp-values. For example,
if the exact distribution has densities{0.2, 0.2, 0.2, 0.4} and if the observed statistic
has probability0.2, then the exact probabilityp-value is exactly0.6. Under Monte
Carlo sampling, if the densities afterN samples are{0.18, 0.21, 0.23, 0.38} and the
observed probability is0.21, then the resultingp-value is0.39. Therefore, the exact
probability testp-value for this example fluctuates between0.2, 0.4, and0.6, and
the reportedp-values are actually lower bounds for the truep-values. If you need
more precise values, you can specify the OUTDIST= option, determine appropriate
cutoff values for the observed probability and score, then construct the truep-value
estimates from the OUTDIST= data set using the following statements.

data _null_;
set outdist end=end;
retain pvalueProb 0 pvalueScore 0;
if prob < ProbCutOff then pvalueProb+prob;
if score > ScoreCutOff then pvalueScore+prob;
if end then put pvalueProb pvalueScore;

run;
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Inference for a Single Parameter

Exact parameter estimates are derived for a single parameterβi by regard-
ing all the other parametersβ0 = (β1, . . . , βi−1, βi+1, . . . , βp+q)′ as nui-
sance parameters. The appropriate sufficient statistics areT1 = Ti and
T0 = (T1, . . . , Ti−1, Ti+1, . . . , Tp+q)′, with their observed values denoted by
the lowercaset. Hence, the conditional pdf used to create the parameter estimate for
βi is

fβi
(ti|t0) =

C(t0, ti) exp(tiβi)∑
u∈ΩC(t0, u) exp(uβi)

for Ω = {u: there existy with Ti = u andT0 = t0}.

The maximum exact conditional likelihood estimate is the quantityβ̂i, which max-
imizes the conditional pdf. A Newton-Raphson algorithm is used to perform this
search. However, if the observedti attains either its maximum or minimum value in
the exact distribution (that is, eitherti = min{u : u ∈ Ω} or ti = max{u : u ∈ Ω}),
then the conditional pdf is monotonically increasing inβi and cannot be maximized.
In this case, a median unbiased estimate (Hirji, Tsiatis, and Mehta 1989)β̂i is pro-
duced that satisfiesf

β̂i
(ti|t0) = 0.5, and a Newton-Raphson-type algorithm is used

to perform the search.

Likelihood ratio tests based on the conditional pdf are used to test the nullH0:βi = 0
against the alternativeHA:βi > 0. The critical region for this UMP test consists of
the upper tail of values forTi in the exact distribution. Thus, the one-sided signifi-
cance levelp+(ti; 0) is

p+(ti; 0) =
∑
u≥ti

f0(u|t0)

Similarly, the one-sided significance levelp−(ti; 0) againstHA:βi < 0 is

p−(ti; 0) =
∑
u≤ti

f0(u|t0)

The two-sided significance levelp(ti; 0) againstHA:βi 6= 0 is calculated as

p(ti; 0) = 2min[p−(ti; 0), p+(ti; 0)]

An upper100(1− 2ε)% exact confidence limit for̂βi corresponding to the observed
ti is the solutionβU (ti) of ε = p−(ti, βU (ti)), while the lower exact confidence limit
is the solutionβL(ti) of ε = p+(ti, βL(ti)). Again, a Newton-Raphson procedure is
used to search for the solutions.

Specifying the ONESIDED option displays only onep-value and one confidence in-
terval, because small values ofp+(ti; 0) andp−(ti; 0) support different alternative
hypotheses and only one of thesep-values can be less than 0.50.
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The mid-p confidence limits are the solutions tomin{p−(ti, β(ti)), p+(ti, β(ti))} −
(1− δ1)fβ(ti)(u|t0) = ε for ε = α/2, 1−α/2 (Vollset, Hirji, and Afifi 1991).δ1 = 1
produces the usual exact (ormax-p) confidence interval,δ1 = 0.5 yields the mid-p
interval, andδ1 = 0 gives themin-p interval. The mean of the endpoints of the max-p
and min-p intervals provides themean-p interval as defined by Hirji, Mehta, and Patel
(1988).

Estimates and confidence intervals for the odds-ratios are produced by exponentiating
the estimates and interval endpoints for the parameters.

OUTEST= Output Data Set

The OUTEST= data set contains one observation for each BY group containing
the maximum likelihood estimates of the regression coefficients. If you also use
the COVOUT option in the PROC LOGISTIC statement, there are additional ob-
servations containing the rows of the estimated covariance matrix. If you use the
FORWARD, BACKWARD, or STEPWISE selection method, only the estimates of
the parameters and covariance matrix for the final model are output to the OUTEST=
data set.

Variables in the OUTEST= Data Set

The OUTEST= data set contains the following variables:

• any BY variables specified

• –LINK– , a character variable of length 8 with four possible values:
CLOGLOG for the complementary log-log function, LOGIT for the logit
function, NORMIT for the probit (alias normit) function, and GLOGIT for the
generalized logit function.

• –TYPE– , a character variable of length 8 with two possible values: PARMS
for parameter estimates or COV for covariance estimates. If an EXACT state-
ment is also specified, then two other values are possible: EPARMMLE for the
exact maximum likelihood estimates and EPARMMUE for the exact median
unbiased estimates.

• –NAME– , a character variable containing the name of the response variable
when–TYPE–=PARMS, EPARMMLE, and EPARMMUE, or the name of a
model parameter when–TYPE–=COV

• –STATUS– , a character variable that indicates whether the estimates have
converged

• one variable for each intercept parameter

• one variable for each slope parameter and one variable for the offset variable
if the OFFSET= option if specified. If an effect is not included in the final
model in a model building process, the corresponding parameter estimates and
covariances are set to missing values.

• –LNLIKE– , the log likelihood
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Parameter Names in the OUTEST= Data Set

If there are only two response categories in the entire data set, the intercept parameter
is namedIntercept. If there are more than two response categories in the entire
data set, the intercept parameters are namedIntercept–xxx, wherexxx is the value
(formatted if a format is applied) of the corresponding response category.

For continuous explanatory variables, the names of the parameters are the same as
the corresponding variables. For class variables, the parameter names are obtained
by concatenating the corresponding CLASS variable name with the CLASS cate-
gory; see thePARAM= option in the CLASS statement and the“CLASS Variable
Parameterization”section on page 2331 for more details. For interaction and nested
effects, the parameter names are created by concatenating the names of each effect.

For the generalized logit model, names of parameters corresponding to each nonref-
erence category contain–xxx as the suffix, wherexxx is the value (formatted if a
format is applied) of the corresponding nonreference category. For example, suppose
the variableNet3 represents the television network (ABC, CBS, and NBC) viewed
at a certain time. The following code fits a generalized logit model withAge and
Gender (a CLASS variable with values Female and Male) as explanatory variables.

proc logistic;
class Gender;
model Net3 = Age Gender / link=glogit;

run;

There are two logit functions, one contrasting ABC with NBC and the other contrast-
ing CBS with NBC. For each logit, there are three parameters: an intercept parameter,
a slope parameter for Age, and a slope parameter for Gender (since there are only two
gender levels and the EFFECT parameterization is used by default). The names of
the parameters and their descriptions are as follows.

Intercept–ABC intercept parameter for the logit contrasting ABC with
NBC

Intercept–CBS intercept parameter for the logit contrasting CBS with
NBC

Age–ABC Age slope parameter for the logit contrasting ABC with
NBC

Age–CBS Age slope parameter for the logit contrasting CBS with
NBC

GenderFemale–ABC Gender=Female slope parameter for the logit contrasting
ABC with NBC

GenderFemale–CBS Gender=Female slope parameter for the logit contrasting
CBS with NBC
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INEST= Input Data Set

You can specify starting values for the iterative algorithm in the INEST= data set. The
INEST= data set has the same structure as theOUTEST=data set but is not required
to have all the variables or observations that appear in the OUTEST= data set.

The INEST= data set must contain the intercept variables (named Intercept for binary
response models and Intercept, Intercept2, Intercept3, and so forth, for ordinal and
nominal response models) and all explanatory variables in the MODEL statement. If
BY processing is used, the INEST= data set should also include the BY variables,
and there must be one observation for each BY group. If the INEST= data set also
contains the–TYPE– variable, only observations with–TYPE– value ’PARMS’ are
used as starting values.

OUT= Output Data Set in the OUTPUT Statement

The OUT= data set in the OUTPUT statement contains all the variables in the in-
put data set along with statistics you request usingkeyword=nameoptions or the
PREDPROBS= option in the OUTPUT statement. In addition, if you use thesingle-
trial syntax and you request any of the XBETA=, STDXBETA=, PREDICTED=,
LCL=, and UCL= options, the OUT= data set contains the automatic variable

–LEVEL– . The value of–LEVEL– identifies the response category upon which
the computed values of XBETA=, STDXBETA=, PREDICTED=, LCL=, and UCL=
are based.

When there are more than two response levels, only variables named by the XBETA=,
STDXBETA=, PREDICTED=, LOWER=, and UPPER= options and the variables
given by PREDPROBS=(INDIVIDUAL CUMULATIVE) have their values com-
puted; the other variables have missing values. If you fit a generalized logit model,
the cumulative predicted probabilities are not computed.

When there are only two response categories, each input observation produces one
observation in the OUT= data set.

If there are more than two response categories and you only specify the
PREDPROBS= option, then each input observation produces one observation
in the OUT= data set. However, if you fit an ordinal (cumulative) model and specify
options other than the PREDPROBS= options, each input observation generates
as many output observations as one fewer than the number of response levels, and
the predicted probabilities and their confidence limits correspond to the cumulative
predicted probabilities. If you fit a generalized logit model and specify options
other than the PREDPROBS= options, each input observation generates as many
output observations as the number of response categories; the predicted probabilities
and their confidence limits correspond to the probabilities of individual response
categories.

For observations in which only the response variable is missing, values of
the XBETA=, STDXBETA=, PREDICTED=, UPPER=, LOWER=, and the
PREDPROBS= options are computed even though these observations do not affect
the model fit. This enables, for instance, predicted probabilities to be computed for
new observations.
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OUT= Output Data Set in a SCORE Statement

The OUT= data set in a SCORE statement contains all the variables in the data set
being scored. The data set being scored can be either the inputDATA= data set in the
PROC LOGISTIC statement or theDATA= data set in the SCORE statement. The
DATA= data set in the SCORE statement may not contain a response variable.

If the data set being scored contains a response variable, then denote thenormalized
levels (left justified formatted values of 16 characters or less) of your response vari-
ableY by Y1, . . . , Yk+1. For each response level, the OUT= data set also contains:

• F–Y, the normalized levels of the response variableY in the data set being
scored. If theevents/trials syntax is used, the F–Y variable is not created.

• I–Y, the normalized levels that the observations are classified into. Note that
an observation is classified into the level with the largest probability. If the
events/trials syntax is used, the–INTO– variable is created instead and it con-
tains the values EVENT and NONEVENT.

• P–Yi, the posterior probabilities of the normalized response levelYi.

• If the CLM option is specified in the SCORE statement, the OUT= data set also
includes:

– LCL–Yi, the lower 100(1-α)% confidence limits for P–Yi

– UCL–Yi, the upper 100(1-α)% confidence limits for P–Yi

OUTDIST= Output Data Set

The OUTDIST= data set contains every exact conditional distribution necessary to
process the EXACT statement. For example, the following statements create one
distribution for thex1 parameter and another for thex2 parameters, and produces the
data setdist shown inFigure 42.7:

proc logistic;
class x2 / param=ref;
model y=x1 x2;
exact x1 x2/ outdist=dist;

proc print data=dist;
run;
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Obs x1 x20 x21 Count Score Prob

1 . 0 0 3 5.81151 0.03333
2 . 0 1 15 1.66031 0.16667
3 . 0 2 9 3.12728 0.10000
4 . 1 0 15 1.46523 0.16667
5 . 1 1 18 0.21675 0.20000
6 . 1 2 6 4.58644 0.06667
7 . 2 0 19 1.61869 0.21111
8 . 2 1 2 3.27293 0.02222
9 . 3 0 3 6.27189 0.03333

10 2 . . 6 3.03030 0.12000
11 3 . . 12 0.75758 0.24000
12 4 . . 11 0.00000 0.22000
13 5 . . 18 0.75758 0.36000
14 6 . . 3 3.03030 0.06000

Figure 42.7. OUTDIST

The first nine observations in thedist data set contain a exact distribution for the
parameters of thex2 effect (hence the values for thex1 parameter are missing), and
the remaining five observations are for thex1 parameter. If a joint distribution was
created, there would be observations with values for both thex1 andx2 parameters.
For CLASS variables, the corresponding parameters in thedist data set are identified
by concatenating the variable name with the appropriate classification level.

The data set contains the possible sufficient statistics of the parameters for the effects
specified in the EXACT statement, and theCount variable contains the number of
different responses that yield these statistics. For example, there were 6 possible
response vectorsy for which the dot producty′x1 was equal to 2, and for which
y′x20, y′x21, andy′1 were equal to their actual observed values (displayed in the
“Sufficient Statistics” table). When hypothesis tests are performed on the parameters,
theProb variable contains the probability of obtaining that statistic (which is just the
count divided by the total count), and theScore variable contains the score for that
statistic. For more information, see the section“EXACT Statement Examples”on
page 2302.

OUTROC= Output Data Set

The OUTROC= data set contains data necessary for producing the ROC curve, and
can be created by specifying theOUTROC=option in the MODEL statement or the
OUTROC=option in the SCORE statement: It has the following variables:

• any BY variables specified

• –STEP– , the model step number. This variable is not included if model se-
lection is not requested.

• –PROB– , the estimated probability of an event. These estimated probabili-
ties serve as cutpoints for predicting the response. Any observation with an
estimated event probability that exceeds or equals–PROB– is predicted to be
an event; otherwise, it is predicted to be a nonevent. Predicted probabilities
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that are close to each other are grouped together, with the maximum allowable
difference between the largest and smallest values less than a constant that is
specified by the ROCEPS= option. The smallest estimated probability is used
to represent the group.

• –POS– , the number of correctly predicted event responses

• –NEG– , the number of correctly predicted nonevent responses

• –FALPOS– , the number of falsely predicted event responses

• –FALNEG– , the number of falsely predicted nonevent responses

• –SENSIT– , the sensitivity, which is the proportion of event observations that
were predicted to have an event response

• –1MSPEC– , one minus specificity, which is the proportion of nonevent ob-
servations that were predicted to have an event response

Note that none of these statistics are affected by the bias-correction method discussed
in the “Classification Table”section on page 2352. An ROC curve is obtained by
plotting –SENSIT– against–1MSPEC– . For more information, see the section
“Receiver Operating Characteristic Curves”on page 2357.

Computational Resources

The memory needed to fit an unconditional model is approximately24(p+2)2 bytes,
wherep is the number of parameters estimated. For cumulative response models
with more than two response levels, a test of the parallel lines assumption requires an
additional memory of approximately4k2(m+1)2 +24(m+2)2 bytes, wherek is the
number of response levels andm is the number of slope parameters. However, if this
additional memory is not available, the procedure skips the test and finishes the other
computations. You may need more memory if you use the SELECTION= option for
model building.

The data that consist of relevant variables (including the design variables for model
effects) and observations for fitting the model are stored in the utility file. If sufficient
memory is available, such data will also be kept in memory; otherwise, the data
are reread from the utility file for each evaluation of the likelihood function and its
derivatives, with the resulting execution time of the procedure substantially increased.

If a conditional logistic regression is performed, then approximately4(m2 + m +
4) maxh(mh)+(8sH +36)H+12sH additional bytes of memory are needed, where
mh is the number of events in stratumh, H is the total number of strata, andsH is
the number of variables used to define the strata.

Computational Resources for Exact Conditional Logistic Regression

Many problems require a prohibitive amount of time and memory for exact compu-
tations, depending on the speed and memory available on your computer. For such
problems, consider whether exact methods are really necessary. Stokes, Davis, and
Koch (2000) suggest looking at exactp-values when the sample size is small and the
approximatep-values from the unconditional analysis are less than 0.10, and they
providerules of thumbfor determining when various models are valid.
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A formula does not exist that can predict the amount of time and memory neces-
sary to generate the exact conditional distributions for a particular problem. The time
and memory required depends on several factors, including the total sample size, the
number of parameters of interest, the number of nuisance parameters, and the or-
der in which the parameters are processed. To provide a feel for how these factors
affect performance, 19 data sets containingNobs ∈ {10, . . . , 500} observations con-
sisting of up to 10 independent uniform binary covariates (X1,. . .,XN) and a binary
response variable (Y), are generated and exact conditional distributions are created
for X1 conditional on the other covariates using the defaultMETHOD=NETWORK.
Figure 42.8displays results obtained on a 400Mhz PC with 768MB RAM running
Microsoft Windows NT.

data one;
do obs=1 to HalfNobs ;

do Y=0 to 1;
X1=round(ranuni(0));
...
XN=round(ranuni(0));
output;

end;
end;

options fullstimer;
proc logistic exactonly exactoptions(method=network maxtime=1200);

class X1 ... XN / param=ref;
model Y=X1 ... XN ;
exact X1 / outdist=dist;

run;

Figure 42.8. Mean Time and Memory Required
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At any time while PROC LOGISTIC is deriving the distributions, you can terminate
the computations by pressing the system interrupt key sequence (refer to the SAS
Companion for your system) and choosing to stop computations. If you run out of
memory, refer to the SAS Companion for your system to see how to allocate more.

You can use the EXACTOPTIONS optionMAXTIME= to limit the total amount
of time PROC LOGISTIC uses to derive all of the exact distributions. If PROC
LOGISTIC does not finish within that time, the procedure terminates.

Calculation of frequencies are performed in the log-scale by default. This reduces the
need to check for excessively large frequencies but can be slower than not scaling.
You can turn off the log-scaling by specifying theNOLOGSCALE option in the
MODEL statement. If a frequency in the exact distribution is larger than the largest
integer that can be held in double-precision, a warning is printed to the LOG, but
since inaccuracies due to adding small numbers to these large frequencies may have
little-or-no effect on the statistics, the exact computations continue.

You can monitor the progress of the procedure by submitting your program with the
EXACTOPTIONS optionSTATUSTIME=. If the procedure is too slow, you can try
another method by specifying the EXACTOPTIONS optionMETHOD=, you can
try reordering the variables in the MODEL statement (note that CLASS variables are
always processed before continuous covariates), or you can try reparameterizing your
classification variables, for example:

class class-variables / param=ref ref=first order=freq;

Displayed Output

If you use the NOPRINT option in the PROC LOGISTIC statement, the procedure
does not display any output. Otherwise, the displayed output of the LOGISTIC pro-
cedure includes the following:

• “Model Information” table, which gives

– name of the input Data Set

– name and label of the Response Variable, if thesingle-trialsyntax is used

– number of Response Levels, if thesingle-trialsyntax is used

– name of the Events Variable, if theevents/trialssyntax is used

– name of the Trials Variable, if theevents/trialssyntax is used

– name of the Offset Variable, if the OFFSET= option is specified

– name of the Frequency Variable, if the FREQ statement is specified

– name of the Weight Variable, if the WEIGHT statement is specified

– Number of Strata, if the STRATA statement is specified

– Number of Strata Ignored and the total Frequency Ignored, if the
STRATA statement is specified and at least one stratum has no events
or no nonevents

– Link Function
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– Optimization Technique

– seed, if METHOD=NETWORKMC is specified

• “Number of Observations” table, which gives

– Number of Observations read from the input data set

– Number of Observations used in the analysis

– Sum of Frequencies of all the observations read from the input data set

– Sum of Frequencies of all the observations used in the analysis

– Sum of Weights of all the observations read from the input data set

– Sum of Weights of all the observations used in the analysis

– Normalized Sum of Weights of all the observations used in the analysis,
if the SCALE=WILLIAMS option is specified in the MODEL statement
or the NORMALIZE option is specified in the WEIGHT statement.

An ODS OUTPUT data set created from this table contains all of the informa-
tion in every row.

• “Response Profile” table, which gives, for each response level, the ordered
value (an integer between one and the number of response levels, inclusive);
the value of the response variable if thesingle-trial syntax is used or the val-
ues “Event” and “Nonevent” if theevents/trialssyntax is used; the count or
frequency; and the sum of weights if the WEIGHT statement is specified

• “Class Level Information” table, which gives the level and the design variables
for each CLASS explanatory variable

• “Descriptive Statistics for Continuous Explanatory Variables” table for contin-
uous explanatory variables, the “Frequency Distribution of Class Variables,”
and the “Weight Distribution of Class Variables” tables (if the WEIGHT state-
ment is specified), if you specify the SIMPLE option in the PROC LOGISTIC
statement. The “Descriptive Statistics for Continuous Explanatory Variables”
table contains the mean, standard deviation, maximum and minimum of each
continuous variable specified in the MODEL statement.

• “Maximum Likelihood Iterative Phase” table, if you use the ITPRINT option
in the MODEL statement. This table gives the iteration number, the step size
(in the scale of 1.0, .5, .25, and so on) or the ridge value,−2 log likelihood, and
parameter estimates for each iteration. Also displayed are the last evaluation
of the gradient vector and the last change in the−2 log likelihood.

• Pearson and deviance goodness-of-fit statistics, if you use the SCALE= option
in the MODEL statement

• score test result for testing the parallel lines assumption, if an ordinal response
model is fitted. If LINK=CLOGLOG or LINK=PROBIT, this test is labeled
“Score Test for the Parallel Slopes Assumption.” The proportion odds assump-
tion is a special case of the parallel lines assumption when LINK=LOGIT. In
this case, the test is labeled “Score Test for the Proportional Odds Assumption”.

• “Model Fit Statistics” and “Testing Global Null Hypothesis: BETA=0” tables,
which give the various criteria (−2 Log L, AIC, SC) based on the likelihood
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for fitting a model with intercepts only and for fitting a model with intercepts
and explanatory variables. If you specify the NOINT option, these statistics
are calculated without considering the intercept parameters. The third column
of the table gives the chi-square statistics andp-values for the−2 Log L statis-
tic and for the Score statistic. These test the joint effect of the explanatory
variables included in the model. The Score criterion is always missing for the
models identified by the first two columns of the table. Note also that the first
two rows of the Chi-Square column are always missing, since tests cannot be
performed for AIC and SC.

• generalizedR2 measures for the fitted model, if you specify the RSQUARE
option in the MODEL statement

• “Type 3 Analysis of Effects” table, if the model contains an effect involving a
CLASS variable. This table gives the Wald Chi-square statistic, the degrees of
freedom, and thep-value for each effect in the model

• “Analysis of Maximum Likelihood Estimates” table, which includes

– parameter name, which also identifies the CLASS variable level and, for
generalized logit models, a response variable column to identify the cor-
responding logit by displaying the nonreference level of the logit

– maximum likelihood estimate of the parameter

– estimated standard error of the parameter estimate, computed as the
square root of the corresponding diagonal element of the estimated co-
variance matrix

– Wald chi-square statistic, computed by squaring the ratio of the parameter
estimate divided by its standard error estimate

– p-value of the Wald chi-square statistic with respect to a chi-square dis-
tribution with one degree of freedom

– standardized estimate for the slope parameter, if you specify the STB
option in the MODEL statement. This estimate is given byβ̂i/(s/si),
wheresi is the total sample standard deviation for theith explanatory
variable and

s =


π/
√

3 Logistic
1 Normal
π/
√

6 Extreme-value

Standardized estimates of the intercept parameters are set to missing.

– eβ̂i for each slope parameterβi, if you specify the EXPB option in the
MODEL statement. For continuous variables, this is equivalent to the
estimated odds ratio for a 1 unit change.

– label of the variable, if you specify the PARMLABEL option in the
MODEL statement and if space permits. Due to constraints on the line
size, the variable label may be suppressed in order to display the table in
one panel. Use the SAS system option LINESIZE= to specify a larger
line size to accommodate variable labels. A shorter line size can break
the table into two panels allowing labels to be displayed.
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• “Odds Ratio Estimates” table, which contains the odds ratio estimates and the
corresponding 95% Wald confidence intervals. For continuous explanatory
variables, these odds ratios correspond to a unit increase in the risk factors.

• “Association of Predicted Probabilities and Observed Responses” table, which
includes a breakdown of the number of pairs with different responses, and
four rank correlation indexes: Somers’D, Goodman-Kruskal Gamma, and
Kendall’s Tau-a, andc

• confidence intervals for all the parameters, if you use the CLPARM= option in
the MODEL statement

• confidence intervals for all the odds ratios, if you use the CLODDS= option in
the MODEL statement

• a summary of the model-building process, if you use a FORWARD,
BACKWARD, or STEPWISE selection method. This summary gives the
step number, the explanatory variables entered or removed at each step, the
chi-square statistic, and the correspondingp-value on which the entry or
removal of the variable is based (the score chi-square is used to determine
entry; the Wald chi-square is used to determine removal)

• “Analysis of Variables Removed by Fast Backward Elimination” table, if you
specify the FAST option in the MODEL statement. This table gives the approx-
imate chi-square statistic for the variable removed, the correspondingp-value
with respect to a chi-square distribution with one degree of freedom, the resid-
ual chi-square statistic for testing the joint significance of the variable and the
preceding ones, the degrees of freedom, and thep-value of the residual chi-
square with respect to a chi-square distribution with the corresponding degrees
of freedom

• “Analysis of Effects not in the Model” table, if you specify the DETAILS op-
tion in the MODEL statement. This table gives the score chi-square statistic
for testing the significance of each variable not in the model after adjusting for
the variables already in the model, and thep-value of the chi-square statistic
with respect to a chi-square distribution with one degree of freedom

• classification table, if you use the CTABLE option in the MODEL state-
ment. For each prior event probability (labeled “Prob Event”) specified by the
PEVENT= option and each cutpoint specified in the PPROB= option, the table
gives the four entries of the2 × 2 table of observed and predicted responses
and the percentages of correct classification, sensitivity, specificity, false pos-
itive, and false negative. The columns labeled “Correct” give the number of
correctly classified events and nonevents. “Incorrect Event” gives the number
of nonevents incorrectly classified as events. “Incorrect Nonevent” gives the
number of nonevents incorrectly classified as events.

• estimated covariance matrix of the parameter estimates, if you use the COVB
option in the MODEL statement

• estimated correlation matrix of the parameter estimates, if you use the CORRB
option in the MODEL statement

• “Contrast Test Results” table, if you specify a CONTRAST statement. This
table gives the result of the Wald test for each CONTRAST specified. If you
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specify the E option in the CONTRAST statement, then the contrast matrix is
displayed. If you specify the ESTIMATE= option in the CONTRAST state-
ment, then estimates and Wald tests for each contrast (row of the contrast ma-
trix) or exponentiated contrast are produced.

• “Linear Hypothesis Testing” table, if you specify a TEST statement. This table
gives the result of the Wald test for each TEST statement specified. If you
specify the PRINT option in the TEST statement, then matrices used in the
intermediate calculations are also displayed.

• results of the Hosmer and Lemeshow test for the goodness of fit of the fitted
model, if you use the LACKFIT option in the MODEL statement

• “Regression Diagnostics” table, if you use the INFLUENCE option in the
MODEL statement. This table gives, for each observation, the case number
(which is the observation number), the values of the explanatory variables in-
cluded in the model, the Pearson residual, the deviance residual, the diagonal
element of the hat matrix, the standardized difference in the estimate for each
parameter (nameDFBETA, wherenameis eitherIntercept or the name of an
explanatory variable), two confidence interval displacement diagnostics (C and
CBAR), the change in the Pearson chi-square statistic (DIFCHISQ), and the
change in the deviance (DIFDEV)

If you also specify the STRATA statement, then this table contains the case
number (which is the observation number), the values of the explanatory vari-
ables included in the model, the estimated one-step Pearson residual, the esti-
mated one-step diagonal element of the hat matrix, and the estimated one-step
standardized difference in the estimate for each parameter.

• index plots of regression diagnostics, if you specify the IPLOTS option in the
MODEL statement. These include plots of

– Pearson residuals

– deviance residuals

– diagonal elements of the hat matrix

– standardized differences in parameter estimates, DFBETA0 for the inter-
cept estimate, DFBETA1 for the slope estimate of the first explanatory
variable in the MODEL statement, and so on

– confidence interval displacement diagnostics C

– confidence interval displacement diagnostics CBAR

– changes in the Pearson chi-square statistic

– changes in the deviance

• if you specify a STRATA statement

– “Strata Summary” table, which displays a pattern of the number of events
and the number of non-events in a stratum, the number of strata having
that pattern, and the total number of observations contained in those strata

– “Strata Information” table, if you specify the INFO option on the
STRATA statement. This table displays each stratum, its frequency, and
the number of events and non-events in that stratum.



2386 � Chapter 42. The LOGISTIC Procedure

• if you specify an EXACT statement

– “Sufficient Statistics” table, if you request an OUTDIST= data set. This
table is displayed before printing any of the exact analysis results and lists
the parameters and their observed sufficient statistics.

– “Conditional Exact Tests” table, which provides two tests for the null
hypothesis that the parameters for the specified effects are zero: the Exact
Probability Test and the Exact Conditional Scores test. For each test,
the test statistic, an exactp-value (the probability of obtaining a more
extreme statistic than the observed, assuming the null hypothesis), and
a midp-value (which adjusts for the discreteness of the distribution) are
displayed.

– “Exact Parameter Estimates” table, if you specify the ESTIMATE,
ESTIMATE=PARM, or ESTIMATE=BOTH options. This table gives in-
dividual parameter estimates for each variable (conditional on the values
of all the other parameters in the model), confidence limits, and a two-
sidedp-value (twice the one-sidedp-value) for testing that the parameter
is zero.

– “Exact Odds Ratios” table, if you specify the ESTIMATE=ODDS or
ESTIMATE=BOTH options. This table gives odds ratio estimates for
the individual parameters, confidence limits, and a two-sidedp-value for
testing that the odds ratio is 1.

ODS Table Names

PROC LOGISTIC assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 42.2. ODS Tables Produced in PROC LOGISTIC

ODS Table Name Description Statement Option
Association Association of predicted

probabilities and observed
responses

MODEL default

BestSubsets Best subset selection MODEL SELECTION=SCORE
ClassFreq Frequency breakdown of

CLASS variables
PROC Simple

(with CLASS vars)
ClassLevelInfo CLASS variable levels and

design variables
MODEL default

(with CLASS vars)
Classification Classification table MODEL CTABLE
ClassWgt Weight breakdown of

CLASS variables
PROC, WEIGHT Simple

(with CLASS vars)
CLOddsPL Profile likelihood confidence

limits for odds ratios
MODEL CLODDS=PL

CLOddsWald Wald’s confidence limits for
odds ratios

MODEL CLODDS=WALD
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Table 42.2. (continued)

ODS Table Name Description Statement Option
CLParmPL Profile likelihood confidence

limits for parameters
MODEL CLPARM=PL

CLParmWald Wald’s confidence limits for
parameters

MODEL CLPARM=WALD

ContrastCoeff L matrix from CONTRAST CONTRAST E
ContrastEstimate Estimates from CONTRAST CONTRAST ESTIMATE=
ContrastTest Wald test for CONTRAST CONTRAST default
ConvergenceStatus Convergence status MODEL default
CorrB Estimated correlation matrix

of parameter estimators
MODEL CORRB

CovB Estimated covariance matrix
of parameter estimators

MODEL COVB

CumulativeModelTest Test of the cumulative model
assumption

MODEL (ordinal response)

EffectNotInModel Test for effects not in model MODEL SELECTION=S/F
ExactOddsRatio Exact Odds Ratios EXACT ESTIMATE=ODDS,

ESTIMATE=BOTH
ExactParmEst Parameter Estimates EXACT ESTIMATE,

ESTIMATE=PARM,
ESTIMATE=BOTH

ExactTests Conditional Exact Tests EXACT default
FastElimination Fast backward elimination MODEL SELECTION=B,FAST
FitStatistics Model fit statistics MODEL default
GlobalScore Global score test MODEL NOFIT
GlobalTests Test for global null

hypothesis
MODEL default

GoodnessOfFit Pearson and deviance
goodness-of-fit tests

MODEL SCALE

IndexPlots Batch capture of the index
plots

MODEL IPLOTS

Influence Regression diagnostics MODEL INFLUENCE
IterHistory Iteration history MODEL ITPRINT
LackFitChiSq Hosmer-Lemeshow

chi-square test results
MODEL LACKFIT

LackFitPartition Partition for the Hosmer-
Lemeshow test

MODEL LACKFIT

LastGradient Last evaluation of gradient MODEL ITPRINT
LogLikeChange Final change in the log

likelihood
MODEL ITPRINT

ModelBuildingSummary Summary of model building MODEL SELECTION=B/F/S
ModelInfo Model information PROC default
NObs Number of Observations PROC default
OddsRatios Odds ratios MODEL default
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Table 42.2. (continued)

ODS Table Name Description Statement Option
ParameterEstimates Maximum likelihood

estimates of model
parameters

MODEL default

RSquare R-square MODEL RSQUARE
ResidualChiSq Residual chi-square MODEL SELECTION=F/B
ResponseProfile Response profile PROC default
SimpleStatistics Summary statistics for

explanatory variables
PROC SIMPLE

StrataSummary Number of strata with spe-
cific response frequencies

STRATA default

StrataInfo Event and non-event fre-
quencies for each stratum

STRATA INFO

SuffStats Sufficient Statistics EXACT OUTDIST=
TestPrint1 L [cov(b)]L ’ andLb -c TEST PRINT
TestPrint2 Ginv(L [cov(b)]L ’) and

Ginv(L [cov(b)]L ’)(Lb -c)
TEST PRINT

TestStmts Linear hypotheses testing
results

TEST default

Type3 Type 3 tests of effects MODEL default
(with CLASS variables)

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the LOGISTIC
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to options on the MODEL or GRAPHICS statement as described in the following
sections. For more information on the ODS GRAPHICS statement, seeChapter 15,
“Statistical Graphics Using ODS.”

MODEL Statement Options

If the INFLUENCE or IPLOTS option is specified in the MODEL statement, then
the lineprinter plots are suppressed and ODS GRAPHICS versions of the plots are
produced.

If you specify the OUTROC= option, and if ROCEPS= is not specified, then ROC
curves are produced. If you also specify a SELECTION= method then an overlaid
plot of all the ROC curves for each step of the selection process is displayed.
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GRAPHICS Statement and Options

GRAPHICS options ;

The GRAPHICS statement provides options for requesting and modifying certain
graphical displays. This statement has no effect unless ODS GRAPHICS ON has
been specified. The functionality of this statement may be replaced by alternative
syntax in a future release.

The following options are available.

DFBETAS displays the DFBETAS versus Case Number plots. This acts like
DFBETAS=–ALL – in the OUTPUT statement. These plots are
produced by default when the GRAPHICS statement is specified.

HATDIAG displays plots of DIFCHISQ, DIFDEV, and DFBETAS (when the
DFBETAS option is specified) versus the hat diagonals.

INFLUENCE | INDEX displays the INFLUENCE plots with no DFBETAS. These
plots are produced by default when the GRAPHICS statement is
specified.

PHAT displays plots of DIFCHISQ, DIFDEV, and DFBETAS (when the
DFBETAS option is specified) versus the predicted event probabil-
ity.

ALL invokes the DFBETAS, HATDIAG, INFLUENCE, and PHAT op-
tions.

NOINFLUENCE suppresses the default INFLUENCE and DFBETAS plots.

NOPANELS unpanels the graphical displays and produces a series of plots
which form the panelled display.

ROC displays the ROC curve. If the ROCEPS= option is specified on
the MODEL statement then it must be equal to zero, otherwise
no ROC curve is produced. If you also specify a SELECTION=
method then an overlaid plot of all the ROC curves for each step of
the selection process is displayed.

ESTPROB(fit-options) displays the fit curves for the model when only one contin-
uous covariate is specified in the model. If you use events/trials
syntax, then this displays the estimated event probability and the
prediction limits versus the covariate with the observed proportions
overlaid on the graph. If you use single-trial syntax, this displays
the estimated event probability and the prediction limits versus the
covariate with the observed responses overlaid on the graph. If
you specify a polytomous logit model, then the estimated proba-
bilities for each possible response level are graphed. If you have an
OFFSET= variable with more than one value, then the prediction
curves are replaced with error bars and the estimated probabilities
are displayed at the observed covariate values.

The followingfit-optionsare available with the ESTPROB option.
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ALPHA=α specifies the size of the prediction interval. The
ALPHA= value specified on the PROC state-
ment is the default. If neither ALPHA= value
is specified, then ALPHA=0.05 by default.

GRIDSIZE=n specifies the number of equally-spaced points at
which the fit curve is computed. By default,
GRIDSIZE=50.

OBSERVE specifies that the fit curve should be computed at
the observed values only.

SeeExample 42.6on page 2422 andExample 42.7on page 2429 for examples of the
ODS graphical displays.

ODS Graph Names

PROC LOGISTIC assigns a name to each graph it creates using ODS. You can use
these names to reference the graphs when using ODS. The names are listed inTable
42.3.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the options indicated inTable 42.3. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

Table 42.3. ODS Graphics Produced by PROC LOGISTIC

ODS Graph Name Plot Description Statement Option
InfluencePlots Panel of influence statistics

vs. case number
GRAPHICS
or MODEL

INFLUENCE
INFLUENCE or IPLOTS

PearsonChisquarePlot Pearson chi-square residual
vs. case number

GRAPHICS INFLUENCE NOPANELS

DevianceResidualPlot Deviance residual vs. case
number

GRAPHICS INFLUENCE NOPANELS

HatPlot Hat diagonal vs. case number GRAPHICS INFLUENCE NOPANELS
CPlot CI displacement C vs. case

number
GRAPHICS INFLUENCE NOPANELS

CBarPlot CI displacement Cbar vs.
case number

GRAPHICS INFLUENCE NOPANELS

DeltaChisqPlot Difchisq vs. case number GRAPHICS INFLUENCE NOPANELS
DeltaDeviancePlot Difdev vs. case number GRAPHICS INFLUENCE NOPANELS
DFBetasPlot DFBetas vs. case number GRAPHICS DFBETAS NOPANELS
EstProbPlots Panel of estimated probability

vs. influence
GRAPHICS PHAT

PhatDifChisqPlot Estimated probability vs.
difchisq

GRAPHICS PHAT NOPANELS

PhatDifDevPlot Estimated probability vs.
difdev

GRAPHICS PHAT NOPANELS

PhatDFBetasPlot Estimated probability vs. df-
betas

GRAPHICS PHAT NOPANELS

HatDiagPlots Panel of hat diagonals vs. in-
fluence statistics

GRAPHICS HATDIAG
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Table 42.3. (continued)

ODS Graph Name Plot Description Statement Option
HatDiagDifChisqPlot Hat diagonals vs. difchisq GRAPHICS HATDIAG NOPANELS
HatDiagDifDevPlot Hat diagonals vs. difdev GRAPHICS HATDIAG NOPANELS
HatDiagDFBetasPlot Hat diagonals vs. dfbetas GRAPHICS HATDIAG NOPANELS
ROCCurve Receiver operating character-

istics curve
GRAPHICS
or MODEL

ROC
OUTROC=

ROCOverlay ROC curves for model selec-
tion steps

GRAPHICS
and MODEL

ROC
SELECTION=

FitCurve Estimated probability vs. one
continuous covariate

GRAPHICS ESTPROB

Examples

Example 42.1. Stepwise Logistic Regression and Predicted
Values

Consider a study on cancer remission (Lee 1974). The data, consisting of patient
characteristics and whether or not cancer remission occurred, are saved in the data
setRemission.

data Remission;
input remiss cell smear infil li blast temp;
label remiss=’Complete Remission’;
datalines;

1 .8 .83 .66 1.9 1.1 .996
1 .9 .36 .32 1.4 .74 .992
0 .8 .88 .7 .8 .176 .982
0 1 .87 .87 .7 1.053 .986
1 .9 .75 .68 1.3 .519 .98
0 1 .65 .65 .6 .519 .982
1 .95 .97 .92 1 1.23 .992
0 .95 .87 .83 1.9 1.354 1.02
0 1 .45 .45 .8 .322 .999
0 .95 .36 .34 .5 0 1.038
0 .85 .39 .33 .7 .279 .988
0 .7 .76 .53 1.2 .146 .982
0 .8 .46 .37 .4 .38 1.006
0 .2 .39 .08 .8 .114 .99
0 1 .9 .9 1.1 1.037 .99
1 1 .84 .84 1.9 2.064 1.02
0 .65 .42 .27 .5 .114 1.014
0 1 .75 .75 1 1.322 1.004
0 .5 .44 .22 .6 .114 .99
1 1 .63 .63 1.1 1.072 .986
0 1 .33 .33 .4 .176 1.01
0 .9 .93 .84 .6 1.591 1.02
1 1 .58 .58 1 .531 1.002
0 .95 .32 .3 1.6 .886 .988
1 1 .6 .6 1.7 .964 .99
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1 1 .69 .69 .9 .398 .986
0 1 .73 .73 .7 .398 .986
;

The data setRemission contains seven variables. The variableremiss is the cancer
remission indicator variable with a value of 1 for remission and a value of 0 for
nonremission. The other six variables are the risk factors thought to be related to
cancer remission.

The following invocation of PROC LOGISTIC illustrates the use ofstepwise selec-
tion to identify the prognostic factors for cancer remission. A significance level of
0.3 (SLENTRY=0.3) is required to allow a variable into the model, and a signifi-
cance level of 0.35 (SLSTAY=0.35) is required for a variable to stay in the model.
A detailed account of the variable selection process is requested by specifying the
DETAILS option. The Hosmer and Lemeshow goodness-of-fit test for the final se-
lected model is requested by specifying theLACKFIT option. TheOUTEST=and
COVOUT options in the PROC LOGISTIC statement create a data set that contains
parameter estimates and their covariances for the final selected model. The response
variable optionEVENT= setsremiss=1 (remission) to be Ordered Value 1 so that
the probability of remission is modeled. TheOUTPUTstatement creates a data set
that contains the cumulative predicted probabilities and the corresponding confidence
limits, and the individual and cross validated predicted probabilities for each obser-
vation.

title ’Stepwise Regression on Cancer Remission Data’;
proc logistic data=Remission outest=betas covout;

model remiss(event=’1’)=cell smear infil li blast temp
/ selection=stepwise

slentry=0.3
slstay=0.35
details
lackfit;

output out=pred p=phat lower=lcl upper=ucl
predprob=(individual crossvalidate);

run;

proc print data=betas;
title2 ’Parameter Estimates and Covariance Matrix’;

run;

proc print data=pred;
title2 ’Predicted Probabilities and 95% Confidence Limits’;

run;

In stepwise selection, an attempt is made to remove any insignificant variables from
the model before adding a significant variable to the model. Each addition or deletion
of a variable to or from a model is listed as a separate step in the displayed output,
and at each step a new model is fitted. Details of the model selection steps are shown
in Output 42.1.1–Output 42.1.5.
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Output 42.1.1. Startup Model

Stepwise Regression on Cancer Remission Data

The LOGISTIC Procedure

Model Information

Data Set WORK.REMISSION
Response Variable remiss Complete Remission
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 27
Number of Observations Used 27

Response Profile

Ordered Total
Value remiss Frequency

1 0 18
2 1 9

Probability modeled is remiss=1.

Stepwise Selection Procedure

Step 0. Intercept entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.6931 0.4082 2.8827 0.0895

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

9.4609 6 0.1493

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

cell 1 1.8893 0.1693
smear 1 1.0745 0.2999
infil 1 1.8817 0.1701
li 1 7.9311 0.0049
blast 1 3.5258 0.0604
temp 1 0.6591 0.4169
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Output 42.1.2. Step 1 of the Stepwise Analysis

Step 1. Effect li entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 30.073
SC 37.668 32.665
-2 Log L 34.372 26.073

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2988 1 0.0040
Score 7.9311 1 0.0049
Wald 5.9594 1 0.0146

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061
li 1 2.8973 1.1868 5.9594 0.0146

Association of Predicted Probabilities and Observed Responses

Percent Concordant 84.0 Somers’ D 0.710
Percent Discordant 13.0 Gamma 0.732
Percent Tied 3.1 Tau-a 0.328
Pairs 162 c 0.855

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

3.1174 5 0.6819

NOTE: No effects for the model in Step 1 are removed.

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

cell 1 1.1183 0.2903
smear 1 0.1369 0.7114
infil 1 0.5715 0.4497
blast 1 0.0932 0.7601
temp 1 1.2591 0.2618
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Output 42.1.3. Step 2 of the Stepwise Analysis

Step 2. Effect temp entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 30.648
SC 37.668 34.535
-2 Log L 34.372 24.648

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.7239 2 0.0077
Score 8.3648 2 0.0153
Wald 5.9052 2 0.0522

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 47.8448 46.4381 1.0615 0.3029
li 1 3.3017 1.3593 5.9002 0.0151
temp 1 -52.4214 47.4897 1.2185 0.2697

Association of Predicted Probabilities and Observed Responses

Percent Concordant 87.0 Somers’ D 0.747
Percent Discordant 12.3 Gamma 0.752
Percent Tied 0.6 Tau-a 0.345
Pairs 162 c 0.873

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.1429 4 0.7095

NOTE: No effects for the model in Step 2 are removed.

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

cell 1 1.4700 0.2254
smear 1 0.1730 0.6775
infil 1 0.8274 0.3630
blast 1 1.1013 0.2940
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Output 42.1.4. Step 3 of the Stepwise Analysis

Step 3. Effect cell entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 29.953
SC 37.668 35.137
-2 Log L 34.372 21.953

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.4184 3 0.0061
Score 9.2502 3 0.0261
Wald 4.8281 3 0.1848

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 67.6339 56.8875 1.4135 0.2345
cell 1 9.6521 7.7511 1.5507 0.2130
li 1 3.8671 1.7783 4.7290 0.0297
temp 1 -82.0737 61.7124 1.7687 0.1835

Association of Predicted Probabilities and Observed Responses

Percent Concordant 88.9 Somers’ D 0.778
Percent Discordant 11.1 Gamma 0.778
Percent Tied 0.0 Tau-a 0.359
Pairs 162 c 0.889

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.1831 3 0.9803

NOTE: No effects for the model in Step 3 are removed.

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

smear 1 0.0956 0.7572
infil 1 0.0844 0.7714
blast 1 0.0208 0.8852

NOTE: No (additional) effects met the 0.3 significance level for entry into the
model.
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Output 42.1.5. Summary of the Stepwise Selection

Summary of Stepwise Selection

Effect Number Score Wald
Step Entered Removed DF In Chi-Square Chi-Square Pr > ChiSq

1 li 1 1 7.9311 0.0049
2 temp 1 2 1.2591 0.2618
3 cell 1 3 1.4700 0.2254

Prior to the first step, the intercept-only model is fitted and individual score statistics
for the potential variables are evaluated (Output 42.1.1). In Step 1 (Output 42.1.2),
variableli is selected into the model since it is the most significant variable among
those to be chosen (p = 0.0049 < 0.3). The intermediate model that contains an
intercept andli is then fitted.li remains significant (p = 0.0146 < 0.35) and is not
removed. In Step 2 (Output 42.1.3), variabletemp is added to the model. The model
then contains an intercept and variablesli and temp. Both li and temp remain sig-
nificant at 0.035 level; therefore, neitherli nor temp is removed from the model. In
Step 4 (Output 42.1.4), variablecell is added to the model. The model then contains
an intercept and variablesli, temp, andcell. None of these variables are removed
from the model since all are significant at the 0.35 level. Finally, none of the remain-
ing variables outside the model meet the entry criterion, and the stepwise selection is
terminated. A summary of the stepwise selection is displayed inOutput 42.1.5.

Output 42.1.6. Display of the LACKFIT Option

Partition for the Hosmer and Lemeshow Test

remiss = 1 remiss = 0
Group Total Observed Expected Observed Expected

1 3 0 0.00 3 3.00
2 3 0 0.01 3 2.99
3 3 0 0.19 3 2.81
4 3 0 0.56 3 2.44
5 4 1 1.09 3 2.91
6 3 2 1.35 1 1.65
7 3 2 1.84 1 1.16
8 3 3 2.15 0 0.85
9 2 1 1.80 1 0.20

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

6.2983 7 0.5054

Results of the Hosmer and Lemeshow test are shown inOutput 42.1.6. There is no
evidence of a lack of fit in the selected model(p = 0.5054).



2398 � Chapter 42. The LOGISTIC Procedure

Output 42.1.7. Data Set of Estimates and Covariances

Stepwise Regression on Cancer Remission Data
Parameter Estimates and Covariance Matrix

Obs _LINK_ _TYPE_ _STATUS_ _NAME_ Intercept cell

1 LOGIT PARMS 0 Converged remiss 67.63 9.652
2 LOGIT COV 0 Converged Intercept 3236.19 157.097
3 LOGIT COV 0 Converged cell 157.10 60.079
4 LOGIT COV 0 Converged smear . .
5 LOGIT COV 0 Converged infil . .
6 LOGIT COV 0 Converged li 64.57 6.945
7 LOGIT COV 0 Converged blast . .
8 LOGIT COV 0 Converged temp -3483.23 -223.669

Obs smear infil li blast temp _LNLIKE_

1 . . 3.8671 . -82.07 -10.9767
2 . . 64.5726 . -3483.23 -10.9767
3 . . 6.9454 . -223.67 -10.9767
4 . . . . . -10.9767
5 . . . . . -10.9767
6 . . 3.1623 . -75.35 -10.9767
7 . . . . . -10.9767
8 . . -75.3513 . 3808.42 -10.9767

The data setbetas created by the OUTEST= and COVOUT options is displayed in
Output 42.1.7. The data set contains parameter estimates and the covariance matrix
for the final selected model. Note that all explanatory variables listed in the MODEL
statement are included in this data set; however, variables that are not included in the
final model have all missing values.
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Output 42.1.8. Predicted Probabilities and Confidence Intervals

Stepwise Regression on Cancer Remission Data
Predicted Probabilities and 95% Confidence Limits

_
r _ _ L
e s i b F I E
m c m n l t R N I I X X V p

O i e e f a e O T P P P P E h l u
b s l a i l s m M O _ _ _ _ L a c c
s s l r l i t p _ _ 0 1 0 1 _ t l l

1 1 0.80 0.83 0.66 1.9 1.100 0.996 1 1 0.27735 0.72265 0.43873 0.56127 1 0.72265 0.16892 0.97093
2 1 0.90 0.36 0.32 1.4 0.740 0.992 1 1 0.42126 0.57874 0.47461 0.52539 1 0.57874 0.26788 0.83762
3 0 0.80 0.88 0.70 0.8 0.176 0.982 0 0 0.89540 0.10460 0.87060 0.12940 1 0.10460 0.00781 0.63419
4 0 1.00 0.87 0.87 0.7 1.053 0.986 0 0 0.71742 0.28258 0.67259 0.32741 1 0.28258 0.07498 0.65683
5 1 0.90 0.75 0.68 1.3 0.519 0.980 1 1 0.28582 0.71418 0.36901 0.63099 1 0.71418 0.25218 0.94876
6 0 1.00 0.65 0.65 0.6 0.519 0.982 0 0 0.72911 0.27089 0.67269 0.32731 1 0.27089 0.05852 0.68951
7 1 0.95 0.97 0.92 1.0 1.230 0.992 1 0 0.67844 0.32156 0.72923 0.27077 1 0.32156 0.13255 0.59516
8 0 0.95 0.87 0.83 1.9 1.354 1.020 0 1 0.39277 0.60723 0.09906 0.90094 1 0.60723 0.10572 0.95287
9 0 1.00 0.45 0.45 0.8 0.322 0.999 0 0 0.83368 0.16632 0.80864 0.19136 1 0.16632 0.03018 0.56123

10 0 0.95 0.36 0.34 0.5 0.000 1.038 0 0 0.99843 0.00157 0.99840 0.00160 1 0.00157 0.00000 0.68962
11 0 0.85 0.39 0.33 0.7 0.279 0.988 0 0 0.92715 0.07285 0.91723 0.08277 1 0.07285 0.00614 0.49982
12 0 0.70 0.76 0.53 1.2 0.146 0.982 0 0 0.82714 0.17286 0.63838 0.36162 1 0.17286 0.00637 0.87206
13 0 0.80 0.46 0.37 0.4 0.380 1.006 0 0 0.99654 0.00346 0.99644 0.00356 1 0.00346 0.00001 0.46530
14 0 0.20 0.39 0.08 0.8 0.114 0.990 0 0 0.99982 0.00018 0.99981 0.00019 1 0.00018 0.00000 0.96482
15 0 1.00 0.90 0.90 1.1 1.037 0.990 0 1 0.42878 0.57122 0.35354 0.64646 1 0.57122 0.25303 0.83973
16 1 1.00 0.84 0.84 1.9 2.064 1.020 1 1 0.28530 0.71470 0.47213 0.52787 1 0.71470 0.15362 0.97189
17 0 0.65 0.42 0.27 0.5 0.114 1.014 0 0 0.99938 0.00062 0.99937 0.00063 1 0.00062 0.00000 0.62665
18 0 1.00 0.75 0.75 1.0 1.322 1.004 0 0 0.77711 0.22289 0.73612 0.26388 1 0.22289 0.04483 0.63670
19 0 0.50 0.44 0.22 0.6 0.114 0.990 0 0 0.99846 0.00154 0.99842 0.00158 1 0.00154 0.00000 0.79644
20 1 1.00 0.63 0.63 1.1 1.072 0.986 1 1 0.35089 0.64911 0.42053 0.57947 1 0.64911 0.26305 0.90555
21 0 1.00 0.33 0.33 0.4 0.176 1.010 0 0 0.98307 0.01693 0.98170 0.01830 1 0.01693 0.00029 0.50475
22 0 0.90 0.93 0.84 0.6 1.591 1.020 0 0 0.99378 0.00622 0.99348 0.00652 1 0.00622 0.00003 0.56062
23 1 1.00 0.58 0.58 1.0 0.531 1.002 1 0 0.74739 0.25261 0.84423 0.15577 1 0.25261 0.06137 0.63597
24 0 0.95 0.32 0.30 1.6 0.886 0.988 0 1 0.12989 0.87011 0.03637 0.96363 1 0.87011 0.40910 0.98481
25 1 1.00 0.60 0.60 1.7 0.964 0.990 1 1 0.06868 0.93132 0.08017 0.91983 1 0.93132 0.44114 0.99573
26 1 1.00 0.69 0.69 0.9 0.398 0.986 1 0 0.53949 0.46051 0.62312 0.37688 1 0.46051 0.16612 0.78529
27 0 1.00 0.73 0.73 0.7 0.398 0.986 0 0 0.71742 0.28258 0.67259 0.32741 1 0.28258 0.07498 0.65683

The data setpred created by the OUTPUT statement is displayed inOutput 42.1.8. It
contains all the variables in the input data set, the variablephat for the (cumulative)
predicted probability, the variableslcl anducl for the lower and upper confidence lim-
its for the probability, and four other variables (viz.,IP–1, IP–0, XP–1, andXP–0)
for the PREDPROBS=option. The data set also contains the variable–LEVEL– ,
indicating the response value to whichphat, lcl, anducl refer. For instance, for the
first row of the OUTPUT data set, the values of–LEVEL– andphat, lcl, anducl are
1, 0.72265, 0.16892 and 0.97093, respectively; this means that the estimated proba-
bility that remiss≤1 is 0.723 for the given explanatory variable values, and the cor-
responding 95% confidence interval is (0.16892, 0.97093). The variablesIP–1 and
IP–0 contain the predicted probabilities thatremiss=1 andremiss=0, respectively.
Note that values ofphat and IP–1 are identical since they both contain the proba-
bilities that remiss=1. The variablesXP–1 andXP–0 contain the cross validated
predicted probabilities thatremiss=1 andremiss=0, respectively.
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Next, a different variable selection method is used to select prognostic factors for
cancer remission, and an efficient algorithm is employed to eliminate insignificant
variables from a model. The following SAS statements invoke PROC LOGISTIC to
perform the backward elimination analysis.

title ’Backward Elimination on Cancer Remission Data’;
proc logistic data=Remission;

model remiss(event=’1’)=temp cell li smear blast
/ selection=backward fast slstay=0.2 ctable;

run;

The backward elimination analysis (SELECTION=BACKWARD) starts with a
model that contains all explanatory variables given in the MODEL statement. By
specifying theFAST option, PROC LOGISTIC eliminates insignificant variables
without refitting the model repeatedly. This analysis uses a significance level of 0.2
(SLSTAY=0.2) to retain variables in the model, which is different from the previous
stepwise analysis where SLSTAY=.35. TheCTABLE option is specified to produce
classifications of input observations based on the final selected model.
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Output 42.1.9. Initial Step in Backward Elimination

Backward Elimination on Cancer Remission Data

The LOGISTIC Procedure

Model Information

Data Set WORK.REMISSION
Response Variable remiss Complete Remission
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 27
Number of Observations Used 27

Response Profile

Ordered Total
Value remiss Frequency

1 0 18
2 1 9

Probability modeled is remiss=1.

Backward Elimination Procedure

Step 0. The following effects were entered:

Intercept temp cell li smear blast

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 33.857
SC 37.668 41.632
-2 Log L 34.372 21.857

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.5146 5 0.0284
Score 9.3295 5 0.0966
Wald 4.7284 5 0.4499
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Output 42.1.10. Fast Elimination Step

Step 1. Fast Backward Elimination:

Analysis of Effects Removed by Fast Backward Elimination

Pr >
Effect Residual Residual
Removed Chi-Square DF Pr > ChiSq Chi-Square DF ChiSq

blast 0.0008 1 0.9768 0.0008 1 0.9768
smear 0.0951 1 0.7578 0.0959 2 0.9532
cell 1.5134 1 0.2186 1.6094 3 0.6573
temp 0.6535 1 0.4189 2.2628 4 0.6875

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 30.073
SC 37.668 32.665
-2 Log L 34.372 26.073

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2988 1 0.0040
Score 7.9311 1 0.0049
Wald 5.9594 1 0.0146

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.8530 4 0.5827

Summary of Backward Elimination

Effect Number Wald
Step Removed DF In Chi-Square Pr > ChiSq

1 blast 1 4 0.0008 0.9768
1 smear 1 3 0.0951 0.7578
1 cell 1 2 1.5134 0.2186
1 temp 1 1 0.6535 0.4189
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Output 42.1.10. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061
li 1 2.8973 1.1868 5.9594 0.0146

Association of Predicted Probabilities and Observed Responses

Percent Concordant 84.0 Somers’ D 0.710
Percent Discordant 13.0 Gamma 0.732
Percent Tied 3.1 Tau-a 0.328
Pairs 162 c 0.855

Results of the fast elimination analysis are shown inOutput 42.1.9and Output
42.1.10. Initially, a full model containing all six risk factors is fit to the data (Output
42.1.9). In the next step (Output 42.1.10), PROC LOGISTIC removesblast, smear,
cell, andtemp from the model all at once. This leavesli and the intercept as the only
variables in the final model. Note that in this analysis, only parameter estimates for
the final model are displayed because the DETAILS option has not been specified.

Note that you can also use the FAST option when SELECTION=STEPWISE.
However, the FAST option operates only on backward elimination steps. In this
example, the stepwise process only adds variables, so the FAST option would not be
useful.
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Output 42.1.11. Classifying Input Observations

Classification Table

Correct Incorrect Percentages
Prob Non- Non- Sensi- Speci- False False

Level Event Event Event Event Correct tivity ficity POS NEG

0.060 9 0 18 0 33.3 100.0 0.0 66.7 .
0.080 9 2 16 0 40.7 100.0 11.1 64.0 0.0
0.100 9 4 14 0 48.1 100.0 22.2 60.9 0.0
0.120 9 4 14 0 48.1 100.0 22.2 60.9 0.0
0.140 9 7 11 0 59.3 100.0 38.9 55.0 0.0
0.160 9 10 8 0 70.4 100.0 55.6 47.1 0.0
0.180 9 10 8 0 70.4 100.0 55.6 47.1 0.0
0.200 8 13 5 1 77.8 88.9 72.2 38.5 7.1
0.220 8 13 5 1 77.8 88.9 72.2 38.5 7.1
0.240 8 13 5 1 77.8 88.9 72.2 38.5 7.1
0.260 6 13 5 3 70.4 66.7 72.2 45.5 18.8
0.280 6 13 5 3 70.4 66.7 72.2 45.5 18.8
0.300 6 13 5 3 70.4 66.7 72.2 45.5 18.8
0.320 6 14 4 3 74.1 66.7 77.8 40.0 17.6
0.340 5 14 4 4 70.4 55.6 77.8 44.4 22.2
0.360 5 14 4 4 70.4 55.6 77.8 44.4 22.2
0.380 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.400 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.420 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.440 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.460 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.480 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.500 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.520 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.540 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.560 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.580 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.600 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.620 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.640 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.660 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.680 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.700 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.720 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.740 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.760 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.780 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.800 2 17 1 7 70.4 22.2 94.4 33.3 29.2
0.820 2 17 1 7 70.4 22.2 94.4 33.3 29.2
0.840 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.860 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.880 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.900 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.920 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.940 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.960 0 18 0 9 66.7 0.0 100.0 . 33.3

Results of the CTABLE option are shown inOutput 42.1.11. Each row of the
“Classification Table” corresponds to a cutpoint applied to the predicted probabili-
ties, which is given in the Prob Level column. The2×2 frequency tables of observed
and predicted responses are given by the next four columns. For example, with a cut-
point of 0.5, 4 events and 16 nonevents were classified correctly. On the other hand,
2 nonevents were incorrectly classified as events and 5 events were incorrectly classi-
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fied as nonevents. For this cutpoint, the correct classification rate is 20/27 (=74.1%),
which is given in the sixth column. Accuracy of the classification is summarized by
the sensitivity, specificity, and false positive and negative rates, which are displayed
in the last four columns. You can control the number of cutpoints used, and their
values, by using thePPROB=option.

Example 42.2. Logistic Modeling with Categorical Predictors

Consider a study of the analgesic effects of treatments on elderly patients with neu-
ralgia. Two test treatments and a placebo are compared. The response variable is
whether the patient reported pain or not. Researchers recorded age and gender of the
patients and the duration of complaint before the treatment began. The data, consist-
ing of 60 patients, are contained in the data setNeuralgia.

Data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;
datalines;

P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1 Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes
P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No
;

The data setNeuralgia contains five variables:Treatment, Sex, Age, Duration, and
Pain. The last variable,Pain, is the response variable. A specification ofPain=Yes
indicates there was pain, andPain=No indicates no pain. The variableTreatment
is a categorical variable with three levels: A and B represent the two test treatments,
and P represents the placebo treatment. The gender of the patients is given by the
categorical variableSex. The variableAge is the age of the patients, in years, when
treatment began. The duration of complaint, in months, before the treatment began
is given by the variableDuration. The following statements use the LOGISTIC pro-
cedure to fit a two-way logit with interaction model for the effect ofTreatment and
Sex, with Age andDuration as covariates. The categorical variablesTreatment and
Sex are declared in theCLASSstatement.



2406 � Chapter 42. The LOGISTIC Procedure

proc logistic data=Neuralgia;
class Treatment Sex;
model Pain= Treatment Sex Treatment*Sex Age Duration / expb;

run;

In this analysis, PROC LOGISTIC models the probability of no pain (Pain=No). By
default, effect coding is used to represent the CLASS variables. Two design variables
are created forTreatment and one forSex, as shown inOutput 42.2.1.

Output 42.2.1. Effect Coding of CLASS Variables

The LOGISTIC Procedure

Class Level Information

Design
Class Value Variables

Treatment A 1 0
B 0 1
P -1 -1

Sex F 1
M -1

PROC LOGISTIC displays a table of the Type 3 analysis of effects based on the Wald
test (Output 42.2.2). Note that theTreatment*Sex interaction and the duration of
complaint are not statistically significant (p =0.9318 andp =0.8752, respectively).
This indicates that there is no evidence that the treatments affect pain differently in
men and women, and no evidence that the pain outcome is related to the duration of
pain.

Output 42.2.2. Wald Tests of Individual Effects

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Treatment 2 11.9886 0.0025
Sex 1 5.3104 0.0212
Treatment*Sex 2 0.1412 0.9318
Age 1 7.2744 0.0070
Duration 1 0.0247 0.8752

Parameter estimates are displayed inOutput 42.2.3. The Exp(Est) column contains
the exponentiated parameter estimates requested with theEXPBoption. These values
may, but do not necessarily, represent odds ratios for the corresponding variables. For
continuous explanatory variables, the Exp(Est) value corresponds to the odds ratio for
a unit increase of the corresponding variable. For CLASS variables using the effect
coding, the Exp(Est) values have no direct interpretation as a comparison of levels.
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However, when the reference coding is used, the Exp(Est) values represent the odds
ratio between the corresponding level and the last level. Following the parameter es-
timates table, PROC LOGISTIC displays the odds ratio estimates for those variables
that are not involved in any interaction terms. If the variable is a CLASS variable, the
odds ratio estimate comparing each level with the last level is computed regardless of
the coding scheme. In this analysis, since the model contains theTreatment*Sex in-
teraction term, the odds ratios forTreatment andSex were not computed. The odds
ratio estimates forAge andDuration are precisely the values given in the Exp(Est)
column in the parameter estimates table.

Output 42.2.3. Parameter Estimates with Effect Coding

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 19.2236 7.1315 7.2661 0.0070 2.232E8
Treatment A 1 0.8483 0.5502 2.3773 0.1231 2.336
Treatment B 1 1.4949 0.6622 5.0956 0.0240 4.459
Sex F 1 0.9173 0.3981 5.3104 0.0212 2.503
Treatment*Sex A F 1 -0.2010 0.5568 0.1304 0.7180 0.818
Treatment*Sex B F 1 0.0487 0.5563 0.0077 0.9302 1.050
Age 1 -0.2688 0.0996 7.2744 0.0070 0.764
Duration 1 0.00523 0.0333 0.0247 0.8752 1.005

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Age 0.764 0.629 0.929
Duration 1.005 0.942 1.073

The following PROC LOGISTIC statements illustrate the use of forward selection on
the data setNeuralgia to identify the effects that differentiate the twoPain responses.
The optionSELECTION=FORWARDis specified to carry out the forward selection.
The termTreatment|Sex@2 illustrates another way to specify main effects and two-
way interaction as is available in other procedures such as PROC GLM. (Note that,
in this case, the “@2” is unnecessary because no interactions besides the two-way
interaction are possible).

proc logistic data=Neuralgia;
class Treatment Sex;
model Pain=Treatment|Sex@2 Age Duration

/selection=forward expb;
run;

Results of the forward selection process are summarized inOutput 42.2.4. The vari-
able Treatment is selected first, followed byAge and thenSex. The results are
consistent with the previous analysis (Output 42.2.2) in which theTreatment*Sex
interaction andDuration are not statistically significant.
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Output 42.2.4. Effects Selected into the Model

The LOGISTIC Procedure

Summary of Forward Selection

Effect Number Score
Step Entered DF In Chi-Square Pr > ChiSq

1 Treatment 2 1 13.7143 0.0011
2 Age 1 2 10.6038 0.0011
3 Sex 1 3 5.9959 0.0143

Output 42.2.5shows the Type 3 analysis of effects, the parameter estimates, and
the odds ratio estimates for the selected model. All three variables,Treatment,
Age, andSex, are statistically significant at the 0.05 level (p =0.0011,p =0.0011,
and p =0.0143, respectively). Since the selected model does not contain the
Treatment*Sex interaction, odds ratios forTreatment andSex are computed. The
estimated odds ratio is 24.022 for treatment A versus placebo, 41.528 for Treatment
B versus placebo, and 6.194 for female patients versus male patients. Note that these
odds ratio estimates are not the same as the corresponding values in the Exp(Est) col-
umn in the parameter estimates table because effect coding was used. FromOutput
42.2.5, it is evident that both Treatment A and Treatment B are better than the placebo
in reducing pain; females tend to have better improvement than males; and younger
patients are faring better than older patients.
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Output 42.2.5. Type 3 Effects and Parameter Estimates with Effect Coding

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Treatment 2 12.6928 0.0018
Sex 1 5.3013 0.0213
Age 1 7.6314 0.0057

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 19.0804 6.7882 7.9007 0.0049 1.9343E8
Treatment A 1 0.8772 0.5274 2.7662 0.0963 2.404
Treatment B 1 1.4246 0.6036 5.5711 0.0183 4.156
Sex F 1 0.9118 0.3960 5.3013 0.0213 2.489
Age 1 -0.2650 0.0959 7.6314 0.0057 0.767

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Treatment A vs P 24.022 3.295 175.121
Treatment B vs P 41.528 4.500 383.262
Sex F vs M 6.194 1.312 29.248
Age 0.767 0.636 0.926

Finally, PROC LOGISTIC is invoked to refit the previously selected model using ref-
erence coding for the CLASS variables. TwoCONTRASTstatements are specified.
The one labeled ’Pairwise’ specifies three rows in the contrast matrix, L, for all the
pairwise comparisons between the three levels ofTreatment. The contrast labeled
’Female vs Male’ compares female to male patients. The optionESTIMATE=EXP
is specified in both CONTRAST statements to exponentiate the estimates ofL′β.
With the given specification of contrast coefficients, the first row of the ’Pairwise’
CONTRAST statement corresponds to the odds ratio of A versus P, the second row
corresponds to B versus P, and the third row corresponds to A versus B. There is only
one row in the ’Female vs Male’ CONTRAST statement, and it corresponds to the
odds ratio comparing female to male patients.

proc logistic data=Neuralgia;
class Treatment Sex /param=ref;
model Pain= Treatment Sex age;
contrast ’Pairwise’ Treatment 1 0,

Treatment 0 1,
Treatment 1 -1 / estimate=exp;

contrast ’Female vs Male’ Sex 1 / estimate=exp;
run;
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Output 42.2.6. Reference Coding of CLASS Variables

The LOGISTIC Procedure

Class Level Information

Design
Class Value Variables

Treatment A 1 0
B 0 1
P 0 0

Sex F 1
M 0

The reference coding is shown inOutput 42.2.6. The Type 3 analysis of effects,
the parameter estimates for the reference coding, and the odds ratio estimates are
displayed inOutput 42.2.7. Although the parameter estimates are different (because
of the different parameterizations), the “Type 3 Analysis of Effects” table and the
“Odds Ratio” table remain the same as inOutput 42.2.5. With effect coding, the
treatment A parameter estimate (0.8772) estimates the effect of treatment A compared
to the average effect of treatments A, B, and placebo. The treatment A estimate
(3.1790) under the reference coding estimates the difference in effect of treatment A
and the placebo treatment.
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Output 42.2.7. Type 3 Effects and Parameter Estimates with Reference Coding

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Treatment 2 12.6928 0.0018
Sex 1 5.3013 0.0213
Age 1 7.6314 0.0057

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 15.8669 6.4056 6.1357 0.0132
Treatment A 1 3.1790 1.0135 9.8375 0.0017
Treatment B 1 3.7264 1.1339 10.8006 0.0010
Sex F 1 1.8235 0.7920 5.3013 0.0213
Age 1 -0.2650 0.0959 7.6314 0.0057

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Treatment A vs P 24.022 3.295 175.121
Treatment B vs P 41.528 4.500 383.262
Sex F vs M 6.194 1.312 29.248
Age 0.767 0.636 0.926

Output 42.2.8contains two tables: the “Contrast Test Results” table and the “Contrast
Rows Estimation and Testing Results” table. The former contains the overall Wald
test for each CONTRAST statement. Although three rows are specified in the
’Pairwise’ CONTRAST statement, there are only two degrees of freedom, and the
Wald test result is identical to the Type 3 analysis ofTreatment in Output 42.2.7.
The latter table contains estimates and tests of individual contrast rows. The esti-
mates for the first two rows of the ’Pairwise’ CONTRAST statement are the same as
those given in the “Odds Ratio Estimates” table (inOutput 42.2.7). Both treatments
A and B are highly effective over placebo in reducing pain. The third row estimates
the odds ratio comparing A to B. The 95% confidence interval for this odds ratio is
(0.0932, 3.5889), indicating that the pain reduction effects of these two test treat-
ments are not that different. Again, the ’Female vs Male’ contrast shows that female
patients fared better in obtaining relief from pain than male patients.
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Output 42.2.8. Results of CONTRAST Statements

Contrast Test Results

Wald
Contrast DF Chi-Square Pr > ChiSq

Pairwise 2 12.6928 0.0018
Female vs Male 1 5.3013 0.0213

Contrast Rows Estimation and Testing Results

Standard
Contrast Type Row Estimate Error Alpha Confidence Limits

Pairwise EXP 1 24.0218 24.3473 0.05 3.2951 175.1
Pairwise EXP 2 41.5284 47.0877 0.05 4.4998 383.3
Pairwise EXP 3 0.5784 0.5387 0.05 0.0932 3.5889
Female vs Male EXP 1 6.1937 4.9053 0.05 1.3116 29.2476

Contrast Rows Estimation and Testing Results

Wald
Contrast Type Row Chi-Square Pr > ChiSq

Pairwise EXP 1 9.8375 0.0017
Pairwise EXP 2 10.8006 0.0010
Pairwise EXP 3 0.3455 0.5567
Female vs Male EXP 1 5.3013 0.0213

Example 42.3. Ordinal Logistic Regression

Consider a study of the effects on taste of various cheese additives. Researchers
tested four cheese additives and obtained 52 response ratings for each additive. Each
response was measured on a scale of nine categories ranging from strong dislike (1)
to excellent taste (9). The data, given in McCullagh and Nelder (1989, p. 175) in
the form of a two-way frequency table of additive by rating, are saved in the data set
Cheese.

data Cheese;
do Additive = 1 to 4;

do y = 1 to 9;
input freq @@;
output;

end;
end;
label y=’Taste Rating’;
datalines;

0 0 1 7 8 8 19 8 1
6 9 12 11 7 6 1 0 0
1 1 6 8 23 7 5 1 0
0 0 0 1 3 7 14 16 11
;
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The data setCheese contains the variablesy, Additive, and freq. The variabley
contains the response rating. The variableAdditive specifies the cheese additive (1,
2, 3, or 4). The variablefreq gives the frequency with which each additive received
each rating.

The response variabley is ordinally scaled. A cumulative logit model is used to
investigate the effects of the cheese additives on taste. The following SAS statements
invoke PROC LOGISTIC to fit this model withy as the response variable and three
indicator variables as explanatory variables, with the fourth additive as the reference
level. With this parameterization, eachAdditive parameter compares an additive to
the fourth additive. TheCOVB option produces the estimated covariance matrix.

proc logistic data=Cheese;
freq freq;
class Additive (param=ref ref=’4’);
model y=Additive / covb;
title1 ’Multiple Response Cheese Tasting Experiment’;

run;

Results of the analysis are shown inOutput 42.3.1, and the estimated covariance
matrix is displayed inOutput 42.3.2.

Since the strong dislike (y=1) end of the rating scale is associated with lower Ordered
Values in the Response Profile table, the probability of disliking the additives is mod-
eled.

The score chi-square for testing the proportional odds assumption is 17.287, which
is not significant with respect to a chi-square distribution with 21 degrees of free-
dom(p = 0.694). This indicates that the proportional odds model adequately fits the
data. The positive value (1.6128) for the parameter estimate forAdditive1 indicates
a tendency towards the lower-numbered categories of the first cheese additive rela-
tive to the fourth. In other words, the fourth additive is better in taste than the first
additive. Each of the second and the third additives is less favorable than the fourth
additive. The relative magnitudes of these slope estimates imply the preference or-
dering: fourth, first, third, second.
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Output 42.3.1. Proportional Odds Model Regression Analysis

Multiple Response Cheese Tasting Experiment

The LOGISTIC Procedure

Model Information

Data Set WORK.CHEESE
Response Variable y Taste Rating
Number of Response Levels 9
Frequency Variable freq
Model cumulative logit
Optimization Technique Fisher’s scoring

Number of Observations Read 36
Number of Observations Used 28
Sum of Frequencies Read 208
Sum of Frequencies Used 208

Response Profile

Ordered Total
Value y Frequency

1 1 7
2 2 10
3 3 19
4 4 27
5 5 41
6 6 28
7 7 39
8 8 25
9 9 12

Probabilities modeled are cumulated over the lower Ordered Values.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

17.2866 21 0.6936
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Output 42.3.1. (continued)

Multiple Response Cheese Tasting Experiment

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 875.802 733.348
SC 902.502 770.061
-2 Log L 859.802 711.348

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 148.4539 3 <.0001
Score 111.2670 3 <.0001
Wald 115.1504 3 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -7.0801 0.5624 158.4851 <.0001
Intercept 2 1 -6.0249 0.4755 160.5500 <.0001
Intercept 3 1 -4.9254 0.4272 132.9484 <.0001
Intercept 4 1 -3.8568 0.3902 97.7087 <.0001
Intercept 5 1 -2.5205 0.3431 53.9704 <.0001
Intercept 6 1 -1.5685 0.3086 25.8374 <.0001
Intercept 7 1 -0.0669 0.2658 0.0633 0.8013
Intercept 8 1 1.4930 0.3310 20.3439 <.0001
Additive 1 1 1.6128 0.3778 18.2265 <.0001
Additive 2 1 4.9645 0.4741 109.6427 <.0001
Additive 3 1 3.3227 0.4251 61.0931 <.0001

Association of Predicted Probabilities and Observed Responses

Percent Concordant 67.6 Somers’ D 0.578
Percent Discordant 9.8 Gamma 0.746
Percent Tied 22.6 Tau-a 0.500
Pairs 18635 c 0.789
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Output 42.3.2. Estimated Covariance Matrix

Multiple Response Cheese Tasting Experiment

Estimated Covariance Matrix

Intercept_ Intercept_ Intercept_ Intercept_ Intercept_
Parameter 1 2 3 4 5

Intercept_1 0.316291 0.219581 0.176278 0.147694 0.114024
Intercept_2 0.219581 0.226095 0.177806 0.147933 0.11403
Intercept_3 0.176278 0.177806 0.182473 0.148844 0.114092
Intercept_4 0.147694 0.147933 0.148844 0.152235 0.114512
Intercept_5 0.114024 0.11403 0.114092 0.114512 0.117713
Intercept_6 0.091085 0.091081 0.091074 0.091109 0.091821
Intercept_7 0.057814 0.057813 0.057807 0.05778 0.057721
Intercept_8 0.041304 0.041304 0.0413 0.041277 0.041162
Additive1 -0.09419 -0.09421 -0.09427 -0.09428 -0.09246
Additive2 -0.18686 -0.18161 -0.1687 -0.14717 -0.11415
Additive3 -0.13565 -0.13569 -0.1352 -0.13118 -0.11207

Estimated Covariance Matrix

Intercept_ Intercept_ Intercept_
Parameter 6 7 8 Additive1 Additive2 Additive3

Intercept_1 0.091085 0.057814 0.041304 -0.09419 -0.18686 -0.13565
Intercept_2 0.091081 0.057813 0.041304 -0.09421 -0.18161 -0.13569
Intercept_3 0.091074 0.057807 0.0413 -0.09427 -0.1687 -0.1352
Intercept_4 0.091109 0.05778 0.041277 -0.09428 -0.14717 -0.13118
Intercept_5 0.091821 0.057721 0.041162 -0.09246 -0.11415 -0.11207
Intercept_6 0.09522 0.058312 0.041324 -0.08521 -0.09113 -0.09122
Intercept_7 0.058312 0.07064 0.04878 -0.06041 -0.05781 -0.05802
Intercept_8 0.041324 0.04878 0.109562 -0.04436 -0.0413 -0.04143
Additive1 -0.08521 -0.06041 -0.04436 0.142715 0.094072 0.092128
Additive2 -0.09113 -0.05781 -0.0413 0.094072 0.22479 0.132877
Additive3 -0.09122 -0.05802 -0.04143 0.092128 0.132877 0.180709

Example 42.4. Nominal Response Data: Generalized Logits
Model

Over the course of one school year, third graders from three different schools are
exposed to three different styles of mathematics instruction: a self-paced computer-
learning style, a team approach, and a traditional class approach. The students are
asked which style they prefer and their responses, classified by the type of program
they are in (a regular school day versus a regular day supplemented with an afternoon
school program) are displayed inTable 42.4. The data set is from Stokes, Davis, and
Koch (2000), and is also analyzed in the“Generalized Logits Model”section on page
824 ofChapter 22, “The CATMOD Procedure.”
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Table 42.4. School Program Data
Learning Style Preference

School Program Self Team Class
1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20

The levels of the response variable (self, team, and class) have no essential ordering,
so a logistic regression is performed on the generalized logits. The model to be fit is

log
(
πhij

πhir

)
= αj + x′hiβj

whereπhij is the probability that a student in schoolh and programi prefers teaching
stylej, j 6= r, and styler is the baseline style (in this case, class). There are separate
sets of intercept parametersαj and regression parametersβj for each logit, and the
matrixxhi is the set of explanatory variables for thehith population. Thus, two logits
are modeled for each school and program combination: the logit comparing self to
class and the logit comparing team to class.

The following statements create the data setschool and request the analysis. The
LINK=GLOGIT option forms the generalized logits. The response variable option
ORDER=DATA means that the response variable levels are ordered as they exist in
the data set: self, team, and class; thus, the logits are formed by comparing self to
class and by comparing team to class. The ODS statement suppresses the display of
the maximum likelihood estimates. The results of this analysis are shown inOutput
42.4.1throughOutput 42.4.4.

data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;

proc logistic data=school;
freq Count;
class School Program(ref=first);
model Style(order=data)=School Program School*Program

/ link=glogit;
run;
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Output 42.4.1. Analysis of Saturated Model

The LOGISTIC Procedure

Model Information

Data Set WORK.SCHOOL
Response Variable Style
Number of Response Levels 3
Frequency Variable Count
Model generalized logit
Optimization Technique Fisher’s scoring

Number of Observations Read 18
Number of Observations Used 18
Sum of Frequencies Read 338
Sum of Frequencies Used 338

Response Profile

Ordered Total
Value Style Frequency

1 self 79
2 team 85
3 class 174

Logits modeled use Style=’class’ as the reference category.

Class Level Information

Design
Class Value Variables

School 1 1 0
2 0 1
3 -1 -1

Program afternoon -1
regular 1
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Output 42.4.2. Fit Statistics

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 699.404 689.156
SC 707.050 735.033
-2 Log L 695.404 665.156

Output 42.4.3. Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 30.2480 10 0.0008
Score 28.3738 10 0.0016
Wald 25.6828 10 0.0042

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

School 4 14.5522 0.0057
Program 2 10.4815 0.0053
School*Program 4 1.7439 0.7827

Output 42.4.4. Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter Style DF Estimate Error Chi-Square Pr > ChiSq

Intercept self 1 -0.8097 0.1488 29.5989 <.0001
Intercept team 1 -0.6585 0.1366 23.2449 <.0001
School 1 self 1 -0.8194 0.2281 12.9066 0.0003
School 1 team 1 -0.2675 0.1881 2.0233 0.1549
School 2 self 1 0.2974 0.1919 2.4007 0.1213
School 2 team 1 -0.1033 0.1898 0.2961 0.5863
Program regular self 1 0.3985 0.1488 7.1684 0.0074
Program regular team 1 0.3537 0.1366 6.7071 0.0096
School*Program 1 regular self 1 0.2751 0.2281 1.4547 0.2278
School*Program 1 regular team 1 0.1474 0.1881 0.6143 0.4332
School*Program 2 regular self 1 -0.0998 0.1919 0.2702 0.6032
School*Program 2 regular team 1 -0.0168 0.1898 0.0079 0.9293
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The “Type 3 Analysis of Effects” table inOutput 42.4.3shows that the interaction
effect is clearly nonsignificant, so a main effects model is fit with the following state-
ments.

proc logistic data=school;
freq Count;
class School Program(ref=first);
model Style(order=data)=School Program / link=glogit;

run;

Output 42.4.5. Analysis of Main Effects Model

The LOGISTIC Procedure

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 699.404 682.934
SC 707.050 713.518
-2 Log L 695.404 666.934

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 28.4704 6 <.0001
Score 27.1190 6 0.0001
Wald 25.5881 6 0.0003

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

School 4 14.8424 0.0050
Program 2 10.9160 0.0043

All of the global fit tests inOutput 42.4.5suggest the model is significant, and the
Type 3 tests show that the school and program effects are also significant.



Example 42.5. Stratified Sampling � 2421

Output 42.4.6. Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter Style DF Estimate Error Chi-Square Pr > ChiSq

Intercept self 1 -0.7978 0.1465 29.6502 <.0001
Intercept team 1 -0.6589 0.1367 23.2300 <.0001
School 1 self 1 -0.7992 0.2198 13.2241 0.0003
School 1 team 1 -0.2786 0.1867 2.2269 0.1356
School 2 self 1 0.2836 0.1899 2.2316 0.1352
School 2 team 1 -0.0985 0.1892 0.2708 0.6028
Program regular self 1 0.3737 0.1410 7.0272 0.0080
Program regular team 1 0.3713 0.1353 7.5332 0.0061

Odds Ratio Estimates

Point 95% Wald
Effect Style Estimate Confidence Limits

School 1 vs 3 self 0.269 0.127 0.570
School 1 vs 3 team 0.519 0.267 1.010
School 2 vs 3 self 0.793 0.413 1.522
School 2 vs 3 team 0.622 0.317 1.219
Program regular vs afternoon self 2.112 1.215 3.670
Program regular vs afternoon team 2.101 1.237 3.571

The parameter estimates, tests for individual parameters, and odds ratios are dis-
played inOutput 42.4.6. TheProgram variable has nearly the same effect on both
logits, whileSchool=1 has the largest effect of the schools.

Example 42.5. Stratified Sampling

Consider the hypothetical example in Fleiss (1981, pp. 6–7) in which a test is applied
to a sample of 1,000 people known to have a disease and to another sample of 1,000
people known not to have the same disease. In the diseased sample, 950 test positive;
in the nondiseased sample, only 10 test positive. If the true disease rate in the popu-
lation is 1 in 100, specifyingPEVENT=0.01results in the correct false positive and
negative rates for the stratified sampling scheme. Omitting the PEVENT= option is
equivalent to using the overall sample disease rate (1000/2000 = 0.5) as the value of
the PEVENT= option, which would ignore the stratified sampling.

The SAS code is as follows:

data Screen;
do Disease=’Present’,’Absent’;

do Test=1,0;
input Count @@;
output;

end;
end;
datalines;

950 50
10 990

;
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proc logistic data=Screen;
freq Count;
model Disease(event=’Present’)=Test

/ pevent=.5 .01 ctable pprob=.5;
run;

The response variable optionEVENT= indicates thatDisease=’Present’ is the
event. TheCTABLE option is specified to produce a classification table. Specifying
PPROB=0.5indicates a cutoff probability of 0.5. A list of two probabilities, 0.5 and
0.01, is specified for the PEVENT= option; 0.5 corresponds to the overall sample
disease rate, and 0.01 corresponds to a true disease rate of 1 in 100.

The classification table is shown inOutput 42.5.1.

Output 42.5.1. False Positive and False Negative Rates

The LOGISTIC Procedure

Classification Table

Correct Incorrect Percentages
Prob Prob Non- Non- Sensi- Speci- False False

Event Level Event Event Event Event Correct tivity ficity POS NEG

0.500 0.500 950 990 10 50 97.0 95.0 99.0 1.0 4.8

0.010 0.500 950 990 10 50 99.0 95.0 99.0 51.0 0.1

In the classification table, the column “Prob Level” represents the cutoff values (the
settings of the PPROB= option) for predicting whether an observation is an event.
The “Correct” columns list the numbers of subjects that are correctly predicted as
events and nonevents, respectively, and the “Incorrect” columns list the number of
nonevents incorrectly predicted as events and the number of events incorrectly pre-
dicted as nonevents, respectively. For PEVENT=0.5, the false positive rate is 1% and
the false negative rate is 4.8%. These results ignore the fact that the samples were
stratified and incorrectly assume that the overall sample proportion of disease (which
is 0.5) estimates the true disease rate. For a true disease rate of 0.01, the false posi-
tive rate and the false negative rate are 51% and 0.1%, respectively, as shown on the
second line of the classification table.

Example 42.6. Logistic Regression Diagnostics

In a controlled experiment to study the effect of the rate and volume of air inspired
on a transient reflex vaso-constriction in the skin of the digits, 39 tests under various
combinations of rate and volume of air inspired were obtained (Finney 1947). The
end point of each test is whether or not vaso-constriction occurred. Pregibon (1981)
uses this set of data to illustrate the diagnostic measures he proposes for detecting in-
fluential observations and to quantify their effects on various aspects of the maximum
likelihood fit.

The vaso-constriction data are saved in the data setvaso:
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data vaso;
length Response $12;
input Volume Rate Response @@;
LogVolume=log(Volume);
LogRate=log(Rate);
datalines;

3.70 0.825 constrict 3.50 1.09 constrict
1.25 2.50 constrict 0.75 1.50 constrict
0.80 3.20 constrict 0.70 3.50 constrict
0.60 0.75 no_constrict 1.10 1.70 no_constrict
0.90 0.75 no_constrict 0.90 0.45 no_constrict
0.80 0.57 no_constrict 0.55 2.75 no_constrict
0.60 3.00 no_constrict 1.40 2.33 constrict
0.75 3.75 constrict 2.30 1.64 constrict
3.20 1.60 constrict 0.85 1.415 constrict
1.70 1.06 no_constrict 1.80 1.80 constrict
0.40 2.00 no_constrict 0.95 1.36 no_constrict
1.35 1.35 no_constrict 1.50 1.36 no_constrict
1.60 1.78 constrict 0.60 1.50 no_constrict
1.80 1.50 constrict 0.95 1.90 no_constrict
1.90 0.95 constrict 1.60 0.40 no_constrict
2.70 0.75 constrict 2.35 0.03 no_constrict
1.10 1.83 no_constrict 1.10 2.20 constrict
1.20 2.00 constrict 0.80 3.33 constrict
0.95 1.90 no_constrict 0.75 1.90 no_constrict
1.30 1.625 constrict
;

In the data setvaso, the variableResponse represents the outcome of a test. The
variableLogVolume represents the log of the volume of air intake, and the variable
LogRate represents the log of the rate of air intake.

The following SAS statements invoke PROC LOGISTIC to fit a logistic regression
model to the vaso-constriction data, whereResponse is the response variable, and
LogRate andLogVolume are the explanatory variables. TheINFLUENCE option
and theIPLOTS option are specified to display the regression diagnostics and the
index plots.

ods html;
ods graphics on;

title ’Occurrence of Vaso-Constriction’;
proc logistic data=vaso;

model Response=LogRate LogVolume/influence iplots;
run;

ods graphics off;
ods html close;

Results of the model fit are shown inOutput 42.6.1. BothLogRate andLogVolume
are statistically significant to the occurrence of vaso-constriction (p = 0.0131 and
p = 0.0055, respectively). Their positive parameter estimates indicate that a higher



2424 � Chapter 42. The LOGISTIC Procedure

inspiration rate or a larger volume of air intake is likely to increase the probability of
vaso-constriction.

Output 42.6.1. Logistic Regression Analysis for Vaso-Constriction Data

Occurrence of Vaso-Constriction

The LOGISTIC Procedure

Model Information

Data Set WORK.VASO
Response Variable Response
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 39
Number of Observations Used 39

Response Profile

Ordered Total
Value Response Frequency

1 constrict 20
2 no_constrict 19

Probability modeled is Response=’constrict’.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 42.6.1. (continued)

Occurrence of Vaso-Constriction

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 56.040 35.227
SC 57.703 40.218
-2 Log L 54.040 29.227

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 24.8125 2 <.0001
Score 16.6324 2 0.0002
Wald 7.8876 2 0.0194

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.8754 1.3208 4.7395 0.0295
LogRate 1 4.5617 1.8380 6.1597 0.0131
LogVolume 1 5.1793 1.8648 7.7136 0.0055

Association of Predicted Probabilities and Observed Responses

Percent Concordant 93.7 Somers’ D 0.874
Percent Discordant 6.3 Gamma 0.874
Percent Tied 0.0 Tau-a 0.448
Pairs 380 c 0.937

The INFLUENCE option displays the values of the explanatory variables (LogRate
andLogVolume) for each observation, a column for each diagnostic produced, and
the case numberwhich represents the sequence number of the observation (Output
42.6.2). Also produced (but not shown here) is a lineprinter plot where the vertical
axis represents the case number and the horizontal axis represents the value of the
diagnostic statistic.

The index plots produced by the IPLOTS option are essentially the same lineprinter
plots as those produced by the INFLUENCE option with a 90-degree rotation and
perhaps on a more refined scale. This version of the plots are not displayed here. The
vertical axis of an index plot represents the value of the diagnostic and the horizontal
axis represents the sequence (case number) of the observation. The index plots are
useful for identification of extreme values.

Since the experimental ODS GRAPHICS statement is also specified, the lineprinter
plots from the INFLUENCE and IPLOTS options are suppressed and graphical dis-
plays are produced as shown inOutput 42.6.3throughOutput 42.6.5. For general
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information about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”
For specific information about the graphics available in the LOGISTIC procedure,
see the“ODS Graphics”section on page 2388.

Output 42.6.2. Regression Diagnostics from the INFLUENCE Option
(Experimental)

The LOGISTIC Procedure

Regression Diagnostics

Covariates
Hat

Case Log Pearson Deviance Matrix Intercept LogRate
Number LogRate Volume Residual Residual Diagonal DfBeta DfBeta

1 -0.1924 1.3083 0.2205 0.3082 0.0927 -0.0165 0.0193
2 0.0862 1.2528 0.1349 0.1899 0.0429 -0.0134 0.0151
3 0.9163 0.2231 0.2923 0.4049 0.0612 -0.0492 0.0660
4 0.4055 -0.2877 3.5181 2.2775 0.0867 1.0734 -0.9302
5 1.1632 -0.2231 0.5287 0.7021 0.1158 -0.0832 0.1411
6 1.2528 -0.3567 0.6090 0.7943 0.1524 -0.0922 0.1710
7 -0.2877 -0.5108 -0.0328 -0.0464 0.00761 -0.00280 0.00274
8 0.5306 0.0953 -1.0196 -1.1939 0.0559 -0.1444 0.0613
9 -0.2877 -0.1054 -0.0938 -0.1323 0.0342 -0.0178 0.0173

10 -0.7985 -0.1054 -0.0293 -0.0414 0.00721 -0.00245 0.00246
11 -0.5621 -0.2231 -0.0370 -0.0523 0.00969 -0.00361 0.00358
12 1.0116 -0.5978 -0.5073 -0.6768 0.1481 -0.1173 0.0647
13 1.0986 -0.5108 -0.7751 -0.9700 0.1628 -0.0931 -0.00946
14 0.8459 0.3365 0.2559 0.3562 0.0551 -0.0414 0.0538
15 1.3218 -0.2877 0.4352 0.5890 0.1336 -0.0940 0.1408
16 0.4947 0.8329 0.1576 0.2215 0.0402 -0.0198 0.0234
17 0.4700 1.1632 0.0709 0.1001 0.0172 -0.00630 0.00701
18 0.3471 -0.1625 2.9062 2.1192 0.0954 0.9595 -0.8279
19 0.0583 0.5306 -1.0718 -1.2368 0.1315 -0.2591 0.2024
20 0.5878 0.5878 0.2405 0.3353 0.0525 -0.0331 0.0421
21 0.6931 -0.9163 -0.1076 -0.1517 0.0373 -0.0180 0.0158
22 0.3075 -0.0513 -0.4193 -0.5691 0.1015 -0.1449 0.1237
23 0.3001 0.3001 -1.0242 -1.1978 0.0761 -0.1961 0.1275
24 0.3075 0.4055 -1.3684 -1.4527 0.0717 -0.1281 0.0410
25 0.5766 0.4700 0.3347 0.4608 0.0587 -0.0403 0.0570
26 0.4055 -0.5108 -0.1595 -0.2241 0.0548 -0.0366 0.0329
27 0.4055 0.5878 0.3645 0.4995 0.0661 -0.0327 0.0496
28 0.6419 -0.0513 -0.8989 -1.0883 0.0647 -0.1423 0.0617
29 -0.0513 0.6419 0.8981 1.0876 0.1682 0.2367 -0.1950
30 -0.9163 0.4700 -0.0992 -0.1400 0.0507 -0.0224 0.0227
31 -0.2877 0.9933 0.6198 0.8064 0.2459 0.1165 -0.0996
32 -3.5066 0.8544 -0.00073 -0.00103 0.000022 -3.22E-6 3.405E-6
33 0.6043 0.0953 -1.2062 -1.3402 0.0510 -0.0882 -0.0137
34 0.7885 0.0953 0.5447 0.7209 0.0601 -0.0425 0.0877
35 0.6931 0.1823 0.5404 0.7159 0.0552 -0.0340 0.0755
36 1.2030 -0.2231 0.4828 0.6473 0.1177 -0.0867 0.1381
37 0.6419 -0.0513 -0.8989 -1.0883 0.0647 -0.1423 0.0617
38 0.6419 -0.2877 -0.4874 -0.6529 0.1000 -0.1395 0.1032
39 0.4855 0.2624 0.7053 0.8987 0.0531 0.0326 0.0190
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Output 42.6.2. (continued)

The LOGISTIC Procedure

Regression Diagnostics

Confidence Confidence
Log Interval Interval

Case Volume Displacement Displacement Delta Delta
Number DfBeta C CBar Deviance Chi-Square

1 0.0556 0.00548 0.00497 0.1000 0.0536
2 0.0261 0.000853 0.000816 0.0369 0.0190
3 0.0589 0.00593 0.00557 0.1695 0.0910
4 -1.0180 1.2873 1.1756 6.3626 13.5523
5 0.0583 0.0414 0.0366 0.5296 0.3161
6 0.0381 0.0787 0.0667 0.6976 0.4376
7 0.00265 8.321E-6 8.258E-6 0.00216 0.00109
8 0.0570 0.0652 0.0616 1.4870 1.1011
9 0.0153 0.000322 0.000311 0.0178 0.00911

10 0.00211 6.256E-6 6.211E-6 0.00172 0.000862
11 0.00319 0.000014 0.000013 0.00274 0.00138
12 0.1651 0.0525 0.0447 0.5028 0.3021
13 0.1775 0.1395 0.1168 1.0577 0.7175
14 0.0527 0.00404 0.00382 0.1307 0.0693
15 0.0643 0.0337 0.0292 0.3761 0.2186
16 0.0307 0.00108 0.00104 0.0501 0.0259
17 0.00914 0.000089 0.000088 0.0101 0.00511
18 -0.8477 0.9845 0.8906 5.3817 9.3363
19 -0.00488 0.2003 0.1740 1.7037 1.3227
20 0.0518 0.00338 0.00320 0.1156 0.0610
21 0.0208 0.000465 0.000448 0.0235 0.0120
22 0.1179 0.0221 0.0199 0.3437 0.1956
23 0.0357 0.0935 0.0864 1.5212 1.1355
24 -0.1004 0.1558 0.1447 2.2550 2.0171
25 0.0708 0.00741 0.00698 0.2193 0.1190
26 0.0373 0.00156 0.00147 0.0517 0.0269
27 0.0788 0.0101 0.00941 0.2589 0.1423
28 0.1025 0.0597 0.0559 1.2404 0.8639
29 0.0286 0.1961 0.1631 1.3460 0.9697
30 0.0159 0.000554 0.000526 0.0201 0.0104
31 0.1322 0.1661 0.1253 0.7755 0.5095
32 2.48E-6 1.18E-11 1.18E-11 1.065E-6 5.324E-7
33 -0.00216 0.0824 0.0782 1.8744 1.5331
34 0.0671 0.0202 0.0190 0.5387 0.3157
35 0.0711 0.0180 0.0170 0.5295 0.3091
36 0.0631 0.0352 0.0311 0.4501 0.2641
37 0.1025 0.0597 0.0559 1.2404 0.8639
38 0.1397 0.0293 0.0264 0.4526 0.2639
39 0.0489 0.0295 0.0279 0.8355 0.5254
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Output 42.6.3. Residuals, Hat Matrix, and CI Displacement C (Experimental)

Output 42.6.4. CI Displacement CBar, Change in Deviance and Pearson χ2, and
DFBETAS for the Intercept (Experimental)
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R-Square, and Confidence Limits � 2429

Output 42.6.5. DFBETAS for LogRate and LogVolume (Experimental)

The index plots of the Pearson residuals and the deviance residuals (Output 42.6.3)
indicate that case 4 and case 18 are poorly accounted for by the model. The index
plot of the diagonal elements of the hat matrix (Output 42.6.3) suggests that case 31
is an extreme point in the design space. The index plots of DFBETAS (Output 42.6.4
andOutput 42.6.5) indicate that case 4 and case 18 are causing instability in all three
parameter estimates. The other four index plots inOutput 42.6.3andOutput 42.6.4
also point to these two cases as having a large impact on the coefficients and goodness
of fit.

Example 42.7. ROC Curve, Customized Odds Ratios,
Goodness-of-Fit Statistics, R-Square, and
Confidence Limits

This example plots an ROC curve, estimates a customized odds ratio, produces the
traditional goodness-of-fit analysis, displays the generalizedR2 measures for the
fitted model, calculates the normal confidence intervals for the regression parame-
ters, and produces an experimental display of the probability function and prediction
curves for the fitted model. The data consist of three variables:n (number of subjects
in a sample),disease (number of diseased subjects in the sample), andage (age for
the sample). A linear logistic regression model is used to study the effect of age on
the probability of contracting the disease.
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The SAS statements are as follows:

data Data1;
input disease n age;
datalines;

0 14 25
0 20 35
0 19 45
7 18 55
6 12 65

17 17 75
;

ods html;
ods graphics on;

proc logistic data=Data1;
model disease/n=age / scale=none

clparm=wald
clodds=pl
rsquare
outroc=roc1;

units age=10;
run;

ods graphics off;
ods html close;

The option SCALE=NONE is specified to produce the deviance and Pearson
goodness-of-fit analysis without adjusting for overdispersion. TheRSQUAREop-
tion is specified to produce generalizedR2 measures of the fitted model. The
CLPARM=WALD option is specified to produce the Wald confidence intervals for the
regression parameters. TheUNITS statement is specified to produce customized odds
ratio estimates for a change of 10 years in theage variable, and theCLODDS=PL
option is specified to produce profile likelihood confidence limits for the odds ratio.
TheOUTROC=option outputs the data for the ROC curve to the SAS data set,roc1.

Results are shown inOutput 42.7.1andOutput 42.7.2.

Output 42.7.1. Deviance and Pearson Goodness-of-Fit Analysis

The LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 7.7756 4 1.9439 0.1002
Pearson 6.6020 4 1.6505 0.1585

Number of events/trials observations: 6
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Output 42.7.2. R-Square, Confidence Intervals, and Customized Odds Ratio

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 124.173 52.468
SC 126.778 57.678
-2 Log L 122.173 48.468

R-Square 0.5215 Max-rescaled R-Square 0.7394

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 73.7048 1 <.0001
Score 55.3274 1 <.0001
Wald 23.3475 1 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.5016 2.5555 23.9317 <.0001
age 1 0.2066 0.0428 23.3475 <.0001

Association of Predicted Probabilities and Observed Responses

Percent Concordant 92.6 Somers’ D 0.906
Percent Discordant 2.0 Gamma 0.958
Percent Tied 5.4 Tau-a 0.384
Pairs 2100 c 0.953

Wald Confidence Interval for Parameters

Parameter Estimate 95% Confidence Limits

Intercept -12.5016 -17.5104 -7.4929
age 0.2066 0.1228 0.2904

Profile Likelihood Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

age 10.0000 7.892 3.881 21.406

Since the experimental ODS GRAPHICS statement is specified, a graphical display
of the ROC curve is produced as shown inOutput 42.7.3. For general information
about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”For specific
information about the graphics available in the LOGISTIC procedure, see the“ODS
Graphics”section on page 2388.
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Output 42.7.3. Receiver Operating Characteristic Curve (Experimental)

Note that the area under the ROC curve is given by the statisticc in the “Association
of Predicted Probabilities and Observed Responses” table. In this example, the area
under the ROC curve is 0.953.

The ROC curve may also be displayed with the GPLOT procedure by using the fol-
lowing code.

symbol1 i=join v=none c=black;
proc gplot data=roc1;

title ’ROC Curve’;
plot _sensit_*_1mspec_=1 / vaxis=0 to 1 by .1 cframe=white;

run;



Example 42.7. ROC Curve, Customized Odds Ratios, Goodness-of-Fit Statistics,
R-Square, and Confidence Limits � 2433

Because there is only one continuous covariate, if the experimental ODS GRAPHICS
statement and the experimental GRAPHICS option ESTPROB are specified, then a
graphical display of the estimated probability curve with bounding 95% prediction
limits is displayed as shown inOutput 42.7.4.

ods html;
ods graphics on;

proc logistic data=Data1;
model disease/n=age / scale=none

clparm=wald
clodds=pl
rsquare
outroc=roc1;

units age=10;
graphics estprob;

run;

ods graphics off;
ods html close;

Output 42.7.4. Estimated Probability and 95% Prediction Limits (Experimental)



2434 � Chapter 42. The LOGISTIC Procedure

Example 42.8. Goodness-of-Fit Tests and Subpopulations

A study is done to investigate the effects of two binary factors,A andB, on a binary
response,Y. Subjects are randomly selected from subpopulations defined by the four
possible combinations of levels ofA andB. The number of subjects responding with
each level ofY is recorded and entered into data setA.

data a;
do A=0,1;

do B=0,1;
do Y=1,2;

input F @@;
output;

end;
end;

end;
datalines;

23 63 31 70 67 100 70 104
;

A full model is fit to examine the main effects ofA andB as well as the interaction
effect ofA andB.

proc logistic data=a;
freq F;
model Y=A B A*B;

run;
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Output 42.8.1. Full Model Fit

The LOGISTIC Procedure

Model Information

Data Set WORK.A
Response Variable Y
Number of Response Levels 2
Frequency Variable F
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 8
Number of Observations Used 8
Sum of Frequencies Read 528
Sum of Frequencies Used 528

Response Profile

Ordered Total
Value Y Frequency

1 1 191
2 2 337

Probability modeled is Y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 693.061 691.914
SC 697.330 708.990
-2 Log L 691.061 683.914

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.1478 3 0.0673
Score 6.9921 3 0.0721
Wald 6.9118 3 0.0748
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Output 42.8.1. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.0074 0.2436 17.1015 <.0001
A 1 0.6069 0.2903 4.3714 0.0365
B 1 0.1929 0.3254 0.3515 0.5533
A*B 1 -0.1883 0.3933 0.2293 0.6321

Association of Predicted Probabilities and Observed Responses

Percent Concordant 42.2 Somers’ D 0.118
Percent Discordant 30.4 Gamma 0.162
Percent Tied 27.3 Tau-a 0.054
Pairs 64367 c 0.559

Pearson and Deviance goodness-of-fit tests cannot be obtained for this model since a
full model containing four parameters is fit, leaving no residual degrees of freedom.
For a binary response model, the goodness-of-fit tests havem−q degrees of freedom,
wherem is the number of subpopulations andq is the number of model parameters.
In the preceding model,m = q = 4, resulting in zero degrees of freedom for the
tests.

Results of the model fit are shown inOutput 42.8.1. Notice that neither theA*B in-
teraction nor theB main effect is significant. If a reduced model containing only the
A effect is fit, two degrees of freedom become available for testing goodness of fit.
Specifying theSCALE=NONEoption requests the Pearson and deviance statistics.
With single-trial syntax, theAGGREGATE=option is needed to define the subpop-
ulations in the study. Specifying AGGREGATE=(A B) creates subpopulations of
the four combinations of levels ofA andB. Although theB effect is being dropped
from the model, it is still needed to define the original subpopulations in the study. If
AGGREGATE=(A) were specified, only two subpopulations would be created from
the levels ofA, resulting inm = q = 2 and zero degrees of freedom for the tests.

proc logistic data=a;
freq F;
model Y=A / scale=none aggregate=(A B);

run;
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Output 42.8.2. Reduced Model Fit

The LOGISTIC Procedure

Model Information

Data Set WORK.A
Response Variable Y
Number of Response Levels 2
Frequency Variable F
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 8
Number of Observations Used 8
Sum of Frequencies Read 528
Sum of Frequencies Used 528

Response Profile

Ordered Total
Value Y Frequency

1 1 191
2 2 337

Probability modeled is Y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.3541 2 0.1770 0.8377
Pearson 0.3531 2 0.1765 0.8382

Number of unique profiles: 4

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 693.061 688.268
SC 697.330 696.806
-2 Log L 691.061 684.268

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.7937 1 0.0091
Score 6.6779 1 0.0098
Wald 6.6210 1 0.0101
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Output 42.8.2. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.9013 0.1614 31.2001 <.0001
A 1 0.5032 0.1955 6.6210 0.0101

Association of Predicted Probabilities and Observed Responses

Percent Concordant 28.3 Somers’ D 0.112
Percent Discordant 17.1 Gamma 0.246
Percent Tied 54.6 Tau-a 0.052
Pairs 64367 c 0.556

The goodness-of-fit tests (Output 42.8.2) show that dropping theB main effect and
the A*B interaction simultaneously does not result in significant lack of fit of the
model. The tests’ largep-values indicate insufficient evidence for rejecting the null
hypothesis that the model fits.

Example 42.9. Overdispersion

In a seed germination test, seeds of two cultivars were planted in pots of two soil
conditions. The following SAS statements create the data setseeds, which contains
the observed proportion of seeds that germinated for various combinations of cultivar
and soil condition. Variablen represents the number of seeds planted in a pot, and
variabler represents the number germinated. The indicator variablescult andsoil
represent the cultivar and soil condition, respectively.

data seeds;
input pot n r cult soil;
datalines;

1 16 8 0 0
2 51 26 0 0
3 45 23 0 0
4 39 10 0 0
5 36 9 0 0
6 81 23 1 0
7 30 10 1 0
8 39 17 1 0
9 28 8 1 0

10 62 23 1 0
11 51 32 0 1
12 72 55 0 1
13 41 22 0 1
14 12 3 0 1
15 13 10 0 1
16 79 46 1 1
17 30 15 1 1
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18 51 32 1 1
19 74 53 1 1
20 56 12 1 1
;

PROC LOGISTIC is used to fit a logit model to the data, withcult, soil, andcult ×
soil interaction as explanatory variables. The optionSCALE=NONEis specified to
display goodness-of-fit statistics.

proc logistic data=seeds;
model r/n=cult soil cult*soil/scale=none;
title ’Full Model With SCALE=NONE’;

run;

Output 42.9.1. Results of the Model Fit for the Two-Way Layout

Full Model With SCALE=NONE

The LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 68.3465 16 4.2717 <.0001
Pearson 66.7617 16 4.1726 <.0001

Number of events/trials observations: 20

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 1256.852 1213.003
SC 1261.661 1232.240
-2 Log L 1254.852 1205.003

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 49.8488 3 <.0001
Score 49.1682 3 <.0001
Wald 47.7623 3 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.3788 0.1489 6.4730 0.0110
cult 1 -0.2956 0.2020 2.1412 0.1434
soil 1 0.9781 0.2128 21.1234 <.0001
cult*soil 1 -0.1239 0.2790 0.1973 0.6569
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Results of fitting the full factorial model are shown inOutput 42.9.1. Both Pearson
χ2 and deviance are highly significant (p < 0.0001), suggesting that the model does
not fit well. If the link function and the model specification are correct and if there
are no outliers, then the lack of fit may be due to overdispersion. Without adjusting
for the overdispersion, the standard errors are likely to be underestimated, causing the
Wald tests to be too sensitive. In PROC LOGISTIC, there are three SCALE= options
to accommodate overdispersion. With unequal sample sizes for the observations,
SCALE=WILLIAMS is preferred. The Williams model estimates a scale parameter
φ by equating the value of Pearsonχ2 for the full model to its approximate expected
value. The full model considered here is the model with cultivar, soil condition, and
their interaction. Using a full model reduces the risk of contaminatingφ with lack of
fit due to incorrect model specification.

proc logistic data=seeds;
model r/n=cult soil cult*soil / scale=williams;
title ’Full Model With SCALE=WILLIAMS’;

run;
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Output 42.9.2. Williams’ Model for Overdispersion

Full Model With SCALE=WILLIAMS

The LOGISTIC Procedure

Model Information

Data Set WORK.SEEDS
Response Variable (Events) r
Response Variable (Trials) n
Weight Variable 1 / ( 1 + 0.075941 * (n - 1) )
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 20
Number of Observations Used 20
Sum of Frequencies Read 906
Sum of Frequencies Used 906
Sum of Weights Read 198.3216
Sum of Weights Used 198.3216

Response Profile

Ordered Binary Total Total
Value Outcome Frequency Weight

1 Event 437 92.95346
2 Nonevent 469 105.36819

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 16.4402 16 1.0275 0.4227
Pearson 16.0000 16 1.0000 0.4530

Number of events/trials observations: 20

NOTE: Since the Williams method was used to accommodate overdispersion, the
Pearson chi-squared statistic and the deviance can no longer be used to
assess the goodness of fit of the model.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 276.155 273.586
SC 280.964 292.822
-2 Log L 274.155 265.586
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Output 42.9.2. (continued)

Full Model With SCALE=WILLIAMS

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.5687 3 0.0356
Score 8.4856 3 0.0370
Wald 8.3069 3 0.0401

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.3926 0.2932 1.7932 0.1805
cult 1 -0.2618 0.4160 0.3963 0.5290
soil 1 0.8309 0.4223 3.8704 0.0491
cult*soil 1 -0.0532 0.5835 0.0083 0.9274

Association of Predicted Probabilities and Observed Responses

Percent Concordant 50.6 Somers’ D 0.258
Percent Discordant 24.8 Gamma 0.343
Percent Tied 24.6 Tau-a 0.129
Pairs 204953 c 0.629

Results using Williams’ method are shown inOutput 42.9.2. The estimate ofφ is
0.075941 and is given in the formula for the Weight Variable at the beginning of the
displayed output. Since neithercult nor cult × soil is statistically significant (p =
0.5290 andp = 0.9274, respectively), a reduced model that contains only the soil
condition factor is fitted, with the observations weighted by1/(1+0.075941(N−1)).
This can be done conveniently in PROC LOGISTIC by including the scale estimate
in the SCALE=WILLIAMS option as follows:

proc logistic data=seeds;
model r/n=soil / scale=williams(0.075941);
title ’Reduced Model With SCALE=WILLIAMS(0.075941)’;

run;
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Output 42.9.3. Reduced Model with Overdispersion Controlled

Reduced Model With SCALE=WILLIAMS(0.075941)

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.5249 0.2076 6.3949 0.0114
soil 1 0.7910 0.2902 7.4284 0.0064

Results of the reduced model fit are shown inOutput 42.9.3. Soil condition remains
a significant factor (p = 0.0064) for the seed germination.

Example 42.10. Conditional Logistic Regression for Matched
Pairs Data

In matched pairs, orcase-control, studies, conditional logistic regression is used to
investigate the relationship between an outcome of being an event (case) or a nonevent
(control) and a set of prognostic factors.

The data in this example are a subset of the data from the Los Angeles Study of
the Endometrial Cancer Data in Breslow and Day (1980). There are 63 matched
pairs, each consisting of a case of endometrial cancer (Outcome=1) and a control
(Outcome=0). The case and corresponding control have the sameID. Two prog-
nostic factors are included:Gall (an indicator variable for gall bladder disease) and
Hyper (an indicator variable for hypertension). The goal of the case-control analysis
is to determine the relative risk for gall bladder disease, controlling for the effect of
hypertension.

data Data1;
do ID=1 to 63;

do Outcome = 1 to 0 by -1;
input Gall Hyper @@;
output;

end;
end;
datalines;

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1
0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0
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0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 1 0 0 1 0 0 0
;

There are several ways to approach this problem with PROC LOGISTIC.

• Specify the STRATA statementto perform a conditional logistic regression.

• Specify EXACT and STRATA statementsto perform an exact conditional lo-
gistic regression on the original data set, if you believe the data set is too small
or too sparse for the usual asymptotics to hold.

• Transform each matched pairinto a single observation then specify a PROC
LOGISTIC statement on this transformed data without a STRATA statement;
this also performs a conditional logistic regression and produces essentially the
same results.

• Specify an EXACT statementon the transformed data.

SAS statements and selected results for these four approaches are given in the re-
mainder of this example.

Conditional Analysis Using the STRATA Statement

In the following SAS statements, PROC LOGISTIC is invoked with theID variable
declared in theSTRATA statement to obtain the conditional logistic model estimates.
Two models are fitted. The first model containsGall as the only predictor variable,
and the second model contains bothGall andHyper as predictor variables. Because
the optionCLODDS=Waldis specified, PROC LOGISTIC computes a 95% Wald
confidence interval for the odds ratio for each predictor variable.

proc logistic data=Data1;
strata ID;
model outcome(event=’1’)=Gall / clodds=Wald;

run;

proc logistic data=Data1;
strata ID;
model outcome(event=’1’)=Gall Hyper /clodds=Wald;

run;

Results from the two conditional logistic analyses are shown inOutput 42.10.1and
Output 42.10.2. Note that there is only one response level listed in the “Response
Profile” tables, and there is no intercept term in the “Analysis of Maximum
Likelihood Estimates” tables.
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Output 42.10.1. Conditional Logistic Regression (Gall as Risk Factor)

The LOGISTIC Procedure

Conditional Analysis

Model Information

Data Set WORK.DATA1
Response Variable Outcome
Number of Response Levels 2
Number of Strata 63
Model binary logit
Optimization Technique Newton-Raphson ridge

Number of Observations Read 126
Number of Observations Used 126

Response Profile

Ordered Total
Value Outcome Frequency

1 0 63
2 1 63

Probability modeled is Outcome=1.

Strata Summary

Outcome
Response ------- Number of

Pattern 0 1 Strata Frequency

1 1 1 63 126
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Output 42.10.1. (continued)

Conditional Analysis

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

AIC 87.337 85.654
SC 87.337 88.490
-2 Log L 87.337 83.654

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 3.6830 1 0.0550
Score 3.5556 1 0.0593
Wald 3.2970 1 0.0694

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Gall 1 0.9555 0.5262 3.2970 0.0694

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

Gall 1.0000 2.600 0.927 7.293
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Output 42.10.2. Conditional Logistic Regression (Gall and Hyper as Risk Factors)

The LOGISTIC Procedure

Conditional Analysis

Model Information

Data Set WORK.DATA1
Response Variable Outcome
Number of Response Levels 2
Number of Strata 63
Model binary logit
Optimization Technique Newton-Raphson ridge

Number of Observations Read 126
Number of Observations Used 126

Response Profile

Ordered Total
Value Outcome Frequency

1 0 63
2 1 63

Probability modeled is Outcome=1.

Strata Summary

Outcome
Response ------- Number of

Pattern 0 1 Strata Frequency

1 1 1 63 126



2448 � Chapter 42. The LOGISTIC Procedure

Output 42.10.2. (continued)

Conditional Analysis

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

AIC 87.337 86.788
SC 87.337 92.460
-2 Log L 87.337 82.788

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 4.5487 2 0.1029
Score 4.3620 2 0.1129
Wald 4.0060 2 0.1349

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Gall 1 0.9704 0.5307 3.3432 0.0675
Hyper 1 0.3481 0.3770 0.8526 0.3558

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

Gall 1.0000 2.639 0.933 7.468
Hyper 1.0000 1.416 0.677 2.965

In the first model, whereGall is the only predictor variable (Output 42.10.1), the odds
ratio estimate forGall is 2.60, which is marginally significant (p=0.0694) and which
is an estimate of the relative risk for gall bladder disease. A 95% confidence interval
for this relative risk is (0.927, 7.293).

In the second model, where bothGall andHyper are present (Output 42.10.2), the
odds ratio estimate forGall is 2.639, which is an estimate of the relative risk for
gall bladder disease adjusted for the effects of hypertension. A 95% confidence in-
terval for this adjusted relative risk is (0.933, 7.468). Note that the adjusted values
(accounting for hypertension) for gall bladder disease are not very different from the
unadjusted values (ignoring hypertension). This is not surprising since the prognostic
factorHyper is highly statistically insignificant. The 95% Wald confidence interval
for the odds ratio forHyper is (0.677, 2.965), which contains unity with ap-value
greater than0.3.
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Exact Analysis Using the STRATA Statement

When you believe there is not enough data or that the data are too sparse, you can
perform a stratified exact conditional logistic regression. The following statements
perform stratified exact conditional logistic regressions on the original data set by
specifying both theSTRATA andEXACT statements.

proc logistic data=Data1 exactonly;
strata ID;
model outcome(event=’1’)=Gall;
exact Gall / estimate=both;

run;

proc logistic data=Data1 exactonly;
strata ID;
model outcome(event=’1’)=Gall Hyper;
exact Gall Hyper / jointonly estimate=both;

run;

Output 42.10.3. Exact Conditional Logistic Regression (Gall as Risk Factor)

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

Gall Score 3.5556 0.0963 0.0799
Probability 0.0327 0.0963 0.0799

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

Gall 0.9555 -0.1394 2.2316 0.0963

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

Gall 2.600 0.870 9.315 0.0963



2450 � Chapter 42. The LOGISTIC Procedure

Output 42.10.4. Exact Conditional Logistic Regression (Gall and Hyper as Risk
Factors)

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

Joint Score 4.3620 0.1150 0.1134
Probability 0.00316 0.1150 0.1134

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

Gall 0.9530 -0.1407 2.2292 0.0969
Hyper 0.3425 -0.4486 1.1657 0.4622

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

Gall 2.593 0.869 9.293 0.0969
Hyper 1.408 0.639 3.208 0.4622

Note that the score statistics in the “Conditional Exact Tests” tables inOutput 42.10.3
andOutput 42.10.4are identical to the score statistics in the conditional analyses in
Output 42.10.1andOutput 42.10.2, respectively. The exact odds ratio confidence in-
tervals are much wider than their conditional analysis counterparts, but the parameter
estimates are similar. The exact analyses confirm the marginal significance ofGall
and the insignificance ofHyper as predictor variables.

Conditional Analysis Using Transformed Data

When each matched set consists of one event and one nonevent, the conditional like-
lihood is given by

∏
i

(1 + exp(−β′(xi1 − xi0))−1

wherexi1 andxi0 are vectors representing the prognostic factors for the event and
nonevent, respectively, of theith matched set. This likelihood is identical to the
likelihood of fitting a logistic regression model to a set of data with constant response,
where the model contains no intercept term and has explanatory variables given by
di = xi1 − xi0 (Breslow 1982).
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To apply this method, each matched pair is transformed into a single observation,
where the variablesGall andHyper contain the differences between the correspond-
ing values for the case and the control (case− control). The variableOutcome,
which will be used as the response variable in the logistic regression model, is given
a constant value of 0 (which is theOutcome value for the control, although any
constant, numeric or character, will do).

data Data2;
set Data1;
drop id1 gall1 hyper1;
retain id1 gall1 hyper1 0;
if (ID = id1) then do;

Gall=gall1-Gall; Hyper=hyper1-Hyper;
output;

end;
else do;

id1=ID; gall1=Gall; hyper1=Hyper;
end;

run;

Note that there are 63 observations in the data set, one for each matched pair. The
variableOutcome has a constant value of 0.

In the following SAS statements, PROC LOGISTIC is invoked with theNOINT
option to obtain the conditional logistic model estimates. Because the option
CLODDS=PL is specified, PROC LOGISTIC computes a 95% profile likelihood
confidence interval for the odds ratio for each predictor variable; note that profile
likelihood confidence intervals are not currently available when a STRATA statement
is specified.

proc logistic data=Data2;
model outcome=Gall / noint clodds=PL;

run;

proc logistic data=Data2;
model outcome=Gall Hyper / noint clodds=PL;

run;

The results are not displayed here.

Exact Analysis Using Transformed Data

Sometimes the original data set in a matched-pairs study may be too large for the
exact methods to handle. In such cases it may be possible to use the transformed
data set. The following code performs exact conditional logistic regressions on the
transformed data set. The results are not displayed here.
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proc logistic data=Data2 exactonly;
model outcome=Gall / noint;
exact Gall / estimate=both;

run;
proc logistic data=Data2 exactonly;

model outcome=Gall Hyper / noint;
exact Gall Hyper / jointonly estimate=both;

run;

Example 42.11. Complementary Log-Log Model for Infection
Rates

Antibodies produced in response to an infectious disease like malaria remain in the
body after the individual has recovered from the disease. A serological test detects
the presence or absence of such antibodies. An individual with such antibodies is
termed seropositive. In areas where the disease is endemic, the inhabitants are at
fairly constant risk of infection. The probability of an individual never having been
infected inY years isexp(−µY ), whereµ is the mean number of infections per year
(refer to the appendix of Draper, Voller, and Carpenter 1972). Rather than estimating
the unknownµ, it is of interest to epidemiologists to estimate the probability of a
person living in the area being infected in one year. This infection rateγ is given by

γ = 1− e−µ

The following statements create the data setsero, which contains the results of a
serological survey of malarial infection. Individuals of nine age groups (Group)
were tested. VariableA represents the midpoint of the age range for each age group.
VariableN represents the number of individuals tested in each age group, and variable
R represents the number of individuals that are seropositive.

data sero;
input Group A N R;
X=log(A);
label X=’Log of Midpoint of Age Range’;
datalines;

1 1.5 123 8
2 4.0 132 6
3 7.5 182 18
4 12.5 140 14
5 17.5 138 20
6 25.0 161 39
7 35.0 133 19
8 47.0 92 25
9 60.0 74 44
;

For theith group with age midpointAi, the probability of being seropositive ispi =
1− exp(−µAi). It follows that

log(− log(1− pi)) = log(µ) + log(Ai)
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By fitting a binomial model with a complementary log-log link function and by using
X=log(A) as an offset term, you can estimateβ0 = log(µ) as an intercept parameter.
The following SAS statements invoke PROC LOGISTIC to compute the maximum
likelihood estimate ofβ0. TheLINK=CLOGLOG option is specified to request the
complementary log-log link function. Also specified is theCLPARM=PL option,
which requests the profile likelihood confidence limits forβ0.

proc logistic data=sero;
model R/N= / offset=X

link=cloglog
clparm=pl
scale=none;

title ’Constant Risk of Infection’;
run;

Output 42.11.1. Modeling Constant Risk of Infection

Constant Risk of Infection

The LOGISTIC Procedure

Model Information

Data Set WORK.SERO
Response Variable (Events) R
Response Variable (Trials) N
Offset Variable X Log of Midpoint of Age Range
Model binary cloglog
Optimization Technique Fisher’s scoring

Number of Observations Read 9
Number of Observations Used 9
Sum of Frequencies Read 1175
Sum of Frequencies Used 1175

Response Profile

Ordered Binary Total
Value Outcome Frequency

1 Event 193
2 Nonevent 982

Intercept-Only Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

-2 Log L = 967.1158



2454 � Chapter 42. The LOGISTIC Procedure

Output 42.11.1. (continued)

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 41.5032 8 5.1879 <.0001
Pearson 50.6883 8 6.3360 <.0001

Number of events/trials observations: 9

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -4.6605 0.0725 4133.5626 <.0001
X 1 1.0000 0 . .

Profile Likelihood Confidence
Interval for Parameters

Parameter Estimate 95% Confidence Limits

Intercept -4.6605 -4.8057 -4.5219

Results of fitting this constant risk model are shown inOutput 42.11.1. The maximum
likelihood estimate ofβ0 = log(µ) and its estimated standard error areβ̂0 = −4.6605
andσ̂

β̂0
= 0.0725, respectively. The infection rate is estimated as

γ̂ = 1− e−µ̂ = 1− e−eβ̂0 = 1− e−e−4.6605
= 0.00942

The 95% confidence interval forγ, obtained by back-transforming the 95% confi-
dence interval forβ0, is (0.0082, 0.0108); that is, there is a 95% chance that, in re-
peated sampling, the interval of 8 to 11 infections per thousand individuals contains
the true infection rate.

The goodness of fit statistics for the constant risk model are statistically significant
(p < 0.0001), indicating that the assumption of constant risk of infection is not cor-
rect. You can fit a more extensive model by allowing a separate risk of infection for
each age group. Supposeµi is the mean number of infections per year for theith
age group. The probability of seropositive for theith group with age midpointAi is
pi = 1− exp(−µiAi), so that

log(− log(1− pi)) = log(µi) + log(Ai)

In the following statements, a complementary log-log model is fit containingGroup
as an explanatory classification variable with the GLM coding (so that a dummy vari-
able is created for each age group), no intercept term, and X=log(A) as an offset
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term. The ODS OUTPUT statement saves the estimates and their 95% profile like-
lihood confidence limits toClparmPL data set. Note thatlog(µi) is the regression
parameter associated withGroup= i.

proc logistic data=sero;
ods output ClparmPL=ClparmPL;
class Group / param=glm;
model R/N=Group / noint

offset=X
link=cloglog
clparm=pl;

title ’Infectious Rates and 95% Confidence Intervals’;
run;

Output 42.11.2. Modeling Separate Risk of Infection

Infectious Rates and 95% Confidence Intervals

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Group 1 1 -3.1048 0.3536 77.0877 <.0001
Group 2 1 -4.4542 0.4083 119.0164 <.0001
Group 3 1 -4.2769 0.2358 328.9593 <.0001
Group 4 1 -4.7761 0.2674 319.0600 <.0001
Group 5 1 -4.7165 0.2238 443.9920 <.0001
Group 6 1 -4.5012 0.1606 785.1350 <.0001
Group 7 1 -5.4252 0.2296 558.1114 <.0001
Group 8 1 -4.9987 0.2008 619.4666 <.0001
Group 9 1 -4.1965 0.1559 724.3157 <.0001
X 1 1.0000 0 . .

Profile Likelihood Confidence
Interval for Parameters

Parameter Estimate 95% Confidence Limits

Group 1 -3.1048 -3.8880 -2.4833
Group 2 -4.4542 -5.3769 -3.7478
Group 3 -4.2769 -4.7775 -3.8477
Group 4 -4.7761 -5.3501 -4.2940
Group 5 -4.7165 -5.1896 -4.3075
Group 6 -4.5012 -4.8333 -4.2019
Group 7 -5.4252 -5.9116 -5.0063
Group 8 -4.9987 -5.4195 -4.6289
Group 9 -4.1965 -4.5164 -3.9037

Results of fitting the model with a separate risk of infection are shown inOutput
42.11.2. For the first age group (Group=1), the point estimate oflog(µ1) is−3.1048,
which transforms into an infection rate of1 − exp(− exp(−3.1048)) = 0.0438. A
95% confidence interval for this infection rate is obtained by transforming the 95%
confidence interval forlog(µ1). For the first age group, the lower and upper confi-
dence limits are1−exp(− exp(−3.8880) = 0.0203 and1−exp(− exp(−2.4833)) =
0.0801, respectively; that is, there is a 95% chance that, in repeated sampling, the in-
terval of 20 to 80 infections per thousand individuals contains the true infection rate.
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The following statements perform this transformation on the estimates and confidence
limits saved in theClparmPL data set; the resulting estimated infection rates in one
year’s time for each age group are displayed inTable 42.5. Note that the infection
rate for the first age group is high compared to the other age groups.

data ClparmPL;
set ClparmPL;
Estimate=round( 1000*( 1-exp(-exp(Estimate)) ) );
LowerCL =round( 1000*( 1-exp(-exp(LowerCL )) ) );
UpperCL =round( 1000*( 1-exp(-exp(UpperCL )) ) );

run;

Table 42.5. Infection Rate in One Year
Number Infected per 1,000 People

Age Point 95% Confidence Limits
Group Estimate Lower Upper

1 44 20 80
2 12 5 23
3 14 8 21
4 8 5 14
5 9 6 13
6 11 8 15
7 4 3 7
8 7 4 10
9 15 11 20

Example 42.12. Complementary Log-Log Model for Interval-
Censored Survival Times

Often survival times are not observed more precisely than the interval (for instance,
a day) within which the event occurred. Survival data of this form are known as
grouped or interval-censored data. A discrete analogue of the continuous proportional
hazards model (Prentice and Gloeckler 1978; Allison 1982) is used to investigate the
relationship between these survival times and a set of explanatory variables.

SupposeTi is the discrete survival time variable of theith subject with covariatesxi.
The discrete-time hazard rateλit is defined as

λit = Pr(Ti = t | Ti ≥ t,xi), t = 1, 2, . . .

Using elementary properties of conditional probabilities, it can be shown that

Pr(Ti = t) = λit

t−1∏
j=1

(1− λij) and Pr(Ti > t) =
t∏

j=1

(1− λij)
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Supposeti is the observed survival time of theith subject. Supposeδi = 1 if Ti = ti
is an event time and 0 otherwise. The likelihood for the grouped survival data is given
by

L =
∏

i

[Pr(Ti = ti)]δi [Pr(Ti > ti)]1−δi

=
∏

i

(
λiti

1− λiti

)δi ti∏
j=1

(1− λij)

=
∏

i

ti∏
j=1

(
λij

1− λij

)yij

(1− λij)

whereyij = 1 if the ith subject experienced an event at timeTi = j and 0 otherwise.

Note that the likelihoodL for the grouped survival data is the same as the likelihood
of a binary response model with event probabilitiesλij . If the data are generated by
a continuous-time proportional hazards model, Prentice and Gloeckler (1978) have
shown that

λij = 1− exp(− exp(αj + β′xi))

where the coefficient vectorβ is identical to that of the continuous-time proportional
hazards model, andαj is a constant related to the conditional survival probability
in the interval defined byTi = j at xi = 0. The grouped data survival model
is therefore equivalent to the binary response model with complementary log-log
link function. To fit the grouped survival model using PROC LOGISTIC, you must
treat each discrete time unit for each subject as a separate observation. For each of
these observations, the response is dichotomous, corresponding to whether or not the
subject died in the time unit.

Consider a study of the effect of insecticide on flour-beetles. Four different con-
centrations of an insecticide were sprayed on separate groups of flour-beetles. The
numbers of male and female flour-beetles dying in successive intervals were saved in
the data setbeetles.

data beetles(keep=time sex conc freq);
input time m20 f20 m32 f32 m50 f50 m80 f80;
conc=.20;
freq= m20; sex=1; output;
freq= f20; sex=2; output;
conc=.32;
freq= m32; sex=1; output;
freq= f32; sex=2; output;
conc=.50;
freq= m50; sex=1; output;
freq= f50; sex=2; output;
conc=.80;
freq= m80; sex=1; output;
freq= f80; sex=2; output;
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datalines;
1 3 0 7 1 5 0 4 2
2 11 2 10 5 8 4 10 7
3 10 4 11 11 11 6 8 15
4 7 8 16 10 15 6 14 9
5 4 9 3 5 4 3 8 3
6 3 3 2 1 2 1 2 4
7 2 0 1 0 1 1 1 1
8 1 0 0 1 1 4 0 1
9 0 0 1 1 0 0 0 0

10 0 0 0 0 0 0 1 1
11 0 0 0 0 1 1 0 0
12 1 0 0 0 0 1 0 0
13 1 0 0 0 0 1 0 0
14 101 126 19 47 7 17 2 4
;

The data setbeetles contains four variables:time, sex, conc, andfreq. time repre-
sents the interval death time; for example,time=2 is the interval between day 1 and
day 2. Insects surviving the duration (13 days) of the experiment are given atime
value of 14. The variablesex represents the sex of the insects (1=male, 2=female),
conc represents the concentration of the insecticide (mg/cm2), andfreq represents
the frequency of the observations.

To use PROC LOGISTIC with the grouped survival data, you must expand the data
so that each beetle has a separate record for each day of survival. A beetle that died
in the third day (time=3) would contribute three observations to the analysis, one for
each day it was alive at the beginning of the day. A beetle that survives the 13-day
duration of the experiment (time=14) would contribute 13 observations.

A new data setdays that contains the beetle-day observations is created from the data
setbeetles. In addition to the variablessex, conc andfreq, the data set contains an
outcome variabley and 13 indicator variablesday1, day2, . . ., day13. y has a value
of 1 if the observation corresponds to the day that the beetle died and has a value of
0 otherwise. An observation for the first day will have a value of 1 forday1 and a
value of 0 forday2–day13; an observation for the second day will have a value of 1
for day2 and a value of 0 forday1 andday2–day13. For instance,Output 42.12.1
shows an observation in thebeetles data set withtime=3, andOutput 42.12.2shows
the corresponding beetle-day observations in the data setdays.
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data days;
retain day1-day13 0;
array dd[13] day1-day13;
set beetles;
if time = 14 then do day=1 to 13;

y=0; dd[day]=1;
output;
dd[day]=0;

end;
else do day=1 to time;

if day=time then y=1;
else y=0;
dd[day]=1;
output;
dd[day]=0;

end;

Output 42.12.1. An Observation with Time=3 in Data Set Beetles

Obs time conc freq sex

17 3 0.2 10 1

Output 42.12.2. Corresponding Beetle-day Observations in Days

d d d d
t c f d d d d d d d d d a a a a

O i o r s d a a a a a a a a a y y y y
b m n e e a y y y y y y y y y 1 1 1 1
s e c q x y y 1 2 3 4 5 6 7 8 9 0 1 2 3

25 3 0.2 10 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
26 3 0.2 10 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
27 3 0.2 10 1 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0

The following SAS statements invoke PROC LOGISTIC to fit a complementary
log-log model for binary data with response variable Y and explanatory variables
day1–day13, sex, andconc. Specifying theEVENT= option ensures that the event
(y=1) probability is modeled. The coefficients ofday1–day13 can be used to esti-
mate the baseline survival function. TheNOINT option is specified to prevent any
redundancy in estimating the coefficients ofday1–day13. The Newton-Raphson al-
gorithm is used for the maximum likelihood estimation of the parameters.

proc logistic data=days outest=est1;
model y(event=’1’)= day1-day13 sex conc

/ noint link=cloglog technique=newton;
freq freq;

run;
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Output 42.12.3. Parameter Estimates for the Grouped Proportional Hazards
Model

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

day1 1 -3.9314 0.2934 179.5602 <.0001
day2 1 -2.8751 0.2412 142.0596 <.0001
day3 1 -2.3985 0.2299 108.8833 <.0001
day4 1 -1.9953 0.2239 79.3960 <.0001
day5 1 -2.4920 0.2515 98.1470 <.0001
day6 1 -3.1060 0.3037 104.5799 <.0001
day7 1 -3.9704 0.4230 88.1107 <.0001
day8 1 -3.7917 0.4007 89.5233 <.0001
day9 1 -5.1540 0.7316 49.6329 <.0001
day10 1 -5.1350 0.7315 49.2805 <.0001
day11 1 -5.1131 0.7313 48.8834 <.0001
day12 1 -5.1029 0.7313 48.6920 <.0001
day13 1 -5.0951 0.7313 48.5467 <.0001
sex 1 -0.5651 0.1141 24.5477 <.0001
conc 1 3.0918 0.2288 182.5665 <.0001

Results of the model fit are given inOutput 42.12.3. Bothsex andconc are statisti-
cally significant for the survival of beetles sprayed by the insecticide. Female beetles
are more resilient to the chemical than male beetles, and increased concentration in-
creases the effectiveness of the insecticide.

The coefficients of day1–day13 are the maximum likelihood estimates of
α1, . . . , α13, respectively. The baseline survivor functionS0(t) is estimated by

Ŝ0(t) = P̂r(T > t) =
∏
j≤t

exp(− exp(α̂j))

and the survivor function for a given covariate pattern (sex=x1 and conc=x2) is
estimated by

yŜ(t) = [Ŝ0(t)]exp(−0.5651x1+3.0918x2)
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The following statements compute the survivor curves for male and female flour-
beetles exposed to the insecticide of concentrations 0.20 mg/cm2 and 0.80 mg/cm2.
The GPLOT procedure in SAS/GRAPH software is used to plot the survival curves.
Instead of plotting them as step functions, the SPLINE option is used to smooth the
curves. These smoothed survival curves are displayed inOutput 42.12.4.

legend1 label=none frame cframe=white cborder=black position=center
value=(justify=center);

run;
axis1 label=(angle=90 ’Survival Function’);
proc gplot data=one;

plot (s_m20 s_f20 s_m80 s_f80) * day
/ overlay legend=legend1 vaxis=axis1;

symbol1 v=circle i=spline c=black height=.8;
symbol2 v=diamond i=spline c=black height=.8;
symbol3 v=triangle i=spline c=black height=.8;
symbol4 v=square i=spline c=black height=.8;

run;

The probability of survival is displayed on the vertical axis. Notice that most of the
insecticide effect occurs by day 6 for both the high and low concentrations.

Output 42.12.4. Predicted Survival at Concentrations of 0.20 and 0.80 mg/cm2
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Example 42.13. Scoring Data Sets with the SCORE Statement

This example first illustrates the syntax used for scoring data sets, then uses a pre-
viously scored data set to score a new data set. A generalized logit model is fit to
the remote-sensing data set used inExample 25.4on page 1231 ofChapter 25, “The
DISCRIM Procedure,”to illustrate discrimination and classification methods. The
response variable isCrop and the prognostic factors arex1 throughx4.

data Crops;
length Crop $ 10;
infile datalines truncover;
input Crop $ @@;
do i=1 to 3;

input x1-x4 @@;
if (x1 ^= .) then output;

end;
input;
datalines;

Corn 16 27 31 33 15 23 30 30 16 27 27 26
Corn 18 20 25 23 15 15 31 32 15 32 32 15
Corn 12 15 16 73
Soybeans 20 23 23 25 24 24 25 32 21 25 23 24
Soybeans 27 45 24 12 12 13 15 42 22 32 31 43
Cotton 31 32 33 34 29 24 26 28 34 32 28 45
Cotton 26 25 23 24 53 48 75 26 34 35 25 78
Sugarbeets 22 23 25 42 25 25 24 26 34 25 16 52
Sugarbeets 54 23 21 54 25 43 32 15 26 54 2 54
Clover 12 45 32 54 24 58 25 34 87 54 61 21
Clover 51 31 31 16 96 48 54 62 31 31 11 11
Clover 56 13 13 71 32 13 27 32 36 26 54 32
Clover 53 08 06 54 32 32 62 16
;

You can specify aSCOREstatement to score theCrops data using the fitted model.
The data together with the predicted values are saved into the data setScore1.

proc logistic data=Crops;
model Crop=x1-x4 / link=glogit;
score out=Score1;

run;

The OUTMODEL= option saves the fitted model information in a data set. In the
following statements, the model is again fit, the data and the predicted values are
saved into the data setScore2, and the model information is saved in the permanent
SAS data setsasuser.CropModel.

proc logistic data=Crops outmodel=sasuser.CropModel;
model Crop=x1-x4 / link=glogit;
score data=Crops out=Score2;

run;
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To score data without refitting the model, specify theINMODEL= option to identify a
previously saved SAS data set of model information. In the following statements, the
model is read from thesasuser.CropModel data set, and the data and the predicted
values are saved into the data setScore3.

proc logistic inmodel=sasuser.CropModel;
score data=Crops out=Score3;

run;

To set prior probabilities on the responses, specify thePRIOR=option to identify a
SAS data set containing the response levels and their priors. In the following state-
ments, thePrior data set contains the values of the response variable (because this
example uses single-trial MODEL syntax) and a–PRIOR– variable containing val-
ues proportional to the default priors. The model is fit, then the data and the predicted
values are saved into the data setScore4.

data Prior;
input Crop $ 1-10 _PRIOR_;
datalines;

Clover 11
Corn 7
Cotton 6
Soybeans 6
Sugarbeets 6
;

proc logistic inmodel=sasuser.CropModel;
score data=Crops prior=prior out=Score4;

run;

The data setsScore1, Score2, Score3, andScore4 are identical.

The following statements display the results of scoring theCrops data set inOutput
42.13.1.

proc freq data=Score1;
table F_Crop*I_Crop / nocol nocum nopercent;

run;
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Output 42.13.1. Classification of Data used for Scoring

The FREQ Procedure

Table of F_Crop by I_Crop

F_Crop(From: Crop) I_Crop(Into: Crop)

Frequency |
Row Pct |Clover |Corn |Cotton |Soybeans|Sugarbee| Total

| | | | |ts |
-----------+--------+--------+--------+--------+--------+
Clover | 6 | 0 | 2 | 2 | 1 | 11

| 54.55 | 0.00 | 18.18 | 18.18 | 9.09 |
-----------+--------+--------+--------+--------+--------+
Corn | 0 | 7 | 0 | 0 | 0 | 7

| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 |
-----------+--------+--------+--------+--------+--------+
Cotton | 4 | 0 | 1 | 1 | 0 | 6

| 66.67 | 0.00 | 16.67 | 16.67 | 0.00 |
-----------+--------+--------+--------+--------+--------+
Soybeans | 1 | 1 | 1 | 3 | 0 | 6

| 16.67 | 16.67 | 16.67 | 50.00 | 0.00 |
-----------+--------+--------+--------+--------+--------+
Sugarbeets | 2 | 0 | 0 | 2 | 2 | 6

| 33.33 | 0.00 | 0.00 | 33.33 | 33.33 |
-----------+--------+--------+--------+--------+--------+
Total 13 8 4 8 3 36

Now the previously fit data setsasuser.CropModel is used to score the new obser-
vations in theTest data set. The following statements save the results of scoring the
test data in theScoredTest data set and producesOutput 42.13.2.

data Test;
input Crop $ 1-10 x1-x4;
datalines;

Corn 16 27 31 33
Soybeans 21 25 23 24
Cotton 29 24 26 28
Sugarbeets 54 23 21 54
Clover 32 32 62 16
;

proc logistic noprint inmodel=sasuser.CropModel;
score data=Test out=ScoredTest;

proc print data=ScoredTest label noobs;
var F_Crop I_Crop P_Clover P_Corn P_Cotton P_Soybeans P_Sugarbeets;

run;
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Output 42.13.2. Classification of Test Data

Predicted Predicted
Into: Probability: Probability:

From: Crop Crop Crop=Clover Crop=Corn

Corn Corn 0.00342 0.90067
Soybeans Soybeans 0.04801 0.03157
Cotton Clover 0.43180 0.00015
Sugarbeets Clover 0.66681 0.00000
Clover Cotton 0.41301 0.13386

Predicted Predicted Predicted
Probability: Probability: Probability:

Crop=Cotton Crop=Soybeans Crop=Sugarbeets

0.00500 0.08675 0.00416
0.02865 0.82933 0.06243
0.21267 0.07623 0.27914
0.17364 0.00000 0.15955
0.43649 0.00033 0.01631
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Chapter 43
The MDS Procedure
Overview

Multidimensional scaling (MDS) is a class of methods that estimates the coordinates
of a set of objects in a space of specified dimensionality that come from data mea-
suring the distances between pairs of objects. A variety of models can be used that
include different ways of computing distances and various functions relating the dis-
tances to the actual data. The MDS procedure fits two- and three-way, metric and
nonmetric multidimensional scaling models. PROC MDS shares many of the fea-
tures of the ALSCAL procedure (Young, Lewyckyj, and Takane 1986; Young 1982),
as well as some features of the MLSCALE procedure (Ramsay 1986). Both PROC
ALSCAL and PROC MLSCALE are described in theSUGI Supplemental Library
User’s Guide, Version 5 Edition.

The data for the MDS procedure consist of one or more square symmetric or asym-
metric matrices of similarities or dissimilarities betweenobjectsor stimuli (Kruskal
and Wish 1978, pp. 7−11). Such data are also calledproximitydata. In psychome-
tric applications, each matrix typically corresponds to asubject, and models that fit
different parameters for each subject are calledindividual differencemodels.

Missing values are allowed. In particular, if the data are all missing except within
some off-diagonal rectangle, the analysis is calledunfolding. There are, however,
many difficulties intrinsic to unfolding models (Heiser, 1981). PROC MDS does
not perform external unfolding; for analyses requiring external unfolding, use the
TRANSREG procedure instead.

The MDS procedure estimates the following parameters by nonlinear least squares:

configuration the coordinates of each object in a Euclidean (Kruskal and
Wish 1978, pp. 17−19) or weighted Euclidean space (Kruskal
and Wish 1978, pp. 61−63) of one or more dimensions

dimension coefficients for each data matrix, the coefficients that multiply each coor-
dinate of thecommonor group weighted Euclidean space to
yield theindividual unweighted Euclidean space. These coef-
ficients are the square roots of thesubject weights(Kruskal and
Wish 1978, pp. 61−63). A plot of the dimension coefficients
is directly interpretable in that it shows how a unit square in
the group space is transformed to a rectangle in each individ-
ual space. A plot of subject weights has no such simple in-
terpretation. The weighted Euclidean model is related to the
INDSCAL model (Carroll and Chang 1970).
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transformation parameters intercept, slope, or exponent in a linear, affine, or power trans-
formation relating the distances to the data (Kruskal and Wish
1978, pp. 19−22). For a nonmetric analysis, monotone trans-
formations involving no explicit parameters are used (Kruskal
and Wish 1978, pp. 22−25). For a discussion of metric versus
nonmetric transformations, refer to Kruskal and Wish (1978,
pp. 76−78).

Depending on the LEVEL= option, PROC MDS fits either a regression model of the
form

fit(datum) = fit(trans(distance)) + error

or a measurement model of the form

fit(trans(datum)) = fit(distance) + error

where

fit is a predetermined power or logarithmic transformation specified by the
FIT= option.

trans is an estimated (“optimal”) linear, affine, power, or monotone transfor-
mation specified by the LEVEL= option.

datum is a measure of the similarity or dissimilarity of two objects or stimuli.

distance is a distance computed from the estimated coordinates of the two ob-
jects and estimated dimension coefficients in a space of one or more di-
mensions. If there are no dimension coefficients (COEF=IDENTITY),
this is an unweighted Euclidean distance. If dimension coefficients are
used (COEF=DIAGONAL), this is a weighted Euclidean distance where
the weights are the squares of the dimension coefficients; alternatively,
you can multiply each dimension by its coefficient and compute an un-
weighted Euclidean distance.

error is an error term assumed to have an approximately normal distribution
and to be independently and identically distributed for all data. Under
these assumptions, least-squares estimation is statistically appropriate.

For an introduction to multidimensional scaling, refer to Kruskal and Wish (1978)
and Arabie, Carroll, and DeSarbo (1987). A more advanced treatment is given by
Young (1987). Many practical issues of data collection and analysis are discussed
in Schiffman, Reynolds, and Young (1981). The fundamentals of psychological
measurement, including both unidimensional and multidimensional scaling, are ex-
pounded by Torgerson (1958). Nonlinear least-squares estimation of PROC MDS
models is discussed in Null and Sarle (1982).
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Getting Started

The simplest application of PROC MDS is to reconstruct a map from a table of dis-
tances between points on the map (Kruskal and Wish 1978, pp. 7−9). For example,
the following DATA step reads a table of flying mileages between ten U.S. cities:

data city;
title ’Analysis of Flying Mileages Between Ten U.S. Cities’;
input (atlanta chicago denver houston losangeles

miami newyork sanfran seattle washdc) (5.)
@56 city $15.;

datalines;
0 Atlanta

587 0 Chicago
1212 920 0 Denver

701 940 879 0 Houston
1936 1745 831 1374 0 Los Angeles

604 1188 1726 968 2339 0 Miami
748 713 1631 1420 2451 1092 0 New York

2139 1858 949 1645 347 2594 2571 0 San Francisco
2182 1737 1021 1891 959 2734 2408 678 0 Seattle

543 597 1494 1220 2300 923 205 2442 2329 0 Washington D.C.
;

Since the flying mileages are very good approximations to Euclidean distance, no
transformation is needed to convert distances from the model to data. The analy-
sis can therefore be done at the absolute level of measurement, as displayed in the
following PROC MDS step (LEVEL=ABSOLUTE). An output data set containing
the estimated configuration (coordinates on the map) is created with the OUT= op-
tion and then used to display the map using the %PLOTIT macro. The ID statement
copies the names of the cities to the OUT= data set so that they can be used on the
plot. The following statements produceFigure 43.1:

proc mds data=city level=absolute out=out;
id city;

run;

By default, PROC MDS displays only the iteration history. In this example, only one
iteration is required. The badness-of-fit criterion 0.001689 indicates that the data fit
the model extremely well.
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Analysis of Flying Mileages Between Ten U.S. Cities

Multidimensional Scaling: Data=WORK.CITY.DATA
Shape=TRIANGLE Condition=MATRIX Level=ABSOLUTE

Coef=IDENTITY Dimension=2 Formula=1 Fit=1

Gconverge=0.01 Maxiter=100 Over=1 Ridge=0.0001

Badness-
of-Fit Change in Convergence

Iteration Type Criterion Criterion Measure
--------------------------------------------------------------

0 Initial 0.003273 . 0.8562
1 Lev-Mar 0.001689 0.001584 0.005128

Convergence criterion is satisfied.

Figure 43.1. Iteration History from PROC MDS

In order for the plot to represent the geometry of the configuration correctly, the axes
must be scaled so that a given physical distance on one axis represents the same
number of units as the same physical distance on the other axis. You can use the
%PLOTIT macro to obtain such a scaling by specifying the VTOH= option. The
VTOH= option indicates the ratio of the vertical distance between lines to the hor-
izontal distance between characters; obtaining a suitable value may require some
experimentation. The %PLOTIT macro can create graphical scatter plots with it-
eratively derived optimal label placement. SeeAppendix B, “Using the %PLOTIT
Macro,” for more information on the %PLOTIT macro.

The following statements produceFigure 43.2:

%plotit(data=out, datatype=mds, labelvar=city,
vtoh=1.75, labfont=swissb);

run;

While PROC MDS can recover the relative positions of the cities, it cannot determine
absolute location or orientation. In this case, north is toward the bottom of the plot.



Syntax � 2475

Figure 43.2. Plot of Estimated Configuration Using the %PLOTIT Macro

Syntax

You can specify the following statements with the MDS procedure:

PROC MDS < options > ;
VAR variables ;
INVAR variables ;
ID | OBJECT variable ;
MATRIX | SUBJECT variable ;
WEIGHT variables ;
BY variables ;

The PROC MDS statement is required. All other statements are optional.
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PROC MDS Statement

PROC MDS < options > ;

By default, the only result produced by the MDS procedure is the iteration history.
Hence, you should always specify one or more options for output data sets (OUT=,
OUTFIT=, and OUTRES=) or displayed output (such as PFINAL). PROC MDS does
not produce any plots; to produce plots, use the output data sets with PROC PLOT or
PROC GPLOT.

The types of estimates written to the OUT= data set are determined by the OCONFIG,
OCOEF, OTRANS, and OCRIT options. If you do not specify any of these four
options, the estimates of all the parameters of the PROC MDS model and the value of
the badness-of-fit criterion appear in the OUT= data set. If you specify one or more
of these options, only the information requested by the specified options appear in
the OUT= data set. Also, the OITER option causes these statistics to be written to the
OUT= data set after initialization and on each iteration, as well as after the iterations
have terminated.

Displayed output is controlled by the interaction of the PCONFIG, PCOEF,
PTRANS, PFIT, and PFITROW options with the PININ, PINIT, PITER, and
PFINAL options. The PCONFIG, PCOEF, PTRANS, PFIT, and PFITROW options
specify which estimates and fit statistics are to be displayed. The PININ, PINIT,
PITER, and PFINAL options specifywhenthe estimates and fit statistics are to be
displayed. If you specify at least one of the PCONFIG, PCOEF, PTRANS, PFIT
and PFITROW options but none of the PININ, PINIT, PITER, and PFINAL options,
the final results (PFINAL) are displayed. If you specify at least one of the PININ,
PINIT, PITER, and PFINAL options but none of the PCONFIG, PCOEF, PTRANS,
PFIT and PFITROW options, all estimates (PCONFIG, PCOEF, PTRANS) and the
fit statistics for each matrix and for the entire sample (PFIT) are displayed. If you
do not specify any of these nine options, no estimates or fit statistics are displayed
(except the badness-of-fit criterion in the iteration history).

ALTERNATE | ALT=NONE | NO | N
ALTERNATE | ALT=MATRIX | MAT | M | SUBJECT | SUB | S
ALTERNATE | ALT=ROW | R <=n>

determines what form of alternating-least-squares algorithm is used. The default de-
pends on the amount of memory available. The following ALTERNATE= options are
listed in order of decreasing memory requirements:

ALT=NONE causes all parameters to be adjusted simultaneously on each
iteration. This option is usually best for a small number of
subjects and objects.

ALT=MATRIX adjusts all the parameters for the first subject, then all the
parameters for the second subject, and so on, and finally ad-
justs all parameters that do not correspond to a subject, such
as coordinates and unconditional transformations. This op-
tion usually works best for a large number of subjects with a
small number of objects.
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ALT=ROW treats subject parameters the same way as the
ALTERNATE=MATRIX option but also includes sepa-
rate stages for unconditional parameters and for subsets of
the objects. The ALT=ROW option usually works best for a
large number of objects.

Specifying ALT=ROW=n divides the objects into subsets of
n objects each, except possibly for one subset whenn does
not divide the number of objects evenly. If you omit =n,
the number of objects in the subsets is determined from the
amount of memory available. The smaller the value ofn, the
less memory is required.

When you specify the LEVEL=ORDINAL option, the monotone transformation is
always computed in a separate stage and is listed as a separate iteration in the itera-
tion history. In this case, estimation is done by iteratively reweighted least squares.
The weights are recomputed according to the FORMULA= option on each mono-
tone iteration; hence, it is possible for the badness-of-fit criterion to increase after a
monotone iteration.

COEF=IDENTITY | IDEN | I
COEF=DIAGONAL | DIAG | D

specifies the type of matrix for the dimension coefficients.

COEF=IDENTITY is the default, which yields Euclidean distances.

COEF=DIAGONAL produces weighted Euclidean distances, in which each sub-
ject is allowed differential weights for the dimensions. The
dimension coefficients that PROC MDS outputs are related to
the square roots of what are called subject weights in PROC
ALSCAL; the normalization in PROC MDS also differs from
that in PROC ALSCAL. The weighted Euclidean model is
related to the INDSCAL model (Carroll and Chang 1970).

CONDITION | COND=UN | U
CONDITION | COND=MATRIX | MAT | M | SUBJECT | SUB | S
CONDITION | COND=ROW | R

specifies the conditionality of the data (Young 1987, pp. 60−63). The default is
CONDITION=MATRIX.

The data are divided into disjoint subsets calledpartitions. Within each partition, a
separate transformation is applied, as specified by the LEVEL= option.

COND=UN puts all the data into a single partition.

COND=MATRIX makes each data matrix a partition.

COND=ROW makes each row of each data matrix a partition.
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The CONDITION= option also determines the default value for the SHAPE= option.
If you specify the CONDITION=ROW option and omit the SHAPE= option, each
data matrix is stored as a square and possibly asymmetric matrix. If you specify the
CONDITION=UN or CONDITION=MATRIX option and omit the SHAPE= option,
only one triangle is stored. See theSHAPE= optionon page 2484 for details.

CONVERGE | CONV=p
sets both the gradient convergence criterion and the monotone convergence criterion
to p, where0 ≤ p ≤ 1. The default is CONVERGE=.01; smaller values may greatly
increase the number of iterations required. Values less than .0001 may be impossible
to satisfy because of the limits of machine precision. See theGCONVERGE=(page
2480) andMCONVERGE=(page 2481) options.

CUTOFF=n
causes data less thann to be replaced by missing values. The default is CUTOFF=0.

DATA=SAS-data-set
specifies the SAS data set containing one or more square matrices to be analyzed. In
typical psychometric data, each matrix contains judgments from one subject, so there
is a one-to-one correspondence between data matrices and subjects.

The data matrices contain similarity or dissimilarity measurements to be modeled
and, optionally, weights for these data. The data are generally assumed to be dis-
similarities unless you use the SIMILAR option. However, if there are nonmissing
diagonal values and these values are predominantly larger than the off-diagonal val-
ues, the data are assumed to be similarities and are treated as if the SIMILAR option
is specified. The diagonal elements are not otherwise used in fitting the model.

Each matrix must have exactly the same number of observations as the number of
variables specified by the VAR statement or determined by defaults. This number is
the number of objects or stimuli.

The first observation and variable are assumed to contain data for the first object, the
second observation and variable are assumed to contain data for the second object,
and so on.

When there are two or more matrices, the observations in each matrix must corre-
spond to the same objects in the same order as in the first matrix.

The matrices can be symmetric or asymmetric, as specified by the SHAPE= option.

DECIMALS | DEC=n
specifies how many decimal places to use when displaying the parameter estimates
and fit statistics. The default is DECIMALS=2, which is generally reasonable except
in conjunction with the LEVEL=ABSOLUTE option and very large or very small
data.

DIMENSION | DIMENS | DIM=n < TO m < BY=i >>
specifies the number of dimensions to use in the MDS model, where1 ≤ n, m <
number of objects. The parameteri can be either positive or negative but not zero.
If you specify different values forn andm, a separate model is fitted for each re-
quested dimension. If you specify only DIMENSION=n, then onlyn dimensions are
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fitted. The default is DIMENSION=2 if there are three or more objects; otherwise,
DIMENSION=1 is the only valid specification. The analyses for each number of di-
mensions are done independently. For information on choosing the dimensionality,
refer to Kruskal and Wish (1978, pp. 48−60).

EPSILON | EPS=n
specifies a numbern, 0 < n < 1, that determines the amount added to squared
distances computed from the model to avoid numerical problems such as division by
0. This amount is computed asε equal ton times the mean squared distance in the
initial configuration. The distance in the MDS model is thus computed as

distance =
√

sqdist + ε

wheresqdist is the squared Euclidean distance or the weighted squared Euclidean
distance.

The default is EPSILON=1E−12, which is small enough to have no practical effect
on the estimates unless the FIT= value is nonpositive and there are dissimilarities that
are very close to 0. Hence, when the FIT= value is nonpositive, dissimilarities less
thann times 100 times the maximum dissimilarity are disallowed.

FIT=DISTANCE | DIS | D
FIT=SQUARED | SQU | S
FIT=LOG | L
FIT=n

specifies a predetermined (not estimated) transformation to apply to both sides of the
MDS model before the error term is added.

The default is FIT=DISTANCE or, equivalently, FIT=1, which fits data to distances.

The option FIT=SQUARED or FIT=2 fits squared data to squared distances. This
gives greater importance to large data and distances and lesser importance to small
data and distances in fitting the model.

The FIT=LOG or FIT=0 option fits log data to log distances. This gives lesser impor-
tance to large data and distances and greater importance to small data and distances
in fitting the model.

In general, the FIT=n option fitsnth-power data tonth-power distances. Values ofn
that are large in absolute value can cause floating-point overflows.

If the FIT= value is 0 or negative, the data must be strictly positive (see the
EPSILON= option). Negative data may produce strange results with any value other
than FIT=1.

FORMULA | FOR=0 | OLS | O
FORMULA | FOR=1 | USS | U
FORMULA | FOR=2 | CSS | C

determines how the badness-of-fit criterion is standardized in correspondence with
stress formulas 1 and 2 (Kruskal and Wish 1978, pp. 24−26). The default
is FORMULA=1 unless you specify FIT=LOG, in which case the default is
FORMULA=2. Data partitions are defined by the CONDITION= option.
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FORMULA=0 fits a regression model by ordinary least squares (Null and Sarle
1982) without standardizing the partitions; this option cannot be
used with the LEVEL=ORDINAL option. The badness-of-fit cri-
terion is the square root of the error sum of squares.

FORMULA=1 standardizes each partition by the uncorrected sum of squares
of the (possibly transformed) data; this option should not be
used with the FIT=LOG option. With the FIT=DISTANCE
and LEVEL=ORDINAL options, this is equivalent to Kruskal’s
stress formula 1 or an obvious generalization thereof. With the
FIT=SQUARED and LEVEL=ORDINAL options, this is equiv-
alent to Young’s s-stress formula 1 or an obvious generalization
thereof. The badness-of-fit criterion is analogous to

√
1−R2,

whereR is a multiple correlation about the origin.

FORMULA=2 standardizes each partition by the corrected sum of squares
of the (possibly transformed) data; this option is the recom-
mended method for unfolding. With the FIT=DISTANCE and
LEVEL=ORDINAL options, this is equivalent to Kruskal’s
stress formula 2 or an obvious generalization thereof. With the
FIT=SQUARED and LEVEL=ORDINAL options, this is equiv-
alent to Young’s s-stress formula 2 or an obvious generalization
thereof. The badness-of-fit criterion is analogous to

√
1−R2,

whereR is a multiple correlation computed with a denominator
corrected for the mean.

GCONVERGE | GCONV=p
sets the gradient convergence criterion top, where0 ≤ p ≤ 1. The default is
GCONVERGE=0.01; smaller values may greatly increase the number of iterations
required. Values less than 0.0001 may be impossible to satisfy because of the limits
of machine precision.

The gradient convergence measure is the multiple correlation of the Jacobian matrix
with the residual vector, uncorrected for the mean. See theCONVERGE=(page
2478) andMCONVERGE=(page 2481) options.

INAV=DATA | D
INAV=SSCP | S

affects the computation of initial coordinates. The default is INAV=DATA.

INAV=DATA computes a weighted average of the data matrices. Its value is es-
timated only if an element is missing from every data matrix. The
weighted average of the data matrices with missing values filled in
is then converted to a scalar products matrix (or what would be a
scalar products matrix if the fit were perfect), from which the initial
coordinates are computed.

INAV=SSCP estimates missing values in each data matrix and converts each data
matrix to a scalar products matrix. The initial coordinates are com-
puted from the unweighted average of the scalar products matrices.
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INITIAL | IN=SAS-data-set
specifies a SAS data set containing initial values for some or all of the parameters of
the MDS model. If the INITIAL= option is omitted, the initial values are computed
from the data.

LEVEL=ABSOLUTE | ABS | A
LEVEL=RATIO | RAT | R
LEVEL=INTERVAL | INT | I
LEVEL=LOGINTERVAL | LOG | L
LEVEL=ORDINAL | ORD | O

specifies the measurement level of the data and hence the type of estimated (optimal)
transformations applied to the data or distances (Young 1987, pp. 57−60; Krantz
et. al. 1971, pp. 9−12) within each partition as specified by the CONDITION= op-
tion. LEVEL=ORDINAL specifies a nonmetric analysis, while all other LEVEL=
options specify metric analyses. The default is LEVEL=ORDINAL.

LEVEL=ABSOLUTE allows no optimal transformations. Hence, the distinc-
tion between regression and measurement models is ir-
relevant.

LEVEL=RATIO fits a regression model in which the distances are mul-
tiplied by a slope parameter in each partition (a linear
transformation). In this case, the regression model is
equivalent to the measurement model with the slope pa-
rameter reciprocated.

LEVEL=INTERVAL fits a regression model in which the distances are mul-
tiplied by a slope parameter and added to an intercept
parameter in each partition (an affine transformation).
In this case, the regression and measurement models
differ if there is more than one partition.

LEVEL=LOGINTERVAL fits a regression model in which the distances are raised
to a power and multiplied by a slope parameter in each
partition (a power transformation).

LEVEL=ORDINAL fits a measurement model in which a least-squares
monotone increasing transformation is applied to the
data in each partition. At the ordinal measurement
level, the regression and measurement models differ.

MAXITER | ITER=n
specifies the maximum number of iterations, wheren ≥ 0. The default is
MAXITER=100.

MCONVERGE | MCONV=p
sets the monotone convergence criterion top, where0 ≤ p ≤ 1, for use with
the LEVEL=ORDINAL option. The default is MCONVERGE=0.01; if you want
greater precision, MCONVERGE=0.001 is usually reasonable, but smaller values
may greatly increase the number of iterations required.
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The monotone convergence criterion is the Euclidean norm of the change in the op-
timally scaled data divided by the Euclidean norm of the optimally scaled data, aver-
aged across partitions defined by the CONDITION= option. See theCONVERGE=
(page 2478) andGCONVERGE=(page 2480) options.

MINCRIT | CRITMIN=n
causes iteration to terminate when the badness-of-fit criterion is less than or equal to
n, wheren ≥ 0. The default is MINCRIT=1E−6.

NEGATIVE
allows slopes or powers to be negative with the LEVEL=RATIO, INTERVAL, or
LOGINTERVAL option.

NONORM
suppresses normalization of the initial and final estimates.

NOPHIST | NOPRINT | NOP
suppresses the output of the iteration history.

NOULB
causes missing data to be estimated during initialization by the average nonmissing
value, where the average is computed according to the FIT= option. Otherwise, miss-
ing data are estimated by interpolating between the Rabinowitz (1976) upper and
lower bounds.

OCOEF
writes the dimension coefficients to the OUT= data set. See the OUT= option for
interactions with other options.

OCONFIG
writes the coordinates of the objects to the OUT= data set. See the OUT= option for
interactions with other options.

OCRIT
writes the badness-of-fit criterion to the OUT= data set. See the OUT= option for
interactions with other options.

OITER | OUTITER
writes current values to the output data sets after initialization and on every iteration.
Otherwise, only the final values are written to any output data sets. See the OUT=,
OUTFIT=, and OUTRES= options.

OTRANS
writes the transformation parameter estimates to the OUT= data set if any
such estimates are computed. There are no transformation parameters with the
LEVEL=ORDINAL option. See the OUT= option for interactions with other
options.

OUT=SAS-data-set
creates a SAS data set containing, by default, the estimates of all the parameters of
the PROC MDS model and the value of the badness-of-fit criterion. However, if you
specify one or more of the OCONFIG, OCOEF, OTRANS, and OCRIT options, only
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the information requested by the specified options appears in the OUT= data set. See
also the OITER option.

OUTFIT=SAS-data-set
creates a SAS data set containing goodness-of-fit and badness-of-fit measures for
each partition as well as for the entire data set. See also the OITER option.

OUTRES=SAS-data-set
creates a SAS data set containing one observation for each nonmissing datum from
the DATA= data set. Each observation contains the original datum, the estimated
distance computed from the MDS model, transformed data and distances, and the
residual. See also the OITER option.

OVER=n
specifies the maximum overrelaxation factor, wheren ≥ 1. Values between 1 and
2 are generally reasonable. The default is OVER=2 with the LEVEL=ORDINAL,
ALTERNATE=MATRIX, or ALTERNATE=ROW option; otherwise, the default is
OVER=1. Use this option only if you have convergence problems.

PCOEF
produces the estimated dimension coefficients.

PCONFIG
produces the estimated coordinates of the objects in the configuration.

PDATA
displays each data matrix.

PFINAL
displays final estimates.

PFIT
displays the badness-of-fit criterion and various types of correlations between the data
and fitted values for each data matrix, as well as for the entire sample.

PFITROW
displays the badness-of-fit criterion and various types of correlations between the
data and fitted values for each row as well as for each data matrix and for the entire
sample. This option works only with the CONDITION=ROW option.

PINAVDATA
displays the sum of the weights and the weighted average of the data matrices com-
puted during initialization with the INAV=DATA option.

PINEIGVAL
displays the eigenvalues computed during initialization.

PINEIGVEC
displays the eigenvectors computed during initialization.
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PININ
displays values read from the INITIAL= data set. Since these values may be incom-
plete, the PFIT and PFITROW options do not apply.

PINIT
displays initial values.

PITER
displays estimates on each iteration.

PTRANS
displays the estimated transformation parameters if any are computed. There are no
transformation parameters with the LEVEL=ORDINAL option.

RANDOM<=seed>
causes initial coordinate values to be pseudorandom numbers. In one dimension, the
pseudorandom numbers are uniformly distributed on an interval. In two or more di-
mensions, the pseudorandom numbers are uniformly distributed on the circumference
of a circle or the surface of a (hyper)sphere.

RIDGE=n
specifies the initial ridge value, wheren ≥ 0. The default is RIDGE=1E−4.

If you get a floating-point overflow in the first few iterations, specify a larger value
such as RIDGE=0.01 or RIDGE=1 or RIDGE=100.

If you know that the initial estimates are very good, using RIDGE=0 may speed
convergence.

SHAPE=TRIANGULAR | TRIANGLE | TRI | T
SHAPE=SQUARE | SQU | S

determines whether the entire data matrix for each subject or only one triangle of the
matrix is stored and analyzed. If you specify the CONDITION=ROW option, the
default is SHAPE=SQUARE. Otherwise, the default is SHAPE=TRIANGLE.

SHAPE=SQUARE causes the entire matrix to be stored and analyzed. The ma-
trix can be asymmetric.

SHAPE=TRIANGLE causes only one triangle to be stored. However, PROC MDS
reads both upper and lower triangles to look for nonmissing
values and to symmetrize the data if needed. If corresponding
elements in the upper and lower triangles both contain non-
missing values, only the average of the two values is stored
and analyzed (Kruskal and Wish 1978, p. 74). Also, if an
OUTRES= data set is requested, only the average of the two
corresponding elements is output.

SIMILAR | SIM<=max>
causes the data to be treated as similarity measurements rather than dissimilarities.
If =max is not specified, each datum is converted to a dissimilarity by subtracting
it from the maximum value in the data set or BY group. If =max is specified, each
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datum is subtracted from the maximum ofmaxand the data. The diagonal data are
included in computing these maxima.

By default, the data are assumed to be dissimilarities unless there are nonmissing di-
agonal values and these values are predominantly larger than the off-diagonal values.
In this case, the data are assumed to be similarities and are treated as if the SIMILAR
option is specified.

SINGULAR=p
specifies the singularity criterionp, 0 ≤ p ≤ 1. The default is SINGULAR=1E−8.

UNTIE
allows tied data to be assigned different optimally scaled values with the
LEVEL=ORDINAL option. Otherwise, tied data are assigned equal optimally scaled
values. The UNTIE option has no effect with values of the LEVEL= option other
than LEVEL=ORDINAL.

BY Statement

BY variables ;

You can specify a BY statement with PROC MDS to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the MDS procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

If the INITIAL= data set contains the BY variables, the BY groups must appear in
the same order as in the DATA= data set. If the BY variables are not in the INITIAL=
data set, the entire data set is used to provide initial values for each BY group in the
DATA= data set.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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ID Statement

ID | OBJECT | OBJ variable ;

The ID statement specifies a variable in the DATA= data set that contains descrip-
tive labels for the objects. The labels are used in the output and are copied to the
OUT= data set. If there is more than one data matrix, only the ID values from the
observations containing the first data matrix are used.

The ID variable is not used to establish any correspondence between observations
and variables.

If the ID statement is omitted, the variable labels or names are used as object labels.

INVAR Statement

INVAR variables ;

The INVAR statement specifies the numeric variables in the INITIAL= data set that
contain initial parameter estimates. The first variable corresponds to the first dimen-
sion, the second variable to the second dimension, and so on.

If the INVAR statement is omitted, the variablesDIM1, . . . , DIMm are used, where
m is the maximum number of dimensions.

MATRIX Statement

MATRIX | MAT | SUBJECT | SUB variable ;

The MATRIX statement specifies a variable in the DATA= data set that contains de-
scriptive labels for the data matrices or subjects. The labels are used in the output
and are copied to the OUT= and OUTRES= data sets. Only the first observation from
each data matrix is used to obtain the label for that matrix.

If the MATRIX statement is omitted, the matrices are labeled 1, 2, 3, and so on.

VAR Statement

VAR variables ;

The VAR statement specifies the numeric variables in the DATA= data set that contain
similarity or dissimilarity measurements on a set of objects or stimuli. Each variable
corresponds to one object.

If the VAR statement is omitted, all numeric variables that are not specified in another
statement are used.

To analyze a subset of the objects in a data set, you can specify the variable names
corresponding to the columns in the subset, but you must also use a DATA step or a
WHERE clause to specify the rows in the subset. PROC MDS expects to read one
or more square matrices, and you must ensure that the rows in the data set correctly
correspond to the columns in number and order.
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WEIGHT Statement

WEIGHT variables ;

The WEIGHT statement specifies numeric variables in the DATA= data set that con-
tain weights for each similarity or dissimilarity measurement. These weights are
used to compute weighted least-squares estimates. The number of WEIGHT vari-
ables must be the same as the number of VAR variables, and the variables in the
WEIGHT statement must be in the same order as the corresponding variables in the
VAR statement.

If the WEIGHT statement is omitted, all data within a partition are assigned equal
weights.

Data with 0 or negative weights are ignored in fitting the model but are included in
the OUTRES= data set and in monotone transformations.

Details

Formulas

The following notation is used:

Ap intercept for partitionp

Bp slope for partitionp

Cp power for partitionp

Drcs distance computed from the model between objectsr andc for subjects

Frcs data weight for objectsr andc for subjectsobtained from thecth WEIGHT
variable, or 1 if there is no WEIGHT statement

f value of the FIT= option

N number of objects

Orcs observed dissimilarity between objectsr andc for subjects

Prcs partition index for objectsr andc for subjects

Qrcs dissimilarity after applying any applicable estimated transformation for ob-
jectsr andc for subjects

Rrcs residual for objectsr andc for subjects

Sp standardization factor for partitionp

Tp(·) estimated transformation for partitionp

Vsd coefficient for subjects on dimensiond

Xnd coordinate for objectn on dimensiond

Summations are taken over nonmissing values.
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Distances are computed from the model as

Drcs =
√∑

d

(Xrd −Xcd)2 for COEF=IDENTITY:
Euclidean distance

=
√∑

d

V 2
sd(Xrd −Xcd)2 for COEF=DIAGONAL:

weighted Euclidean distance

Partition indexes are

Prcs = 1 for CONDITION=UN
= s for CONDITION=MATRIX
= (s− 1)N + r for CONDITION=ROW

The estimated transformation for each partition is

Tp(d) = d for LEVEL=ABSOLUTE
= Bpd for LEVEL=RATIO
= Ap + Bpd for LEVEL=INTERVAL
= Bpd

Cp for LEVEL=LOGINTERVAL

For LEVEL=ORDINAL, Tp(·) is computed as a least-squares monotone transforma-
tion.

For LEVEL=ABSOLUTE, RATIO, or INTERVAL, the residuals are computed as

Qrcs = Orcs

Rrcs = Qf
rcs − [TPrcs(Drcs)]f

For LEVEL=ORDINAL, the residuals are computed as

Qrcs = TPrcs(Orcs)
Rrcs = Qf

rcs −Df
rcs

If f is 0, then natural logarithms are used in place of thef th powers.

For each partition, let

Up =

∑
r,c,s

Frcs∑
r,c,s|Prcs=p

Frcs

and

Qp =

∑
r,c,s|Prcs=p

QrcsFrcs∑
r,c,s|Prcs=p

Frcs
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Then the standardization factor for each partition is

Sp = 1 for FORMULA=0

= Up

∑
r,c,s|Prcs=p

Q2
rcsFrcs for FORMULA=1

= Up

∑
r,c,s|Prcs=p

(Qrcs −Qp)
2Frcs for FORMULA=2

The badness-of-fit criterion that the MDS procedure tries to minimize is√√√√∑
r,c,s

R2
rcsFrcs

SPrcs

OUT= Data Set
The OUT= data set contains the following variables:

• BY variables, if any

• –ITER– (if the OUTITER option is specified), a numeric variable containing
the iteration number

• –DIMENS– , a numeric variable containing the number of dimensions

• –MATRIX– or the variable in the MATRIX statement, identifying the data
matrix or subject to which the observation pertains. This variable contains a
missing value for observations that pertain to the data set as a whole and not to
a particular matrix, such as the coordinates (–TYPE–=‘CONFIG’).

• –TYPE– , a character variable of length 10 identifying the type of information
in the observation

The values of–TYPE– are as follows:

CONFIG the estimated coordinates of the configuration of objects
DIAGCOEF the estimated dimension coefficients for

COEF=DIAGONAL
INTERCEPT the estimated intercept parameters
SLOPE the estimated slope parameters
POWER the estimated power parameters
CRITERION the badness-of-fit criterion

• –LABEL– or the variable in the ID statement, containing the variable label
or value of the ID variable of the object to which the observation pertains.
This variable contains a missing value for observations that do not pertain to a
particular object or dimension.

• –NAME– , a character variable of length 8 containing the variable name of the
object or dimension to which the observation pertains. This variable contains
a missing value for observations that do not pertain to a particular object or
dimension.

• DIM1, . . . , DIMm, wherem is the maximum number of dimensions
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OUTFIT= Data Set

The OUTFIT= data set contains various measures of goodness and badness of fit.
There is one observation for the entire sample plus one observation for each matrix.
For the CONDITION=ROW option, there is also one observation for each row.

The OUTFIT= data set contains the following variables:

• BY variables, if any

• –ITER– (if the OUTITER option is specified), a numeric variable containing
the iteration number

• –DIMENS– , a numeric variable containing the number of dimensions

• –MATRIX– or the variable in the MATRIX statement, identifying the data
matrix or subject to which the observation pertains

• –LABEL– or the variable in the ID statement, containing the variable label or
value of the ID variable of the object to which the observation pertains when
CONDITION=ROW

• –NAME– , a character variable of length 8 containing the variable name
of the object or dimension to which the observation pertains when
CONDITION=ROW

• N, the number of nonmissing data

• WEIGHT, the weight of the partition

• CRITER, the badness-of-fit criterion

• DISCORR, the correlation between the transformed data and the distances for
LEVEL=ORDINAL or the correlation between the data and the transformed
distances otherwise

• UDISCORR, the correlation uncorrected for the mean between the trans-
formed data and the distances for LEVEL=ORDINAL or the correlation be-
tween the data and the transformed distances otherwise

• FITCORR, the correlation between the fit-transformed data and the fit-
transformed distances

• UFITCORR, the correlation uncorrected for the mean between the fit-
transformed data and the fit-transformed distances

OUTRES= Data Set

The OUTRES= data set has one observation for each nonmissing datum. It contains
the following variables:

• BY variables, if any

• –ITER– (if the OUTITER option is specified), a numeric variable containing
the iteration number

• –DIMENS– , a numeric variable containing the number of dimensions
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• –MATRIX– or the variable in the MATRIX statement, identifying the data
matrix or subject to which the observation pertains

• –ROW– , containing the variable label or value of the ID variable of the row
to which the observation pertains

• –COL– , containing the variable label or value of the ID variable of the column
to which the observation pertains

• DATA, the original datum

• TRANDATA, the optimally transformed datum when LEVEL=ORDINAL

• DISTANCE, the distance computed from the PROC MDS model

• TRANSDIST, the optimally transformed distance when the LEVEL= option
is not ORDINAL or ABSOLUTE

• FITDATA, the datum further transformed according to the FIT= option

• FITDIST, the distance further transformed according to the FIT= option

• WEIGHT, the combined weight of the datum based on the WEIGHT vari-
able(s), if any, and the standardization specified by the FORMULA= option

• RESIDUAL, FITDATA minusFITDIST

To cause a datum to appear in the OUTRES= data set, yet be ignored in fitting the
model, give the datum a nonmissing value but a 0 weight (see“WEIGHT Statement”).

INITIAL= Data Set

The INITIAL= data set has the same structure as the OUT= data set but is not required
to have all of the variables or observations that appear in the OUT= data set. You can
use an OUT= data set previously created by PROC MDS (without the OUTITER
option) as an INITIAL= data set in a subsequent invocation of the procedure.

The only variables that are required areDIM1, . . . , DIMm (wherem is the maximum
number of dimensions) or equivalent variables specified in the INVAR statement. If
these are the only variables, then all the observations are assumed to contain coordi-
nates of the configuration; you cannot read dimension coefficients or transformation
parameters.

To read initial values for the dimension coefficients or transformation parameters,
the INITIAL= data set must contain the–TYPE– variable and either the variable
specified in the ID statement or, if no ID statement is used, the variable–NAME– .
In addition, if there is more than one data matrix, either the variable specified in the
MATRIX statement or, if no MATRIX statement is used, the variable–MATRIX– or

–MATNUM– is required.

If the INITIAL= data set contains the variable–DIMENS– , initial values are ob-
tained from observations with the corresponding number of dimensions. If there is
no –DIMENS– variable, the same observations are used for each number of dimen-
sions analyzed.
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If you want PROC MDS to read initial values from some but not all of the observa-
tions in the INITIAL= data set, use the WHERE= data set option to select the desired
observations.

Missing Values

Missing data in the similarity or dissimilarity matrices are ignored in fitting the model
and are omitted from the OUTRES= data set. Any matrix that is completely missing
is omitted from the analysis.

Missing weights are treated as 0.

Missing values are also allowed in the INITIAL= data set, but a large number of
missing values may yield a degenerate initial configuration.

Normalization of the Estimates

In multidimensional scaling models, the parameter estimates are not uniquely de-
termined; the estimates can be transformed in various ways without changing their
badness of fit. The initial and final estimates from PROC MDS are, therefore, normal-
ized (unless you specify the NONORM option) to make it easier to compare results
from different analyses.

The configuration always has a mean of 0 for each dimension.

With the COEF=IDENTITY option, the configuration is rotated to a principal-axis
orientation. Unless you specify the LEVEL=ABSOLUTE option, the entire config-
uration is scaled so that the root-mean-square element is 1, and the transformations
are adjusted to compensate.

With the COEF=DIAGONAL option, each dimension is scaled to a root-mean-square
value of 1, and the dimension coefficients are adjusted to compensate. Unless you
specify the LEVEL=ABSOLUTE option, the dimension coefficients are normal-
ized as follows. If you specify the CONDITION=UN option, all of the dimension
coefficients are scaled to a root-mean-square value of 1. For other values of the
CONDITION= option, the dimension coefficients are scaled separately for each sub-
ject to a root-mean-square value of 1. In either case, the transformations are adjusted
to compensate.

Each dimension is reflected to give a positive rank correlation with the order of the
objects in the data set.

For the LEVEL=ORDINAL option, if the intercept, slope, or power parameters are
fitted, the transformed data are normalized to eliminate these parameters if possible.
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Comparison with the ALSCAL Procedure

The MDS procedure generally produces results similar to those from the ALSCAL
procedure (Young, Lewyckyj, and Takane 1986; Young 1982) if you use the following
options in PROC MDS:

• FIT=SQUARED

• FORMULA=1 except for unfolding data, which require FORMULA=2

• PFINAL to get output similar to that from PROC ALSCAL

Unlike PROC ALSCAL, PROC MDS produces no plots, so you must use output data
sets and PROC PLOT or PROC GPLOT.

The MDS and ALSCAL procedures may sometimes produce different results for the
following reasons:

• With the LEVEL=INTERVAL option, PROC MDS fits a regression model
while PROC ALSCAL fits a measurement model. These models are not equiv-
alent if there is more than one partition, although the differences in the param-
eter estimates are usually minor.

• PROC MDS and PROC ALSCAL use different algorithms for initialization
and optimization. Hence, different local optima may be found by PROC MDS
and PROC ALSCAL for some data sets with poor fit. Using the INAV=SSCP
option causes the initial estimates from PROC MDS to be more like those from
PROC ALSCAL.

• The default convergence criteria in PROC MDS are more strict than those in
PROC ALSCAL. The convergence measure in PROC ALSCAL may cause
PROC ALSCAL to stop iterating because progress is slow rather than because
a local optimum has been reached. Even if you run PROC ALSCAL with a very
small convergence criterion and a very large iteration limit, PROC ALSCAL
may never achieve the same degree of precision as PROC MDS. For most ap-
plications, this problem is of no practical consequence since two- or three-digit
precision is sufficient. If the model does not fit well, obtaining higher precision
may require hundreds of iterations.

PROC MDS accepts some PROC ALSCAL options as synonyms for the preceding
options, as displayed inTable 43.1.

Table 43.1. PROC MDS Options Compared to PROC ALSCAL Options

Accepted by Related PROC MDS Option
PROC ALSCAL Option PROC MDS? or Comments
CONDITION= Yes
CONVERGE= Yes Convergence measures are

not comparable
CUTOFF= Yes
DATA= Yes
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Table 43.1. (continued)

Accepted by Related PROC MDS Option
PROC ALSCAL Option PROC MDS? or Comments
DEGREE= No
DIMENS= Yes
DIRECTIONS= No
HEADER Yes Default in PROC MDS
IN= Yes
ITER= Yes MAXITER=
LEVEL= Yes LEVEL=NOMINAL is not

supported
MAXDIM= m Yes DIMENSION=n TO m
MINDIM= n Yes DIMENSION=n TO m
MINSTRESS= Yes MINCRIT=
MODEL=EUCLID Yes COEF=IDENTITY
MODEL=INDSCAL Yes COEF=DIAGONAL
MODEL=GEMSCAL No
MODEL=ASYMSCAL No
MODEL=ASYMINDS No
NEGATIVE (Yes) In PROC MDS, the NEGATIVE

option affects slopes and powers,
not subject weights.

NOULB Yes
OUT= Yes Some differences in contents
PLOT No
PLOTALL No
PRINT No
READV, etc. No Use WHERE data set option
READFIXV, etc. No
ROWS= No
SHAPE=SYMMETRI Yes SHAPE=TRIANGLE
SHAPE=ASYMMETR Yes SHAPE=SQUARE
SHAPE=RECTANGU No Use SHAPE=TRIANGLE with

extra missing values to
fill out the matrix.

SIMILAR Yes
TIESTORE= Yes Ignored by PROC MDS
UNTIE Yes

Comparison with the MLSCALE Procedure
Running the MDS procedure with the options

proc mds fit=log level=loginterval ... ;

generally produces results similar to using the MLSCALE procedure (Ramsay 1986)
with the options
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proc mlscale stvarnce=constant suvarnce=constant ... ;

Alternatively, using the FIT=DISTANCE option in the PROC MDS statement pro-
duces results similar to specifying the NORMAL option in the PROC MLSCALE
statement.

The MDS procedure uses the least-squares method of estimation. The least-squares
method is equivalent to the maximum-likelihood method if the error terms are as-
sumed to be independent and identically distributed normal random variables. Unlike
PROC MLSCALE, PROC MDS does not provide any options for unequal error vari-
ances.

PROC MDS accepts some PROC MLSCALE options as synonyms for the options
described previously, as displayed inTable 43.2.

Table 43.2. PROC MDS Options Compared to PROC MLSCALE Options

Accepted by Related PROC MDS Option
PROC MLSCALE Option PROC MDS? or Comments
SQUARE Yes SHAPE=SQUARE
INPUT=MATRIX No Default
INPUT=VECTOR No
STLABEL= No ID statement
STLBDS No
SULABEL= No MATRIX statement
SULBDS No
CONFIG No
CONFDS= No IN= data set
NEQU= No
CONSDS= No
METVAL No
METVDS No IN=
SEWGTS No
SEWGDS= No
SPLVAL No
SLPVDS= No
DIMENS= Yes
METRIC=IDENTITY Yes COEF=IDENTITY
METRIC=DIAGONAL Yes COEF=DIAGONAL
METRIC=FULL No
TRANSFRM=SCALE Yes LEVEL=RATIO
TRANSFRM=POWER Yes LEVEL=LOGINTERVAL
TRANSFRM=SPLINE No
STVARNCE= No
SUVARNCE= No
NORMAL No Default (FIT=DISTANCE)
ITMAX= Yes MAXITER=
ITXMAX= No
ITWMAX= No
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Table 43.2. (continued)

Accepted by Related PROC MDS Option
PROC MLSCALE Option PROC MDS? or Comments
ITAMAX= No
ITPMAX= No
CONV= (Yes) Meaning is different
FACTOR= No
HISTORY No PITER
ASYMP No
OUTCON No OUT=
OUTDIS No
OUTMET No OUT=
OUTSPL No
OUTRES (Yes) OUTRES= data set

Displayed Output

Unless you specify the NOPHIST option, PROC MDS displays the iteration history
containing

• Iteration number

• Type of iteration:

Initial initial configuration

Monotone monotone transformation

Gau-New Gauss-Newton step

Lev-Mar Levenberg-Marquardt step

• Badness-of-Fit Criterion

• Change in Criterion

• Convergence Measures:

Monotone the Euclidean norm of the change in the optimally scaled
data divided by the Euclidean norm of the optimally scaled
data, averaged across partitions

Gradient the multiple correlation of the Jacobian matrix with the resid-
ual vector, uncorrected for the mean

Depending on what options are specified, PROC MDS may also display the following
tables:

• Data Matrix and possibly Weight Matrix for each subject

• Eigenvalues from the computation of the initial coordinates

• Sum of Data Weights and Pooled Data Matrix computed during initialization
with INAV=DATA
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• Configuration, the estimated coordinates of the objects

• Dimension Coefficients

• A table of transformation parameters, including one or more of the following:

Intercept

Slope

Power

• A table of fit statistics for each matrix and possibly each row, including

Number of Nonmissing Data

Weight of the matrix or row, allowing for both observation weights and
standardization factors

Badness-of-Fit Criterion

Distance Correlation computed between the distances and data with opti-
mal transformation

Uncorrected Distance Correlation not corrected for the mean

Fit Correlation computed after applying the FIT= transformation to both
distances and data

Uncorrected Fit Correlation not corrected for the mean

ODS Table Names

PROC MDS assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 43.3. ODS Tables Produced in PROC MDS

ODS Table Name Description Option
ConvergenceStatus Convergence status default
DimensionCoef Dimension coefficients PCOEF w/COEF= not IDENTITY
FitMeasures Measures of fit PFIT
IterHistory Iteration history default
PConfig Estimated coordinates of the objects in

the configuration
PCONFIG

PData Data matrices PDATA
PInAvData Initial sum of weights and weighted aver-

age of data matrices with INAV=DATA
PINAVDATA

PInEigval Initial eigenvalues PINEIGVAL
PInEigvec Initial eigenvectors PINEIGVEC
PInWeight Initialization weights PINWEIGHT
Transformations Transformation parameters PTRANS w/LEVEL=RATIO,

INTERVAL, LOGINTERVAL
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Example

Example 43.1. Jacobowitz Body Parts Data from Children and
Adults

Jacobowitz (1975) collected conditional rank-order data regarding perceived simi-
larity of parts of the body from children of ages 6, 8, and 10 years and from college
sophomores. The following analysis includes data from 15 children (6-year-olds) and
15 sophomores. The method of data collection and some results of an analysis are
also described by Young (1987, pp. 4−10). A portion of the data is included below.
See “Mds Documentation Examples” in the SAS/STAT Sample Program Library for
the complete data set.

data body;
title ’Jacobowitz Body Parts Data from 6 Yr Olds and

Adults’;
title2 ’First 15 subjects (obs 1-225) are children’;
title3 ’Second 15 subjects (obs 226-450) are adults’;
input (cheek face mouth head ear body arm elbow hand

palm finger leg knee foot toe) (2.);
if _n_ <= 225 then subject=’C’; else subject=’A’;
datalines;

0 2 1 3 410 5 9 6 7 811121314
2 012 113 3 81011 9 7 4 5 614
3 2 0 1 4 9 511 6 7 810131214
2 1 3 0 4 9 5 611 7 810121314

10 111 2 0 6 3 4 51213 7 814 9
1412 9 613 0 8 7 51011 1 4 2 3
1214111013 5 0 4 1 3 2 6 9 7 8

5 714 8 6 9 1 0 2 3 410111213
1311121014 9 3 4 0 1 2 6 5 7 8

8 6 7 9 4 5 310 1 0 212111314
14 513 6 912 3 4 1 2 0 7 81011
14121311 9 7 4 6 5 310 0 8 1 2
1211141013 4 5 8 6 7 9 1 0 2 3
1214101311 9 4 5 8 6 7 2 3 0 1
13 8 91114 3 6 5 71012 2 4 1 0

0 4 2 311 91412 1 713 8 6 510
7 011 9 1 2 8 3131410 612 4 5

1011 0 3 7 1 813 212 6 914 5 4
4 811 0 1 2 3 9 71310 51412 6

14 61110 0 1 2 4 9 8 5 713 312
11 61412 3 013 2 1 9 5 410 7 8
1412 8 3 1 7 013 2 6 5 911 410

610 914 3 412 0 813 5 711 1 2
131412 1 4 6 2 7 010 9 311 8 5

6 9 711 3 5 112 2 013 810 414
10 6 9 81113 712 2 1 014 5 3 4

6 9 710 4 21214 1 813 0 3 511
13 2 8 3 1 5 9141211 7 6 010 4
1411 8 413 212 9 5 310 6 7 0 1
14 3 4 713 6 2 8 91110 112 5 0
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... 405 lines omitted ...

0 1 2 4 3141210 6 5 81311 7 9
2 0 3 1 414 810 5 612 911 713
2 1 0 4 31412 9 511 71310 6 8
2 1 4 0 314 810 61112 7 9 513
1 3 2 4 01412 9 8 7 5131011 6

131011 114 0 3 7 512 8 2 6 4 9
13 911101214 0 1 3 6 5 2 4 7 8
1012 813 914 1 0 611 4 3 2 5 7
12 911101314 5 4 0 1 3 8 6 2 7

91211131014 5 4 1 0 2 6 7 3 8
10121113 914 6 5 1 3 0 8 7 4 2
121011 91314 2 5 6 8 7 0 1 3 4
1112 9131014 3 2 7 8 4 1 0 5 6
121011 91314 5 8 1 6 7 3 4 0 2
10121113 914 8 7 4 6 2 3 5 1 0
;

The data are analyzed as row conditional (CONDITION=ROW) at the ordinal
level of measurement (LEVEL=ORDINAL) using the weighted Euclidean model
(COEF=DIAGONAL) in three dimensions (DIMENSION=3). The final estimates are
displayed (PFINAL). The estimates (OUT=OUT) and fitted values (OUTRES=RES)
are saved in output data sets. The following statements produceOutput 43.1.1:

options ps=60;
proc mds data=body

condition=row
level=ordinal
coef=diagonal
dimension=3
pfinal
out=out
outres=res
;

subject subject;
title5 ’Nonmetric Weighted MDS’;
run;
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Output 43.1.1. Iteration History and Final Estimates for Body Parts Data
Jacobowitz Body Parts Data from 6 Yr Olds and Adults

First 15 subjects (obs 1-225) are children
Second 15 subjects (obs 226-450) are adults

Nonmetric Weighted MDS

Multidimensional Scaling: Data=WORK.BODY.DATA
Shape=SQUARE Condition=ROW Level=ORDINAL

Coef=DIAGONAL Dimension=3 Formula=1 Fit=1

Mconverge=0.01 Gconverge=0.01 Maxiter=100 Over=2 Ridge=0.0001 Alternate=MATRIX

Badness- Convergence Measures
of-Fit Change in ----------------------

Iteration Type Criterion Criterion Monotone Gradient
-------------------------------------------------------------------------

0 Initial 0.4091 . . .
1 Monotone 0.2053 0.2038 0.3012 0.3190
2 Gau-New 0.1937 0.0116 . .
3 Monotone 0.1862 0.007533 0.0410 0.2314
4 Gau-New 0.1847 0.001496 . .
5 Monotone 0.1779 0.006754 0.0372 0.1516
6 Gau-New 0.1773 0.000654 . .
7 Monotone 0.1758 0.001488 0.0187 0.0975
8 Gau-New 0.1755 0.000253 . .
9 Monotone 0.1751 0.000478 0.0104 0.0767

10 Gau-New 0.1750 0.000113 . .
11 Monotone 0.1748 0.000199 0.006467 0.0582
12 Gau-New 0.1747 0.0000592 . 0.0384
13 Gau-New 0.1747 0.0000184 . 0.009952

Convergence criteria are satisfied.

Configuration

Dim1 Dim2 Dim3
------------------------------------------
cheek 1.46 0.77 -0.30
face 1.40 -0.56 0.43
mouth 1.25 -0.97 -0.51
head 1.31 0.39 0.97
ear 1.23 0.03 -1.39
body 0.24 -0.18 2.24
arm -0.70 1.23 1.08
elbow -0.73 0.40 0.29
hand -0.71 1.50 -0.26
palm -0.24 1.59 -0.96
finger -0.74 0.57 -1.35
leg -0.69 -1.44 0.88
knee -1.44 -0.64 0.42
foot -0.78 -1.51 -0.36
toe -0.87 -1.20 -1.19
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Jacobowitz Body Parts Data from 6 Yr Olds and Adults
First 15 subjects (obs 1-225) are children

Second 15 subjects (obs 226-450) are adults

Nonmetric Weighted MDS

Multidimensional Scaling: Data=WORK.BODY.DATA
Shape=SQUARE Condition=ROW Level=ORDINAL

Coef=DIAGONAL Dimension=3 Formula=1 Fit=1

Dimension Coefficients

subject 1 2 3
--------------------------------------------
C 1.18 1.02 0.76
C 0.94 1.05 1.01
C 0.94 1.01 1.05
C 1.08 1.10 0.79
C 0.98 1.05 0.97
C 1.28 0.85 0.79
C 0.90 1.03 1.06
C 0.95 1.04 1.01
C 1.18 1.06 0.69
C 0.95 0.99 1.05
C 1.07 1.13 0.76
C 0.98 0.94 1.08
C 1.34 0.82 0.73
C 0.95 0.99 1.05
C 1.03 1.09 0.86
A 1.30 0.82 0.80
A 1.05 0.64 1.22
A 1.28 0.85 0.81
A 0.95 0.88 1.15
A 1.34 0.75 0.80
A 1.27 0.81 0.85
A 1.50 0.37 0.78
A 1.38 0.82 0.64
A 1.44 0.56 0.78
A 1.53 0.73 0.36
A 1.18 0.95 0.84
A 0.85 0.86 1.24
A 1.29 0.62 0.97
A 1.20 0.58 1.10
A 1.25 0.61 1.04
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Jacobowitz Body Parts Data from 6 Yr Olds and Adults
First 15 subjects (obs 1-225) are children

Second 15 subjects (obs 226-450) are adults

Nonmetric Weighted MDS

Multidimensional Scaling: Data=WORK.BODY.DATA
Shape=SQUARE Condition=ROW Level=ORDINAL

Coef=DIAGONAL Dimension=3 Formula=1 Fit=1

Number of Badness-of- Uncorrected
Nonmissing Fit Distance Distance

subject Data Weight Criterion Correlation Correlation
-----------------------------------------------------------------------------
C 210 0.03 0.16 0.85 0.99
C 210 0.03 0.25 0.51 0.97
C 210 0.03 0.23 0.58 0.97
C 210 0.03 0.16 0.85 0.99
C 210 0.03 0.21 0.69 0.98
C 210 0.03 0.15 0.89 0.99
C 210 0.03 0.26 0.40 0.96
C 210 0.03 0.25 0.47 0.97
C 210 0.03 0.13 0.91 0.99
C 210 0.03 0.24 0.55 0.97
C 210 0.03 0.15 0.87 0.99
C 210 0.03 0.23 0.59 0.97
C 210 0.03 0.15 0.90 0.99
C 210 0.03 0.21 0.69 0.98
C 210 0.03 0.19 0.75 0.98
A 210 0.03 0.12 0.94 0.99
A 210 0.03 0.17 0.84 0.98
A 210 0.03 0.12 0.93 0.99
A 210 0.03 0.21 0.68 0.98
A 210 0.03 0.14 0.91 0.99
A 210 0.03 0.16 0.87 0.99
A 210 0.03 0.09 0.98 1.00
A 210 0.03 0.11 0.95 0.99
A 210 0.03 0.11 0.96 0.99
A 210 0.03 0.13 0.95 0.99
A 210 0.03 0.13 0.90 0.99
A 210 0.03 0.21 0.72 0.98
A 210 0.03 0.12 0.93 0.99
A 210 0.03 0.10 0.95 0.99
A 210 0.03 0.11 0.94 0.99

- All - 6300 1.00 0.17 0.84 0.98

The OUTRES= data set is used to produce a plot showing the overall fit of the model,
with the transformed data on the vertical axis and the distances from the model on
the horizontal axis. If the model fits perfectly, all points lie on a diagonal line from
lower left to upper right. The vertical departure of each point from this diagonal line
represents the residual of the corresponding observation. The HAXIS and VAXIS
options in the PLOT statement specify that the horizontal and vertical axes use the
definitions AXIS2 and AXIS1, respectively. The identical ORDER= options in each
of these AXIS statements make physical distances on each axis comparable.

The following statements produceOutput 43.1.2:

title1 ’Plot of Over-All Fit’;
axis1 label=(angle=90 rotate=0) minor=none
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order=(0 to 5 by 1);
axis2 minor=none order=(0 to 5 by 1);

proc gplot data=res;
plot fitdata*fitdist/vaxis=axis1 haxis=axis2

frame cframe=ligr;
run;

Output 43.1.2. Plot of Over-All Fit for Body Parts Data

The OUT= data set is used to plot the configuration and dimension coefficients using
the %PLOTIT macro. Again it is necessary to use the VTOH= option to make the
axes commensurable. The configuration is plotted by selecting observations having

–TYPE–=‘CONFIG’ with a WHERE statement and by using the–NAME– variable
to identify each body part on the plot.

The dimension coefficients are plotted by selecting observations having

–TYPE–=‘DIAGCOEF’ and by using theSubject variable to distinguish
children from adults on the plot. The following statements produceOutput 43.1.3:

title1 ’Plot of configuration’;
%plotit(data=out(where=(_type_=’CONFIG’)), datatype=mds,

labelvar=_name_, vtoh=1.75);
%plotit(data=out(where=(_type_=’CONFIG’)), datatype=mds,

plotvars=dim3 dim1, labelvar=_name_, vtoh=1.75);
run;

title1 ’Plot of Dimension Coefficients for Each Subject’;
%plotit(data=out(where=(_type_=’DIAGCOEF’)), symtype=vector,

symbols=’’,datatype=mds, place=0, labelvar=subject,
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vechead=, ls=100, plotopts=hzero vzero);

%plotit(data=out(where=(_type_=’DIAGCOEF’)),
plotvars=dim3 dim1, symtype=vector, symbols=’’,
datatype=mds, place=0, labelvar=subject, ls=100,
vechead=, plotopts=hzero vzero);

run;

The configuration displayed inOutput 43.1.3has a tripodal shape withBody at the
apex. The three legs of the tripod can be distinguished in the plot of dimension 2 by
dimension 1, which shows three distinct clusters withBody in the center. Dimension
1 separates head parts from arm and leg parts. Dimension 2 separates arm parts from
leg parts. The plot of dimension 3 by dimension 1 shows the tripod from the side.
Dimension 3 distinguishes the more inclusive body parts (at the top) from the less
inclusive body parts (at the bottom).

Output 43.1.3. Plot of Configuration for Body Parts Data
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The plots of dimension coefficients inOutput 43.1.4show that children differ from
adults primarily in the emphasis given to dimension 2. Children give about the same
weight (approximately 1) to each dimension. Adults are much more variable than
children, but all have coefficients less than 1.0 for dimension 2, with an average of

about 0.7. Referring back to the configuration plot, you can see that adults consider
arm parts to be more similar to leg parts than do children. Many adults also give
a high weight to dimension 1, indicating that they consider head parts to be more
dissimilar from arm and leg parts than do children. Dimension 3 shows considerable
variability for both children and adults.
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Output 43.1.4. Plot of Dimension Coefficients for Body Parts Data
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Chapter 44
The MI Procedure
Overview

The MI procedure performs multiple imputation of missing data. Missing values are
an issue in a substantial number of statistical analyses. Most SAS statistical proce-
dures exclude observations with any missing variable values from the analysis. These
observations are called incomplete cases. While analyzing only complete cases has
its simplicity, the information contained in the incomplete cases is lost. This approach
also ignores possible systematic differences between the complete cases and the in-
complete cases, and the resulting inference may not be applicable to the population
of all cases, especially with a small number of complete cases.

Some SAS procedures use all the available cases in an analysis, that is, cases with
useful information. For example, the CORR procedure estimates a variable mean
by using all cases with nonmissing values for this variable, ignoring the possible
missing values in other variables. PROC CORR also estimates a correlation by using
all cases with nonmissing values for this pair of variables. This makes better use
of the available data than use only the complete cases, but the resulting correlation
matrix may not be positive definite.

Another strategy for handling missing data is single imputation, which substitutes a
value for each missing value. Standard statistical procedures for complete data anal-
ysis can then be used with the filled-in data set. For example, each missing value
can be imputed with the variable mean of the complete cases, or it can be imputed
with the mean conditional on observed values of other variables. This approach treats
missing values as if they were known in the complete-data analysis. However, sin-
gle imputation does not reflect the uncertainty about the predictions of the unknown
missing values, and the resulting estimated variances of the parameter estimates will
be biased toward zero (Rubin 1987, p. 13).

Instead of filling in a single value for each missing value, multiple imputation (Rubin
1976; 1987) replaces each missing value with a set of plausible values that represent
the uncertainty about the right value to impute. The multiply imputed data sets are
then analyzed by using standard procedures for complete data and combining the
results from these analyses. No matter which complete-data analysis is used, the
process of combining results from different data sets is essentially the same.

Multiple imputation does not attempt to estimate each missing value through simu-
lated values. Instead, it draws a random sample of the missing values from its dis-
tribution. This process results in valid statistical inferences that properly reflect the
uncertainty due to missing values; for example, confidence intervals with the correct
probability coverage.
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Multiple imputation inference involves three distinct phases:

1. The missing data are filled inm times to generatem complete data sets.

2. Them complete data sets are analyzed using standard statistical analyses.

3. The results from them complete data sets are combined to produce inferential
results.

The MI procedure creates multiply imputed data sets for incomplete multivariate data.
It uses methods that incorporate appropriate variability across them imputations. The
method of choice depends on the patterns of missingness.

For data sets with monotone missing patterns, either a parametric method that as-
sumes multivariate normality or a nonparametric method is appropriate. Parametric
methods available include the regression method (Rubin 1987, pp. 166–167) and
the predictive mean matching method (Heitjan and Little 1991; Schenker and Taylor
1996). The nonparametric method is the propensity score method (Rubin 1987, pp.
124, 158; Lavori, Dawson, and Shera 1995).

For data sets with arbitrary missing patterns, a Markov Chain Monte Carlo (MCMC)
method (Schafer 1997) that assumes multivariate normality is used to impute all miss-
ing values or just enough missing values to make the imputed data sets have monotone
missing patterns.

Once them complete data sets are analyzed using standard SAS procedures, the
MIANALYZE procedure can be used to generate valid statistical inferences about
these parameters by combining results from them analyses.

Often, as few as three to five imputations are adequate in multiple imputation (Rubin
1996, p. 480). The relative efficiency of the smallm imputation estimator is high for
cases with little missing information (Rubin 1987, p. 114). Also see the“Multiple
Imputation Efficiency”section on page 2562.

Multiple imputation inference assumes that the model (variables) you used to analyze
the multiply imputed data (the analyst’s model) is the same as the model used to im-
pute missing values in multiple imputation (the imputer’s model). But in practice, the
two models may not be the same. The consequences for different scenarios (Schafer
1997, pp. 139–143) are discussed in the“Imputer’s Model Versus Analyst’s Model”
section on page 2563.

In SAS 9, an experimental CLASS statement has been added to specify classification
variables, which can be used either as covariates for imputed variables or as imputed
variables for data sets with monotone missing patterns. The CLASS statement must
be used in conjunction with the MONOTONE statement.

Experimental graphics using ODS are now available with the MI procedure. For more
information, see the“ODS Graphics”section on page 2567.



Getting Started � 2513

Getting Started

Consider the followingFitness data set that has been altered to contain an arbitrary
pattern of missingness:

*----------------- Data on Physical Fitness -----------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| Only selected variables of |
| Oxygen (oxygen intake, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), and |
| RunPulse (heart rate while running) are used. |
| Certain values were changed to missing for the analysis. |
*------------------------------------------------------------*;
data FitMiss;

input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176

. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

Suppose that the data are multivariate normally distributed and the missing data are
missing at random (MAR). That is, the probability that an observation is missing
can depend on the observed variable values of the individual, but not on the miss-
ing variable values of the individual. See the“Statistical Assumptions for Multiple
Imputation”section on page 2537 for a detailed description of the MAR assumption.

The following statements invoke the MI procedure and impute missing values for the
FitMiss data set.

proc mi data=FitMiss seed=501213 mu0=50 10 180 out=outmi;
var Oxygen RunTime RunPulse;

run;
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The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 5
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 501213

Figure 44.1. Model Information

The “Model Information” table displayed inFigure 44.1describes the method used
in the multiple imputation process. By default, the procedure uses the Markov Chain
Monte Carlo (MCMC) method with a single chain to create five imputations. The
posterior mode, the highest observed-data posterior density, with a noninformative
prior, is computed from the EM algorithm and is used as the starting value for the
chain.

The MI procedure takes 200 burn-in iterations before the first imputation and 100
iterations between imputations. In a Markov chain, the information in the current
iteration has influence on the state of the next iteration. The burn-in iterations are
iterations in the beginning of each chain that are used both to eliminate the series of
dependence on the starting value of the chain and to achieve the stationary distribu-
tion. The between-imputation iterations in a single chain are used to eliminate the
series of dependence between the two imputations.
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The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

Figure 44.2. Missing Data Patterns

The “Missing Data Patterns” table displayed inFigure 44.2lists distinct missing data
patterns with corresponding frequencies and percents. Here, an “X” means that the
variable is observed in the corresponding group and a “.” means that the variable
is missing. The table also displays group-specific variable means. The MI proce-
dure sorts the data into groups based on whether an individual’s value is observed or
missing for each variable to be analyzed. For a detailed description of missing data
patterns, see the“Missing Data Patterns”section on page 2538.

The MI Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Oxygen 0.056930 0.954041 1.022356 25.549
RunTime 0.000811 0.064496 0.065469 27.721
RunPulse 0.922032 3.269089 4.375528 15.753

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Oxygen 0.071606 0.068898 0.986408
RunTime 0.015084 0.014968 0.997015
RunPulse 0.338455 0.275664 0.947748

Figure 44.3. Variance Information
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After the completion of m imputations, the “Multiple Imputation Variance
Information” table shown inFigure 44.3displays the between-imputation variance,
within-imputation variance, and total variance for combining complete-data infer-
ences. It also displays the degrees of freedom for the total variance. The relative
increase in variance due to missing values, the fraction of missing information, and
the relative efficiency (in units of variance) for each variable are also displayed. A
detailed description of these statistics is provided in the“Combining Inferences from
Multiply Imputed Data Sets”section on page 2561.

The following “Multiple Imputation Parameter Estimates” table shown inFigure 44.4
displays the estimated mean and standard error of the mean for each variable. The
inferences are based on thet distribution. The table also displays a 95% confidence
interval for the mean and at statistic with the associatedp-value for the hypothesis
that the population mean is equal to the value specified with the MU0= option. A
detailed description of these statistics is provided in the“Combining Inferences from
Multiply Imputed Data Sets”section on page 2561.

The MI Procedure

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Oxygen 47.094040 1.011116 45.0139 49.1742 25.549
RunTime 10.572073 0.255870 10.0477 11.0964 27.721
RunPulse 171.787793 2.091776 167.3478 176.2278 15.753

Multiple Imputation Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Oxygen 46.783898 47.395550 50.000000 -2.87 0.0081
RunTime 10.526392 10.599616 10.000000 2.24 0.0336
RunPulse 170.774818 173.122002 180.000000 -3.93 0.0012

Figure 44.4. Parameter Estimates

In addition to the output tables, the procedure also creates a data set with imputed
values. The imputed data sets are stored in theoutmi data set, with the index variable

–Imputation– indicating the imputation numbers. The data set can now be analyzed
using standard statistical procedures with–Imputation– as a BY variable.

The following statements list the first ten observations of data setoutmi.

proc print data=outmi (obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;
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First 10 Observations of the Imputed Data Set

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.6090 11.3700 178.000
2 1 45.3130 10.0700 185.000
3 1 54.2970 8.6500 156.000
4 1 59.5710 8.0747 155.925
5 1 49.8740 9.2200 176.837
6 1 44.8110 11.6300 176.000
7 1 42.8857 11.9500 176.000
8 1 46.9992 10.8500 173.099
9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

Figure 44.5. Imputed Data Set

The table displayed inFigure 44.5shows that the precision of the imputed values
differs from the precision of the observed values. You can use the ROUND= option
to make the imputed values consistent with the observed values.

Syntax

The following statements are available in PROC MI.

PROC MI < options > ;
BY variables ;
CLASS variables ;
EM < options > ;
FREQ variable ;
MCMC < options > ;
MONOTONE < options > ;
TRANSFORM transform ( variables < / options >)

< . . . transform ( variables < / options >) > ;
VAR variables ;

The BY statement specifies groups in which separate multiple imputation analyses
are performed.

The CLASS statement lists the classification variables in the VAR statement.
Classification variables can be either character or numeric.

The EM statement uses the EM algorithm to compute the maximum likelihood esti-
mate (MLE) of the data with missing values, assuming a multivariate normal distri-
bution for the data.

The FREQ statement specifies the variable that represents the frequency of occur-
rence for other values in the observation.



2518 � Chapter 44. The MI Procedure

The MCMC statement uses a Markov chain Monte Carlo method to impute values
for a data set with an arbitrary missing pattern, assuming a multivariate normal dis-
tribution for the data.

The MONOTONE statement specifies monotone methods to impute continuous and
CLASS variables for a data set with a monotone missing pattern. Note that you can
use either an MCMC statement or a MONOTONE statement, but not both. When nei-
ther of these two statements is specified, the MCMC method with its default options
is used.

The TRANSFORM statement lists the variables to be transformed before the impu-
tation process. The imputed values of these transformed variables will be reverse-
transformed to the original forms before the imputation.

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR
statement, all numeric variables not listed in other statements are used.

The PROC MI statement is the only required statement for the MI procedure. The
rest of this section provides detailed syntax information for each of these statements,
beginning with the PROC MI statement. The remaining statements are in alphabetical
order.

PROC MI Statement

PROC MI < options > ;

The following table summarizes the options available in the PROC MI statement.

Table 44.1. Summary of PROC MI Options

Tasks Options

Specify data sets
input data set DATA=
output data set with imputed values OUT=

Specify imputation details
number of imputations NIMPUTE=
seed to begin random number generator SEED=
units to round imputed variable values ROUND=
maximum values for imputed variable values MAXIMUM=
minimum values for imputed variable values MINIMUM=
maximum number of iterations to impute values MINMAXITER=
in the specified range
singularity tolerance SINGULAR=

Specify statistical analysis
level for the confidence interval,(1− α) ALPHA=
means under the null hypothesis MU0=

Control printed output
suppress all displayed output NOPRINT
displays univariate statistics and correlations SIMPLE
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The following options can be used in the PROC MI statement (in alphabetical order):

ALPHA= α
specifies that confidence limits be constructed for the mean estimates with confidence
level100(1− α)%, where0 < α < 1. The default is ALPHA=0.05.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC MI. By default, the procedure uses
the most recently created SAS data set.

MAXIMUM=numbers
specifies maximum values for imputed variables. When an intended imputed value
is greater than the maximum, PROC MI redraws another value for imputation. If
only one number is specified, that number is used for all variables. If more than one
number is specified, you must use a VAR statement, and the specified numbers must
correspond to variables in the VAR statement. The default number is a missing value,
which indicates no restriction on the maximum for the corresponding variable

The MAXIMUM= option is related to the MINIMUM= and ROUND= options,
which are used to make the imputed values more consistent with the observed vari-
able values. These options are applicable only if you use the MCMC method or the
monotone regression method.

When specifying a maximum for the first variable only, you must also specify a miss-
ing value after the maximum. Otherwise, the maximum is used for all variables.
For example, the MAXIMUM= 100 . option sets a maximum of 100 for the
first analysis variable only and no maximum for the remaining variables. The
MAXIMUM= . 100 option sets a maximum of 100 for the second analysis vari-
able only and no maximum for the other variables.

MINIMUM=numbers
specifies the minimum values for imputed variables. When an intended imputed value
is less than the minimum, PROC MI redraws another value for imputation. If only one
number is specified, that number is used for all variables. If more than one number is
specified, you must use a VAR statement, and the specified numbers must correspond
to variables in the VAR statement. The default number is a missing value, which
indicates no restriction on the minimum for the corresponding variable

MINMAXITER=number
specifies the maximum number of iterations for imputed values to be in the specified
range when the option MINIMUM or MAXIMUM is also specified. The default is
MINMAXITER=100.

MU0=numbers
THETA0=numbers

specifies the parameter valuesµ0 under the null hypothesisµ = µ0 for the population
means corresponding to the analysis variables. Each hypothesis is tested with at test.
If only one number is specified, that number is used for all variables. If more than
one number is specified, you must use a VAR statement, and the specified numbers
must correspond to variables in the VAR statement. The default is MU0=0.
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If a variable is transformed as specified in a TRANSFORM statement, then the same
transformation for that variable is also applied to its corresponding specified MU0=
value in thet test. If the parameter valuesµ0 for a transformed variable is not speci-
fied, then a value of zero is used for the resultingµ0 after transformation.

NIMPUTE=number
specifies the number of imputations. The default is NIMPUTE=5. You can specify
NIMPUTE=0 to skip the imputation. In this case, only tables of model information,
missing data patterns, descriptive statistics (SIMPLE option), and MLE from the EM
algorithm (EM statement) are displayed.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables
the Output Delivery System (ODS); seeChapter 14, “Using the Output Delivery
System,” for more information.

OUT=SAS-data-set
creates an output SAS data set containing imputation results. The data set includes an
index variable,–Imputation– , to identify the imputation number. For each imputa-
tion, the data set contains all variables in the input data set with missing values being
replaced by the imputed values. See the“Output Data Sets”section on page 2559 for
a description of this data set.

ROUND=numbers
specifies the units to round variables in the imputation. If only one number is spec-
ified, that number is used for all continuous variables. If more than one number is
specified, you must use a VAR statement, and the specified numbers must correspond
to variables in the VAR statement. When the CLASS variables are listed in the VAR
statement, their corresponding roundoff units are not used. The default number is a
missing value, which indicates no rounding for imputed variables.

When specifying a roundoff unit for the first variable only, you must also specify a
missing value after the roundoff unit. Otherwise, the roundoff unit is used for all
variables. For example, the option “ROUND= 10 .” sets a roundoff unit of 10 for the
first analysis variable only and no rounding for the remaining variables. The option
“ROUND= . 10” sets a roundoff unit of 10 for the second analysis variable only and
no rounding for other variables.

The ROUND= option sets the precision of imputed values. For example, with a
roundoff unit of 0.001, each value is rounded to the nearest multiple of 0.001. That
is, each value has three significant digits after the decimal point. SeeExample 44.3
for an illustration of this option.

SEED=number
specifies a positive integer to start the pseudo-random number generator. The de-
fault is a value generated from reading the time of day from the computer’s clock.
However, in order to duplicate the results under identical situations, you must use the
same value of the seed explicitly in subsequent runs of the MI procedure.
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The seed information is displayed in the “Model Information” table so that the results
can be reproduced by specifying this seed with the SEED= option. You need to
specify the same seed number in the future to reproduce the results.

SIMPLE
displays simple descriptive univariate statistics and pairwise correlations from avail-
able cases. For a detailed description of these statistics, see the“Descriptive
Statistics”section on page 2535.

SINGULAR=p
specifies the criterion for determining the singularity of a covariance matrix based on
standardized variables, where0 < p < 1. The default is SINGULAR=1E−8.

Suppose thatS is a covariance matrix andv is the number of variables inS. Based on
the spectral decompositionS = ΓΛΓ′, whereΛ is a diagonal matrix of eigenvalues
λj , j = 1, . . ., v, whereλi ≥ λj when i < j, andΓ is a matrix with the corre-
sponding orthonormal eigenvectors ofS as columns,S is considered singular when
an eigenvalueλj is less thanpλ̄, where the averagēλ =

∑v
k=1 λk/v.

BY Statement

BY variables ;

You can specify a BY statement with PROC MI to obtain separate analyses on ob-
servations in groups defined by the BY variables. When a BY statement appears, the
procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the MI procedure. The NOTSORTED option does not mean that
the data are unsorted but rather that the data are arranged in groups (accord-
ing to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CLASS Statement (Experimental)

CLASS variables ;

The CLASS statement specifies the classification variables in the VAR statement.
Classification variables can be either character or numeric. The CLASS statement
must be used in conjunction with the MONOTONE statement.

Class levels are determined from the formatted values of the CLASS variables. Refer
to the chapter titled “The FORMAT Procedure” in theSAS Procedures Guide.

EM Statement

EM < options > ;

The expectation-maximization (EM) algorithm is a technique for maximum likeli-
hood estimation in parametric models for incomplete data. The EM statement uses
the EM algorithm to compute the MLE for(µ,Σ), the means and covariance ma-
trix, of a multivariate normal distribution from the input data set with missing values.
Either the means and covariances from complete cases or the means and standard de-
viations from available cases can be used as the initial estimates for the EM algorithm.
You can also specify the correlations for the estimates from available cases.

You can also use the EM statement with the NIMPUTE=0 option in the PROC state-
ment to compute the EM estimates without multiple imputation, as shown inExample
44.1in the“Examples”section on page 2568.

The following seven options are available with the EM statement.

CONVERGE=p
XCONV=p

sets the convergence criterion. The value must be between 0 and 1. The iterations are
considered to have converged when the change in the parameter estimates between
iteration steps is less thanp for each parameter. That is, for each of the means and
covariances. For each parameter, the change is a relative change if the parameter is
greater than 0.01 in absolute value; otherwise, it is an absolute change. By default,
CONVERGE=1E-4.

INITIAL=CC | AC | AC(R= r)
sets the initial estimates for the EM algorithm. The INITIAL=CC option uses the
means and covariances from complete cases, the INITIAL=AC option uses the means
and standard deviations from available cases and the correlations are set to zero, and
the INITIAL=AC( R= r) option uses the means and standard deviations from avail-
able cases with correlationr, where−1/(p − 1) < r < 1 andp is the number of
variables to be analyzed. The default is INITIAL=AC.
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ITPRINT
prints the iteration history in the EM algorithm.

MAXITER=number
specifies the maximum number of iterations used in the EM algorithm. The default
is MAXITER=200.

OUT=SAS-data-set
creates an output SAS data set containing results from the EM algorithm. The data
set contains all variables in the input data set with missing values being replaced by
the expected values from the EM algorithm. See the“Output Data Sets”section on
page 2559 for a description of this data set.

OUTEM=SAS-data-set
creates an output SAS data set of TYPE=COV containing the MLE of the parameter
vector(µ,Σ). These estimates are computed with the EM algorithm. See the“Output
Data Sets”section on page 2559 for a description of this output data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV containing parameters for each iter-
ation. The data set includes a variable named–Iteration– to identify the iteration
number. The parameters in the output data set depend on the options specified. You
can specify the MEAN and COV options to output the mean and covariance parame-
ters. When no options are specified, the output data set contains the mean parameters
for each iteration. See the“Output Data Sets”section on page 2559 for a description
of this data set.

FREQ Statement

FREQ variable ;

If one variable in your input data set represents the frequency of occurrence for other
values in the observation, specify the variable name in a FREQ statement. PROC MI
then treats the data set as if each observation appearsn times, wheren is the value of
the FREQ variable for the observation. If the value of the FREQ variable is less than
one, the observation is not used in the analysis. Only the integer portion of the value
is used. The total number of observations is considered to be equal to the sum of the
FREQ variable when PROC MI calculates significance probabilities.

MCMC Statement

MCMC < options > ;

The MCMC statement specifies the details of the MCMC method for imputation.
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The following table summarizes the options available for the MCMC statement.

Table 44.2. Summary of Options in MCMC

Tasks Options

Specify data sets
input parameter estimates for imputations INEST=
output parameter estimates used in imputations OUTEST=
output parameter estimates used in iterations OUTITER=

Specify imputation details
monotone/full imputation IMPUTE=
single/multiple chain CHAIN=
number of burn-in iterations for each chain NBITER=
number of iterations between imputations in a chain NITER=
initial parameter estimates for MCMC INITIAL=
prior parameter information PRIOR=
starting parameters START=

Specify output graphics
displays time-series plots TIMEPLOT=
displays autocorrelation plots ACFPLOT=
graphics catalog name for saving graphics output GOUT=

Control printed output
displays worst linear function WLF
displays initial parameter values for MCMC DISPLAYINIT

The following options are available for the MCMC statement (in alphabetical order):

ACFPLOT < ( options < / display-options > ) >
displays the autocorrelation function plots of parameters from iterations.

The available options are:

COV < ( < variables > < variable1*variable2 > < . . . variable1*variable2 > ) >
displays plots of variances for variables in the list and covariances for pairs
of variables in the list. When the option COV is specified without variables,
variances for all variables and covariances for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is
specified without variables, all variables are used.

WLF
displays the plot for the worst linear function.

When the ACFPLOT is specified without the preceding options, the procedure dis-
plays plots of means for all variables that are used.
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The display-options provide additional information for the autocorrelation function
plots. The available display-options are:

CCONF=color
specifies the color of the displayed confidence limits. The default is
CCONF=BLACK.

CFRAME=color
specifies the color for filling the area enclosed by the axes and the frame. By
default, this area is not filled.

CNEEDLES=color
specifies the color of the vertical line segments (needles) that connect autocor-
relations to the reference line. The default is CNEEDLES=BLACK.

CREF=color
specifies the color of the displayed reference line. The default is
CREF=BLACK.

CSYMBOL=color
specifies the color of the displayed data points. The default is
CSYMBOL=BLACK.

HSYMBOL=number
specifies the height for data points in percentage screen units. The default is
HSYMBOL=1.

LCONF=linetype
specifies the line type for the displayed confidence limits. The default is
LCONF=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used to compute
the autocorrelations. It’s generally used for the variances of variables. When
a parameter has values less than or equal to zero, the corresponding plot is not
created.

LREF=linetype
specifies the line type for the displayed reference line. The default is LREF=3,
a dashed line.

NLAG=number
specifies the maximum lag of the series. The default is NLAG=20. The auto-
correlations at each lag are displayed in the graph.

SYMBOL=value
specifies the symbol for data points in percentage screen units. The default is
SYMBOL=STAR.

TITLE=’string’
specifies the title to be displayed in the autocorrelation function plots. The
default is TITLE=’Autocorrelation Plot’.
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WCONF=number
specifies the width for the displayed confidence limits in percentage screen
units. If you specify the WCONF=0 option, the confidence limits are not dis-
played. The default is WCONF=1.

WNEEDLES=number
specifies the width for the displayed needles that connect autocorrelations to
the reference line in percentage screen units. If you specify the WNEEDLES=0
option, the needles are not displayed. The default is WNEEDLES=1.

WREF=number
specifies the width for the displayed reference line in percentage screen units.
If you specify the WREF=0 option, the reference line is not displayed. The
default is WREF=1.

For example, the statement

acfplot( mean( y1) cov(y1) /log);

requests autocorrelation function plots for the means and variances of the vari-
abley1, respectively. Logarithmic transformations of both the means and vari-
ances are used in the plots. For a detailed description of the autocorrelation
function plot, see the“Autocorrelation Function Plot”section on page 2557;
refer also to Schafer (1997, pp. 120-126) and theSAS/ETS User’s Guide.

CHAIN=SINGLE | MULTIPLE
specifies whether a single chain is used for all imputations or a separate chain is used
for each imputation. The default is CHAIN=SINGLE.

DISPLAYINIT
displays initial parameter values in the MCMC process for each imputation.

GOUT=graphics-catalog
specifies the graphics catalog for saving graphics output from PROC MI. The de-
fault is WORK.GSEG. For more information, refer to the chapter “The GREPLAY
Procedure” inSAS/GRAPH Software: Reference.

IMPUTE=FULL | MONOTONE
specifies whether a full-data imputation is used for all missing values or a monotone-
data imputation is used for a subset of missing values to make the imputed data sets
have a monotone missing pattern. The default is IMPUTE=FULL. When
IMPUTE=MONOTONE is specified, the order in the VAR statement is used to com-
plete the monotone pattern.

INEST=SAS-data-set
names a SAS data set of TYPE=EST containing parameter estimates for imputations.
These estimates are used to impute values for observations in the DATA= data set.
A detailed description of the data set is provided in the“Input Data Sets”section on
page 2558.



MCMC Statement � 2527

INITIAL=EM < ( options ) >
INITIAL=INPUT=SAS-data-set

specifies the initial mean and covariance estimates for the MCMC process. The de-
fault is INITIAL=EM.

You can specify INITIAL=INPUT=SAS-data-set to read the initial estimates of the
mean and covariance matrix for each imputation from a SAS data set. See the“Input
Data Sets”section on page 2558 for a description of this data set.

With INITIAL=EM, PROC MI derives parameter estimates for a posterior mode,
the highest observed-data posterior density, from the EM algorithm. The MLE from
EM is used to start the EM algorithm for the posterior mode, and the resulting EM
estimates are used to begin the MCMC process. The prior information specified in
the PRIOR= option is also used in the process to compute the posterior mode.

The following four options are available with INITIAL=EM.

BOOTSTRAP < =number >
requests bootstrap resampling, which uses a simple random sample with re-
placement from the input data set for the initial estimate. You can explicitly
specify the number of observations in the random sample. Alternatively, you
can implicitly specify the number of observations in the random sample by
specifying the proportionp, 0 < p <= 1, to request[np] observations in the
random sample, wheren is the number of observations in the data set and[np]
is the integer part ofnp. This produces an overdispersed initial estimate that
provides different starting values for the MCMC process. If you specify the
BOOTSTRAP option without the number,p=0.75 is used by default.

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The it-
erations are considered to have converged when the change in the parameter
estimates between iteration steps is less thanp for each parameter. That is, for
each of the means and covariances. For each parameter, the change is a relative
change if the parameter is greater than 0.01 in absolute value; otherwise, it is
an absolute change. By default, CONVERGE=1E-4.

ITPRINT
prints the iteration history in the EM algorithm for the posterior mode.

MAXITER=number
specifies the maximum number of iterations used in the EM algorithm. The
default is MAXITER=200.
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NBITER=number
specifies the number of burn-in iterations before the first imputation in each chain.
The default is NBITER=200.

NITER=number
specifies the number of iterations between imputations in a single chain. The default
is NITER=100.

OUTEST=SAS-data-set
creates an output SAS data set of TYPE=EST. The data set contains parameter
estimates used in each imputation. The data set also includes a variable named

–Imputation– to identify the imputation number. See the“Output Data Sets”section
on page 2559 for a description of this data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV containing parameters used in the im-
putation step for each iteration. The data set includes variables named–Imputation–
and–Iteration– to identify the imputation number and iteration number.

The parameters in the output data set depend on the options specified. You can spec-
ify options MEAN, STD, COV, LR, LR–POST, and WLF to output parameters of
means, standard deviations, covariances, -2 log LR statistic, -2 log LR statistic of the
posterior mode, and the worst linear function. When no options are specified, the
output data set contains the mean parameters used in the imputation step for each
iteration. See the“Output Data Sets”section on page 2559 for a description of this
data set.

PRIOR=name
specifies the prior information for the means and covariances. Valid values forname
are as follows:

JEFFREYS specifies a noninformative prior.

RIDGE=number specifies a ridge prior.

INPUT=SAS-data-set specifies a data set containing prior information.

For a detailed description of the prior information, see the“Bayesian Estimation of
the Mean Vector and Covariance Matrix”section on page 2549 and the“Posterior
Step”section on page 2550. If you do not specify the PRIOR= option, the default is
PRIOR=JEFFREYS.

The PRIOR=INPUT= option specifies a TYPE=COV data set from which the prior
information of the mean vector and the covariance matrix is read. See the“Input Data
Sets”section on page 2558 for a description of this data set.

START=VALUE | DIST
specifies that the initial parameter estimates are used as either the starting value
(START=VALUE) or as the starting distribution (START=DIST) in the first impu-
tation step of each chain. If the IMPUTE=MONOTONE option is specified, then
START=VALUE is used in the procedure. The default is START=VALUE.
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TIMEPLOT < ( options < / display-options > ) >
displays the time-series plots of parameters from iterations.

The available options are:

COV < ( < variables > < variable1*variable2 > < . . . variable1*variable2 > ) >
displays plots of variances for variables in the list and covariances for pairs
of variables in the list. When the option COV is specified without variables,
variances for all variables and covariances for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is
specified without variables, all variables are used.

WLF
displays the plot for the worst linear function.

When the TIMEPLOT is specified without the preceding options, the procedure dis-
plays plots of means for all variables are used.

The display-options provide additional information for the time-series plots. The
available display-options are:

CCONNECT=color
specifies the color for the line segments that connect data points in the time-
series plots. The default is CCONNECT=BLACK.

CFRAME=color
specifies the color for filling the area enclosed by the axes and the frame. By
default, this area is not filled.

CSYMBOL=color
specifies the color of the data points to be displayed in the time-series plots.
The default is CSYMBOL=BLACK.

HSYMBOL=number
specifies the height for data points in percentage screen units. The default is
HSYMBOL=1.

LCONNECT=linetype
specifies the line type for the line segments that connect data points in the time-
series plots. The default is LCONNECT=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used. It’s gener-
ally used for the variances of variables. When a parameter value is less than or
equal to zero, the value is not displayed in the corresponding plot.

SYMBOL=value
specifies the symbol for data points in percentage screen units. The default is
SYMBOL=PLUS.

TITLE=’string’
specifies the title to be displayed in the time-series plots. The default is
TITLE=’Time-series Plot for Iterations’.
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WCONNECT=number
specifies the width for the line segments that connect data points in the time-
series plots in percentage screen units. If you specify the WCONNECT=0 op-
tion, the data points are not connected. The default is WCONNECT=1.

For a detailed description of the time-series plot, see the“Time-Series Plot”section
on page 2556 and Schafer (1997, pp. 120–126).

WLF
displays the worst linear function of parameters. This scalar function of parameters
µ andΣ is “worst” in the sense that its values from iterations converge most slowly
among parameters. For a detailed description of this statistic, see the“Worst Linear
Function of Parameters”section on page 2556.

MONOTONE Statement

MONOTONE < method < ( < imputed < = effects > > < / options > ) >
>

< ... method < ( < imputed < = effects > > < / options > ) > > ;

The MONOTONE statement specifies imputation methods for data sets with mono-
tone missingness. You must also specify a VAR statement and the data set must
have a monotone missing pattern with variables ordered in the VAR list. When both
MONOTONE and MCMC statements are specified, the MONOTONE statement is
not used.

For each method, you can specify the imputed variables and optionally, a set of the ef-
fects to impute these variables. Each effect is a variable or a combination of variables
preceding the imputed variable in the VAR statement. The syntax for specification
of effects is the same as for the GLM procedure. See SeeChapter 32, “The GLM
Procedure,”for more information.

One general form of an effect involving several variables is

X1 ∗ X2 ∗ A ∗ B ∗ C ( D E )

whereA, B, C, D, andE are class variables andX1 andX2 are continuous variables.

If no covariates are specified, then all preceding variables are used as the covariates.
That is, each preceding continuous variable is used as a regressor effect, and each pre-
ceding class variable is used as a main effect. For the discriminant function method,
only the continuous variables can be used as covariate effects.

When a method for continuous variables is specified without imputed variables, the
method is used for all continuous variables in the VAR statement that are not specified
in other methods. Similarly, when a method for class variables is specified without
imputed variables, the method is used for all class variables in the VAR statement that
are not specified in other methods.

When a MONOTONE statement is used without specifying any methods, the regres-
sion method is used for all continuous variables and the discriminant function method
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is used for all class variables. The preceding variables of each imputed variable in
the VAR statement are used as the covariates.

With a MONOTONE statement, the variables are imputed sequentially in the order
given by the VAR statement. For a continuous variable, you can use a regression
method, a regression predicted mean matching method, or a propensity score method
to impute missing values.

For a nominal class variable, you can use a discriminant function method to impute
missing values without using the ordering of the class levels. For a ordinal class
variable, you can use a logistic regression method to impute missing values using the
ordering of the class levels. For a binary class variable, either a discriminant function
method or a logistic regression method can be used.

Note that except for the regression method, all other methods impute values from
the observed observation values. You can specify the following methods in a
MONOTONE statement.

DISCRIM < ( imputed < = effects > < / options > ) >
specifies the discriminant function method of class variables. Only the continu-
ous variables are allowed as covariate effects. The available options are DETAILS,
PCOV=, and PRIOR=. The DETAILS option displays the group means and pooled
covariance matrix used in each imputation. The PCOV= option specifies the pooled
covariance used in the discriminant method. Valid values for the PCOV= option are:

FIXED uses the observed-data pooled covariance matrix for each
imputation.

POSTERIOR draws a pooled covariance matrix from its posterior distri-
bution.

The default is PCOV=POSTERIOR. See the“Discriminant Function Method for
Monotone Missing Data”section on page 2544 for a detailed description of the
method.

The PRIOR= option specifies the prior probabilities of group membership. Valid
values for the PRIOR= option are:

EQUAL set the prior probabilities equal for all groups.

PROPORTIONAL set the prior probabilities proportion to the group sample
sizes.

JEFFREYS< =c > specifies a noninformative prior,0 < c < 1. If the number
c is not specified, JEFFREYS=0.5.

RIDGE< =d > specifies a ridge prior,d > 0. If the numberd is not speci-
fied, RIDGE=0.25.

The default is PRIOR=JEFFREYS. See the“Discriminant Function Method for
Monotone Missing Data”section on page 2544 for a detailed description of the
method.
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LOGISTIC < ( imputed < = effects > < / options > ) >
specifies the logistic regression method of class variables. The available options are
DETAILS, ORDER=, and DESCENDING. The DETAILS option displays the re-
gression coefficients in the logistic regression model used in each imputation.

When the imputed variable has more than two response levels, the ordinal logistic
regression method is used. The ORDER= option specifies the sorting order for the
levels of the response variable. Valid values for the ORDER= option are:

DATA sorts by the order of appearance in the input data set

FORMATTED sorts by their external formatted values

FREQ sorts by the descending frequency counts

INTERNAL sorts by the unformatted values

By default, ORDER=FORMATTED.

The option DESCENDING reverses the sorting order for the levels of the response
variables.

See the“Logistic Regression Method for Monotone Missing Data”section on page
2546 for a detailed description of the method.

REG | REGRESSION < ( imputed < = effects > < / DETAILS > ) >
specifies the regression method of continuous variables. The DETAILS option dis-
plays the regression coefficients in the regression model used in each imputation.

With a regression method, the MAXIMUM=, MINIMUM=, and ROUND= options
can be used to make the imputed values more consistent with the observed variable
values.

See the“Regression Method for Monotone Missing Data”section on page 2541 for
a detailed description of the method.

REGPMM < ( imputed < = effects > < / options > ) >
REGPREDMEANMATCH < ( imputed < = effects > < / options > ) >

specifies the predictive mean matching method for continuous variables. This method
is similar to the regression method except that it imputes a value randomly from
a set of observed values whose predicted values are closest to the predicted value
for the missing value from the simulated regression model (Heitjan and Little 1991;
Schenker and Taylor 1996).

The available options are DETAILS and K=. The DETAILS option displays the re-
gression coefficients in the regression model used in each imputation. The K= option
specifies the number of closest observations to be used in the selection. The default
is K=5.

Note that an optimal K= value is currently not available in the literature on multiple
imputation. The default K=5 is experimental and may change in future releases.

See the“Predictive Mean Matching Method for Monotone Missing Data”section on
page 2542 for a detailed description of the method.



TRANSFORM Statement � 2533

PROPENSITY < ( imputed < = effects > < / options > ) >
specifies the propensity scores method of variables. Each variable is either a
class variable or a continuous variable. The available options are DETAILS and
NGROUPS=. The DETAILS option displays the regression coefficients in the lo-
gistic regression model for propensity scores. The NGROUPS= option specifies the
number of groups created based on propensity scores. The default is NGROUPS=5.

See the“Propensity Score Method for Monotone Missing Data”section on page 2543
for a detailed description of the method.

With a MONOTONE statement, the missing values of a variable are imputed when
the variable is either explicitly specified in the method or implicitly specified when a
method is specified without imputed variables. These variables are imputed sequen-
tially in the order specified in the VAR statement. For example, the following MI
procedure

proc mi;
class c1;
var y1 y2 c1 y3;
monotone reg(y3= y1 y2 c1) logistic(c1= y1 y2 y1*y2);

run;

uses the logistic regression method to impute variablec1 from effectsy1, y2, and
y1 ∗ y2 first, then uses the regression method to impute variabley3 from effectsy1,
y2, andc1. The variablesy1 andy2 are not imputed sincey1 is the leading variable in
the VAR statement andy2 is not specified as an imputed variable in the MONOTONE
statement.

TRANSFORM Statement

TRANSFORM transform ( variables < / options >)

< . . . transform ( variables < / options >) > ;

The TRANSFORM statement lists the transformations and their associated variables
to be transformed. The options are transformation options that provide additional
information for the transformation.

The MI procedure assumes that the data are from a multivariate normal distribution
when either the regression method or the MCMC method is used. When some vari-
ables in a data set are clearly non-normal, it is useful to transform these variables to
conform to the multivariate normality assumption. With a TRANSFORM statement,
variables are transformed before the imputation process and these transformed vari-
able values are displayed in all of the results. When you specify an OUT= option, the
variable values are back-transformed to create the imputed data set.

The following transformations can be used in the TRANSFORM statement.

BOXCOX
specifies the Box-Cox transformation of variables. The variableY is transformed to
(Y+c)λ−1

λ , wherec is a constant such that each value ofY + c must be positive and
the constantλ > 0.
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EXP
specifies the exponential transformation of variables. The variableY is transformed
to e(Y+c), wherec is a constant.

LOG
specifies the logarithmic transformation of variables. The variableY is transformed
to log(Y + c), wherec is a constant such that each value ofY + c must be positive.

LOGIT
specifies the logit transformation of variables. The variableY is transformed to
log( Y/c

1−Y/c), where the constantc > 0 and the values ofY/c must be between 0
and 1.

POWER
specifies the power transformation of variables. The variableY is transformed to
(Y + c)λ, wherec is a constant such that each value ofY + c must be positive and
the constantλ 6= 0.

The following options provide the constantc andλ values in the transformations.

C=number
specifies thec value in the transformation. The default isc = 1 for logit transforma-
tion andc = 0 for other transformations.

LAMBDA= number
specifies theλ value in the power and Box-Cox transformations. You must specify
theλ value for these two transformations.

For example, the statement

transform log(y1) power(y2/c=1 lambda=.5);

requests that variableslog(y1), a logarithmic transformation for the variabley1, and√
y2 + 1, a power transformation for the variabley2, be used in the imputation.

If the MU0= option is used to specify a parameter valueµ0 for a transformed variable,
the same transformation for the variable is also applied to its corresponding MU0=
value in thet test. Otherwise,µ0 = 0 is used for the transformed variable. See
Example 44.10for a usage of the TRANSFORM statement.

VAR Statement

VAR variables ;

The VAR statement lists the variables to be analyzed. The variables can be ei-
ther character or numeric. If you omit the VAR statement, all continuous variables
not mentioned in other statements are used. The VAR statement is required if you
specify a MONOTONE statement, an IMPUTE=MONOTONE option in the MCMC
statement, or more than one number in the MU0=, MAXIMUM=, MINIMUM=, or
ROUND= option.

The character variables are allowed only when they are specified as CLASS variables
and the MONOTONE statement is also specified.
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Details

Descriptive Statistics

SupposeY = (y1,y2, ...,yn)′ is the (n×p) matrix of complete data, which may
not be fully observed,n0 is the number of observations fully observed, andnj is the
number of observations with observed values for variableYj .

With complete cases, the sample mean vector is

y =
1
n0

∑
yi

and the CSSCP matrix is

∑
(yi − y)(yi − y)′

where each summation is over the fully observed observations.

The sample covariance matrix is

S =
1

n0 − 1

∑
(yi − y)(yi − y)′

and is an unbiased estimate of the covariance matrix.

The correlation matrixR containing the Pearson product-moment correlations of the
variables is derived by scaling the corresponding covariance matrix:

R = D−1SD−1

whereD is a diagonal matrix whose diagonal elements are the square roots of the
diagonal elements ofS.

With available cases, the corrected sum of squares for variableYj is∑
(yji − yj)

2

whereyj = 1
nj

∑
yji is the sample mean and each summation is over observations

with observed values for variableYj .

The variance is

s2
jj =

1
nj − 1

∑
(yji − yj)

2

The correlations for available cases contain pairwise correlations for each pair of
variables. Each correlation is computed from all observations that have nonmissing
values for the corresponding pair of variables.
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EM Algorithm for Data with Missing Values

The EM algorithm (Dempster, Laird, and Rubin 1977) is a technique that finds max-
imum likelihood estimates in parametric models for incomplete data. The books by
Little and Rubin (1987), Schafer (1997), and McLachlan and Krishnan (1997) pro-
vide detailed description and applications of the EM algorithm.

The EM algorithm is an iterative procedure that finds the MLE of the parameter vector
by repeating the following steps:

1. The expectation E-step:
Given a set of parameter estimates, such as a mean vector and covariance matrix for a
multivariate normal distribution, the E-step calculates the conditional expectation of
the complete-data log likelihood given the observed data and the parameter estimates.

2. The maximization M-step:
Given a complete-data log likelihood, the M-step finds the parameter estimates to
maximize the complete-data log likelihood from the E-step.

The two steps are iterated until the iterations converge.

In the EM process, the observed-data log likelihood is non-decreasing at each itera-
tion. For multivariate normal data, suppose there areG groups with distinct missing
patterns. Then the observed-data log likelihood being maximized can be expressed
as

log L(θ|Yobs) =
G∑

g=1

log Lg(θ|Yobs)

wherelog Lg(θ|Yobs) is the observed-data log likelihood from thegth group, and

log Lg(θ|Yobs) = −ng

2
log |Σg| −

1
2

∑
ig

(yig − µg)
′Σg

−1(yig − µg)

whereng is the number of observations in thegth group, the summation is over
observations in thegth group,yig is a vector of observed values corresponding to
observed variables,µg is the corresponding mean vector, andΣg is the associated
covariance matrix.

A sample covariance matrix is computed at each step of the EM algorithm. If the
covariance matrix is singular, the linearly dependent variables for the observed data
are excluded from the likelihood function. That is, for each observation with linear
dependency among its observed variables, the dependent variables are excluded from
the likelihood function. Note that this may result in an unexpected change in the
likelihood between iterations prior to the final convergence.

Refer to Schafer (1997, pp. 163–181) for a detailed description of the EM algorithm
for multivariate normal data.

PROC MI uses the means and standard deviations from available cases as the initial
estimates for the EM algorithm. The correlations are set to zero. It provides a good
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starting value with positive definite covariance matrix. For a discussion of suggested
starting values for the algorithm, see Schafer (1997, p. 169).

You can specify the convergence criterion with the CONVERGE= option in the EM
statement. The iterations are considered to have converged when the maximum
change in the parameter estimates between iteration steps is less than the value spec-
ified. You can also specify the maximum number of iterations used in the EM algo-
rithm with the MAXITER= option.

The MI procedure displays tables of the initial parameter estimates used to begin the
EM process and the MLE parameter estimates derived from EM. You can also dis-
play the EM iteration history with the ITPRINT option. PROC MI lists the iteration
number, the likelihood -2 Log L, and the parameter valuesµ at each iteration. You
can also save the MLE derived from the EM algorithm in a SAS data set specified
with the OUTEM= option.

Statistical Assumptions for Multiple Imputation

The MI procedure assumes that the data are from a continuous multivariate distribu-
tion and contain missing values that can occur for any of the variables. It also assumes
that the data are from a multivariate normal distribution when either the regression
method or the MCMC method is used.

SupposeY is then×p matrix of complete data, which is not fully observed, and
denote the observed part ofY by Yobs and the missing part byYmis. The SAS MI
and MIANALYZE procedures assume that the missing data are missing at random
(MAR), that is, the probability that an observation is missing can depend onYobs,
but not onYmis (Rubin 1976; 1987, p. 53).

To be more precise, suppose thatR is then×p matrix of response indicators whose
elements are zero or one depending on whether the corresponding elements of Y are
missing or observed. Then the MAR assumption is that the distribution ofR can
depend onYobs but not onYmis.

pr(R|Yobs, Ymis) = pr(R|Yobs)

For example, consider a trivariate data set with variablesY1 andY2 fully observed,
and a variableY3 that has missing values. MAR assumes that the probability that
Y3 is missing for an individual can be related to the individual’s values of variables
Y1 andY2, but not to its value ofY3. On the other hand, if a complete case and an
incomplete case forY3 with exactly the same values for variablesY1 andY2 have
systematically different values, then there exists a response bias forY3, and MAR is
violated.

The MAR assumption is not the same as missing completely at random (MCAR),
which is a special case of MAR. Under the MCAR assumption, the missing data
values are a simple random sample of all data values; the missingness does not depend
on the values of any variables in the data set.



2538 � Chapter 44. The MI Procedure

Although the MAR assumption cannot be verified with the data and it can be ques-
tionable in some situations, the assumption becomes more plausible as more vari-
ables are included in the imputation model (Schafer 1997, pp. 27–28; van Buuren,
Boshuizen, and Knook, 1999, p. 687).

Furthermore, the MI and MIANALYZE procedures assume that the parametersθ of
the data model and the parametersφ of the model for the missing data indicators are
distinct. That is, knowing the values ofθ does not provide any additional information
aboutφ, and vice versa. If both the MAR and distinctness assumptions are satisfied,
the missing-data mechanism is said to be ignorable (Rubin 1987, pp. 50–54; Schafer
1997, pp. 10–11) .

Missing Data Patterns

The MI procedure sorts the data into groups based on whether an individual’s value
is observed or missing for each variable to be analyzed. Note that the input data set
does not need to be sorted in any order.

For example, with variablesY1, Y2, andY3 (in that order) in a data set, up to eight
groups of observations can be formed from the data set. The following figure displays
the eight groups of observations and an unique missing pattern for each group:

Missing Data Patterns

Group Y1 Y2 Y3

1 X X X
2 X X .
3 X . X
4 X . .
5 . X X
6 . X .
7 . . X
8 . . .

Figure 44.6. Missing Data Patterns

Here, an “X” means that the variable is observed in the corresponding group and a
“.” means that the variable is missing.

The variable order is used to derive the order of the groups from the data set, and
thus, determines the order of missing values in the data to be imputed. If you specify
a different order of variables in the VAR statement, then the results are different even
if the other specifications remain the same.

A data set with variablesY1, Y2, ..., Yp (in that order) is said to have amonotone
missing patternwhen the event that a variableYj is missing for a particular individ-
ual implies that all subsequent variablesYk, k > j, are missing for that individual.
Alternatively, when a variableYj is observed for a particular individual, it is assumed
that all previous variablesYk, k < j, are also observed for that individual.
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For example, the following figure displays a data set of three variables with a mono-
tone missing pattern.

Monotone Missing Data Patterns

Group Y1 Y2 Y3

1 X X X
2 X X .
3 X . .

Figure 44.7. Monotone Missing Patterns

The following figure displays a data set of three variables with a non-monotone miss-
ing pattern.

Non-monotone Missing Data Patterns

Group Y1 Y2 Y3

1 X X X
2 X . X
3 . X .
4 . . X

Figure 44.8. Non-monotone Missing Patterns

A data set with anarbitrary missing patternis a data set with either a monotone
missing pattern or a non-monotone missing pattern.

Imputation Methods

This section describes the methods for multiple imputation that are available in the
MI procedure. The method of choice depends on the pattern of missingness in the
data and the type of the imputed variable, as summarized in the following table:

Table 44.3. Imputation Methods in PROC MI

Pattern of Type of Recommended Methods
Missingness Imputed Variable

Monotone Continuous • Regression
• Predicted Mean Matching
• Propensity Score

Monotone Classification (Ordinal) • Logistic Regression

Monotone Classification (Nominal)• Discriminant Function Method

Arbitrary Continuous • MCMC Full-Data Imputation
• MCMC Monotone-Data Imputation
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To impute missing values for a continuous variable in data sets with monotone miss-
ing patterns, you should use either a parametric method that assumes multivariate
normality or a nonparametric method that uses propensity scores (Rubin 1987, p.
124, 158; Lavori, Dawson, and Shera 1995). Parametric methods available include
the regression method (Rubin 1987, pp. 166–167) and the predictive mean matching
method (Heitjan and Little 1991; Schenker and Taylor 1996).

To impute missing values for a CLASS variable in data sets with monotone missing
patterns, you should use the logistic regression method or the discriminant function
method. Use the logistic regression method when the CLASS variable has a binary
or ordinal response, and the discriminant function method when the CLASS variable
has a binary or nominal response.

For continuous variables in data sets with arbitrary missing patterns, you can use the
Markov Chain Monte Carlo (MCMC) method (Schafer 1997) to impute either all the
missing values or just enough missing values to make the imputed data sets have
monotone missing patterns.

With a monotone missing data pattern, you have greater flexibility in your choice
of imputation models. In addition to the MCMC method, you can implement other
methods, such as the regression method, that do not use Markov chains. You can also
specify a different set of covariates for each imputed variable.

With an arbitrary missing data pattern, you can often use the MCMC method, which
creates multiple imputations by drawing simulations from a Bayesian predictive dis-
tribution for normal data. Another way to handle a data set with an arbitrary missing
data pattern is to use the MCMC approach to impute just enough values to make
the missing data pattern monotone. Then, you can use a more flexible imputation
method. This approach is described in the“Producing Monotone Missingness with
the MCMC Method”section on page 2552.

Although the regression and MCMC methods assume multivariate normality, infer-
ences based on multiple imputation can be robust to departures from multivariate
normality if the amount of missing information is not large, because the imputation
model is effectively applied not to the entire data set but only to its missing part
(Schafer 1997, pp. 147–148).

You can also use a TRANSFORM statement to transform variables to conform to the
multivariate normality assumption. Variables are transformed before the imputation
process and then are reverse-transformed to create the imputed data set.

Li (1988) presented a theoretical argument for convergence of the MCMC method in
the continuous case and used it to create imputations for incomplete multivariate con-
tinuous data. In practice, however, it is not easy to check the convergence of a Markov
chain, especially for a large number of parameters. PROC MI generates statistics and
plots which you can use to check for convergence of the MCMC process. The details
are described in the“Checking Convergence in MCMC”section on page 2555.
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Regression Method for Monotone Missing Data

The regression method is the default imputation method for continuous variables in a
data set with a monotone missing pattern.

In the regression method, a regression model is fitted for a continuous variable with
the covariates constructed from a set of effects. Based on the fitted regression model,
a new regression model is simulated from the posterior predictive distribution of the
parameters and is used to impute the missing values for each variable (Rubin 1987,
pp. 166–167). That is, for a continuous variableYj with missing values, a model

Yj = β0 + β1 X1 + β2 X2 + . . . + βk Xk

is fitted using observations with observed values for the variableYj and its covariates
X1, X2, ...,Xk.

The fitted model includes the regression parameter estimatesβ̂ = (β̂0, β̂1, ..., β̂k) and
the associated covariance matrixσ̂2

jVj , whereVj is the usualX′X inverse matrix
derived from the intercept and covariatesX1, X2, ...,Xk.

The following steps are used to generate imputed values for each imputation:

1. New parametersβ∗ = (β∗0, β∗1, ..., β∗(k)) and σ2
∗j are drawn from the pos-

terior predictive distribution of the parameters. That is, they are simulated from
(β̂0, β̂1, ..., β̂k), σ2

j , andVj . The variance is drawn as

σ2
∗j = σ̂2

j (nj − k − 1)/g

whereg is aχ2
nj−k−1 random variate andnj is the number of nonmissing observa-

tions forYj . The regression coefficients are drawn as

β∗ = β̂ + σ∗jV′
hjZ

whereV′
hj is the upper triangular matrix in the Cholesky decomposition,

Vj = V′
hjVhj , andZ is a vector ofk + 1 independent random normal variates.

2. The missing values are then replaced by

β∗0 + β∗1 x1 + β∗2 x2 + . . . + β∗(k) xk + zi σ∗j

wherex1, x2, ..., xk are the values of the covariates andzi is a simulated normal
deviate.
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Predictive Mean Matching Method for Monotone Missing Data

The predictive mean matching method is also an imputation method available for
continuous variables. It is similar to the regression method except that for each miss-
ing value, it imputes a value randomly from a set of observed values whose predicted
values are closest to the predicted value for the missing value from the simulated
regression model (Heitjan and Little 1991; Schenker and Taylor 1996).

Following the description of the model in the“Regression Method for Monotone
Missing Data”section on page 2541, the following steps are used to generate imputed
values:

1. New parametersβ∗ = (β∗0, β∗1, ..., β∗(k)) and σ2
∗j are drawn from the pos-

terior predictive distribution of the parameters. That is, they are simulated from
(β̂0, β̂1, ..., β̂k), σ2

j , andVj . The variance is drawn as

σ2
∗j = σ̂2

j (nj − k − 1)/g

whereg is aχ2
nj−k−1 random variate andnj is the number of nonmissing observa-

tions forYj . The regression coefficients are drawn as

β∗ = β̂ + σ∗jV′
hjZ

whereV′
hj is the upper triangular matrix in the Cholesky decomposition,

Vj = V′
hjVhj , andZ is a vector ofk + 1 independent random normal variates.

2. For each missing value, a predicted value

yi∗ = β∗0 + β∗1 x1 + β∗2 x2 + . . . + β∗(k) xk

is computed with the covariate valuesx1, x2, ..., xk.

3. A set ofk0 observations whose corresponding predicted values are closest toyi∗ is
generated. You can specifyk0 with the K= option.

4. The missing value is then replaced by a value drawn randomly from thesek0

observed values.

The predictive mean matching method requires the number of closest observations
to be specified. A smallerk0 tends to increase the correlation among the multiple
imputations for the missing observation and results in a higher variability of point
estimators in repeated sampling. On the other hand, a largerk0 tends to lessen the ef-
fect from the imputation model and results in biased estimators (Schenker and Taylor
1996, p. 430). An optimalk0 is currently not available in the literature on multiple
imputation. The default is K=5. This default value is experimental and may change
in future releases.

The predictive mean matching method ensures that imputed values are plausible and
may be more appropriate than the regression method if the normality assumption is
violated (Horton and Lipsitz 2001, p. 246).
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Note that in SAS 9.0, the predictive mean matching method replaces each missing
value by the observed value closest to its predicted value. This may result in a higher
variability of point estimators in repeated sampling (Schenker and Taylor 1996, p.
430).

Propensity Score Method for Monotone Missing Data

The propensity score method is another imputation method available for continuous
variables when the data set has a monotone missing pattern.

A propensity score is generally defined as the conditional probability of assignment
to a particular treatment given a vector of observed covariates (Rosenbaum and Rubin
1983). In the propensity score method, for a variable with missing values, a propen-
sity score is generated for each observation to estimate the probability that the ob-
servation is missing. The observations are then grouped based on these propensity
scores, and an approximate Bayesian bootstrap imputation (Rubin 1987, p. 124) is
applied to each group (Lavori, Dawson, and Shera 1995).

The propensity score method uses the following steps to impute values for variable
Yj with missing values:

1. Create an indicator variableRj with the value 0 for observations with missingYj

and 1 otherwise.

2. Fit a logistic regression model

logit(pj) = β0 + β1 X1 + β2 X2 + . . . + βk Xk

whereX1, X2, ..., Xk are covariates forYj , pj = Pr(Rj = 0|X1, X2, ..., Xk), and
logit(p) = log(p/(1− p)).

3. Create a propensity score for each observation to estimate the probability that it is
missing.

4. Divide the observations into a fixed number of groups (typically assumed to be
five) based on these propensity scores.

5. Apply an approximate Bayesian bootstrap imputation to each group. In groupk,
suppose thatYobs denotes then1 observations with nonmissingYj values andYmis

denotes then0 observations with missingYj . The approximate Bayesian bootstrap
imputation first drawsn1 observations randomly with replacement fromYobs to create
a new data setY ∗

obs. This is a nonparametric analogue of drawing parameters from
the posterior predictive distribution of the parameters. The process then draws then0

values forYmis randomly with replacement fromY ∗
obs.

Steps 1 through 5 are repeated sequentially for each variable with missing values.

Note that the propensity score method was originally designed for a randomized ex-
periment with repeated measures on the response variables. The goal was to impute
the missing values on the response variables. The method uses only the covariate
information that is associated with whether the imputed variable values are missing.
It does not use correlations among variables. It is effective for inferences about the
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distributions of individual imputed variables, such as an univariate analysis, but it is
not appropriate for analyses involving relationship among variables, such as a regres-
sion analysis (Schafer 1999, p. 11). It can also produce badly biased estimates of
regression coefficients when data on predictor variables are missing (Allison 2000).

Discriminant Function Method for Monotone Missing Data

The discriminant function method is the default imputation method for CLASS vari-
ables in a data set with a monotone missing pattern.

For a nominal class variableYj with responses 1, ..., g, and a set of effects from its
preceding variables, if the covariatesX1, X2, ..., Xk associated with these effects
within each group is approximately multivariate normal and the within-group co-
variance matrices are approximately equal, the discriminant function method (Brand
1999, pp. 95–96) can be used to impute missing values for the variableYj .

Denote the group-specific means for covariatesX1, X2, ...,Xk by

Xt = (Xt1, Xt2, . . . , Xtk), t = 1, 2, ..., g

then the pooled covariance matrix is computed as

S =
1

n− g

g∑
t=1

(nt − 1)St

whereSt is the within-group covariance matrix,nt is the group-specific sample size,
andn =

∑g
t=1 nt is the total sample size.

In each imputation, new parameters of the group-specific means (m∗t), pooled co-
variance matrix (S∗), and prior probabilities of group membership (q∗t) can be drawn
from their corresponding posterior distributions (Schafer 1997, p. 356).

Pooled Covariance Matrix and Group-specific Means

For each imputation, the MI procedure uses either the fixed observed pooled
covariance matrix (PCOV=FIXED) or a drawn pooled covariance matrix
(PCOV=POSTERIOR) from its posterior distribution with a noninformative
prior. That is,

Σ|X ∼ W−1 ( n− g, (n− g)S)

whereW−1 is an inverted Wishart distribution.

The group-specific means are then drawn from their posterior distributions with a
noninformative prior

µt|(Σ,Xt) ∼ N

(
Xt,

1
nt

Σ
)
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See the“Bayesian Estimation of the Mean Vector and Covariance Matrix”section
on page 2549 for a complete description of the inverted Wishart distribution and
posterior distributions using a noninformative prior.

Prior Probabilities of Group Membership

The prior probabilities are computed through the drawing of new group sample
sizes. When the total sample sizen is considered fixed, the group sample sizes
(n1, n2, ..., ng) has a multinomial distribution. A new multinomial parameters (group
sample sizes) can be drawn from its posterior distribution using a Dirichlet prior with
parameters(α1, α2, ..., αg).

After the new sample sizes are drawn from the posterior distribution of
(n1, n2, ..., ng), the prior probabilitiesq∗t are computed proportionally to the
drawn sample sizes.

Refer to Schafer (1997, pp. 247–255) for a complete description of the Dirichlet
prior.

Imputation Steps

The discriminant function method uses the following steps in each imputation to im-
pute values for a nominal class variableYj with g responses:

1. Draw a pooled covariance matrixS∗ from its posterior distribution if the
PCOV=POSTERIOR option is used.

2. For each group, draw group meansm∗t from the observed group meanXt and
either the observed pooled covariance matrix (PCOV=FIXED) or the drawn pooled
covariance matrixS∗ (PCOV=POSTERIOR).

3. For each group, compute or drawq∗t, prior probabilities of group membership,
based on the PRIOR= option:

• PRIOR=EQUAL,q∗t = 1/g, prior probabilities of group membership are all
equal.

• PRIOR=PROPORTIONAL,q∗t = nt/n, prior probabilities are proportional to
their group sample sizes.

• PRIOR=JEFFREYS=c, a noninformative Dirichlet prior withαt = c is used.

• PRIOR=RIDGE=d, a ridge prior is used withαt = d ∗ nt/n for d ≥ 1 and
αt = d ∗ nt for d < 1.

4. With the group meansm∗t, the pooled covariance matrixS∗, and the prior prob-
abilities of group membershipq∗t, the discriminant function method derives linear
discriminant function and computes the posterior probabilities of an observation be-
longing to each group

pt(x) =
exp(−0.5D2

t (x))∑g
u=1 exp(−0.5D2

u(x))
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whereD2
t (x) = (x−m∗t)

′S−1
∗ (x − m∗t) − 2 log(q∗t) is the generalized squared

distance fromx to groupt.

5. Draw a random uniform variateu, between 0 and 1, for each observation with
missing group value. With the posterior probabilities,p1(x)+ p2(x)+ ..., +pg(x) =
1, the discriminant function method imputesYj = 1 if the value ofu is less than
p1(x), Yj = 2 if the value is greater than or equal top1(x) but less thanp1(x)+p2(x),
and so on.

Logistic Regression Method for Monotone Missing Data

The logistic regression method is another imputation method available for CLASS
variables in a data set with a monotone missing pattern.

In the logistic regression method, a logistic regression model is fitted for a class
variable with a set of covariates constructed from the effects. For a binary class
variable, based on the fitted regression model, a new logistic regression model is
simulated from the posterior predictive distribution of the parameters and is used to
impute the missing values for each variable (Rubin 1987, pp. 169–170).

For a binary variableYj with responses 1 and 2, a logistic regression model is fitted
using observations with observed values for the imputed variableYj and its covariates
X1, X2, ...,Xk.

logit(pj) = β0 + β1 X1 + β2 X2 + . . . + βk Xk

whereX1, X2, ..., Xk are covariates forYj , pj = Pr(Rj = 1|X1, X2, ..., Xk), and
logit(p) = log(p/(1− p)).

The fitted model includes the regression parameter estimatesβ̂ = (β̂0, β̂1, ..., β̂k) and
the associated covariance matrixVj .

The following steps are used to generate imputed values for a binary variableYj with
responses 1 and 2:

1. New parametersβ∗ = (β∗0, β∗1, ..., β∗(k)) are drawn from the posterior predictive
distribution of the parameters.

β∗ = β̂ + V′
hjZ

whereV′
hj is the upper triangular matrix in the Cholesky decomposition,

Vj = V′
hjVhj , andZ is a vector ofk + 1 independent random normal variates.

2. For an observation with missingYj and covariatesx1, x2, ..., xk, compute the
expected probability thatYj = 1.

pj =
exp(µj)

1 + exp(µj)

whereµj = β∗0 + β∗1 x1 + β∗2 x2 + . . . + β∗(k) xk.
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3. Draw a random uniform variate,u, between 0 and 1. If the value ofu is less than
pj , imputeYj = 1, otherwise imputeYj = 2.

The preceding logistic regression method can be extended to include the ordinal
class variables with more than two levels of responses. The options ORDER= and
DESCENDING can be used to specify the sorting order for the levels of the imputed
variables.

MCMC Method for Arbitrary Missing Data

The Markov Chain Monte Carlo (MCMC) method originated in physics as a tool
for exploring equilibrium distributions of interacting molecules. In statistical ap-
plications, it is used to generate pseudo-random draws from multidimensional and
otherwise intractable probability distributions via Markov chains. A Markov chain
is a sequence of random variables in which the distribution of each element depends
only on the value of the previous one.

In MCMC simulation, one constructs a Markov chain long enough for the distribution
of the elements to stabilize to a stationary distribution, which is the distribution of
interest. By repeatedly simulating steps of the chain, the method simulates draws
from the distribution of interest. Refer to Schafer (1997) for a detailed discussion of
this method.

In Bayesian inference, information about unknown parameters is expressed in the
form of a posterior probability distribution. This posterior distribution is computed
using Bayes’ theorem

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

MCMC has been applied as a method for exploring posterior distributions in Bayesian
inference. That is, through MCMC, one can simulate the entire joint posterior distri-
bution of the unknown quantities and obtain simulation-based estimates of posterior
parameters that are of interest.

In many incomplete data problems, the observed-data posteriorp(θ|Yobs) is in-
tractable and cannot easily be simulated. However, whenYobs is augmented by
an estimated/simulated value of the missing dataYmis, the complete-data posterior
p(θ|Yobs, Ymis) is much easier to simulate. Assuming that the data are from a multi-
variate normal distribution, data augmentation can be applied to Bayesian inference
with missing data by repeating the following steps:

1. The imputation I-step:
Given an estimated mean vector and covariance matrix, the I-step simulates the miss-
ing values for each observation independently. That is, if you denote the variables
with missing values for observationi by Yi(mis) and the variables with observed val-
ues byYi(obs), then the I-step draws values forYi(mis) from a conditional distribution
for Yi(mis) givenYi(obs).
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2. The posterior P-step:
Given a complete sample, the P-step simulates the posterior population mean vector
and covariance matrix. These new estimates are then used in the next I-step. Without
prior information about the parameters, a noninformative prior is used. You can also
use other informative priors. For example, a prior information about the covariance
matrix can be helpful to stabilize the inference about the mean vector for a near
singular covariance matrix.

The two steps are iterated long enough for the results to be reliable for a multiply
imputed data set (Schafer 1997, p. 72). That is, with a current parameter estimate

θ(t) at thetth iteration, the I-step drawsY (t+1)
mis fromp(Ymis|Yobs,θ

(t)) and the P-step

drawsθ(t+1) from p(θ|Yobs, Y
(t+1)
mis ).

This creates a Markov chain

(Y (1)
mis,θ

(1)) , (Y (2)
mis,θ

(2)) , ... ,

which converges in distribution top(Ymis,θ|Yobs). Assuming the iterates converge to
a stationary distribution, the goal is to simulate an approximately independent draw
of the missing values from this distribution.

To validate the imputation results, you should repeat the process with different ran-
dom number generators and starting values based on different initial parameter esti-
mates.

The next three sections provide details for the imputation step, Bayesian estimation
of the mean vector and covariance matrix, and the posterior step.

Imputation Step

In each iteration, starting with a given mean vectorµ and covariance matrixΣ, the
imputation step draws values for the missing data from the conditional distribution
Ymis givenYobs.

Supposeµ = [µ′
1,µ

′
2]
′ is the partitioned mean vector of two sets of variables,Yobs

andYmis, whereµ1 is the mean vector for variablesYobs andµ2 is the mean vector
for variablesYmis.

Also suppose

Σ =
[

Σ11 Σ12

Σ′
12 Σ22

]
is the partitioned covariance matrix for these variables, whereΣ11 is the covariance
matrix for variablesYobs, Σ22 is the covariance matrix for variablesYmis, andΣ12 is
the covariance matrix between variablesYobs and variablesYmis.
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By using the sweep operator (Goodnight 1979) on the pivots of theΣ11 submatrix,
the matrix becomes[

Σ−1
11 Σ−1

11 Σ12

−Σ′
12Σ

−1
11 Σ22.1

]

whereΣ22.1 = Σ22−Σ′
12Σ

−1
11 Σ12 can be used to compute the conditional covariance

matrix ofYmis after controlling forYobs.

For an observation with the preceding missing pattern, the conditional distribution of
Ymis givenYobs = y1 is a multivariate normal distribution with the mean vector

µ2.1 = µ2 + Σ′
12Σ

−1
11 (y1 − µ1)

and the conditional covariance matrix

Σ22.1 = Σ22 −Σ′
12Σ

−1
11 Σ12

Bayesian Estimation of the Mean Vector and Covariance Matrix
Suppose thatY = (y′

1,y
′
2, ...,y

′
n )′ is an(n×p) matrix made up ofn (p×1) inde-

pendent vectorsyi, each of which has a multivariate normal distribution with mean
zero and covariance matrixΛ. Then the SSCP matrix

A = Y′Y =
∑

i

yiy′
i

has a Wishart distributionW (n,Λ).

When each observationyi is distributed with a multivariate normal distribution with
an unknown meanµ, then the CSSCP matrix

A =
∑

i

(yi − y)(yi − y)′

has a Wishart distributionW (n− 1,Λ).

If A has a Wishart distributionW (n,Λ), thenB = A−1 has an inverted Wishart
distributionW−1(n,Ψ), wheren is the degrees of freedom andΨ = Λ−1 is the
precision matrix (Anderson 1984).

Note that, instead of using the parameterΨ = Λ−1 for the inverted Wishart distribu-
tion, Schafer (1997) uses the parameterΛ.

Suppose that each observation in the data matrixY has a multivariate normal distri-
bution with meanµ and covariance matrixΣ. Then with a prior inverted Wishart
distribution forΣ and a prior normal distribution forµ

Σ ∼ W−1 ( m, Ψ)

µ|Σ ∼ N

(
µ0,

1
τ
Σ
)

whereτ > 0 is a fixed number.
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The posterior distribution (Anderson 1984, p. 270; Schafer 1997, p. 152) is

Σ|Y ∼ W−1

(
n + m, (n− 1)S + Ψ +

nτ

n + τ
(y − µ0)(y − µ0)

′
)

µ|(Σ,Y) ∼ N

(
1

n + τ
(ny + τµ0),

1
n + τ

Σ
)

where(n− 1)S is the CSSCP matrix.

Posterior Step

In each iteration, the posterior step simulates the posterior population mean vector
µ and covariance matrixΣ from prior information forµ andΣ, and the complete
sample estimates.

You can specify the prior parameter information using one of the following methods:

• PRIOR=JEFFREYS, which uses a noninformative prior.

• PRIOR=INPUT=, which provides a prior information forΣ in the data set.
Optionally, it also provides a prior information forµ in the data set.

• PRIOR=RIDGE=, which uses a ridge prior.

The next four subsections provide details of the posterior step for different prior dis-
tributions.

1. A Noninformative Prior

Without prior information about the mean and covariance estimates, a noninforma-
tive prior can be used by specifying the PRIOR=JEFFREYS option. The posterior
distributions (Schafer 1997, p. 154) are

Σ(t+1)|Y ∼ W−1 ( n− 1, (n− 1)S)

µ(t+1)|(Σ(t+1),Y) ∼ N

(
y,

1
n

Σ(t+1)

)

2. An Informative Prior for µ and Σ

When prior information is available for the parametersµ andΣ, you can provide it
with a SAS data set that you specify with the PRIOR=INPUT= option.

Σ ∼ W−1 ( d∗, d∗S∗)

µ|Σ ∼ N

(
µ0,

1
n0

Σ
)

To obtain the prior distribution forΣ, PROC MI reads the matrixS∗ from observa-
tions in the data set with–TYPE–=‘COV’, and it readsn∗ = d∗ + 1 from observa-
tions with–TYPE–=‘N’.
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To obtain the prior distribution forµ, PROC MI reads the mean vectorµ0

from observations with–TYPE–=‘MEAN’, and it reads n0 from obser-
vations with –TYPE–=‘N–MEAN’. When there are no observations with

–TYPE–=‘N–MEAN’, PROC MI readsn0 from observations with–TYPE–=‘N’.

The resulting posterior distribution, as described in the“Bayesian Estimation of the
Mean Vector and Covariance Matrix”section on page 2549, is given by

Σ(t+1)|Y ∼ W−1 ( n + d∗, (n− 1)S + d∗S∗ + Sm)

µ(t+1) |
(
Σ(t+1),Y

)
∼ N

(
1

n + n0
(ny + n0µ0),

1
n + n0

Σ(t+1)

)
where

Sm =
nn0

n + n0
(y − µ0)(y − µ0)

′

3. An Informative Prior for Σ

When the sample covariance matrixS is singular or near singular, prior information
aboutΣ can also be used without prior information aboutµ to stabilize the infer-
ence aboutµ. You can provide it with a SAS data set that you specify with the
PRIOR=INPUT= option.

To obtain the prior distribution forΣ, PROC MI reads the matrixS∗ from observa-
tions in the data set with–TYPE–=‘COV’, and it readsn∗ from observations with

–TYPE–=‘N’.

The resulting posterior distribution for(µ,Σ) (Schafer 1997, p. 156) is

Σ(t+1)|Y ∼ W−1 ( n + d∗, (n− 1)S + d∗S∗)

µ(t+1) |
(
Σ(t+1),Y

)
∼ N

(
y,

1
n

Σ(t+1)

)

Note that if the PRIOR=INPUT= data set also contains observations with

–TYPE–=‘MEAN’, then a complete informative prior for bothµ andΣ will be
used.

4. A Ridge Prior

A special case of the preceding adjustment is a ridge prior withS∗ = Diag (S)
(Schafer 1997, p. 156). That is,S∗ is a diagonal matrix with diagonal elements
equal to the corresponding elements inS.

You can request a ridge prior by using the PRIOR=RIDGE= option. You can explic-
itly specify the numberd∗ ≥ 1 in the PRIOR=RIDGE=d∗ option. Or you can im-
plicitly specify the number by specifying the proportionp in the PRIOR=RIDGE=p
option to requestd∗ = (n− 1)p.



2552 � Chapter 44. The MI Procedure

The posterior is then given by

Σ(t+1)|Y ∼ W−1 ( n + d∗, (n− 1)S + d∗Diag(S) )

µ(t+1)
∣∣∣ (Σ(t+1),Y

)
∼ N

(
y,

1
n

Σ(t+1)

)

Producing Monotone Missingness with the MCMC Method

The monotone data MCMC method was first proposed by Li (1988), and Liu (1993)
described the algorithm. The method is useful especially when a data set is close to
having a monotone missing pattern. In this case, the method only needs to impute a
few missing values to the data set to have a monotone missing pattern in the imputed
data set. Compared to a full data imputation that imputes all missing values, the
monotone data MCMC method imputes fewer missing values in each iteration and
achieves approximate stationarity in fewer iterations (Schafer 1997, p. 227).

You can request the monotone MCMC method by specifying the option
IMPUTE=MONOTONE in the MCMC statement. The “Missing Data Patterns” table
now denotes the variables with missing values by “.” or “O”. The value “.” means that
the variable is missing and will be imputed and the value “O” means that the variable
is missing and will not be imputed. The tables of “Multiple Imputation Variance
Information” and “Multiple Imputation Parameter Estimates” are not created.

You must specify the variables in the VAR statement. The variable order in the list
determines the monotone missing pattern in the imputed data set. With a different
order in the VAR list, the results will be different because the monotone missing
pattern to be constructed will be different.

Assuming that the data are from a multivariate normal distribution, then similar to the
MCMC method, the monotone MCMC method repeats the following steps:

1. The imputation I-step:
Given an estimated mean vector and covariance matrix, the I-step simulates the miss-
ing values for each observation independently. Only a subset of missing values are
simulated to achieve a monotone pattern of missingness.

2. The posterior P-step:
Given a new sample with a monotone pattern of missingness, the P-step simulates
the posterior population mean vector and covariance matrix with a noninformative
Jeffreys prior. These new estimates are then used in the next I-step.

Imputation Step

The I-step is almost identical to the I-step described in the“MCMC Method for
Arbitrary Missing Data”section on page 2547 except that only a subset of miss-
ing values need to be simulated. To state this precisely, denote the variables with
observed values for observationi by Yi(obs) and the variables with missing values by
Yi(mis) = (Yi(m1), Yi(m2)), whereYi(m1) is a subset of the the missing variables that
will result a monotone missingness when their values are imputed. Then the I-step
draws values forYi(m1) from a conditional distribution forYi(m1) givenYi(obs).
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Posterior Step

The P-step is different from the P-step described in the“MCMC Method for Arbitrary
Missing Data”section on page 2547. Instead of simulating theµ andΣ parame-
ters from the full imputed data set, this P-step simulates theµ andΣ parameters
through simulated regression coefficients from regression models based on the im-
puted data set with a monotone pattern of missingness. The step is similar to the
process described in the“Regression Method for Monotone Missing Data”section
on page 2541.

That is, for the variableYj , a model

Yj = β0 + β1 Y1 + β2 Y2 + . . . + βj−1 Yj−1

is fitted usingnj nonmissing observations for variableYj in the imputed data sets.

The fitted model consists of the regression parameter estimatesβ̂ =
(β̂0, β̂1, . . . , β̂j−1) and the associated covariance matrixσ̂2

jVj , where Vj is
the usualX′X inverse matrix from the intercept and variablesY1, Y2, ..., Yj−1.

For each imputation, new parametersβ∗ = (β∗0, β∗1, . . . , β∗(j−1)) andσ2
∗j are drawn

from the posterior predictive distribution of the parameters. That is, they are simu-
lated from(β̂0, β̂1, . . . , β̂j−1), σ2

j , andVj . The variance is drawn as

σ2
∗j = σ̂2

j (nj − j)/g

whereg is aχ2
nj−p+j−1 random variate andnj is the number of nonmissing observa-

tions forYj . The regression coefficients are drawn as

β∗ = β̂ + σ∗jV′
hjZ

whereV′
hj is the upper triangular matrix in the Cholesky decomposition

Vj = V′
hjVhj andZ is a vector ofj independent random normal variates.

These simulated values ofβ∗ andσ2
∗j are then used to re-create the parametersµ

andΣ. For a detailed description of how to produce monotone-missingness with the
MCMC method for a multivariate normal data, refer to Schafer (1997, pp. 226–235).

MCMC Method Specifications

With MCMC, you can impute either all missing values (IMPUTE=FULL) or just
enough missing values to make the imputed data set have a monotone missing pattern
(IMPUTE=MONOTONE). In the process, either a single chain for all imputations
(CHAIN=SINGLE) or a separate chain for each imputation (CHAIN=MULTIPLE)
is used. The single chain may be somewhat more precise for estimating a single
quantity such as posterior mean (Schafer 1997, p. 138). Refer to Schafer (1997, pp.
137–138) for a discussion of single versus multiple chains.
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You can specify the number of initial burn-in iterations before the first imputation
with the NBITER= option. This number is also used for subsequent chains for multi-
ple chains. For a single chain, you can also specify the number of iterations between
imputations with the NITER= option.

You can explicitly specify initial parameter values for the MCMC process with the
INITIAL=INPUT= data set option. Alternatively, you can use the EM algorithm to
derive a set of initial parameter values for MCMC with the option INITIAL=EM.
These estimates are used as either the starting value (START=VALUE) or as the
starting distribution (START=DIST) for the MCMC process. For multiple chains,
these estimates are used again as either the starting value (START=VALUE) or as the
starting distribution (START=DIST) for the subsequent chains.

You can specify the prior parameter information in the PRIOR= option. You can use
a noninformative prior (PRIOR=JEFFREYS), a ridge prior (PRIOR=RIDGE), or an
informative prior specified in a data set (PRIOR=INPUT).

The parameter estimates used to generate imputed values in each imputation can be
saved in a data set with the OUTEST= option. Later, this data set can be read with
the INEST= option to provide the reference distribution for imputing missing values
for a new data set.

By default, the MCMC method uses a single chain to produce five imputations. It
completes 200 burn-in iterations before the first imputation and 100 iterations be-
tween imputations. The posterior mode computed from the EM algorithm with a
noninformative prior is used as the starting values for the MCMC process.

INITIAL=EM Specifications

The EM algorithm is used to find the maximum likelihood estimates for incomplete
data in the EM statement. You can also use the EM algorithm to find a posterior
mode, the parameter estimates that maximize the observed-data posterior density.
The resulting posterior mode provides a good starting value for the MCMC process.

With INITIAL=EM, PROC MI uses the MLE of the parameter vector as the initial
estimates in the EM algorithm for the posterior mode. You can use the ITPRINT
option in INITIAL=EM to display the iteration history for the EM algorithm.

You can use the CONVERGE= option to specify the convergence criterion in deriving
the EM posterior mode. The iterations are considered to have converged when the
maximum change in the parameter estimates between iteration steps is less than the
value specified. By default, CONVERGE=1E-4.

You can also use the MAXITER= option to specify the maximum number of itera-
tions in the EM algorithm. By default, MAXITER=200.

With the BOOTSTRAP option, you can use overdispersed starting values for the
MCMC process. In this case, PROC MI applies the EM algorithm to a bootstrap
sample, a simple random sample with replacement from the input data set, to derive
the initial estimates for each chain (Schafer 1997, p. 128).
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Checking Convergence in MCMC

The theoretical convergence of the MCMC process has been explored under various
conditions, as described in Schafer (1997, p. 70). However, in practice, verification
of convergence is not a simple matter.

The parameters used in the imputation step for each iteration can be saved in an output
data set with the OUTITER= option. These include the means, standard deviations,
covariances, the worst linear function, and observed-data LR statistics. You can then
monitor the convergence in a single chain by displaying time-series plots and auto-
correlations for those parameter values (Schafer 1997, p. 120). The time-series and
autocorrelation function plots for parameters such as variable means, covariances,
and the worst linear function can be displayed by specifying the TIMEPLOT and
ACFPLOT option.

You can apply EM to a bootstrap sample to obtain overdispersed starting values for
multiple chains (Gelman and Rubin 1992). This provides a conservative estimate of
the number of iterations needed before each imputation.

The next four subsections describe useful statistics and plots that can be used to check
the convergence of the MCMC process.

LR Statistics

You can save the observed-data likelihood ratio (LR) statistic in each iteration with
the LR option in the OUTITER= data set. The statistic is based on the observed-
data likelihood with parameter values used in the iteration and the observed-data
maximum likelihood derived from the EM algorithm.

In each iteration, the LR statistic is given by

−2 log

(
f(θ̂i)

f(θ̂)

)

wheref(θ̂) is the observed-data maximum likelihood derived from the EM algorithm
andf(θ̂i) is the observed-data likelihood forθ̂i used in the iteration.

Similarly, you can also save the observed-data LR posterior mode statistic for each
iteration with the LR–POST option. This statistic is based on the observed-data pos-
terior density with parameter values used in each iteration and the observed-data pos-
terior mode derived from the EM algorithm for posterior mode.

For large samples, these LR statistics tends to be approximatelyχ2 distributed with
degrees of freedom equal to the dimension ofθ (Schafer 1997, p. 131). For example,
with a large number of iterations, if the values of the LR statistic do not behave like
a random sample from the describedχ2 distribution, then there is evidence that the
MCMC process has not converged.
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Worst Linear Function of Parameters

The worst linear function (WLF) of parameters (Schafer 1997, pp. 129-131) is a
scalar function of parametersµ andΣ that is “worst” in the sense that its function
values converge most slowly among parameters in the MCMC process. The con-
vergence of this function is evidence that other parameters are likely to converge as
well.

For linear functions of parametersθ = (µ,Σ), a worst linear function ofθ has the
highest asymptotic rate of missing information. The function can be derived from
the iterative values ofθ near the posterior mode in the EM algorithm. That is, an
estimated worst linear function ofθ is

w(θ) = v′ (θ − θ̂)

whereθ̂ is the posterior mode and the coefficientsv = θ̂(−1) − θ̂ is the difference
between the estimated value ofθ one step prior to convergence and the converged
valueθ̂.

You can display the coefficients of the worst linear function,v, by specifying the
WLF option in the MCMC statement. You can save the function value from each
iteration in an OUTITER= data set by specifying the WLF option in the OUTITER
option. You can also display the worst linear function values from iterations in an
autocorrelation plot or a time-series plot by specifying WLF as an ACFPLOT or
TIMEPLOT option, respectively.

Note that when the observed-data posterior is nearly normal, the WLF is one of the
slowest functions to approach stationarity. When the posterior is not close to normal,
other functions may take much longer than the WLF to converge, as described in
Schafer (1997, p.130).

Time-Series Plot

A time-series plot for a parameterξ is a scatter plot of successive parameter estimates
ξi against the iteration numberi. The plot provides a simple way to examine the
convergence behavior of the estimation algorithm forξ. Long-term trends in the plot
indicate that successive iterations are highly correlated and that the series of iterations
has not converged.

You can display time-series plots for the worst linear function, the variable means,
variable variances, and covariances of variables. You can also request logarithmic
transformations for positive parameters in the plots with the LOG option. When a
parameter value is less than or equal to zero, the value is not displayed in the corre-
sponding plot.

By default, the MI procedure uses solid line segments to connect data points in a
time-series plot. You can use the CCONNECT=, LCONNECT=, and WCONNECT=
options to change the color, line type, and width of the line segments. When
WCONNECT=0 is specified, the data points are not connected, and the procedure
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uses the plus sign (+) as the plot symbol to display the points with a height of one (per-
centage screen unit) in a time-series plot You can use the SYMBOL=, CSYMBOL=,
and HSYMBOL= options to change the shape, color, and height of the plot symbol.

By default, the plot title “Time-Series Plot” is displayed in a time-series plot. You can
request another title by using the TITLE= option in the TIMEPLOT option. When
another title is also specified in a TITLE statement, this title is displayed as the main
title and the plot title is displayed as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the
title. Refer to the chapter “The SAS/GRAPH Statements” inSAS/GRAPH Software:
Referencefor an illustration of title options. SeeExample 44.8for a usage of the
time-series plot.

Autocorrelation Function Plot

To examine relationships of successive parameter estimatesξ, the autocorrelation
function (ACF) can be used. For a stationary series,ξi, i ≥ 1, in time series data, the
autocorrelation function at lagk is

ρk =
Cov(ξi, ξi+k)

Var(ξi)

The samplekth order autocorrelation is computed as

rk =
∑n−k

i=1 (ξi − ξ)(ξi+k − ξ)∑n
i=1(ξi − ξ)2

You can display autocorrelation function plots for the worst linear function, the vari-
able means, variable variances, and covariances of variables. You can also request
logarithmic transformations for parameters in the plots with the LOG option. When a
parameter has values less than or equal to zero, the corresponding plot is not created.

You specify the maximum number of lags of the series with the NLAG= option. The
autocorrelations at each lag less than or equal to the specified lag are displayed in the
graph. In addition, the plot also displays approximate 95% confidence limits for the
autocorrelations. At lagk, the confidence limits indicate a set of approximate 95%
critical values for testing the hypothesisρj = 0, j ≥ k.

By default, the MI procedure uses the star sign (*) as the plot symbol to display the
points with a height of one (percentage screen unit) in the plot, a solid line to display
the reference line of zero autocorrelation, vertical line segments to connect autocorre-
lations to the reference line, and a pair of dashed lines to display approximately 95%
confidence limits for the autocorrelations.

You can use the SYMBOL=, CSYMBOL=, and HSYMBOL= options to change the
shape, color, and height of the plot symbol, and the CNEEDLES= and WNEEDLES=
options to change the color and width of the needles. You can also use the LREF=,
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CREF=, and WREF= options to change the line type, color, and width of the refer-
ence line. Similarly, you can use the LCONF=, CCONF=, and WCONF= options to
change the line type, color, and width of the confidence limits.

By default, the plot title “Autocorrelation Plot” is displayed in a autocorrelation func-
tion plot. You can request another title by using the TITLE= option in ACFPLOT.
When another title is also specified in a TITLE statement, this title is displayed as the
main title and the plot title is displayed as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the
title. Refer to the chapter “The SAS/GRAPH Statements” inSAS/GRAPH Software:
Referencefor a description of title options. SeeExample 44.8for an illustration of
the autocorrelation function plot.

Input Data Sets

You can specify the input data set with missing values with the DATA= option in
the PROC MI statement. When an MCMC method is used, you can specify the data
set containing the reference distribution information for imputation with the INEST=
option, the data set containing initial parameter estimates for the MCMC process with
the INITIAL=INPUT= option, and the data set containing information for the prior
distribution with the PRIOR=INPUT= option in the MCMC statement.

DATA=SAS-data-set
The input DATA= data set is an ordinary SAS data set containing multivariate data
with missing values.

INEST=SAS-data-set
The input INEST= data set is a TYPE=EST data set and contains a variable

–Imputation– to identify the imputation number. For each imputation, PROC
MI reads the point estimate from the observations with–TYPE–=‘PARM’ or

–TYPE–=‘PARMS’ and the associated covariances from the observations with

–TYPE–=‘COV’ or –TYPE–=‘COVB’. These estimates are used as the reference
distribution to impute values for observations in the DATA= data set. When the in-
put INEST= data set also contains observations with–TYPE–=‘SEED’, PROC MI
reads the seed information for the random number generator from these observations.
Otherwise, the SEED= option provides the seed information.

INITIAL=INPUT=SAS-data-set
The input INITIAL=INPUT= data set is a TYPE=COV or CORR data set and pro-
vides initial parameter estimates for the MCMC process. The covariances derived
from the TYPE=COV/CORR data set are divided by the number of observations to
get the correct covariance matrix for the point estimate (sample mean).

If TYPE=COV, PROC MI reads the number of observations from the ob-
servations with –TYPE–=‘N’, the point estimate from the observations
with –TYPE–=‘MEAN’, and the covariances from the observations with

–TYPE–=‘COV’.

If TYPE=CORR, PROC MI reads the number of observations from the ob-
servations with–TYPE–=‘N’, the point estimate from the observations with
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–TYPE–=‘MEAN’, the correlations from the observations with–TYPE–=‘CORR’,
and the standard deviations from the observations with–TYPE–=‘STD’.

PRIOR=INPUT=SAS-data-set
The input PRIOR=INPUT= data set is a TYPE=COV data set that provides informa-
tion for the prior distribution. You can use the data set to specify a prior distribution
for Σ of the form

Σ ∼ W−1 ( d∗, d∗S∗)

whered∗ = n∗ − 1 is the degrees of freedom. PROC MI reads the matrixS∗ from
observations with–TYPE–=‘COV’ and n∗ from observations with–TYPE–=‘N’.

You can also use this data set to specify a prior distribution forµ of the form

µ ∼ N

(
µ0,

1
n0

Σ
)

PROC MI reads the mean vectorµ0 from observations with–TYPE–=‘MEAN’
and n0 from observations with–TYPE–=‘N–MEAN’. When there are no obser-
vations with –TYPE–=‘N–MEAN’, PROC MI readsn0 from observations with

–TYPE–=‘N’.

Output Data Sets

You can specify the output data set of imputed values with the OUT= option in the
PROC MI statement. When an EM statement is used, you can specify the data set
containing the original data set with missing values being replaced by the expected
values from the EM algorithm with the OUT= option in the EM statement. You can
also specify the data set containing MLE computed with the EM algorithm with the
OUTEM= option.

When an MCMC method is used, you can specify the data set containing parameter
estimates used in each imputation with the OUTEST= option and the data set con-
taining parameters used in the imputation step for each iteration with the OUTITER
option in the MCMC statement.

OUT=SAS-data-set in the PROC MI statement
The OUT= data set contains all the variables in the original data set and a new variable
named–Imputation– that identifies the imputation. For each imputation, the data set
contains all variables in the input DATA= data set with missing values being replaced
by imputed values. Note that when the NIMPUTE=1 option is specified, the variable

–Imputation– is not created.

OUT=SAS-data-set in an EM statement
The OUT= data set contains the original data set with missing values being replaced
by expected values from the EM algorithm.
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OUTEM=SAS-data-set
The OUTEM= data set is a TYPE=COV data set and contains the MLE computed
with the EM algorithm. The observations with–TYPE–=‘MEAN’ contain the es-
timated mean and the observations with–TYPE–=‘COV’ contain the estimated co-
variances.

OUTEST=SAS-data-set
The OUTEST= data set is a TYPE=EST data set and contains parameter estimates
used in each imputation in the MCMC method. It also includes an index variable
named–Imputation– , which identifies the imputation.

The observations with–TYPE–=‘SEED’ contain the seed information for
the random number generator. The observations with–TYPE–=‘PARM’
or –TYPE–=‘PARMS’ contain the point estimate and the observations with

–TYPE–=‘COV’ or –TYPE–=‘COVB’ contain the associated covariances. These
estimates are used as the parameters of the reference distribution to impute values
for observations in the DATA= dataset.

Note that these estimates are the values used in the I-step before each imputation.
These are not the parameter values simulated from the P-step in the same iteration.
SeeExample 44.9for a usage of this option.

OUTITER < ( options ) > =SAS-data-set in an EM statement
The OUTITER= data set in an EM statement is a TYPE=COV data set and contains
parameters for each iteration. It also includes a variable–Iteration– that provides
the iteration number.

The parameters in the output data set depend on the options specified. You can
specify the MEAN and COV options for OUTITER. With the MEAN option, the
output data set contains the mean parameters in observations with the variable

–TYPE–=‘MEAN’. Similarly, with the MEAN option, the output data set contains
the covariance parameters in observations with the variable–TYPE–=‘COV’. When
no options are specified, the output data set contains the mean parameters for each
iteration.

OUTITER < ( options ) > =SAS-data-set in an MCMC statement
The OUTITER= data set in an MCMC statement is a TYPE=COV data set and con-
tains parameters used in the imputation step for each iteration. It also includes vari-
ables named–Imputation– and–Iteration– , which provide the imputation number
and iteration number.

The parameters in the output data set depend on the options specified. The following
table summarizes the options available for OUTITER and the corresponding values
for the output variable–TYPE– .

Table 44.4. Summary of Options for OUTITER in an MCMC statement

Options Output Parameters –TYPE–
MEAN mean parameters MEAN
STD standard deviations STD
COV covariances COV
LR -2 log LR statistic LOG–LR
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Table 44.4. (continued)

Options Output Parameters –TYPE–
LR–POST -2 log LR statistic of the posterior mode LOG–POST
WLF worst linear function WLF

When no options are specified, the output data set contains the mean parameters used
in the imputation step for each iteration. For a detailed description of the worst linear
function and LR statistics, see the“Checking Convergence in MCMC”section on
page 2555.

Combining Inferences from Multiply Imputed Data Sets

With m imputations,m different sets of the point and variance estimates for a pa-
rameterQ can be computed. SupposêQi andÛi are the point and variance estimates
from theith imputed data set,i=1, 2, ...,m. Then the combined point estimate forQ
from multiple imputation is the average of them complete-data estimates:

Q =
1
m

m∑
i=1

Q̂i

SupposeU is the within-imputation variance, which is the average of them complete-
data estimates:

U =
1
m

m∑
i=1

Ûi

and B is the between-imputation variance

B =
1

m− 1

m∑
i=1

(Q̂i −Q)2

Then the variance estimate associated withQ is the total variance (Rubin 1987)

T = U + (1 +
1
m

)B

The statistic(Q − Q)T−(1/2) is approximately distributed ast with vm degrees of
freedom (Rubin 1987), where

vm = (m− 1)
[
1 +

W

(1 + m−1)B

]2

The degrees of freedomvm depends onm and the ratio

r =
(1 + m−1)B

U
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The ratior is called the relative increase in variance due to nonresponse (Rubin 1987).
When there is no missing information aboutQ, the values ofr andB are both zero.
With a large value ofm or a small value ofr, the degrees of freedomvm will be large
and the distribution of(Q−Q)T−(1/2) will be approximately normal.

Another useful statistic is the fraction of missing information aboutQ:

λ̂ =
r + 2/(vm + 3)

r + 1

Both statisticsr andλ are helpful diagnostics for assessing how the missing data
contribute to the uncertainty aboutQ.

When the complete-data degrees of freedomv0 is small, and there is only a mod-
est proportion of missing data, the computed degrees of freedom,vm, can be much
larger thanv0, which is inappropriate. For example, withm = 5 andr = 10%, the
computed degrees of freedomvm = 484, which is inappropriate for data sets with
complete-data degrees of freedom less than484.

Barnard and Rubin (1999) recommend the use of an adjusted degrees of freedom

v∗m =
[

1
vm

+
1

v̂obs

]−1

where v̂obs = (1− γ) v0(v0 + 1)/(v0 + 3) and γ = (1 + m−1)B/T .

Note that the MI procedure uses the adjusted degrees of freedom,v∗m, for inference.

Multiple Imputation Efficiency

The relative efficiency (RE) of using the finitem imputation estimator, rather than
using an infinite number for the fully efficient imputation, in units of variance, is
approximately a function ofm andλ (Rubin 1987, p. 114).

RE =
(

1 +
λ

m

)−1

The following table shows relative efficiencies with different values ofm andλ.

Table 44.5. Relative Efficiency

λ
m 10% 20% 30% 50% 70%
3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662
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The table shows that for situations with little missing information, only a small num-
ber of imputations are necessary. In practice, the number of imputations needed can
be informally verified by replicating sets ofm imputations and checking whether the
estimates are stable between sets (Horton and Lipsitz 2001, p. 246).

Imputer’s Model Versus Analyst’s Model

Multiple imputation inference assumes that the model you used to analyze the mul-
tiply imputed data (the analyst’s model) is the same as the model used to impute
missing values in multiple imputation (the imputer’s model). But in practice, the two
models may not be the same (Schafer 1997, p. 139).

Schafer (1997, pp. 139–143) provides comprehensive coverage of this topic, and the
following example is based on his work.

Consider a trivariate data set with variablesY1 andY2 fully observed, and a variable
Y3 with missing values. An imputer creates multiple imputations with the model
Y3 = Y1 Y2. However, the analyst can later use the simpler modelY3 = Y1. In this
case, the analyst assumes more than the imputer. That is, the analyst assumes there is
no relationship between variablesY3 andY2.

The effect of the discrepancy between the models depends on whether the analyst’s
additional assumption is true. If the assumption is true, the imputer’s model still
applies. The inferences derived from multiple imputations will still be valid, although
they may be somewhat conservative because they reflect the additional uncertainty of
estimating the relationship betweenY3 andY2.

On the other hand, suppose that the analyst modelsY3 = Y1, and there is a rela-
tionship between variablesY3 andY2. Then the modelY3 = Y1 will be biased and
is inappropriate. Appropriate results can be generated only from appropriate analyst
models.

Another type of discrepancy occurs when the imputer assumes more than the analyst.
For example, suppose that an imputer creates multiple imputations with the model
Y3 = Y1, but the analyst later fits a modelY3 = Y1 Y2. When the assumption is true,
the imputer’s model is a correct model and the inferences still hold.

On the other hand, suppose there is a relationship betweenY3 andY2. Imputations
created under the incorrect assumption that there is no relationship betweenY3 and
Y2 will make the analyst’s estimate of the relationship biased toward zero. Multiple
imputations created under an incorrect model can lead to incorrect conclusions.

Thus, generally you should include as many variables as you can when doing multiple
imputation. The precision you lose with included unimportant predictors is usually
a relatively small price to pay for the general validity of analyses of the resultant
multiply imputed data set (Rubin 1996). But at the same time, you need to keep the
model building and fitting feasible (Barnard and Meng, 1999, pp. 19–20).

To produce high-quality imputations for a particular variable, the imputation model
should also include variables that are potentially related to the imputed variable
and variables that are potentially related to the missingness of the imputed variable
(Schafer 1997, p. 143).
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Similar suggestions were also given by van Buuren, Boshuizen, and Knook (1999,
p. 687). They recommended the imputation model includes three sets of covari-
ates: variables in the analyst’s model, variables associated with the missingness of
the imputed variable, and variables correlated with the imputed variable. They also
recommended the removal of the covariates not in the analyst’s model if they have
too many missing values for observations with missing imputed variable.

Note that it is good practice to include a description of the imputer’s model with
the multiply imputed data set (Rubin 1996, p.479). That way, the analysts will have
information about the variables involved in the imputation and which relationships
among the variables have been implicitly set to zero.

Parameter Simulation Versus Multiple Imputation

As an alternative to multiple imputation, parameter simulation can also be used to
analyze the data for many incomplete-data problems. Although the MI procedure
does not offer parameter simulation, the trade-offs between the two methods (Schafer
1997, pp. 89–90, 135–136) are examined in this section.

The parameter simulation method simulates random values of parameters from the
observed-data posterior distribution and makes simple inferences about these param-
eters (Schafer 1997, p. 89). When a set of well-defined population parametersθ are
of interest, parameter simulation can be used to directly examine and summarize sim-
ulated values ofθ. This usually requires a large number of iterations, and involves
calculating appropriate summaries of the resulting dependent sample of the iterates of
theθ. If only a small set of parameters are involved, parameter simulation is suitable
(Schafer 1997).

Multiple imputation only requires a small number of imputations. Generating and
storing a few imputations can be more efficient than generating and storing a large
number of iterations for parameter simulation.

When fractions of missing information are low, methods that average over simulated
values of the missing data, as in multiple imputation, can be much more efficient than
methods that average over simulated values ofθ as in parameter simulation (Schafer
1997).

Summary of Issues in Multiple Imputation

This section summarizes issues which are encountered in applications of the MI pro-
cedure.

The MAR Assumption

The missing at random (MAR) assumption is needed for the imputation methods
in the MI Procedure. Although this assumption cannot be verified with the data,
it becomes more plausible as more variables are included in the imputation model
(Schafer 1997, pp. 27–28; van Buuren, Boshuizen, and Knook, 1999, p. 687).
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Number of Imputations
Based on the theory of multiple imputation, only a small number of imputations are
needed for a data set with little missing information (Rubin 1987, p. 114). The
number of imputations can be informally verified by replicating sets ofm imputations
and checking whether the estimates are stable (Horton and Lipsitz 2001, p. 246).

Imputation Model
Generally you should include as many variables as you can in the imputation model
(Rubin 1996), At the same time, however, it is important to keep the number of
variables in control, as discussed by Barnard and Meng (1999, pp. 19–20). For the
imputation of a particular variable, the model should include variables in the complete
data model, variables that are correlated with the imputed variable, and variables that
are associated with the missingness of the imputed variable (Schafer 1997, p. 143;
van Buuren, Boshuizen, and Knook 1999, p. 687).

Multivariate Normality Assumption
Although the regression and MCMC methods assume multivariate normality, infer-
ences based on multiple imputation can be robust to departures from the multivari-
ate normality if the amount of missing information is not large (Schafer 1997, pp.
147–148).

You can use variable transformations to make the normality assumption more tenable.
Variables are transformed before the imputation process and then back-transformed
to create imputed values.

Monotone Regression Method
With the multivariate normality assumption, either the regression method or the pre-
dictive mean matching method can be used to impute continuous variables in data
sets with monotone missing patterns.

The predictive mean matching method ensures that imputed values are plausible and
may be more appropriate than the regression method if the normality assumption is
violated (Horton and Lipsitz 2001, p. 246).

Monotone Propensity Score Method
The propensity score method can also be used to impute continuous variables in data
sets with monotone missing patterns.

The propensity score method does not use correlations among variables and is not
appropriate for analyses involving relationship among variables, such as a regression
analysis (Schafer 1999, p.11). It can also produce badly biased estimates of regres-
sion coefficients when data on predictor variables are missing (Allison 2000).

MCMC Monotone-Data Imputation
The MCMC Method is used to impute continuous variables in data sets with arbitrary
missing patterns, assuming a multivariate normal distribution for the data. It can also
be used to impute just enough missing values to make the imputed data sets have a
monotone missing pattern. Then, a more flexible monotone imputation method can
be used for the remaining missing values.
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Checking Convergence in MCMC

In an MCMC process, parameters are drawn after the MCMC is run long enough to
converge to its stationary distribution. In practice, however, it is not simple to verify
the convergence of the process, especially for a large number of parameters.

You can check for convergence by examining the observed-data likelihood ratio
statistic and worst linear function of the parameters in each iteration. You can also
check for convergence by examining a plot of autocorrelation function, as well as a
time-series plot of parameters (Schafer 1997, p. 120).

EM Estimates

The EM algorithm can be used to compute the MLE of the mean vector and covari-
ance matrix of the data with missing values, assuming a multivariate normal distribu-
tion for the data. However, the covariance matrix associated with the estimate of the
mean vector cannot be derived from the EM algorithm.

In the MI procedure, you can use the EM algorithm to compute the posterior mode,
which provides a good starting value for the MCMC process (Schafer 1997, p. 169).

ODS Table Names

PROC MI assigns a name to each table it creates. You must use these names to
reference tables when using the Output Delivery System (ODS). These names are
listed in the following table. For more information on ODS, seeChapter 14, “Using
the Output Delivery System.”

Table 44.6. ODS Tables Produced in PROC MI

ODS Table Name Description Statement Option
Corr Pairwise correlations SIMPLE
EMEstimates EM (MLE) estimates EM
EMInitEstimates EM initial estimates EM
EMIterHistory EM (MLE) iteration

history
EM ITPRINT

EMPostEstimates EM (Posterior mode)
estimates

MCMC INITIAL=EM

EMPostIterHistory EM (Posterior mode)
iteration history

MCMC INITIAL=EM
(ITPRINT)

EMWLF Worst linear function MCMC WLF
MCMCInitEstimates MCMC initial estimates MCMC DISPLAYINIT
MissPattern Missing data patterns
ModelInfo Model information
MonoDiscrim Discriminant model

group means
MONOTONE DISCRIM

(/DETAILS)
MonoLogistic Logistic model MONOTONE LOGISTIC

(/DETAILS)
MonoModel Multiple monotone

models
MONOTONE

MonoPropensity Propensity score model
logistic function

MONOTONE PROPENSITY
(/DETAILS)
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Table 44.6. (continued)

ODS Table Name Description Statement Option
MonoReg Regression model MONOTONE REG

(/DETAILS)
MonoRegPMM Predicted mean

matching model
MONOTONE REGPMM

(/DETAILS)
ParameterEstimates Parameter estimates
Transform Variable transformations TRANSFORM
Univariate Univariate statistics SIMPLE
VarianceInfo Between, within,

and total variances

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the MI procedure.
These graphics are experimental in this release, meaning that both the graphical re-
sults and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement in addition
to the following options in the MCMC statement. For more information on the ODS
GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”

ACFPLOT < ( options < / display-options > ) >
displays plots of the autocorrelation function of parameters from iterations.

For a detailed description of the ACFPLOT option, see the“Autocorrelation Function
Plot” section on page 2557. Note that for the display-options, only the LOG, NLAG=,
and TITLE= options are applicable.

TIMEPLOT < ( options < / display-options > ) >
displays time-series plots of parameters from iterations.

For a detailed description of the TIMEPLOT option, see the“Time-Series Plot”sec-
tion on page 2556. Note that for the display-options, only the LOG, WCONNECT=,
and TITLE= options are applicable. If you specify the WCONNECT=0 option, a
scatter plot is created. Otherwise, a line plot is created.

ODS Graph Names

PROC MI assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed inTable 44.7.

To request these graphs, you must specify the ODS GRAPHICS statement in addition
to the options indicated inTable 44.7. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

Table 44.7. ODS Graphics Produced by PROC MI

ODS Graph Name Plot Description Statement Option
ACFPlot ACF plot MCMC ACFPLOT
TimeScatterPlot Time-series scatter plot MCMC TIMEPLOT(WCONNECT=0)
TimeSeriesPlot Time-series plot MCMC TIMEPLOT
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Examples

TheFish data described in the STEPDISC procedure are measurements of 159 fish
of seven species caught in Finland’s lake Laengelmavesi. For each fish, the length,
height, and width are measured. Three different length measurements are recorded:
from the nose of the fish to the beginning of its tail (Length1), from the nose to the
notch of its tail (Length2), and from the nose to the end of its tail (Length3). See
Chapter 67, “The STEPDISC Procedure,”for more information.

TheFish1 data set is constructed from theFish data set and contains only one species
of the fish and the three length measurements. Some values have been set to miss-
ing and the resulting data set has a monotone missing pattern in variablesLength1
Length2, andLength3. TheFish1 data set is used inExample 44.2with the propen-
sity score method and inExample 44.3with the regression method.

TheFish2 data set is also constructed from theFish data set and contains two species
of fish. Some values have been set to missing and the resulting data set has a mono-
tone missing pattern in variablesLength3, Height, Width, andSpecies. TheFish2
data set is used inExample 44.4with the logistic regression method and inExample
44.5with the discriminant function method. Note that some values of the variable
Species have also been altered in the data set.

TheFitMiss data set created in the “Getting Started” section is used in other exam-
ples. The following statements create theFish1 data set.

/*----------- Fishes of Species Bream ----------*/
data Fish1;

title ’Fish Measurement Data’;
input Length1 Length2 Length3 @@;
datalines;

23.2 25.4 30.0 24.0 26.3 31.2 23.9 26.5 31.1
26.3 29.0 33.5 26.5 29.0 . 26.8 29.7 34.7
26.8 . . 27.6 30.0 35.0 27.6 30.0 35.1
28.5 30.7 36.2 28.4 31.0 36.2 28.7 . .
29.1 31.5 . 29.5 32.0 37.3 29.4 32.0 37.2
29.4 32.0 37.2 30.4 33.0 38.3 30.4 33.0 38.5
30.9 33.5 38.6 31.0 33.5 38.7 31.3 34.0 39.5
31.4 34.0 39.2 31.5 34.5 . 31.8 35.0 40.6
31.9 35.0 40.5 31.8 35.0 40.9 32.0 35.0 40.6
32.7 36.0 41.5 32.8 36.0 41.6 33.5 37.0 42.6
35.0 38.5 44.1 35.0 38.5 44.0 36.2 39.5 45.3
37.4 41.0 45.9 38.0 41.0 46.5
;

TheFish2 data set contains two of the seven species in theFish data set. For each of
the two species (Bream andParkki), the length from the nose of the fish to the end
of its tail, the height, and the width of each fish are measured. The height and width
are recorded as percentages of the length variable.
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The following statements create theFish2 data set.

/*-------- Fishes of Species Bream and Parkki Pike --------*/
data Fish2 (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Species $ Length3 HtPct WidthPct @@;
Height= HtPct*Length3/100;
Width= WidthPct*Length3/100;
datalines;
Gp1 30.0 38.4 13.4 Gp1 31.2 40.0 13.8 Gp1 31.1 39.8 15.1

. 33.5 38.0 . . 34.0 36.6 15.1 Gp1 34.7 39.2 14.2
Gp1 34.5 41.1 15.3 Gp1 35.0 36.2 13.4 Gp1 35.1 39.9 13.8

. 36.2 39.3 13.7 Gp1 36.2 39.4 14.1 . 36.2 39.7 13.3
Gp1 36.4 37.8 12.0 . 37.3 37.3 13.6 Gp1 37.2 40.2 13.9
Gp1 37.2 41.5 15.0 Gp1 38.3 38.8 13.8 Gp1 38.5 38.8 13.5
Gp1 38.6 40.5 13.3 Gp1 38.7 37.4 14.8 Gp1 39.5 38.3 14.1
Gp1 39.2 40.8 13.7 . 39.7 39.1 . Gp1 40.6 38.1 15.1
Gp1 40.5 40.1 13.8 Gp1 40.9 40.0 14.8 Gp1 40.6 40.3 15.0
Gp1 41.5 39.8 14.1 Gp2 41.6 40.6 14.9 Gp1 42.6 44.5 15.5
Gp1 44.1 40.9 14.3 Gp1 44.0 41.1 14.3 Gp1 45.3 41.4 14.9
Gp1 45.9 40.6 14.7 Gp1 46.5 37.9 13.7
Gp2 16.2 25.6 14.0 Gp2 20.3 26.1 13.9 Gp2 21.2 26.3 13.7
Gp2 22.2 25.3 14.3 Gp2 22.2 28.0 16.1 Gp2 22.8 28.4 14.7
Gp2 23.1 26.7 14.7 . 23.7 25.8 13.9 Gp2 24.7 23.5 15.2
Gp1 24.3 27.3 14.6 Gp2 25.3 27.8 15.1 Gp2 25.0 26.2 13.3
Gp2 25.0 25.6 15.2 Gp2 27.2 27.7 14.1 Gp2 26.7 25.9 13.6

. 26.8 27.6 15.4 Gp2 27.9 25.4 14.0 Gp2 29.2 30.4 15.4
Gp2 30.6 28.0 15.6 Gp2 35.0 27.1 15.3
;

Example 44.1. EM Algorithm for MLE

This example uses the EM algorithm to compute the maximum likelihood estimates
for parameters of a multivariate normal distribution using data with missing values.
The following statements invoke the MI procedure and request the EM algorithm to
compute the MLE for(µ,Σ) of a multivariate normal distribution from the input data
setFitMiss.

proc mi data=FitMiss seed=1518971 simple nimpute=0;
em itprint outem=outem;
var Oxygen RunTime RunPulse;

run;

Note that when you specify the NIMPUTE=0 option, the missing values will not be
imputed. The procedure generates the following output:
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Output 44.1.1. Model Information

Fish Measurement Data

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 0
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 1518971

The “Model Information” table shown inOutput 44.1.1describes the method and
options used in the procedure if a positive number is specified in the NIMPUTE=
option.

The “Missing Data Patterns” table shown inOutput 44.1.2lists distinct missing data
patterns with corresponding frequencies and percents. Here, a value of “X” means
that the variable is observed in the corresponding group and a value of “.” means that
the variable is missing. The table also displays group-specific variable means.

Output 44.1.2. Missing Data Patterns

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

With the SIMPLE option, the procedure displays simple descriptive univariate statis-
tics for available cases in the “Univariate Statistics” table shown inOutput 44.1.3and
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correlations from pairwise available cases in the “Pairwise Correlations” table shown
in Output 44.1.4.

Output 44.1.3. Univariate Statistics

The MI Procedure

Univariate Statistics

Variable N Mean Std Dev Minimum Maximum

Oxygen 28 47.11618 5.41305 37.38800 60.05500
RunTime 28 10.68821 1.37988 8.63000 14.03000
RunPulse 22 171.86364 10.14324 148.00000 186.00000

Univariate Statistics

---Missing Values--
Variable Count Percent

Oxygen 3 9.68
RunTime 3 9.68
RunPulse 9 29.03

Output 44.1.4. Pairwise Correlations

The MI Procedure

Pairwise Correlations

Oxygen RunTime RunPulse

Oxygen 1.000000000 -0.849118562 -0.343961742
RunTime -0.849118562 1.000000000 0.247258191
RunPulse -0.343961742 0.247258191 1.000000000
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With the EM statement, the procedure displays the initial parameter estimates for EM
in the “Initial Parameter Estimates for EM” table shown inOutput 44.1.5.

Output 44.1.5. Initial Parameter Estimates for EM

The MI Procedure

Initial Parameter Estimates for EM

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.116179 10.688214 171.863636
COV Oxygen 29.301078 0 0
COV RunTime 0 1.904067 0
COV RunPulse 0 0 102.885281

With the ITPRINT option in the EM statement, the “EM (MLE) Iteration History”
table shown inOutput 44.1.6displays the iteration history for the EM algorithm.

Output 44.1.6. EM (MLE) Iteration History

The MI Procedure

EM (MLE) Iteration History

_Iteration_ -2 Log L Oxygen RunTime RunPulse

0 289.544782 47.116179 10.688214 171.863636
1 263.549489 47.116179 10.688214 171.863636
2 255.851312 47.139089 10.603506 171.538203
3 254.616428 47.122353 10.571685 171.426790
4 254.494971 47.111080 10.560585 171.398296
5 254.483973 47.106523 10.556768 171.389208
6 254.482920 47.104899 10.555485 171.385257
7 254.482813 47.104348 10.555062 171.383345
8 254.482801 47.104165 10.554923 171.382424
9 254.482800 47.104105 10.554878 171.381992

10 254.482800 47.104086 10.554864 171.381796
11 254.482800 47.104079 10.554859 171.381708
12 254.482800 47.104077 10.554858 171.381669
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The “EM (MLE) Parameter Estimates” table shown inOutput 44.1.7displays the
maximum likelihood estimates forµ and Σ of a multivariate normal distribution
from the data setFitMiss.

Output 44.1.7. EM (MLE) Parameter Estimates

The MI Procedure

EM (MLE) Parameter Estimates

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.104077 10.554858 171.381669
COV Oxygen 27.797931 -6.457975 -18.031298
COV RunTime -6.457975 2.015514 3.516287
COV RunPulse -18.031298 3.516287 97.766857

You can also output the EM (MLE) parameter estimates into an output data set with
the OUTEM= option. The following statements list the observations in the output
data setoutem.

proc print data=outem;
title ’EM Estimates’;

run;

Output 44.1.8. EM Estimates

EM Estimates

Obs _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 MEAN 47.1041 10.5549 171.382
2 COV Oxygen 27.7979 -6.4580 -18.031
3 COV RunTime -6.4580 2.0155 3.516
4 COV RunPulse -18.0313 3.5163 97.767

The output data setoutem shown inOutput 44.1.8is a TYPE=COV data set. The
observation with–TYPE–=‘MEAN’ contains the MLE for the parameterµ and the
observations with–TYPE–=‘COV’ contain the MLE for the parameterΣ of a mul-
tivariate normal distribution from the data setFitMiss.

Example 44.2. Propensity Score Method

This example uses the propensity score method to impute missing values for variables
in a data set with a monotone missing pattern. The following statements invoke the
MI procedure and request the propensity score method. The resulting data set is
namedoutex2.
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proc mi data=Fish1 seed=899603 out=outex2;
monotone propensity;
var Length1 Length2 Length3;

run;

Note that the VAR statement is required and the data set must have a monotone miss-
ing pattern with variables as ordered in the VAR statement. The procedure generates
the following output:

Output 44.2.1. Model Information

The MI Procedure

Model Information

Data Set WORK.FISH1
Method Monotone
Number of Imputations 5
Seed for random number generator 899603

The “Model Information” table shown inOutput 44.2.1describes the method and
options used in the multiple imputation process. By default, five imputations are
created for the missing data.

When monotone methods are used in the imputation, MONOTONE is displayed as
the method. The “Monotone Model Specification” table shown inOutput 44.2.2dis-
plays the detailed model specification. By default, the observations are sorted into
five groups based on their propensity scores.

Output 44.2.2. Monotone Model Specification

The MI Procedure

Monotone Model Specification

Imputed
Method Variables

Propensity( Groups= 5) Length2 Length3

Without covariates specified for imputed variablesLength2 andLength3, the vari-
able Length1 is used as the covariate forLength2, and variablesLength1 and
Length2 are used as covariates forLength3.
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Output 44.2.3. Missing Data Patterns

The MI Procedure

Missing Data Patterns

Group Length1 Length2 Length3 Freq Percent

1 X X X 30 85.71
2 X X . 3 8.57
3 X . . 2 5.71

Missing Data Patterns

-----------------Group Means----------------
Group Length1 Length2 Length3

1 30.603333 33.436667 38.720000
2 29.033333 31.666667 .
3 27.750000 . .

The “Missing Data Patterns” table shown inOutput 44.2.3lists distinct missing data
patterns with corresponding frequencies and percents. Here, values of “X” and “.”
indicate that the variable is observed or missing in the corresponding group. The
table confirms a monotone missing pattern for these three variables.

For the imputation process, first, missing values ofLength2 in Group 3 are imputed
using observed values ofLength1. Then the missing values ofLength3 in Group 2
are imputed using observed values ofLength1 andLength2. And finally, the missing
values ofLength3 in Group 3 are imputed using observed values ofLength1 and
imputed values ofLength2.

After the completion of m imputations, the “Multiple Imputation Variance
Information” table shown inOutput 44.2.4displays the between-imputation vari-
ance, within-imputation variance, and total variance for combining complete-data
inferences. It also displays the degrees of freedom for the total variance. The relative
increase in variance due to missingness, the fraction of missing information, and
the relative efficiency for each variable are also displayed. A detailed description
of these statistics is provided in the“Combining Inferences from Multiply Imputed
Data Sets”section on page 2561.
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Output 44.2.4. Variance Information

The MI Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Length2 0.001500 0.465422 0.467223 32.034
Length3 0.049725 0.547434 0.607104 27.103

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Length2 0.003869 0.003861 0.999228
Length3 0.108999 0.102610 0.979891

The “Multiple Imputation Parameter Estimates” table shown inOutput 44.2.5dis-
plays the estimated mean and standard error of the mean for each variable. The
inferences are based on thet-distributions. For each variable, the table also displays a
95% mean confidence interval and at-statistic with the associatedp-value for the hy-
pothesis that the population mean is equal to the value specified in the MU0= option,
which is zero by default.

Output 44.2.5. Parameter Estimates

The MI Procedure

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Length2 33.006857 0.683537 31.61460 34.39912 32.034
Length3 38.361714 0.779169 36.76328 39.96015 27.103

Multiple Imputation Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Length2 32.957143 33.060000 0 48.29 <.0001
Length3 38.080000 38.545714 0 49.23 <.0001
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The following statements list the first ten observations of the data setoutex2, as
shown inOutput 44.2.6. The missing values are imputed from observed values with
similar propensity scores.

proc print data=outex2(obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;

Output 44.2.6. Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4 30.0
2 1 24.0 26.3 31.2
3 1 23.9 26.5 31.1
4 1 26.3 29.0 33.5
5 1 26.5 29.0 38.6
6 1 26.8 29.7 34.7
7 1 26.8 29.0 35.0
8 1 27.6 30.0 35.0
9 1 27.6 30.0 35.1

10 1 28.5 30.7 36.2

Example 44.3. Regression Method

This example uses the regression method to impute missing values for all variables
in a data set with a monotone missing pattern. The following statements invoke the
MI procedure and request the regression method for variableLength2 and the pre-
dictive mean matching method for variableLength3. The resulting data set is named
outex3.

proc mi data=Fish1 round=.1 mu0= 0 35 45
seed=13951639 out=outex3;

monotone reg(Length2/ details)
regpmm(Length3= Length1 Length2 Length1*Length2/ details);

var Length1 Length2 Length3;
run;

The ROUND= option is used to round the imputed values to the same precision as
observed values. The values specified with the ROUND= option are matched with the
variablesLength1, Length2, andLength3 in the order listed in the VAR statement.
The MU0= option requestst tests for the hypotheses that the population means cor-
responding to the variables in the VAR statement areLength2=35 andLength3=45.

Note that an optimal K= value is currently not available for the REGPMM option
in the literature on multiple imputation. The default K=5 is experimental and may
change in future releases.
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The “Missing Data Patterns” table lists distinct missing data patterns with corre-
sponding frequencies and percents. It is identical to the table displayed inOutput
44.2.3in the previous example.

The “Monotone Model Specification” table shown inOutput 44.3.1displays the
model specification.

Output 44.3.1. Monotone Model Specification

Fish Measurement Data

The MI Procedure

Monotone Model Specification

Imputed
Method Variables

Regression Length2
Regression-PMM( K= 5) Length3

With the DETAILS option, the parameters estimated from the observed data and the
parameters used in each imputation are displayed inOutput 44.3.2andOutput 44.3.3.

Output 44.3.2. Regression Model

The MI Procedure

Regression Models for Monotone Method

Imputed ----------------Imputation----------------
Variable Effect Obs-Data 1 2 3

Length2 Intercept -0.04249 -0.049184 -0.055470 -0.051346
Length2 Length1 0.98587 1.001934 0.995275 0.992294

Regression Models for Monotone Method

Imputed ---------Imputation---------
Variable Effect 4 5

Length2 Intercept -0.064193 -0.030719
Length2 Length1 0.983122 0.995883
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Output 44.3.3. Regression Predicted Mean Matching Model

The MI Procedure

Regression Models for Monotone Predicted Mean Matching Method

Imputed ---------------Imputation---------------
Variable Effect Obs Data 1 2 3

Length3 Intercept -0.01304 0.004134 -0.011417 -0.034177
Length3 Length1 -0.01332 0.025320 -0.037494 0.308765
Length3 Length2 0.98918 0.955510 1.025741 0.673374
Length3 Length1*Length2 -0.02521 -0.034964 -0.022017 -0.017919

Regression Models for Monotone Predicted Mean Matching Method

Imputed ---------Imputation---------
Variable Effect 4 5

Length3 Intercept -0.010532 0.004685
Length3 Length1 0.156606 -0.147118
Length3 Length2 0.828384 1.146440
Length3 Length1*Length2 -0.029335 -0.034671

After the completion of five imputations by default, the “Multiple Imputation
Variance Information” table shown inOutput 44.3.4displays the between-imputation
variance, within-imputation variance, and total variance for combining complete-data
inferences. The relative increase in variance due to missingness, the fraction of miss-
ing information, and the relative efficiency for each variable are also displayed. These
statistics are described in the“Combining Inferences from Multiply Imputed Data
Sets”section on page 2561.

Output 44.3.4. Variance Information

The MI Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Length2 0.000133 0.439512 0.439672 32.15
Length3 0.000386 0.486913 0.487376 32.131

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Length2 0.000363 0.000363 0.999927
Length3 0.000952 0.000951 0.999810
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The “Multiple Imputation Parameter Estimates” table shown inOutput 44.3.5dis-
plays a 95% mean confidence interval and at-statistic with its associatedp-value for
each of the hypotheses requested with the MU0= option.

Output 44.3.5. Parameter Estimates

The MI Procedure

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Length2 33.104571 0.663078 31.75417 34.45497 32.15
Length3 38.424571 0.698123 37.00277 39.84637 32.131

Multiple Imputation Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Length2 33.088571 33.117143 35.000000 -2.86 0.0074
Length3 38.397143 38.445714 45.000000 -9.42 <.0001

The following statements list the first ten observations of the data setoutex3 in
Output 44.3.6. Note that the imputed values ofLength2 are rounded to the same
precision as the observed values.

proc print data=outex3(obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;

Output 44.3.6. Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4 30.0
2 1 24.0 26.3 31.2
3 1 23.9 26.5 31.1
4 1 26.3 29.0 33.5
5 1 26.5 29.0 34.7
6 1 26.8 29.7 34.7
7 1 26.8 28.8 34.7
8 1 27.6 30.0 35.0
9 1 27.6 30.0 35.1

10 1 28.5 30.7 36.2
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Example 44.4. Logistic Regression Method for CLASS
Variables

This example uses logistic regression method to impute values for a binary variable
in a data set with a monotone missing pattern.

The logistic regression method is used for the binary and ordinal CLASS variables.
Since the variableSpecies is not an ordinal variable, only the first two species are
used.

proc mi data=Fish2 seed=1305417 out=outex4;
class Species;
monotone logistic( Species= Height Width Height*Width/ details);
var Height Width Species;

run;

The “Model Information” table shown inOutput 44.4.1describes the method and
options used in the multiple imputation process.

Output 44.4.1. Model Information

The MI Procedure

Model Information

Data Set WORK.FISH2
Method Monotone
Number of Imputations 5
Seed for random number generator 1305417

The “Monotone Model Specification” table shown inOutput 44.4.2describes meth-
ods and imputed variables in the imputation model. The procedure uses the logistic
regression method to impute variableSpecies in the model. Missing values in other
variables are not imputed.

Output 44.4.2. Monotone Model Specification

The MI Procedure

Monotone Model Specification

Imputed
Method Variables

Logistic Regression Species
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The “Missing Data Patterns” table shown inOutput 44.4.3lists distinct missing data
patterns with corresponding frequencies and percents. The table confirms a monotone
missing pattern for these variables.

Output 44.4.3. Missing Data Patterns

The MI Procedure

Missing Data Patterns

--------Group Means-------
Group Height Width Species Freq Percent Height Width

1 X X X 47 85.45 12.097645 4.808204
2 X X . 6 10.91 11.411050 4.567050
3 X . . 2 3.64 14.126350 .

With the DETAILS option, parameters estimated from the observed data and the pa-
rameters used in each imputation are displayed in the “Logistic Models for Monotone
Method” table inOutput 44.4.4.

Output 44.4.4. Logistic Regression Model

The MI Procedure

Logistic Models for Monotone Method

Imputed ---------------Imputation---------------
Variable Effect Obs-Data 1 2 3

Species Intercept 2.65234 1.794014 5.392323 5.859932
Species Height 7.73757 3.727095 11.790557 12.200408
Species Width -5.25709 -1.209209 -8.492849 -8.696497
Species Height*Width -1.12990 -1.593964 -1.989302 -3.087310

Logistic Models for Monotone Method

Imputed ---------Imputation---------
Variable Effect 4 5

Species Intercept -0.649860 6.393629
Species Height 2.449332 13.644077
Species Width 0.629963 -10.767135
Species Height*Width 0.979165 -2.389491

The following statements list the first ten observations of the data setoutex4 in
Output 44.4.5.

proc print data=outex4(obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;
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Output 44.4.5. Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length3 Height Width

1 1 Gp1 30.0 11.5200 4.0200
2 1 Gp1 31.2 12.4800 4.3056
3 1 Gp1 31.1 12.3778 4.6961
4 1 33.5 12.7300 .
5 1 Gp1 34.0 12.4440 5.1340
6 1 Gp1 34.7 13.6024 4.9274
7 1 Gp1 34.5 14.1795 5.2785
8 1 Gp1 35.0 12.6700 4.6900
9 1 Gp1 35.1 14.0049 4.8438

10 1 Gp1 36.2 14.2266 4.9594

Note that a missing value of the variableSpecies is not imputed if the corresponding
covariates are missing and not imputed, as shown by observation 4 in the table.

Example 44.5. Discriminant Function Method for CLASS
Variables

This example uses discriminant monotone methods to impute values of a CLASS
variable from the observed observation values in a data set with a monotone missing
pattern.

The following statements impute the continuous variablesHeight andWidth with the
regression method and the CLASS variableSpecies with the discriminant function
method.

proc mi data=Fish2 seed=7545417 nimpute=3 out=outex5;
class Species;
monotone reg( Height Width)

discrim( Species= Length3 Height Width/ details);
var Length3 Height Width Species;

run;

The “Model Information” table shown inOutput 44.5.1describes the method and
options used in the multiple imputation process.

Output 44.5.1. Model Information

The MI Procedure

Model Information

Data Set WORK.FISH2
Method Monotone
Number of Imputations 3
Seed for random number generator 7545417
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The “Monotone Model Specification” table shown inOutput 44.5.2describes meth-
ods and imputed variables in the imputation model. The procedure uses the regres-
sion method to impute variablesHeight andWidth, and uses the logistic regression
method to impute variableSpecies in the model.

Output 44.5.2. Monotone Model Specification

The MI Procedure

Monotone Model Specification

Imputed
Method Variables

Regression Height Width
Discriminant Function Species

The “Missing Data Patterns” table shown inOutput 44.5.3lists distinct missing data
patterns with corresponding frequencies and percents. The table confirms a monotone
missing pattern for these variables.

Output 44.5.3. Missing Data Patterns

The MI Procedure

Missing Data Patterns

Group Length3 Height Width Species Freq Percent

1 X X X X 47 85.45
2 X X X . 6 10.91
3 X X . . 2 3.64

Missing Data Patterns

-----------------Group Means----------------
Group Length3 Height Width

1 33.497872 12.097645 4.808204
2 32.366667 11.411050 4.567050
3 36.600000 14.126350 .

With the DETAILS option, parameters estimated from the observed data and param-
eters used in each imputation are displayed inOutput 44.5.4.
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Output 44.5.4. Discriminant Model

The MI Procedure

Group Means for Monotone Discriminant Method

----------------Imputation----------------
Species Variable Obs-Data 1 2 3

Gp1 Length3 0.61625 0.707861 0.662448 0.505410
Gp1 Height 0.67244 0.750984 0.732151 0.594226
Gp1 Width 0.57896 0.643334 0.665698 0.515014
Gp2 Length3 -0.98925 -0.776131 -0.987989 -0.887032
Gp2 Height -1.08272 -0.934081 -1.081832 -1.004799
Gp2 Width -0.86963 -0.680065 -0.811745 -0.722943

The following statements list the first ten observations of the data setoutex5 in
Output 44.5.5Note that all missing values of variablesWidth andSpecies are im-
puted.

proc print data=outex5(obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;

Output 44.5.5. Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length3 Height Width

1 1 Gp1 30.0 11.5200 4.02000
2 1 Gp1 31.2 12.4800 4.30560
3 1 Gp1 31.1 12.3778 4.69610
4 1 Gp1 33.5 12.7300 4.67966
5 1 Gp2 34.0 12.4440 5.13400
6 1 Gp1 34.7 13.6024 4.92740
7 1 Gp1 34.5 14.1795 5.27850
8 1 Gp1 35.0 12.6700 4.69000
9 1 Gp1 35.1 14.0049 4.84380

10 1 Gp1 36.2 14.2266 4.95940

Example 44.6. MCMC Method

This example uses the MCMC method to impute missing values for a data set with
an arbitrary missing pattern. The following statements invoke the MI procedure and
specify the MCMC method with six imputations.

proc mi data=FitMiss seed=21355417 nimpute=6 mu0=50 10 180 ;
mcmc chain=multiple displayinit initial=em(itprint);
var Oxygen RunTime RunPulse;

run;
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Output 44.6.1. Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Multiple Chains
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 6
Number of Burn-in Iterations 200
Seed for random number generator 21355417

The “Model Information” table shown inOutput 44.6.1describes the method used in
the multiple imputation process. With CHAIN=MULTIPLE, the procedure uses mul-
tiple chains and completes the default 200 burn-in iterations before each imputation.
The 200 burn-in iterations are used to make the iterations converge to the stationary
distribution before the imputation.

By default, the procedure uses a noninformative Jeffreys prior to derive the posterior
mode from the EM algorithm as the starting values for the MCMC process.

The “Missing Data Patterns” table shown inOutput 44.6.2lists distinct missing data
patterns with corresponding statistics.

Output 44.6.2. Missing Data Patterns

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .
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With the ITPRINT option in INITIAL=EM, the procedure displays the “EM
(Posterior Mode) Iteration History” table inOutput 44.6.3.

Output 44.6.3. EM (Posterior Mode) Iteration History

The MI Procedure

EM (Posterior Mode) Iteration History

_Iteration_ -2 Log L -2 Log Posterior Oxygen RunTime

0 254.482800 282.909549 47.104077 10.554858
1 255.081168 282.051584 47.104077 10.554857
2 255.271408 282.017488 47.104077 10.554857
3 255.318622 282.015372 47.104002 10.554523
4 255.330259 282.015232 47.103861 10.554388
5 255.333161 282.015222 47.103797 10.554341
6 255.333896 282.015222 47.103774 10.554325
7 255.334085 282.015222 47.103766 10.554320

EM (Posterior Mode) Iteration History

_Iteration_ RunPulse

0 171.381669
1 171.381652
2 171.381644
3 171.381842
4 171.382053
5 171.382150
6 171.382185
7 171.382196

With the DISPLAYINIT option in the MCMC statement, the “Initial Parameter
Estimates for MCMC” table shown inOutput 44.6.4displays the starting mean and
covariance estimates used in MCMC. The same starting estimates are used for the
MCMC process for multiple chains because the EM algorithm is applied to the same
data set in each chain. You can explicitly specify different initial estimates for differ-
ent imputations, or you can use the bootstrap to generate different parameter estimates
from the EM algorithm for the MCMC process.

Output 44.6.4. Initial Parameter Estimates

The MI Procedure

Initial Parameter Estimates for MCMC

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.103766 10.554320 171.382196
COV Oxygen 24.549967 -5.726112 -15.926036
COV RunTime -5.726112 1.781407 3.124798
COV RunPulse -15.926036 3.124798 83.164045
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Output 44.6.5and Output 44.6.6display variance information and parameter esti-
mates from the multiple imputation.

Output 44.6.5. Variance Information

The MI Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Oxygen 0.051560 0.928170 0.988323 25.958
RunTime 0.003979 0.070057 0.074699 25.902
RunPulse 4.118578 4.260631 9.065638 7.5938

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Oxygen 0.064809 0.062253 0.989731
RunTime 0.066262 0.063589 0.989513
RunPulse 1.127769 0.575218 0.912517

Output 44.6.6. Parameter Estimates

The MI Procedure

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Oxygen 47.164819 0.994145 45.1212 49.2085 25.958
RunTime 10.549936 0.273312 9.9880 11.1118 25.902
RunPulse 170.969836 3.010920 163.9615 177.9782 7.5938

Multiple Imputation Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Oxygen 46.858020 47.363540 50.000000 -2.85 0.0084
RunTime 10.476886 10.659412 10.000000 2.01 0.0547
RunPulse 168.252615 172.894991 180.000000 -3.00 0.0182
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Example 44.7. Producing Monotone Missingness with MCMC

This example uses the MCMC method to impute just enough missing values for a data
set with an arbitrary missing pattern so that each imputed data set has a monotone
missing pattern based on the order of variables in the VAR statement.

The following statements invoke the MI procedure and specify the
IMPUTE=MONOTONE option to create the imputed data set with a mono-
tone missing pattern. You must specify a VAR statement to provide the order of
variables for the imputed data to achieve a monotone missing pattern.

proc mi data=FitMiss seed=17655417 out=outex7;
mcmc impute=monotone;
var Oxygen RunTime RunPulse;

run;

Output 44.7.1. Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method Monotone-data MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 5
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 17655417

The “Model Information” table shown inOutput 44.7.1describes the method used in
the multiple imputation process.

The “Missing Data Patterns” table shown inOutput 44.7.2lists distinct missing data
patterns with corresponding statistics. Here, an “X” means that the variable is ob-
served in the corresponding group, a “.” means that the variable is missing and will
be imputed to achieve the monotone missingness for the imputed data set, and an “O”
means that the variable is missing and will not be imputed. The table also displays
group-specific variable means.
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Output 44.7.2. Missing Data Pattern

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X O 4 12.90
3 X O O 3 9.68
4 . X X 1 3.23
5 . X O 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

As shown in the table, the MI procedure only needs to impute three missing values
from Group 4 and Group 5 to achieve a monotone missing pattern for the imputed
data set.

When using the MCMC method to produce an imputed data set with a monotone
missing pattern, tables of variance information and parameter estimates are not cre-
ated.

The following statements are used just to show the monotone missingness of the
output data setoutex7.

proc mi data=outex7 nimpute=0;
var Oxygen RunTime RunPulse;

run;
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Output 44.7.3. Monotone Missing Data Pattern

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 110 70.97
2 X X . 30 19.35
3 X . . 15 9.68

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.152428 10.861364 171.863636
2 47.796038 10.053333 .
3 52.461667 . .

The “Missing Data Patterns” table shown inOutput 44.7.3displays a monotone miss-
ing data pattern.

The following statements impute one value for each missing value in the monotone
missingness data setoutex7.

proc mi data=outex7 nimpute=1 seed=51343672 out=outds;
monotone method=reg;
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

You can then analyze these data sets by using other SAS procedures and combine
these results by using the MIANALYZE procedure. Note that the VAR statement is
required with a MONOTONE statement to provide the variable order for the mono-
tone missing pattern.

Example 44.8. Checking Convergence in MCMC

This example uses the MCMC method with a single chain. It also displays time-series
and autocorrelation plots to check convergence for the single chain.

The following statements use the MCMC method to create an iteration plot for the
successive estimates of the mean ofOxygen. Note that iterations during the burn-in
period are indicated with negative iteration numbers. These statements also create an
autocorrelation function plot for the variableOxygen.

proc mi data=FitMiss seed=42037921 noprint nimpute=2;
mcmc timeplot(mean(Oxygen)) acfplot(mean(Oxygen));
var Oxygen RunTime RunPulse;

run;
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Output 44.8.1. Time-Series Plot for Oxygen

With the TIMEPLOT(MEAN(Oxygen)) option, the procedure displays a time-series
plot for the mean ofOxygen in Output 44.8.1.

By default, the MI procedure displays solid line segments that connect data points in
the time-series plot. The plot shows no apparent trends for the variableOxygen.

Output 44.8.2. Autocorrelation Function Plot for Oxygen
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With the ACFPLOT(MEAN(oxygen)) option, the procedure displays an autocorrela-
tion plot for the mean ofOxygen in Output 44.8.2.

By default, the MI procedure uses the star sign (*) as the plot symbol to display the
points in the plot, a solid line to display the reference line of zero autocorrelation,
and a pair of dashed lines to display approximately 95% confidence limits for the
autocorrelations. The autocorrelation function plot shows no significant positive or
negative autocorrelation.

The following statements use display options to modify the autocorrelation function
plot for Oxygen in Output 44.8.3.

proc mi data=FitMiss seed=42037921 noprint nimpute=2;
mcmc acfplot(mean(Oxygen) / symbol=dot lref=2);
var Oxygen RunTime RunPulse;

run;

Output 44.8.3. Autocorrelation Function Plot for Oxygen

You can also create plots for the worst linear function, the means of other variables,
the variances of variables, and covariances between variables. Alternatively, you can
use the OUTITER option to save statistics such as the means, standard deviations,
covariances,−2 log LR statistic,−2 log LR statistic of the posterior mode, and worst
linear function from each iteration in an output data set. Then you can do a more
in-depth time-series analysis of the iterations with other procedures, such as PROC
AUTOREG and PROC ARIMA in theSAS/ETS User’s Guide.
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With the experimental ODS GRAPHICS statement specified in the following state-
ments

ods html;
ods graphics on;

proc mi data=FitMiss seed=42037921 noprint nimpute=2;
mcmc timeplot(mean(Oxygen)) acfplot(mean(Oxygen));
var Oxygen RunTime RunPulse;

run;

ods graphics off;
ods html close;

the MI procedure produces the experimental graphs, as shown inOutput 44.8.4and
Output 44.8.5.

Output 44.8.4. Time-Series Plot for Oxygen (Experimental)
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Output 44.8.5. Autocorrelation Function Plot for Oxygen (Experimental)

For general information about ODS graphics seeChapter 15, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the MI proce-
dure, see the“ODS Graphics”section on page 2567.

Example 44.9. Saving and Using Parameters for MCMC

This example uses the MCMC method with multiple chains as specified inExample
44.6. It saves the parameter values used for each imputation in an output data set of
type EST calledmiest. This output data set can then be used to impute missing values
in other similar input data sets. The following statements invoke the MI procedure
and specify the MCMC method with multiple chains to create three imputations.

proc mi data=FitMiss seed=21355417 nimpute=6 mu0=50 10 180 ;
mcmc chain=multiple initial=em outest=miest;
var Oxygen RunTime RunPulse;

run;

The following statements list the parameters used for the imputations inOutput
44.9.1. Note that the data set includes observations with–TYPE–=‘SEED’ con-
taining the seed to start the next random number generator.
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proc print data=miest(obs=15);
title ’Parameters for the Imputations’;

run;

Output 44.9.1. OUTEST Data Set

Parameters for the Imputations

Obs _Imputation_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 1 SEED 825240167.00 825240167.00 825240167.00
2 1 PARM 46.77 10.47 169.41
3 1 COV Oxygen 30.59 -8.32 -50.99
4 1 COV RunTime -8.32 2.90 17.03
5 1 COV RunPulse -50.99 17.03 200.09
6 2 SEED 1895925872.00 1895925872.00 1895925872.00
7 2 PARM 47.41 10.37 173.34
8 2 COV Oxygen 22.35 -4.44 -21.18
9 2 COV RunTime -4.44 1.76 1.25

10 2 COV RunPulse -21.18 1.25 125.67
11 3 SEED 137653011.00 137653011.00 137653011.00
12 3 PARM 48.21 10.36 170.52
13 3 COV Oxygen 23.59 -5.25 -19.76
14 3 COV RunTime -5.25 1.66 5.00
15 3 COV RunPulse -19.76 5.00 110.99

The following statements invoke the MI procedure and use the INEST= option in the
MCMC statement.

proc mi data=FitMiss;
mcmc inest=miest;
var Oxygen RunTime RunPulse;

run;

Output 44.9.2. Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
INEST Data Set WORK.MIEST
Number of Imputations 6

The “Model Information” table shown inOutput 44.9.2describes the method used in
the multiple imputation process. The remaining tables for the example are identical
to the tables inOutput 44.6.2, Output 44.6.4, Output 44.6.5, andOutput 44.6.6in
Example 44.6.
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Example 44.10. Transforming to Normality

This example applies the MCMC method to theFitMiss data set in which the variable
Oxygen is transformed. Assume thatOxygen is skewed and can be transformed to
normality with a logarithmic transformation. The following statements invoke the MI
procedure and specify the transformation. The TRANSFORM statement specifies the
log transformation forOxygen. Note that the values displayed forOxygen in all of
the results correspond to transformed values.

proc mi data=FitMiss seed=32937921 mu0=50 10 180 out=outex10;
transform log(Oxygen);
mcmc chain=multiple displayinit;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table shown inOutput 44.10.1lists distinct missing data
patterns with corresponding statistics for theFitMiss data. Note that the values of
Oxygen shown in the tables are transformed values.

Output 44.10.1. Missing Data Pattern

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Transformed Variables: Oxygen

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 3.829760 10.809524 171.666667
2 3.851813 10.137500 .
3 3.955298 . .
4 . 11.950000 176.000000
5 . 9.885000 .

Transformed Variables: Oxygen
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The “Variable Transformations” table shown inOutput 44.10.2lists the variables that
have been transformed.

Output 44.10.2. Variable Transformations

The MI Procedure

Variable Transformations

Variable _Transform_

Oxygen LOG

The “Initial Parameter Estimates for MCMC” table shown inOutput 44.10.3displays
the starting mean and covariance estimates used in the MCMC process.

Output 44.10.3. Initial Parameter Estimates

The MI Procedure

Initial Parameter Estimates for MCMC

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 3.846122 10.557605 171.382949
COV Oxygen 0.010827 -0.120891 -0.328772
COV RunTime -0.120891 1.744580 3.011180
COV RunPulse -0.328772 3.011180 82.747609

Transformed Variables: Oxygen
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Output 44.10.4displays variance information from the multiple imputation.

Output 44.10.4. Variance Information

The MI Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

* Oxygen 0.000016175 0.000401 0.000420 26.499
RunTime 0.001762 0.065421 0.067536 27.118
RunPulse 0.205979 3.116830 3.364004 25.222

* Transformed Variables

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

* Oxygen 0.048454 0.047232 0.990642
RunTime 0.032318 0.031780 0.993684
RunPulse 0.079303 0.075967 0.985034

* Transformed Variables

Output 44.10.5displays parameter estimates from the multiple imputation. Note that
the parameter value ofµ0 has also been transformed using the logarithmic transfor-
mation.

Output 44.10.5. Parameter Estimates

The MI Procedure

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

* Oxygen 3.845175 0.020494 3.8031 3.8873 26.499
RunTime 10.560131 0.259876 10.0270 11.0932 27.118
RunPulse 171.802181 1.834122 168.0264 175.5779 25.222

* Transformed Variables

Multiple Imputation Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

* Oxygen 3.838599 3.848456 3.912023 -3.26 0.0030
RunTime 10.493031 10.600498 10.000000 2.16 0.0402
RunPulse 171.251777 172.498626 180.000000 -4.47 0.0001

* Transformed Variables



2600 � Chapter 44. The MI Procedure

The following statements list the first ten observations of the data setoutmi in Output
44.10.6. Note that the values forOxygen are in the original scale.

proc print data=outex10(obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;

Output 44.10.6. Imputed Data Set in Original Scale

First 10 Observations of the Imputed Data Set

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.6090 11.3700 178.000
2 1 45.3130 10.0700 185.000
3 1 54.2970 8.6500 156.000
4 1 59.5710 7.1440 167.012
5 1 49.8740 9.2200 170.092
6 1 44.8110 11.6300 176.000
7 1 38.5834 11.9500 176.000
8 1 43.7376 10.8500 158.851
9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

Note that the preceding results can also be produced from the following statements
without using a TRANSFORM statement. A transformed value of log(50)=3.91202
is used in the MU0= option.

data temp;
set FitMiss;
LogOxygen= log(Oxygen);

run;

proc mi data=temp seed=14337921 mu0=3.91202 10 180 out=outtemp;
mcmc chain=multiple displayinit;
var LogOxygen RunTime RunPulse;

run;

data outex10;
set outtemp;
Oxygen= exp(LogOxygen);

run;

Example 44.11. Multistage Imputation

This example uses two separate imputation procedures to complete the imputation
process. The first MI procedure uses the MCMC method to impute just enough miss-
ing values for a data set with an arbitrary missing pattern so that each imputed data
set has a monotone missing pattern. The second MI procedure uses a MONOTONE
statement to impute missing values for data sets with monotone missing patterns.
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The following statements are identical toExample 44.7. The statements invoke the
MI procedure and specify the the IMPUTE=MONOTONE option to create the im-
puted data set with a monotone missing pattern.

proc mi data=FitMiss seed=17655417 out=outex11;
mcmc impute=monotone;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table shown inOutput 44.11.1lists distinct missing
data patterns with corresponding statistics. Here, an “X” means that the variable is
observed in the corresponding group, a “.” means that the variable is missing and will
be imputed to achieve the monotone missingness for the imputed data set, and an “O”
means that the variable is missing and will not be imputed. The table also displays
group-specific variable means.

Output 44.11.1. Missing Data Pattern

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X O 4 12.90
3 X O O 3 9.68
4 . X X 1 3.23
5 . X O 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

As shown in the table, the MI procedure only needs to impute three missing values
from Group 4 and Group 5 to achieve a monotone missing pattern for the imputed
data set. When the MCMC method is used to produce an imputed data set with a
monotone missing pattern, tables of variance information and parameter estimates
are not created.
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The following statements impute one value for each missing value in the monotone
missingness data setoutex11.

proc mi data=outex11
nimpute=1 seed=51343672
out=outex11a;

monotone reg;
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

You can then analyze these data sets by using other SAS procedures and combine
these results by using the procedure MIANALYZE. Note that the VAR statement is
required with a MONOTONE statement to provide the variable order for the mono-
tone missing pattern.

The “Model Information” table displayed inOutput 44.11.2shows that a monotone
method is used to generate imputed values in the first BY group.

Output 44.11.2. Model Information

----------------------------- Imputation Number=1 ------------------------------

The MI Procedure

Model Information

Data Set WORK.OUTEX11
Method Monotone
Number of Imputations 1
Seed for random number generator 51343672

The “Monotone Model Specification” table shown inOutput 44.11.3describes meth-
ods and imputed variables in the imputation model. The procedure uses the regression
method to impute variablesRunTime andRunPulse in the model.

Output 44.11.3. Monotone Model Specification

----------------------------- Imputation Number=1 ------------------------------

The MI Procedure

Monotone Model Specification

Imputed
Method Variables

Regression RunTime RunPulse
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The “Missing Data Patterns” table shown inOutput 44.11.4lists distinct missing data
patterns with corresponding statistics. It shows a monotone missing pattern for the
imputed data set.

Output 44.11.4. Missing Data Pattern

----------------------------- Imputation Number=1 ------------------------------

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 22 70.97
2 X X . 6 19.35
3 X . . 3 9.68

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.057479 10.861364 171.863636
2 46.745227 10.053333 .
3 52.461667 . .

The following statements list the first ten observations of the data setoutex11a in
Output 44.11.5.

proc print data=outex11a(obs=10);
title ’First 10 Observations of the Imputed Data Set’;

run;

Output 44.11.5. Imputed Data Set

First 10 Observations of the Imputed Data Set

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.6090 11.3700 178.000
2 1 45.3130 10.0700 185.000
3 1 54.2970 8.6500 156.000
4 1 59.5710 7.1569 169.914
5 1 49.8740 9.2200 159.315
6 1 44.8110 11.6300 176.000
7 1 39.8345 11.9500 176.000
8 1 45.3196 10.8500 151.252
9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000
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This example presents an alternative to the full-data MCMC imputation. When impu-
tation of only a few missing values are needed to achieve a monotone missing pattern
for the imputed data set. The example uses a monotone MCMC method that impute
fewer missing values in each iteration and achieves approximate stationarity in fewer
iterations (Schafer 1997, p. 227). The example also demonstrates how to combine
the monotone MCMC method with a method for monotone missing data, which does
not rely on iterations of steps.
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Chapter 45
The MIANALYZE Procedure
Overview

The MIANALYZE procedure combines the results of the analyses of imputations and
generates valid statistical inferences. Multiple imputation provides a useful strategy
for analyzing data sets with missing values. Instead of filling in a single value for each
missing value, Rubin’s (1976; 1987) multiple imputation strategy replaces each miss-
ing value with a set of plausible values that represent the uncertainty about the right
value to impute. You can implement the strategy with two SAS procedures: PROC
MI, which generates imputed data sets, and PROC MIANALYZE, which combines
the results of analyses carried out on the data sets.

The analyses of imputations are obtained by using standard SAS procedures (such as
PROC REG) for complete data. No matter which complete-data analysis is used, the
process of combining results from different imputed data sets is essentially the same
and results in valid statistical inferences that properly reflect the uncertainty due to
missing values.

The MIANALYZE procedure reads parameter estimates and associated standard er-
rors or covariance matrix that are computed by the standard statistical procedure for
each imputed data set. The MIANALYZE procedure then derives valid univariate
inference for these parameters. With an additional assumption about the population
between and within imputation covariance matrices, multivariate inference based on
Wald tests can also be derived.

For some parameters of interest, you can use TEST statements to test linear hy-
potheses about the parameters. For others, it is not straightforward to compute es-
timates and associated covariance matrices with standard statistical SAS procedures.
Examples include correlation coefficients between two variables and ratios of vari-
able means. These special cases are described in the“Examples of the Complete-Data
Inferences”section on page 2628.

In SAS 9, the VAR statement has been replaced by the MODELEFFECTS statement
to accommodate various effects to be analyzed. A STDERR statement has been added
to specify the standard errors when both parameter estimates and associated standard
errors are stored as variables in the same data set.

Also, an experimental CLASS statement has been added to specify classification vari-
ables in the MODELEFFECTS statement. The CLASS statement must be used in
conjunction with the MODELEFFECTS statement.
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Getting Started

TheFitness data set has been altered to contain an arbitrary missing pattern:

*----------------- Data on Physical Fitness -----------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| Only selected variables of |
| Oxygen (oxygen intake, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), and |
| RunPulse (heart rate while running) are used. |
| Certain values were changed to missing for the analysis. |
*------------------------------------------------------------*;
data FitMiss;

input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176

. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

Suppose that the data are multivariate normally distributed and that the missing data
are missing at random (see the “Statistical Assumptions for Multiple Imputation”
section in “The MI Procedure” chapter for a description of these assumptions). The
following statements use the MI procedure to impute missing values for theFitMiss
data set.

proc mi data=FitMiss noprint out=outmi seed=3237851;
var Oxygen RunTime RunPulse;

run;

The MI procedure creates imputed data sets, which are stored in theoutmi data set.
A variable named–Imputation– indicates the imputation numbers. Based onm
imputations,m different sets of the point and variance estimates for a parameter can
be computed. In this example,m = 5 is the default.
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The following statements generate regression coefficients for each of the five imputed
data sets:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements display parameter estimates and covariance matrices from
the first two imputed data sets inFigure 45.1.

proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_

Intercept RunTime RunPulse;
title ’Parameter Estimates from Imputed Data Sets’;

run;

Parameter Estimates from Imputed Data Sets

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse

1 1 PARMS 86.544 -2.82231 -0.05873
2 1 COV Intercept 100.145 -0.53519 -0.55077
3 1 COV RunTime -0.535 0.10774 -0.00345
4 1 COV RunPulse -0.551 -0.00345 0.00343
5 2 PARMS 83.021 -3.00023 -0.02491
6 2 COV Intercept 79.032 -0.66765 -0.41918
7 2 COV RunTime -0.668 0.11456 -0.00313
8 2 COV RunPulse -0.419 -0.00313 0.00264

Figure 45.1. Parameter Estimates

The following statements combine the five sets of regression coefficients:

proc mianalyze data=outreg;
modeleffects Intercept RunTime RunPulse;

run;

The MIANALYZE Procedure

Model Information

Data Set WORK.OUTREG
Number of Imputations 5

Figure 45.2. Model Information Table

The “Model Information” table shown inFigure 45.2lists the input data set(s) and
the number of imputations.
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The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

Intercept 45.529229 76.543614 131.178689 23.059
RunTime 0.019390 0.106220 0.129487 123.88
RunPulse 0.001007 0.002537 0.003746 38.419

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

Intercept 0.713777 0.461277 0.915537
RunTime 0.219051 0.192620 0.962905
RunPulse 0.476384 0.355376 0.933641

Figure 45.3. Variance Information Table

The “Multiple Imputation Variance Information” table shown inFigure 45.3dis-
plays the between-imputation, within-imputation, and total variances for combining
complete-data inferences. It also displays the degrees of freedom for the total vari-
ance, the relative increase in variance due to missing values, the fraction of missing
information, and the relative efficiency for each parameter estimate.

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

Intercept 90.837440 11.453327 67.14779 114.5271 23.059
RunTime -3.032870 0.359844 -3.74511 -2.3206 123.88
RunPulse -0.068578 0.061204 -0.19243 0.0553 38.419

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

Intercept 83.020730 100.839807
RunTime -3.204426 -2.822311
RunPulse -0.112840 -0.024910

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

Intercept 0 7.93 <.0001
RunTime 0 -8.43 <.0001
RunPulse 0 -1.12 0.2695

Figure 45.4. Multiple Imputation Parameter Estimates
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The “Multiple Imputation Parameter Estimates” table shown inFigure 45.4displays
a combined estimate and standard error for each regression coefficient (parameter).
Inferences are based ont distributions. The table displays a 95% confidence interval
and at-test with the associatedp-value for the hypothesis that the parameter is equal
to the value specified with the THETA0= option (in this case, zero by default). The
minimum and maximum parameter estimates from the imputed data sets are also
displayed.

Syntax

The following statements are available in PROC MIANALYZE.

PROC MIANALYZE < options > ;
BY variables ;
CLASS variables ;
MODELEFFECTS effects ;
< label: > TEST equation1 < , . . . , < equationk >>< /options >;
STDERR variables ;

The BY statement specifies groups in which separate analyses are performed.

The CLASS statement lists the classification variables in the EFFECT statement.
Classification variables can be either character or numeric.

The required MODELEFFECTS statement lists the effects to be analyzed. The vari-
ables in the statement that are not specified in a CLASS statement are assumed to be
continuous.

The STDERR statement lists the standard errors associated with the effects in the
MODELEFFECTS statement when both parameter estimates and standard errors are
saved as variable in the same DATA= data set. The STDERR statement can be used
only when each effect in the MODELEFFECTS statement is a continuous variable
by itself.

The TEST statement tests linear hypotheses about the parameters. AnF statistic
is used to test jointly the null hypothesis (H0:Lβ = c) specified in a single TEST
statement. Several TEST statements can be used.

The PROC MIANALYZE and MODELEFFECTS statements are required for the MI
procedure. The rest of this section provides detailed syntax information for each of
these statements, beginning with the PROC MIANALYZE statement. The remaining
statements are in alphabetical order.



2614 � Chapter 45. The MIANALYZE Procedure

PROC MIANALYZE Statement

PROC MIANALYZE < options > ;

The following table summarizes the options in the PROC MIANALYZE statement.

Table 45.1. Summary of PROC MIANALYZE Options

Tasks Options

Specify input data sets
COV, CORR, or EST type data set DATA=
parameter estimates and standard errors DATA=
parameter estimates PARMS=
parameter information PARMINFO=
covariance matrices COVB=
(X ′X)−1 matrices XPXI=

Specify statistical analysis
parameters under the null hypothesis THETA0=
level for the confidence interval ALPHA=
complete-data degrees of freedom EDF=

Display Printed Output
within-imputation covariance matrix WCOV
between-imputation covariance matrix BCOV
total covariance matrix TCOV
multivariate inferences MULT

The following are explanations of the options that can be used in the PROC
MIANALYZE statement (in alphabetical order):

ALPHA= p
specifies that confidence limits are to be constructed for the parameter estimates with
confidence level100(1− p)%, where0 < p < 1. The default isp=0.05.

BCOV
displays the between-imputation covariance matrix.

COVB <(EFFECTVAR=STACKING | ROWCOL) > =SAS-data-set
names an input SAS data set that contains covariance matrices of the parameter es-
timates from imputed data sets. If you provide a COVB= data set, you must also
provide a PARMS= data set.

The EFFECTVAR= option identifies the variables for parameters displayed in the
covariance matrix and is used only when the PARMINFO= option is not specified.
The default is EFFECTVAR= STACKING.

See the“Input Data Sets”section on page 2620 for a detailed description of the
COVB= option.
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DATA=SAS-data-set
names an input SAS data set.

If the input DATA= data set is not a specially structured SAS data set, the data set
contains both the parameter estimates and associated standard errors. The parameter
estimates are specified in the MODELEFFECTS statement and the standard errors
are specified in the STDERR statement.

If the data set is a specially structured input SAS data set, it must have a TYPE of
EST, COV, or CORR that contains estimates from imputed data sets:

• TYPE=EST, the data set contains the parameter estimates and associated co-
variance matrices.

• TYPE=COV, the data set contains the sample means, sample sizes, and covari-
ance matrices. Each covariance matrix for variables is divided by the sample
sizen to create the covariance matrix for parameter estimates.

• TYPE=CORR, the data set contains the sample means, sample sizes, standard
errors, and correlation matrices. The covariance matrices are computed from
the correlation matrices and associated standard errors. Each covariance matrix
for variables is divided by the sample sizen to create the covariance matrix for
parameter estimates.

If you do not specify an input data set with the DATA= or PARMS= option, then the
most recently created SAS data set is used as an input DATA= data set. See the“Input
Data Sets”section on page 2620 for a detailed description of the input data sets.

EDF=number
specifies the complete-data degrees of freedom for the parameter estimates. This is
used to compute an adjusted degrees of freedom for each parameter estimate. By
default, EDF=∞ and the degrees of freedom for each parameter estimate is not ad-
justed.

MULT
MULTIVARIATE

requests multivariate inference for the parameters. It is based on Wald tests and is a
generalization of the univariate inference. See the“Multivariate Inferences”section
on page 2626 for a detailed description of the multivariate inference.

PARMINFO=SAS-data-set
names an input SAS data set that contains parameter information associated with
variablesPRM1, PRM2,..., and so on. These variables are used as variables for
parameters in a COVB= data set. See the“Input Data Sets”section on page 2620 for
a detailed description of the PARMINFO= option.

PARMS <(CLASSVAR= ctype)> =SAS-data-set
names an input SAS data set that contains parameter estimates computed from im-
puted data sets. When a COVB= data set is not specified, the input PARMS= data set
also contains standard errors associated with these parameter estimates. If multivari-
ate inference is requested, you must also provide a COVB= or XPXI= data set.
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When the effects contain CLASS variables, the option CLASSVAR=ctype can be
used to identify the associated CLASS variables when reading the classification levels
from observations. The available types are FULL, LEVEL, and CLASSVAL. The
default is CLASSVAR= FULL. See the“Input Data Sets”section on page 2620 for a
detailed description of the PARMS= option.

TCOV
displays the total covariance matrix derived by assuming that the population between-
imputation and within-imputation covariance matrices are proportional to each other.

THETA0=numbers
MU0=numbers

specifies the parameter valuesθ0 under the null hypothesisθ = θ0 in the t tests for
location for the effects. If only one numberθ0 is specified, that number is used for
all effects. If more than one number is specified, the specified numbers correspond to
effects in the MODELEFFECTS statement in the order in which they appear in the
statement. When an effect contains CLASS variables, the corresponding value is not
used and the test is not performed.

WCOV
displays the within-imputation covariance matrices.

XPXI=SAS-data-set
names an input SAS data set that contains the(X ′X)−1 matrices associated with the
parameter estimates computed from imputed data sets. If you provide an XPXI= data
set, you must also provide a PARMS= data set. In this case, PROC MIANALYZE
reads the standard errors of the estimates from the PARMS= data. The standard errors
and(X ′X)−1 matrices are used to derive the covariance matrices.

BY Statement

BY variables ;

You can specify a BY statement with PROC MIANALYZE to obtain separate anal-
yses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the MI procedure. The NOTSORTED option does not mean that
the data are unsorted but rather that the data are arranged in groups (accord-
ing to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement (Experimental)

CLASS variables ;

The CLASS statement specifies the classification variables in the MODELEFFECTS
statement. Classification variables can be either character or numeric.

Classification levels are determined from the formatted values of the CLASS vari-
ables. Refer to the chapter titled “The FORMAT Procedure” in theSAS Procedures
Guide.

MODELEFFECTS Statement

MODELEFFECTS effects ;

The MODELEFFECTS statement lists the effects in the data set to be analyzed. Each
effect is a variable or a combination of variables, and is specified with a special nota-
tion using variable names and operators.

Each variable is either a classification (or CLASS) variable or a continuous variable.
If a variable is not declared in the CLASS statement, it is assumed to be continuous.
Crossing and nesting operators can be used in an effect to create crossed and nested
effects.

One general form of an effect involving several variables is

X1 ∗ X2 ∗ A ∗ B ∗ C ( D E )

whereA, B, C, D, andE are CLASS variables andX1 andX2 are continuous vari-
ables.

When the input DATA= data set is not a specially structured SAS data set, you must
also specify standard errors of the parameter estimates in a STDERR statement.

STDERR Statement

STDERR variables ;

The STDERR statement lists standard errors associated with effects in the
MODELEFFECTS statement, when the input DATA= data set contains both
parameter estimates and standard errors as variables in the data set.

With the STDERR statement, only continuous effects are allowed in the
MODELEFFECTS statement. The specified standard errors are corresponding
to parameter estimates in the order in which they appear in the MODELEFFECTS
statement.
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For example, you can use the following MODELEFFECTS and STDERR statements
to identify both the parameter estimates and associated standard errors in a SAS data
set.

proc mianalyze;
var y1-y3;
stderr sy1-sy3;

run;

TEST Statement

< label: > TEST equation1 < , . . . , < equationk >>< /options > ;

The TEST statement tests linear hypotheses about the parametersβ. An F test is
used to test jointly the null hypotheses (H0:Lβ = c) specified in a single TEST
statement.

Eachequationspecifies a linear hypothesis (a row of theL matrix and the correspond-
ing element of thec vector); multipleequationsare separated by commas. The label,
which must be a valid SAS name, is used to identify the resulting output. You can
submit multiple TEST statements. When a label is not included in a TEST statement,
a label of “Testj” is used for thejth TEST statement.

The form of anequationis as follows:

term < ±term . . . > < = ±term < ±term . . . >>

wheretermis a parameter of the model, or a constant, or a constant times a parameter.
When no equal sign appears, the expression is set to 0. Only parameters for regressor
effects (continuous variables by themselves) are allowed.

For each TEST statement, PROC MIANALYZE displays a “Test Specification” table
of theL matrix and thec vector. The procedure also displays a “Multiple Imputation
Variance Information” table of the between-imputation, within-imputation, and to-
tal variances for combining complete-data inferences, and a “Multiple Imputation
Parameter Estimates” table of a combined estimate and standard error for each lin-
ear component. The linear components are labeledTestPrm1, TestPrm2, ... in the
tables.

The following code illustrates possible uses of the TEST statement:

proc mianalyze;
var intercept a1 a2 a3;
test1: test intercept + a2 = 0;
test2: test intercept + a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;
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The first and second TEST statements are equivalent and correspond to the following
specification

The MIANALYZE Procedure
Test: test1

Test Specification

-----------------------L Matrix-----------------------
Parameter intercept a1 a2 a3 C

TestPrm1 1.000000 0 1.000000 0 0

Figure 45.5. Test Specification for test1 and test2

The third and fourth TEST statements are also equivalent and correspond to the spec-
ification

The MIANALYZE Procedure
Test: test3

Test Specification

-----------------------L Matrix-----------------------
Parameter intercept a1 a2 a3 C

TestPrm1 0 1.000000 -1.000000 0 0
TestPrm2 0 0 1.000000 -1.000000 0

Figure 45.6. Test Specification for test3 and test4

The ALPHA= and EDF options specified in the PROC MIANALYZE statement are
also applied to the TEST statement. You can specify the following options in the
TEST statement after a slash(/).

BCOV
displays the between-imputation covariance matrix.

MULT
displays the multivariate inference for parameters.

TCOV
displays the total covariance matrix.

WCOV
displays the within-imputation covariance matrix.

For more information, see the“Testing Linear Hypotheses about the Parameters”
section on page 2628.
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Details

Input Data Sets
You specify input data sets based on the type of inference you requested. For univari-
ate inference, you can use one of the following options:

• a DATA= data set, which provides both parameter estimates and the associated
standard errors.

• a DATA= type EST, COV, or CORR data set, which provides both parameter
estimates and the associated standard errors either explicitly (type CORR) or
through the covariance matrix (type EST, COV).

• PARMS= data set, which provides both parameter estimates and the associated
standard errors.

For multivariate inference, which includes the testing of linear hypotheses about pa-
rameters, you can use one of the following option combinations:

• a DATA= type EST, COV, or CORR data set, which provides parameter esti-
mates and the associated covariance matrix either explicitly (type EST, COV)
or through the correlation matrix and standard errors (type CORR) in a single
data set.

• PARMS= and COVB= data sets, which provide parameter estimates in a
PARMS= data set and the associated covariance matrix in a COVB= data set.

• PARMS=, COVB=, and PARMINFO= data sets, which provide parameter es-
timates in a PARMS= data set, the associated covariance matrix in a COVB=
data set with variables namedPRM1, PRM2, ..., and the effects associated
with these variables in a PARMINFO= data set.

• PARMS= and XPXI= data sets, which provide parameter estimates and the
associated standard errors in a PARMS= data set and the associated(X ′X)−1

matrix in an XPXI= data set.

The appropriate combination depends on the type of inference and the SAS procedure
you used to create the data sets. For instance, if you used PROC REG to create an
OUTEST= data set containing the parameter estimates and covariance matrix, you
would use the DATA= option to read the OUTEST= data set.

When the input DATA= data set is not a specially structured SAS data set, each ob-
servation corresponds to an imputation and contains both parameter estimates and
associated standard errors. For others, each input data set must contains the variable

–Imputation– to identify the imputation by number.

If you do not specify an input data set with the DATA= or PARMS= option, then the
most recently created SAS data set is used as an input DATA= data set. Note that
with a DATA= data set, each effect represents a continuous variable, only regressor
effects (continuous variables by themselves) are allowed in the MODELEFFECTS
statement.
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DATA= SAS data set

The DATA= data set provides both parameter estimates and the associated stan-
dard errors computed from imputed data sets. Such data sets are typically created
with an OUTPUT statement using procedures such as PROC MEANS and PROC
UNIVARIATE.

The MIANALYZE procedure reads parameter estimates from observations with vari-
ables in the MODELEFFECTS statement, and standard errors for parameter esti-
mates from observations with variables in the STDERR statement. The order of the
variables for standard errors must match the order of the variables for parameter esti-
mates.

DATA= type EST, COV, or CORR SAS data set

The specially structured DATA= data set provides both parameter estimates and the
associated covariance matrix computed from imputed data sets. Such data sets are
created by procedures such as PROC CORR (type COV, CORR) and PROC REG
(type EST).

With TYPE=EST, the MIANALYZE procedure reads parameter estimates from
observations with–TYPE–=‘PARM’, –TYPE–=‘PARMS’, –TYPE–=‘OLS’, or

–TYPE–=‘FINAL’, and covariance matrices for parameter estimates from observa-
tions with–TYPE–=‘COV’ or –TYPE–=‘COVB’.

With TYPE=COV, the procedure reads sample means from observations with

–TYPE–=‘MEAN’, sample sizen from observations with–TYPE–=‘N’, and co-
variance matrices for variables from observations with–TYPE–=‘COV’.

With TYPE=CORR, the procedure reads sample means from observations with

–TYPE–=‘MEAN’, sample sizen from observations with–TYPE–=‘N’, correla-
tion matrices for variables from observations with–TYPE–=‘CORR’, and standard
errors for variables from observations with–TYPE–=‘STD’. The standard errors and
correlation matrix are used to generate a covariance matrix for the variables.

Note that with TYPE=COV or CORR, each covariance matrix for the variables is
divided byn to create the covariance matrix for the sample means.

PARMS <(CLASSVAR= ctype)> = data set

The PARMS= data set contains parameter estimates and associated standard errors
computed from imputed data sets. Such data sets are typically created with an ODS
OUTPUT statement using procedures such as PROC GENMOD, PROC GLM, PROC
LOGISTIC, and PROC MIXED.

The MIANALYZE procedure reads effect names from observations with the variable
Parameter, Effect, Variable, or Parm. It then reads parameter estimates from ob-
servations with the variableEstimate and standard errors for parameter estimates
from observations with the variableStdErr.

When the effects contain CLASS variables, the option CLASSVAR=ctype can be
used to identify associated CLASS variables when reading the CLASS levels from
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observations. The available types are FULL, LEVEL, and CLASSVAL. The default
is CLASSVAR= FULL.

With CLASSVAR=FULL, the data set contains the CLASS variables explicitly.
PROC MIANALYZE reads the CLASS levels from observations with their corre-
sponding CLASS variables. PROC MIXED generates this type of tables.

With CLASSVAR=LEVEL, PROC MIANALYZE reads the classification levels for
the effect from observations with variablesLevel1, Level2, and so on, where the
variableLevel1 contains the classification level for the first CLASS variable in the
effect, the variableLevel2 contains the classification level for the second CLASS
variable in the effect. For each effect, the variables in the crossed list are displayed
before the variables in the nested list. The variable order in the CLASS statement is
used for variables inside each list. PROC GENMOD generates this type of tables.

For example, with the following statements,

proc mianalyze parms(classvar=Level)= dataparm;
class c1 c2 c3;
modeleffects c2 c3(c2 c1);

run;

the variableLevel1 has the classification level of the variablec2 for the effectc2. For
the effectc3(c2 c1), the variableLevel1 has the classification level of the variable
c3, Level2 has the level ofc1, andLevel3 has the level ofc2.

Similarly, with CLASSVAR=CLASSVAL, PROC MIANALYZE reads the classifi-
cation levels for the effect from observations with variablesClassVal0, ClassVal1,
and so on, where the variableClassVal0 contains the classification level for the first
CLASS variable in the effect, the variableClassVal1 contains the classification level
for the second CLASS variable in the effect. For each effect, the variables in the
crossed list are displayed before the variables in the nested list. The variable order
in the CLASS statement is used for variables inside each list. PROC LOGISTIC
generates this type of tables.

PARMS <(CLASSVAR= ctype)>= and COVB= data sets

The PARMS= data set contains parameter estimates and the COVB= data set contains
associated covariance matrices computed from imputed data sets. Such data sets are
typically created with an ODS OUTPUT statement using procedures such as PROC
LOGISTIC, PROC MIXED, and PROC REG.

With a PARMS= data set, the MIANALYZE procedure reads effect names from ob-
servations with the variableParameter, Effect, Variable, or Parm. It then reads
parameter estimates from observations with the variableEstimate.

When the effects contain CLASS variables, the option CLASSVAR=ctype can be
used to identify the associated CLASS variables when reading the CLASS levels
from observations. The available types are FULL, LEVEL, and CLASSVAL, and
are described in the“PARMS <(CLASSVAR= ctype)> = data set”section on page
2621. The default is CLASSVAR= FULL.
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The option EFFECTVAR=etype identifies the variables for parameters displayed in
the covariance matrix. The available types are STACKING and ROWCOL. The de-
fault is EFFECTVAR=STACKING.

With EFFECTVAR=STACKING, each parameter is displayed by stacking variables
in the effect. Begin with the variables in the crossed list, followed by the continuous
list, then followed by the nested list. Each CLASS variable is displayed with its
CLASS level attached. PROC LOGISTIC generates this type of tables.

When each effect is a continuous variable by itself, each stacked parameter name
reduces to the effect name. PROC REG generates this type of tables.

With EFFECTVAR=STACKING, the MIANALYZE procedure reads parameter
names from observations with the variableParameter, Effect, Variable, Parm, or
RowName. It then reads covariance matrices from observations with the stacked
variables in a COVB= data set.

With EFFECTVAR=ROWCOL, parameters are displayed by the variablesCol1,
Col2, ... The parameter associated with the variableCol1 is identified by the ob-
servation with value 1 for the variableRow. The parameter associated with the vari-
ableCol2 is identified by the observation with value 2 for the variableRow. PROC
MIXED generates this type of table.

With EFFECTVAR=ROWCOL, the MIANALYZE procedure reads the parameter in-
dices from observations with the variableRow, the effect names from observations
with the variableParameter, Effect, Variable, Parm, or RowName, and covari-
ance matrices from observations with the variablesCol1, Col2, ... in a COVB= data
set.

When the effects contain CLASS variables, the data set contains the CLASS variables
explicitly and the MIANALYZE procedure also reads the CLASS levels from their
corresponding CLASS variables.

PARMS <(CLASSVAR= ctype)> =, PARMINFO=, and COVB= data sets

The input PARMS= data set contains parameter estimates and the input COVB= data
set contains associated covariance matrices computed from imputed data sets. Such
data sets are typically created with an ODS OUTPUT statement using procedure such
as PROC GENMOD.

With a PARMS= data set, the MIANALYZE procedure reads effect names from ob-
servations with the variableParameter, Effect, Variable, or Parm. It then reads
parameter estimates from observations with the variableEstimate.

When the effects contain CLASS variables, the option CLASSVAR=ctype can be
used to identify the associated CLASS variables when reading the CLASS levels
from observations. The available types are FULL, LEVEL, and CLASSVAL, and
are described in the“PARMS <(CLASSVAR= ctype)> = data set”section on page
2621. The default is CLASSVAR= FULL.

With a COVB= data set, the MIANALYZE procedure reads parameter names from
observations with the variableParameter, Effect, Variable, Parm, or RowName
and covariance matrices from observations with variablesPrm1, Prm2, and so on.
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The parameters associated with the variablesPrm1, Prm2, ... are identified in the
PARMINFO= data set. PROC MIANALYZE reads the parameter names from obser-
vations with the variableParameter and the corresponding effect from observations
with the variableEffect. When the effects contain CLASS variables, the data set
contains the CLASS variables explicitly and the MIANALYZE procedure also reads
the CLASS levels from observations with their corresponding CLASS variables.

PARMS= and XPXI= data sets

The input PARMS= data set contains parameter estimates and the input XPXI= data
set contains associated(X ′X)−1 matrices computed from imputed data sets. Such
data sets are typically created with an ODS OUTPUT statement using a procedure
such as PROC GLM.

With a PARMS= data set, the MIANALYZE procedure reads parameter names from
observations with the variableParameter, Effect, Variable, or Parm. It then reads
parameter estimates from observations with the variableEstimate and standard er-
rors for parameter estimates from observations with the variableStdErr.

With a XPXI= data set, the MIANALYZE procedure reads parameter names from
observations with the variableParameter and(X ′X)−1 matrices from observations
with the parameter variables in the data set.

Note that this combination can only be used when each effect is a continuous variable
by itself.

Combining Inferences from Imputed Data Sets

With m imputations,m different sets of the point and variance estimates for a param-
eterQ can be computed. Suppose thatQ̂i andÛi are the point and variance estimates
from theith imputed data set,i=1, 2, ...,m. Then the combined point estimate forQ
from multiple imputation is the average of them complete-data estimates:

Q =
1
m

m∑
i=1

Q̂i

Suppose thatW is the within-imputation variance, which is the average of them
complete-data estimates:

W =
1
m

m∑
i=1

Ŵi

and B be the between-imputation variance

B =
1

m− 1

m∑
i=1

(Q̂i −Q)2



Combining Inferences from Imputed Data Sets � 2625

Then the variance estimate associated withQ is the total variance (Rubin 1987)

T = W + (1 +
1
m

)B

The statistic(Q − Q)T−(1/2) is approximately distributed ast with vm degrees of
freedom (Rubin 1987), where

vm = (m− 1)
[
1 +

W

(1 + m−1)B

]2

The degrees of freedomvm depends onm and the ratio

r =
(1 + m−1)B

W

The ratior is called the relative increase in variance due to nonresponse (Rubin 1987).
When there is no missing information aboutQ, the values ofr andB are both zero.
With a large value ofm or a small value ofr, the degrees of freedomvm will be large
and the distribution of(Q−Q)T−(1/2) will be approximately normal.

Another useful statistic is the fraction of missing information aboutQ:

λ̂ =
r + 2/(vm + 3)

r + 1

Both statisticsr andλ are helpful diagnostics for assessing how the missing data
contribute to the uncertainty aboutQ.

When the complete-data degrees of freedomv0 is small, and there is only a mod-
est proportion of missing data, the computed degrees of freedom,vm, can be much
larger thanv0, which is inappropriate. For example, withm = 5 andr = 10%, the
computed degrees of freedomvm = 484, which is inappropriate for data sets with
complete-data degrees of freedom less than484.

Barnard and Rubin (1999) recommend the use of an adjusted degrees of freedom

v∗m =
[

1
vm

+
1

v̂obs

]−1

where v̂obs = (1− γ) v0(v0 + 1)/(v0 + 3) and γ = (1 + m−1)B/T .

If you specify the complete-data degrees of freedomv0 with the EDF= option, the
MIANALYZE procedure uses the adjusted degrees of freedom,v∗m, for inference.
Otherwise, the degrees of freedomvm is used.
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Multiple Imputation Efficiency

The relative efficiency (RE) of using the finitem imputation estimator, rather than
using an infinite number for the fully efficient imputation, in units of variance, is
approximately a function ofm andλ (Rubin 1987, p. 114).

RE = (1 +
λ

m
)−1

The following table shows relative efficiencies with different values ofm andλ.

Table 45.2. Relative Efficiency

λ
m 10% 20% 30% 50% 70%
3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662

The table shows that for situations with little missing information, only a small num-
ber of imputations are necessary. In practice, the number of imputations needed can
be informally verified by replicating sets ofm imputations and checking whether the
estimates are stable between sets (Horton and Lipsitz 2001, p. 246).

Multivariate Inferences

Multivariate inference based on Wald tests can be done withm imputed data sets.
The approach is a generalization of the approach taken in the univariate case (Rubin
1987, p. 137; Schafer 1997, p. 113). Suppose thatQ̂i andÛi are the point and
covariance matrix estimates for ap-dimensional parameterQ (such as a multivariate
mean) from theith imputed data set,i=1, 2, ...,m. Then the combined point estimate
for Q from the multiple imputation is the average of them complete-data estimates:

Q =
1
m

m∑
i=1

Q̂i

Suppose thatU is the within-imputation covariance matrix, which is the average of
them complete-data estimates

W =
1
m

m∑
i=1

Ŵi

and suppose thatB is the between-imputation covariance matrix

B =
1

m− 1

m∑
i=1

(Q̂i −Q)(Q̂i −Q)′
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Then the covariance matrix associated withQ is the total covariance matrix

T0 = W + (1 +
1
m

)B

The natural multivariate extension of thet statistic used in the univariate case is the
F statistic

F0 = (Q−Q)′T−1
0 (Q−Q)

with degrees of freedomp and

v = (m− 1)(1 + 1/r)2

where

r = (1 +
1
m

)trace(BW−1)/p

is an average relative increase in variance due to nonresponse (Rubin 1987, p. 137;
Schafer 1997, p. 114).

However, the reference distribution of the statisticF0 is not easily derived. Especially
for small m, the between-imputation covariance matrixB is unstable and does not
have full rank form ≤ p (Schafer 1997, p. 113).

One solution is to make an additional assumption that the population between-
imputation and within-imputation covariance matrices are proportional to each other
(Schafer 1997, p. 113). This assumption implies that the fractions of missing in-
formation for all components ofQ are equal. Under this assumption, a more stable
estimate of the total covariance matrix is

T = (1 + r)W

With the total covariance matrixT, theF statistic (Rubin 1987, p. 137)

F = (Q−Q)′T−1(Q−Q)/p

has anF distribution with degrees of freedomp andv1, where

v1 =
1
2
(p + 1)(m− 1)(1 +

1
r
)2

For t = p(m − 1) ≤ 4, PROC MIANALYZE uses the degrees of freedomv1 in the
analysis. Fort = p(m−1) > 4, PROC MIANALYZE usesv2, a better approximation
of the degrees of freedom given by Li, Raghunathan, and Rubin (1991).

v2 = 4 + (t− 4)
[
1 +

1
r
(1− 2

t
)
]2
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Testing Linear Hypotheses about the Parameters

Linear hypotheses for parametersβ are expressed in matrix form as

H0:Lβ = c

whereL is a matrix of coefficients for the linear hypotheses, andc is a vector of
constants.

Suppose thatQ̂i and Ûi are the point and covariance matrix estimates for ap-
dimensional parameterQ from the ith imputed data set,i=1, 2, ...,m. Then for
a given matrixL, the point and covariance matrix estimates for the linear functions
LQ in theith imputed data set are

LQ̂i

LÛiL′

The inferences described in the“Combining Inferences from Imputed Data Sets”
section on page 2624 and the“Multivariate Inferences”section on page 2626 are
applied to these linear estimates for testing the null hypothesisH0:Lβ = c.

For each TEST statement, the “Test Specification” table displays theL matrix and the
c vector, the “Multiple Imputation Variance Information” table displays the between-
imputation, within-imputation, and total variances for combining complete-data in-
ferences, the “Multiple Imputation Parameter Estimates” table displays a combined
estimate and standard error for each linear component.

With the WCOV and BCOV options in the TEST statement, the procedure displays
the within-imputation and between-imputation covariance matrices, respectively.

With the TCOV option, the procedure displays the total covariance matrix derived
under the assumption that the population between-imputation and within-imputation
covariance matrices are proportional to each other.

With the MULT option in the TEST statement, the “Multiple Imputation Multivariate
Inference” table displays anF test for the null hypothesisLβ = c of the linear
components.

Examples of the Complete-Data Inferences

For a given parameter of interest, it is not always possible to compute the estimate
and associated covariance matrix directly from a SAS procedure. This section de-
scribes examples of parameters with their estimates and associated covariance matri-
ces, which provide the input to the MIANALYZE procedure. Some are straightfor-
ward, and others require special techniques.
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Means

For a population mean vectorµ, the usual estimate is the sample mean vector

y =
1
n

∑
yi

A variance estimate fory is 1
nS, whereS is the sample covariance matrix

S =
1

n− 1

∑
(yi − y)(yi − y)′

These statistics can be computed from a procedure such as CORR. This approach is
illustrated inExample 45.2.

Regression Coefficients

Many SAS procedures are available for regression analysis. Among them, PROC
REG provides the most general analysis capabilities, and others like PROC
LOGISTIC and PROC MIXED provide more specialized analyses.

Some regression procedures, such as REG and LOGISTIC, create an EST type data
set that contains both the parameter estimates for the regression coefficients and their
associated covariance matrix. You can read an EST type data set in the MIANALYZE
procedure with the DATA= option. This approach is illustrated inExample 45.3.

Other procedures, such as GLM, MIXED, and GENMOD, do not generate EST type
data sets for regression coefficients. For PROC MIXED and PROC GENMOD, you
can use ODS OUTPUT statement to save parameter estimates in a data set and the
associated covariance matrix in a separate data set. These data sets are then read in
the MIANALYZE procedure with the PARMS= and COVB= options, respectively.
This approach is illustrated inExample 45.4for PROC MIXED and inExample 45.5
for PROC GENMOD.

PROC GLM does not display tables for covariance matrices. However, you can use
the ODS OUTPUT statement to save parameter estimates and associated standard
errors in a data set and the associated(X ′X)−1 matrix in a separate data set. These
data sets are then read in the MIANALYZE procedure with the PARMS= and XPXI=
options, respectively. This approach is illustrated inExample 45.6.

For univariate inference, only parameter estimates and associated standard errors are
needed. You can use the ODS OUTPUT statement to save parameter estimates
and associated standard errors in a data set. These data set is then read in the
MIANALYZE procedure with the PARMS= option. This approach is illustrated in
Example 45.4.
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Correlation Coefficients

For the population correlation coefficientρ, a point estimate is the sample correlation
coefficientr. However, for nonzeroρ, the distribution ofr is skewed.

The distribution ofr can be normalized through Fisher’sz transformation

z(r) =
1
2

log
(

1 + r

1− r

)

z(r) is approximately normally distributed with meanz(ρ) and variance1/(n− 3).

With a point estimatêz and an approximate95% confidence interval(z1, z2) for
z(ρ), a point estimatêr and a95% confidence interval(r1, r2) for ρ can be obtained
by applying the inverse transformation

r = tanh(z) =
e2z − 1
e2z + 1

to z = ẑ, z1, andz2.

This approach is illustrated inExample 45.10.

Ratios of Variable Means

For the ratioµ1/µ2 of means for variablesY1 andY2, the point estimate isy1/y2, the
ratio of the sample means. The Taylor expansion and delta method can be applied to
the functiony1/y2 to obtain the variance estimate (Schafer 1997, p. 196)

1
n

[(
y1

y2
2

)2

s22 − 2
(

y1

y2
2

)(
1
y2

)
s12 +

(
1
y2

)2

s11

]

wheres11 ands22 are the sample variances ofY1 andY2, respectively, ands12 is the
sample covariance betweenY1 andY2.

A ratio of sample means will be approximately unbiased and normally distributed
if the coefficient of variation of the denominator (the standard error for the mean
divided by the estimated mean) is10% or less (Cochran 1977, p. 166; Schafer 1997,
p. 196).
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ODS Table Names

PROC MIANALYZE assigns a name to each table it creates. You must use these
names to reference tables when using the Output Delivery System (ODS). These
names are listed in the following table. For more information on ODS, seeChapter
14, “Using the Output Delivery System.”

Table 45.3. ODS Tables Produced in PROC MIANALYZE

ODS Table Name Description Statement Option
BCov Between-imputation covariance matrix BCOV
ModelInfo Model information
MultStat Multivariate inference MULT
ParameterEstimates Parameter estimates
TCov Total covariance matrix TCOV
TestBCov Between-imputation covariance matrix forLβ TEST BCOV
TestMultStat Multivariate inference forLβ TEST MULT
TestParameterEstimates Parameter estimates forLβ TEST
TestSpec Test specification,L andc TEST
TestTCov Total covariance matrix forLβ TEST TCOV
TestVarianceInfo Variance information forLβ TEST
TestWCov Within-imputation covariance matrix forLβ TEST WCOV
VarianceInfo Variance information
WCov Within-imputation covariance matrix WCOV

Examples

The following statements generate five imputed data sets to be used in this section.
The data setFitMiss was created in the section“Getting Started”on page 2610. See
“The MI Procedure” chapter for details concerning the MI procedure.

proc mi data=FitMiss seed=3237851 noprint out=outmi;
var Oxygen RunTime RunPulse;

run;

TheFish data described in the STEPDISC procedure are measurements of 159 fish
of seven species caught in Finland’s lake Laengelmavesi. For each fish, the length,
height, and width are measured. Three different length measurements are recorded:
from the nose of the fish to the beginning of its tail (Length1), from the nose to the
notch of its tail (Length2), and from the nose to the end of its tail (Length3). See
Chapter 67, “The STEPDISC Procedure,”for more information.

TheFish2 data set is constructed from theFish data set and contains two species of
fish. Some values have been set to missing and the resulting data set has a monotone
missing pattern in variablesLength3, Height, Width, andSpecies. Note that some
values of the variableSpecies have also been altered in the data set.
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The following statements create theFish2 data set. It contains the first two species
of fish in theFish data set.

/*-------- Fishes of Species Bream and Parkki Pike --------*/
data Fish2 (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Species $ Length3 HtPct WidthPct @@;
Height= HtPct*Length3/100;
Width= WidthPct*Length3/100;
datalines;
Gp1 30.0 38.4 13.4 Gp1 31.2 40.0 13.8 Gp1 31.1 39.8 15.1

. 33.5 38.0 . . 34.0 36.6 15.1 Gp1 34.7 39.2 14.2
Gp1 34.5 41.1 15.3 Gp1 35.0 36.2 13.4 Gp1 35.1 39.9 13.8

. 36.2 39.3 13.7 Gp1 36.2 39.4 14.1 . 36.2 39.7 13.3
Gp1 36.4 37.8 12.0 . 37.3 37.3 13.6 Gp1 37.2 40.2 13.9
Gp1 37.2 41.5 15.0 Gp1 38.3 38.8 13.8 Gp1 38.5 38.8 13.5
Gp1 38.6 40.5 13.3 Gp1 38.7 37.4 14.8 Gp1 39.5 38.3 14.1
Gp1 39.2 40.8 13.7 . 39.7 39.1 . Gp1 40.6 38.1 15.1
Gp1 40.5 40.1 13.8 Gp1 40.9 40.0 14.8 Gp1 40.6 40.3 15.0
Gp1 41.5 39.8 14.1 Gp2 41.6 40.6 14.9 Gp1 42.6 44.5 15.5
Gp1 44.1 40.9 14.3 Gp1 44.0 41.1 14.3 Gp1 45.3 41.4 14.9
Gp1 45.9 40.6 14.7 Gp1 46.5 37.9 13.7
Gp2 16.2 25.6 14.0 Gp2 20.3 26.1 13.9 Gp2 21.2 26.3 13.7
Gp2 22.2 25.3 14.3 Gp2 22.2 28.0 16.1 Gp2 22.8 28.4 14.7
Gp2 23.1 26.7 14.7 . 23.7 25.8 13.9 Gp2 24.7 23.5 15.2
Gp1 24.3 27.3 14.6 Gp2 25.3 27.8 15.1 Gp2 25.0 26.2 13.3
Gp2 25.0 25.6 15.2 Gp2 27.2 27.7 14.1 Gp2 26.7 25.9 13.6

. 26.8 27.6 15.4 Gp2 27.9 25.4 14.0 Gp2 29.2 30.4 15.4
Gp2 30.6 28.0 15.6 Gp2 35.0 27.1 15.3
;

The following statements generate five imputed data sets to be used in this section.
The regression method is used to impute missing values in the variableWidth and
the discriminant function method is used to impute the variableSpecies.

proc mi data=Fish2 seed=1305417 out=outfish;
class Species;
monotone reg (Width)

discrim( Species= Length3 Height Width);
var Length3 Height Width Species;

run;

Examples 1-6 use different input option combinations to combine parameter esti-
mates computed from different procedures, Examples 7-8 combine parameter esti-
mates with CLASS variables, Example 9 shows the use of a TEST statement, and
Example 10 combines statistics that are not directly derived from procedures.
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Example 45.1. Reading Means and Standard Errors from
Variables in a DATA= Data Set

This example creates an ordinary SAS data set that contains sample means and stan-
dard errors computed from imputed data sets. These estimates are then combined to
generate valid univariate inferences about the population means.

The following statements use the UNIVARIATE procedure to generate sample means
and standard errors for the variables in each imputed data set.

proc univariate data=outmi noprint;
var Oxygen RunTime RunPulse;
output out=outuni mean=Oxygen RunTime RunPulse

stderr=SOxygen SRunTime SRunPulse;
by _Imputation_;

run;

The following statements display the output data set from PROC UNIVARIATE in
Output 45.1.1:

proc print data=outuni;
title ’UNIVARIATE Means and Standard Errors’;

run;

Output 45.1.1. UNIVARIATE Output Data Set

UNIVARIATE Means and Standard Errors

Run SRun SRun
Obs _Imputation_ Oxygen RunTime Pulse SOxygen Time Pulse

1 1 47.0120 10.4441 171.216 0.95984 0.28520 1.59910
2 2 47.2407 10.5040 171.244 0.93540 0.26661 1.75638
3 3 47.4995 10.5922 171.909 1.00766 0.26302 1.85795
4 4 47.1485 10.5279 171.146 0.95439 0.26405 1.75011
5 5 47.0042 10.4913 172.072 0.96528 0.27275 1.84807

The following statements combine the means and standard errors from imputed data
sets, The EDF= option requests that the adjusted degrees of freedom be used in the
analysis. For sample means based on 31 observations, the complete-data error de-
grees of freedom is 30.

proc mianalyze data=outuni edf=30;
modeleffects Oxygen RunTime RunPulse;
stderr SOxygen SRunTime SRunPulse;

run;
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Output 45.1.2. Multiple Imputation Variance Information

The MIANALYZE Procedure

Model Information

Data Set WORK.OUTUNI
Number of Imputations 5

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

Oxygen 0.041478 0.930853 0.980626 26.298
RunTime 0.002948 0.073142 0.076679 26.503
RunPulse 0.191086 3.114442 3.343744 25.463

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

Oxygen 0.053471 0.051977 0.989712
RunTime 0.048365 0.047147 0.990659
RunPulse 0.073626 0.070759 0.986046

The “Model Information” table shown inOutput 45.1.2lists the input data set(s) and
the number of imputations.

The “Multiple Imputation Variance Information” table shown inOutput 45.1.2dis-
plays the between-imputation variance, within-imputation variance, and total vari-
ance for each univariate inference. It also displays the degrees of freedom for
the total variance. The relative increase in variance due to missing values, the
fraction of missing information, and the relative efficiency for each imputed vari-
able are also displayed. A detailed description of these statistics is provided in
the “Combining Inferences from Imputed Data Sets”section on page 2624 and the
“Multiple Imputation Efficiency”section on page 2626.
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Output 45.1.3. Multiple Imputation Parameter Estimates

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

Oxygen 47.180993 0.990266 45.1466 49.2154 26.298
RunTime 10.511906 0.276910 9.9432 11.0806 26.503
RunPulse 171.517500 1.828591 167.7549 175.2801 25.463

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

Oxygen 47.004201 47.499541
RunTime 10.444149 10.592244
RunPulse 171.146171 172.071730

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

Oxygen 0 47.64 <.0001
RunTime 0 37.96 <.0001
RunPulse 0 93.80 <.0001

The “Multiple Imputation Parameter Estimates” table shown inOutput 45.1.3dis-
plays the estimated mean and corresponding standard error for each variable. The
table also displays a 95% confidence interval for the mean and at statistic with the
associatedp-value for testing the hypothesis that the mean is equal to the value spec-
ified. You can use the THETA0= option to specify the value for the null hypothesis,
which is zero by default. The table also displays the minimum and maximum param-
eter estimates from the imputed data sets.

Note that the results in this example could also have been obtained with the MI pro-
cedure.

Example 45.2. Reading Means and Covariance Matrices from
a DATA= COV Data Set

This example creates a COV type data set that contains sample means and covariance
matrices computed from imputed data sets. These estimates are then combined to
generate valid statistical inferences about the population means.

The following statements use the CORR procedure to generate sample means and a
covariance matrix for the variables in each imputed data set.

proc corr data=outmi cov nocorr noprint out=outcov(type=cov);
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

The following statements display sample means and covariance matrices from the
first two imputed data sets inOutput 45.2.1.
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proc print data=outcov(obs=12);
title ’CORR Means and Covariance Matrices’

’ (First Two Imputations)’;
run;

Output 45.2.1. COV Data Set

CORR Means and Covariance Matrices (First Two Imputations)

Obs _Imputation_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 1 COV Oxygen 28.5603 -7.2652 -11.812
2 1 COV RunTime -7.2652 2.5214 2.536
3 1 COV RunPulse -11.8121 2.5357 79.271
4 1 MEAN 47.0120 10.4441 171.216
5 1 STD 5.3442 1.5879 8.903
6 1 N 31.0000 31.0000 31.000
7 2 COV Oxygen 27.1240 -6.6761 -10.217
8 2 COV RunTime -6.6761 2.2035 2.611
9 2 COV RunPulse -10.2170 2.6114 95.631

10 2 MEAN 47.2407 10.5040 171.244
11 2 STD 5.2081 1.4844 9.779
12 2 N 31.0000 31.0000 31.000

Note that the covariance matrices in the data setoutcov are estimated covariance
matrices of variables,V (y). The estimated covariance matrix of the sample means
is V (y) = V (y)/n, wheren is the sample size, and is not the same as an estimated
covariance matrix for variables.

The following statements combine the results for the imputed data sets, and derive
both univariate and multivariate inferences about the means. The EDF= option is
specified to request that the adjusted degrees of freedom be used in the analysis. For
sample means based on 31 observations, the complete-data error degrees of freedom
is 30.

proc mianalyze data=outcov edf=30 wcov bcov tcov mult;
modeleffects Oxygen RunTime RunPulse;

run;

The “Multiple Imputation Variance Information” and “Multiple Imputation
Parameter Estimates” tables display the same results as inOutput 45.1.2andOutput
45.1.3in Example 45.1.

With the WCOV, BCOV, and TCOV options, the procedure displays the between-
imputation covariance matrix, within-imputation covariance matrix, and total covari-
ance matrix assuming that the between-imputation covariance matrix is proportional
to the within-imputation covariance matrix inOutput 45.2.2.
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Output 45.2.2. Covariance Matrices

The MIANALYZE Procedure

Within-Imputation Covariance Matrix

Oxygen RunTime RunPulse

Oxygen 0.930852655 -0.226506411 -0.461022083
RunTime -0.226506411 0.073141598 0.080316017
RunPulse -0.461022083 0.080316017 3.114441784

Between-Imputation Covariance Matrix

Oxygen RunTime RunPulse

Oxygen 0.0414778123 0.0099248946 0.0183701754
RunTime 0.0099248946 0.0029478891 0.0091684769
RunPulse 0.0183701754 0.0091684769 0.1910855259

Total Covariance Matrix

Oxygen RunTime RunPulse

Oxygen 1.202882661 -0.292700068 -0.595750001
RunTime -0.292700068 0.094516313 0.103787365
RunPulse -0.595750001 0.103787365 4.024598310

With the MULT option, the procedure assumes that the between-imputation covari-
ance matrix is proportional to the within-imputation covariance matrix and displays
a multivariate inference for all the parameters taken jointly.

Output 45.2.3. Multiple Imputation Multivariate Inference

The MIANALYZE Procedure

Multiple Imputation Multivariate Inference
Assuming Proportionality of Between/Within Covariance Matrices

Avg Relative
Increase F for H0:

in Variance Num DF Den DF Parameter=Theta0 Pr > F

0.292237 3 122.68 12519.7 <.0001

The “Multiple Imputation Multivariate Inference” table displayed inOutput 45.2.3
shows a significantp-value for the null hypothesis that the population means are all
equal to zero.
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Example 45.3. Reading Regression Results from a DATA= EST
Data Set

This example creates an EST type data set that contains regression coefficients and
their corresponding covariance matrices computed from imputed data sets. These es-
timates are then combined to generate valid statistical inferences about the regression
model.

The following statements use the REG procedure to generate regression coefficients:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements display regression coefficients and their covariance matri-
ces from the first two imputed data sets inOutput 45.3.1.

proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_

Intercept RunTime RunPulse;
title ’REG Model Coefficients and Covariance matrices’

’ (First Two Imputations)’;
run;

Output 45.3.1. EST Type Data Set

REG Model Coefficients and Covariance matrices (First Two Imputations)

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse

1 1 PARMS 86.544 -2.82231 -0.05873
2 1 COV Intercept 100.145 -0.53519 -0.55077
3 1 COV RunTime -0.535 0.10774 -0.00345
4 1 COV RunPulse -0.551 -0.00345 0.00343
5 2 PARMS 83.021 -3.00023 -0.02491
6 2 COV Intercept 79.032 -0.66765 -0.41918
7 2 COV RunTime -0.668 0.11456 -0.00313
8 2 COV RunPulse -0.419 -0.00313 0.00264

The following statements combine the results for the imputed data sets. The EDF=
option is specified to request that the adjusted degrees of freedom be used in the
analysis. For a regression model with three independent variables (including the
Intercept) and 31 observations, the complete-data error degrees of freedom is 28.

proc mianalyze data=outreg edf=28;
modeleffects Intercept RunTime RunPulse;

run;
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Output 45.3.2. Multiple Imputation Variance Information

The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

Intercept 45.529229 76.543614 131.178689 9.1917
RunTime 0.019390 0.106220 0.129487 18.311
RunPulse 0.001007 0.002537 0.003746 12.137

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

Intercept 0.713777 0.461277 0.915537
RunTime 0.219051 0.192620 0.962905
RunPulse 0.476384 0.355376 0.933641

The “Multiple Imputation Variance Information” table shown inOutput 45.3.2dis-
plays the between-imputation, within-imputation, and total variances for combining
complete-data inferences.

Output 45.3.3. Multiple Imputation Parameter Estimates

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

Intercept 90.837440 11.453327 65.01034 116.6645 9.1917
RunTime -3.032870 0.359844 -3.78795 -2.2778 18.311
RunPulse -0.068578 0.061204 -0.20176 0.0646 12.137

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

Intercept 83.020730 100.839807
RunTime -3.204426 -2.822311
RunPulse -0.112840 -0.024910

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

Intercept 0 7.93 <.0001
RunTime 0 -8.43 <.0001
RunPulse 0 -1.12 0.2842
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The “Multiple Imputation Parameter Estimates” table shown inOutput 45.3.3dis-
plays the estimated mean and standard error of the regression coefficients. The infer-
ences are based on thet distribution. The table also displays a 95% mean confidence
interval and at test with the associatedp-value for the hypothesis that the regression
coefficient is equal to zero. Since thep-value forRunPulse is 0.1597, this variable
can be removed from the regression model.

Example 45.4. Reading Mixed Model Results from PARMS=
and COVB= Data Sets

This example creates data sets containing parameter estimates and covariance ma-
trices computed by a mixed model analysis for a set of imputed data sets. These
estimates are then combined to generate valid statistical inferences about the param-
eters.

The following PROC MIXED statements generate the fixed-effect parameter esti-
mates and covariance matrix for each imputed data set:

proc mixed data=outmi;
model Oxygen= RunTime RunPulse RunTime*RunPulse/solution covb;
by _Imputation_;
ods output SolutionF=mixparms CovB=mixcovb;

run;

The following statements display parameter estimates from the first two imputed data
sets inOutput 45.4.1.

proc print data=mixparms (obs=8);
var _Imputation_ Effect Estimate StdErr;
title ’MIXED Model Coefficients (First Two Imputations)’;

run;

Output 45.4.1. PROC MIXED Model Coefficients

MIXED Model Coefficients (First Two Imputations)

Obs _Imputation_ Effect Estimate StdErr

1 1 Intercept 148.09 81.5231
2 1 RunTime -8.8115 7.8794
3 1 RunPulse -0.4123 0.4684
4 1 RunTime*RunPulse 0.03437 0.04517
5 2 Intercept 64.3607 64.6034
6 2 RunTime -1.1270 6.4307
7 2 RunPulse 0.08160 0.3688
8 2 RunTime*RunPulse -0.01069 0.03664

The following statements display the covariance matrices associated with the param-
eter estimates from the first two imputed data sets inOutput 45.4.2. Note that the
variablesCol1, Col2, Col3, and Col4 are used to identify the effectsIntercept,
RunTime, RunPulse, andRunTime*RunPulse through the variableRow.
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proc print data=mixcovb (obs=8);
var _Imputation_ Row Effect Col1 Col2 Col3 Col4;
title ’Covariance Matrices (First Two Imputations)’;

run;

Output 45.4.2. PROC MIXED Covariance Matrices

Covariance Matrices (First Two Imputations)

Obs _Imputation_ Row Effect Col1 Col2 Col3 Col4

1 1 1 Intercept 6646.01 -637.40 -38.1515 3.6542
2 1 2 RunTime -637.40 62.0842 3.6548 -0.3556
3 1 3 RunPulse -38.1515 3.6548 0.2194 -0.02099
4 1 4 RunTime*RunPulse 3.6542 -0.3556 -0.02099 0.002040
5 2 1 Intercept 4173.59 -411.46 -23.7889 2.3441
6 2 2 RunTime -411.46 41.3545 2.3414 -0.2353
7 2 3 RunPulse -23.7889 2.3414 0.1360 -0.01338
8 2 4 RunTime*RunPulse 2.3441 -0.2353 -0.01338 0.001343

For univariate inference, only parameter estimates and their associated standard errors
are needed. The following statements use the MIANALYZE procedure with the input
PARMS= data set to produce univariate results.

proc mianalyze parms=mixparms edf=28;
modeleffects Intercept RunTime RunPulse RunTime*RunPulse;

run;

Output 45.4.3. Multiple Imputation Variance Information

The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

Intercept 1972.654530 4771.948777 7139.134213 11.82
RunTime 14.712602 45.549686 63.204808 13.797
RunPulse 0.062941 0.156717 0.232247 12.046
RunTime*RunPulse 0.000470 0.001490 0.002055 13.983

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

Intercept 0.496063 0.365524 0.931875
RunTime 0.387601 0.305893 0.942348
RunPulse 0.481948 0.358274 0.933136
RunTime*RunPulse 0.378863 0.300674 0.943276
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The “Multiple Imputation Variance Information” table shown inOutput 45.4.3dis-
plays the between-imputation, within-imputation, and total variances for combining
complete-data inferences.

Output 45.4.4. Multiple Imputation Parameter Estimates

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

Intercept 136.071356 84.493397 -48.3352 320.4779 11.82
RunTime -7.457186 7.950145 -24.5322 9.6178 13.797
RunPulse -0.328104 0.481920 -1.3777 0.7215 12.046
RunTime*RunPulse 0.025364 0.045328 -0.0719 0.1226 13.983

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

Intercept 64.360719 186.549814
RunTime -11.514341 -1.127010
RunPulse -0.602162 0.081597
RunTime*RunPulse -0.010690 0.047429

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

Intercept 0 1.61 0.1337
RunTime 0 -0.94 0.3644
RunPulse 0 -0.68 0.5089
RunTime*RunPulse 0 0.56 0.5846

The “Multiple Imputation Parameter Estimates” table shown inOutput 45.4.4dis-
plays the estimated mean and standard error of the regression coefficients.

Since each covariance matrix contains variablesRow, Col1, Col2, Col3, andCol4
for parameters, the EFFECTVAR=ROWCOL option is needed when specifying the
COVB= option. The following statements illustrate the use of the MIANALYZE
procedure with input PARMS= and COVB(EFFECTVAR=ROWCOL)= data sets:

proc mianalyze parms=mixparms edf=28
covb(effectvar=rowcol)=mixcovb;

modeleffects Intercept RunTime RunPulse RunTime*RunPulse;
run;
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Example 45.5. Reading Generalized Linear Model Results
from PARMS=, PARMINFO=, and COVB= Data
Sets

This example creates data sets containing parameter estimates and corresponding
covariance matrices computed by a generalized linear model analysis for a set of
imputed data sets. These estimates are then combined to generate valid statistical
inferences about the model parameters.

The following statements use PROC GENMOD to generate the parameter estimates
and covariance matrix for each imputed data set:

proc genmod data=outmi;
model Oxygen= RunTime RunPulse/covb;
by _Imputation_;
ods output ParameterEstimates=gmparms

ParmInfo=gmpinfo
CovB=gmcovb;

run;

The following statements print parameter estimates and covariance matrix from the
first two imputed data sets inOutput 45.5.1.

proc print data=gmparms (obs=8);
var _Imputation_ Parameter Estimate StdErr;
title ’GENMOD Model Coefficients (First Two Imputations)’;

run;

Output 45.5.1. PROC GENMOD Model Coefficients

GENMOD Model Coefficients (First Two Imputations)

Obs _Imputation_ Parameter Estimate StdErr

1 1 Intercept 86.5440 9.5107
2 1 RunTime -2.8223 0.3120
3 1 RunPulse -0.0587 0.0556
4 1 Scale 2.6692 0.3390
5 2 Intercept 83.0207 8.4489
6 2 RunTime -3.0002 0.3217
7 2 RunPulse -0.0249 0.0488
8 2 Scale 2.5727 0.3267
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The following statements display the parameter information table inOutput 45.5.2.
The table identifies parameter names used in the covariance matrices. The parameters
Prm1, Prm2, andPrm3 are used for effectsIntercept, RunTime, andRunPulse
in each covariance matrix.

proc print data=gmpinfo (obs=6);
title ’GENMOD Parameter Information (First Two Imputations)’;

run;

Output 45.5.2. PROC GENMOD Model Information

GENMOD Parameter Information (First Two Imputations)

Obs _Imputation_ Parameter Effect

1 1 Prm1 Intercept
2 1 Prm2 RunTime
3 1 Prm3 RunPulse
4 2 Prm1 Intercept
5 2 Prm2 RunTime
6 2 Prm3 RunPulse

The following statements display the covariance matrices from the first two imputed
data sets inOutput 45.5.3. Note that the GENMOD procedure computes maximum
likelihood estimates for each covariance matrix.

proc print data=gmcovb (obs=8);
var _Imputation_ RowName Prm1 Prm2 Prm3;
title ’GENMOD Covariance Matrices (First Two Imputations)’;

run;

Output 45.5.3. PROC GENMOD Covariance Matrices

GENMOD Covariance Matrices (First Two Imputations)

Row
Obs _Imputation_ Name Prm1 Prm2 Prm3

1 1 Prm1 90.453923 -0.483394 -0.497473
2 1 Prm2 -0.483394 0.0973159 -0.003113
3 1 Prm3 -0.497473 -0.003113 0.0030954
4 1 Scale 2.765E-17 -3.05E-17 2.759E-18
5 2 Prm1 71.383332 -0.603037 -0.378616
6 2 Prm2 -0.603037 0.1034766 -0.002826
7 2 Prm3 -0.378616 -0.002826 0.0023843
8 2 Scale 1.132E-14 2.181E-16 -7.62E-17

The following statements use the MIANALYZE procedure with input PARMS=,
PARMINFO=, and COVB= data sets:
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proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo;
modeleffects Intercept RunTime RunPulse;

run;

Since the GENMOD procedure computes maximum likelihood estimates for the co-
variance matrix, the EDF= option is not used. The resulting model coefficients are
identical to the estimates inExample 45.3in Output 45.3.3but the standard errors
are slightly different because in this example, maximum likelihood estimates for the
standard errors are combined without the EDF= option, whereas inExample 45.3,
unbiased estimates for the standard errors are combined with the EDF= option.

Example 45.6. Reading GLM Results from PARMS= and XPXI=
Data Sets

This example creates data sets containing parameter estimates and corresponding
(X ′X)−1 matrices computed by a general linear model analysis for a set of imputed
data sets. These estimates are then combined to generate valid statistical inferences
about the model parameters.

The following statements use PROC GLM to generate the parameter estimates and
(X ′X)−1 matrix for each imputed data set:

proc glm data=outmi;
model Oxygen= RunTime RunPulse/inverse;
by _Imputation_;
ods output ParameterEstimates=glmparms

InvXPX=glmxpxi;
quit;

The following statements display parameter estimates and standard errors from im-
puted data sets inOutput 45.6.1.

proc print data=glmparms (obs=6);
var _Imputation_ Parameter Estimate StdErr;
title ’GLM Model Coefficients (First Two Imputations)’;

run;

Output 45.6.1. PROC GLM Model Coefficients

GLM Model Coefficients (First Two Imputations)

Obs _Imputation_ Parameter Estimate StdErr

1 1 Intercept 86.5440339 10.00726811
2 1 RunTime -2.8223108 0.32824165
3 1 RunPulse -0.0587292 0.05854109
4 2 Intercept 83.0207303 8.88996885
5 2 RunTime -3.0002288 0.33847204
6 2 RunPulse -0.0249103 0.05137859



2646 � Chapter 45. The MIANALYZE Procedure

The following statements display(X ′X)−1 matrices from imputed data sets in
Output 45.6.2.

proc print data=glmxpxi (obs=8);
var _Imputation_ Parameter Intercept RunTime RunPulse;
title ’GLM X’’X Inverse Matrices (First Two Imputations)’;

run;

Output 45.6.2. PROC GLM (X ′X)−1 Matrices

GLM X’X Inverse Matrices (First Two Imputations)

Obs _Imputation_ Parameter Intercept RunTime RunPulse

1 1 Intercept 12.696250656 -0.067849956 -0.069826009
2 1 RunTime -0.067849956 0.0136594055 -0.000436938
3 1 RunPulse -0.069826009 -0.000436938 0.0004344762
4 1 Oxygen 86.544033929 -2.822310769 -0.058729234
5 2 Intercept 10.784620785 -0.091107072 -0.057201387
6 2 RunTime -0.091107072 0.0156332765 -0.000426902
7 2 RunPulse -0.057201387 -0.000426902 0.0003602208
8 2 Oxygen 83.020730343 -3.000228818 -0.024910305

The standard errors for the estimates in the outputglmparms data set are needed to
create the covariance matrix from the(X ′X)−1 matrix. The following statements use
the MIANALYZE procedure with input PARMS= and XPXI= data sets to produce the
same results as displayed inExample 45.3in Output 45.3.2andOutput 45.3.3:

proc mianalyze parms=glmparms xpxi=glmxpxi edf=28;
modeleffects Intercept RunTime RunPulse;

run;

Example 45.7. Reading Logistic Model Results from PARMS=
and COVB= Data Sets

This example creates data sets containing parameter estimates and corresponding co-
variance matrices computed by a logistic regression analysis for a set of imputed data
sets. These estimates are then combined to generate valid statistical inferences about
the model parameters.

The following statements use PROC LOGISTIC to generate the parameter estimates
and covariance matrix for each imputed data set.

proc logistic data=outfish;
class Species;
model Species= Height Width Height*Width/ covb;
by _Imputation_;
ods output ParameterEstimates=lgsparms

CovB=lgscovb;
run;
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The following statements displays the logistic regression coefficients from the first
two imputations inOutput 45.7.1.

proc print data=lgsparms (obs=8);
title ’LOGISTIC Model Coefficients (First Two Imputations)’;

run;

Output 45.7.1. PROC LOGISTIC Model Coefficients

LOGISTIC Model Coefficients (First Two Imputations)

Prob
Obs _Imputation_ Variable DF Estimate StdErr WaldChiSq ChiSq

1 1 Intercept 1 -4.2188 7.8679 0.2875 0.5918
2 1 Height 1 2.4568 1.0579 5.3929 0.0202
3 1 Width 1 -3.3480 2.8541 1.3761 0.2408
4 1 Height*Width 1 -0.1331 0.1441 0.8527 0.3558
5 2 Intercept 1 -10.9235 9.1880 1.4135 0.2345
6 2 Height 1 3.1578 1.5208 4.3116 0.0379
7 2 Width 1 -1.7683 2.9749 0.3533 0.5522
8 2 Height*Width 1 -0.2714 0.1892 2.0575 0.1515

The following statements displays the covariance matrices associated with parameter
estimates from the first two imputations inOutput 45.7.2.

proc print data=lgscovb (obs=8);
title ’LOGISTIC Model Covariance Matrices (First Two Imputations)’;

run;

Output 45.7.2. PROC LOGISTIC Covariance Matrices

LOGISTIC Model Covariance Matrices (First Two Imputations)

Height
Obs _Imputation_ Parameter Intercept Height Width Width

1 1 Intercept 61.90439 -2.39611 -18.8182 0.923732
2 1 Height -2.39611 1.119218 -0.76837 -0.11322
3 1 Width -18.8182 -0.76837 8.145619 -0.18386
4 1 HeightWidth 0.923732 -0.11322 -0.18386 0.020762
5 2 Intercept 84.41847 -5.94636 -20.9352 1.389396
6 2 Height -5.94636 2.312748 -1.08263 -0.24839
7 2 Width -20.9352 -1.08263 8.849757 -0.1547
8 2 HeightWidth 1.389396 -0.24839 -0.1547 0.035796
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The following statements use the MIANALYZE procedure with input PARMS= and
COVB= data sets.

proc mianalyze parms=lgsparms
covb(effectvar=stacking)=lgscovb;

modeleffects Intercept Height Width Height*Width;
run;

Output 45.7.3. Multiple Imputation Variance Information

The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

Intercept 15.218807 70.592292 88.854861 94.689
Height 0.181361 1.626663 1.844296 287.26
Width 0.804258 8.428402 9.393511 378.93
Height*Width 0.006765 0.026888 0.035006 74.37

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

Intercept 0.258705 0.221798 0.957525
Height 0.133791 0.124081 0.975785
Width 0.114507 0.107441 0.978964
Height*Width 0.301942 0.251772 0.952060

The “Multiple Imputation Variance Information” table shown inOutput 45.7.3dis-
plays the between-imputation, within-imputation, and total variances for combining
complete-data inferences.
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Output 45.7.4. Multiple Imputation Parameter Estimates

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

Intercept -7.085702 9.426286 -25.8000 11.62863 94.689
Height 2.757779 1.358049 0.0848 5.43077 287.26
Width -2.678006 3.064884 -8.7043 3.34830 378.93
Height*Width -0.191947 0.187099 -0.5647 0.18083 74.37

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

Intercept -11.769173 -4.203658
Height 2.439954 3.285454
Width -3.349258 -1.626538
Height*Width -0.291998 -0.131535

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

Intercept 0 -0.75 0.4541
Height 0 2.03 0.0432
Width 0 -0.87 0.3828
Height*Width 0 -1.03 0.3083

The “Multiple Imputation Parameter Estimates” table shown inOutput 45.7.4dis-
plays the combined parameter estimates with associated standard errors.

Example 45.8. Reading Mixed Model Results with CLASS
Variables

This example creates data sets containing parameter estimates and corresponding
covariance matrices with CLASS variables computed by a mixed regression model
analysis for a set of imputed data sets. These estimates are then combined to generate
valid statistical inferences about the model parameters.

The following statements use PROC MIXED to generate the parameter estimates and
covariance matrix for each imputed data set:

proc mixed data=outfish;
class Species;
model Length3= Species Height Width/ solution covb;
by _Imputation_;
ods output SolutionF=mxparms CovB=mxcovb;

run;
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The following statements displays the mixed model coefficients from the first two
imputations inOutput 45.8.1.

proc print data=mxparms (obs=10);
var _Imputation_ Effect Species Estimate StdErr;
title ’MIXED Model Coefficients (First Two Imputations)’;

run;

Output 45.8.1. PROC MIXED Model Coefficients

MIXED Model Coefficients (First Two Imputations)

Obs _Imputation_ Effect Species Estimate StdErr

1 1 Intercept 6.8381 1.0290
2 1 Species Gp1 -0.05924 0.7253
3 1 Species Gp2 0 .
4 1 Height 0.9185 0.1732
5 1 Width 3.2526 0.5321
6 2 Intercept 6.9417 0.9868
7 2 Species Gp1 -0.3178 0.7290
8 2 Species Gp2 0 .
9 2 Height 0.9544 0.1683

10 2 Width 3.1697 0.5079

The following statements use the MIANALYZE procedure with input PARMS= data
set.

proc mianalyze parms(classvar=full)=mxparms;
class Species;
modeleffects Intercept Species Height Width;

run;
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Output 45.8.2. Multiple Imputation Variance Information

The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Species Between Within Total DF

Intercept 0.013257 1.017462 1.033370 16879
Species Gp1 0.068045 0.519627 0.601281 216.9
Species Gp2 0 . . .
Height 0.002691 0.028993 0.032222 398.26
Width 0.014947 0.270396 0.288332 1033.6

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter Species in Variance Information Efficiency

Intercept 0.015635 0.015511 0.996907
Species Gp1 0.157139 0.143659 0.972071
Species Gp2 . . .
Height 0.111380 0.104703 0.979489
Width 0.066334 0.064017 0.987358

The “Multiple Imputation Variance Information” table shown inOutput 45.8.2dis-
plays the between-imputation, within-imputation, and total variances for combining
complete-data inferences.
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Output 45.8.3. Multiple Imputation Parameter Estimates

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Species Estimate Std Error 95% Confidence Limits DF

Intercept 6.844098 1.016548 4.85156 8.836638 16879
Species Gp1 -0.184298 0.775423 -1.71263 1.344030 216.9
Species Gp2 0 . . . .
Height 0.928624 0.179506 0.57573 1.281522 398.26
Width 3.237105 0.536966 2.18344 4.290772 1033.6

Multiple Imputation Parameter Estimates

Parameter Species Minimum Maximum

Intercept 6.713049 6.976758
Species Gp1 -0.580012 0.033160
Species Gp2 0 0
Height 0.879314 1.004623
Width 3.064954 3.360809

Multiple Imputation Parameter Estimates

t for H0:
Parameter Species Theta0 Parameter=Theta0 Pr > |t|

Intercept 0 6.73 <.0001
Species Gp1 0 -0.24 0.8124
Species Gp2 0 . .
Height 0 5.17 <.0001
Width 0 6.03 <.0001

The “Multiple Imputation Parameter Estimates” table shown inOutput 45.8.3dis-
plays the combined parameter estimates with associated standard errors.

Example 45.9. Using a TEST statement

This example creates an EST type data set that contains regression coefficients and
their corresponding covariance matrices computed from imputed data sets. These es-
timates are then combined to generate valid statistical inferences about the regression
model. A TEST statement is used to test linear hypotheses about the parameters.

The following statements use the REG procedure to generate regression coefficients:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements combine the results for the imputed data sets. A TEST
statement is used to test linear hypotheses of Intercept=0 and RunTime=RunPulse.



Example 45.9. Using a TEST statement � 2653

proc mianalyze data=outreg edf=28;
modeleffects Intercept RunTime RunPulse;
test Intercept, RunTime=RunPulse / mult;

run;

Output 45.9.1. Test Specification

The MIANALYZE Procedure
Test: Test 1

Test Specification

------------------L Matrix------------------
Parameter Intercept RunTime RunPulse C

TestPrm1 1.000000 0 0 0
TestPrm2 0 1.000000 -1.000000 0

The “Test Specification” table shown inOutput 45.9.1displays theL matrix and thec
vector in a TEST statement. Since there is no label specified for the TEST statement,
“Test 1” is used as the label.

Output 45.9.2. Multiple Imputation Variance Information

The MIANALYZE Procedure
Test: Test 1

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

TestPrm1 45.529229 76.543614 131.178689 9.1917
TestPrm2 0.014715 0.114324 0.131983 20.598

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

TestPrm1 0.713777 0.461277 0.915537
TestPrm2 0.154459 0.141444 0.972490

The “Multiple Imputation Variance Information” table shown inOutput 45.9.2dis-
plays the between-imputation variance, within-imputation variance, and total vari-
ance for each univariate inference. A detailed description of these statistics is pro-
vided in the“Combining Inferences from Imputed Data Sets”section on page 2624
and the“Multiple Imputation Efficiency”section on page 2626.
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Output 45.9.3. Multiple Imputation Parameter Estimates

The MIANALYZE Procedure
Test: Test 1

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

TestPrm1 90.837440 11.453327 65.01034 116.6645 9.1917
TestPrm2 -2.964292 0.363294 -3.72070 -2.2079 20.598

Multiple Imputation Parameter Estimates

t for H0:
Parameter Minimum Maximum C Parameter=C Pr > |t|

TestPrm1 83.020730 100.839807 0 7.93 <.0001
TestPrm2 -3.091586 -2.763582 0 -8.16 <.0001

The “Multiple Imputation Parameter Estimates” table shown inOutput 45.9.3dis-
plays the estimated mean and standard error of the linear components. The infer-
ences are based on thet distribution. The table also displays a 95% mean confidence
interval and at test with the associatedp-value for the hypothesis that each linear
component ofLβ is equal to zero.

With the MULT option, the procedure assumes that the between-imputation covari-
ance matrix is proportional to the within-imputation covariance matrix and displays
a multivariate inference for all the linear components taken jointly inOutput 45.9.4.

Output 45.9.4. Multiple Imputation Multivariate Inference

The MIANALYZE Procedure
Test: Test 1

Multiple Imputation Multivariate Inference
Assuming Proportionality of Between/Within Covariance Matrices

Avg Relative
Increase F for H0:

in Variance Num DF Den DF Parameter=Theta0 Pr > F

0.419868 2 35.053 60.34 <.0001

Example 45.10. Combining Correlation Coefficients

This example combines sample correlation coefficients computed from a set of im-
puted data sets using Fisher’sz transformation.

Fisher’sz transformation of the sample correlationr is

z =
1
2

log
(

1 + r

1− r

)
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The statisticz is approximately normally distributed with mean

log
(

1 + ρ

1− ρ

)

and variance1/(n− 3), whereρ is the population correlation coefficient andn is the
number of observations.

The following statements use the CORR procedure to compute the correlationr and
its associated Fisher’sz statistic between variablesOxygen andRunTime for each
imputed data set. The ODS statement is used to save Fisher’sz statistic in an output
data set.

proc corr data=outmi fisher(biasadj=no);
var Oxygen RunTime;
by _Imputation_;
ods output FisherPearsonCorr= outz;

run;

The following statements display the number of observations and Fisher’sz statistic
for each imputed data set inOutput 45.10.1.

proc print data=outz;
title ’Fisher’’s Correlation Statistics’;
var _Imputation_ NObs ZVal;

run;

Output 45.10.1. Output z Statistics

Fisher’s Correlation Statistics

Obs _Imputation_ NObs ZVal

1 1 31 -1.27869
2 2 31 -1.30715
3 3 31 -1.27922
4 4 31 -1.39243
5 5 31 -1.40146

The following statements generate the standard error associated with thez statistic,
1/
√

n− 3:

data outz;
set outz;
StdZ= 1. / sqrt(NObs-3);

run;
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The following statements use the MIANALYZE procedure to generate a combined
parameter estimatêz and its variance, as shown inOutput 45.10.2. The ODS state-
ment is used to save the parameter estimates in an output data set.

proc mianalyze data=outz;
ods output ParameterEstimates=parms;
modeleffects ZVal;
stderr StdZ;

run;

Output 45.10.2. Combining Fisher’s z statistics

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

ZVal -1.331787 0.200327 -1.72587 -0.93771 330.23

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

ZVal -1.401459 -1.278686

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

ZVal 0 -6.65 <.0001

In addition to the estimate forz, PROC MIANALYZE also generates95% confidence
limits for z, ẑ.025 and ẑ.975. The following statements print the estimate and95%
confidence limits forz in Output 45.10.3.

proc print data=parms;
title ’Parameter Estimates with 95% Confidence Limits’;
var Estimate LCLMean UCLMean;

run;

Output 45.10.3. Parameter Estimates with 95% Confidence Limits

Parameter Estimates with 95% Confidence Limits

Obs Estimate LCLMean UCLMean

1 -1.331787 -1.72587 -0.93771
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An estimate of the correlation coefficient and95% confidence limits are then gen-
erated from the following inverse transformation as described in the“Correlation
Coefficients”section on page 2630

r = tanh(z) =
e2z − 1
e2z + 1

for z = ẑ, ẑ.025, andẑ.975.

The following statements generate and display an estimate of the correlation coeffi-
cient and its95% confidence limits.

data corr_ci;
set parms;
r= tanh( Estimate);
r_lower= tanh( LCLMean);
r_upper= tanh( UCLMean);

run;

proc print data=corr_ci;
title ’Estimated Correlation Coefficient’

’ with 95% Confidence Limits’;
var r r_lower r_upper;

run;

Output 45.10.4. Estimated Correlation Coefficient

Estimated Correlation Coefficient with 95% Confidence Limits

Obs r r_lower r_upper

1 -0.86969 -0.93857 -0.73417
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The MIXED Procedure
Overview

The MIXED procedure fits a variety of mixed linear models to data and enables you
to use these fitted models to make statistical inferences about the data. Amixed linear
modelis a generalization of the standard linear model used in the GLM procedure, the
generalization being that the data are permitted to exhibit correlation and nonconstant
variability. The mixed linear model, therefore, provides you with the flexibility of
modeling not only the means of your data (as in the standard linear model) but their
variances and covariances as well.

The primary assumptions underlying the analyses performed by PROC MIXED are
as follows:

• The data are normally distributed (Gaussian).

• The means (expected values) of the data are linear in terms of a certain set of
parameters.

• The variances and covariances of the data are in terms of a different set of
parameters, and they exhibit a structure matching one of those available in
PROC MIXED.

Since Gaussian data can be modeled entirely in terms of their means and vari-
ances/covariances, the two sets of parameters in a mixed linear model actually spec-
ify the complete probability distribution of the data. The parameters of the mean
model are referred to asfixed-effects parameters, and the parameters of the variance-
covariance model are referred to ascovariance parameters.

The fixed-effects parameters are associated with known explanatory variables, as
in the standard linear model. These variables can be either qualitative (as in the
traditional analysis of variance) or quantitative (as in standard linear regression).
However, the covariance parameters are what distinguishes the mixed linear model
from the standard linear model.

The need for covariance parameters arises quite frequently in applications, the fol-
lowing being the two most typical scenarios:

• The experimental units on which the data are measured can be grouped into
clusters, and the data from a common cluster are correlated.

• Repeated measurements are taken on the same experimental unit, and these
repeated measurements are correlated or exhibit variability that changes.

The first scenario can be generalized to include one set of clusters nested within
another. For example, if students are the experimental unit, they can be clustered into
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classes, which in turn can be clustered into schools. Each level of this hierarchy can
introduce an additional source of variability and correlation. The second scenario
occurs in longitudinal studies, where repeated measurements are taken over time.
Alternatively, the repeated measures could be spatial or multivariate in nature.

PROC MIXED provides a variety of covariance structures to handle the previous two
scenarios. The most common of these structures arises from the use ofrandom-effects
parameters, which are additional unknown random variables assumed to impact the
variability of the data. The variances of the random-effects parameters, commonly
known asvariance components, become the covariance parameters for this particular
structure. Traditional mixed linear models contain both fixed- and random-effects
parameters, and, in fact, it is the combination of these two types of effects that led
to the namemixed model. PROC MIXED fits not only these traditional variance
component models but numerous other covariance structures as well.

PROC MIXED fits the structure you select to the data using the method ofrestricted
maximum likelihood (REML), also known asresidual maximum likelihood. It is here
that the Gaussian assumption for the data is exploited. Other estimation methods
are also available, includingmaximum likelihoodandMIVQUE0. The details behind
these estimation methods are discussed in subsequent sections.

Once a model has been fit to your data, you can use it to draw statistical inferences via
both the fixed-effects and covariance parameters. PROC MIXED computes several
different statistics suitable for generating hypothesis tests and confidence intervals.
The validity of these statistics depends upon the mean and variance-covariance model
you select, so it is important to choose the model carefully. Some of the output from
PROC MIXED helps you assess your model and compare it with others.

Basic Features

PROC MIXED provides easy accessibility to numerous mixed linear models that are
useful in many common statistical analyses. In the style of the GLM procedure,
PROC MIXED fits the specified mixed linear model and produces appropriate statis-
tics.

Some basic features of PROC MIXED are

• covariance structures, including variance components, compound symmetry,
unstructured, AR(1), Toeplitz, spatial, general linear, and factor analytic

• GLM-type grammar, using MODEL, RANDOM, and REPEATED statements
for model specification and CONTRAST, ESTIMATE, and LSMEANS state-
ments for inferences

• appropriate standard errors for all specified estimable linear combinations of
fixed and random effects, and correspondingt- andF-tests

• subject and group effects that enable blocking and heterogeneity, respectively

• REML and ML estimation methods implemented with a Newton-Raphson al-
gorithm
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• capacity to handle unbalanced data

• ability to create a SAS data set corresponding to any table

PROC MIXED uses the Output Delivery System (ODS), a SAS subsystem that pro-
vides capabilities for displaying and controlling the output from SAS procedures.
ODS enables you to convert any of the output from PROC MIXED into a SAS data
set. See the“ODS Table Names”section on page 2752.

Experimental graphics are now available with the MIXED procedure. For more in-
formation, see the“ODS Graphics”section on page 2757.

Notation for the Mixed Model

This section introduces the mathematical notation used throughout this chapter to
describe the mixed linear model. You should be familiar with basic matrix algebra
(refer to Searle 1982). A more detailed description of the mixed model is contained
in the“Mixed Models Theory”section on page 2731.

A statistical model is a mathematical description of how data are generated. The
standard linear model, as used by the GLM procedure, is one of the most common
statistical models:

y = Xβ + ε

In this expression,y represents a vector of observed data,β is an unknown vector of
fixed-effects parameters with known design matrixX, andε is an unknown random
error vector modeling the statistical noise aroundXβ. The focus of the standard
linear model is to model the mean ofy by using the fixed-effects parametersβ. The
residual errorsε are assumed to be independent and identically distributed Gaussian
random variables with mean 0 and varianceσ2.

The mixed model generalizes the standard linear

model as follows:

y = Xβ + Zγ + ε

Here,γ is an unknown vector of random-effects parameters with known design ma-
trix Z, andε is an unknown random error vector whose elements are no longer re-
quired to be independent and homogeneous.

To further develop this notion of variance modeling, assume thatγ andε are Gaussian
random variables that are uncorrelated and have expectations0 and variancesG and
R, respectively. The variance ofy is thus

V = ZGZ′ + R

Note that, whenR = σ2I andZ = 0, the mixed model reduces to the standard linear
model.
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You can model the variance of the data,y, by specifying the structure (or form) ofZ,
G, andR. The model matrixZ is set up in the same fashion asX, the model matrix
for the fixed-effects parameters. ForG andR, you must select somecovariance
structure.Possible covariance structures include

• variance components

• compound symmetry (common covariance plus diagonal)

• unstructured (general covariance)

• autoregressive

• spatial

• general linear

• factor analytic

By appropriately defining the model matricesX andZ, as well as the covariance
structure matricesG andR, you can perform numerous mixed model analyses.

PROC MIXED Contrasted with Other SAS Procedures

PROC MIXED is a generalization of the GLM procedure in the sense that PROC
GLM fits standard linear models, and PROC MIXED fits the wider class of mixed
linear models. Both procedures have similar CLASS, MODEL, CONTRAST,
ESTIMATE, and LSMEANS statements, but their RANDOM and REPEATED state-
ments differ (see the following paragraphs). Both procedures use the non-full-rank
model parameterization, although the sorting of classification levels can differ be-
tween the two. PROC MIXED computes only Type I–Type III tests of fixed effects,
while PROC GLM offers Types I–IV.

The RANDOM statement in PROC MIXED incorporates random effects constitut-
ing theγ vector in the mixed model. However, in PROC GLM, effects specified
in the RANDOM statement are still treated as fixed as far as the model fit is con-
cerned, and they serve only to produce corresponding expected mean squares. These
expected mean squares lead to the traditional ANOVA estimates of variance compo-
nents. PROC MIXED computes REML and ML estimates of variance parameters,
which are generally preferred to the ANOVA estimates (Searle 1988; Harville 1988;
Searle, Casella, and McCulloch 1992). Optionally, PROC MIXED also computes
MIVQUE0 estimates, which are similar to ANOVA estimates.

The REPEATED statement in PROC MIXED is used to specify covariance structures
for repeated measurements on subjects, while the REPEATED statement in PROC
GLM is used to specify various transformations with which to conduct the traditional
univariate or multivariate tests. In repeated measures situations, the mixed model
approach used in PROC MIXED is more flexible and more widely applicable than
either the univariate or multivariate approaches. In particular, the mixed model ap-
proach provides a larger class of covariance structures and a better mechanism for
handling missing values (Wolfinger and Chang 1995).
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PROC MIXED subsumes the VARCOMP procedure. PROC MIXED provides a wide
variety of covariance structures, while PROC VARCOMP estimates only simple ran-
dom effects. PROC MIXED carries out several analyses that are absent in PROC
VARCOMP, including the estimation and testing of linear combinations of fixed and
random effects.

The ARIMA and AUTOREG procedures provide more time series structures than
PROC MIXED, although they do not fit variance component models. The CALIS
procedure fits general covariance matrices, but it does not allow fixed effects as does
PROC MIXED. The LATTICE and NESTED procedures fit special types of mixed
linear models that can also be handled in PROC MIXED, although PROC MIXED
may run slower because of its more general algorithm. The TSCSREG procedure
analyzes time-series cross-sectional data, and it fits some structures not available in
PROC MIXED.

Getting Started

Clustered Data Example

Consider the following SAS data set as an introductory example:

data heights;
input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
run;

The response variableHeight measures the heights (in inches) of 18 individuals.
The individuals are classified according toFamily andGender. You can perform
a traditional two-way analysis of variance of these data with the following PROC
MIXED code:

proc mixed;
class Family Gender;
model Height = Gender Family Family*Gender;

run;

The PROC MIXED statement invokes the procedure. The CLASS statement in-
structs PROC MIXED to consider bothFamily andGender as classification vari-
ables. Dummy (indicator) variables are, as a result, created corresponding to all of
the distinct levels ofFamily andGender. For these data,Family has four levels and
Gender has two levels.

The MODEL statement first specifies the response (dependent) variableHeight. The
explanatory (independent) variables are then listed after the equal (=) sign. Here,
the two explanatory variables areGender andFamily, and they comprise the main
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effects of the design. The third explanatory term,Family*Gender, models an inter-
action between the two main effects.

PROC MIXED uses the dummy variables associated withGender, Family, and
Family*Gender to construct theX matrix for the linear model. A column of 1s
is also included as the first column ofX to model a global intercept. There are noZ
or G matrices for this model, andR is assumed to equalσ2I, whereI is an18 × 18
identity matrix.

The RUN statement completes the specification. The coding is precisely the same
as with the GLM procedure. However, much of the output from PROC MIXED is
different from that produced by PROC GLM.

The following is the output from PROC MIXED.

The Mixed Procedure

Model Information

Data Set WORK.HEIGHTS
Dependent Variable Height
Covariance Structure Diagonal
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Residual

Figure 46.1. Model Information

The “Model Information” table describes the model, some of the variables that it
involves, and the method used in fitting it. This table also lists the method (profile,
factor, or fit) for handling the residual variance.

The Mixed Procedure

Class Level Information

Class Levels Values

Family 4 1 2 3 4
Gender 2 F M

Figure 46.2. Class Level Information

The “Class Level Information” table lists the levels of all variables specified in the
CLASS statement. You can check this table to make sure that the data are correct.
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The Mixed Procedure

Dimensions

Covariance Parameters 1
Columns in X 15
Columns in Z 0
Subjects 1
Max Obs Per Subject 18

Figure 46.3. Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful
in determining CPU time and memory requirements.

The Mixed Procedure

Number of Observations

Number of Observations Read 18
Number of Observations Used 18
Number of Observations Not Used 0

Figure 46.4. Number of Observations

The “Number of Observations” table displays information about the sample size be-
ing processed.

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Residual 2.1000

Figure 46.5. Covariance Parameter Estimates

The “Covariance Parameter Estimates” table displays the estimate ofσ2 for the
model.

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 41.6
AIC (smaller is better) 43.6
AICC (smaller is better) 44.1
BIC (smaller is better) 43.9

Figure 46.6. Fit Statistics
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The “Fit Statistics” table lists several pieces of information about the fitted mixed
model, including values derived from the computed value of the restricted/residual
likelihood.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 10 17.63 0.0018
Family 3 10 5.90 0.0139
Family*Gender 3 10 2.89 0.0889

Figure 46.7. Tests of Fixed Effects

The “Type 3 Tests of Fixed Effects” table displays significance tests for the three
effects listed in the MODEL statement. The Type IIIF -statistics andp-values are the
same as those produced by the GLM procedure. However, because PROC MIXED
uses a likelihood-based estimation scheme, it does not directly compute or display
sums of squares for this analysis.

The Type 3 test forFamily*Gender effect is not significant at the 5% level, but the
tests for both main effects are significant.

The important assumptions behind this analysis are that the data are normally dis-
tributed and that they are independent with constant variance. For these data, the nor-
mality assumption is probably realistic since the data are observed heights. However,
since the data occur in clusters (families), it is very likely that observations from the
same family are statistically correlated, that is, not independent.

The methods implemented in PROC MIXED are still based on the assumption of
normally distributed data, but you can drop the assumption of independence by mod-
eling statistical correlation in a variety of ways. You can also model variances that
are heterogeneous, that is, nonconstant.

For the height data, one of the simplest ways of modeling correlation is through the
use ofrandom effects.Here the family effect is assumed to be normally distributed
with zero mean and some unknown variance. This is in contrast to the previous model
in which the family effects are just constants, orfixed effects.DeclaringFamily as a
random effect sets up a common correlation among all observations having the same
level ofFamily.

DeclaringFamily*Gender as a random effect models an additional correlation be-
tween all observations that have the same level of bothFamily andGender. One
interpretation of this effect is that a female in a certain family exhibits more correla-
tion with the other females in that family than with the other males, and likewise for
a male. With the height data, this model seems reasonable.

The code to fit this correlation model in PROC MIXED is as follows:
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proc mixed;
class Family Gender;
model Height = Gender;
random Family Family*Gender;

run;

Note thatFamily andFamily*Gender are now listed in the RANDOM statement.
The dummy variables associated with them are used to construct theZ matrix in the
mixed model. TheX matrix now consists of a column of 1s and the dummy variables
for Gender.

TheG matrix for this model is diagonal, and it contains the variance components for
bothFamily andFamily*Gender. TheR matrix is still assumed to equalσ2I, where
I is an identity matrix.

The output from this analysis is as follows.

The Mixed Procedure

Model Information

Data Set WORK.HEIGHTS
Dependent Variable Height
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Figure 46.8. Model Information

The “Model Information” table shows that the containment method is used to com-
pute the degrees of freedom for this analysis. This is the default method when a
RANDOM statement is used; see the description of theDDFM= optionon page 2693
for more information.

The Mixed Procedure

Class Level Information

Class Levels Values

Family 4 1 2 3 4
Gender 2 F M

Figure 46.9. Class Levels Information

The “Class Levels Information” table is the same as before.
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The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 3
Columns in Z 12
Subjects 1
Max Obs Per Subject 18

Number of Observations

Number of Observations Read 18
Number of Observations Used 18
Number of Observations Not Used 0

Figure 46.10. Dimensions and Number of Observations

The “Dimensions” table displays the new sizes of theX andZ matrices.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 74.11074833
1 2 71.51614003 0.01441208
2 1 71.13845990 0.00412226
3 1 71.03613556 0.00058188
4 1 71.02281757 0.00001689
5 1 71.02245904 0.00000002
6 1 71.02245869 0.00000000

Convergence criteria met.

Figure 46.11. REML Estimation Iteration History

The “Iteration History” table displays the results of the numerical optimization of
the restricted/residual likelihood. Six iterations are required to achieve the default
convergence criterion of 1E−8.

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010
Family*Gender 1.7657
Residual 2.1668

Figure 46.12. Covariance Parameter Estimates (REML)
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The “Covariance Parameter Estimates” table displays the results of the REML fit.
The Estimate column contains the estimates of the variance components forFamily
andFamily*Gender, as well as the estimate ofσ2.

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 71.0
AIC (smaller is better) 77.0
AICC (smaller is better) 79.0
BIC (smaller is better) 75.2

Figure 46.13. Fit Statistics

The “Fit Statistics” table contains basic information about the REML fit.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 3 7.95 0.0667

Figure 46.14. Type 3 Tests of Fixed Effects

The “Type 3 Tests of Fixed Effects” table contains a significance test for the lone fixed
effect,Gender. Note that the associatedp-value is not nearly as significant as in the
previous analysis. This illustrates the importance of correctly modeling correlation
in your data.

An additional benefit of the random effects analysis is that it enables you to make
inferences about gender that apply to an entire population of families, whereas the
inferences about gender from the analysis whereFamily andFamily*Gender are
fixed effects apply only to the particular families in the data set.

PROC MIXED thus offers you the ability to model correlation directly and to make
inferences about fixed effects that apply to entire populations of random effects.
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Syntax

The following statements are available in PROC MIXED.

PROC MIXED < options > ;
BY variables ;
CLASS variables ;
ID variables ;
MODEL dependent = < fixed-effects > < / options > ;
RANDOM random-effects < / options > ;
REPEATED < repeated-effect >< / options > ;
PARMS (value-list) . . . < / options > ;
PRIOR < distribution >< / options > ;
CONTRAST ’label’ < fixed-effect values . . . >

< | random-effect values . . . > , . . . < / options > ;
ESTIMATE ’label’ < fixed-effect values . . . >

< | random-effect values . . . >< / options > ;
LSMEANS fixed-effects < / options > ;
WEIGHT variable ;

Items within angle brackets ( < > ) are optional. The CONTRAST, ESTIMATE,
LSMEANS, and RANDOM statements can appear multiple times; all other state-
ments can appear only once.

The PROC MIXED and MODEL statements are required, and the MODEL state-
ment must appear after the CLASS statement if a CLASS statement is included.
The CONTRAST, ESTIMATE, LSMEANS, RANDOM, and REPEATED statements
must follow the MODEL statement. The CONTRAST and ESTIMATE statements
must also follow any RANDOM statements.

Table 46.1summarizes the basic functions and important options of each PROC
MIXED statement. The syntax of each statement inTable 46.1is described in the
following sections in alphabetical order after the description of the PROC MIXED
statement.
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Table 46.1. Summary of PROC MIXED Statements
Statement Description Important Options
PROC MIXED invokes the procedure DATA= specifies input data set, METHOD= spec-

ifies estimation method
BY performs multiple

PROC MIXED analyses
in one invocation

none

CLASS declares qualitative vari-
ables that create indica-
tor variables in design
matrices

none

ID lists additional variables
to be included in pre-
dicted values tables

none

MODEL specifies dependent vari-
able and fixed effects,
setting upX

S requests solution for fixed-effects parameters,
DDFM= specifies denominator degrees of free-
dom method, OUTP= outputs predicted values to
a data set, INFLUENCE computes influence di-
agnostics

RANDOM specifies random effects,
setting upZ andG

SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, S requests solution
for random-effects parameters, G displays esti-
matedG

REPEATED sets upR SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, R displays esti-
mated blocks ofR, GROUP= enables between-
subject heterogeneity, LOCAL adds a diagonal
matrix toR

PARMS specifies a grid of initial
values for the covariance
parameters

HOLD= and NOITER hold the covariance param-
eters or their ratios constant, PDATA= reads the
initial values from a SAS data set

PRIOR performs a sampling-
based Bayesian analysis
for variance component
models

NSAMPLE= specifies the sample size, SEED=
specifies the starting seed

CONTRAST constructs custom hy-
pothesis tests

E displays theL matrix coefficients

ESTIMATE constructs custom scalar
estimates

CL produces confidence limits

LSMEANS computes least squares
means for classification
fixed effects

DIFF computes differences of the least squares
means, ADJUST= performs multiple compar-
isons adjustments, AT changes covariates, OM
changes weighting, CL produces confidence lim-
its, SLICE= tests simple effects

WEIGHT specifies a variable by
which to weightR

none
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PROC MIXED Statement

PROC MIXED < options >;

The PROC MIXED statement invokes the procedure. You can specify the following
options.

ABSOLUTE
makes the convergence criterion absolute. By default, it is relative (divided by the
current objective function value). See theCONVF, CONVG, andCONVH options
in this section for a description of various convergence criteria.

ALPHA= number
requests that confidence limits be constructed for the covariance parameter estimates
with confidence level1− number. The value ofnumbermust be between 0 and 1;
the default is 0.05.

ASYCORR
produces the asymptotic correlation matrix of the covariance parameter estimates. It
is computed from the corresponding asymptotic covariance matrix (see the descrip-
tion of theASYCOV option, which follows). For ODS purposes, the label of the
“Asymptotic Correlation” table is “AsyCorr.”

ASYCOV
requests that the asymptotic covariance matrix of the covariance parameters be dis-
played. By default, this matrix is the observed inverse Fisher information matrix,
which equals2H−1, whereH is the Hessian (second derivative) matrix of the ob-
jective function. See the“Covariance Parameter Estimates”section on page 2750
for more information about this matrix. When you use theSCORING=option and
PROC MIXED converges without stopping the scoring algorithm, PROC MIXED
uses the expected Hessian matrix to compute the covariance matrix instead of the ob-
served Hessian. For ODS purposes, the label of the “Asymptotic Covariance” table
is “AsyCov.”

CL<=WALD>
requests confidence limits for the covariance parameter estimates. A Satterthwaite
approximation is used to construct limits for all parameters that have a lower bound-
ary constraint of zero. These limits take the form

νσ̂2

χ2
ν,1−α/2

≤ σ2 ≤ νσ̂2

χ2
ν,α/2

whereν = 2Z2, Z is the Wald statistiĉσ2/se(σ̂2), and the denominators are quantiles
of the χ2-distribution with ν degrees of freedom. Refer to Milliken and Johnson
(1992) and Burdick and Graybill (1992) for similar techniques.

For all other parameters, WaldZ-scores and normal quantiles are used to construct
the limits. Wald limits are also provided for variance components if you specify the
NOBOUND option. The optional =WALD specification requests Wald limits for all
parameters.
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The confidence limits are displayed as extra columns in the “Covariance Parameter
Estimates” table. The confidence level is1−α = 0.95 by default; this can be changed
with theALPHA= option.

CONVF<=number>
requests the relative function convergence criterion with tolerancenumber. The rela-
tive function convergence criterion is

|fk − fk−1|
|fk|

≤ number

wherefk is the value of the objective function at iterationk. To prevent the division
by |fk|, use theABSOLUTE option. The default convergence criterion isCONVH,
and the default tolerance is 1E−8.

CONVG <=number>
requests the relative gradient convergence criterion with tolerancenumber. The rela-
tive gradient convergence criterion is

maxj |gjk|
|fk|

≤ number

wherefk is the value of the objective function, andgjk is the jth element of the
gradient (first derivative) of the objective function, both at iterationk. To prevent
division by |fk|, use theABSOLUTE option. The default convergence criterion is
CONVH, and the default tolerance is 1E−8.

CONVH<=number>
requests the relative Hessian convergence criterion with tolerancenumber. The rela-
tive Hessian convergence criterion is

gk
′H−1

k gk

|fk|
≤ number

wherefk is the value of the objective function,gk is the gradient (first derivative)
of the objective function, andHk is the Hessian (second derivative) of the objective
function, all at iterationk.

If Hk is singular, then PROC MIXED uses the following relative criterion:

g′kgk

|fk|
≤ number

To prevent the division by|fk|, use theABSOLUTEoption. The default convergence
criterion isCONVH, and the default tolerance is 1E−8.
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COVTEST
produces asymptotic standard errors and WaldZ-tests for the covariance parameter
estimates.

DATA=SAS-data-set
names the SAS data set to be used by PROC MIXED. The default is the most recently
created data set.

DFBW
has the same effect as theDDFM=BW option in the MODEL statement.

EMPIRICAL
computes the estimated variance-covariance matrix of the fixed-effects parameters
by using the asymptotically consistent estimator described in Huber (1967), White
(1980), Liang and Zeger (1986), and Diggle, Liang, and Zeger (1994). This estimator
is commonly referred to as the “sandwich” estimator, and it is computed as follows:

(X′V̂−1X)−
(

S∑
i=1

X′
iV̂i

−1
ε̂iε̂i

′V̂i
−1

Xi

)
(X′V̂−1X)−

Here,ε̂i = yi −Xiβ̂, S is the number of subjects, and matrices with ani subscript
are those for theith subject. You must include the SUBJECT= option in either a
RANDOM or REPEATEDstatement for this option to take effect.

When you specify the EMPIRICAL option, PROC MIXED adjusts all standard errors
and test statistics involving the fixed-effects parameters. This changes output in the
following tables (listed inTable 46.8on page 2752): Contrast, CorrB, CovB, Diffs,
Estimates, InvCovB, LSMeans, MMEq, MMEqSol, Slices, SolutionF, Tests1–Tests3.
The OUTP= and OUTPM= data sets are also affected. Finally, the Satterthwaite
and Kenward-Roger degrees of freedom methods are not available if you specify
EMPIRICAL.

IC
displays a table of various information criteria. The criteria are all in smaller-is-better
form, and are described inTable 46.2.

Table 46.2. Information Criteria
Criteria Formula Reference

AIC −2` + 2d Akaike (1974)
AICC −2` + 2dn∗/(n∗ − d− 1) Hurvich and Tsai (1989)

Burnham and Anderson (1998)
HQIC −2` + 2d log log n Hannan and Quinn (1979)

BIC −2` + d log n Schwarz (1978)
CAIC −2` + d(log n + 1) Bozdogan (1987)

Here` denotes the maximum value of the (possibly restricted) log likelihood,d the di-
mension of the model, andn the number of observations. In Version 6 of SAS/STAT
software,n equals the number of valid observations for maximum likelihood estima-
tion andn−p for restricted maximum likelihood estimation, wherep equals the rank
of X. In later versions,n equals the number of effective subjects as displayed in the
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“Dimensions” table, unless this value equals 1, in which casen equals the number of
levels of the first RANDOM effect you specify. If the number of effective subjects
equals 1 and you have no RANDOM statements, thenn reverts to the Version 6 val-
ues. For AICC (a finite-sample corrected version of AIC),n∗ equals the Version 6
values ofn, unless this number is less thand + 2, in which case it equalsd + 2.

For restricted likelihood estimation,d equalsq the effective number of estimated
covariance parameters. In Version 6, when a parameter estimate lies on a boundary
constraint, then it is still included in the calculation ofd, but in later versions it is
not. The most common example of this behavior is when a variance component is
estimated to equal zero. For maximum likelihood estimation,d equalsq + p.

For ODS purposes, the name of the “Information Criteria” table is “InfoCrit.”

INFO
is a default option. The creation of the “Model Information”, “Dimensions”, and
“Number of Observations” tables can be suppressed using theNOINFOoption.

Note that, in Version 6, this option displays the “Model Information” and
“Dimensions” tables.

ITDETAILS
displays the parameter values at each iteration and enables the writing of notes to
the SAS log pertaining to “infinite likelihood” and “singularities” during Newton-
Raphson iterations.

LOGNOTE
writes periodic notes to the log describing the current status of computations. It is
designed for use with analyses requiring extensive CPU resources.

MAXFUNC=number
specifies the maximum number of likelihood evaluations in the optimization process.
The default is 150.

MAXITER=number
specifies the maximum number of iterations. The default is 50.

METHOD=REML
METHOD=ML
METHOD=MIVQUE0
METHOD=TYPE1
METHOD=TYPE2
METHOD=TYPE3

specifies the estimation method for the covariance parameters. The REML specifica-
tion performs residual (restricted) maximum likelihood, and it is the default method.
The ML specification performs maximum likelihood, and the MIVQUE0 specifica-
tion performs minimum variance quadratic unbiased estimation of the covariance pa-
rameters.

The METHOD=TYPEn specifications apply only to variance component models
with no SUBJECT= effects and no REPEATED statement. An analysis of variance
table is included in the output, and the expected mean squares are used to estimate
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the variance components (seeChapter 32, “The GLM Procedure,”for further expla-
nation). The resulting method-of-moment variance component estimates are used
in subsequent calculations, including standard errors computed from ESTIMATE
and LSMEANS statements. For ODS purposes, the new table names are “Type1,”
“Type2,” and “Type3,” respectively.

MMEQ
requests that coefficients of the mixed model equations be displayed. These are

[
X′R̂

−1
X X′R̂

−1
Z

Z′R̂
−1

X Z′R̂
−1

Z + Ĝ
−1

]
,

[
X′R̂

−1
y

Z′R̂
−1

y

]

assuming that̂G is nonsingular. IfĜ is singular, PROC MIXED produces the fol-
lowing coefficients

[
X′R̂

−1
X X′R̂

−1
ZĜ

ĜZ′R̂
−1

X ĜZ′R̂
−1

ZĜ + Ĝ

]
,

[
X′R̂

−1
y

ĜZ′R̂
−1

y

]

See the“Estimatingβ andγ in the Mixed Model”section on page 2739 for further
information on these equations.

MMEQSOL
requests that a solution to the mixed model equations be produced, as well as the in-
verted coefficients matrix. Formulas for these equations are provided in the preceding
description of theMMEQ option.

When Ĝ is singular,τ̂ and a generalized inverse of the left-hand-side coefficient
matrix are transformed usinĝG to produceγ̂ and Ĉ, respectively, wherêC is a
generalized inverse of the left-hand-side coefficient matrix of the original equations.

NAMELEN<=number>
specifies the length to which long effect names are shortened. The default and mini-
mum value is 20.

NOBOUND
has the same effect as theNOBOUND option in the PARMS statement (see page
2707).

NOCLPRINT<=number>
suppresses the display of the “Class Level Information” table if you do not specify
number. If you do specifynumber, only levels with totals that are less thannumber
are listed in the table.

NOINFO
suppresses the display of the “Model Information”, “Dimensions”, and “Number of
Observations” tables.
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NOITPRINT
suppresses the display of the “Iteration History” table.

NOPROFILE
includes the residual variance as part of the Newton-Raphson iterations. This option
applies only to models that have a residual variance parameter. By default, this pa-
rameter is profiled out of the likelihood calculations, except when you have specified
theHOLD= or NOITERoption in the PARMS statement.

ORD
displays ordinates of the relevant distribution in addition top-values. The ordinate
can be viewed as an approximate odds ratio of hypothesis probabilities.

ORDER=DATA
ORDER=FORMATTED
ORDER=FREQ
ORDER=INTERNAL

specifies the sorting order for the levels of all CLASS variables. This ordering de-
termines which parameters in the model correspond to each level in the data, so the
ORDER= option may be useful when you use CONTRAST or ESTIMATE state-
ments.

The default is ORDER=FORMATTED, and its behavior has been modified for
Version 8. When the default ORDER=FORMATTED is in effect for numeric vari-
ables for which you have supplied no explicit format, the levels are ordered by their
internal values. In releases previous to Version 8, numeric class levels with no
explicit format were ordered by their BEST12. formatted values. In order to re-
vert to the previous method you can specify this format explicitly for the CLASS
variables. The change was implemented because the former default behavior for
ORDER=FORMATTED often resulted in levels not being ordered numerically and
required you to use an explicit format or ORDER=INTERNAL to get the more natu-
ral ordering.

The following table shows how PROC MIXED interprets values of the ORDER=
option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

For FORMATTED and INTERNAL, the sort order is machine dependent. For more
information on sorting order, see the chapter on the SORT procedure in theSAS
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Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

RATIO
produces the ratio of the covariance parameter estimates to the estimate of the residual
variance when the latter exists in the model.

RIDGE=number
specifies the starting value for the minimum ridge value used in the Newton-Raphson
algorithm. The default is 0.3125.

SCORING<=number>
requests that Fisher scoring be used in association with the estimation method up to
iterationnumber, which is 0 by default. When you use the SCORING= option and
PROC MIXED converges without stopping the scoring algorithm, PROC MIXED
uses the expected Hessian matrix to compute approximate standard errors for the co-
variance parameters instead of the observed Hessian. The output from the ASYCOV
and ASYCORR options is similarly adjusted.

SIGITER
is an alias for theNOPROFILEoption.

UPDATE
is an alias for theLOGNOTEoption.

BY Statement

BY variables ;

You can specify a BY statement with PROC MIXED to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement options NOTSORTED or DESCENDING in the BY
statement for the MIXED procedure. The NOTSORTED option does not mean
that the data are unsorted but rather means that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

Since sorting the data changes the order in which PROC MIXED reads observations,
the sorting order for the levels of the CLASS variable may be affected if you have
specified ORDER=DATA in the PROC MIXED statement. This, in turn, affects spec-
ifications in the CONTRAST statements.
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. If
the CLASS statement is used, it must appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels
are determined from the entire formatted values of the CLASS variables. Note that
this represents a slight change from previous releases in the way in which class levels
are determined. In releases prior to Version 9, class levels were determined using no
more than the first 16 characters of the formatted values. If you wish to revert to this
previous behavior you can use the TRUNCATE option in the CLASS statement. In
any case, you can use formats to group values into levels. Refer to the discussion of
the FORMAT procedure in theSAS Procedures Guideand to the discussions of the
FORMAT statement and SAS formats inSAS Language Reference: Dictionary. You
can adjust the order of CLASS variable levels with theORDER=option in the PROC
MIXED statement.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE MIXED specifies that class levels should be determined using only no
more than the first 16 characters of the formatted values of CLASS variables. When
formatted values are longer than 16 characters, you can use this option in order to
revert to the levels as determined in releases previous to Version 9.

CONTRAST Statement

CONTRAST ’label’ < fixed-effect values . . . >
< | random-effect values . . . > , . . . < / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis
tests. It is patterned after the CONTRAST statement in PROC GLM, although it has
been extended to include random effects. This enables you to select an appropriate
inference space (McLean, Sanders, and Stroup 1991).

You can test the hypothesisL′φ = 0, whereL′ = (K′ M′) andφ′ = (β′ γ ′),
in several inference spaces. The inference space corresponds to the choice ofM.
WhenM = 0, your inferences apply to the entire population from which the random
effects are sampled; this is known as thebroad inference space. When all elements
of M are nonzero, your inferences apply only to the observed levels of the random
effects. This is known as thenarrow inference space, and you can also choose it by
specifying all of the random effects as fixed. The GLM procedure uses the narrow
inference space. Finally, by zeroing portions ofM corresponding to selected main
effects and interactions, you can chooseintermediateinference spaces. The broad
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inference space is usually the most appropriate, and it is used when you do not specify
any random effects in the CONTRAST statement.

In the CONTRAST statement,

label identifies the contrast in the table. A label is required for every
contrast specified. Labels can be up to 20 characters and must be
enclosed in single quotes.

fixed-effect identifies an effect that appears in the MODEL statement. The
keyword INTERCEPT can be used as an effect when an intercept
is fitted in the model. You do not need to include all effects that are
in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The
first random effect must follow a vertical bar (|); however, random
effects do not have to be specified.

values are constants that are elements of theL matrix associated with the
fixed and random effects.

The rows ofL′ are specified in order and are separated by commas. The rows of the
K′ component ofL′ are specified on the left side of the vertical bars (|). These rows
test the fixed effects and are, therefore, checked for estimability. The rows of theM′

component ofL′ are specified on the right side of the vertical bars. They test the
random effects, and no estimability checking is necessary.

If PROC MIXED finds the fixed-effects portion of the specified contrast to be nones-
timable (see theSINGULAR= optionon page 2684), then it displays “Non-est” for
the contrast entries.

The following CONTRAST statement reproduces theF-test for the effectA in the
split-plot example (seeExample 46.1on page 2777):

contrast ’A broad’
A 1 -1 0 A*B .5 .5 -.5 -.5 0 0 ,
A 1 0 -1 A*B .5 .5 0 0 -.5 -.5 / df=6;

Note that no random effects are specified in the preceding contrast; thus, the inference
space is broad. The resultingF-test has two numerator degrees of freedom becauseL′

has two rows. The denominator degrees of freedom is, by default, the residual degrees
of freedom (9), but the DF= option changes the denominator degrees of freedom to
6.

The following CONTRAST statement reproduces theF-test forA whenBlock and
A*Block are considered fixed effects (the narrow inference space):
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contrast ’A narrow’
A 1 -1 0
A*B .5 .5 -.5 -.5 0 0 |
A*Block .25 .25 .25 .25

-.25 -.25 -.25 -.25
0 0 0 0 ,

A 1 0 -1
A*B .5 .5 0 0 -.5 -.5 |
A*Block .25 .25 .25 .25

0 0 0 0
-.25 -.25 -.25 -.25 ;

The preceding contrast does not contain coefficients forB andBlock because they
cancel out in estimated differences between levels ofA. Coefficients forB andBlock
are necessary when estimating the mean of one of the levels ofA in the narrow infer-
ence space (seeExample 46.1on page 2777).

If the elements ofL are not specified for an effect that contains a specified effect, then
the elements of the specified effect are automatically “filled in” over the levels of the
higher-order effect. This feature is designed to preserve estimability for cases when
there are complex higher-order effects. The coefficients for the higher-order effect
are determined by equitably distributing the coefficients of the lower-level effect as
in the construction of least squares means. In addition, if the intercept is specified, it is
distributed over all classification effects that are not contained by any other specified
effect. If an effect is not specified and does not contain any specified effects, then
all of its coefficients inL are set to 0. You can override this behavior by specifying
coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few
are specified, the remaining ones are set to 0. If no random effects are specified,
the vertical bar can be omitted; otherwise, it must be present. If a SUBJECT effect
is used in the RANDOM statement, then the coefficients specified for the effects in
the RANDOM statement are equitably distributed across the levels of the SUBJECT
effect. You can use theE option to see exactly whatL matrix is used.

The SUBJECTand GROUPoptions in the CONTRAST statement are useful for
the case when aSUBJECT=or GROUP=variable appears in the RANDOM state-
ment, and you want to contrast different subjects or groups. By default, CONTRAST
statement coefficients on random effects are distributed equally across subjects and
groups.

PROC MIXED handles missing level combinations of classification variables simi-
larly to the way PROC GLM does. Both procedures delete fixed-effects parameters
corresponding to missing levels in order to preserve estimability. However, PROC
MIXED does not delete missing level combinations for random-effects parameters
because linear combinations of the random-effects parameters are always estimable.
These conventions can affect the way you specify your CONTRAST coefficients.
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The CONTRAST statement computes the statistic

F =

[
β̂
γ̂

]′
L(L′ĈL)−1L′

[
β̂
γ̂

]
rank(L)

and approximates its distribution with anF-distribution. In this expression,̂C is
an estimate of the generalized inverse of the coefficient matrix in the mixed model
equations. See the“Inference and Test Statistics”section on page 2741 for more
information on thisF-statistic.

The numerator degrees of freedom in theF-approximation isrank(L), and the de-
nominator degrees of freedom is taken from the “Tests of Fixed Effects” table and
corresponds to the final effect you list in the CONTRAST statement. You can change
the denominator degrees of freedom by using theDF= option.

You can specify the following options in the CONTRAST statement after a slash (/).

CHISQ
requests thatχ2-tests be performed in addition to anyF-tests. Aχ2-statistic equals its
correspondingF -statistic times the associate numerator degrees of freedom, and this
same degrees of freedom is used to compute thep-value for theχ2-test. Thisp-value
will always be less than that for theF -test, as it effectively corresponds to anF -test
with infinite denominator degrees of freedom.

DF=number
specifies the denominator degrees of freedom for theF-test. The default is the de-
nominator degrees of freedom taken from the “Tests of Fixed Effects” table and cor-
responds to the final effect you list in the CONTRAST statement.

E
requests that theL matrix coefficients for the contrast be displayed. For ODS pur-
poses, the label of this “L Matrix Coefficients” table is “Coef.”

GROUP coeffs
GRP coeffs

sets up random-effect contrasts between different groups when aGROUP=variable
appears in the RANDOM statement. By default, CONTRAST statement coefficients
on random effects are distributed equally across groups.

SINGULAR=number
tunes the estimability checking. Ifv is a vector, define ABS(v) to be the absolute
value of the element ofv with the largest absolute value. If ABS(K′−K′T) is greater
than C*numberfor any row ofK′ in the contrast, thenK is declared nonestimable.
HereT is the Hermite form matrix(X′X)−X′X, and C is ABS(K′) except when it
equals 0, and then C is 1. The value fornumbermust be between 0 and 1; the default
is 1E−4.
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SUBJECT coeffs
SUB coeffs

sets up random-effect contrasts between different subjects when aSUBJECT=vari-
able appears on the RANDOM statement. By default, CONTRAST statement coeffi-
cients on random effects are distributed equally across subjects.

ESTIMATE Statement

ESTIMATE ’label’ < fixed-effect values . . . >
< | random-effect values . . . > , . . . < / options > ;

The ESTIMATE statement is exactly like a CONTRAST statement, except only one-
row L matrices are permitted. The actual estimate,L′p̂, is displayed along with its
approximate standard error. An approximatet-test thatL′p̂ = 0 is also produced.

PROC MIXED selects the degrees of freedom to match those displayed in the “Tests
of Fixed Effects” table for the final effect you list in the ESTIMATE statement. You
can modify the degrees of freedom using theDF= option.

If PROC MIXED finds the fixed-effects portion of the specified estimate to be non-
estimable, then it displays “Non-est” for the estimate entries.

The following examples of ESTIMATE statements compute the mean of the first level
of A in the split-plot example (seeExample 46.1on page 2777) for various inference
spaces.

estimate ’A1 mean narrow’ intercept 1
A 1 B .5 .5 A*B .5 .5 |
block .25 .25 .25 .25
A*Block .25 .25 .25 .25

0 0 0 0
0 0 0 0;

estimate ’A1 mean intermed’ intercept 1
A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25;

estimate ’A1 mean broad’ intercept 1
A 1 B .5 .5 A*B .5 .5;

The construction of theL vector for an ESTIMATE statement follows the same rules
as listed under theCONTRASTstatement.

You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA= number
requests that at-type confidence interval be constructed with confidence level
1− number. The value ofnumbermust be between 0 and 1; the default is 0.05.

CL
requests thatt-type confidence limits be constructed. The confidence level is 0.95 by
default; this can be changed with theALPHA= option.
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DF=number
specifies the degrees of freedom for thet-test and confidence limits. The default is
the denominator degrees of freedom taken from the “Tests of Fixed Effects” table and
corresponds to the final effect you list in the ESTIMATE statement.

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can
be entered as integer numerators.

E
requests that theL matrix coefficients be displayed. For ODS purposes, the label of
this “L Matrix Coefficients” table is “Coef.”

GROUP coeffs
GRP coeffs

sets up random-effect contrasts between different groups when aGROUP=variable
appears in the RANDOM statement. By default, ESTIMATE statement coefficients
on random effects are distributed equally across groups.

LOWER
LOWERTAILED

requests that thep-value for thet-test be based only on values less than thet-statistic.
A two-tailed test is the default. A lower-tailed confidence limit is also produced if
you specify theCL option.

SINGULAR=number
tunes the estimability checking as documented for theCONTRAST statement.

SUBJECT coeffs
SUB coeffs

sets up random-effect contrasts between different subjects when aSUBJECT=vari-
able appears in the RANDOM statement. By default, ESTIMATE statement coeffi-
cients on random effects are distributed equally across subjects.

For example, the ESTIMATE statement in the following code fromExample 46.5
constructs the difference between the random slopes of the first two batches.

proc mixed data=rc;
class batch;
model y = month / s;
random int month / type=un sub=batch s;
estimate ’slope b1 - slope b2’ | month 1 / subject 1 -1;

run;

UPPER
UPPERTAILED

requests that thep-value for thet-test be based only on values greater than thet-
statistic. A two-tailed test is the default. An upper-tailed confidence limit is also
produced if you specify theCL option.



LSMEANS Statement � 2687

ID Statement

ID variables ;

The ID statement specifies which variables from the input data set are to be included
in the OUTP= and OUTPM= data sets from the MODEL statement. If you do not
specify an ID statement, then all variables are included in these data sets. Otherwise,
only the variables you list in the ID statement are included. Specifying an ID state-
ment with no variables prevents any variables from being included in these data sets.

LSMEANS Statement

LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least-squares means (LS-means) of fixed effects.
As in the GLM procedure, LS-means arepredicted population margins—that is, they
estimate the marginal means over a balanced population. In a sense, LS-means are to
unbalanced designs as class and subclass arithmetic means are to balanced designs.
The L matrix constructed to compute them is the same as theL matrix formed in
PROC GLM; however, the standard errors are adjusted for the covariance parameters
in the model.

Each LS-mean is computed asLβ̂ whereL is the coefficient matrix associated with
the least-squares mean andβ̂ is the estimate of the fixed-effects parameter vector
(see the“Estimating β and γ in the Mixed Model” section on page 2739). The
approximate standard errors for the LS-mean is computed as the square root of
L(X′V̂−1X)−L′.

LS-means can be computed for any effect in the MODEL statement that involves
CLASS variables. You can specify multiple effects in one LSMEANS statement or
in multiple LSMEANS statements, and all LSMEANS statements must appear after
the MODEL statement. As in the ESTIMATE statement, theL matrix is tested for
estimability, and if this test fails, PROC MIXED displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC MIXED constructs an approximatet-
test to test the null hypothesis that the associated population quantity equals zero.
By default, the denominator degrees of freedom for this test are the same as those
displayed for the effect in the “Tests of Fixed Effects” table (see the“Default Output”
section on page 2748).

You can specify the following options in the LSMEANS statement after a slash (/).

ADJUST=BON
ADJUST=DUNNETT
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE <(simoptions)>
ADJUST=SMM | GT2
ADJUST=TUKEY

requests a multiple comparison adjustment for thep-values and confidence
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limits for the differences of LS-means. By default, PROC MIXED adjusts all
pairwise differences unless you specify ADJUST=DUNNETT, in which case
PROC MIXED analyzes all differences with a control level. The ADJUST= option
implies theDIFF option(see page 2690).

The BON (Bonferroni) and SIDAK adjustments involve correction factors de-
scribed inChapter 32, “The GLM Procedure,”andChapter 48, “The MULTTEST
Procedure,”; also refer to Westfall and Young (1993) and Westfallet al. (1999).
When you specify ADJUST=TUKEY and your data are unbalanced, PROC MIXED
uses the approximation described in Kramer (1956). Similarly, when you specify
ADJUST=DUNNETT and the LS-means are correlated, PROC MIXED uses the
factor-analytic covariance approximation described in Hsu (1992). The preceding
references also describe the SCHEFFE and SMM adjustments.

The SIMULATE adjustment computes adjustedp-values and confidence limits from
the simulated distribution of the maximum or maximum absolute value of a multivari-
atet random vector. All covariance parameters except the residual variance are fixed
at their estimated values throughout the simulation, potentially resulting in some un-
derdispersion. The simulation estimatesq, the true(1−α)th quantile, where1−α is
the confidence coefficient. The defaultα is 0.05, and you can change this value with
theALPHA= option in the LSMEANS statement.

The number of samples is set so that the tail area for the simulatedq is within γ of
1− α with 100(1− ε)% confidence. In equation form,

P (|F (q̂)− (1− α)| ≤ γ) = 1− ε

whereq̂ is the simulatedq andF is the true distribution function of the maximum;
refer to Edwards and Berry (1987) for details. By default,γ = 0.005 andε = 0.01,
placing the tail area of̂q within 0.005 of 0.95 with 99% confidence. The ACC= and
EPS=simoptionsresetγ andε, respectively; the NSAMP=simoptionsets the sample
size directly; and the SEED=simoptionspecifies an integer used to start the pseudo-
random number generator for the simulation. If you do not specify a seed, or specify
a value less than or equal to zero, the seed is generated from reading the time of day
from the computer clock. For additional descriptions of these and other simulation
options, see the“LSMEANS Statement”section on page 1753 inChapter 32, “The
GLM Procedure.”

ALPHA= number
requests that at-type confidence interval be constructed for each of the LS-means
with confidence level1− number. The value ofnumbermust be between 0 and 1;
the default is 0.05.

AT variable = value
AT (variable-list) = (value-list)
AT MEANS

enables you to modify the values of the covariates used in computing LS-means. By
default, all covariate effects are set equal to their mean values for computation of
standard LS-means. The AT option enables you to assign arbitrary values to the co-
variates. Additional columns in the output table indicate the values of the covariates.
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If there is an effect containing two or more covariates, the AT option sets the effect
equal to the product of the individual means rather than the mean of the product (as
with standard LS-means calculations). The AT MEANS option sets covariates equal
to their mean values (as with standard LS-means) and incorporates this adjustment to
cross products of covariates.

As an example, consider the following invocation of PROC MIXED:

proc mixed;
class A;
model Y = A X1 X2 X1*X2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at X1=1.2;
lsmeans A / at (X1 X2)=(1.2 0.3);

run;

For the first two LSMEANS statements, the LS-means coefficient forX1 is x1 (the
mean ofX1) and forX2 is x2 (the mean ofX2). However, for the first LSMEANS
statement, the coefficient forX1*X2 is x1x2, but for the second LSMEANS state-
ment, the coefficient isx1 · x2. The third LSMEANS statement sets the coefficient
for X1 equal to1.2 and leaves it atx2 for X2, and the final LSMEANS statement sets
these values to1.2 and0.3, respectively.

If a WEIGHT variable is present, it is used in processing AT variables. Also, ob-
servations with missing dependent variables are included in computing the covariate
means, unless these observations form a missing cell and theFULLX option in the
MODEL statement is not in effect. You can use theE optionin conjunction with the
AT option to check that the modified LS-means coefficients are the ones you desire.

The AT option is disabled if you specify theBYLEVEL option.

BYLEVEL
requests PROC MIXED to process the OM data set by each level of the LS-mean
effect (LSMEANS effect) in question. For more details, see theOM option later in
this section.

CL
requests thatt-type confidence limits be constructed for each of the LS-means. The
confidence level is 0.95 by default; this can be changed with theALPHA= option.

CORR
displays the estimated correlation matrix of the least-squares means as part of the
“Least Squares Means” table.

COV
displays the estimated covariance matrix of the least-squares means as part of the
“Least Squares Means” table.
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DF=number
specifies the degrees of freedom for thet-test and confidence limits. The default
is the denominator degrees of freedom taken from the “Tests of Fixed Effects”
table corresponding to the LS-means effect unless the DDFM=SATTERTH or
DDFM=KENWARDROGER option is in effect on the MODEL statement. For these
DDFM= methods degrees of freedom are determined separately for each test; see the
DDFM= optionon page 2693 for more information.

DIFF<=difftype>
PDIFF<=difftype>

requests that differences of the LS-means be displayed. The optionaldifftypespec-
ifies which differences to produce, with possible values being ALL, CONTROL,
CONTROLL, and CONTROLU. ThedifftypeALL requests all pairwise differences,
and it is the default. ThedifftypeCONTROL requests the differences with a control,
which, by default, is the first level of each of the specified LSMEANS effects.

To specify which levels of the effects are the controls, list the quoted formatted values
in parentheses after the keyword CONTROL. For example, if the effectsA, B, and
C are class variables, each having two levels, 1 and 2, the following LSMEANS
statement specifies the (1,2) level ofA*B and the (2,1) level ofB*C as controls:

lsmeans A*B B*C / diff=control(’1’ ’2’ ’2’ ’1’);

For multiple effects, the results depend upon the order of the list, and so you should
check the output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROLdifftype.
For one-tailed results, use either the CONTROLL or CONTROLUdifftype. The
CONTROLL difftype tests whether the noncontrol levels are significantly smaller
than the control; the upper confidence limits for the control minus the noncontrol
levels are considered to be infinity and are displayed as missing. Conversely, the
CONTROLUdifftypetests whether the noncontrol levels are significantly larger than
the control; the upper confidence limits for the noncontrol levels minus the control
are considered to be infinity and are displayed as missing.

If you want to perform multiple comparison adjustments on the differences of LS-
Means, you must specify the ADJUST= option.

The differences of the LS-means are displayed in a table titled “Differences of Least
Squares Means.” For ODS purposes, the table name is “Diffs.”

E
requests that theL matrix coefficients for all LSMEANS effects be displayed. For
ODS purposes, the label of this “L Matrix Coefficients” table is “Coef.”

OM<=OM-data-set>
OBSMARGINS<=OM-data-set>

specifies a potentially different weighting scheme for the computation of LS-means
coefficients. The standard LS-means have equal coefficients across classification ef-
fects; however, the OM option changes these coefficients to be proportional to those
found inOM-data-set. This adjustment is reasonable when you want your inferences
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to apply to a population that is not necessarily balanced but has the margins observed
in OM-data-set.

By default, OM-data-setis the same as the analysis data set. You can optionally
specify another data set that describes the population for which you want to make
inferences. This data set must contain all model variables except for the dependent
variable (which is ignored if it is present). In addition, the levels of all CLASS
variables must be the same as those occurring in the analysis data set. Specifying
anOM-data-setenables you to construct arbitrarily weighted LS-means.

In computing the observed margins, PROC MIXED uses all observations for which
there are no missing or invalid independent variables, including those for which there
are missing dependent variables. Also, ifOM-data-sethas a WEIGHT variable,
PROC MIXED uses weighted margins to construct the LS-means coefficients. If
OM-data-setis balanced, the LS-means are unchanged by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of com-
puting the margins across all of theOM-data-set, PROC MIXED computes sepa-
rate margins for each level of the LSMEANS effect in question. In this case the
resulting LS-means are actually equal to raw means for fixed effects models and cer-
tain balanced random effects models, but their estimated standard errors account for
the covariance structure that you have specified. If the AT option is specified, the
BYLEVEL option disables it.

You can use theE option in conjunction with either the OM or BYLEVEL option to
check that the modified LS-means coefficients are the ones you desire. It is possible
that the modified LS-means are not estimable when the standard ones are, or vice
versa. Nonestimable LS-means are noted as “Non-est” in the output.

PDIFF
is the same as theDIFF option. See the description of the DIFF option on page 2690.

SINGULAR=number
tunes the estimability checking as documented on the“CONTRAST Statement”sec-
tion on page 2681.

SLICE= fixed-effect
SLICE= (fixed-effects)

specifies effects by which to partition interaction LSMEANS effects. This can pro-
duce what are known as tests of simple effects (Winer 1971). For example, suppose
thatA*B is significant, and you want to test the effect ofA for each level ofB. The
appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This code tests for the simple main effects ofA for B, which are calculated by ex-
tracting the appropriate rows from the coefficient matrix for theA*B LS-means and
using them to form anF-test. See the“Inference and Test Statistics”section on page
2741 for more information on thisF-test.

The SLICE option produces a table titled “Tests of Effect Slices.” For ODS purposes,
the table name is “Slices.”
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MODEL Statement

MODEL dependent = < fixed-effects >< / options >;

The MODEL statement names a single dependent variable and the fixed effects,
which determine theX matrix of the mixed model (see the“Parameterization of
Mixed Models”section on page 2743 for details). Thespecification of effectsis the
same as in the GLM procedure; however, unlike PROC GLM, you do not specify
random effects in the MODEL statement. The MODEL statement is required.

An intercept is included in the fixed-effects model by default. If no fixed effects are
specified, only this intercept term is fit. The intercept can be removed by using the
NOINT option.

You can specify the following options in the MODEL statement after a slash (/).

ALPHA= number
requests that at-type confidence interval be constructed for each of the fixed-effects
parameters with confidence level1− number. The value ofnumbermust be between
0 and 1; the default is 0.05.

ALPHAP= number
requests that at-type confidence interval be constructed for the predicted values with
confidence level1− number. The value ofnumbermust be between 0 and 1; the
default is 0.05.

CHISQ
requests thatχ2-tests be performed for all specified effects in addition to theF-tests.
Type III tests are the default; you can produce the Type I and Type II tests using the
HTYPE=option.

CL
requests thatt-type confidence limits be constructed for each of the fixed-effects pa-
rameter estimates. The confidence level is 0.95 by default; this can be changed with
theALPHA= option.

CONTAIN
has the same effect as theDDFM=CONTAIN option.

CORRB
produces the approximate correlation matrix of the fixed-effects parameter estimates.
For ODS purposes, the label for this table is “CorrB.”

COVB
produces the approximate variance-covariance matrix of the fixed-effects parameter
estimateŝβ. By default, this matrix equals(X′V̂−1X)− and results from sweep-
ing (X y)′V̂−1(X y) on all but its last pivot and removing they border. The
EMPIRICAL option in the PROC MIXED statement changes this matrix into “em-
pirical sandwich” form, as described on page 2676. For ODS purposes, the label for
this table is “CovB.”
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COVBI
produces the inverse of the approximate variance-covariance matrix of the fixed-
effects parameter estimates. For ODS purposes, the label for this table is “InvCovB.”

DDF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects.
The value-listspecification is a list of numbers or missing values (.) separated by
commas. The degrees of freedom should be listed in the order in which the effects
appear in the “Tests of Fixed Effects” table. If you want to retain the default degrees
of freedom for a particular effect, use a missing value for its location in the list. For
example,

model Y = A B A*B / ddf=3,.,4.7;

assigns 3 denominator degrees of freedom toA and 4.7 toA*B, while those forB re-
main the same. If you specify DDFM=SATTERTH or DDFM=KENWARDROGER
the DDF= option has no effect.

DDFM=CONTAIN
DDFM=BETWITHIN
DDFM=RESIDUAL
DDFM=SATTERTH
DDFM=KENWARDROGER

specifies the method for computing the denominator degrees of freedom for the
tests of fixed effects resulting from the MODEL, CONTRAST, ESTIMATE, and
LSMEANS statements.

The DDFM=CONTAIN option invokes thecontainment methodto compute denom-
inator degrees of freedom, and it is the default when you specify a RANDOM state-
ment. The containment method is carried out as follows: Denote the fixed effect in
questionA, and search the RANDOM effect list for the effects thatsyntacticallycon-
tainA. For example, the RANDOM effectB(A) containsA, but the RANDOM effect
C does not, even if it has the same levels asB(A).

Among the RANDOM effects that containA, compute their rank contribution to the
(X Z) matrix. The DDF assigned toA is the smallest of these rank contributions. If
no effects are found, the DDF forA is set equal to the residual degrees of freedom,
N − rank(X Z). This choice of DDF matches the tests performed for balanced split-
plot designs and should be adequate for moderately unbalanced designs.

Caution: If you have aZ matrix with a large number of columns, the overall memory
requirements and the computing time after convergence can be substantial for the
containment method. If it is too large, you may want to use the DDFM=BETWITHIN
option.

The DDFM=BETWITHIN option is the default for REPEATED statement specifica-
tions (with no RANDOM statements). It is computed by dividing the residual degrees
of freedom into between-subject and within-subject portions. PROC MIXED then
checks whether a fixed effect changes within any subject. If so, it assigns within-
subject degrees of freedom to the effect; otherwise, it assigns the between-subject



2694 � Chapter 46. The MIXED Procedure

degrees of freedom to the effect (refer to Schluchter and Elashoff 1990). If there are
multiple within-subject effects containing classification variables, the within-subject
degrees of freedom is partitioned into components corresponding to the subject-by-
effect interactions.

One exception to the preceding method is the case when you have specified no
RANDOM statements and a REPEATED statement with the TYPE=UN option. In
this case, all effects are assigned the between-subject degrees of freedom to pro-
vide for better small-sample approximations to the relevant sampling distributions.
DDFM=KENWARDROGER may be a better option to try for this case.

The DDFM=RESIDUAL option performs all tests using the residual degrees of free-
dom,n− rank(X), wheren is the number of observations.

The DDFM=SATTERTH option performs a general Satterthwaite approximation for
the denominator degrees of freedom, computed as follows. Supposeθ is the vector
of unknown parameters inV and supposeC = (X ′V −1X)−, where− denotes a
generalized inverse. Let̂C andθ̂ be the corresponding estimates.

Consider the one-dimensional case, and consider` to be a vector defining an es-
timable linear combination ofβ. The Satterthwaite degrees of freedom for thet-
statistic

t =
`β̂√
`Ĉ`′

is computed as

ν =
2(`Ĉ`′)2

g′Ag

whereg is the gradient of̀C`′ with respect toθ, evaluated at̂θ, andA is the asymp-
totic variance-covariance matrix of̂θ obtained from the second derivative matrix of
the likelihood equations.

For the multi-dimensional case, letL be an estimable contrast matrix of rankq > 1.
The Satterthwaite denominator degrees of freedom for theF -statistic

F =
β̂′L′(LĈL′)−1Lβ̂

q

is computed by first performing the spectral decompositionLĈL′ = P ′DP where
P is an orthogonal matrix of eigenvectors andD is a diagonal matrix of eigenvalues,
both of dimensionq × q. Define`m to be themth row ofPL, and let

νm =
2(Dm)2

g′mAgm

whereDm is themth diagonal element ofD andgm is the gradient of̀ mC`′m with
respect toθ, evaluated at̂θ. Then let

E =
q∑

m=1

νm

νm − 2
I(νm > 2)
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where the indicator function eliminates terms for whichνm ≤ 2. The degrees of
freedom forF are then computed as

ν =
2E

E − q

providedE > q; otherwiseν is set to zero.

This method is a generalization of the techniques described in Giesbrecht and Burns
(1985), McLean and Sanders (1988), and Fai and Cornelius (1996). The method can
also include estimated random effects. In this case, appendγ̂ to β̂ and changêC to be
the inverse of the coefficient matrix in the mixed model equations. The calculations
require extra memory to holdc matrices that are the size of the mixed model equa-
tions, wherec is the number of covariance parameters. In the notation ofTable 46.12
on page 2773, this is approximately8q(p+g)(p+g)/2 bytes. Extra computing time is
also required to process these matrices. The Satterthwaite method implemented here
is intended to produce an accurateF-approximation; however, the results may differ
from those produced by PROC GLM. Also, the small sample properties of this ap-
proximation have not been extensively investigated for the various models available
with PROC MIXED.

The DDFM=KENWARDROGER option performs the degrees-of-freedom calcula-
tions detailed by Kenward and Roger (1997). This approximation involves inflat-
ing the estimated variance-covariance matrix of the fixed and random effects by the
method proposed by Prasad and Rao (1990) and Harville and Jeske (1992); refer also
to Kackar and Harville (1984). Satterthwaite-type degrees of freedom are then com-
puted based on this adjustment. By default, the observed information matrix of the
covariance parameter estimates is used in the calculations.

When the asymptotic variance matrix of the covariance parameters is found to be
singular, a generalized inverse is used. Covariance parameters with zero variance
then do not contribute to the degrees-of-freedom adjustment for DDFM=SATTERTH
and DDFM=KENWARDROGER, and a message is written to the LOG.

This method changes output in the following tables (listed inTable 46.8on page
2752): Contrast, CorrB, CovB, Diffs, Estimates, InvCovB, LSMeans, MMEq,
MMEqSol, Slices, SolutionF, SolutionR, Tests1–Tests3. The OUTP= and OUTPM=
data sets are also affected.

E
requests that Type I, Type II, and Type IIIL matrix coefficients be displayed for all
specified effects. For ODS purposes, the labels of the tables are “Coef.”

E1
requests that Type IL matrix coefficients be displayed for all specified effects. For
ODS purposes, the label of this table is “Coef.”

E2
requests that Type IIL matrix coefficients be displayed for all specified effects. For
ODS purposes, the label of this table is “Coef.”
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E3
requests that Type IIIL matrix coefficients be displayed for all specified effects. For
ODS purposes, the label of this table is “Coef.”

FULLX
requests that columns of theX matrix that consist entirely of zeros not be eliminated
from X; otherwise, they are eliminated by default. For a column corresponding to
a missing cell to be added toX, its particular levels must be present in at least one
observation in the analysis data set along with a missing dependent variable. The use
of the FULLX option can impact coefficient specifications in the CONTRAST and
ESTIMATE statements, as well as covariate coefficients from LSMEANS statements
specified with the AT MEANS option.

HTYPE=value-list
indicates the type of hypothesis test to perform on the fixed effects. Valid entries
for valueare 1, 2, and 3; the default value is 3. You can specify several types by
separating the values with a comma or a space. The ODS table names are “Tests1”
for the Type 1 tests, “Tests2” for the Type 2 tests, and “Tests3” for Type 3 tests.

INFLUENCE<( <EFFECT=effect>Experimental
<ESTIMATES|EST>
<ITER=number>
<KEEP=number>
<SELECT=value-list>
<SIZE=number>)>

specifies that influence and case deletion diagnostics are to be computed.

The INFLUENCE option of the MODEL statement in the MIXED procedure com-
putes influence diagnostics by noniterative or iterative methods. The noniterative
diagnostics rely on recomputation formulas under the assumption that covariance pa-
rameters or their ratios remain fixed. With the possible exception of a profiled residual
variance, no covariance parameters are updated. This is the default behavior because
of its computational efficiency. However, the impact of an observation on the overall
analysis can be underestimated if its effect on covariance parameters is not assessed.
Toward this end, iterative methods can be applied to gauge the overall impact of ob-
servations and to obtain influence diagnostics for the covariance parameter estimates.

If you specify the INFLUENCE option without further suboptions, PROC MIXED
computes single-case deletion diagnostics and influence statistics for each observa-
tion in the data set by updating estimates for the fixed effects parameter estimates,
and also the residual variance, if it is profiled. The EFFECT=, SELECT=, ITER=,
SIZE=, and KEEP= suboptions provide additional flexibility in the computation and
reporting of influence statistics.
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Description Suboption
Compute influence diagnostics for individual ob-
servations

default

Measure influence of sets of observations chosen
according to a classification variable or effect

EFFECT=

Remove pairs of observations and report the re-
sults sorted by degree of influence

SIZE=2

Remove triples, quadruples of observations,... SIZE=
Allow selection of individual observations, obser-
vations sharing specific levels of effects, and con-
struction of tuples from specified subsets of ob-
servations

SELECT=

Update fixed effects and covariance parameters by
refitting the mixed model, adding up ton itera-
tions

ITER=n > 0

Compute influence diagnostics for the covariance
parameters

ITER=n > 0

Update only fixed effects and the residual vari-
ance, if it is profiled

ITER=0

Add the reduced-data estimates to the data set cre-
ated with ODS OUTPUT

ESTIMATES

The modifiers and their default values are discussed in the following paragraphs. The
set of computed influence diagnostics varies with the suboptions. The most extensive
set of influence diagnostics is obtained when ITER=n with n > 0.

You can produce statistical graphics of influence diagnostics when the experimental
ODS GRAPHICS statement is specified. For general information about ODS graph-
ics, seeChapter 15, “Statistical Graphics Using ODS.”For specific information about
the graphics available in the MIXED procedure, see the“ODS Graphics”section on
page 2757.

EFFECT=effect specifies an effect according to which observations are grouped.
Observations sharing the same level of theeffect are removed from
the analysis as a group. Theeffect must contain only class vari-
ables, but need not be contained in the model.

Removing observations can change the rank of the(X′V−1X)−

matrix. This is particularly likely to happen when multiple obser-
vations are eliminated from the analysis. If the rank of the esti-
mated variance-covariance matrix ofβ̂ changes or its singularity
pattern is altered, no influence diagnostics are computed.

ESTIMATES|EST specifies that the updated parameter estimates should be written
to the ODS output data set. The values are not displayed in the
“Influence” table, but if you use ODS OUTPUT to create a data set
from the listing, the estimates are added to the data set. If ITER=0,
only the fixed effects estimates are saved. In iterative influence
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analyses, fixed effects and covariance parameters are stored. The
p fixed effects parameter estimates are namedParm1–Parmp, and
the q covariance parameter estimates are namedCovP1–CovPq.
The order corresponds to that in the “Solution for Fixed Effects”
and “Covariance Parameter Estimates” tables. If parameter updates
fail, for example, because of a loss of rank or a nonpositive definite
Hessian, missing values are reported.

ITER=n controls the maximum number of additional iterations PROC
MIXED performs to update the fixed effects and covariance param-
eter estimates following data point removal. If you specifyn > 0,
then statistics such as DFFITS, MDFFITS, and the likelihood dis-
tances measure the impact of observation(s) on all aspects of the
analysis. Typically, the influence will grow compared to values at
ITER=0. In models without RANDOM or REPEATED effects, the
ITER= option has no effect.

This documentation refers to analyses whenn > 0 simply as
iterative influence analysis, even if final covariance parameter
estimates can be updated in a single step (for example, when
METHOD=MIVQUE0 or METHOD=TYPE3). This nomencla-
ture reflects the fact that only ifn > 0 will all model parame-
ters be updated, which may require additional iterations. Ifn > 0
and METHOD=REML (default) or METHOD=ML, the procedure
updates fixed effectsand variance-covariance parameters after re-
moving the selected observations with additional Newton-Raphson
iterations, starting from the converged estimates for the entire data.
The process stops for each observation or set of observations if the
convergence criterion is satisfied or the number of further iterations
exceedsn. If n > 0 and METHOD=TYPE1, TYPE2, or TYPE3,
ANOVA estimates of the covariance parameters are recomputed in
a single step.

Compared to noniterative updates the computations are more in-
volved. In particular for large data sets and/or a large number
of random effects, iterative updates require considerably more re-
sources. A one-step (ITER=1) or two-step update may be a good
compromise. The output includes the number of iterations per-
formed, which is less thann if the iteration converges. If the pro-
cess does not converge inn iterations, you should be careful in
interpreting the results, especially ifn is fairly large.

Bounds and other restrictions on the covariance parameters carry
over from the full-data model. Covariance parameters that are not
iterated in the model fit to the full data (the NOITER or HOLD op-
tion of the PARMS statement) are likewise not updated in the refit.
In certain models, for example, random effects models, the ratios
between the covariance parameters and the residual variance are
maintained rather than the actual value of the covariance parame-
ter estimate (see the section“Influence Diagnostics”on page 2765
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in the“Details” section).

KEEP=n determines how many observations are retained for display and in
the output data set or how many tuples if you specify SIZE=. The
output is sorted by an influence statistic as discussed for the SIZE=
suboption.

SELECT =value-list specifies which observations or effect levels are chosen for in-
fluence calculations. If SELECT= is not specified, diagnostics are
computed for all possible subsets, that is

• all observations, if EFFECT= or SIZE= are not given

• all levels of the specified effect, if EFFECT= is specified

• all tuples of sizek formed from the observations invalue-list,
if SIZE=k is specified

When you specify an effect with the EFFECT= option, the val-
ues in value-list represent indices of the levels in the order in
which PROC MIXED builds classification effects. Which obser-
vations in the data set correspond to this index depends on the
order of the variables in the CLASS statement, not the order in
which the variables appear in the interaction effect. See the section
“Parameterization of Mixed Models”on page 2743 on precisely
how the procedure indexes nested and crossed effects and how lev-
els of classification variables are ordered. The actual values of the
classification variables involved in the effect are shown on the out-
put so you can determine which observations were removed.

If the EFFECT= suboption is not specified, the SELECT= value
list refers to the sequence in which observations are read from the
input data set or from the current BY group if there is a BY state-
ment. This indexing is not necessarily the same as the observation
numbers in the input data set, for example, if a WHERE clause is
specified or during BY processing.

SIZE=n instructs PROC MIXED to remove groups of observations formed
as tuples of sizen. For example, SIZE=2 specifies alln×(n−1)/2
unique pairs of observations. The number of tuples for SIZE=k is
n!/(k!(n− k)!) and grows quickly withn andk. Using the SIZE=
option can result in considerable computing time. The MIXED
procedure displays by default only the 50 tuples with the greatest
influence. Use the KEEP= option to override this default and to re-
tain a different number of tuples in the listing or ODS output data
set. Regardless of the KEEP= specification, all tuples are evalu-
ated and the results are ordered according to an influence statistic.
This statistic is the (restricted) likelihood distance as a measure of
overall influence if ITER =n > 0 or when a residual variance is
profiled. When likelihood distances are unavailable, the results are
ordered by the PRESS statistic.

To reduce computational burden, the SIZE= option can be com-
bined with the SELECT=value-list modifier. For example,
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proc mixed data=aerosol;
class aerosol manufacturer filter;
model penetration = aerosol manufacturer /

influence(size=2 keep=5
select=13,14,18,30,31,33);

random filter(manuf);
run;

evaluates all15 = 6× 5/2 pairs formed from observations 13, 14,
18, 30, 31, and 33 and displays the five pairs with the greatest in-
fluence. If any observation in a tuple contains missing values or
has otherwise not contributed to the analysis, the tuple is not eval-
uated. This guarantees that the displayed results refer to the same
number of observations, so that meaningful statistics are available
by which to order the results. If computations fail for a particular
tuple, for example, because the(X′V−1X)− matrix changes rank
or theG matrix is not positive definite, no results are produced.
Results are retained when the maximum number of iterative up-
dates is exceeded in iterative influence analyses.

The SIZE= suboption cannot be combined with the EFFECT= sub-
option.

As in the case of the EFFECT= suboption, the statistics being com-
puted are those appropriate for removal of multiple data points,
even if SIZE=1.

For ODS purposes the label of the “Influence Diagnostics” table is “Influence.” The
variables in this table depend on whether you specify the EFFECT=, SIZE=, or
KEEP= suboption and whether covariance parameters are iteratively updated. When
ITER=0 (the default) certain influence diagnostics are only meaningful if the resid-
ual variance is profiled.Table 46.3andTable 46.4summarize the statistics obtained
depending on the model and modifiers. The last column in these tables gives the
variable name in the ODS OUTPUT INFLUENCE= data set. Restricted likelihood
distances are reported instead of the likelihood distance unless METHOD=ML. See
the “Influence Diagnostics”section beginning on page 2765 for details on the indi-
vidual statistics.

Table 46.3. Statistics Computed with INFLUENCE Option, Noniterative Analysis
(ITER=0)

Suboption σ2 Statistic Variable
profiled Name

Default Yes Observed value Observed
Predicted value Predicted
Residual Residual
Leverage Leverage
PRESS residual PRESSRes
Internally studentized residual Student
Externally studentized residual RStudent
RMSE without deleted obs RMSE
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Table 46.3. (continued)

Suboption σ2 Statistic Variable
profiled Name

Cook’sD CookD
DFFITS DFFITS
COVRATIO COVRATIO
(Restricted) likelihood distance RLD, LD

Default No Observed value Observed
Predicted value Predicted
Residual Residual
Leverage Leverage
PRESS residual PRESSRes
Internally studentized residual Student
Cook’sD CookD

EFFECT=, Yes Observations in level (tuple) Nobs
SIZE=, PRESS statistic PRESS
or KEEP= Cook’sD CookD

MDFFITS MDFFITS
COVRATIO COVRATIO
COVTRACE COVTRACE
RMSE without deleted level (tuple) RMSE
(Restricted) likelihood distance RLD, LD

EFFECT=, No Observations in level (tuple) Nobs
SIZE=, PRESS statistic PRESS
or KEEP= Cook’sD CookD

Table 46.4. Statistics Computed with INFLUENCE Option, Iterative Analysis
(ITER=n > 0)

Suboption Statistic Variable
Name

Default Number of iterations Iter
Observed value Observed
Predicted value Predicted
Residual Residual
Leverage Leverage
PRESS residual PRESSres
Internally studentized residual Student
Externally studentized residual RStudent
RMSE without deleted obs (if possible) RMSE
Cook’sD CookD
DFFITS DFFITS
COVRATIO COVRATIO
Cook’sD CovParms CookDCP
COVRATIO CovParms COVRATIOCP
(Restricted) likelihood distance RLD, LD
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Table 46.4. (continued)

Suboption Statistic Variable
Name

EFFECT=, Number of iterations Iter
SIZE=, PRESS statistic PRESS
or KEEP= RMSE without deleted level (tuple) RMSE

Cook’sD CookD
MDFFITS MDFFITS
COVRATIO COVRATIO
COVTRACE COVTRACE
Cook’sD CovParms CookDCP
COVRATIO CovParms COVRATIOCP
(Restricted) likelihood distance RLD, LD

INTERCEPT
adds a row to the tables for Type 1, 2, and 3 tests corresponding to the overall inter-
cept.

LCOMPONENTS
requests an estimate for each row of theL matrix used to form tests of fixed effects.
Components corresponding to Type 3 tests are the default; you can produce the Type
1 and Type 2 component estimates with the HTYPE= option.

Tests of fixed effects involve testing of linear hypotheses of the formLβ = 0. The
matrix L is constructed from Type 1, 2, or 3 estimable functions. By default the
MIXED procedure constructs Type 3 tests. In many situations, the individual rows of
the matrixL represent contrasts of interest. For example, in a one-way classification
model, the Type 3 estimable functions define differences of factor level means. In a
balanced two-way layout, the rows ofL correspond to differences of cell means.

For example, if factorsA andB havea andb levels, respectively, the statements

class A B;
model y = A B x / htype=1,3 lcomponents;

produce(a − 1) one degree of freedom tests for the rows ofL associated with the
Type 1 and Type 3 estimable functions for factorA, (b − 1) tests for the rows of
L associated with factorB, and a single test for the Type 1 and Type 3 coefficients
associated with regressorX.

The denominator degrees of freedom associated with a row ofL are the
same as those in the corresponding “Tests of Fixed Effects” table, except for
DDFM=KENWARDROGER and DDFM=SATTERTH. For these degree of freedom
methods, the denominator degrees of freedom are computed separately for each row
of L .

For ODS purposes, the name of the table containing all requested component tests
is “LComponents.” SeeExample 46.9on page 2839 for examples incorporating the
LCOMPONENTS option.
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NOCONTAIN
has the same effect as theDDFM=RESIDUAL option.

NOINT
requests that no intercept be included in the model. An intercept is included by de-
fault.

NOTEST
specifies that no hypothesis tests be performed for the fixed effects.

OUTP=SAS-data-set
OUTPRED=SAS-data-set

specifies an output data set containing predicted values and related quantities. This
option replaces the P option from Version 6.

Predicted values are formed by using the rows from (X Z) asL matrices. Thus,
predicted values from the original data areXβ̂ + Zγ̂. Their approximate standard
errors of prediction are formed from the quadratic form ofL with Ĉ defined in the
“Statistical Properties”section on page 2740. The L95 and U95 variables provide a
t-type confidence interval for the predicted values, and they correspond to the L95M
and U95M variables from the GLM and REG procedures for fixed-effect models. The
residuals are the observed minus the predicted values. Predicted values for data points
other than those observed can be obtained by using missing dependent variables in
your input data set.

Specifications that have a REPEATED statement with the SUBJECT= option and
missing dependent variables compute predicted values using empirical best linear un-
biased prediction (EBLUP). Using hats(ˆ) to denote estimates, the EBLUP formula
is

m̂ = Xmβ̂ + ĈmV̂−1(y −Xβ̂)

wherem represents a hypothetical realization of a missing data vector with associated
design matrixXm. The matrixCm is the model-based covariance matrix between
m and the observed datay, and other notation is as presented in the“Mixed Models
Theory” section beginning on page 2731.

The estimated prediction variance is as follows:

V̂ar(m̂−m) = V̂m − ĈmV̂−1ĈT
m +

[Xm − ĈmV̂−1X](XT V̂−1X)−[Xm − ĈmV̂−1X]T

whereVm is the model-based variance matrix ofm. For further details, refer to
Henderson (1984) and Harville (1990). This feature can be useful for forecasting
time series or for computing spatial predictions.

By default, all variables from the input data set are included in the OUTP= data set.
You can select a subset of these variables using the ID statement.
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OUTPM=SAS-data-set
OUTPREDM=SAS-data-set

specifies an output data set containing predicted means and related quantities. This
option replaces the PM option from Version 6.

The output data set is of the same form as that resulting from the OUTP= option,
except that the predicted values do not incorporate the EBLUP valuesZγ̂. They also
do not use the EBLUPs for specifications that have a REPEATED statement with
the SUBJECT= option and missing dependent variables. The predicted values are
formed asXβ̂ in the OUTPM= data set, and standard errors are quadratic forms in
the approximate variance-covariance matrix ofβ̂ as displayed by the COVB option.

By default, all variables from the input data set are included in the OUTPM= data set.
You can select a subset of these variables using the ID statement.

RESIDUALExperimental
requests that Pearson-type and (internally) studentized residuals be added to the
OUTP= and OUTPM= data sets. Studentized residuals are raw residuals standard-
ized by their estimated standard error. When residuals are internally studentized, the
data point in question has contributed to the estimation of the covariance parameter
estimates on which the standard error of the residual is based. Externally studentized
residuals can be computed with the INFLUENCE option. Pearson-type residuals
scale the residual by the standard deviation of the response.

The RESIDUAL option adds the variablesPearsonResid andStudentResid to the
OUTP= and OUTPM= data sets. In the former case, the standardization draws on
the variance of the conditional distribution (given the random effects). The standard-
ization of residuals in the OUTPM= data set draws on the variance of the marginal
distribution of the response.

The option has no effect unless the OUTP= or OUTPM= option are specified or
you request statistical graphics with the experimental ODS GRAPHICS statement.
For general information about ODS graphics, seeChapter 15, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the MIXED
procedure, see the“ODS Graphics”section on page 2757. For computational details
about studentized and Pearson residuals in MIXED, see the“Residual Diagnostics”
section beginning on page 2763.

SINGULAR=number
tunes the sensitivity in sweeping. If a diagonal pivot element is less than D*number
as PROC MIXED sweeps a matrix, the associated column is declared to be linearly
dependent upon previous columns, and the associated parameter is set to 0. The value
D is the original diagonal element of the matrix. The default is 1E4 times the machine
epsilon; this product is approximately 1E−12 on most computers.

SINGCHOL=number
tunes the sensitivity in computing Cholesky roots. If a diagonal pivot element is less
than D*numberas PROC MIXED performs the Cholesky decomposition on a matrix,
the associated column is declared to be linearly dependent upon previous columns and
is set to0. The value D is the original diagonal element of the matrix. The default



MODEL Statement � 2705

for numberis 1E4 times the machine epsilon; this product is approximately 1E−12
on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default
is 1E4 times the machine epsilon; this product is approximately 1E−12 on most
computers.

SOLUTION
S

requests that a solution for the fixed-effects parameters be produced. Using notation
from the“Mixed Models Theory”section beginning on page 2731, the fixed-effects
parameter estimates areb̂ and their approximate standard errors are the square roots
of the diagonal elements of(X′V̂−1X)−. You can output this approximate variance
matrix with theCOVB option or modify it with theEMPIRICAL option in the PROC
MIXED statement.

Along with the estimates and their approximate standard errors, at-statistic is com-
puted as the estimate divided by its standard error. The degrees of freedom for this
t-statistic matches the one appearing in the “Tests of Fixed Effects” table under the
effect containing the parameter. The “Pr >|t|” column contains the two-tailedp-
value corresponding to thet-statistic and associated degrees of freedom. You can use
theCL option to request confidence intervals for all of the parameters; they are con-
structed around the estimate by using a radius of the standard error times a percentage
point from thet-distribution.

VCIRY Experimental
requests that responses and marginal residuals be scaled by the inverse Cholesky
root of the marginal variance-covariance matrix. The variablesScaledDep and
ScaledResid are added to the OUTPM= data set. These quantities can be impor-
tant in bootstrapping of data or residuals. Examination of the scaled residuals is also
helpful in diagnosing departures from normality. Notice that the results of this scal-
ing operation can depend on the order in which the MIXED procedure processes the
data.

The VCIRY option has no effect unless you also use the OUTPM= option or you
request statistical graphics with the experimental ODS GRAPHICS statement. For
general information about ODS graphics, seeChapter 15, “Statistical Graphics Using
ODS.” For specific information about the graphics available in the MIXED proce-
dure, see the“ODS Graphics”section on page 2757.

XPVIX
is an alias for theCOVBI option.

XPVIXI
is an alias for theCOVB option.

ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable
function basis with an absolute value less thannumberis set to 0. The default is
1E−8.
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PARMS Statement

PARMS (value-list) . . . < / options > ;

The PARMS statement specifies initial values for the covariance parameters, or it
requests a grid search over several values of these parameters. You must specify the
values in the order in which they appear in the “Covariance Parameter Estimates”
table.

Thevalue-listspecification can take any of several forms:

m a single value

m1,m2, . . . ,mn several values

m to n a sequence wherem equals the starting value,n equals the ending
value, and the increment equals 1

m to n by i a sequence wherem equals the starting value,n equals the ending
value, and the increment equalsi

m1,m2 to m3 mixed values and sequences

You can use the PARMS statement to input known parameters. Referring to the split-
plot example (Example 46.1on page 2777), suppose the three variance components
are known to be 60, 20, and 6. The SAS statements to fix the variance components at
these values is as follows:

proc mixed data=sp noprofile;
class Block A B;
model Y = A B A*B;
random Block A*Block;
parms (60) (20) (6) / noiter;

run;

The NOPROFILE option requests PROC MIXED to refrain from profiling the resid-
ual variance parameter during its calculations, thereby enabling its value to be held at
6 as specified in the PARMS statement. The NOITER option prevents any Newton-
Raphson iterations so that the subsequent results are based on the given variance
components. You can also specify known parameters ofG using theGDATA= op-
tion in the RANDOM statement.

If you specify more than one set of initial values, PROC MIXED performs a grid
search of the likelihood surface and uses the best point on the grid for subsequent
analysis. Specifying a large number of grid points can result in long computing
times. The grid search feature is also useful for exploring the likelihood surface.
SeeExample 46.3on page 2795.

The results from the PARMS statement are the values of the parameters on the spec-
ified grid (denoted by CovP1–CovPn), the residual variance (possibly estimated) for
models with a residual variance parameter, and various functions of the likelihood.

For ODS purposes, the label of the “Parameter Search” table is “ParmSearch.”
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You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list
EQCONS=value-list

specifies which parameter values PROC MIXED should hold to equal the specified
values. For example, the statement

parms (5) (3) (2) (3) / hold=1,3;

constrains the first and third covariance parameters to equal 5 and 2, respectively.

LOGDETH
evaluates the log determinant of the Hessian matrix for each point specified in the
PARMS statement. A Log Det H column is added to the “Parameter Search” table.

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. The
value-listspecification is a list of numbers or missing values (.) separated by commas.
You must list the numbers in the order that PROC MIXED uses for the covariance pa-
rameters, and each number corresponds to the lower boundary constraint. A missing
value instructs PROC MIXED to use its default constraint, and if you do not specify
numbers for all of the covariance parameters, PROC MIXED assumes the remaining
ones are missing.

An example for which this option is useful is when you want to constrain theG
matrix to be positive definite in order to avoid the more computationally intensive
algorithms required whenG becomes singular. The corresponding code for a random
coefficients model is as follows:

proc mixed;
class person;
model y = time;
random int time / type=fa0(2) sub=person;
parms / lowerb=1e-4,.,1e-4;

run;

Here the FA0(2) structure is used in order to specify a Cholesky root parameteriza-
tion for the2 × 2 unstructured blocks inG. This parameterization ensures that the
G matrix is nonnegative definite, and the PARMS statement then ensures that it is
positive definite by constraining the two diagonal terms to be greater than or equal to
1E−4.

NOBOUND
requests the removal of boundary constraints on covariance parameters. For exam-
ple, variance components have a default lower boundary constraint of 0, and the
NOBOUND option allows their estimates to be negative.
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NOITER
requests that no Newton-Raphson iterations be performed and that PROC MIXED
use the best value from the grid search to perform inferences. By default, iterations
begin at the best value from the PARMS grid search.

NOPROFILE
specifies a different computational method for the residual variance during the grid
search. By default, PROC MIXED estimates this parameter using the profile like-
lihood when appropriate. This estimate is displayed in the Variance column of the
“Parameter Search” table. The NOPROFILE option suppresses the profiling and uses
the actual value of the specified variance in the likelihood calculations.

OLS
requests starting values corresponding to the usual general linear model. Specifically,
all variances and covariances are set to zero except for the residual variance, which
is set equal to its ordinary least-squares (OLS) estimate. This option is useful when
the default MIVQUE0 procedure produces poor starting values for the optimization
process.

PARMSDATA= SAS-data-set
PDATA=SAS-data-set

reads in covariance parameter values from a SAS data set. The data set should contain
the EST or COVP1–COVPn variables.

RATIOS
indicates that ratios with the residual variance are specified instead of the covariance
parameters themselves. The default is to use the individual covariance parameters.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The
value-listspecification is a list of numbers or missing values (.) separated by commas.
You must list the numbers in the order that PROC MIXED uses for the covariance pa-
rameters, and each number corresponds to the upper boundary constraint. A missing
value instructs PROC MIXED to use its default constraint, and if you do not spec-
ify numbers for all of the covariance parameters, PROC MIXED assumes that the
remaining ones are missing.

PRIOR Statement

PRIOR < distribution >< / options > ;

The PRIOR statement enables you to carry out a sampling-based Bayesian analy-
sis in PROC MIXED. It currently operates only with variance component models.
The analysis produces a SAS data set containing a pseudo-random sample from the
joint posterior density of the variance components and other parameters in the mixed
model.

The posterior analysis is performed after all other PROC MIXED computations. It
begins with the “Posterior Sampling Information” table, which provides basic infor-
mation about the posterior sampling analysis, including the prior densities, sampling
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algorithm, sample size, and random number seed. For ODS purposes, the name of
this table is “Posterior.”

By default, PROC MIXED uses an independence chain algorithm in order to gen-
erate the posterior sample (Tierney 1994). This algorithm works by generating a
pseudo-random proposal from a convenient base distribution, chosen to be as close
as possible to the posterior. The proposal is then retained in the sample with proba-
bility proportional to the ratio of weights constructed by taking the ratio of the true
posterior to the base density. If a proposal is not accepted, then a duplicate of the
previous observation is added to the chain.

In selecting the base distribution, PROC MIXED makes use of the fact that the fixed-
effects parameters can be analytically integrated out of the joint posterior, leaving the
marginal posterior density of the variance components. In order to better approximate
the marginal posterior density of the variance components, PROC MIXED transforms
them using the MIVQUE(0) equations. You can display the selected transformation
with the PTRANS option or specify your own with the TDATA= option. The density
of the transformed parameters is then approximated by a product of inverted gamma
densities (refer to Gelfand et al. 1990).

To determine the parameters for the inverted gamma densities, PROC MIXED eval-
uates the logarithm of the posterior density over a grid of points in each of the trans-
formed parameters, and you can display the results of this search with the PSEARCH
option. PROC MIXED then performs a linear regression of these values on the log-
arithm of the inverted gamma density. The resulting base densities are displayed in
the “Base Densities” table; for ODS purposes, the name of this table is “BaseDen.”
You can input different base densities with the BDATA= option.

At the end of the sampling, the “Acceptance Rates” table displays the acceptance
rate computed as the number of accepted samples divided by the total number of
samples generated. For ODS purposes, the label of the “Acceptance Rates” table is
“AcceptanceRates.”

The OUT= option specifies the output data set containing the posterior sample. PROC
MIXED automatically includes all variance component parameters in this data set
(labeled COVP1–COVPn), the Type IIIF-statistics constructed as in Ghosh (1992)
discussing Schervish (1992) (labeled T3Fn), the log values of the posterior (labeled
LOGF), the log of the base sampling density (labeled LOGG), and the log of their
ratio (labeled LOGRATIO). If you specify the SOLUTION option in the MODEL
statement, the data set also contains a random sample from the posterior density of
the fixed-effects parameters (labeled BETAn), and if you specify the SOLUTION
option in the RANDOM statement, the table contains a random sample from the
posterior density of the random-effects parameters (labeled GAMn). PROC MIXED
also generates additional variables corresponding to any CONTRAST, ESTIMATE,
or LSMEANS statement that you specify.

Subsequently, you can use SAS/INSIGHT, or the UNIVARIATE, CAPABILITY, or
KDE procedures to analyze the posterior sample.

The prior density of the variance components is, by default, a noninformative ver-
sion of Jeffreys’ prior (Box and Tiao 1973). You can also specify informative pri-
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ors with the DATA= option or a flat (equal to 1) prior for the variance components.
The prior density of the fixed-effects parameters is assumed to be flat (equal to
1), and the resulting posterior is conditionally multivariate normal (conditioning on
the variance component parameters) with mean(X′V−1X)−X′V−1y and variance
(X′V−1X)−.

The distribution argument in the PRIOR statement determines the prior density for
the variance component parameters of your mixed model. Valid values are as follows.

DATA=
enables you to input the prior densities of the variance components used by the sam-
pling algorithm. This data set must contain the TYPE and PARM1–PARMn vari-
ables, wheren is the largest number of parameters among each of the base densities.
The format of the DATA= data set matches that created by PROC MIXED in the
“Base Densities” table, so you can output the densities from one run and use them as
input for a subsequent run.

JEFFREYS
specifies a noninformative reference version of Jeffreys’ prior constructed using the
square root of the determinant of the expected information matrix as in (1.3.92) of
Box and Tiao (1973). This is the default prior.

FLAT
specifies a prior density equal to 1 everywhere, making the likelihood function the
posterior.

You can specify the following options in the PRIOR statement after a slash (/).

ALG=IC | INDCHAIN
ALG=IS | IMPSAMP
ALG=RS | REJSAMP
ALG=RWC | RWCHAIN

specifies the algorithm used for generating the posterior sample. The ALG=IC op-
tion requests an independence chain algorithm, and it is the default. The option
ALG=IS requests importance sampling, ALG=RS requests rejection sampling, and
ALG=RWC requests a random walk chain. For more information on these tech-
niques, refer to Ripley (1987), Smith and Gelfand (1992), and Tierney (1994).

BDATA=
enables you to input the base densities used by the sampling algorithm. This data
set must contain the TYPE and PARM1–PARMn variables, wheren is the largest
number of parameters among each of the base densities. The format of the BDATA=
data set matches that created by PROC MIXED in the “Base Densities” table, so you
can output the densities from one run and use them as input for a subsequent run.

GRID=(value-list)
specifies a grid of values over which to evaluate the posterior density. Thevalue-list
syntax is the same as in thePARMS statement(see page 2706), and you must specify
an output data set name with theOUTG=option.
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GRIDT=(value-list)
specifies a transformed grid of values over which to evaluate the posterior density.
The value-listsyntax is the same as in thePARMS statement(see page 2706), and
you must specify an output data set name with theOUTGT=option.

IFACTOR=number
is an alias for theSFACTOR=option.

LOGNOTE=number
instructs PROC MIXED to write a note to the SAS log after it generates the sample
corresponding to each multiple ofnumber. This is useful for monitoring the progress
of CPU-intensive runs.

LOGRBOUND=number
specifies the bounding constant for rejection sampling. The value ofnumberequals
the maximum oflog(f/g) over the variance component parameter space, wheref is
the posterior density andg is the product inverted gamma densities used to perform
rejection sampling.

When performing the rejection sampling, you may encounter the message

WARNING: The log ratio bound of LL was violated at sample XX.

When this occurs, PROC MIXED reruns an optimization algorithm to determine a
new log upper bound and then restarts the rejection sampling. The resulting OUT=
data set contains all observations that have been generated; therefore, assuming that
you have requested N samples, you should retain only the final N observations in this
data set for analysis purposes.

NSAMPLE=number
specifies the number of posterior samples to generate. The default is 1000, but more
accurate results are obtained with larger samples such as 10000.

NSEARCH=number
specifies the number of posterior evaluations PROC MIXED makes for each trans-
formed parameter in determining the parameters for the inverted gamma densities.
The default is 20.

OUT=SAS-data-set
creates an output data set containing the sample from the posterior density.

OUTG=SAS-data-set
creates an output data set from the grid evaluations specified in the GRID= option.

OUTGT=SAS-data-set
creates an output data set from the transformed grid evaluations specified in the
GRIDT= option.

PSEARCH
displays the search used to determine the parameters for the inverted gamma densi-
ties. For ODS purposes, the name of the table is “Search.”
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PTRANS
displays the transformation of the variance components. For ODS purposes, the name
of the table is “Trans.”

SEED=number
specifies an integer used to start the pseudo-random number generator for the simu-
lation. If you do not specify a seed, or specify a value less than or equal to zero, the
seed is by default generated from reading the time of day from the computer clock.
You should use a positive seed (less than231−1) whenever you want to duplicate the
sample in another run of PROC MIXED.

SFACTOR=number
enables you to adjust the range over which PROC MIXED searches the transformed
parameters in order to determine the parameters for the inverted gamma densities.
PROC MIXED determines the range by first transforming the estimates from the stan-
dard PROC MIXED analysis (REML, ML, or MIVQUE0, depending upon which es-
timation method you select). It then multiplies and divides the transformed estimates
by 2∗numberto obtain upper and lower bounds, respectively. Transformed values
that produce negative variance components in the original scale are not included in
the search. The default value is 1;numbermust be greater than 0.5.

TDATA=
enables you to input the transformation of the covariance parameters used by the
sampling algorithm. This data set should contain the CovP1–CovPn variables. The
format of the TDATA= data set matches that created by PROC MIXED in the “Trans”
table, so you can output the transformation from one run and use is as input for a
subsequent run.

TRANS=EXPECTED
TRANS=MIVQUE0
TRANS=OBSERVED

specifies the particular algorithm used to determine the transformation of the covari-
ance parameters. The default is MIVQUE0, indicating a transformation based on the
MIVQUE(0) equations. The other two options indicate the type of Hessian matrix
used in constructing the transformation via a Cholesky root.

UPDATE=number
is an alias for theLOGNOTE=option.

RANDOM Statement

RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects constituting theγ vector in the
mixed model. It can be used to specify traditional variance component models (as in
the VARCOMP procedure) and to specify random coefficients. The random effects
can be classification or continuous, and multiple RANDOM statements are possible.

Using notation from the“Mixed Models Theory”section beginning on page 2731, the
purpose of the RANDOM statement is to define theZ matrix of the mixed model, the
random effects in theγ vector, and the structure ofG. TheZ matrix is constructed
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exactly as theX matrix for the fixed effects, and theG matrix is constructed to
correspond with the effects constitutingZ. The structure ofG is defined by using the
TYPE= optiondescribed on page 2715.

You can specify INTERCEPT (or INT) as a random effect to indicate the intercept.
PROC MIXED does not include the intercept in the RANDOM statement by default
as it does in the MODEL statement.

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA= number
requests that at-type confidence interval be constructed for each of the random effect
estimates with confidence level1− number. The value ofnumbermust be between
0 and 1; the default is 0.05.

CL
requests thatt-type confidence limits be constructed for each of the random effect
estimates. The confidence level is 0.95 by default; this can be changed with the
ALPHA= option.

G
requests that the estimatedG matrix be displayed. PROC MIXED displays blanks
for values that are 0. If you specify the SUBJECT= option, then the block of theG
matrix corresponding to the first subject is displayed. For ODS purposes, the name
of the table is “G.”

GC
displays the lower-triangular Cholesky root of the estimatedG matrix according to
the rules listed under theG option. For ODS purposes, the name of the table is
“CholG.”

GCI
displays the inverse Cholesky root of the estimatedG matrix according to the rules
listed under theG option. For ODS purposes, the name of the table is “InvCholG.”

GCORR
displays the correlation matrix corresponding to the estimatedG matrix according
to the rules listed under theG option. For ODS purposes, the name of the table is
“GCorr.”

GDATA=SAS-data-set
requests that theG matrix be read in from a SAS data set. ThisG matrix is assumed
to be known; therefore, onlyR-side parameters from effects in the REPEATED state-
ment are included in the Newton-Raphson iterations. If no REPEATED statement is
specified, then only a residual variance is estimated.

The information in the GDATA= data set can appear in one of two ways. The first is
a sparse representation for which you include ROW, COL, and VALUE variables to
indicate the row, column, and value ofG. All unspecified locations are assumed to
be 0. The second representation is for dense matrices. In it you include ROW and
COL1–COLn variables to indicate the row and columns ofG, which is a symmetric
matrix of ordern. For both representations, you must specify effects in the RANDOM
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statement that generate aZ matrix that containsn columns. SeeExample 46.4on
page 2802.

If you have more than one RANDOM statement, only one GDATA= option is re-
quired on any one of them, and the data set you specify must contain the entireG
matrix defined by all of the RANDOM statements.

If the GDATA= data set contains variance ratios instead of the variances themselves,
then use theRATIOSoption.

Known parameters ofG can also be input using the PARMS statement with the
HOLD= option.

GI
displays the inverse of the estimatedG matrix according to the rules listed under the
G option. For ODS purposes, the name of the table is “InvG.”

GROUP=effect
GRP=effect

defines an effect specifying heterogeneity in the covariance structure ofG. All ob-
servations having the same level of the group effect have the same covariance param-
eters. Each new level of the group effect produces a new set of covariance parameters
with the same structure as the original group. You should exercise caution in defin-
ing the group effect, as strange covariance patterns can result with its misuse. Also,
the group effect can greatly increase the number of estimated covariance parameters,
which may adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

LDATA= SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number) option. The
data set must contain the variables PARM, ROW, COL1–COLn, or PARM, ROW,
COL, VALUE. The PARM variable denotes which of thenumbercoefficient matrices
is currently being constructed, and the ROW, COL1–COLn, or ROW, COL, VALUE
variables specify the matrix values, as they do with the GDATA= option. Unspecified
values of these matrices are set equal to 0.

NOFULLZ
eliminates the columns inZ corresponding to missing levels of random effects in-
volving CLASS variables. By default, these columns are included inZ.

RATIOS
indicates that ratios with the residual variance are specified in the GDATA= data
set instead of the covariance parameters themselves. The default GDATA= data set
contains the individual covariance parameters.
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SOLUTION
S

requests that the solution for the random-effects parameters be produced. Using no-
tation from the“Mixed Models Theory”section beginning on page 2731, these esti-
mates are the empirical best linear unbiased predictors (EBLUPs)γ̂ = ĜZ′V̂−1(y−
Xβ̂). They can be useful for comparing the random effects from different experimen-
tal units and can also be treated as residuals in performing diagnostics for your mixed
model.

The numbers displayed in the SE Pred column of the “Solution for Random Effects”
table are not the standard errors of theγ̂ displayed in the Estimate column; rather,
they are the standard errors of predictionsγ̂i−γi, whereγ̂i is theith EBLUP andγi

is theith random-effect parameter.

SUBJECT=effect
SUB=effect

identifies the subjects in your mixed model. Complete independence is assumed
across subjects; thus, for the RANDOM statement, the SUBJECT= option produces
a block-diagonal structure inG with identical blocks. TheZ matrix is modified to
accommodate this block-diagonality. In fact, specifying a subject effect is equivalent
to nesting all other effects in the RANDOM statement within the subject effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

When you specify the SUBJECT= option and a classification random effect, com-
putations are usually much quicker if the levels of the random effect are duplicated
within each level of the SUBJECT= effect.

TYPE=covariance-structure
specifies the covariance structure ofG. Valid values forcovariance-structureand
their descriptions are listed inTable 46.5on page 2721 andTable 46.6on page
2722. Although a variety of structures are available, most applications call for ei-
ther TYPE=VC or TYPE=UN. The TYPE=VC (variance components) option is the
default structure, and it models a different variance component for each random ef-
fect.

The TYPE=UN (unstructured) option is useful for correlated random coefficient mod-
els. For example,

random intercept age / type=un subject=person;

specifies a random intercept-slope model that has different variances for the intercept
and slope and a covariance between them. You can also use TYPE=FA0(2) here to
request aG estimate that is constrained to be nonnegative definite.
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If you are constructing your own columns ofZ with continuous variables, you can
use the TYPE=TOEP(1) structure to group them together to have a common variance
component. If you desire to have different covariance structures in different parts of
G, you must use multiple RANDOM statements with different TYPE= options.

V<=value-list>
requests that blocks of the estimatedV matrix be displayed. The first block de-
termined by the SUBJECT= effect is the default displayed block. PROC MIXED
displays entries that are 0 as blanks in the table.

You can optionally use thevalue-listspecification, which indicates the subjects for
which blocks ofV are to be displayed. For example, the statement

random int time / type=un subject=person v=1,3,7;

displays block matrices for the first, third, and seventh persons. The table name for
ODS purposes is “V.”

VC<=value-list>
displays the Cholesky root of the blocks of the estimatedV matrix. Thevalue-list
specification is the same as in theV= option. The table name for ODS purposes is
“CholV.”

VCI<=value-list>
displays the inverse of the Cholesky root of the blocks of the estimatedV matrix.
Thevalue-listspecification is the same as in theV= option. The table name for ODS
purposes is “InvCholV.”

VCORR<=value-list>
displays the correlation matrix corresponding to the blocks of the estimatedV matrix.
Thevalue-listspecification is the same as in theV= option. The table name for ODS
purposes is “VCorr.”

VI<=value-list>
displays the inverse of the blocks of the estimatedV matrix. Thevalue-listspecifica-
tion is the same as in theV= option. The table name for ODS purposes is “InvV.”

REPEATED Statement

REPEATED < repeated-effect >< / options > ;

The REPEATED statement is used to specify theR matrix in the mixed model. Its
syntax is different from that of the REPEATED statement in PROC GLM. If no
REPEATED statement is specified,R is assumed to be equal toσ2I.

For many repeated measures models, no repeated effect is required in the REPEATED
statement. Simply use the SUBJECT= option to define the blocks ofR and the
TYPE= option to define their covariance structure. In this case, the repeated measures
data must be similarly ordered for each subject, and you must indicate all missing
response variables with periods in the input data set unless they all fall at the end of
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a subject’s repeated response profile. These requirements are necessary in order to
inform PROC MIXED of the proper location of the observed repeated responses.

Specifying a repeated effect is useful when you do not want to indicate missing values
with periods in the input data set. The repeated effect must contain only classifica-
tion variables. Make sure that the levels of the repeated effect are different for each
observation within a subject; otherwise, PROC MIXED constructs identical rows in
R corresponding to the observations with the same level. This results in a singularR
and an infinite likelihood.

Whether you specify a REPEATED effect or not, the rows ofR for each subject are
constructed in the order that they appear in the input data set.

You can specify the following options in the REPEATED statement after a slash (/).

GROUP=effect
GRP=effect

defines an effect specifying heterogeneity in the covariance structure ofR. All ob-
servations having the same level of the GROUP effect have the same covariance pa-
rameters. Each new level of the GROUP effect produces a new set of covariance
parameters with the same structure as the original group. You should exercise cau-
tion in properly defining the GROUP effect, as strange covariance patterns can result
with its misuse. Also, the GROUP effect can greatly increase the number of estimated
covariance parameters, which may adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

HLM
produces a table of Hotelling-Lawley-McKeon statistics (McKeon 1974) for all fixed
effects whose levels change across data having the same level of the SUBJECT=
effect (thewithin-subjectfixed effects). This option applies only when you specify
a REPEATED statement with the TYPE=UN option and no RANDOM statements.
For balanced data, this model is equivalent to the multivariate model for repeated
measures in PROC GLM.

The Hotelling-Lawley-McKeon statistic has a slightly betterF approximation than
the Hotelling-Lawley-Pillai-Samson statistic (see the description of theHLPSoption,
which follows). Both of the Hotelling-Lawley statistics can perform much better in
small samples than the defaultF statistic (Wright 1994).

Separate tables are produced for Type I, II, and III tests, according to the ones you
select. For ODS purposes, the labels for these tables are “HLM1,” “HLM2,” and
“HLM3,” respectively.
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HLPS
produces a table of Hotelling-Lawley-Pillai-Samson statistics (Pillai and Samson
1959) for all fixed effects whose levels change across data having the same level of the
SUBJECT= effect (thewithin-subjectfixed effects). This option applies only when
you specify a REPEATED statement with the TYPE=UN option and no RANDOM
statements. For balanced data, this model is equivalent to the multivariate model for
repeated measures in PROC GLM, and this statistic is the same as the Hotelling-
Lawley Trace statistic produced by PROC GLM.

Separate tables are produced for Type I, II, and III tests, according to the ones you
select. For ODS purposes, the labels for these tables are “HLPS1,” “HLPS2,” and
“HLPS3,” respectively.

LDATA= SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number) option. The
data set must contain the variables PARM, ROW, COL1–COLn, or PARM, ROW,
COL, VALUE. The PARM variable denotes which of thenumbercoefficient matrices
is currently being constructed, and the ROW, COL1–COLn, or ROW, COL, VALUE
variables specify the matrix values, as they do with the RANDOM statement option
GDATA=. Unspecified values of these matrices are set equal to 0.

LOCAL
LOCAL=EXP( <effects>)
LOCAL=POM( POM-data-set)

requests that a diagonal matrix be added toR. With just the LOCAL option, this
diagonal matrix equalsσ2I, andσ2 becomes an additional variance parameter that
PROC MIXED profiles out of the likelihood provided that you do not specify the
NOPROFILE option in the PROC MIXED statement. The LOCAL option is useful
if you want to add an observational error to a time series structure (Jones and Boadi-
Boateng 1991) or a nugget effect to a spatial structure (Cressie 1991).

The LOCAL=EXP(<effects>) option produces exponential local effects, also known
as dispersion effects, in a log-linear variance model. These local effects have the form

σ2diag[exp(Uδ)]

whereU is the full-rank design matrix corresponding to the effects that you specify
andδ are the parameters that PROC MIXED estimates. An intercept is not included
in U because it is accounted for byσ2. PROC MIXED constructs the full-rankU in
terms of 1s and−1s for classification effects. Be sure to scale continuous effects in
U sensibly.

The LOCAL=POM(POM-data-set) option specifies the power-of-the-mean structure.
This structure possesses a variance of the formσ2|x′iβ

∗|θ for the ith observation,
wherexi is the ith row of X (the design matrix of the fixed effects), andβ∗ is an
estimate of the fixed-effects parameters that you specify inPOM-data-set.

The SAS data set specified byPOM-data-setcontains the numeric variable Estimate
(in previous releases, the variable name was required to be EST), and it has at least
as many observations as there are fixed-effects parameters. The firstp observations
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of the Estimate variable inPOM-data-setare taken to be the elements ofβ∗, where
p is the number of columns ofX. You must order these observations according to
the non-full-rank parameterization of the MIXED procedure. One easy way to set up
POM-data-setfor a β∗ corresponding to ordinary least squares is illustrated by the
following code:

ods output SolutionF=sf;
proc mixed;

class a;
model y = a x / s;

run;

proc mixed;
class a;
model y = a x;
repeated / local=pom(sf);

run;

Note that the generalized least-squares estimate of the fixed-effects parameters from
the second PROC MIXED step usually is not the same as your specifiedβ∗. However,
you can iterate the POM fitting until the two estimates agree. Continuing from the
previous example, the code for performing one step of this iteration is as follows.

ods output SolutionF=sf1;
proc mixed;

class a;
model y = a x / s;
repeated / local=pom(sf);

run;

proc compare brief data=sf compare=sf1;
var estimate;

run;

data sf;
set sf1;

run;

Unfortunately, this iterative process does not always converge. For further details,
refer to the description of pseudo-likelihood in Chapter 3 of Carroll and Ruppert
(1988).

LOCALW
specifies that only the local effects and no others be weighted. By default, all ef-
fects are weighted. The LOCALW option is used in connection with the WEIGHT
statement and theLOCAL option in the REPEATED statement
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NONLOCALW
specifies that only the nonlocal effects and no others be weighted. By default, all
effects are weighted. The NONLOCALW option is used in connection with the
WEIGHT statement and theLOCAL option in the REPEATED statement

R<=value-list>
requests that blocks of the estimatedR matrix be displayed. The first block de-
termined by the SUBJECT= effect is the default displayed block. PROC MIXED
displays blanks for value-lists that are 0.

Thevalue-list indicates the subjects for which blocks ofR are to be displayed. For
example,

repeated / type=cs subject=person r=1,3,5;

displays block matrices for the first, third, and fifth persons. See the“PARMS
Statement”section on page 2706 for the possible forms ofvalue-list. The table name
for ODS purposes is “R.”

RC<=value-list>
produces the Cholesky root of blocks of the estimatedR matrix. Thevalue-listspec-
ification is the same as with theR option. The table name for ODS purposes is
“CholR.”

RCI<=value-list>
produces the inverse Cholesky root of blocks of the estimatedR matrix. Thevalue-
list specification is the same as with theR option. The table name for ODS purposes
is “InvCholR.”

RCORR<=value-list>
produces the correlation matrix corresponding to blocks of the estimatedR matrix.
Thevalue-listspecification is the same as with theR option. The table name for ODS
purposes is “RCorr.”

RI<=value-list>
produces the inverse of blocks of the estimatedR matrix. Thevalue-listspecification
is the same as with theR option. The table name for ODS purposes is “InvR.”

SSCP
requests that an unstructuredR matrix be estimated from the sum-of-squares-and-
crossproducts matrix of the residuals. It applies only when you specify TYPE=UN
and have no RANDOM statements. Also, you must have a sufficient number of
subjects for the estimate to be positive definite.

This option is useful when the size of the blocks ofR are large (for example, greater
than 10) and you want to use or inspect an unstructured estimate that is much quicker
to compute than the default REML estimate. The two estimates will agree for certain
balanced data sets when you have a classification fixed effect defined across all time
points within a subject.
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SUBJECT=effect
SUB=effect

identifies the subjects in your mixed model. Complete independence is assumed
across subjects; therefore, the SUBJECT= option produces a block-diagonal struc-
ture in R with identical blocks. When the SUBJECT= effect consists entirely of
classification variables, the blocks ofR correspond to observations sharing the same
level of that effect. These blocks are sorted according to this effect as well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

If you want to model nonzero covariance among all of the observations in your SAS
data set, specify SUBJECT=INTERCEPT to treat the data as if they are all from one
subject. Be aware though that, in this case, PROC MIXED manipulates anR matrix
with dimensions equal to the number of observations. If no SUBJECT= effect is
specified, then every observation is assumed to be from a different subject andR is
assumed to be diagonal. For this reason, you usually want to use the SUBJECT=
option in the REPEATED statement.

TYPE=covariance-structure
specifies the covariance structure of theR matrix. The SUBJECT= option defines
the blocks ofR, and the TYPE= option specifies the structure of these blocks. Valid
values forcovariance-structureand their descriptions are provided inTable 46.5and
Table 46.6. The default structure is VC.

Table 46.5. Covariance Structures

Structure Description Parms (i, j)th element
ANTE(1) Ante-Dependence 2t− 1 σiσj

∏j−1
k=i ρk

AR(1) Autoregressive(1) 2 σ2ρ|i−j|

ARH(1) Heterogeneous AR(1) t + 1 σiσjρ
|i−j|

ARMA(1,1) ARMA(1,1) 3 σ2[γρ|i−j|−11(i6= j) + 1(i=j)]
CS Compound Symmetry 2 σ1 + σ21(i = j)
CSH Heterogeneous CS t + 1 σiσj [ρ1(i6= j) + 1(i=j)]
FA(q) Factor Analytic q

2(2t− q + 1) + t Σmin(i,j,q)
k=1 λikλjk + σ2

i 1(i = j)
FA0(q) No Diagonal FA q

2(2t− q + 1) Σmin(i,j,q)
k=1 λikλjk

FA1(q) Equal Diagonal FA q
2(2t− q + 1) + 1 Σmin(i,j,q)

k=1 λikλjk + σ21(i = j)
HF Huynh-Feldt t + 1 (σ2

i + σ2
j )/2 + λ1(i6= j)

LIN(q) General Linear q Σq
k=1θkAij

TOEP Toeplitz t σ|i−j|+1

TOEP(q) Banded Toeplitz q σ|i−j|+11(|i− j| < q)
TOEPH Heterogeneous TOEP 2t− 1 σiσjρ|i−j|
TOEPH(q) Banded Hetero TOEP t + q − 1 σiσjρ|i−j|1(|i− j| < q)
UN Unstructured t(t + 1)/2 σij

UN(q) Banded q
2(2t− q + 1) σij1(|i− j| < q)

UNR Unstructured Corrs t(t + 1)/2 σiσjρmax(i,j) min(i,j)
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Table 46.5. (continued)

Structure Description Parms (i, j)th element
UNR(q) Banded Correlations q

2(2t− q + 1) σiσjρmax(i,j) min(i,j)

UN@AR(1) Direct Product AR(1) t1(t1 + 1)/2 + 1 σi1j1ρ
|i2−j2|

UN@CS Direct Product CS t1(t1 + 1)/2 + 1 σi1j1(1− σ21(i2 6= j2)), 0 ≤ σ2 ≤ 1
UN@UN Direct Product UN t1(t1 + 1)/2 + σ1,i1j1σ2,i2j2

t2(t2 + 1)/2− 1
VC Variance Components q σ2

k1(i = j) andi corresponds tokth effect

In Table 46.5, “Parms” is the number of covariance parameters in the structure,t is
the overall dimension of the covariance matrix, and1(A) equals 1 whenA is true
and 0 otherwise. For example, 1(i = j) equals 1 wheni = j and 0 otherwise,
and 1(|i − j| < q) equals 1 when|i − j| < q and 0 otherwise. For the TOEPH
structures,ρ0 = 1, and for the UNR structures,ρii = 1 for all i. For the direct
product structures, the subscripts “1” and “2” refer to the first and second structure in
the direct product, respectively, andi1 = int((i+t2−1)/t2), j1 = int((j+t2−1)/t2),
i2 = mod(i− 1, t2) + 1, andj2 = mod(j − 1, t2) + 1.

Table 46.6. Spatial Covariance Structures

Structure Description Parms (i, j)th element
SP(EXP)(c-list) Exponential 2 σ2[exp(−dij/θ)]
SP(EXPA)(c-list) Anisotropic Exponential 2c + 1 σ2

∏c
k=1 exp[−θkd(i, j, k)pk ]

SP(EXPGA)(c1 c2) 2D Exponential, 4 σ2[exp(−dij(θ, λ)/ρ)]
Geometrically Anisotropic

SP(GAU)(c-list) Gaussian 2 σ2[exp(−d2
ij/ρ2)]

SP(GAUGA)(c1 c2) 2D Gaussian, 4 σ2[exp(−dij(θ, λ)2/ρ2)]
Geometrically Anisotropic

SP(LIN)(c-list) Linear 2 σ2(1− ρdij) 1(ρdij ≤ 1)
SP(LINL)(c-list) Linear log 2 σ2(1− ρ log(dij))

×1(ρ log(dij) ≤ 1)

SP(MATERN)(c-list) Matérn 3 σ2 1
Γ(ν)

(
dij

2ρ

)ν
2Kν(dij/ρ)

SP(MATHSW)(c-list) Matérn 3 σ2 1
Γ(ν)

(
dij

√
ν

ρ

)ν
2Kν

(
2dij

√
ν

ρ

)
(Handcock-Stein-Wallis)

SP(POW)(c-list) Power 2 σ2ρdij

SP(POWA)(c-list) Anisotropic Power c + 1 σ2ρ
d(i,j,1)
1 ρ

d(i,j,2)
2 . . . ρ

d(i,j,c)
c

SP(SPH)(c-list) Spherical 2 σ2[1− (3dij

2ρ ) + (
d3

ij

2ρ3 )] 1(dij ≤ ρ)

SP(SPHGA)(c1 c2) 2D Spherical, 4 σ2[1− (3dij(θ,λ)
2ρ ) + (dij(θ,λ)3

2ρ3 )]
Geometrically Anisotropic ×1(dij(θ, λ) ≤ ρ)

In Table 46.6, c-list contains the names of the numeric variables used as coordinates
of the location of the observation in space, anddij is the Euclidean distance be-
tween theith andjth vectors of these coordinates, which correspond to theith and
jth observations in the input data set. For SP(POWA) and SP(EXPA),c is the num-
ber of coordinates, andd(i, j, k) is the absolute distance between thekth coordinate,
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k = 1, . . . , c, of the ith andjth observations in the input data set. For the geomet-
rically anisotropic structures SP(EXPGA), SP(GAUGA), and SP(SPHGA), exactly
two spatial coordinate variables must be specified asc1 andc2. Geometric anisotropy
is corrected by applying a rotationθ and scalingλ to the coordinate system, and
dij(θ, λ) represents the Euclidean distance between two points in the transformed
space. SP(MATERN) and SP(MATHSW) represent covariance structures in a class
defined by Matérn (refer to Matérn 1986, Handcock and Stein 1993, Handcock and
Wallis 1994). The functionKν is the modified Bessel function of the second kind of
(real) orderν > 0; the parameterν governs the smoothness of the process (see below
for more details).

Table 46.7lists some examples of the structures inTable 46.5andTable 46.6.

Table 46.7. Covariance Structure Examples

Description Structure Example

Variance
Components

VC (default)


σ2

B 0 0 0
0 σ2

B 0 0
0 0 σ2

AB 0
0 0 0 σ2

AB


Compound
Symmetry

CS


σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1



Unstructured UN


σ2

1 σ21 σ31 σ41

σ21 σ2
2 σ32 σ42

σ31 σ32 σ2
3 σ43

σ41 σ42 σ43 σ2
4


Banded Main
Diagonal

UN(1)


σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4


First-Order
Autoregressive

AR(1) σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1



Toeplitz TOEP


σ2 σ1 σ2 σ3

σ1 σ2 σ1 σ2

σ2 σ1 σ2 σ1

σ3 σ2 σ1 σ2


Toeplitz with
Two Bands

TOEP(2)


σ2 σ1 0 0
σ1 σ2 σ1 0
0 σ1 σ2 σ1

0 0 σ1 σ2
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Table 46.7. (continued)

Description Structure Example

Spatial
Power

SP(POW)(c) σ2


1 ρd12 ρd13 ρd14

ρd21 1 ρd23 ρd24

ρd31 ρd32 1 ρd34

ρd41 ρd42 ρd43 1


Heterogeneous
AR(1)

ARH(1)


σ2

1 σ1σ2ρ σ1σ3ρ
2 σ1σ4ρ

3

σ2σ1ρ σ2
2 σ2σ3ρ σ2σ4ρ

2

σ3σ1ρ
2 σ3σ2ρ σ2

3 σ3σ4ρ
σ4σ1ρ

3 σ4σ2ρ σ4σ3ρ σ2
4


First-Order
Autoregressive
Moving-Average

ARMA(1,1) σ2


1 γ γρ γρ2

γ 1 γ γρ
γρ γ 1 γ
γρ2 γρ γ 1


Heterogeneous
CS

CSH


σ2

1 σ1σ2ρ σ1σ3ρ σ1σ4ρ
σ2σ1ρ σ2

2 σ2σ3ρ σ2σ4ρ
σ3σ1ρ σ3σ2ρ σ2

3 σ3σ4ρ
σ4σ1ρ σ4σ2ρ σ4σ3ρ σ2

4


First-Order
Factor
Analytic

FA(1)


λ2

1 + d1 λ1λ2 λ1λ3 λ1λ4

λ2λ1 λ2
2 + d2 λ2λ3 λ2λ4

λ3λ1 λ3λ2 λ2
3 + d3 λ3λ4

λ4λ1 λ4λ2 λ4λ3 λ2
4 + d4



Huynh-Feldt HF

 σ2
1

σ2
1+σ2

2
2 − λ

σ2
1+σ2

3
2 − λ

σ2
2+σ2

1
2 − λ σ2

2
σ2
2+σ2

3
2 − λ

σ2
3+σ2

1
2 − λ

σ2
3+σ2

2
2 − λ σ2

3


First-Order
Ante-dependence

ANTE(1)

 σ2
1 σ1σ2ρ1 σ1σ3ρ1ρ2

σ2σ1ρ1 σ2
2 σ2σ3ρ2

σ3σ1ρ2ρ1 σ3σ2ρ2 σ2
3



Heterogeneous
Toeplitz

TOEPH


σ2

1 σ1σ2ρ1 σ1σ3ρ2 σ1σ4ρ3

σ2σ1ρ1 σ2
2 σ2σ3ρ1 σ2σ4ρ2

σ3σ1ρ2 σ3σ2ρ1 σ2
3 σ3σ4ρ1

σ4σ1ρ3 σ4σ2ρ2 σ4σ3ρ1 σ2
4


Unstructured
Correlations

UNR


σ2

1 σ1σ2ρ21 σ1σ3ρ31 σ1σ4ρ41

σ2σ1ρ21 σ2
2 σ2σ3ρ32 σ2σ4ρ42

σ3σ1ρ31 σ3σ2ρ32 σ2
3 σ3σ4ρ43

σ4σ1ρ41 σ4σ2ρ42 σ4σ3ρ43 σ2
4


Direct Product
AR(1)

UN@AR(1)

[
σ2

1 σ21

σ21 σ2
2

]
⊗

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 =
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Table 46.7. (continued)

Description Structure Example

σ2
1 σ2

1ρ σ2
1ρ

2 σ21 σ21ρ σ21ρ
2

σ2
1ρ σ2

1 σ2
1ρ σ21ρ σ21 σ21ρ

σ2
1ρ

2 σ2
1ρ σ2

1 σ21ρ
2 σ21ρ σ21

σ21 σ21ρ σ21ρ
2 σ2

2 σ2
2ρ σ2

2ρ
2

σ21ρ σ21 σ21ρ σ2
2ρ σ2

2 σ2
2ρ

σ21ρ
2 σ21ρ σ21 σ2

2ρ
2 σ2

2ρ σ2
2



The following provides some further information about these covariance struc-
tures:

TYPE=ANTE(1) specifies the first-order antedependence structure (refer to
Kenward 1987, Patel 1991, and Macchiavelli and Arnold 1994).
In Table 46.5, σ2

i is theith variance parameter, andρk is thekth
autocorrelation parameter satisfying|ρk| < 1.

TYPE=AR(1) specifies a first-order autoregressive structure. PROC MIXED im-
poses the constraint|ρ| < 1 for stationarity.

TYPE=ARH(1) specifies a heterogeneous first-order autoregressive structure. As
with TYPE=AR(1), PROC MIXED imposes the constraint|ρ| < 1
for stationarity.

TYPE=ARMA(1,1) specifies the first-order autoregressive moving average struc-
ture. In Table 46.5, ρ is the autoregressive parameter,γ models
a moving average component, andσ2 is the residual variance. In
the notation of Fuller (1976, p. 68),ρ = θ1 and

γ =
(1 + b1θ1)(θ1 + b1)

1 + b2
1 + 2b1θ1

The example inTable 46.7and|b1| < 1 imply that

b1 =
β −

√
β2 − 4α2

2α

whereα = γ−ρ andβ = 1+ρ2−2γρ. PROC MIXED imposes the
constraints|ρ| < 1 and|γ| < 1 for stationarity, although for some
values ofρ and γ in this region the resulting covariance matrix
is not positive definite. When the estimated value ofρ becomes
negative, the computed covariance is multiplied bycos(πdij) to
account for the negativity.

TYPE=CS specifies the compound-symmetry structure, which has constant
variance and constant covariance.

TYPE=CSH specifies the heterogeneous compound-symmetry structure. This
structure has a different variance parameter for each diagonal ele-
ment, and it uses the square roots of these parameters in the off-
diagonal entries. InTable 46.5, σ2

i is the ith variance parameter,
andρ is the correlation parameter satisfying|ρ| < 1.
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TYPE=FA(q) specifies the factor-analytic structure withq factors (Jennrich and
Schluchter 1986). This structure is of the formΛΛ′ + D, where
Λ is a t × q rectangular matrix andD is a t × t diagonal matrix
with t different parameters. Whenq > 1, the elements ofΛ in its
upper right-hand corner (that is, the elements in theith row andjth
column forj > i) are set to zero to fix the rotation of the structure.

TYPE=FA0(q) is similar to the FA(q) structure except that no diagonal matrixD
is included. Whenq < t, that is, when the number of factors is
less than the dimension of the matrix, this structure is nonnegative
definite but not of full rank. In this situation, you can use it for
approximating an unstructuredG matrix in the RANDOM state-
ment or for combining with the LOCAL option in the REPEATED
statement. Whenq = t, you can use this structure to constrainG
to be nonnegative definite in the RANDOM statement.

TYPE=FA1(q) is similar to the FA(q) structure except that all of the elements in
D are constrained to be equal. This offers a useful and more parsi-
monious alternative to the full factor-analytic structure.

TYPE=HF specifies the Huynh-Feldt covariance structure (Huynh and Feldt
1970). This structure is similar to the CSH structure in that it has
the same number of parameters and heterogeneity along the main
diagonal. However, it constructs the off-diagonal elements by tak-
ing arithmetic rather than geometric means.

You can perform a likelihood ratio test of the Huynh-Feldt condi-
tions by running PROC MIXED twice, once with TYPE=HF and
once with TYPE=UN, and then subtracting their respective values
of −2 times the maximized likelihood.

If PROC MIXED does not converge under your Huynh-Feldt
model, you can specify your own starting values with the PARMS
statement. The default MIVQUE(0) starting values can sometimes
be poor for this structure. A good choice for starting values is
often the parameter estimates corresponding to an initial fit using
TYPE=CS.

TYPE=LIN(q) specifies the general linear covariance structure withq parameters
(Helms and Edwards 1991). This structure consists of a linear com-
bination of known matrices that are input with the LDATA= option.
This structure is very general, and you need to make sure that the
variance matrix is positive definite. By default, PROC MIXED sets
the initial values of the parameters to 1. You can use the PARMS
statement to specify other initial values.

TYPE=SIMPLE is an alias for TYPE=VC.

TYPE=SP(EXPA)(c-list) specifies the spatial anisotropic exponential structure,
wherec-list is a list of variables indicating the coordinates. This
structure has(i, j)th element equal to

σ2
c∏

k=1

exp[−θkd(i, j, k)pk ]
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wherec is the number of coordinates andd(i, j, k) is the absolute
distance between thekth coordinate (k = 1, . . . , c) of the ith and
jth observations in the input data set. There are2c + 1 parameters
to be estimated:θk, pk (k = 1, . . . , c), andσ2.

You may want to constrain some of the EXPA parameters to known
values. For example, suppose you have three coordinate variables
C1, C2, and C3 and you want to constrain the powerspk to equal 2,
as in Sacks et al. (1989). Suppose further that you want to model
covariance across the entire input data set and you suspect theθk

andσ2 estimates are close to 3, 4, 5, and 1, respectively. Then
specify

repeated / type=sp(expa)(c1 c2 c3)
subject=intercept;

parms (3) (4) (5) (2) (2) (2) (1) /
hold=4,5,6;

TYPE=SP(EXPGA)(c1 c2)

TYPE=SP(GAUGA)(c1 c2)

TYPE=SP(SPHGA)(c1 c2) specify modifications of the isotropic SP(EXP),
SP(SPH), and SP(GAU) covariance structures that allow for
geometric anisotropy in two dimensions. The coordinates are
specified by the variablesc1 andc2.

If the spatial process is geometrically anisotropic inc = [ci1, ci2],
then it is isotropic in the coordinate system

Ac =
[

1 0
0 λ

] [
cos θ − sin θ
sin θ cos θ

]
c = c∗

for a properly chosen angleθ and scaling factorλ. Elliptical iso-
correlation contours are thereby transformed to spherical contours,
adding two parameters to the respective isotropic covariance struc-
tures. Euclidean distances (seeTable 46.6on page 2722) are ex-
pressed in terms ofc∗.

The angleθ of the clockwise rotation is reported in radians,0 ≤
θ ≤ 2π. The scaling parameterλ represents the ratio of the range
parameters in the direction of the major and minor axis of the cor-
relation contours. In other words, following a rotation of the coor-
dinate system by angleθ, isotropy is achieved by compressing or
magnifying distances in one coordinate by the factorλ.

Fixing λ = 1.0 reduces the models to isotropic ones for any angle
of rotation. If the scaling parameter is held constant at 1.0, you
should also hold constant the angle of rotation, e.g.,

repeated / type=sp(expga)(gxc gyc)
subject=intercept;

parms (6) (1.0) (0.0) (1) / hold=2,3;
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If λ is fixed at any other value than 1.0, the angle of rotation can be
estimated. Specifying a starting grid of angles and scaling factors
can considerably improve the convergence properties of the opti-
mization algorithm for these models. Only a single random effect
with geometrically anisotropic structure is permitted.

TYPE=SP(MATERN)(c-list)

TYPE=SP(MATHSW)(c-list) specifies covariance structures in the Matérn class of
covariance functions (Matérn 1986). Two observations for the
same subject (block ofR) that are Euclidean distancedij apart
have covariance

σ2 1
Γ(ν)

(
dij

2ρ

)ν

2Kν(dij/ρ) ν > 0, ρ > 0,

whereKν is the modified Bessel function of the second kind of
(real) orderν > 0. The smoothness (continuity) of a stochastic
process with covariance function in this class increases withν. The
Matérn class thus enables data-driven estimation of the smoothness
properties. The covariance is identical to the exponential model
for ν = 0.5 (TYPE=SP(EXP)(c-list)), while for ν = 1 the model
advocated by Whittle (1954) results. Asν → ∞ the model ap-
proaches the gaussian covariance structure (TYPE=SP(GAU)(c-
list)).

The MATHSW structure represents the Matérn class in the param-
eterization of Handcock and Stein (1993) and Handcock and Wallis
(1994),

σ2 1
Γ(ν)

(
dij
√

ν

ρ

)ν

2Kν

(
2dij

√
ν

ρ

)
Since computation of the functionKν and its derivatives is numer-
ically very intensive, fitting models with Matérn covariance struc-
tures can be more time consuming than for other spatial covariance
structures. Good starting values are essential.

TYPE=SP(POW)(c-list)

TYPE=SP(POWA)(c-list) specifies the spatial power structures. When the estimated
value ofρ becomes negative, the computed covariance is multiplied
by cos(πdij) to account for the negativity.

TYPE=TOEP<(q)> specifies a banded Toeplitz structure. This can be viewed
as a moving-average structure with order equal toq − 1. The
TYPE=TOEP option is a full Toeplitz matrix, which can be viewed
as an autoregressive structure with order equal to the dimension of
the matrix. The specification TYPE=TOEP(1) is the same asσ2I,
whereI is an identity matrix, and it can be useful for specifying
the same variance component for several effects.
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TYPE=TOEPH<(q)> specifies a heterogeneous banded Toeplitz structure. In
Table 46.5, σ2

i is theith variance parameter andρj is thejth cor-
relation parameter satisfying|ρj | < 1. If you specify the order
parameterq, then PROC MIXED estimates only the firstq bands
of the matrix, setting all higher bands equal to 0. The option
TOEPH(1) is equivalent to both the UN(1) and UNR(1) options.

TYPE=UN<(q)> specifies a completely general (unstructured) covariance matrix
parameterized directly in terms of variances and covariances. The
variances are constrained to be nonnegative, and the covariances
are unconstrained. This structure is not constrained to be nonneg-
ative definite in order to avoid nonlinear constraints; however, you
can use the FA0 structure if you want this constraint to be imposed
by a Cholesky factorization. If you specify the order parameterq,
then PROC MIXED estimates only the firstq bands of the matrix,
setting all higher bands equal to 0.

TYPE=UNR<(q)> specifies a completely general (unstructured) covariance matrix
parameterized in terms of variances and correlations. This struc-
ture fits the same model as the TYPE=UN(q) option but with a
different parameterization. Theith variance parameter isσ2

i . The
parameterρjk is the correlation between thejth andkth measure-
ments; it satisfies|ρjk| < 1. If you specify the order parameterr,
then PROC MIXED estimates only the firstq bands of the matrix,
setting all higher bands equal to zero.

TYPE=UN@AR(1)

TYPE=UN@CS

TYPE=UN@UN specify direct (Kronecker) product structures designed for multi-
variate repeated measures (refer to Galecki 1994). These structures
are constructed by taking the Kronecker product of an unstructured
matrix (modeling covariance across the multivariate observations)
with an additional covariance matrix (modeling covariance across
time or another factor). The upper left value in the second matrix
is constrained to equal 1 to identify the model. Refer toSAS/IML
User’s Guide, First Edition,for more details on direct products.

To use these structures in the REPEATED statement, you must
specify two distinct REPEATED effects, both of which must be
included in the CLASS statement. The first effect indicates the
multivariate observations, and the second identifies the levels of
time or some additional factor. Note that the input data set must
still be constructed in “univariate” format; that is, all dependent
observations are still listed observation-wise in one single variable.
Although this construction provides for general modeling possibil-
ities, it forces you to construct variables indicating both dimensions
of the Kronecker product.

For example, suppose your observed data consist of heights and
weights of several children measured over several successive years.
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Your input data set should then contain variables similar to the fol-
lowing:

• Y, all of the heights and weights, with a separate observation
for each

• Var, indicating whether the measurement is a height or a
weight

• Year, indicating the year of measurement

• Child, indicating the child on which the measurement was
taken

Your PROC MIXED code for a Kronecker AR(1) structure across
years would then be

proc mixed;
class Var Year Child;
model Y = Var Year Var*Year;
repeated Var Year / type=un@ar(1)

subject=Child;
run;

You should nearly always want to model different means for
the multivariate observations, hence the inclusion ofVar in the
MODEL statement. The preceding mean model consists of cell
means for all combinations ofVAR andYEAR.

TYPE=VC specifies standard variance components and is the default struc-
ture for both the RANDOM and REPEATED statements. In the
RANDOM statement, a distinct variance component is assigned
to each effect. In the REPEATED statement, this structure is usu-
ally used only with the GROUP= option to specify a heterogeneous
variance model.

Jennrich and Schluchter (1986) provide general information about the use of covari-
ance structures, and Wolfinger (1996) presents details about many of the heteroge-
neous structures. Marx and Thompson (1987), Cressie (1991), and Zimmerman and
Harville (1991) discuss spatial structures.

WEIGHT Statement

WEIGHT variable ;

If you do not specify a REPEATED statement, the WEIGHT statement operates ex-
actly like the one in PROC GLM. In this case PROC MIXED replacesX′X andZ′Z
with X′WX andZ′WZ, whereW is the diagonal weight matrix. If you specify a
REPEATED statement, then the WEIGHT statement replacesR with LRL, whereL
is a diagonal matrix with elementsW−1/2. Observations with nonpositive or missing
weights are not included in the PROC MIXED analysis.
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Details

Mixed Models Theory

This section provides an overview of a likelihood-based approach to general linear
mixed models. This approach simplifies and unifies many common statistical anal-
yses, including those involving repeated measures, random effects, and random co-
efficients. The basic assumption is that the data are linearly related to unobserved
multivariate normal random variables. Extensions to nonlinear and nonnormal situ-
ations are possible but are not discussed here. Additional theory and examples are
provided in Littell et al. (1996), Verbeke and Molenberghs (1997 2000), and Brown
and Prescott (1999).

Matrix Notation

Suppose that you observen data pointsy1, . . . , yn and that you want to explain
them usingn values for each ofp explanatory variablesx11, . . . , x1p, x21, . . . , x2p,
. . . , xn1, . . . , xnp. Thexij values may be either regression-type continuous variables
or dummy variables indicating class membership. The standard linear model for this
setup is

yi =
p∑

j=1

xijβj + εi i = 1, . . . , n

whereβ1, . . . , βp are unknownfixed-effectsparameters to be estimated andε1, . . . , εn

are unknown independent and identically distributed normal (Gaussian) random vari-
ables with mean 0 and varianceσ2.

The preceding equations can be written simultaneously using vectors and a matrix,
as follows:

y1

y2
...

yn

 =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp




β1

β2
...

βp

+


ε1
ε2
...

εn


For convenience, simplicity, and extendibility, this entire system is written as

y = Xβ + ε

wherey denotes the vector of observedyi’s, X is the known matrix ofxij ’s, β is the
unknown fixed-effects parameter vector, andε is the unobserved vector of indepen-
dent and identically distributed Gaussian random errors.

In addition to denoting data, random variables, and explanatory variables in the pre-
ceding fashion, the subsequent development makes use of basic matrix operators such
as transpose (′), inverse (−1), generalized inverse (−), determinant (| · |), and matrix
multiplication. Refer to Searle (1982) for details on these and other matrix tech-
niques.
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Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Searle 1971), and it is the
one fitted by the GLM procedure. However, many times the distributional assumption
aboutε is too restrictive. The mixed model extends the general linear model by
allowing a more flexible specification of the covariance matrix ofε. In other words,
it allows for both correlation and heterogeneous variances, although you still assume
normality.

The mixed model is written as

y = Xβ + Zγ + ε

where everything is the same as in the general linear model except for the addition
of the known design matrix,Z, and the vector of unknownrandom-effects parame-
ters,γ. The matrixZ can contain either continuous or dummy variables, just like
X. The namemixed modelcomes from the fact that the model contains both fixed-
effects parameters,β, and random-effects parameters,γ. Refer to Henderson (1990)
and Searle, Casella, and McCulloch (1992) for historical developments of the mixed
model.

A key assumption in the foregoing analysis is thatγ andε are normally distributed
with

E

[
γ
ε

]
=

[
0
0

]
Var

[
γ
ε

]
=

[
G 0
0 R

]

The variance ofy is, therefore,V = ZGZ′ +R. You can modelV by setting up the
random-effects design matrixZ and by specifying covariance structures forG and
R.

Note that this is a general specification of the mixed model, in contrast to many
texts and articles that discuss only simple random effects. Simple random effects are
a special case of the general specification withZ containing dummy variables,G
containing variance components in a diagonal structure, andR = σ2In, whereIn

denotes then × n identity matrix. The general linear model is a further special case
with Z = 0 andR = σ2In.

The following two examples illustrate the most common formulations of the general
linear mixed model.



Mixed Models Theory � 2733

Example: Growth Curve with Compound Symmetry

Suppose that you have three growth curve measurements fors individuals and that
you want to fit an overall linear trend in time. YourX matrix is as follows:

X =



1 1
1 2
1 3
...

...
1 1
1 2
1 3


The first column (coded entirely with1s) fits an intercept, and the second column
(coded with times of1, 2, 3) fits a slope. Here,n = 3s andp = 2.

Suppose further that you want to introduce a common correlation among the obser-
vations from a single individual, with correlation being the same for all individuals.
One way of setting this up in the general mixed model is to eliminate theZ and
G matrices and let theR matrix be block diagonal with blocks corresponding to
the individuals and with each block having thecompound-symmetrystructure. This
structure has two unknown parameters, one modeling a common covariance and the
other a residual variance. The form forR would then be as follows:

R =



σ2
1 + σ2 σ2

1 σ2
1

σ2
1 σ2

1 + σ2 σ2
1

σ2
1 σ2

1 σ2
1 + σ2

...
σ2

1 + σ2 σ2
1 σ2

1

σ2
1 σ2

1 + σ2 σ2
1

σ2
1 σ2

1 σ2
1 + σ2


where blanks denote zeroes. There are3s rows and columns altogether, and the
common correlation isσ2

1/(σ2
1 + σ2).

The PROC MIXED code to fit this model is as follows:

proc mixed;
class indiv;
model y = time;
repeated / type=cs subject=indiv;

run;

Here,indiv is a classification variable indexing individuals. The MODEL statement
fits a straight line fortime; the intercept is fit by default just as in PROC GLM.
The REPEATED statement models theR matrix: TYPE=CS specifies the compound
symmetry structure, and SUBJECT=INDIV specifies the blocks ofR.
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An alternative way of specifying the common intra-individual correlation is to let

Z =



1
1
1

1
1
1

...
1
1
1



G =


σ2

1

σ2
1

...
σ2

1


andR = σ2In. TheZ matrix has3s rows ands columns, andG is s× s.

You can set up this model in PROC MIXED in two different but equivalent ways:

proc mixed;
class indiv;
model y = time;
random indiv;

run;

proc mixed;
class indiv;
model y = time;
random intercept / subject=indiv;

run;

Both of these specifications fit the same model as the previous one that used the
REPEATED statement; however, the RANDOM specifications constrain the correla-
tion to be positive whereas the REPEATED specification leaves the correlation un-
constrained.

Example: Split-Plot Design

The split-plot design involves two experimental treatment factors,A andB, and two
different sizes of experimental units to which they are applied (refer to Winer 1971,
Snedecor and Cochran 1980, Milliken and Johnson 1992, and Steel, Torrie, and
Dickey 1997). The levels ofA are randomly assigned to the larger sized experi-
mental unit, calledwhole plots, whereas the levels ofB are assigned to the smaller
sized experimental unit, thesubplots. The subplots are assumed to be nested within
the whole plots, so that a whole plot consists of a cluster of subplots and a level ofA
is applied to the entire cluster.
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Such an arrangement is often necessary by nature of the experiment, the classical
example being the application of fertilizer to large plots of land and different crop
varieties planted in subdivisions of the large plots. For this example, fertilizer is the
whole plot factorA and variety is the subplot factorB.

The first example is a split-plot design for which the whole plots are arranged in a
randomized block design. The appropriate PROC MIXED code is as follows:

proc mixed;
class a b block;
model y = a|b;
random block a*block;

run;

Here

R = σ2I24

andX, Z, andG have the following form:

X =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
...

...
...

...
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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Z =



1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1



G =



σ2
B

σ2
B

σ2
B

σ2
B

σ2
AB

σ2
AB

...
σ2

AB


whereσ2

B is the variance component forBlock andσ2
AB is the variance component

for A*Block. Changing the RANDOM statement to

random int a / subject=block;

fits the same model, but withZ andG sorted differently.
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Z =



1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1



G =



σ2
B

σ2
AB

σ2
AB

σ2
AB

...
σ2

B

σ2
AB

σ2
AB

σ2
AB



Estimating G and R in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Not
only do you haveβ as in the general linear model, but you have unknown parameters
in γ, G, andR as well. Least squares is no longer the best method.Generalized least
squares(GLS) is more appropriate, minimizing

(y −Xβ)′V−1(y −Xβ)
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However, it requires knowledge ofV and, therefore, knowledge ofG andR. Lacking
such information, one approach is to useestimatedGLS, in which you insert some
reasonable estimate forV into the minimization problem. The goal thus becomes
finding a reasonable estimate ofG andR.

In many situations, the best approach is to uselikelihood-basedmethods, exploiting
the assumption thatγ andε are normally distributed (Hartley and Rao 1967; Patterson
and Thompson 1971; Harville 1977; Laird and Ware 1982; Jennrich and Schluchter
1986). PROC MIXED implements two likelihood-based methods:maximum likeli-
hood(ML) and restricted/residual maximum likelihood(REML). A favorable theo-
retical property of ML and REML is that they accommodate data that are missing at
random (Rubin 1976; Little 1995).

PROC MIXED constructs an objective function associated with ML or REML and
maximizes it over all unknown parameters. Using calculus, it is possible to reduce
this maximization problem to one over only the parameters inG andR. The corre-
sponding log-likelihood functions are as follows:

ML: l(G,R) = −1
2

log |V| − 1
2
r′V−1r− n

2
log(2π)

REML: lR(G,R) = −1
2

log |V| − 1
2

log |X′V−1X|

−1
2
r′V−1r− n− p

2
log(2π)}

wherer = y−X(X′V−1X)−X′V−1y andp is the rank ofX. PROC MIXED actu-
ally minimizes−2 times these functions using a ridge-stabilized Newton-Raphson
algorithm. Lindstrom and Bates (1988) provide reasons for preferring Newton-
Raphson to the Expectation-Maximum (EM) algorithm described in Dempster, Laird,
and Rubin (1977) and Laird, Lange, and Stram (1987), as well as analytical details
for implementing a QR-decomposition approach to the problem. Wolfinger, Tobias,
and Sall (1994) present the sweep-based algorithms that are implemented in PROC
MIXED.

One advantage of using the Newton-Raphson algorithm is that the second derivative
matrix of the objective function evaluated at the optima is available upon comple-
tion. Denoting this matrixH, the asymptotic theory of maximum likelihood (refer
to Serfling 1980) shows that2H−1 is an asymptotic variance-covariance matrix of
the estimated parameters ofG andR. Thus, tests and confidence intervals based
on asymptotic normality can be obtained. However, these can be unreliable in small
samples, especially for parameters such as variance components which have sampling
distributions that tend to be skewed to the right.

If a residual varianceσ2 is a part of your mixed model, it can usually beprofiledout
of the likelihood. This means solving analytically for the optimalσ2 and plugging
this expression back into the likelihood formula (refer to Wolfinger, Tobias, and Sall
1994). This reduces the number of optimization parameters by one and can improve
convergence properties. PROC MIXED profiles the residual variance out of the log
likelihood whenever it appears reasonable to do so. This includes the case whenR
equalsσ2I and when it has blocks with a compound symmetry, time series, or spatial
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structure. PROC MIXED does not profile the log likelihood whenR has unstructured
blocks, when you use the HOLD= or NOITER option in the PARMS statement, or
when you use the NOPROFILE option in the PROC MIXED statement.

Instead of ML or REML, you can use the noniterative MIVQUE0 method to estimate
G andR (Rao 1972; LaMotte 1973; Wolfinger, Tobias, and Sall 1994). In fact,
by default PROC MIXED uses MIVQUE0 estimates as starting values for the ML
and REML procedures. For variance component models, another estimation method
involves equating Type I, II, or III expected mean squares to their observed values
and solving the resulting system. However, Swallow and Monahan (1984) present
simulation evidence favoring REML and ML over MIVQUE0 and other method-of-
moment estimators.

Estimating β and γ in the Mixed Model

ML, REML, MIVQUE0, or Type1–Type3 provide estimates ofG andR, which are
denotedĜ andR̂, respectively. To obtain estimates ofβ andγ, the standard method
is to solve themixed model equations(Henderson 1984):[

X′R̂−1X X′R̂−1Z
Z′R̂−1X Z′R̂−1Z + Ĝ−1

] [
β̂
γ̂

]
=

[
X′R̂−1y
Z′R̂−1y

]

The solutions can also be written as

β̂ = (X′V̂−1X)−X′V̂−1y

γ̂ = ĜZ′V̂−1(y −Xβ̂)

and have connections with empirical Bayes estimators (Laird and Ware 1982, Carlin
and Louis 1996).

Note that the mixed model equations are extended normal equations and that the
preceding expression assumes thatĜ is nonsingular. For the extreme case when the
eigenvalues of̂G are very large,̂G−1 contributes very little to the equations andγ̂
is close to what it would be ifγ actually contained fixed-effects parameters. On the
other hand, when the eigenvalues ofĜ are very small,̂G−1 dominates the equations
and γ̂ is close to0. For intermediate cases,̂G−1 can be viewed as shrinking the
fixed-effects estimates ofγ towards0 (Robinson 1991).

If Ĝ is singular, then the mixed model equations are modified (Henderson 1984) as
follows:[

X′R̂
−1

X X′R̂
−1

ZL̂

L̂′Z′R̂
−1

X L̂′Z′R̂
−1

ZL̂ + I

] [
β̂
τ̂

]
=

[
X′R̂

−1
y

L̂′Z′R̂
−1

y

]

whereL̂ is the lower-triangular Cholesky root of̂G, satisfyingĜ = L̂L̂′. Both τ̂
and a generalized inverse of the left-hand-side coefficient matrix are then transformed
usingL̂ to determinêγ.

An example of when the singular form of the equations is necessary is when a vari-
ance component estimate falls on the boundary constraint of0.
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Model Selection

The previous section on estimation assumes the specification of a mixed model in
terms ofX, Z, G, andR. Even thoughX andZ have known elements, their specific
form and construction is flexible, and several possibilities may present themselves for
a particular data set. Likewise, several different covariance structures forG andR
might be reasonable.

Space does not permit a thorough discussion of model selection, but a few brief com-
ments and references are in order. First, subject matter considerations and objectives
are of great importance when selecting a model; refer to Diggle (1988) and Lindsey
(1993).

Second, when the data themselves are looked to for guidance, many of the graphical
methods and diagnostics appropriate for the general linear model extend to the mixed
model setting as well (Christensen, Pearson, and Johnson 1992).

Finally, a likelihood-based approach to the mixed model provides several statistical
measures for model adequacy as well. The most common of these are the likeli-
hood ratio test and Akaike’s and Schwarz’s criteria (Bozdogan 1987; Wolfinger 1993,
Keselman et al. 1998, 1999).

Statistical Properties

If G andR are known,̂β is thebest linear unbiased estimator(BLUE) of β, andγ̂
is thebest linear unbiased predictor(BLUP) ofγ (Searle 1971; Harville 1988, 1990;
Robinson 1991; McLean, Sanders, and Stroup 1991). Here, “best” means minimum
mean squared error. The covariance matrix of(β̂ − β, γ̂ − γ) is

C =
[

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

]−
where− denotes a generalized inverse (refer to Searle 1971).

However,G andR are usually unknown and are estimated using one of the afore-
mentioned methods. These estimates,Ĝ andR̂, are therefore simply substituted into
the preceding expression to obtain

Ĉ =

[
X′R̂−1X X′R̂−1Z
Z′R̂−1X Z′R̂−1Z + Ĝ−1

]−

as the approximate variance-covariance matrix of(β̂ − β, γ̂ − γ). In this case, the
BLUE and BLUP acronyms no longer apply, but the wordempirical is often added
to indicate such an approximation. The appropriate acronyms thus become EBLUE
and EBLUP.

McLean and Sanders (1988) show thatĈ can also be written as

Ĉ =

[
Ĉ11 Ĉ′

21

Ĉ21 Ĉ22

]
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where

Ĉ11 = (X′V̂−1X)−

Ĉ21 = −ĜZ′V̂−1XĈ11

Ĉ22 = (Z′R̂−1Z + Ĝ−1)−1 − Ĉ21X′V̂−1ZĜ

Note thatĈ11 is the familiar estimated generalized least-squares formula for the
variance-covariance matrix of̂β.

As a cautionary note,̂C tends to underestimate the true sampling variability of
(β̂ γ̂) because no account is made for the uncertainty in estimatingG and R.
Although inflation factors have been proposed (Kackar and Harville 1984; Kass and
Steffey 1989; Prasad and Rao 1990), they tend to be small for data sets that are fairly
well balanced. PROC MIXED does not compute any inflation factors by default,
but rather accounts for the downward bias by using the approximatet andF statis-
tics described subsequently. The DDFM=KENWARDROGER option in the MODEL
statement prompts PROC MIXED to compute a specific inflation factor along with
Satterthwaite-based degrees of freedom.

Inference and Test Statistics

For inferences concerning the covariance parameters in your model, you can use
likelihood-based statistics. One common likelihood-based statistic is theWald Z,
which is computed as the parameter estimate divided by its asymptotic standard er-
ror. The asymptotic standard errors are computed from the inverse of the second
derivative matrix of the likelihood with respect to each of the covariance parameters.
The WaldZ is valid for large samples, but it can be unreliable for small data sets and
for parameters such as variance components, which are known to have a skewed or
bounded sampling distribution.

A better alternative is the likelihood ratioχ2. This statistic compares two covariance
models, one a special case of the other. To compute it, you must run PROC MIXED
twice, once for each of the two models, and then subtract the corresponding values
of −2 times the log likelihoods. You can use either ML or REML to construct this
statistic, which tests whether the full model is necessary beyond the reduced model.

As long as the reduced model does not occur on the boundary of the covariance
parameter space, theχ2 statistic computed in this fashion has a large-sample sampling
distribution that isχ2 with degrees of freedom equal to the difference in the number of
covariance parameters between the two models. If the reduced model does occur on
the boundary of the covariance parameter space, the asymptotic distribution becomes
a mixture ofχ2 distributions (Self and Liang 1987). A common example of this is
when you are testing that a variance component equals its lower boundary constraint
of 0.

A final possibility for obtaining inferences concerning the covariance parameters is to
simulate or resample data from your model and construct empirical sampling distri-
butions of the parameters. The SAS macro language and the ODS system are useful
tools in this regard.
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For inferences concerning the fixed- and random-effects parameters in the mixed
model, consider estimable linear combinations of the following form:

L
[
β
γ

]

The estimability requirement (Searle 1971) applies only to theβ-portion of L, as
any linear combination ofγ is estimable. Such a formulation in terms of a gen-
eral L matrix encompasses a wide variety of common inferential procedures such
as those employed with Type I–Type III tests and LS-means. The CONTRAST and
ESTIMATE statements in PROC MIXED enable you to specify your ownL matrices.
Typically, inference on fixed-effects is the focus, and, in this case, theγ-portion ofL
is assumed to contain all 0s.

Statistical inferences are obtained by testing the hypothesis

H : L
[
β
γ

]
= 0

or by constructing point and interval estimates.

WhenL consists of a single row, a generalt-statistic can be constructed as follows
(refer to McLean and Sanders 1988, Stroup 1989a):

t =
L
[
β̂
γ̂

]
√

LĈL′

Under the assumed normality ofγ andε, t has an exactt-distribution only for data
exhibiting certain types of balance and for some special unbalanced cases. In general,
t is only approximatelyt-distributed, and its degrees of freedom must be estimated.
See theDDFM= option on page 2693 for a description of the various degrees-of-
freedom methods available in PROC MIXED.

With ν̂ being the approximate degrees of freedom, the associated confidence interval
is

L
[
β̂
γ̂

]
± tν̂,α/2

√
LĈL′

wheretν̂,α/2 is the(1− α/2)100th percentile of thetν̂-distribution.

When the rank ofL is greater than 1, PROC MIXED constructs the following general
F -statistic:

F =

[
β̂
γ̂

]′
L′(LĈL′)−1L

[
β̂
γ̂

]
rank(L)
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Analogous tot, F in general has an approximateF -distribution withrank(L) nu-
merator degrees of freedom andν̂ denominator degrees of freedom.

Thet- andF -statistics enable you to make inferences about your fixed effects, which
account for the variance-covariance model you select. An alternative is theχ2 statis-
tic associated with the likelihood ratio test. This statistic compares two fixed-effects
models, one a special case of the other. It is computed just as when comparing dif-
ferent covariance models, although you should use ML and not REML here because
the penalty term associated with restricted likelihoods depends upon the fixed-effects
specification.

Parameterization of Mixed Models

Recall that a mixed model is of the form

y = Xβ + Zγ + ε

wherey represents univariate data,β is an unknown vector of fixed effects with
known model matrixX, γ is an unknown vector of random effects with known model
matrixZ, andε is an unknown random error vector.

PROC MIXED constructs a mixed model according to the specifications in the
MODEL, RANDOM, and REPEATED statements. Each effect in the MODEL state-
ment generates one or more columns in the model matrixX, and each effect in the
RANDOM statement generates one or more columns in the model matrixZ. Effects
in the REPEATED statement do not generate model matrices; they serve only to in-
dex observations within subjects. This section shows precisely how PROC MIXED
buildsX andZ.

Intercept

By default, all models automatically include a column of 1s inX to estimate a fixed-
effect intercept parameterµ. You can use the NOINT option in the MODEL statement
to suppress this intercept. The NOINT option is useful when you are specifying a
classification effect in the MODEL statement and you want the parameter estimate to
be in terms of the mean response for each level of that effect, rather than in terms of
a deviation from an overall mean.

By contrast, the intercept is not included by default inZ. To obtain a column of 1s
in Z, you must specify in the RANDOM statement either the INTERCEPT effect or
some effect that has only one level.

Regression Effects

Numeric variables, or polynomial terms involving them, may be included in the
model as regression effects (covariates). The actual values of such terms are in-
cluded as columns of the model matricesX andZ. You can use the bar operator with
a regression effect to generate polynomial effects. For instance, X|X|X expands to
X X*X X*X*X, a cubic model.
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Main Effects

If a class variable hasm levels, PROC MIXED generatesm columns in the model
matrix for its main effect. Each column is an indicator variable for a given level.
The order of the columns is the sort order of the values of their levels and can be
controlled with the ORDER= option in the PROC MIXED statement. The following
table is an example.

Data I A B
A B µ A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

Typically, there are more columns for these effects than there are degrees of freedom
for them. In other words, PROC MIXED uses an over-parameterized model.

Interaction Effects

Often a model includes interaction (crossed) effects. With an interaction, PROC
MIXED first reorders the terms to correspond to the order of the variables in the
CLASS statement. Thus,B*A becomesA*B if A precedesB in the CLASS state-
ment. Then, PROC MIXED generates columns for all combinations of levels that
occur in the data. The order of the columns is such that the rightmost variables in the
cross index faster than the leftmost variables. Empty columns (that would contain all
0s) are not generated forX, but they are forZ.

Data I A B A*B
A B µ A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1
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In the preceding matrix, main-effects columns are not linearly independent of
crossed-effect columns; in fact, the column space for the crossed effects contains
the space of the main effect.

When your model contains many interaction effects, you may be able to code them
more parsimoniously using the bar operator (| ). The bar operator generates all
possible interaction effects. For example,A|B|C expands toA B A*B C A*C B*C
A*B*C. To eliminate higher-order interaction effects, use the at sign ( @ ) in con-
junction with the bar operator. For instance,A|B|C|D@2 expands toA B A*B C
A*C B*C D A*D B*D C*D.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design
columns generated by the following two statements are the same (but the ordering of
the columns is different):

model Y=A B(A);

model Y=A A*B;

The nesting operator in PROC MIXED is more a notational convenience than an
operation distinct from crossing. Nested effects are typically characterized by the
property that the nested variables never appear as main effects. The order of the vari-
ables within nesting parentheses is made to correspond to the order of these variables
in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested
variables index faster than the leftmost variables.

Data I A B(A)
A B µ A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Note that nested effects are often distinguished from interaction effects by the implied
randomization structure of the design. That is, they usually indicate random effects
within a fixed-effects framework. The fact that random effects can be modeled di-
rectly in the RANDOM statement may make the specification of nested effects in the
MODEL statement unnecessary.

Continuous-Nesting-Class Effects

When a continuous variable nests with a class variable, the design columns are con-
structed by multiplying the continuous values into the design columns for the class
effect.
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Data I A X(A)
X A µ A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate slope forX within each level ofA.

Continuous-by-Class Effects

Continuous-by-class effects generate the same design columns as continuous-nesting-
class effects. The two models are made different by the presence of the continuous
variable as a regressor by itself, as well as a contributor to a compound effect.

Data I X A X*A
X A µ X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

You can use continuous-by-class effects to test for homogeneity of slopes.

General Effects

An example that combines all the effects isX1*X2*A*B*C(D E). The continuous list
comes first, followed by the crossed list, followed by the nested list in parentheses.
You should be aware of the sequencing of parameters when you use the CONTRAST
or ESTIMATE statements to compute some function of the parameter estimates.

Effects may be renamed by PROC MIXED to correspond to ordering rules. For
example,B*A(E D) may be renamedA*B(D E) to satisfy the following:

• Class variables that occur outside parentheses (crossed effects) are sorted in the
order in which they appear in the CLASS statement.

• Variables within parentheses (nested effects) are sorted in the order in which
they appear in the CLASS statement.

The sequencing of the parameters generated by an effect can be described by which
variables have their levels indexed faster:

• Variables in the crossed list index faster than variables in the nested list.
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• Within a crossed or nested list, variables to the right index faster than variables
to the left.

For example, suppose a model includes four effects—A, B, C, andD—each having
two levels, 1 and 2. If the CLASS statement is

class A B C D;

then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A1B1C1D1 → A1B2C1D1 → A2B1C1D1 → A2B2C1D1 →
A1B1C1D2 → A1B2C1D2 → A2B1C1D2 → A2B2C1D2 →
A1B1C2D1 → A1B2C2D1 → A2B1C2D1 → A2B2C2D1 →
A1B1C2D2 → A1B2C2D2 → A2B1C2D2 → A2B2C2D2

Note that first the crossed effectsB andA are sorted in the order in which they appear
in the CLASS statement so thatA precedesB in the parameter list. Then, for each
combination of the nested effects in turn, combinations ofA andB appear. TheB
effect moves fastest because it is rightmost in the cross list. ThenA moves next
fastest, andD moves next fastest. TheC effect is the slowest since it is leftmost in
the nested list.

When numeric levels are used, levels are sorted by their character format, which
may not correspond to their numeric sort sequence (for example, noninteger levels).
Therefore, it is advisable to include a desired format for numeric levels or to use the
ORDER=INTERNAL option in the PROC MIXED statement to ensure that levels
are sorted by their internal values.

Implications of the Non-Full-Rank Parameterization

For models with fixed-effects involving class variables, there are more design
columns inX constructed than there are degrees of freedom for the effect. Thus,
there are linear dependencies among the columns ofX. In this event, all of the pa-
rameters are not estimable; there is an infinite number of solutions to the mixed model
equations. PROC MIXED uses a generalized (g2) inverse to obtain values for the es-
timates (Searle 1971). The solution values are not displayed unless you specify the
SOLUTION option in the MODEL statement. The solution has the characteristic that
estimates are 0 whenever the design column for that parameter is a linear combination
of previous columns. With this parameterization, hypothesis tests are constructed to
test linear functions of the parameters that are estimable.

Some procedures (such as the CATMOD procedure) reparameterize models to full
rank using restrictions on the parameters. PROC GLM and PROC MIXED do not
reparameterize, making the hypotheses that are commonly tested more understand-
able. Refer to Goodnight (1978) for additional reasons for not reparameterizing.
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Missing Level Combinations

PROC MIXED handles missing level combinations of classification variables simi-
larly to the way PROC GLM does. Both procedures delete fixed-effects parameters
corresponding to missing levels in order to preserve estimability. However, PROC
MIXED does not delete missing level combinations for random-effects parameters
because linear combinations of the random-effects parameters are always estimable.
These conventions can affect the way you specify your CONTRAST and ESTIMATE
coefficients.

Default Output

The following sections describe the output PROC MIXED produces by default. This
output is organized into various tables, and they are discussed in order of appearance.

Model Information

The “Model Information” table describes the model, some of the variables it involves,
and the method used in fitting it. It also lists the method (profile, fit, factor, or none)
for handling the residual variance in the model. Theprofile method concentrates the
residual variance out of the optimization problem, whereas thefit method retains it
as a parameter in the optimization. Thefactor method keeps the residual fixed, and
noneis displayed when a residual variance is not a part of the model.

The “Model Information” table also has a row labeled Fixed Effects SE Method. This
row describes the method used to compute the approximate standard errors for the
fixed-effects parameter estimates and related functions of them. The two possibilities
for this row are Model-Based, which is the default method, and Empirical, which
results from using the EMPIRICAL option in the PROC MIXED statement.

For ODS purposes, the label of the “Model Information” table is “ModelInfo.”

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in
the CLASS statement. You should check this information to make sure the data are
correct. You can adjust the order of the CLASS variable levels with the ORDER=
option in the PROC MIXED statement. For ODS purposes, the label of the “Class
Level Information” table is “ClassLevels.”

Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful
in determining CPU time and memory requirements. For ODS purposes, the label of
the “Dimensions” table is “Dimensions.”

Number of Observations

The “Number of Observations” table shows the number of observations read from the
data set and the number of observations used in fitting the model.
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Iteration History

The “Iteration History” table describes the optimization of theresidual log likelihood
or log likelihooddescribed on page 2738. The function to be minimized (theobjective
function) is−2l for ML and−2lR for REML; the column name of the objective func-
tion in the “Iteration History” table is “-2 Log Like” for ML and “-2 Res Log Like”
for REML. The minimization is performed using a ridge-stabilized Newton-Raphson
algorithm, and the rows of this table describe the iterations that this algorithm takes
in order to minimize the objective function.

The Evaluations column of the “Iteration History” table tells how many times the
objective function is evaluated during each iteration.

The Criterion column of the “Iteration History” table is, by default, a relative Hessian
convergence quantity given by

g′kH
−1
k gk

|fk|

wherefk is the value of the objective function at iterationk, gk is the gradient (first
derivative) offk, andHk is the Hessian (second derivative) offk. If Hk is singular,
then PROC MIXED uses the following relative quantity:

g′kgk

|fk|

To prevent the division by|fk|, use the ABSOLUTE option in the PROC MIXED
statement. To use a relative function or gradient criterion, use the CONVF or
CONVG options, respectively.

The Hessian criterion is considered superior to function and gradient criteria be-
cause it measures orthogonality rather than lack of progress (Bates and Watts 1988).
Provided the initial estimate is feasible and the maximum number of iterations is not
exceeded, the Newton-Raphson algorithm is considered to have converged when the
criterion is less than the tolerance specified with the CONVF, CONVG, or CONVH
option in the PROC MIXED statement. The default tolerance is 1E−8. If conver-
gence is not achieved, PROC MIXED displays the estimates of the parameters at the
last iteration.

A convergence criterion that is missing indicates that a boundary constraint has been
dropped; it is usually not a cause for concern.

If you specify the ITDETAILS option in the PROC MIXED statement, then the co-
variance parameter estimates at each iteration are included as additional columns in
the “Iteration History” table.

For ODS purposes, the label of the “Iteration History” table is “IterHistory.”
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Covariance Parameter Estimates

The “Covariance Parameter Estimates” table contains the estimates of the parameters
in G andR (see the“Estimating G and R in the Mixed Model”section on page
2737). Their values are labeled in the “Cov Parm” table along with Subject and Group
information if applicable. The estimates are displayed in the Estimate column and
are the results of one of the following estimation methods: REML, ML, MIVQUE0,
SSCP, Type1, Type2, or Type3.

If you specify the RATIO option in the PROC MIXED statement, the Ratio column is
added to the table listing the ratios of each parameter estimate to that of the residual
variance.

Requesting the COVTEST option in the PROC MIXED statement produces the Std
Error, Z Value, and Pr Z columns. The Std Error column contains the approximate
standard errors of the covariance parameter estimates. These are the square roots
of the diagonal elements of the observed inverse Fisher information matrix, which
equals2H−1, whereH is the Hessian matrix. TheH matrix consists of the second
derivatives of the objective function with respect to the covariance parameters; refer
to Wolfinger, Tobias, and Sall (1994) for formulas. When you use the SCORING=
option and PROC MIXED converges without stopping the scoring algorithm, PROC
MIXED uses the expected Hessian matrix to compute the covariance matrix instead
of the observed Hessian. The observed or expected inverse Fisher information matrix
can be viewed as an asymptotic covariance matrix of the estimates.

The Z Value column is the estimate divided by its approximate standard error, and the
Pr Z column is the one- or two-tailed area of the standard Gaussian density outside
of theZ-value. The MIXED procedure computes one-sided p-values for the residual
variance and for covariance parameters with a lower bound of 0. The procedure
computes two-sided p-values otherwise. These statistics constitute Wald tests of the
covariance parameters, and they are valid only asymptotically.

Caution: Wald tests can be unreliable in small samples.

For ODS purposes, the label of the “Covariance Parameter Estimates” table is
“CovParms.”

Fit Statistics

The “Fit Statistics” table provides some statistics about the estimated mixed model.
Expressions for the−2 times the log likelihood are provided in the“Estimating G and
R in the Mixed Model”section on page 2737. If the log likelihood is an extremely
large number, then PROC MIXED has deemed the estimatedV matrix to be singular.
In this case, all subsequent results should be viewed with caution.

In addition, the “Fit Statistics” table lists three information criteria: AIC, AICC, and
BIC, all in smaller-is-better form. Expressions for these criteria are described under
theIC optionon page 2676.

For ODS purposes, the label of the “Model Fitting Information” table is
“FitStatistics.”
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Null Model Likelihood Ratio Test

If one covariance model is a submodel of another, you can carry out a likelihood ratio
test for the significance of the more general model by computing−2 times the differ-
ence between their log likelihoods. Then compare this statistic to theχ2 distribution
with degrees of freedom equal to the difference in the number of parameters for the
two models.

This test is reported in the “Null Model Likelihood Ratio Test” table to determine
whether it is necessary to model the covariance structure of the data at all. The “Chi-
Square” value is−2 times the log likelihood from the null model minus−2 times
the log likelihood from the fitted model, where the null model is the one with only
the fixed effects listed in the MODEL statement andR = σ2I. This statistic has
an asymptoticχ2-distribution withq − 1 degrees of freedom, whereq is the effec-
tive number of covariance parameters (those not estimated to be on a boundary con-
straint). The Pr > ChiSq column contains the upper-tail area from this distribution.
Thisp-value can be used to assess the significance of the model fit.

This test is not produced for cases where the null hypothesis lies on the boundary
of the parameter space, which is typically for variance component models. This is
because the standard asymptotic theory does not apply in this case (Self and Liang
1987, Case 5).

If you specify a PARMS statement, PROC MIXED constructs a likelihood ratio test
between the best model from the grid search and the final fitted model and reports the
results in the “Parameter Search” table.

For ODS purposes, the label of the “Null Model Likelihood Ratio Test” table is
“LRT.”

Type 3 Tests of Fixed Effects

The “Type 3 Tests of Fixed Effects” table contains hypothesis tests for the significance
of each of the fixed effects, that is, those effects you specify in the MODEL statement.
By default, PROC MIXED computes these tests by first constructing a Type IIIL
matrix (seeChapter 11, “The Four Types of Estimable Functions,”) for each effect.
ThisL matrix is then used to compute the followingF-statistic:

F =
β̂
′
L′[L(X′V̂−1X)−L′]−Lβ̂

rank(L)

A p-value for the test is computed as the tail area beyond this statistic from anF-
distribution with NDF and DDF degrees of freedom. The numerator degrees of free-
dom (NDF) is the row rank ofL, and the denominator degrees of freedom is computed
using one of the methods described under theDDFM= optionon page 2693. Small
values of thep-value (typically less than 0.05 or 0.01) indicate a significant effect.

You can use the HTYPE= option in the MODEL statement to obtain tables of Type I
(sequential) tests and Type II (adjusted) tests in addition to or instead of the table of
Type III (partial) tests.
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You can use the CHISQ option in the MODEL statement to obtain Waldχ2 tests
of the fixed effects. These are carried out by using the numerator of theF-statistic
and comparing it with theχ2 distribution with NDF degrees of freedom. It is more
liberal than theF-test because it effectively assumes an infinite denominator degrees
of freedom.

For ODS purposes, the label of the “Type 1 Tests of Fixed Effects” through the “Type
3 Tests of Fixed Effects” tables are “Tests1” through “Tests3,” respectively.

ODS Table Names

Each table created by PROC MIXED has a name associated with it, and you must use
this name to reference the table when using ODS statements. These names are listed
in Table 46.8.

Table 46.8. ODS Tables Produced in PROC MIXED

Table Name Description Required Statement / Option
AccRates acceptance rates for posterior sam-

pling
PRIOR

AsyCorr asymptotic correlation matrix of
covariance parameters

PROC MIXED ASYCORR

AsyCov asymptotic covariance matrix of
covariance parameters

PROC MIXED ASYCOV

Base base densities used for posterior
sampling

PRIOR

Bound computed bound for posterior rejec-
tion sampling

PRIOR

CholG Cholesky root of the estimatedG
matrix

RANDOM / GC

CholR Cholesky root of blocks of the esti-
matedR matrix

REPEATED / RC

CholV Cholesky root of blocks of the esti-
matedV matrix

RANDOM / VC

ClassLevels level information from the CLASS
statement

default output

Coef L matrix coefficients E option on MODEL,
CONTRAST, ESTIMATE,
or LSMEANS

Contrasts results from the CONTRAST
statements

CONTRAST

ConvergenceStatusconvergence status default
CorrB approximate correlation matrix of

fixed-effects parameter estimates
MODEL / CORRB

CovB approximate covariance matrix of
fixed-effects parameter estimates

MODEL / COVB

CovParms estimated covariance parameters default output
Diffs differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions dimensions of the model default output
Estimates results from ESTIMATE statements ESTIMATE
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Table 46.8. (continued)

Table Name Description Required Statement / Option
FitStatistics fit statistics default
G estimatedG matrix RANDOM / G
GCorr correlation matrix from the

estimatedG matrix
RANDOM / GCORR

HLM1 Type 1 Hotelling-Lawley-McKeon
tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLM TYPE=UN

HLM2 Type 2 Hotelling-Lawley-McKeon
tests of fixed effects

MODEL / HTYPE=2 and
REPEATED / HLM TYPE=UN

HLM3 Type 3 Hotelling-Lawley-McKeon
tests of fixed effects

REPEATED / HLM TYPE=UN

HLPS1 Type 1 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS2 Type 2 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS3 Type 3 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

REPEATED / HLPS TYPE=UN

Influence influence diagnostics MODEL / INFLUENCE
InfoCrit information criteria PROC MIXED IC
InvCholG inverse Cholesky root of the

estimatedG matrix
RANDOM / GCI

InvCholR inverse Cholesky root of blocks of
the estimatedR matrix

REPEATED / RCI

InvCholV inverse Cholesky root of blocks of
the estimatedV matrix

RANDOM / VCI

InvCovB inverse of approximate covariance
matrix of fixed-effects parameter es-
timates

MODEL / COVBI

InvG inverse of the estimatedG
matrix

RANDOM / GI

InvR inverse of blocks of the estimatedR
matrix

REPEATED / RI

InvV inverse of blocks of the estimatedV
matrix

RANDOM / VI

IterHistory iteration history default output
LComponents single degree of freedom estimates

corresponding to rows of theL ma-
trix for fixed effects

MODEL / LCOMPONENTS

LRT likelihood ratio test default output
LSMeans LS-means LSMEANS
MMEq mixed model equations PROC MIXED MMEQ
MMEqSol mixed model equations solution PROC MIXED MMEQSOL
ModelInfo model information default output
NObs number of observations read and

used
default output

ParmSearch parameter search values PARMS
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Table 46.8. (continued)

Table Name Description Required Statement / Option
Posterior posterior sampling information PRIOR
R blocks of the estimatedR matrix REPEATED / R
RCorr correlation matrix from blocks of the

estimatedR matrix
REPEATED / RCORR

Search posterior density search table PRIOR / PSEARCH
Slices tests of LS-means slices LSMEANS / SLICE=
SolutionF fixed effects solution vector MODEL / S
SolutionR random effects solution vector RANDOM / S
Tests1 Type 1 tests of fixed effects MODEL / HTYPE=1
Tests2 Type 2 tests of fixed effects MODEL / HTYPE=2
Tests3 Type 3 tests of fixed effects default output
Type1 Type 1 analysis of variance PROC MIXED METHOD=TYPE1
Type2 Type 2 analysis of variance PROC MIXED METHOD=TYPE2
Type3 Type 3 analysis of variance PROC MIXED METHOD=TYPE3
Trans transformation of covariance param-

eters
PRIOR / PTRANS

V blocks of the estimatedV matrix RANDOM / V
VCorr correlation matrix from blocks of the

estimatedV matrix
RANDOM / VCORR

In Table 46.8, “Coef” refers to multiple tables produced by the E, E1, E2, or E3
options in the MODEL statement and the E option in the CONTRAST, ESTIMATE,
and LSMEANS statements. You can create one large data set of these tables with a
statement similar to

ods output Coef=c;

To create separate data sets, use

ods output Coef(match_all)=c;

Here the resulting data sets are named C, C1, C2, etc. The same principles ap-
ply to data sets created from the “R,” “CholR,” “InvCholR,” “RCorr,” “InvR,” “V,”
“CholV,” “InvCholV,” “VCorr,” and “InvV” tables.

In Table 46.8, the following changes have occurred from Version 6. The “Predicted,”
“PredMeans,” and “Sample” tables from Version 6 no longer exist and have been
replaced by output data sets; see descriptions of the MODEL statement options
OUTPRED=on page 2703 andOUTPREDM=on page 2704 and the PRIOR state-
ment optionOUT= on page 2711 for more details. The “ML” and “REML” ta-
bles from Version 6 have been replaced by the “IterHistory” table. The “Tests,”
“HLM,” and “HLPS” tables from Version 6 have been renamed “Tests3,” “HLM3,”
and “HLPS3.”
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Table 46.9 lists the variable names associated with the data sets created when you
use the ODS OUTPUT option in conjunction with the preceding tables. InTable 46.9
, n is used to denote a generic number that is dependent upon the particular data set
and model you select, and it can assume a different value each time it is used (even
within the same table). The phrasemodel specificappears in rows of the affected
tables to indicate that columns in these tables depend upon the variables you specify
in the model.

Caution: There exists a danger of name collisions with the variables in themodel
specifictables inTable 46.9 and variables in your input data set. You should avoid
using input variables with the same names as the variables in these tables.

Table 46.9. Variable Names for the ODS Tables Produced in PROC MIXED

Table Name Variables
AsyCorr Row, CovParm, CovP1–CovPn
AsyCov Row, CovParm, CovP1–CovPn
BaseDen Type, Parm1–Parmn
Bound Technique, Converge, Iterations, Evaluations, LogBound,

CovP1–CovPn, TCovP1–TCovPn
CholG model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
CholR Index, Row, Col1–Coln
CholV Index, Row, Col1–Coln
ClassLevels Class, Levels, Values
Coef model specific, LMatrix, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row1–Rown
Contrasts Label, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
CorrB model specific, Effect, Row, Col1–Coln
CovB model specific, Effect, Row, Col1–Coln
CovParms CovParm, Subject, Group, Estimate, StandardError, ZValue,

ProbZ, Alpha, Lower, Upper
Diffs model specific, Effect, Margins, ByLevel, AT variables, Diff,

StandardError, DF, tValue, Tails, Probt, Adjustment, Adjp, Alpha,
Lower, Upper, AdjLow, AdjUpp

Dimensions Descr, Value
Estimates Label, Estimate, StandardError, DF, tValue, Tails, Probt, Alpha,

Lower, Upper
FitStatistics Descr, Value
G model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
GCorr model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
HLM1 Effect, NumDF, DenDF, FValue, ProbF
HLM2 Effect, NumDF, DenDF, FValue, ProbF
HLM3 Effect, NumDF, DenDF, FValue, ProbF
HLPS1 Effect, NumDF, DenDF, FValue, ProbF
HLPS2 Effect, NumDF, DenDF, FValue, ProbF
HLPS3 Effect, NumDF, DenDF, FValue, ProbF
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Table 46.9. (continued)

Table Name Variables
Influence dependent on option modifiers, Effect, Tuple, Obs1–Obsk,

Level, Iter, Index, Predicted, Residual, Leverage, PressRes,
PRESS, Student, RMSE, RStudent, CookD, DFFITS, MDFFITS,
CovRatio, CovTrace, CookDCP, MDFFITSCP, CovRatioCP,
CovTraceCP, LD, RLD, Parm1–Parmp, CovP1–CovPq, Notes

InfoCrit Neg2LogLike, Parms, AIC, AICC, HQIC, BIC, CAIC
InvCholG model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
InvCholR Index, Row, Col1–Coln
InvCholV Index, Row, Col1–Coln
InvCovB model specific, Effect, Row, Col1–Coln
InvG model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
InvR Index, Row, Col1–Coln
InvV Index, Row, Col1–Coln
IterHistory CovP1–CovPn, Iteration, Evaluations, M2ResLogLike,

M2LogLike, Criterion
LComponents Effect, TestType, LIndex, Estimate, StdErr, DF, tValue, Probt
LRT DF, ChiSquare, ProbChiSq
LSMeans model specific, Effect, Margins, ByLevel, AT variables, Estimate,

StandardError, DF, tValue, Probt, Alpha, Lower, Upper,
Cov1–Covn, Corr1–Corrn

MMEq model specific, Effect, Subject, Sub1–Subn, Group,
Group1–Groupn, Row, Col1–Coln

MMEqSol model specific, Effect, Subject, Sub1–Subn, Group,
Group1–Groupn, Row, Col1–Coln

ModelInfo Descr, Value
Nobs Label, N, NObsRead, NObsUsed, SumFreqsRead, SumFreqsUsed
ParmSearch CovP1–CovPn, Var, ResLogLike, M2ResLogLike2, LogLike,

M2LogLike, LogDetH
Posterior Descr, Value
R Index, Row, Col1–Coln
RCorr Index, Row, Col1–Coln
Search Parm, TCovP1–TCovPn, Posterior
Slices model specific, Effect, Margins, ByLevel, AT variables, NumDF,

DenDF, FValue, ProbF
SolutionF model specific, Effect, Estimate, StandardError, DF, tValue, Probt,

Alpha, Lower, Upper
SolutionR model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Estimate, StdErrPred, DF, tValue, Probt,
Alpha, Lower, Upper

Tests1 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Tests2 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Tests3 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Type1 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
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Table 46.9. (continued)

Table Name Variables
Type2 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Type3 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Trans Prior, TCovP, CovP1–CovPn
V Index, Row, Col1–Coln
VCorr Index, Row, Col1–Coln

Some of the variables listed inTable 46.9are created only when you have specified
certain options in the relevant PROC MIXED statements.

Converting from Previous Releases

The following changes have occurred in variables listed inTable 46.9 from Version
6. Nearly all underscores have been removed from variable names in order to be
compatible and consistent with other procedures. Some of the variable names have
been changed (for example, T has been changed to tValue and PT to Probt) for the
same reason. You may have to modify some of your Version 6 code to accommodate
these changes.

In Version 6, PROC MIXED used a MAKE statement to save displayed output as
data sets. The MAKE statement is now obsolete and may not be supported in future
releases. Use the ODS OUTPUT statement instead. The following table shows typi-
cal conversions in order to replace the MAKE statement in Version 6 code with ODS
statements.

Table 46.10. ODS Conversions for PROC MIXED

Version 6 Syntax Versions 7 and 8 Syntax
make ’covparms’ out=cp; ods output covparms=cp;
make ’covparms’ out=cp noprint; ods listing exclude covparms;

ods output covparms=cp;
%global - print - ; %let - print - =off; ods listing close;
%global - print - ; %let - print - =on; ods listing;

ODS Graphics (Experimental)

This section describes the use of ODS for creating diagnostic plots with the MIXED
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release.

To request these graphs you must specify the ODS GRAPHICS statement. In addition
you must specify the relevant options of the PROC MIXED or MODEL statement
(Table 46.11). To request plots of studentized residuals, for example, specify the
experimental RESIDUAL option of the MODEL statement. To obtain graphical dis-
plays of leave-one-out parameter estimates, specify the experimental INFLUENCE
option with the ESTIMATES suboption.
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For more information on the ODS GRAPHICS statement, seeChapter 15, “Statistical
Graphics Using ODS.”ODS names of the various graphics are given in the“ODS
Graph Names”section (page 2762).

Residual Plots

With the experimental graphics features the MIXED procedure can generate panels
of residual diagnostics. Each panel consists of a plot of residuals versus predicted
values, a histogram with Normal density overlaid, a Q-Q plot, and summary resid-
ual and fit statistics (Figure 46.15). The plots are produced even if the OUTP= and
OUTPM= options of the MODEL statement are not specified. Three such panels
are produced for the marginal residuals which would be added to the OUTPM= data
set. The panels display the raw, studentized, and Pearson residuals (see“Residual
Diagnostics”). In models with RANDOM effects where EBLUPs can be used for
prediction, the raw, studentized and Pearson conditional residuals are also plotted.

Recall the example in the“Getting Started”section on page 2665. The following
statements generate six2× 2 panels of residual graphs.

ods html;
ods graphics on;

proc mixed;
class Family Gender;
model Height = Gender / residual;
random Family Family*Gender;

run;

ods graphics off;
ods html close;

The graphical displays are requested by specifying the experimental ODS
GRAPHICS statement. The panel for the marginal studentized residuals is shown in
Figure 46.15and the panel for the conditional studentized residuals inFigure 46.16.
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Figure 46.15. Marginal Studentized Residual Panel (Experimental)

Figure 46.16. Conditional Studentized Residual Panel (Experimental)
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A similar panel display for the scaled residuals is produced when you specify the
experimental VCIRY option of the MODEL statement; see optionVCIRY on page
2705 for more details.

The “Residual Statistics” in the lower right-hand corner inset provides descriptive
statistics for the set of residuals that is displayed. Note that residuals in a mixed
model do not necessarily sum to zero, even if the model contains an intercept.

Influence Plots

With the experimental graphics features the MIXED procedure can generate one or
more panels of influence graphics. The type and number of panels produced depends
on the modifiers of the INFLUENCE option. Plots related to covariance parameters
are produced when diagnostics are computed by iterative methods (ITER=). The es-
timates of the fixed effects—and covariance parameters when updates are iterative—
are plotted when the ESTIMATES modifier is specified.

The two types of panel graphs produced by the INFLUENCE option are shown
in Figure 46.17and Figure 46.18. The diagnostics panel shows an overall influ-
ence statistic (likelihood distance) and diagnostics for the fixed effects (CookD and
COVRATIO). The statistics produced depend on suboptions of the INFLUENCE op-
tion (seeExample 46.8for the statements and options that producedFigure 46.17).
Reference lines are drawn at zero for PRESS residuals and COVTRACE, and at one
for COVRATIO. A reference line for likelihood distances is drawn at the 75th per-
centile of a chi-square distribution withm degrees of freedom if the largest displace-
ment value in the “Influence” table is close to or larger than that percentile. The
numberm equals the number of parameters being updated.
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Figure 46.17. Influence Diagnostics (Experimental)

Figure 46.18. Delete Estimates (Experimental)
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The second type of influence panel plot is obtained when you specify the
ESTIMATES suboption (Figure 46.18). It shows the delete-estimates for each
updated model parameter. Reference lines are drawn at the full data estimates. For
noniterative influence analyses with profiled residual variance, the delete-case root
mean square error is also plotted.

For the SAS statements that produce influence plots and for variations of these graphs
seeExample 46.7andExample 46.8.

Box Plots

You can specify the BOXPLOT option in the PROC MIXED statement.

BOXPLOT <(suboptions)>
requests box plots of observed and residual valuesY−Xβ̂ for effects that consist of
single CLASS variables. This includes SUBJECT= and GROUP= effects.

For models with a RANDOM statement you also obtain box plots of the conditional
residualsY −Xβ̂ − Zγ̂. The box plots are constructed from studentized residuals
when the RESIDUAL option of the MODEL statement is specified.

The following suboptions modify the appearance of the plots:

DATALABEL | NODATALABEL
determines whether to place observation labels next to far outliers. Far outliers
are labeled by default.

FILL | NOFILL
determines whether the boxes are filled. The default is FILL.

NPANEL=n
limits the number of boxes per plot. The default is to place box plots for all
levels of a factor in a common panel.

SeeExample 46.8for an application.

ODS Graph Names

The MIXED procedure assigns a name to each graph it creates using ODS. You can
use these names to reference the graphs when using ODS. The names are listed in
Table 46.11.

To request these graphs, you must specify the ODS GRAPHICS statement in ad-
dition to the options indicated inTable 46.11. For more information on the ODS
GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”
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Table 46.11. ODS Graphics Produced by PROC MIXED

ODS Graph Name Plot Description Option
BoxPlot1,2,... Box plots BOXPLOT

InfluenceEstCovPPanel1,2,... Covariance parameter MODEL /
delete estimates INFLUENCE(EST ITER=n)

InfluenceEstParmPanel1,2,... Fixed effects delete esti-
mates

MODEL / INFLUENCE(EST)

InfluenceStatCovPPanel Diagnostics for covariance MODEL /
parameters INFLUENCE(ITER=n)

InfluenceStatParmPanel Diagnostics for overall in-
fluence and fixed effects

MODEL / INFLUENCE

PearsonCondResidualPanel Pearson conditional residu-
als

MODEL / RESIDUAL

PearsonResidualPanel Pearson marginal residuals MODEL / RESIDUAL

RawCondResidualPanel Conditional residuals MODEL / RESIDUAL

RawResidualPanel Marginal residuals MODEL / RESIDUAL

ScaledResidualPanel Scaled residuals MODEL / VCIRY

StudentizedCondResidualPanel Studentized conditional
residuals

MODEL / RESIDUAL

StudentizedResidualPanel Studentized marginal resid-
uals

MODEL / RESIDUAL

Residuals and Influence Diagnostics (Experimental)

Residual Diagnostics

Consider a residual vector of the form̃e = PY, whereP is a projection matrix,
possibly an oblique projector. A typical elementẽi with variancevi and estimated
variancêvi is said to bestandardized as

ẽi√
var[ẽi]

=
ẽi√
vi

andstudentized as

ẽi√
v̂i

External studentization uses an estimate of var[ẽi] which does not involve theith
observation. Externally studentized residuals are often preferred over studentized
residuals because they have well-known distributional properties in standard linear
models for independent data.

Residuals that are scaled by the estimated variance of the response, i.e.,ẽi/
√

v̂ar[Yi],
are referred to as Pearson-type residuals.
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Marginal and Conditional Residuals

The marginal and conditional means in the linear mixed model are E[Y] = Xβ and
E[Y|γ] = Xβ + Zγ, respectively. Accordingly, the vectorrm of marginal residuals
is defined as

rm = Y −Xβ̂

and the vectorrc of conditional residuals is

rc = Y −Xβ̂ − Zγ̂ = rm − Zγ̂

Following Gregoire, Schabenberger, and Barrett (1995), letQ = X(X′V̂−1X)−X′

andK = I− ZĜZ′V̂−1. Then

v̂ar[rm] = V̂ −Q

v̂ar[rc] = K(V̂ −Q)K′

For an individual observation the raw, studentized, and Pearson residuals computed
by the RESIDUAL option of the MODEL statement are given in the following table.

Type of Residual Marginal Conditional
Raw rmi = Yi − x′iβ̂ rci = rmi − z′iγ̂

Studentized rstudent
mi = rmi√

v̂ar[rmi]
rstudent
ci = rci√

v̂ar[rci]

Pearson rpearson
mi = rmi√

v̂ar[Yi]
rpearson
ci = rci√

v̂ar[Yi|γ]

When the OUTPM= option of the MODEL statement is specified in addition to the
RESIDUAL option,rmi, rstudent

mi , andrpearson
mi are added to the data set as variables

Resid, StudentResid, andPearsonResid, respectively. When the OUTP= option
is specified,rci, rstudent

ci , andrpearson
ci are added to the data set.

Scaled Residuals

For correlated data, a set of scaled quantities can be defined through the Cholesky de-
composition of the variance-covariance matrix. Since fitted residuals in linear models
are rank-deficient, it is customary to draw on the variance-covariance matrix of the
data. If var[Y] = V andC′C = V, thenC′−1Y has uniform dispersion and its
elements are uncorrelated.

Scaled residuals in a mixed model are meaningful for quantities based on the marginal
distribution of the data. Let̂C denote the Cholesky root of̂V, so thatĈ′Ĉ = V̂, and
define

Yc = Ĉ′−1Y

rm(c) = Ĉ′−1rm
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By analogy with other scalings, the inverse Cholesky decomposition can also be ap-
plied to the residual vector,̂C′−1rm, althoughV is not the variance-covariance ma-
trix of rm.

To diagnose whether the covariance structure of the model has been specified cor-
rectly can be difficult based onYc, since the inverse Cholesky transformation affects
the expected value ofYc. You can draw onrm(c) as a vector of (approximately)
uncorrelated data with constant mean.

When the OUTPM= option of the MODEL statement is specified in addition to
the VCIRY option, Yc is added as variableScaledDep and rm(c) is added as
ScaledResid to the data set.

Influence Diagnostics

The Basic Idea and Statistics

The general idea of quantifying the influence of one or more observations relies on
computing parameter estimates based on all data points, removing the cases in ques-
tion from the data, refitting the model, and computing statistics based on the change
between full-data and reduced-data estimation. Influence statistics can be coarsely
grouped by the aspect of estimation which is their primary target:

• overall measures compare changes in objective functions: (restricted) likeli-
hood distance (Cook and Weisberg 1982, Ch. 5.2)

• influence on parameter estimates: Cook’sD (Cook 1977, 1979), MDFFITS
(Belsley, Kuh, and Welsch 1980, p. 32)

• influence on precision of estimates: CovRatio and CovTrace

• influence on fitted and predicted values: PRESS residual, PRESS statistic
(Allen 1974), DFFITS (Belsley, Kuh, and Welsch 1980, p. 15)

• outlier properties: Internally and externally studentized residuals, leverage

For linear models for uncorrelated data, it is not necessary to refit the model after
removing a data point in order to measure the impact of an observation on the model.
The change in fixed effect estimates, residuals, residual sums of squares, and the
variance-covariance matrix of the fixed effects can be computed based on the fit to
the full data alone. By contrast, in mixed models several important complications
arise. Data points can impact not only the fixed effects but also the covariance pa-
rameter estimates on which the fixed effects estimates depend. Furthermore, closed-
form expressions for computing the change in important model quantities may not be
available.

This section provides background material for the various influence diagnostics avail-
able with the MIXED procedure. See the section“Mixed Models Theory”beginning
on page 2731 for relevant expressions and definitions. The parameter vectorθ de-
notes all unknown parameters in theR andG matrix.

The observations whose influence is being ascertained are represented by the setU
and referred to simply as “the observations inU .” The estimate of a parameter vector,
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for example,β, obtained from all observations except those in the setU is denoted
β̂(U). In case of a matrixA, the notationA(U) represents the matrix with the rows
in U removed; these rows are collected inAU . If A is symmetric, then notation
A(U) implies removal of rows and columns. The vectorYU comprises the responses
of the data points being removed, andV(U) is the variance-covariance matrix of the
remaining observations. Whenk = 1, lowercase notation emphasizes that single
points are removed, e.g.,A(u).

Managing the Covariance Parameters

An important component of influence diagnostics in the mixed model is the estimated
variance-covariance matrixV = ZGZ′ + R. To make the dependence on the vector
of covariance parameters explicit, write it asV(θ). If one parameter,σ2, is profiled
or factored out ofV, the remaining parameters are denoted asθ∗. Notice that in a
model whereG is diagonal andR = σ2I, the parameter vectorθ∗ contains the ratios
of each variance component andσ2 (see Wolfinger, Tobias, and Sall 1994). When
ITER=0, two scenarios are distinguished:

1. If the residual variance is not profiled, either because the model does not con-
tain a residual variance or because it is part of the Newton-Raphson iterations,
thenθ̂(U) ≡ θ̂.

2. If the residual variance is profiled then̂θ
∗
(U) ≡ θ̂

∗
andσ̂2

(U) 6= σ̂2. Influence
statistics such as Cook’sD and internally studentized residuals are based on
V(θ̂) whereas externally studentized residuals and the DFFITS statistic are

based onV(θ̂U ) = σ2
(U)V(θ̂

∗
). In a random components model with uncorre-

lated errors, for example, the computation ofV(θ̂U ) involves scaling of̂G and
R̂ by the full data estimatêσ2 and multiplying the result with the reduced-data
estimatêσ2

(U).

Certain statistics, such as MDFFITS, COVRATIO, and COVTRACE, require an es-
timate of the variance of the fixed effects that is based on the reduced number of
observations. For example,V(θ̂U ) is evaluated at the reduced-data parameter es-
timates but computed for the entire data set. The matrixV(U)(θ̂(U)), on the other
hand, has rows and columns corresponding to the points inU removed. The resulting
matrix is evaluated at the delete-case estimates.

When influence analysis is iterative, the entire vectorθ is updated, whether the resid-
ual variance is profiled or not. The matrices to be distinguished here areV(θ̂),
V(θ̂(U)), andV(U)(θ̂(U)), with unambiguous notation.

Predicted Values, PRESS Residual, and PRESS Statistic

An unconditional predicted value iŝyi = x′iβ̂, where the vectorxi is theith row of
X. The (raw) residual is given aŝεi = yi − ŷi and the PRESSresidual is

ε̂i(U) = yi − x′iβ̂(U)
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The PRESSstatistic is the sum of the squared PRESS residuals,

PRESS =
∑
i∈U

ε̂ 2
i(U)

where the sum is over the observations inU .

If EFFECT=, SIZE=, or KEEP= are not specified, PROC MIXED computes the
PRESS residual for each observation selected through SELECT= (or all observa-
tions if SELECT= is not given). If EFFECT=, SIZE=, or KEEP= are specified, the
procedure computesPRESS.

Leverage

For the general mixed model, leverage can be defined through the projection ma-
trix that results from a transformation of the model with the inverse of the Cholesky
decomposition ofV, or through an oblique projector. The MIXED procedure fol-
lows the latter path in the computation of influence diagnostics. The leverage value
reported for theith observation is theith diagonal entry of the matrix

H = X(X′V(θ̂)−1X)−X′V(θ̂)−1

which is the weight of the observation in contributing to its own predicted value,
H = dŶ/dY.

While H is idempotent, it is generally not symmetric and thus not a projection matrix
in the narrow sense.

The properties of these leverages are generalizations of the properties in models with
diagonal variance-covariance matrices. For example,Ŷ = HY, and in a model with
intercept andV = σ2I, the leverage values

hii = x′i(X
′X)−xi

arehl
ii = 1/n ≤ hii ≤ 1 = hu

ii and
∑n

i=1 hii = rank(X). The lower bound forhii is
achieved in an intercept-only model, the upper bound in a saturated model. The trace
of H equals the rank ofX.

If νij denotes the element in rowi, columnj of V−1, then for a model containing
only an intercept the diagonal elements ofH are

hii =

∑n
j=1 νij∑n

i=1

∑n
j=1 νij

Because
∑n

j=1 νij is a sum of elements in theith row of the inversevariance-
covariance matrixhii can be negative, even if the correlations among data points
are nonnegative. In case of a saturated model withX = I, hii = 1.0.
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Internally and Externally Studentized Residuals

See the section“Residual Diagnostics”on page 2763 for the distinction between stan-
dardization, studentization, and scaling of residuals. Internally studentized marginal
and conditional residuals are computed with the RESIDUAL option of the MIXED
procedure (p. 2763). The INFLUENCE option computes internally and externally
studentized marginal residuals.

The computation of internally studentized residuals relies on the diagonal entries of
V(θ̂)−Q(θ̂) whereQ(θ̂) = X(X′V(θ̂)−1X)−X′. Externally studentized residuals
require iterative influence analysis or a profiled residual variance. In the former case
the studentization is based onV(θ̂U ); in the latter case it is based onσ2

(U)V(θ̂
∗
).

Cook’s D

Cook’s D statistic is an invariant norm that measures the influence of observations
in U on a vector of parameter estimates (Cook 1977). In case of the fixed effects
coefficients, let

δ(U) = β̂ − β̂(U)

Then the MIXED procedure computes

D(β) = δ′(U)v̂ar[β̂]−δ(U)/rank(X)

wherev̂ar[β̂]− is the matrix that results from sweeping(X′V(θ̂)−1X)−.

If V is known, Cook’sD can be calibrated according to a chi-square distribution with
degrees of freedom equal to the rank ofX (Christensen, Pearson, and Johnson 1992).
For estimatedV the calibration can be carried out according to anF (rank(X), n −
rank(X)) distribution. To interpretD on a familiar scale, Cook (1979) and Cook and
Weisberg (1982, p. 116) refer to the 50th percentile of the reference distribution. If
D is equal to that percentile, then removing the points inU moves the fixed effects
coefficient vector from the center of the confidence region to the 50% confidence
ellipsoid (Myers 1990, p. 262).

In the case of iterative influence analysis, the MIXED procedure also computes a
D-type statistic for the covariance parameters. IfΓ is the asymptotic variance-
covariance matrix of̂θ, then MIXED computes

Dθ = (θ̂ − θ̂(U)))
′Γ̂

−1
(θ̂ − θ̂(U))

DFFITS and MDFFITS

A DFFIT measures the change in predicted values due to removal of data points. If
this change is standardized by the externally estimated standard error of the predicted
value in the full data, the DFFITS statistic of Belsley, Kuh, and Welsch (1980, p. 15)
results:

DFFITSi = (ŷi − ŷi(u))/ese(ŷi)
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The MIXED procedure computes DFFITS when the EFFECT= or SIZE= modifiers
of the INFLUENCE option are not in effect. In general, an external estimate of the
estimated standard error is used. When ITER > 0, the estimate is

ese(ŷi) =
√

x′i(X′V(θ̂(u))−X)−1xi

When ITER=0 andσ2 is profiled, then

ese(ŷi) = σ̂(u)

√
x′i(X′V(θ̂

∗
)−1X)−xi

When the EFFECT=, SIZE=, or KEEP= modifiers are specified, the MIXED pro-
cedure computes a multivariate version suitable for the deletion of multiple data
points. The statistic, termed MDFFITS after the MDFFIT statistic of Belsley, Kuh,
and Welsch (1980, p. 32), is closely related to Cook’sD. Consider the case
V = σ2V(θ∗) so that

var[β̂] = σ2(X′V(θ∗)−1X)−

and letṽar[β̂(U)] be an estimate of var[β̂(U)] that does not use the observations inU .
The MDFFITS statistic is then computed as

MDFFITS(β) = δ′(U)ṽar[β̂(U)]
−δ(U)/rank(X)

If ITER=0 andσ2 is profiled, theñvar[β̂(U)]− is obtained by sweeping

σ̂2
(U)(X

′
(U)V(U)(θ̂

∗
)−X(U))

−

The underlying idea is that ifθ∗ were known, then

(X′
(U)V(U)(θ

∗)−1X(U))
−

would be var[β̂]/σ2 in a generalized least squares regression with all but the data in
U .

In the case of iterative influence analysis,̃var[β̂(U)] is evaluated at̂θ(U). Furthermore,
a MDFFITS-type statistic is then computed for the covariance parameters:

MDFFITS(θ) = (θ̂ − θ̂(U))
′v̂ar[θ̂(U)]

−1(θ̂ − θ̂(U))
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Covariance Ratio and Trace

These statistics depend on the availability of an external estimate ofV, or at least of
σ2. Whereas Cook’sD and MDFFITS measure the impact of data points on a vector
of parameter estimates, the covariance-based statistics measure impact on their pre-
cision. Following Christensen, Pearson, and Johnson (1992), the MIXED procedure
computes

COVTRACE(β) = |trace(v̂ar[β̂]− ṽar[β̂(U)])− rank(X)|

COVRATIO(β) =
detns(ṽar[β̂(U)])

detns(v̂ar[β̂])

where detns(M) denotes the determinant of the nonsingular part of matrixM.

In the case of iterative influence analysis these statistics are also computed for the
covariance parameter estimates. Ifq denotes the rank of var[θ̂], then

COVTRACE(θ) = |trace(v̂ar[θ̂]− v̂ar[θ̂(U)])− q|

COVRATIO(θ) =
detns(v̂ar[θ̂(U)])

detns(v̂ar[θ̂])

Likelihood Distances

The log-likelihood functionl and restricted log-likelihood functionlR of the linear
mixed model are given in the section“Estimating G and R in the Mixed Model”be-
ginning on page 2737. Denote asψ the collection of all parameters, i.e., the fixed
effectsβ and the covariance parametersθ. Twice the difference between the (re-
stricted) log-likelihood evaluated at the full-data estimatesψ̂ and at the reduced-data
estimateŝψ(U) is known as the (restricted) likelihood distance:

RLD(U) = 2{lR(ψ̂)− lR(ψ̂(U))}

LD(U) = 2{l(ψ̂)− l(ψ̂(U))}

Cook and Weisberg (1982, Ch. 5.2) refer to these differences aslikelihood distances,
Beckman, Nachtsheim, and Cook (1987) term the measureslikelihood displacements.
If the number of elements inψ that are subject to updating following point removal is
q, then likelihood displacements can be compared against cutoffs from a chi-square
distribution withq degrees of freedom. Notice that this reference distribution does
not depend on the number of observations removed from the analysis, but rather on
the number of model parameters that are updated. The likelihood displacement gives
twice the amount by which the log-likelihood of the full data changes if one were to
utilize an estimate based on fewer data points. It is thus a global, summary measure
of the influence of the observations inU jointly on all parameters.

Unless METHOD=ML, the MIXED procedure computes the likelihood displacement
based on the residual (=restricted) log likelihood, even if METHOD=MIVQUE0 or
METHOD=TYPE1, TYPE2, or TYPE3.
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Noniterative Update Formulas

Update formulas that do not require refitting of the model are available for the cases
whereV = σ2I, V is known, orV∗ is known. When ITER=0 and these up-
date formulas can be invoked, the MIXED procedure uses the computational de-
vices that are outlined in the following paragraphs. It is then assumed that the
variance-covariance matrix of the fixed effects has the form(X′V−1X)−. When
DDFM=KENWARDROGER, this is not the case; the estimated variance-covariance
matrix is then inflated to better represent the uncertainty in the estimated covariance
parameters. Influence statistics when DDFM=KENWARDROGER should iteratively
update the covariance parameters (ITER > 0). The dependence ofV on θ is sup-
pressed in the sequel for brevity.

Updating the Fixed Effects

Denote byU the (n × k) matrix that is assembled fromk columns of the identity
matrix. Each column ofU corresponds to the removal of one data point. The point
being targeted by theith column ofU corresponds to the row in which a1 appears.
Furthermore, define

Ω = (X′V−1X)−

Q = XΩX′

P = V−1(V −Q)V−1

The change in the fixed effects estimates following removal of the observations inU
is

β̂ − β̂(U) = ΩX′V−1U(U′PU)−1U′V−1(y −Xβ̂)

Using results in Cook and Weisberg (1982, A2) you can further compute

Ω̃ = (X′
(U)V

−1
(U)X(U))

− = Ω + ΩX′V−1U(U′PU)−1U′V−1XΩ

If X is (n× p) of rankm < p, thenΩ is deficient in rank and the MIXED procedure
computes needed quantities iñΩ by sweeping (Goodnight 1979). If the rank of the
(k×k) matrixU′PU is less thank, the removal of the observations introduces a new
singularity, whetherX is of full rank or not. The solution vectorŝβ andβ̂(U) then do
not have the same expected values and should not be compared. When the MIXED
procedure encounters this situation, influence diagnostics that depend on the choice
of generalized inverse are not computed. The procedure also monitors the singularity
criteria when sweeping the rows of(X′V−1X)− and of(X′

(U)V
−1
(U)X(U))−. If a new

singularity is encountered or a former singularity disappears, no influence statistics
are computed.
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Residual Variance

Whenσ2 is profiled out of the marginal variance-covariance matrix, a closed-form
estimate ofσ2 that is based on only the remaining observations can be computed
providedV∗ = V(θ̂

∗
) is known. Hurtado (1993, Thm. 5.2) shows that

(n− q − r)σ̂2
(U) = (n− q)σ̂2 − ε̂′U (σ̂2U′PU)−1ε̂U

andε̂U = U′V∗−1(y −Xβ̂). In the case of maximum likelihood estimationq = 0
and for REML estimationq = rank(X). The constantr equals the rank of(U′PU)
for REML estimation and the number of effective observations that are removed if
METHOD=ML.

Likelihood Distances

For noniterative methods the following computational devices are used to compute
(restricted) likelihood distances provided that the residual varianceσ2 is profiled.

The log-likelihood functionl(θ̂) evaluated at the full-data and reduced-data estimates
can be written as

l(ψ̂) = −n

2
log(σ̂2)− 1

2
log |V∗| − 1

2
(y −Xβ̂)′V∗−1(y −Xβ̂)/σ̂2

−n

2
log(2π)

l(ψ̂(U)) = −n

2
log(σ̂2

(U))−
1
2

log |V∗|

−1
2
(y −Xβ̂(U))

′V∗−1(y −Xβ̂(U))/σ̂2
(U) −

n

2
log(2π)

Notice thatl(θ̂(U)) evaluates the log-likelihood forn data points at the reduced-data
estimates. It is not the log-likelihood obtained by fitting the model to the reduced
data. The likelihood distance is then

LD(U) = n log{
σ̂2

(U)

σ̂2
} − n + (y −Xβ̂(U))

′V∗−1(y −Xβ̂(U))/σ̂2
(U)

Expressions forRLD(U) in noniterative influence analysis are derived along the same
lines.

Computational Issues

Computational Method

In addition to numerous matrix-multiplication routines, PROC MIXED frequently
uses the sweep operator (Goodnight 1979) and the Cholesky root (Golub and Van
Loan 1989). The routines perform a modified W transformation (Goodnight and
Hemmerle 1979) forG-side likelihood calculations and a direct method forR-side
likelihood calculations. For the Type IIIF-tests, PROC MIXED uses the algorithm
described inChapter 32, “The GLM Procedure.”
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PROC MIXED uses a ridge-stabilized Newton-Raphson algorithm to optimize either
a full (ML) or residual (REML) likelihood function. The Newton-Raphson algo-
rithm is preferred to the EM algorithm (Lindstrom and Bates 1988). PROC MIXED
profiles the likelihood with respect to the fixed effects and also with respect to the
residual variance whenever it appears reasonable to do so. The residual profiling can
be avoided by using the NOPROFILE option of the PROC MIXED statement. PROC
MIXED uses the MIVQUE0 method (Rao 1972; Giesbrecht 1989) to compute initial
values.

The likelihoods that PROC MIXED optimizes are usually well-defined continuous
functions with a single optimum. The Newton-Raphson algorithm typically performs
well and finds the optimum in a few iterations. It is a quadratically converging al-
gorithm, meaning that the error of the approximation near the optimum is squared at
each iteration. The quadratic convergence property is evident when the convergence
criterion drops to zero by factors of 10 or more.

Table 46.12. Notation for Order Calculations
Symbol Number
p columns ofX
g columns ofZ
N observations
q covariance parameters
t maximum observations per subject
S subjects

Using the notation fromTable 46.12, the following are estimates of the computa-
tional speed of the algorithms used in PROC MIXED. For likelihood calculations,
the crossproducts matrix construction is of orderN(p+g)2 and the sweep operations
are of order(p+g)3. The first derivative calculations for parameters inG are of order
qg3 for ML and q(g3 + pg2 + p2g) for REML. If you specify a subject effect in the
RANDOM statement and if you are not using the REPEATED statement, then replace
g by g/S andq by qS in these calculations. The first derivative calculations for pa-
rameters inR are of orderqS(t3+gt2+g2t) for ML andqS(t3+(p+g)t2+(p2+g2)t)
for REML. For the second derivatives, replaceq by q(q + 1)/2 in the first derivative
expressions. When you specify bothG- andR-side parameters (that is, when you
use both the RANDOM and REPEATED statements), then additional calculations
are required of an order equal to the sum of the orders forG andR. Considerable
execution times may result in this case.

For further details about the computational techniques used in PROC MIXED, refer
to Wolfinger, Tobias, and Sall (1994).

Parameter Constraints

By default, some covariance parameters are assumed to satisfy certain boundary con-
straints during the Newton-Raphson algorithm. For example, variance components
are constrained to be nonnegative and autoregressive parameters are constrained to
be between−1 and 1. You can remove these constraints with the NOBOUND option
in the PARMS statement, but this may lead to estimates that produce an infinite like-
lihood. You can also introduce or change boundary constraints with the LOWERB=
and UPPERB= options in the PARMS statement.
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During the Newton-Raphson algorithm, a parameter may be set equal to one of its
boundary constraints for a few iterations and then it may move away from the bound-
ary. You see a missing value in the Criterion column of the “Iteration History” table
whenever a boundary constraint is dropped.

For some data sets the final estimate of a parameter may equal one of its boundary
constraints. This is usually not a cause for concern, but it may lead you to consider
a different model. For instance, a variance component estimate can equal zero; in
this case, you may want to drop the corresponding random effect from the model.
However, be aware that changing the model in this fashion can impact degrees of
freedom calculations.

Convergence Problems

For some data sets, the Newton-Raphson algorithm can fail to converge. Non-
convergence can result from a number of causes, including flat or ridged likelihood
surfaces and ill-conditioned data.

It is also possible for PROC MIXED to converge to a point that is not the global opti-
mum of the likelihood, although this usually occurs only with the spatial covariance
structures.

If you experience convergence problems, the following points may be helpful:

• One useful tool is the PARMS statement, which lets you input initial values
for the covariance parameters and performs a grid search over the likelihood
surface.

• Sometimes the Newton-Raphson algorithm does not perform well when two
of the covariance parameters are on a different scale; that is, they are several
orders of magnitude apart. This is because the Hessian matrix is processed
jointly for the two parameters, and elements of it corresponding to one of the
parameters can become close to internal tolerances in PROC MIXED. In this
case, you can improve stability by rescaling the effects in the model so that the
covariance parameters are on the same scale.

• Data that is extremely large or extremely small can adversely affect results
because of the internal tolerances in PROC MIXED. Rescaling it can improve
stability.

• For stubborn problems, you may want to specify ODS OUTPUT
COVPARMS= data-set-name to output the “CovParms” table as a pre-
cautionary measure. That way, if the problem does not converge, you can read
the final parameter values back into a new run with the PARMSDATA= option
in the PARMS statement.

• Fisher scoring can be more robust than Newton-Raphson to poor MIVQUE(0)
starting values. Specifying a SCORING= value of 5 or so may help to recover
from poor starting values.

• Tuning the singularity options SINGULAR=, SINGCHOL=, and SINGRES=
in the MODEL statement may improve the stability of the optimization process.
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• Tuning the MAXITER= and MAXFUNC= options in the PROC MIXED state-
ment can save resources. Also, the ITDETAILS option displays the values of
all of the parameters at each iteration.

• Using the NOPROFILE and NOBOUND options in the PROC MIXED state-
ment may help convergence, although they can produce unusual results.

• Although the CONVH convergence criterion usually gives the best results, you
may want to try CONVF or CONVG, possibly along with the ABSOLUTE
option.

• If the convergence criterion bottoms out at a relatively small value such as
1E−7 but never gets less than 1E−8, you may want to specify CONVH=1E−6
in the PROC MIXED statement to get results; however, interpret the results
with caution.

• An infinite likelihood during the iteration process means that the Newton-
Raphson algorithm has stepped into a region where either theR or V matrix is
nonpositive definite. This is usually no cause for concern as long as iterations
continue. If PROC MIXED stops because of an infinite likelihood, recheck
your model to make sure that no observations from the same subject are pro-
ducing identical rows inR or V and that you have enough data to estimate
the particular covariance structure you have selected. Any time that the final
estimated likelihood is infinite, subsequent results should be interpreted with
caution.

• A nonpositive definite Hessian matrix can indicate a surface saddlepoint or
linear dependencies among the parameters.

• A warning message about the singularities ofX changing indicates that there is
some linear dependency in the estimate ofX′V̂−1X that is not found inX′X.
This can adversely affect the likelihood calculations and optimization process.
If you encounter this problem, make sure that your model specification is rea-
sonable and that you have enough data to estimate the particular covariance
structure you have selected. Rearranging effects in the MODEL statement so
that the most significant ones are first can help because PROC MIXED sweeps
the estimate ofX′V−1X in the order of the MODEL effects and the sweep is
more stable if larger pivots are dealt with first. If this does not help, specify-
ing starting values with the PARMS statement can place the optimization on a
different and possibly more stable path.

• Lack of convergence may indicate model misspecification or a violation of the
normality assumption.

Memory
Let p be the number of columns inX, and letg be the number of columns inZ.
For large models, most of the memory resources are required for holding symmetric
matrices of orderp, g, andp + g. The approximate memory requirement in bytes is

40(p2 + g2) + 32(p + g)2

If you have a large model that exceeds the memory capacity of your computer, see
the suggestions listed under “Computing Time.”
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Computing Time

PROC MIXED is computationally intensive, and execution times can be long. In
addition to the CPU time used in collecting sums and cross products and in solving the
mixed model equations (as in PROC GLM), considerable CPU time is often required
to compute the likelihood function and its derivatives. These latter computations are
performed for every Newton-Raphson iteration.

If you have a model that takes too long to run, the following suggestions may be
helpful:

• Examine the “Model Information” table to find out the number of columns in
theX andZ matrices. A large number of columns in either matrix can greatly
increase computing time. You may want to eliminate some higher order effects
if they are too large.

• If you have aZ matrix with a lot of columns, use theDDFM=BW option in the
MODEL statement to eliminate the time required for the containment method.

• If possible, “factor out” a common effect from the effects in the RANDOM
statement and make it theSUBJECT=effect. This creates a block-diagonalG
matrix and can often speed calculations.

• If possible, use the same or nested SUBJECT= effects in all RANDOM and
REPEATED statements.

• If your data set is very large, you may want to analyze it in pieces. The BY
statement can help implement this strategy.

• In general, specify random effects with a lot of levels in the REPEATED state-
ment and those with a few levels in the RANDOM statement.

• The METHOD=MIVQUE0 option runs faster than either the
METHOD=REML or METHOD=ML option because it is noniterative.

• You can specify known values for the covariance parameters using theHOLD=
or NOITER option in the PARMS statement or theGDATA= option in the
RANDOM statement. This eliminates the need for iteration.

• The LOGNOTE option in the PROC MIXED statement writes periodic mes-
sages to the SAS log concerning the status of the calculations. It can help you
diagnose where the slow down is occurring.
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Examples

The following are basic examples of the use of PROC MIXED. More examples
and details can be found in Littell et al. (1996), Wolfinger (1997), Verbeke and
Molenberghs (1997, 2000), Murray (1998), Singer (1998), Sullivan, Dukes, and
Losina (1999), and Brown and Prescott (1999).

Example 46.1. Split-Plot Design

PROC MIXED can fit a variety of mixed models. One of the most common mixed
models is the split-plot design. The split-plot design involves two experimental fac-
tors, A andB. Levels ofA are randomly assigned to whole plots (main plots), and
levels ofB are randomly assigned to split plots (subplots) within each whole plot.
The design provides more precise information aboutB than aboutA, and it often
arises whenA can be applied only to large experimental units. An example is where
A represents irrigation levels for large plots of land andB represents different crop
varieties planted in each large plot.

Consider the following data from Stroup (1989a), which arise from a balanced split-
plot design with the whole plots arranged in a randomized complete-block design.
The variableA is the whole-plot factor, and the variableB is the subplot factor. A
traditional analysis of these data involves the construction of the whole-plot error
(A*Block) to testA and the pooled residual error (B*Block andA*B*Block) to testB
andA*B. To carry out this analysis with PROC GLM, you must use a TEST statement
to obtain the correctF-test forA.

Performing a mixed model analysis with PROC MIXED eliminates the need for the
error term construction. PROC MIXED estimates variance components forBlock,
A*Block, and the residual, and it automatically incorporates the correct error terms
into test statistics.

data sp;
input Block A B Y @@;
datalines;

1 1 1 56 1 1 2 41
1 2 1 50 1 2 2 36
1 3 1 39 1 3 2 35
2 1 1 30 2 1 2 25
2 2 1 36 2 2 2 28
2 3 1 33 2 3 2 30
3 1 1 32 3 1 2 24
3 2 1 31 3 2 2 27
3 3 1 15 3 3 2 19
4 1 1 30 4 1 2 25
4 2 1 35 4 2 2 30
4 3 1 17 4 3 2 18
;
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proc mixed;
class A B Block;
model Y = A B A*B;
random Block A*Block;

run;

The variablesA, B, andBlock are listed as classification variables in the CLASS
statement. The columns of model matrixX consist of indicator variables correspond-
ing to the levels of the fixed effectsA, B, andA*B listed on the right-hand side in the
MODEL statement. The dependent variableY is listed on the left-hand side in the
MODEL statement.

The columns of the model matrixZ consist of indicator variables corresponding to
the levels of the random effectsBlock andA*Block. TheG matrix is diagonal and
contains the variance components ofBlock andA*Block. TheR matrix is also diag-
onal and contains the residual variance.

The SAS code producesOutput 46.1.1.

Output 46.1.1. Split-Plot Example
The Mixed Procedure

Model Information

Data Set WORK.SP
Dependent Variable Y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Model Information” table lists basic information about the split-plot model.
REML is used to estimate the variance components, and the residual variances are
profiled out of the optimization.

The Mixed Procedure

Class Level Information

Class Levels Values

A 3 1 2 3
B 2 1 2
Block 4 1 2 3 4

The “Class Level Information” table lists the levels of all variables specified in the
CLASS statement. You can check this table to make sure that the data are correct.
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The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 12
Columns in Z 16
Subjects 1
Max Obs Per Subject 24

The “Dimensions” table lists the magnitudes of various vectors and matrices. TheX
matrix is seen to be24× 12, and theZ matrix is24× 16.

The Mixed Procedure

Number of Observations

Number of Observations Read 24
Number of Observations Used 24
Number of Observations Not Used 0

The “Number of Observations” table shows that all observations read from the data
set are used in the analysis.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 139.81461222
1 1 119.76184570 0.00000000

Convergence criteria met.

PROC MIXED estimates the variance components forBlock, A*Block, and the resid-
ual by REML. The REML estimates are the values that maximize the likelihood of a
set of linearly independent error contrasts, and they provide a correction for the down-
ward bias found in the usual maximum likelihood estimates. The objective function
is−2 times the logarithm of the restricted likelihood, and PROC MIXED minimizes
this objective function to obtain the estimates.

The minimization method is the Newton-Raphson algorithm, which uses the first
and second derivatives of the objective function to iteratively find its minimum. The
“Iteration History” table records the steps of that optimization process. For this ex-
ample, only one iteration is required to obtain the estimates. The Evaluations column
reveals that the restricted likelihood is evaluated once for each of the iterations. A
criterion of 0 indicates that the Newton-Raphson algorithm has converged.



2780 � Chapter 46. The MIXED Procedure

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Block 62.3958
A*Block 15.3819
Residual 9.3611

The REML estimates for the variance components ofBlock, A*Block, and the resid-
ual are 62.40, 15.38, and 9.36, respectively, as listed in the Estimate column of the
“Covariance Parameter Estimates” table.

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 119.8
AIC (smaller is better) 125.8
AICC (smaller is better) 127.5
BIC (smaller is better) 123.9

The “Fitting Information” table lists several pieces of information about the fitted
mixed model, including the residual log likelihood. Akaike’s and Schwarz’s criteria
can be used to compare different models; the ones with smaller values are preferred.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

A 2 6 4.07 0.0764
B 1 9 19.39 0.0017
A*B 2 9 4.02 0.0566

Finally, the fixed effects are tested using Type III estimable functions. The tests match
the one obtained from the following PROC GLM code:

proc glm data=sp;
class A B Block;
model Y = A B A*B Block A*Block;
test h=A e=A*Block;

run;

You can continue this analysis by producing solutions for the fixed and random ef-
fects and then testing various linear combinations of them by using the CONTRAST
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and ESTIMATE statements. If you use the same CONTRAST and ESTIMATE state-
ments with PROC GLM, the test statistics correspond to the fixed-effects-only model.
The test statistics from PROC MIXED incorporate the random effects.

The various “inference space” contrasts given by Stroup (1989a) can be implemented
via the ESTIMATE statement. Consider the following examples:

estimate ’a1 mean narrow’
intercept 1 A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25
A*Block .25 .25 .25 .25 0 0 0 0 0 0 0 0;

estimate ’a1 mean intermed’
intercept 1 A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25;

estimate ’a1 mean broad’
intercept 1 a 1 b .5 .5 A*B .5 .5;

These statements result inOutput 46.1.2.

Output 46.1.2. Inference Space Results
The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

a1 mean narrow 32.8750 1.0817 9 30.39 <.0001
a1 mean intermed 32.8750 2.2396 9 14.68 <.0001
a1 mean broad 32.8750 4.5403 9 7.24 <.0001

Note that all the estimates are equal, but their standard errors increase with the size
of the inference space. The narrow inference space consists of the observed levels
of Block andA*Block, and thet-statistic value of 30.39 applies only to these levels.
This is the samet-statistic computed by PROC GLM, because it computes standard
errors from the narrow inference space. The intermediate inference space consists of
the observed levels ofBlock and the entire population of levels from whichA*Block
are sampled. Thet-statistic value of 14.68 applies to this intermediate space. The
broad inference space consists of arbitrary random levels of bothBlock andA*Block,
and thet-statistic value of 7.24 is appropriate. Note that the larger the inference
space, the weaker the conclusion. However, the broad inference space is usually the
one of interest, and even in this space conclusive results are common. The highly
significantp-value for ’a1 mean broad’ is an example. You can also obtain the ’a1
mean broad’ result by specifyingA in an LSMEANS statement. For more discussion
of the inference space concept, refer to McLean, Sanders, and Stroup (1991).

The following statements illustrate another feature of the RANDOM statement.
Recall that the basic code for a split-plot design with whole plots arranged in ran-
domized blocks is as follows.
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proc mixed;
class A B Block;
model Y = A B A*B;
random Block A*Block;

run;

An equivalent way of specifying this model is

proc mixed data=sp;
class A B Block;
model Y = A B A*B;
random intercept A / subject=Block;

run;

In general, if all of the effects in the RANDOM statement can be nested within one
effect, you can specify that one effect using the SUBJECT= option. The subject ef-
fect is, in a sense, “factored out” of the random effects. The specification using the
SUBJECT= effect can result in quicker execution times for large problems because
PROC MIXED is able to perform the likelihood calculations separately for each sub-
ject.

Example 46.2. Repeated Measures

The following data are from Pothoff and Roy (1964) and consist of growth measure-
ments for 11 girls and 16 boys at ages 8, 10, 12, and 14. Some of the observations are
suspect (for example, the third observation for person 20); however, all of the data
are used here for comparison purposes.

The analysis strategy employs a linear growth curve model for the boys and girls
as well as a variance-covariance model that incorporates correlations for all of the
observations arising from the same person. The data are assumed to be Gaussian, and
their likelihood is maximized to estimate the model parameters. Refer to Jennrich
and Schluchter (1986), Louis (1988), Crowder and Hand (1990), Diggle, Liang, and
Zeger (1994), and Everitt (1995) for overviews of this approach to repeated measures.
Jennrich and Schluchter present results for the Pothoff and Roy data from various
covariance structures. The PROC MIXED code to fit an unstructured variance matrix
(their Model 2) is as follows:
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data pr;
input Person Gender $ y1 y2 y3 y4;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

proc mixed data=pr method=ml covtest;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;

To follow Jennrich and Schluchter, this example uses maximum likelihood
(METHOD=ML) instead of the default REML to estimate the unknown covariance
parameters. The COVTEST option requests asymptotic tests of all of the covariance
parameters.

The MODEL statement first lists the dependent variableY. The fixed effects are then
listed after the equals sign. The variableGender requests a different intercept for the
girls and boys,Age models an overall linear growth trend, andGender*Age makes
the slopes different over time. It is actually not necessary to specifyAge separately,
but doing so enables PROC MIXED to carry out a test for heterogeneous slopes. The
S option requests the display of the fixed-effects solution vector.
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The REPEATED statement contains no effects, taking advantage of the default as-
sumption that the observations are ordered similarly for each subject. The TYPE=UN
option requests an unstructured block for each SUBJECT=Person. TheR matrix is,
therefore, block diagonal with 27 blocks, each block consisting of identical 4×4 un-
structured matrices. The 10 parameters of these unstructured blocks make up the
covariance parameters estimated by maximum likelihood. The R option requests that
the first block ofR be displayed.

The results from this analysis are shown inOutput 46.2.1.

Output 46.2.1. Repeated Measures with Unstructured Covariance Matrix

The Mixed Procedure

Model Information

Data Set WORK.PR
Dependent Variable y
Covariance Structure Unstructured
Subject Effect Person
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

The covariance structure is listed as “Unstructured” here, and no residual variance is
used with this structure. The default degrees-of-freedom method here is “Between-
Within.”

The Mixed Procedure

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

Gender 2 F M

Note thatPerson has 27 levels andGender has 2.

The Mixed Procedure

Dimensions

Covariance Parameters 10
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4
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The 10 covariance parameters result from the4× 4 unstructured blocks ofR. There
is no Z matrix for this model, and each of the 27 subjects has a maximum of 4
observations.

The Mixed Procedure

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 419.47721707 0.00000152
2 1 419.47704812 0.00000000

Convergence criteria met.

Three Newton-Raphson iterations are required to find the maximum likelihood esti-
mates. The default relative Hessian criterion has a final value less than 1E−8, indi-
cating the convergence of the Newton-Raphson algorithm and the attainment of an
optimum.

The Mixed Procedure

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.1192 2.4409 3.6105 2.5222
2 2.4409 3.9279 2.7175 3.0624
3 3.6105 2.7175 5.9798 3.8235
4 2.5222 3.0624 3.8235 4.6180

The preceding 4×4 matrix is the estimated unstructured covariance matrix. It is the
estimate of the first block ofR, and the other 26 blocks all have the same estimate.
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The Mixed Procedure

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) Person 5.1192 1.4169 3.61 0.0002
UN(2,1) Person 2.4409 0.9835 2.48 0.0131
UN(2,2) Person 3.9279 1.0824 3.63 0.0001
UN(3,1) Person 3.6105 1.2767 2.83 0.0047
UN(3,2) Person 2.7175 1.0740 2.53 0.0114
UN(3,3) Person 5.9798 1.6279 3.67 0.0001
UN(4,1) Person 2.5222 1.0649 2.37 0.0179
UN(4,2) Person 3.0624 1.0135 3.02 0.0025
UN(4,3) Person 3.8235 1.2508 3.06 0.0022
UN(4,4) Person 4.6180 1.2573 3.67 0.0001

The preceding table lists the 10 estimated covariance parameters in order; note their
correspondence to the first block ofR displayed previously. The parameter estimates
are labeled according to their location in the block in the Cov Parm column, and all of
these estimates are associated withPerson as the subject effect. The Std Error col-
umn lists approximate standard errors of the covariance parameters obtained from the
inverse Hessian matrix. These standard errors lead to approximate WaldZ-statistics,
which are compared with the standard normal distribution. The results of these tests
indicate that all the parameters are significantly different from 0; however, the Wald
test can be unreliable in small samples.

To carry out Wald tests of various linear combinations of these parameters, use the
following procedure. First, run the code again, adding the ASYCOV option and an
ODS statement:

ods output CovParms=cp AsyCov=asy;
proc mixed data=pr method=ml covtest asycov;

class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;

This creates two data sets,cp andasy, which contain the covariance parameter esti-
mates and their asymptotic variance covariance matrix, respectively. Then read these
data sets into the SAS/IML matrix programming language as follows:

proc iml;
use cp;
read all var {Estimate} into est;
use asy;
read all var (’CovP1’:’CovP10’) into asy;

You can then construct your desired linear combinations and corresponding quadratic
forms with theasy matrix.
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The Mixed Procedure

Fit Statistics

-2 Log Likelihood 419.5
AIC (smaller is better) 447.5
AICC (smaller is better) 452.0
BIC (smaller is better) 465.6

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 58.76 <.0001

The null model likelihood ratio test (LRT) is highly significant for this model, indi-
cating that the unstructured covariance matrix is preferred to the diagonal one of the
ordinary least-squares null model. The degrees of freedom for this test is 9, which is
the difference between 10 and the 1 parameter for the null model’s diagonal matrix.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 15.8423 0.9356 25 16.93 <.0001
Gender F 1.5831 1.4658 25 1.08 0.2904
Gender M 0 . . . .
Age 0.8268 0.07911 25 10.45 <.0001
Age*Gender F -0.3504 0.1239 25 -2.83 0.0091
Age*Gender M 0 . . . .

The preceding table lists the solution vector for the fixed effects. The estimate of the
boys’ intercept is15.84, while that for the girls is15.84+1.58 = 17.42. Similarly, the
estimate for the boys’ slope is 0.827, while that for the girls is0.827−0.350 = 0.477.
Thus the girls’ starting point is larger than that for the boys, but their growth rate is
about half that of the boys.

Note that two of the estimates equal 0; this is a result of the overparameterized model
used by PROC MIXED. You can obtain a full-rank parameterization by using the
following MODEL statement:

model y = Gender Gender*Age / noint s;

Here, the NOINT option causes the different intercepts to be fit directly as the two
levels ofGender. However, this alternative specification results in different tests for
these effects.
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The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 25 1.17 0.2904
Age 1 25 110.54 <.0001
Age*Gender 1 25 7.99 0.0091

The “Type 3 Tests of Fixed Effects” table displays Type III tests for all of the fixed
effects. These tests are partial in the sense that they account for all of the other fixed
effects in the model. In addition, you can use the HTYPE= option in the MODEL
statement to obtain Type I (sequential) or Type II (also partial) tests of effects.

It is usually best to consider higher-order terms first, and in this case the
Age*Gender test reveals a difference between the slopes that is statistically
significant at the 1% level. Note that thep-value for this test (0.0091) is the same as
thep-value in the “Age*Gender F” row in the “Solution for Fixed Effects” table and
that theF -statistic (7.99) is the square of thet-statistic (−2.83), ignoring rounding
error. Similar connections are evident among the other rows in these two tables.

TheAge test is one for an overall growth curve accounting for possible heterogeneous
slopes, and it is highly significant. Finally, theGender row tests the null hypothesis
of a common intercept, and this hypothesis cannot be rejected from these data.

As an alternative to theF -tests shown here, you can carry out likelihood ratio tests
of various hypotheses by fitting the reduced models, subtracting−2 log likelihoods,
and comparing the resulting statistics withχ2 distributions.

Since the different levels of the repeated effect represent different years, it is natural
to try fitting a time series model to the data within each subject. To obtain time series
structures inR, you can replace TYPE=UN with TYPE=AR(1) or TYPE=TOEP to
obtain the first- ornth-order autoregressive covariance matrices, respectively. For
example, the code to fit an AR(1) structure is

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=ar(1) sub=Person r;

run;

To fit a random coefficients model, use the following code:
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proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
random intercept Age / type=un sub=Person g;

run;

This specifies an unstructured covariance matrix for the random intercept and slope.
In mixed model notation,G is block diagonal with identical 2×2 unstructured blocks
for each person. By default,R becomesσ2I. SeeExample 46.5for further informa-
tion on this model.

Finally, you can fit a compound symmetry structure by using TYPE=CS.

proc mixed data=pr method=ml covtest;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=cs subject=Person r;

run;

The results from this analysis are shown inOutput 46.2.2.

Output 46.2.2. Repeated Measures with Compound Symmetry Structure

The Mixed Procedure

Model Information

Data Set WORK.PR
Dependent Variable y
Covariance Structure Compound Symmetry
Subject Effect Person
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

The “Model Information” table is the same as before except for the change in
“Covariance Structure.”
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The Mixed Procedure

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

Gender 2 F M

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

The compound symmetry structure has two parameters.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 428.63905802 0.00000000

Convergence criteria met.

Since the data are balanced, only one step is required to find the estimates.

The Mixed Procedure

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306
2 3.0306 4.9052 3.0306 3.0306
3 3.0306 3.0306 4.9052 3.0306
4 3.0306 3.0306 3.0306 4.9052

Note the compound symmetry structure here, which consists of a common covariance
with a diagonal enhancement.
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The Mixed Procedure

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

CS Person 3.0306 0.9552 3.17 0.0015
Residual 1.8746 0.2946 6.36 <.0001

The common covariance is estimated to be 3.0306, as listed in the CS row of the
preceding table, and the residual variance is estimated to be 1.8746, as listed in the
Residual row. You can use these two numbers to estimate the intraclass correlation
coefficient (ICC) for this model. Here, the ICC estimate equals 3.0306/(3.0306 +
1.8746) = 0.6178. You can also obtain this number by adding the RCORR option to
the REPEATED statement.

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 428.6
AIC (smaller is better) 440.6
AICC (smaller is better) 441.5
BIC (smaller is better) 448.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

In this case, the null model LRT has only one degree of freedom, corresponding to the
common covariance parameter. The test indicates that modeling this extra covariance
is superior to fitting the simple null model.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001
Gender F 1.0321 1.5089 25 0.68 0.5003
Gender M 0 . . . .
Age 0.7844 0.07654 79 10.25 <.0001
Age*Gender F -0.3048 0.1199 79 -2.54 0.0130
Age*Gender M 0 . . . .
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Note that the fixed effects estimates and their standard errors are not very different
from those in the preceding unstructured example.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 25 0.47 0.5003
Age 1 79 111.10 <.0001
Age*Gender 1 79 6.46 0.0130

TheF-tests are also similar to those from the preceding unstructured example. Again,
the slopes are significantly different but the intercepts are not.

You can fit the same compound symmetry model with the following specification
using the RANDOM statement:

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
random Person;

run;

Compound symmetry is the structure that Jennrich and Schluchter deemed best
among the ones they fit. To carry the analysis one step further, you can use the
GROUP= option to specify heterogeneity of this structure across girls and boys.

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=cs subject=Person group=Gender;

run;

The results from this analysis are shown inOutput 46.2.3.
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Output 46.2.3. Repeated Measures with Heterogeneous Structures

The Mixed Procedure

Model Information

Data Set WORK.PR
Dependent Variable y
Covariance Structure Compound Symmetry
Subject Effect Person
Group Effect Gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Note thatGender is listed as a “Group Effect.”

The Mixed Procedure

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

Gender 2 F M

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

The four covariance parameters result from the two compound symmetry structures
corresponding to the two levels ofGender.
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The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

Even with the heterogeneity, only one iteration is required for convergence.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance Person Gender F 0.5900
CS Person Gender F 3.8804
Variance Person Gender M 2.7577
CS Person Gender M 2.4463

The preceding table lists the heterogeneous estimates. Note that both the common
covariance and the diagonal enhancement differ between girls and boys.

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 408.8
AIC (smaller is better) 424.8
AICC (smaller is better) 426.3
BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Both Akaike’s Information Criterion (424.8) and Schwarz’s Bayesian Criterion
(435.2) are smaller for this model than for the homogeneous compound symmetry
model (440.6 and 448.4, respectively). This indicates that the heterogeneous model
is more appropriate. To construct the likelihood ratio test between the two mod-
els, subtract the−2 log likelihood values:428.6 − 408.8 = 19.8. Comparing this
value with theχ2 distribution with two degrees of freedom yields ap-value less than
0.0001, again favoring the heterogeneous model.
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The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001
Gender F 1.0321 1.3890 25 0.74 0.4644
Gender M 0 . . . .
Age 0.7844 0.09283 79 8.45 <.0001
Age*Gender F -0.3048 0.1063 79 -2.87 0.0053
Age*Gender M 0 . . . .

Note that the fixed effects estimates are the same as in the homogeneous case, but the
standard errors are different.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 25 0.55 0.4644
Age 1 79 141.37 <.0001
Age*Gender 1 79 8.22 0.0053

The fixed effects tests are similar to those from previous models, although thep-
values do change as a result of specifying a different covariance structure. It is im-
portant for you to select a reasonable covariance structure in order to obtain valid
inferences for your fixed effects.

Example 46.3. Plotting the Likelihood

The data for this example are from Hemmerle and Hartley (1973) and are also used
as an example for the VARCOMP procedure. The response variable consists of mea-
surements from an oven experiment, and the model contains a fixed effectA and
random effectsB andA*B.

The SAS code is as follows:

data hh;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246
1 2 178 1 2 179
2 1 208 2 1 178 2 1 187
2 2 146 2 2 145 2 2 141
3 1 186 3 1 183
3 2 142 3 2 125 3 2 136
;
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ods output ParmSearch=parms;
proc mixed data=hh asycov mmeq mmeqsol covtest;

class a b;
model y = a / outp=predicted;
random b a*b;
lsmeans a;
parms (17 to 20 by .1) (.3 to .4 by .005) (1.0);

run;

proc print data=predicted;
run;

The ASYCOV option in the PROC statement requests the asymptotic variance ma-
trix of the covariance parameter estimates. This matrix is the observed inverse Fisher
information matrix, which equals2H−1, whereH is the Hessian matrix of the objec-
tive function evaluated at the final covariance parameter estimates. The MMEQ and
MMEQSOL options in the PROC statement request that the mixed model equations
and their solution be displayed.

The OUTP= option in the MODEL statement produces the data setpredicted, con-
taining the predicted values. Least-squares means (LSMEANS) are requested for
A. The PARMS and ODS statements are used to construct a data set containing the
likelihood surface.

The results from this analysis are shown inOutput 46.3.1.

Output 46.3.1. Plotting the Likelihood

The Mixed Procedure

Model Information

Data Set WORK.HH
Dependent Variable y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Model Information” table lists details about this variance components model.

The Mixed Procedure

Class Level Information

Class Levels Values

a 3 1 2 3
b 2 1 2

The “Class Level Information” table lists the levels forA andB.
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The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 4
Columns in Z 8
Subjects 1
Max Obs Per Subject 16

Number of Observations

Number of Observations Read 16
Number of Observations Used 16
Number of Observations Not Used 0

The “Dimensions” table reveals thatX is 16 × 4 andZ is 16 × 8. Since there are
no SUBJECT= effects, PROC MIXED considers the data effectively to be from one
subject with 16 observations.

The Mixed Procedure

Parameter Search

CovP1 CovP2 CovP3 Variance Res Log Like -2 Res Log Like

17.0000 0.3000 1.0000 80.1400 -52.4699 104.9399
17.0000 0.3050 1.0000 80.0466 -52.4697 104.9393
17.0000 0.3100 1.0000 79.9545 -52.4694 104.9388
17.0000 0.3150 1.0000 79.8637 -52.4692 104.9384
17.0000 0.3200 1.0000 79.7742 -52.4691 104.9381
17.0000 0.3250 1.0000 79.6859 -52.4690 104.9379
17.0000 0.3300 1.0000 79.5988 -52.4689 104.9378
17.0000 0.3350 1.0000 79.5129 -52.4689 104.9377
17.0000 0.3400 1.0000 79.4282 -52.4689 104.9377
17.0000 0.3450 1.0000 79.3447 -52.4689 104.9378

" . . . . . . "
" . . . . . . "
" . . . . . . "

20.0000 0.3550 1.0000 78.2003 -52.4683 104.9366
20.0000 0.3600 1.0000 78.1201 -52.4684 104.9368
20.0000 0.3650 1.0000 78.0409 -52.4685 104.9370
20.0000 0.3700 1.0000 77.9628 -52.4687 104.9373
20.0000 0.3750 1.0000 77.8857 -52.4689 104.9377
20.0000 0.3800 1.0000 77.8096 -52.4691 104.9382
20.0000 0.3850 1.0000 77.7345 -52.4693 104.9387
20.0000 0.3900 1.0000 77.6603 -52.4696 104.9392
20.0000 0.3950 1.0000 77.5871 -52.4699 104.9399
20.0000 0.4000 1.0000 77.5148 -52.4703 104.9406

Only a portion of the “Parameter Search” table is shown because the full listing has
651 rows.
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The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

1 2 104.93416367 0.00000000

Convergence criteria met.

Convergence is quick because PROC MIXED starts from the best value from the grid
search.

The Mixed Procedure

Covariance Parameter Estimates

Standard Z
Cov Parm Estimate Error Value Pr Z

b 1464.36 2098.01 0.70 0.2426
a*b 26.9581 59.6570 0.45 0.3257
Residual 78.8426 35.3512 2.23 0.0129

The preceding table lists the variance components estimates. Note thatB is much
more variable thanA*B.

The Mixed Procedure

Asymptotic Covariance Matrix of Estimates

Row Cov Parm CovP1 CovP2 CovP3

1 b 4401640 1.2831 -273.32
2 a*b 1.2831 3558.96 -502.84
3 Residual -273.32 -502.84 1249.71

The asymptotic covariance matrix also reflects the large variability ofB relative to
A*B.
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The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 104.9
AIC (smaller is better) 110.9
AICC (smaller is better) 113.6
BIC (smaller is better) 107.0

PARMS Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

2 0.00 1.0000

The PARMS likelihood ratio test (LRT) compares the best model from the grid search
with the final fitted model. Since these models are nearly the same, the LRT is not
significant.

The Mixed Procedure

Mixed Model Equations

Row Effect a b Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 Intercept 0.2029 0.06342 0.07610 0.06342 0.1015 0.1015 0.03805
2 a 1 0.06342 0.06342 0.03805 0.02537 0.03805
3 a 2 0.07610 0.07610 0.03805 0.03805
4 a 3 0.06342 0.06342 0.02537 0.03805
5 b 1 0.1015 0.03805 0.03805 0.02537 0.1022 0.03805
6 b 2 0.1015 0.02537 0.03805 0.03805 0.1022
7 a*b 1 1 0.03805 0.03805 0.03805 0.07515
8 a*b 1 2 0.02537 0.02537 0.02537
9 a*b 2 1 0.03805 0.03805 0.03805

10 a*b 2 2 0.03805 0.03805 0.03805
11 a*b 3 1 0.02537 0.02537 0.02537
12 a*b 3 2 0.03805 0.03805 0.03805

Mixed Model Equations

Row Col8 Col9 Col10 Col11 Col12 Col13

1 0.02537 0.03805 0.03805 0.02537 0.03805 36.4143
2 0.02537 13.8757
3 0.03805 0.03805 12.7469
4 0.02537 0.03805 9.7917
5 0.03805 0.02537 21.2956
6 0.02537 0.03805 0.03805 15.1187
7 9.3477
8 0.06246 4.5280
9 0.07515 7.2676

10 0.07515 5.4793
11 0.06246 4.6802
12 0.07515 5.1115

The mixed model equations are analogous to the normal equations in the standard
linear model. For this example, rows 1–4 correspond to the fixed effects, rows 5–12
correspond to the random effects, and Col13 corresponds to the dependent variable.
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The Mixed Procedure

Mixed Model Equations Solution

Row Effect a b Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 Intercept 761.84 -29.7718 -29.6578 -731.14 -733.22 -0.4680
2 a 1 -29.7718 59.5436 29.7718 -2.0764 2.0764 -14.0239
3 a 2 -29.6578 29.7718 56.2773 -1.0382 1.0382 0.4680
4 a 3
5 b 1 -731.14 -2.0764 -1.0382 741.63 722.73 -4.2598
6 b 2 -733.22 2.0764 1.0382 722.73 741.63 4.2598
7 a*b 1 1 -0.4680 -14.0239 0.4680 -4.2598 4.2598 22.8027
8 a*b 1 2 0.4680 -12.9342 -0.4680 4.2598 -4.2598 4.1555
9 a*b 2 1 -0.5257 1.0514 -12.9534 -4.7855 4.7855 2.1570

10 a*b 2 2 0.5257 -1.0514 -14.0048 4.7855 -4.7855 -2.1570
11 a*b 3 1 -12.4663 12.9342 12.4663 -4.2598 4.2598 1.9200
12 a*b 3 2 -14.4918 14.0239 14.4918 4.2598 -4.2598 -1.9200

Mixed Model Equations Solution

Row Col8 Col9 Col10 Col11 Col12 Col13

1 0.4680 -0.5257 0.5257 -12.4663 -14.4918 159.61
2 -12.9342 1.0514 -1.0514 12.9342 14.0239 53.2049
3 -0.4680 -12.9534 -14.0048 12.4663 14.4918 7.8856
4
5 4.2598 -4.7855 4.7855 -4.2598 4.2598 26.8837
6 -4.2598 4.7855 -4.7855 4.2598 -4.2598 -26.8837
7 4.1555 2.1570 -2.1570 1.9200 -1.9200 3.0198
8 22.8027 -2.1570 2.1570 -1.9200 1.9200 -3.0198
9 -2.1570 22.5560 4.4021 2.1570 -2.1570 -1.7134

10 2.1570 4.4021 22.5560 -2.1570 2.1570 1.7134
11 -1.9200 2.1570 -2.1570 22.8027 4.1555 -0.8115
12 1.9200 -2.1570 2.1570 4.1555 22.8027 0.8115

This solution matrix results from sweeping all but the last row of the mixed model
equations matrix. The final column contains a solution vector for the fixed and ran-
dom effects. The first four rows correspond to fixed effects and the last eight to
random effects.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

a 2 2 28.00 0.0345

TheA factor is significant at the 5% level.
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The Mixed Procedure

Least Squares Means

Standard
Effect a Estimate Error DF t Value Pr > |t|

a 1 212.82 27.6014 2 7.71 0.0164
a 2 167.50 27.5463 2 6.08 0.0260
a 3 159.61 27.6014 2 5.78 0.0286

The significance ofA appears to be from the difference between its first level and its
other two levels.

StdErr
Obs a b y Pred Pred DF Alpha Lower Upper Resid

1 1 1 237 242.723 4.72563 10 0.05 232.193 253.252 -5.7228
2 1 1 254 242.723 4.72563 10 0.05 232.193 253.252 11.2772
3 1 1 246 242.723 4.72563 10 0.05 232.193 253.252 3.2772
4 1 2 178 182.916 5.52589 10 0.05 170.603 195.228 -4.9159
5 1 2 179 182.916 5.52589 10 0.05 170.603 195.228 -3.9159
6 2 1 208 192.670 4.70076 10 0.05 182.196 203.144 15.3297
7 2 1 178 192.670 4.70076 10 0.05 182.196 203.144 -14.6703
8 2 1 187 192.670 4.70076 10 0.05 182.196 203.144 -5.6703
9 2 2 146 142.330 4.70076 10 0.05 131.856 152.804 3.6703

10 2 2 145 142.330 4.70076 10 0.05 131.856 152.804 2.6703
11 2 2 141 142.330 4.70076 10 0.05 131.856 152.804 -1.3297
12 3 1 186 185.687 5.52589 10 0.05 173.374 197.999 0.3134
13 3 1 183 185.687 5.52589 10 0.05 173.374 197.999 -2.6866
14 3 2 142 133.542 4.72563 10 0.05 123.013 144.072 8.4578
15 3 2 125 133.542 4.72563 10 0.05 123.013 144.072 -8.5422
16 3 2 136 133.542 4.72563 10 0.05 123.013 144.072 2.4578

The preceding output lists the predicted values from the model. These values are the
sum of the fixed effects estimates and the empirical best linear unbiased predictors
(EBLUPs) of the random effects. It is often useful to plot predicted values and resid-
uals to assess the adequacy of the model, using another SAS procedure to generate
plots and diagnostic measures.

To plot the likelihood surface using the G3D procedure from SAS/GRAPH software,
use the following source:

proc g3d data=parms;
plot CovP1*CovP2 = ResLogLike

/ ctop=red cbottom=blue caxis=black;
run;

The results from this plot are shown inOutput 46.3.2. The peak of the surface is the
REML estimates for theB andA*B variance components.
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Output 46.3.2. Plot of Likelihood Surface

Example 46.4. Known G and R

This animal breeding example from Henderson (1984, p. 53) considers multiple
traits. The data are artificial and consist of measurements of two traits on three ani-
mals, but the second trait of the third animal is missing. Assuming an additive genetic
model, you can use PROC MIXED to predict the breeding value of both traits on all
three animals and also to predict the second trait of the third animal. The data are as
follows:

data h;
input Trait Animal Y;
datalines;

1 1 6
1 2 8
1 3 7
2 1 9
2 2 5
2 3 .
;
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BothG andR are known.

G =



2 1 1 2 1 1
1 2 .5 1 2 .5
1 .5 2 1 .5 2
2 1 1 3 1.5 1.5
1 2 .5 1.5 3 .75
1 .5 2 1.5 .75 3



R =



4 0 0 1 0 0
0 4 0 0 1 0
0 0 4 0 0 1
1 0 0 5 0 0
0 1 0 0 5 0
0 0 1 0 0 5


In order to readG into PROC MIXED using the GDATA= option in the RANDOM
statement, perform the following DATA step:

data g;
input Row Col1-Col6;
datalines;

1 2 1 1 2 1 1
2 1 2 .5 1 2 .5
3 1 .5 2 1 .5 2
4 2 1 1 3 1.5 1.5
5 1 2 .5 1.5 3 .75
6 1 .5 2 1.5 .75 3
;

The preceding data are in the dense representation for a GDATA= data set. You can
also construct a data set with the sparse representation usingRow, Col, andValue
variables, although this would require 21 observations instead of 6 for this example.

The PROC MIXED code is as follows:

proc mixed data=h mmeq mmeqsol;
class Trait Animal;
model Y = Trait / noint s outp=predicted;
random Trait*Animal / type=un gdata=g g gi s;
repeated / type=un sub=Animal r ri;
parms (4) (1) (5) / noiter;

run;

proc print data=predicted;
run;

The MMEQ and MMEQSOL options request the mixed model equations and their
solution. The variablesTrait andAnimal are classification variables, andTrait defines
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the entireX matrix for the fixed-effects portion of the model, since the intercept
is omitted with the NOINT option. The fixed-effects solution vector and predicted
values are also requested using the S and OUTP= options, respectively.

The random effectTrait*Animal leads to aZ matrix with six columns, the first five
corresponding to the identity matrix and the last consisting of 0s. An unstructured
G matrix is specified using the TYPE=UN option, and it is read into PROC MIXED
from a SAS data set using the GDATA=G specification. The G and GI options request
the display ofG andG−1, respectively. The S option requests that the random-effects
solution vector be displayed.

Note that the precedingR matrix is block diagonal if the data are sorted by animals.
The REPEATED statement exploits this fact by requestingR to have unstructured
2×2 blocks corresponding to animals, which are the subjects. The R and RI options
request that the estimated 2×2 blocks for the first animal and its inverse be displayed.
The PARMS statement lists the parameters of this 2×2 matrix. Note that the param-
eters fromG are not specified in the PARMS statement because they have already
been assigned using the GDATA= option in the RANDOM statement. The NOITER
option prevents PROC MIXED from computing residual (restricted) maximum like-
lihood estimates; instead, the known values are used for inferences.

The results from this analysis are shown inOutput 46.4.1.

Output 46.4.1. Known G and R

The Mixed Procedure

Model Information

Data Set WORK.H
Dependent Variable Y
Covariance Structure Unstructured
Subject Effect Animal
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Unstructured” covariance structure applies to bothG andR here.
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The Mixed Procedure

Class Level Information

Class Levels Values

Trait 2 1 2
Animal 3 1 2 3

The levels ofTrait andAnimal have been specified correctly.

The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 2
Columns in Z 6
Subjects 1
Max Obs Per Subject 6

Number of Observations

Number of Observations Read 6
Number of Observations Used 5
Number of Observations Not Used 1

The three covariance parameters indicated here correspond to those from theR ma-
trix. Those fromG are considered fixed and known because of the GDATA= option.

The Mixed Procedure

Parameter Search

CovP1 CovP2 CovP3 Res Log Like -2 Res Log Like

4.0000 1.0000 5.0000 -7.3731 14.7463

The preceding table results from the PARMS statement.

The Mixed Procedure

Estimated R Matrix
for Subject 1

Row Col1 Col2

1 4.0000 1.0000
2 1.0000 5.0000
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The block ofR corresponding to the first animal is shown in the “Estimated R
Matrix” table.

The Mixed Procedure

Estimated Inv(R) Matrix
for Subject 1

Row Col1 Col2

1 0.2632 -0.05263
2 -0.05263 0.2105

The inverse of the block ofR corresponding to the first animal is shown in the pre-
ceding table.

The Mixed Procedure

Estimated G Matrix

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait*Animal 1 1 2.0000 1.0000 1.0000 2.0000
2 Trait*Animal 1 2 1.0000 2.0000 0.5000 1.0000
3 Trait*Animal 1 3 1.0000 0.5000 2.0000 1.0000
4 Trait*Animal 2 1 2.0000 1.0000 1.0000 3.0000
5 Trait*Animal 2 2 1.0000 2.0000 0.5000 1.5000
6 Trait*Animal 2 3 1.0000 0.5000 2.0000 1.5000

Estimated G Matrix

Row Col5 Col6

1 1.0000 1.0000
2 2.0000 0.5000
3 0.5000 2.0000
4 1.5000 1.5000
5 3.0000 0.7500
6 0.7500 3.0000

The preceding table lists theG matrix as specified in the GDATA= data set.
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The Mixed Procedure

Estimated Inv(G) Matrix

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait*Animal 1 1 2.5000 -1.0000 -1.0000 -1.6667
2 Trait*Animal 1 2 -1.0000 2.0000 0.6667
3 Trait*Animal 1 3 -1.0000 2.0000 0.6667
4 Trait*Animal 2 1 -1.6667 0.6667 0.6667 1.6667
5 Trait*Animal 2 2 0.6667 -1.3333 -0.6667
6 Trait*Animal 2 3 0.6667 -1.3333 -0.6667

Estimated Inv(G) Matrix

Row Col5 Col6

1 0.6667 0.6667
2 -1.3333
3 -1.3333
4 -0.6667 -0.6667
5 1.3333
6 1.3333

The preceding table listsG−1. The blank values correspond to zeros.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) Animal 4.0000
UN(2,1) Animal 1.0000
UN(2,2) Animal 5.0000

The parameters fromR are listed again.

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 14.7
AIC (smaller is better) 14.7
AICC (smaller is better) 14.7
BIC (smaller is better) 14.7

You can use this model-fitting information to compare this model with others.
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The Mixed Procedure

Mixed Model Equations

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait 1 0.7763 -0.1053 0.2632 0.2632
2 Trait 2 -0.1053 0.4211 -0.05263 -0.05263
3 Trait*Animal 1 1 0.2632 -0.05263 2.7632 -1.0000
4 Trait*Animal 1 2 0.2632 -0.05263 -1.0000 2.2632
5 Trait*Animal 1 3 0.2500 -1.0000
6 Trait*Animal 2 1 -0.05263 0.2105 -1.7193 0.6667
7 Trait*Animal 2 2 -0.05263 0.2105 0.6667 -1.3860
8 Trait*Animal 2 3 0.6667

Mixed Model Equations

Row Col5 Col6 Col7 Col8 Col9

1 0.2500 -0.05263 -0.05263 4.6974
2 0.2105 0.2105 2.2105
3 -1.0000 -1.7193 0.6667 0.6667 1.1053
4 0.6667 -1.3860 1.8421
5 2.2500 0.6667 -1.3333 1.7500
6 0.6667 1.8772 -0.6667 -0.6667 1.5789
7 -0.6667 1.5439 0.6316
8 -1.3333 -0.6667 1.3333

The coefficients of the mixed model equations agree with Henderson (1984, p. 55).

The Mixed Procedure

Mixed Model Equations Solution

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait 1 2.5508 1.5685 -1.3047 -1.1775
2 Trait 2 1.5685 4.5539 -1.4112 -1.3534
3 Trait*Animal 1 1 -1.3047 -1.4112 1.8282 1.0652
4 Trait*Animal 1 2 -1.1775 -1.3534 1.0652 1.7589
5 Trait*Animal 1 3 -1.1701 -0.9410 1.0206 0.7085
6 Trait*Animal 2 1 -1.3002 -2.1592 1.8010 1.0900
7 Trait*Animal 2 2 -1.1821 -2.1055 1.0925 1.7341
8 Trait*Animal 2 3 -1.1678 -1.3149 1.0070 0.7209

Mixed Model Equations Solution

Row Col5 Col6 Col7 Col8 Col9

1 -1.1701 -1.3002 -1.1821 -1.1678 6.9909
2 -0.9410 -2.1592 -2.1055 -1.3149 6.9959
3 1.0206 1.8010 1.0925 1.0070 0.05450
4 0.7085 1.0900 1.7341 0.7209 -0.04955
5 1.7812 1.0095 0.7197 1.7756 0.02230
6 1.0095 2.7518 1.6392 1.4849 0.2651
7 0.7197 1.6392 2.6874 0.9930 -0.2601
8 1.7756 1.4849 0.9930 2.7645 0.1276
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The solution to the mixed model equations also matches that given by Henderson
(1984, p. 55).

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Trait Estimate Error DF t Value Pr > |t|

Trait 1 6.9909 1.5971 3 4.38 0.0221
Trait 2 6.9959 2.1340 3 3.28 0.0465

The estimates for the two traits are nearly identical, but the standard error of the
second one is larger because of the missing observation.

The Mixed Procedure

Solution for Random Effects

Std Err
Effect Trait Animal Estimate Pred DF t Value Pr > |t|

Trait*Animal 1 1 0.05450 1.3521 0 0.04 .
Trait*Animal 1 2 -0.04955 1.3262 0 -0.04 .
Trait*Animal 1 3 0.02230 1.3346 0 0.02 .
Trait*Animal 2 1 0.2651 1.6589 0 0.16 .
Trait*Animal 2 2 -0.2601 1.6393 0 -0.16 .
Trait*Animal 2 3 0.1276 1.6627 0 0.08 .

The Estimate column lists the best linear unbiased predictions (BLUPs) of the breed-
ing values of both traits for all three animals. Thep-values are missing because the
default containment method for computing degrees of freedom results in zero degrees
of freedom for the random effects parameter tests.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Trait 2 3 10.59 0.0437

The two estimated traits are significantly different from zero at the 5% level.
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StdErr
Obs Trait Animal Y Pred Pred DF Alpha Lower Upper Resid

1 1 1 6 7.04542 1.33027 0 0.05 . . -1.04542
2 1 2 8 6.94137 1.39806 0 0.05 . . 1.05863
3 1 3 7 7.01321 1.41129 0 0.05 . . -0.01321
4 2 1 9 7.26094 1.72839 0 0.05 . . 1.73906
5 2 2 5 6.73576 1.74077 0 0.05 . . -1.73576
6 2 3 . 7.12015 2.99088 0 0.05 . . .

The preceding table contains the predicted values of the observations based on the
trait and breeding value estimates, that is, the fixed and random effects. The predicted
values are not the predictions of future records in the sense that they do not contain
a component corresponding to a new observational error. Refer to Henderson (1984)
for information on predicting future records. The L95 and U95 columns usually
contain confidence limits for the predicted values; they are missing here because the
random-effects parameter degrees of freedom equals 0.

Example 46.5. Random Coefficients

This example comes from a pharmaceutical stability data simulation performed by
Obenchain (1990). The observed responses are replicate assay results, expressed in
percent of label claim, at various shelf ages, expressed in months. The desired mixed
model involves three batches of product that differ randomly in intercept (initial po-
tency) and slope (degradation rate). This type of model is also known as a hierarchical
or multilevel model (Singer 1998; Sullivan, Dukes, and Losina 1999).

The SAS code is as follows:

data rc;
input Batch Month @@;
Monthc = Month;
do i = 1 to 6;

input Y @@;
output;

end;
datalines;

1 0 101.2 103.3 103.3 102.1 104.4 102.4
1 1 98.8 99.4 99.7 99.5 . .
1 3 98.4 99.0 97.3 99.8 . .
1 6 101.5 100.2 101.7 102.7 . .
1 9 96.3 97.2 97.2 96.3 . .
1 12 97.3 97.9 96.8 97.7 97.7 96.7
2 0 102.6 102.7 102.4 102.1 102.9 102.6
2 1 99.1 99.0 99.9 100.6 . .
2 3 105.7 103.3 103.4 104.0 . .
2 6 101.3 101.5 100.9 101.4 . .
2 9 94.1 96.5 97.2 95.6 . .
2 12 93.1 92.8 95.4 92.2 92.2 93.0
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3 0 105.1 103.9 106.1 104.1 103.7 104.6
3 1 102.2 102.0 100.8 99.8 . .
3 3 101.2 101.8 100.8 102.6 . .
3 6 101.1 102.0 100.1 100.2 . .
3 9 100.9 99.5 102.2 100.8 . .
3 12 97.8 98.3 96.9 98.4 96.9 96.5
;

proc mixed data=rc;
class Batch;
model Y = Month / s;
random Int Month / type=un sub=Batch s;

run;

In the DATA step,Monthc is created as a duplicate ofMonth in order to enable both
a continuous and classification version of the same variable. The variableMonthc is
used in a subsequentanalysison page 2814.

In the PROC MIXED code,Batch is listed as the only classification variable. The
fixed effectMonth in the MODEL statement is not declared a classification variable;
thus it models a linear trend in time. An intercept is included as a fixed effect by
default, and the S option requests that the fixed-effects parameter estimates be pro-
duced.

The two RANDOM effects areInt and Month, modeling random intercepts and
slopes, respectively. Note thatIntercept andMonth are used as both fixed and ran-
dom effects. The TYPE=UN option in the RANDOM statement specifies an unstruc-
tured covariance matrix for the random intercept and slope effects. In mixed model
notation,G is block diagonal with unstructured 2×2 blocks. Each block corresponds
to a different level ofBatch, which is the SUBJECT= effect. The unstructured type
provides a mechanism for estimating the correlation between the random coefficients.
The S option requests the production of the random-effects parameter estimates.

The results from this analysis are shown inOutput 46.5.1.

Output 46.5.1. Random Coefficients Analysis

The Mixed Procedure

Model Information

Data Set WORK.RC
Dependent Variable Y
Covariance Structure Unstructured
Subject Effect Batch
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Unstructured” covariance structure applies toG here.
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The Mixed Procedure

Class Level Information

Class Levels Values

Batch 3 1 2 3

Batch is the only classification variable in this analysis, and it has three levels.

The Mixed Procedure

Dimensions

Covariance Parameters 4
Columns in X 2
Columns in Z Per Subject 2
Subjects 3
Max Obs Per Subject 36

Number of Observations

Number of Observations Read 108
Number of Observations Used 84
Number of Observations Not Used 24

The “Dimensions” table indicates that there are three subjects (corresponding to
batches). The 24 observations not used correspond to the missing values ofY in
the input data set.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 367.02768461
1 1 350.32813577 0.00000000

Convergence criteria met.

Only one iteration is required for convergence.
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The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) Batch 0.9768
UN(2,1) Batch -0.1045
UN(2,2) Batch 0.03717
Residual 3.2932

The estimated elements of the unstructured 2×2 matrix comprising the blocks ofG
are listed in the Estimate column. Note that the random coefficients are negatively
correlated.

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 350.3
AIC (smaller is better) 358.3
AICC (smaller is better) 358.8
BIC (smaller is better) 354.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 16.70 0.0008

The null model likelihood ratio test indicates a significant improvement over the null
model consisting of no random effects and a homogeneous residual error.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 102.70 0.6456 2 159.08 <.0001
Month -0.5259 0.1194 2 -4.41 0.0478

The fixed effects estimates represent the estimated means for the random intercept
and slope, respectively.



2814 � Chapter 46. The MIXED Procedure

The Mixed Procedure

Solution for Random Effects

Std Err
Effect Batch Estimate Pred DF t Value Pr > |t|

Intercept 1 -1.0010 0.6842 78 -1.46 0.1474
Month 1 0.1287 0.1245 78 1.03 0.3047
Intercept 2 0.3934 0.6842 78 0.58 0.5669
Month 2 -0.2060 0.1245 78 -1.65 0.1021
Intercept 3 0.6076 0.6842 78 0.89 0.3772
Month 3 0.07731 0.1245 78 0.62 0.5365

The random effects estimates represent the estimated deviation from the mean inter-
cept and slope for each batch. Therefore, the intercept for the first batch is close to
102.7 − 1 = 101.7, while the intercepts for the other two batches are greater than
102.7. The second batch has a slope less than the mean slope of−0.526, while the
other two batches have slopes larger than−0.526.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Month 1 2 19.41 0.0478

The F-statistic in the “Type 3 Tests of Fixed Effects” table is the square of thet-
statistic used in the test ofMonth in the preceding “Solution for Fixed Effects” table.
Both statistics test the null hypothesis that the slope assigned toMonth equals 0, and
this hypothesis can barely be rejected at the 5% level.

It is also possible to fit a random coefficients model with error terms that follow a
nested structure (Fuller and Battese 1973). The following SAS code represents one
way of doing this:

proc mixed data=rc;
class Batch Monthc;
model Y = Month / s;
random Int Month Monthc / sub=Batch s;

run;

The variableMonthc is added to the CLASS and RANDOM statements, and it mod-
els the nested errors. Note thatMonth andMonthc are continuous and classifica-
tion versions of the same variable. Also, the TYPE=UN option is dropped from the
RANDOM statement, resulting in the default variance components model instead of
correlated random coefficients.

The results from this analysis are shown inOutput 46.5.2.
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Output 46.5.2. Random Coefficients with Nested Errors Analysis

The Mixed Procedure

Model Information

Data Set WORK.RC
Dependent Variable Y
Covariance Structure Variance Components
Subject Effect Batch
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

Batch 3 1 2 3
Monthc 6 0 1 3 6 9 12

Dimensions

Covariance Parameters 4
Columns in X 2
Columns in Z Per Subject 8
Subjects 3
Max Obs Per Subject 36

Number of Observations

Number of Observations Read 108
Number of Observations Used 84
Number of Observations Not Used 24

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 367.02768461
1 4 277.51945360 .
2 1 276.97551718 0.00104208
3 1 276.90304909 0.00003174
4 1 276.90100316 0.00000004
5 1 276.90100092 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept Batch 0
Month Batch 0.01243
Monthc Batch 3.7411
Residual 0.7969
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For this analysis, the Newton-Raphson algorithm requires five iterations and nine
likelihood evaluations to achieve convergence. The missing value in the Criterion
column in iteration 1 indicates that a boundary constraint has been dropped.

The estimate for theIntercept variance component equals 0. This occurs frequently
in practice and indicates that the restricted likelihood is maximized by setting this
variance component equal to 0. Whenever a zero variance component estimate oc-
curs, the following note appears in the SAS log:

NOTE: Estimated G matrix is not positive definite.

The remaining variance component estimates are positive, and the estimate corre-
sponding to the nested errors (MONTHC) is much larger than the other two.

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 276.9
AIC (smaller is better) 282.9
AICC (smaller is better) 283.2
BIC (smaller is better) 280.2

A comparison of AIC and BIC for this model with those of the previous model favors
the nested error model. Strictly speaking, a likelihood ratio test cannot be carried
out between the two models because one is not contained in the other; however, a
cautious comparison of likelihoods can be informative.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 102.56 0.7287 2 140.74 <.0001
Month -0.5003 0.1259 2 -3.97 0.0579

The better-fitting covariance model impacts the standard errors of the fixed effects
parameter estimates more than the estimates themselves.
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The Mixed Procedure

Solution for Random Effects

Std Err
Effect Batch Monthc Estimate Pred DF t Value Pr > |t|

Intercept 1 0 . . . .
Month 1 -0.00028 0.09268 66 -0.00 0.9976
Monthc 1 0 0.2191 0.7896 66 0.28 0.7823
Monthc 1 1 -2.5690 0.7571 66 -3.39 0.0012
Monthc 1 3 -2.3067 0.6865 66 -3.36 0.0013
Monthc 1 6 1.8726 0.7328 66 2.56 0.0129
Monthc 1 9 -1.2350 0.9300 66 -1.33 0.1888
Monthc 1 12 0.7736 1.1992 66 0.65 0.5211
Intercept 2 0 . . . .
Month 2 -0.07571 0.09268 66 -0.82 0.4169
Monthc 2 0 -0.00621 0.7896 66 -0.01 0.9938
Monthc 2 1 -2.2126 0.7571 66 -2.92 0.0048
Monthc 2 3 3.1063 0.6865 66 4.53 <.0001
Monthc 2 6 2.0649 0.7328 66 2.82 0.0064
Monthc 2 9 -1.4450 0.9300 66 -1.55 0.1250
Monthc 2 12 -2.4405 1.1992 66 -2.04 0.0459
Intercept 3 0 . . . .
Month 3 0.07600 0.09268 66 0.82 0.4152
Monthc 3 0 1.9574 0.7896 66 2.48 0.0157
Monthc 3 1 -0.8850 0.7571 66 -1.17 0.2466
Monthc 3 3 0.3006 0.6865 66 0.44 0.6629
Monthc 3 6 0.7972 0.7328 66 1.09 0.2806
Monthc 3 9 2.0059 0.9300 66 2.16 0.0347
Monthc 3 12 0.002293 1.1992 66 0.00 0.9985

The random effects solution provides the empirical best linear unbiased predictions
(EBLUPs) for the realizations of the random intercept, slope, and nested errors. You
can use these values to compare batches and months.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Month 1 2 15.78 0.0579

The test ofMonth is similar to that from the previous model, although it is no longer
significant at the 5% level.

Example 46.6. Line-Source Sprinkler Irrigation

These data appear in Hanks et al. (1980), Johnson, Chaudhuri, and Kanemasu (1983),
and Stroup (1989b). Three cultivars (Cult) of winter wheat are randomly assigned to
rectangular plots within each of three blocks (Block). The nine plots are located
side-by-side, and a line-source sprinkler is placed through the middle. Each plot is
subdivided into twelve subplots, six to the north of the line-source, six to the south
(Dir). The two plots closest to the line-source represent the maximum irrigation level
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(Irrig=6), the two next-closest plots represent the next-highest level (Irrig=5), and so
forth.

This example is a case where bothG andR can be modeled. One of Stroup’s models
specifies a diagonalG containing the variance components forBlock, Block*Dir,
andBlock* Irrig, and a ToeplitzR with four bands. The SAS code to fit this model
and carry out some further analyses follows.

Caution: This analysis may require considerable CPU time.

data line;
length Cult$ 8;
input Block Cult$ @;
row = _n_;
do Sbplt=1 to 12;

if Sbplt le 6 then do;
Irrig = Sbplt;
Dir = ’North’;

end;
else do;

Irrig = 13 - Sbplt;
Dir = ’South’;

end;
input Y @; output;

end;
datalines;

1 Luke 2.4 2.7 5.6 7.5 7.9 7.1 6.1 7.3 7.4 6.7 3.8 1.8
1 Nugaines 2.2 2.2 4.3 6.3 7.9 7.1 6.2 5.3 5.3 5.2 5.4 2.9
1 Bridger 2.9 3.2 5.1 6.9 6.1 7.5 5.6 6.5 6.6 5.3 4.1 3.1
2 Nugaines 2.4 2.2 4.0 5.8 6.1 6.2 7.0 6.4 6.7 6.4 3.7 2.2
2 Bridger 2.6 3.1 5.7 6.4 7.7 6.8 6.3 6.2 6.6 6.5 4.2 2.7
2 Luke 2.2 2.7 4.3 6.9 6.8 8.0 6.5 7.3 5.9 6.6 3.0 2.0
3 Nugaines 1.8 1.9 3.7 4.9 5.4 5.1 5.7 5.0 5.6 5.1 4.2 2.2
3 Luke 2.1 2.3 3.7 5.8 6.3 6.3 6.5 5.7 5.8 4.5 2.7 2.3
3 Bridger 2.7 2.8 4.0 5.0 5.2 5.2 5.9 6.1 6.0 4.3 3.1 3.1
;

proc mixed;
class Block Cult Dir Irrig;
model Y = Cult|Dir|Irrig@2;
random Block Block*Dir Block*Irrig;
repeated / type=toep(4) sub=Block*Cult r;
lsmeans Cult|Irrig;
estimate ’Bridger vs Luke’ Cult 1 -1 0;
estimate ’Linear Irrig’ Irrig -5 -3 -1 1 3 5;
estimate ’B vs L x Linear Irrig’ Cult*Irrig

-5 -3 -1 1 3 5 5 3 1 -1 -3 -5;
run;
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The preceding code uses the bar operator (| ) and the at sign ( @ ) to specify all
two-factor interactions betweenCult, Dir, andIrrig as fixed effects.

The RANDOM statement sets up theZ andG matrices corresponding to the random
effectsBlock, Block*Dir, andBlock* Irrig.

In the REPEATED statement, the TYPE=TOEP(4) option sets up the blocks of the
R matrix to be Toeplitz with four bands below and including the main diagonal.
The subject effect isBlock(Cult), and it produces nine 12×12 blocks. The R option
requests that the first block ofR be displayed.

Least-squares means (LSMEANS) are requested forCult, Irrig, andCult* Irrig, and
a few ESTIMATE statements are specified to illustrate some linear combinations of
the fixed effects.

The results from this analysis are shown inOutput 46.6.1.

Output 46.6.1. Line-Source Sprinkler Irrigation Analysis

The Mixed Procedure

Model Information

Data Set WORK.LINE
Dependent Variable Y
Covariance Structures Variance Components,

Toeplitz
Subject Effect Block*Cult
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The Covariance Structures row reveals the two different structures assumed forG
andR.

The Mixed Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3
Cult 3 Bridger Luke Nugaines
Dir 2 North South
Irrig 6 1 2 3 4 5 6

The levels of each class variable are listed as a single string in the Values column,
regardless of whether the levels are numeric or character.
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The Mixed Procedure

Dimensions

Covariance Parameters 7
Columns in X 48
Columns in Z 27
Subjects 1
Max Obs Per Subject 108

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Even though there is a SUBJECT= effect in the REPEATED statement, the analysis
considers all of the data to be from one subject because there is no corresponding
SUBJECT= effect in the RANDOM statement.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 226.25427252
1 4 187.99336173 .
2 3 186.62579299 0.10431081
3 1 184.38218213 0.04807260
4 1 183.41836853 0.00886548
5 1 183.25111475 0.00075353
6 1 183.23809997 0.00000748
7 1 183.23797748 0.00000000

Convergence criteria met.

The Newton-Raphson algorithm converges successfully in seven iterations.
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The Mixed Procedure

Estimated R Matrix for Subject 1

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 0.2850 0.007986 0.001452 -0.09253
2 0.007986 0.2850 0.007986 0.001452 -0.09253
3 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253
4 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253
5 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452
6 -0.09253 0.001452 0.007986 0.2850 0.007986
7 -0.09253 0.001452 0.007986 0.2850
8 -0.09253 0.001452 0.007986
9 -0.09253 0.001452

10 -0.09253
11
12

Estimated R Matrix for Subject 1

Row Col8 Col9 Col10 Col11 Col12

1
2
3
4
5 -0.09253
6 0.001452 -0.09253
7 0.007986 0.001452 -0.09253
8 0.2850 0.007986 0.001452 -0.09253
9 0.007986 0.2850 0.007986 0.001452 -0.09253

10 0.001452 0.007986 0.2850 0.007986 0.001452
11 -0.09253 0.001452 0.007986 0.2850 0.007986
12 -0.09253 0.001452 0.007986 0.2850

The first block of the estimatedR matrix has the TOEP(4) structure, and the obser-
vations that are three plots apart exhibit a negative correlation.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

Block 0.2194
Block*Dir 0.01768
Block*Irrig 0.03539
TOEP(2) Block*Cult 0.007986
TOEP(3) Block*Cult 0.001452
TOEP(4) Block*Cult -0.09253
Residual 0.2850

The preceding table lists the estimated covariance parameters from bothG andR.
The first three are the variance components making up the diagonalG, and the final
four make up the Toeplitz structure in the blocks ofR. The Residual row corresponds
to the variance of the Toeplitz structure, and it was the parameter profiled out during
the optimization process.
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The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 183.2
AIC (smaller is better) 197.2
AICC (smaller is better) 198.8
BIC (smaller is better) 190.9

The “−2 Res Log Likelihood” value is the same as the final value listed in the
“Iteration History” table.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Cult 2 68 7.98 0.0008
Dir 1 2 3.95 0.1852
Cult*Dir 2 68 3.44 0.0379
Irrig 5 10 102.60 <.0001
Cult*Irrig 10 68 1.91 0.0580
Dir*Irrig 5 68 6.12 <.0001

Every fixed effect except forDir andCult* Irrig is significant at the 5% level.

The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

Bridger vs Luke -0.03889 0.09524 68 -0.41 0.6843
Linear Irrig 30.6444 1.4412 10 21.26 <.0001
B vs L x Linear Irrig -9.8667 2.7400 68 -3.60 0.0006

The “Estimates” table lists the results from the various linear combinations of fixed
effects specified in the ESTIMATE statements. Bridger is not significantly different
from Luke, andIrrig possesses a strong linear component. This strength appears to
be influencing the significance of the interaction.
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The Mixed Procedure

Least Squares Means

Standard
Effect Cult Irrig Estimate Error DF t Value Pr > |t|

Cult Bridger 5.0306 0.2874 68 17.51 <.0001
Cult Luke 5.0694 0.2874 68 17.64 <.0001
Cult Nugaines 4.7222 0.2874 68 16.43 <.0001
Irrig 1 2.4222 0.3220 10 7.52 <.0001
Irrig 2 3.1833 0.3220 10 9.88 <.0001
Irrig 3 5.0556 0.3220 10 15.70 <.0001
Irrig 4 6.1889 0.3220 10 19.22 <.0001
Irrig 5 6.4000 0.3140 10 20.38 <.0001
Irrig 6 6.3944 0.3227 10 19.81 <.0001
Cult*Irrig Bridger 1 2.8500 0.3679 68 7.75 <.0001
Cult*Irrig Bridger 2 3.4167 0.3679 68 9.29 <.0001
Cult*Irrig Bridger 3 5.1500 0.3679 68 14.00 <.0001
Cult*Irrig Bridger 4 6.2500 0.3679 68 16.99 <.0001
Cult*Irrig Bridger 5 6.3000 0.3463 68 18.19 <.0001
Cult*Irrig Bridger 6 6.2167 0.3697 68 16.81 <.0001
Cult*Irrig Luke 1 2.1333 0.3679 68 5.80 <.0001
Cult*Irrig Luke 2 2.8667 0.3679 68 7.79 <.0001
Cult*Irrig Luke 3 5.2333 0.3679 68 14.22 <.0001
Cult*Irrig Luke 4 6.5500 0.3679 68 17.80 <.0001
Cult*Irrig Luke 5 6.8833 0.3463 68 19.87 <.0001
Cult*Irrig Luke 6 6.7500 0.3697 68 18.26 <.0001
Cult*Irrig Nugaines 1 2.2833 0.3679 68 6.21 <.0001
Cult*Irrig Nugaines 2 3.2667 0.3679 68 8.88 <.0001
Cult*Irrig Nugaines 3 4.7833 0.3679 68 13.00 <.0001
Cult*Irrig Nugaines 4 5.7667 0.3679 68 15.67 <.0001
Cult*Irrig Nugaines 5 6.0167 0.3463 68 17.37 <.0001
Cult*Irrig Nugaines 6 6.2167 0.3697 68 16.81 <.0001

The LS-means are useful in comparing the levels of the various fixed effects. For
example, it appears that irrigation levels 5 and 6 have virtually the same effect.

An interesting exercise is to try fitting other variance-covariance models to these data
and comparing them to this one using likelihood ratio tests, Akaike’s Information
Criterion, or Schwarz’s Bayesian Information Criterion. In particular, some spatial
models are worth investigating (Marx and Thompson 1987; Zimmerman and Harville
1991). The following is one example of spatial model code.

proc mixed;
class Block Cult Dir Irrig;
model Y = Cult|Dir|Irrig@2;
repeated / type=sp(pow)(Row Sbplt)

sub=intercept;
run;

The TYPE=SP(POW)(ROW SBPLT) option in the REPEATED statement requests
the spatial power structure, with the two defining coordinate variables beingRow
andSbplt. The SUB=INTERCEPT option indicates that the entire data set is to be
considered as one subject, thereby modelingR as a dense 108×108 covariance ma-
trix. Refer to Wolfinger (1993) for further discussion of this example and additional
analyses.
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Example 46.7. Influence in Heterogeneous Variance Model
(Experimental)

In this example from Snedecor and Cochran (1976, p. 256) a one-way classification
model with heterogeneous variances is fit. The data represent amounts of different
types of fat absorbed by batches of doughnuts during cooking, measured in grams.

data absorb;
input FatType Absorbed @@;
datalines;
1 164 1 172 1 168 1 177 1 156 1 195
2 178 2 191 2 197 2 182 2 185 2 177
3 175 3 193 3 178 3 171 3 163 3 176
4 155 4 166 4 149 4 164 4 170 4 168

;

The statistical model for these data can be written as

Yij = µ + τi + εij

i = 1, · · · , t = 4
j = 1, · · · , r = 6

εij = (0, σ2
i )

whereYij is the amount of fat absorbed by thejth batch of theith fat type, andτi

denotes the fat-type effects. A quick glance at the data suggests that observations 6,
9, 14, and 21 might be influential on the analysis, because these are extreme observa-
tions for the respective fat types.

The following SAS statements fit this model and request influence diagnostics for
the fixed effects and covariance parameters. The experimental ODS GRAPHICS
statement requests plots of the influence diagnostics in addition to the tabular output.
The ESTIMATE suboption requests plots of “leave-one-out” estimates for the fixed
effects and group variances.

ods html;
ods graphics on;

proc mixed data=absorb asycov;
class FatType;
model Absorbed = FatType / s

influence(iter=10 estimates);
repeated / group=FatType;
ods output Influence=inf;

run;

ods graphics off;
ods html close;
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The “Influence” table is output to the SAS data setinf so that parameter estimates can
be printed subsequently. Results from this analysis are shown inOutput 46.7.1.

Output 46.7.1. Heterogeneous Variance Analysis

The Mixed Procedure

Model Information

Data Set WORK.ABSORB
Dependent Variable Absorbed
Covariance Structure Variance Components
Group Effect FatType
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Covariance Parameter Estimates

Cov Parm Group Estimate

Residual FatType 1 178.00
Residual FatType 2 60.4000
Residual FatType 3 97.6000
Residual FatType 4 67.6000

Solution for Fixed Effects

Fat Standard
Effect Type Estimate Error DF t Value Pr > |t|

Intercept 162.00 3.3566 20 48.26 <.0001
FatType 1 10.0000 6.3979 20 1.56 0.1337
FatType 2 23.0000 4.6188 20 4.98 <.0001
FatType 3 14.0000 5.2472 20 2.67 0.0148
FatType 4 0 . . . .

The variances in the four groups are shown in the “Covariance Parameter Estimates”
table. The estimated variance in the first group is two to three times larger than the
variance in the other groups.

The fixed effects solutions correspond to estimates of the following parameters:

Intercept : µ + τ4

FatType 1 : τ1 − τ4

FatType 2 : τ2 − τ4

FatType 3 : τ3 − τ4

FatType 4 : 0

You can easily verify that these estimates are simple functions of the arithmetic means
yi. in the groups. For example,̂µ + τ4 = y4. = 162.0, τ̂1 − τ4 = y1. − y4. = 10.0,
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and so forth. The covariance parameter estimates are the sample variances in the
groups and are uncorrelated.

The Mixed Procedure

Asymptotic Covariance Matrix of Estimates

Row Cov Parm CovP1 CovP2 CovP3 CovP4

1 Residual 12674
2 Residual 1459.26
3 Residual 3810.30
4 Residual 1827.90

The following statements print the “leave-one-out” estimates for fixed effects and
covariance parameters that were written to theinf data set with the ESTIMATES
suboption.

proc print data=inf label;
var parm1-parm5 covp1-covp4;

run;

Output 46.7.2. Leave-One-Out Estimates

Residual Residual Residual Residual
Fat Fat Fat Fat FatType FatType FatType FatType

Obs Intercept Type 1 Type 2 Type 3 Type 4 1 2 3 4

1 162.00 11.600 23.000 14.000 0 203.30 60.400 97.60 67.600
2 162.00 10.000 23.000 14.000 0 222.47 60.400 97.60 67.600
3 162.00 10.800 23.000 14.000 0 217.68 60.400 97.60 67.600
4 162.00 9.000 23.000 14.000 0 214.99 60.400 97.60 67.600
5 162.00 13.200 23.000 14.000 0 145.70 60.400 97.60 67.600
6 162.00 5.400 23.000 14.000 0 63.80 60.400 97.60 67.600
7 162.00 10.000 24.400 14.000 0 178.00 60.795 97.60 67.600
8 162.00 10.000 21.800 14.000 0 178.00 64.691 97.60 67.600
9 162.00 10.000 20.600 14.000 0 178.00 32.296 97.60 67.600

10 162.00 10.000 23.600 14.000 0 178.00 72.797 97.60 67.600
11 162.00 10.000 23.000 14.000 0 178.00 75.490 97.60 67.600
12 162.00 10.000 24.600 14.000 0 178.00 56.285 97.60 67.600
13 162.00 10.000 23.000 14.200 0 178.00 60.400 121.68 67.600
14 162.00 10.000 23.000 10.600 0 178.00 60.400 35.30 67.600
15 162.00 10.000 23.000 13.600 0 178.00 60.400 120.79 67.600
16 162.00 10.000 23.000 15.000 0 178.00 60.400 114.50 67.600
17 162.00 10.000 23.000 16.600 0 178.00 60.400 71.30 67.600
18 162.00 10.000 23.000 14.000 0 178.00 60.400 121.98 67.600
19 163.40 8.600 21.600 12.600 0 178.00 60.400 97.60 69.799
20 161.20 10.800 23.800 14.800 0 178.00 60.400 97.60 79.698
21 164.60 7.400 20.400 11.400 0 178.00 60.400 97.60 33.800
22 161.60 10.400 23.400 14.400 0 178.00 60.400 97.60 83.292
23 160.40 11.600 24.600 15.600 0 178.00 60.400 97.60 65.299
24 160.80 11.200 24.200 15.200 0 178.00 60.400 97.60 73.677
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The estimate of the intercept is affected only when observations from the last group
are removed. The estimate of the “FatType 1” effect reacts to removal of observations
in the first and last group (Output 46.7.3).

While observations can impact one or more fixed effects solutions in this model, they
can only affect one covariance parameter, the variance in their group (Output 46.7.4).
Observations 6, 9, 14, and 21, which are extreme in their group, reduce the group
variance considerably.

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement. For general information about ODS graphics, seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the MIXED procedure, see the“ODS Graphics”section on page 2757.

Output 46.7.3. Fixed Effects Delete Estimates (Experimental)
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Output 46.7.4. Covariance Parameter Delete Estimates (Experimental)

Diagnostics related to residuals and predicted values are printed with the following
statements.

proc print data=inf label;
var observed predicted residual pressres

student Rstudent;
run;

Observations 6, 9, 14, and 21 have large studentized residuals (Output 46.7.5). That
the externally studentized residuals are much larger than the internally studentized
residuals for these observations indicates that the variance estimate in the group
shrinks when the observation is removed. Also important to note is that comparisons
based on raw residuals in models with heterogeneous variance can be misleading.
Observation 5, for example, has a larger residual but a smaller studentized residual
than observation 21. The variance for the first fat type is much larger than the vari-
ance in the fourth group. A “large” residual is more “surprising” in the groups with
small variance.
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Output 46.7.5. Residual Diagnostics

Internally Externally
Observed Predicted PRESS Studentized Studentized

Obs Value Mean Residual Residual Residual Residual

1 164.000 172.000 -8.000 -9.600 -0.6569 -0.6146
2 172.000 172.000 0.000 0.000 0.0000 0.0000
3 168.000 172.000 -4.000 -4.800 -0.3284 -0.2970
4 177.000 172.000 5.000 6.000 0.4105 0.3736
5 156.000 172.000 -16.000 -19.200 -1.3137 -1.4521
6 195.000 172.000 23.000 27.600 1.8885 3.1544
7 178.000 185.000 -7.000 -8.400 -0.9867 -0.9835
8 191.000 185.000 6.000 7.200 0.8457 0.8172
9 197.000 185.000 12.000 14.400 1.6914 2.3131

10 182.000 185.000 -3.000 -3.600 -0.4229 -0.3852
11 185.000 185.000 -0.000 -0.000 -0.0000 -0.0000
12 177.000 185.000 -8.000 -9.600 -1.1276 -1.1681
13 175.000 176.000 -1.000 -1.200 -0.1109 -0.0993
14 193.000 176.000 17.000 20.400 1.8850 3.1344
15 178.000 176.000 2.000 2.400 0.2218 0.1993
16 171.000 176.000 -5.000 -6.000 -0.5544 -0.5119
17 163.000 176.000 -13.000 -15.600 -1.4415 -1.6865
18 176.000 176.000 -0.000 0.000 -0.0000 -0.0000
19 155.000 162.000 -7.000 -8.400 -0.9326 -0.9178
20 166.000 162.000 4.000 4.800 0.5329 0.4908
21 149.000 162.000 -13.000 -15.600 -1.7321 -2.4495
22 164.000 162.000 2.000 2.400 0.2665 0.2401
23 170.000 162.000 8.000 9.600 1.0659 1.0845
24 168.000 162.000 6.000 7.200 0.7994 0.7657

Diagnostics related to the fixed effects estimates, their precision, and the overall influ-
ence on the analysis (likelihood distance) are printed with the following statements.

proc print data=inf label;
var leverage observed CookD DFFITS CovRatio RLD;

run;
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Output 46.7.6. Restricted Likelihood Distance and Fixed Effects Diagnostics

Restr.
Observed Cook’s Likelihood

Obs Leverage Value D DFFITS COVRATIO Distance

1 0.16667 164.000 0.02157 -0.27487 1.3706 0.1178
2 0.16667 172.000 0.00000 0.00000 1.4998 0.1156
3 0.16667 168.000 0.00539 -0.13282 1.4675 0.1124
4 0.16667 177.000 0.00843 0.16706 1.4494 0.1117
5 0.16667 156.000 0.08629 -0.64938 0.9822 0.5290
6 0.16667 195.000 0.17831 1.41069 0.4301 5.8101
7 0.16667 178.000 0.04868 -0.43982 1.2078 0.1935
8 0.16667 191.000 0.03576 0.36546 1.2853 0.1451
9 0.16667 197.000 0.14305 1.03446 0.6416 2.2909

10 0.16667 182.000 0.00894 -0.17225 1.4463 0.1116
11 0.16667 185.000 0.00000 -0.00000 1.4998 0.1156
12 0.16667 177.000 0.06358 -0.52239 1.1183 0.2856
13 0.16667 175.000 0.00061 -0.04441 1.4961 0.1151
14 0.16667 193.000 0.17766 1.40175 0.4340 5.7044
15 0.16667 178.000 0.00246 0.08915 1.4851 0.1139
16 0.16667 171.000 0.01537 -0.22892 1.4078 0.1129
17 0.16667 163.000 0.10389 -0.75423 0.8766 0.8433
18 0.16667 176.000 0.00000 0.00000 1.4998 0.1156
19 0.16667 155.000 0.04349 -0.41047 1.2390 0.1710
20 0.16667 166.000 0.01420 0.21950 1.4148 0.1124
21 0.16667 149.000 0.15000 -1.09545 0.6000 2.7343
22 0.16667 164.000 0.00355 0.10736 1.4786 0.1133
23 0.16667 170.000 0.05680 0.48500 1.1592 0.2383
24 0.16667 168.000 0.03195 0.34245 1.3079 0.1353

Output 46.7.7. REML Distance and Fixed Effects Diagnostics (Experimental)
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Scanning the restricted likelihood distances, observations 6, 9, 14, and 21 clearly
displace the REML solution more than any other observations (Output 46.7.6, Output
46.7.7). These observations are also associated with large values for Cook’sD and
values of COVRATIO far less than one. The latter indicates that the fixed effects are
estimated more precisely when these observations are removed from the analysis.

The same conclusions hold for the covariance parameter estimates.

proc print data=inf label;
var iter CookDCP CovRatioCP;

run;

Observations 6, 9, 14, and 21 change the estimates and their precision considerably
(Output 46.7.8, Output 46.7.9). All iterative updates converged within at most four
iterations.

Output 46.7.8. Covariance Parameter Diagnostics

Cook’s D COVRATIO
Obs Iterations CovParms CovParms

1 3 0.05050 1.6306
2 3 0.15603 1.9520
3 3 0.12426 1.8692
4 3 0.10796 1.8233
5 4 0.08232 0.8375
6 4 1.02909 0.1606
7 1 0.00011 1.2662
8 2 0.01262 1.4335
9 3 0.54126 0.3573

10 3 0.10531 1.8156
11 3 0.15603 1.9520
12 2 0.01160 1.0849
13 3 0.15223 1.9425
14 4 1.01865 0.1635
15 3 0.14111 1.9141
16 3 0.07494 1.7203
17 3 0.18154 0.6671
18 3 0.15603 1.9520
19 2 0.00265 1.3326
20 3 0.08008 1.7374
21 1 0.62500 0.3125
22 3 0.13472 1.8974
23 2 0.00290 1.1663
24 2 0.02020 1.4839
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Output 46.7.9. Covariance Parameter Diagnostics (Experimental)

Example 46.8. Influence Analysis for Repeated Measures Data
(Experimental)

This example revisits the repeated measures data analyzed inExample 46.2. Recall
that the data consist of growth measurements at ages 8, 10, 12, and 14 for 11 girls
and 16 boys. The model being fit contains fixed effects forGender, Age and their
interaction.

The earlier analysis of these data indicated some unusual observations in this data
set. Because of the clustered data structure it is of interest to study the influence of
clusters (children) on the analysis rather than the influence of individual observations.
A cluster comprises the repeated measurements for each child.

The repeated measures are first modeled with an unstructured within-child variance-
covariance matrix. A residual variance is not profiled in this model. A noniterative
influence analysis will update the fixed effects only. The statements

proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /

influence(effect=person);
repeated / type=un subject=person;
ods select influence;

run;

request this noniterative maximum likelihood analysis and produceOutput 46.8.1.
Each observation in the “Influence Diagnostics” table represents the removal of four
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observations. The subjects 10, 15, and 24 have the greatest impact on the fixed effects
(Cook’sD), and subject 10 and 21 have large PRESS statistics. The twenty-first child
has a large PRESS statistic, and itsD statistic is not that extreme. This is an indication
that the model fits rather poorly for this child, whether it is part of the data or not.

Output 46.8.1. Default Influence Statistics in Noniterative Analysis

The Mixed Procedure

Influence Diagnostics for Levels of Person

Number of
Observations PRESS Cook’s

Person in Level Statistic D

1 4 10.1716 0.01539
2 4 3.8187 0.03988
3 4 10.8448 0.02891
4 4 24.0339 0.04515
5 4 1.6900 0.01613
6 4 11.8592 0.01634
7 4 1.1887 0.00521
8 4 4.6717 0.02742
9 4 13.4244 0.03949

10 4 85.1195 0.13848
11 4 67.9397 0.09728
12 4 40.6467 0.04438
13 4 13.0304 0.00924
14 4 6.1712 0.00411
15 4 24.5702 0.12727
16 4 20.5266 0.01026
17 4 9.9917 0.01526
18 4 7.9355 0.01070
19 4 15.5955 0.01982
20 4 42.6845 0.01973
21 4 95.3282 0.10075
22 4 13.9649 0.03778
23 4 4.9656 0.01245
24 4 37.2494 0.15094
25 4 4.3756 0.03375
26 4 8.1448 0.03470
27 4 20.2913 0.02523

The previous analysis does not take into account the effect on the covariance param-
eters when a subject is removed from the analysis. If you also update the covariance
parameters, the impact of observations on these can amplify or allay their effect on
the fixed effects. To assess the overall influence of subjects on the analysis and to
compute separate statistics for the fixed effects and covariance parameters, an itera-
tive analysis is obtained by adding the INFLUENCE suboption ITER=.
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ods html;
ods graphics on;

proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /

influence(effect=person iter=5);
repeated / type=un subject=person;

run;

ods graphics off;
ods html close;

The number of additional iterations following removal of the observations for a par-
ticular subject is limited to five. Graphical displays of influence diagnostics are re-
quested by specifying the experimental ODS GRAPHICS statement. The MIXED
procedure produces a plot of influence statistics that pertain to overall influence and
the fixed effects (Output 46.8.2) and a second panel that shows the influence on the
covariance parameters (Output 46.8.3). For general information about ODS graphics,
seeChapter 15, “Statistical Graphics Using ODS.”For specific information about the
graphics available in the MIXED procedure, see the“ODS Graphics”section on page
2757.

Output 46.8.2. Overall and Fixed Effects Diagnostics (Experimental)

As judged by the restricted likelihood distance inOutput 46.8.2, subjects 20 and 24
clearly have the most influence on the overall analysis. The reference line in this plot
is the 75th percentile of a chi-square distribution with degrees of freedom equal to
the number of parameters being updated (14). Comparing theD statistics for fixed
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effects and covariance parameters, subject 20 has a dramatic effect on the estimates
of variances and covariances. This subject also affects the precision of the covariance
parameter estimates more than any other subject inOutput 46.8.3(COVRATIO near
0, large COVTRACE, MDFFITS large compared to Cook’sD).

Output 46.8.3. Covariance Parameter Diagnostics (Experimental)

The child who exerts the greatest influence on the fixed effects is subject 24. Maybe
surprisingly, this subject impacts the variance-covariance matrix of the fixed effects
more than subject 20 (small COVRATIO inOutput 46.8.3).

The final model investigated for these data is a random coefficient model as in Stram
and Lee (1994) with random effects for the intercept and age effect. The following
statements examine the estimates for fixed effects and the entries of the unstructured
2× 2 variance matrix of the random coefficients graphically.

ods html;
ods graphics on;

proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /

influence(iter=5 effect=person est);
random intercept age / type=un subject=person;
ods select InfluenceEstParmPanel1

InfluenceEstCovPPanel1;
run;

ods graphics off;
ods html close;
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In Output 46.8.4the graphs on the left-hand side of the panel represent the intercept
and slope estimate for boys; the graphs on the right-hand side represent the difference
in intercept and slope between boys and girls. Removing any one of the first eleven
children, who are girls, does not alter the intercept or slope in the group of boys. The
difference in these parameters between boys and girls is altered by the removal of
any child. Subject 24 changes the fixed effects considerably, subject 20 much less so.
This is consistent with findings based on the unstructured variance-covariance model
(Output 46.8.2).

Output 46.8.4. Fixed Effects Delete Estimates (Experimental)

The covariance parameter estimates inOutput 46.8.5show several important features.

• The panels do not contain information on subject 24. Estimation of theG
matrix following removal of that child did not yield a positive definite matrix.
As a consequence, covariance parameter diagnostics are not produced for this
subject.

• Subject 20 has great impact on the four covariance parameters. Removing
this child from the analysis increases the variance of the random intercept and
random slope and reduces the residual variance by almost 80%. The repeated
measurements of this child exhibit an up-and-down behavior.

• The variance of the random intercept and slope are reduced when child 15 is
removed from the analysis. This child’s growth measurements oscillate about
27.0 from age 10 on.
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Output 46.8.5. Covariance Parameter Delete Estimates (Experimental)

Examining observed and residual values by levels of classification variables is also
a useful tool to diagnose the adequacy of the model and unusual observations. Box
plots for effects in the model that comprise a single classification variable are re-
quested with the experimental ODS GRAPHICS statement and the experimental
BOXPLOT option of the PROC MIXED statement. Since this includes SUBJECT=
and GROUP= effects, the statements

ods html;
ods graphics on;

proc mixed data=pr method=ml boxplot;
class person gender;
model y = gender age gender*age;
random intercept age / type=un subject=person;

run;

ods graphics off;
ods html close;

produce six box plots in the following order:Y by Gender, residual byGender, Y
by Person, residual byPerson, and conditional residuals byGender andPerson.
The plots for thePerson effect are shown inOutput 46.8.6–Output 46.8.8.

Box plots of the observed values show the variation within and between children
clearly. The group of girls (subjects 1–11) is distinguishable from the group of boys
by somewhat lesser average growth and lesser within-child variation (Output 46.8.6).
After adjusting for overall (population-averaged) gender and age effects, the resid-
ual within-child variation is reduced but substantial differences in the means remain
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(Output 46.8.7). If child-specific inferences are desired, a model accounting for only
Gender, Age, andGender*Age effects is not adequate for these data.

Output 46.8.6. Distribution of Observed Values (Experimental)

Output 46.8.7. Distribution of Marginal Residuals (Experimental)
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The conditional residuals incorporate the EBLUPs for each child and enable you to
examine whether the subject-specific model is adequate (Output 46.8.8). By using
each child “as its own control” the residuals are now centered near zero. Subjects 20
and 24 stand out as unusual in all three sets of box plots.

Output 46.8.8. Distribution of Conditional Residuals (Experimental)

Example 46.9. Examining Individual Test Components

The LCOMPONENTS option of the MODEL statement enables you to perform sin-
gle degree of freedom tests for individual rows of theL matrix. Such tests are useful
to identify interaction patterns. In a balanced layout, Type 3 components ofL asso-
ciated withA*B interactions correspond to simple contrasts of cell mean differences.

The first example revisits the data from the split-plot design by Stroup (1989a) that
was analyzed inExample 46.1on page 2777. Recall that variablesA andB represent
the whole-plot and subplot factors, respectively.

proc mixed data=sp;
class a b block ;
model y = a b a*b / LComponents e3;
random block a*block;

run;

The MIXED procedure constructs a separateL matrix for each of the three fixed
effects components. The matrices are displayed inOutput 46.9.1. The test for fixed
effects are shown inOutput 46.9.2.
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Output 46.9.1. Coefficients of Type 3 Estimable Functions

The Mixed Procedure

Type 3 Coefficients for A

Effect A B Row1 Row2

Intercept
A 1 1
A 2 1
A 3 -1 -1
B 1
B 2
A*B 1 1 0.5
A*B 1 2 0.5
A*B 2 1 0.5
A*B 2 2 0.5
A*B 3 1 -0.5 -0.5
A*B 3 2 -0.5 -0.5

Type 3 Coefficients for B

Effect A B Row1

Intercept
A 1
A 2
A 3
B 1 1
B 2 -1
A*B 1 1 0.3333
A*B 1 2 -0.333
A*B 2 1 0.3333
A*B 2 2 -0.333
A*B 3 1 0.3333
A*B 3 2 -0.333

Type 3 Coefficients for A*B

Effect A B Row1 Row2

Intercept
A 1
A 2
A 3
B 1
B 2
A*B 1 1 1
A*B 1 2 -1
A*B 2 1 1
A*B 2 2 -1
A*B 3 1 -1 -1
A*B 3 2 1 1



Example 46.9. Examining Individual Test Components � 2841

Output 46.9.2. Type 3 Tests in Split-Plot Example

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

A 2 6 4.07 0.0764
B 1 9 19.39 0.0017
A*B 2 9 4.02 0.0566

If µi. denotes a whole-plot main effect mean,µ.j denotes a subplot main effect mean,
andµij denotes a cell mean, the five components shown inOutput 46.9.3correspond
to tests of

• H0 : µ1. = µ2.

• H0 : µ2. = µ3.

• H0 : µ.1 = µ.2

• H0 : µ11 − µ12 = µ31 − µ32

• H0 : µ21 − µ22 = µ31 − µ32

Output 46.9.3. Type 3 LComponents Table

The Mixed Procedure

L Components of Type 3 Tests of Fixed Effects

L Standard
Effect Index Estimate Error DF t Value Pr > |t|

A 1 7.1250 3.1672 6 2.25 0.0655
A 2 8.3750 3.1672 6 2.64 0.0383
B 1 5.5000 1.2491 9 4.40 0.0017
A*B 1 7.7500 3.0596 9 2.53 0.0321
A*B 2 7.2500 3.0596 9 2.37 0.0419

The first three components are comparisons of marginal means. The fourth compo-
nent compares the effect of factorB at the first whole-plot level against the effect of
B at the third whole-plot level. Finally, the last component tests whether the factorB
effect changes between the second and third whole-plot level.
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The Type 3 component tests can also be produced with corresponding ESTIMATE
statements.

proc mixed data=sp;
class a b block ;
model y = a b a*b;
random block a*block;
estimate ’a 1’ a 1 0 -1;
estimate ’a 2’ a 0 1 -1;
estimate ’b 1’ b 1 -1;
estimate ’a*b 1’ a*b 1 -1 0 0 -1 1;
estimate ’a*b 2’ a*b 0 0 1 -1 -1 1;
ods select estimates;

run;

The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

a 1 7.1250 3.1672 6 2.25 0.0655
a 2 8.3750 3.1672 6 2.64 0.0383
b 1 5.5000 1.2491 9 4.40 0.0017
a*b 1 7.7500 3.0596 9 2.53 0.0321
a*b 2 7.2500 3.0596 9 2.37 0.0419

A second useful application of the LCOMPONENT option is in polynomial models
where Type 1 tests are often used to test the entry of model terms sequentially. The
SOLUTION option of the MODEL statement displays the regression coefficients that
correspond to a Type 3 analysis, that is,

• the coefficients represent the partial coefficients you would get by adding the
regressor variable last in a model containing all other effects

• the tests are identical to those in the “Type 3 Tests of Fixed Effects” table

Consider the following data set and the fit of a third order polynomial regression
model.

data polynomial;
do x=1 to 20; input y@@; output; end;
datalines;

1.092 1.758 1.997 3.154 3.880
3.810 4.921 4.573 6.029 6.032
6.291 7.151 7.154 6.469 7.137
6.374 5.860 4.866 4.155 2.711
;

proc mixed data=polynomial;
model y = x x*x x*x*x / s lcomponents htype=1;

run;
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Thet-tests displayed in the “Solution for Fixed Effects” table are Type 3 tests, some-
times referred to as partial tests. They measure the contribution of a regressor in the
presence of all other regressor variables in the model.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 0.7837 0.3545 16 2.21 0.0420
x 0.3726 0.1426 16 2.61 0.0189
x*x 0.04756 0.01558 16 3.05 0.0076
x*x*x -0.00306 0.000489 16 -6.27 <.0001

The Type 3 L components are identical to the tests in the “Solutions for Fixed Effects”
table. The Type 1 table yields

• sequential (Type 1) tests of regression variables which test the significance of
a regressor given all other variables preceding it in the model list

• the regression coefficients for sequential submodels

The Mixed Procedure

L Components of Type 1 Tests of Fixed Effects

L Standard
Effect Index Estimate Error DF t Value Pr > |t|

x 1 0.1763 0.01259 16 14.01 <.0001
x*x 1 -0.04886 0.002449 16 -19.95 <.0001
x*x*x 1 -0.00306 0.000489 16 -6.27 <.0001

L Components of Type 3 Tests of Fixed Effects

L Standard
Effect Index Estimate Error DF t Value Pr > |t|

x 1 0.3726 0.1426 16 2.61 0.0189
x*x 1 0.04756 0.01558 16 3.05 0.0076
x*x*x 1 -0.00306 0.000489 16 -6.27 <.0001

The estimate of0.1763 is the regression coefficient in a simple linear regression of
Y on X. The estimate of−0.04886 is the partial coefficient for the quadratic term
when it is added to a model containing only a linear component. Similarly, the value
−0.00306 is the partial coefficient for the cubic term when it is added to a model
containing a linear and quadratic component. The last Type 1 component is always
identical to the corresponding Type 3 component.
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Chapter 47
The MODECLUS Procedure
Overview

The MODECLUS procedure clusters observations in a SAS data set using any of
several algorithms based on nonparametric density estimates. The data can be nu-
meric coordinates or distances. PROC MODECLUS can perform approximate sig-
nificance tests for the number of clusters and can hierarchically join nonsignificant
clusters. The significance tests are empirically validated by simulations with sample
sizes ranging from 20 to 2000.

PROC MODECLUS produces output data sets containing density estimates and clus-
ter membership, various cluster statistics including approximatep-values, and a sum-
mary of the number of clusters generated by various algorithms, smoothing parame-
ters, and significance levels.

Most clustering methods are biased toward finding clusters possessing certain char-
acteristics related to size (number of members), shape, or dispersion. Methods based
on the least-squares criterion (Sarle 1982), such ask-means and Ward’s minimum
variance method, tend to find clusters with roughly the same number of observations
in each cluster. Average linkage (seeChapter 23, “The CLUSTER Procedure,”) is
somewhat biased toward finding clusters of equal variance. Many clustering methods
tend to produce compact, roughly hyperspherical clusters and are incapable of detect-
ing clusters with highly elongated or irregular shapes. The methods with the least bias
are those based on nonparametric density estimation (Silverman 1986, pp. 130–146;
Scott 1992, pp. 125–190) such as density linkage (seeChapter 23, “The CLUSTER
Procedure,” Wong and Lane 1983, and Wong and Schaack 1982). The biases of
many commonly used clustering methods are discussed inChapter 7, “Introduction
to Clustering Procedures.”

PROC MODECLUS implements several clustering methods using nonparametric
density estimation. Such clustering methods are referred to hereafter asnonpara-
metric clustering methods. The methods in PROC MODECLUS are related to, but
not identical to, methods developed by Gitman (1973), Huizinga (1978), Koontz and
Fukunaga (1972a, 1972b), Koontz, Narendra, and Fukunaga (1976), Mizoguchi and
Shimura (1980), and Wong and Lane (1983). Details of the algorithms are provided
in the section“Clustering Methods”on page 2874.

For nonparametric clustering methods, a cluster is loosely defined as a region sur-
rounding a local maximum of the probability density function (see the section
“Significance Tests”on page 2876 for a more rigorous definition). Given a suffi-
ciently large sample, nonparametric clustering methods are capable of detecting clus-
ters of unequal size and dispersion and with highly irregular shapes. Nonparametric
methods can also obtain good results for compact clusters of equal size and disper-
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sion, but they naturally require larger sample sizes for good recovery than clustering
methods that are biased toward finding such “nice” clusters.

For coordinate data, nonparametric clustering methods are less sensitive to changes
in scale of the variables or to affine transformations of the variables than are most
other commonly used clustering methods. Nevertheless, it is necessary to consider
questions of scaling and transformation, since variables with large variances tend to
have more effect on the resulting clusters than those with small variances. If two or
more variables are not measured in comparable units, some type of standardization
or scaling is necessary; otherwise, the distances used by the procedure may be based
on inappropriate apples-and-oranges computations. For variables with comparable
units of measurement, standardization or scaling may still be desirable if the scale
estimates of the variables are not related to their expected importance for defining
clusters. If you want two variables to have equal importance in the analysis, they
should have roughly equal scale estimates. If you want one variable to have more
effect than another, the former should be scaled to have a greater scale estimate than
the latter. The STD option in the PROC MODECLUS statement scales all variables
to equal variance. However, the variance is not necessarily the most appropriate scale
estimate for cluster analysis. In particular, outliers should be removed before using
PROC MODECLUS with the STD option. A variety of scale estimators including
robust estimators are provided in the STDIZE procedure (for detailed information,
seeChapter 66, “The STDIZE Procedure,”). Additionally, the ACECLUS procedure
provides another way to transform the variables to try to improve the separation of
clusters.

Since clusters are defined in terms of local maxima of the probability density func-
tion, nonlinear transformations of the data may change the number of population
clusters. The variables should be transformed so that equal differences are of equal
practical importance. An interval scale of measurement is required. Ordinal or ranked
data are generally inappropriate, since monotone transformations can produce any ar-
bitrary number of modes.

Unlike the methods in the CLUSTER procedure, the methods in the MODECLUS
procedure are not inherently hierarchical. However, PROC MODECLUS can do ap-
proximate nonparametric significance tests for the number of clusters by obtaining
an approximatep-value for each cluster, and it can hierarchically join nonsignificant
clusters.

Another important difference between the MODECLUS procedure and many other
clustering methods is that you do not tell PROC MODECLUS how many clus-
ters you want. Instead, you specify asmoothing parameter(see the section
“Density Estimation”on page 2870) and, optionally, a significance level, and PROC
MODECLUS determines the number of clusters. You can specify a list of smoothing
parameters, and PROC MODECLUS performs a separate cluster analysis for each
value in the list.
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Getting Started

This section illustrates how PROC MODECLUS can be used to examine the clusters
of data in the following artificial data set.

data example;
input x y @@;
datalines;

18 18 20 22 21 20 12 23 17 12 23 25 25 20 16 27
20 13 28 22 80 20 75 19 77 23 81 26 55 21 64 24
72 26 70 35 75 30 78 42 18 52 27 57 41 61 48 64
59 72 69 72 80 80 31 53 51 69 72 81
;

It is a good practice to plot the data to check for obvious clusters or pathologies prior
to the analysis. The interactive graphics of the SAS/INSIGHT product are effective
for visualizing clusters. In this example, with only two variables and a small sample
size, the GPLOT procedure is adequate. The following statements produceFigure
47.1:

axis1 label=(angle=90 rotate=0) minor=none
order=(0 to 80 by 20);

axis2 minor=none;
proc gplot;

plot y*x /frame cframe=ligr vaxis=axis1 haxis=axis2;
run;

The plot suggests three clusters. Of these clusters, the one in the lower left corner is
the most compact, while the lower right cluster is more dispersed.

The upper cluster is elongated and would be difficult for most clustering algorithms
to identify as a single cluster. The plot also suggests that a Euclidean distance of
10 or 20 is a good initial guess for the neighborhood size in density estimation and
clustering.
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Figure 47.1. Scatter Plot of Data

To obtain a cluster analysis, you must specify the METHOD= option; for most pur-
poses, METHOD=1 is recommended. The cluster analysis can be performed with a
list of radii (R=10 15 35), as illustrated in the following PROC MODECLUS step.
An output data set containing the cluster membership is created with the OUT= op-
tion and then used by PROC GPLOT to display the membership. The following
statements produceFigure 47.2throughFigure 47.5:

proc modeclus data=example method=1 r=10 15 35 out=out;
run;

For each cluster solution, PROC MODECLUS produces a table of cluster statistics
including the cluster number, the number of observations in the cluster, the maximum
estimated density within the cluster, the number of observations in the cluster having
a neighbor that belongs to a different cluster, and the estimated saddle density of
the cluster. The results are displayed inFigure 47.2, Figure 47.3, andFigure 47.4
for three different radii. A smaller radius (R=10) yields a larger number of clusters
(6), as displayed inFigure 47.1; a larger radius (R=35) includes all observations in a
single cluster, as displayed inFigure 47.5. Note that all clusters in these three figures
are “isolated” since their corresponding boundary frequencies are all 0s. Therefore,
all the estimated saddle densities are missing.
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The MODECLUS Procedure
R=10 METHOD=1

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 10 0.00106103 0 .
2 9 0.00084883 0 .
3 7 0.00031831 0 .
4 2 0.00021221 0 .
5 1 0.0001061 0 .
6 1 0.0001061 0 .

Figure 47.2. Results from PROC MODECLUS for METHOD=1 and R=10

The MODECLUS Procedure
R=15 METHOD=1

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 10 0.00047157 0 .
2 10 0.00042441 0 .
3 10 0.00023579 0 .

Figure 47.3. Results from PROC MODECLUS for METHOD=1 and R=15

The MODECLUS Procedure
R=35 METHOD=1

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 30 0.00012126 0 .

Figure 47.4. Results from PROC MODECLUS for METHOD=1 and R=35

A table summarizing each cluster solution is then produced, as displayed inFigure
47.5.
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The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Clusters Objects

------------------------------------
10 6 0
15 3 0
35 1 0

Figure 47.5. Summary Table

The OUT= data set contains a complete copy of the input data set for each cluster
solution. Using a BY statement in the following PROC GPLOT step, you can exam-
ine the differences in cluster memberships for each radius. The following statements
produceFigure 47.6throughFigure 47.8:

symbol1 v=’1’ font=swiss c=white; symbol2 v=’2’ font=swiss c=yellow;
symbol3 v=’3’ font=swiss c=cyan; symbol4 v=’4’ font=swiss c=green;
symbol5 v=’5’ font=swiss c=orange;symbol6 v=’6’ font=swiss c=blue;
symbol7 v=’7’ font=swiss c=black;
proc gplot data=out;

plot y*x=cluster /frame cframe=ligr nolegend vaxis=axis1
haxis=axis2;

by _r_;
run;

Figure 47.6. Scatter Plots of Cluster Memberships with –R–=10
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Figure 47.7. Scatter Plots of Cluster Memberships with –R–=15

Figure 47.8. Scatter Plots of Cluster Memberships with –R–=35
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Syntax

The following statements invoke the MODECLUS procedure:

PROC MODECLUS < options > ;
BY variables ;
FREQ | FREQUENCY variable ;
ID variable ;
VAR | VARIABLES variables ;

The PROC MODECLUS statement is required. All other statements are optional.

PROC MODECLUS Statement

PROC MODECLUS < options > ;

The PROC MODECLUS statement invokes the procedure.

Options available in the PROC MODECLUS statement are classified by function in
Table 47.1. The corresponding default value for each option, if applicable, is also
listed in this table.

Table 47.1. Functional Summary

Description Option Default Value

Data Sets
specify input data set name DATA= –LAST–
specify output data set name for observations OUT=
specify output data set name for clusters OUTC=
specify output data set name for cluster solutions OUTS=

Variables in Output Data Sets
specify variable in the OUT= and

OUTCLUS= data sets identifying clusters
CLUSTER= CLUSTER

specify variable in the OUT= data set contain-
ing density estimates

DENSITY= DENSITY

specify length of variables in the output data
sets

OUTLENGTH= 8

Results and Data Processing before Clustering∗

request simple statistics SIMPLE
standardize the variables to mean 0 and stan-

dard deviation 1
STANDARD

Smoothing Parameters
specify number of neighbors to use forkth-

nearest-neighbor density estimation
DK=

∗for coordinate data only
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Table 47.1. (continued)

Description Option Default Value

specify number of neighbors to use for clustering CK=
specify number of neighbors to use forkth-

nearest-neighbor density estimation and
clustering

K=

specify radius of the sphere of support for
uniform-kernel density estimation

DR=

specify radius of the neighborhood for clustering CR=
specify radius of the sphere of support for

uniform-kernel density estimation and the
neighborhood clustering

R=

Density Estimation Options
specify number of times the density estimates

are to be cascaded
CASCADE= 0

compute the likelihood cross-validation crite-
rion

CROSS or CROSSLIST

specify dimensionality to be used when com-
puting density estimates

DIMENSION= nvar∗ or 1 †

use arithmetic means for cascading density
estimates

AM

use harmonic means for cascading density es-
timates

HM

use sums for cascading density estimates SUM

Clustering Methods Options
dissolve clusters withn or fewer members DOCK
stop the analysis after obtaining a solution

with either no cluster or a single cluster
EARLY

request that nonsignificant clusters be hierar-
chically joined.

JOIN(=)

specify maximum number of clusters to be
obtained with METHOD=6

MAXCLUSTERS= no limit

specify clustering method to use METHOD=
specify minimum members for either cluster

to be designated a modal cluster when two
clusters are joined using METHOD=5

MODE= the value of K‡ or 2§

specify power of the density used with
METHOD=6

POWER= 2

specify approximate significance tests for the
number of clusters

TEST

∗number of variables, for coordinate data
†for distance data
‡when K= is specified
§when K= is not specified
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Table 47.1. (continued)

Description Option Default Value

specify assignment threshold used with
METHOD=6

THRESHOLD= 0.5

Miscellaneous Options
produce all optional output ALL
display the density and cluster membership of

observations with neighbors belonging to a
different cluster

BOUNDARY

retain the neighbor lists for each observation
in memory

CORE

display the estimated cross-validated log den-
sity of each observation

CROSSLIST

display the estimated density and cluster
membership of each observation

LIST

display estimates of local dimensionality and
write them to the OUT=data set

LOCAL

display the neighbors of each observation NEIGHBOR
suppress the display of the output NOPRINT
suppress the display of the summary of the

number of clusters, number of unassigned
observations, and maximump-value for
each analysis

NOSUMMARY

suppress the display of statistics for each clus-
ter

SHORT

trace the cluster assignments for the
METHOD=6 algorithm

TRACE

You can specify at least one of the following options for smoothing parameters for
density estimation: DK=, K=, DR=, or R=. To obtain a cluster analysis, you can
specify the METHOD= option and at least one of the following smoothing parameters
for clustering: CK=, K=, CR=, or R=. If you want significance tests for the number
of clusters, you should specify either the DR= or R= option. If none of the smoothing
parameters is specified, the MODECLUS procedure provides a default value for the
R= option. See the section“Density Estimation”on page 2870 for the formula of a
reasonable first guess for R= and a discussion of smoothing parameters.

You can specify lists of values for the DK=, CK=, K=, DR=, CR=, and R= options.
Numbers in the lists can be separated by blanks or commas. You can include in the
lists one or more items of the formstartTO stopBY increment. Each list can contain
either one value or the same number of values as in every other list that contains more
than one value. If a list has only one value, that value is used in combination with
all the values in longer lists. If two or more lists have more than one value, then one
analysis is done using the first value in each list, another analysis is done using the
second value in each list, and so on.

You can specify the following options in the PROC MODECLUS statement.



PROC MODECLUS Statement � 2865

ALL
produces all optional output.

AM
specifies arithmetic means for cascading density estimates. See the description of the
CASCADE= option.

BOUNDARY
displays the density and cluster membership of observations with neighbors belong-
ing to a different cluster.

CASCADE=n
CASC=n

specifies the number of times the density estimates are to be cascaded (see the section
“Density Estimation”on page 2870). The default value 0 performs no cascading.

You can specify a list of values for the CASCADE= option. Each value in the list
is combined with each combination of smoothing parameters to produce a separate
analysis.

CK=n
specifies the number of neighbors to use for clustering. The number of neighbors
should be at least 2 but less than the number of observations. See the section“Density
Estimation”on page 2870.

CLUSTER=name
provides a name for the variable in the OUT= and OUTCLUS= data sets identifying
clusters. The default name is CLUSTER.

CORE
keeps the neighbor lists for each observation in the computer memory to make small
problems run faster.

CR=n
specifies the radius of the neighborhood for clustering. See the section“Density
Estimation”on page 2870.

CROSS
computes the likelihood cross-validation criterion (Silverman 1986, pp. 52–55). This
option appears to be of limited usefulness (see the section“Density Estimation”on
page 2870).

CROSSLIST
displays the cross-validated log density of each observation.

DATA=SAS-data-set
specifies the input data set containing observations to be clustered. If you omit the
DATA= option, the most recently created SAS data set is used.

If the data set is TYPE=DISTANCE, the data are interpreted as a distance matrix.
The number of variables must equal the number of observations in the data set or
in each BY group. The distances are assumed to be Euclidean, but the procedure
accepts other types of distances or dissimilarities. Unlike the CLUSTER procedure,
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PROC MODECLUS uses the entire distance matrix, not just the lower triangle; the
distances are not required to be symmetric. The neighbors of a given observation
are determined solely from the distances in that observation. Missing values are
considered infinite. Various distance measures can be computed from coordinate
data using the DISTANCE procedure (for detailed information, seeChapter 26, “The
DISTANCE Procedure,”).

If the data set is not TYPE=DISTANCE, the data are interpreted as coordinates in a
Euclidean space, and Euclidean distances are computed. The variables can be discrete
or continuous and should be at the interval level of measurement.

DENSITY=name
provides a name for the variable in the OUT= data set containing density estimates.
The default name is DENSITY.

DIMENSION=n
DIM=n

specifies the dimensionality to be used when computing density estimates. The de-
fault is the number of variables if the data are coordinates; the default is 1 if the data
are distances.

DK=n
specifies the number of neighbors to use forkth-nearest-neighbor density estimation.
The number of neighbors should be at least 2 but less than the number of observations.
See the section“Density Estimation”on page 2870.

DOCK=n
dissolves clusters withn or fewer members by making the members unassigned.

DR=n
specifies the radius of the sphere of support for uniform-kernel density estimation.
See the section“Density Estimation”on page 2870.

EARLY
stops the cluster analysis after obtaining either a solution with no cluster or a solution
with one cluster to which all observations are assigned. The smoothing parameters
should be specified in increasing order. This can reduce the computer time required
for the analysis but may occasionally miss some multiple-cluster solutions.

HM
uses harmonic means for cascading density estimates. See the description of the
CASCADE= option.

JOIN<=p>
requests that nonsignificant clusters be hierarchically joined. The JOIN option im-
plies the TEST option. After each solution is obtained, the cluster with the largest
approximatep-value is either joined to a neighboring cluster or, if there is no neigh-
boring cluster, dissolved by making all of its members unassigned. After two clusters
are joined, an analysis of the remaining clusters is displayed.

If you do not specify ap-value with the JOIN= option, joining continues until only
one cluster remains, and the results are written to the output data sets after each
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analysis. If you specify ap-value with the JOIN= option, joining continues until the
greatest approximatep-value is less than the value given in the JOIN= option, and
only if there is more than one cluster are the results for that analysis written to the
output data sets.

Any value ofp less than 1E−8 is set to 1E−8.

K=n
specifies the number of neighbors to use forkth-nearest-neighbor density estimation
and clustering. The number of neighbors should be at least 2 but less than the number
of observations. Specifying K=n is equivalent to specifying both DK=n and CK=n.
See the section“Density Estimation”on page 2870.

LIST
displays the estimated density and cluster membership of each observation.

LOCAL
requests estimates of local dimensionality (Tukey and Tukey 1981, pp. 236–237).

MAXCLUSTERS=n
MAXC=n

specifies the maximum number of clusters to be obtained with the METHOD=6 op-
tion. By default, there is no fixed limit.

METHOD=n
MET=n
M=n

specifies what clustering method to use. Since these methods do not have widely
recognized names, the methods are indicated by numbers from 0 to 6. The methods
are described in the section“Clustering Methods”on page 2874. For most purposes,
METHOD=1 is recommended, although METHOD=6 may occasionally produce bet-
ter results in return for considerably greater computer time and space requirements.
METHOD=1 is not good for discrete coordinate data with only a few equally spaced
values. In this case, METHOD=6 or METHOD=3 works better. METHOD=4 or
METHOD=5 is less desirable than other methods when there are ties, since a general
characteristic of agglomerative hierarchical clustering methods is that the results are
indeterminate in the presence of ties.

You must specify the METHOD= option to obtain a cluster analysis.

You can specify a list of values for the METHOD= option. Each value in the list is
combined with each combination of smoothing and cascading parameters to produce
a separate cluster analysis.

MODE=n
specifies that when two clusters are joined using the METHOD=5 option (no other
methods are affected by the MODE= option), each must have at leastn members
for either cluster to be designated a modal cluster. In any case, each cluster must
also have a maximum density greater than the fusion density for either cluster to
be designated a modal cluster. If you specify the K= option, the default value of
the MODE= option is the same as the value of the K= option because the use of
kth-nearest-neighbor density estimation limits the resolution that can be obtained for
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clusters with fewer thank members. If you do not specify the K= option, the default
is MODE=2. If you specify MODE=0, the default value is used instead of 0. If
you specify a FREQ statement, the MODE= value is compared to the number of
observations in each cluster, not to the sum of the frequencies.

NEIGHBOR
displays the neighbors of each observation in a table called “Nearest Neighbor List.”

NOPRINT
suppresses the display of the output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

NOSUMMARY
suppresses the display of the summary of the number of clusters, number of unas-
signed observations, and maximump-value for each analysis.

OUT=SAS-data-set
specifies the output data set containing the input data plus density estimates, cluster
membership, and variables identifying the type of solution. There is an output ob-
servation corresponding to each input observation for each solution. Therefore, the
OUT= data set can be very large.

OUTCLUS=SAS-data-set
OUTC=SAS-data-set

specifies the output data set containing an observation corresponding to each cluster
in each solution. The variables identify the solution and contain statistics describing
the clusters.

OUTSUM=SAS-data-set
OUTS=SAS-data-set

specifies the output data set containing an observation corresponding to each cluster
solution giving the number of clusters and the number of unclassified observations
for that solution.

OUTLENGTH=n
OUTL=n

specifies the length of those output variables that are not copied from the input data
set but are created by PROC MODECLUS.

The OUTLENGTH= option applies only to the following variables that appear in all
of the output data sets:–K–, –DK–, –CK–, –R–, –DR–, –CR–, –CASCAD–,

–METHOD–, –NJOIN–, and –LOCAL–.

The minimum value is 2 or 3, depending on the operating system. The maximum
value is 8. The default value is 8.

POWER=n
POW=n

specifies the power of the density used with the METHOD=6 option. The default
value is 2.
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R=n
specifies the radius of the sphere of support for uniform-kernel density estimation
and the neighborhood for clustering. Specifying R=n is equivalent to specifying both
DR=n and CR=n. See the section“Density Estimation”on page 2870.

SHORT
suppresses the display of statistics for each cluster.

SIMPLE
S

displays means, standard deviations, skewness, kurtosis, and a coefficient of bimodal-
ity. The SIMPLE option applies only to coordinate data.

STANDARD
STD

standardizes the variables to mean 0 and standard deviation 1. The STANDARD
option applies only to coordinate data.

SUM
uses sums for cascading density estimates. See the description of theCASCADE=
optionon page 2865.

TEST
performs approximate significance tests for the number of clusters. The R= or DR=
option must also be specified with a nonzero value to obtain significance tests.

The significance tests performed by PROC MODECLUS are valid only for simple
random samples, and they require at least 20 observations per cluster to have enough
power to be of any use. See the section“Significance Tests”on page 2876.

THRESHOLD=n
THR=n

specifies the assignment threshold used with the METHOD=6 option. The default is
0.5.

TRACE
traces the cluster assignments for the METHOD=6 algorithm.

BY Statement

BY variables ;

You can specify a BY statement with PROC MODECLUS to obtain separate anal-
yses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.
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• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the MODECLUS procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ | FREQUENCY variable ;

If one variable in the input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
MODECLUS then treats the data set as if each observation appearedn times, where
n is the value of the FREQ variable for the observation. Nonintegral values of the
FREQ variable are truncated to the largest integer less than the FREQ value.

ID Statement

ID variable ;

The values of the ID variable identify observations in the displayed results and in the
OUT= data set. If you omit the ID statement, each observation is identified by its
observation number, and a variable called–OBS– is written to the OUT= data set
containing the original observation numbers.

VAR Statement

VAR | VARIABLES variables ;

The VAR statement specifies numeric variables to be used in the cluster analysis. If
you omit the VAR statement, all numeric variables not specified in other statements
are used.

Details

Density Estimation

Refer to Silverman (1986) or Scott (1992) for an introduction to nonparametric den-
sity estimation.

PROC MODECLUS uses (hyper)spherical uniform kernels of fixed or variable ra-
dius. The density estimate at a point is computed by dividing the number of obser-
vations within a sphere centered at the point by the product of the sample size and
the volume of the sphere. The size of the sphere is determined by the smoothing
parameters that you are required to specify.
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For fixed-radius kernels, specify the radius as a Euclidean distance with either the
DR= or R= option. For variable-radius kernels, specify the number of neighbors
desired within the sphere with either the DK= or K= option; the radius is then the
smallest radius that contains at least the specified number of observations including
the observation at which the density is being estimated. If you specify both the DR=
or R= option and the DK= or K= option, the radius used is the maximum of the two
indicated radii; this is useful for dealing with outliers.

It is convenient to refer to the sphere of support of the kernel at observationxi as
the neighborhoodof xi. The observations within the neighborhood ofxi are the
neighborsof xi. In some contexts,xi is considered a neighbor of itself, but in other
contexts it is not. The following notation is used in this chapter.

xi theith observation

d(x,y) the distance between pointsx andy

n the total number of observations in the sample

ni the number of observations within the neighborhood ofxi

includingxi itself

n−i the number of observations within the neighborhood ofxi not in-
cludingxi itself

Ni the set of indices of neighbors ofxi includingi

N−
i the set of indices of neighbors ofxi not includingi

vi the volume of the neighborhood ofxi

f̂i the estimated density atxi

f̂−i the cross-validated density estimate atxi

Ck the set of indices of observations assigned to clusterk

v the number of variables or the dimensionality

sl standard deviation of thelth variable

The estimated density atxi is

f̂i =
ni

nvi

that is, the number of neighbors ofxi divided by the product of the sample size and
the volume of the neighborhood atxi.

The density estimates provided by uniform kernels are not quite as good as those
provided by some other types of kernels, but they are quite satisfactory for clustering.
The significance tests for the number of clusters require the use of fixed-size uniform
kernels.

There is no simple answer to the question of which smoothing parameter to use
(Silverman 1986, pp. 43–61, 84–88, 98–99). It is usually necessary to try several
different smoothing parameters. A reasonable first guess for the K= option is in the
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range of 0.1 to 1 timesn4/(v+4), smaller values being suitable for higher dimension-
alities. A reasonable first guess for the R= option in many coordinate data sets is
given by

[
2v+2(v + 2)Γ(.5v + 1)

nv2

]1/(v+4)
√√√√ v∑

l=1

s2
l

which can be computed in a DATA step using the GAMMA function forΓ. The
MODECLUS procedure also provides this first guess as a default smoothing param-
eter if none of the options (DR=, CR=, R=, DK=, CK=, and K= ) is specified. This
formula is derived under the assumption that the data are sampled from a multivariate
normal distribution and, therefore, tend to be too large (oversmooth) if the true distri-
bution is multimodal. Robust estimates of the standard deviations may be preferable
if there are outliers. If the data are distances, the factor

√∑
sl

2 can be replaced by
an average root-mean-square Euclidean distance divided by

√
2. To prevent outliers

from appearing as separate clusters, you can also specify K=2 or CK=2 or, more gen-
erally, K=m or CK=m, m ≥ 2, which in most cases forces clusters to have at leastm
members.

If the variables all have unit variance (for example, if you specify the STD option),
you can useTable 47.2to obtain an initial guess for the R= option.

Table 47.2. Reasonable First Guess for R= for Standardized Data

Number Number of Variables
of Obs 1 2 3 4 5 6 7 8 9 10

20 1.01 1.36 1.77 2.23 2.73 3.25 3.81 4.38 4.98 5.60
35 0.91 1.24 1.64 2.08 2.56 3.08 3.62 4.18 4.77 5.38
50 0.84 1.17 1.56 1.99 2.46 2.97 3.50 4.06 4.64 5.24
75 0.78 1.09 1.47 1.89 2.35 2.85 3.38 3.93 4.50 5.09

100 0.73 1.04 1.41 1.82 2.28 2.77 3.29 3.83 4.40 4.99
150 0.68 0.97 1.33 1.73 2.18 2.66 3.17 3.71 4.27 4.85
200 0.64 0.93 1.28 1.67 2.11 2.58 3.09 3.62 4.17 4.75
350 0.57 0.85 1.18 1.56 1.98 2.44 2.93 3.45 4.00 4.56
500 0.53 0.80 1.12 1.49 1.91 2.36 2.84 3.35 3.89 4.45
750 0.49 0.74 1.06 1.42 1.82 2.26 2.74 3.24 3.77 4.32

1000 0.46 0.71 1.01 1.37 1.77 2.20 2.67 3.16 3.69 4.23
1500 0.43 0.66 0.96 1.30 1.69 2.11 2.57 3.06 3.57 4.11
2000 0.40 0.63 0.92 1.25 1.63 2.05 2.50 2.99 3.49 4.03

One data-based method for choosing the smoothing parameter is likelihood cross
validation (Silverman 1986, pp. 52–55). The cross-validated density estimate at an
observation is obtained by omitting the observation from the computations.

f̂−i =
n−i
nvi
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The (log) likelihood cross-validation criterion is then computed as

n∑
i=1

log f̂−i

The suggested smoothing parameter is the one that maximizes this criterion. With
fixed-radius kernels, likelihood cross validation oversmooths long-tailed distribu-
tions; for purposes of clustering, it tends to undersmooth short-tailed distributions.
With k-nearest-neighbor density estimation, likelihood cross validation is useless be-
cause it almost always indicatesk=2.

Cascaded density estimates are obtained by computing initial kernel density estimates
and then, at each observation, taking the arithmetic mean, harmonic mean, or sum
of the initial density estimates of the observations within the neighborhood. The
cascaded density estimates can, in turn, be cascaded, and so on. Letkf̂i be the density
estimate atxi cascadedk times. For all types of cascading,0f̂i = f̂i. If the cascading
is done by arithmetic means, then, fork ≥ 0,

k+1f̂i =
∑
j∈Ni

kf̂j/ni

For harmonic means,

k+1f̂i =

 ∑
j∈Ni

kf̂
−1
j /ni

−1

and for sums,

k+1f̂i =

 ∑
j∈Ni

kf̂
k+1
j

 1
k+2

To avoid cluttering formulas, the symbolf̂i is used from now on to denote the density
estimate atxi whether cascaded or not, since the clustering methods and significance
tests do not depend on the degree of cascading.

Cascading increases the smoothness of the estimates with less computation than
would be required by increasing the smoothing parameters to yield a comparable
degree of smoothness. For population densities with bounded support and discontinu-
ities at the boundaries, cascading improves estimates near the boundaries. Cascaded
estimates, especially using sums, may be more sensitive to the local covariance struc-
ture of the distribution than are the uncascaded kernel estimates. Cascading seems
to be useful for detecting very nonspherical clusters. Cascading was suggested by
Tukey and Tukey (1981, p. 237). Additional research into the properties of cascaded
density estimates is needed.
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Clustering Methods

The number of clusters is a function of the smoothing parameters. The number of
clusters tends to decrease as the smoothing parameters increase, but the relationship
is not strictly monotonic. Generally, you should specify several different values of
the smoothing parameters to see how the number of clusters varies.

The clustering methods used by PROC MODECLUS use spherical clustering neigh-
borhoods of fixed or variable radius that are similar to the spherical kernels used for
density estimation. For fixed-radius neighborhoods, specify the radius as a Euclidean
distance with either the CR= or R= option. For variable-radius neighborhoods, spec-
ify the number of neighbors desired within the sphere with either the CK= or K=
option; the radius is then the smallest radius that contains at least the specified num-
ber of observations including the observation for which the neighborhood is being
determined. However, in the following descriptions of clustering methods, an ob-
servation is not considered to be one of its own neighbors. If you specify both the
CR= or R= option and the CK= or K= option, the radius used is the maximum of the
two indicated radii; this is useful for dealing with outliers. In this section, the sym-
bols Ni, N−

i , ni, andn−i refer to clustering neighborhoods, not density estimation
neighborhoods.

METHOD=0

Begin with each observation in a separate cluster. For each observation and each of
its neighbors, join the cluster to which the observation belongs with the cluster to
which the neighbor belongs. This method does not use density estimates. With a
fixed clustering radius, the clusters are those obtained by cutting the single linkage
tree at the specified radius (seeChapter 23, “The CLUSTER Procedure,”).

METHOD=1

Begin with each observation in a separate cluster. For each observation, find the
nearest neighbor with a greater estimated density. If such a neighbor exists, join
the cluster to which the observation belongs with the cluster to which the specified
neighbor belongs.

Next, consider each observation with density estimates equal to that of one or more
neighbors but not less than the estimate at any neighbor. Join the cluster containing
the observation with (1) each cluster containing a neighbor of the observation such
that the maximum density estimate in the cluster equals the density estimate at the
observation and (2) the cluster containing the nearest neighbor of the observation
such that the maximum density estimate in the cluster exceeds the density estimate at
the observation.

This method is similar to the classification or assignment stage of algorithms de-
scribed by Gitman (1973) and Huizinga (1978).



Clustering Methods � 2875

METHOD=2

Begin with each observation in a separate cluster. For each observation, find the
neighbor with the greatest estimated density exceeding the estimated density of the
observation. If such a neighbor exists, join the cluster to which the observation be-
longs with the cluster to which the specified neighbor belongs.

Observations with density estimates equal to that of one or more neighbors but
not less than the estimate at any neighbor are treated the same way as they are in
METHOD=1.

This method is similar to the first stage of an algorithm proposed by Mizoguchi and
Shimura (1980).

METHOD=3

Begin with each observation in a separate cluster. For each observation, find the
neighbor with greater estimated density such that the slope of the line connecting
the point on the estimated density surface at the observation with the point on the
estimated density surface at the neighbor is a maximum. That is, for observation
xi, find a neighborxj such that(f̂j − f̂i)/d(xj , xi) is a maximum. If this slope is
positive, join the cluster to which observationxi belongs with the cluster to which
the specified neighborxj belongs. This method was invented by Koontz, Narendra,
and Fukunaga (1976).

Observations with density estimates equal to that of one or more neighbors but
not less than the estimate at any neighbor are treated the same way as they are in
METHOD=1. The algorithm suggested for this situation by Koontz, Narendra, and

Fukunaga (1976) may fail for flat areas in the estimated density that contain four or
more observations.

METHOD=4

This method is equivalent to the first stage of two-stage density linkage (seeChapter
23, “The CLUSTER Procedure,”) without the use of the MODE=option.

METHOD=5

This method is equivalent to the first stage of two-stage density linkage (seeChapter
23, “The CLUSTER Procedure,”) with the use of the MODE=option.

METHOD=6

Begin with all observations unassigned.

Step 1: Form a list of seeds, each seed being a single observation such that the
estimated density of the observation is not less than the estimated density of any of
its neighbors. If you specify the MAXCLUSTERS=n option, retain only then seeds
with the greatest estimated densities.

Step 2: Consider each seed in decreasing order of estimated density.
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1. If the current seed has already been assigned, proceed to the next seed.
Otherwise, form a new cluster consisting of the current seed.

2. Add to the cluster any unassigned seed that is a neighbor of a member of the
cluster or that shares a neighbor with a member of the cluster; repeat until no
unassigned seed satisfies these conditions.

3. Add to the cluster all neighbors of seeds that belong to the cluster.

4. Consider each unassigned observation. Compute the ratio of the sum of the
p−1 powers of the estimated density of the neighbors that belong to the current
cluster to the sum of thep − 1 powers of the estimated density of all of its
neighbors, wherep is specified by the POWER= option and is 2 by default. Let
xi be the current observation, and letk be the index of the current cluster. Then
this ratio is

rik =

∑
j∈Ni∩Ck

f̂p−1
j∑

j∈Ni
f̂p−1

j

(The sum of thep − 1 powers of the estimated density of the neighbors of an obser-
vation is an estimate of the integral of thepth power of the density over the neigh-
borhood.) Ifrik exceeds the maximum of 0.5 and the value of the THRESHOLD=
option, add the observationxi to the current clusterk. Repeat until no more observa-
tions can be added to the current cluster.

Step 3: (This step is performed only if the value of the THRESHOLD= option is less
than 0.5.) Form a list of unassigned observations in decreasing order of estimated
density. Repeat the following actions until the list is empty.

1. Remove the first observation from the list, for example, observationxi.

2. For each clusterk, computerik.

3. If the maximum over clusters ofrik exceeds the value of the THRESHOLD=
option, assign observationxi to the corresponding cluster and insert all obser-
vations of which the current observation is a neighbor into the list, keeping the
list in decreasing order of estimated density.

METHOD=6 is related to a method invented by Koontz and Fukunaga (1972a) and
discussed by Koontz and Fukunaga (1972b).

Significance Tests

Significance tests require that a fixed-radius kernel be specified for density estimation
via the DR= or R= option. You can also specify the DK= or K= option, but only the
fixed radius is used for the significance tests.

The purpose of the significance tests is as follows: given a simple random sample
of objects from a population, obtain an estimate of the number of clusters in the
population such that the probability in repeated sampling that the estimate exceeds
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the true number of clusters is not much greater thanα, 1%≤ α ≤ 10%. In other
words, a sequence of null hypotheses of the form

H
(i)
0 : The number of population clusters isi or less

wherei = 1, 2, · · · , n, is tested against the alternatives such as

H(i)
a : The number of population clusters exceedsi

with a maximum experimentwise error rate of approximatelyα. The tests protect you
from overestimating the number of population clusters. It is impossible to protect
against underestimating the number of population clusters without introducing much
stronger assumptions than are used here, since the number of population clusters
could conceivably exceed the sample size.

The method for conducting significance tests is as follows:

1. Estimate densities using fixed-radius uniform kernels.

2. Obtain preliminary clusters by a “valley-seeking” method. Other clustering
methods could be used but would yield less power.

3. Compute an approximatep-value for each cluster by comparing the estimated
maximum density in the cluster with the estimated maximum density on the
cluster boundary.

4. Repeatedly join the least significant cluster with a neighboring cluster until all
remaining clusters are significant.

5. Estimate the number of population clusters as the number of significant sample
clusters.

6. The preceding steps can be repeated for any number of different radii, and the
estimate of the number of population clusters can be taken to be the maximum
number of significant sample clusters for any radius.

This method has the following useful features:

• No distributional assumptions are required.

• The choice of smoothing parameter is not critical since you can try any number
of different values.

• The data can be coordinates or distances.

• Time and space requirements for the significance tests are no worse than those
for obtaining the clusters.

• The power is high enough to be useful for practical purposes.
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The method for computing thep-values is based on a series of plausible approxima-
tions. There are as yet no rigorous proofs that the method is infallible. Neither are
there any asymptotic results. However, simulations for sample sizes ranging from
20 to 2000 indicate that thep-values are almost always conservative. The only case
discovered so far in which thep-values are liberal is a uniform distribution in one
dimension for which the simulated error rates exceed the nominal significance level
only slightly for a limited range of sample sizes.

To make inferences regarding population clusters, it is first necessary to define what
is meant by a cluster. For clustering methods using nonparametric density estimation,
a cluster is usually loosely defined as a region surrounding a local maximum of the
probability density function or a maximal connected set of local maxima. This def-
inition may not be satisfactory for very rough densities with many local maxima. It
is not applicable at all to discrete distributions for which the density does not exist.
As another example in which this definition is not intuitively reasonable, consider a
uniform distribution in two dimensions with support in the shape of a figure eight (in-
cluding the interior). This density might be considered to contain two clusters even
though it does not have two distinct modes.

These difficulties can be avoided by defining clusters in terms of the local maxima of
a smoothed probability density or mass function. For example, define the neighbor-
hood distribution function (NDF) with radiusr at a pointx as the probability that a
randomly selected point will lie within a radiusr of x, that is, the probability integral
over a hypersphere of radiusr centered atx:

s(x) = P (d(x, X) <= r)

whereX is the random variable being sampled,r is a user-specified radius, and d(x,y)
is the distance between pointsx andy.

The NDF exists for all probability distributions. You can select the radius according
to the degree of resolution required. The minimum-variance unbiased estimate of
the NDF at a pointx is proportional to the uniform-kernel density estimate with
corresponding support.

You can define amodal regionas a maximal connected set of local maxima of the
NDF. A cluster is a connected set containing exactly one modal region. This def-
inition seems to give intuitively reasonable results in most cases. An exception is
a uniform density on the perimeter of a square. The NDF has four local maxima.
There are eight local maxima along the perimeter, but running PROC MODECLUS
with the R= option would yield four clusters since the two local maxima at each cor-
ner are separated by a distance equal to the radius. While this density does indeed
have four distinctive features (the corners), it is not obvious that each corner should
be considered a cluster.

The number of population clusters depends on the radius of the NDF. The significance
tests in PROC MODECLUS protect against overestimating the number of clusters at
any specified radius. It is often useful to look at the clustering results across a range
of radii. A plot of the number of sample clusters as a function of the radius is a useful
descriptive display, especially for high-dimensional data (Wong and Schaack 1982).
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If a population has two clusters, it must have two modal regions. If there are two
modal regions, there must be a “valley” between them. It seems intuitively desirable
that the boundary between the two clusters should follow the bottom of this valley. All
the clustering methods in PROC MODECLUS are designed to locate the estimated
cluster boundaries in this way, although methods 1 and 6 seem to be much more
successful at this than the others. Regardless of the precise location of the cluster
boundary, it is clear that the maximum of the NDF along the boundary between two
clusters must be strictly less than the value of the NDF in either modal region; other-
wise, there would be only a single modal region; according to Hartigan and Hartigan
(1985), there must be a “dip” between the two modes. PROC MODECLUS assesses
the significance of a sample cluster by comparing the NDF in the modal region with
the maximum of the NDF along the cluster boundary. If the NDF has second-order
derivatives in the region of interest and if the boundary between the two clusters is
indeed at the bottom of the valley, then the maximum value of the NDF along the
boundary occurs at a saddle point. Hence, this test is called asaddle test. This term
is intended to describe any test for clusters that compares modal densities with saddle
densities, not just the test currently implemented in the MODECLUS procedure.

The obvious estimate of the maximum NDF in a sample cluster is the maximum esti-
mated NDF at an observation in the cluster. Letm(k) be the index of the observation
for which the maximum is attained in clusterk.

Estimating the maximum NDF on the cluster boundary is more complicated. One
approach is to take the maximum NDF estimate at an observation in the cluster that
has a neighbor belonging to another cluster. This method yields excessively large
estimates when the neighborhood is large. Another approach is to try to choose an
object closer to the boundary by taking the observation with the maximum sum of
estimated densities of neighbors belonging to a different cluster. After some experi-
mentation, it is found that a combination of these two methods works well. LetBk

be the set of indices of observations in clusterk that have neighbors belonging to a
different cluster, and compute

maxi∈Bk

0.2f̂ini +
∑

j∈Ni−Ck

f̂j


Let s(k) be the index of the observation for which the maximum is attained.

Using the notation#(S) for the cardinality of setS, let

n−ij = #(N−
i ∩N−

j )

cm(k) = n−m(k) − n−m(k)s(k)

cs(k) = n−s(k) − n−m(k)s(k) if Bk 6= ∅,
= 0 otherwise

qk = 1/2 if Bk 6= ∅,
= 2/3 otherwise

zk =
cm(k)− qk(cm(k) + cs(k))− 1/2√

qk(1− qk)(cm(k) + cs(k))
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u =

⌈
(.2 + .05

√
n)

∑
i:ni>1

1
ni + 1

⌉

Let R(u) be a random variable distributed as the range of a random sample ofu
observations from a standard normal distribution. Then the approximatep-valuepk

for clusterk is

pk = Pr(zk > R(u)/
√

2)

If points m(k) ands(k) are fixed a priori,zk would be the usual approximately nor-
mal test statistic for comparing two binomial random variables. In fact,m(k) and
s(k) are selected in such a way thatcm(k) tends to be large andcs(k) tends to be
small. For this reason, and because there may be a large number of clusters, each
with its ownzk to be tested, eachzk is referred to the distribution ofR(u) instead of
a standard normal distribution. If the tests are conducted for only one radius and if
u is chosen equal ton, then thep-values are very conservative because (1) you are
not making all possible pairwise comparisons of observations in the sample and (2)
n−i andn−j are positively correlated if the neighborhoods overlap. In the formula for
u, the summation overcorrects somewhat for the conservativeness due to correlated
n−i ’s. The factor.2+.05

√
n is empirically estimated from simulation results to adjust

for the use of more than one radius.

If the JOIN option is specified, the least significant cluster (the cluster with the small-
estzk) is either dissolved or joined with a neighboring cluster. If no members of
the cluster have neighbors belonging to a different cluster, all members of the cluster
are unassigned. Otherwise, the cluster is joined to the neighboring cluster such that
the sum of density estimates of neighbors of the estimated saddle point belonging
to it is a maximum. Joining clusters increases the power of the saddle test. For ex-
ample, consider a population with two well-separated clusters. Suppose that, for a
certain radius, each population cluster is divided into two sample clusters. None of
the four sample clusters is likely to be significant, but after the two sample clusters
corresponding to each population cluster are joined, the remaining two clusters may
be highly significant.

The saddle test implemented in PROC MODECLUS has been evaluated by simula-
tion from known distributions. Some results are given in the following three tables. In
Table 47.3, samples of 20 to 2000 observations are generated from a one-dimensional
uniform distribution. For sample sizes of 1000 or less, 2000 samples are generated
and analyzed by PROC MODECLUS. For a sample size of 2000, only 1000 samples
are generated. The analysis is done with at least 20 different values of the R= option
spread across the range of radii most likely to yield significant results. The six central
columns of the table give the observed error rates at the nominal error rates(α) at the
head of each column. The standard errors of the observed error rates are given at
the bottom of the table. The observed error rates are conservative forα ≤ 5%, but
they increase withα and become slightly liberal for sample sizes in the middle of the
range tested.
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Table 47.3. Observed Error Rates (%) for Uniform Distribution

Sample Nominal Type 1 Error Rate Number of
Size 1 2 5 10 15 20 Simulations

20 0.00 0.00 0.00 0.60 11.65 27.05 2000
50 0.35 0.70 4.50 10.95 20.55 29.80 2000

100 0.35 0.85 3.90 11.05 18.95 28.05 2000
200 0.30 1.35 4.00 10.50 18.60 27.05 2000
500 0.45 1.05 4.35 9.80 16.55 23.55 2000

1000 0.70 1.30 4.65 9.55 15.45 19.95 2000
2000 0.40 1.10 3.00 7.40 11.50 16.70 1000

Standard 0.22 0.31 0.49 0.67 0.80 0.89 2000
Error 0.31 0.44 0.69 0.95 1.13 1.26 1000

All unimodal distributions other than the uniform that have been tested, including
normal, Cauchy, and exponential distributions and uniform mixtures, have produced
much more conservative results.Table 47.4displays results from a unimodal mixture
of two normal distributions with equal variances and equal sampling probabilities
and with means separated by two standard deviations. Any greater separation would
produce a bimodal distribution. The observed error rates are quite conservative.

Table 47.4. Observed Error Rates (%) for Normal Mixture with 2σ Separation

Sample Nominal Type 1 Error Rate Number of
Size 1 2 5 10 15 20 Simulations
100 0.0 0.0 0.0 1.0 2.0 4.0 200
200 0.0 0.0 0.0 2.0 3.0 3.0 200
500 0.0 0.0 0.5 0.5 0.5 0.5 200

All distributions in two or more dimensions that have been tested yield extremely con-
servative results. For example, a uniform distribution on a circle yields observed error
rates that are never more than one-tenth of the nominal error rates for sample sizes
up to 1000. This conservatism is due to the fact that, as the dimensionality increases,
more and more of the probability lies in the tails of the distribution (Silverman 1986,
p. 92), and the saddle test used by PROC MODECLUS is more conservative for
distributions with pronounced tails. This applies even to a uniform distribution on a
hypersphere because, although the density has no tails, the NDF does.

Since the formulas for the significance tests do not involve the dimensionality, no
problems are created when the data are linearly dependent. Simulations of data in
nonlinear subspaces (the circumference of a circle or surface of a sphere) have also
yielded conservative results.

Table 47.5displays results in terms of power for identifying two clusters in sam-
ples from a bimodal mixture of two normal distributions with equal variances and
equal sampling probabilities separated by four standard deviations. In this simula-
tion, PROC MODECLUS never indicated more than two significant clusters.
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Table 47.5. Power (%) for Normal Mixture with 4σ Separation

Sample Nominal Type 1 Error Rate Number of
Size 1 2 5 10 15 20 Simulations

20 0.0 0.0 0.0 2.0 37.5 68.5 200
35 0.0 13.5 38.5 48.5 64.0 75.5 200
50 17.5 26.0 51.5 67.0 78.5 84.0 200
75 25.5 36.0 58.5 77.5 85.5 89.5 200

100 40.0 54.5 72.5 84.5 91.5 92.5 200
150 70.5 80.0 92.0 97.0 100.0 100.0 200
200 89.0 96.0 99.5 100.0 100.0 100.0 200

The saddle test is not as efficient as excess-mass tests for multimodality (Müller and
Sawitzki 1991, Polonik 1993). However, there is not yet a general approximation for
the distribution of excess-mass statistics to circumvent the need for simulations to do
significance tests. Refer to Minnotte (1992) for a review of tests for multimodality.

Computational Resources

The MODECLUS procedure stores coordinate data in memory if there is enough
space. For distance data, only one observation at a time is in memory.

PROC MODECLUS constructs lists of the neighbors of each observation. The total
space required is12

∑
ni bytes, whereni is based on the largest neighborhood re-

quired by any analysis. The lists are stored in a SAS utility data set unless you specify
the CORE option. You may get an error message from the SAS System or from the
operating system if there is not enough disk space for the utility data set. Clustering
method 6 requires a second list that is always stored in memory.

For coordinate data, the time required to construct the neighbor lists is roughly pro-
portional tov(log n)(

∑
ni) log(

∑
ni/n). For distance data, the time is roughly pro-

portional ton2 log(
∑

ni/n).

The time required for density estimation is proportional to
∑

ni and is usually small
compared to the time required for constructing the neighbor lists.

Clustering methods 0 through 3 are quite efficient, requiring time proportional
to

∑
ni. Methods 4 and 5 are slower, requiring time roughly proportional to

(
∑

ni) log(
∑

ni). Method 6 can also be slow, but the time requirements depend
very much on the data and the particular options specified. Methods 4, 5, and 6 also
require more memory than the other methods.

The time required for significance tests is roughly proportional tog
∑

ni, whereg is
the number of clusters.

PROC MODECLUS can process data sets of several thousand observations if you
specify reasonable smoothing parameters. Very small smoothing values produce
many clusters, whereas very large values produce many neighbors; either case can
require excessive time or space.
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Missing Values

If the data are coordinates, observations with missing values are excluded from the
analysis.

If the data are distances, missing values are treated as infinite. The neighbors of each
observation are determined solely by the distances in that observation. The distances
are not required to be symmetric, and there is no check for symmetry; the neighbors
of each observation are determined only from the distances in that observation. This
treatment of missing values is quite different from that of the CLUSTER procedure,
which ignores the upper triangle of the distance matrix.

Output Data Sets

The OUT= data set contains one complete copy of the input data set for each cluster
solution. There are additional variables identifying each solution and giving informa-
tion about individual observations. Solutions with only one remaining cluster when
JOIN=p is specified are omitted from the OUT= data set (see the description of the
JOIN= optionon page 2866). The OUT= data set can be extremely large, so it may
be advisable to specify the DROP= data set option to exclude unnecessary variables.

The OUTCLUS= or OUTC= data set contains one observation for each cluster in each
cluster solution. The variables identify the solution and provide statistics describing
the cluster.

The OUTSUM= or OUTS= data set contains one observation for each cluster solu-
tion. The variables identify the solution and provide information about the solution
as a whole.

The following variables can appear in all of the output data sets:

• –K– , which is the value of the K= option for the current solution. This variable
appears only if you specify the K= option.

• –DK– , which is the value of the DK= option for the current solution. This
variable appears only if you specify the DK= option.

• –CK– , which is the value of the CK= option for the current solution. This
variable appears only if you specify the CK= option.

• –R– , which is the value of the R= option for the current solution. This variable
appears only if you specify the R= option.

• –DR– , which is the value of the DR= option for the current solution. This
variable appears only if you specify the DR= option.

• –CR– , which is the value of the CR= option for the current solution. This
variable appears only if you specify the CR= option.

• –CASCAD– , which is the number of times the density estimates have been
cascaded for the current solution. This variable appears only if you specify the
CASCADE= option.

• –METHOD– , which is the value of the METHOD= option for the current
solution. This variable appears only if you specify the METHOD= option.
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• –NJOIN– , which is the number of clusters that are joined or dissolved in the
current solution. This variable appears only if you specify the JOIN option.

• –LOCAL– , which is the local dimensionality estimate of the observation. This
variable appears only if you specify the LOCAL option.

The OUT= data set contains the following variables:

• the variables from the input data set

• –OBS– , which is the observation number from the input data set. This variable
appears only if you omit the ID statement.

• DENSITY, which is the estimated density at the observation. This variable can
be renamed by the DENSITY= option.

• CLUSTER, which is the number of the cluster to which the observation is
assigned. This variable can be renamed by the CLUSTER= option.

The OUTC= data set contains the following variables:

• the BY variables, if any

• –NCLUS– , which is the number of clusters in the solution

• CLUSTER, which is the number of the current cluster

• –FREQ– , which is the number of observations in the cluster

• –MODE– , which is the maximum estimated density in the cluster

• –BFREQ– , which is the number of observations in the cluster with neighbors
belonging to a different cluster

• –SADDLE– , which is the estimated saddle density for the cluster

• –MC– , which is the number of observations within the fixed-radius density-
estimation neighborhood of the modal observation. This variable appears only
if you specify the TEST or JOIN option.

• –SC– , which is the number of observations within the fixed-radius density-
estimation neighborhood of the saddle observation. This variable appears only
if you specify the TEST or JOIN option.

• –OC– , which is the number of observations within the overlap of the two
previous neighborhoods. This variable appears only if you specify the TEST
or JOIN option.

• –Z– , which is the approximatez statistic for the cluster. This variable appears
only if you specify the TEST or JOIN option.

• –P– , which is the approximatep-value for the cluster. This variable appears
only if you specify the TEST or JOIN option.
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The OUTS= data set contains the following variables:

• the BY variables, if any

• –NCLUS– , which is the number of clusters in the solution

• –UNCL– , which is the number of unclassified observations

• –CROSS– , which is the likelihood cross-validation criterion if you specify
the CROSS or CROSSLIST option

Displayed Output

If you specify the SIMPLE option and the data are coordinates, PROC MODECLUS
displays the following simple descriptive statistics for each variable:

• the MEAN

• the standard deviation, STD DEV

• the SKEWNESS

• the KURTOSIS

• a coefficient of BIMODALITY (seeChapter 23, “The CLUSTER Procedure,”
)

If you specify the NEIGHBOR option, PROC MODECLUS displays a list of the
neighbors of each observation. The table contains

• the observation number or ID value of the observation

• the observation number or ID value of each of its neighbors

• the distance to each neighbor

If you specify the CROSSLIST option, PROC MODECLUS produces a table of in-
formation regarding cross validation of the density estimates. Each table has a row
for each observation. For each observation, the following are displayed:

• the observation number or ID value of the observation

• the radius of the neighborhood

• the number of neighbors

• the estimated log density

• the estimated cross-validated log density

If you specify the LOCAL option, PROC MODECLUS produces a table of infor-
mation regarding estimates of local dimensionality. Each table has a row for each
observation. For each observation, the following are displayed:
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• the observation number or ID value of the observation

• the radius of the neighborhood

• the estimated local dimensionality

If you specify the LIST option, PROC MODECLUS produces a table listing the
observations within each cluster. The table can include

• the cluster number

• the observation number or ID value of the observation

• the estimated density

• the sum of the density estimates of observations within the neighborhood that
belong to the same cluster

• the sum of the density estimates of observations within the neighborhood that
belong to a different cluster

• the sum of the density estimates of all the observations within the neighborhood

• the ratio of the sum of the density estimates for the same cluster to the sum of
all the density estimates in the neighborhood

If you specify the LIST option and there are unassigned objects, PROC MODECLUS
produces a table listing those observations. The table includes

• the observation number or ID value of the observation

• the estimated density

• the ratio of the sum of the density estimates for the same cluster to the sum of
the density estimates in the neighborhood for all other clusters

If you specify the BOUNDARY option, PROC MODECLUS produces a table listing
the observations in each cluster that have a neighbor belonging to a different cluster.
The table includes

• the observation number or ID value of the observation

• the estimated density

• the cluster number

• the ratio of the sum of the density estimates for the same cluster to the sum of
the density estimates in the neighborhood for all other clusters

If you do not specify the SHORT option, PROC MODECLUS produces a table of
cluster statistics including

• the cluster number
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• the cluster frequency (the number of observations in the cluster)

• the maximum estimated density within the cluster

• the number of observations in the cluster having a neighbor that belongs to a
different cluster

• the estimated saddle density of the cluster

If you specify the TEST or JOIN option, the table of cluster statistics includes the
following items pertaining to the saddle test:

• the number of observations within the fixed-radius density-estimation neigh-
borhood of the modal observation

• the number of observations within the fixed-radius density-estimation neigh-
borhood of the saddle observation

• the number of observations within the overlap of the two preceding neighbor-
hoods

• thez statistic for comparing the preceding counts

• the approximatep-value

If you do not specify the NOSUMMARY option, PROC MODECLUS produces a
table summarizing each cluster solution containing the following items:

• the smoothing parameters and cascade value

• the number of clusters

• the frequency of unclassified objects

• the likelihood cross-validation criterion if you specify the CROSS or
CROSSLIST option

If you specify the JOIN option, the summary table also includes

• the number of clusters joined

• the maximump-value of any cluster in the solution

If you specify the TRACE option, PROC MODECLUS produces a table for each
cluster solution that lists each observation along with its cluster membership as it
is reassigned from the “Old” cluster to the “New” cluster. This reassignment is de-
scribed inStep 1throughStep 3of the section“METHOD=6” on page 2875. Each
table has a row for each observation. For each observation, the following are dis-
played:

• the observation number or ID value of the observation

• the estimated density
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• the “Old” cluster membership. 0 represents an unassigned observation and -1
represents a seed.

• the “New” cluster membership

• “Ratio,” which is documented in the section“METHOD=6” on page 2875. The
following character values can also be displayed:

“M” means the observation is a mode

“S” means the observation is a seed

“N” means the neighbor of a mode or seed, for which the ratio is not
computed

ODS Table Names

PROC MODECLUS assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 47.6. ODS Tables Produced in PROC MODECLUS

ODS Table Name Description Statement Option
BoundaryFreq Boundary objects information PROC BOUNDARY (or ALL)
ClusterList Cluster listing, cluster id, freq.,

density etc.
PROC LIST (or ALL)

ClusterStats Cluster statistics PROC default
Cluster statistics, significance
test statistics

PROC TEST or JOIN (or ALL)

ClusterSummary Cluster summary PROC default
Cluster summary, crossvalida-
tion criterion

PROC CROSS or CROSSLIST
(or ALL)

Cluster summary, clusters joined
information

PROC JOIN (or ALL)

CrossList Cross-validated log density PROC CROSSLIST
ListLocal Local dimensionality estimates PROC LOCAL
Neighbor Nearest neighbor list PROC NEIGHBOR (or ALL)
SimpleStatistics Simple statistics PROC SIMPLE (or ALL)
Trace Trace of clustering algorithm

(METHOD= 6 only)
PROC TRACE (or ALL)

with METHOD= 6
UnassignObjects Information on unassigned ob-

jects
PROC LIST (or ALL)
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Examples

Example 47.1. Cluster Analysis of Samples from Univariate
Distributions

This example uses pseudo-random samples from a uniform distribution, an expo-
nential distribution, and a bimodal mixture of two normal distributions. Results are
presented inOutput 47.1.1throughOutput 47.1.3as plots displaying both the true
density and the estimated density, as well as cluster membership.

The following statements produceOutput 47.1.1:

options noovp ps=28 ls=95;
title ’Modeclus Example with Univariate Distributions’;
title2 ’Uniform Distribution’;

data uniform;
drop n;
true=1;
do n=1 to 100;

x=ranuni(123);
output;

end;

axis1 label=(angle=90 rotate=0) minor=none
order=(0 to 3 by 0.5);

axis2 minor=none;
symbol9 v=none i=splines;

proc modeclus data=uniform m=1 k=10 20 40 60 out=out short;
var x;

proc gplot data=out;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _K_;

run;

proc modeclus data=uniform m=1 r=.05 .10 .20 .30
out=out short;

var x;

axis1 label=(angle=90 rotate=0)
minor=none order=(0 to 2 by 0.5);

proc gplot data=out;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _R_;

run;
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Output 47.1.1. Cluster Analysis of Sample from a Uniform Distribution

Modeclus Example with Univariate Distributions
Uniform Distribution

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
K Clusters Objects

------------------------------------
10 6 0
20 3 0
40 2 0
60 1 0
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Modeclus Example with Univariate Distributions
Uniform Distribution

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Clusters Objects

------------------------------------
0.05 4 0

0.1 2 0
0.2 2 0
0.3 1 0
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The following statements produceOutput 47.1.2:

title2 ’Exponential Distribution’;
data expon;

drop n;
do n=1 to 100;
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x=ranexp(123);
true=exp(-x);
output;

end;

axis1 label=(angle=90 rotate=0) minor=none
order=(0 to 2 by 0.5);

axis2 minor=none;

proc modeclus data=expon m=1 k=10 20 40 out=out short;
var x;

proc gplot;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _K_;

run;
/*********************************************/

proc modeclus data=expon m=1 r=.20 .40 .80 out=out short;
var x;

axis1 label=(angle=90 rotate=0)
minor=none order=(0 to 1 by 0.5);

proc gplot;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _R_;

run;
/*********************************************/

title3 ’Different Density-Estimation and Clustering Windows’;
proc modeclus data=expon m=1 r=.20 ck=10 20 40

out=out short;
var x;

proc gplot;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _CK_;

run;
/*********************************************/

title3 ’Cascaded Density Estimates Using Arithmetic Means’;
proc modeclus data=expon m=1 r=.20 cascade=1 2 4 am out=out short;

var x;

proc gplot;
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plot density*x=cluster /frame cframe=ligr
vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _R_ _CASCAD_;

run;

Output 47.1.2. Cluster Analysis of Sample from an Exponential Distribution

Modeclus Example with Univariate Distributions
Exponential Distribution

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
K Clusters Objects

------------------------------------
10 5 0
20 3 0
40 1 0
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Modeclus Example with Univariate Distributions
Exponential Distribution

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Clusters Objects

------------------------------------
0.2 8 0
0.4 6 0
0.8 1 0
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Modeclus Example with
Different Density-Estimation and Clustering Windows

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R CK Clusters Objects

-----------------------------------------------
0.2 10 3 0
0.2 20 2 0
0.2 40 1 0
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Modeclus Example with
Cascaded Density Estimates Using Arithmetic Means

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Cascade Clusters Objects

-----------------------------------------------
0.2 1 8 0
0.2 2 8 0
0.2 4 7 0
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The following statements produceOutput 47.1.3:

title2 ’Normal Mixture Distribution’;
data normix;

drop n sigma;
sigma=.125;
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do n=1 to 100;
x=rannor(456)*sigma+mod(n,2)/2;
true=exp(-.5*(x/sigma)**2)+exp(-.5*((x-.5)/sigma)**2);
true=.5*true/(sigma*sqrt(2*3.1415926536));
output;

end;

axis1 label=(angle=90 rotate=0) minor=none order=(0 to 3 by 0.5);
axis2 minor=none;

proc modeclus data=normix m=1 k=10 20 40 60 out=out short;
var x;

proc gplot;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2;

plot2 true*x=9;
by _K_;

run;
/*********************************************/

proc modeclus data=normix m=1 r=.05 .10 .20 .30 out=out short;
var x;

proc gplot;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2 ;

plot2 true*x=9;
by _R_;

run;
/*********************************************/

title3 ’Cascaded Density Estimates Using Arithmetic Means’;
proc modeclus data=normix m=1 r=.05 cascade=1 2 4 am out=out short;

var x;

axis1 label=(angle=90 rotate=0)
minor=none order=(0 to 2 by 0.5);

proc gplot;
plot density*x=cluster /frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2 ;

plot2 true*x=9;
by _R_ _CASCAD_;

run;
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Output 47.1.3. Cluster Analysis of Sample from a Bimodal Mixture of Two Normal
Distributions

Modeclus Example with
Normal Mixture Distribution

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
K Clusters Objects

------------------------------------
10 7 0
20 2 0
40 2 0
60 1 0
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Modeclus Example with
Normal Mixture Distribution

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Clusters Objects

------------------------------------
0.05 5 0

0.1 2 0
0.2 2 0
0.3 1 0
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Modeclus Example with
Normal Mixture Distribution

Cascaded Density Estimates Using Arithmetic Means

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Cascade Clusters Objects

-----------------------------------------------
0.05 1 5 0
0.05 2 4 0
0.05 4 4 0
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Example 47.2. Cluster Analysis of Flying Mileages between
Ten American Cities

This example uses distance data and illustrates the use of the TRANSPOSE procedure
and the DATA step to fill in the upper triangle of the distance matrix. The results are
displayed inOutput 47.2.1throughOutput 47.2.2.

The following statements produceOutput 47.2.1:

title ’Modeclus Analysis of 10 American Cities’;
title2 ’Based on Flying Mileages’;
options ls=90;

data mileages(type=distance);
input (ATLANTA CHICAGO DENVER HOUSTON LOSANGELES
MIAMI NEWYORK SANFRAN SEATTLE WASHDC) (5.)
@53 CITY $15.;
datalines;
0 ATLANTA

587 0 CHICAGO
1212 920 0 DENVER

701 940 879 0 HOUSTON
1936 1745 831 1374 0 LOS ANGELES

604 1188 1726 968 2339 0 MIAMI
748 713 1631 1420 2451 1092 0 NEW YORK

2139 1858 949 1645 347 2594 2571 0 SAN FRANCISCO
2182 1737 1021 1891 959 2734 2408 678 0 SEATTLE

543 597 1494 1220 2300 923 205 2442 2329 0 WASHINGTON D.C.
;

*-----Fill in Upper Triangle of Distance Matrix---------------;
proc transpose out=tran;

copy CITY;
data mileages(type=distance);

merge mileages tran;
array var ATLANTA--WASHDC;
array col col1-col10;
drop col1-col10 _name_;
do over var;

var=sum(var,col);
end;

*-----Clustering with K-Nearest-Neighbor Density Estimates-----;
proc modeclus data=mileages all m=1 k=3;

id CITY;
run;
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Output 47.2.1. Clustering with K-Nearest-Neighbor Density Estimates

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Nearest Neighbor List
CITY Neighbor Distance
--------------------------------------------------
ATLANTA WASHINGTON D.C. 543.0000000

CHICAGO 587.0000000
--------------------------------------------------
CHICAGO ATLANTA 587.0000000

WASHINGTON D.C. 597.0000000
--------------------------------------------------
DENVER LOS ANGELES 831.0000000

HOUSTON 879.0000000
--------------------------------------------------
HOUSTON ATLANTA 701.0000000

DENVER 879.0000000
--------------------------------------------------
LOS ANGELES SAN FRANCISCO 347.0000000

DENVER 831.0000000
--------------------------------------------------
MIAMI ATLANTA 604.0000000

WASHINGTON D.C. 923.0000000
--------------------------------------------------
NEW YORK WASHINGTON D.C. 205.0000000

CHICAGO 713.0000000
--------------------------------------------------
SAN FRANCISCO LOS ANGELES 347.0000000

SEATTLE 678.0000000
--------------------------------------------------
SEATTLE SAN FRANCISCO 678.0000000

LOS ANGELES 959.0000000
--------------------------------------------------
WASHINGTON D.C. NEW YORK 205.0000000

ATLANTA 543.0000000

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
K=3 METHOD=1

Boundary Objects -Cluster Proportions-
CITY Density Cluster 1 2

DENVER 0.0001706485 2 0.486 0.514
HOUSTON 0.0001706485 1 0.600 0.400

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 6 0.00027624 1 0.00017065
2 4 0.00022124 1 0.00017065



2914 � Chapter 47. The MODECLUS Procedure

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
K Clusters Objects

------------------------------------
3 2 0

The following statements produceOutput 47.2.2:

*------Clustering with Uniform Kernel Density Estimates--------;
proc modeclus data=mileages all m=1 r=600 800;

id CITY;
run;

Output 47.2.2. Clustering with Uniform Kernel Density Estimates

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Nearest Neighbor List
CITY Neighbor Distance
--------------------------------------------------
ATLANTA WASHINGTON D.C. 543.0000000

CHICAGO 587.0000000
MIAMI 604.0000000
HOUSTON 701.0000000
NEW YORK 748.0000000

--------------------------------------------------
CHICAGO ATLANTA 587.0000000

WASHINGTON D.C. 597.0000000
NEW YORK 713.0000000

--------------------------------------------------
HOUSTON ATLANTA 701.0000000
--------------------------------------------------
LOS ANGELES SAN FRANCISCO 347.0000000
--------------------------------------------------
MIAMI ATLANTA 604.0000000
--------------------------------------------------
NEW YORK WASHINGTON D.C. 205.0000000

CHICAGO 713.0000000
ATLANTA 748.0000000

--------------------------------------------------
SAN FRANCISCO LOS ANGELES 347.0000000

SEATTLE 678.0000000
--------------------------------------------------
SEATTLE SAN FRANCISCO 678.0000000
--------------------------------------------------
WASHINGTON D.C. NEW YORK 205.0000000

ATLANTA 543.0000000
CHICAGO 597.0000000
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Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
R=600 METHOD=1

No Boundary Objects

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 4 0.00033333 0 .
2 2 0.00016667 0 .
3 1 0.00008333 0 .
4 1 0.00008333 0 .
5 1 0.00008333 0 .
6 1 0.00008333 0 .

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
R=800 METHOD=1

No Boundary Objects

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 6 0.000375 0 .
2 3 0.0001875 0 .
3 1 0.0000625 0 .

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R Clusters Objects

------------------------------------
600 6 0
800 3 0

The following statements produceOutput 47.2.3:

*------Uniform Kernel Density Estimates, Clustering
Neighborhoods extended to nearest neighbor--------------;

proc modeclus data=mileages list m=1 ck=2 r=600 800;
id CITY;

run;
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Output 47.2.3. Uniform Kernel Density Estimates, Clustering Neighborhoods
Extended to Nearest Neighbor

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
CK=2 R=600 METHOD=1

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 6 0.00033333 0 .
2 4 0.00016667 0 .

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
CK=2 R=800 METHOD=1

Cluster Statistics
Maximum Estimated

Estimated Boundary Saddle
Cluster Frequency Density Frequency Density
---------------------------------------------------------------
1 6 0.000375 0 .
2 4 0.0001875 0 .

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Cluster Summary
Frequency of

Number of Unclassified
R CK Clusters Objects

-----------------------------------------------
600 2 2 0
800 2 2 0

Example 47.3. Cluster Analysis with Significance Tests
This example uses artificial data containing two clusters. One cluster is from a circu-
lar bivariate normal distribution. The other is a ring-shaped cluster that completely
surrounds the first cluster. Without significance tests, the ring is divided into several
sample clusters for any degree of smoothing that yields reasonable density estimates.
The JOIN= option puts the ring back together.Output 47.3.1displays a short sum-
mary generated from the first PROC MODECLUS statement.Output 47.3.2contains
a series of tables produced from the second PROC MODECLUS statement. The lack
of p-value in the JOIN= option makes joining continue until only one cluster remains
(see the description of theJOIN= optionon page 2866). The cluster memberships are
then plotted as displayed inOutput 47.3.3.

title ’Modeclus Analysis with the JOIN= option’;
title2 ’A Normal Cluster Surrounded by a Ring Cluster’;
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options ls=120 ps=38;

data circle; keep x y;
c=1;
do n=1 to 30;

x=rannor(5);
y=rannor(5);
output;

end;

c=2;
do n=1 to 300;

x=rannor(5);
y=rannor(5);
z=rannor(5)+8;
l=z/sqrt(x**2+y**2);
x=x*l;
y=y*l;
output;

end;

axis1 label=(angle=90 rotate=0) minor=none
order=(-10 to 10 by 5);

axis2 minor=none order=(-15 to 15 by 5);

proc modeclus data=circle m=1 r=1 to 3.5 by .25 join=20 short;
proc modeclus data=circle m=1 r=2.5 join out=out;

proc gplot data=out;
plot y*x=cluster/frame cframe=ligr

vzero nolegend
vaxis=axis1 haxis=axis2 ;

by _NJOIN_;
run;
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Output 47.3.1. Significance Tests with the JOIN=20 and SHORT Options

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure

Cluster Summary
Number of Frequency of

Clusters Maximum Number of Unclassified
R Joined P-value Clusters Objects

------------------------------------------------------------
1 36 0.9339 1 301

1.25 20 0.7131 1 301
1.5 10 0.3296 1 300

1.75 5 0.1990 2 0
2 5 0.0683 2 0

2.25 3 0.0504 2 0
2.5 4 0.0301 2 0

2.75 3 0.0585 2 0
3 5 0.0003 1 0

3.25 4 0.1923 2 0
3.5 4 0.0000 1 0

Output 47.3.2. Significance Tests with the JOIN Option

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5 METHOD=1

Cluster Statistics
Maximum Estimated -------------Saddle Test: Version 92.7------------

Estimated Boundary Saddle Mode Saddle Overlap Approx
Cluster Frequency Density Frequency Density Count Count Count Z P-value
---------------------------------------------------------------------------------------------------------------------
1 103 0.00617328 22 0.00308664 39 19 0 2.495 0.5055
2 71 0.00571029 20 0.0043213 36 27 9 1.193 0.999
3 53 0.00509296 18 0.00401263 32 25 10 0.986 0.9999
4 45 0.00478429 19 0.00354964 30 22 14 1.429 0.9924
5 30 0.00462996 0 . 29 0 . 3.611 0.0301
6 28 0.00370397 17 0.00354964 23 22 9 0.000 1

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5 METHOD=1

Cluster Statistics
Maximum Estimated -------------Saddle Test: Version 92.7------------

Estimated Boundary Saddle Mode Saddle Overlap Approx
Cluster Frequency Density Frequency Density Count Count Count Z P-value
---------------------------------------------------------------------------------------------------------------------
1 103 0.00617328 22 0.00308664 39 19 0 2.495 0.5055
2 71 0.00571029 20 0.0043213 36 27 9 1.193 0.999
3 53 0.00509296 18 0.00401263 32 25 10 0.986 0.9999
4 73 0.00478429 13 0.00293231 30 18 0 1.588 0.9778
5 30 0.00462996 0 . 29 0 . 3.611 0.0301
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Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5 METHOD=1

Cluster Statistics
Maximum Estimated -------------Saddle Test: Version 92.7------------

Estimated Boundary Saddle Mode Saddle Overlap Approx
Cluster Frequency Density Frequency Density Count Count Count Z P-value
---------------------------------------------------------------------------------------------------------------------
1 156 0.00617328 17 0.00246931 39 15 0 3.130 0.1318
2 71 0.00571029 20 0.0043213 36 27 9 1.193 0.999
3 73 0.00478429 13 0.00293231 30 18 0 1.588 0.9778
4 30 0.00462996 0 . 29 0 . 3.611 0.0301

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5 METHOD=1

Cluster Statistics
Maximum Estimated -------------Saddle Test: Version 92.7------------

Estimated Boundary Saddle Mode Saddle Overlap Approx
Cluster Frequency Density Frequency Density Count Count Count Z P-value
---------------------------------------------------------------------------------------------------------------------
1 156 0.00617328 17 0.00246931 39 15 0 3.130 0.1318
2 144 0.00571029 14 0.00293231 36 18 0 2.313 0.6447
3 30 0.00462996 0 . 29 0 . 3.611 0.0301

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5 METHOD=1

Cluster Statistics
Maximum Estimated -------------Saddle Test: Version 92.7------------

Estimated Boundary Saddle Mode Saddle Overlap Approx
Cluster Frequency Density Frequency Density Count Count Count Z P-value
---------------------------------------------------------------------------------------------------------------------
1 300 0.00617328 0 . 39 0 . 4.246 0.0026
2 30 0.00462996 0 . 29 0 . 3.611 0.0301

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5 METHOD=1

Cluster Statistics
Maximum Estimated -------------Saddle Test: Version 92.7------------

Estimated Boundary Saddle Mode Saddle Overlap Approx
Cluster Frequency Density Frequency Density Count Count Count Z P-value
---------------------------------------------------------------------------------------------------------------------
1 300 0.00617328 0 . 39 0 . 4.246 0.0026
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Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure

Cluster Summary
Number of Frequency of

Clusters Maximum Number of Unclassified
R Joined P-value Clusters Objects

------------------------------------------------------------
2.5 0 1.0000 6 0
2.5 1 0.9999 5 0
2.5 2 0.9990 4 0
2.5 3 0.6447 3 0
2.5 4 0.0301 2 0
2.5 5 0.0026 1 30

Output 47.3.3. Scatter Plots of Cluster Memberships by –NJOIN–



Example 47.3. Cluster Analysis with Significance Tests � 2921



2922 � Chapter 47. The MODECLUS Procedure



Example 47.4. Cluster Analysis: Hertzsprung-Russell Plot � 2923

Example 47.4. Cluster Analysis: Hertzsprung-Russell Plot

This example uses computer-generated data to mimic a Hertzsprung-Russell plot
(Struve and Zebergs 1962, p. 259) of the temperature and luminosity of stars. The
data are plotted and displayed inOutput 47.4.1; see “Example 4 from Proc Modeclus”
in the SAS/STAT Sample Program Library for the complete data set. It appears that
there are two main groups of stars and a collection of isolated stars. The long strag-
gling group of points appearing diagonally across the figure represents the main group
of stars; the more compact group in the top right-hand corner contains giant stars.
The JOIN= option is specified at a 0.05 significance level with various smoothing
parameters. The CK=5 option is specified in order to prevent the numerous outliers
from forming separate clusters. The results from PROC MODECLUS is displayed
in Output 47.4.2. The cluster memberships are then plotted by PROC GPLOT, as
displayed inOutput 47.4.3.

Notice inOutput 47.4.3that the graphic output from PROC GPLOT when–R– = 2.5
is not available because only one cluster remains after joining at a 5% significance
level, and the results are not written to the OUT= data set. See the description of the
JOIN= optionon page 2866 for more information.

title ’Hertzsprung-Russell Plot of Visible Stars’;
title2 ’Computer-Generated Fake Data’;
data hr;

input x y @@;
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label x=’-Temperature’
y=’-Luminosity’;

datalines;
1.0 12.8 0.9 13.7 0.9 12.9 1.0 12.3 1.0 12.2
2.6 10.9 2.4 10.9 2.5 11.2 2.3 11.5 2.6 12.0
2.4 12.1 2.3 10.9 2.6 11.5 2.5 11.9 2.4 11.0
3.4 11.1 3.3 11.2 3.4 11.1 3.4 9.9 3.2 10.4

... 150 lines omitted ...

18.5 12.6 14.2 16.1 23.2 6.6 11.4 12.4 20.4 11.7
20.9 8.1 18.9 13.7 16.9 9.7 15.5 9.9 18.3 14.2
19.3 13.7 17.0 12.9 10.1 11.6 17.9 13.5 14.3 1.4
13.1 -0.8 8.1 -0.9 20.0 7.0 21.0 8.5 15.6 13.2
;

symbol1 value=circle c=white;
symbol2 value=plus c=yellow;
symbol3 value=triangle c=cyan;
legend1 frame cframe=ligr cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;

proc gplot;
plot y*x/legend=legend1 frame cframe=ligr vzero

vaxis=axis1 haxis=axis2 ;

proc modeclus data=hr m=1 r=1 1.5 2 2.5 ck=5
join=.05 short out=out;

run;

title2 ’MODECLUS Analysis’;
proc gplot;

plot y*x=cluster/frame cframe=ligr
vzero legend=legend1
vaxis=axis1 haxis=axis2;

by _R_;
run;
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Output 47.4.1. Scatter Plot of Data

Output 47.4.2. Results from PROC MODECLUS

Hertzsprung-Russell Plot of Visible Stars
Computer-Generated Fake Data

The MODECLUS Procedure

Cluster Summary
Number of Frequency of

Clusters Maximum Number of Unclassified
R CK Joined P-value Clusters Objects

-----------------------------------------------------------------------
1 5 14 0.0001 2 0

1.5 5 6 0.0000 3 0
2 5 4 0.0000 2 0

2.5 5 2 0.0000 1 0
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Output 47.4.3. Scatter Plots of Cluster Memberships by –R–
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Example 47.5. Using the TRACE Option when METHOD=6

To illustrate how the TRACE option can help you to understand the clustering process
when METHOD=6 is specified, the following data set is created with 12 observations.

data test;
input x@@;
datalines;

1 2 3 4 5 7.5 9 11.5 13 14.5 15 16
;

The first five observations seem to be close to each other, and the last five observations
seem to be close to each other. Observation 6 is separated from the first five observa-
tions with a (Euclidean) distance of 2.5, and the same distance separates observation
7 from the last five observations. Observations 6 and 7 differ by 1.5.

Suppose METHOD=6 with a radius=2.5 is chosen for the cluster analysis. You can
specify the TRACE option to understand how each observation is assigned.

The following statements produceOutput 47.5.1andOutput 47.5.2:

/*-- METHOD=6 with TRACE and THRESHOLD=0.5 (default) --*/
proc modeclus method=6 r=2.5 trace short out=out;

var x;
run;

data markobs;
drop _r_ _method_ _obs_ density cluster;
length function style $8 text $ 2;
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retain xsys ’2’ ysys ’2’ hsys ’1’ when ’a’;
set out;
/* create the text for obs */
function=’label’; size=4;
style=’swiss’;
text=left(put(_obs_,2.));
position=’3’;
x=x; y=density;
output;

run;
legend1 frame cframe=ligr cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
title ’Plot of DENSITY*X=CLUSTER’;
proc gplot data=out;

plot density*x=cluster/ annotate=markobs
frame cframe=ligr
legend=legend1
vaxis=axis1 haxis=axis2;

run;

Output 47.5.1. Partial Output of METHOD=6 with TRACE and Default
THRESHOLD=

The MODECLUS Procedure
R=2.5 METHOD=6

Trace of Clustering Algorithm
Cluster

Obs Density Old New Ratio
-----------------------------------------------

3 0.0833333 -1 1 M
2 0.0666667 0 1 N
4 0.0666667 0 1 N
5 0.0666667 0 1 N
1 0.0500000 0 1 N
6 0.0500000 0 1 0.571
7 0.0500000 -1 1 0.500
9 0.0666667 -1 2 M
8 0.0500000 0 2 N

10 0.0666667 -1 2 S
12 0.0500000 0 2 N
11 0.0666667 -1 2 S
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Output 47.5.2. Density Plot

Notice that inOutput 47.5.1, observation 7 is originally a seed (indicated by a value of
-1 in the “Old” column) and then assigned to cluster 1. This is because the ratio of ob-
servation 7 to cluster 1 is 0.5 and is not less than the default value of THRESHOLD=
(0.5).

If the value of the THRESHOLD= option is increased to 0.55, observation 7 should
be excluded from cluster 1 and the cluster membership of observation 7 is changed.

The following statements produceOutput 47.5.3andOutput 47.5.4:

/*-- METHOD=6 with TRACE and THRESHOLD=0.55 --*/
proc modeclus method=6 r=2.5 trace threshold=0.55 short

out=out;
var x;

run;

. . . (the Data Step and the PROC GPLOT statement
are omitted because they are the same as the
previous job)
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Output 47.5.3. Partial Output of METHOD=6 with TRACE and THRESHOLD=.55

The MODECLUS Procedure
R=2.5 METHOD=6

Trace of Clustering Algorithm
Cluster

Obs Density Old New Ratio
-----------------------------------------------

3 0.0833333 -1 1 M
2 0.0666667 0 1 N
4 0.0666667 0 1 N
5 0.0666667 0 1 N
1 0.0500000 0 1 N
6 0.0500000 0 1 0.571
9 0.0666667 -1 2 M
8 0.0500000 0 2 N

10 0.0666667 -1 2 S
12 0.0500000 0 2 N
11 0.0666667 -1 2 S

7 0.0500000 -1 2 S

Output 47.5.4. Density Plot

In Output 47.5.3, observation 7 is a seed that is excluded by cluster 1 because its ratio
to cluster 1 is less than 0.55. Being a neighbor of a member (observation 8) of cluster
2, observation 7 eventually joins cluster 2 even though it remains a “SEED.” (See
Step 2.2in the section“METHOD=6” on page 2875.)



References � 2931

References

Barnett, V., ed. (1981),Interpreting Multivariate Data, New York: John Wiley &
Sons, Inc.

Gitman, I. (1973), “An Algorithm for Nonsupervised Pattern Classification,”IEEE
Transactions on Systems, Man, and Cybernetics, SMC-3, 66–74.

Hartigan, J.A. and Hartigan, P.M. (1985), “The Dip Test of Unimodality,”Annals of
Statistics, 13, 70–84.

Huizinga, D.H. (1978), “A Natural or Mode Seeking Cluster Analysis Algorithm,”
Technical Report 78-1, Behavioral Research Institute, 2305 Canyon Blvd.,
Boulder, Colorado 80302.

Koontz, W.L.G. and Fukunaga, K. (1972a), “A Nonparametric Valley-Seeking
Technique for Cluster Analysis,”IEEE Transactions on Computers, C-21,
171–178.

Koontz, W.L.G. and Fukunaga, K. (1972b), “Asymptotic Analysis of a
Nonparametric Clustering Technique,”IEEE Transactions on Computers,
C-21, 967–974.

Koontz, W.L.G., Narendra, P.M., and Fukunaga, K. (1976), “A Graph-Theoretic
Approach to Nonparametric Cluster Analysis,”IEEE Transactions on
Computers, C-25, 936–944.

Minnotte, M.C. (1992), “A Test of Mode Existence with Applications to
Multimodality,” Ph.D. thesis, Rice University, Department of Statistics.

Mizoguchi, R. and Shimura, M. (1980), “A Nonparametric Algorithm for Detecting
Clusters Using Hierarchical Structure,”IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-2, 292–300.

Müller, D.W. and Sawitzki, G. (1991), “Excess Mass Estimates and Tests for
Multimodality,” JASA 86, 738–746.

Polonik, W. (1993), “Measuring Mass Concentrations and Estimating Density
Contour Clusters—An Excess Mass Approach,” Technical Report, Beitraege zur
Statistik Nr. 7, Universitaet Heidelberg.

Sarle, W.S. (1982), “Cluster Analysis by Least Squares,”SAS Users Group
International Conference Proceedings: SUGI 7, 651–653.

Scott, D.W. (1992), Multivariate Density Estimation: Theory, Practice, and
Visualization, New York: John Wiley & Sons, Inc.

Silverman, B.W. (1986),Density Estimation, New York: Chapman and Hall.

Struve, O. and Zebergs, V. (1962),Astronomy of the Twentieth Century, New York:
Macmillan.

Tukey, P.A. and Tukey, J.W. (1981), “Data-Driven View Selection; Agglomeration
and Sharpening,” in Barnett (1981).



2932 � Chapter 47. The MODECLUS Procedure

Wong, M.A. and Lane, T. (1983), “Akth Nearest Neighbor Clustering Procedure,”
Journal of the Royal Statistical Society, Series B, 45, 362–368.

Wong, M.A. and Schaack, C. (1982), “Using thekth Nearest Neighbor Clustering
Procedure to Determine the Number of Subpopulations,”American Statistical
Association 1982 Proceedings of the Statistical Computing Section, 40–48.



Chapter 48
The MULTTEST Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2935

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2936
Drug Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2936

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2939
PROC MULTTEST Statement. . . . . . . . . . . . . . . . . . . . . . . .2939
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2943
CLASS Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2943
CONTRAST Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . .2944
FREQ Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2945
STRATA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2945
TEST Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2946

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2948
Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2948
p-Value Adjustments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2956
Missing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2960
Computational Resources. . . . . . . . . . . . . . . . . . . . . . . . . . .2960
Output Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2961
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2963
ODS Table Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2963

EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2964
Example 48.1. Cochran-Armitage Test with Permutation Resampling. . . . 2964
Example 48.2. Freeman-Tukey andt-Tests with Bootstrap Resampling. . . 2968
Example 48.3. Peto Mortality-Prevalence Test. . . . . . . . . . . . . . . .2972
Example 48.4. Fisher Test with Permutation Resampling. . . . . . . . . . .2975
Example 48.5. Inputting Rawp-Values . . . . . . . . . . . . . . . . . . . .2978

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2979



2934 � Chapter 48. The MULTTEST Procedure



Chapter 48
The MULTTEST Procedure
Overview

The MULTTEST procedure addresses the multiple testing problem. This problem
arises when you perform many hypothesis tests on the same data set. Carrying out
multiple tests is often reasonable because of the cost of obtaining data, the discovery
of new aspects of the data, and the many alternative statistical methods. However, a
negative feature of multiple testing is the greatly increased probability of declaring
false significances.

For example, suppose you carry out 10 hypothesis tests at the 5% level, and you
assume that the distributions of thep-values from these tests are uniform and inde-
pendent. Then, the probability of declaring a particular test significant under its null
hypothesis is 0.05, but the probability of declaring at least 1 of the 10 tests significant
is 0.401. If you perform 20 hypothesis tests, the latter probability increases to 0.642.
These high chances illustrate the danger in multiple testing.

PROC MULTTEST approaches the multiple testing problem by adjusting the
p-values from a family of hypothesis tests. An adjustedp-value is defined as the
smallest significance level for which the given hypothesis would be rejected, when
the entire family of tests is considered. The decision rule is to reject the null hypothe-
sis when the adjustedp-value is less thenα; in most cases, this procedure controls the
familywise error rateat or below theα level. PROC MULTTEST offers the following
p-value adjustments:

• Bonferroni

• Sidak

• Stepdown methods

• Hochberg

• Hommel

• Fisher Combination

• False Discovery Rate

• Bootstrap

• Permutation

The Bonferroni and Sidak adjustments are simple functions of the rawp-values. They
are computationally quick, but they can be too conservative. Stepdown methods re-
move some conservativeness, as do the step-up methods of Hochberg (1988). The
bootstrap and permutation adjustments resample the data with and without replace-
ment, respectively, to approximate the distribution of the minimump-value of all
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tests. This distribution is then used to adjust the individual rawp-values. The boot-
strap and permutation methods are computationally intensive but appealing in that,
unlike the other methods, correlations and distributional characteristics are incorpo-
rated into the adjustments (Westfall and Young 1989, 1993; Westfallet al. 1999).

PROC MULTTEST handles data arising from a multivariate one-way ANOVA model,
possibly stratified, with continuous and discrete response variables; it can also accept
rawp-values as input data. You can perform at-test for the mean for continuous data
and the following statistical tests for discrete data:

• Cochran-Armitage (CA) linear trend test

• Freeman-Tukey (FT) double arcsine test

• Peto (PETO) mortality-prevalence (log-rank) test

• Fisher (FISHER) exact test

The CA and PETO tests have exact versions that use permutation distributions and
asymptotic versions that use an optional continuity correction. Also, with the excep-
tion of the FISHER test, you can use a stratification variable to construct Mantel-
Haenszel type tests. All of the previously mentioned tests can be one- or two-sided.

As in the GLM procedure, you can specify linear contrasts that compare means or
proportions of the treated groups. The output contains summary statistics and regular
and multiplicity-adjustedp-values. You can create output data sets containing raw
and adjustedp-values, test statistics and other intermediate calculations, permutation
distributions, and resampling information.

Getting Started

Drug Example

Suppose you conduct a small study to test the effect of a drug on 15 subjects. You
randomly divide the subjects into three balanced groups receiving 0 mg, 1 mg, and 2
mg of the drug, respectively. You carry out the experiment and record the presence
or absence of 10 side effects for each subject. Your data set is as follows:

data Drug;
input Dose$ SideEff1-SideEff10;
datalines;

0MG 0 0 1 0 0 1 0 0 0 0
0MG 0 0 0 0 0 0 0 0 0 1
0MG 0 0 0 0 0 0 0 0 1 0
0MG 0 0 0 0 0 0 0 0 0 0
0MG 0 1 0 0 0 0 0 0 0 0
1MG 1 0 0 1 0 1 0 0 1 0
1MG 0 0 0 1 1 0 0 1 0 1
1MG 0 1 0 0 0 0 1 0 0 0
1MG 0 0 1 0 0 0 0 0 0 1
1MG 1 0 1 0 0 0 0 1 0 0
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2MG 0 1 1 1 0 1 1 1 0 1
2MG 1 1 1 1 1 1 0 1 1 0
2MG 1 0 0 1 0 1 1 0 1 0
2MG 0 1 1 1 1 0 1 1 1 1
2MG 1 0 1 0 1 1 1 0 0 1
;

The increasing incidence of 1s for higher dosages in the preceding data set provides
an initial visual indication that the drug has an effect. To explore this statistically, you
decide to perform an analysis in which the possibility of side effects increases linearly
with drug level. You can analyze the data for each side effect separately, but you are
concerned that, with so many tests, there may be a high probability of incorrectly
declaring some drug effects significant. You want to correct for this multiplicity
problem in a way that accounts for the discreteness of the data and for the correlations
between observations on the same unit.

PROC MULTTEST addresses these concerns by processing all of the data simul-
taneously and adjusting thep-values. The following statements perform a typical
analysis:

proc multtest bootstrap nsample=20000 seed=41287 notables pvals;
class Dose;
test ca(SideEff1-SideEff10);
contrast ’Trend’ 0 1 2;

run;

This analysis uses the BOOTSTRAP option to adjust thep-values. The NSAMPLE=
option requests 20,000 samples for the bootstrap analysis, and the starting seed for the
random number generator is 41287. The NOTABLES option suppresses the display
of summary statistics for each side effect and drug level combination.

The CLASS statement is used to specify the grouping variable,Dose. The
CA(SIDEEFF1-SIDEEFF10) specification in the TEST statement requests a
Cochran-Armitage linear trend test for all 10 characteristics. The CONTRAST
statement gives the coefficients for the linear trend test.

The results from this analysis are as follows.

The Multtest Procedure

Model Information

Test for discrete variables Cochran-Armitage
Z-score approximation used Everywhere
Continuity correction 0
Tails for discrete tests Two-tailed
Strata weights None
P-value adjustment Bootstrap
Number of resamples 20000
Seed 41287

Figure 48.1. Output Summary for the MULTTEST Procedure
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Figure 48.1describes the statistical tests performed by PROC MULTTEST. For this
example, PROC MULTTEST carries out a two-tailed Cochran-Armitage linear trend
test with no continuity correction or strata adjustment. This test is performed on the
raw data and on 20,000 bootstrap samples.

The Multtest Procedure

Contrast Coefficients

Dose

Contrast 0MG 1MG 2MG

Trend 0 1 2

Figure 48.2. Coefficients Used in the MULTTEST Procedure

Figure 48.2displays the coefficients for the Cochran-Armitage test. They are 0, 1,
and 2, as specified in the CONTRAST statement.

The Multtest Procedure

p-Values

Variable Contrast Raw Bootstrap

SideEff1 Trend 0.0519 0.3471
SideEff2 Trend 0.1949 0.8388
SideEff3 Trend 0.0662 0.5232
SideEff4 Trend 0.0126 0.0937
SideEff5 Trend 0.0382 0.2438
SideEff6 Trend 0.0614 0.4455
SideEff7 Trend 0.0095 0.0540
SideEff8 Trend 0.0519 0.3471
SideEff9 Trend 0.1949 0.8388
SideEff10 Trend 0.2123 0.9002

Figure 48.3. Summary of p-values for the MULTTEST Procedure

Figure 48.3lists thep-values for the drug example. The Raw column lists thep-
values for the Cochran-Armitage test on the original data, and the Bootstrap column
provides the bootstrap adjustment of the rawp-values.

Note that the rawp-values lead you to reject the null hypothesis of no linear trend for
3 of the 10 characteristics at the 5% level and for 7 of the 10 characteristics at the
10% level. The bootstrapp-values, however, lead to this conclusion for 0 of the 10
characteristics at the 5% level and only 2 of the 10 characteristics at the 10% level.
The bootstrap adjustment gives the probability of observing ap-value as extreme as
each givenp-value, considering all ten tests simultaneously. This adjustment incorpo-
rates the correlation of the rawp-values, the discreteness of the data, and the multiple
testing problem. Failure to account for these issues can certainly lead to misleading
inferences for these data.
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Syntax

The following statements are available in PROC MULTTEST.

PROC MULTTEST < options > ;
BY variables ;
CLASS variable ;
CONTRAST ’label’ values ;
FREQ variable ;
STRATA variable ;
TEST name (variables < / options >) ;

Items within angle brackets (< >) are optional, and statements following the PROC
MULTTEST statement can appear in any order. The CLASS and TEST statements
are required. The syntax of each statement is described in the following section in
alphabetical order after the description of the PROC MULTTEST statement.

PROC MULTTEST Statement

PROC MULTTEST < options > ;

You can specify the following options in the PROC MULTTEST statement.

BONFERRONI
BON

specifies that the Bonferroni adjustments (number of tests× p-value) be computed
for each test. These adjustments can be extremely conservative and should be viewed
with caution. When exact tests are specified via the PERMUTATION= option in the
TEST statement, the actual permutation distributions are used, resulting in a much
less conservative version of this procedure (Westfall and Wolfinger 1997).

BOOTSTRAP
BOOT

specifies that thep-values be adjusted using the bootstrap method to resample vectors
(Westfall and Young 1993). Resampling is performed with replacement and inde-
pendently within levels of the STRATA variable. Continuous variables are mean-
centered by default prior to resampling. The BOOTSTRAP option is not allowed
with the PETO test for theoretical reasons.

If the PERMUTATION= suboption is used with the CA test on the TEST statement,
the exact permutation distribution is recomputed for each bootstrap sample.Caution:
This can be very time-consuming. It is preferable to use permutation resampling
when permutation base tests are used.

CENTER
requests that continuous variables be mean-centered prior to resampling. The default
action is to mean-center for bootstrap resampling and not to mean-center for permu-
tation resampling.
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DATA=SAS-data-set
names the input SAS data set to be used by PROC MULTTEST. The default is to use
the most recently created data set. The DATA= and PDATA= options cannot both be
specified.

FDR
requests adjustedp-values using the method of Benjamini and Hochberg (1995).
Thesep-values do not control the familywise error rate, but they do control the false
discovery rate in some cases.

FISHER–C
requests adjustedp-values using Fisher’s combination method.

HOC
requests adjustedp-values using Hochberg’s (1988) step-up Bonferroni method.

HOMMEL
HOM

requests adjustedp-values using Hommel’s (1988) method.

HOLM
is an alias for theSTEPBONadjustment.

NOCENTER
requests that continuous variables not be mean-centered prior to resampling. The
default action is to mean-center for bootstrap resampling and not to mean-center for
permutation resampling.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables
the Output Delivery System (ODS); seeChapter 14, “The Output Delivery System,”
for more information.

NOTABLES
suppresses display of the “Discrete Variable Tabulations” and “Continuous Variable
Tabulations” tables.

NOZEROS
suppresses display of tables having zero occurrences for all CLASS levels.

NSAMPLE= number
N= number

specifies the number of resamples for use with the BOOTSTRAP and
PERMUTATION options; it is assumed to be 20,000 by default. Large values
of number (20,000 or more) are usually recommended for accuracy, but long
execution times may result, particularly with large data sets.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the CLASS variable. By default,
ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. This ordering determines which parameters
in the model correspond to each level in the data, so the ORDER= option may be
useful when you use CONTRAST statements.
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When ORDER=FORMATTED is in effect for numeric variables for which you have
supplied no explicit format, the levels are ordered by their internal values. In releases
previous to Version 8, numeric class levels with no explicit format were ordered by
their BEST12. formatted values. In order to revert to the previous method, you can
specify this format explicitly for the CLASS variable. The change was implemented
because the former default behavior for ORDER=FORMATTED often resulted in
levels not being ordered numerically and required you to use an explicit format or to
specify ORDER=INTERNAL to get the more natural ordering.

The following table shows how PROC MULTTEST interprets values of the ORDER=
option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

For more information on sorting order, see the chapter on the SORT procedure in the
SAS Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

OUT=SAS-data-set
names the output SAS data set containing variable names, contrast names, interme-
diate calculations, and all associatedp-values.

OUTPERM=SAS-data-set
names the output SAS data set containing entire permutation distributions (upper-tail
probabilities) for all tests when the PERMUTATION= option is used.Caution: This
data set can be very large.

OUTSAMP=SAS-data-set
names the output SAS data set containing information from the resampled data sets
when resampling is performed.Caution: This data set can be very large.

PDATA=SAS-data-set
names an input SAS data set containing the variableraw–p with observations that
consist of rawp-values. The MULTTEST procedure adjusts the collection of raw
p-values for multiplicity. Resampling-based adjustments are not permitted with this
type of data input. The PDATA= and DATA= options cannot both be specified.
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PERMUTATION
PERM

specifies adjustedp-values in identical fashion as the BOOTSTRAP option, with the
exception that PROC MULTTEST resamples without replacement rather than with
replacement. Resampling is performed independently within levels of the STRATA
variable. Continuous variables are not mean-centered prior to resampling. The
PERMUTATION option is not allowed with the PETO test for theoretical reasons.

PVALS
requests that a summary table of raw and adjustedp-values be included.

SEED= number
S= number

specifies the initial seed for the random number generator used for resampling. The
value fornumbermust be an integer. If you do not specify a seed, or if you specify a
value less than or equal to zero, then PROC MULTTEST uses the time of day from
the computer’s clock to generate an initial seed. For more details about seed values,
refer toSAS Language Reference: Concepts.

SIDAK
SID

specifies that the Sidak adjustments be computed for each test. These adjustments
take the form

1− (1− p)n

wherep is the rawp-value andn is the number of tests. These are slightly less con-
servative than the Bonferroni adjustments, but they still should be viewed with cau-
tion. When exact tests are specified via thePERMUTATION= option in the TEST
statement, the actual permutation distributions are used, resulting in a much less con-
servative version of this procedure (Westfall and Wolfinger 1997).

STEPBON
requests adjustedp-values using the stepdown Bonferroni method of Holm (1979).

STEPBOOT
requests that adjustedp-values be computed using bootstrap resampling as described
under theBOOTSTRAPoption, but in stepdown fashion.

STEPPERM
requests that adjustedp-values be computed using permutation resampling as de-
scribed under thePERMUTATIONoption, but in stepdown fashion.

STEPSID
requests adjustedp-values using the Sidak method as described in theSIDAK option,
but in stepdown fashion.
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BY Statement

BY variables ;

You can specify a BY statement with PROC MULTTEST to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables. Thevariablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the MIXED procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

Since sorting the data changes the order in which PROC MULTTEST reads obser-
vations, this can affect the sorting order for the levels of the CLASS variable if you
have specified ORDER=DATA in the PROC MULTTEST statement. This, in turn,
affects specifications in the CONTRAST statements.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variable;

The CLASS statement is required. It declares a single variable (character or numeric)
used to identify the groups for the analysis. For example, if the variableTreatment
defines different levels of a treatment, then the statement is

class Treatment;

The CLASS variable can be either character or numeric. By default, its levels are de-
termined from entire formatted values. Note that this represents a slight change from
previous releases in the way in which class levels are determined. In releases prior
to Version 9, class levels were determined using no more than the first 16 characters
of the formatted values. If you wish to revert to this previous behavior you can use
the TRUNCATE option in the CLASS statement. In any case, you can use formats
to group values into levels. Refer to the discussion of the FORMAT procedure in the
SAS Procedures Guideand to the discussions of the FORMAT statement and SAS
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formats inSAS Language Reference: Dictionary. You can adjust the order of CLASS
variable levels with theORDER=option in the PROC MULTTEST statement. You
need to be aware of the order when using the CONTRAST statement, and you should
check the “Contrast Coefficients” table to verify that it is suitable.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE specifies that class levels should be determined using only no more than
the first 16 characters of the formatted values of CLASS variables. When formatted
values are longer than 16 characters, you can use this option in order to revert to the
levels as determined in releases previous to Version 9.

The order of the CLASS levels used by PROC MULTTEST correspond to their for-
matted values; this order can be changed with the ORDER= option in the PROC
MULTTEST statement.

CONTRAST Statement

CONTRAST ’label’ values ;

This statement is used to identify tests between the levels of the CLASS variable; in
particular, it is used to specify the coefficients for the trend tests. Thelabel is a string
naming the contrast; it contains a maximum of 21 characters. Thevaluesare scoring
coefficients across the CLASS variable levels.

You can specify multiple CONTRAST statements, thereby specifying multiple con-
trasts for each variable. Multiplicity adjustments are computed for all contrasts and all
variables simultaneously. The coefficients are applied in the order of the CLASS vari-
ables; this order can be changed with the ORDER= option in the PROC MULTTEST
statement. For example, consider a four-group experiment with CLASS variable
levels A1, A2, B1, and B2 denoting two levels of two treatments. The following
statements produce three linear trend tests for each variable identified in the TEST
statement. PROC MULTTEST computes the multiplicity adjustments over the entire
collection of tests, which is three times the number of variables.

contrast ’a vs b’ -1 -1 1 1;
contrast ’a linear’ -1 1 0 0;
contrast ’b linear’ 0 0 -1 1;

As another example, consider an animal carcinogenicity experiment with dose lev-
els 0, 4, 8, 16, and 50. You might consider trend tests defined using the following
statement:

contrast ’arithmetic trend’ 0 4 8 16 50;

This statement produces a trend test using the indicated scoring coefficients.
Multiplicity-adjustedp-values are then computed over the collection of variables
identified in the TEST statement. Refer to Lagakos and Louis (1985) for guidelines
on the selection of contrast-scoring values.
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When a Fisher test is specified in the TEST statement, the CONTRAST statement
coefficients are used to group the CLASS variable’s levels. Groups with a−1 con-
trast coefficient are combined and compared with groups with a 1 contrast coefficient
for each test, and groups with a 0 coefficient are not included in the contrast. For
example, the statements

contrast ’c vs all’ 1 -1 -1 -1;
contrast ’c vs t1’ 1 -1 0 0;
contrast ’c vs t3’ 1 0 0 -1;

compute Fisher exact tests for (a) control versus the combined treatment groups, (b)
control versus the first treatment group, and (c) control versus the third treatment
group. Multiplicity adjustments are then computed over the entire collection of tests
and variables. Only−1, 1, and0 are acceptable CONTRAST coefficients when the
Fisher test is specified; PROC MULTTEST ignores the CONTRAST statement if any
other coefficients appear.

If you specify the FISHER test and no CONTRAST statements, then all contrasts
of control versus treatment are automatically generated, with the first level of the
CLASS variable deemed to be the control. In this case, the control level is assigned
the value1 in each contrast and the other treatment levels are assigned−1. You
should therefore use the LOWERTAILED option to test for higher success rates in
the treatment groups.

For tests other than FISHER, CONTRAST values are 0,1,2,... by default. Fort-tests
for the mean using continuous data (and for the FT tests), the contrast coefficients are
centered to have mean 0. The resulting centered scoring coefficients are then applied
to the sample means (or to the double-arcsine-transformed proportions in the case of
the FT tests).

FREQ Statement

FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation
in the DATA= data set. Specifically, ifn is the value of the FREQ variable for a given
observation, then that observation is usedn times.

If the value of the FREQ variable is missing or is less than 1, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.

STRATA Statement

STRATA variable ;

The STRATA statement identifies a single variable to use as a stratification variable
in the analysis. This yields tests similar to those discussed in Mantel and Haenszel
(1959) and Hoel and Walburg (1972) for binary data and pooled-means tests for con-
tinuous data. For example, when you test for prevalence in a carcinogenicity study,
it is common to stratify on intervals of the time at death; the first level of the stratifi-
cation variable may represent weeks 0−52, the second weeks 53−80, and so on. In
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multicenter clinical studies, each level of the stratification variable may represent a
particular center.

The following option is available in the STRATA statement after a slash (/):

WEIGHT=
specifies the type of strata weighting to use when computing the Freeman-Tukey and
t-tests for the mean. Valid values are SAMPLESIZE, HARMONIC, and EQUAL.
SAMPLESIZE requests weights proportional to the within-stratum sample sizes, and
is the default method. HARMONIC sets up weights equal to the harmonic mean of
the non-missing within-stratum CLASS sizes, and is similar to a Type 2 analysis in
PROC GLM. EQUAL specifies equal weights, and is similar to a Type 3 analysis in
PROC GLM.

TEST Statement

TEST name ( variables < / options >) ;

The TEST statement is required. It identifies statistical tests to be performed and the
discrete and continuous variables to be tested. The following tests are permitted as
namein the TEST statement.

CA requests the Cochran-Armitage linear trend tests for group com-
parisons. The test variables should take the value 0 for a failure
and 1 for a success. The PERMUTATION= option can be used to
request an exact permutation test; otherwise, aZ-score approxima-
tion is used. The CONTINUITY= option can be used to specify a
continuity correction for theZ-score approximation.

FISHER requests Fisher exact tests for comparing two treatment groups.
The test variables should take the value 0 for a failure and 1 for
a success.

FT requestsZ-score CA tests based upon the Freeman-Tukey double
arcsine transformation of the frequencies. The test variables should
take the value 0 for a failure and 1 for a success.

MEAN requests thet-test for the mean. The test variables can take on any
numeric values.

PETO requests the Peto mortality-prevalence test. The test variables
should take the value 0 for a nonoccurrence, 1 for an incidental oc-
currence, and 2 for a fatal occurrence. The TIME= option should
be used with the PETO test to specify a variable giving the age at
death. The CONTINUITY= option can be used to specify a conti-
nuity correction for the test.

If the value of a TEST variable is invalid, the observation is not used in the analysis.
You can specify two tests only if one of them is MEAN. For example, the following
statement is valid

test ca(d1-d2) mean(c1-c2);
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but the statement

test ca(d1-d2) ft(d1-d2);

is invalid.

You can specify the following options in the TEST statement (some apply to only one
test).

BINOMIAL
specifies that the binomial variance estimate be used for CA and PETO tests in their
asymptotic normal approximations. The default is to use the hypergeometric vari-
ance.

CONTINUITY= number
C= number

specifiesnumberas a particular continuity correction for theZ-score approximation
in the CA and PETO tests. The default is 0.

LOWERTAILED
LOWER

is used to make all tests lower-tailed. All tests are two-tailed by default.

PERMUTATION= number
PERM= number

specifies thatp-values for the CA and PETO tests be computed using exact permuta-
tion distributions when marginal success or failure totals within a stratum arenumber
or less. For values greater thannumber(or when the PERMUTATION= option is
omitted), PROC MULTTEST uses standard normal approximations with a continuity
correction chosen to approximate the permutation distribution. PROC MULTTEST
computes the appropriate convolution distributions when you use the STRATA state-
ment along with the PERMUTATION= option.

TIME= variable
identifies the PETO test variable containing the age at death, which is assumed to be
integer valued. If the TIME= option is omitted, all ages are assumed to equal 1.

UPPERTAILED
UPPER

is used to make all tests upper-tailed. All tests are two-tailed by default.
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Details

Statistical Tests

The following section discusses the statistical tests performed in the MULTTEST pro-
cedure. For continuous data, at-test for the mean is available. For discrete variables,
available tests are the Cochran-Armitage (CA) linear trend test, the Freeman-Tukey
(FT) double arcsine test, the Peto mortality-prevalence test, and the Fisher exact test.

Throughout this section, the discrete and continuous variables are denoted bySvgsr

andXvgsr, respectively, wherev is the variable,g is the treatment group,s is the
stratum, andr is the replication. A plus sign (+) subscript denotes summation over
an index. Note that the tests are invariant to the location and scale of the contrast
coefficientstg.

Cochran-Armitage Linear Trend Test

The Cochran-Armitage linear trend test (Cochran 1954; Armitage 1955; Agresti
1990) is implemented using aZ-score approximation, an exact permutation distri-
bution, or a combination of both.

Z-Score Approximation

Let mvgs denote the sample size for a binary variablev within groupg and stratum
s. The pooled probability estimate for variablev and stratums is

pvs =
Sv+s+

mv+s

The expected value (under constant within-stratum treatment probabilities) for vari-
ablev, groupg, and stratums is

Evgs = mvgspvs

The test statistic for variablev has numerator

Nv =
∑

s

∑
g

tg(Svgs+ − Evgs)

wheretg denotes the contrast trend coefficients specified by the CONTRAST state-
ment. The binomial variance estimate for this statistic is

Vv =
∑

s

pvs(1− pvs)
∑

g

mvgs(tg − t̄vs)2

where

t̄vs =
∑

g

mvgstg
mv+s
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The hypergeometric variance estimate (the default) is

Vv =
∑

s

{mv+s/(mv+s − 1)}pvs(1− pvs)
∑

g

mvgs(tg − t̄vs)2

For any stratas with mv+s ≤ 1, the contribution to the variance is taken to be zero.

PROC MULTTEST computes theZ-score statistic

Zv =
Nv√
Vv

Thep-value for this statistic comes from the standard normal distribution. Whenever
a 0 is computed for the denominator, thep-value is set to 1. Thisp-value approximates
the probability obtained from the exact permutation distribution, discussed in the
following text.

TheZ-score statistic can be continuity-corrected to better approximate the permuta-
tion distribution. With continuity correctionc, the upper-tailedp-value is computed
from

Zv =
Nv − c√

Vv

For two-tailed, noncontinuity-corrected tests, PROC MULTTEST reports thep-value
as2 min(p, 1−p), wherep is the upper-tailedp-value. The same formula holds for the
continuity-corrected test, with the exception that when the noncontinuity-correctedZ
and the continuity-correctedZ have opposite signs, the two-tailedp-value is 1.

When the PERMUTATION= option is specified and no STRATA variable is specified,
PROC MULTTEST uses a continuity correction selected to optimally approximate
the upper-tail probability of permutation distributions with smaller marginal totals
(Westfall and Lin 1988). Otherwise, the continuity correction is specified using the
CONTINUITY= option in the TEST statement.

The CAZ-score statistic is the Hoel-Walburg (Mantel-Haenszel) statistic reported by
Dinse (1985).

Exact Permutation Test

When you use the PERMUTATION= option for CA in the TEST statement, PROC
MULTTEST computes the exact permutation distribution of the trend score

Tv =
∑

s

∑
g

tgSvgs+

and then compares the observed value of this trend with the permutation distribution
to obtain thep-value

pv = Pr(X ≥ observedTv)
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whereX is a random variable from the permutation distribution and where upper-
tailed tests are requested. This probability can be viewed as a binomial probabil-
ity, where the within-stratum probabilities are constant and where the probability is
conditional with respect to the marginal totalsSv+s+. It also can be considered a
rerandomization probability.

Because the computations can be quite time-consuming with large data sets, spec-
ifying the PERMUTATION=numberoption in the TEST statement limits the situa-
tions where PROC MULTTEST computes the exact permutation distribution. When
marginal total success or total failure frequencies exceednumberfor a particular stra-
tum, the permutation distribution is approximated using a continuity-corrected nor-
mal distribution. You should be cautious in using the PERMUTATION= option in
conjunction with bootstrap resampling because the permutation distribution is re-
computed for each bootstrap sample. This recomputation is not necessary with per-
mutation resampling.

The permutation distribution is computed in two steps:

1. The permutation distributions of the trend scores are computed within each
stratum.

2. The distributions are convolved to obtain the distribution of the total trend.

As long as the total success or failure frequency does not exceednumberfor any
stratum, the computed distributions are exact. In other words, ifSv+s+ ≤ number
or (mv+s − Sv+s+) ≤ numberfor all s, then the permutation trend distribution for
variablev is computed exactly.

In step 1, the distribution of the within-stratum trend

∑
g

tgSvgs+

is computed using the multivariate hypergeometric distribution of theSvgs+, provided
numberis not exceeded. This distribution can be written as

Pr(Sv1s+, Sv2s+, . . . , SvGs+) =
G∏

g=1

(
mvgs

Svgs+

)
(

mv+s

Sv+s+

)
The distribution of the within-stratum trend is then computed by summing these prob-
abilities over appropriate configurations. For further information on this technique,
refer to Bickis and Krewski (1986) and Westfall and Lin (1988). In step 2, the exact
convolution distribution is obtained for the trend statistic summed over all strata hav-
ing totals that meet the threshold criterion. This distribution is obtained by applying
the fast Fourier transform to the exact within-stratum distributions. A description of
this general method can be found in Pagano and Tritchler (1983) and Good (1987).
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The convolution distribution of the overall trend is then computed by convolving the
exact distribution with the distribution of the continuity-corrected standard normal
approximation. To be more specific, letS1 denote the subset of stratum indices that
satisfy the threshold criterion, and letS2 denote the subset of indices that do not sat-
isfy the criterion. LetTv1 denote the combined trend statistic from the setS1, which
has an exact distribution obtained using Fourier analysis as previously outlined, and
let Tv1 denote the combined trend statistic from the setS2. Then the distribution of
the overall trendTv = Tv1 + Tv2 is obtained by convolving the analytic distribution
of Tv1 with the continuity-corrected normal approximation forTv2. Using the nota-
tion from the“Z-Score Approximation”section on page 2948, this convolution can
be written as

Pr(Tv1 + Tv2 ≥ u) =
∑
u1

Pr(Tv1 + Tv2 ≥ u | Tv1 = u1) Pr(Tv1 = u1)

≈
∑
u1

Pr(Z ≥ z) Pr(Tv1 = u1)

whereZ is a standard normal random variable, and

z =
1√
Vv

u− u1−
∑
S2

pvs

∑
g

tgmvgs − c


In this expression, the summation ofs in Vv is overS2, andc is the continuity cor-
rection discussed under theZ-score approximation.

When a two-tailed test is requested, the expected trend

Ev =
∑

s

∑
g

tgEvgs

is computed, and the two-tailedp-value is reported as the permutation tail probability
for the observed trendTv plus the permutation tail probability for2Ev − Tv, the
reflected trend.

Freeman-Tukey Double Arcsine Test

For this test, the contrast trend coefficientst1, . . . , tG are centered to the values
c1, . . . , cG, wherecg = tg − t̄, t̄ =

∑
g tg/G, andG is the number of groups. The

numerator of this test statistic is

Nv =
∑

s

wvs

∑
g

cgf(Svgs+,mvgs)

where the weightswvs take on three different types of values depending upon your
specification of the WEIGHT= option in the STRATA statement. The default value
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is the within-strata sample sizemv+s, ensuring comparability with the ordinary CA
trend statistic. WEIGHT=HARMONIC setswvs equal to the harmonic mean

[(∑
g

1
mvgs

)
/G∗

]−1

whereG∗ is the number of non-missing groups and the summation is over only the
non-missing elements. The harmonic means analysis places more weight on the
smaller sample sizes than does the default sample size method, and is similar to a
Type 2 analysis in PROC GLM. WEIGHT=EQUAL setswvs = 1 for all v ands, and
is similar to a Type 3 analysis in PROC GLM.

The functionf(r, n) is the double arcsine transformation:

f(r, n) = arcsin
(√

r

n + 1

)
+ arcsin

(√
r + 1
n + 1

)

The variance estimate is

Vv =
∑

s

w2
vs

∑
g

c2
g

mvgs + 1
2

and the test statistic is

Zv =
Nv√
Vv

The Freeman-Tukey transformation and its variance are described by Freeman and
Tukey (1950) and Miller (1978). Since its variance is not weighted by the pooled
probabilities, as is the CA test, the FT test can be more useful than the CA test for
tests involving only a subset of the groups.

Peto Mortality-Prevalence Trend Test

The Peto test is a modified Cochran-Armitage procedure incorporating mortality and
prevalence information. It represents a special case in PROC MULTTEST because
the data structure requirements are different, and the resampling methods used for
adjustingp-values are not valid. The TIME= option variable is required to specify
“death” times or, more generally, time of occurrence. In addition, the test variables
must assume one of the following three values.

• 0 = no occurrence

• 1 = incidental occurrence

• 2 = fatal occurrence
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Use the TIME= option variable to define the mortality strata, and use the STRATA
statement variable to define the prevalence strata.

The Peto test is computed like two Cochran-ArmitageZ-score approximations, one
for prevalence and one for mortality.

In the following notation, the subscriptv represents the variable,g represents the
treatment group,s represents the stratum, andt represents the time. Recall that a plus
sign(+) in a subscript location denotes summation over that subscript.

Let SP
vgs be the number of incidental occurrences, and letmP

vgs be the total sample
size for variablev in groupg, stratums, excluding fatal tumors.

Let SF
vgt be the number of fatal occurrences in time periodt, and letmF

vgt be the
number alive at the end of timet− 1.

The pooled probability estimates are

pP
vs =

SP
v+s

mP
v+s

pF
vt =

SF
v+t

mF
v+t

The expected values are

EP
vgs = mP

vgsp
P
vs

EF
vgt = mF

vgtp
F
vt

Define the numerator terms:

NP
v =

∑
s

∑
g

tg
(
SP

vgs − EP
vgs

)
NF

v =
∑

t

∑
g

tg
(
SF

vgt − EF
vgt

)

wheretg denotes a contrast trend coefficient. Define the denominator variance terms
(using the binomial variance):

V P
v =

∑
s

pP
vs

(
1− pP

vs

)(∑
g

mP
vgstg

2

)
− 1

mP
v+s

(∑
g

mP
vgstg

)2


V F
v =

∑
s

pF
vt

(
1− pF

vt

)(∑
g

mF
vgttg

2

)
− 1

mF
v+t

(∑
g

mF
vgttg

)2
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The hypergeometric variances (the default) are calculated by weighting the within-
strata variances as discussed in the“Z-Score Approximation”section on page 2948.

The Peto statistic is computed as

Zv =
NP

v + NF
v − c√

V P
v + V F

v

wherec is a continuity correction. Thep-value is determined from the standard nor-
mal distribution unless the PERMUTATION=numberoption is used. When you use
the PERMUTATION= option for PETO in the TEST statement, PROC MULTTEST
computes the “discrete approximation” permutation distribution described by Mantel
(1980) and Soper and Tonkonoh (1993). Specifically, the permutation distribution of∑

s

∑
g

tgS
P
vgs +

∑
t

∑
g

tgS
F
vgt

is computed, assuming that{
∑

g tgS
P
vgs} and{

∑
g tgS

F
vgt} are independent over all

s andt. Thep-values are exact under this independence assumption. However, the
independence assumption is valid only asymptotically, which is why thesep-values
are called “approximate.”

An exact permutation distribution is available only under the assumption of equal
risk of censoring in all treatment groups; even then, computing this distribution can
be cumbersome. Soper and Tonkonoh (1993) describe situations where the discrete
approximation distribution closely fits the exact permutation distribution.

Fisher Exact Test

The CONTRAST statement in PROC MULTTEST enables you to compute Fisher
exact tests for two-group comparisons. No stratification variable is allowed for this
test. Note, however, that the FISHER exact test is a special case of the exact permu-
tation tests performed by PROC MULTTEST and that these permutation tests allow
a stratification variable. Recall that contrast coefficients can be−1, 0, or 1 for the
Fisher test. The frequencies and sample sizes of the groups scored as−1 are com-
bined, as are the frequencies and sample sizes of the groups scored as1. Groups
scored as0 are excluded. The−1 group is then compared with the1 group using the
Fisher exact test.

Letting x andm denote the frequency and sample size of the1 group, andy andn
denote those of the−1 group, thep-value is calculated as

Pr(X ≥ x | X + Y = x + y) =
m∑

i=x

(
m
i

)(
n

x + y − i

)
(

m + n
x + y

)
whereX andY are independent binomially distributed random variables with sample
sizesm andn and common probability parameters. The hypergeometric distribution
is used to determine the stated probability; Yates (1984) discusses this technique.
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PROC MULTTEST computes the two-tailedp-values by adding probabilities from
both tails of the hypergeometric distribution. The first tail is from the observedx and
y, and the other tail is chosen so that the resulting probability is as large as possible
without exceeding the probability from the first tail.

t-Test for the Mean

For continuous variables, PROC MULTTEST automatically centers the contrast trend
coefficients, as in the Freeman-Tukey test. These centered coefficientscg are then
used to form at-statistic contrasting the within-group means. Letnvgs denote the
sample size within groupg and stratums; it depends on variablev only when there
are missing values. Define

X̄vgs+ =
1

nvgs

∑
r

Xvgsr

as the sample mean within a group-and-stratum combination, and define

s2
v =

∑
s

∑
g

∑
r

(
Xvgsr − X̄vgs+

)2
∑

s

∑
g

(nvgs − 1)

as the pooled sample variance. Assume constant variance for all group-and-stratum
combinations. Then thet-statistic for the mean is

Mv =

∑
s

wvs

∑
g

cgX̄vgs+√√√√s2
v

(∑
s

w2
vs

∑
g

c2
g

nvgs

)

where the weightswvs are determined as in the Freeman-Tukey test withnvgs replac-
ing mvgs.

Let µvgs denote the treatment means. Then under the null hypothesis that

∑
s

wvs

∑
g

cgµvgs = 0

and assuming normality, independence, and homoscedasticity,Mv follows a
t-distribution with

∑
s

∑
g (nvgs − 1) degrees of freedom.

Whenever a denominator of 0 is computed, thep-value is set to 1. When missing data
forcenvgs = 0, then the contribution to the denominator of the pooled variance is 0
and not−1. This is also true for degrees of freedom.
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p-Value Adjustments

PROC MULTTEST offersp-value adjustments using Bonferroni, Sidak, Bootstrap
resampling, and Permutation resampling, all with single-step or stepdown versions.
In addition, Hochberg’s (1988) and Benjamini and Hochberg’s (1995) step-up meth-
ods are offered, as are Hommel’s (1988) and Fisher’s combination method. The
Bonferroni and Sidak methods are calculated from the permutation distributions when
exact permutation tests are used with CA or PETO tests.

All methods but the resampling methods are calculated using simple functions of the
raw p-values or marginal permutation distributions; the permutation and bootstrap
adjustments require the raw data. Because the resampling techniques incorporate
distributional and correlational structures, they tend to be less conservative than the
other methods.

When a resampling (bootstrap or permutation) method is used with only one test,
the adjustedp-value is the bootstrap or permutationp-value for that test, with no
adjustment for multiplicity, as described by Westfall and Soper (1994).

Bonferroni

Suppose that PROC MULTTEST performsR statistical tests, yieldingp-values
p1, . . . , pR. Then the Bonferronip-value for testr is simply Rpr. If the adjusted
p-value exceeds 1, it is set to 1.

If the unadjustedp-values are computed using exact permutation distributions, then
the Bonferroni adjustment forpr is p∗1+ · · ·+p∗R, wherep∗j is the largestp-value from
the permutation distribution of testj satisfyingp∗j ≤ pr, or 0 if all permutationalp-
values of testj are greater thanpr. These adjustments are much less conservative
than the ordinary Bonferroni adjustments because they incorporate the discrete dis-
tributional characteristics. However, they remain conservative in that they do not
incorporate correlation structures between multiple contrasts and multiple variables
(Westfall and Wolfinger 1997).

Sidak

A technique slightly less conservative than Bonferroni is the Sidakp-value (Sidak
1967), which is1 − (1 − pr)R. It is exact when all of thep-values are uniformly
distributed and independent, and it is conservative when the test statistics satisfy the
positive orthant dependence condition (Holland and Copenhaver 1987).

If the unadjustedp-values are computed using exact permutation distributions, then
the Sidak adjustment forpr is 1 − (1 − p∗1) · · · (1 − p∗R), where thep∗j are as de-
scribed previously. These adjustments are less conservative than the corresponding
Bonferroni adjustments, but they do not incorporate correlation structures between
multiple contrasts and multiple variables (Westfall and Wolfinger 1997).
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Bootstrap

The bootstrap method creates pseudo-data sets by sampling observations with re-
placement from each within-stratum pool of observations. An entire data set is thus
created, andp-values for all tests are computed on this pseudo-data set. A counter
records whether the minimump-value from the pseudo-data set is less than or equal
to the actualp-value for each base test. (If there areR tests, then there areR such
counters.) This process is repeated a large number of times, and the proportion of
resampled data sets where the minimum pseudo-p-value is less than or equal to an ac-
tual p-value is the adjustedp-value reported by PROC MULTTEST. The algorithms
are described by Westfall and Young (1993).

In the case of continuous data, the pooling of the groups is not likely to recreate the
shape of the null hypothesis distribution, since the pooled data are likely to be mul-
timodal. For this reason, PROC MULTTEST automatically mean-centers all con-
tinuous variables prior to resampling. Such mean-centering is akin to resampling
residuals in a regression analysis, as discussed by Freedman (1981). You can specify
the NOCENTER option if you do not want to center the data. (In most situations, it
does not seem to make much difference whether or not you center the data.)

The bootstrap method explicitly incorporates all sources of correlation, from both the
multiple contrasts and the multivariate structure. The adjustedp-values incorporate
all correlations and distributional characteristics.

Permutation

The permutation-style adjustedp-values are computed in identical fashion as the
bootstrap adjustedp-values, with the exception that the within-stratum resampling is
performed without replacement instead of with replacement. This produces a reran-
domization analysis such as in Brown and Fears (1981) and Heyse and Rom (1988).
In the spirit of rerandomization analyses, the continuous variables are not centered
prior to resampling. This default can be overridden by using the CENTER option.

The permutation method explicitly incorporates all sources of correlation, from both
the multiple contrasts and the multivariate structure. The adjustedp-values incorpo-
rate all correlations and distributional characteristics.

Stepdown Methods

Stepdown testing is available for the Bonferroni, Sidak, bootstrap, and permutation
methods. The benefit of using stepdown methods is that the tests are made more pow-
erful (smaller adjustedp-values) while, in most cases, maintaining strong control of
the familywise error rate. The stepdown method was pioneered by Holm (1979) and
further developed by Shaffer (1986), Holland and Copenhaver (1987), and Hochberg
and Tamhane (1987).
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Suppose the base testp-values are ordered asp1 < p2 < · · · < pR. The Bonferroni
stepdownp-valuess1, . . . , sR are obtained from

s1 = Rp1

s2 = max (s1, (R− 1)p2)
s3 = max (s2, (R− 2)p3)

...

As always, if any adjustedp-value exceeds 1, it is set to 1. The Sidak stepdown
p-values are determined similarly:

s1 = 1− (1− p1)R

s2 = max
(
s1, 1− (1− p2)R−1

)
s3 = max

(
s2, 1− (1− p3)R−2

)
...

Stepdown Bonferroni adjustments using exact tests are defined as

s1 = p∗1 + · · ·+ p∗R

s2 = max (s1, p
∗
2 + · · ·+ p∗R, )

s3 = max (s2, p
∗
3 + · · ·+ p∗R, )

...

where thep∗j are defined as before. Note thatp∗j is taken from the permutation dis-
tribution corresponding to thejth smallest unadjustedp-value. Also, anysj greater
than 1.0 is truncated to 1.0.

Stepdown Sidak adjustments for exact tests are defined analogously by substituting
1− (1− p∗j ) · · · (1− p∗R) for p∗j + · · ·+ p∗R.

The resampling-style stepdown method is analogous to the preceding stepdown meth-
ods; the most extremep-value is adjusted according to allR tests, the second-most
extremep-value is adjusted according to(R − 1) tests, and so on. The difference is
that all correlational and distributional characteristics are incorporated when you use
resampling methods. More specifically, assuming the same ordering ofp-values as
discussed previously, the resampling-style stepdown adjustedp-value for testr is the
probability that the minimum pseudo-p-value of testsr, . . . , R is less than or equal to
pr.

This probability is evaluated using Monte Carlo, as are the previously described
resampling-style adjustedp-values. In fact, the computations for stepdown adjusted
p-values are essentially no more time-consuming than the computations for the non-
stepdown adjustedp-values. After Monte Carlo, the stepdown adjustedp-values are
corrected to ensure monotonicity; this correction leaves the first adjustedp-values
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alone, then corrects the remaining ones as needed. The stepdown method approxi-
mately controls the familywise error rate, and it is described in more detail by Westfall
and Young (1993), Westfallet al. (1999), and Westfall and Wolfinger (2000).

Hochberg

Assumingp-values are independent and uniformly distributed under their respective
null hypotheses, Hochberg (1988) demonstrated that Holm’s stepdown adjustments
control the familywise error rate even when calculated instep-upfashion. Since
the adjustedp-values are uniformly smaller for Hochberg’s method than for Holm’s
method, the Hochberg method is more powerful. However, this improved power
comes at the cost of having to make the assumption of independence.

The Hochberg adjustedp-values are defined in reverse order as the stepdown
Bonferroni:

sR = pR

s(R−1) = min
(
sR, 2p(R−1)

)
s(R−2) = min

(
s(R−1), 3p(R−2)

)
...

Hommel

Hommel’s (1988) method is a closed testing procedure based on Simes’ (1986) test.
The Simesp-value for a joint test of any set ofS hypotheses withp-valuesp1 ≤
p2 ≤ . . . ≤ pS is min((S/1)p1, (S/2)p2, . . . , (S/S)pS). The Hommel adjustedp-
value for testj is the maximum of all such Simesp-values, taken over all joint tests
that includej as one of their components.

Hochberg adjustedp-values are always as large or larger than Hommel adjustedp-
values. Sarker and Chang (1997) showed that Simes’ method is valid under indepen-
dent or positively dependentp-values, so Hommel’s and Hochberg’s methods also are
valid in such cases by the closure principle.

Fisher Combination

The FISHER–C option requests adjustedp-values using closed tests, based on the
idea of Fisher’s combination test. The Fisher combination test for a joint test of any
set ofS hypotheses withp-values uses the chi-square statisticχ2 = −2

∑
log(pi),

with 2S degrees of freedom. The FISHER–C adjustedp-value for testj is the maxi-
mum of allp-values for the combination tests, taken over all joint tests that includej
as one of their components. Independence ofp-values is required for the validity of
this method.

False Discovery Rate

The FDR option requestsp-values that control the “false discovery rate,” described
by Benjamini and Hochberg (1995). These adjustments are potentially much less
conservative than the Hochberg adjustments; however, they do not necessarily con-
trol the familywise error rate. Furthermore, they are guaranteed to control the false
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discovery rate only with independentp-values that are uniformly distributed under
their respective null hypotheses.

The FDR adjustedp-values are defined in step-up fashion, like the Hochberg adjust-
ments, but with less conservative multipliers:

sR = pR

s(R−1) = min
(
sR, [R/(R− 1)]p(R−1)

)
s(R−2) = min

(
s(R−1), [R/(R− 2)]p(R−2)

)
...

Missing Values

If a CLASS or STRATA variable has a missing value, then PROC MULTTEST re-
moves that observation from the analysis.

When there are missing values for test variables, the within group-and-stratum sam-
ple sizes may differ from variable to variable. In most cases this is not a problem;
however, it is possible for all data to be missing for a particular group within a partic-
ular stratum. For continuous variables and Freeman-Tukey tests, PROC MULTTEST
recenters the contrast trend coefficients within strata where all data for a particular
group are missing. The Cochran-Armitage and Peto tests are unaffected by this situ-
ation.

PROC MULTTEST uses missing values for resampling if they exist in the origi-
nal data set. If all variables have missing values for any observation, then PROC
MULTTEST removes it prior to resampling. Otherwise, PROC MULTTEST treats
all missing values as ordinary observations in the resampling. This means that differ-
ent resampled data sets can have different group sizes. In some cases it means that a
resampled data set can have all missing values for a particular variable in a particular
group/stratum combination, even when values exist for that combination in the orig-
inal data. For this reason, PROC MULTTEST recomputes all quantities within each
pseudo-data set, including such items as centered scoring coefficients and degrees of
freedom forp-values.

While PROC MULTTEST does provide analyses in missing value cases, you should
not feel that it completely solves the missing value problem. If you are concerned
about the adverse effects of missing data on a particular analysis, you should consider
using imputation and sensitivity analyses to assess the effects of the missing data.

Computational Resources

PROC MULTTEST keeps all of the data in memory to expedite resampling. A large
portion of the memory requirement is thus 8*NOBS*NVAR bytes, where NOBS is
the number of observations in the data set, and NVAR is the number of variables
analyzed, including CLASS, FREQ, and STRATA variables.
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If you specify PERMUTATION=number(for exact permutation distributions), then
PROC MULTTEST requires additional memory. This requirement is approxi-
mately 4*NTEST*NSTRATA*CMAX*number*(number+1) bytes, where NTEST is
the number of contrasts, NSTRATA is the number of STRATA levels, and CMAX is
the maximum contrast coefficient.

The execution time is linear in the number of resamples; that is, 10,000 resamples
will take 10 times longer than 1,000 resamples.

Output Data Sets

OUT= Data Set

The OUT= data set contains contrast names (–test–), variable names (–var–), the
contrast label (–contrast–), raw p-values (raw–p), and all requested adjustedp-
values (bon–p, sid–p, stpbon–p, stpsid–p, boot–p, perm–p, stpbootp, stp-
permp, hoc–p, or fdr–p).

If a resampling-based adjustedp-value is requested, then the simulation standard er-
ror is included as eithersim–se or stpsimse, depending upon whether single-step
or stepdown adjustments are requested. The simulation standard errors are used to
bound the true resampling-based adjustedp-value. For example, if the resampling-
based estimate is 0.0312 and the simulation standard error is 0.00123, then a 95%
confidence interval for the true adjustedp-value is0.0312±1.96(0.00123), or 0.0288
to 0.0336.

Intermediate statistics used to calculate thep-values are also written to the OUT=
data set. The statistics are separated by the–strat– level. When–strat– is reported
as missing, then the statistics refer to the pooled analysis over all–strat– levels.
Thep-values are provided only for the pooled analyses and are therefore reported as
missing for the strata-specific statistics.

For the PETO test, an additional variable,–tstrat– , is included to indicate whether
the stratum is an incidental occurrence stratum (–tstrat–=0) or a fatal occurrence
stratum (–tstrat–=1).

The statistic–value– is the per-strata contribution to the numerator of the overall
test statistic. In the case of the MEAN test, this is the contrast function of the sample
means multiplied by the total number of observations within the stratum. For the FT
test,–value– is the contrast function of the double-arcsine transformed proportions,
again multiplied by the total number of observations within the stratum. For the
CA and PETO tests,–value– is the observed value of the trend statistic within that
stratum.

When either PETO or CA is requested, the variable–exp– is included; this variable
contains the expected value of the trend statistic for the given stratum.

The statistic–se– is the square root of the variance of the per-strata–value– value
for any of the tests.

For MEAN tests, the variable–nval– is included. When reported with an individ-
ual stratum level (that is, when the–strat– value is nonmissing), the value–nval–
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refers to the within-stratum sample size. For the combined analysis (that is, the value
of the –strat– is missing), the value–nval– contains degrees of freedom of thet-
distribution used to compute the unadjustedp-value.

When the FISHER test is requested, the OUT= data set contains variables–xval– ,

–mval– , –yval– , and–nval– , which define observations and sample sizes in the
two groups defined by the CONTRAST statement.

For example, the OUT= data set from the drug example in the“Getting Started”
section on page 2936 is displayed inFigure 48.4.

Obs _test_ _var_ _contrast_ _value_ _exp_ _se_ raw_p boot_p sim_se

1 CA SideEff1 Trend 8 5 1.54303 0.05187 0.34705 .003366053
2 CA SideEff2 Trend 7 5 1.54303 0.19492 0.83880 .002600140
3 CA SideEff3 Trend 10 7 1.63299 0.06619 0.52315 .003531742
4 CA SideEff4 Trend 10 6 1.60357 0.01262 0.09370 .002060586
5 CA SideEff5 Trend 7 4 1.44749 0.03821 0.24380 .003036129
6 CA SideEff6 Trend 9 6 1.60357 0.06137 0.44545 .003514430
7 CA SideEff7 Trend 9 5 1.54303 0.00953 0.05400 .001598186
8 CA SideEff8 Trend 8 5 1.54303 0.05187 0.34705 .003366053
9 CA SideEff9 Trend 7 5 1.54303 0.19492 0.83880 .002600140

10 CA SideEff10 Trend 8 6 1.60357 0.21232 0.90020 .002119433

Figure 48.4. Output Data for the MULTTEST Procedure

OUTPERM= Data Set

The OUTPERM= data set contains contrast names (–contrast–), variable names
(–var–), and the associated permutation distributions (–value– and upper–p).
PROC MULTTEST computes the permutation distributions when you use the
PERMUTATION= option with the CA or Peto tests. The–value– variable represents
the support of the distributions, andupper–p represents their cumulative upper-tail
probabilities. The size of this data set depends on the number of variables and the
support of their permutation distributions. For information on how this distribution is
computed, see the“Exact Permutation Test”section on page 2949. For an illustration,
seeExample 48.1on page 2964.

OUTSAMP= Data Set

The OUTSAMP= data set contains the data sets used in the resampling analysis, if
such an analysis is requested. The variable–sample– indicates the number of the
resampled data set. This variable ranges from 1 to NSAMPLE. For each value of the

–sample– variable, an entire resampled data set is included, with–strat– , –class– ,
and all other variables in the original data set. The values of the original variables are
mean-centered for the mean test, if requested. The variable–obs– indicates the
observation’s position in the original data set.

Each new data set is randomly drawn from the original data set, either with (bootstrap)
or without (permutation) replacement. The size of this data set is, thus, the number
of observations in the original data set times the number of samples.
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Displayed Output

The output produced by PROC MULTTEST is divided into several tables:

• The “Model Information” table provides a list of the options and settings used
for that particular invocation of the procedure. Included in this list are the
following items:

− statistical tests

− support of the exact permutation distribution for the CA and PETO tests

− continuity corrections used for the CA test

− test tails

− strata adjustment

− p-value adjustments

− centering of continuous variables

− number of samples and seed

• The “Contrast Coefficients” table lists the coefficients used in constructing the
statistical tests. These coefficients are either specified in CONTRAST state-
ments or generated by default. The coefficients apply to the levels of the
CLASS statement variable.

• The “Variable Tabulations” tables provide summary statistics for each variable
listed in the TEST statement. Included for discrete variables are the count, sam-
ple size, and percentage of occurrences. For continuous variables, the mean,
sample standard deviation, and sample size are displayed. All of the previously
mentioned statistics are computed for distinct combinations of the CLASS and
STRATA statement variables.

• The “p-Values” table is a collection of the raw and adjustedp-values from this
run of PROC MULTTEST. Thep-values are listed by variable and test.

ODS Table Names

PROC MULTTEST assigns a name to each table it creates, and you must use this
name to reference the table when using the Table Delivery System (ODS). These
names are listed in the following table. For more information on ODS, seeChapter
14, “Using the Output Delivery System.”

Table 48.1. ODS Tables Created by the MULTTEST Procedure

ODS Table Name Description Statement
Continuous Continuous variable tabulationsTEST with MEAN
Contrasts Contrast coefficients default
Discrete Discrete variable tabulations TEST with CA, FT, PETO,

or FISHER
ModelInfo Model information default
pValues p-values from the tests default
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Examples

Example 48.1. Cochran-Armitage Test with Permutation
Resampling

This example, from Keith Soper at Merck, illustrates the exact permutation Cochran-
Armitage test carried out on permutation resamples. In the following data set, each
observation represents an animal. The binary variablesS1 andS2 indicate two tumor
types, with 0s indicating no tumor (failure) and 1 indicating a tumor (success); note
that they have perfect negative association. The grouping variable isDose.

data a;
input S1 S2 Dose @@;
datalines;

0 1 1 1 0 1 0 1 1
0 1 1 0 1 1 1 0 1
1 0 2 1 0 2 0 1 2
1 0 2 0 1 2 1 0 2
1 0 3 1 0 3 1 0 3
0 1 3 0 1 3 1 0 3
;
proc multtest data=a permutation nsample=10000

seed=36607 outperm=pmt pvals;
test ca(S1 S2 / permutation=10 uppertailed);
class Dose;
contrast ’CA Linear Trend’ 0 1 2;

run;
proc print data=pmt;
run;

The PROC MULTTEST statement requests 10,000 permutation resamples. The
OUTPERM=PMT option creates an output SAS data set for the exact permutation
distribution computed for the CA test.

The TEST statement specifies an upper-tailed Cochran-Armitage linear trend test for
S1 andS2. The cutoff for exact permutation calculations is 10, as specified with the
PERMUTATION= option in the TEST statement. SinceS1 andS2 have ten and eight
successes, respectively, PROC MULTTEST uses exact permutation distributions to
compute thep-values for both variables.

The groups for the CA test are the levels ofDose from the CLASS statement. The
trend coefficients applied to these groups are 0, 1, and 2, respectively, as specified in
the CONTRAST statement.

Finally, PROC PRINT displays the SAS data set containing the permutation distribu-
tions.

The results from this analysis are listed inOutput 48.1.1throughOutput 48.1.5.
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Output 48.1.1. Cochran-Armitage Test with Permutation Resampling

The Multtest Procedure

Model Information

Test for discrete variables Cochran-Armitage
Exact permutation distribution used Everywhere
Tails for discrete tests Upper-tailed
Strata weights None
P-value adjustment Permutation
Number of resamples 10000
Seed 36607

You should check the preceding table to verify that the analysis specifications are
correct.

Output 48.1.2. Contrast Coefficients

The Multtest Procedure

Contrast Coefficients

Dose

Contrast 1 2 3

CA Linear Trend 0 1 2

The preceding table lists the label and coefficients from the CONTRAST statement.

Output 48.1.3. Summary Statistics

The Multtest Procedure

Discrete Variable Tabulations

Variable Dose Count NumObs Percent

S1 1 2 6 33.33
S1 2 4 6 66.67
S1 3 4 6 66.67
S2 1 4 6 66.67
S2 2 2 6 33.33
S2 3 2 6 33.33

The preceding table contains summary statistics for the two test variables,S1 and
S2. The Count column lists the number of successes for each level of the class
variable,Dose. The NumObs column is the sample size, and the Percent column is
the percentage of successes in the sample.
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Output 48.1.4. Resulting p-Values

The Multtest Procedure

p-Values

Variable Contrast Raw Permutation

S1 CA Linear Trend 0.1993 0.4058
S2 CA Linear Trend 0.9220 1.0000

The Raw column in the preceding “p-Values” table contains thep-values from the
CA test, and the Permutation column contains the permutation-adjustedp-values.

This table shows that, forS1, the adjustedp-value is almost twice the rawp-value. In
fact, from theoretical considerations, the permutation-adjustedp-value forS1 should
be 2 × 0.1993 = 0.3986; the difference is due to resampling error. ForS2, the
raw p-value is 0.9220, and the adjustedp-value equals 1, as you would expect from
theoretical considerations. The permutationp-values forS1 andS2 also happen to
be the Bonferroni-adjustedp-values for this example.
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Output 48.1.5. Exact Permutation Distribution

Obs _contrast_ _var_ _value_ upper_p

1 CA Linear Trend S1 0 1.00000
2 CA Linear Trend S1 1 1.00000
3 CA Linear Trend S1 2 1.00000
4 CA Linear Trend S1 3 1.00000
5 CA Linear Trend S1 4 1.00000
6 CA Linear Trend S1 5 0.99966
7 CA Linear Trend S1 6 0.99609
8 CA Linear Trend S1 7 0.97827
9 CA Linear Trend S1 8 0.92205

10 CA Linear Trend S1 9 0.80070
11 CA Linear Trend S1 10 0.61011
12 CA Linear Trend S1 11 0.38989
13 CA Linear Trend S1 12 0.19930
14 CA Linear Trend S1 13 0.07795
15 CA Linear Trend S1 14 0.02173
16 CA Linear Trend S1 15 0.00391
17 CA Linear Trend S1 16 0.00034
18 CA Linear Trend S1 17 0.00000
19 CA Linear Trend S1 18 0.00000
20 CA Linear Trend S1 19 0.00000
21 CA Linear Trend S1 20 0.00000
22 CA Linear Trend S2 0 1.00000
23 CA Linear Trend S2 1 1.00000
24 CA Linear Trend S2 2 1.00000
25 CA Linear Trend S2 3 0.99966
26 CA Linear Trend S2 4 0.99609
27 CA Linear Trend S2 5 0.97827
28 CA Linear Trend S2 6 0.92205
29 CA Linear Trend S2 7 0.80070
30 CA Linear Trend S2 8 0.61011
31 CA Linear Trend S2 9 0.38989
32 CA Linear Trend S2 10 0.19930
33 CA Linear Trend S2 11 0.07795
34 CA Linear Trend S2 12 0.02173
35 CA Linear Trend S2 13 0.00391
36 CA Linear Trend S2 14 0.00034
37 CA Linear Trend S2 15 0.00000
38 CA Linear Trend S2 16 0.00000

The preceding table lists the OUTPERM= data set, which contains the exact permu-
tation distributions forS1 andS2 in terms of cumulative probabilities.
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Example 48.2. Freeman-Tukey and t-Tests with Bootstrap
Resampling

The data for the following example are the same as forExample 48.1, except that
a continuous variableT, which indicates the time of death of the animal, has been
added.

data a;
input S1 S2 T Dose @@;
datalines;

0 1 104 1 1 0 80 1 0 1 104 1
0 1 104 1 0 1 100 1 1 0 104 1
1 0 85 2 1 0 60 2 0 1 89 2
1 0 96 2 0 1 96 2 1 0 99 2
1 0 60 3 1 0 50 3 1 0 80 3
0 1 98 3 0 1 99 3 1 0 50 3
;
proc multtest data=a bootstrap nsample=10000

pvals seed=37081 outsamp=res;
test ft(S1 S2 / lowertailed) mean(T / lowertailed);
class Dose;
contrast ’Linear Trend’ 0 1 2;

run;
proc print data=res(obs=36);
run;

The BOOTSTRAP option in the PROC MULTTEST statement requests bootstrap
resampling, and NSAMPLE=10000 requests 10,000 bootstrap samples. The seed for
the random number generation is 37081. The OUTSAMP=RES option creates an
output SAS data set containing the 10,000 bootstrap samples.

The TEST statement specifies the Freeman-Tukey test forS1 andS2 and specifies
the t-test for T. Both tests are lower-tailed. The grouping variable in the CLASS
statement isDose, and the coefficients across the levels ofDose are 0, 1, and 2, as
specified in the CONTRAST statement. PROC PRINT displays the first 36 observa-
tions of theRes data set containing the bootstrap samples.

The results from this analysis are listed inOutput 48.2.1throughOutput 48.2.5.
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Output 48.2.1. FT and t-tests with Bootstrap Resampling

The Multtest Procedure

Model Information

Test for discrete variables Freeman-Tukey
Test for continuous variables Mean t-test
Tails for discrete tests Lower-tailed
Tails for continuous tests Lower-tailed
Strata weights None
P-value adjustment Bootstrap
Center continuous variables Yes
Number of resamples 10000
Seed 37081

The information in the preceding table corresponds to the specifications in the invo-
cation of PROC MULTTEST.

Output 48.2.2. Contrast Coefficients

The Multtest Procedure

Contrast Coefficients

Dose

Contrast 1 2 3

Linear Trend 0 1 2

The preceding table shows the coefficients from the CONTRAST statement, and they
model a linear trend.
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Output 48.2.3. Summary Statistics

The Multtest Procedure

Discrete Variable Tabulations

Variable Dose Count NumObs Percent

S1 1 2 6 33.33
S1 2 4 6 66.67
S1 3 4 6 66.67
S2 1 4 6 66.67
S2 2 2 6 33.33
S2 3 2 6 33.33

Continuous Variable Tabulations

Standard
Variable Dose NumObs Mean Deviation

T 1 6 99.3333 9.6056
T 2 6 87.5000 14.4326
T 3 6 72.8333 22.7017

The summary statistics in the preceding table forS1 andS2 are the same as those
from Example 48.1. The variablesS1 andS2 are discrete, andT is a continuous
variable. The mean, standard deviation, and sample size for each level ofDose is
listed in the table forT. Thep-values forS1 andS2 are from the Freeman-Tukey
test, and thep-values forT are from thet-test.

Output 48.2.4. p-Values

The Multtest Procedure

p-Values

Variable Contrast Raw Bootstrap

S1 Linear Trend 0.8547 1.0000
S2 Linear Trend 0.1453 0.4471
T Linear Trend 0.0070 0.0253

Thep-values are listed in the preceding table. The Raw column contains the results
from the tests on the original data, and the Bootstrap column contains the bootstrap
resampled adjustment toraw–p. Note that the adjustedp-values are larger than the
rawp-values for all three variables. The adjustedp-values more accurately reflect the
correlation of the rawp-values, the small size of the data, and the multiple testing.
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Output 48.2.5. Resampling Data Set

Obs _sample_ _class_ _obs_ S1 S2 T

1 1 1 11 0 1 8.5000
2 1 1 16 0 1 25.1667
3 1 1 16 0 1 25.1667
4 1 1 14 1 0 -22.8333
5 1 1 18 1 0 -22.8333
6 1 1 14 1 0 -22.8333
7 1 2 4 0 1 4.6667
8 1 2 12 1 0 11.5000
9 1 2 8 1 0 -27.5000

10 1 2 7 1 0 -2.5000
11 1 2 3 0 1 4.6667
12 1 2 12 1 0 11.5000
13 1 3 13 1 0 -12.8333
14 1 3 5 0 1 0.6667
15 1 3 8 1 0 -27.5000
16 1 3 5 0 1 0.6667
17 1 3 13 1 0 -12.8333
18 1 3 6 1 0 4.6667
19 2 1 8 1 0 -27.5000
20 2 1 3 0 1 4.6667
21 2 1 9 0 1 1.5000
22 2 1 13 1 0 -12.8333
23 2 1 14 1 0 -22.8333
24 2 1 12 1 0 11.5000
25 2 2 14 1 0 -22.8333
26 2 2 18 1 0 -22.8333
27 2 2 15 1 0 7.1667
28 2 2 6 1 0 4.6667
29 2 2 13 1 0 -12.8333
30 2 2 1 0 1 4.6667
31 2 3 7 1 0 -2.5000
32 2 3 7 1 0 -2.5000
33 2 3 6 1 0 4.6667
34 2 3 13 1 0 -12.8333
35 2 3 4 0 1 4.6667
36 2 3 6 1 0 4.6667

The preceding table lists the first 36 observations of the SAS data set resulting from
the OUTSAMP=RES option in the PROC MULTTEST statement. The entire data set
has 180,000 observations, which is 10,000 times the number of observations in the
data set. The–sample– variable is the sample indicator and–class– indicates the
resampling group, that is, the level of the CLASS variableDose assigned to the new
observation. The number of the observation in the original data set is represented by

–obs– . Also listed are the values of the original test variables,S1 andS2, and the
mean-centered values ofT.
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Example 48.3. Peto Mortality-Prevalence Test

This example illustrates the use of the Peto mortality-prevalence test. The test is a
combination of analyses about the prevalence of incidental tumors in the population
and mortality due to fatal tumors.

In the data set, each observation represents an animal. The variablesS1−S3 are
three tumor types, with a value of 0 indicating no tumor, 1 indicating an incidental
(nonlethal) tumor, and 2 indicating a lethal tumor. The time variableT indicates the
time of death of the animal, a strata variableB is constructed fromT, and the grouping
variableDose is drug dosage.

data a;
input S1-S3 T Dose @@;
if T<=90 then B=1; else B=2;
datalines;

0 0 0 104 0 2 0 1 80 0 0 0 1 104 0
0 0 0 104 0 0 2 0 100 0 1 0 0 104 0
2 0 0 85 1 2 1 0 60 1 0 1 0 89 1
2 0 1 96 1 0 0 0 96 1 2 0 1 99 1
2 1 1 60 2 2 0 0 50 2 2 0 1 80 2
0 0 2 98 2 0 0 1 99 2 2 1 1 50 2
;
proc multtest data=a notables out=p stepsid;

test peto(S1-S3 / permutation=20 time=T uppertailed);
class Dose;
strata B;
contrast ’mort-prev’ 0 1 2;

run;
proc print data=p;
run;

The NOTABLES option in the PROC MULTTEST statement suppresses the display
of the summary statistics for each variable. The OUT=P option creates an output SAS
data set containing allp-values and intermediate statistics. The STEPSID option is
used to adjust thep-values.

The TEST statement specifies an upper-tailed Peto test forS1−S3. The mortality
strata are defined by TIME=T, the death times. The CLASS statement contains the
grouping variableDose. The prevalence strata are defined by the STRATA statement
as the blocking variableB. The CONTRAST statement lists the default linear trend
coefficients. PROC PRINT displays the requestedp-value data set.

The results from this analysis are listed inOutput 48.3.1throughOutput 48.3.4.



Example 48.3. Peto Mortality-Prevalence Test � 2973

Output 48.3.1. Peto Test

The Multtest Procedure

Model Information

Test for discrete variables Peto
Exact permutation distribution used Everywhere
Tails for discrete tests Upper-tailed
Strata weights Sample size
P-value adjustment Stepdown Sidak

The preceding information corresponds to the PROC MULTTEST invocation. In
this case the totals for all prevalence and fatality strata are less than 20, so exact
permutation tests are used everywhere, and the STEPSID adjustments are computed
from these permutation distributions.

Output 48.3.2. Contrast Coefficients

The Multtest Procedure

Contrast Coefficients

Dose

Contrast 0 1 2

mort-prev 0 1 2

The contrast trend coefficients are listed in the preceding table. They happen to be
the same as the levels of theDose variable.

Output 48.3.3. p-Values

The Multtest Procedure

p-Values

Stepdown
Variable Contrast Raw Sidak

S1 mort-prev 0.0681 0.0814
S2 mort-prev 0.5000 0.5000
S3 mort-prev 0.0363 0.0781

In the preceding “p-Values” table, thep-values for the Peto tests are listed in the Raw
column, and the stepdown Sidak adjustedp-values are in the Stepdown Sidak column.

Significantp-values support the claim that higher dosage levels promote higher mor-
tality and prevalence. The raw Peto test is significant at the 5% level forS3, but the
adjustedS3 test is no longer significant at 5%. The raw and adjustedp-values for S2
are the same because of the stepdown technique.
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Output 48.3.4. OUT= Data Set

Obs _test_ _var_ _contrast_ _strat_ _tstrat_ _value_ _exp_ _se_ raw_p stpsid_p

1 PETO S1 mort-prev 1 0 0 0.00000 0.00000 . .
2 PETO S1 mort-prev 2 0 0 0.62500 0.85696 . .
3 PETO S1 mort-prev 50 1 4 2.00000 1.12022 . .
4 PETO S1 mort-prev 60 1 3 1.75000 1.06654 . .
5 PETO S1 mort-prev 80 1 2 1.57143 1.04978 . .
6 PETO S1 mort-prev 85 1 1 0.75000 0.72169 . .
7 PETO S1 mort-prev 96 1 1 0.70000 0.78102 . .
8 PETO S1 mort-prev 98 1 0 0.00000 0.00000 . .
9 PETO S1 mort-prev 99 1 1 0.42857 0.72843 . .

10 PETO S1 mort-prev 100 1 0 0.00000 0.00000 . .
11 PETO S2 mort-prev 1 0 6 5.50000 1.05221 . .
12 PETO S2 mort-prev 2 0 0 0.00000 0.00000 . .
13 PETO S2 mort-prev 50 1 0 0.00000 0.00000 . .
14 PETO S2 mort-prev 60 1 0 0.00000 0.00000 . .
15 PETO S2 mort-prev 80 1 0 0.00000 0.00000 . .
16 PETO S2 mort-prev 85 1 0 0.00000 0.00000 . .
17 PETO S2 mort-prev 96 1 0 0.00000 0.00000 . .
18 PETO S2 mort-prev 98 1 0 0.00000 0.00000 . .
19 PETO S2 mort-prev 99 1 0 0.00000 0.00000 . .
20 PETO S2 mort-prev 100 1 0 0.00000 0.00000 . .
21 PETO S3 mort-prev 1 0 6 5.50000 1.05221 . .
22 PETO S3 mort-prev 2 0 4 2.22222 1.08298 . .
23 PETO S3 mort-prev 50 1 0 0.00000 0.00000 . .
24 PETO S3 mort-prev 60 1 0 0.00000 0.00000 . .
25 PETO S3 mort-prev 80 1 0 0.00000 0.00000 . .
26 PETO S3 mort-prev 85 1 0 0.00000 0.00000 . .
27 PETO S3 mort-prev 96 1 0 0.00000 0.00000 . .
28 PETO S3 mort-prev 98 1 2 0.62500 0.85696 . .
29 PETO S3 mort-prev 99 1 0 0.00000 0.00000 . .
30 PETO S3 mort-prev 100 1 0 0.00000 0.00000 . .
31 PETO S1 mort-prev . . 12 7.82500 2.42699 0.06808 0.08140
32 PETO S2 mort-prev . . 6 5.50000 1.05221 0.50000 0.50000
33 PETO S3 mort-prev . . 12 8.34722 1.73619 0.03627 0.07811

The preceding table lists the OUT= data set. The first 30 observations correspond to
intermediate statistics used to compute the Petop-values. The–test– variable lists
the name of the test, the–var– variable lists the name of the TEST variables, and
the–contrast– variable lists the CONTRAST label. The–strat– variable lists the
level of the STRATA variable, and the–tstrat– variable indicates whether or not the
stratum corresponds to values of the TIME= variable. The–value– variable is the
observed contrast for a stratum and the–exp– variable is its expected value. The
variable–se– contains the square root of the variance terms summed to form the
denominator of the Peto statistics.

The final three observations correspond to the three Peto tests, with theirp-values
listed under theraw–p variable. Thestpsid–p variable contains the stepdown Sidak
adjustedp-values.
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Example 48.4. Fisher Test with Permutation Resampling

These data, from Brown and Fears (1981), are the results from an 80-week carcino-
genesis bioassay with female mice. Six tissue sites are examined at necropsy; 1
indicates the presence of a tumor and 0 the absence. A frequency variableFreq is
included. A control and four different doses of a drug (in parts per milliliter) make
up the levels of the grouping variableDose.

data a;
input Liver Lung Lymph Cardio Pitui Ovary Freq Dose$ @@;
datalines;

1 0 0 0 0 0 8 CTRL 0 1 0 0 0 0 7 CTRL 0 0 1 0 0 0 6 CTRL
0 0 0 1 0 0 1 CTRL 0 0 0 0 0 1 2 CTRL 1 1 0 0 0 0 4 CTRL
1 0 1 0 0 0 1 CTRL 1 0 0 0 0 1 1 CTRL 0 1 1 0 0 0 1 CTRL
0 0 0 0 0 0 18 CTRL
1 0 0 0 0 0 9 4PPM 0 1 0 0 0 0 4 4PPM 0 0 1 0 0 0 7 4PPM
0 0 0 1 0 0 1 4PPM 0 0 0 0 1 0 2 4PPM 0 0 0 0 0 1 1 4PPM
1 1 0 0 0 0 4 4PPM 1 0 1 0 0 0 3 4PPM 1 0 0 0 1 0 1 4PPM
0 1 1 0 0 0 1 4PPM 0 1 0 1 0 0 1 4PPM 1 0 1 1 0 0 1 4PPM
0 0 0 0 0 0 15 4PPM
1 0 0 0 0 0 8 8PPM 0 1 0 0 0 0 3 8PPM 0 0 1 0 0 0 6 8PPM
0 0 0 1 0 0 3 8PPM 1 1 0 0 0 0 1 8PPM 1 0 1 0 0 0 2 8PPM
1 0 0 1 0 0 1 8PPM 1 0 0 0 1 0 1 8PPM 1 1 0 1 0 0 2 8PPM
1 1 0 0 0 1 2 8PPM 0 0 0 0 0 0 19 8PPM
1 0 0 0 0 0 4 16PPM 0 1 0 0 0 0 2 16PPM 0 0 1 0 0 0 9 16PPM
0 0 0 0 1 0 1 16PPM 0 0 0 0 0 1 1 16PPM 1 1 0 0 0 0 4 16PPM
1 0 1 0 0 0 1 16PPM 0 1 1 0 0 0 1 16PPM 0 1 0 1 0 0 1 16PPM
0 1 0 0 0 1 1 16PPM 0 0 1 1 0 0 1 16PPM 0 0 1 0 1 0 1 16PPM
1 1 1 0 0 0 2 16PPM 0 0 0 0 0 0 14 16PPM
1 0 0 0 0 0 8 50PPM 0 1 0 0 0 0 4 50PPM 0 0 1 0 0 0 8 50PPM
0 0 0 1 0 0 1 50PPM 0 0 0 0 0 1 4 50PPM 1 1 0 0 0 0 3 50PPM
1 0 1 0 0 0 1 50PPM 0 1 1 0 0 0 1 50PPM 0 1 0 0 1 1 1 50PPM
0 0 0 0 0 0 19 50PPM
;
proc multtest data=a order=data notables out=p

permutation nsample=1000 seed=764511;
test fisher(Liver Lung Lymph Cardio Pitui Ovary /

lowertailed);
class Dose;
freq Freq;

run;
proc print data=p;
run;

In the PROC MULTTEST statement, the ORDER=DATA option is required to keep
the levels ofDose in the order in which they appear in the data set. Without this
option, the levels are sorted by their formatted value, resulting in an alphabetic order-
ing. The NOTABLES option suppresses the display of summary statistics, and the
OUT=P option requests an output data set containingp-values. The PERMUTATION
option specifies permutation resampling, NSAMPLE=1000 requests 1000 samples,
and SEED=764511 provides a starting value for the random number generator. You
should specify a seed if you need to duplicate resampling results.
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To test for higher rates of tumor occurrence in the treatment groups compared to
the control group, the LOWERTAILED option is specified in the TEST statement
to produce a lower-tailed Fisher exact test for the six tissue sites. The Fisher test
is appropriate for comparing a treatment and a control, but multiple testing can be
a problem. Brown and Fears (1981) use a multivariate permutation to evaluate the
entire collection of tests. PROC MULTTEST adjusts thep-values by simulation.

The treatments make up the levels of the grouping variableDose, listed in the CLASS
statement. Since no CONTRAST statement is specified, PROC MULTTEST uses the
default pairwise contrasts with the first level ofDose. The FREQ statement is used
since this is summary data containing frequency counts of occurrences.

The results from this analysis are listed inOutput 48.4.1throughOutput 48.4.4.

Output 48.4.1. Fisher Test with Permutation Resampling

The Multtest Procedure

Model Information

Test for discrete variables Fisher
Tails for discrete tests Lower-tailed
Strata weights None
P-value adjustment Permutation
Number of resamples 1000
Seed 764511

The preceding table lists the PROC MULTTEST specifications.

Output 48.4.2. Default Contrast Coefficients

The Multtest Procedure

Contrast Coefficients

Dose

Contrast CTRL 4PPM 8PPM 16PPM 50PPM

CTRL vs. 4PPM 1 -1 0 0 0
CTRL vs. 8PPM 1 0 -1 0 0
CTRL vs. 16PPM 1 0 0 -1 0
CTRL vs. 50PPM 1 0 0 0 -1

The preceding table lists the default contrasts for the Fisher test. Note that each dose
is compared with the control.
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Output 48.4.3. p-Values

The Multtest Procedure

p-Values

Variable Contrast Raw Permutation

Liver CTRL vs. 4PPM 0.2828 0.9690
Liver CTRL vs. 8PPM 0.3069 0.9750
Liver CTRL vs. 16PPM 0.7102 1.0000
Liver CTRL vs. 50PPM 0.7718 1.0000
Lung CTRL vs. 4PPM 0.7818 1.0000
Lung CTRL vs. 8PPM 0.8858 1.0000
Lung CTRL vs. 16PPM 0.5469 1.0000
Lung CTRL vs. 50PPM 0.8498 1.0000
Lymph CTRL vs. 4PPM 0.2423 0.9430
Lymph CTRL vs. 8PPM 0.5898 1.0000
Lymph CTRL vs. 16PPM 0.0350 0.2480
Lymph CTRL vs. 50PPM 0.4161 0.9960
Cardio CTRL vs. 4PPM 0.3163 0.9770
Cardio CTRL vs. 8PPM 0.0525 0.3570
Cardio CTRL vs. 16PPM 0.4506 1.0000
Cardio CTRL vs. 50PPM 0.7576 1.0000
Pitui CTRL vs. 4PPM 0.1250 0.7260
Pitui CTRL vs. 8PPM 0.4948 1.0000
Pitui CTRL vs. 16PPM 0.2157 0.9050
Pitui CTRL vs. 50PPM 0.5051 1.0000
Ovary CTRL vs. 4PPM 0.9437 1.0000
Ovary CTRL vs. 8PPM 0.8126 1.0000
Ovary CTRL vs. 16PPM 0.7760 1.0000
Ovary CTRL vs. 50PPM 0.3689 0.9950

The preceding “p-Values” table listsp-values for the Fisher exact tests and their
permutation-based adjustments. As noted by Brown and Fears, only one of the
twenty-four tests is significant at the 5% level (Lymph, CTRL vs. 16PPM). Brown
and Fears report a 12% chance of observing at least one significant rawp-value for
16PPM and a 9% chance of observing at least one significant rawp-value forLymph
(both at the 5% level). Adjustedp-values exhibit much lower chances of false signif-
icances. For this example, none of the adjustedp-values are close to significant.
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Output 48.4.4. OUT= Data Set

Obs _test_ _var_ _contrast_ _xval_ _mval_ _yval_ _nval_ raw_p perm_p sim_se

1 FISHER Liver CTRL vs. 4PPM 14 49 18 50 0.28282 0.969 0.005481
2 FISHER Liver CTRL vs. 8PPM 14 49 17 48 0.30688 0.975 0.004937
3 FISHER Liver CTRL vs. 16PPM 14 49 11 43 0.71022 1.000 0.000000
4 FISHER Liver CTRL vs. 50PPM 14 49 12 50 0.77175 1.000 0.000000
5 FISHER Lung CTRL vs. 4PPM 12 49 10 50 0.78180 1.000 0.000000
6 FISHER Lung CTRL vs. 8PPM 12 49 8 48 0.88581 1.000 0.000000
7 FISHER Lung CTRL vs. 16PPM 12 49 11 43 0.54685 1.000 0.000000
8 FISHER Lung CTRL vs. 50PPM 12 49 9 50 0.84978 1.000 0.000000
9 FISHER Lymph CTRL vs. 4PPM 8 49 12 50 0.24228 0.943 0.007332

10 FISHER Lymph CTRL vs. 8PPM 8 49 8 48 0.58977 1.000 0.000000
11 FISHER Lymph CTRL vs. 16PPM 8 49 15 43 0.03498 0.248 0.013656
12 FISHER Lymph CTRL vs. 50PPM 8 49 10 50 0.41607 0.996 0.001996
13 FISHER Cardio CTRL vs. 4PPM 1 49 3 50 0.31631 0.977 0.004740
14 FISHER Cardio CTRL vs. 8PPM 1 49 6 48 0.05254 0.357 0.015151
15 FISHER Cardio CTRL vs. 16PPM 1 49 2 43 0.45061 1.000 0.000000
16 FISHER Cardio CTRL vs. 50PPM 1 49 1 50 0.75758 1.000 0.000000
17 FISHER Pitui CTRL vs. 4PPM 0 49 3 50 0.12496 0.726 0.014104
18 FISHER Pitui CTRL vs. 8PPM 0 49 1 48 0.49485 1.000 0.000000
19 FISHER Pitui CTRL vs. 16PPM 0 49 2 43 0.21572 0.905 0.009272
20 FISHER Pitui CTRL vs. 50PPM 0 49 1 50 0.50505 1.000 0.000000
21 FISHER Ovary CTRL vs. 4PPM 3 49 1 50 0.94372 1.000 0.000000
22 FISHER Ovary CTRL vs. 8PPM 3 49 2 48 0.81260 1.000 0.000000
23 FISHER Ovary CTRL vs. 16PPM 3 49 2 43 0.77596 1.000 0.000000
24 FISHER Ovary CTRL vs. 50PPM 3 49 5 50 0.36889 0.995 0.002230

The preceding table lists the OUT= data set. The–test– , –var– , and–contrast–
variables provide the TEST name, TEST variable, and CONTRAST label, respec-
tively. The–xval– , –mval– , –yval– , and–nval– variables contain the components
used to compute the Fisher exact tests from the hypergeometric distribution. The
raw–p variable contains thep-values from the Fisher exact tests, and theperm–p
variable contains their permutation-based adjustments. The variablesim–se is the
simulation standard error from the permutation resampling.

Example 48.5. Inputting Raw p-Values
This example illustrates how to use PROC MULTTEST to multiplicity-adjust a col-
lection of rawp-values obtained from some other source. This is a valuable option
for those cases where PROC MULTTEST cannot compute the rawp-values directly.

data a;
input Test$ Raw_P;
datalines;

test1 .09108
test2 .69122
test3 .00177
test4 .57181
test5 .03121
test6 .01413
;
proc multtest pdata=a holm hoc fdr;
run;

Note that there are no statements other than the PROC MULTTEST statement using
the p-value input mode. In this example, the rawp-values are adjusted using the
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Holm, Hochberg, and Benjamini and Hocherg (FDR) methods.

The output from this analysis is listed inOutput 48.5.1.

Output 48.5.1. Inputting Raw p-Values

The Multtest Procedure

p-Values

False
Stepdown Discovery

Test Raw Bonferroni Hochberg Rate

1 0.0911 0.2732 0.2732 0.1366
2 0.6912 1.0000 0.6912 0.6912
3 0.0018 0.0106 0.0106 0.0106
4 0.5718 1.0000 0.6912 0.6862
5 0.0312 0.1248 0.1248 0.0624
6 0.0141 0.0707 0.0707 0.0424

Note that the adjustedp-values for the Hochberg method (hoc–p) are less than or
equal to those for the Holm method (stpbon–p). In turn, the adjustedp-values for
the Benjamini and Hochberg method (fdr–p) are less than or equal to those for the
Hochberg method. These comparisons hold generally for allp-value configurations.
The FDR method controls the false discovery rate and not the familywise error rate.
The Hochberg method controls the familywise error rate under independence. The
Holm method controls the familywise error rate without assuming independence.
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Chapter 49
The NESTED Procedure
Overview

The NESTED procedure performs random effects analysis of variance for data from
an experiment with a nested (hierarchical) structure.∗ A random effects model for
data from a completely nested design with two factors has the following form:

yijr = µ + αi + βij + εijr

where

yijr is the value of the dependent variable observed at therth replication
with the first factor at itsith level and the second factor at itsjth level.

µ is the overall (fixed) mean of the sampling population.

αi, βij , εijr are mutually uncorrelated random effects with zero means and respec-
tive variancesσ2

α, σ2
β , andσ2

ε (the variance components).

This model is appropriate for an experiment with a multi-stage nested sampling de-
sign. An example of this is given inExample 49.1on page 2994, where four turnip
plants are randomly chosen (the first factor), then three leaves are randomly chosen
from each plant (the second factor nested within the first), and then two samples are
taken from each leaf (the different replications at fixed levels of the two factors).

Note that PROC NESTED is appropriate for models with only classification effects;
it does not handle models that contain continuous covariates. For random effects
models with covariates, use either the GLM or MIXED procedure.

Contrasted with Other SAS Procedures

The NESTED procedure performs a computationally efficient analysis of variance for
data with a nested design, estimating the different components of variance and also
testing for their significance if the design is balanced (see the“Unbalanced Data”sec-
tion on page 2990). Although other procedures (such as GLM and MIXED) provide
similar analyses, PROC NESTED is both easier to use and computationally more ef-
ficient for this special type of design. This is especially true when the design involves
a large number of factors, levels, or observations.

For example, to specify a four-factor completely nested design in the GLM procedure,
you use the form

∗PROC NESTED is modeled after the General Purpose Nested Analysis of Variance program of the
Dairy Cattle Research Branch of the United States Department of Agriculture. That program was origi-
nally written by M.R. Swanson, Statistical Reporting Service, United States Department of Agriculture.
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class a b c d;
model y=a b(a) c(a b) d(a b c);

However, to specify the same design in PROC NESTED, you simply use the form

class a b c d;
var y;

In addition, other procedures require TEST statements to perform appropriate
tests, whereas the NESTED procedure produces the appropriate tests automatically.
However, PROC NESTED makes one assumption about the input data that the other
procedures do not:PROC NESTED assumes that the input data set is sorted
by the classification (CLASS) variables defining the effects.If you use PROC
NESTED on data that is not sorted by the CLASS variables, then the results may not
be valid.

Getting Started

Reliability of Automobile Models

A study is performed to compare the reliability of several models of automobiles.
Three different automobile models (Model) from each of four domestic automobile
manufacturers (Make) are tested. Three different cars of each make and model are
subjected to a reliability test and given a score between 1 and 100 (Score), where
higher scores indicate greater reliability.

The following statements create the SAS data setauto.

title ’Reliability of Automobile Models’;
data auto;

input Make $ Model Score @@;
datalines;

a 1 62 a 2 77 a 3 59
a 1 67 a 2 73 a 3 64
a 1 60 a 2 79 a 3 60
b 1 72 b 2 58 b 3 80
b 1 75 b 2 63 b 3 84
b 1 69 b 2 57 b 3 89
c 1 94 c 2 76 c 3 81
c 1 90 c 2 75 c 3 85
c 1 88 c 2 78 c 3 85
d 1 69 d 2 73 d 3 90
d 1 72 d 2 88 d 3 87
d 1 76 d 2 87 d 3 92
;

TheMake variable contains the make of the automobile, represented here by ‘a’, ‘b’,
‘c’, or ‘d’, while the Model variable represents the automobile model with a ‘1’, ‘2’,
or ‘3’. The Score variable contains the reliability scores given to the three sampled
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cars from eachMake-Model group. Since the automobile models are nested within
their makes, the NESTED procedure is used to analyze this data. The NESTED
procedure requires the data to be sorted byMake and, withinMake, by Model, so
the following statements execute a PROC SORT before completing the analysis.

proc sort;
by Make Model;

proc nested;
class Make Model;
var Score;

run;

TheModel variable appears after theMake variable in the CLASS statement because
it is nested withinMake. The VAR statement specifies the response variable. The
output is displayed inFigure 49.1.

Reliability of Automobile Models

The NESTED Procedure

Coefficients of Expected Mean Squares

Source Make Model Error

Make 9 3 1
Model 0 3 1
Error 0 0 1

Nested Random Effects Analysis of Variance for Variable Score

Variance Sum of Error Variance Percent
Source DF Squares F Value Pr > F Term Mean Square Component of Total

Total 35 4177.888889 119.368254 131.876543 100.0000
Make 3 1709.000000 2.15 0.1719 Model 569.666667 33.867284 25.6811
Model 8 2118.888889 18.16 <.0001 Error 264.861111 83.425926 63.2606
Error 24 350.000000 14.583333 14.583333 11.0583

Score Mean 75.94444444
Standard Error of Score Mean 3.97794848

Figure 49.1. Output from PROC NESTED

Figure 49.1first displays the coefficients of the variance components that make up
each of the expected mean squares, then the ANOVA table is displayed. The re-
sults do not indicate significant variation between the different automobile makes
(F = 2.15, p = 0.1719). However, they do suggest that there is significant variation
between the different models within the makes (F = 18.16, p < 0.0001). This is
evident in the fact that the make of car accounts for only 25.7% of the total variation
in the data, while the car model accounts for 63.3% (as shown in the Percent of Total
column). The estimated variance components are shown in the Variance Component
column.
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Syntax

The following statements are available in PROC NESTED.

PROC NESTED < options > ;
CLASS variables < / option > ;
VAR variables ;
BY variables ;

The PROC NESTED and CLASS statements are required. The BY, CLASS, and
VAR statements are described after the PROC NESTED statement.

PROC NESTED Statement

PROC NESTED < options > ;

The PROC NESTED statement has the following options:

AOV
displays only the analysis of variance statistics when there is more than one dependent
variable. The “analysis of covariation” statistics are suppressed (see the“Analysis of
Covariation”section on page 2990).

DATA=SAS-data-set
names the SAS data set to be used by PROC NESTED. By default, the procedure
uses the most recently created SAS data set.

BY Statement

BY variables ;

You can specify a BY statement with PROC NESTED to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in the order of the BY variables.

Note: When you use the NESTED procedure, your data must be sorted first by the
BY variables and, within the BY variables, by the CLASS variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the NESTED procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables < / option > ;

You must include a CLASS statement with PROC NESTED specifying the classifi-
cation variables for the analysis.

Values of a variable in the CLASS statement denote the levels of an effect. The name
of that variable is also the name of the corresponding effect. The second effect is
assumed to be nested within the first effect, the third effect is assumed to be nested
within the second effect, and so on.

By default, class levels are determined from the entire formatted values of the CLASS
variables. Note that this represents a slight change from previous releases in the way
in which class levels are determined. In releases prior to Version 9, class levels were
determined using no more than the first 8 characters of the formatted values, except
for numeric variables with no explicit format, for which class levels were determined
from the raw numeric values. If you wish to revert to this previous behavior you can
use the TRUNCATE option on the CLASS statement. In any case, you can use for-
mats to group values into levels. Refer to the discussion of the FORMAT procedure
in the SAS Procedures Guide, and the discussions for the FORMAT statement and
SAS formats inSAS Language Reference: Dictionary.

Note: The data set must be sorted by the classification variables in the order that they
are given in the CLASS statement. Use PROC SORT to sort the data if they are not
already sorted.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE
specifies that class levels should be determined using only up to the first 16 characters
of the formatted values of CLASS variables. When formatted values are longer than
16 characters, you can use this option in order to revert to the levels as determined in
releases previous to Version 9.

VAR Statement

VAR variables ;

The VAR statement lists the dependent variables for the analysis. The dependent
variables must be numeric variables. If you do not specify a VAR statement, PROC
NESTED performs an analysis of variance for all numeric variables in the data set,
except those already specified in the CLASS statement.
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Details

Missing Values

An observation with missing values for any of the variables used by PROC NESTED
is omitted from the analysis. Blank values of CLASS character variables are treated
as missing values.

Unbalanced Data

A completely nested design is defined to be unbalanced if the groups corresponding
to the levels of some classification variable are not all of the same size. The NESTED
procedure can compute unbiased estimates for the variance components in an unbal-
anced design, but because the sums of squares on which these estimates are based no
longer haveχ2 distributions under a Gaussian model for the data,F tests for the sig-
nificance of the variance components cannot be computed. PROC NESTED checks
to see that the design is balanced. If it is not, a warning to that effect is placed on the
log, and the columns corresponding to theF tests in the analysis of variance are left
blank.

General Random Effects Model

A random effects model for data from a completely nested design withn factors has
the general form

yi1i2···inr = µ + αi1 + βi1i2 + · · ·+ εi1i2···inr

where

yi1i2···inr is the value of the dependent variable observed at therth
replication with factorj at levelij , for j = 1, . . . , n.

µ is the overall (fixed) mean of the sampled population.

αi1 , βi1i2 , . . . , εi1i2···inr are mutually uncorrelated random effects with zero means
and respective variancesσ2

α, σ2
β, . . . ,σ2

ε .

Analysis of Covariation

When you specify more than one dependent variable, the NESTED procedure pro-
duces a descriptive analysis of the covariance between each pair of dependent vari-
ables in addition to a separate analysis of variance for each variable. The analysis
of covariation is computed under the basic random effects model for each pair of
dependent variables:

yi1i2···inr = µ + αi1 + βi1i2 + · · ·+ εi1i2···inr

y′
i1i2···inr = µ′ + α′

i1 + β′
i1i2 + · · ·+ ε′i1i2···inr
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where the notation is the same as that used in the preceding general random effects
model.

There is an additional assumption that all the random effects in the two models are
mutually uncorrelated except for corresponding effects, for which

Corr(αi1 , α
′
i1) = ρα

Corr(βi1i2 , β
′
i1i2) = ρβ

...

Corr(εi1i2···inr, ε
′
i1i2···inr) = ρε

Error Terms in F Tests

Random effects ANOVAs are distinguished from fixed effects ANOVAs by which
error mean squares are used as the denominator forF tests. Under a fixed effects
model, there is only one true error term in the model, and the corresponding mean
square is used as the denominator for all tests. This is how the usual analysis is
computed in PROC ANOVA, for example. However, in a random effects model for
a nested experiment, mean squares are compared sequentially. The correct denomi-
nator in the test for the first factor is the mean square due to the second factor; the
correct denominator in the test for the second factor is the mean square due to the
third factor; and so on. Only the mean square due to the last factor, the one at the
bottom of the nesting order, should be compared to the error mean square.

Computational Method

The building blocks of the analysis are the sums of squares for the dependent vari-
ables for each classification variable within the factors that precede it in the model,
corrected for the factors that follow it. For example, for a two-factor nested design,
PROC NESTED computes the following sums of squares:

Total SS
∑
ijr

(yijr − y···)2

SS for Factor 1
∑

i

ni·

(
yi··
ni·

− y···
n··

)2

SS for Factor 2 within Factor 1
∑
ij

nij

(
yij·
nij

− yi··
ni·

)2

Error SS
∑
ijr

(
yijr −

yij·
nij

)2
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whereyijr is therth replication,nij is the number of replications at leveli of the first
factor and levelj of the second, and a dot as a subscript indicates summation over the
corresponding index. If there is more than one dependent variable, PROC NESTED
also computes the corresponding sums of crossproducts for each pair. The expected
value of the sum of squares for a given classification factor is a linear combination of
the variance components corresponding to this factor and to the factors that are nested
within it. For each factor, the coefficients of this linear combination are computed.
(The efficiency of PROC NESTED is partly due to the fact that these various sums can
be accumulated with just one pass through the data, assuming that the data have been
sorted by the classification variables.) Finally, estimates of the variance components
are derived as the solution to the set of linear equations that arise from equating the
mean squares to their expected values.

Displayed Output

PROC NESTED displays the following items for each dependent variable:

• Coefficients of Expected Mean Squares, which are the coefficients of then + 1
variance components making up the expected mean square. Denoting the ele-
ment in theith row andjth column of this matrix byCij , the expected value of
the mean square due to theith classification factor is

Ci1σ
2
1 + · · ·+ Cinσ2

n + Ci,n+1σ
2
ε .

Cij is always zero fori > j, and if the design is balanced,Cij is equal to the
common size of all classification groups of thejth factor fori ≤ j. Finally,
the mean square for error is always an unbiased estimate ofσ2

ε . In other words,
Cn+1,n+1 = 1.

For every dependent variable, PROC NESTED displays an analysis of variance table.
Each table contains the following:

• each Variance Source in the model (the different components of variance) and
the total variance

• degrees of freedom (DF) for the corresponding sum of squares

• Sum of Squares for each classification factor. The sum of squares for a given
classification factor is the sum of squares in the dependent variable within the
factors that precede it in the model, corrected for the factors that follow it. (See
the“Computational Method”section on page 2991.)

• F Value for a factor, which is the ratio of its mean square to the appropriate
error mean square. The next column, labeled PR > F, gives the significance lev-
els that result from testing the hypothesis that each variance component equals
zero.

• the appropriate Error Term for anF test, which is the mean square due to the
next classification factor in the nesting order. (See the“Error Terms in F Tests”
section on page 2991.)
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• Mean Square due to a factor, which is the corresponding sum of squares divided
by the degrees of freedom

• estimates of the Variance Components. These are computed by equating the
mean squares to their expected values and solving for the variance terms. (See
the“Computational Method”section on page 2991.)

• Percent of Total, the proportion of variance due to each source. For theith
factor, the value is

100× source variance component
total variance component

• Mean, the overall average of the dependent variable. This gives an unbiased
estimate of the mean of the population. Its variance is estimated by a certain
linear combination of the estimated variance components, which is identical to
the mean square due to the first factor in the model divided by the total number
of observations when the design is balanced.

If there is more than one dependent variable, then the NESTED procedure displays
an “analysis of covariation” table for each pair of dependent variables (unless the
AOV option is specified in the PROC NESTED statement). See the“Analysis of
Covariation”section on page 2990 for details. For each source of variation, this table
includes the following:

• Degrees of Freedom

• Sum of Products

• Mean Products

• Covariance Component, the estimate of the covariance component

Items in the analysis of covariation table are computed analogously to their counter-
parts in the analysis of variance table. The analysis of covariation table also includes
the following:

• Variance Component Correlation for a given factor. This is an estimate of the
correlation between corresponding effects due to this factor. This correlation
is the ratio of the covariance component for this factor to the square root of
the product of the variance components for the factor for the two different
dependent variables. (See the“Analysis of Covariation”section on page 2990.)

• Mean Square Correlation for a given classification factor. This is the ratio of
the Mean Products for this factor to the square root of the product of the Mean
Squares for the factor for the two different dependent variables.
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ODS Table Names

PROC NESTED assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 49.1. ODS Tables Produced in PROC NESTED

ODS Table Name Description Statement
ANCOVA Analysis of covariance default with more than

one dependent variable
ANOVA Analysis of variance default
EMSCoef Coefficients of expected

mean squares
default

Statistics Overall statistics for fit default

Example

Example 49.1. Variability of Calcium Concentration in Turnip
Greens

In the following example fromSnedecor and Cochran(1976), an experiment is con-
ducted to study the variability of calcium concentration in turnip greens. Four plants
are selected at random; then three leaves are randomly selected from each plant. Two
100-mg samples are taken from each leaf. The amount of calcium is determined by
microchemical methods.

Because the data are read in sorted order, it is not necessary to use PROC SORT on
the CLASS variables.Leaf is nested inPlant; Sample is nested inLeaf and is left
for the residual term. All the effects are random effects. The following statements
read the data and invoke PROC NESTED. These statements produceOutput 49.1.1:

title ’Calcium Concentration in Turnip Leaves’
’--Nested Random Model’;

title2 ’Snedecor and Cochran, ’’Statistical Methods’’’
’, 1976, p. 286’;

data Turnip;
do Plant=1 to 4;

do Leaf=1 to 3;
do Sample=1 to 2;

input Calcium @@;
output;
end;

end;
end;

datalines;
3.28 3.09 3.52 3.48 2.88 2.80 2.46 2.44
1.87 1.92 2.19 2.19 2.77 2.66 3.74 3.44
2.55 2.55 3.78 3.87 4.07 4.12 3.31 3.31
;
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proc nested;
class Plant Leaf;
var Calcium;

run;

Output 49.1.1. Analysis of Calcium Concentration in Turnip Greens Using PROC
NESTED

Calcium Concentration in Turnip Leaves--Nested Random Model
Snedecor and Cochran, ’Statistical Methods’, 1976, p. 286

The NESTED Procedure

Coefficients of Expected Mean Squares

Source Plant Leaf Error

Plant 6 2 1
Leaf 0 2 1
Error 0 0 1

Calcium Concentration in Turnip Leaves--Nested Random Model
Snedecor and Cochran, ’Statistical Methods’, 1976, p. 286

The NESTED Procedure

Nested Random Effects Analysis of Variance for Variable Calcium

Variance Sum of Error Variance Percent
Source DF Squares F Value Pr > F Term Mean Square Component of Total

Total 23 10.270396 0.446539 0.532938 100.0000
Plant 3 7.560346 7.67 0.0097 Leaf 2.520115 0.365223 68.5302
Leaf 8 2.630200 49.41 <.0001 Error 0.328775 0.161060 30.2212
Error 12 0.079850 0.006654 0.006654 1.2486

Calcium Mean 3.01208333
Standard Error of Calcium Mean 0.32404445

The results indicate that there is significant (nonzero) variation from plant to plant
(Pr > F is 0.0097) and from leaf to leaf within a plant (Pr > F is less than 0.0001).
Notice that the variance component forPlant uses theLeaf mean square as an error
term in the model rather than the error mean square.
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Chapter 50
The NLIN Procedure
Overview

The NLIN procedure produces least squares or weighted least squares estimates of
the parameters of a nonlinear model. Nonlinear models are more difficult to specify
and estimate than linear models. Instead of simply listing regressor variables, you
must write the regression expression, declare parameter names, and supply initial
parameter values. Some models are difficult to fit, and there is no guarantee that the
procedure can fit the model successfully.

For each nonlinear model to be analyzed, you must specify the model (using a sin-
gle dependent variable) and the names and starting values of the parameters to be
estimated.

Using PROC NLIN, you can also

• confine the estimation procedure to a certain range of values of the parameters
by imposing bounds on the estimates

• produce new SAS data sets containing predicted values, residuals, parameter
estimates and SSE at each iteration, the covariance matrix of parameter esti-
mates, and other statistics

• define your own objective function to be minimized

Estimation of a nonlinear model is an iterative process. To begin this process the
NLIN procedure first examines the starting value specifications of the parameters.
If a grid of values is specified, PROC NLIN evaluates the residual sum of squares
at each combination of parameter values to determine the set of parameter values
producing the lowest residual sum of squares. These parameter values are used for
the initial step of the iteration.

Then PROC NLIN uses one of these five iterative methods:

• steepest-descent or gradient method

• Newton method

• modified Gauss-Newton method

• Marquardt method

These methods use derivatives or approximations to derivatives of the SSE with re-
spect to the parameters to guide the search for the parameters producing the smallest
SSE.
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You can use the NLIN procedure for segmented models (seeExample 50.1) or robust
regression (seeExample 50.2). You can also use it to compute maximum-likelihood
estimates for certain models (refer to Jennrich and Moore 1975; Charnes, Frome, and
Yu 1976).

Getting Started

The NLIN procedure performs univariate nonlinear regression using the least squares
method. Nonlinear regression analysis is indicated when you have information spec-
ifying that the functional relationship between the predictor and response variables
is nonlinear in the parameters. Such information might come from direct knowledge
of the true model, theoretical developments, or previous studies.Nonlinear, in this
sense, means that the mathematical relationship between the variables and parame-
ters is not required to have a linear form. For example, consider the following two
models:

Y = aX2 + b

Y =
1
a
X + b

wherea andb are parameters andX andY are random variables. The first model is
linear in the parameters; the second model is nonlinear.

Estimating the Nonlinear Model

As an example of a nonlinear regression analysis, consider the following theoretical
model of enzyme kinetics. The model relates the initial velocity of an enzymatic
reaction to the substrate concentration.

f(x,θ) =
θ1xi

θ2 + xi
, for i = 1, 2, . . . , n

wherexi represents the amount of substrate forn trials andf(x,θ) is the velocity of
the reaction. The vectorθ contains the rate parameters.

Suppose that you want to study the relationship between concentration and velocity
for a particular enzyme/substrate pair. You record the reaction rate (velocity) ob-
served at different substrate concentrations. Your data set is as follows:

data Enzyme;
input Concentration Velocity @@;
datalines;

0.26 124.7 0.30 126.9 0.48 135.9 0.50 137.6
0.54 139.6 0.68 141.1 0.82 142.8 1.14 147.6
1.28 149.8 1.38 149.4 1.80 153.9 2.30 152.5
2.44 154.5 2.48 154.7
;
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The SAS data setEnzyme contains the two variablesConcentration (substrate con-
centration) andVelocity (reaction rate). The double trailing at sign (@@) in the
INPUT statement specifies that observations are input from each line until all of the
values are read.

The following statements request a nonlinear regression analysis:

proc nlin data=Enzyme method=marquardt hougaard;
parms theta1=155

theta2=0 to 0.07 by 0.01;
model Velocity = theta1*Concentration / (theta2 + Concentration);

run;

The DATA= option specifies that the SAS data setEnzyme be used in the analy-
sis. The METHOD= option directs PROC NLIN to use the MARQUARDT iterative
method. The HOUGAARD option requests that a skewness measure be calculated
for the parameters.

The MODEL statement specifies the enzymatic reaction model

V =
θ1C

θ2 + C

whereV represents the velocity or reaction rate andC represents the substrate con-
centration.

The PARMS statement declares the parameters and specifies their initial values. In
this example, the initial estimates in the PARMS statement are obtained as follows.
Since the model is a monotonic increasing function inC, and

lim
C→∞

(
θ1C

θ2 + C

)
= θ1

take the largest observed value of the variableVelocity (154.7) as the initial value for
the parameterTheta1. Thus, the PARMS statement specifies 155 as the initial value
for Theta1, which is approximately equal to the maximum observed velocity.

To obtain an initial value for the parametertheta2, first rearrange the model equation
to solve forθ2:

θ2 =
θ1C

V
− C

By substituting the initial value ofTheta1 for θ1 and taking each pair of observed
values ofConcentration andVelocity for C andV , respectively, you obtain a set of
possible starting values forTheta2 ranging from about 0.01 to 0.07.

You can choose any value within this range as a starting value forTheta2, or you can
direct PROC NLIN to perform a preliminary search for the best initialTheta2 value
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within that range of values. The PARMS statement specifies a range of values for
Theta2, which results in a search over the grid points from 0 to 0.07 in increments
of 0.01. The output from this PROC NLIN invocation are displayed in the following
figures.

PROC NLIN evaluates the model at each point on the specified grid for theTheta2
parameter.Figure 50.1displays the calculations resulting from the grid search.

The NLIN Procedure
Dependent Variable Velocity

Grid Search
Sum of

theta1 theta2 Squares

155.0 0 3075.4
155.0 0.0100 2074.1
155.0 0.0200 1310.3
155.0 0.0300 752.0
155.0 0.0400 371.9
155.0 0.0500 147.2
155.0 0.0600 58.1130
155.0 0.0700 87.9662

The NLIN Procedure
Dependent Variable Velocity

Method: Marquardt

Iterative Phase
Sum of

Iter theta1 theta2 Squares

0 155.0 0.0600 58.1130
1 158.0 0.0736 19.7017
2 158.1 0.0741 19.6606
3 158.1 0.0741 19.6606

NOTE: Convergence criterion met.

Figure 50.1. Nonlinear Least Squares Grid Search from the NLIN Procedure

The parameterTheta1 is held constant at its specified initial value of 155, the grid is
traversed, and the residual sums of squares are computed at each point. The “best”
starting value is the point that corresponds to the smallest value of the residual sum
of squares.Figure 50.1shows that the best starting value forTheta2 is 0.06. PROC
NLIN uses this point as the initial value forTheta2 in the following iterative phase.

PROC NLIN determines convergence using the relative offset measure of Bates and
Watts (1981). When this measure is less than10−5, convergence is declared.Figure
50.1displays the iteration history.
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The NLIN Procedure

Estimation Summary

Method Marquardt
Iterations 3
R 5.861E-6
PPC(theta2) 8.569E-7
RPC(theta2) 0.000078
Object 2.902E-7
Objective 19.66059
Observations Read 14
Observations Used 14
Observations Missing 0

Figure 50.2. Estimation Summary from the NLIN Procedure

Figure 50.2displays a summary of the estimation including several convergence mea-
sures R, PPC, RPC, and Object.

The R measure is the relative offset convergence measure of Bates and Watts. A PPC
value of 8.569E-7 indicates that the parameterTheta2 (which has the largest PPC
value of all the parameters) would change by that relative amount were PROC NLIN
to take an additional iteration step. The RPC value indicates thatTheta2 changed by
0.000078, relative to its value in the last iteration. These changes are measured before
steplength adjustments are made. The Object measure indicates that the objective
function value changed 2.902E-7 in relative value from the last iteration.

The NLIN Procedure

NOTE: An intercept was not specified for this model.

Sum of Mean Approx
Source DF Squares Square F Value Pr > F

Model 2 290116 145058 88537.2 <.0001
Error 12 19.6606 1.6384
Uncorrected Total 14 290135

Figure 50.3. Nonlinear Least Squares Summary from the NLIN Procedure

Figure 50.3displays the least squares summary statistics for the model. The degrees
of freedom, sums of squares, and mean squares are listed.
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The NLIN Procedure

Approx Approximate 95%
Parameter Estimate Std Error Confidence Limits Skewness

theta1 158.1 0.6737 156.6 159.6 0.0152
theta2 0.0741 0.00313 0.0673 0.0809 0.0362

Figure 50.4. Parameter Estimates from the NLIN Procedure

Figure 50.4displays the estimates for each parameter, the associated asymptotic stan-
dard error, and the upper and lower values for the asymptotic 95% confidence inter-
val. PROC NLIN also displays the asymptotic correlations between the estimated
parameters (not shown).

The skewness measures of 0.0152 and 0.0362 indicate that the parameters are nearly
linear and that their standard errors and confidence intervals can be safely used for
inferences.

Thus, the estimated nonlinear model relating reaction velocity and substrate concen-
tration can be written as

V̂ =
158.105C

0.0741 + C

whereV represents the velocity or rate of the reaction, andC represents the substrate
concentration.

Syntax

PROC NLIN < options > ;
MODEL dependent=expression ;
PARAMETERS parameter=values <,. . ., parameter=values>;

other program statements

BOUNDS inequality < , . . . , inequality > ;
BY variables ;
DER.parameter=expression ;
DER.parameter.parameter=expression ;
ID variables ;
OUTPUT OUT=SAS-data-set keyword=names <,. . .,keyword=names>;
CONTROL variable <=values> < . . . variable <=values>> ;

A vertical bar (|) denotes a choice between two specifications. Theother program
statementsare valid SAS expressions that can appear in the DATA step. PROC NLIN
enables you to create new variables within the procedure and use them in the non-
linear analysis. The NLIN procedure automatically creates several variables that are
also available for use in the analysis. See the section“Special Variables”beginning
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on page 3020 for more information. The PROC NLIN, PARMS, and MODEL state-
ments are required.

The statements used in PROC NLIN, in addition to the PROC statement, are as fol-
lows:

BOUNDS constrains the parameter estimates within specified
bounds

BY specifies variables to define subgroups for the analysis

DER specifies the first or second partial derivatives

ID specifies additional variables to add to the output data set

MODEL defines the relationship between the dependent and inde-
pendent variables

OUTPUT creates an output data set containing statistics for each
observation

PARMS identifies parameters to be estimated and the starting val-
ues for each parameter

other program statementsincludes assignment statements, ARRAY statements, DO
loops, and program control statements

PROC NLIN Statement

PROC NLIN < options > ;

The PROC NLIN statement invokes the procedure. The following table lists the op-
tions available with the PROC NLIN statement. Explanations follow in alphabetical
order.
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Task Options
Specify data sets DATA=

OUTEST=
SAVE

Grid search BEST=

Choose an iteration method METHOD=

Control step size MAXSUBIT=
NOHALVE
RHO=
SMETHOD=
TAU=

Specify details of iteration G4
UNCORRECTEDDF
SIGSQ=

Minimization Tuning CONVERGE=
CONVERGEOBJ=
CONVERGEPARM=
SINGULAR=
MAXITER=

Modify Amount of Output HOUGAARD
NOITPRINT
NOPRINT

List Model Structure LIST
LISTALL
LISTCODE
LISTDEP
LISTDER
XREF

Trace Model Execution FLOW
PRINT
TRACE

BEST=n
requests that PROC NLIN display the residual sums of squares only for the bestn
combinations of possible starting values from the grid. If you do not specify the
BEST= option, PROC NLIN displays the residual sum of squares for every combina-
tion of possible parameter starting values.

CONVERGE=c
specifies the convergence criteria for PROC NLIN. For all iterative methods the rel-
ative offset convergence measure of Bates and Watts is used by default to determine
convergence. This measure is labeled "R" in the Estimation Summary table. The
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iterations are said to have converged for CONVERGE=c if

√
r′X(X ′X)−1X ′r

LOSSi
< c

wherer is the residual vector andX is the Jacobian matrix. The default LOSS func-
tion is the sum of squared errors (SSE). By default, CONVERGE=10−5. The R
convergence measure cannot be computed accurately in the special case of a perfect
fit (residuals close to zero). When the SSE is less than the value of the SINGULAR=
option, convergence is assumed.

CONVERGEOBJ=c
uses the change in the LOSS function as the convergence criterion. For more de-
tails on the LOSS function, see the section“Special Variable Used to Determine
Convergence Criteria”on page 3021. The iterations are said to have converged for
CONVERGEOBJ=c if

LOSSi−1 − LOSSi

LOSSi + 10−6
< c

where LOSSi is the LOSS for theith iteration. The default LOSS function is the sum
of squared errors (SSE). The constantc should be a small positive number. See the
“Computational Methods”section beginning on page 3024 for more details. If speci-
fied, the CONVERGEOBJ= option overrides the default CONVERGE= convergence
criterion so that NLIN performs as it did in version 6 releases of the procedure.

CONVERGEPARM=c
uses the maximum change among parameter estimates as the convergence criterion.
The iterations are said to have converged for CONVERGEPARM=c if

max
j

(
|βi−1

j − βi
j |

|βi−1
j |

)
< c

whereβi
j is the value of thejth parameter at theith iteration.

The default convergence criterion is CONVERGE. If you specify
CONVERGEPARM=c, the maximum change in parameters is used as the
convergence criterion. If you specify both the CONVERGEOBJ= and
CONVERGEPARM= options, PROC NLIN continues to iterate until the de-
crease in LOSS is sufficiently small (as determined by the CONVERGEOBJ=
option) and the maximum change among the parameters is sufficiently small (as
determined by the CONVERGEPARM= option).

DATA=SAS-data-set
specifies the SAS data set containing the data to be analyzed by PROC NLIN. If you
omit the DATA= option, the most recently created SAS data set is used.
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FLOW
displays a message for each statement in the model program as it is executed. This
debugging option is rarely needed, and it produces large amounts of output.

G4
uses a Moore-Penrose (g4) inverse in parameter estimation. Refer to Kennedy and
Gentle (1980) for details.

HOUGAARD
adds Hougaard’s measure of skewness to the parameter estimation table.
Computation of the measure requires derivatives (see the section“Hougaard’s
Measure of Skewness”on page 3019).

LIST
displays the model program and variable lists, including the statements added by
macros. Note that the expressions displayed by the LIST option do not necessarily
represent the way the expression is actually calculated, since intermediate results for
common subexpressions can be reused but are shown in expanded form by the LIST
option. To see how the expression is actually evaluated, see the description for the
LISTCODE option, which follows.

LISTALL
selects the LIST, LISTDEP, LISTDER, and LISTCODE options.

LISTCODE
displays the derivative tables and compiled model program code. The LISTCODE
option is a debugging feature and is not normally needed.

LISTDEP
produces a report that lists, for each variable in the model program, the variables that
depend on it and on which it depends.

LISTDER
displays a table of derivatives. The derivatives table lists each nonzero derivative
computed for the problem. The derivative listed can be a constant, a variable in
the model program, or a special derivative variable created to hold the result of the
derivative expression.

MAXITER=i
limits the number of iterations PROC NLIN performs before it gives up trying to
converge. Thei value must be a positive integer. By default, MAXITER=100.

MAXSUBIT= i
places a limit on the number of step halvings. By default, MAXSUBIT=30. The
value of MAXSUBIT must be a positive integer.

METHOD=GAUSS | MARQUARDT | NEWTON | GRADIENT
specifies the iterative method that PROC NLIN uses. The GAUSS, MARQUARDT
and NEWTON methods are more robust than the GRADIENT method. If you
omit the METHOD= option, METHOD=GAUSS is used. See the“Computational
Methods”section beginning on page 3024 for more information.
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NOITPRINT
suppresses the display of the results of each iteration.

NOHALVE
removes the restriction that the objective value must decrease at every iteration. Step
halving is still used to satisfy BOUNDS and to ensure that the number of observa-
tions that can be evaluated does not decrease. NOHALVE is useful for iteratively
reweighted least squares problems.

NOPRINT
suppresses the display of the output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OUTEST=SAS-data-set
specifies an output data set to contain the parameter estimates produced at each it-
eration. See the“Output Data Sets”section on page 3028 for details. If you want
to create a permanent SAS data set, you must specify a two-level name. See the
chapter “SAS Files,” inSAS Language Reference: Conceptsfor more information on
permanent SAS data sets.

PRINT
displays the result of each statement in the program as it is executed. This option
produces large amounts of output.

RHO=value
specifies a value to use in controlling the step-size search. By default, RHO=0.1
except when METHOD=MARQUARDT, in which case RHO=10. See the section
“Computational Methods”beginning on page 3024 for more details.

SAVE
specifies that, when the iteration limit is exceeded, the parameter estimates from the
final iteration are output to the OUTEST= data set. These parameter estimates are
located in the observation with–TYPE–=FINAL. If you omit the SAVE option,
the parameter estimates from the final iteration are not output to the data set unless
convergence is attained.

SIGSQ=value
specifies a value to replace the mean square error for computing the standard errors
of the estimates. The SIGSQ= option is used with maximum-likelihood estimation.

SINGULAR=s
specifies the singularity criterion,s, which is the absolute magnitude of the smallest
pivot value allowed when inverting the Hessian or approximation to the Hessian. The
default value is 1E-8.

SMETHOD=HALVE | GOLDEN | CUBIC
specifies the step-size search method that PROC NLIN uses. The default is
SMETHOD=HALVE. See the section“Computational Methods”beginning on page
3024 for details.
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TAU=value
specifies a value to use in controlling the step-size search. By default, TAU=1 ex-
cept when METHOD=MARQUARDT, in which case TAU=0.01. See the section
“Computational Methods”beginning on page 3024 for details.

TRACE
displays the result of each operation in each statement in the model program as it is
executed, in addition to the information displayed by the FLOW and PRINT options.
This debugging option is needed very rarely, and it produces even more output than
the FLOW and PRINT options.

XREF
displays a cross-reference of the variables in the model program showing where each
variable is referenced or given a value. The XREF listing does not include derivative
variables.

UNCORRECTEDDF
specifies that no degrees of freedom are lost when a bound is active. When the
UNCORRECTEDDF option is not specified, an active bound is treated as if a re-
striction was applied to the set of parameters so one parameter degree of freedom is
deducted.

BOUNDS Statement

BOUNDS inequality <, . . . , inequality > ;

The BOUNDS statement restrains the parameter estimates within specified bounds.
In each BOUNDS statement, you can specify a series of bounds separated by com-
mas. The series of bounds is applied simultaneously. Each bound contains a list
of parameters, an inequality comparison operator, and a value. In a single-bounded
expression, these three elements follow one another in the order described. The fol-
lowing are examples of valid single-bounded expressions:

bounds a1-a10<=20;
bounds c>30;
bounds a b c > 0;

Multiple-bounded expressions are also permitted. For example,

bounds 0<=B<=10;
bounds 15<x1<=30;
bounds r <= s <= p < q;

If you need to restrict an expression involving several parameters (for example,
A + B < 1), you can reparameterize the model so that the expression becomes a
parameter.

For SAS versions 7.01 and later, lagrange multipliers are reported for all bounds
that are enforced (active) when the estimation terminates. In the estimates table the
Lagrange multiplier estimates are identified with namesBound1, Bound2... . An
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active bound is treated as if a restriction was applied to the set of parameters so one
parameter degree of freedom is deducted. The option UNCORRECTEDDF specifies
that no degrees of freedom are lost when a bound is active.

BY Statement

BY variables ;

You can specify a BY statement with PROC NLIN to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the NLIN procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CONTROL Statement

CONTROL variable <=values> < . . . variable <=values>> ;

The CONTROL statement declares control variables and specifies their values. A
control variable is like a retained variable (see the section“RETAIN Statement”on
page 3016) except that it is retainedacrossiterations and the derivative of the model
with respect to a control variable is always zero.

DER Statements

DER. parameter=expression ;

DER. parameter.parameter=expression ;

The DER statement specifies first or second partial derivatives. By default, analytical
derivatives are automatically computed. However, you can specify the derivatives
yourself by using the DER.parm syntax. Use the first form shown to specify first
partial derivatives, and use the second form to specify second partial derivatives. Note
that the DER.parm syntax is retained for backward compatibility. The automatic
analytical derivatives are, in general, a better choice. For additional information on
automatic analytical derivatives, see the section“Automatic Derivatives”beginning
on page 3017.
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For most of the computational methods, you need only specify the first partial deriva-
tive for each parameter to be estimated. For the NEWTON method, specify both the
first and the second derivatives. If any needed derivatives are not specified, they are
automatically computed.

If you use the–LOSS– variable, you can specify the derivative of–LOSS– with re-
spect to the parameters using the DER. syntax.For more information, see the“Special
Variable Used to Determine Convergence Criteria”section on page 3021.

The expression can be an algebraic representation of the partial derivative of the ex-
pression in the MODEL statement with respect to the parameter or parameters that
appear in the left-hand side of the DER statement. Numerical derivatives can also be
used. The expression in the DER statement must conform to the rules for a valid SAS
expression, and it can include any quantities that the MODEL statement expression
contains.

ID Statement

ID variables ;

The ID statement specifies additional variables to place in the output data set created
by the OUTPUT statement. Any variable on the left-hand side of any assignment
statement is eligible. Also, the special variables created by the procedure can be
specified. Variables in the input data set do not need to be specified in the ID state-
ment since they are automatically included in the output data set.

MODEL Statement

MODEL dependent=expression ;

The MODEL statement defines the prediction equation by declaring the dependent
variable and defining an expression that evaluates predicted values. The expression
can be any valid SAS expression yielding a numeric result. The expression can in-
clude parameter names, variables in the data set, and variables created by program
statements in the NLIN procedure. Any operators or functions that can be used in a
DATA step can also be used in the MODEL statement.

A statement such as

model y= expression;

is translated into the form

model.y= expression;

using the compound variable namemodel.y to hold the predicted value. You can
use this assignment as an alternative to the MODEL statement. Either a MODEL
statement or an assignment to a compound variable such asmodel.y must appear.
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OUTPUT Statement

OUTPUT OUT= SAS-data-set keyword=names <, . . . ,keyword=names>;

The OUTPUT statement specifies an output data set to contain statistics calculated
for each observation. For each statistic, specify the keyword, an equal sign, and a
variable name for the statistic in the output data set. All of the names appearing in the
OUTPUT statement must be valid SAS names, and none of the new variable names
can match a variable already existing in the data set to which PROC NLIN is applied.

If an observation includes a missing value for one of the independent variables, both
the predicted value and the residual value are missing for that observation. If the
iterations fail to converge, all the values of all the variables named in the OUTPUT
statement are missing values.

You can specify the following options in the OUTPUT statement. For a description
of computational formulas, seeChapter 2, “Introduction to Regression Procedures.”

OUT=SAS-data-set
specifies the SAS data set to be created by PROC NLIN when an OUTPUT statement
is included. The new data set includes all the variables in the data set to which PROC
NLIN is applied. Also included are any ID variables specified in the ID statement,
plus new variables with names that are specified in the OUTPUT statement.

The following values can be calculated and output to the new data set.

H=name
specifies a variable to contain the leverage,xi(X′X)−1x′i, whereX = ∂F/∂β and
xi is theith row ofX. If you specify the special variable–WEIGHT– , the leverage
is wixi(X′WX)−1x′i.

L95M=name
specifies a variable to contain the lower bound of an approximate 95% confidence in-
terval for the expected value (mean). See also the description for the U95M= option,
which follows.

L95=name
specifies a variable to contain the lower bound of an approximate 95% confidence
interval for an individual prediction. This includes the variance of the error as well as
the variance of the parameter estimates. See also the description for the U95= option,
which follows.

PARMS=names
specifies variables in the output data set to contain parameter estimates. These can be
the same variable names as listed in the PARAMETERS statement; however, you can
choose new names for the parameters identified in the sequence from the parameter
estimates table. A note log indicates which variable in the output data set is associated
with each parameter name. Note that, for each of these new variables, the values are
the same for every observation in the new data set.
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PREDICTED=name
P=name

specifies a variable in the output data set to contain the predicted values of the depen-
dent variable.

RESIDUAL=name
R=name

specifies a variable in the output data set to contain the residuals (actual values minus
predicted values).

SSE=name
ESS=name

specifies a variable to include in the new data set. The values for the variable are
the residual sums of squares finally determined by the procedure. The values of the
variable are the same for every observation in the new data set.

STDI=name
specifies a variable to contain the standard error of the individual predicted value.

STDP=name
specifies a variable to contain the standard error of the mean predicted value.

STDR=name
specifies a variable to contain the standard error of the residual.

STUDENT=name
specifies a variable to contain the studentized residuals, which are residuals divided
by their standard errors.

U95M=name
specifies a variable to contain the upper bound of an approximate 95% confidence
interval for the expected value (mean). See also the description for the L95M= option.

U95=name
specifies a variable to contain the upper bound of an approximate 95% confidence
interval for an individual prediction. See also the description for the L95= option.

WEIGHT=name
specifies a variable in the output data set that contains values of the special variable

–WEIGHT– .

PARAMETERS Statement

PARAMETERS parameter=values . . . ;

PARMS parameter=values . . . ;

A PARAMETERS (or PARMS) statement must come before the RUN statement.
Several parameter names and values can appear. The parameter names must all be
valid SAS names and must not duplicate the names of any variables in the data set to
which the NLIN procedure is applied. Any parameters specified but not used in the
MODEL statement are dropped from the estimation.
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In eachparameter=valuesspecification, the parameter name identifies a parameter
to be estimated, both in subsequent procedure statements and in the output.Values
specify the possible starting values of the parameter.

Usually, only one value is specified for each parameter. If you specify several values
for each parameter, PROC NLIN evaluates the model at each point on the grid. The
value specifications can take any of several forms:

m a single value

m1, m2, . . . , mn several values

m TO n a sequence wherem equals the starting value,n equals the ending
value, and the increment equals 1

m TO n BY i a sequence wherem equals the starting value,n equals the ending
value, and the increment isi

m1, m2 TOm3 mixed values and sequences

This PARMS statement specifies five parameters and sets their possible starting val-
ues as shown:

parms b0=0
b1=4 to 8
b2=0 to .6 by .2
b3=1, 10, 100
b4=0, .5, 1 to 4;

Possible starting values
B0 B1 B2 B3 B4

0 4 0.0 1 0.0
5 0.2 10 0.5
6 0.4 100 1.0
7 0.6 2.0
8 3.0

4.0

Residual sums of squares are calculated for each of the1×5×4×3×6 = 360 com-
binations of possible starting values. (This can take a long time.) See the“Special
Variables”section beginning on page 3020 for information on programming param-
eter starting values.
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RETAIN Statement

RETAIN variable <=values> < . . . variable <=values>> ;

The RETAIN statement declares retained variables and specifies their values. A re-
tained variable is like a control variable (see the section“CONTROL Statement”on
page 3011) except that it is retained onlywithin iterations. An iteration involves a
single pass through the data set.

Other Program Statements with PROC NLIN

PROC NLIN supports many statements that are similar to SAS programming state-
ments used in a DATA step. However, there are some differences in capabilities;
for additional information, see the section“Incompatibilities with 6.11 and Earlier
Versions of PROC NLIN”beginning on page 3031.

Several SAS program statements can be used after the PROC NLIN statement. These
statements can appear anywhere in the PROC NLIN statement, but new variables
must be created before they appear in other statements. For example, the following
statements are valid since they create the variabletemp before they use it in the
MODEL statement:

proc nlin;
parms b0=0 to 2 by 0.5 b1=0.01 to 0.09 by 0.01;
temp=exp(-b1*x);
model y=b0*(1-temp);

The following statements result in missing values fory because the variabletemp is
undefined before it is used:

proc nlin;
parms b0=0 to 2 by 0.5 b1=0.01 to 0.09 by 0.01;
model y=b0*(1-temp);
temp=exp(-b1*x);

PROC NLIN can process assignment statements, explicitly or implicitly subscripted
ARRAY statements, explicitly or implicitly subscripted array references, IF state-
ments, SAS functions, and program control statements. You can use program state-
ments to create new SAS variables for the duration of the procedure. These vari-
ables are not permanently included in the data set to which PROC NLIN is applied.
Program statements can include variables in the DATA= data set, parameter names,
variables created by preceding program statements within PROC NLIN, and special
variables used by PROC NLIN. All of the following SAS program statements can be
used in PROC NLIN:

• ARRAY

• assignment (y = a*x + b; )

• CALL
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• DO

• iterative DO

• DO UNTIL

• DO WHILE

• END

• FILE

• GO TO

• IF-THEN/ELSE

• LINK-RETURN

• PUT (defaults to the list)

• RETURN

• SELECT

• sum (y + 1; )

These statements can use the special variables created by PROC NLIN. Consult the
section“Special Variables”beginning on page 3020 for more information on special
variables.

Details

Automatic Derivatives

Depending on the optimization method you select, analytical first- and second-order
derivatives are computed automatically. Derivatives can still be supplied using the
DER.parm syntax. These DER.parm derivatives are not verified by the differentia-
tor. If any needed derivatives are not supplied, they are computed and added to the
program statements. To view the computed derivatives, use the LISTDER or LIST
option.

The following model is solved using Newton’s method. Analytical first- and second-
order derivatives are automatically computed.

proc nlin data=Enzyme method=newton list;
parms x1=4 x2=2 ;
model Velocity = x1 * exp (x2 * Concentration);

run;
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The NLIN Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 285:74 MODEL.Velocity = x1 * EXP(x2
* Concentration);

1 285:74 @MODEL.Velocity/@x1 = EXP(x2
* Concentration);

1 285:74 @MODEL.Velocity/@x2 = x1 * Concentration
* EXP(x2 * Concentration);

1 285:74 @@MODEL.Velocity/@x1/@x2 = Concentration
* EXP(x2 * Concentration);

1 285:74 @@MODEL.Velocity/@x2/@x1 = Concentration
* EXP(x2 * Concentration);

1 285:74 @@MODEL.Velocity/@x2/@x2 = x1
* Concentration * Concentration
* EXP(x2 * Concentration);

Figure 50.5. Model and Derivative Code Output

Note that all the derivatives require the evaluation of EXP(X2 *Concentration). If
you specify the LISTCODE option in the PROC NLIN statement, the actual machine
level code produced is as follows.

The NLIN Procedure

Code Listing

1 Stmt MODEL line 296 column 78.
(1)
arg=MODEL.Velocity
argsave=MODEL.
Velocity
Source Text: model Velocity = x1 * exp

(x2 * Concentration);
Oper * at 296:108 (30,0,2). * : _temp1 <- x2 Concentration
Oper EXP at 296:104 EXP : _temp2 <- _temp1

(103,0,1).
Oper * at 296:98 (30,0,2). * : MODEL.Velocity <- x1 _temp2
Oper eeocf at 296:98 (18,0,1). eeocf : _DER_ <- _DER_
Oper = at 296:98 (1,0,1). = : @MODEL.Velocity/@x1 <- _temp2
Oper * at 296:104 (30,0,2). * : @1dt1_1 <- Concentration _temp2
Oper * at 296:98 (30,0,2). * : @MODEL.Velocity/@x2

<- x1 @1dt1_1
Oper = at 296:98 (1,0,1). = : @@MODEL.Velocity/@x1/@x2

<- @1dt1_1
Oper = at 296:98 (1,0,1). = : @@MODEL.Velocity/@x2/@x1

<- @1dt1_1
Oper * at 296:104 (30,0,2). * : @2dt1_1 <- Concentration

@1dt1_1
Oper * at 296:98 (30,0,2). * : @@MODEL.Velocity/@x2/@x2

<- x1 @2dt1_1

Figure 50.6. LISTCODE Output
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Note that, in the generated code, only one exponentiation is performed. The generated
code reuses previous operations to be more efficient.

Hougaard’s Measure of Skewness

A “close-to-linear” nonlinear regression model, first described by Ratkowsky (1990),
is a model that produces parameters having properties similar to those produced by
a linear regression model. That is, the least squares estimates of the parameters are
close to being unbiased, normally distributed, minimum variance estimators.

A nonlinear regression model sometimes fails to be close to linear due to the prop-
erties of a single parameter. When this occurs, bias in the parameters can render
inferences using the reported standard errors and confidence limits invalid. You can
often fix the problem with reparameterization, replacing the offending parameter by
one with better estimation properties.

You can use Hougaard’s measure of skewness,g1i, to assess whether a parame-
ter is close to linear or whether it contains considerable nonlinearity. Specify the
HOUGAARD option in the PROC NLIN statement to compute Hougaard’s measure
of skewness.

According to Ratkowsky (1990), if|g1i| < 0.1, the estimator̂θi of parameterθi is
very close-to-linear in behavior and, if0.1 < |g1i| < .25, the estimator is reasonably
close-to-linear. If|g1i| > .25, the skewness is very apparent. For|g1i| > 1, the
nonlinear behavior is considerable.

Hougaard’s measure is computed as follows

E[θ̂i − E(θ̂i)]3 = −(mse)2
np∑
jkl

LijLikLil(Wjkl + Wkjl + Wljk)

where the sum is a triple sum over the number of parameters and

L = (X ′X)−1

Wjkl =
n∑

m=1

J j
mHkl

m

In the preceding equation,Jm is the Jacobian vector andHm is the Hessian matrix
evaluated at observationm. This third moment is normalized using the standard error
as

g1i = E[θ̂i − E(θ̂i)]3/(mse ∗ Lii)3/2
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Missing Values

If the value of any one of the SAS variables involved in the model is missing from
an observation, that observation is omitted from the analysis. If only the value of the
dependent variable is missing, that observation has a predicted value calculated for it
when you use an OUTPUT statement and specify the PREDICTED= option.

If an observation includes a missing value for one of the independent variables, both
the predicted value and the residual value are missing for that observation. If the
iterations fail to converge, all the values of all the variables named in the OUTPUT
statement are missing values.

Special Variables

Several special variables are created automatically and can be used in PROC NLIN
program statements.

Special Variables with Values that are Set by PROC NLIN

The values of the following six special variables are set by PROC NLIN and should
not be reset to a different value by programming statements:

–ERROR– is set to 1 if a numerical error or invalid argument to a function
occurs during the current execution of the program. It is reset to 0
before each new execution.

–ITER– represents the current iteration number. The variable–ITER– is
set to−1 during the grid search phase.

–MODEL– is set to 1 for passes through the data when only the predicted val-
ues are needed, not the derivatives. It is 0 when both predicted
values and derivatives are needed. If your derivative calculations
consume a lot of time, you can save resources by coding

if _model_ then return;

after your MODEL statement but before your derivative calcula-
tions. The derivatives generated by PROC NLIN do this automati-
cally.

–N– indicates the number of times the PROC NLIN step has been exe-
cuted. It is never reset for successive passes through the data set.

–OBS– indicates the observation number in the data set for the current pro-
gram execution. It is reset to 1 to start each pass through the data
set (unlike the–N– variable).

–SSE– has the error sum of squares of the last iteration. During the grid
search phase, the–SSE– variable is set to 0. For iteration 0, the

–SSE– variable is set to the SSE associated with the point chosen
from the grid search.
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Special Variable Used to Determine Convergence Criteria

The special variable–LOSS– can be used to determine convergence criteria:

–LOSS– is used to determine the criterion function for convergence and step
shortening. PROC NLIN looks for the variable–LOSS– in the
program statements and, if it is defined, uses the (weighted) sum
of this value instead of the residual sum of squares to determine
the criterion function for convergence and step shortening. This
feature is useful in certain types of maximum-likelihood estimation
where the residual sum of squares is not the basic criterion.

Weighted Regression with the Special Variable –WEIGHT–

To get weighted least squares estimates of parameters, the–WEIGHT– variable can
be given a value in an assignment statement:

_weight_ = expression ;

When this statement is included, the expression on the right-hand side of the assign-
ment statement is evaluated for each observation in the data set to be analyzed. The
values obtained are taken as inverse elements of the diagonal variance-covariance
matrix of the dependent variable.

When a variable name is given after the equal sign, the values of the variable are
taken as the inverse elements of the variance-covariance matrix. The larger the

–WEIGHT– value, the more importance the observation is given.

The –WEIGHT– variable can be a function of the estimated parameters. For esti-
mation purposes the derivative of the–WEIGHT– variable with-respect-to the pa-
rameters is not included in the gradient and the Hessian of the loss function. This
is normally the desired approach for iteratively reweighted least squares estimation.
With the–WEIGHT– variable a function of parameters, the gradient and the Hessian
used may lead to poor convergence or non-convergence of the requested estima-
tion. To have the derivative of the–WEIGHT– variable with-respect-to the param-
eters included in the gradient and the Hessian of the loss function, do not use the

–WEIGHT– variable. Instead, redefine the model as

(y − f(x, β))/
√

wgt(β)

where y is the original dependent variable,f(x, β) is the nonlinear model, and
wgt(β) is the weight that is a function of the parameters.

If the –WEIGHT–= statement is not used, the default value of 1 is used, and regular
least squares estimates are obtained.
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Troubleshooting
This section describes a number of problems that can occur in your analysis with
PROC NLIN.

Excessive Time

If you specify a grid of starting values that contains many points, the analysis may
take excessive time since the procedure must go through the entire data set for each
point on the grid.

The analysis may also take excessive time if your problem takes many iterations
to converge since each iteration requires as much time as a linear regression with
predicted values and residuals calculated.

Dependencies

The matrix of partial derivatives may be singular, possibly indicating an over-
parameterized model. For example, ifb0 starts at zero in the following model, the
derivatives forb1 are all zero for the first iteration.

parms b0=0 b1=.022;
model pop=b0*exp(b1*(year-1790));
der.b0=exp(b1*(year-1790));
der.b1=(year-1790)*b0*exp(b1*(year-1790));

The first iteration changes a subset of the parameters; then the procedure can make
progress in succeeding iterations. This singularity problem is local. The next example
displays a global problem.

You may have a termb2 in the exponent that is nonidentifiable since it trades roles
with b0.

parms b0=3.9 b1=.022 b2=0;
model pop=b0*exp(b1*(year-1790)+b2);
der.b0=exp(b1*(year-1790)+b2);
der.b1=(year-1790)*b0*exp(b1*(year-1790)+b2);
der.b2=b0*exp(b1*(year-1790)+b2);

Unable to Improve

The method may lead to steps that do not improve the estimates even after a series of
step halvings. If this happens, the procedure issues a message stating that it is unable
to make further progress, but it then displays the warning message

PROC NLIN failed to converge

and displays the results. This often means that the procedure has not converged at
all. If you provided the derivatives, check them very closely and then check the sum-
of-squares error surface before proceeding. If PROC NLIN has not converged, try a
different set of starting values, a different METHOD= specification, the G4 option,
or a different model.
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Divergence

The iterative process may diverge, resulting in overflows in computations. It is also
possible that parameters enter a space where arguments to such functions as LOG and
SQRT become illegal. For example, consider the following model:

parms b=0;
model y=x / b;

Suppose thaty happens to be all zero andx is nonzero. There is no least squares
estimate forb since the SSE declines asb approaches infinity or minus infinity. The
same model could be parameterized with no problem intoy = a*x.

If you have divergence problems, try reparameterizing, selecting different starting
values, increasing the maximum allowed number of iterations (the MAXITER= op-
tion), specifying an alternative METHOD= option, or including a BOUNDS state-
ment.

Local Minimum

The program may converge to a local rather than a global minimum. For example,
consider the following model.

parms a=1 b=-1;
model y=(1-a*x)*(1-b*x);

Once a solution is found, an equivalent solution with the same SSE can be obtained
by swapping the values ofa andb.

Discontinuities

The computational methods assume that the model is a continuous and smooth func-
tion of the parameters. If this is not true, the method does not work. For example, the
following models do not work:

model y=a+int(b*x);

model y=a+b*x+4*(z>c);

Responding to Trouble

PROC NLIN does not necessarily produce a good solution the first time. Much de-
pends on specifying good initial values for the parameters. You can specify a grid
of values in the PARMS statement to search for good starting values. While most
practical models should give you no trouble, other models may require switching to
a different iteration method or an inverse computation method. Specifying the op-
tion METHOD=MARQUARDT sometimes works when the default method (Gauss-
Newton) does not work.



3024 � Chapter 50. The NLIN Procedure

Computational Methods

For the system of equations represented by the nonlinear model

Y = F(β0, β1, . . . , βr,Z1,Z2, . . . ,Zn) + ε = F(β∗) + ε

whereZ is a matrix of the independent variables,β∗ is a vector of the parameters,ε is
the error vector, andF is a function of the independent variables and the parameters,
there are two approaches to solving for the minimum. The first method is to minimize

L(β) = 0.5(e′e)

wheree = Y − F(β) andβ is an estimate ofβ∗.

The second method is to solve the nonlinear “normal” equations

X′F(β) = X′Y

where

X =
∂F
∂β

In the nonlinear situation, bothX andF(β) are functions ofβ and a closed-form
solution generally does not exist. Thus, PROC NLIN uses an iterative process: a
starting value forβ is chosen and continually improved until the error sum of squares
ε′ε is minimized.

The iterative techniques that PROC NLIN uses are similar to a series of linear regres-
sions involving the matrixX evaluated for the current values ofβ ande = Y−F(β),
the residuals evaluated for the current values ofβ.

The iterative process begins at some pointβ0. ThenX andY are used to compute a
∆ such that

SSE(β0 + k∆) < SSE(β0)

The four methods differ in how∆ is computed to change the vector of parameters.

Steepest descent:∆ = X′e

Gauss-Newton:∆ = (X′X)−X′e

Newton:∆ = (G−)X′e

Marquardt:∆ = (X′X + λdiag(X′X))−X′e
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The default method used to compute(X′X)− is the sweep operator producing a re-
flexive generalized (g2) inverse. In some cases it would be preferable to use a Moore-
Penrose (g4) inverse. If the G4 option is specified in the PROC NLIN statement, ag4

inverse is used to calculate∆ on each iteration.

The Gauss-Newton and Marquardt iterative methods regress the residuals onto the
partial derivatives of the model with respect to the parameters until the estimates
converge. The Newton iterative method regresses the residuals onto a function of
the first and second derivatives of the model with respect to the parameters until the
estimates converge. Analytical first- and second-order derivatives are automatically
computed.

Steepest Descent (Gradient)

The steepest descent method is based on the gradient ofε′ε:

1
2

∂L(β)
∂β

= −XY + XF(β) = −X′e

The quantity−X′e is the gradient along whichε′ε increases. Thus∆ = X′e is the
direction of steepest descent.

If the automatic variables–WEIGHT– and–RESID– are used, then

∆ = X′WSSEr

is the direction, where

WSSE is an n × n diagonal matrix with elementswSSE
i of weights from

the –WEIGHT– variable. Each elementwSSE
i contains the value of

–WEIGHT– for theith observation.

r is a vector with elementsri from –RESID– . Each elementri contains the
value of–RESID– evaluated for theith observation.

Using the method of steepest descent, let

βk+1 = βk + α∆

where the scalarα is chosen such that

SSE(βi + α∆) < SSE(βi)

Note: The steepest descent method may converge very slowly and is therefore not
generally recommended. It is sometimes useful when the initial values are poor.
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Newton

The Newton method uses the second derivatives and solves the equation

∆ = G−X′e

where

G = (X′X) +
n∑

i=1

Hi(β)ei

andHi(β) is the Hessian ofe:

[Hi]jk =
[

∂2ei

∂βj∂βk

]
jk

If the automatic variables–WEIGHT– , –WGTJPJ– , and–RESID– are used, then

∆ = G−X′WSSEr

is the direction, where

G = X′WXPXX +
n∑

i=1

Hi(β)wXPX
i ri

and

WSSE is an n × n diagonal matrix with elementswSSE
i of weights from

the –WEIGHT– variable. Each elementwSSE
i contains the value of

–WEIGHT– for theith observation.

WXPX is an n × n diagonal matrix with elementswXPX
i of weights from the

–WGTJPJ– variable.

Each elementwXPX
i contains the value of–WGTJPJ– for theith observa-

tion.

r is a vector with elementsri from the–RESID– variable. Each elementri

contains the value of–RESID– evaluated for theith observation.
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Gauss-Newton

The Gauss-Newton method uses the Taylor series

F(β) = F(β0) + X(β − β0) + · · ·

whereX = ∂F/∂β is evaluated atβ = β0.

Substituting the first two terms of this series into the normal equations

X′F(β) = X′Y

X′(F(β0) + X(β − β0)) = X′Y

(X′X)(β − β0) = X′Y −X′F(β0)

(X′X)∆ = X′e

and therefore

∆ = (X′X)−X′e

Caution: IfX′X is singular or becomes singular, PROC NLIN computes∆ using a
generalized inverse for the iterations after singularity occurs. IfX′X is still singular
for the last iteration, the solution should be examined.

Marquardt

The Marquardt updating formula is as follows:

∆ = (X′X + λdiag(X′X))−X′e

The Marquardt method is a compromise between the Gauss-Newton and steepest
descent methods (Marquardt 1963). Asλ → 0, the direction approaches Gauss-
Newton. Asλ →∞, the direction approaches steepest descent.

Marquardt’s studies indicate that the average angle between Gauss-Newton and steep-
est descent directions is about90◦. A choice ofλ between 0 and infinity produces a
compromise direction.

By default, PROC NLIN choosesλ = 10−7 to start and computes a∆. If SSE(β0 +
∆) < SSE(β0), thenλ = λ/10 for the next iteration. Each time SSE(β0 + ∆) >
SSE(β0), thenλ = 10λ.

Note: If the SSE decreases on each iteration, thenλ → 0, and you are essentially
using the Gauss-Newton method. If SSE does not improve, thenλ is increased until
you are moving in the steepest descent direction.

Marquardt’s method is equivalent to performing a series of ridge regressions and is
useful when the parameter estimates are highly correlated or the objective function is
not well approximated by a quadratic.
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Step-Size Search

The default method of finding the step sizek is step halving using
SMETHOD=HALVE. If SSE(β0 + ∆) > SSE(β0), compute SSE(β0 + 0.5∆),
SSE(β0 + 0.25∆), . . . , until a smaller SSE is found.

If you specify SMETHOD=GOLDEN, the step sizek is determined by a golden
section search. The parameter TAU determines the length of the initial interval to be
searched, with the interval having length TAU or2×TAU, depending on SSE(β0 +
∆). The RHO parameter specifies how fine the search is to be. The SSE at each
endpoint of the interval is evaluated, and a new subinterval is chosen. The size of
the interval is reduced until its length is less than RHO. One pass through the data
is required each time the interval is reduced. Hence, if RHO is very small relative
to TAU, a large amount of time can be spent determining a step size. For more
information on the GOLDEN search, refer to Kennedy and Gentle (1980).

If you specify SMETHOD=CUBIC, the NLIN procedure performs a cubic interpola-
tion to estimate the step size. If the estimated step size does not result in a decrease
in SSE, step halving is used.

Output Data Sets

The data set produced by the OUTEST= option in the PROC NLIN statement contains
the parameter estimates on each iteration including the grid search.

The variable–ITER– contains the iteration number. The variable–TYPE– denotes
whether the observation contains iteration parameter estimates (’ITER’), final param-
eter estimates (’FINAL’), or covariance estimates (’COVB’). The variable–NAME–
contains the parameter name for covariances, and the variable–SSE– contains the
objective function value for the parameter estimates. The variable–STATUS– indi-
cates whether the estimates have converged.

The data set produced by the OUTPUT statement contains statistics calculated for
each observation. In addition, the data set contains all the variables in the input data
set and any ID variables that are specified in the ID statement.

Confidence Intervals

Parameter Confidence Intervals

The parameter confidence intervals are computed using the Wald based formula:

β̂i ± stderri ∗ t(N − P, 0.05/2)

wherestderri is the standard error of theith parameter̂βi andt(N − P, 0.05/2) is a
t statistic withN − P degrees of freedom,N is the number of observations, andP
is the number of parameters. The confidence intervals are only asymptotically valid.
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Model Confidence Intervals

Model confidence intervals are output when an OUT= data set is specified and one
or more of the options L95M=, L95=, U95M=, or U95= is specified. The values of
these terms are

H = wixi(X′WX)−1x′i

L95M = f(β, zi)−
√

MSE ∗H/wi ∗ t(N − P, 0.975/2)

U95M = f(β, zi) +
√

MSE ∗H/wi ∗ t(N − P, 0.975/2)

L95 = f(β, zi)−
√

MSE(H + 1/wi) ∗ t(N − P, 0.975/2)

U95 = f(β, zi) +
√

MSE(H + 1/wi) ∗ t(N − P, 0.975/2)

whereX = ∂f/∂β andxi is theith row of X. These results are derived for linear
systems. The intervals are approximate for nonlinear models.

Parameter Covariance Matrix

For unconstrained estimates (no active bounds), the parameter covariance matrix is

(X ′X)−1 ∗mse

for the gradient, Marquardt, and Gauss methods and

H−1 ∗mse

for Newton method. Themse is computed as

r′r/(nused− np)

wherenused is the number of non-missing observations andnp is the number of
estimable parameters. The standard error reported for the parameters is the sqrt of
the corresponding diagonal element of this matrix.

Equality restrictions can be written as a vector function

h(θ) = 0

Inequality restrictions are either active or inactive. When an inequality restriction is
active, it is treated as an equality restriction.

For the following, assume the vectorh(θ) contains all the current active restrictions.
The constraint matrix A is

A(θ̂) =
∂h(θ̂)

∂θ̂
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The covariance matrix for the restricted parameter estimates is computed as

Z(Z ′HZ)−1Z ′

where H is Hessian or approximation to the Hessian, and Z is the last(np− nc)
columns of Q. Q is from an LQ factorization of the constraint matrix,nc is the number
of active constraints, andnp is the number of parameters. Refer to Gill, Murray, and
Wright (1981) for more details on LQ factorization.

The covariance matrix for the Lagrange multipliers is computed as

(AH−1A′)−1

Reported Convergence Measures

NLIN computes and reports four convergence measures labeled R, PPC, RPC, and
OBJECT.

R is the primary convergence measure for the parameters. It measures
the degree to which the residuals are orthogonal to the Jacobian
columns, and it approaches 0 as the gradient of the objective func-
tion becomes small. R is defined as√

r′X(X ′X)−1X ′r

LOSSi

PPC is the prospective parameter change measure. PPC measures
the maximum relative change in the parameters implied by the
parameter-change vector computed for the next iteration. At the
kth iteration, PPC is the maximum over the parameters

|θk+1
i − θk

i |
|θ|ki + 1E − 6

whereθk
i is the current value of theith parameter andθk+1

i is the
prospective value of this parameter after adding the change vec-
tor computed for the next iteration. These changes are measured
before steplength adjustments are made. The parameter with the
maximum prospective relative change is displayed with the value
of PPC, unless the PPC is nearly 0.

RPC is the retrospective parameter change measure. RPC measures the
maximum relative change in the parameters from the previous iter-
ation. At thekth iteration, RPC is the maximum overi of

|θk
i − θk−1

i |
|θk−1

i + 1E − 6|
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whereθk
i is the current value of theith parameter andθk−1

i is the
previous value of this parameter. These changes are measured be-
fore steplength adjustments are made. The name of the parameter
with the maximum retrospective relative change is displayed with
the value of RPC, unless the RPC is nearly 0.

OBJECT measures the relative change in the objective function value be-
tween iterations:

|Ok −Ok−1|
|Ok−1 + 1E − 6|

whereOk−1 is the value of the objective function (Ok) from the
previous iteration. This is the old CONVERGEOBJ= criterion.

Displayed Output

In addition to the output data sets, PROC NLIN also produces the following items:

• the estimates of the parameters and the residual Sums of Squares determined
in each iteration

• a list of the residual Sums of Squares associated with all or some of the com-
binations of possible starting values of parameters

• an analysis-of-variance table including as sources of variation Regression,
Residual, Uncorrected Total, Corrected Total, andF test

If the convergence criterion is met, PROC NLIN produces

• Estimation Summary Table

• Parameter Estimates

• an asymptotically valid standard error of the estimate, Asymptotic Standard
Error.

• an Asymptotic 95% Confidence Interval for the estimate of the parameter

• an Asymptotic Correlation Matrix of the parameters

Incompatibilities with 6.11 and Earlier Versions of PROC
NLIN

The NLIN procedure now uses a compiler that is different from the DATA step com-
piler. The compiler was changed so that analytical derivatives could be computed
automatically. For the most part, the syntax accepted by the old NLIN procedure
can be used in the new NLIN procedure. However, there are several differences that
should be noted.
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• You cannot specify a character index variable in the DO statement, and you
cannot specify a character test in the IF statement. Thus DO I=1,2,3; is sup-
ported, but DO I=’ONE’,’TWO’,’THREE’; is not supported. And IF ’THIS’ <
’THAT’ THEN . . .; is supported, but "IF ’THIS’ THEN. . .;" is not supported.

• The PUT statement, which is used mostly for program debugging in PROC
NLIN, supports only some of the features of the DATA step PUT statement,
and it has some new features that the DATA step PUT statement does not.

– The PUT statement does not support line pointers, factored lists, iteration
factors, overprinting, the–INFILE– option, the ‘:’ format modifier, or
the symbol ‘$’.

– The PUT statement does support expressions inside of parentheses. For
example, PUT (SQRT(X)); produces the square root of X.

– The PUT statement also supports the option–PDV– to display a for-
matted listing of all the variables in the program. The statement PUT

–PDV–; prints a much more readable listing of the variables than PUT

–ALL –; does.

• You cannot use the ‘*’ subscript, but you can specify an array name in a PUT
statement without subscripts. Thus, ARRAY A. . .; PUT A; is acceptable, but
PUT A[*] ; is not. The statement PUT A; displays all the elements of the
array A. The PUT A=; statement displays all the elements of A with each value
labeled by the name of the element variable.

• You cannot specify any arguments in the ABORT statement.

• You can specify more than one target statement in the WHEN and
OTHERWISE statements. That is, DO/END groups are not necessary for
multiple WHEN statements, for example, SELECT; WHEN(exp1); stmt1;
stmt2; WHEN(exp2); stmt3; stmt4; END;.

• You can specify only the options LOG, PRINT, and LIST in the FILE state-
ment.

• The RETAIN statement retains only values across one pass through the data
set. If you need to retain values across iterations, use the CONTROL statement
to make a control variable.

The ARRAY statement in PROC NLIN is similar to, but not the same as, the ARRAY
statement in the SAS DATA step. The ARRAY statement is used to associate a name
(of no more than 8 characters) with a list of variables and constants. The array name
can then be used with subscripts in the program to refer to the items in the list.

The ARRAY statement supported by PROC NLIN does not support all the features
of the DATA step ARRAY statement. You cannot specify implicit indexing variables;
all array references must have explicit subscript expressions. You can specify simple
array dimensions; lower bound specifications are not supported. A maximum of six
dimensions are accepted.

On the other hand, the ARRAY statement supported by PROC NLIN does accept
both variables and constants as array elements. (Constant array elements cannot be
changed with assignment statements.)
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proc nlin data=nld;
array b[4] 1 2 3 4; /* Constant array */
array c[4] ( 1 2 3 4 ); /* Numeric array with initial values */

b[1] = 2; /* This is an ERROR, b is a constant array*/
c[2] = 7.5; /* This is allowed */
...

Both dimension specification and the list of elements are optional, but at least one
must be specified. When the list of elements is not specified, or fewer elements
than the size of the array are listed, array variables are created by suffixing element
numbers to the array name to complete the element list.

If the array is used as a pure array in the program rather than a list of symbols (the
individual symbols of the array are not referenced in the code), the array is converted
to a numerical array. A pure array is literally a vector of numbers that are accessed
only by index. Using these types of arrays results in faster derivatives and compiled
code.

proc nlin data=nld;
array c[4] ( 1 2 3 4 ); /* Numeric array with initial values */

c[2] = 7.5; /* This is C used as a pure array */
c1 = -92.5; /* This forces C to be a list of symbols */

ODS Table Names

PROC NLIN assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 50.1. ODS Tables Produced in PROC NLIN

ODS Table Name Description Statement
ANOVA Analysis of variance default
CodeDependency Variable cross reference LISTDEP
CodeList Listing of program statements LISTCODE
ConvergenceStatus Convergence status default
CorrB Correlation of the parameters default
EstSummary Summary of the estimation default
FirstDerivatives First derivative table LISTDER
IterHistory Iteration output default
MissingValues Missing values generated by the

program
default

ParameterEstimates Parameter estimates default
ProgList Listing of the compiled program LIST
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Convergence Status Table

The ConvergenceStatus table can be used to programmatically check on the status of
an estimation. The ConvergenceStatus table contains the variable STATUS that takes
on one of the values, 0, 1, or 3. If STATUS equals 0, then the convergence criterion
were met. If STATUS equals 1, then the convergence criterion were met but notes
were added to the log that may indicate a problem with the model. If STATUS equals
3, then the convergence criterion were not met.

The following sample program demonstrates how the ConvergenceStatus table can
be used.

/* Save the ConvergenceStatus */
/* table to the dataset "status" */

ods output ConvergenceStatus=status;
proc nlin data=a ;

parameters a=1 b=1 c=1;
model wgt=a+x/(b*y+c*z);

run;

data _NULL_; set status;
if status > 0 then put "A problem Occurred";

run;

Examples

Example 50.1. Segmented Model

From theoretical considerations, you can hypothesize that

y = a + b x + c x2 if x < x0

y = p if x >= x0

That is, for values ofx less thanx0, the equation relatingy andx is quadratic (a
parabola); and, for values ofx greater thanx0, the equation is constant (a horizontal
line). PROC NLIN can fit such a segmented model even when the joint point,x0, is
unknown.

The curve must be continuous (the two sections must meet atx0), and the curve must
be smooth (the first derivatives with respect tox are the same atx0).

These conditions imply that
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x0 = −b/2c

p = a− b2/4c

The segmented equation includes only three parameters; however, the equation is
nonlinear with respect to these parameters.

You can write program statements with PROC NLIN to conditionally execute differ-
ent sections of code for the two parts of the model, depending on whetherx is less
thanx0 .

A PUT statement is used to print the constrained parameters every time the program
is executed for the first observation (wherex =1). The following statements perform
the analysis.

*---------FITTING A SEGMENTED MODEL USING NLIN-----*
| | |
| Y | QUADRATIC PLATEAU |
| | Y=A+B*X+C*X*X Y=P |
| | ..................... |
| | . : |
| | . : |
| | . : |
| | . : |
| | . : |
| +-----------------------------------------X |
| X0 |
| |
| CONTINUITY RESTRICTION: P=A+B*X0+C*X0**2 |
| SMOOTHNESS RESTRICTION: 0=B+2*C*X0 SO X0=-B/(2*C)|
*--------------------------------------------------*;

title ’Quadratic Model with Plateau’;
data a;

input y x @@;
datalines;

.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7

.78 8 .70 9 .74 10 .77 11 .78 12 .74 13 .80 13

.80 15 .78 16
;
proc nlin;

parms a=.45 b=.05 c=-.0025;

x0=-.5*b / c; * Estimate join point;
if x<x0 then * Quadratic part of Model;

model y=a+b*x+c*x*x;
else * Plateau part of Model;

model y=a+b*x0+c*x0*x0;

if _obs_=1 and _iter_ =. then do;
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plateau=a+b*x0+c*x0*x0;
put / x0= plateau= ;
end;

output out=b predicted=yp;
run;

/* Setup for creating the graph */
legend1 frame cframe=ligr label=none cborder=black

position=center value=(justify=center);
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;

proc gplot;
plot y*x yp*x/frame cframe=ligr legend=legend1
vaxis=axis1 haxis=axis2 overlay ;

run;

Output 50.1.1. Nonlinear Least Squares Iterative Phase
Quadratic Model with Plateau

The NLIN Procedure
Dependent Variable y
Method: Gauss-Newton

Iterative Phase
Sum of

Iter a b c Squares

0 0.4500 0.0500 -0.00250 0.0562
1 0.3881 0.0616 -0.00234 0.0118
2 0.3930 0.0601 -0.00234 0.0101
3 0.3922 0.0604 -0.00237 0.0101
4 0.3921 0.0605 -0.00237 0.0101
5 0.3921 0.0605 -0.00237 0.0101
6 0.3921 0.0605 -0.00237 0.0101

x0=12.747669162 plateau=0.7774974276

NOTE: Convergence criterion met.

x0=12.747669162 plateau=0.7774974276
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Output 50.1.2. Least Squares Analysis for the Quadratic Model
The NLIN Procedure

Dependent Variable y
Method: Gauss-Newton

x0=12.747669162 plateau=0.7774974276

Sum of Mean Approx
Source DF Squares Square F Value Pr > F

Model 2 0.1769 0.0884 114.22 <.0001
Error 13 0.0101 0.000774
Corrected Total 15 0.1869

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits

a 0.3921 0.0267 0.3345 0.4497
b 0.0605 0.00842 0.0423 0.0787
c -0.00237 0.000551 -0.00356 -0.00118

Approximate Correlation Matrix
a b c

a 1.0000000 -0.9020250 0.8124327
b -0.9020250 1.0000000 -0.9787952
c 0.8124327 -0.9787952 1.0000000

x0=12.747669162 plateau=0.7774974276

Output 50.1.1indicates that the join point is 12.75 and the plateau value is 0.78. As
displayed in the following plot of the predicted values (YP) and the actual values,
the selected join point and plateau value is reasonable. The predicted values for the
estimation are written to the data setb with the OUTPUT statement.
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Output 50.1.3. Observed and Predicted Values for the Quadratic Model

Example 50.2. Iteratively Reweighted Least Squares

The NLIN procedure is suited to methods that make the weight a function of the
parameters in each iteration since the–WEIGHT– variable can be computed with
program statements.

The NOHALVE option is used because the SSE definition is modified at each itera-
tion and the step-shortening criteria is thus circumvented.

Iteratively reweighted least squares (IRLS) can produce estimates for many of the
robust regression criteria suggested in the literature. These methods act like automatic
outlier rejectors since large residual values lead to very small weights. Holland and
Welsch (1977) outline several of these robust methods. For example, the biweight
criterion suggested by Beaton and Tukey (1974) tries to minimize

Sbiweight = Σρ(r)

where

ρ(r) = (B2/2)(1− (1− (r/B)2)2) if |r| ≤ B

or

ρ(r) = (B2/2) otherwise
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wherer is |residual|/σ, σ is a measure of scale of the error, andB is a tuning
constant.

The weighting function for the biweight is

wi = (1− (ri/B)2)2 if |ri| ≤ B

or

wi = 0 if |ri| > B

The biweight estimator depends on both a measure of scale (like the standard devia-
tion) and a tuning constant; results vary if these values are changed.

The data are the population of the United States (in millions), recorded at ten-year
intervals starting in 1790 and ending in 1990.

title ’U.S. Population Growth’;
data uspop;

input pop :6.3 @@;
retain year 1780;
year=year+10;
yearsq=year*year;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710
;

title ’Beaton/Tukey Biweight Robust Regression using IRLS’;
proc nlin data=uspop nohalve;

parms b0=20450.43 b1=-22.7806 b2=.0063456;
model pop=b0+b1*year+b2*year*year;
resid=pop-model.pop;
sigma=2;
b=4.685;
r=abs(resid / sigma);
if r<=b then _weight_=(1-(r / b)**2)**2;
else _weight_=0;
output out=c r=rbi;

run;

data c;
set c;

sigma=2;
b=4.685;
r=abs(rbi / sigma);
if r<=b then _weight_=(1-(r / b)**2)**2;
else _weight_=0;

proc print;
run;
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Output 50.2.1. Nonlinear Least Squares Analysis
Beaton/Tukey Biweight Robust Regression using IRLS

The NLIN Procedure

Sum of Mean Approx
Source DF Squares Square F Value Pr > F

Model 2 113564 56782.0 49454.5 <.0001
Error 18 20.6670 1.1482
Corrected Total 20 113585

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits

b0 20828.7 259.4 20283.8 21373.6
b1 -23.2004 0.2746 -23.7773 -22.6235
b2 0.00646 0.000073 0.00631 0.00661

Output 50.2.2. Listing of Computed Weights from PROC NLIN
Beaton/Tukey Biweight Robust Regression using IRLS

Obs pop year yearsq rbi sigma b r _weight_

1 3.929 1790 3204100 -0.93711 2 4.685 0.46855 0.98010
2 5.308 1800 3240000 0.46091 2 4.685 0.23045 0.99517
3 7.239 1810 3276100 1.11853 2 4.685 0.55926 0.97170
4 9.638 1820 3312400 0.95176 2 4.685 0.47588 0.97947
5 12.866 1830 3348900 0.32159 2 4.685 0.16080 0.99765
6 17.069 1840 3385600 -0.62597 2 4.685 0.31298 0.99109
7 23.191 1850 3422500 -0.94692 2 4.685 0.47346 0.97968
8 31.443 1860 3459600 -0.43027 2 4.685 0.21514 0.99579
9 39.818 1870 3496900 -1.08302 2 4.685 0.54151 0.97346

10 50.155 1880 3534400 -1.06615 2 4.685 0.53308 0.97427
11 62.947 1890 3572100 0.11332 2 4.685 0.05666 0.99971
12 75.994 1900 3610000 0.25539 2 4.685 0.12770 0.99851
13 91.972 1910 3648100 2.03607 2 4.685 1.01804 0.90779
14 105.710 1920 3686400 0.28436 2 4.685 0.14218 0.99816
15 122.775 1930 3724900 0.56725 2 4.685 0.28363 0.99268
16 131.669 1940 3763600 -8.61325 2 4.685 4.30662 0.02403
17 151.325 1950 3802500 -8.32415 2 4.685 4.16207 0.04443
18 179.323 1960 3841600 -0.98543 2 4.685 0.49272 0.97800
19 203.211 1970 3880900 0.95088 2 4.685 0.47544 0.97951
20 226.542 1980 3920400 1.03780 2 4.685 0.51890 0.97562
21 248.710 1990 3960100 -1.33067 2 4.685 0.66533 0.96007

Output 50.2.2displays the computed weights. The observations for 1940 and 1950
are highly discounted because of their large residuals.

Example 50.3. Probit Model with Likelihood function

The data, taken from Lee (1974), consist of patient characteristics and a variable
indicating whether cancer remission occurred. This example demonstrates how to
use PROC NLIN with a likelihood function. In this case, the likelihood function to
minimize is
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−2 log L = −2
N∑

i=1

wghti log(p̂i(yi,xi))

where

p̂i(yi,xi) =
{

Φ(α + β′xi) yi = 0
1− Φ(α + β′xi) yi = 1

andΦ is the normal probability function. This is the likelihood function for a binary
probit model. This likelihood is strictly positive so that you can take a square root
of log(p̂i(yi,xi)) and use this as your residual in PROC NLIN. The DATA step also
creates a zero-valued dummy variable,like, that is used as the dependent variable.

Data remiss;
input remiss cell smear infil li blast temp;
label remiss = ’complete remission’;
like = 0;
label like = ’dummy variable for nlin’;
datalines;

1 .8 .83 .66 1.9 1.1 .996
1 .9 .36 .32 1.4 .74 .992
0 .8 .88 .7 .8 .176 .982
0 1 .87 .87 .7 1.053 .986
1 .9 .75 .68 1.3 .519 .98
0 1 .65 .65 .6 .519 .982
1 .95 .97 .92 1 1.23 .992
0 .95 .87 .83 1.9 1.354 1.02
0 1 .45 .45 .8 .322 .999
0 .95 .36 .34 .5 0 1.038
0 .85 .39 .33 .7 .279 .988
0 .7 .76 .53 1.2 .146 .982
0 .8 .46 .37 .4 .38 1.006
0 .2 .39 .08 .8 .114 .99
0 1 .9 .9 1.1 1.037 .99
1 1 .84 .84 1.9 2.064 1.02
0 .65 .42 .27 .5 .114 1.014
0 1 .75 .75 1 1.322 1.004
0 .5 .44 .22 .6 .114 .99
1 1 .63 .63 1.1 1.072 .986
0 1 .33 .33 .4 .176 1.01 0
0 .9 .93 .84 .6 1.591 1.02
1 1 .58 .58 1 .531 1.002
0 .95 .32 .3 1.6 .886 .988
1 1 .6 .6 1.7 .964 .99
1 1 .69 .69 .9 .398 .986
0 1 .73 .73 .7 .398 .986
;
run;
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proc nlin data=remiss method=newton sigsq=1;
parms a -2 b -1 c 6 int -10;

/* Linear portion of model ------*/
eq1 = a*cell + b*li + c*temp +int;

/* probit */
p = probnorm(eq1);

if ( remiss = 1 ) then p = 1-p;

model.like = sqrt(- 2 * log( p));
output out=p p=predict;

run;

Note that the asymptotic standard errors of the parameters are computed under
the least squares assumptions. The SIGSQ=1 option on the PROC NLIN state-
ment forces PROC NLIN to replace the usual mean square error with 1. Also,
METHOD=NEWTON is selected so the true Hessian of the likelihood function is
used to calculate parameter standard errors rather than the crossproducts approxima-
tion to the Hessian.

Output 50.3.1. Nonlinear Least Squares Analysis from PROC NLIN
Beaton/Tukey Biweight Robust Regression using IRLS

The NLIN Procedure

NOTE: An intercept was not specified for this model.

Sum of Mean Approx
Source DF Squares Square F Value Pr > F

Model 4 -21.9002 -5.4750 -5.75 .
Error 23 21.9002 0.9522
Uncorrected Total 27 0

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits

a -5.6298 4.6376 -15.2234 3.9638
b -2.2513 0.9790 -4.2764 -0.2262
c 45.1815 34.9095 -27.0337 117.4
int -36.7548 32.3607 -103.7 30.1879

The problem can be more simply solved using the following SAS statements.

proc probit data=remiss ;
class remiss;
model remiss=cell li temp ;

run;
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Overview

Introduction

The NLMIXED procedure fits nonlinear mixed models, that is, models in which both
fixed and random effects enter nonlinearly. These models have a wide variety of
applications, two of the most common being pharmacokinetics and overdispersed
binomial data. PROC NLMIXED enables you to specify a conditional distribution for
your data (given the random effects) having either a standard form (normal, binomial,
Poisson) or a general distribution that you code using SAS programming statements.

PROC NLMIXED fits nonlinear mixed models by maximizing an approximation to
the likelihood integrated over the random effects. Different integral approximations
are available, the principal ones being adaptive Gaussian quadrature and a first-order
Taylor series approximation. A variety of alternative optimization techniques are
available to carry out the maximization; the default is a dual quasi-Newton algorithm.

Successful convergence of the optimization problem results in parameter estimates
along with their approximate standard errors based on the second derivative matrix
of the likelihood function. PROC NLMIXED enables you to use the estimated model
to construct predictions of arbitrary functions using empirical Bayes estimates of the
random effects. You can also estimate arbitrary functions of the nonrandom param-
eters, and PROC NLMIXED computes their approximate standard errors using the
delta method.

Literature on Nonlinear Mixed Models

Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997) provide good
overviews as well as general theoretical developments and examples of nonlinear
mixed models. Pinheiro and Bates (1995) is a primary reference for the theory and
computational techniques of PROC NLMIXED. They describe and compare several
different integrated likelihood approximations and provide evidence that adaptive
Gaussian quadrature is one of the best methods. Davidian and Gallant (1993) also
use Gaussian quadrature for nonlinear mixed models, although the smooth nonpara-
metric density they advocate for the random effects is currently not available in PROC
NLMIXED.

Traditional approaches to fitting nonlinear mixed models involve Taylor series expan-
sions, expanding around either zero or the empirical best linear unbiased predictions
of the random effects. The former is the basis for the well-known first-order method
of Beal and Sheiner (1982, 1988) and Sheiner and Beal (1985), and it is optionally
available in PROC NLMIXED. The latter is the basis for the estimation method of
Lindstrom and Bates (1990), and it is not available in PROC NLMIXED. However,
the closely related Laplacian approximation is an option; it is equivalent to adaptive
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Gaussian quadrature with only one quadrature point. The Laplacian approximation
and its relationship to the Lindstrom-Bates method are discussed by Beal and Sheiner
(1992), Wolfinger (1993), Vonesh (1992, 1996), Vonesh and Chinchilli (1997), and
Wolfinger and Lin (1997).

A parallel literature exists in the area of generalized linear mixed models, in which
random effects appear as a part of the linear predictor inside of a link function.
Taylor-series methods similar to those just described are discussed in articles such
as Harville and Mee (1984), Stiratelli, Laird, and Ware (1984), Gilmour, Anderson,
and Rae (1985), Goldstein (1991), Schall (1991), Engel and Keen (1992), Breslow
and Clayton (1993), Wolfinger and O’Connell (1993), and McGilchrist (1994), but
such methods have not been implemented in PROC NLMIXED because they can pro-
duce biased results in certain binary data situations (Rodriguez and Goldman 1995,
Lin and Breslow 1996). Instead, a numerical quadrature approach is available in
PROC NLMIXED, as discussed in Pierce and Sands (1975), Anderson and Aitkin
(1985), Crouch and Spiegelman (1990), Hedeker and Gibbons (1994), Longford
(1994), McCulloch (1994), Liu and Pierce (1994), and Diggle, Liang, and Zeger
(1994).

Nonlinear mixed models have important applications in pharmacokinetics, and Roe
(1997) provides a wide-ranging comparison of many popular techniques. Yuh et al.
(1994) provide an extensive bibliography on nonlinear mixed models and their use in
pharmacokinetics.

PROC NLMIXED Compared with Other SAS Procedures and
Macros

The models fit by PROC NLMIXED can be viewed as generalizations of the ran-
dom coefficient models fit by the MIXED procedure. This generalization allows
the random coefficients to enter the model nonlinearly, whereas in PROC MIXED
they enter linearly. With PROC MIXED you can perform both maximum likelihood
and restricted maximum likelihood (REML) estimation, whereas PROC NLMIXED
only implements maximum likelihood. This is because the analog to the REML
method in PROC NLMIXED would involve a high dimensional integral over all of
the fixed-effects parameters, and this integral is typically not available in closed form.
Finally, PROC MIXED assumes the data to be normally distributed, whereas PROC
NLMIXED enables you to analyze data that are normal, binomial, or Poisson or that
have any likelihood programmable with SAS statements.

PROC NLMIXED does not implement the same estimation techniques available with
the NLINMIX and GLIMMIX macros. These macros are based on the estimation
methods of Lindstrom and Bates (1990), Breslow and Clayton (1993), and Wolfinger
and O’Connell (1993), and they iteratively fit a set of generalized estimating equa-
tions (refer to Chapters 11 and 12 of Littell et al. 1996 and to Wolfinger 1997). In
contrast, PROC NLMIXED directly maximizes an approximate integrated likelihood.

This remark also applies to the SAS/IML macros MIXNLIN (Vonesh and Chinchilli
1997) and NLMEM (Galecki 1998).
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PROC NLMIXED has close ties with the NLP procedure in SAS/OR software. PROC
NLMIXED uses a subset of the optimization code underlying PROC NLP and has
many of the same optimization-based options. Also, the programming statement
functionality used by PROC NLMIXED is the same as that used by PROC NLP
and the MODEL procedure in SAS/ETS software.

Getting Started

Nonlinear Growth Curves with Gaussian Data

As an introductory example, consider the orange tree data of Draper and Smith
(1981). These data consist of seven measurements of the trunk circumference (in
millimeters) on each of five orange trees. You can input these data into a SAS data
set as follows:

data tree;
input tree day y;
datalines;

1 118 30
1 484 58
1 664 87
1 1004 115
1 1231 120
1 1372 142
1 1582 145
2 118 33
2 484 69
2 664 111
2 1004 156
2 1231 172
2 1372 203
2 1582 203
3 118 30
3 484 51
3 664 75
3 1004 108
3 1231 115
3 1372 139
3 1582 140
4 118 32
4 484 62
4 664 112
4 1004 167
4 1231 179
4 1372 209
4 1582 214
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5 118 30
5 484 49
5 664 81
5 1004 125
5 1231 142
5 1372 174
5 1582 177
;

Lindstrom and Bates (1990) and Pinheiro and Bates (1995) propose the following
logistic nonlinear mixed model for these data:

yij =
b1 + ui1

1 + exp[−(dij − b2)/b3]
+ eij

Here,yij represents thejth measurement on theith tree (i = 1, . . . , 5; j = 1, . . . , 7),
dij is the corresponding day,b1, b2, b3 are the fixed-effects parameters,ui1 are the
random-effect parameters assumed to be iidN(0, σ2

u), andeij are the residual errors
assumed to be iidN(0, σ2

e) and independent of theui1. This model has a logistic
form, and the random-effect parametersui1 enter the model linearly.

The statements to fit this nonlinear mixed model are as follows:

proc nlmixed data=tree;
parms b1=190 b2=700 b3=350 s2u=1000 s2e=60;
num = b1+u1;
ex = exp(-(day-b2)/b3);
den = 1 + ex;
model y ~ normal(num/den,s2e);
random u1 ~ normal(0,s2u) subject=tree;

run;

The PROC NLMIXED statement invokes the procedure and inputs the TREE data
set. The PARMS statement identifies the unknown parameters and their starting val-
ues. Here there are three fixed-effects parameters (B1, B2, B3) and two variance
components (S2U, S2E).

The next three statements are SAS programming statements specifying the logistic
mixed model. A new variable U1 is included to identify the random effect. These
statements are evaluated for every observation in the data set when PROC NLMIXED
computes the log likelihood function and its derivatives.

The MODEL statement defines the dependent variable and its conditional distribu-
tion given the random effects. Here a normal (Gaussian) conditional distribution is
specified with mean NUM/DEN and variance S2E.

The RANDOM statement defines the single random effect to be U1, and specifies
that it follows a normal distribution with mean 0 and variance S2U. The SUBJECT=
argument defines a variable indicating when the random effect obtains new realiza-
tions; in this case, it changes according to the values of the TREE variable. PROC
NLMIXED assumes that the input data set is clustered according to the levels of the
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TREE variable; that is, all observations from the same tree occur sequentially in the
input data set.

The output from this analysis is as follows.

The NLMIXED Procedure

Specifications

Data Set WORK.TREE
Dependent Variable y
Distribution for Dependent Variable Normal
Random Effects u1
Distribution for Random Effects Normal
Subject Variable tree
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table lists some basic information about the nonlinear mixed
model you have specified. Included are the input data set, dependent and subject
variables, random effects, relevant distributions, and type of optimization.

The NLMIXED Procedure

Dimensions

Observations Used 35
Observations Not Used 0
Total Observations 35
Subjects 5
Max Obs Per Subject 7
Parameters 5
Quadrature Points 1

The “Dimensions” table lists various counts related to the model, including the num-
ber of observations, subjects, and parameters. These quantities are useful for check-
ing that you have specified your data set and model correctly. Also listed is the num-
ber of quadrature points that PROC NLMIXED has selected based on the evaluation
of the log likelihood at the starting values of the parameters. Here, only one quadra-
ture point is necessary because the random-effect parametersui1 enter the model
linearly.

The NLMIXED Procedure

Parameters

b1 b2 b3 s2u s2e NegLogLike

190 700 350 1000 60 132.491787
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The “Parameters” table lists the parameters to be estimated, their starting values, and
the negative log likelihood evaluated at the starting values.

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 4 131.686742 0.805045 0.010269 -0.633
2 6 131.64466 0.042082 0.014783 -0.0182
3 8 131.614077 0.030583 0.009809 -0.02796
4 10 131.572522 0.041555 0.001186 -0.01344
5 11 131.571895 0.000627 0.0002 -0.00121
6 13 131.571889 5.549E-6 0.000092 -7.68E-6
7 15 131.571888 1.096E-6 6.097E-6 -1.29E-6

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table records the history of the minimization of the negative log like-
lihood. For each iteration of the quasi-Newton optimization, values are listed for the
number of function calls, the value of the negative log likelihood, the difference from
the previous iteration, the absolute value of the largest gradient, and the slope of the
search direction. The note at the bottom of the table indicates that the algorithm has
converged successfully according to the GCONV convergence criterion, a standard
criterion computed using a quadratic form in the gradient and inverse Hessian.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 263.1
AIC (smaller is better) 273.1
AICC (smaller is better) 275.2
BIC (smaller is better) 271.2

The“Fitting Information” table lists the final maximized value of the log likelihood as
well as the information criteria of Akaike and Schwarz in two different forms. These
statistics can be used to compare different nonlinear mixed models.



Logistic-Normal Model with Binomial Data � 3053

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

b1 192.05 15.6473 4 12.27 0.0003 0.05 148.61
b2 727.90 35.2472 4 20.65 <.0001 0.05 630.04
b3 348.07 27.0790 4 12.85 0.0002 0.05 272.88
s2u 999.88 647.44 4 1.54 0.1974 0.05 -797.70
s2e 61.5139 15.8831 4 3.87 0.0179 0.05 17.4153

Parameter Estimates

Parameter Upper Gradient

b1 235.50 1.154E-6
b2 825.76 5.289E-6
b3 423.25 -6.1E-6
s2u 2797.45 -3.84E-6
s2e 105.61 2.892E-6

The “Parameter Estimates” table lists the maximum likelihood estimates of the five
parameters and their approximate standard errors computed using the final Hessian
matrix. Approximatet-values and Wald-type confidence limits are also provided,
with degrees of freedom equal to the number of subjects minus the number of random
effects. You should interpret these statistics cautiously for variance parameters like
S2U and S2E. The final column in the output is the gradient vector at the optimization
solution. Each element appears to be sufficiently small to indicate a stationary point.

Since the random-effect parametersui1 enter the model linearly, you can obtain
equivalent results by using the first-order method (specify METHOD=FIRO in the
PROC NLMIXED statement).

Logistic-Normal Model with Binomial Data

This example analyzes the data from Beitler and Landis (1985), which represent re-
sults from a multi-center clinical trial investigating the effectiveness of two topical
cream treatments (active drug, control) in curing an infection. For each of eight clin-
ics, the number of trials and favorable cures are recorded for each treatment. The
SAS data set is as follows.

data infection;
input clinic t x n;
datalines;

1 1 11 36
1 0 10 37
2 1 16 20
2 0 22 32
3 1 14 19
3 0 7 19
4 1 2 16
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4 0 1 17
5 1 6 17
5 0 0 12
6 1 1 11
6 0 0 10
7 1 1 5
7 0 1 9
8 1 4 6
8 0 6 7
run;

Supposenij denotes the number of trials for theith clinic and thejth treatment
(i = 1, . . . , 8 j = 0, 1), andxij denotes the corresponding number of favorable
cures. Then a reasonable model for the preceding data is the following logistic model
with random effects:

xij |ui ∼ Binomial(nij , pij)

and

ηij = log
(

pij

(1− pij)

)
= β0 + β1tj + ui

The notationtj indicates thejth treatment, and theui are assumed to be iidN(0, σ2
u).

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=infection;
parms beta0=-1 beta1=1 s2u=2;
eta = beta0 + beta1*t + u;
expeta = exp(eta);
p = expeta/(1+expeta);
model x ~ binomial(n,p);
random u ~ normal(0,s2u) subject=clinic;
predict eta out=eta;
estimate ’1/beta1’ 1/beta1;

run;

The PROC NLMIXED statement invokes the procedure, and the PARMS statement
defines the parameters and their starting values. The next three statements definepij ,
and the MODEL statement defines the conditional distribution ofxij to be binomial.
The RANDOM statement defines U to be the random effect with subjects defined by
the CLINIC variable.

The PREDICT statement constructs predictions for each observation in the input data
set. For this example, predictions ofηij and approximate standard errors of prediction
are output to a SAS data set named ETA. These predictions include empirical Bayes
estimates of the random effectsui.

The ESTIMATE statement requests an estimate of the reciprocal ofβ1.

The output for this model is as follows.
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The NLMIXED Procedure

Specifications

Data Set WORK.INFECTION
Dependent Variable x
Distribution for Dependent Variable Binomial
Random Effects u
Distribution for Random Effects Normal
Subject Variable clinic
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table provides basic information about the nonlinear mixed
model.

The NLMIXED Procedure

Dimensions

Observations Used 16
Observations Not Used 0
Total Observations 16
Subjects 8
Max Obs Per Subject 2
Parameters 3
Quadrature Points 5

The “Dimensions” table provides counts of various variables. You should check
this table to make sure the data set and model have been entered properly. PROC
NLMIXED selects five quadrature points to achieve the default accuracy in the like-
lihood calculations.

The NLMIXED Procedure

Parameters

beta0 beta1 s2u NegLogLike

-1 1 2 37.5945925

The “Parameters” table lists the starting point of the optimization.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 37.3622692 0.232323 2.882077 -19.3762
2 3 37.1460375 0.216232 0.921926 -0.82852
3 5 37.0300936 0.115944 0.315897 -0.59175
4 6 37.0223017 0.007792 0.01906 -0.01615
5 7 37.0222472 0.000054 0.001743 -0.00011
6 9 37.0222466 6.57E-7 0.000091 -1.28E-6
7 11 37.0222466 5.38E-10 2.078E-6 -1.1E-9

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in seven iterations.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 74.0
AIC (smaller is better) 80.0
AICC (smaller is better) 82.0
BIC (smaller is better) 80.3

The “Fitting Information” table lists some useful statistics based on the maximized
value of the log likelihood.

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

beta0 -1.1974 0.5561 7 -2.15 0.0683 0.05 -2.5123
beta1 0.7385 0.3004 7 2.46 0.0436 0.05 0.02806
s2u 1.9591 1.1903 7 1.65 0.1438 0.05 -0.8554

Parameter Estimates

Parameter Upper Gradient

beta0 0.1175 -3.1E-7
beta1 1.4488 -2.08E-6
s2u 4.7736 -2.48E-7

The “Parameter Estimates” table indicates marginal significance of the two fixed-
effects parameters. The positive value of the estimate ofβ1 indicates that the treat-
ment significantly increases the chance of a favorable cure.
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The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

1/beta1 1.3542 0.5509 7 2.46 0.0436 0.05 0.05146 2.6569

The “Additional Estimates” table displays results from the ESTIMATE statement.
The estimate of1/β1 equals1/0.7385 = 1.3541 and its standard error equals
0.3004/0.73852 = 0.5509 by the delta method (Billingsley 1986, Cox 1998). Note
this particular approximation produces at-statistic identical to that for the estimate
of β1.

Not shown is the ETA data set, which contains the original 16 observations and pre-
dictions of theηij .

Syntax

The following statements can be used with the NLMIXED procedure:

PROC NLMIXED options ;
ARRAY array specification ;
BOUNDS boundary constraints ;
BY variables ;
CONTRAST ’label’ expression <,expression> ;
ESTIMATE ’label’ expression ;
ID names ;
MODEL model specification ;
PARMS parameters and starting values ;
PREDICT expression ;
RANDOM random effects specification ;
REPLICATE variable ;
Program statements ;

The following sections provide a detailed description of each of these statements.
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PROC NLMIXED Statement

PROC NLMIXED options ;

This statement invokes the NLMIXED procedure. A large number of options are
available in the PROC NLMIXED statement, and the following table categorizes
them according to function.

Table 51.1. PROC NLMIXED statement options

Option Description
Basic Options
DATA= input data set
METHOD= integration method

Displayed Output Specifications
START gradient at starting values
HESS Hessian matrix
ITDETAILS iteration details
CORR correlation matrix
COV covariance matrix
ECORR corr matrix of additional estimates
ECOV cov matrix of additional estimates
EDER derivatives of additional estimates
ALPHA= alpha for confidence limits
DF= degrees of freedom forp values and confidence limits

Debugging Output
LIST model program, variables
LISTCODE compiled model program
LISTDEP model dependency listing
LISTDER model derivative
XREF model cross reference
FLOW model execution messages
TRACE detailed model execution messages

Quadrature Options
NOAD no adaptive centering
NOADSCALE no adaptive scaling
OUTQ= output data set
QFAC= search factor
QMAX= maximum points
QPOINTS= number of points
QSCALEFAC= scale factor
QTOL= tolerance

Empirical Bayes Options
EBSTEPS= number of Newton steps
EBSUBSTEPS= number of substeps
EBSSFRAC= step-shortening fraction
EBSSTOL= step-shortening tolerance
EBTOL= convergence tolerance
EBOPT comprehensive optimization
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Table 51.1. (continued)

Option Description

EBZSTART zero starting values

Optimization Specifications
TECHNIQUE= minimization technique
UPDATE= update technique
LINESEARCH= line-search method
LSPRECISION= line-search precision
HESCAL= type of Hessian scaling
INHESSIAN<=> start for approximated Hessian
RESTART= iteration number for update restart
OPTCHECK<=> check optimality in neighborhood

Derivatives Specifications
FD<=> finite-difference derivatives
FDHESSIAN<=> finite-difference second derivatives
DIAHES use only diagonal of Hessian

Constraint Specifications
LCEPSILON= range for active constraints
LCDEACT= LM tolerance for deactivating
LCSINGULAR= tolerance for dependent constraints

Termination Criteria Specifications
MAXFUNC= maximum number of function calls
MAXITER= maximum number of iterations
MINITER= minimum number of iterations
MAXTIME= upper limit seconds of CPU time
ABSCONV= absolute function convergence criterion
ABSFCONV= absolute function convergence criterion
ABSGCONV= absolute gradient convergence criterion
ABSXCONV= absolute parameter convergence criterion
FCONV= relative function convergence criterion
FCONV2= relative function convergence criterion
GCONV= relative gradient convergence criterion
XCONV= relative parameter convergence criterion
FDIGITS= number accurate digits in objective function
FSIZE= used in FCONV, GCONV criterion
XSIZE= used in XCONV criterion

Step Length Specifications
DAMPSTEP<=> damped steps in line search
MAXSTEP= maximum trust-region radius
INSTEP= initial trust-region radius

Singularity Tolerances
SINGCHOL= tolerance for Cholesky roots
SINGHESS= tolerance for Hessian
SINGSWEEP= tolerance for sweep
SINGVAR= tolerance for variances
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Table 51.1. (continued)

Option Description

Covariance Matrix Tolerances
ASINGULAR= absolute singularity for inertia
MSINGULAR= relative M singularity for inertia
VSINGULAR= relative V singularity for inertia
G4= threshold for Moore-Penrose inverse
COVSING= tolerance for singular COV matrix
CFACTOR= multiplication factor for COV matrix

These options are described in alphabetical order. For a description of the mathemat-
ical notation used in the following sections, see the section “Modeling Assumptions
and Notation.”

ABSCONV=r
ABSTOL= r

specifies an absolute function convergence criterion. For minimization, termination
requiresf(θ(k)) ≤ r. The default value ofr is the negative square root of the largest
double precision value, which serves only as a protection against overflows.

ABSFCONV=r < [n] >
ABSFTOL= r < [n] >

specifies an absolute function convergence criterion. For all techniques except
NMSIMP, termination requires a small change of the function value in successive
iterations:

|f(θ(k−1))− f(θ(k))| ≤ r

The same formula is used for the NMSIMP technique, butθ(k) is defined as the vertex
with the lowest function value, andθ(k−1) is defined as the vertex with the highest
function value in the simplex. The default value isr = 0. The optional integer
valuen specifies the number of successive iterations for which the criterion must be
satisfied before the process can be terminated.

ABSGCONV=r < [n] >
ABSGTOL= r < [n] >

specifies an absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small:

max
j
|gj(θ(k))| ≤ r

This criterion is not used by the NMSIMP technique. The default value isr = 1E−5.
The optional integer valuen specifies the number of successive iterations for which
the criterion must be satisfied before the process can be terminated.

ABSXCONV=r < [n] >
ABSXTOL= r < [n] >

specifies an absolute parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small Euclidean distance between successive pa-
rameter vectors,

‖ θ(k) − θ(k−1) ‖2≤ r
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For the NMSIMP technique, termination requires either a small lengthα(k) of the
vertices of a restart simplex,

α(k) ≤ r

or a small simplex size,
δ(k) ≤ r

where the simplex sizeδ(k) is defined as the L1 distance from the simplex vertexξ(k)

with the smallest function value to the othern simplex pointsθ(k)
l 6= ξ(k):

δ(k) =
∑
θl 6=y

‖ θ
(k)
l − ξ(k) ‖1

The default isr = 1E − 8 for the NMSIMP technique andr = 0 otherwise. The
optional integer valuen specifies the number of successive iterations for which the
criterion must be satisfied before the process can terminate.

ALPHA= α
specifies the alpha level to be used in computing confidence limits. The default value
is 0.05.

ASINGULAR= r
ASING=r

specifies an absolute singularity criterion for the computation of the inertia (number
of positive, negative, and zero eigenvalues) of the Hessian and its projected forms.
The default value is the square root of the smallest positive double precision value.

CFACTOR=f
specifies a multiplication factorf for the estimated covariance matrix of the parame-
ter estimates.

COV
requests the approximate covariance matrix for the parameter estimates.

CORR
requests the approximate correlation matrix for the parameter estimates.

COVSING=r > 0
specifies a nonnegative threshold that determines whether the eigenvalues of a singu-
lar Hessian matrix are considered to be zero.

DAMPSTEP<=r >
DS<= r >

specifies that the initial step-size valueα(0) for each line search (used by the
QUANEW, CONGRA, or NEWRAP technique) cannot be larger thanr times the
step-size value used in the former iteration. If you specify the DAMPSTEP option
without factorr, the default value isr = 2. The DAMPSTEP=r option can pre-
vent the line-search algorithm from repeatedly stepping into regions where some ob-
jective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The
DAMPSTEP=r option can save time-costly function calls that result in very small
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step sizesα. For more details on setting the start values of each line search, see the
section“Restricting the Step Length”beginning on page 3096.

DATA=SAS-data-set
specifies the input data set. Observations in this data set are used to compute the log
likelihood function that you specify with PROC NLMIXED statements.

NOTE: If you are using a RANDOM statement, the input data set must be clus-
tered according to the SUBJECT= variable. One easy way to accomplish this is to
sort your data by the SUBJECT= variable prior to calling PROC NLMIXED. PROC
NLMIXED does not sort the input data set for you.

DF=d
specifies the degrees of freedom to be used in computingp values and confidence
limits. The default value is the number of subjects minus the number of random
effects for random effects models, and the number of observations otherwise.

DIAHES
specifies that only the diagonal of the Hessian is used.

EBOPT
requests that a more comprehensive optimization be carried out if the default empiri-
cal Bayes optimization fails to converge.

EBSSFRAC=r > 0
specifies the step-shortening fraction to be used while computing empirical Bayes
estimates of the random effects. The default value is 0.8.

EBSSTOL=r ≥ 0
specifies the objective function tolerance for determining the cessation of step-
shortening while computing empirical Bayes estimates of the random effects. The
default value isr = 1E− 8.

EBSTEPS=n ≥ 0
specifies the maximum number of Newton steps for computing empirical Bayes esti-
mates of random effects. The default value isn = 50.

EBSUBSTEPS=n ≥ 0
specifies the maximum number of step-shortenings for computing empirical Bayes
estimates of random effects. The default value isn = 20.

EBTOL=r ≥ 0
specifies the convergence tolerance for empirical Bayes estimation. The default value
is r = εE4, whereε is the machine precision. This default value equals approximately
1E− 12 on most machines.

EBZSTART
requests that a zero be used as starting values during empirical Bayes estimation. By
default, the starting values are set equal to the estimates from the previous iteration
(or zero for the first iteration).
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ECOV
requests the approximate covariance matrix for all expressions specified in
ESTIMATE statements.

ECORR
requests the approximate correlation matrix for all expressions specified in
ESTIMATE statements.

EDER
requests the derivatives of all expressions specified in ESTIMATE statements with
respect to each of the model parameters.

FCONV=r < [n] >
FTOL=r < [n] >

specifies a relative function convergence criterion. For all techniques except
NMSIMP, termination requires a small relative change of the function value in suc-
cessive iterations,

|f(θ(k))− f(θ(k−1))|
max(|f(θ(k−1))|, FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. The same formula is used for the
NMSIMP technique, butθ(k) is defined as the vertex with the lowest function value,
andθ(k−1) is defined as the vertex with the highest function value in the simplex.
The default isr=10−FDIGITSwhere FDIGITS is the value of the FDIGITS= option.
The optional integer valuen specifies the number of successive iterations for which
the criterion must be satisfied before the process can terminate.

FCONV2=r < [n] >
FTOL2=r < [n] >

specifies another function convergence criterion. For all techniques except NMSIMP,
termination requires a small predicted reduction

df (k) ≈ f(θ(k))− f(θ(k) + s(k))

of the objective function. The predicted reduction

df (k) = −g(k)T s(k) − 1
2
s(k)T H(k)s(k)

= −1
2
s(k)T g(k)

≤ r

is computed by approximating the objective functionf by the first two terms of the
Taylor series and substituting the Newton step.

s(k) = −[H(k)]−1g(k)

For the NMSIMP technique, termination requires a small standard deviation of the

function values of then + 1 simplex verticesθ(k)
l , l = 0, . . . , n,√

1
n + 1

∑
l

[
f(θ(k)

l )− f(θ(k))
]2
≤ r
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wheref(θ(k)) = 1
n+1

∑
l f(θ(k)

l ). If there arenact boundary constraints active at

θ(k), the mean and standard deviation are computed only for then + 1 − nact un-
constrained vertices. The default value isr = 1E − 6 for the NMSIMP technique
andr = 0 otherwise. The optional integer valuen specifies the number of successive
iterations for which the criterion must be satisfied before the process can terminate.

FD<= FORWARD | CENTRAL | r >
specifies that all derivatives be computed using finite difference approximations. The
following specifications are permitted:

FD is equivalent to FD=100.

FD=CENTRAL uses central differences.

FD=FORWARD uses forward differences.

FD=r uses central differences for the initial and final evaluations of the
gradient, and Hessian. During iteration, start with forward dif-
ferences and switch to a corresponding central-difference formula
during the iteration process when one of the following two criteria
is satisfied:

• The absolute maximum gradient element is less than or equal
to r times the ABSGTOL threshold.

• The normalized predicted function reduction (see the
GTOL option on page 3065) is less than or equal to
max(1E− 6, r ∗GTOL). The 1E − 6 ensures that the
switch is done, even if you set the GTOL threshold to zero.

Note that the FD and FDHESSIAN options cannot apply at the same time. The
FDHESSIAN option is ignored when only first-order derivatives are used. See the
section“Finite Difference Approximations of Derivatives”beginning on page 3091
for more information.

FDHESSIAN<=FORWARD | CENTRAL >
FDHES<=FORWARD | CENTRAL >
FDH<=FORWARD | CENTRAL >

specifies that second-order derivatives be computed using finite difference approxi-
mations based on evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.

FDHESSIAN=CENTRAL uses central differences.

FDHESSIAN uses forward differences for the Hessian except for the initial and
final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. See the
section“Finite Difference Approximations of Derivatives”beginning on page 3091
for more information.
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FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function.
Fractional values such as FDIGITS=4.7 are allowed. The default value isr =
− log10 ε, whereε is the machine precision. The value ofr is used to compute the in-
terval sizeh for the computation of finite-difference approximations of the derivatives
of the objective function and for the default value of the FCONV= option.

FLOW
displays a message for each statement in the model program as it is executed. This
debugging option is very rarely needed and produces voluminous output.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termina-
tion criteria. The default value isr = 0. For more details, see the FCONV= and
GCONV= options.

G4=n > 0
specifies a dimension to determine the type of generalized inverse to use when the
approximate covariance matrix of the parameter estimates is singular. The default
value ofn is 60. See the section“Covariance Matrix”beginning on page 3101 for
more information.

GCONV=r < [n] >
GTOL=r < [n] >

specifies a relative gradient convergence criterion. For all techniques except
CONGRA and NMSIMP, termination requires that the normalized predicted func-
tion reduction is small,

g(θ(k))T [H(k)]−1g(θ(k))
max(|f(θ(k))|, FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimateH is not available), the following criterion is used:

‖ g(θ(k)) ‖2
2 ‖ s(θ(k)) ‖2

‖ g(θ(k))− g(θ(k−1)) ‖2 max(|f(θ(k))|, FSIZE)
≤ r

This criterion is not used by the NMSIMP technique. The default value isr =
1E−8. The optional integer valuen specifies the number of successive iterations for
which the criterion must be satisfied before the process can terminate.

HESCAL=0|1|2|3
HS=0|1|2|3

specifies the scaling version of the Hessian matrix used in NRRIDG, TRUREG,
NEWRAP, or DBLDOG optimization. If HS is not equal to 0, the first iteration

and each restart iteration sets the diagonal scaling matrixD(0) = diag(d(0)
i ):

d
(0)
i =

√
max(|H(0)

i,i |, ε)

whereH
(0)
i,i are the diagonal elements of the Hessian. In every other iteration, the

diagonal scaling matrixD(0) = diag(d(0)
i ) is updated depending on the HS option:



3066 � Chapter 51. The NLMIXED Procedure

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max

[
d

(k)
i ,

√
max(|H(k)

i,i |, ε)
]

HS=2 specifies the Dennis, Gay, & Welsch (1981) scaling update:

d
(k+1)
i = max

[
0.6 ∗ d

(k)
i ,

√
max(|H(k)

i,i |, ε)
]

HS=3 specifies thatdi is reset in each iteration:

d
(k+1)
i =

√
max(|H(k)

i,i |, ε)

In each scaling update,ε is the relative machine precision. The default value is HS=0.
Scaling of the Hessian can be time consuming in the case where general linear con-
straints are active.

HESS
requests the display of the final Hessian matrix after optimization. If you also specify
the START option, then the Hessian at the starting values is also printed.

INHESSIAN<=r >
INHESS<=r >

specifies how the initial estimate of the approximate Hessian is defined for the quasi-
Newton techniques QUANEW and DBLDOG. There are two alternatives:

• If you do not use ther specification, the initial estimate of the approximate
Hessian is set to the Hessian atθ(0).

• If you do use ther specification, the initial estimate of the approximate Hessian
is set to the multiple of the identity matrixrI.

By default, if you do not specify the option INHESSIAN=r, the initial estimate of the
approximate Hessian is set to the multiple of the identity matrixrI, where the scalar
r is computed from the magnitude of the initial gradient.

INSTEP=r
reduces the length of the first trial step during the line search of the first iterations.
For highly nonlinear objective functions, such as the EXP function, the default ini-
tial radius of the trust-region algorithm TRUREG or DBLDOG or the default step
length of the line-search algorithms can result in arithmetic overflows. If this oc-
curs, you should specify decreasing values of0 < r < 1 such as INSTEP=1E − 1,
INSTEP=1E− 2, INSTEP=1E− 4, and so on, until the iteration starts successfully.

• For trust-region algorithms (TRUREG, DBLDOG), the INSTEP= option spec-
ifies a factorr > 0 for the initial radius∆(0) of the trust region. The default
initial trust-region radius is the length of the scaled gradient. This step corre-
sponds to the default radius factor ofr = 1.
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• For line-search algorithms (NEWRAP, CONGRA, QUANEW), the INSTEP=
option specifies an upper bound for the initial step length for the line search
during the first five iterations. The default initial step length isr = 1.

• For the Nelder-Mead simplex algorithm, using TECH=NMSIMP, the
INSTEP=r option defines the size of the start simplex.

For more details, see the section“Computational Problems”beginning on page 3098.

ITDETAILS
requests a more complete iteration history, including the current values of the pa-
rameter estimates, their gradients, and additional optimization statistics. For further
details, see the section“Iterations”beginning on page 3104.

LCDEACT=r
LCD=r

specifies a thresholdr for the Lagrange multiplier that determines whether an active
inequality constraint remains active or can be deactivated. During minimization, an
active inequality constraint can be deactivated only if its Lagrange multiplier is less
than the threshold valuer < 0. The default value is

r = −min(0.01,max(0.1 ∗ABSGCONV, 0.001 ∗ gmax(k)))

where ABSGCONV is the value of the absolute gradient criterion, andgmax(k) is
the maximum absolute element of the (projected) gradientg(k) or ZT g(k). (See the
section“Active Set Methods”beginning on page 3093 for a definition ofZ.)

LCEPSILON=r > 0
LCEPS=r > 0
LCE=r > 0

specifies the range for active and violated boundary constraints. The default value is
r = 1E−8. During the optimization process, the introduction of rounding errors can
force PROC NLMIXED to increase the value ofr by a factor of10, 100, . . .. If this
happens, it is indicated by a message displayed in the log.

LCSINGULAR= r > 0
LCSING=r > 0
LCS=r > 0

specifies a criterionr, used in the update of the QR decomposition, that determines
whether an active constraint is linearly dependent on a set of other active constraints.
The default value isr = 1E−8. The largerr becomes, the more the active constraints
are recognized as being linearly dependent. If the value ofr is larger than0.1, it is
reset to0.1.

LINESEARCH=i
LIS=i

specifies the line-search method for the CONGRA, QUANEW, and NEWRAP opti-
mization techniques. Refer to Fletcher (1987) for an introduction to line-search tech-
niques. The value ofi can be1, . . . , 8. For CONGRA, QUANEW and NEWRAP,
the default value isi = 2.
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LIS=1 specifies a line-search method that needs the same number of func-
tion and gradient calls for cubic interpolation and cubic extrapola-
tion; this method is similar to one used by the Harwell subroutine
library.

LIS=2 specifies a line-search method that needs more function than gra-
dient calls for quadratic and cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of
function and gradient calls for cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of func-
tion and gradient calls for stepwise extrapolation and cubic inter-
polation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only
function values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only func-
tion values for linear approximation.

LIS=8 specifies the Armijo line-search technique (Polak 1971), which
uses only function values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature
and is not normally needed.

LISTCODE
displays the derivative tables and the compiled program code. The LISTCODE option
is a debugging feature and is not normally needed.

LOGNOTE<=n >
writes periodic notes to the log describing the current status of computations. It
is designed for use with analyses requiring extensive CPU resources. The optional
integer valuen specifies the desired level of reporting detail. The default isn = 1.
Choosingn = 2 adds information about the objective function values at the end of
each iteration. The most detail is obtained withn = 3, which also reports the results
of function evaluations within iterations.

LSPRECISION=r
LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and successful.
For more difficult optimization problems, a more precise and expensive line search
may be necessary (Fletcher 1987). The second line-search method (which is the
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default for the NEWRAP, QUANEW, and CONGRA techniques) and the third line-
search method approach exact line search for small LSPRECISION= values. If you
have numerical problems, you should try to decrease the LSPRECISION= value to
obtain a more precise line search. The default values are shown in the following table.

TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1987).

MAXFUNC=i
MAXFU=i

specifies the maximum numberi of function calls in the optimization process. The
default values are

• TRUREG, NRRIDG, NEWRAP: 125

• QUANEW, DBLDOG: 500

• CONGRA: 1000

• NMSIMP: 3000

Note that the optimization can terminate only after completing a full iteration.
Therefore, the number of function calls that is actually performed can exceed the
number that is specified by the MAXFUNC= option.

MAXITER=i
MAXIT=i

specifies the maximum numberi of iterations in the optimization process. The default
values are

• TRUREG, NRRIDG, NEWRAP: 50

• QUANEW, DBLDOG: 200

• CONGRA: 400

• NMSIMP: 1000

These default values are also valid wheni is specified as a missing value.

MAXSTEP=r < [n] >
specifies an upper bound for the step length of the line-search algorithms during the
firstn iterations. By default,r is the largest double precision value andn is the largest
integer available. Setting this option can improve the speed of convergence for the
CONGRA, QUANEW, and NEWRAP techniques.
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MAXTIME=r
specifies an upper limit ofr seconds of CPU time for the optimization process. The
default value is the largest floating point double representation of your computer.
Note that the time specified by the MAXTIME= option is checked only once at the
end of each iteration. Therefore, the actual running time can be much longer than
that specified by the MAXTIME= option. The actual running time includes the rest
of the time needed to finish the iteration and the time needed to generate the output
of the results.

METHOD=value
specifies the method for approximating the integral of the likelihood over the random
effects. Valid values are as follows.

• FIRO
specifies the first-order method of Beal and Sheiner (1982). When using
METHOD=FIRO, you must specify the NORMAL distribution in the MODEL
statement and you must also specify a RANDOM statement.

• GAUSS
specifies adaptive Gauss-Hermite quadrature (Pinheiro and Bates 1995). You
can prevent the adaptation with the NOAD option or prevent adaptive scaling
with the NOADSCALE option. This is the default integration method.

• HARDY
specifies Hardy quadrature based on an adaptive trapezoidal rule. This method
is available only for one-dimensional integrals; that is, you must specify only
one random effect.

• ISAMP
specifies adaptive importance sampling (Pinheiro and Bates 1995) . You can
prevent the adaptation with the NOAD option or prevent adaptive scaling with
the NOADSCALE option. You can use the SEED= option to specify a starting
seed for the random number generation used in the importance sampling. If
you do not specify a seed, or specify a value less than or equal to zero, the seed
is generated from reading the time of day from the computer clock.

MINITER=i
MINIT=i

specifies the minimum number of iterations. The default value is 0. If you request
more iterations than are actually needed for convergence to a stationary point, the
optimization algorithms can behave strangely. For example, the effect of rounding
errors can prevent the algorithm from continuing for the required number of itera-
tions.

MSINGULAR=r > 0
MSING=r > 0

specifies a relative singularity criterion for the computation of the inertia (number of
positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The
default value is1E − 12 if you do not specify the SINGHESS= option; otherwise,
the default value ismax(10ε, (1E− 4) ∗ SINGHESS). See the section“Covariance
Matrix” beginning on page 3101 for more information.
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NOAD
requests that the Gaussian quadrature be nonadaptive; that is, the quadrature points
are centered at zero for each of the random effects and the current random-effects
variance matrix is used as the scale matrix.

NOADSCALE
requests nonadaptive scaling for adaptive Gaussian quadrature; that is, the quadrature
points are centered at the empirical Bayes estimates for the random effects, but the
current random-effects variance matrix is used as the scale matrix. By default, the
observed Hessian from the current empirical Bayes estimates is used as the scale
matrix.

OPTCHECK<=r > 0 >
computes the function valuesf(θl) of a grid of pointsθl in a ball of radius ofr
aboutθ∗. If you specify the OPTCHECK option without factorr, the default value
is r = 0.1 at the starting point andr = 0.01 at the terminating point. If a pointθ∗l is
found with a better function value thanf(θ∗), then optimization is restarted atθ∗l .

OUTQ=SAS-data-set
specifies an output data set containing the quadrature points used for numerical inte-
gration.

QFAC=r > 0
specifies the additive factor used to adaptively search for the number of quadrature
points. For METHOD=GAUSS, the search sequence is 1, 3, 5, 7, 9, 11, 11 +r,
11 + 2r, . . ., where the default value ofr is 10. For METHOD=ISAMP, the search
sequence is 10, 10 +r, 10 +2r, . . ., where the default value ofr is 50.

QMAX=r > 0
specifies the maximum number of quadrature points permitted before the adaptive
search is aborted. The default values are 31 for adaptive Gaussian quadrature, 61 for
non-adaptive Gaussian quadrature, 160 for adaptive importance sampling, and 310
for non-adaptive importance sampling.

QPOINTS=n > 0
specifies the number of quadrature points to be used during evaluation of integrals.
For METHOD=GAUSS,n equals the number of points used in each dimension of the
random effects, resulting in a total ofnr points, wherer is the number of dimensions.
For METHOD=ISAMP,n specifies the total number of quadrature points regardless
of the dimension of the random effects. By default, the number of quadrature points
is selected adaptively, and this option disables the adaptive search.

QSCALEFAC= r > 0
specifies a multiplier for the scale matrix used during quadrature calculations. The
default value is 1.0.

QTOL=r > 0
specifies the tolerance used to adaptively select the number of quadrature points.
When the relative difference between two successive likelihood calculations is less
thanr, then the search terminates and the lesser number of quadrature points is used
during the subsequent optimization process. The default value is1E− 4.
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RESTART=i > 0
REST=i > 0

specifies that the QUANEW or CONGRA algorithm is restarted with a steepest de-
scent/ascent search direction after, at most,i iterations. Default values are

• CONGRA: UPDATE=PB: restart is performed automatically,i is not used.

• CONGRA: UPDATE6=PB: i = min(10n, 80), wheren is the number of pa-
rameters.

• QUANEW: i is the largest integer available.

SEED=i
specifies the random number seed for METHOD=ISAMP. If you do not specify a
seed, or specify a value less than or equal to zero, the seed is generated from reading
the time of day from the computer clock. The value must be less than231 − 1.

SINGCHOL=r > 0
specifies the singularity criterionr for Cholesky roots of the random-effects variance
matrix and scale matrix for adaptive Gaussian quadrature. The default value is1E4
times the machine epsilon; this product is approximately1E−12 on most computers.

SINGHESS=r > 0
specifies the singularity criterionr for the inversion of the Hessian matrix. The de-
fault value is1E− 8. See the ASINGULAR, MSINGULAR=, and VSINGULAR=
options for more information.

SINGSWEEP=r > 0
specifies the singularity criterionr for inverting the variance matrix in the first-order
method and the empirical Bayes Hessian matrix. The default value is1E4 times the
machine epsilon; this product is approximately1E− 12 on most computers.

SINGVAR=r > 0
specifies the singularity criterionr below which statistical variances are considered
to equal zero. The default value is1E4 times the machine epsilon; this product is
approximately1E− 12 on most computers.

START
requests that the gradient of the log likelihood at the starting values be displayed. If
you also specify the HESS option, then the starting Hessian is displayed as well.

TECHNIQUE=value
TECH=value

specifies the optimization technique. Valid values are

• CONGRA
performs a conjugate-gradient optimization, which can be more precisely spec-
ified with the UPDATE= option and modified with the LINESEARCH= option.
When you specify this option, UPDATE=PB by default.
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• DBLDOG
performs a version of double dogleg optimization, which can be more pre-
cisely specified with the UPDATE= option. When you specify this option,
UPDATE=DBFGS by default.

• NMSIMP
performs a Nelder-Mead simplex optimization.

• NONE
does not perform any optimization. This option can be used

– to perform a grid search without optimization
– to compute estimates and predictions that cannot be obtained efficiently

with any of the optimization techniques

• NEWRAP
performs a Newton-Raphson optimization combining a line-search algorithm
with ridging. The line-search algorithm LIS=2 is the default method.

• NRRIDG
performs a Newton-Raphson optimization with ridging.

• QUANEW
performs a quasi-Newton optimization, which can be defined more precisely
with the UPDATE= option and modified with the LINESEARCH= option. This
is the default estimation method.

• TRUREG
performs a trust region optimization.

TRACE
displays the result of each operation in each statement in the model program as it is
executed. This debugging option is very rarely needed, and it produces voluminous
output.

UPDATE=method
UPD=method

specifies the update method for the quasi-Newton, double dogleg, or conjugate-
gradient optimization technique. Not every update method can be used with each
optimizer. See the section“Optimization Algorithms”beginning on page 3086 for
more information.

Valid methods are

• BFGS
performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update
of the inverse Hessian matrix.

• DBFGS
performs the dual BFGS update of the Cholesky factor of the Hessian matrix.
This is the default update method.

• DDFP
performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky
factor of the Hessian matrix.
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• DFP
performs the original DFP update of the inverse Hessian matrix.

• PB
performs the automatic restart update method of Powell (1977) and Beale
(1972).

• FR
performs the Fletcher-Reeves update (Fletcher 1987).

• PR
performs the Polak-Ribiere update (Fletcher 1987).

• CD
performs a conjugate-descent update of Fletcher (1987).

VSINGULAR=r > 0
VSING=r > 0

specifies a relative singularity criterion for the computation of the inertia (number
of positive, negative, and zero eigenvalues) of the Hessian and its projected forms.
The default value isr = 1E − 8 if the SINGHESS= option is not specified, and it
is the value of SINGHESS= option otherwise. See the section“Covariance Matrix”
beginning on page 3101 for more information.

XCONV=r < [n] > R
XTOL=r[n]

specifies the relative parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small relative parameter change in subsequent it-
erations.

maxj |θ(k)
j − θ

(k−1)
j |

max(|θ(k)
j |, |θ(k−1)

j |, XSIZE)
≤ r

For the NMSIMP technique, the same formula is used, butθ
(k)
j is defined as the

vertex with the lowest function value andθ(k−1)
j is defined as the vertex with the

highest function value in the simplex. The default value isr = 1E − 8 for the
NMSIMP technique andr = 0 otherwise. The optional integer valuen specifies the
number of successive iterations for which the criterion must be satisfied before the
process can be terminated.

XSIZE=r > 0
specifies the XSIZE parameter of the relative parameter termination criterion. The
default value isr = 0. For more detail, see the XCONV= option.

ARRAY Statement

ARRAY arrayname [{ dimensions }] [$] [variables and constants] ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the SAS DATA step, and it is the same as the ARRAY statements in the NLIN, NLP,
and MODEL procedures. The ARRAY statement is used to associate a name (of no
more than eight characters) with a list of variables and constants. The array name
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is used with subscripts in the program to refer to the array elements. The following
statements illustrate this.

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;

end;

The ARRAY statement does not support all the features of the ARRAY statement in
the DATA step. It cannot be used to assign initial values to array elements. Implicit
indexing of variables cannot be used; all array references must have explicit subscript
expressions. Only exact array dimensions are allowed; lower-bound specifications are
not supported. A maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to
be used as array elements. (Constant array elements cannot have values assigned to
them.) Both dimension specification and the list of elements are optional, but at least
one must be specified. When the list of elements is not specified or fewer elements
than the size of the array are listed, array variables are created by suffixing element
numbers to the array name to complete the element list.

BOUNDS Statement

BOUNDS b–con [ , b–con... ] ;

where b–con:= numberoperatorparameter–list operatornumber
or b–con:= numberoperatorparameter–list
or b–con:= parameter–list operatornumber

and operator:= <=, <, >=, or >

Boundary constraints are specified with a BOUNDS statement. One- or two-sided
boundary constraints are allowed. The list of boundary constraints are separated by
commas. For example,

bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

You can specify more than one BOUNDS statement. If you specify more than one
lower (upper) bound for the same parameter, the maximum (minimum) of these is
taken.

If the maximumlj of all lower bounds is larger than the minimum of all upper bounds
uj for the same variableθj , the boundary constraint is replaced byθj := lj :=
min(uj) defined by the minimum of all upper bounds specified forθj .
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BY Statement

BY variables ;

You can use a BY statement with PROC NLMIXED to obtain separate analyses on
DATA= data set observations in groups defined by the BY variables. This means
that, unless TECH=NONE, an optimization problem is solved for each BY group
separately. When a BY statement appears, the procedure expects the input DATA=
data set to be sorted in order of the BY variables. If your input data set is not sorted
in ascending order, use one of the following alternatives:

• Use the SORT procedure with a similar BY statement to sort the data.

• Use the BY statement option NOTSORTED or DESCENDING in the BY state-
ment for the NLMIXED procedure. As a cautionary note, the NOTSORTED
option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these
groups are not necessarily in alphabetical or increasing numeric order.

• Use the DATASETS procedure (in Base SAS software) to create an index on
the BY variables.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CONTRAST Statement

CONTRAST ’label’ expression <, expression> <options> ;

The CONTRAST statement enables you to conduct a statistical test that several ex-
pressions simultaneously equal zero. The expressions are typically contrasts, that is,
differences whose expected values equal zero under the hypothesis of interest.

In the CONTRAST statement you must provide a quoted string to identify the
contrast and then a list of valid SAS expressions separated by commas. Multiple
CONTRAST statements are permitted, and results from all statements are listed in a
common table. PROC NLMIXED constructs approximateF tests for each statement
using the delta method (Cox 1998) to approximate the variance-covariance matrix of
the constituent expressions.

The following option is available in the CONTRAST statement.

DF=d
specifies the denominator degrees of freedom to be used in computingp values for
the F statistics. The default value corresponds to the DF= option in the PROC
NLMIXED statement.
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ESTIMATE Statement

ESTIMATE ’label’ expression <options> ;

The ESTIMATE statement enables you to compute an additional estimate that is
a function of the parameter values. You must provide a quoted string to identify
the estimate and then a valid SAS expression. Multiple ESTIMATE statements are
permitted, and results from all statements are listed in a common table. PROC
NLMIXED computes approximate standard errors for the estimates using the delta
method (Billingsley 1986). It uses these standard errors to compute correspondingt
statistics,p-values, and confidence limits.

The ECOV option in the PROC NLMIXED statement produces a table containing
the approximate covariance matrix of all of the additional estimates you specify. The
ECORR option produces the corresponding correlation matrix. The EDER option
produces a table of the derivatives of the additional estimates with respect to each of
the model parameters.

The following options are available in the ESTIMATE statement:

ALPHA= α
specifies the alpha level to be used in computing confidence limits. The default value
corresponds to the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computingp-values and confidence
limits. The default value corresponds to the DF= option in the PROC NLMIXED
statement.

ID Statement

ID names ;

The ID statement identifies additional quantities to be included in the OUT= data set
of the PREDICT statement. These can be any symbols you have defined with SAS
programming statements.

MODEL Statement

MODEL dependent-variable ∼ distribution ;

The MODEL statement is the mechanism for specifying the conditional distribution
of the data given the random effects. You must specify a single dependent variable
from the input data set, a tilde (∼), and then a distribution with its parameters. Valid
distributions are as follows.

• normal(m,v)specifies a normal (Gaussian) distribution with meanm and vari-
ancev.

• binary(p)specifies a binary (Bernoulli) distribution with probabilityp.

• binomial(n,p)specifies a binomial distribution with countn and probabilityp.

• gamma(a,b)specifies a gamma distribution with shapea and scaleb.
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• negbin(n,p)specifies a negative binomial distribution with countn and proba-
bility p.

• poisson(m)specifies a Poisson distribution with meanm.

• general(ll)specifies a general log likelihood function that you construct using
SAS programming statements.

The MODEL statement must follow any SAS programming statements you specify
for computing parameters of the preceding distributions.

PARMS Statement

PARMS <name–list [=numbers] [ , name–list [=numbers] ... ]>
</ options> ;

The PARMS statement lists names of parameters and specifies initial values, possibly
over a grid. You can specify the parameters and values either directly in a list or
provide the name of a SAS data set that contains them using the DATA= option.

While the PARMS statement is not required, you are encouraged to use it to provide
PROC NLMIXED with accurate starting values. Parameters not listed in the PARMS
statement are assigned an initial value of 1. PROC NLMIXED considers all symbols
not assigned values to be parameters, so you should specify your modeling statements
carefully and check the output from the “Parameters” table to make sure the proper
parameters are identified.

A list of parameter names in the PARMS statement is not separated by commas and
is followed by an equal sign and a list of numbers. If the number list consists of only
one number, this number defines the initial value for all the parameters listed to the
left of the equal sign.

If the number list consists of more than one number, these numbers specify the grid
locations for each of the parameters listed to the left of the equal sign. You can use the
TO and BY keywords to specify a number list for a grid search. If you specify a grid
of points in a PARMS statement, PROC NLMIXED computes the objective function
value at each grid point and chooses the best (feasible) grid point as an initial point
for the optimization process. You can use the BEST= option to save memory for the
storing and sorting of all grid point information.

The following options are available in the PARMS statement after a slash (/):

BEST=i > 0
specifies the maximum number of points displayed in the “Parameters” table, selected
as the points with the maximum likelihood values. By default, all grid values are
displayed.

DATA=SAS-data-set
specifies a SAS data set containing parameter names and starting values. The data set
should be in one of two forms: narrow or wide. The narrow-form data set contains
the variables PARAMETER and ESTIMATE, with parameters and values listed as
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distinct observations. The wide-form data set has the parameters themselves as vari-
ables, and each observation provides a different set of starting values. BY groups are
ignored in this data set, so the same starting grid is evaluated for each BY group.

PREDICT Statement

PREDICT expression OUT=SAS-data-set <options> ;

The PREDICT statement enables you to construct predictions of an expression across
all of the observations in the input data set. Any valid SAS programming expres-
sion involving the input data set variables, parameters, and random effects is valid.
Predicted values are computed using the parameter estimates and empirical Bayes
estimates of the random effects. Standard errors of prediction are computed using the
delta method (Billingsley 1986, Cox 1998). Results are placed in an output data set
that you specify with the OUT= option. Besides all variables from the input data set,
the OUT= data set contains the following variables: Pred, StdErrPred, DF, tValue,
Probt, Alpha, Lower, Upper. You can also add other computed quantities to this data
set with the ID statement.

The following options are available in the PREDICT statement:

ALPHA= α
specifies the alpha level to be used in computingt statistics and intervals. The default
value corresponds to the ALPHA= option in the PROC NLMIXED statement.

DER
requests that derivatives of the predicted expression with respect to all parameters be
included in the OUT= data set. The variable names for the derivatives are the same
as the parameter names with the prefix “Der–” appended. All of the derivatives are
evaluated at the final estimates of the parameters and the empirical Bayes estimates
of the random effects.

DF=d
specifies the degrees of freedom to be used in computingt statistics and intervals in
the OUT= data set. The default value corresponds to the DF= option in the PROC
NLMIXED statement.

RANDOM Statement

RANDOM random-effects ∼ distribution SUBJECT=variable <options> ;

The RANDOM statement defines the random effects and their distribution. The ran-
dom effects must be represented by symbols that appear in your SAS programming
statements. They typically influence the mean value of the distribution specified in
the MODEL statement. The RANDOM statement consists of a list of the random
effects (usually just one or two symbols), a tilde (∼), the distribution for the random
effects, and then a SUBJECT= variable.

NOTE: The input data set must be clustered according to the SUBJECT= variable.
One easy way to accomplish this is to sort your data by the SUBJECT= variable
prior to calling PROC NLMIXED. PROC NLMIXED does not sort the input data set
for you; rather, it processes the data sequentially and considers an observation to be
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from a new subject whenever the value of its SUBJECT= changes from the previous
observation.

The only distribution currently available for the random effects is normal(m,v) with
meanm and variancev. This syntax is illustrated as follows for one effect:

random u ~ normal(0,s2u) subject=clinic;

For multiple effects, you should specify bracketed vectors form and v, the latter
consisting of the lower triangle of the random-effects variance matrix listed in row
order. This is illustrated for two and three random effects as follows.

random b1 b2 ~ normal([0,0],[g11,g21,g22]) subject=person;
random b1 b2 b3 ~ normal([0,0,0],[g11,g21,g22,g31,g32,g33])

subject=person;

The SUBJECT= variable determines when new realizations of the random effects are
assumed to occur. PROC NLMIXED assumes that a new realization occurs whenever
the SUBJECT= variable changes from the previous observation, so your input data
set should be clustered according to this variable. One easy way to accomplish this is
to run PROC SORT prior to calling PROC NLMIXED using the SUBJECT= variable
as the BY variable.

Only one RANDOM statement is permitted, so multilevel nonlinear mixed models
are not currently accommodated.

The following options are available in the RANDOM statement:

ALPHA= α
specifies the alpha level to be used in computingt statistics and intervals. The default
value corresponds to the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computingt statistics and intervals in
the OUT= data set. The default value corresponds to the DF= option in the PROC
NLMIXED statement.

OUT=SAS-data-set
requests an output data set containing empirical Bayes estimates of the random effects
and their approximate standard errors of prediction.

REPLICATE Statement
REPLICATE variable ;

The REPLICATE statement provides a way to accommodate models in which dif-
ferent subjects have identical data. This occurs most commonly when the dependent
variable is binary. When you specify a REPLICATE variable, PROC NLMIXED as-
sumes that its value indicates the number of subjects having data identical to those for
the current value of the SUBJECT= variable (specified in the RANDOM statement).
Only the last observation of the REPLICATE variable for each subject is used, and
the replicate variable must have only positive integer values.
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Programming Statements

This section lists the programming statements used to code the log likelihood func-
tion in PROC NLMIXED. It also documents the differences between programming
statements in PROC NLMIXED and programming statements in the DATA step. The
syntax of programming statements used in PROC NLMIXED is identical to that used
in the CALIS and GENMOD procedures (seeChapter 19andChapter 31, respec-
tively), and the MODEL procedure (refer to theSAS/ETS User’s Guide). Most of the
programming statements that can be used in the SAS DATA step can also be used
in the NLMIXED procedure. Refer toSAS Language Reference: Dictionaryfor a
description of SAS programming statements. The following are valid statements:

ABORT;
CALL name [ ( expression [, expression ... ] ) ];
DELETE;
DO [ variable = expression

[ TO expression ] [BY expression ]
[, expression [TO expression ] [BY expression ] ... ]

]
[ WHILE expression ] [UNTIL expression ];

END;
GOTO statement–label;
IF expression;
IF expressionTHEN program–statement;

ELSE program–statement;
variable= expression;
variable+ expression;
LINK statement–label;
PUT [ variable] [ =] [...] ;
RETURN;
SELECT [( expression)];
STOP;
SUBSTR( variable, index, length ) = expression;
WHEN ( expression) program–statement;

OTHERWISE program–statement;

For the most part, the SAS programming statements work the same as they do in the
SAS DATA step, as documented inSAS Language Reference: Concepts; however,
there are several differences.

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however, the following statement is not supported.

do i = ’A’,’B’,’C’;
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• The LAG function does work appropriately with PROC NLMIXED, but you
can use the ZLAG function instead.

• The PUT statement, used mostly for program debugging in PROC NLMIXED,
supports only some of the features of the DATA step PUT statement, and it has
some new features that the DATA step PUT statement does not.

– The PROC NLMIXED PUT statement does not support line pointers, fac-
tored lists, iteration factors, overprinting,–INFILE–, the colon (:) format
modifier, or “$”.

– The PROC NLMIXED PUT statement does support expressions, but the
expression must be enclosed in parentheses. For example, the following
statement displays the square root of x:

put (sqrt(x));

– The PROC NLMIXED PUT statement supports the item–PDV– to dis-
play a formatted listing of all variables in the program. For example, the
following statement displays a much more readable listing of the vari-
ables than the–ALL – print item:

put - pdv - ;

• The WHEN and OTHERWISE statements enable you to specify more than
one target statement. That is, DO/END groups are not necessary for multiple
statement WHENs. For example, the following syntax is valid.

select;
when ( exp1) stmt1;

stmt2;
when ( exp2) stmt3;

stmt4;
end;

When coding your programming statements, you should avoid defining variables that
begin with an underscore (–), as they may conflict with internal variables created by
PROC NLMIXED. The MODEL statement must come after any SAS programming
statements you specify for computing parameters of the modeling distribution.
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Details

This section contains details about the underlying theory and computations of PROC
NLMIXED.

Modeling Assumptions and Notation

PROC NLMIXED operates under the following general framework for nonlinear
mixed models. Assume that you have an observed data vectoryi for each ofi sub-
jects,i = 1, . . . , s. Theyi are assumed to be independent acrossi, but within-subject
covariance is likely to exist because each of the elements ofyi are measured on the
same subject. As a statistical mechanism for modeling this within-subject covariance,
assume that there exist latent random-effect vectorsui of small dimension (typically
one or two) that are also independent acrossi. Assume also that an appropriate model
linking yi andui exists, leading to the joint probability density function

p(yi|Xi, φ, ui)q(ui|ξ)

whereXi is a matrix of observed explanatory variables andφ andξ are vectors of
unknown parameters.

Let θ = (φ, ξ) and assume that it is of dimensionn. Then inferences aboutθ are
based on the marginal likelihood function

m(θ) =
s∏

i=1

∫
p(yi|Xi, φ, ui)q(ui|ξ)dui

In particular, the function
f(θ) = − log m(θ)

is minimized overθ numerically in order to estimateθ, and the inverse Hessian (sec-
ond derivative) matrix at the estimates provides an approximate variance-covariance
matrix for the estimate ofθ. The functionf(θ) is referred to both as the negative log
likelihood function and as the objective function for optimization.

As an example of the preceding general framework, consider the nonlinear growth
curve example in the “Getting Started” section. Here, the conditional distribution
p(yi|Xi, φ, ui) is normal with mean

b1 + ui1

1 + exp[−(dij − b2)/b3]

and varianceσ2
e ; thusφ = (b1, b2, b3, σ

2
e). Also, ui is a scalar andq(ui|ξ) is normal

with mean 0 and varianceσ2
u; thusξ = σ2

u.

The following additional notation is also found in this chapter. The quantityθ(k)

refers to the parameter vector at thekth iteration, the functiong(θ) refers to the
gradient vector∇f(θ), and the matrixH(θ) refers to the Hessian∇2f(θ). Other
symbols are used to denote various constants or option values.
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Integral Approximations

An important part of the marginal maximum likelihood method described previously
is the computation of the integral over the random effects. The default method in
PROC NLMIXED for computing this integral is adaptive Gaussian quadrature as
described in Pinheiro and Bates (1995). Another approximation method is the first-
order method of Beal and Sheiner (1982, 1988). A description of these two methods
follows.

Adaptive Gaussian Quadrature

A quadrature method approximates a given integral by a weighted sum over prede-
fined abscissas for the random effects. A good approximation can usually be obtained
with an adequate number of quadrature points as well as appropriate centering and
scaling of the abscissas. Adaptive Gaussian quadrature for the integral overui cen-
ters the integral at the empirical Bayes estimate ofui, defined as the vector̂ui that
minimizes

− log [p(yi|Xi, φ, ui)q(ui|ξ)]

with φ andξ set equal to their current estimates. The final Hessian matrix from this
optimization can be used to scale the quadrature abscissas.

Suppose(zj , wj ; j = 1, . . . , p) denote the standard Gauss-Hermite abscissas and
weights (Golub and Welsch 1969, or Table 25.10 of Abramowitz and Stegun 1972).
The adaptive Gaussian quadrature integral approximation is as follows.∫

p(yi|Xi, φ, ui)q(ui|ξ)dui ≈

2r/2 |Γ(Xi, θ)|−1/2
p∑

j1=1

· · ·
p∑

jr=1

[
p(yi|Xi, φ, aj1,...,jr)q(aj1,...,jr |ξ)

r∏
k=1

wjk
exp z2

jk

]

wherer is the dimension ofui, Γ(Xi, θ) is the Hessian matrix from the empirical
Bayes minimization,zj1,...,jr is a vector with elements(zj1 , . . . , zjr), and

aj1,...,jr = ûi + 21/2Γ(Xi, θ)−1/2zj1,...,jr

PROC NLMIXED selects the number of quadrature points adaptively by evaluating
the log likelihood function at the starting values of the parameters until two successive
evaluations have a relative difference less than the value of the QTOL= option. The
specific search sequence is described under the QFAC= option. Using the QPOINTS=
option, you can adjust the number of quadrature pointsp to obtain different levels of
accuracy. Settingp = 1 results in the Laplacian approximation as described in Beal
and Sheiner (1992), Wolfinger (1993), Vonesh (1992, 1996), Vonesh and Chinchilli
(1997), and Wolfinger and Lin (1997).

The NOAD option in the PROC NLMIXED statement requests nonadaptive Gaussian
quadrature. Here all̂ui are set equal to zero, and the Cholesky root of the estimated
variance matrix of the random effects is substituted forΓ(Xi, θ)−1/2 in the preceding
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expression foraj1,...,jr . In this case derivatives are computed using the algorithm of
Smith (1995). The NOADSCALE option requests the same scaling substitution but
with the empirical Bayeŝui.

PROC NLMIXED computes the derivatives of the adaptive Gaussian quadrature ap-
proximation when carrying out the default dual quasi-Newton optimization.

First-Order Method

Another integral approximation available in PROC NLMIXED is the first-order
method of Beal and Sheiner (1982, 1988) and Sheiner and Beal (1985). This ap-
proximation is used only in the case wherep(yi|Xi, φ, ui) is normal, that is,

p(yi|Xi, φ, ui) = (2π)−ni/2 |Ri(Xi, φ)|−1/2

exp
{
−(1/2) [yi −mi(Xi, φ, ui)]

T Ri(Xi, φ)−1 [yi −mi(Xi, φ, ui)]
}

whereni is the dimension ofyi, Ri is a diagonal variance matrix, andmi is the
conditional mean vector ofyi.

The first-order approximation is obtained by expandingm(Xi, φ, ui) with a one-term
Taylor series expansion aboutui = 0, resulting in the approximation

p(yi|Xi, φ, ui) ≈ (2π)−ni/2 |Ri(Xi, φ)|−1/2

exp
(
−(1/2) [yi −mi(Xi, φ, 0)− Zi(Xi, φ)ui]

T Ri(Xi, φ)−1

[yi −mi(Xi, φ, 0)− Zi(Xi, φ)ui])

whereZi(Xi, φ) is the Jacobian matrix∂mi(Xi, φ, ui)/∂ui evaluated atui = 0.

Assuming thatq(ui|ξ) is normal with mean0 and variance matrixG(ξ), the first-order
integral approximation is computable in closed form after completing the square:∫

p(yi|Xi, φ, ui)q(ui|ξ)dui ≈ (2π)−ni/2 |Vi(Xi, θ)|−1/2

exp
(
−(1/2) [yi −mi(Xi, φ, 0)]T Vi(Xi, θ)−1 [yi −mi(Xi, φ, 0)]

)

whereVi(Xi, θ) = Zi(Xi, φ)G(ξ)Zi(Xi, φ)T + Ri(Xi, φ). The resulting approxi-
mation forf(θ) is then minimized overθ = (φ, ξ) to obtain the first-order estimates.
PROC NLMIXED uses finite-difference derivatives of the first-order integral approx-
imation when carrying out the default dual quasi-Newton optimization.
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Optimization Algorithms
There are several optimization techniques available in PROC NLMIXED. You can
choose a particular optimizer with the TECH=name option in the PROC NLMIXED
statement.

Algorithm TECH=
trust region Method TRUREG
Newton-Raphson method with line search NEWRAP
Newton-Raphson method with ridging NRRIDG
quasi-Newton methods (DBFGS, DDFP, BFGS, DFP)QUANEW
double-dogleg method (DBFGS, DDFP) DBLDOG
conjugate gradient methods (PB, FR, PR, CD) CONGRA
Nelder-Mead simplex method NMSIMP

No algorithm for optimizing general nonlinear functions exists that always finds the
global optimum for a general nonlinear minimization problem in a reasonable amount
of time. Since no single optimization technique is invariably superior to others, PROC
NLMIXED provides a variety of optimization techniques that work well in various
circumstances. However, you can devise problems for which none of the techniques
in PROC NLMIXED can find the correct solution. Moreover, nonlinear optimization
can be computationally expensive in terms of time and memory, so you must be
careful when matching an algorithm to a problem.

All optimization techniques in PROC NLMIXED useO(n2) memory except the con-
jugate gradient methods, which use onlyO(n) of memory and are designed to opti-
mize problems with many parameters. Since the techniques are iterative, they require
the repeated computation of

• the function value (optimization criterion)

• the gradient vector (first-order partial derivatives)

• for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

However, since each of the optimizers requires different derivatives, some computa-
tional efficiencies can be gained. The following table shows, for each optimization
technique, which derivatives are required (FOD: first-order derivatives; SOD: second-
order derivatives).

Algorithm FOD SOD
TRUREG x x
NEWRAP x x
NRRIDG x x

QUANEW x -
DBLDOG x -
CONGRA x -
NMSIMP - -
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Each optimization method employs one or more convergence criteria that determine
when it has converged. The various termination criteria are listed and described in
the “PROC NLMIXED Statement” section. An algorithm is considered to have con-
verged when any one of the convergence criterion is satisfied. For example, under the
default settings, the QUANEW algorithm will converge ifABSGCONV < 1E−5,
FCONV < 10−FDIGITS , or GCONV < 1E− 8.

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimization technique for a particular
problem are complex and may involve trial and error.

For many optimization problems, computing the gradient takes more computer time
than computing the function value, and computing the Hessian sometimes takesmuch
more computer time and memory than computing the gradient, especially when there
are many decision variables. Unfortunately, optimization techniques that do not use
some kind of Hessian approximation usually require many more iterations than tech-
niques that do use a Hessian matrix, and as a result the total run time of these tech-
niques is often longer. Techniques that do not use the Hessian also tend to be less
reliable. For example, they can more easily terminate at stationary points rather than
at global optima.

A few general remarks about the various optimization techniques are as follows.

• The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best
for small problems where the Hessian matrix is not expensive to compute.
Sometimes the NRRIDG algorithm can be faster than the TRUREG algorithm,
but TRUREG can be more stable. The NRRIDG algorithm requires only one
matrix with n(n + 1)/2 double words; TRUREG and NEWRAP require two
such matrices.

• The first-derivative methods QUANEW and DBLDOG are best for medium-
sized problems where the objective function and the gradient are much faster
to evaluate than the Hessian. The QUANEW and DBLDOG algorithms, in
general, require more iterations than TRUREG, NRRIDG, and NEWRAP, but
each iteration can be much faster. The QUANEW and DBLDOG algorithms
require only the gradient to update an approximate Hessian, and they require
slightly less memory than TRUREG or NEWRAP (essentially one matrix with
n(n + 1)/2 double words). QUANEW is the default optimization method.

• The first-derivative method CONGRA is best for large problems where the ob-
jective function and the gradient can be computed much faster than the Hessian
and where too much memory is required to store the (approximate) Hessian.
The CONGRA algorithm, in general, requires more iterations than QUANEW
or DBLDOG, but each iteration can be much faster. Since CONGRA requires
only a factor ofn double-word memory, many large applications of PROC
NLMIXED can be solved only by CONGRA.

• The no-derivative method NMSIMP is best for small problems where deriva-
tives are not continuous or are very difficult to compute.
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Algorithm Descriptions

Some details about the optimization techniques are as follows.

Trust Region Optimization (TRUREG)

The trust region method uses the gradientg(θ(k)) and the Hessian matrixH(θ(k));
thus, it requires that the objective functionf(θ) have continuous first- and second-
order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlin-
ear objective function within a hyper-elliptic trust region with radius∆ that constrains
the step size corresponding to the quality of the quadratic approximation. The trust
region method is implemented using Dennis, Gay, and Welsch (1981), Gay (1983),
and Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it
does not need many function, gradient, and Hessian calls. However, if the compu-
tation of the Hessian matrix is computationally expensive, one of the (dual) quasi-
Newton or conjugate gradient algorithms may be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)

The NEWRAP technique uses the gradientg(θ(k)) and the Hessian matrixH(θ(k));
thus, it requires that the objective function have continuous first- and second-order
derivatives inside the feasible region. If second-order derivatives are computed effi-
ciently and precisely, the NEWRAP method may perform well for medium-sized to
large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully.
Otherwise, a combination of ridging and line search is performed to compute suc-
cessful steps. If the Hessian is not positive definite, a multiple of the identity matrix is
added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is performed along the search direction to find an
approximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)

The NRRIDG technique uses the gradientg(θ(k)) and the Hessian matrixH(θ(k));
thus, it requires that the objective function have continuous first- and second-order
derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. If at
least one of these two conditions is not satisfied, a multiple of the identity matrix is
added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it
does not require many function, gradient, and Hessian calls. However, if the com-
putation of the Hessian matrix is computationally expensive, one of the (dual) quasi-
Newton or conjugate gradient algorithms may be more efficient.
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Since the NRRIDG technique uses an orthogonal decomposition of the approximate
Hessian, each iteration of NRRIDG can be slower than that of the NEWRAP tech-
nique, which works with Cholesky decomposition. Usually, however, NRRIDG re-
quires fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradientg(θ(k)), and it does not need to
compute second-order derivatives since they are approximated. It works well for
medium to moderately large optimization problems where the objective function and
the gradient are much faster to compute than the Hessian; but, in general, it requires
more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which com-
pute second-order derivatives. QUANEW is the default optimization algorithm be-
cause it provides an appropriate balance between the speed and stability required for
most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending upon the value of the
UPDATE= option.

• the original quasi-Newton algorithm, which updates an approximation of the
inverse Hessian

• the dual quasi-Newton algorithm, which updates the Cholesky factor of an ap-
proximate Hessian (default)

You can specify four update formulas with the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update of the Cholesky factor of the Hessian matrix. This is the default.

• DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the
Cholesky factor of the Hessian matrix.

• BFGS performs the original BFGS update of the inverse Hessian matrix.

• DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an
approximate optimum. The default line-search method uses quadratic interpolation
and cubic extrapolation to obtain a step sizeα satisfying the Goldstein conditions.
One of the Goldstein conditions can be violated if the feasible region defines an upper
limit of the step size. Violating the left-side Goldstein condition can affect the positive
definiteness of the quasi-Newton update. In that case, either the update is skipped or
the iterations are restarted with an identity matrix, resulting in the steepest descent or
ascent search direction. You can specify line-search algorithms other than the default
with the LIS= option.

The QUANEW algorithm performs its own line-search technique. All options and
parameters (except the INSTEP= option) controlling the line search in the other algo-
rithms do not apply here. In several applications, large steps in the first iterations are
troublesome. You can use the INSTEP= option to impose an upper bound for the step
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sizeα during the first five iterations. You can also use the INHESSIAN[=r] option
to specify a different starting approximation for the Hessian. If you specify only the
INHESSIAN option, the Cholesky factor of a (possibly ridged) finite difference ap-
proximation of the Hessian is used to initialize the quasi-Newton update process. The
values of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which con-
trol the processing of linear and boundary constraints, are valid only for the quadratic
programming subroutine used in each iteration of the QUANEW algorithm.

Double Dogleg Optimization (DBLDOG)

The double dogleg optimization method combines the ideas of the quasi-Newton and
trust region methods. In each iteration, the double dogleg algorithm computes the
steps(k) as the linear combination of the steepest descent or ascent search direction

s
(k)
1 and a quasi-Newton search directions

(k)
2 .

s(k) = α1s
(k)
1 + α2s

(k)
2

The step is requested to remain within a prespecified trust region radius; refer to
Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton
update but does not perform a line search. You can specify two update formulas with
the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of
the Cholesky factor of the Hessian matrix. This is the default.

• DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky
factor of the Hessian matrix.

The double dogleg optimization technique works well for medium to moderately
large optimization problems where the objective function and the gradient are much
faster to compute than the Hessian. The implementation is based on Dennis and
Mei (1979) and Gay (1983), but it is extended for dealing with boundary and
linear constraints. The DBLDOG technique generally requires more iterations
than the TRUREG, NEWRAP, or NRRIDG technique, which requires second-order
derivatives; however, each of the DBLDOG iterations is computationally cheap.
Furthermore, the DBLDOG technique requires only gradient calls for the update of
the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not required by the CONGRA algorithm and are not
even approximated. The CONGRA algorithm can be expensive in function and gra-
dient calls, but it requires onlyO(n) memory for unconstrained optimization. In
general, many iterations are required to obtain a precise solution, but each of the
CONGRA iterations is computationally cheap. You can specify four different update
formulas for generating the conjugate directions by using the UPDATE= option:

• PB performs the automatic restart update method of Powell (1977) and Beale
(1972). This is the default.
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• FR performs the Fletcher-Reeves update (Fletcher 1987).

• PR performs the Polak-Ribiere update (Fletcher 1987).

• CD performs a conjugate-descent update of Fletcher (1987).

The default, UPDATE=PB, behaved best in most test examples. You are advised to
avoid the option UPDATE=CD, which behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with largen. For
the unconstrained or boundary constrained case, CONGRA requires onlyO(n) bytes
of working memory, whereas all other optimization methods require orderO(n2)
bytes of working memory. Duringn successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle
of n conjugate search directions. In each iteration, a line search is performed along
the search direction to find an approximate optimum of the objective function. The
default line-search method uses quadratic interpolation and cubic extrapolation to ob-
tain a step sizeα satisfying the Goldstein conditions. One of the Goldstein conditions
can be violated if the feasible region defines an upper limit for the step size. Other
line-search algorithms can be specified with the LIS= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume
that the objective function has continuous derivatives. The objective function itself
needs to be continuous. This technique is quite expensive in the number of function
calls, and it may be unable to generate precise results forn � 40.

The original Nelder-Mead simplex algorithm is implemented and extended to bound-
ary constraints. This algorithm does not compute the objective for infeasible points,
but it changes the shape of the simplex adapting to the nonlinearities of the objective
function, which contributes to an increased speed of convergence. It uses a special
termination criteria.

Finite Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite difference approx-
imations of the derivatives. The FD= option specifies that all derivatives are ap-
proximated using function evaluations, and the FDHESSIAN= option specifies that
second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite difference approximations can be very time consum-
ing, especially for second-order derivatives based only on values of the objective
function (FD= option). If analytical derivatives are difficult to obtain (for example, if
a function is computed by an iterative process), you might consider one of the opti-
mization techniques that uses first-order derivatives only (QUANEW, DBLDOG, or
CONGRA).

Forward Difference Approximations

The forward difference derivative approximations consume less computer time, but
they are usually not as precise as approximations that use central difference formulas.
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• For first-order derivatives,n additional function calls are required:

gi =
∂f

∂θi
≈ f(θ + hiei)− f(θ)

hi

• For second-order derivatives based on function calls only (Dennis and Schnabel
1983, p. 80),n+n2/2 additional function calls are required for dense Hessian:

∂2f

∂θi∂θj
≈ f(θ + hiei + hjej)− f(θ + hiei)− f(θ + hjej) + f(θ)

hihj

• For second-order derivatives based on gradient calls (Dennis and Schnabel
1983, p. 103),n additional gradient calls are required:

∂2f

∂θi∂θj
≈ gi(θ + hjej)− gi(θ)

2hj
+

gj(θ + hiei)− gj(θ)
2hi

Central Difference Approximations

Central difference approximations are usually more precise, but they consume more
computer time than approximations that use forward difference derivative formulas.

• For first-order derivatives,2n additional function calls are required:

gi =
∂f

∂θi
≈ f(θ + hiei)− f(θ − hiei)

2hi

• For second-order derivatives based on function calls only (Abramowitz and
Stegun 1972, p. 884),2n + 4n2/2 additional function calls are required.

∂2f

∂θ2
i

≈ −f(θ + 2hiei) + 16f(θ + hiei)− 30f(θ) + 16f(θ − hiei)− f(θ − 2hiei)
12h2

i

∂2f

∂θi∂θj
≈ f(θ + hiei + hjej)− f(θ + hiei − hjej)− f(θ − hiei + hjej) + f(θ − hiei − hjej)

4hihj

• For second-order derivatives based on gradient calls,2n additional gradient
calls are required:

∂2f

∂θi∂θj
≈ gi(θ + hjej)− gi(θ − hjej)

4hj
+

gj(θ + hiei)− gj(θ − hiei)
4hi

You can use the FDIGITS== option to specify the number of accurate digits in the
evaluation of the objective function. This specification is helpful in determining an
appropriate interval sizeh to be used in the finite difference formulas.

The step sizeshj , j = 1, . . . , n are defined as follows.

• For the forward difference approximation of first-order derivatives using func-
tion calls and second-order derivatives using gradient calls,hj = 2

√
η(1+ |θj |).
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• For the forward difference approximation of second-order derivatives using
only function calls and all central difference formulas,hj = 3

√
η(1 + |θj |).

The value ofη is defined by the FDIGITS= option:

• If you specify the number of accurate digits using FDIGITS=r, η is set to10−r.

• If you do not specify the FDIGITS= option,η is set to the machine precisionε.

Hessian Scaling

The rows and columns of the Hessian matrix can be scaled when you use the trust
region, Newton-Raphson, and double dogleg optimization techniques. Each element
Hi,j , i, j = 1, . . . , n is divided by the scaling factordidj , where the scaling vector
d = (d1, . . . , dn) is iteratively updated in a way specified by the HESCAL=i option,
as follows.

i = 0 : No scaling is done (equivalent todi = 1).

i 6= 0 : First iteration and each restart iteration sets:

d
(0)
i =

√
max(|H(0)

i,i |, ε)

i = 1 : Refer to Moré (1978):

d
(k+1)
i = max

[
d

(k)
i ,

√
max(|H(k)

i,i |, ε)
]

i = 2 : Refer to Dennis, Gay, and Welsch (1981):

d
(k+1)
i = max

[
.6d

(k)
i ,

√
max(|H(k)

i,i |, ε)
]

i = 3 : di is reset in each iteration:

d
(k+1)
i =

√
max(|H(k)

i,i |, ε)

In the preceding equations,ε is the relative machine precision or, equivalently, the
largest double precision value that, when added to 1, results in 1.

Active Set Methods

The parameter vectorθ ∈ Rn can be subject to a set ofm linear equality and inequal-
ity constraints:

n∑
j=1

aijθj = bi i = 1, . . . ,me

n∑
j=1

aijθj ≥ bi i = me + 1, . . . ,m
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The coefficientsaij and right-hand sidesbi of the equality and inequality constraints
are collected in them× n matrixA and them vectorb.

Them linear constraints define a feasible regionG in Rn that must contain the point
θ∗ that minimizes the problem. If the feasible regionG is empty, no solution to the
optimization problem exists.

In PROC NLMIXED, all optimization techniques useactive set methods. The itera-
tion starts with a feasible pointθ(0), which you can provide or which can be computed
by the Schittkowski and Stoer (1979) algorithm implemented in PROC NLMIXED.
The algorithm then moves from one feasible pointθ(k−1) to a better feasible point

θ(k) along a feasible search directions(k),

θ(k) = θ(k−1) + α(k)s(k) , α(k) > 0

Theoretically, the path of pointsθ(k) never leaves the feasible regionG of the opti-

mization problem, but it can reach its boundaries. The active setA(k) of point θ(k)

is defined as the index set of all linear equality constraints and those inequality con-
straints that are satisfied atθ(k). If no constraint is activeθ(k), the point is located in

the interior ofG, and the active setA(k) = ∅ is empty. If the pointθ(k) in iteration
k hits the boundary of inequality constrainti, this constrainti becomes active and is
added toA(k). Each equality constraint and each active inequality constraint reduce
the dimension (degrees of freedom) of the optimization problem.

In practice, the active constraints can be satisfied only with finite precision. The
LCEPSILON=r option specifies the range for active and violated linear constraints.
If the pointθ(k) satisfies the condition

∣∣∣∣∣∣
n∑

j=1

aijθ
(k)
j − bi

∣∣∣∣∣∣ ≤ t

wheret = r(|bi|+1), the constrainti is recognized as an active constraint. Otherwise,
the constrainti is either an inactive inequality or a violated inequality or equality
constraint. Due to rounding errors in computing the projected search direction, error
can be accumulated so that an iterateθ(k) steps out of the feasible region.

In those cases, PROC NLMIXED may try to pull the iterateθ(k) back into the feasible
region. However, in some cases the algorithm needs to increase the feasible region
by increasing the LCEPSILON=r value. If this happens, a message is displayed in
the log output.

If the algorithm cannot improve the value of the objective function by moving from
an active constraint back into the interior of the feasible region, it makes this inequal-
ity constraint an equality constraint in the next iteration. This means that the active
setA(k+1) still contains the constrainti. Otherwise, it releases the active inequal-
ity constraint and increases the dimension of the optimization problem in the next
iteration.
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A serious numerical problem can arise when some of the active constraints become
(nearly) linearly dependent. PROC NLMIXED removes linearly dependent equality
constraints before starting optimization. You can use the LCSINGULAR= option
to specify a criterionr used in the update of the QR decomposition that determines
whether an active constraint is linearly dependent relative to a set of other active
constraints.

If the solutionθ∗ is subjected tonact linear equality or active inequality constraints,
the QR decomposition of then×nact matrixÂT of the linear constraints is computed
by ÂT = QR, whereQ is ann × n orthogonal matrix andR is ann × nact upper
triangular matrix. Then columns of matrixQ can be separated into two matrices,
Q = [Y, Z], whereY contains the firstnact orthogonal columns ofQ andZ contains
the lastn − nact orthogonal columns ofQ. Then × (n − nact) column-orthogonal
matrix Z is also called thenullspace matrixof the active linear constraintŝAT . The
n−nact columns of then× (n−nact) matrixZ form a basis orthogonal to the rows
of thenact × n matrix Â.

At the end of the iterating, PROC NLMIXED computes theprojected gradientgZ ,

gZ = ZT g

In the case of boundary-constrained optimization, the elements of the projected gradi-
ent correspond to the gradient elements of the free parameters. A necessary condition
for θ∗ to be a local minimum of the optimization problem is

gZ(θ∗) = ZT g(θ∗) = 0

The symmetricnact × nact matrixGZ ,

GZ = ZT GZ

is called aprojected Hessian matrix. A second-order necessary condition forθ∗ to be
a local minimizer requires that the projected Hessian matrix is positive semidefinite.

Those elements of thenact vector of first-order estimates ofLagrange multipliers,

λ = (ÂÂT )−1ÂZZT g

that correspond to active inequality constraints indicate whether an improvement of
the objective function can be obtained by releasing this active constraint. For mini-
mization, a significant negative Lagrange multiplier indicates that a possible reduc-
tion of the objective function can be achieved by releasing this active linear constraint.
The LCDEACT=r option specifies a thresholdr for the Lagrange multiplier that de-
termines whether an active inequality constraint remains active or can be deactivated.
(In the case of boundary-constrained optimization, the Lagrange multipliers for active
lower (upper) constraints are the negative (positive) gradient elements corresponding
to the active parameters.)
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Line-Search Methods

In each iterationk, the (dual) quasi-Newton, conjugate gradient, and Newton-
Raphson minimization techniques use iterative line-search algorithms that try to opti-
mize a linear, quadratic, or cubic approximation off along a feasible descent search
directions(k)

θ(k+1) = θ(k) + α(k)s(k), α(k) > 0

by computing an approximately optimal scalarα(k).

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear
functionf(α) of one parameter (α) within each iterationk of the optimization tech-
nique. Since the outside iteration process is based only on the approximation of the
objective function, the inside iteration of the line-search algorithm does not have to be
perfect. Usually, it is satisfactory that the choice ofα significantly reduces (in a min-
imization) the objective function. Criteria often used for termination of line-search
algorithms are the Goldstein conditions (refer to Fletcher 1987).

You can select various line-search algorithms by specifying the LIS= option. The
line-search method LIS=2 seems to be superior when function evaluation consumes
significantly less computation time than gradient evaluation. Therefore, LIS=2 is the
default method for Newton-Raphson, (dual) quasi-Newton, and conjugate gradient
optimizations.

You can modify the line-search methods LIS=2 and LIS=3 to be exact line searches
by using the LSPRECISION= option and specifying theσ parameter described in
Fletcher (1987). The line-search methods LIS=1, LIS=2, and LIS=3 satisfy the left-
hand side and right-hand side Goldstein conditions (refer to Fletcher 1987). When
derivatives are available, the line-search methods LIS=6, LIS=7, and LIS=8 try to
satisfy the right-hand side Goldstein condition; if derivatives are not available, these
line-search algorithms use only function calls.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can eas-
ily lead them to (feasible) points where the objective functionf is no longer defined
or difficult to compute. Therefore, PROC NLMIXED provides options restricting the
step lengthα or trust region radius∆, especially during the first main iterations.

The inner productgT s of the gradientg and the search directions is the slope of
f(α) = f(θ + αs) along the search directions. The default starting valueα(0) =
α(k,0) in each line-search algorithm (minα>0 f(θ + αs)) during the main iterationk
is computed in three steps:

1. The first step uses either the differencedf = |f (k) − f (k−1)| of the function
values during the last two consecutive iterations or the final step-size valueα–

of the last iterationk − 1 to compute a first value ofα(0)
1 .
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• If the DAMPSTEPoption is not used,

α
(0)
1 =


step if 0.1 ≤ step ≤ 10
10 if step > 10
0.1 if step < 0.1

with

step =
{

df/|gT s| if |gT s| ≥ ε max(100df, 1)
1 otherwise

This value ofα(0)
1 can be too large and can lead to a difficult or impossible

function evaluation, especially for highly nonlinear functions such as the
EXP function.

• If the DAMPSTEP[=r] option is used,

α
(0)
1 = min(1, rα–)

The initial value for the new step length can be no larger thanr times the
final step lengthα– of the former iteration. The default value isr = 2.

2. During the first five iterations, the second step enables you to reduceα
(0)
1 to a

smaller starting valueα(0)
2 using the INSTEP=r option:

α
(0)
2 = min(α(0)

1 , r)

After more than five iterations,α(0)
2 is set toα(0)

1 .

3. The third step can further reduce the step length by

α
(0)
3 = min(α(0)

2 ,min(10, u))

whereu is the maximum length of a step inside the feasible region.

The INSTEP=r option enables you to specify a smaller or larger radius∆ of the trust
region used in the first iteration of the trust region and double dogleg algorithms.
The default initial trust region radius∆(0) is the length of the scaled gradient (Moré
1978). This step corresponds to the default radius factor ofr = 1. In most practi-
cal applications of the TRUREG and DBLDOG algorithms, this choice is successful.
However, for bad initial values and highly nonlinear objective functions (such as the
EXP function), the default start radius can result in arithmetic overflows. If this hap-
pens, you can try decreasing values of INSTEP=r, 0 < r < 1, until the iteration
starts successfully. A small factorr also affects the trust region radius∆(k+1) of the
next steps because the radius is changed in each iteration by a factor0 < c ≤ 4, de-
pending on the ratioρ expressing the goodness of quadratic function approximation.
Reducing the radius∆ corresponds to increasing the ridge parameterλ, producing
smaller steps directed more closely toward the (negative) gradient direction.
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Computational Problems

Floating Point Errors and Overflows

Numerical optimization of a numerically integrated function is a difficult task, and
the computation of the objective function and its derivatives can lead to arithmetic ex-
ceptions and overflows. A typical cause of these problems is parameters with widely
varying scales. If the scaling of your parameters varies by more than a few orders
of magnitude, the numerical stability of the optimization problem can be seriously
reduced and result in computational difficulties. A simple remedy is to rescale each
parameter so that its final estimated value has a magnitude near 1.

If parameter rescaling does not help, consider the following actions:

• Specify the ITDETAILS option in the PROC NLMIXED statement to obtain
more detailed information about when and where the problem is occurring.

• Provide different initial values or try a grid search of values.

• Use boundary constraints to avoid the region where overflows may happen.

• Delete outlying observations or subjects from the input data, if this is reason-
able.

• Change the algorithm (specified in programming statements) that computes the
objective function.

The line-search algorithms that work with cubic extrapolation are especially sensitive
to arithmetic overflows. If an overflow occurs during a line search, you can use
the INSTEP= option to reduce the length of the first trial step during the first five
iterations, or you can use the DAMPSTEP or MAXSTEP option to restrict the step
length of the initialα in subsequent iterations. If an arithmetic overflow occurs in
the first iteration of the trust region or double dogleg algorithms, you can use the
INSTEP= option to reduce the default trust region radius of the first iteration. You
can also change the optimization technique or the line-search method.

Long Run Times

PROC NLMIXED can take a long time to run for problems with complex models,
many parameters, or large input data sets. Although the optimization techniques used
by PROC NLMIXED are some of the best ones available, they are not guaranteed
to converge quickly for all problems. Ill-posed or misspecified models can cause the
algorithms to use more extensive calculations designed to achieve convergence, and
this can result in longer run times. So first make sure that your model is specified
correctly, that your parameters are scaled to be of the same order of magnitude, and
that your data reasonably match the model you are contemplating.

If you are using the default adaptive Gaussian quadrature algorithm and no iteration
history is printing at all, then PROC NLMIXED may be bogged down trying to deter-
mine the number of quadrature points at the first set of starting values. Specifying the
QPOINTS= option will bypass this stage and proceed directly to iterations; however,
be aware that the likelihood approximation may not be accurate if there are too few
quadrature points.
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PROC NLMIXED may also have difficulty determining the number of quadrature
points if the initial starting values are far from the optimum values. To obtain more
accurate starting values for the model parameters, one easy method is to fit a model
with no RANDOM statement. You can then use these estimates as starting values,
although you will still need to specify values for the random-effects distribution. For
normal-normal models, another strategy is to use METHOD=FIRO. If you can obtain
estimates using this approximate method, then they can be used as starting values for
more accurate likelihood approximations.

If you are running PROC NLMIXED multiple times, you will probably want to in-
clude a statement like the following in your program:

ods output ParameterEstimates=pe;

This statement creates a SAS data set named PE upon completion of the run. In your
next invocation of PROC NLMIXED, you can then specify

parms / data=pe;

to read in the previous estimates as starting values.

To speed general computations, you should check over your programming statements
to minimize the number of floating point operations. Using auxiliary variables and
factoring amenable expressions can be useful changes in this regard.

Problems Evaluating Code for Objective Function

The starting pointθ(0) must be a point for which the programming statements can
be evaluated. However, during optimization, the optimizer may iterate to a point
θ(k) where the objective function or its derivatives cannot be evaluated. In some
cases, the specification of boundary for parameters can avoid such situations. In many
other cases, you can indicate that the pointθ(0) is a bad point simply by returning an
extremely large value for the objective function. In these cases, the optimization
algorithm reduces the step length and stays closer to the point that has been evaluated
successfully in the former iteration.

No Convergence

There are a number of things to try if the optimizer fails to converge.

• Change the initial values by using a grid search specification to obtain a set of
good feasible starting values.

• Change or modify the update technique or the line-search algorithm.

This method applies only to TECH=QUANEW and TECH=CONGRA. For
example, if you use the default update formula and the default line-search al-
gorithm, you can

– change the update formula with the UPDATE= option
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– change the line-search algorithm with the LIS= option

– specify a more precise line search with the LSPRECISION= option, if
you use LIS=2 or LIS=3

• Change the optimization technique.

For example, if you use the default option, TECH=QUANEW, you can try
one of the second-derivative methods if your problem is small or the conjugate
gradient method if it is large.

• Adjust finite difference derivatives.

The forward difference derivatives specified with the FD[=] or
FDHESSIAN[=] option may not be precise enough to satisfy strong
gradient termination criteria. You may need to specify the more expensive
central difference formulas. The finite difference intervals may be too small or
too big, and the finite difference derivatives may be erroneous.

• Double-check the data entry and program specification.

Convergence to Stationary Point

The gradient at a stationary point is the null vector, which always leads to a zero
search direction. This point satisfies the first-order termination criterion. Search
directions that are based on the gradient are zero, so the algorithm terminates. There
are two ways to avoid this situation:

• Use the PARMS statement to specify a grid of feasible initial points.

• Use the OPTCHECK[=r] option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information
regarding a stationary point.

• If all of the eigenvalues are positive, the Hessian matrix is positive definite, and
the point is a minimum point.

• If some of the eigenvalues are positive and all remaining eigenvalues are zero,
the Hessian matrix is positive semidefinite, and the point is a minimum or
saddle point.

• If all of the eigenvalues are negative, the Hessian matrix is negative definite,
and the point is a maximum point.

• If some of the eigenvalues are negative and all of the remaining eigenvalues are
zero, the Hessian matrix is negative semidefinite, and the point is a maximum
or saddle point.

• If all of the eigenvalues are zero, the point can be a minimum, maximum, or
saddle point.
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Precision of Solution

In some applications, PROC NLMIXED may result in parameter values that are not
precise enough. Usually, this means that the procedure terminated at a point too far
from the optimal point. The termination criteria define the size of the termination
region around the optimal point. Any point inside this region can be accepted for ter-
minating the optimization process. The default values of the termination criteria are
set to satisfy a reasonable compromise between the computational effort (computer
time) and the precision of the computed estimates for the most common applications.
However, there are a number of circumstances in which the default values of the
termination criteria specify a region that is either too large or too small.

If the termination region is too large, then it can contain points with low precision. In
such cases, you should determine which termination criterion stopped the optimiza-
tion process. In many applications, you can obtain a solution with higher precision
simply by using the old parameter estimates as starting values in a subsequent run in
which you specify a smaller value for the termination criterion that was satisfied at
the former run.

If the termination region is too small, the optimization process may take longer to
find a point inside such a region, or it may not even find such a point due to round-
ing errors in function values and derivatives. This can easily happen in applications
in which finite difference approximations of derivatives are used and the GCONV
and ABSGCONV termination criteria are too small to respect rounding errors in the
gradient values.

Covariance Matrix

The estimated covariance matrix of the parameter estimates is computed as the in-
verse Hessian matrix, and for unconstrained problems it should be positive definite.
If the final parameter estimates are subjected tonact > 0 active linear inequality
constraints, the formulas of the covariance matrices are modified similar to Gallant
(1987) and Cramer (1986, p. 38) and additionally generalized for applications with
singular matrices.

There are several steps available that enable you to tune the rank calculations of the
covariance matrix.

1. You can use the ASINGULAR=, MSINGULAR=, and VSINGULAR= options
to set three singularity criteria for the inversion of the Hessian matrixH. The
singularity criterion used for the inversion is

|dj,j | ≤ max(ASING, VSING ∗ |Hj,j |, MSING ∗max(|H1,1|, . . . , |Hn,n|))

wheredj,j is the diagonal pivot of the matrixH, and ASING, VSING, and
MSING are the specified values of the ASINGULAR=, VSINGULAR=, and
MSINGULAR= options. The default values are

• ASING: the square root of the smallest positive double precision value
• MSING: 1E − 12 if you do not specify the SINGHESS= option and

max(10ε, 1E-4∗SINGHESS) otherwise, whereε is the machine precision
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• VSING: 1E − 8 if you do not specify the SINGHESS= option and the
value of SINGHESS otherwise

Note that, in many cases, a normalized matrixD−1AD−1 is decomposed, and
the singularity criteria are modified correspondingly.

2. If the matrixH is found to be singular in the first step, a generalized inverse
is computed. Depending on the G4= option, either a generalized inverse satis-
fying all four Moore-Penrose conditions is computed or a generalized inverse
satisfying only two Moore-Penrose conditions is computed. If the number of
parametersn of the application is less than or equal to G4=i, a G4 inverse is
computed; otherwise, only a G2 inverse is computed. The G4 inverse is com-
puted by the (computationally very expensive but numerically stable) eigen-
value decomposition, and the G2 inverse is computed by Gauss transformation.
The G4 inverse is computed using the eigenvalue decompositionA = ZΛZT ,
whereZ is the orthogonal matrix of eigenvectors andΛ is the diagonal matrix
of eigenvalues,Λ = diag(λ1, ..., λn). The G4 inverse ofH is set to

A− = ZΛ−ZT

where the diagonal matrixΛ− = diag(λ−1 , ..., λ−n ) is defined using the
COVSING= option.

λ−i =
{

1/λi if |λi| > COVSING
0 if |λi|≤ COVSING

If you do not specify the COVSING= option, thenr smallest eigenvalues are
set to zero, wherenr is the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance
matrix is computed using finite difference approximations of the derivatives.

Prediction

The nonlinear mixed model is a useful tool for statistical prediction. Assuming a pre-
diction is to be made regarding theith subject, suppose thatf(θ, ui) is a differentiable
function predicting some quantity of interest. Recall thatθ denotes the vector of un-
known parameters andui denotes the vector of random effects for theith subject.
A natural point prediction isf(θ̂, ûi), whereθ̂ is the maximum likelihood estimate
of θ and ûi is the empirical Bayes estimate ofui described previously in “Integral
Approximations.”

An approximate prediction variance matrix for(θ̂, ûi) is

P =

 Ĥ−1 Ĥ−1
(

∂ûi
∂θ

)T(
∂ûi
∂θ

)
Ĥ−1 Γ̂−1 +

(
∂ûi
∂θ

)
Ĥ−1

(
∂ûi
∂θ

)T


whereĤ is the approximate Hessian matrix from the optimization forθ̂, Γ̂ is the ap-
proximate Hessian matrix from the optimization forûi, and(∂ûi/∂θ) is the derivative
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of ûi with respect toθ, evaluated at(θ̂, ûi). The approximate variance matrix forθ̂ is
the standard one discussed in the previous section, and that forûi is an approximation
to the conditional mean squared error of prediction described by Booth and Hobert
(1998).

The prediction variance for a general scalar functionf(θ, ui) is defined as the ex-
pected squared differenceE[f(θ̂, ûi) − f(θ, ui)]2. PROC NLMIXED computes an
approximation to it as follows. The derivative off(θ, ui) is computed with respect to
each element of(θ, ui) and evaluated at(θ̂, ûi). If ai is the resulting vector, then the
approximate prediction variance isaT

i Pai. This approximation is known as the delta
method (Billingsley, 1986; Cox, 1998).

Computational Resources

Since nonlinear optimization is an iterative process that depends on many factors,
it is difficult to estimate how much computer time is necessary to find an optimal
solution satisfying one of the termination criteria. You can use the MAXTIME=,
MAXITER=, and MAXFU= options to restrict the amount of CPU time, the number
of iterations, and the number of function calls in a single run of PROC NLMIXED.

In each iterationk, the NRRIDG technique uses a symmetric Householder transfor-
mation to decompose then× n Hessian matrixH

H = V ′TV, V : orthogonal, T : tridiagonal

to compute the (Newton) search directions

s(k) = −[H(k)]−1g(k) k = 1, 2, 3, . . .

The TRUREG and NEWRAP techniques use the Cholesky decomposition to solve
the same linear system while computing the search direction. The QUANEW,
DBLDOG, CONGRA, and NMSIMP techniques do not need to invert or decom-
pose a Hessian matrix; thus, they require less computational resources than the other
techniques.

The larger the problem, the more time is needed to compute function values and
derivatives. Therefore, you may want to compare optimization techniques by count-
ing and comparing the respective numbers of function, gradient, and Hessian evalua-
tions.

Finite difference approximations of the derivatives are expensive because they require
additional function or gradient calls:

• forward difference formulas

– For first-order derivatives,n additional function calls are required.
– For second-order derivatives based on function calls only, for a dense

Hessian,n + n2/2 additional function calls are required.
– For second-order derivatives based on gradient calls,n additional gradi-

ent calls are required.
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• central difference formulas

– For first-order derivatives,2n additional function calls are required.

– For second-order derivatives based on function calls only, for a dense
Hessian,2n + 2n2 additional function calls are required.

– For second-order derivatives based on gradient calls,2n additional gradi-
ent calls are required.

Many applications need considerably more time for computing second-order deriva-
tives (Hessian matrix) than for computing first-order derivatives (gradient). In such
cases, a dual quasi-Newton technique is recommended, which does not require
second-order derivatives.

Displayed Output

This section describes the displayed output from PROC NLMIXED. See the section
“ODS Table Names”on page 3107 for details about how this output interfaces with
the Output Delivery System.

Specifications

The NLMIXED procedure first displays the “Specifications” table, listing basic in-
formation about the nonlinear mixed model that you have specified. It includes the
principal variables and estimation methods.

Dimensions

The “Dimensions” table lists counts of important quantities in your nonlinear mixed
model, including the number of observations, subjects, parameters, and quadrature
points.

Parameters

The “Parameters” table displays the information you provided with the PARMS state-
ment and the value of the negative log likelihood function evaluated at the starting
values.

Starting Gradient and Hessian

The START option in the PROC NLMIXED statement displays the gradient of the
negative log likelihood function at the starting values of the parameters. If you also
specify the HESS option, then the starting Hessian is displayed as well.

Iterations

The iteration history consists of one line of output for each iteration in the optimiza-
tion process. The iteration history is displayed by default because it is important that
you check for possible convergence problems. The default iteration history includes
the following variables:

• Iter, the iteration number

• Calls, the number of function calls
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• NegLogLike, the value of the objective function

• Diff, the difference between adjacent function values

• MaxGrad, the maximum of the absolute (projected) gradient components (ex-
cept NMSIMP)

• Slope, the slopegT s of the search directions at the current parameter iterate
θ(k) (QUANEW only)

• Rho, the ratio between the achieved and predicted value of Diff (NRRIDG
only)

• Radius, the radius of the trust region (TRUREG only)

• StdDev, the standard deviation of the simplex values (NMSIMP only)

• Delta, the vertex length of the simplex (NMSIMP only)

• Size, the size of the simplex (NMSIMP only)

For the QUANEW method, the value of Slope should be significantly negative.
Otherwise, the line-search algorithm has difficulty reducing the function value suf-
ficiently. If this difficulty is encountered, an asterisk (*) appears after the iteration
number. If there is a tilde (∼) after the iteration number, the BFGS update is skipped,
and very high values of the Lagrange function are produced. A backslash (\ ) after
the iteration number indicates that Powell’s correction for the BFGS update is used.

For methods using second derivatives, an asterisk (*) after the iteration number means
that the computed Hessian approximation was singular and had to be ridged with a
positive value.

For the NMSIMP method, only one line is displayed for several internal iterations.
This technique skips the output for some iterations because some of the termination
tests (StdDev and Size) are rather time consuming compared to the simplex opera-
tions, and they are performed only every five simplex operations.

The ITDETAILS option in the PROC NLMIXED statement provides a more detailed
iteration history. Besides listing the current values of the parameters and their gradi-
ents, the following values are provided in addition to the default output:

• Restart, the number of iteration restarts

• Active, the number of active constraints

• Lambda, the value of the Lagrange multiplier (TRUREG and DBLDOG only)

• Ridge, the ridge value (NRRIDG only)

• Alpha, the line-search step size (QUANEW only)

An apostrophe (’) trailing the number of active constraints indicates that at least one
of the active constraints was released from the active set due to a significant Lagrange
multiplier.
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Fitting Information

The “Fitting Information” table lists the final minimized value of−2 times the log
likelihood as well as the information criteria of Akaike (AIC) and Schwarz (BIC), as
well as a finite-sample corrected version of AIC (AICC). The criteria are computed
as follows:

AIC = 2f(θ̂) + 2p

AICC = 2f(θ̂) + 2pn/(n− p− 1)

BIC = 2f(θ̂) + p log(s)

wheref() is the negative of the marginal log likelihood function,θ̂ is the vector of
parameter estimates,p is the number of parameters,n is the number of observations,
ands is the number of subjects. Refer to Hurvich and Tsai (1989) and Burnham and
Anderson (1998) for additional details.

Parameter Estimates

The “Parameter Estimates” table lists the estimates of the parameter values after suc-
cessful convergence of the optimization problem or the final values of the parameters
under nonconvergence. If the problem did converge, standard errors are computed
from the final Hessian matrix. The ratio of the estimate with its standard error pro-
duces at value, with approximate degrees of freedom computed as the number of
subjects minus the number of random effects. Ap-value and confidence limits based
on thist distribution are also provided. Finally, the gradient of the negative log like-
lihood function is displayed for each parameter, and you should verify that they each
are sufficiently small for non-constrained parameters.

Covariance and Correlation Matrices

Following standard maximum likelihood theory (for example, Serfling 1980), the
asymptotic variance-covariance matrix of the parameter estimates equals the inverse
of the Hessian matrix. You can display this matrix with the COV option in the
PROC NLMIXED statement. The corresponding correlation form is available with
the CORR option.

Additional Estimates

The “Additional Estimates” table displays the results of all ESTIMATE statements
that you specify, with the same columns as the “Parameter Estimates” table. The
ECOV and ECORR options in the PROC NLMIXED statement produce tables dis-
playing the approximate covariance and correlation matrices of the additional esti-
mates. They are computed using the delta method (Billingsley 1986; Cox 1998).
The EDER option in the PROC NLMIXED statement produces a table displaying the
derivatives of the additional estimates with respect to the model parameters evaluated
at their final estimated values.
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ODS Table Names

PROC NLMIXED assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 51.2. ODS Tables Produced in PROC NLMIXED

ODS Table Name Description Statement or Option
AdditionalEstimates Results from ESTIMATE statements ESTIMATE
ConvergenceStatus Convergence status default
CorrMatAddEst Correlation matrix of additional estimates ECORR
CorrMatParmEst Correlation matrix of parameter estimates CORR
CovMatAddEst Covariance matrix of additional estimates ECOV
CovMatParmEst Covariance matrix of parameter estimates COV
DerAddEst Derivatives of additional estimates EDER
Dimensions Dimensions of the problem default
FitStatistics Fit statistics default
Hessian Second derivative matrix HESS
IterHistory Iteration history default
Parameters Parameters default
ParameterEstimates Parameter estimates default
Specifications Model specifications default
StartingHessian Starting hessian matrix START HESS
StartingValues Starting values and gradient START

Examples

Example 51.1. One-Compartment Model with Pharmaco-
kinetic Data

A popular application of nonlinear mixed models is in the field of pharmacokinetics,
which studies how a drug disperses through a living individual. This example con-
siders the theophylline data from Pinheiro and Bates (1995). Serum concentrations
of the drug theophylline are measured in 12 subjects over a 25-hour period after oral
administration. The data are as follows.

data theoph;
input subject time conc dose wt;
datalines;

1 0.00 0.74 4.02 79.6
1 0.25 2.84 4.02 79.6
1 0.57 6.57 4.02 79.6
1 1.12 10.50 4.02 79.6
1 2.02 9.66 4.02 79.6
1 3.82 8.58 4.02 79.6
1 5.10 8.36 4.02 79.6
1 7.03 7.47 4.02 79.6
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1 9.05 6.89 4.02 79.6
1 12.12 5.94 4.02 79.6
1 24.37 3.28 4.02 79.6
2 0.00 0.00 4.40 72.4
2 0.27 1.72 4.40 72.4
2 0.52 7.91 4.40 72.4
2 1.00 8.31 4.40 72.4
2 1.92 8.33 4.40 72.4
2 3.50 6.85 4.40 72.4
2 5.02 6.08 4.40 72.4
2 7.03 5.40 4.40 72.4
2 9.00 4.55 4.40 72.4
2 12.00 3.01 4.40 72.4
2 24.30 0.90 4.40 72.4
3 0.00 0.00 4.53 70.5
3 0.27 4.40 4.53 70.5
3 0.58 6.90 4.53 70.5
3 1.02 8.20 4.53 70.5
3 2.02 7.80 4.53 70.5
3 3.62 7.50 4.53 70.5
3 5.08 6.20 4.53 70.5
3 7.07 5.30 4.53 70.5
3 9.00 4.90 4.53 70.5
3 12.15 3.70 4.53 70.5
3 24.17 1.05 4.53 70.5
4 0.00 0.00 4.40 72.7
4 0.35 1.89 4.40 72.7
4 0.60 4.60 4.40 72.7
4 1.07 8.60 4.40 72.7
4 2.13 8.38 4.40 72.7
4 3.50 7.54 4.40 72.7
4 5.02 6.88 4.40 72.7
4 7.02 5.78 4.40 72.7
4 9.02 5.33 4.40 72.7
4 11.98 4.19 4.40 72.7
4 24.65 1.15 4.40 72.7
5 0.00 0.00 5.86 54.6
5 0.30 2.02 5.86 54.6
5 0.52 5.63 5.86 54.6
5 1.00 11.40 5.86 54.6
5 2.02 9.33 5.86 54.6
5 3.50 8.74 5.86 54.6
5 5.02 7.56 5.86 54.6
5 7.02 7.09 5.86 54.6
5 9.10 5.90 5.86 54.6
5 12.00 4.37 5.86 54.6
5 24.35 1.57 5.86 54.6
6 0.00 0.00 4.00 80.0
6 0.27 1.29 4.00 80.0
6 0.58 3.08 4.00 80.0
6 1.15 6.44 4.00 80.0
6 2.03 6.32 4.00 80.0
6 3.57 5.53 4.00 80.0
6 5.00 4.94 4.00 80.0
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6 7.00 4.02 4.00 80.0
6 9.22 3.46 4.00 80.0
6 12.10 2.78 4.00 80.0
6 23.85 0.92 4.00 80.0
7 0.00 0.15 4.95 64.6
7 0.25 0.85 4.95 64.6
7 0.50 2.35 4.95 64.6
7 1.02 5.02 4.95 64.6
7 2.02 6.58 4.95 64.6
7 3.48 7.09 4.95 64.6
7 5.00 6.66 4.95 64.6
7 6.98 5.25 4.95 64.6
7 9.00 4.39 4.95 64.6
7 12.05 3.53 4.95 64.6
7 24.22 1.15 4.95 64.6
8 0.00 0.00 4.53 70.5
8 0.25 3.05 4.53 70.5
8 0.52 3.05 4.53 70.5
8 0.98 7.31 4.53 70.5
8 2.02 7.56 4.53 70.5
8 3.53 6.59 4.53 70.5
8 5.05 5.88 4.53 70.5
8 7.15 4.73 4.53 70.5
8 9.07 4.57 4.53 70.5
8 12.10 3.00 4.53 70.5
8 24.12 1.25 4.53 70.5
9 0.00 0.00 3.10 86.4
9 0.30 7.37 3.10 86.4
9 0.63 9.03 3.10 86.4
9 1.05 7.14 3.10 86.4
9 2.02 6.33 3.10 86.4
9 3.53 5.66 3.10 86.4
9 5.02 5.67 3.10 86.4
9 7.17 4.24 3.10 86.4
9 8.80 4.11 3.10 86.4
9 11.60 3.16 3.10 86.4
9 24.43 1.12 3.10 86.4

10 0.00 0.24 5.50 58.2
10 0.37 2.89 5.50 58.2
10 0.77 5.22 5.50 58.2
10 1.02 6.41 5.50 58.2
10 2.05 7.83 5.50 58.2
10 3.55 10.21 5.50 58.2
10 5.05 9.18 5.50 58.2
10 7.08 8.02 5.50 58.2
10 9.38 7.14 5.50 58.2
10 12.10 5.68 5.50 58.2
10 23.70 2.42 5.50 58.2
11 0.00 0.00 4.92 65.0
11 0.25 4.86 4.92 65.0
11 0.50 7.24 4.92 65.0
11 0.98 8.00 4.92 65.0
11 1.98 6.81 4.92 65.0
11 3.60 5.87 4.92 65.0
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11 5.02 5.22 4.92 65.0
11 7.03 4.45 4.92 65.0
11 9.03 3.62 4.92 65.0
11 12.12 2.69 4.92 65.0
11 24.08 0.86 4.92 65.0
12 0.00 0.00 5.30 60.5
12 0.25 1.25 5.30 60.5
12 0.50 3.96 5.30 60.5
12 1.00 7.82 5.30 60.5
12 2.00 9.72 5.30 60.5
12 3.52 9.75 5.30 60.5
12 5.07 8.57 5.30 60.5
12 7.07 6.59 5.30 60.5
12 9.03 6.11 5.30 60.5
12 12.05 4.57 5.30 60.5
12 24.15 1.17 5.30 60.5
run;

Pinheiro and Bates (1995) consider the following first-order compartment model for
these data:

Cit =
Dkeikai

Cli(kai − kei)
[exp(−keit)− exp(−kait)] + eit

whereCit is the observed concentration of theith subject at timet, D is the dose of
theophylline,kei is the elimination rate constant for subjecti, kai is the absorption
rate constant for subjecti, Cli is the clearance for subjecti, andeit are normal errors.
To allow for random variability between subjects, they assume

Cli = exp(β1 + bi1)
kai = exp(β2 + bi2)
kei = exp(β3)

where theβs denote fixed-effects parameters and thebis denote random-effects pa-
rameters with an unknown covariance matrix.

The PROC NLMIXED statements to fit this model are as follows.

proc nlmixed data=theoph;
parms beta1=-3.22 beta2=0.47 beta3=-2.45

s2b1=0.03 cb12=0 s2b2=0.4 s2=0.5;
cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject;

run;

The PARMS statement specifies starting values for the threeβs and four variance-
covariance parameters. The clearance and rate constants are defined using SAS pro-
gramming statements, and the conditional model for the data is defined to be normal
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with mean PRED and variance S2. The two random effects are B1 and B2, and their
joint distribution is defined in the RANDOM statement. Brackets are used in defin-
ing their mean vector (two zeroes) and the lower triangle of their variance-covariance
matrix (a general2× 2 matrix). The SUBJECT= variable is SUBJECT.

The results from this analysis are as follows.

The NLMIXED Procedure

Specifications

Data Set WORK.THEOPH
Dependent Variable conc
Distribution for Dependent Variable Normal
Random Effects b1 b2
Distribution for Random Effects Normal
Subject Variable subject
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table lists the set up of the model.

The NLMIXED Procedure

Dimensions

Observations Used 132
Observations Not Used 0
Total Observations 132
Subjects 12
Max Obs Per Subject 11
Parameters 7
Quadrature Points 5

The “Dimensions” table indicates that there are 132 observations, 12 subjects, and
7 parameters. PROC NLMIXED selects 5 quadrature points for each random effect,
producing a total grid of 25 points over which quadrature is performed.
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The NLMIXED Procedure

Parameters

beta1 beta2 beta3 s2b1 cb12 s2b2 s2 NegLogLike

-3.22 0.47 -2.45 0.03 0 0.4 0.5 177.789945

The “Parameters” table lists the 7 parameters, their starting values, and the initial
evaluation of the negative log likelihood using adaptive Gaussian quadrature.

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 5 177.776248 0.013697 2.873367 -63.0744
2 8 177.7643 0.011948 1.698144 -4.75239
3 10 177.757264 0.007036 1.297439 -1.97311
4 12 177.755688 0.001576 1.441408 -0.49772
5 14 177.7467 0.008988 1.132279 -0.8223
6 17 177.746401 0.000299 0.831293 -0.00244
7 19 177.746318 0.000083 0.724198 -0.00789
8 21 177.74574 0.000578 0.180018 -0.00583
9 23 177.745736 3.88E-6 0.017958 -8.25E-6

10 25 177.745736 3.222E-8 0.000143 -6.51E-8

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates that 10 steps are required for the dual quasi-Newton
algorithm to achieve convergence.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 355.5
AIC (smaller is better) 369.5
AICC (smaller is better) 370.4
BIC (smaller is better) 372.9

The “Fitting Information” table lists the final optimized values of the log likelihood
function and two information criteria in two different forms.
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The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

beta1 -3.2268 0.05950 10 -54.23 <.0001 0.05 -3.3594
beta2 0.4806 0.1989 10 2.42 0.0363 0.05 0.03745
beta3 -2.4592 0.05126 10 -47.97 <.0001 0.05 -2.5734
s2b1 0.02803 0.01221 10 2.30 0.0445 0.05 0.000833
cb12 -0.00127 0.03404 10 -0.04 0.9710 0.05 -0.07712
s2b2 0.4331 0.2005 10 2.16 0.0560 0.05 -0.01353
s2 0.5016 0.06837 10 7.34 <.0001 0.05 0.3493

Parameter Estimates

Parameter Upper Gradient

beta1 -3.0942 -0.00009
beta2 0.9238 3.645E-7
beta3 -2.3449 0.000039
s2b1 0.05523 -0.00014
cb12 0.07458 -0.00007
s2b2 0.8798 -6.98E-6
s2 0.6540 6.133E-6

The “Parameter Estimates” table contains the maximum likelihood estimates of the
parameters. Both S2B1 and S2B2 are marginally significant, indicating between-
subject variability in the clearances and absorption rate constants, respectively. There
does not appear to be a significant covariance between them, as seen by the estimate
of CB12.

The estimates ofβ1, β2, andβ3 are close to the adaptive quadrature estimates listed in
Table 3 of Pinheiro and Bates (1995). However, Pinheiro and Bates use a Cholesky-
root parameterization for the random-effects variance matrix and a logarithmic pa-
rameterization for the residual variance. The PROC NLMIXED statements using
their parameterization are as follows, and results are similar.

proc nlmixed data=theoph;
parms ll1=-1.5 l2=0 ll3=-0.1 beta1=-3 beta2=0.5 beta3=-2.5

ls2=-0.7;
s2 = exp(ls2);
l1 = exp(ll1);
l3 = exp(ll3);
s2b1 = l1*l1*s2;
cb12 = l2*l1*s2;
s2b2 = (l2*l2 + l3*l3)*s2;
cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject;

run;
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Example 51.2. Probit-Normal Model with Binomial Data

For this example, consider the data from Weil (1970), also studied by Williams
(1975), Ochi and Prentice (1984), and McCulloch (1994). In this experiment 16
pregnant rats receive a control diet and 16 receive a chemically treated diet, and the
litter size for each rat is recorded after 4 and 21 days. The SAS data set is a follows.

data rats;
input trt$ m x;
if (trt=’c’) then do;

x1 = 1;
x2 = 0;

end;
else do;

x1 = 0;
x2 = 1;

end;
litter = _n_;
datalines;

c 13 13
c 12 12
c 9 9
c 9 9
c 8 8
c 8 8
c 13 12
c 12 11
c 10 9
c 10 9
c 9 8
c 13 11
c 5 4
c 7 5
c 10 7
c 10 7
t 12 12
t 11 11
t 10 10
t 9 9
t 11 10
t 10 9
t 10 9
t 9 8
t 9 8
t 5 4
t 9 7
t 7 4
t 10 5
t 6 3
t 10 3
t 7 0
run;
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Here, M represents the size of the litter after 4 days, and X represents the size of the
litter after 21 days. Also, indicator variables X1 and X2 are constructed for the two
treatment levels.

Following McCulloch (1994), assume a latent survival model of the form

yijk = ti + αij + eijk

wherei indexes treatment,j indexes litter, andk indexes newborn rats within a litter.
The ti represent treatment means, theαij represent random litter effects assumed to
be iidN(0, s2

i ), and theeijk represent iid residual errors, all on the latent scale.

Instead of observing the survival timesyijk, assume that only the binary variable
indicating whetheryijk exceeds 0 is observed. Ifxij denotes the sum of these binary
variables for theith treatment and thejth litter, then the preceding assumptions lead
to the following generalized linear mixed model:

xij |αij ∼ Binomial(mij , pij)

wheremij is the size of each litter after 4 days and

pij = Φ(ti + αij)

The PROC NLMIXED statements to fit this model are as follows.

proc nlmixed data=rats;
parms t1=1 t2=1 s1=.05 s2=1;
eta = x1*t1 + x2*t2 + alpha;
p = probnorm(eta);
model x ~ binomial(m,p);
random alpha ~ normal(0,x1*s1*s1+x2*s2*s2) subject=litter;
estimate ’gamma2’ t2/sqrt(1+s2*s2);
predict p out=p;

run;

As in the previous example, the PROC NLMIXED statement invokes the procedure
and the PARMS statement defines the parameters. The parameters for this example
are the two treatment means, T1 and T2, and the two random-effect standard devia-
tions, S1 and S2.

The indicator variables X1 and X2 are used in the program to assign the proper mean
to each observation in the input data set as well as the proper variance to the random
effects. Note that programming expressions are permitted inside the distributional
specifications, as illustrated by the random-effects variance specified here.

The ESTIMATE statement requests an estimate ofγ2 = t2/
√

1 + s2
2, which is a

location-scale parameter from Ochi and Prentice (1984).

The PREDICT statement constructs predictions for each observation in the input data
set. For this example, predictions of P and approximate standard errors of prediction
are output to a SAS data set named P. These predictions are functions of the parameter
estimates and the empirical Bayes estimates of the random effectsαi.
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The output for this model is as follows.

The NLMIXED Procedure

Specifications

Data Set WORK.RATS
Dependent Variable x
Distribution for Dependent Variable Binomial
Random Effects alpha
Distribution for Random Effects Normal
Subject Variable litter
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table provides basic information about this nonlinear mixed
model.

The NLMIXED Procedure

Dimensions

Observations Used 32
Observations Not Used 0
Total Observations 32
Subjects 32
Max Obs Per Subject 1
Parameters 4
Quadrature Points 7

The “Dimensions” table provides counts of various variables.

The NLMIXED Procedure

Parameters

t1 t2 s1 s2 NegLogLike

1 1 0.05 1 54.9362323

The “Parameters” table lists the starting point of the optimization.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 53.9933934 0.942839 11.03261 -81.9428
2 3 52.875353 1.11804 2.148952 -2.86277
3 5 52.6350386 0.240314 0.329957 -1.05049
4 6 52.6319939 0.003045 0.122926 -0.00672
5 8 52.6313583 0.000636 0.028246 -0.00352
6 11 52.6313174 0.000041 0.013551 -0.00023
7 13 52.6313115 5.839E-6 0.000603 -0.00001
8 15 52.6313115 9.45E-9 0.000022 -1.68E-8

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in 8 iterations.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 105.3
AIC (smaller is better) 113.3
AICC (smaller is better) 114.7
BIC (smaller is better) 119.1

The “Fitting Information” table lists some useful statistics based on the maximized
value of the log likelihood.

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

t1 1.3063 0.1685 31 7.75 <.0001 0.05 0.9626
t2 0.9475 0.3055 31 3.10 0.0041 0.05 0.3244
s1 0.2403 0.3015 31 0.80 0.4315 0.05 -0.3746
s2 1.0292 0.2988 31 3.44 0.0017 0.05 0.4198

Parameter Estimates

Parameter Upper Gradient

t1 1.6499 -0.00002
t2 1.5705 9.283E-6
s1 0.8552 0.000014
s2 1.6385 -3.16E-6

The “Parameter Estimates” table indicates significance of all of the parameters except
S1.
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The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

gamma2 0.6603 0.2165 31 3.05 0.0047 0.05 0.2186 1.1019

The “Additional Estimates” table displays results from the ESTIMATE statement.
The estimate ofγ2 equals0.66, agreeing with that obtained by McCulloch (1994).
The standard error0.22 is computed using the delta method (Billingsley 1986; Cox,
1998).

Not shown is the P data set, which contains the original 32 observations and predic-
tions of thepij .

Example 51.3. Probit-Normal Model with Ordinal Data

The data for this example are from Ezzet and Whitehead (1991), who describe a
crossover experiment on two groups of patients using two different inhaler devices
(A and B). Patients from group 1 used device A for one week and then device B
for another week. Patients from group 2 used the devices in reverse order. The data
entered as a SAS data set are as follows.

data inhaler;
input clarity group time freq;
gt = group*time;
sub = floor((_n_+1)/2);
datalines;

1 0 0 59
1 0 1 59
1 0 0 35
2 0 1 35
1 0 0 3
3 0 1 3
1 0 0 2
4 0 1 2
2 0 0 11
1 0 1 11
2 0 0 27
2 0 1 27
2 0 0 2
3 0 1 2
2 0 0 1
4 0 1 1
4 0 0 1
1 0 1 1
4 0 0 1
2 0 1 1
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1 1 0 63
1 1 1 63
1 1 0 13
2 1 1 13
2 1 0 40
1 1 1 40
2 1 0 15
2 1 1 15
3 1 0 7
1 1 1 7
3 1 0 2
2 1 1 2
3 1 0 1
3 1 1 1
4 1 0 2
1 1 1 2
4 1 0 1
3 1 1 1
run;

The response measurement, CLARITY, is the patients’ assessment on the clarity of
the leaflet instructions for the devices. The CLARITY variable is on an ordinal scale,
with 1=easy, 2=only clear after rereading, 3=not very clear, and 4=confusing. The
GROUP variable indicates the treatment group and the TIME variable indicates the
time of measurement. The FREQ variable indicates the number of patients with ex-
actly the same responses. A variable GT is created to indicate a group by time inter-
action, and a variable SUB is created to indicate patients.

As in the previous example and in Hedeker and Gibbons (1994), assume an underly-
ing latent continuous variable, here with the form

yij = β0 + β1gi + β2tj + β3gitj + ui + eij

wherei indexes patient andj indexes the time period,gi indicates groups,tj indicates
time,ui is a patient-level normal random effect, andeij are iid normal errors. Theβs
are unknown coefficients to be estimated.

Instead of observingyij , though, you observe only whether it falls in one of the four
intervals:(−∞, 0), (0, I1), (I1, I1+I2), or (I1+I2,∞), whereI1 andI2 are both
positive. The resulting category is the value assigned to the CLARITY variable.

The following code sets up and fits this ordinal probit model:
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proc nlmixed data=inhaler corr ecorr;
parms b0=0 b1=0 b2=0 b3=0 sd=1 i1=1 i2=1;
bounds i1 > 0, i2 > 0;
eta = b0 + b1*group + b2*time + b3*gt + u;
if (clarity=1) then p = probnorm(-eta);
else if (clarity=2) then

p = probnorm(i1-eta) - probnorm(-eta);
else if (clarity=3) then

p = probnorm(i1+i2-eta) - probnorm(i1-eta);
else p = 1 - probnorm(i1+i2-eta);
if (p > 1e-8) then ll = log(p);
else ll = -1e100;
model clarity ~ general(ll);
random u ~ normal(0,sd*sd) subject=sub;
replicate freq;
estimate ’thresh2’ i1;
estimate ’thresh3’ i1 + i2;
estimate ’icc’ sd*sd/(1+sd*sd);

run;

The PROC statement specifies the input data set and requests correlations both for
the parameter estimates (CORR option) and the additional estimates specified with
ESTIMATE statements (ECORR option).

The parameters as defined in the PARMS statement are as follows. B0 (overall inter-
cept), B1 (group main effect), B2 (time main effect), B3 (group by time interaction),
SD (standard deviation of the random effect), I1 (increment between first and second
thresholds), and I2 (increment between second and third thresholds). The BOUNDS
statement restricts I1 and I2 to be positive.

The SAS programming statements begin by defining the linear predictor ETA, which
is a linear combination of the B parameters and a single random effect U. The next
statements define the ordinal likelihood according to the CLARITY variable, ETA,
and the increment variables. An error trap is included in case the likelihood becomes
too small.

A general log likelihood specification is used in the MODEL statement, and the
RANDOM statement defines the random effect U to have standard deviation SD and
subject variable SUB. The REPLICATE statement indicates that data for each subject
should be replicated according to the FREQ variable.

The ESTIMATE statements specify the second and third thresholds in terms of the
increment variables (the first threshold is assumed to equal zero for model identifia-
bility). Also computed is the intraclass correlation.

The output is as follows.
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The NLMIXED Procedure

Specifications

Data Set WORK.INHALER
Dependent Variable clarity
Distribution for Dependent Variable General
Random Effects u
Distribution for Random Effects Normal
Subject Variable sub
Replicate Variable freq
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table echoes some primary information specified for this non-
linear mixed model.

The NLMIXED Procedure

Dimensions

Observations Used 38
Observations Not Used 0
Total Observations 38
Subjects 286
Max Obs Per Subject 2
Parameters 7
Quadrature Points 5

The “Dimensions” table reveals a total of 286 subjects, which is the sum of the values
of the FREQ variable. Five quadrature points are selected for log likelihood evalua-
tion.

The NLMIXED Procedure

Parameters

b0 b1 b2 b3 sd i1 i2 NegLogLike

0 0 0 0 1 1 1 538.484276

The “Parameters” table lists the simple starting values for this problem.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 476.382511 62.10176 43.75062 -1431.4
2 4 463.228197 13.15431 14.24648 -106.753
3 5 458.528118 4.70008 48.31316 -33.0389
4 6 450.975735 7.552383 22.60098 -40.9954
5 8 448.012701 2.963033 14.86877 -16.7453
6 10 447.245153 0.767549 7.774189 -2.26743
7 11 446.72767 0.517483 3.793533 -1.59278
8 13 446.518273 0.209396 0.868638 -0.37801
9 16 446.514528 0.003745 0.328568 -0.02356

10 18 446.513341 0.001187 0.056778 -0.00183
11 20 446.513314 0.000027 0.010785 -0.00004
12 22 446.51331 3.956E-6 0.004922 -5.41E-6
13 24 446.51331 1.989E-7 0.00047 -4E-7

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in 13 iterations.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 893.0
AIC (smaller is better) 907.0
AICC (smaller is better) 910.8
BIC (smaller is better) 932.6

The “Fitting Information” table lists the log likelihood and information criteria.



Example 51.3. Probit-Normal Model with Ordinal Data � 3123

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

b0 -0.6364 0.1342 285 -4.74 <.0001 0.05 -0.9006
b1 0.6007 0.1770 285 3.39 0.0008 0.05 0.2523
b2 0.6015 0.1582 285 3.80 0.0002 0.05 0.2900
b3 -1.4817 0.2385 285 -6.21 <.0001 0.05 -1.9512
sd 0.6599 0.1312 285 5.03 <.0001 0.05 0.4017
i1 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548
i2 0.5985 0.1427 285 4.19 <.0001 0.05 0.3177

Parameter Estimates

Parameter Upper Gradient

b0 -0.3722 0.00047
b1 0.9491 0.000265
b2 0.9129 0.00008
b3 -1.0122 0.000102
sd 0.9181 -0.00009
i1 2.0352 0.000202
i2 0.8794 0.000087

The “Parameter Estimates” table indicates significance of all of the parameters.

The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

thresh2 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352
thresh3 2.3435 0.2073 285 11.31 <.0001 0.05 1.9355 2.7515
icc 0.3034 0.08402 285 3.61 0.0004 0.05 0.1380 0.4687

The “Additional Estimates” table displays results from the ESTIMATE statements.
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Example 51.4. Poisson-Normal Model with Count Data

This example uses the pump failure data of Gaver and O’Muircheartaigh (1987). The
number of failures and the time of operation are recorded for 10 pumps. Each of
the pumps is classified into one of two groups corresponding to either continuous or
intermittent operation. The data are as follows.

data pump;
input y t group;
pump = _n_;
logtstd = log(t) - 2.4564900;
datalines;

5 94.320 1
1 15.720 2
5 62.880 1

14 125.760 1
3 5.240 2

19 31.440 1
1 1.048 2
1 1.048 2
4 2.096 2

22 10.480 2
run;

Each row denotes data for a single pump, and the variable LOGTSTD contains the
centered operation times.

Letting yij denote the number of failures for thejth pump in theith group, Draper
(1996) considers the following hierarchical model for these data:

yij |λij ∼ Poisson(λij)
log λij = αi + βi(log tij − log t) + eij

eij |σ2 ∼ Normal(0, σ2)

The model specifies different intercepts and slopes for each group, and the random
effect is a mechanism for accounting for overdispersion.

The corresponding PROC NLMIXED statements are as follows.

proc nlmixed data=pump;
parms logsig 0 beta1 1 beta2 1 alpha1 1 alpha2 1;
if (group = 1) then eta = alpha1 + beta1*logtstd + e;
else eta = alpha2 + beta2*logtstd + e;
lambda = exp(eta);
model y ~ poisson(lambda);
random e ~ normal(0,exp(2*logsig)) subject=pump;
estimate ’alpha1-alpha2’ alpha1-alpha2;
estimate ’beta1-beta2’ beta1-beta2;

run;
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The output is as follows.

The NLMIXED Procedure

Specifications

Data Set WORK.PUMP
Dependent Variable y
Distribution for Dependent Variable Poisson
Random Effects e
Distribution for Random Effects Normal
Subject Variable pump
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table displays some details for this Poisson-Normal model.

The NLMIXED Procedure

Dimensions

Observations Used 10
Observations Not Used 0
Total Observations 10
Subjects 10
Max Obs Per Subject 1
Parameters 5
Quadrature Points 5

The “Dimensions” table indicates that data for 10 pumps are used with one observa-
tion for each.

The NLMIXED Procedure

Parameters

logsig beta1 beta2 alpha1 alpha2 NegLogLike

0 1 1 1 1 32.8614614

The “Parameters” table lists the simple starting values for this problem and the initial
evaluation of the negative log likelihood.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 30.6986932 2.162768 5.107253 -91.602
2 5 30.0255468 0.673146 2.761738 -11.0489
3 7 29.726325 0.299222 2.990401 -2.36048
4 9 28.7390263 0.987299 2.074431 -3.93678
5 10 28.3161933 0.422833 0.612531 -0.63084
6 12 28.09564 0.220553 0.462162 -0.52684
7 14 28.0438024 0.051838 0.405047 -0.10018
8 16 28.0357134 0.008089 0.135059 -0.01875
9 18 28.033925 0.001788 0.026279 -0.00514

10 20 28.0338744 0.000051 0.00402 -0.00012
11 22 28.0338727 1.681E-6 0.002864 -5.09E-6
12 24 28.0338724 3.199E-7 0.000147 -6.87E-7
13 26 28.0338724 2.532E-9 0.000017 -5.75E-9

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in 13 iterations.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 56.1
AIC (smaller is better) 66.1
AICC (smaller is better) 81.1
BIC (smaller is better) 67.6

The “Fitting Information” table lists the final log likelihood and associated informa-
tion criteria.
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The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

logsig -0.3161 0.3213 9 -0.98 0.3508 0.05 -1.0429
beta1 -0.4256 0.7473 9 -0.57 0.5829 0.05 -2.1162
beta2 0.6097 0.3814 9 1.60 0.1443 0.05 -0.2530
alpha1 2.9644 1.3826 9 2.14 0.0606 0.05 -0.1632
alpha2 1.7992 0.5492 9 3.28 0.0096 0.05 0.5568

Parameter Estimates

Parameter Upper Gradient

logsig 0.4107 -0.00002
beta1 1.2649 -0.00002
beta2 1.4724 -1.61E-6
alpha1 6.0921 -5.25E-6
alpha2 3.0415 -5.73E-6

The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower

alpha1-alpha2 1.1653 1.4855 9 0.78 0.4529 0.05 -2.1952
beta1-beta2 -1.0354 0.8389 9 -1.23 0.2484 0.05 -2.9331

Additional Estimates

Label Upper

alpha1-alpha2 4.5257
beta1-beta2 0.8623

The “Parameter Estimates” and “Additional Estimates” tables list the maximum like-
lihood estimates for each of the parameters and two differences. The point estimates
for the mean parameters agree fairly closely with the Bayesian posterior means re-
ported by Draper (1996); however, the likelihood-based standard errors are roughly
half the Bayesian posterior standard deviations. This is most likely due to the fact
that the Bayesian standard deviations account for the uncertainty in estimatingσ2,
whereas the likelihood values plug in its estimated value. This downward bias can be
corrected somewhat by using thet9 distribution shown here.
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Example 51.5. Failure Time and Frailty Model

In this example an accelerated failure time model with proportional hazard is fitted
with and without random effects. The data are from the “Getting Started” example of
PROC LIFEREG, seeChapter 39, “The LIFEREG Procedure.”Thirty-eight patients
are divided into two groups of equal size, and different pain relievers are assigned
to each group. The outcome reported is the time in minutes until headache relief.
The variablecensor indicates whether relief was observed during the course of the
observation period (censor = 0) or whether the observation is censored (censor =
1).

data headache;
input minutes group censor @@;
patient = _n_;
datalines;

11 1 0 12 1 0 19 1 0 19 1 0
19 1 0 19 1 0 21 1 0 20 1 0
21 1 0 21 1 0 20 1 0 21 1 0
20 1 0 21 1 0 25 1 0 27 1 0
30 1 0 21 1 1 24 1 1 14 2 0
16 2 0 16 2 0 21 2 0 21 2 0
23 2 0 23 2 0 23 2 0 23 2 0
25 2 1 23 2 0 24 2 0 24 2 0
26 2 1 32 2 1 30 2 1 30 2 0
32 2 1 20 2 1
;

In modeling survival data, censoring of observations must be taken into account care-
fully. In this example, only right censoring occurs. Ifg(t,β), h(t, β), andG(t, β)
denote the density of failure, hazard function, and survival distribution function at
time t, respectively, the log-likelihood can be written as

l(β; t) =
∑
i∈Uu

log f(ti,β) +
∑
i∈Uc

log G(ti,β)

=
∑
i∈Uu

log h(ti,β) +
n∑

i=1

log G(ti,β)

Refer to Cox and Oakes (1984, ch. 3). In these expressionsUu is the set of uncensored
observations,Uc is the set of censored observations, andn denotes the total sample
size.

The proportional hazards specification expresses the hazard in terms of a baseline
hazard, multiplied by a constant. In this example the hazard is that of a Weibull
model and is parameterized ash(t,β) = γα(αt)γ−1 andα = exp{−x′β}.

The linear predictor is set equal to the intercept in the reference group (group = 2);
this defines the baseline hazard. The corresponding distribution of survival past time
t is G(t,β) = exp{−(αt)γ}. Refer to Cox and Oakes (1984, Table 2.1) and the
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section“Supported Distributions”in Chapter 39, “The LIFEREG Procedure,”for
this and other survival distribution models and various parameterizations.

The following NLMIXED statements fit this accelerated failure time model and esti-
mate the cumulative distribution function of time to headache relief.

proc nlmixed data=headache;
bounds gamma > 0;
linp = b0 - b1*(group-2);
alpha = exp(-linp);
G_t = exp(-(alpha*minutes)**gamma);
g = gamma*alpha*((alpha*minutes)**(gamma-1))*G_t;
ll = (censor=0)*log(g) + (censor=1)*log(G_t);
model minutes ~ general(ll);
predict 1-G_t out=cdf;

run;
proc print data=cdf;

var group censor patient minutes pred;
run;

Output 51.5.1. Analysis Results for Failure Time Model

The NLMIXED Procedure

Specifications

Data Set WORK.HEADACHE
Dependent Variable minutes
Distribution for Dependent Variable General
Optimization Technique Dual Quasi-Newton
Integration Method None

The “Specifications” table shows that no integration is required, since the model does
not contain random effects.

The NLMIXED Procedure

Dimensions

Observations Used 38
Observations Not Used 0
Total Observations 38
Parameters 3
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The NLMIXED Procedure

Parameters

gamma b0 b1 NegLogLike

1 1 1 263.990327

No starting values were given for the three parameters. The NLMIXED procedure
assigns the default values in this case.

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 169.244311 94.74602 22.5599 -2230.83
2 4 142.873508 26.3708 14.88631 -3.64643
3 6 140.633695 2.239814 11.25234 -9.49454
4 8 122.890659 17.74304 19.44959 -2.50807
5 9 121.396959 1.493699 13.85584 -4.55427
6 11 120.623843 0.773116 13.67062 -1.38064
7 12 119.278196 1.345647 15.78014 -1.69072
8 14 116.271325 3.006871 26.94029 -3.2529
9 16 109.427401 6.843925 19.88382 -6.9289

10 19 103.298102 6.129298 12.15647 -4.96054
11 22 101.686239 1.611863 14.24868 -4.34059
12 23 100.027875 1.658364 11.69853 -13.2049
13 26 99.9189048 0.108971 3.602552 -0.55176
14 28 99.8738836 0.045021 0.170712 -0.16645
15 30 99.8736392 0.000244 0.050822 -0.00041
16 32 99.8736351 4.071E-6 0.000705 -6.9E-6
17 34 99.8736351 6.1E-10 4.768E-6 -1.23E-9

NOTE: GCONV convergence criterion satisfied.

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 199.7
AIC (smaller is better) 205.7
AICC (smaller is better) 206.5
BIC (smaller is better) 210.7

After 17 iterations and 34 evaluations of the objective function, the procedure con-
verges.
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The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

gamma 4.7128 0.6742 38 6.99 <.0001 0.05 3.3479
b0 3.3091 0.05885 38 56.23 <.0001 0.05 3.1900
b1 -0.1933 0.07856 38 -2.46 0.0185 0.05 -0.3523

Parameter Estimates

Parameter Upper Gradient

gamma 6.0777 5.327E-8
b0 3.4283 -4.77E-6
b1 -0.03426 -1.22E-6

The parameter estimates and their standard errors are identical to those obtained with
the LIFEREG procedure and the statements

proc lifereg data=headache;
class group;
model minutes*censor(1) = group / dist=weibull;

run;

The t statistic and confidence limits are based on 38 degrees of freedom. The
LIFEREG procedure computesz-intervals for the parameter estimates.

For the two groups you obtain

α̂(group= 1) = exp{−3.3091 + 0.1933} = 0.04434
α̂(group= 2) = exp{−3.3091} = 0.03655

The probabilities of headache relief byt minutes are estimated as

1−G(t, group= 1) = 1− exp{−(0.04434 ∗ t)4.7128}
1−G(t, group= 2) = 1− exp{−(0.03655 ∗ t)4.7128}

These probabilities, calculated at the observed times, are shown for the two groups in
Output 51.5.2.
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Output 51.5.2. Estimated Cumulative Distribution Function

Obs group censor patient minutes Pred

1 1 0 1 11 0.03336
2 1 0 2 12 0.04985
3 1 0 3 19 0.35975
4 1 0 4 19 0.35975
5 1 0 5 19 0.35975
6 1 0 6 19 0.35975
7 1 0 7 21 0.51063
8 1 0 8 20 0.43325
9 1 0 9 21 0.51063

10 1 0 10 21 0.51063
11 1 0 11 20 0.43325
12 1 0 12 21 0.51063
13 1 0 13 20 0.43325
14 1 0 14 21 0.51063
15 1 0 15 25 0.80315
16 1 0 16 27 0.90328
17 1 0 17 30 0.97846
18 1 1 18 21 0.51063
19 1 1 19 24 0.73838
20 2 0 20 14 0.04163
21 2 0 21 16 0.07667
22 2 0 22 16 0.07667
23 2 0 23 21 0.24976
24 2 0 24 21 0.24976
25 2 0 25 23 0.35674
26 2 0 26 23 0.35674
27 2 0 27 23 0.35674
28 2 0 28 23 0.35674
29 2 1 29 25 0.47982
30 2 0 30 23 0.35674
31 2 0 31 24 0.41678
32 2 0 32 24 0.41678
33 2 1 33 26 0.54446
34 2 1 34 32 0.87656
35 2 1 35 30 0.78633
36 2 0 36 30 0.78633
37 2 1 37 32 0.87656
38 2 1 38 20 0.20414

Since the slope estimate is negative withp-value of 0.0185, you can infer that pain
reliever 1 leads to overall significantly faster relief, but the estimated probabilities
give no information about patient-to-patient variation within and between groups.
For example, while pain reliever 1 provides faster relief overall, some patients in
group 2 may respond more quickly than other patients in group 1. A frailty model
enables you to accommodate and estimate patient-to-patient variation in health status
by introducing random effects into a subject’s hazard function.

The following statements model the hazard for patienti in terms of αi =
exp{−x′iβ − zi}, wherezi is a (normal) random patient effect. Notice that the only
difference from the previous NLMIXED statements are the RANDOM statement and
the addition ofz in the linear predictor. The empirical Bayes estimates of the random
effect (RANDOM statement), the parameter estimates (ODS OUTPUT statement),
and the estimated cumulative distribution function (PREDICT statement) are saved
to subsequently graph the patient-specific distribution functions.
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ods output ParameterEstimates=est;
proc nlmixed data=headache;

bounds gamma > 0;
linp = b0 - b1*(group-2) + z;
alpha = exp(-linp);
G_t = exp(-(alpha*minutes)**gamma);
g = gamma*alpha*((alpha*minutes)**(gamma-1))*G_t;
ll = (censor=0)*log(g) + (censor=1)*log(G_t);
model minutes ~ general(ll);
random z ~ normal(0,exp(2*logsig)) subject=patient out=EB;
predict 1-G_t out=cdf;

run;
proc print data=eb;

var patient effect estimate stderrpred;
run;

Output 51.5.3. Analysis Results for Frailty Model

The NLMIXED Procedure

Specifications

Data Set WORK.HEADACHE
Dependent Variable minutes
Distribution for Dependent Variable General
Random Effects z
Distribution for Random Effects Normal
Subject Variable patient
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table shows that the objective function is computed by adaptive
Gaussian quadrature. The “Dimensions” table reports that nine quadrature points are
being used to integrate over the random effects.

The NLMIXED Procedure

Dimensions

Observations Used 38
Observations Not Used 0
Total Observations 38
Subjects 38
Max Obs Per Subject 1
Parameters 4
Quadrature Points 9
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The NLMIXED Procedure

Parameters

gamma b0 b1 logsig NegLogLike

1 1 1 1 170.94366

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 5 142.121411 28.82225 12.14484 -88.8664
2 7 136.440369 5.681042 25.93096 -65.7217
3 9 122.972041 13.46833 46.56546 -146.887
4 11 120.904825 2.067216 23.77936 -94.2862
5 13 109.224144 11.68068 57.65493 -92.4075
6 15 105.064733 4.159411 4.824649 -19.5879
7 16 101.902207 3.162526 14.1287 -6.33767
8 18 99.6907395 2.211468 7.676822 -3.42364
9 20 99.3654033 0.325336 5.689204 -0.93978

10 22 99.2602178 0.105185 0.317643 -0.23408
11 24 99.254434 0.005784 1.17351 -0.00556
12 25 99.2456973 0.008737 0.247412 -0.00871
13 27 99.2445445 0.001153 0.104942 -0.00218
14 29 99.2444958 0.000049 0.005646 -0.0001
15 31 99.2444957 9.147E-8 0.000271 -1.84E-7

NOTE: GCONV convergence criterion satisfied.

The procedure converges after 15 iterations. The achieved -2 log likelihood is only
1.2 less than that in the model without random effects. Compared to a chi-square
distribution with one degree of freedom, the addition of the random effect appears
not to improve the model significantly. Care must be exercised, however, in the in-
terpretation of likelihood ratio tests when the value under the null hypothesis falls on
the boundary of the parameter space (refer to, for example, Self and Liang 1987).
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The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 198.5
AIC (smaller is better) 206.5
AICC (smaller is better) 207.7
BIC (smaller is better) 213.0

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

gamma 6.2867 2.1334 37 2.95 0.0055 0.05 1.9641
b0 3.2786 0.06576 37 49.86 <.0001 0.05 3.1453
b1 -0.1761 0.08264 37 -2.13 0.0398 0.05 -0.3436
logsig -1.9027 0.5273 37 -3.61 0.0009 0.05 -2.9711

Parameter Estimates

Parameter Upper Gradient

gamma 10.6093 -1.89E-7
b0 3.4118 0.000271
b1 -0.00868 0.000111
logsig -0.8343 0.000027

The estimate of the Weibull parameter has changed drastically from the model with-
out random effects. The variance of the patient random effect isexp{−2∗1.9027} =
0.02225. The next listing shows the empirical Bayes estimates of the random effects.
These are the adjustments made to the linear predictor in order to obtain a patient’s
survival distribution.
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StdErr
Obs patient Effect Estimate Pred

1 1 z -0.13597 0.23249
2 2 z -0.13323 0.22793
3 3 z -0.06294 0.13813
4 4 z -0.06294 0.13813
5 5 z -0.06294 0.13813
6 6 z -0.06294 0.13813
7 7 z -0.02568 0.11759
8 8 z -0.04499 0.12618
9 9 z -0.02568 0.11759

10 10 z -0.02568 0.11759
11 11 z -0.04499 0.12618
12 12 z -0.02568 0.11759
13 13 z -0.04499 0.12618
14 14 z -0.02568 0.11759
15 15 z 0.05980 0.11618
16 16 z 0.10458 0.12684
17 17 z 0.17147 0.14550
18 18 z 0.06471 0.13807
19 19 z 0.11157 0.14604
20 20 z -0.13406 0.22899
21 21 z -0.12698 0.21667
22 22 z -0.12698 0.21667
23 23 z -0.08506 0.15701
24 24 z -0.08506 0.15701
25 25 z -0.05797 0.13294
26 26 z -0.05797 0.13294
27 27 z -0.05797 0.13294
28 28 z -0.05797 0.13294
29 29 z 0.06420 0.13956
30 30 z -0.05797 0.13294
31 31 z -0.04266 0.12390
32 32 z -0.04266 0.12390
33 33 z 0.07618 0.14132
34 34 z 0.16292 0.16460
35 35 z 0.13193 0.15528
36 36 z 0.06327 0.12124
37 37 z 0.16292 0.16460
38 38 z 0.02074 0.14160

The predicted values and patient-specific survival distributions can be plotted with
the SAS code that follows.

data cdf; set cdf; symbolid = int((patient-1)/19);
proc transpose data=est(keep=estimate) out=trest;
data trest; set trest; rename col1=gamma col2=b0 col3=b1;
data pred; merge eb(keep=estimate)

headache(keep=patient group);
if _n_ = 1 then merge trest(keep=gamma b0 b1);
do minutes=11 to 32;

linp = b0 - b1*(group-2) + estimate;
pred = 1-exp(- (exp(-linp)*minutes)**gamma);
symbolid = patient+1;
output;

end;
keep pred minutes symbolid;

run;



Example 51.5. Failure Time and Frailty Model � 3137

data pred; set cdf(keep=pred minutes symbolid) pred;
run;

axis1 label=(angle=90 rotate=0
’Estimated Patient-specific CDF’)

minor=none;
axis2 label=(’Minutes to Headache Relief’ )

minor=none order=(10 to 35 by 5);

symbol1 value=dot c=black h=0.15in i=none r=1;
symbol2 value=circle c=black h=0.15in i=none r=1;
symbol3 value=none c=black l=1 i=join r=19;
symbol4 value=none c=black l=2 i=join r=19;
proc gplot data=pred;

plot pred*minutes=symbolid / frame cframe=ligr
nolegend vaxis=axis1 haxis=axis2;

run;

The separation of the distribution functions by groups is evident inOutput 51.5.4.
Most of the distributions of patients in the first group are to the left of the distribu-
tions in the second group. The separation is not complete, however. Several patients
assigned the second pain reliever experience headache relief more quickly than pa-
tients assigned to the first group.

Output 51.5.4. Patient-Specific CDFs and Predicted Values. Pain Reliever 1:
Solid Line, Closed Circles. Pain Reliever 2: Dashed Lines, Open
Circles.
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Chapter 52
The NPAR1WAY Procedure
Overview

The NPAR1WAY procedure performs nonparametric tests for location and scale dif-
ferences across a one-way classification. PROC NPAR1WAY also provides a stan-
dard analysis of variance on the raw data and tests based on the empirical distribution
function.

PROC NPAR1WAY performs tests for location and scale differences based on the
following scores of a response variable: Wilcoxon, median, Van der Waerden,
Savage, Siegel-Tukey, Ansari-Bradley, Klotz, and Mood scores. Additionally, PROC
NPAR1WAY provides tests using the raw input data as scores. When the data are
classified into two samples, tests are based on simple linear rank statistics. When the
data are classified into more than two samples, tests are based on one-way ANOVA
statistics. Both asymptotic and exactp-values are available for these tests.

PROC NPAR1WAY also provides empirical distribution function (EDF) statistics,
which test whether the distribution of a variable is the same across different groups.
These include the Kolmogorov-Smirnov test, the Cramer-von Mises test, and, when
the data are classified into only two samples, the Kuiper test. Exactp-values are
available for the two-sample Kolmogorov-Smirnov test.

Getting Started

This example illustrates how you can use PROC NPAR1WAY to perform a one-way
nonparametric analysis. The data from Halverson and Sherwood (1932) consist of
weight gain measurements for five different levels of gossypol additive. Gossypol is
a substance contained in cottonseed shells, and these data were collected to study the
effect of gossypol on animal nutrition.

The following DATA step statements create the SAS data setGossypol:
data Gossypol;

input Dose n;
do i=1 to n;

input Gain @@;
output;

end;
datalines;

0 16
228 229 218 216 224 208 235 229 233 219 224 220 232 200 208 232

.04 11
186 229 220 208 228 198 222 273 216 198 213

.07 12
179 193 183 180 143 204 114 188 178 134 208 196

.10 17
130 87 135 116 118 165 151 59 126 64 78 94 150 160 122 110 178
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.13 11
154 130 130 118 118 104 112 134 98 100 104

;

The data setGossypol contains the variableDose, which represents the amount of
gossypol additive, and the variableGain, which represents the weight gain.

Researchers are interested in whether there is a difference in weight gain among the
different dose levels of gossypol. The following statements invoke the NPAR1WAY
procedure to perform a nonparametric analysis of this problem:

proc npar1way data=Gossypol;
class Dose;
var Gain;

run;

The variableDose is the CLASS variable, and the VAR statement specifies the vari-
ableGain is the response variable. The CLASS statement is required, and you must
name only one CLASS variable. You may name one or more analysis variables in
the VAR statement. If you omit the VAR statement, PROC NPAR1WAY analyzes all
numeric variables in the data set except for the CLASS variable, the FREQ variable,
and the BY variables.

Since no analysis options are specified in the PROC NPAR1WAY statement, the
ANOVA, WILCOXON, MEDIAN, VW, SAVAGE, and EDF options are invoked by
default. The following tables show the results of these analyses.

The tables inFigure 52.1are produced with the ANOVA option. For each level of
the CLASS variableDose, PROC NPAR1WAY displays the number of observations
and the mean of the analysis variableGain. PROC NPAR1WAY displays a standard
analysis of variance on the raw data. This gives the same results as the GLM and
ANOVA procedures. Thep-value for theF test is <.0001, which indicates thatDose
accounts for a significant portion of the variability in the dependent variableGain.

The NPAR1WAY Procedure

Analysis of Variance for Variable Gain
Classified by Variable Dose

Dose N Mean
--------------------------------------

0 16 222.187500
0.04 11 217.363636
0.07 12 175.000000

0.1 17 120.176471
0.13 11 118.363636

Source DF Sum of Squares Mean Square F Value Pr > F
-------------------------------------------------------------------
Among 4 140082.986077 35020.74652 55.8143 <.0001
Within 62 38901.998997 627.45160

Average scores were used for ties.

Figure 52.1. Analysis of Variance
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The WILCOXON option produces the output inFigure 52.2. PROC NPAR1WAY
first provides a summary of the Wilcoxon scores for the analysis variableGain by
class level. For each level of the CLASS variableDose, PROC NPAR1WAY displays
the following information: number of observations, sum of the Wilcoxon scores,
expected sum under the null hypothesis of no difference among class levels, standard
deviation under the null hypothesis, and mean score.

Next PROC NPAR1WAY displays the one-way ANOVA statistic, which for
Wilcoxon scores is known as the Kruskal-Wallis test. The statistic equals 52.6656,
with four degrees of freedom, which is the number of class levels minus one. The
p-value, or probability of a larger statistic under the null hypothesis, is <.0001. This
leads to rejection of the null hypothesis that there is no difference in location for
Gain among the levels ofDose. This p-value is asymptotic, computed from the
asymptotic chi-square distribution of the test statistic. For certain data sets it may
also be useful to compute the exactp-value; for example, for small data sets, or data
sets that are sparse, skewed, or heavily tied. You can use the EXACT statement
to request exactp-values for any of the location or scale tests available in PROC
NPAR1WAY.

Wilcoxon Scores (Rank Sums) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 890.50 544.0 67.978966 55.656250
0.04 11 555.00 374.0 59.063588 50.454545
0.07 12 395.50 408.0 61.136622 32.958333

0.1 17 275.50 578.0 69.380741 16.205882
0.13 11 161.50 374.0 59.063588 14.681818

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 52.6656
DF 4
Pr > Chi-Square <.0001

Figure 52.2. Wilcoxon Score Analysis

Figure 52.3throughFigure 52.5display the analyses produced by the MEDIAN, VW,
and SAVAGE options. For each score type, PROC NPAR1WAY provides a summary
of scores and the one-way ANOVA statistic, as previously described for Wilcoxon
scores. Other score types available in PROC NPAR1WAY are Siegel-Tukey, Ansari-
Bradley, Klotz, and Mood, which are used to test for scale differences. Additionally,
you can request the SCORES=DATA option, which uses the input data as scores.
This option gives you the flexibility to construct any scores for your data with the
DATA step and then analyze these scores with PROC NPAR1WAY.
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Median Scores (Number of Points Above Median) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 16.0 7.880597 1.757902 1.00
0.04 11 11.0 5.417910 1.527355 1.00
0.07 12 6.0 5.910448 1.580963 0.50

0.1 17 0.0 8.373134 1.794152 0.00
0.13 11 0.0 5.417910 1.527355 0.00

Average scores were used for ties.

Median One-Way Analysis

Chi-Square 54.1765
DF 4
Pr > Chi-Square <.0001

Figure 52.3. Median Score Analysis

Van der Waerden Scores (Normal) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 16.116474 0.0 3.325957 1.007280
0.04 11 8.340899 0.0 2.889761 0.758264
0.07 12 -0.576674 0.0 2.991186 -0.048056

0.1 17 -14.688921 0.0 3.394540 -0.864054
0.13 11 -9.191777 0.0 2.889761 -0.835616

Average scores were used for ties.

Van der Waerden One-Way Analysis

Chi-Square 47.2972
DF 4
Pr > Chi-Square <.0001

Figure 52.4. Van der Waerden Score Analysis
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Savage Scores (Exponential) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 16.074391 0.0 3.385275 1.004649
0.04 11 7.693099 0.0 2.941300 0.699373
0.07 12 -3.584958 0.0 3.044534 -0.298746

0.1 17 -11.979488 0.0 3.455082 -0.704676
0.13 11 -8.203044 0.0 2.941300 -0.745731

Average scores were used for ties.

Savage One-Way Analysis

Chi-Square 39.4908
DF 4
Pr > Chi-Square <.0001

Figure 52.5. Savage Score Analysis

Kolmogorov-Smirnov Test for Variable Gain
Classified by Variable Dose

EDF at Deviation from Mean
Dose N Maximum at Maximum
--------------------------------------------------

0 16 0.000000 -1.910448
0.04 11 0.000000 -1.584060
0.07 12 0.333333 -0.499796

0.1 17 1.000000 2.153861
0.13 11 1.000000 1.732565
Total 67 0.477612

Maximum Deviation Occurred at Observation 36
Value of Gain at Maximum = 178.0

Kolmogorov-Smirnov Statistics (Asymptotic)
KS 0.457928 KSa 3.748300

Cramer-von Mises Test for Variable Gain
Classified by Variable Dose

Summed Deviation
Dose N from Mean
----------------------------------------

0 16 2.165210
0.04 11 0.918280
0.07 12 0.348227

0.1 17 1.497542
0.13 11 1.335745

Cramer-von Mises Statistics (Asymptotic)
CM 0.093508 CMa 6.265003

Figure 52.6. Empirical Distribution Function Analysis
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The tables inFigure 52.6display the empirical distribution function statistics, com-
paring the distribution ofGain for the different levels ofDose. These tables are
produced by the EDF option, and they include Kolmogorov-Smirnov statistics and
Cramer-von Mises statistics.

In the preceding example, the CLASS variableDose has five levels, and the analyses
examine possible differences among these five levels, or samples. The following
statements invoke the NPAR1WAY procedure to perform a nonparametric analysis of
the two lowest levels ofDose:

proc npar1way data=Gossypol;
where Dose <= .04;
class Dose;
var Gain;

run;

The following tables show the results of this two-sample analysis. The tables in
Figure 52.7are produced by the ANOVA option.

The NPAR1WAY Procedure

Analysis of Variance for Variable Gain
Classified by Variable Dose

Dose N Mean
--------------------------------------

0 16 222.187500
0.04 11 217.363636

Source DF Sum of Squares Mean Square F Value Pr > F
-------------------------------------------------------------------
Among 1 151.683712 151.683712 0.5587 0.4617
Within 25 6786.982955 271.479318

Average scores were used for ties.

Figure 52.7. Analysis of Variance for Two-Sample Data
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Wilcoxon Scores (Rank Sums) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 253.50 224.0 20.221565 15.843750
0.04 11 124.50 154.0 20.221565 11.318182

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 124.5000

Normal Approximation
Z -1.4341
One-Sided Pr < Z 0.0758
Two-Sided Pr > |Z| 0.1515

t Approximation
One-Sided Pr < Z 0.0817
Two-Sided Pr > |Z| 0.1635

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 2.1282
DF 1
Pr > Chi-Square 0.1446

Figure 52.8. Wilcoxon Two-Sample Analysis

Figure 52.8displays the output produced by the WILCOXON option. PROC
NPAR1WAY provides a summary of the Wilcoxon scores for the analysis variable
Gain for each of the two class levels. Since there are only two levels, PROC
NPAR1WAY displays the two-sample test, based on the simple linear rank statistic
with Wilcoxon scores. The normal approximation includes a continuity correction.
To remove this, you can specify the CORRECT=NO option. PROC NPAR1WAY
also gives at approximation for the Wilcoxon two-sample test. And as for the mul-
tisample analysis, PROC NPAR1WAY computes a one-way ANOVA statistic, which
for Wilcoxon scores is known as the Kruskal-Wallis test. All thesep-values show no
difference inGain for the twoDose levels at the .05 level of significance.

Figure 52.9throughFigure 52.11display the two-sample analyses produced by the
MEDIAN, VW, and SAVAGE options.
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Median Scores (Number of Points Above Median) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 9.0 7.703704 1.299995 0.562500
0.04 11 4.0 5.296296 1.299995 0.363636

Average scores were used for ties.

Median Two-Sample Test

Statistic 4.0000
Z -0.9972
One-Sided Pr < Z 0.1593
Two-Sided Pr > |Z| 0.3187

Median One-Way Analysis

Chi-Square 0.9943
DF 1
Pr > Chi-Square 0.3187

Figure 52.9. Median Two-Sample Analysis

Van der Waerden Scores (Normal) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 3.346520 0.0 2.320336 0.209157
0.04 11 -3.346520 0.0 2.320336 -0.304229

Average scores were used for ties.

Van der Waerden Two-Sample Test

Statistic -3.3465
Z -1.4423
One-Sided Pr < Z 0.0746
Two-Sided Pr > |Z| 0.1492

Van der Waerden One-Way Analysis

Chi-Square 2.0801
DF 1
Pr > Chi-Square 0.1492

Figure 52.10. Van der Waerden Two-Sample Analysis
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Savage Scores (Exponential) for Variable Gain
Classified by Variable Dose

Sum of Expected Std Dev Mean
Dose N Scores Under H0 Under H0 Score
--------------------------------------------------------------------

0 16 1.834554 0.0 2.401839 0.114660
0.04 11 -1.834554 0.0 2.401839 -0.166778

Average scores were used for ties.

Savage Two-Sample Test

Statistic -1.8346
Z -0.7638
One-Sided Pr < Z 0.2225
Two-Sided Pr > |Z| 0.4450

Savage One-Way Analysis

Chi-Square 0.5834
DF 1
Pr > Chi-Square 0.4450

Figure 52.11. Savage Two-Sample Analysis
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Kolmogorov-Smirnov Test for Variable Gain
Classified by Variable Dose

EDF at Deviation from Mean
Dose N Maximum at Maximum
--------------------------------------------------

0 16 0.250000 -0.481481
0.04 11 0.545455 0.580689
Total 27 0.370370

Maximum Deviation Occurred at Observation 4
Value of Gain at Maximum = 216.0

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.145172 D 0.295455
KSa 0.754337 Pr > KSa 0.6199

Cramer-von Mises Test for Variable Gain
Classified by Variable Dose

Summed Deviation
Dose N from Mean
----------------------------------------

0 16 0.098638
0.04 11 0.143474

Cramer-von Mises Statistics (Asymptotic)
CM 0.008967 CMa 0.242112

Kuiper Test for Variable Gain
Classified by Variable Dose

Deviation
Dose N from Mean
------------------------------

0 16 0.090909
0.04 11 0.295455

Kuiper Two-Sample Test (Asymptotic)
K 0.386364 Ka 0.986440 Pr > Ka 0.8383

Figure 52.12. Two-Sample EDF Tests

The tables inFigure 52.12display the empirical distribution function statistics, com-
paring the distribution ofGain for the two levels ofDose. The p-value for the
Kolmogorov-Smirnov two-sample test is 0.6199, which indicates no rejection of the
null hypothesis that theGain distributions are identical for the two levels ofDose.
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Syntax

The following statements are available in PROC NPAR1WAY:

PROC NPAR1WAY < options > ;
BY variables ;
CLASS variable ;
EXACT statistic-options < / computation-options > ;
FREQ variable ;
OUTPUT < OUT=SAS-data-set > < options > ;
VAR variables ;

Both the PROC NPAR1WAY statement and the CLASS statement are required for the
NPAR1WAY procedure. The rest of this section gives detailed syntax information for
the BY, CLASS, EXACT, FREQ, OUTPUT, and VAR statements in alphabetical or-
der after the description of the PROC NPAR1WAY statement.Table 52.1summarizes
the basic function of each PROC NPAR1WAY statement.

Table 52.1. Summary of PROC NPAR1WAY Statements
Statement Description
BY provides separate analyses for each BY group
CLASS identifies the classification variable
EXACT requests exact tests
FREQ identifies a frequency variable
OUTPUT requests an output data set
VAR identifies analysis variables

PROC NPAR1WAY Statement

PROC NPAR1WAY < options > ;

The PROC NPAR1WAY statement invokes the procedure and optionally identifies
the input data set or requests particular analyses. By default, the procedure uses the
most recently created SAS data set and omits missing values from the analysis. If
you do not specify any analysis options, PROC NPAR1WAY performs an analysis
of variance (option ANOVA), tests for location differences (options WILCOXON,
MEDIAN, SAVAGE, and VW), and performs empirical distribution function tests
(option EDF).

The following table lists the options available with the PROC NPAR1WAY statement.
Descriptions follow in alphabetical order.



3156 � Chapter 52. The NPAR1WAY Procedure

Table 52.2. PROC NPAR1WAY Statement Options
Task Options
Specify the input data set DATA=
Include missing CLASS values MISSING
Suppress all displayed output NOPRINT

Request analyses AB
ANOVA
D
EDF
KLOTZ
MEDIAN
MOOD
SAVAGE
SCORES=DATA
ST
VW
WILCOXON

Suppress continuity correction CORRECT=NO

You can specify the following options in the PROC NPAR1WAY statement:

AB
requests an analysis using Ansari-Bradley scores. See the section“Ansari-Bradley
Scores”on page 3168 for more information.

ANOVA
requests a standard analysis of variance on the raw data.

CORRECT=NO
suppresses the continuity correction for the Wilcoxon two-sample test and the Siegel-
Tukey two-sample test. See the section“Simple Linear Rank Tests for Two-Sample
Data”on page 3163 for more information.

D
requests the one-sided Kolmogorov-SmirnovD+ andD− statistics and their asymp-
totic p-values, in addition to the two-sidedD statistic produced by the EDF option
for two-sample data. The D option invokes theEDF option. The statisticsD+ and
D− are provided automatically if you request exact Kolmogorov-Smirnov statistics
with the KS option in theEXACT statement for two-sample data. See the section
“Tests Based on the Empirical Distribution Function”on page 3168 for details on
Kolmogorov-Smirnov statistics.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC NPAR1WAY. If you omit the DATA=
option, the procedure uses the most recently created SAS data set.
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EDF
requests statistics based on the empirical distribution function. These include the
Kolmogorov-Smirnov and Cramer-von Mises tests and, if there are only two clas-
sification levels, the Kuiper test. See the section“Tests Based on the Empirical
Distribution Function”on page 3168 for more information.

The EDF option produces the Kolmogorov-SmirnovD statistic for two-sample data.
You can also request the one-sidedD+ andD− statistics for two-sample data with
theD option.

KLOTZ
requests an analysis using Klotz scores. See the section“Klotz Scores”on page 3168
for more information.

MEDIAN
requests an analysis using median scores. When there are two classification levels, or
two samples, this option produces the two-sample median test. When there are more
than two samples, this option produces the multisample median test, which is also
known as the Brown-Mood test. See the section“Median Scores”on page 3167 for
more information.

MISSING
treats missing values of the CLASS variable as a valid class level.

MOOD
requests an analysis using Mood scores. See the section“Mood Scores”on page 3168
for more information.

NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you
only want to create an output data set. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

SAVAGE
requests an analysis using Savage scores. See the section“Savage Scores”on page
3167 for more information.

SCORES=DATA
requests an analysis using input data as scores. This option gives you the flexibility
to construct any scores for your data with the DATA step and then analyze these
scores with PROC NPAR1WAY. See the section“Scores for Linear Rank and One-
Way ANOVA Tests”on page 3166 for more information. Using the SCORES=DATA
option for raw (unscored) two-sample data produces a permutation test known as
Pitman’s test.

ST
requests an analysis using Siegel-Tukey scores. See the section“Siegel-Tukey
Scores”on page 3167 for more information.
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VW
requests an analysis using Van der Waerden scores. See the section“Van der Waerden
Scores”on page 3167 for more information.

WILCOXON
requests an analysis using Wilcoxon scores. When there are two classification levels,
or two samples, this option produces the Wilcoxon rank-sum test. For any number
of classification levels, this option produces the Kruskal-Wallis test. See the section
“Wilcoxon Scores”on page 3166 for more information.

BY Statement

BY variables ;

You can specify a BY statement with PROC NPAR1WAY to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the NPAR1WAY procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variable ;

The CLASS statement, which is required, names one and only one classification vari-
able. The variable can be character or numeric. The CLASS variable identifies groups
(or samples) in the data, and PROC NPAR1WAY provides analyses to examine dif-
ferences among these groups. There may be two or more groups in the data.
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EXACT Statement

EXACT statistic-options < / computation-options > ;

The EXACT statement requests exact tests for the specified statistics. Optionally,
PROC NPAR1WAY computes Monte Carlo estimates of the exactp-values. The
statistic-optionsspecify the statistics for which to provide exact tests, and the
computation-optionsspecify options for the computation of exact statistics.

CAUTION: PROC NPAR1WAY computes exact tests with fast and efficient algo-
rithms that are superior to direct enumeration. Exact tests are appropriate when a
data set is small, sparse, skewed, or heavily tied. For some large problems, computa-
tion of exact tests may require a large amount of time and memory. Consider using
asymptotic tests for such problems. Alternatively, when asymptotic methods may
not be sufficient for such large problems, consider using Monte Carlo estimation of
exactp-values. See the section“Computational Resources”on page 3173 for more
information.

Statistic-Options

Thestatistic-optionsspecify the statistics for which to provide exact tests.

Exactp-values are available for all nonparametric tests of location and scale differ-
ences produced by PROC NPAR1WAY. These include tests based on the following
scores: Wilcoxon, median, Van der Waerden, Savage, Siegel-Tukey, Ansari-Bradley,
Klotz, and Mood scores. Additionally, exactp-values are available for tests using
the raw input data as scores. The procedure computes exactp-values when the data
are classified into two levels (two-sample tests) and when the data are classified into
more than two levels (multisample tests). Two-sample tests are based on simple lin-
ear rank statistics. Multisample tests are based on one-way ANOVA statistics. Exact
p-values are also available for the two-sample Kolmogorov-Smirnov test. See the
section“Exact Tests”on page 3171 for details.

Table 52.3 lists the availablestatistic-optionsand the exact tests computed. The
option names are identical to the corresponding options in the PROC NPAR1WAY
statement and the OUTPUT statement.

If you list no statistic-optionsin the EXACT statement, then PROC NPAR1WAY
computes all the available exactp-values for those tests requested in the PROC
NPAR1WAY statement.
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Table 52.3. EXACT Statement Statistic-Options
Option Exact Test Computed
AB Ansari-Bradley Test
KLOTZ Klotz Test
KS Two-Sample Kolmogorov-Smirnov Test
MEDIAN Median Test
MOOD Mood Test
SAVAGE Savage Test
SCORES=DATA Test Using Input Data as Scores
ST Siegel-Tukey Test
WILCOXON Wilcoxon Test for Two-Sample Data

Kruskal-Wallis Test for Multisample Data
VW Van der Waerden Test

Computation-Options

Thecomputation-optionsspecify options for computation of exact statistics. You can
specify the followingcomputation-optionsin the EXACT statement:

ALPHA= α
specifies the level of the confidence limits for Monte Carlop-value estimates. The
value of the ALPHA= option must be between 0 and 1, and the default is 0.01.
A confidence level ofα produces100(1 − α)% confidence limits. The default of
ALPHA=0.01 produces 99% confidence limits for the Monte Carlo estimates. The
ALPHA= option invokes theMC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC NPAR1WAY can use to
compute an exactp-value. If the procedure does not complete the computation within
the specified time, the computation terminates. The value of the MAXTIME= option
must be a positive number. The MAXTIME= option is valid for Monte Carlo estima-
tion of exactp-values, as well as for direct exactp-value computation.

See the section“Computational Resources”on page 3173 for more information.

MC
requests Monte Carlo estimation of exactp-values, instead of direct exactp-value
computation. Monte Carlo estimation can be useful for large problems that require a
great amount of time and memory for exact computations but for which asymptotic
approximations may not be sufficient. See the section“Monte Carlo Estimation”on
page 3174 for more information.

The MC option is available for all the EXACT statementstatistic-options. The
ALPHA=, N=, andSEED=options also invoke the MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of the N=
option must be a positive integer, and the default is 10,000 samples. Larger values
of n produce more precise estimates of exactp-values. Because larger values ofn
generate more samples, the computation time increases. The N= option invokes the
MC option.
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POINT
requests exact point probabilities for the test statistics.

The POINT option is available for all the EXACT statementstatistic-options. The
POINT option is not available with theMC option.

SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation.
The value of the SEED= option must be an integer. If you do not specify the SEED=
option, or if the SEED= value is negative or zero, PROC NPAR1WAY uses the time of
day from the computer’s clock to obtain the initial seed. The SEED= option invokes
theMC option.

FREQ Statement

FREQ variable ;

The FREQ statement names a numeric variable that provides a frequency for each
observation in the DATA= data set. If you use a FREQ statement, PROC NPAR1WAY
assumes that an observation occursn times, wheren is the value of the FREQ variable
for that observation. The sum of the FREQ variable values represents the total number
of observations, and the analysis is based on this expanded number of observations.

If the value of the FREQ variable is missing or is less than one, PROC NPAR1WAY
does not use that observation in the analysis. If the value of the FREQ variable is not
an integer, PROC NPAR1WAY uses only the integer portion as the frequency of the
observation.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set > < options > ;

The OUTPUT statement creates a SAS data set containing statistics computed by
PROC NPAR1WAY. You specify which statistics to store in the output data set, using
options identical to those used in the PROC NPAR1WAY statement. The output data
set contains one observation for each analysis variable named in the VAR statement.
For more information on the contents of the output data set, see the section“Output
Data Set”on page 3175.

Note that you can use the Output Delivery System (ODS) to create a SAS data set
from any piece of PROC NPAR1WAY output. For more information, seeTable 52.6
on page 3184 andChapter 14, “Using the Output Delivery System.”

You can specify the following options in the OUTPUT statement:

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is named DATAn,
wheren is the smallest integer that makes the name unique.

options
specifies the statistics you want in the new data set. The options are identical to those
used in the PROC NPAR1WAY statement to request analyses.Table 52.4shows the
available options. When you specify one of these options in the OUTPUT statement,
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the output data set contains statistics from that analysis. See the section“Output Data
Set” on page 3175 for a list of the output data set variables corresponding to each
option.

If you do not specify any statistics options in the OUTPUT statement, then the out-
put data set includes statistics from all analyses specified in the PROC NPAR1WAY
statement.

Table 52.4. OUTPUT Statement Options
Option Output Data Set Statistics
AB Ansari-Bradley Test
ANOVA Standard analysis of variance
EDF Kolmogorov-Smirnov Test

Cramer-von Mises Test
Kuiper Test for Two-Sample Data

KLOTZ Klotz Test
MEDIAN Median Test
MOOD Mood Test
SAVAGE Savage Test
SCORES=DATA Test Using Input Data as Scores
ST Siegel-Tukey Test
WILCOXON Wilcoxon Test for Two-Sample Data

Kruskal-Wallis Test
VW Van der Waerden Test

VAR Statement

VAR variables ;

The VAR statement names the response or dependent variables to be analyzed. These
variables must be numeric. If the VAR statement is omitted, the procedure analyzes
all numeric variables in the data set except for the CLASS variable, the FREQ vari-
able, and the BY variables.

Details

Missing Values

If an observation has a missing value for a response variable, PROC NPAR1WAY
excludes that observation from the analysis.

By default, PROC NPAR1WAY excludes observations with missing values of the
CLASS variable. If you specify theMISSING option, PROC NPAR1WAY treats
missing values of the CLASS variable as a valid class level and includes these obser-
vations in the analysis.

PROC NPAR1WAY treats missing BY variable values like any other BY variable
value. The missing values form a separate BY group. When a value of the FREQ
variable is missing, PROC NPAR1WAY excludes the observation from the analysis.
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Tied Values

Tied valuesoccur when two are more observations are equal, whether the observa-
tions occur in the same sample or in different samples. In theory, nonparametric tests
were developed for continuous distributions where the probability of a tie is zero.
In practice, however, ties often occur. PROC NPAR1WAY uses the same method to
handle ties for all score types. The procedure computes the scores as if there were no
ties, averages the scores for tied observations, and assigns this average score to each
observation with the same value.

When there are tied values, PROC NPAR1WAY first sorts the observations in ascend-
ing order and assigns ranks as if there were no ties. Then the procedure computes the
scores based on these ranks, using the formula for the specified score type. The pro-
cedure averages the scores for tied observations and assigns this average score to each
of the tied observations. Thus, all equal data values have the same score value. PROC
NPAR1WAY then computes the test statistic from these scores.

Note that the asymptotic tests may be less accurate when the distribution of the data
is heavily tied. For such data, it may be appropriate to use the exact tests provided by
PROC NPAR1WAY as described in the section“Exact Tests”on page 3171.

When computing empirical distribution function statistics for data with ties, PROC
NPAR1WAY uses the formulas given in the section“Tests Based on the Empirical
Distribution Function”on page 3168. No special handling of ties is necessary.

Note that PROC NPAR1WAY bases its computations on the internal numeric values
of the analysis variables; the procedure does not format or round these values before
analysis. When values differ in their internal representation, even slightly, PROC
NPAR1WAY does not treat them as tied values. If this is a concern for your data,
then round the analysis variables by an appropriate amount before invoking PROC
NPAR1WAY. For information on the ROUND function, refer to the discussion in
SAS Language Reference: Dictionary.

Statistical Computations

Simple Linear Rank Tests for Two-Sample Data

Statistics of the form

S =
n∑

j=1

cj a(Rj)

are calledsimple linear rank statistics, where

Rj is the rank of the observationj

a(Rj) is the score based on that rank

cj is an indicator variable denoting the class to which thejth observation be-
longs

n is the total number of observations
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For two-sample data (where the observations are classified into two levels), PROC
NPAR1WAY calculates simple linear rank statistics for the scores that you specify.
The section“Scores for Linear Rank and One-Way ANOVA Tests”on page 3166
describes the available scores, which you can use to test for differences in location
and differences in scale.

To computeS, PROC NPAR1WAY sums the scores of the observations in the smaller
of the two samples. If both samples have the same number of observations, PROC
NPAR1WAY sums those scores for the sample that appears first in the input data set.

For each score that you specify, PROC NPAR1WAY computes an asymptotic test of
the null hypothesis of no difference between the two classification levels. Exact tests
are also available for these two-sample linear rank statistics. PROC NPAR1WAY
computes exact tests for each score type that you specify in theEXACT statement.
See the section“Exact Tests”on page 3171 for details.

To compute an asymptotic test for a linear rank sum statistic, PROC NPAR1WAY
uses a standardized test statisticz, which has an asymptotic standard normal distri-
bution under the null hypothesis. The standardized test statistic is computed as

z =
S − E0(S)√

V ar0(S)

whereE0(S) is the expected value ofS under the null hypothesis, andV ar0(S) is
the variance under the null hypothesis. As shown in Randles and Wolfe (1979),

E0(S) =
n1

n

n∑
j=1

a(Rj)

wheren1 is the number of observations in the first (smaller) class level or sample,n2

is the number of observations in the other class level, and

V ar0(S) =
1

(n− 1)
n1 n2

n

 n∑
j=1

(a(Rj)− ā)2


whereā is the average score,

ā =
n∑

j=1

a(Rj) / n

PROC NPAR1WAY computes one-sided and two-sided asymptoticp-values for each
two-sample linear rank test. When the test statisticz is greater than its null hypothesis
expected value of zero, PROC NPAR1WAY computes the right-sidedp-value, which
is the probability of a larger value of the statistic occurring under the null hypothesis.
When the test statistic is less than or equal to zero, PROC NPAR1WAY computes the
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left-sidedp-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. The one-sidedp-valueP1 can be expressed as

P1 = Prob ( Z > z ) if z > 0

P1 = Prob ( Z < z ) if z ≤ 0

whereZ has a standard normal distribution. The two-sidedp-valueP2 is computed
as

P2 = Prob ( |Z| > |z| )

For Wilcoxon scores and Siegel-Tukey scores, PROC NPAR1WAY incorporates a
continuity correction when computing the standardized test statisticz, unless you
specify theCORRECT=NOoption. PROC NPAR1WAY applies the continuity cor-
rection by subtracting 0.5 from the numeratorS − E0(S) if it is greater than zero. If
the numerator is less than zero, PROC NPAR1WAY adds 0.5. Some sources recom-
mend a continuity correction for nonparametric tests that use a continuous distribu-
tion to approximate a discrete distribution. Refer to Sheskin (1997). If you specify
CORRECT=NO, PROC NPAR1WAY does not use a continuity correction for any
test.

One-Way ANOVA Tests

PROC NPAR1WAY computes a one-way ANOVA test for each score type that you
specify. Under the null hypothesis of no difference among class levels (or samples),
this test statistic has an asymptotic chi-square distribution withr− 1 degrees of free-
dom, wherer is the number of class levels. For Wilcoxon scores, this test is known
as the Kruskal-Wallis test.

Exact one-way ANOVA tests are also available for multisample data (where the data
are classified into more than two levels). For two-sample data, exact simple linear
rank tests are available. PROC NPAR1WAY computes exact tests for each score type
that you specify in theEXACT statement. See the section“Exact Tests”on page 3171
for details on exact tests.

PROC NPAR1WAY computes the one-way ANOVA test statistic as

C =

(
r∑

i=1

(Ti − E0(Ti))2 / ni

)
/ S2

whereTi is the total of scores for the class leveli, E0(Ti) is the expected total for
level i under the null hypothesis of no difference among levels,ni is the number of
observations in leveli, andS2 is the sample variance of the scores.

Ti =
n∑

j=1

cij a(Rj)
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wherea(Rj) is the score for observationj, andcij indicates whether observationj is
in level i.

E0(Ti) =
ni

n

n∑
j=1

a(Rj)

S2 =
1

(n− 1)

 n∑
j=1

(a(Rj)− ā)2


whereā is the average score,

ā =
n∑

j=1

a(Rj) / n

Scores for Linear Rank and One-Way ANOVA Tests

For each score type that you specify, PROC NPAR1WAY computes a one-way
ANOVA statistic and also a linear rank statistic for two-sample data. The follow-
ing score types are used primarily to test for differences in location: Wilcoxon, me-
dian, Van der Waerden, and Savage. The following scores types are used to test for
scale differences: Siegel-Tukey, Ansari-Bradley, Klotz, and Mood. This section gives
formulas for the score types. For further information on the formulas and the appli-
cability of each score, refer to Randles and Wolfe (1979), Gibbons and Chakraborti
(1992), Conover (1999), and Hollander and Wolfe (1999).

In addition to the score types described in this section, you can specify the
SCORES=DATAoption to use the input data observations as scores. This enables
you to produce a very wide variety of tests. You can construct any scores using the
DATA step, and then PROC NPAR1WAY computes the corresponding linear rank and
one-way ANOVA tests. You can also analyze the raw data with the SCORES=DATA
option; for two-sample data, this permutation test is known as Pitman’s test.

Wilcoxon Scores

Wilcoxon scores are the ranks of the observations.

a(Rj) = Rj

Using Wilcoxon scores in the linear rank statistic for two-sample data produces the
rank sum statistic of the Mann-Whitney-Wilcoxon test. Using Wilcoxon scores in
the one-way ANOVA statistic produces the Kruskal-Wallis test. Wilcoxon scores are
locally most powerful for location shifts of a logistic distribution.

When computing the asymptotic Wilcoxon two-sample test, PROC NPAR1WAY uses
a continuity correction by default, as described in the section“Simple Linear Rank
Tests for Two-Sample Data”on page 3163. If you specifyCORRECT=NOin the
PROC NPAR1WAY statement, the procedure does not use a continuity correction.
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Median Scores

Median scores equal1 for observations greater than the median, and0 otherwise.

a(Rj) =

{
1 if Rj > n+1

2

0 if Rj ≤ n+1
2

Using median scores in the linear rank statistic for two-sample data produces the two-
sample median test. The one-way ANOVA statistic with median scores is equivalent
to the Brown-Mood test. Median scores are particularly powerful for distributions
that are symmetric and heavy-tailed.

Van der Waerden Scores

Van der Waerden scores are the quantiles of a standard normal distribution. These
scores are also known asquantile normal scores.

a(Rj) = Φ−1

(
Rj

n + 1

)

whereΦ is the cumulative distribution function of a standard normal distribution.
These scores are powerful for normal distributions.

Savage Scores

Savage scores are expected values of order statistics from the exponential distribution,
with 1 subtracted to center the scores around0.

a(Rj) =
Rj∑
i=1

1
n− i + 1

− 1

Savage scores are powerful for comparing scale differences in exponential distribu-
tions or location shifts in extreme value distributions (Hajek 1969, p. 83).

Siegel-Tukey Scores

Siegel-Tukey scores are computed as

a(1) = 1, a(n) = 2, a(n− 1) = 3, a(2) = 4,
a(3) = 5, a(n− 2) = 6, a(n− 3) = 7, a(4) = 8, . . .

where the score values continue to increase in this pattern towards the middle ranks
until all observations have been assigned a score.
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Ansari-Bradley Scores

Ansari-Bradley scores are similar to Siegel-Tukey scores, but Ansari-Bradley assigns
the same scores to corresponding extreme ranks. (Siegel Tukey scores are just a
permutation of the ranks1, 2, . . . , n.)

a(1) = 1, a(n) = 1,
a(2) = 2, a(n− 1) = 2, . . .

Equivalently, Ansari-Bradley scores are defined as

a(Rj) =
n + 1

2
−
∣∣∣∣ Rj −

n + 1
2

∣∣∣∣
Klotz Scores

Klotz scores are the squares of the Van der Waerden (or quantile normal) scores.

a(Rj) =
[

Φ−1

(
Rj

n + 1

)]2

whereΦ is the cumulative distribution function of a standard normal distribution.

Mood Scores

Mood scores are computed as the square of the difference between each rank and the
average rank.

a(Rj) =
[

Rj −
n + 1

2

]2

Tests Based on the Empirical Distribution Function

If you specify theEDF option, PROC NPAR1WAY computes tests based on the em-
pirical distribution function. These include the Kolmogorov-Smirnov and Cramer-
von Mises tests, and also the Kuiper test for two-sample data. This section gives
formulas for these test statistics. For further information on the formulas and the
interpretation of EDF statistics, refer to Hollander and Wolfe (1999) and Gibbons
and Chakraborti (1992). For details on thek-sample analogues of the Kolmogorov-
Smirnov and Cramer-von Mises statistics used by NPAR1WAY, refer to Kiefer
(1959).

The empirical distribution function(EDF) of a sample{xj}, j = 1, 2, . . . , n, is
defined as the following function:

F (x) =
1
n

(number ofxj ≤ x) =
1
n

n∑
j=1

I(xj ≤ x)
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whereI(·) is an indicator function. PROC NPAR1WAY uses the subsample of values
within theith class level to generate an EDF for the class,Fi. The EDF for the overall
sample, pooled over classes, can also be expressed as

F =
1
n

∑
i

( ni Fi )

whereni is the number of observations in theith class level, andn is the total number
of observations.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov statistic measures the maximum deviation of the
EDF within the classes from the pooled EDF. PROC NPAR1WAY computes the
Kolmogorov-Smirnov statistic as

KS = max
j

√
1
n

∑
i

ni ( Fi(xj)− F (xj) )2 wherej = 1, 2, . . . , n

The asymptotic Kolmogorov-Smirnov statistic is computed as

KSa = KS ×
√

n

For each class leveli and overall, PROC NPAR1WAY displays the value ofFi at
the maximum deviation fromF and the value(Fi − F )

√
ni at the maximum devi-

ation fromF . PROC NPAR1WAY also gives the observation where the maximum
deviation occurs.

If there are only two class levels, PROC NPAR1WAY computes the two-sample
Kolmogorov-Smirnov test statisticD as

D = max
j

| F1(xj)− F2(xj) | wherej = 1, 2, . . . , n

Thep-value for this test is the probability thatD is greater than the observed value
d under the null hypothesis of no difference between class levels or samples. PROC
NPAR1WAY computes the asymptoticp-value forD with the approximation

Prob ( D > d ) = 1− 2
∞∑
i=1

(−1) (i−1) e (−2i2 z2)

where

z = d

√( n1 n2

n

)
The quality of this approximation has been studied by Hodges (1957).
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If you specify theD option, or if you request exact Kolmogorov-Smirnovp-values
with the KS option in theEXACT statement, PROC NPAR1WAY also computes the
one-sided Kolmogorov-Smirnov statisticsD+ andD− for two-sample data.

D+ = max
j

( F1(xj)− F2(xj) ) wherej = 1, 2, . . . , n

D− = max
j

( F2(xj)− F1(xj) ) wherej = 1, 2, . . . , n

The asymptotic probability thatD+ is greater than the observed valued+, under the
null hypothesis of no difference between the two class levels, is computed as

Prob ( D+ > d+ ) = e−2z2
, where z = d+

√( n1 n2

n

)
Similarly, the asymptotic probability thatD− is greater than the observed valued−

is computed as

Prob ( D− > d− ) = e−2z2
, where z = d−

√( n1 n2

n

)
To request exactp-values for the Kolmogorov-Smirnov statistics, you can specify the
KS option in theEXACT statement. See the section“Exact Tests”on page 3171 for
more information.

Cramer-von Mises Test

The Cramer-von Mises statistic is defined as

CM =
1
n2

∑
i

ni

p∑
j=1

tj ( Fi(xj)− F (xj ))2


wheretj is the number of ties at thejth distinct value andp is the number of distinct
values. The asymptotic value is computed as

CMa = CM × n

PROC NPAR1WAY displays the contribution of each class level to the sum CMa.
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Kuiper Test

For data with two class levels, PROC NPAR1WAY computes the Kuiper statistic, its
scaled value for the asymptotic distribution, and the asymptoticp-value. The Kuiper
statistic is computed as

K = max
j

(F1(xj)− F2(xj))−min
j

(F1(xj)− F2(xj)) wherej = 1, 2, . . . , n

The asymptotic value is

Ka = K

√
n1 n2

n

PROC NPAR1WAY displaysmaxj |F1(xj)− F2(xj)| for each class level.

Thep-value for the Kuiper test is the probability of observing a larger value ofKa un-
der the null hypothesis of no difference between the two classes. PROC NPAR1WAY
computes thisp-value according to Owen (1962), p. 441.

Exact Tests

PROC NPAR1WAY provides exactp-values for tests for location and scale dif-
ferences based on the following scores: Wilcoxon, median, van der Waerden,
Savage, Siegel-Tukey, Ansari-Bradley, Klotz, and Mood scores. Additionally, PROC
NPAR1WAY provides exactp-values for tests using the raw data as scores. Exact
tests are available for two-sample and multisample data. When the data are classified
into two samples, tests are based on simple linear rank statistics. When the data are
classified into more than two samples, tests are based on one-way ANOVA statistics.

Exact tests can be useful in situations where the asymptotic assumptions are not
met and the asymptoticp-values are not close approximations for the truep-values.
Standard asymptotic methods involve the assumption that the test statistic follows a
particular distribution when the sample size is sufficiently large. When the sample
size is not large, asymptotic results may not be valid, with the asymptoticp-values
differing perhaps substantially from the exactp-values. Asymptotic results may also
be unreliable when the distribution of the data is sparse, skewed, or heavily tied. Refer
to Agresti (1996) and Bishop, Fienberg, and Holland (1975). Exact computations are
based on the statistical theory of exact conditional inference for contingency tables,
reviewed by Agresti (1992).

In addition to computation of exactp-values, PROC NPAR1WAY provides the op-
tion of estimating exactp-values by Monte Carlo simulation. This can be useful for
problems that are so large that exact computations require a great amount of time and
memory, but for which asymptotic approximations may not be sufficient.

The following sections summarize the exact computational algorithms, define the
exactp-values that PROC NPAR1WAY computes, discuss the computational resource
requirements, and describe the Monte Carlo estimation option.
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Computational Algorithms

PROC NPAR1WAY computes exactp-values using the network algorithm developed
by Mehta and Patel (1983). This algorithm provides a substantial advantage over
direct enumeration, which can be very time consuming and feasible only for small
problems. Refer to Agresti (1992) for a review of algorithms for computation of
exactp-values, and refer to Mehta, Patel, and Tsiatis (1984) and Mehta, Patel, and
Senchaudhuri (1991) for information on the performance of the network algorithm.

PROC NPAR1WAY constructs a contingency table from the input data, with rows
formed by the levels of the classification variable and columns formed by the response
variable values. The reference set for a given contingency table is the set of all con-
tingency tables with the observed marginal row and column sums. Corresponding to
this reference set, the network algorithm forms a directed acyclic network consisting
of nodes in a number of stages. A path through the network corresponds to a distinct
table in the reference set. The distances between nodes are defined so that the total
distance of a path through the network is the corresponding value of the test statis-
tic. At each node, the algorithm computes the shortest and longest path distances for
all the paths that pass through that node. For the two-sample linear rank statistics,
which can be expressed as a linear combination of cell frequencies multiplied by in-
creasing row and column scores, PROC NPAR1WAY computes shortest and longest
path distances using the algorithm given in Agresti, Mehta, and Patel (1990). For the
multisample one-way test statistics, PROC NPAR1WAY computes an upper bound
for the longest path and a lower bound for the shortest path, following the approach
of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the
value of the test statistic to determine whether all paths through the node contribute
to thep-value, none of the paths through the node contribute to thep-value, or neither
of these situations occur. If all paths through the node contribute, thep-value is incre-
mented accordingly, and these paths are eliminated from further analysis. If no paths
contribute, these paths are eliminated from the analysis. Otherwise, the algorithm
continues, still processing this node and the associated paths. The algorithm finishes
when all nodes have been accounted for.

In applying the network algorithm, PROC NPAR1WAY uses full precision to repre-
sent all statistics, row and column scores, and other quantities involved in the com-
putations. Although it is possible to use rounding to improve the speed and memory
requirements of the algorithm, PROC NPAR1WAY does not do this since it can result
in reduced accuracy of thep-values.

Definition of p-Values

For two-sample linear rank tests, PROC NPAR1WAY computes exact one-sided and
two-sidedp-values for each test specified in the EXACT statement. For the one-sided
test, PROC NPAR1WAY displays the right-sidedp-value when the observed value
of the test statistic is greater than its expected value. The right-sidedp-value is the
sum of probabilities for those tables having a test statistic greater than or equal to the
observed test statistic. Otherwise, when the test statistic is less than or equal to its
expected value, PROC NPAR1WAY displays the left-sidedp-value. The left-sided
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p-value is the sum of probabilities for those tables having a test statistic less than or
equal to the one observed. The one-sidedp-valueP1 can be expressed as

P1 = Prob (Test Statistic ≥ S) if S > Mean

P1 = Prob (Test Statistic ≤ S) if S ≤ Mean

whereS is the observed value of the test statistic andMean is the expected value of
the test statistic under the null hypothesis. PROC NPAR1WAY computes the two-
sidedp-value as the sum of the one-sidedp-value and the corresponding area in the
opposite tail of the distribution of the statistic, equidistant from the expected value.
The two-sidedp-valueP2 can be expressed as

P2 = Prob ( |Test Statistic−Mean | ≥ | S −Mean | )

For multisample data, the tests are based on one-way ANOVA statistics. For a test of
this form, large values of the test statistic indicate a departure from the null hypothe-
sis; the test is inherently two-sided. The exactp-value is the sum of probabilities for
those tables having a test statistic greater than or equal to the value of the observed
test statistic.

If you specify thePOINT option in the EXACT statement, PROC NPAR1WAY also
displays exact point probabilities for the test statistics. The exact point probability is
the exact probability that the test statistic equals the observed value.

Computational Resources

PROC NPAR1WAY uses relatively fast and efficient algorithms for exact computa-
tions. These recently developed algorithms, together with improvements in computer
power, make it feasible now to perform exact computations for data sets where pre-
viously only asymptotic methods could be applied. Nevertheless, there are still large
problems that may require a prohibitive amount of time and memory for exact com-
putations, depending on the speed and memory available on your computer. For large
problems, consider whether exact methods are really needed or whether asymptotic
methods might give results quite close to the exact results while requiring much less
computer time and memory. When asymptotic methods may not be sufficient for
such large problems, consider using Monte Carlo estimation of exactp-values, as
described in the section“Monte Carlo Estimation”on page 3174.

A formula does not exist that can predict in advance how much time and memory
are needed to compute an exactp-value for a certain problem. The time and memory
required depend on several factors, including which test is being performed, the total
sample size, the number of rows and columns, and the specific arrangement of the
observations into table cells. Generally, larger problems (in terms of total sample size,
number of rows, and number of columns) tend to require more time and memory.
Additionally, for a fixed total sample size, time and memory requirements tend to
increase as the number of rows and columns increase, since this corresponds to an
increase in the number of tables in the reference set. Also for a fixed sample size, time
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and memory requirements increase as the marginal row and column totals become
more homogeneous. Refer to Agresti, Mehta, and Patel (1990) and Gail and Mantel
(1977).

At any time while PROC NPAR1WAY is computing exactp-values, you can termi-
nate the computations by pressing the system interrupt key sequence (refer to theSAS
Companionfor your system) and choosing to stop computations. After you terminate
exact computations, PROC NPAR1WAY completes all other remaining tasks. The
procedure produces the requested output and reports missing values for any exact
p-values not computed by the time of termination.

You can also use theMAXTIME= option in the EXACT statement to limit the amount
of time PROC NPAR1WAY uses for exact computations. You specify a MAXTIME=
value that is the maximum amount of time (in seconds) that PROC NPAR1WAY can
use to compute an exactp-value. If PROC NPAR1WAY does not finish computing an
exactp-value within that time, it terminates the computation and completes all other
remaining tasks.

Monte Carlo Estimation

If you specify theMC option in the EXACT statement, PROC NPAR1WAY computes
Monte Carlo estimates of the exactp-values instead of directly computing the exact
p-values. Monte Carlo estimation can be useful for large problems that require a great
amount of time and memory for exact computations but for which asymptotic approx-
imations may not be sufficient. To describe the precision of each Monte Carlo esti-
mate, PROC NPAR1WAY provides the asymptotic standard error and100(1 − α)%
confidence limits. The confidence levelα is determined by theALPHA= option in
the EXACT statement, which, by default, equals 0.01, and produces 99% confidence
limits. The N= option in the EXACT statement specifies the number of samples
PROC NPAR1WAY uses for Monte Carlo estimation; the default is 10,000 samples.
You can specify a larger value forn to improve the precision of the Monte Carlo
estimates. Because larger values ofn generate more samples, the computation time
increases. Or you can specify a smaller value ofn to reduce the computation time.

To compute a Monte Carlo estimate of an exactp-value, PROC NPAR1WAY gener-
ates a random sample of tables with the same total sample size, row totals, and col-
umn totals as the observed table. PROC NPAR1WAY uses the algorithm of Agresti,
Wackerly, and Boyett (1979), which generates tables in proportion to their hyper-
geometric probabilities conditional on the marginal frequencies. For each sample
table, PROC NPAR1WAY computes the value of the test statistic and compares it
to the value for the observed table. When estimating a right-sidedp-value, PROC
NPAR1WAY counts all sample tables for which the test statistic is greater than or
equal to the observed test statistic. Then thep-value estimate equals the number of
these tables divided by the total number of tables sampled.

P̂MC = M / N

M = number of samples with(Test Statistic≥ t)
N = total number of samples

t = observed Test Statistic
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PROC NPAR1WAY computes left-sided and two-sidedp-value estimates in a simi-
lar manner. For left-sidedp-values, PROC NPAR1WAY evaluates whether the test
statistic for each sampled table is less than or equal to the observed test statistic. For
two-sidedp-values, PROC NPAR1WAY examines the sample test statistics according
to the expression forP2 given in the section“Definition of p-Values”on page 3172.

The variableM is a binomial variable withN trials and success probabilityp. It
follows that the asymptotic standard error of the Monte Carlo estimate is

se(P̂MC) =
√

P̂MC (1− P̂MC) / (N − 1)

PROC NPAR1WAY constructs asymptotic confidence limits for thep-values accord-
ing to

P̂MC ± zα/2 × se(P̂MC)

wherezα/2 is the100(1−α/2) percentile of the standard normal distribution, and the
confidence levelα is determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimatêPMC equals0, then PROC NPAR1WAY computes
the confidence limits for thep-value as

( 0, 1− α(1/N) )

When the Monte Carlo estimatêPMC equals1, then PROC NPAR1WAY computes
the confidence limits as

( α(1/N), 1 )

Output Data Set

The OUTPUT statement creates a SAS data set that contains statistics computed by
PROC NPAR1WAY. You specify which statistics to store in the output data set, using
options identical to those used in the PROC NPAR1WAY statement. When you spec-
ify one of these options in the OUTPUT statement, PROC NPAR1WAY includes all
available statistics from that analysis in the output data set.

The output data set contains one observation for each analysis variable within a BY-
group. The OUTPUT data set can include the following variables:

• BY variables

• –VAR–, which identifies the analysis variable

• variables containing the specified statistics
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The following table lists the variable names and descriptions for all available statis-
tics. Note that some statistics are available only for the two-sample case (where the
classification variable groups the data into two classes). Other statistics are available
only for the multisample case.

When you request exactp-values for certain analyses using the EXACT statement,
PROC NPAR1WAY also includes thosep-values in the output data set if you specify
the corresponding analysis options in the OUTPUT statement. If you do not request
exactp-values, then they do not appear in the output data set.

Monte Carlo estimates of exactp-values are not available in this output data set, but
you can use the Output Delivery System (ODS) to store Monte Carlo estimates in a
SAS data set. You can use the Output Delivery System to create a SAS data set from
any piece of PROC NPAR1WAY output. For more information, seeTable 52.6on
page 3184 andChapter 14, “Using the Output Delivery System.”

Table 52.5. Output Data Set Variable Names and Descriptions

Option Output Variables Variable Descriptions
ANOVA –MSA– ANOVA Effect Mean Square, Among MS

–MSE– ANOVA Error Mean Square, Within MS

–F– F Statistic for ANOVA
P–F p-value, F Statistic for ANOVA

WILCOXON –WIL– * Two-sample Wilcoxon Statistic
Z–WIL * Wilcoxon Statistic, Standardized

PL–WIL * p-value, Wilcoxon Test (Left-sided)
PR–WIL * p-value, Wilcoxon Test (Right-sided)
P2–WIL * p-value, Wilcoxon Test (Two-sided)

PTL–WIL * p-value, Wilcoxon t Approximation (Left-sided)
PTR–WIL * p-value, Wilcoxon t Approximation, (Right-sided)
PT2–WIL * p-value, Wilcoxon t Approximation, (Two-sided)
XPL–WIL * Exact p-value, Wilcoxon Test (Left-sided)
XPR–WIL * Exact p-value, Wilcoxon Test (Right-sided)
XPT–WIL * Exact Point Probability, Wilcoxon Test
XP2–WIL * Exact p-value, Wilcoxon Test (Two-sided)

–KW– Kruskal-Wallis Statistic
DF–KW Degrees of Freedom, Kruskal-Wallis Test

P–KW p-value, Kruskal-Wallis Test
XP–KW ** Exact p-value, Kruskal-Wallis Test

XPT–KW ** Exact Point Probability, Kruskal-Wallis Test
MEDIAN –MED– * Two-sample Median Statistic

Z–MED * Median Statistic, Standardized
PL–MED * p-value, Median Test (Left-sided)
PR–MED * p-value, Median Test (Right-sided)
P2–MED * p-value, Median Test (Two-sided)

XPL–MED * Exactp-value, Median Test (Left-sided)
XPR–MED * Exactp-value, Median Test (Right-sided)
XPT–MED * Exact Point Probability, Median Test
XP2–MED * Exactp-value, Median Test (Two-sided)
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Table 52.5. (continued)

Option Output Variables Variable Descriptions
MEDIAN –CHMED– Median Chi-square (Brown-Mood Test)

DF–CHMED Degrees of Freedom, Median Chi-square
P–CHMED p-value, Median Chi-square Test

XP–CHMED ** Exact p-value, Median Chi-square
XPT–CHME ** Exact Point Probability, Median Chi-square

VW –VW– * Two-sample Van der Waerden Statistic
Z–VW * Van der Waerden Statistic, Standardized

PL–VW * p-value, Van der Waerden Test (Left-sided)
PR–VW * p-value, Van der Waerden Test (Right-sided)
P2–VW * p-value, Van der Waerden Test (Two-sided)

XPL–VW * Exact p-value, Van der Waerden Test (Left-sided)
XPR–VW * Exact p-value, Van der Waerden Test (Right-sided)
XPT–VW * Exact Point Probability, Van der Waerden Test
XP2–VW * Exact p-value, Van der Waerden Test (Two-sided)

–CHVW– Van der Waerden Chi-square
DF–CHVW Degrees of Freedom, Van der Waerden Chi-square

P–CHVW p-value, Van der Waerden Chi-square Test
XP–CHVW ** Exact p-value, Van der Waerden Chi-square

XPT–CHVW ** Exact Point Prob, Van der Waerden Chi-square
SAVAGE –SAV– * Two-sample Savage Statistic

Z–SAV * Savage Statistic, Standardized
PL–SAV * p-value, Savage Test (Left-sided)
PR–SAV * p-value, Savage Test (Right-sided)
P2–SAV * p-value, Savage Test (Two-sided)

XPL–SAV * Exactp-value, Savage Test (Left-sided)
XPR–SAV * Exactp-value, Savage Test (Right-sided)
XPT–SAV * Exact Point Probability, Savage Test
XP2–SAV * Exactp-value, Savage Test (Two-sided)

–CHSAV– Savage Chi-square
DF–CHSAV Degrees of Freedom, Savage Chi-square

P–CHSAV p-value, Savage Chi-square Test
XP–CHSAV ** Exact p-value, Savage Chi-square
XPT–CHSA ** Exact Point Probability, Savage Chi-square

ST –ST– * Two-sample Siegel-Tukey Statistic
Z–ST * Siegel-Tukey Statistic, Standardized

PL–ST * p-value, Siegel-Tukey Test (Left-sided)
PR–ST * p-value, Siegel-Tukey Test (Right-sided)
P2–ST * p-value, Siegel-Tukey Test (Two-sided)

XPL–ST * Exactp-value, Siegel-Tukey Test (Left-sided)
XPR–ST * Exactp-value, Siegel-Tukey Test (Right-sided)
XPT–ST * Exact Point Probability, Siegel-Tukey Test
XP2–ST * Exactp-value, Siegel-Tukey Test (Two-sided)
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Table 52.5. (continued)

Option Output Variables Variable Descriptions
ST –CHST– Siegel-Tukey Chi-square

DF–CHST Degrees of Freedom, Siegel-Tukey Chi-square
P–CHST p-value, Siegel-Tukey Chi-square Test

XP–CHST ** Exactp-value, Siegel-Tukey Chi-square
XPT–CHST ** Exact Point Probability, Siegel-Tukey Chi-square

AB –AB– * Two-sample Ansari-Bradley Statistic
Z–AB * Ansari-Bradley Statistic, Standardized

PL–AB * p-value, Ansari-Bradley Test (Left-sided)
PR–AB * p-value, Ansari-Bradley Test (Right-sided)
P2–AB * p-value, Ansari-Bradley Test (Two-sided)

XPL–AB * Exact p-value, Ansari-Bradley Test (Left-sided)
XPR–AB * Exact p-value, Ansari-Bradley Test (Right-sided)
XPT–AB * Exact Point Probability, Ansari-Bradley Test
XP2–AB * Exact p-value, Ansari-Bradley Test (Two-sided)

–CHAB– Ansari Bradley Chi-square
DF–CHAB Degrees of Freedom, Ansari-Bradley Chi-square

P–CHAB p-value, Ansari-Bradley Chi-square Test
XP–CHAB ** Exact p-value, Ansari-Bradley Chi-square

XPT–CHAB ** Exact Point Probability, Ansari-Bradley Chi-square
KLOTZ –KLOTZ– * Two-sample Klotz Statistic

Z–K * Klotz Statistic, Standardized
PL–K * p-value, Klotz Test (Left-sided)
PR–K * p-value, Klotz Test (Right-sided)
P2–K * p-value, Klotz Test (Two-sided)

XPL–K * Exact p-value, Klotz Test (Left-sided)
XPR–K * Exact p-value, Klotz Test (Right-sided)
XPT–K * Exact Point Probability, Klotz Test
XP2–K * Exact p-value, Klotz Test (Two-sided)

–CHK– Klotz Chi-square
DF–CHK Degrees of Freedom, Klotz Chi-square

P–CHK p-value, Klotz Chi-square Test
XP–CHK ** Exact p-value, Klotz Chi-square

XPT–CHK ** Exact Point Probability, Klotz Chi-square
MOOD –MOOD– * Two-sample Mood Statistic

Z–MOOD * Mood Statistic, Standardized
PL–MOOD * p-value, Mood Test (Left-sided)
PR–MOOD * p-value, Mood Test (Right-sided)
P2–MOOD * p-value, Mood Test (Two-sided)

XPL–MOOD * Exactp-value, Mood Test (Left-sided)
XPR–MOOD * Exactp-value, Mood Test (Right-sided)
XPT–MOOD * Exact Point Probability, Mood Test
XP2–MOOD * Exactp-value, Mood Test (Two-sided)
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Table 52.5. (continued)

Option Output Variables Variable Descriptions
MOOD –CHMOOD– Mood Chi-square

DF–CHMOO Degrees of Freedom, Mood Chi-square
P–CHMOOD p-value, Mood Chi-square Test
XP–CHMOO ** Exactp-value, Mood Chi-square
XPT–CHMO ** Exact Point Probability, Mood Chi-square

SCORES=DATA –DATA– * Two-sample Data Scores Statistic
Z–DATA * Data Scores Statistic, Standardized

PL–DATA * p-value, Data Scores Test (Left-sided)
PR–DATA * p-value, Data Scores Test (Right-sided)
P2–DATA * p-value, Data Scores Test (Two-sided)

XPL–DATA * Exact p-value, Data Scores Test (Left-sided)
XPR–DATA * Exact p-value, Data Scores Test (Right-sided)
XPT–DATA * Exact Point Probability, Data Scores Test
XP2–DATA * Exact p-value, Data Scores Test (Two-sided)

–CHDATA– Data Scores Chi-square
DF–CHDAT Degrees of Freedom, Data Scores Chi-square
P–CHDATA p-value, Data Scores Chi-square Test
XP–CHDAT ** Exact p-value, Data Scores Chi-square
XPT–CHDA ** Exact Point Probability, Data Scores Chi-square

EDF –KS– Kolmogorov-Smirnov Statistic

–KSA– Kolmogorov-Smirnov Statistic (Asymptotic)

–Dp– * Two-sample Kolmogorov-Smirnov D+
P–Dp * p-value, Kolmogorov-Smirnov D+

–Dm– * Two-sample Kolmogorov-Smirnov D-
P–Dm * p-value, Kolmogorov-Smirnov D-

–D– * Two-sample Kolmogorov-Smirnov Statistic
P–KSA * p-value, Two-sample Kolmogorov-Smirnov
XP–Dp * Exactp-value, Kolmogorov-Smirnov D+

XPT–Dp * Exact Point Probability, Kolmogorov-Smirnov D+
XP–Dm * Exactp-value, Kolmogorov-Smirnov D-

XPT–Dm * Exact Point Probability, Kolmogorov-Smirnov D-
XP–D * Exactp-value, Kolmogorov-Smirnov D

XPT–D * Exact Point Probability, Kolmogorov-Smirnov D

–CM– Cramer-von Mises Statistic

–CMA– Cramer-von Mises Statistic (Asymptotic)

–K– * Kuiper Two-sample Statistic

–KA– * Kuiper Two-sample Statistic (Asymptotic)
P–KA * p-value, Two-sample Kuiper (Asymptotic)

∗ Statistic included only for two-sample cases
∗∗ Statistic included only for multisample cases
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Displayed Output

If you specify theANOVA option, PROC NPAR1WAY displays a Class Means table
and an Analysis of Variance table for each response variable. The Class Means table
includes the following information for eachCLASSvariable value, or level:

• N, the number of observations

• the Mean of the response variable

The Analysis of Variance table includes the following information for each Source of
variation (Among classes, and Within classes):

• DF, the degrees of freedom associated with the source

• the Sum of Squares

• the Mean Square, the sum of squares divided by the degrees of freedom

The Analysis of Variance table also includes the following:

• the F Value for testing the hypothesis that the group means are equal. This is
computed by dividing the Mean Square (Among) by the Mean Square (Within).

• Pr > F, the significance probability corresponding to the F Value

For each score type that you specify, PROC NPAR1WAY displays a Class Scores
table. The available score types include Wilcoxon, median, Van der Waerden,
Savage, Siegel-Tukey, Ansari-Bradley, Klotz, Mood, and raw data scores. PROC
NPAR1WAY assigns the specified scores to the response variable values, and classi-
fies then according to theCLASS variable values. The Class Scores table includes
the following information for each class:

• N, the number of observations

• Sum of Scores

• Expected Under H0, the expected sum of scores under the null hypothesis of
no difference among classes

• Std Dev Under H0, the standard deviation under the null hypothesis

• Mean Score

When there are only two levels of theCLASSvariable, PROC NPAR1WAY displays
the following Two-Sample Test results for each analysis of scores:

• Statistic, which is the sum of scores for the class with the smaller sample size

• Z, the standardized test statistic, which has an asymptotic standard normal dis-
tribution under the null hypothesis

• One-Sided Pr < Z, or One-Sided Pr > Z, the asymptotic one-sidedp-value,
displayed as Pr < Z or Pr > Z, depending on whether Z is <= 0 or > 0

• Two-Sided Pr > |Z|, the asymptotic two-sidedp-value



Displayed Output � 3181

For Wilcoxon scores, PROC NPAR1WAY also displays at-approximation for the
two-sample test.

If you request an exact test by specifying the score type in theEXACT statement,
PROC NPAR1WAY displays the following exactp-values for two-sample data:

• One-Sided Pr <= S, or One-Sided Pr >= S, the one-sided exactp-value, dis-
played as Pr <= S or Pr >= S, depending on whether S <= Mean or S > Mean,
where S is the test statistic and Mean is its expected value under the null hy-
pothesis

• Point Pr = S, the point probability, if you specify thePOINT option in the
EXACT statement

• Two-Sided Pr >= |S - Mean|, the two-sided exactp-value

If you request Monte Carlo estimates for the exact test by specifying theMC option
in the EXACT statement, PROC NPAR1WAY displays the following information for
two-sample data:

• Estimate of One-Sided Pr <= S or One-Sided Pr >= S, the one-sided exact
p-value, together with its Lower and Upper Confidence Limits

• Estimate of Two-Sided Pr >= |S - Mean|, the two-sided exactp-value, together
with its Lower and Upper Confidence Limits

• Number of Samples used to compute the Monte Carlo estimates

• Initial Seed used to compute the Monte Carlo estimates

For both two-sample and multisample data, PROC NPAR1WAY displays the follow-
ing One-Way Analysis for each score type:

• Chi-Square, the one-way ANOVA statistic for testing the null hypothesis of no
difference among classes

• DF, the degrees of freedom

• Pr > Chi-Square, the asymptoticp-value

For multisample data, if you request an exact test by specifying the score type in the
EXACT statement, PROC NPAR1WAY also displays the exactp-value as follows:

• Exact Pr >= Chi-Square

• Exact Pr = Chi-Square, the point probability, if you specify thePOINT option
in the EXACT statement
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For multisample data, if you request a Monte Carlo estimate for the exact test by
specifying theMC option in the EXACT statement, PROC NPAR1WAY displays the
following information:

• Estimate of Pr >= Chi-Square, together with its Lower and Upper Confidence
Limits

• Number of Samples used to compute the Monte Carlo estimate

• Initial Seed used to compute the Monte Carlo estimate

If you specify the EDF option, PROC NPAR1WAY produces tables for the
Kolmogorov-Smirnov Test, the Cramer-von Mises Test, and for two-sample data
only, the Kuiper Test. The Kolmogorov-Smirnov Test table includes the following
information for eachCLASSvariable value, or level:

• N, the number of observations

• EDF at Maximum, the value of the class EDF (empirical distribution function)
at its maximum deviation from the pooled EDF

• Deviation from Mean at Maximum, the value of
√

ni

√
Fi − F at its maximum,

whereni it the class sample size,Fi is the class EDF, andF is the pooled EDF

PROC NPAR1WAY displays the following Kolmogorov-Smirnov statistics:

• KS, the Kolmogorov-Smirnov statistic

• KSa, the asymptotic Kolmogorov-Smirnov statistic, where KSa =
√

n KS

For two-sample data, PROC NPAR1WAY displays the following Kolmogorov-
Smirnov statistics:

• Pr > KSa, the asymptoticp-value for KSa, which equals Pr > D

• D = max | F1 - F2 |, the two-sample Kolmogorov-Smirnov statistic

For two-sample data, if you specify theD option, PROC NPAR1WAY also dis-
plays the following one-sided Kolmogorov-Smirnov statistics and their asymptotic
p-values:

• D+ = max (F1 - F2)

• Pr > D+

• D- = max(F2 - F1)

• Pr > D-
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For two-sample data, if you request an exact Kolmogorov-Smirnov test by specifying
the KS option in theEXACT statement, PROC NPAR1WAY displays the following
exactp-values:

• Exact Pr >= D

• Exact Pr >= D+

• Exact Pr >= D-

• Exact Point Pr = D, Exact Point Pr = D+, and Exact Point Pr = D-, if you
specify thePOINToption in the EXACT statement

If you request Monte Carlo estimates for the two-sample exact Kolmogorov-Smirnov
test, PROC NPAR1WAY displays the following information for two-sample data:

• Estimate of Pr >= D, together with its Lower and Upper Confidence Limits

• Estimate of Pr >= D+, together with its Lower and Upper Confidence Limits

• Estimate of Pr >= D-, together with its Lower and Upper Confidence Limits

• Number of Samples used to compute the Monte Carlo estimates

• Initial Seed used to compute the Monte Carlo estimates

The Cramer-von Mises Test table includes the following information for eachCLASS
variable value, or level:

• N, the number of observations

• Summed Deviation from Mean, which is(ni/n)
∑p

j=1 tj (Fi(xj)− F (xj))
2

PROC NPAR1WAY also displays the following Cramer-von Mises statistics:

• CM, the Cramer-von Mises statistic

• CMa, the asymptotic Cramer-von Mises statistic, where CMa =n CM

For two-sample data, PROC NPAR1WAY displays the Kuiper Test table, which in-
cludes the following information for each class:

• N, the number of observations

• Deviation from Mean, which ismaxj |F1(xj)− F2(xj)|

PROC NPAR1WAY also displays the following Kuiper two-sample test statistics:

• K, the Kuiper two-sample test statistic

• Ka, the asymptotic Kuiper two-sample test statistic, where Ka = K
√

n1n2/n

• Pr > Ka
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ODS Table Names

PROC NPAR1WAY assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

The WILCOXON, MEDIAN, VW, SAVAGE, and EDF options are the default if you
do not specify any analysis options in the PROC NPAR1WAY statement.

Table 52.6. ODS Tables Produced in PROC NPAR1WAY

ODS Table Name Description Statement Option
ANOVA Analysis of variance PROC ANOVA
ABAnalysis Ansari-Bradley one-way analysis PROC AB
ABMC Monte Carlo estimates for the

Ansari-Bradley exact test
EXACT AB / MC

ABScores Ansari-Bradley scores PROC AB
ABTest Ansari-Bradley two-sample test PROC AB∗

ClassMeans Class Means PROC ANOVA
CVMStats Cramer-von Mises statistics PROC EDF
CVMTest Cramer-von Mises test PROC EDF
DataScores Data scores PROC SCORES=DATA
DataScoresAnalysis Data scores one-way analysis PROC SCORES=DATA
DataScoresMC Monte Carlo estimates for the ex-

act test based on data scores
EXACT SCORES=DATA / MC

DataScoresTest Data scores two-sample test PROC SCORES=DATA∗

KlotzAnalysis Klotz one-way analysis PROC KLOTZ
KlotzMC Monte Carlo estimates for the

Klotz exact test
EXACT KLOTZ / MC

KlotzScores Klotz scores PROC KLOTZ
KlotzTest Klotz two-sample test PROC KLOTZ
KolSmirExactTest Kolmogorov-Smirnov exact test EXACT KS∗

KolSmir2Stats Kolmogorov-Smirnov two-
sample statistics

PROC EDF∗

KolSmirStats Kolmogorov-Smirnov statistics PROC EDF∗∗

KolSmirTest Kolmogorov-Smirnov test PROC EDF
KruskalWallisMC Monte Carlo estimates for the

Kruskal-Wallis exact test
EXACT WILCOXON / MC∗∗

KruskalWallisTest Kruskal-Wallis test PROC WILCOXON
KSMC Monte Carlo estimates for the

Kolmogorov-Smirnov exact test
EXACT KS / MC∗

KuiperStats Kuiper two-sample statistics PROC EDF∗

KuiperTest Kuiper test PROC EDF∗

MedianAnalysis Median one-way analysis PROC MEDIAN
MedianMC Monte Carlo estimates for the

median exact test
EXACT MEDIAN / MC

MedianScores Median scores PROC MEDIAN
MedianTest Median two-sample test PROC MEDIAN∗
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Table 52.6. (continued)

ODS Table Name Description Statement Option
MoodAnalysis Mood one-way analysis PROC MOOD
MoodMC Monte Carlo estimates for the

Mood exact test
EXACT MOOD / MC

MoodScores Mood scores PROC MOOD
MoodTest Mood two-sample test PROC MOOD
SavageAnalysis Savage one-way analysis PROC SAVAGE
SavageMC Monte Carlo estimates for the

Savage exact test
EXACT SAVAGE / MC

SavageScores Savage scores PROC SAVAGE
SavageTest Savage two-sample test PROC SAVAGE∗

STAnalysis Siegel-Tukey one-way analysis PROC ST
STMC Monte Carlo estimates for the

Siegel-Tukey exact test
EXACT ST / MC

STScores Siegel-Tukey scores PROC ST
STTest Siegel-Tukey two-sample test PROC ST∗

VWAnalysis Van der Waerden one-way
analysis

PROC VW

VWMC Monte Carlo estimates for the
Van der Waerden exact test

EXACT VW / MC

VWScores Van der Waerden scores PROC VW
VWTest Van der Waerden two-sample test PROC VW∗

WilcoxonMC Monte Carlo estimates for the
Wilcoxon two-sample exact test

EXACT WILCOXON / MC∗

WilcoxonScores Wilcoxon scores PROC WILCOXON
WilcoxonTest Wilcoxon two-sample test PROC WILCOXON∗
∗ PROC NPAR1WAY produces this table only for two-sample data.
∗∗ PROC NPAR1WAY produces this table only for multisample data.
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Examples

Example 52.1. Two-Sample Location Tests and EDF Statistics

Fifty-nine female patients with rheumatoid arthritis who participated in a clinical trial
were assigned to two groups, active and placebo. The response status (excellent=5,
good=4, moderate=3, fair=2, poor=1) of each patient was recorded.

The following SAS statements create the data setArthritis, which contains the ob-
served status values for all the patients. The variableTreatment denotes the treat-
ment received by a patient, and the variableResponse contains the response status
of the patient. The variableFreq contains the frequency of the observation, which is
the number of patients with theTreatment andResponse combination.

data Arthritis;
input Treatment $ Response Freq @@;
datalines;

Active 5 5 Active 4 11 Active 3 5 Active 2 1 Active 1 5
Placebo 5 2 Placebo 4 4 Placebo 3 7 Placebo 2 7 Placebo 1 12
;

PROC NPAR1WAY tests the null hypothesis that there is no difference in the patient
response status against an alternative hypothesis that the patient response status dif-
fers in the two treatment groups. The WILCOXON option requests the Wilcoxon test
for difference in location, and the MEDIAN option requests the median test for differ-
ence in location. The EDF option requests empirical distribution function statistics.
The variableTreatment is the CLASS variable, and the VAR statement specifies that
the variableResponse is the response variable.

proc npar1way wilcoxon median edf data=Arthritis;
class Treatment;
var Response;
freq Freq;

run;

Output 52.1.1shows the results of the Wilcoxon analysis. The Wilcoxon two-sample
test statistic equals 999.0, which is the sum of the Wilcoxon scores for the smaller
sample (Active). This sum is greater than 810.0, its expected value under the null hy-
pothesis of no difference between the two samples Active and Placebo. The one-sided
p-value is 0.0016, which shows that the patient response for the Active treatment is
significantly more than for the Placebo group.
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Output 52.1.1. Wilcoxon Two-Sample Test

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Response
Classified by Variable Treatment

Sum of Expected Std Dev Mean
Treatment N Scores Under H0 Under H0 Score
-------------------------------------------------------------------------
Active 27 999.0 810.0 63.972744 37.000000
Placebo 32 771.0 960.0 63.972744 24.093750

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 999.0000

Normal Approximation
Z 2.9466
One-Sided Pr > Z 0.0016
Two-Sided Pr > |Z| 0.0032

t Approximation
One-Sided Pr > Z 0.0023
Two-Sided Pr > |Z| 0.0046

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 8.7284
DF 1
Pr > Chi-Square 0.0031
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Output 52.1.2. Median Two-Sample Test

Median Scores (Number of Points Above Median) for Variable Response
Classified by Variable Treatment

Sum of Expected Std Dev Mean
Treatment N Scores Under H0 Under H0 Score
-------------------------------------------------------------------------
Active 27 18.916667 13.271186 1.728195 0.700617
Placebo 32 10.083333 15.728814 1.728195 0.315104

Average scores were used for ties.

Median Two-Sample Test

Statistic 18.9167
Z 3.2667
One-Sided Pr > Z 0.0005
Two-Sided Pr > |Z| 0.0011

Median One-Way Analysis

Chi-Square 10.6713
DF 1
Pr > Chi-Square 0.0011

Output 52.1.2shows the results of the median two-sample test. The statistic equals
18.9167, with a one-sidedp-value of 0.0005. This shows that the response for the
Active treatment is significantly more than for the Placebo group.
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Output 52.1.3. Empirical Distribution Function Statistics

Kolmogorov-Smirnov Test for Variable Response
Classified by Variable Treatment

EDF at Deviation from Mean
Treatment N Maximum at Maximum
------------------------------------------------------
Active 27 0.407407 -1.141653
Placebo 32 0.812500 1.048675
Total 59 0.627119

Maximum Deviation Occurred at Observation 3
Value of Response at Maximum = 3.0

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.201818 D 0.405093
KSa 1.550191 Pr > KSa 0.0164

Cramer-von Mises Test for Variable Response
Classified by Variable Treatment

Summed Deviation
Treatment N from Mean
-------------------------------------------
Active 27 0.526596
Placebo 32 0.444316

Cramer-von Mises Statistics (Asymptotic)
CM 0.016456 CMa 0.970912

Kuiper Test for Variable Response
Classified by Variable Treatment

Deviation
Treatment N from Mean
---------------------------------
Active 27 0.000000
Placebo 32 0.405093

Kuiper Two-Sample Test (Asymptotic)
K 0.405093 Ka 1.550191 Pr > Ka 0.1409

Output 52.1.3shows empirical distribution function statistics comparing these two
samples. The asymptoticp-value for the Kolmogorov-Smirnov test is 0.0164. This
indicates rejection of the null hypothesis that the distributions are identical for the
two groups.
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Example 52.2. The Exact Wilcoxon Two-Sample Test

Researchers conducted an experiment to compare the effects of two stimulants.
Thirteen randomly selected subjects received the first stimulant and six randomly
selected subjects received the second stimulant. The reaction times (in minutes) were
measured while the subjects were under the influence of the stimulants.

The following SAS statements create the data setReact, which contains the observed
reaction times for each stimulant. The variableStim represents Stimulant 1 or 2. The
variableTime contains the reaction times observed for subjects under the stimulant.

data React;
input Stim Time @@;
datalines;

1 1.94 1 1.94 1 2.92 1 2.92 1 2.92 1 2.92 1 3.27
1 3.27 1 3.27 1 3.27 1 3.70 1 3.70 1 3.74
2 3.27 2 3.27 2 3.27 2 3.70 2 3.70 2 3.74
;

PROC NPAR1WAY tests the null hypothesis that there is no difference between
the effects of the two stimulants against an alternative hypothesis that stimulant 1
has smaller reaction times than stimulant 2. The WILCOXON option specifies that
Wilcoxon scores are to be used. The CLASS statement specifies that the variable
Stim determines the classes. The VAR statement identifiesTime as the response
variable. The EXACT option requests the exactp-values. Since the sample size is
small, the normal approximation may not be completely accurate, and it is appropri-
ate to compute the exact test.

proc npar1way wilcoxon data=React;
class Stim;
var Time;
exact;

run;

Output 52.2.1displays the results of the Wilcoxon two-sample test. The Wilcoxon
statistic equals 79.50. Since this value is greater than 60.0, the expected value under
the null hypothesis, PROC NPAR1WAY displays the right-sidedp-values. The one-
sided exactp-value equals 0.0527, which is not significant at the 0.05 level. The
normal approximation yields a one-sidedp-value of 0.0421, which is significant at
the 0.05 level. Thus, the normal approximation may result in rejection of the null
hypothesis, while the exact test may result in acceptance.
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Output 52.2.1. Wilcoxon Two-Sample Test

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Time
Classified by Variable Stim

Sum of Expected Std Dev Mean
Stim N Scores Under H0 Under H0 Score
--------------------------------------------------------------------
1 13 110.50 130.0 11.004784 8.500
2 6 79.50 60.0 11.004784 13.250

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic (S) 79.5000

Normal Approximation
Z 1.7265
One-Sided Pr > Z 0.0421
Two-Sided Pr > |Z| 0.0843

t Approximation
One-Sided Pr > Z 0.0507
Two-Sided Pr > |Z| 0.1014

Exact Test
One-Sided Pr >= S 0.0527
Two-Sided Pr >= |S - Mean| 0.1054

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 3.1398
DF 1
Pr > Chi-Square 0.0764

Example 52.3. The Exact Savage Multisample Test

A researcher conducting a laboratory experiment randomly assigned 15 mice to re-
ceive one of three drugs. The survival time (in days) was then recorded.

The following SAS statements create the data setMice, which contains the observed
survival times for all the mice. The variableTrt denotes the treatment received by a
mouse. The variableDays contains the number of days the mouse survived.

data Mice;
input Trt $ Days @@;
datalines;

1 1 1 1 1 3 1 3 1 4
2 3 2 4 2 4 2 4 2 15
3 4 3 4 3 10 3 10 3 26
;
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PROC NPAR1WAY tests the null hypothesis that there is no difference in the survival
times among the three drugs against an alternative hypothesis of difference among the
drugs. The SAVAGE option specifies that Savage scores are to be used. The variable
Trt is the CLASS variable, and the VAR statement specifies that the variableDays is
the response variable. The EXACT statement requests the exact test.

proc npar1way savage data=Mice;
class Trt;
var Days;
exact;

run;

Output 52.3.1. Savage Multisample Test

The NPAR1WAY Procedure

Savage Scores (Exponential) for Variable Days
Classified by Variable Trt

Sum of Expected Std Dev Mean
Trt N Scores Under H0 Under H0 Score
-------------------------------------------------------------------
1 5 -3.367980 0.0 1.634555 -0.673596
2 5 0.095618 0.0 1.634555 0.019124
3 5 3.272362 0.0 1.634555 0.654472

Average scores were used for ties.

Savage One-Way Analysis

Chi-Square 5.5047
DF 2
Asymptotic Pr > Chi-Square 0.0638
Exact Pr >= Chi-Square 0.0445

Output 52.3.1shows the results of the Savage test. The exactp-value is 0.0445,
which is significant at the 0.05 level. However, thep-value based on the chi-square
approximation is 0.0638, which results in nonrejection of the null hypothesis at the
0.05 level.
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Chapter 53
The ORTHOREG Procedure
Overview

The ORTHOREG procedure fits general linear models by the method of least squares.
Other SAS/STAT software procedures, such as GLM or REG, fit the same types of
models, but PROC ORTHOREG can produce more accurate estimates than other
regression procedures when your data are ill conditioned. Instead of collecting
crossproducts, PROC ORTHOREG uses Gentleman-Givens transformations to up-
date and compute the upper triangular matrixR of the QR decomposition of the data
matrix, with special care for scaling (Gentleman1972; 1973). This method has the
advantage over other orthogonalization methods (for example, Householder transfor-
mations) of not requiring the data matrix to be stored in memory.

The standard SAS regression procedures (REG and GLM) are very accurate for most
problems. However, if you have very ill-conditioned data, these procedures can pro-
duce estimates that yield an error sum of squares very close to the minimum but still
different from the exact least-squares estimates. Normally, this coincides with esti-
mates that have very high standard errors. In other words, the numerical error is much
smaller than the statistical standard error.

Note that PROC ORTHOREG fits models by the method of linear least squares, min-
imizing the sum of the squared residuals for predicting the responses. It doesnot
perform the modeling method known as “orthogonal regression,” which minimizes
a different criterion (the distance between the X/Y points taken together and the re-
gression line.)

Getting Started

Longley Data

The labor statistics data set ofLongley(1967) is noted for being ill conditioned. Both
the ORTHOREG and GLM procedures are applied for comparison (only portions of
the PROC GLM results are shown).Note: The results from this example vary from
machine to machine, depending on floating-point configuration.

The following statements read the data into the SAS data setLongley.
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title ’PROC ORTHOREG used with Longley data’;
data Longley;

input Employment Prices GNP Jobless Military PopSize Year;
datalines;

60323 83.0 234289 2356 1590 107608 1947
61122 88.5 259426 2325 1456 108632 1948
60171 88.2 258054 3682 1616 109773 1949
61187 89.5 284599 3351 1650 110929 1950
63221 96.2 328975 2099 3099 112075 1951
63639 98.1 346999 1932 3594 113270 1952
64989 99.0 365385 1870 3547 115094 1953
63761 100.0 363112 3578 3350 116219 1954
66019 101.2 397469 2904 3048 117388 1955
67857 104.6 419180 2822 2857 118734 1956
68169 108.4 442769 2936 2798 120445 1957
66513 110.8 444546 4681 2637 121950 1958
68655 112.6 482704 3813 2552 123366 1959
69564 114.2 502601 3931 2514 125368 1960
69331 115.7 518173 4806 2572 127852 1961
70551 116.9 554894 4007 2827 130081 1962
;
run;

The data set contains one dependent variable,Employment (total derived employ-
ment) and six independent variables:Prices (GNP implicit price deflator with year
1954 = 100),GNP (gross national product),Jobless (unemployment),Military (size
of armed forces),PopSize (non-institutional population aged 14 and over), andYear
(year).

The following statements use the ORTHOREG procedure to model the Longley data
using a quadratic model in each independent variable, without interaction:

proc orthoreg data=Longley;
model Employment = Prices Prices*Prices

GNP GNP*GNP
Jobless Jobless*Jobless
Military Military*Military
PopSize PopSize*PopSize
Year Year*Year;

run;

Figure 53.1shows the resulting analysis.
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PROC ORTHOREG used with Longley data

The ORTHOREG Procedure

Dependent Variable: Employment

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 12 184864508.5 15405375.709 320.24 0.0003
Error 3 144317.49568 48105.831895
Corrected Total 15 185008826

Root MSE 219.33041717
R-Square 0.9992199426

Standard
Parameter DF Parameter Estimate Error t Value Pr > |t|

Intercept 1 186931078.640064 154201839.66 1.21 0.3122
Prices 1 1324.50679362465 916.17455832 1.45 0.2440
Prices**2 1 -6.61923922845326 4.7891445654 -1.38 0.2609
GNP 1 -0.12768642156234 0.0738897784 -1.73 0.1824
GNP**2 1 3.1369569286214E-8 8.7167753E-8 0.36 0.7428
Jobless 1 -4.35507653558748 1.3851792402 -3.14 0.0515
Jobless**2 1 0.00022132944101 0.0001763541 1.26 0.2983
Military 1 4.9116201456086 1.826715856 2.69 0.0745
Military**2 1 -0.00113707146734 0.0003539971 -3.21 0.0489
PopSize 1 -0.03039972343344 5.9272538242 -0.01 0.9962
PopSize**2 1 -1.212511414593E-6 0.0000237262 -0.05 0.9625
Year 1 -194907.139041683 157739.28757 -1.24 0.3045
Year**2 1 50.8067603538103 40.279878944 1.26 0.2963

Figure 53.1. PROC ORTHOREG Results

The estimates inFigure 53.1compare very well with the best estimates available; for
additional information, refer toLongley(1967) andBeaton et al.(1976).

The following statements request the same analysis from the GLM procedure:

proc glm data=Longley;
model Employment = Prices Prices*Prices

GNP GNP*GNP
Jobless Jobless*Jobless
Military Military*Military
PopSize PopSize*PopSize
Year Year*Year;

ods select OverallANOVA
FitStatistics
ParameterEstimates
Notes;

run;

Figure 53.2contains the over-all ANOVA table and the parameter estimates produced
by PROC GLM. Notice that the ORTHOREG fit achieves a somewhat smaller root
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mean square error (RMSE) and also that the GLM procedure detects spurious singu-
larities.

PROC ORTHOREG used with Longley data

The GLM Procedure

Dependent Variable: Employment

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 184791061.6 16799187.4 308.58 <.0001

Error 4 217764.4 54441.1

Corrected Total 15 185008826.0

R-Square Coeff Var Root MSE Employment Mean

0.998823 0.357221 233.3262 65317.00

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -3598851.832 B 1327335.647 -2.71 0.0535
Prices 523.802 688.979 0.76 0.4894
Prices*Prices -2.326 3.507 -0.66 0.5434
GNP -0.138 0.078 -1.76 0.1526
GNP*GNP 0.000 0.000 0.24 0.8218
Jobless -4.599 1.459 -3.15 0.0344
Jobless*Jobless 0.000 0.000 1.14 0.3183
Military 4.994 1.942 2.57 0.0619
Military*Military -0.001 0.000 -3.15 0.0346
PopSize -4.246 5.156 -0.82 0.4565
PopSize*PopSize 0.000 B 0.000 0.81 0.4655
Year 0.000 B . . .
Year*Year 1.038 0.419 2.48 0.0683

NOTE: The X’X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter ’B’ are not uniquely estimable.

Figure 53.2. Partial PROC GLM Results

Syntax

The following statements are available in PROC ORTHOREG.

PROC ORTHOREG < options > ;
MODEL dependent=independents < / option > ;
BY variables ;
CLASS variables < / option > ;
WEIGHT variable ;
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The BY, CLASS, MODEL, and WEIGHT statements are described after the PROC
ORTHOREG statement.

PROC ORTHOREG Statement

PROC ORTHOREG < options > ;

The PROC ORTHOREG statement has the following options:

DATA=SAS-data-set
specifies the input SAS data set to use. By default, the procedure uses the most
recently created SAS data set. The data set specified cannot be a TYPE=CORR,
TYPE=COV, or TYPE=SSCP data set.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables
the Output Delivery System (ODS); seeChapter 14, “Using the Output Delivery
System,” for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which you want the levels of the classification variables (spec-
ified in the CLASS statement) to be sorted. This ordering determines which pa-
rameters in the model correspond to each level in the data. Note that the ORDER=
option applies to the levels for all classification variables. The exception is the default
ORDER=FORMATTED for numeric variables for which you have supplied no ex-
plicit format. In this case, the levels are ordered by their internal value. Note that this
represents a change from previous releases for how class levels are ordered. In re-
leases previous to Version 8, numeric class levels with no explicit format were ordered
by their BEST12. formatted values, and in order to revert to the previous ordering you
can specify this format explicitly for the affected classification variables. The change
was implemented because the former default behavior for ORDER=FORMATTED
often resulted in levels not being ordered numerically and usually required the user
to intervene with an explicit format or ORDER=INTERNAL to get the more natural
ordering.

The ORDER= option can take the following values.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

If you omit the ORDER= option, PROC ORTHOREG orders by the external format-
ted value.
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OUTEST=SAS-data-set
produces an output data set containing the parameter estimates, the BY variables, and
the special variables–TYPE– (valuePARMS), –NAME– (blank),–RMSE– (root
mean squared error), andIntercept.

SINGULAR=s
specifies a singularity criterion(s ≥ 0) for the inversion of the triangular matrixR.
By default, SINGULAR=10E−12.

BY Statement

BY variables ;

You can specify a BY statement with PROC ORTHOREG to obtain separate anal-
yses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the ORTHOREG procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables < / option > ;

The CLASS statement names the classification variables to be used in the model.
Typical class variables areTreatment, Sex, Race, Group, andReplication. If you
use the CLASS statement, it must appear before the MODEL statement.

By default, class levels are determined from the entire formatted values of the CLASS
variables. Note that this represents a slight change from previous releases in the way
in which class levels are determined. In releases prior to Version 9, class levels were
determined using no more than the first 16 characters of the formatted values. If
you wish to revert to this previous behavior you can use the TRUNCATE option on
the CLASS statement. In any case, you can use formats to group values into levels.
Refer to the discussion of the FORMAT procedure in theSAS Procedures Guide
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and the discussions for the FORMAT statement and SAS formats inSAS Language
Reference: Dictionary.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE
specifies that class levels should be determined using only up to the first 16 characters
of the formatted values of CLASS variables. When formatted values are longer than
16 characters, you can use this option in order to revert to the levels as determined in
releases previous to Version 9.

MODEL Statement

MODEL dependent=independents < / option > ;

The MODEL statement names the dependent variable and the independent effects.
Only one MODEL statement is allowed. Thespecification of effectsand the param-
eterization of the linear model is the same as in the GLM procedure; seeChapter 32,
“The GLM Procedure,”for further details.

The following option can be used in the MODEL statement:

NOINT
omits the intercept term from the model.

WEIGHT Statement

WEIGHT variable ;

A WEIGHT statement names a variable in the input data set whose values are relative
weights for a weighted least-squares regression. If the weight value is proportional to
the reciprocal of the variance for each observation, the weighted estimates are the best
linear unbiased estimates (BLUE). For a more complete description of the WEIGHT
statement, see the“WEIGHT Statement”section on page 1782 inChapter 32, “The
GLM Procedure.”.

Details

Missing Values

If there is a missing value for any model variable in an observation, the entire obser-
vation is dropped from the analysis.

Output Data Set

The OUTEST= option produces a TYPE=EST output SAS data set containing the
BY variables, parameter estimates, and four special variables. For each new value of
the BY variables, PROC ORTHOREG outputs an observation to the OUTEST= data
set. The variables in the data set are as follows:

• parameter estimates for all variables listed in the MODEL statement
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• BY variables

• –TYPE– , which is a character variable with the value PARMS for every ob-
servation

• –NAME– , which is a character variable left blank for every observation

• –RMSE– , which is the root mean squared error (the estimate of the standard
deviation of the true errors)

• Intercept, which is the estimated intercept. This variable does not exist in the
OUTEST= data set if the NOINT option is specified.

Displayed Output

PROC ORTHOREG displays the parameter estimates and associated statistics. These
include the following:

• overall model analysis of variance, including the error mean square, which is
an estimate ofσ2 (the variance of the true errors), and the overallF test for a
model effect

• root mean squared error, which is an estimate of the standard deviation of the
true errors. It is calculated as the square root of the mean squared error.

• R-square, which is a measure between 0 and 1 that indicates the portion of the
total variation that is attributed to the fit

• estimates for the parameters in the linear model

The table of parameter estimates consists of

• the terms used as regressors, including the Intercept, identifying the intercept
parameter

• degrees of freedom (DF) for the variable. There is one degree of freedom for
each parameter being estimated unless the model is not full rank.

• estimated linear coefficients

• estimates of the standard errors of the parameter estimates

• the criticalt values for testing whether the parameters are zero. This is com-
puted as the parameter estimate divided by its standard error.

• the two-sidedp-value for thet-test, which is the probability that at-statistic
would obtain a greater absolute value than that observed given that the true
parameter is zero

ODS Table Names

PROC ORTHOREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets.These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 53.1. ODS Tables Produced in PROC ORTHOREG

ODS Table Name Description Statement
ANOVA Analysis of variance default
FitStatistics Overall statistics for fit default
Levels Table of class levels CLASS statement
ParameterEstimates Parameter estimates default

Examples

Example 53.1. Precise Analysis of Variance

The data for the following example are fromPowell et al.(1982). In order to calibrate
an instrument for measuring atomic weight, 24 replicate measurements of the atomic
weight of silver (chemical symbolAg) are made with the new instrument and with a
reference instrument.

Note: The results from this example vary from machine to machine depending on
floating-point configuration.

The following statements read the measurements for the two instruments into the
SAS data setAgWeight.

title ’Atomic Weight of Silver by Two Different Instruments’;
data AgWeight;

input Instrument AgWeight @@;
datalines;

1 107.8681568 1 107.8681465 1 107.8681572 1 107.8681785
1 107.8681446 1 107.8681903 1 107.8681526 1 107.8681494
1 107.8681616 1 107.8681587 1 107.8681519 1 107.8681486
1 107.8681419 1 107.8681569 1 107.8681508 1 107.8681672
1 107.8681385 1 107.8681518 1 107.8681662 1 107.8681424
1 107.8681360 1 107.8681333 1 107.8681610 1 107.8681477
2 107.8681079 2 107.8681344 2 107.8681513 2 107.8681197
2 107.8681604 2 107.8681385 2 107.8681642 2 107.8681365
2 107.8681151 2 107.8681082 2 107.8681517 2 107.8681448
2 107.8681198 2 107.8681482 2 107.8681334 2 107.8681609
2 107.8681101 2 107.8681512 2 107.8681469 2 107.8681360
2 107.8681254 2 107.8681261 2 107.8681450 2 107.8681368
;

Notice that the variation in the atomic weight measurements is several orders of mag-
nitude less than their mean. This is a situation that can be difficult for standard,
regression-based analysis-of-variance procedures to handle correctly.
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The following statements invoke the ORTHOREG procedure to perform a simple
one-way analysis of variance, testing for differences between the two instruments.

proc orthoreg data=AgWeight;
class Instrument;
model AgWeight = Instrument;

run;

Output 53.1.1shows the resulting analysis.

Output 53.1.1. PROC ORTHOREG Results for Atomic Weight Example

Atomic Weight of Silver by Two Different Instruments

The ORTHOREG Procedure

Class Level Information
Factor Levels -Values-

Instrument 2 1 2

Atomic Weight of Silver by Two Different Instruments

The ORTHOREG Procedure

Dependent Variable: AgWeight

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 3.6383419E-9 3.6383419E-9 15.95 0.0002
Error 46 1.0495173E-8 2.281559E-10
Corrected Total 47 1.4133515E-8

Root MSE 0.0000151048
R-Square 0.2574265445

Standard
Parameter DF Parameter Estimate Error t Value Pr > |t|

Intercept 1 107.868136354166 3.0832608E-6 3.499E7 <.0001
(Instrument=’1’) 1 0.00001741249999 4.3603893E-6 3.99 0.0002
(Instrument=’2’) 0 0 . . .

The mean difference between instruments is about1.74 × 10−5 (the value of the
(Instrument=’1’) parameter in the parameter estimates table), whereas the
level of background variation in the measurements is about1.51× 10−5 (the value of
the root mean squared error). The difference is significant, with ap-value of 0.0002.

The National Institute of Standards and Technology(1998) has provided certified
ANOVA values for this data set. The following statements use ODS to examine
the ANOVA values produced by both the ORTHOREG and GLM procedures more
precisely for comparison with the NIST-certified values:
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ods listing close;
ods output ANOVA = OrthoregANOVA

FitStatistics = OrthoregFitStat;

proc orthoreg data=AgWeight;
class Instrument;
model AgWeight = Instrument;

run;

ods output OverallANOVA = GLMANOVA
FitStatistics = GLMFitStat;

proc glm data=AgWeight;
class Instrument;
model AgWeight = Instrument;

run;
ods listing;

data _null_; set OrthoregANOVA (in=inANOVA)
OrthoregFitStat(in=inFitStat);

if (inANOVA) then do;
if (Source = ’Model’) then put "Model SS: " ss e20.;
if (Source = ’Error’) then put "Error SS: " ss e20.;

end;
if (inFitStat) then do;

if (Statistic = ’Root MSE’) then
put "Root MSE: " nValue1 e20.;

if (Statistic = ’R-Square’) then
put "R-Square: " nValue1 best20.;

end;
data _null_; set GLMANOVA (in=inANOVA)

GLMFitStat(in=inFitStat);
if (inANOVA) then do;

if (Source = ’Model’) then put "Model SS: " ss e20.;
if (Source = ’Error’) then put "Error SS: " ss e20.;

end;
if (inFitStat) then put "Root MSE: " RootMSE e20.;
if (inFitStat) then put "R-Square: " RSquare best20.;

run;

In releases of SAS/STAT software prior to Version 8, PROC GLM gave much less
accurate results than PROC ORTHOREG, as shown in the following tables, which
compare the ANOVA values certified by NIST with those produced by the two pro-
cedures.
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Model SS Error SS
NIST-certified 3.6383418750000E-09 1.0495172916667E-08
ORTHOREG 3.6383418747907E-09 1.0495172916797E-08
GLM, Version 8 3.6383418747907E-09 1.0495172916797E-08
GLM, Previous releases 0 1.0331496763990E-08

Root MSE R-Square
NIST-certified 1.5104831444641E-05 0.25742654453832
ORTHOREG 1.5104831444735E-05 0.25742654452494
GLM, Version 8 1.5104831444735E-05 0.25742654452494
GLM, Previous releases 1.4986585859992E-05 0

While the ORTHOREG values and the GLM values for Version 8 are quite close
to the certified ones, the GLM values for prior releases are not. In fact, since the
model sum of squares is so small, in prior releases the GLM procedure set it (and
consequentlyR2) to zero.

Example 53.2. Wampler Data
This example applies the ORTHOREG procedure to a collection of data sets noted
for being ill conditioned. The OUTEST= data set is used to collect the results for
comparison with values certified to be correct by theNational Institute of Standards
and Technology(1998).

Note: The results from this example vary from machine to machine depending on
floating-point configuration.

The data are fromWampler(1970). The independent variates for all five data sets are
xi, i = 1, . . . 5, for x = 0, 1, . . . , 20. Two of the five dependent variables are exact
linear functions of the independent terms:

y1 = 1 + x + x2 + x3 + x4 + x5

y2 = 1 + 0.1x + 0.01x2 + 0.001x3 + 0.0001x4 + 0.00001x5

The other three dependent variables have the same mean value asy1, but with nonzero
errors.

y3 = y1 + e

y4 = y1 + 100e
y5 = y1 + 10000e

wheree is a vector of values with standard deviation 2044, chosen to be orthogonal
to the mean model fory1.
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The following statements create a SAS data setWampler containing the Wampler
data, run a SAS macro program using PROC ORTHOREG to fit a fifth-order poly-
nomial inx to each of the Wampler dependent variables, and collect the results in a
data set namedParmEst.

data Wampler;
do x=0 to 20;

input e @@;
y1 = 1 + x + x**2 + x**3

+ x**4 + x**5;
y2 = 1 + .1 *x + .01 *x**2 + .001*x**3

+ .0001*x**4 + .00001*x**5;
y3 = y1 + e;
y4 = y1 + 100*e;
y5 = y1 + 10000*e;
output;

end;
datalines;

759 -2048 2048 -2048 2523 -2048 2048 -2048 1838 -2048 2048
-2048 1838 -2048 2048 -2048 2523 -2048 2048 -2048 759
;

%macro WTest;
data ParmEst; if (0); run;
%do i = 1 %to 5;

proc orthoreg data=Wampler outest=ParmEst&i noprint;
model y&i = x x*x x*x*x x*x*x*x x*x*x*x*x;

data ParmEst&i; set ParmEst&i; Dep = "y&i";
data ParmEst; set ParmEst ParmEst&i;

label Col1=’x’ Col2=’x**2’ Col3=’x**3’
Col4=’x**4’ Col5=’x**5’;

run;
%end;

%mend;
%WTest;

Instead of displaying the raw values of the RMSE and parameter estimates, use a
further DATA step to compute the deviations from the values certified to be correct
by theNational Institute of Standards and Technology(1998).

data ParmEst; set ParmEst;
if (Dep = ’y1’) then

_RMSE_ = _RMSE_ - 0.00000000000000;
else if (Dep = ’y2’) then

_RMSE_ = _RMSE_ - 0.00000000000000;
else if (Dep = ’y3’) then

_RMSE_ = _RMSE_ - 2360.14502379268;
else if (Dep = ’y4’) then

_RMSE_ = _RMSE_ - 236014.502379268;
else if (Dep = ’y5’) then

_RMSE_ = _RMSE_ - 23601450.2379268;
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if (Dep ^= ’y2’) then do;
Intercept = Intercept - 1.00000000000000;
Col1 = Col1 - 1.00000000000000;
Col2 = Col2 - 1.00000000000000;
Col3 = Col3 - 1.00000000000000;
Col4 = Col4 - 1.00000000000000;
Col5 = Col5 - 1.00000000000000;

end;
else do;

Intercept = Intercept - 1.00000000000000;
Col1 = Col1 - 0.100000000000000;
Col2 = Col2 - 0.100000000000000e-1;
Col3 = Col3 - 0.100000000000000e-2;
Col4 = Col4 - 0.100000000000000e-3;
Col5 = Col5 - 0.100000000000000e-4;

end;
proc print data=ParmEst label noobs;

title ’Wampler data: Deviations from Certified Values’;
format _RMSE_ Intercept Col1-Col5 e9.;
var Dep _RMSE_ Intercept Col1-Col5;

run;

The results, shown inOutput 53.2.1, indicate that the values computed by
PROC ORTHOREG are quite close to the NIST-certified values.

Output 53.2.1. Wampler data: Deviations from Certified Values

Wampler data: Deviations from Certified Values

Dep _RMSE_ Intercept x x**2 x**3 x**4 x**5

y1 0.00E+00 1.49E-10 9.08E-12 -5.99E-12 1.26E-12 -9.68E-14 2.00E-15
y2 0.00E+00 -6.33E-15 5.55E-16 1.37E-16 -1.13E-17 5.56E-19 -1.52E-20
y3 1.09E-11 3.02E-10 -1.70E-10 4.88E-11 -5.75E-12 3.18E-13 -6.88E-15
y4 -3.20E-10 2.74E-09 -5.60E-09 2.12E-09 -2.89E-10 1.63E-11 -3.24E-13
y5 -2.98E-08 2.46E-07 -5.54E-07 2.12E-07 -2.90E-08 1.64E-09 -3.27E-11
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Overview

The analysis of survival data requires special techniques because the data are al-
most always incomplete, and familiar parametric assumptions may be unjustifiable.
Investigators follow subjects until they reach a prespecified endpoint (for example,
death). However, subjects sometimes withdraw from a study, or the study is com-
pleted before the endpoint is reached. In these cases, the survival times (also known
as failure times) arecensored; subjects survived to a certain time beyond which their
status is unknown. The uncensored survival times are sometimes referred to asevent
times. Methods for survival analysis must account for both censored and uncensored
data.

There are many types of models that have been used for survival data. Two of the
more popular types of models are the accelerated failure time model (Kalbfleisch and
Prentice1980) and the Cox proportional hazards model (Cox 1972). Each has its
own assumptions on the underlying distribution of the survival times. Two closely
related functions often used to describe the distribution of survival times are the sur-
vivor function and the hazard function (see the section“Failure Time Distribution”on
page 3239 for definitions). The accelerated failure time model assumes a parametric
form for the effects of the explanatory variables and usually assumes a parametric
form for the underlying survivor function. Cox’s proportional hazards model also
assumes a parametric form for the effects of the explanatory variables, but it allows
an unspecified form for the underlying survivor function.

The PHREG procedure performs regression analysis of survival data based on the
Cox proportional hazards model. Cox’s semiparametric model is widely used in the
analysis of survival data to explain the effect of explanatory variables on hazard rates.
The survival time of each member of a population is assumed to follow its own hazard
function,λi(t), expressed as

λi(t) = λ(t;Zi) = λ0(t) exp(Z′iβ)

whereλ0(t) is an arbitrary and unspecified baseline hazard function,Zi is the vector
of explanatory variables for theith individual, andβ is the vector of unknown regres-
sion parameters associated with the explanatory variables. The vectorβ is assumed
to be the same for all individuals. The survivor function can be expressed as

S(t;Zi) = [S0(t)] exp(Z′iβ)

whereS0(t) = exp(−
∫ t
0 λ0(u)du) is the baseline survivor function. To estimateβ,

Cox (1972; 1975) introduced the partial likelihood function, which eliminates the
unknown baseline hazardλ0(t) and accounts for censored survival times.
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The partial likelihood of Cox also allows time-dependent explanatory variables. An
explanatory variable is time-dependent if its value for any given individual can change
over time. Time-dependent variables have many useful applications in survival anal-
ysis. You can use a time-dependent variable to model the effect of subjects changing
treatment groups. Or you can include time-dependent variables such as blood pres-
sure or blood chemistry measures that vary with time during the course of a study.
You can also use time-dependent variables to test the validity of the proportional
hazards model.

An alternative way to fit models with time-dependent explanatory variables is to
use the counting process style of input. The counting process formulation enables
PROC PHREG to fit a superset of the Cox model, known as the multiplicative haz-
ards model. This extension also includes recurrent events data and left truncation of
failure times. The theory of these models is based on the counting process pioneered
by Andersen and Gill(1982), and the model is often referred to as the Andersen-Gill
Model.

Multivariate failure time data arise when each study subject can potentially expe-
rience several events (for instance, multiple infections after surgery) or when there
exists some natural or artificial clustering of subjects (for instance, a litter of mice)
that induces dependence among the failure times of the same cluster. Data in the for-
mer situation are referred to as multiple events data, which include recurrent events
data as a special case; data in the latter situation are referred to as clustered data. You
can use PROC PHREG to carry out various methods for analyzing these data.

The population under study may consist of a number of subpopulations, each of
which has its own baseline hazard function. PROC PHREG performs a stratified
analysis to adjust for such subpopulation differences. Under the stratified model, the
hazard function for thejth individual in theith stratum is expressed as

λij(t) = λi0(t) exp(Z′ijβ)

whereλi0(t) is the baseline hazard function for theith stratum, andZij is the vector
of explanatory variables for the individual. The regression coefficients are assumed
to be the same for all individuals across all strata.

Ties in the failure times may arise when the time scale is genuinely discrete or when
survival times generated from the continuous-time model are grouped into coarser
units. The PHREG procedure includes four methods of handling ties. Thediscrete
logistic model is available for discrete time-scale data. The other three methods apply
to continuous time-scale data. Theexactmethod computes the exact conditional
probability under the model that the set of observed tied event times occurs before all
the censored times with the same value or before larger values.BreslowandEfron
methods provide approximations to the exact method.

Variable selection is a typical exploratory exercise in multiple regression when the
investigator is interested in identifying important prognostic factors from a large
number of candidate variables. The PHREG procedure provides four model selec-
tion methods: forward selection, backward elimination, stepwise selection, and best
subset selection. The best subset selection method is based on the likelihood score
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statistic. This method identifies a specified number of best models containing one,
two, three variables and so on, up to the single model containing all of the explanatory
variables.

The PHREG procedure also enables you to

• include an offset variable in the model

• weight the observations in the input data

• test linear hypotheses about the regression parameters

• perform conditional logistic regression analysis for matched case-control stud-
ies

• create a SAS data set containing survivor function estimates, residuals, and
regression diagnostics

• create a SAS data set containing survival distribution estimates and confidence
interval for the survivor function at each event time for a given realization of
the explanatory variables

PROC PHREG can also be used to fit the multinomial logit choice model to dis-
crete choice data. See [http://support.sas.com/techsup/tnote/tnote–stat.html#market]
for more information on discrete choice modeling and the multinomial logit model.
Look for the latest “Discrete Choice” report.

The remaining sections of this chapter contain information on how to use PROC
PHREG, information on the underlying statistical methodology, and some sample
applications of the procedure. The“Getting Started”section on page 3217 introduces
PROC PHREG with two examples. The“Syntax” section on page 3221 describes the
syntax of the procedure. The“Details” section on page 3239 summarizes the statis-
tical techniques employed in PROC PHREG. The“Examples”section on page 3272
includes eight additional examples of useful applications. Experienced SAS/STAT
software users may decide to proceed to the “Syntax” section, while other users may
choose to read both the “Getting Started” and “Examples” sections before proceeding
to “Syntax” and “Details.”

Experimental graphics are now available in PROC PHREG for model assessment.
For more information, see the section“ODS Graphics”on page 3271.

Getting Started

PROC PHREG syntax is similar to that of the other regression procedures in the
SAS System. For simple uses, only the PROC PHREG and MODEL statements are
required.

Consider the following data from (Kalbfleisch and Prentice1980). Two groups of
rats received different pretreatment regimes and then were exposed to a carcinogen.
Investigators recorded the survival times of the rats from exposure to mortality from
vaginal cancer. Four rats died of other causes, so their survival times are censored.
Interest lies in whether the survival curves differ between the two groups.
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The data setRats contains the variableDays (the survival time in days), the variable
Status (the censoring indicator variable: 0 if censored and 1 if not censored), and the
variableGroup (the pretreatment group indicator).

data Rats;
label Days =’Days from Exposure to Death’;
input Days Status Group @@;
datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 0 209 1 0
213 1 0 216 1 0 220 1 0 227 1 0
230 1 0 234 1 0 246 1 0 265 1 0
304 1 0 216 0 0 244 0 0 142 1 1
156 1 1 163 1 1 198 1 1 205 1 1
232 1 1 232 1 1 233 1 1 233 1 1
233 1 1 233 1 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 323 1 1 204 0 1 344 0 1
;
run;

In the MODEL statement, the response variable,Days, is crossed with the censoring
variable,Status, with the value that indicates censoring enclosed in parentheses (0).
The values ofDays are considered censored if the value ofStatus is 0; otherwise,
they are considered event times.

proc phreg data=Rats;
model Days*Status(0)=Group;

run;

Results of the PROC PHREG analysis appear inFigure 54.1. SinceGroup takes only
two values, the null hypothesis for no difference between the two groups is identical
to the null hypothesis that the regression coefficient forGroup is 0. All three tests
in the “Testing Global Null Hypothesis: BETA=0” table (see the section“Testing the
Global Null Hypothesis”on page 3246) suggest that the survival curves for the two
pretreatment groups may not be the same. In this model, the hazards ratio (or risk ra-
tio) for Group, defined as the exponentiation of the regression coefficient forGroup,
is the ratio of the hazard functions between the two groups. The estimate is 0.551,
implying that the hazard function forGroup=1 is smaller than that forGroup=0. In
other words, rats inGroup=1 lived longer than those inGroup=0.



Getting Started � 3219

The PHREG Procedure

Model Information

Data Set WORK.RATS
Dependent Variable Days Days from Exposure to Death
Censoring Variable Status
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored

40 36 4 10.00

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 204.317 201.438
AIC 204.317 203.438
SBC 204.317 205.022

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 2.8784 1 0.0898
Score 3.0001 1 0.0833
Wald 2.9254 1 0.0872

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Group 1 -0.59590 0.34840 2.9254 0.0872 0.551

Figure 54.1. Comparison of Two Survival Curves

In this example, the comparison of two survival curves is put in the form of a propor-
tional hazards model. This approach is essentially the same as the log-rank (Mantel-
Haenszel) test. In fact, if there are no ties in the survival times, the likelihood score
test in the Cox regression analysis is identical to the log-rank test. The advantage
of the Cox regression approach is the ability to adjust for the other variables by in-
cluding them in the model. For example, the present model could be expanded by
including a variable that contains the initial body weights of the rats.
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Next, consider a simple test of the validity of the proportional hazards assumption.
The proportional hazards model for comparing the two pretreatment groups is given
by the following:

λ(t) =
{

λ0(t) if GROUP= 0
λ0(t)eβ1 if GROUP= 1

The ratio of hazards iseβ1 , which does not depend on time. If the hazard ratio changes
with time, the proportional hazards model assumption is invalid. Simple forms of
departure from the proportional hazards model can be investigated with the following
time-dependent explanatory variablex = x(t):

x(t) =
{

0 if GROUP= 0
log(t)− 5.4 if GROUP= 1

Here,log(t) is used instead oft to avoid numerical instability in the computation. The
constant, 5.4, is the average of the logs of the survival times and is included to im-
prove interpretability. The hazard ratio in the two groups then becomeseβ1−5.4β2tβ2 ,
whereβ2 is the regression parameter for the time-dependent variablex. The termeβ1

represents the hazard ratio at the geometric mean of the survival times. A nonzero
value ofβ2 would imply an increasing(β2 > 0) or decreasing(β2 < 0) trend in the
hazard ratio with time.

The MODEL statement in this analysis also includes the time-dependent explanatory
variableX, which is defined within the procedure by the programming statement that
follows the MODEL statement. At each event time, subjects in the risk set (those
alive just before the event time) have theirX values changed accordingly.

proc phreg data=Rats;
model Days*Status(0)=Group X;
X=Group*(log(Days) - 5.4);

run;

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Group 1 -0.59976 0.34837 2.9639 0.0851 0.549
X 1 -0.22952 1.82489 0.0158 0.8999 0.795

Figure 54.2. A Simple Test of Trend in the Hazard Ratio

The analysis of the parameter estimates is displayed inFigure 54.2. The Wald chi-
square statistic for testing the null hypothesis thatβ2 = 0 is 0.0158. The statistic
is not statistically significant when compared to a chi-square distribution with one
degree of freedom (p = 0.8999). Thus, you can conclude that there is no evidence of
an increasing or decreasing trend over time in the hazard ratio. See the“Examples”
section beginning on page 3272 for additional illustrations of PROC PHREG usage.
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Syntax

The following statements are available in PROC PHREG.

PROC PHREG < options > ;
ASSESS keyword < / options > ;
MODEL response < *censor(list) > = variables < /options > ;
< programming statements >
STRATA variable < (list) > < . . .variable < (list) >>< /option > ;
< label: > TEST equation1 < ,. . ., equationk >< /option > ;
FREQ variable ;
WEIGHT variable < /option >;
ID variables ;
OUTPUT < OUT=SAS-data-set >

< keyword=name. . . keyword=name >< /options > ;
BASELINE < OUT=SAS-data-set >

< COVARIATES=SAS-data-set >
< keyword=name. . . keyword=name >< /options > ;

BY variables ;

The PROC PHREG statement invokes the procedure. All other statements except
the MODEL statement are optional. Items within < > are optional, and there is no re-
quired order for the statements following the PROC PHREG statement. The MODEL
statement specifies the variables that define the survival time, the censoring variable,
and the explanatory variables. The STRATA statement specifies a variable or set of
variables defining the strata for the analysis. The TEST statement contains equa-
tions that define linear hypotheses concerning the model parameters. The ID state-
ment specifies the variables with values that are used to label the observations. The
OUTPUT and BASELINE statements create data sets containing the survival esti-
mates. DATA step programming statements can be included to create time-dependent
explanatory variables.

PROC PHREG Statement

PROC PHREG < options > ;

You can specify the following options in the PROC PHREG statement.

COVOUT
adds the estimated covariance matrix of the parameter estimates to the OUTEST=
data set. The COVOUT option has no effect unless the OUTEST= option is specified.

COVM
requests the model-based covariance matrix (which is the inverse of the observed
information matrix) be presented and used in the analysis if the COVS option is also
specified. The COVM option has no effect if the COVS option is not specified.
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COVSANDWICH < (AGGREGATE) >
COVS < (AGGREGATE) >

requests the robust sandwich estimate ofLin and Wei(1989) for the covariance ma-
trix. When this option is specified, this robust sandwich estimate is used in the Wald
tests for testing the global null hypothesis, null hypotheses of individual parameters,
and the hypotheses in the TEST statements. In addition, a modified score test is
computed in the testing of the global null hypothesis, and the parameter estimates
table has an additional StdErrRatio column, which contains the ratios of the robust
estimate of the standard error relative to the corresponding model-based estimate.
Optionally, you can specify the keyword AGGREGATE enclosed in parentheses af-
ter the COVSANDWICH (or COVS) option, which requests a summing up of the
score residuals for each distinct ID pattern in the computation of the robust sandwich
covariance estimate. This AGGREGATE option has no effects if the ID statement is
not specified.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. If you omit the DATA=
option, the procedure uses the most recently created SAS data set.

MULTIPASS
requests that, for each Newton-Raphson iteration, PROC PHREG recompiles the risk
sets corresponding to the event times for the (start,stop) style of response and re-
computes the values of the time-dependent variables defined by the programming
statements for each observation in the risk sets. If the MULTIPASS option is not
specified, PROC PHREG computes all risk sets and all the variable values and saves
them into a utility file. The MULTIPASS option decreases required disk space at the
expense of increased execution time; however, for very large data, it may actually
save time since it is time consuming to write and read large utility files. This option
has an effect only when the (start,stop) style of response is used or when there are
time-dependent explanatory variables.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output
Delivery System (ODS); seeChapter 14, “Using the Output Delivery System,”for
more information.

NOSUMMARY
suppresses the display of the event and censored observation frequencies.

OUTEST=SAS-data-set
creates an output SAS data set that contains estimates of the regression coefficients.
If you use the COVOUT option, the data set also contains the estimated covariance
matrix of the parameter estimates. The data set includes

• any BY variables specified

• –TIES–, a character variable of length 8 with four possible values: BRESLOW,
DISCRETE, EFRON, and EXACT. These are the four values of the TIES=
option in the MODEL statement.
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• –TYPE–, a character variable of length 8 with two possible values: PARMS for
parameter estimates or COV for covariance estimates. If both the COVM and
COVS options are specified in the PROC LIFETEST statement along with the
COVOUT option,–TYPE–=COVM for the model-based covariance estimates
and–TYPE–=COVS for the robust sandwich covariance estimates.

• –STATUS–, a character variable indicating whether the estimates have con-
verged

• –NAME–, a character variable containing the name of the TIME variable for
the row of parameter estimates and the name of each explanatory variable to
label the rows of covariance estimates

• one variable for each explanatory variable in the MODEL statement. In a for-
ward, backward, or stepwise regression analysis, if an explanatory variable is
not included in the final model, the corresponding parameter estimate and co-
variances are set to missing.

• –LNLIKE –, a numeric variable containing the last computed value of the log
likelihood

SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum, and max-
imum) for each explanatory variable in the MODEL statement.

ASSESS Statement (Experimental)

ASSESS < VAR=(list) > < PH > < /options > ;

The ASSESS statement performs the graphical and numerical methods ofLin, Wei,
and Ying(1993) for checking the adequacy of the Cox regression model. The meth-
ods are derived from cumulative sums of martingale residuals over follow-up times or
covariate values. You can assess the functional form of a covariate or you can check
the proportional hazards assumption for each covariate in the Cox model. PROC
PHREG uses the experimental ODS graphics for the graphical displays. For specific
information about the experimental graphics that is available in PROC PHREG, see
the section“ODS Graphics”on page 3271. You must specify at least one of the
following to create an analysis.

VAR=(list)
specifies the list of explanatory variables for which their functional forms are as-
sessed. For each variable on the list, the observed cumulative martingale residu-
als are plotted against the values of the explanatory variable along with 20 (orn if
NPATHS=n is specified) simulated residual patterns.

PROPORTIONALHAZARDS
PH

requests the checking of the proportional hazards assumption. For each explanatory
variable in the model, the observed score process component is plotted against the
follow-up time along with 20 (orn if NPATHS=n is specified) simulated patterns.

The following options can be specified after a slash (/).
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NPATHS=n
specifies the number of simulated residual patterns to be displayed in a cumulative
martingale residual plot or a score process plot. The default isn=20.

CRPANEL
requests that a plot with four panels, each containing the observed cumulative mar-
tingale residuals and two simulated residual patterns, be created.

RESAMPLE < =n >
requests that the Kolmogorov-type supremum test be computed on 1,000 simulated
patterns or onn simulated patterns ifn is specified.

SEED=n
specifies an integer seed for the random number generator used in creating simulated
realizations for plots and for the Kolmogorov-type supremum tests. Specifying a seed
enables you to reproduce identical graphs andp-values for the model assessments
from the same PHREG specification. If the SEED= option is not specified, or if you
specify a nonpositive seed, a random seed is derived from the time of day.

BASELINE Statement

BASELINE < OUT= SAS-data-set >< COVARIATES= SAS-data-set >
< keyword=name ... keyword=name >< /options > ;

The BASELINE statement creates a new SAS data set that contains the survivor func-
tion estimates at the event times of each stratum for every pattern of explanatory vari-
able values (x) given in the COVARIATES= data set. By default, the data set also
contains the survivor function estimates corresponding to the means of the explana-
tory variables (x = z) for each stratum. If you want only these estimates, you can
omit the COVARIATES= option. No BASELINE data set is created if the model
contains a time-dependent variable defined by means of programming statement.

The following list explains specifications in the BASELINE statement.

OUT=SAS-data-set
names the output BASELINE data set. If you omit the OUT= option, the data set is
created and given a default name using the DATAn convention.

COVARIATES=SAS-data-set
names the SAS data set containing the set of explanatory variable values for which
the survivor functions are estimated. There must be a corresponding variable in the
COVARIATES= data set for each explanatory variable in the final model.

keyword=name
specifies the statistics included in the BASELINE data set and assigns names to the
new variables that contain the statistics. Specify a keyword for each desired statistic
(see the following list of keywords), an equal sign, and the variable to contain the
statistic. The keywords and the corresponding statistics are

CMF cumulative mean function estimate for recurrent events
data. Specifying CMF=–ALL – is equivalent to specifying
CMF=CMF, STDCMF=StdErrCMF, LOWERCMF=LowerCMF,
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and UPPERCMF=UpperCMF.Nelson(2002) refers to the mean
function estimate as MCF (mean cumulative function).

CUMHAZ cumulative hazard function estimate for recurrent events
data. Specifying CMFHAZ=–ALL – is equivalent to spec-
ifying CUMHAZ=CumHaz, STDCUMHAZ=StdErrCumHaz,
LOWERCUMHAZ=LowerCumHaz, and UPPERCUMHAZ=UpperCumHaz.

LOGLOGS log of the negative log ofSURVIVAL

LOGSURV log of SURVIVAL

LOWER | L lower pointwise confidence limit for thesurvivor function. The
confidence level is determined by the ALPHA= option.

LOWERCMF lower pointwise confidence limit for the cumulative mean function.
The confidence level is determined by the ALPHA= option.

LOWERCUMHAZ lower pointwise confidence limit for the cumulative hazard
function. The confidence level is determined by the ALPHA= op-
tion.

STDERR standard error of thesurvivor function estimator

STDCMF standard error of the cumulative mean function estimator

STDCUMHAZ standard error of the cumulative hazard function estimator

STDXBETA standard error of thelinear predictor estimator,
√

x′V̂(β̂)x

SURVIVAL survivor function estimate Ŝ(t) = [Ŝ0(t)]exp(x′β̂)

Specifying SURVIVAL=–ALL – is equivalent to spec-
ifying SURVIVAL=Survival, STDERR=StdErrSurvival,
LOWER=LowerSurvival, and UPPER=UpperSurvival.

UPPER | U upper pointwise confidence limit for thesurvivor function. The
confidence level is determined by the ALPHA= option.

UPPERCMF upper pointwise confidence limit for the cumulative mean function.
The confidence level is determined by the ALPHA= option.

UPPERCUMHAZ upper pointwise confidence limit for the cumulative hazard func-
tion. The confidence level is determined by the ALPHA= option.

XBETA estimate of the linear predictor,x′β̂

The following options can appear in the BASELINE statement after a slash (/).

ALPHA= value
specifies the significance level of the confidence interval for the survivor function.
The value must be between 0 and 1. The default is 0.05, which results in a 95%
confidence interval.

CLTYPE=method
specifies the method used to compute the confidence limits forS(t, z), the survivor
function for a subject with a fixed covariate vectorz at event timet. The CLTYPE=
option can take the following values:
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LOG specifies that the confidence limits forlog(S(t, z)) are to be com-
puted using the normal theory approximation. The confidence lim-
its for S(t, z) are obtained by back-transforming the confidence
limits for log(S(t, z)). The default is CLTYPE=LOG.

LOGLOG specifies that the confidence limits for thelog(− log(S(t, z))) are
to be computed using normal theory approximation. The confi-
dence limits forS(t, z) are obtained by back-transforming the con-
fidence limits forlog(− log(S(t, z))).

NORMAL specifies that the confidence limits forS(t, z) are to be computed
directly using normal theory approximation.

METHOD=method
specifies the method used to compute the survivor function estimates. The two avail-
able methods are

CH | EMP | NELSON specifies that the Nelson (empirical) cumulative hazard
function estimate of the survivor function is to be computed; that
is, the survivor function is estimated by exponentiating the negative
empirical cumulative hazard function.

PL specifies that the product-limit estimate of the survivor function is
to be computed. The default is METHOD=PL.

NOMEAN
excludes the survivor function estimates corresponding to the sample means of the
explanatory variables.

The METHOD= and CLTYPE= options apply only to the survival estimates. For re-
current events data, both CMF= and CUMHAZ= statistics are the Nelson estimators,
but their standard error are not the same. Confidence limits for the cumulative mean
function and cumulative hazard function are based on the log transform.

BY Statement
BY variables ;

You can specify a BY statement with PROC PHREG to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the PHREG procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.
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• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Contents. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable < /option > ;

The variable in the FREQ statement identifies the variable (in the input data set)
containing the frequency of occurrence of each observation. PROC PHREG treats
each observation as if it appearsn times, wheren is the value of the FREQ variable
for the observation. If not an integer, the frequency value is truncated to an integer.
If the frequency value is missing, the observation is not used in the estimation of the
regression parameters.

The following option can be specified in the FREQ statement after a slash (/):

NOTRUNCATE
NOTRUNC

specifies that frequency values are not truncated to integers.

ID Statement

ID variables ;

The ID statement specifies additional variables for identifying observations in the
input data. These variables are placed in the OUT= data set created by the OUTPUT
statement. In the computation of therobust sandwich variance estimate, you can
aggregate over distinct values of these ID variables.

Only variables in the input data set can be included in the ID statement.

MODEL Statement

MODEL response < *censor ( list ) > = variables < /options > ;

MODEL (t1, t2) < *censor(list) > = variables < /options > ;

The MODEL statement identifies the variables to be used as the failure time variables,
the optional censoring variable, and the explanatory variables. Two forms of MODEL
syntax can be specified; the first form allows one response variable, while the second
form allows two variables for the counting process style of input (see the section
“Counting Process Style of Input”on page 3241 for more information).

In the first MODEL statement, preceding the equal sign, is the name of the failure
time variable. This can optionally be followed by an asterisk, the name of the censor-
ing variable, and a list of censoring values (separated by blanks or commas if there
is more than one) enclosed in parentheses. If the censoring variable takes on one
of these values, the corresponding failure time is considered to be censored. The
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variables following the equal sign are the explanatory variables (sometimes called
independent variables or covariates) for the model.

Instead of a single failure time variable, the second MODEL statement identifies a
pair of failure time variables. Their names are enclosed in parentheses, and they
signify the endpoints of a semi-closed interval(t1, t2] during which the subject is at
risk. If the censoring variable takes on one of the censoring values, the timet2 is
considered to be censored.

The censoring variable and the explanatory variables must be numeric. The failure
time variables must contain nonnegative values. Any observation with a negative
failure time is excluded from the analysis, as is any observation with a missing value
for any of the variables listed in the MODEL statement.

You can specify the following options in the MODEL statement.

Ties-Handling Option

TIES=method
specifies how to handle ties in the failure time. The TIES= option can take the fol-
lowing values:

BRESLOW uses the approximate likelihood ofBreslow(1974). This is the default
value.

DISCRETE replaces the proportional hazards model by the discrete logistic model

λ(t; z)
1− λ(t; z)

=
λ0(t)

1− λ0(t)
exp(z′β)

whereλ0(t) andh(t; z) are discrete hazard functions.

EFRON uses the approximate likelihood ofEfron (1977).

EXACT computes the exact conditional probability under the proportional haz-
ards assumption that all tied event times occur before censored times
of the same value or before larger values. This is equivalent to sum-
ming all terms of the marginal likelihood forβ that are consistent with
the observed data (Kalbfleisch and Prentice1980; DeLong, Guirguis,
and So1994).

The EXACT method may take a considerable amount of computer resources. If ties
are not extensive, the EFRON and BRESLOW methods provide satisfactory approx-
imations to the EXACT method for the continuous time-scale model. In general,
Efron’s approximation gives results that are much closer to the EXACT method re-
sults than Breslow’s approximation does. If the time scale is genuinely discrete, you
should use the DISCRETE method. The DISCRETE method is also required in the
analysis of case-control studies when there is more than one case in a matched set.
If there are no ties, all four methods result in the same likelihood and yield identical
estimates. The default, TIES=BRESLOW, is the most efficient method when there
are no ties.



MODEL Statement � 3229

Model-Specification Options

ENTRYTIME=variable
ENTRY=variable

specifies the name of the variable that represents the left truncation time. This option
has no effect when the counting process style of input is specified. See the section
“Left Truncation of Failure Times”on page 3263 for more information.

NOFIT
performs the global score test, which tests the joint significance of all the explana-
tory variables in the MODEL statement. No parameters are estimated. If the NOFIT
option is specified along with other MODEL statement options, NOFIT takes prece-
dence, and all other options are ignored except the TIES= option.

OFFSET=name
specifies the name of an offset variable, which is an explanatory variable with a re-
gression coefficient fixed as one. This option can be used to incorporate risk weights
for the likelihood function.

SELECTION=method
specifies the method used to select the model. Themethods available are

BACKWARD | B requests backward elimination.

FORWARD | F requests forward selection.

NONE | N fits the complete model specified in the MODEL statement.
This is the default value.

SCORE requests best subset selection. It identifies a specified number of
models with the highest score chi-square statistic for all possi-
ble model sizes ranging from one explanatory variable to the to-
tal number of explanatory variables listed in the MODEL state-
ment.

STEPWISE | S requests stepwise selection.

For more information, see the section“Variable Selection Methods”on page 3264.

Model-Building Options

The following options enable you to provide additional specifications for the
BACKWARD, FORWARD, SCORE, and STEPWISE model selection methods.
They have no effect when SELECTION=NONE. Only the INCLUDE=, START=,
STOP=, and BEST= options work with the SCORE method.

BEST=n
is used exclusively with the SCORE model selection method. The BEST=n option
specifies thatn models with the highest score chi-square statistics are to be displayed
for each model size. If the option is omitted and there are no more than 10 explanatory
variables, then all possible models are listed for each model size. If the option is
omitted and there are more than 10 explanatory variables, then the number of models
selected for each model size is, at most, equal to the number of explanatory variables
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listed in the MODEL statement. SeeExample 54.2on page 3279 for an illustration
of the SCORE selection method and the BEST= option.

DETAILS
produces a detailed display at each step of the model-building process. It produces an
“Analysis of Variables Not in the Model” table before displaying the variable selected
for entry for FORWARD or STEPWISE selection. For each model fitted, it produces
the “Analysis of Maximum Likelihood Estimates” table. SeeExample 54.1on page
3272 for a discussion of these tables.

INCLUDE=n
includes the firstn explanatory variables listed in the MODEL statement in every
model. The value forn ranges from 1 tos, wheres is the number of explanatory
variables in the MODEL statement. The default value ofn is 0.

MAXSTEP=n
specifies the maximum number of times the explanatory variables can move in and
out of the model before the STEPWISE model-building process ends. The default
value forn is twice the number of explanatory variables in the MODEL statement.
The option has no effect for other model selection methods.

SEQUENTIAL
forces variables to be added to the model in the order specified in the MODEL state-
ment or to be eliminated from the model in the reverse order specified in the MODEL
statement.

SLENTRY=value
SLE=value

specifies the significance level (a value between 0 and 1) for entering an explanatory
variable into the model in the FORWARD or STEPWISE method. For all variables
not in the model, the one with the smallestp-value is entered if thep-value is less
than or equal to the specified significance level. The default value is 0.05.

SLSTAY=value
SLS=value

specifies the significance level (a value between 0 and 1) for removing an explanatory
variable from the model in the BACKWARD or STEPWISE method. For all variables
in the model, the one with the largestp-value is removed if thep-value exceeds the
specified significance level. The default value is 0.05.

START=n
begins the FORWARD, BACKWARD, or STEPWISE model selection process with
the first n explanatory variables listed in the MODEL statement. The value forn
ranges from 0 tos, wheres is the total number of explanatory variables in the MODEL
statement. The default value ofn is s for the BACKWARD method and 0 for the
FORWARD and STEPWISE methods. Note that START=n specifies only that the
first n explanatory variables appear in the first model, while INCLUDE=n specifies
that the firstn explanatory variables be included in every model. For the SCORE
method, START=n specifies that the smallest models containn explanatory variables,
wheren ranges from 1 tos. The default value ofn is 1.



MODEL Statement � 3231

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method)
number of explanatory variables to be included in the final model. The value forn
ranges from 0 tos, wheres is the number of explanatory variables in the MODEL
statement. The default value ofn is 0 for the BACKWARD method ands for the
FORWARD method. For the SCORE method, STOP=n specifies that the largest
models containn explanatory variables, wheren ranges from 1 tos. The default
value ofn is s. The STOP= option has no effect for the STEPWISE method.

STOPRES
SR

specifies that the addition and deletion of variables are to be based on the result
of the likelihood score test for testing the joint significance of variables not in the
model. This score chi-square statistic is referred to as the residual chi-square. In
the FORWARD method, the STOPRES option enters the explanatory variables into
the model one at a time until the residual chi-square becomes insignificant (that is,
until the p-value of the residual chi-square exceeds the SLENTRY= value). In the
BACKWARD method, the STOPRES option removes variables from the model one
at a time until the residual chi-square becomes significant (that is, until thep-value
of the residual chi-square becomes less than the SLSTAY= value). The STOPRES
option has no effect for the STEPWISE method.

Optimization Options

Four convergence criteria are allowed: ABSFCONV=, FCONV=, GCONV=, and
XCONV=. If you specify more than one convergence criterion, the optimization is
terminated as soon as one of the criteria is satisfied. If none of the criteria is specified,
the default is GCONV=1E−8.

ABSFCONV=value
specifies the absolute function convergence criterion. Termination requires a small
change in the objective function (log partial likelihood function) in subsequent itera-
tions,

|lk − lk−1| < value

wherelk is the value of the objective function at iterationk.

CONVERGELIKE=value
is the same as specifying theABSFCONV=option.

CONVERGEPARM=value
is the same as specifying theXCONV= option.

FCONV=value
specifies the relative function convergence criterion. Termination requires a small rel-
ative change in the objective function (log partial likelihood function) in subsequent
iterations,
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|lk − lk−1|
|lk−1|+ 1E− 6

< value

wherelk is the value of the objective function at iterationk.

GCONV=value
specifies the relative gradient convergence criterion. Termination requires that the
normalized prediction function reduction is small,

gkH−1
k gk

|lk|+ 1E− 6
< value

wherelk is the log partial likelihood,gk is the gradient vector (first partial derivatives
of the log partial likelihood), andHk is the negative Hessian matrix (second partial
derivatives of the log partial likelihood), all at iterationk.

MAXITER=n
specifies the maximum number of iterations allowed. The default value forn is 25. If
convergence is not attained inn iterations, the displayed output and all data sets cre-
ated by PROC PHREG contain results that are based on the last maximum likelihood
iteration.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique to improve the log-likelihood when its value is worse than
that of the previous step. For RIDGING=ABSOLUTE, the diagonal elements
of the negative (expected) Hessian are inflated by adding the ridge value. For
RIDGING=RELATIVE, the diagonal elements are inflated by the factor equal to 1
plus the ridge value. For RIDGING=NONE, the crude line-search method of taking
half a step is used instead of ridging.

SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of
explanatory variables. The default value is10−12.

XCONV=value
specifies the relative parameter convergence criterion. Termination requires a small
relative parameter change in subsequent iterations,

max
i
|δ(i)

k | < value

where

δ
(i)
k =

 θ
(i)
k − θ

(i)
k−1 |θ(i)

k−1| < .01
θ
(i)
k −θ

(i)
k−1

θ
(i)
k−1

otherwise

whereθ
(i)
k is the estimate of theith parameter at iterationk.
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Display Options

ALPHA= value
sets the significance level used for the confidence limits for the hazards ratios. The
value must be between 0 and 1. The default value is 0.05, which results in the calcula-
tion of a 95% confidence interval. This option has no effect unless the RISKLIMITS
option is specified.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COVB
displays the estimated covariance matrix of the parameter estimates.

ITPRINT
displays the iteration history, including the last evaluation of the gradient vector.

RISKLIMITS
RL

displays, for each explanatory variable, the100(1 − α)% confidence limits for the
hazards ratio (eβi). The value forα is determined by the ALPHA= option.

OUTPUT Statement

OUTPUT <OUT= SAS-data-set >
< keyword=name ... keyword=name >< /options > ;

The OUTPUT statement creates a new SAS data set containing statistics calculated
for each observation. These can include the estimated linear predictor (z′jβ̂) and its
standard error, survival distribution estimates, residuals, and influence statistics. In
addition, this data set includes the time variable, the explanatory variables listed in
the MODEL statement, the censoring variable (if specified), and the BY, STRATA,
FREQ, and ID variables (if specified).

For observations with missing values in the time variable or any explanatory vari-
ables, the output statistics are set to missing. However, for observations with missing
values only in the censoring variable or the FREQ variable, survival estimates are
still computed. Therefore, by adding observations with missing values in the FREQ
variable or the censoring variable, you can compute the survivor function estimates
for new observations or for settings of explanatory variables not present in the data
without affecting the model fit.

No OUTPUT data set is created if the model contains a time-dependent variable
defined by means of programming statements.

The following list explains specifications in the OUTPUT statement.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the OUTPUT data set is
created and given a default name using the DATAn convention.
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keyword=name
specifies the statistics included in the OUTPUT data set and names the new variables
that contain the statistics. Specify a keyword for each desired statistic (see the follow-
ing list of keywords), an equal sign, and either a variable or a list of variables to con-
tain the statistic. The keywords that accept a list of variables are DFBETA, RESSCH,
RESSCO, and WTRESSCH. For these keywords, you can specify as many names
in nameas the number of explanatory variables specified in the MODEL statement.
If you specifyk names andk is less than the total number of explanatory variables,
only the changes for the firstk parameter estimates are output. The keywords and the
corresponding statistics are as follows:

DFBETA approximate changes in the parameter estimates(β̂− β̂(j)) when
the jth observation is omitted. These variables are a weighted
transform of the score residual variables and are useful in assess-
ing local influence and in computing robust variance estimates.

LD approximate likelihood displacement when the observation is left
out. This diagnostic can be used to assess the impact of each
observation on the overall fit of the model.

LMAX relative influence of observations on the overall fit of the model.
This diagnostic is useful in assessing the sensitivity of the fit of
the model to each observation.

LOGLOGS log of the negative log ofSURVIVAL

LOGSURV log of SURVIVAL

NUM–LEFT number of subjects at risk at the observation timeτj (or at the
right endpoint of the at risk interval when a counting process
MODEL specification is used)

RESDEV deviance residual̂Dj . This is a transform of the martingale resid-
ual to achieve a more symmetric distribution.

RESMART martingale residual̂Mj . The residual at the observation timeτj

can be interpreted as the difference over[0, τj ] in the observed
number of events minus the expected number of events given by
the model.

RESSCH Schoenfeld residuals. These residuals are useful in assessing the
proportional hazards assumption.

RESSCO score residuals. These residuals are a decomposition of the first
partial derivative of the log likelihood. They can be used to assess
the leverage exerted by each subject in the parameter estimation.
They are also useful in constructing robust sandwich variance es-
timators.
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STDXBETA standard error of theestimated linear predictor,
√

z′jV̂(β̂)zj

SURVIVAL survivor function estimatêSj = [Ŝ0(τj)] exp(z′j β̂), whereτj is the
observation time

WTRESSCH weighted Schoenfeld residuals. These residuals are useful in in-
vestigating the nature of nonproportionality if the proportional
hazard assumption does not hold.

XBETA estimate of the linear predictor,z′jβ̂

The following options can appear in the OUTPUT statement after a slash (/).

ORDER=sort–order
specifies the order of the observations in the OUTPUT data set. Available values for
sort–orderare

DATA requests that the output observations be sorted the same as the input data
set.

SORTED requests that the output observations be sorted by strata and descending
order of the time variable within each stratum.

The default is ORDER=DATA.

METHOD=method
specifies the method used to compute the survivor function estimates. The two avail-
able methods are

CH | EMP specifies that the empirical cumulative hazard function estimate of
the survivor function is to be computed; that is, the survivor func-
tion is estimated by exponentiating the negative empirical cumula-
tive hazard function.

PL specifies that the product-limit estimate of the survivor function is
to be computed. The default is METHOD=PL.

Programming Statements

Programming statements are used to create or modify the values of the explanatory
variables in the MODEL statement. They are especially useful in fitting models with
time-dependent explanatory variables. Programming statements can also be used to
create explanatory variables that are not time dependent. For example, you can create
indicator variables from a categorical variable and incorporate them into the model.
PROC PHREG programming statements cannot be used to create or modify the val-
ues of the response variable, the censoring variable, the frequency variable, or the
strata variables.



3236 � Chapter 54. The PHREG Procedure

The following DATA step statements are available in PROC PHREG:

ABORT
ARRAY
assignment statements
CALL
DO
iterative DO
DO UNTIL
DO WHILE
END
GOTO
IF-THEN/ELSE
LINK-RETURN
PUT
SELECT
SUM statement

By default, the PUT statement in PROC PHREG writes to the Output window instead
of the Log window. If you want the results of the PUT statements to go to the Log
window, add the following statement before the PUT statements:

FILE LOG;

DATA step functions are also available. Use these programming statements the same
way you use them in the DATA step. For detailed information, refer toSAS Language
Reference: Dictionary.

Consider the following example of using programming statements in PROC PHREG.
Suppose blood pressure is measured at multiple times during the course of a study
investigating the effect of blood pressure on some survival time. By treating the blood
pressure as a time-dependent explanatory variable, you are able to use the value of
the most recent blood pressure at each specific point of time in the modeling process
rather than using the initial blood pressure or the final blood pressure. The values of
the following variables are recorded for each patient, if they are available. Otherwise,
the variables contain missing values.

Time survival time

Censor censoring indicator (with 0 as the censoring value)

BP0 blood pressure on entry to the study

T1 time 1

BP1 blood pressure atT1

T2 time 2

BP2 blood pressure atT2

The following programming statements create a variableBP. At each timeT, the
value ofBP is the blood pressure reading for that time, if available. Otherwise, it is
the last blood pressure reading.
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proc phreg;
model Time*Censor(0)=BP;
BP = BP0;
if Time>=T1 and T1^=. then BP=BP1;
if Time>=T2 and T2^=. then BP=BP2;

run;

For other illustrations of using programming statements, see the“Getting Started”
section on page 3217 andExample 54.4on page 3285.

STRATA Statement

STRATA variable < ( list ) >< ... variable < ( list ) >>< /option > ;

The proportional hazards assumption may not be realistic for all data. If so, it may
still be reasonable to perform a stratified analysis. The STRATA statement names
the variables that determine the stratification. Strata are formed according to the
nonmissing values of the STRATA variables unless the MISSING option is specified.
In the STRATA statement,variableis a variable with values that are used to determine
the strata levels, andlist is an optional list of values for a numeric variable. Multiple
variables can appear in the STRATA statement.

The values forvariablecan be formatted or unformatted. If the variable is a character
variable, or if the variable is numeric and no list appears, then the strata are defined
by the unique values of the variable. If the variable is numeric and is followed by
a list, then the levels for that variable correspond to the intervals defined by the list.
The corresponding strata are formed by the combination of levels and unique values.
The list can include numeric values separated by commas or blanks,valueto value
by valuerange specifications, or combinations of these.

For example, the specification

strata age (5, 10 to 40 by 10) sex ;

indicates that the levels forage are to be less than 5, 5 to 10, 10 to 20, 20 to 30, 30 to
40, and greater than 40. (Note that observations with exactly the cutpoint value fall
into the interval preceding the cutpoint.) Thus, with thesex variable, this STRATA
statement specifies 12 strata altogether.

The following option can be specified in the STRATA statement after a slash (/).

MISSING
allows missing values (‘.’ for numeric variables and blanks for character variables)
as valid STRATA variable values. Otherwise, observations with missing STRATA
variable values are deleted from the analysis.
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TEST Statement

< label: > TEST equation1 < , . . . , equationk >< /option > ;

The TEST statement tests linear hypotheses about the regression coefficients. PROC
PHREG performs a Wald test for the joint hypothesis specified in a single TEST
statement. Each equation specifies a linear hypothesis; multiple equations (rows of
the joint hypothesis) are separated by commas. The label, which must be a valid SAS
name, is used to identify the resulting output, and should always be included. You
can submit multiple TEST statements.

The form of an equation is as follows:

term < ±term . . . > < = < ±term < ±term . . . >>>

hereterm is a variable or a constant or a constant times a variable. The variable is
any explanatory variable in the MODEL statement. When no equal sign appears,
the expression is set to 0. The following code illustrates possible uses of the TEST
statement:

proc phreg;
model time= a1 a2 a3 a4;
Test1: Test a1, a2;
Test2: Test a1=0,a2=0;
Test3: Test a1=a2=a3;
Test4: Test a1=a2,a2=a3;

run;

Note that the first and second TEST statements are equivalent, as are the third and
fourth TEST statements.

The following options can be specified in the TEST statement after a slash (/).

AVERAGE
enables you to assess the average effect of the variables in the given TEST statement.
An overall estimate of the treatment effect is computed as a weighted average of the
treatment coefficients as illustrated in the following code:

TREATMENT: test trt1, trt2, trt3, trt4 / average;

Let β1, β2, β3 andβ4 be corresponding parameters fortrt1, trt2, trt3, andtrt4, re-
spectively. Letβ̂ = (β̂1, β̂2, β̂3, β̂4)′ be estimated coefficient vector and letV̂(β̂)
be the corresponding variance estimate. Assumingβ1 = β2 = β3 = β4. The aver-
age treatment effect is estimated byc′β̂, wherec = [1′4V̂

−1(β̂)14]−1V̂−1(β̂)14 and
14 = (1, 1, 1, 1)′.

E
specifies that the linear coefficients and constants be printed. When the AVERAGE
option is specified along with the E option, the optimal weights of the average effect
are also printed in the same tables as the coefficients.
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PRINT
displays intermediate calculations. This includesLV̂(β̂)L′ bordered by(Lβ̂ − c),
and[LV̂(β̂)L′]−1 bordered by[LV̂(β̂)L′]−1(Lβ̂− c), whereL is a matrix of linear
coefficients andc is a vector of constants. See the section“Testing Linear Hypotheses
about Regression Coefficients”on page 3247.

WEIGHT Statement

WEIGHT variable < /option > ;

Thevariablein the WEIGHT statement identifies the variable in the input data set that
contains the case weights. When the WEIGHT statement appears, each observation
in the input data set is weighted by the value of the WEIGHT variable. The WEIGHT
values can be nonintegral and are not truncated. Observations with negative, zero or
missing values for the WEIGHT variable are not used in the model fitting. When the
WEIGHT statement is not specified, each observation is assigned a weight of 1. The
WEIGHT statement is available for TIES=BRESLOW and TIES=EFRON only.

The following option can be specified in the WEIGHT statement after a slash (/):

NORMALIZE
NORM

causes the weights specified by the WEIGHTvariable to be normalized so that they
add up the actual sample size. With this option, the estimated covariance matrix of
the parameter estimators is invariant to the scale of the WEIGHT variable.

Details

Failure Time Distribution

Let T be a nonnegative random variable representing the failure time of an individual
from a homogeneous population. The survival distribution function (also known as
the survivor function) ofT is written as

S(t) = Pr(T ≥ t)

A mathematically equivalent way of specifying the distribution ofT is through its
hazard function. The hazard functionλ(t) specifies the instantaneous failure rate at
t. If T is a continuous random variable,λ(t) is expressed as

λ(t) = lim
∆t→0+

Pr(t ≤ T < t + ∆t | T ≥ t)
∆t

=
f(t)
S(t)

wheref(t) is the probability density function ofT . If T is discrete with masses at
x1 < x2 < . . . , thenλ(t) is given by

λ(t) =
∑

j

λjδ(t− xj)
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where

δ(u) =
{

0 if u < 0
1 otherwise

λj = Pr(T = xj | T ≥ xj) =
Pr(T = xj)

S(xj)

for j = 1, 2, . . .

Partial Likelihood Function for the Cox Model

Let Zl(t) denote the vector explanatory variables for thelth individual at timet. Let
t1 < t2 < . . . < tk denote thek distinct, ordered event times. Letdi denote the
multiplicity of failures atti; that is,di is the size of the setDi of individuals that fail
at ti. Let wl be the weight associated with thelth individual. Using this notation,
the likelihood functions used in PROC PHREG to estimateβ are described in the
following sections.

Continuous Time Scale

LetRi denote the risk set just before theith ordered event timeti . LetR∗i denote the
set of individuals whose event or censored times exceedti or whose censored times
are equal toti.

Exact Likelihood

L1(β) =
k∏

i=1


∫ ∞

0

∏
j∈Di

1− exp

 −
eβ′Zj(ti)∑

l∈R∗
i

eβ′Zl(ti)
t


 exp(−t)dt


Breslow Likelihood

L2(β) =
k∏

i=1

eβ′
∑

j∈Di
Zj(ti)[∑

l∈Ri

eβ′Zl(ti)
]di

Incorporating weights, the Breslow likelihood becomes

L2(β) =
k∏

i=1

eβ′
∑

j∈Di
wjZj(ti)[∑

l∈Ri

wleβ′Zl(ti)
]∑

j∈Di
wi
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Efron Likelihood

L3(β) =
k∏

i=1

eβ′
∑

j∈Di
Zj(ti)

di∏
j=1

∑
l∈Ri

eβ′Zl(ti) − j − 1
di

∑
l∈Di

eβ′Zl(ti)


Incorporating weights, the Efron likelihood becomes

L3(β) =
k∏

i=1

eβ′
∑

j∈Di
wjZj(ti) di∏

j=1

∑
l∈Ri

wleβ′Zl(ti) − j − 1
di

∑
l∈Di

wleβ′Zl(ti)

 1
di

∑
j∈Di

wj

Discrete Time Scale

LetQi denote the set of all subsets ofdi individuals from the risk setRi. For each
q ∈ Qi, q is adi-tuple(q1, q2, . . . , qdi

) of individuals who might have failed atti.

Discrete Logistic Likelihood

L4(β) =
k∏

i=1

eβ′
∑

j∈Di
Zj(ti)∑

q∈Qi

eβ′
∑dj

l=1 Zql
(ti)

The computation ofL4(β) and its derivatives is based on an adaptation of the re-
currence algorithm ofGail et al.(1981) to the logarithmic scale. When there are no
ties on the event times (that is,di ≡ 1), all four likelihood functionsL1(β), L2(β),
L3(β), andL4(β) reduce to the same expression. In a stratified analysis, the partial
likelihood is the product of the partial likelihood functions for the individual strata.

Counting Process Style of Input

In the counting process formulation, data for each subject are identified by a triple
{N,Y,Z} of counting, at risk, and covariate processes. Here,N(t) indicates the
number of events that the subject experiences over the time interval(0, t]; Y (t) indi-
cates whether the subject is at risk at timet (one if at risk and zero otherwise); and
Z(t) is a vector of explanatory variables for the subject at timet. The sample path of
N is a step function with jumps of size +1 at the event times, andN(0) = 0. Unless
Z(t) changes continuously with time, the data for each subject can be represented by
multiple observations, each identifying a semiclosed time interval(t1, t2], the values
of the explanatory variables over that interval, and the event status att2. The subject
remains at risk during the interval(t1, t2], and an event may occur att2. Values of
the explanatory variables for the subject remain unchanged in the interval. This style
of data input was originated by Terry M. Therneau (1994).
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For example, a patient has a tumor recurrence at weeks 3, 10, and 15 and is followed
to week 23. The explanatory variables areTrt (treatment),Z1 (initial tumor number),
andZ2 (initial tumor size), and, for this patient, the values ofTrt, Z1, andZ2 are
(1,1,3). The data for this patient are represented by the following four observations:

T1 T2 Event Trt Z1 Z2
0 3 1 1 1 3
3 10 1 1 1 3
10 15 1 1 1 3
15 23 0 1 1 3

Here (T1,T2] contains the at-risk intervals. The variableEvent is a censoring vari-
able indicating whether a recurrence has occurred atT2; a value of 1 indicates a
tumor recurrence, and a value of 0 indicates nonrecurrence. The PHREG procedure
fits the multiplicative hazards model, which is specified as follows:

proc phreg;
model (T1,T2) * Event(0) = Trt Z1 Z2;

run;

Another useful application of the counting process formulation is delayed entry of
subjects into the risk set. For example, in studying the mortality of workers exposed to
a carcinogen, the survival time is chosen to be the worker’s age at death by malignant
neoplasm. Any worker joining the workplace at a later age than a given event failure
time is not included in the corresponding risk set. The variables of a worker consist
of Entry (age at which the worker entered the workplace),Age (age at death or age
censored),Status (an indicator of whether the observation time is censored, with the
value 0 identifying a censored time), andX1 andX2 (explanatory variables thought
to be related to survival). The specification for such an application is as follows.

proc phreg;
model (Entry, Age) * Status(0) = X1 X2;

run;

Alternatively, you can use a time-dependent variable to control the risk set, as illus-
trated in the following specification:

proc phreg;
model Age * Status(0) = X1 X2;
if Age < Entry then X1= .;

run;

Here, X1 becomes a time-dependent variable. At a given death timet, the value
of X1 is reevaluated for each subject withAge ≥ t; subjects withEntry > t
are given a missing value inX1 and are subsequently removed from the risk set.
Computationally, this approach is not as efficient as the one that uses the counting
process formulation.
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The Multiplicative Hazards Model

Consider a set ofn subjects such that the counting processNi ≡ {Ni(t), t ≥ 0}
for the ith subject represents the number of observed events experienced over time
t. The sample paths of the processNi are step functions with jumps of size+1,
with Ni(0) = 0. Let β denote the vector of unknown regression coefficients. The
multiplicative hazards functionΛ(t,Zi(t)) for Ni is given by

Yi(t)dΛ(t,Zi(t)) = Yi(t) exp(β′Zi(t))dΛ0(t)

where

• Yi(t) indicates whether theith subject is at risk at timet (specifically,Yi(t) = 1
if at risk andYi(t) = 0 otherwise)

• Zi(t) is the vector of explanatory variables for theith subject at timet

• Λ0(t) is an unspecified baseline hazard function

Refer toFleming and Harrington(1991) andAndersen et al.(1992). The Cox model
is a special case of this multiplicative hazards model, whereYi(t) = 1 until the first
event or censoring, andYi(t) = 0 thereafter.

The partial likelihood forn independent triplets(Ni, Yi,Zi), i = 1, . . . , n, has the
form

L(β) =
n∏

i=1

∏
t≥0

{
Yi(t) exp(β′Zi(t))∑n

j=1 Yj(t) exp(β′Zj(t))

}∆Ni(t)

where∆Ni(t) = 1 if Ni(t)−Ni(t−) = 1, and∆Ni(t) = 0 otherwise.

Proportional Rates/Means Models for Recurrent Events

Let N(t) be the number of events experienced by a subject over the time interval
(0, t]. Let dN(t) be the increment of the counting processN over [t, t + dt). The
rate function is given by

dµZ(t) = E[dN(t)|Z(t)] = eβ′Z(t)dµ0(t)

whereµ0(.) is an unknown continuous function. If theZ are time-independent, the
rate model is reduced to the mean model

µZ(t) = eβ′Zµ0(t)

The partial likelihood forn independent triplets(Ni, Yi,Zi), i = 1, . . . , n, of count-
ing, at-risk, and covariate processes is the same as that of the multiplicative hazards
model. However, a robust sandwich estimate is used for the covariance matrix of the
parameter estimator instead of the model-based estimate.
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Let Tki be thekth event time of theith subject. LetCi be the censoring time of the
ith subject. The at-risk indicator and the failure indicator are, respectively,

Yi(t) = I(Ci ≥ t) and ∆ki = I(Tki ≤ Ci)

Denote

S(i)(β, t) =
n∑

i=1

Yi(t)eβ′Zi(t) and Z̄(β, t) =
∑n

i=1 Yi(t)eβ′Zi(t)Zi(t)
S(0)(β, t)

Let β̂ be the maximum likelihood estimate ofβ and letI(β̂) be the observed infor-
mation matrix. The robust sandwich covariance matrix estimate is given by

I−1(β̂)
n∑

i=1

[
Wi(β̂)W ′

i (β̂)
]
I−1(β̂)

where

Wi(β) =
∑

k

∆ki

{
Zi(Tki)− Z̄(β, Tki)

}
−

n∑
i=1

∑
l

∆ljYi(Tlj)eβ′Zi(Tlj)

S0(β, Tlj)

{
Zi(Tlj)− Z̄(β, Tlj)

}

For a given realization of the covariatesξ, the Nelson estimator is used to predict the
mean function

µ̂ξ(t) = eβ̂
′
ξ

n∑
i=1

∑
k

I(Tki ≤ t)∆ki

S(0)(β̂, Tki)

with standard error estimate given by

σ̂2(µ̂ξ(t)) =
n∑

i=1

(
1
n

Ψ̂i(t, ξ)
)2

where

1
n

Ψ̂i(ξ, t) = eβ̂
′
ξ

{∑
k

I(Tki ≤ t)∆ik

S(0)(β̂, Tki)
−

n∑
j=1

∑
k

Yi(Tkj)eβ̂
′
Zi(Tkj)I(Tkj ≤ t)∆kj

[S(0)(β̂, Tkj)]2
−

[ n∑
i=1

∑
k

I(Tki ≤ t)∆ik[Z̄(β̂, Tki)− ξ]
S(0)(β̂, Tki)

]
×I−1(β̂)

∫ τ

0
[Zi(u)− Z̄(β̂, u)]dM̂i(u)

}
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Since the cumulative mean function is always nonnegative, the log transform is used
to compute confidence intervals. The100(1 − α)% pointwise confidence limits for
µξ(t) are

µ̂ξ(t)e
±zα/2

σ̂(µ̂ξ(t))

µ̂ξ(t)

wherezα/2 is the upper100α/2 percentage point of the standard normal distribution.

Newton-Raphson Method

Let L(β) be one of the likelihood functions described in the previous subsections.
Let l(β) = logL(β). Findingβ such thatL(β) is maximized is equivalent to finding
the solutionβ̂ to the likelihood equations

∂l(β)
∂β

= 0

With β̂
0

= 0 as the initial solution, the iterative scheme is expressed as

β̂
j+1

= β̂
j
−

[
∂2l(β̂

j
)

∂β2

]−1
∂l(β̂

j
)

∂β

The term after the minus sign is the Newton-Raphson step. If the likelihood function

evaluated at̂β
j+1

is less than that evaluated atβ̂
j
, thenβ̂

j+1
is recomputed using

half the step size. The iterative scheme continues until convergence is obtained, that
is, until β̂j+1 is sufficiently close tôβj . Then the maximum likelihood estimate ofβ

is β̂ = β̂j+1.

The model-based variance estimate ofβ̂ is obtained by inverting the information
matrixI(β̂)

V̂m(β̂) = I−1(β̂) = −

[
∂2l(β̂)
∂β2

]−1

Robust Sandwich Variance Estimate

For theith subject,i = 1, . . . , n, let Xi, wi, andZi(t) be the observed time, weight,
and the covariate vector at timet, respectively. Let∆i be the event indicator and let
Yi(t) = I(Xi ≥ t). Let

S(r)(β, t) =
n∑

j=1

wjYj(t)eβ′Zj(t)Z
⊗

r
j (t), r = 0, 1
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Let Z̄(β, t) = S(1)(β,t)

S(0)(β,t)
. The score residual for theith individual is

ui(β) = ∆i

{
Zi(Xi)− Z̄(β, Xi)

}
−

n∑
j=1

∆j
wjYi(Xj)eβ′Zi(Xj)

S(0)(β, Xj)

{
Zi(Xj)− Z̄(β, Xj)

}

The robust sandwich variance estimate ofβ̂ derived byBinder(1992) who incorpo-
rated weights into the analysis is

V̂s(β̂) = I−1(β̂)
[ n∑

j=1

(wjuj(β̂))
⊗

2

]
I−1(β̂)

whereI(β̂) is the observed information matrix, anda
⊗

2 = aa′. Note that when
wi ≡ 1,

V̂s(β̂) = D′D

whereD is the matrix of DFBETAS residuals. This robust variance estimate was
proposed byLin and Wei(1989) andReid and Crèpeau(1985).

Testing the Global Null Hypothesis

The following three likelihood statistics can be used to test the global null hypothesis
H0:β = 0. Under mild assumptions, each statistic has an asymptotic chi-square
distribution withp degrees of freedom given the null hypothesis. The valuep is the
dimension ofβ.

Likelihood Ratio Test

χ2
LR = 2

[
l(β̂)− l(0)

]
This formulation of the likelihood ratio test is not appropriate for the COVS option.

Wald’s Test

χ2
W = β̂

′ [
V̂(β̂)

]−1
β̂

whereV̂(β̂) = V̂m(β̂) for the model-based variance estimate andV̂(β̂) = V̂s(β̂)
for the robust sandwich variance estimate.

Score Test

χ2
S =

[
∂l(0)
∂β

]′
I−1(0)

[
∂l(0)
∂β

]

whereI(0) = −∂2l(0)

∂β2 . ReplacingI−1(0) by the robust sandwich variance estimate

V̂s(0), the modified score test is also printed when the COVS option is specified.
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Hazards Ratio Estimates and Confidence Limits

Let βi andβ̂i denote theith component ofβ andβ̂, respectively. The hazards ratio
(also known as risk ratio) for the explanatory variable with regression coefficientβi

is defined asexp(βi). The hazards ratio is estimated byexp(β̂i). The100(1 − α)%
confidence limits for the hazards ratio are calculated as

exp
(

β̂i ± zα/2

√
V̂ii(β̂)

)

whereV̂ii(β̂) is the ith diagonal element of the estimated covariance matrixV̂(β̂),
andzα/2 is the100(1− α/2) percentile point of the standard normal distribution.

The hazards ratio is the ratio of the hazards functions that correspond to a change of
one unit of the given variable and conditional on fixed values of all other variables.

Testing Linear Hypotheses about Regression Coefficients

Linear hypotheses forβ are expressed in matrix form as

H0:Lβ = c

whereL is a matrix of coefficients for the linear hypotheses, andc is a vector of
constants. The Wald chi-square statistic for testingH0 is computed as

χ2
W =

(
Lβ̂ − c

)′ [
LV̂(β̂)L′

]−1 (
Lβ̂ − c

)
whereV̂(β̂) is the estimated covariance matrix. UnderH0, χ2

W has an asymptotic
chi-square distribution withr degrees of freedom, wherer is the rank ofL.

Analysis of Multivariate Failure Time Data

Multivariate failure time data arise when each study subject can potentially expe-
rience several events (for instance, multiple infections after surgery) or when there
exists some natural or artificial clustering of subjects (for instance, a litter of mice)
that induces dependence among the failure times of the same cluster. Data in the for-
mer situation are referred to as multiple events data, and data in the latter situation are
referred to as clustered data. The multiple events data can be further classified into
ordered and unordered data. For ordered data, there is a natural ordering of the mul-
tiple failures within a subject, which includes recurrent events data as a special case.
For unordered data, the multiple event times result from several concurrent failure
processes.

Multiple events data can be analyzed by theWei, Lin, and Weissfeld(1989), aka
WLW, method based on the marginal Cox models. For the special case of recurrent
events data, you can fit the intensity model (Andersen and Gill1982), the proportional
rates/means model (Pepe and Cai1993; Lawless and Nadeau1995; Lin, Wei, Yang,
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and Ying 2000), or the stratified models for total time and gap time proposed by
Prentice, Williams, and Peterson(1981), aka PWP. For clustered data, you can carry
out the analysis ofLee, Wei, and Amato(1992) based on the marginal Cox model.
To use PROC PHREG to perform these analyses correctly and effectively, you have
to array your data in a specific way to produce the correct risk sets.

All examples described in this section can be found in the programphrmult.sasin
the SAS/STAT sample library. Furthermore, the “Examples” section in this chapter
contains two examples to illustrate the methods for analyzing recurrent events data
and clustered data.

Marginal Cox Models for Multiple Events Data

Suppose there aren subjects and each subject can experience up toK potential
events. LetZki(.) be the covariate process associated with thekth event for the
ith subject. The marginal Cox models are given by

λk(t;Zki) = λk0eβ′kZki(t), k = 1, . . . ,K; i = 1, . . . , n

where λk0(t) is the (event-specific) baseline hazard function for thekth event
andβk is the (event-specific) column vector of regression coefficients for thekth
event. WLW estimatesβ1, . . . ,βK by the maximum partial likelihood estimates
β̂1, . . . , β̂K , respectively, and uses a robust sandwich covariance matrix estimate for

(β̂
′
1, . . . , β̂

′
K)′ to account for the dependence of the multiple failure times.

By using a properly prepared input data set, you can estimate the regression parame-
ters for all the marginal Cox models and compute the robust sandwich covariance esti-
mates in one PROC PHREG invocation. For convenience of discussion, suppose each
subject can potentially experienceK=3 events and there are two explanatory vari-
ablesZ1 andZ2. The event-specific parameters to be estimated areβ1 = (β11, β21)′

for the first marginal model,β2 = (β12, β22)′ for the second marginal model, and
β3 = (β13, β23)′ for the third marginal model. Inference of these parameters is based
on the robust sandwich covariance matrix estimate of the parameter estimators. It is
necessary that each row of the input data set represents the data for a potential event
of a subject. The input data set should contain

• an ID variable for identifying the subject so that all observations of the same
subject have the sameID value

• anEnum variable to index the multiple events. For example,Enum=1 for the
first event,Enum=2 for the second event, and so on.

• a Time variable to represent the observed time from some time origin for the
event. For recurrence events data, it is the time from the study entry to each
recurrence.

• a Status variable to indicate whether theTime value is a censored or uncen-
sored time. For example, Status=1 indicates an uncensored time and Status=0
indicates a censored time.

• independent variables (Z1 andZ2).
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The WLW analysis can be carried out by specifying

proc phreg covs(aggregate);
model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23;
strata Enum;
id ID;
Z11= Z1 * (Enum=1);
Z12= Z1 * (Enum=2);
Z13= Z1 * (Enum=3);
Z21= Z2 * (Enum=1);
Z22= Z2 * (Enum=2);
Z23= Z2 * (Enum=3);
run;

VariableEnum is specified in the STRATA statement so that there is one marginal
Cox model for each distinct value ofEnum. VariablesZ11, Z12, Z13, Z21, Z22,
andZ23 in the MODEL statement are event-specific variables derived from the in-
dependent variablesZ1 andZ2 by the given programming statements. In particular,
variablesZ11, Z12, andZ13 are the event-specific variables for the explanatory vari-
ableZ1; variablesZ21, Z22, andZ23 are event-specific variables for the explanatory
variableZ2. For j = 1, 2, andk = 1, 2, 3, variableZjk contains the same values as
the explanatory variableZj for the rows that correspond tokth marginal model and the
value 0 for all other rows; as such,βjk is the regression coefficient forZjk. You can
avoid using the programming statements in PROC PHREG by creating these event-
specific variables in the input data set using the same programming statements in a
DATA step.

The option COVS(AGGREGATE) is specified in the PROC statement to obtain the
robust sandwich estimate of the covariance matrix, and the score residuals used in
computing the middle part of the sandwich estimate are aggregated over identical ID
values. You can also include TEST statements in the PROC PHREG code to test
various linear hypotheses of the regression parameters based on the robust sandwich
covariance matrix estimate.

Consider the AIDS study data inWei, Lin, and Weissfeld(1989) from a randomized
clinical trial to assess the antiretrovial capacity of ribavirin over times in AIDS pa-
tients. Blood sample were collected at weeks 4, 8, and 12 from each patients in three
treatment groups (placebo, low dose of ribavirin, and high dose). For each serum
sample, the failure time is the number of days before virus positivity was detected. If
the sample was contaminated or it took a longer period of time than was achievable
in the laboratory, the sample was censored. For example,

• Patient #1 in the placebo group has uncensored times 9, 6, and 7 days (that is,
it took 9 days to detect viral positivity in the first blood sample, 6 days for the
second blood sample, and 7 days for the third blood sample).

• Patient #14 in the low dose group of rabavirin has uncensored times of 16 and
17 days for the first and second sample, respectively, and a censored time of 21
days for the third blood sample.
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• Patient #28 in the High dose group has an uncensored time of 21 days for the
first sample, no measurement for the second blood sample, and a censored time
of 25 days for the third sample.

For a full-rank parameterization, two design variables are sufficient to represent three
treatment groups. Based on the reference coding with placebo as the reference, the
values of the two dummy explanatory variables Z1 and Z2 representing the treatments
are

Treatment Group Z1 Z2

Placebo 0 0
Low dose ribavirin 1 0
High dose ribavirin 0 1

The bulk of the task in using PROC PHREG to perform the WLW analysis lies in
the preparation of the input data set. As discussed earlier, the input data set should
contain theID, Enum, Time, andStatus variables, and event-specific independent
variables Z11, Z12, Z13, Z21, Z22, and Z23. Data for the three patients described
earlier are arrayed as follows:

ID Time Status Enum Z1 Z2

1 9 1 1 0 0
1 6 1 2 0 0
1 7 1 3 0 0

14 16 1 1 1 0
14 17 1 2 1 0
14 21 0 3 1 0

28 21 1 1 0 1
28 25 0 3 0 1

The first three rows are data for Patient #1 with event times at 9, 6, and 7 days,
one row for each event. The next three rows are data for Patient #14, who has an
uncensored time of 16 days for the first serum sample, an uncensored time of 17 days
for the second sample, and a censored time of 21 days for the third sample. The last
two rows are data for Patient #28 of the high dose group (Z1=0 andZ2=1). Since the
patient did not have a second serum sample, there are only two rows of data.
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To perform the WLW analysis, you specify

proc phreg covs(aggregate);
model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23;
strata Enum;
id ID;
Z11= Z1 * (Enum=1);
Z12= Z1 * (Enum=2);
Z13= Z1 * (Enum=3);
Z21= Z2 * (Enum=1);
Z22= Z2 * (Enum=2);
Z23= Z2 * (Enum=3);
EqualLowDose: test Z11=Z12, Z12=Z23;
AverageLow: test Z11,Z12,Z13 / e average;

run;

Two linear hypotheses are tested using the TEST statements. The specification

EqualLowDose: test Z11=Z12, Z12=Z13;

tests the null hypothesisβ11 = β12 = β13 of identical low-dose effects across three
marginal models. The specification

AverageLow: test Z11,Z12,Z13 / e average;

tests the null hypothesis of no low-dose effects (that is,β11 = β12 = β13 = 0). The
AVERAGE option computes the optimal weights for estimating the average low-dose
effectβ∗1 = β11 = β12 = β13 and performs a 1 DF test for testing the null hypoth-
esis thatβ∗1 = 0. The E option displays the coefficients for the linear hypotheses,
including the optimal weights.

Marginal Cox Models for Clustered Data

Suppose there aren clusters withKi members in theith cluster,i = 1, . . . , n. Let
Zki(.) be the covariate process associated with thekth member of theith cluster. The
marginal Cox model is given by

λ(t;Zki) = λ0(t)eβ′Zki(t) k = 1, . . . ,Ki; i = 1, . . . , n

whereλ0(t) is an arbitrary baseline hazard function andβ is the vector of regres-
sion coefficients.Lee, Wei, and Amato(1992) estimateβ by the maximum partial
likelihood estimatêβ under the independent working assumption, and use a robust
sandwich covariance estimate to account for the intracluster dependence.

To use PROC PHREG to analyze the clustered data, each member of a cluster is
represented by an observation in the input data set. The input data set to PROC
PHREG should contain

• an ID variable to identify the cluster so that members of the same cluster have
the same ID value
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• aTime variable to represent the observed survival time of a member of a cluster

• a Status variable to indicate whether the Time value is an uncensored or cen-
sored time. For example, Status=1 indicates an uncensored time and Status=0
indicates a censored time.

• the explanatory variables thought to be related to the failure time

Consider a tumor study in which one of three female rats of the same litter was ran-
domly subjected to a drug treatment. The failure time is the time from randomization
to the detection of tumor. If a rat died before the tumor was detected, the failure time
was censored. For example,

• In litter #1, the drug-treated rat has an uncensored time of 101 days, one un-
treated rat has a censored time of 49 days, and the other untreated rat has a
failure time of 104 days.

• In litter #3, the drug-treated rat has a censored time of 104 days, one untreated
rat has a censored time of 102 days, and the other untreated rat has a censored
time of 104 days.

In this example, a litter is a cluster and the rats of the same litter are members of the
cluster. LetTrt be a 0-1 variable representing the treatment a rat received, with value
1 for drug treatment and 0 otherwise. Data for the two litters of rats described earlier
contribute six observations to the input data set:

Litter Time Status Trt

1 101 0 1
1 49 1 0
1 104 0 0

3 104 0 1
3 102 0 0
3 104 0 0

The analysis ofLee, Wei, and Amato(1992) can be performed by PROC PHREG as
follows:

proc phreg covs(aggregate);
model Time*Status(0)=Treatment;
id Litter;

run;

Intensity and Rate/Mean Models for Recurrent Events Data

Suppose each subject experiences recurrences of the same phenomenon. LetN(t) be
the number of events a subject experiences over the interval [0,t] and letZ(.) be the
covariate process of the subject.
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The intensity model (Andersen and Gill1982) is given by

λZ(t)dt = E{dN(t)|Ft−} = λ0(t)eβ′Z(t)dt

whereFt represents all the information of the processesN andZ up to timet, λ0(t)
is an arbitrary baseline intensity function, andβ is the vector of regression coef-
ficients. This model consists of two components: 1) all the influence of the prior
events on future recurrences, if there is any, is mediated through the time-dependent
covariates, and 2) the covariates have multiplicative effects on the instantaneous rate
of the counting process. If the covariates are time invariant, the risk of recurrences is
unaffected by the past events.

The proportional rates and means models (Pepe and Cai1993; Lawless and Nadeau
1995; Lin, Wei, Yang, and Ying2000) assume that the covariates have multiplicative
effects on the mean and rate functions of the counting process. The rate function is
given by

dµZ(t) = E{dN(t)|Z(t)} = eβ′Z(t)dµ0(t)

whereµ0(t) is an unknown continuous function andβ is the vector of regression
parameters. IfZ is time invariant, the mean function is given by

µZ(t) = E{N(t)|Z} = eβ′Zµ0(t)

For both the intensity and the proportional rates/means models, estimates of the re-
gression coefficients are obtained by solving the the partial likelihood score func-
tion. However, the covariance matrix estimate for the intensity model is computed
as the inverse of the observed information matrix, while that for the proportional
rates/means model is given by a sandwich estimate. For a given pattern of fixed co-
variates, the Nelson estimate for the cumulative intensity function is the same for the
cumulative mean function, but their standard errors are not the same.

To fit the intensity or rate/mean model using PROC PHREG, the counting process
style of input is needed. A subject withK events contributesK+1 observations to
the input data set. Thekth observation of the subject identifies the time interval from
the(k−1)th event or time 0 (ifk = 1) to thekth event,k = 1, . . . ,K. The(K +1)th
observation represents the time interval from theKth event to time of censorship. The
input data set should contain

• a TStart variable to represent the(k − 1)th recurrence time or the value 0 if
k = 1

• a TStop variable to represent thekth recurrence time or the follow-up time if
k = K + 1

• a Status variable indicating whether the TStop time is a recurrence time or a
censored time; for example,Status=1 for a recurrence time andStatus=0 for
censored time

• explanatory variables thought to be related to the recurrence times
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If the rate/mean model is used, the input data should also contain anID variable for
identifying the subjects.

Consider the Chronic Granulomatous Disease (CGD) data listed inFleming and
Harrington(1991). The disease is a rare disorder characterized by recurrent pyrogenic
infections. The study is a placebo-controlled randomized clinical trial conducted by
the International CGD Cooperative Study to assess the effect of gamma interferon to
reduce the rate of infection. For each study patient the times of recurrent infections
along with a number of prognostic factors were collected. For example,

• Patient #17404, age 38, in the gamma interferon group had a follow-up time of
293 without any infection.

• Patient #204001, age 12, in the placebo group had an infection at 219 days, a
recurrent infection at 373 days, and was followed up to 414 days.

Let Trt be the variable representing the treatment status with value 1 for gamma in-
terferon and value 2 for placebo. LetAge be a covariate representing the age of
the CGD patient. Data for the two CGD patients described earlier are given in the
following table.

ID TStart TStop Status Trt Age

174054 0 293 0 1 38

204001 0 219 1 2 12
204001 219 373 1 2 12
204001 373 414 0 2 12

Since Patient #174054 had no infection through the end of the follow-up period (293
days), there is only one observation representing the period from time 0 to the end
of the follow-up. Data for Patient #204001 are broken into three observations, since
there are two infections. The first observation represents the period from time 0 to the
first infection, the second observation represents the period from the first infection to
the second infection, and the third time period represents the period from the second
infection to the end of the follow-up.

The following specification fits the intensity model.

proc phreg;
model (TStart,TStop)*Status(0)=Trt Age;
run;

You can predict the cumulative intensity function for the a given pattern of fixed co-
variates by specifying the CUMHAZ= option in the BASELINE statement. Suppose
you are interested in two fixed patterns, one for patients of age 30 in the gamma inter-
feron group and the other for patients of age 1 in the placebo group. You first create
the SAS data set as follows:
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data Pattern;
Trt=1; Age=30;
output;
Trt=2; Age=1;
output;
run;

You then include the following BASELINE statement in the PROC PHREG speci-
fication. The CUMHAZ=–all– option produces the cumulative hazard function es-
timates, the standard error estimates, and the lower and upper pointwise confidence
limits.

baseline data=pattern out=out1 cumhaz=_all_ /nomean;

The following specification of PROC PHREG fits the mean model and predicts the
cumulative mean function for the two patterns of covariates in the Pattern data set.

proc phreg covs(aggregate);
model (Tstart,Tstop)*Status(0)=Trt Age;
baseline data=Pattern out=out2 cmf=_all_ /nomean;
id ID;

The COV(AGGREGATE) option computes the robust sandwich covariance matrix
estimate. The CMF=–ALL – option adds the cumulative mean funtion estimates, the
standard error estimates, and the lower and upper pointwise confidence limits to the
OUT=Out2 data set.

PWP Models for Recurrent Events Data

Let N(t) be the number of events a subject experiences by timet. Let Z(t) be the
covariate vectors of the subject at timet. For a subject who hasK events before
censorship takes place, lett0 = 0, let tk be thekth recurrence time,k = 1, . . . ,K,
and lettK+1 be the censored time.Prentice, Williams, and Peterson(1981) consider
two time scales, a total time from the beginning of the study and a gap time from
immediately preceding failure. The PWP models are stratified Cox-type models that
allow the shape of the hazard function to depend on the number of preceding events
and possibly on other characteristics of {N(t) andZ(t)}. The total time and gap time
models are given, respectively, as follows:

λ(t|Ft−) = λ0k(t)eβ′kZ(t), tk−1 < t ≤ tk

λ(t|Ft−) = λ0k(t− tk−1)eβ′kZ(t), tk−1 < t ≤ tk

whereλ0k is an arbitrary baseline intensity functions, andβk is a vector of stratum-
specific regression coefficients. Here, a subject moves to thekth stratum immediately
after his(k−1)th recurrence time and remains there until thekth recurrence occurs or
until censorship takes place. For instance, a subject who experiences only one event
moves from the first stratum to the second stratum after the event occurs and remains
in the second stratum until the end of the follow-up.
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You can use PROC PHREG to carry out the analyses of the PWP models, but you
have to prepare the input data set to provide the correct risk sets. The input data set
for analyzing the total time is the same as the AG model with an additional variable
to represent the stratum that the subject is in. A subject withK events contributes
K+1 observations to the input data set, one for each stratum that the subject moves
to. The input data should contain

• a TStart variable to represent the(k − 1)th recurrence time or the value 0 if
k = 1

• aTStop variable to represent thekth recurrence time or the time of censorship
if k = K + 1

• aStatus variable with value 1 if the Time value is a recurrence time and value
0 if the Time value is a censored time

• anEnum variable representing the index of the stratum that the subject is in.
For a subject who has only one event att1 and is followed to timetc, Enum=1
for the first observation (whereTime=t1 andStatus=1) andEnum=2 for the
second observation (whereTime=tc andStatus=0).

• explanatory variables thought to be related to the recurrence times

To analyze gap times, the input data set should also include aGapTime variable
which is equal to (TStop − TStart).

Consider the data of two subjects in CGD data described in the previous section.

• Patients #174054, age 38, in the gamma interferon group had a follow-up time
of 293 without any infection.

• Patient #204001, age 12, in the placebo group had an infection at 219 days, a
recurrent infection at 373 days, and a follow-up time of 414 days.

To illustrate, suppose all subjects have at most two observed events. The data for the
two subjects in the input data set are as follows:

ID TStart TStop Gaptime Status Enum Trt Age

174054 0 293 293 0 1 1 38

204001 0 219 219 1 1 2 12
204001 219 373 154 1 2 2 12
204001 373 414 41 0 3 2 12

Subject #174054 contributes only one observation to the input data, since there is no
observed event. Subject #204001 contributes three observations, since there are two
observed events.
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To fit the total time model of PWP with stratum-specific slopes, you can either create
the stratum-specific explanatory variables (Trt1, Trt2, andTrt3 for Trt, andAge1,
Age2, andAge3 for Age) in a DATA step, or you can specify them in PROC PHREG
using programming statements as follows:

proc phreg;
model (TStart,TStop)*Status(0)=Trt1 Trt2 Trt3 Age1 Age2 Age3;
strata Enum;
Trt1= Trt * (Enum=1);
Trt2= Trt * (Enum=2);
Trt3= Trt * (Enum=3);
Age1= Age * (Enum=1);
Age2= Age * (Enum=2);
Age3= Age * (Enum=3);
run;

To fit the total time model of PWP with the common regression coefficients, you
specify

proc phreg;
model (TStart,TStop)*Status(0)=Trt Age;
strata Enum;
run;

To fit the gap time model of PWP with stratum-specific regression coefficients, you
specify

proc phreg;
model Gaptime*Status(0)=Trt1 Trt2 Trt3 Age1 Age2 Age3;
strata Enum;
Trt1= Trt * (Enum=1);
Trt2= Trt * (Enum=2);
Trt3= Trt * (Enum=3);
Age1= Age * (Enum=1);
Age2= Age * (Enum=2);
Age3= Age * (Enum=3);
run;

To fit the gap time model of PWP with common regression coefficients, you specify

proc phreg;
model Gaptime*Status(0)=Trt Age;
strata Enum;
run;

Residuals

The cumulative baseline hazard functionΛ0 is estimated by

Λ̂0(t) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1 Yj(s) exp(β̂

′
Zj(s))
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Although this formula is for the BRESLOW=TIES option, the same formula is used
for other TIES= options. The discrepancies between results obtained by using an
appropriate formula for a nondefault TIES= option and those obtained by the given
formula are minimal.

The martingale residual att is defined as

M̂i(t) = Ni(t)−
∫ t

0
Yi(s) exp(β̂

′
Zi(s))dΛ̂0(s)

Here M̂i(t) estimates the difference over(0, t] between the observed number of
events for theith subject and a conditional expected number of events. The quan-
tity M̂i ≡ M̂i(∞) is referred to as the martingale residual for theith subject. When
the counting process MODEL specification is used, the RESMART= variable con-
tains the component (̂Mi(t2)− M̂i(t1)) instead of the martingale residual att2. The
martingale residual for a subject can be obtained by summing up these component
residuals within the subject. For the Cox model with no time-dependent explana-
tory variables, the martingale residual for theith subject with observation timeti and
event statusδi, where

δi =
{

0 if ti is a censored time
1 if ti is an event time

is

M̂i = δi − Λ̂0(ti) exp(β̂
′
zi)

The deviance residualsdi are a transform of the martingale residuals:

di = sign(M̂i)

√
2
[
−M̂i −Ni(∞) log

(
Ni(∞)− M̂i

Ni(∞)

)]

The square root shrinks large negative martingale residuals, while the logarithmic
transformation expands martingale residuals that are close to unity. As such, the
deviance residuals are more symmetrically distributed about zero than the martingale
residuals. For the Cox model, the deviance residual reduces to the form

di = sign(M̂i)
√

2[−M̂i − δi log(δi − M̂i)]

When the counting process MODEL specification is used, values of the RESDEV=
variable are set to missing because the deviance residuals can be calculated on a per
subject basis only.

TheSchoenfeld(1982) residual vector is calculated on a per event time basis as

Ui(t) = Zi(t)− Z̄(t)
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wheret is an event time, and̄Z(t) is a weighted average of the covariates over the
risk set at timet and is given by

Z̄(t) =
∑n

l=1 Yl(t)Zl(t) exp(β̂
′
Zl(t))∑n

l=1 Yl(t) exp(β̂
′
Zl(t))

Under the proportional hazards assumption, the Schoenfeld residuals have the sample
path of a random walk; therefore, they are useful in assessing time trend or lack of
proportionality. Harrell (1986) proposed az-transform of the Pearson correlation
between these residuals and the rank order of the failure time as a test statistic for
nonproportional hazards.Therneau, Grambsch, and Fleming(1990) considered a
Kolmogorov-type test using the cumulative sum of the residuals.

The score process for theith subject at timet is

Li(t) =
∫ t

0
[Zi(s)− Z̄(s)]dM̂i(s)

The vectorLi ≡ Li(∞) is the score residual for theith subject. When the counting
process MODEL specification is used, the RESSCO= variables contain the compo-
nents of(Li(t2)−Li(t1)) instead of the score process att2. The score residual for a
subject can be obtained by summing up these component residuals within the subject.

The score residuals are a decomposition of the first partial derivative of the log like-
lihood. They are useful in assessing the influence of each subject on individual pa-
rameter estimates. They also play an important role in the computation of the robust
sandwich variance estimators ofLin and Wei (1989) andWei, Lin, and Weissfeld
(1989).

Diagnostics Based on Weighted Residuals

The vector of weighted Schoenfeld residuals,ri, is computed as

ri = neV̂Ui(ti)

wherene is the total number of events,̂V = V̂(β̂) is the estimated covariance matrix
of β̂, andUi(ti) is the vector of Schoenfeld residuals at the event timeti. The
components ofri are output to the WTRESSCH= variables.

The weighted Schoenfeld residuals are useful in assessing the proportional hazards
assumption. The idea is that most of the common alternatives to the proportional
hazards can be cast in terms of a time-varying coefficient model

λ(t,Z) = λ0(t) exp(β1(t)Z1 + β2(t)Z2 + . . .)

whereλ(t,Z) andλ0(t) are hazards rates. Letβ̂j andrij be thejth component of̂β
andri, respectively.Grambsch and Therneau(1994) suggest using a smoothed plot
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of (β̂j + rij) versusti to discover the functional form of the time-varying coefficient
βj(t). A zero slope indicates that the coefficient is not varying with time.

The weighted score residuals are used more often than their unscaled counterparts in
assessing local influence. Letβ̂(i) be the estimate ofβ when theith subject is left out,

and let∆i = β̂− β̂(i). Thejth component of∆i can be used to assess any untoward

effect of theith subject onβ̂j . The exact computation of∆i involves refitting the
model each time a subject is omitted.Cain and Lange(1984) derived the following
approximation of∆i as weighted score residuals:

∆̂i = V̂Li

Here,V̂ = V̂(β̂) is the estimated covariance matrix ofβ̂, andLi is the vector of the
score residuals for theith subject. Values of̂∆i are output to the DFBETA= variables.
Again, when the counting process MODEL specification is used, the DFBETA= vari-
ables contain the component(V̂Li(t2)− V̂Li(t1)). The vector∆̂i for a subject can
be obtained by summing these components within the subject.

Note that these DFBETA statistics are a transform of the score residuals. In comput-
ing the robust sandwich variance estimators of Lin and Wei (1989) and Wei, Lin, and
Weissfeld (1989), it is more convenient to use the DFBETA statistics than the score
residuals (seeExample 54.8on page 3304).

Influence of Observations on Overall Fit of the Model

The LD statistic approximates the likelihood displacement, which is the amount by
which minus twice the log likelihood (−2 logL(β̂)), under a fitted model, changes
when each subject in turn is left out. When theith subject is omitted, the likelihood
displacement is

2 logL(β̂)− 2 logL(β̂(i))

whereβ̂(i) is the vector of parameter estimates obtained by fitting the model with-
out theith subject. Instead of refitting the model without theith subject,Pettitt and
Bin Daud(1989) propose that the likelihood displacement for theith subject be ap-
proximated by

LDi = L′iV̂Li

This approximation is output to the LD= variable.

The LMAX statistic is another global influence statistic. This statistic is based on the
symmetric matrix

B = LV̂L′

whereL is the matrix with rows that are the score residual vectorsLi. The elements
of the eigenvector associated with the largest eigenvalue of the matrixB, standard-
ized to unit length, give a measure of the sensitivity of the fit of the model to each
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observation in the data. The influence of theith subject on the global fit of the model
is proportional to the magnitude ofζi, whereζi is theith element of the vectorζ that
satisfies

Bζ = λmaxζ and ζ′ζ = 1

with λmax being the largest eigenvalue ofB. The sign ofζi is irrelevant, and its
absolute value is output to the LMAX= variable.

When the counting process MODEL specification is used, the LD= and LMAX= vari-
ables are set to missing, because these two global influence statistics can be calculated
on a per subject basis only.

Survival Distribution Estimates for the Cox Model

Two estimators of the survivor function are available: one is the product-limit esti-
mate and the other is based on the empirical cumulative hazard function.

Product-Limit Estimates

Let Ci denote the set of individuals censored in the half-open interval[ti, ti+1), where
t0 = 0 andtk+1 = ∞. Let γl denote the censoring times in[ti, ti+1); l ranges over
Ci . The likelihood function for all individuals is given by

L =
k∏

i=0

 ∏
l∈Di

(
[S0(ti)] exp(z′lβ) − [S0(ti + 0)] exp(z′lβ)

) ∏
l∈Ci

[S0(γl + 0)] exp(z′lβ)


whereD0 is empty. The likelihoodL is maximized by takingS0(t) = S0(ti + 0) for
ti < t ≤ ti+1 and allowing the probability mass to fall only on the observed event
timest1, . . . , tk. By considering a discrete model with hazard contribution1− αi at
ti, you takeS0(ti) = S0(ti−1 + 0) =

∏i−1
j=0 αj , whereα0 = 1. Substitution into the

likelihood function produces

L =
k∏

i=0

 ∏
j∈Di

(
1− α

exp(z′jβ)

i

) ∏
l∈Ri−Di

α
exp(z′lβ)

i


If you replaceβ with β̂ estimated from the partial likelihood function and then maxi-
mize with respect toα1 , . . . ,αk , the maximum likelihood estimatêαi of αi becomes
a solution of

∑
j∈Di

exp(z′jβ̂)

1− α̂
exp(z′j β̂)

i

=
∑
l∈Ri

exp(z′lβ̂)

When only a single failure occurs atti, α̂i can be found explicitly. Otherwise, an
iterative solution is obtained by the Newton method.
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The estimated baseline cumulative hazard function is

Ĥ0(t) = −log(Ŝ0(t))

whereŜ0(t) is the estimated baseline survivor function given by

Ŝ0(t) = Ŝ0(ti−1 + 0) =
i−1∏
j=0

α̂j , ti−1 < t ≤ ti

For details, refer toKalbfleisch and Prentice(1980). For a given realization of the
explanatory variablesξ, the product-limit estimate of the survival function atZ = ξ
is

Ŝ(t, ξ) = [Ŝ0(t)]exp(β′ξ)

Empirical Cumulative Hazards Function Estimates

Let ξ be a given realization of the explanatory variables. The empirical cumulative
hazard function estimate atZ = ξ is

Λ̂(t, ξ) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1 Yj(s) exp(β̂

′
(zj − ξ))

The variance estimator of̂Λ(t, ξ) is given by the following (Tsiatis1981):

v̂ar{n
1
2 (Λ̂(t, ξ)− Λ(t, ξ))}

= n

{ n∑
i=1

∫ t

0

dNi(s)

[
∑n

j=1 Yj(s) exp(β̂
′
(zj − ξ))]2

+ H′(t, ξ)V̂(β̂)H(t, ξ)
}

whereV̂(β̂) is the estimated covariance matrix ofβ̂ and

H(t, ξ) =
n∑

i=1

∫ t

0

∑n
l=1 Yl(s)(Zl − ξ) exp(β̂

′
(zl − ξ))

[
∑n

j=1 Yj(s) exp(β̂
′
(zj − ξ))]2

dNi(s)

The empirical cumulative hazard function (CH) estimate of the survivor function for
Z = ξ is

S̃(t, ξ) = exp(−Λ̂(t, ξ))
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Confidence Intervals for the Survivor Function

Let Ŝ(t, ξ) andS̃(t, ξ) correspond to the product-limit (PL) and empirical cumulative
hazard function (CH) estimates of the survivor function forZ = ξ, respectively. Both
the standard error of log(̂S(t, ξ)) and the standard error of log(S̃(t, ξ)) are approxi-
mated byσ̃0(t, ξ), which is the square root of the variance estimate ofΛ̂(t, ξ); refer
to Kalbfleisch and Prentice(1980, p.116). By the delta method, the standard errors
of Ŝ(t, ξ) andS̃(t, ξ) are given by

σ̂1(t, ξ)=̇Ŝ(t, ξ)σ̃0(t, ξ) and σ̃1(t, ξ)=̇S̃(t, ξ)σ̃0(t, ξ)

respectively. The standard errors of log[-log(Ŝ(t, ξ))] and log[-log(̃S(t, ξ))] are given
by

σ̂2(t, ξ)=̇
−σ̃0(t, ξ)

log(Ŝ(t, ξ))
and σ̃2(t, ξ)=̇

σ̃0(t, ξ)

Λ̂(t, ξ)

respectively.

Let zα/2 be the upper100(1− α
2 ) percentile point of the standard normal distribution.

A 100(1 − α)% confidence interval for the survivor functionS(t, ξ) is given in the
following table.

Method CLTYPE Confidence Limits
LOG PL exp[log(Ŝ(t, ξ))± zα

2
σ̃0(t, ξ)]

LOG CH exp[log(S̃(t, ξ))± zα
2
σ̃0(t, ξ)]

LOGLOG PL exp{− exp[log(− log(Ŝ(t, ξ)))± zα
2
σ̂2(t, ξ)]}

LOGLOG CH exp{− exp[log(− log(S̃(t, ξ)))± zα
2
σ̃2(t, ξ)]}

NORMAL PL Ŝ(t, ξ)± zα
2
σ̂1(t, ξ)

NORMAL CH S̃(t, ξ)± zα
2
σ̃1(t, ξ)

Left Truncation of Failure Times

Left truncation arises when individuals only come under observation some known
time after the natural time origin of the phenomenon under study. The risk set just
prior to an event time does not include individuals whose left truncation times exceed
the given event time. Thus, any contribution to the likelihood must be conditional on
the truncation limit having been exceeded.

Although left truncation can be accommodated in PROC PHREG through the count-
ing process style of input, such specification does not allow survival estimates to be
output. Using the ENTRY= option in PROC PHREG for left truncation does not
suppress computing the survival estimates.
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Consider the following specifications of PROC PHREG:

proc phreg data=one;
model t2*dead(0)=x1-x10/entry=t1;
baseline out=out1 survival=s;
title ’The ENTRY= option is Specified’;

run;

proc phreg data=one;
model (t1,t2)*dead(0)=x1-x10;
baseline out=out2 survival=s;
title ’Counting Process Style of Input’;

run;

Both specifications yield the same model estimates; however, the baseline data set
out2 is empty, since survivor function estimates are not computed when you use the
counting process style of input.

Variable Selection Methods

Five variable selection methods are available. The simplest method (and the default)
is SELECTION=NONE, for which PROC PHREG fits the complete model as spec-
ified in the MODEL statement. The other four methods are FORWARD for forward
selection, BACKWARD for backward elimination, STEPWISE for stepwise selec-
tion, and SCORE for best subsets selection. These methods are specified with the
SELECTION= option in the MODEL statement. Intercept parameters are forced to
stay in the model unless the NOINT option is specified.

When SELECTION=FORWARD, PROC PHREG first estimates parameters for vari-
ables forced into the model. These variables are the intercepts and the firstn ex-
planatory variables in the MODEL statement, wheren is the number specified by
the START= or INCLUDE= option in the MODEL statement (n is zero by default).
Next, the procedure computes the adjusted chi-square statistics for each variable not
in the model and examines the largest of these statistics. If it is significant at the
SLSENTRY= level, the corresponding variable is added to the model. Once a vari-
able is entered in the model, it is never removed from the model. The process is
repeated until none of the remaining variables meet the specified level for entry or
until the STOP= value is reached.

When SELECTION=BACKWARD, parameters for the complete model as specified
in the MODEL statement are estimated unless the START= option is specified. In that
case, only the parameters for the intercepts and the firstn explanatory variables in the
MODEL statement are estimated, wheren is the number specified by the START=
option. Results of the Wald test for individual parameters are examined. The least
significant variable that does not meet the SLSSTAY= level for staying in the model
is removed. Once a variable is removed from the model, it remains excluded. The
process is repeated until no other variable in the model meets the specified level for
removal or until the STOP= value is reached.
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The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD
option except that variables already in the model do not necessarily remain. Variables
are entered into and removed from the model in such a way that each forward selec-
tion step can be followed by one or more backward elimination steps. The stepwise
selection process terminates if no further variable can be added to the model or if the
variable just entered into the model is the only variable removed in the subsequent
backward elimination.

For SELECTION=SCORE, PROC PHREG uses the branch and bound algorithm of
Furnival and Wilson(1974) to find a specified number of models with the highest
likelihood score (chi-square) statistic for all possible model sizes, from 1, 2, 3 vari-
ables, and so on, up to the single model containing all of the explanatory variables.
The number of models displayed for each model size is controlled by the BEST= op-
tion. You can use the START= option to impose a minimum model size, and you can
use the STOP= option to impose a maximum model size. For instance, with BEST=3,
START=2, and STOP=5, the SCORE selection method displays the best three models
(that is, the three models with the highest score chi-squares) containing 2, 3, 4, and 5
variables.

The SEQUENTIAL and STOPRES options can alter the default criteria for adding
variables to or removing variables from the model when they are used with the
FORWARD, BACKWARD, or STEPWISE selection methods.

Assessment of the Proportional Hazards Model (Experimental)

The proportional hazards model specifies that the hazard function for the failure time
T associated with ap× 1 column covariate vectorZ takes the form

λ(t;Z) = λ0(t)eβ′Z

whereλ0(.) is an unspecifed baseline hazard function andβ is ap× 1 column vector
of regression parameters.Lin et al. (1993) present graphical and numerical meth-
ods for model assessment based on the cumulative sums of martingale residuals and
their transforms over certain coordinates (e.g., covariate values or follow-up times).
The distributions of these stochastic processes under the assumed model can be ap-
proximated by the distributions of certain zero-mean Gaussian processes whose re-
alizations can be generated by simulation. Each observed residual pattern can then
be compared, both graphically and numerically, with a number of realizations from
the null distribution. Such comparisons enable you to assess objectively whether
the observed residual pattern reflects anything beyond random fluctuation. These
procedures are useful in determining appropriate functional forms of covariates and
assessing the proportional hazards assumption. You use the ASSESS statement to
carry out these model-checking procedures.
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For a sample ofn subjects, let(Xi,∆i,Zi) be the data of theith subject; that is,
Xi represents the observed failure time,∆i has a value of 1 ifXi is an uncensored
time and 0 otherwise, andZi = (Z1i, . . . , Zpi)′ is a p-vector of covariates. Let
Ni(t) = ∆iI(Xi ≤ t) andYi(t) = I(Xi ≥ t). Let

S(0)(β, t) =
n∑

i=1

Yi(t)eβ′Zi and Z(β, t) =
∑n

i=1 Yi(t)eβ′ZiZi

S(0)(β, t)

Let β̂ be the maximum partial likelihood estimate ofβ, and letI(β̂) be the observed
information matrix.

The martingale residuals are defined as

M̂i(t) = Ni(t)−
∫ t

0
Yi(u)eβ̂

′
ZidΛ̂0(u), i = 1, . . . , n

whereΛ̂0(t) =
∫ t
0

∑n
i=1 dNi(u)

S(0)(β̂,u)
.

The empirical score processU(β̂, t) = (U1(β̂, t), . . . , Up(β̂, t))′ is a transform of
the martingale residuals:

U(β̂, t) =
n∑

i=1

ZiM̂i(t)

Checking the Functional Form of a Covariate

To check the functional form of thejth covariate, consider the partial-sum process of
M̂i = M̂i(∞):

Wj(z) =
n∑

i=1

I(Zji ≤ z)M̂i

Under that null hypothesis that the model holds,Wj(z) can be approximated by the
zero-mean gaussian process

Ŵj(z) =
n∑

l=1

∆l

{
I(Zjl ≤ z)−

∑n
i=1 Yi(t)eβ′ZiI(Zij ≤ z)

S(0)(β̂, Xl)

}
Gl −

n∑
k=1

∫ ∞

0
Yk(s)eβ̂

′
ZkI(Zjk ≤ z)[Zk − Z̄(β̂, s)]′dΛ̂0(s)

×I−1(β̂)
n∑

l=1

∆l[Zk − Z̄(β̂, Xl)]Gl

where(G1, . . . , Gn) are independent standard normal variables that are independent
of (Xi,∆i,Zi), i = 1, . . . , n.
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You can assess the functional form of thejth covariate by plotting a small number of
realizations (the default is 20) of̂Wj(z) on the same graph as the observedWj(z) and
visually comparing them to see how typical the observed pattern ofWj(z) is of the
null distribution samples. You can supplement the graphical inspection method with a
Kolmogorov-type supremum test. Letsj be the observed value ofSj = supz |Wj(z)|
and letŜj = supz |Ŵj(z)|. Thep-valuePr(Sj ≥ sj) is approximated byPr(Ŝj ≥
sj), which in turn is approximated by generating a large number of realizations (1000
is the default) ofŴj(.).

Checking the Proportional Hazards Assumption

Consider the standardized empirical score process for thejth component ofZ

U∗
j (t) = [I−1(β̂)jj ]

1
2 Uj(β̂, t),

Under the null hypothesis that the model holds,U∗
j (t) can be approximated by

Û∗
j (t) = [I−1(β̂)jj ]

1
2

{ n∑
l=1

I(Xl ≤ t)∆l[Zjl − Z̄j(β̂, t)]Gl −

n∑
k=1

∫ t

0
Yk(s)eβ̂

′
ZkZjk[Zk − Z̄(β̂, s)]′dΛ̂0(s)

×I−1(β̂)
n∑

l=1

∆l[Zl − Z̄(β̂, Xl)]Gl

}

whereZ̄j(β̂, t) is thejth component of̄Z(β̂, t), and(G1, . . . , Gn) are independent
standard normal variables that are independent of(Xi,∆i,Zi, (i = 1, . . . , n).

You can assess the proportional hazards assumption for thejth covariate by plotting
a few realizations of̂U∗

j (t) on the same graph as the observedU∗
j (t) and visually

comparing them to see how typical the observed pattern ofU∗
j (t) is of the null dis-

tribution samples. Again you can supplement the graphical inspection method with a
Kolmogorov-type supremum test. Lets∗j be the observed value ofS∗j = supt |U∗

j (t)|
and letŜ∗j = supt |Û∗

j (t)|. Thep-valuePr[S∗j ≥ s∗j ] is approximated byPr[Ŝ∗j ≥ s∗j ],
which in turn is approximated by generating a large number of realizations (1000 is
the default) ofÛ∗

j (.).

Computational Resources

Let n be the number of observations in a BY group. Letp be the number of explana-
tory variables. The minimum working space (in bytes) needed to process the BY
group is

max{12n, 24p2 + 160p}
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Extra memory is needed for certain TIES= options. Letk be the maximum multi-
plicity of tied times. The TIES=DISCRETE option requires extra memory (in bytes)
of

4k(p2 + 4p)

The TIES=EXACT option requires extra memory (in bytes) of

24(k2 + 5k)

If sufficient space is available, the input data are also kept in memory. Otherwise, the
input data are reread from the utility file for each evaluation of the likelihood function
and its derivatives, with the resulting execution time substantially increased.

Displayed Output

If you use the NOPRINT option in the PROC PHREG statement, the procedure does
not display any output. Otherwise, the displayed output of the PHREG procedure
includes the following:

• the “Model Information” table, which contains:

− the two-level name of the input data set

− the name and label of the failure time variable

− if you specify the censoring variable,

- the name and label of the censoring variable
- the values that the censoring variable assumes to indicate censored

times

− if you use the OFFSET= option in the MODEL statement, the name and
label of the offset variable

− if you specify the FREQ statement, the name and label of the frequency
variable

− if you specify the WEIGHT statement, the name and label of the weight
variable

− the method of handling ties in the failure time

• the “Summary of the Number of Event and Censored Values” table, which
displays, for each stratum, the breakdown of the number of events and censored
values. This table is not produced if the NOSUMMARY option is specified.

• if you specify the SIMPLE option in the PROC PHREG statement, the “Simple
Statistics for Explanatory Variables” table, which displays, for each stratum,
the mean, standard deviation, and minimum and maximum for each explana-
tory variable in the MODEL statement
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• if you specify the ITPRINT option in the MODEL statement, the “Iteration
History” table, which displays the iteration number, step size, log likelihood,
and parameter estimates at each iteration The last evaluation of the gradient
vector is also displayed.

• the “Model Fit Statistics” table, which gives the values of−2 log likelihood
for fitting a model with no explanatory variable and for fitting a model with all
the explanatory variables. The AIC and SBC are also given in this table.

• the “Testing Global Null Hypothesis: BETA=0” table, which displays results
of the likelihood ratio test, the score test, and the Wald test

• the “Analysis of Maximum Likelihood Estimates” table, which contains:

− the maximum likelihood estimate of the parameter

− the estimated standard error of the parameter estimate, computed as the
square root of the corresponding diagonal element of the estimated co-
variance matrix

− if you specify the COVS option in the PROC statement, the ratio of the
robust standard error estimate to the model-based standard error estimate

− the Wald Chi-Square statistic, computed as the square of the parameter
estimate divided by its standard error estimate

− the degrees of freedom of the Wald chi-square statistic. It has a value of
1 unless the corresponding parameter is redundant or infinite, in which
case the value is 0.

− the p-value of the Wald chi-square statistic with respect to a chi-square
distribution with one degree of freedom

− the hazards ratio estimate computed by exponentiating the parameter es-
timate

− if you specified the RISKLIMITS option in the MODEL statement, the
confidence limits for the hazards ratio

• if you specify SELECTION=SCORE in the MODEL statement, the
“Regression Models Selected by Score Criterion” table, which gives the
number of explanatory variables in each model, the score chi-square statistic,
and the names of the variables included in the model

• if you use the FORWARD or STEPWISE selection method and you specify
the DETAILS option in the MODEL statement, the “Analysis of Variables Not
in the Model” table, which gives the Score chi-square statistic for testing the
significance of each variable not in the model (after adjusting for the variables
already in the model), and thep-value of the chi-square statistic with respect
to a chi-square distribution with one degree of freedom. This table is produced
before a variable is selected for entry in a forward selection step.

• if you specify the FORWARD, BACKWARD, or STEPWISE selection method,
a table summarizing the model-building process, which gives the step number,
the explanatory variable entered or removed at each step, the chi-square statis-
tic, and the correspondingp-value on which the entry or removal is based
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• if you use the COVB option in the MODEL statement, the estimated covariance
matrix of the parameter estimates

• if you use the CORRB option in the MODEL statement, the estimated correla-
tion matrix of the parameter estimates

• if you specify a TEST statement,

− the “Linear Coefficients” table, which gives the coefficients and constants
of the linear hypothesis (if the E option is specified)

− the printing of the intermediate calculations of the Wald test (if the option
PRINT is specified)

− the “Test Results” table, which gives the Wald chi-square statistic, the
degrees of freedom, and thep-value

− the “Average Effect” table, which gives the weighted average of the pa-
rameter estimates for the variables in the TEST statement, the estimated
standard error, the z-score, and thep-value (if the AVERAGE option is
specified)

ODS Table Names

PROC PHREG assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 54.1. ODS Tables Produced in PROC PHREG

ODS Table Name Description Statement Option
BestSubsets Best subset selection MODEL SELECTION=SCORE
CensoredSummary Summary of event and censored

observations
MODEL default

ConvergenceStatus Convergence status MODEL default
CorrB Estimated correlation matrix of

parameter estimators
MODEL CORRB

CovB Estimated covariance matrix of
parameter estimators

MODEL COVB

FitStatistics Model fit statistics MODEL default
FunctionalFormSupTest
(experimental)

Supremum test for functional
form

ASSESS VAR=

GlobalScore Global chi-square test MODEL NOFIT
GlobalTests Tests of the global null

hypothesis
MODEL default

IterHistory Iteration history MODEL ITPRINT
LastGradient Last evaluation of gradient MODEL ITPRINT
ModelBuildingSummary Summary of model building MODEL SELECTION=B/F/S
ModelInfo Model information PROC default
NObs Number of observations default
ParameterEstimates Maximum likelihood estimates

of model parameters
MODEL default
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Table 54.1. (continued)

ODS Table Name Description Statement Option
ProportionalHazardsSupTest
(experimental)

Supremum test for proportional
hazards assumption

ASSESS PH

ResidualChiSq Residual chi-square MODEL SELECTION=F/B
SimpleStatistics Summary statistics for explana-

tory variables
PROC SIMPLE

TestAverage Average effect for test TEST AVERAGE
TestCoeff Coefficients for linear hypothe-

ses
TEST E

TestPrint1 L [cov(b)]L ’ andLb -c TEST PRINT
TestPrint2 Ginv(L [cov(b)]L ’) and

Ginv(L [cov(b)]L ’)(Lb -c)
TEST PRINT

TestStmts Linear hypotheses testing results TEST
VariablesNotInModel Analysis of variables not in the

model
MODEL SELECTION=F/S

ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs for model assess-
ment with the PHREG procedure. These graphics are experimental in this release,
meaning that both the graphical results and the syntax for specifying them are subject
to change in a future release.

To request these graphs you must specify the ODS GRAPHICS statement in addi-
tion to the ASSESS statement in PROC PHREG. For more information on the ODS
GRAPHICS statement, seeChapter 15, “Statistical Graphics Using ODS.”

ODS Graph Names

PROC PHREG assigns a name to each graph it creates using the ODS. You can use
these names to reference the graphs when using ODS. The names are listed inTable
54.2.

Table 54.2. ODS Graphics Produced by PROC PHREG

ODS Graph Name Description Statement Option
CumulativeResiduals Cumulative martingale

residual plot
ASSESS VAR=

CumResidPanel Panel plot of cumulative
martingale residuals

ASSESS VAR= and CRPANEL

ScoreProcess Standardized score process
plot

ASSESS PH
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Examples

Example 54.1. Stepwise Regression

Krall, Uthoff, and Harley(1975) analyzed data from a study on multiple myeloma
in which researchers treated 65 patients with alkylating agents. Of those patients, 48
died during the study and 17 survived. In the data setMyeloma, the variableTime
represents the survival time in months from diagnosis. The variableVStatus consists
of two values, 0 and 1, indicating whether the patient was alive or dead, respectively,
at the end of the study. If the value ofVStatus is 0, the corresponding value ofTime
is censored. The variables thought to be related to survival areLogBUN (log(BUN)
at diagnosis),HGB (hemoglobin at diagnosis),Platelet (platelets at diagnosis: 0=ab-
normal, 1=normal),Age (age at diagnosis in years),LogWBC (log(WBC) at diagno-
sis),Frac (fractures at diagnosis: 0=none, 1=present),LogPBM (log percentage of
plasma cells in bone marrow),Protein (proteinuria at diagnosis), andSCalc (serum
calcium at diagnosis). Interest lies in identifying important prognostic factors from
these nine explanatory variables.

data Myeloma;
input Time VStatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time=’Survival Time’

VStatus=’0=Alive 1=Dead’;
datalines;

1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12
2.00 1 1.3010 5.1 0 57 3.7243 1 2.0000 3 9
3.00 1 1.5441 6.7 1 46 4.4757 0 1.9345 12 10
5.00 1 2.2355 10.1 1 50 4.9542 1 1.6628 4 9
5.00 1 1.6812 6.5 1 74 3.7324 0 1.7324 5 9
6.00 1 1.3617 9.0 1 77 3.5441 0 1.4624 1 8
6.00 1 2.1139 10.2 0 70 3.5441 1 1.3617 1 8
6.00 1 1.1139 9.7 1 60 3.5185 1 1.3979 0 10
6.00 1 1.4150 10.4 1 67 3.9294 1 1.6902 0 8
7.00 1 1.9777 9.5 1 48 3.3617 1 1.5682 5 10
7.00 1 1.0414 5.1 0 61 3.7324 1 2.0000 1 10
7.00 1 1.1761 11.4 1 53 3.7243 1 1.5185 1 13
9.00 1 1.7243 8.2 1 55 3.7993 1 1.7404 0 12

11.00 1 1.1139 14.0 1 61 3.8808 1 1.2788 0 10
11.00 1 1.2304 12.0 1 43 3.7709 1 1.1761 1 9
11.00 1 1.3010 13.2 1 65 3.7993 1 1.8195 1 10
11.00 1 1.5682 7.5 1 70 3.8865 0 1.6721 0 12
11.00 1 1.0792 9.6 1 51 3.5051 1 1.9031 0 9
13.00 1 0.7782 5.5 0 60 3.5798 1 1.3979 2 10
14.00 1 1.3979 14.6 1 66 3.7243 1 1.2553 2 10
15.00 1 1.6021 10.6 1 70 3.6902 1 1.4314 0 11
16.00 1 1.3424 9.0 1 48 3.9345 1 2.0000 0 10
16.00 1 1.3222 8.8 1 62 3.6990 1 0.6990 17 10
17.00 1 1.2304 10.0 1 53 3.8808 1 1.4472 4 9
17.00 1 1.5911 11.2 1 68 3.4314 0 1.6128 1 10
18.00 1 1.4472 7.5 1 65 3.5682 0 0.9031 7 8
19.00 1 1.0792 14.4 1 51 3.9191 1 2.0000 6 15
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19.00 1 1.2553 7.5 0 60 3.7924 1 1.9294 5 9
24.00 1 1.3010 14.6 1 56 4.0899 1 0.4771 0 9
25.00 1 1.0000 12.4 1 67 3.8195 1 1.6435 0 10
26.00 1 1.2304 11.2 1 49 3.6021 1 2.0000 27 11
32.00 1 1.3222 10.6 1 46 3.6990 1 1.6335 1 9
35.00 1 1.1139 7.0 0 48 3.6532 1 1.1761 4 10
37.00 1 1.6021 11.0 1 63 3.9542 0 1.2041 7 9
41.00 1 1.0000 10.2 1 69 3.4771 1 1.4771 6 10
41.00 1 1.1461 5.0 1 70 3.5185 1 1.3424 0 9
51.00 1 1.5682 7.7 0 74 3.4150 1 1.0414 4 13
52.00 1 1.0000 10.1 1 60 3.8573 1 1.6532 4 10
54.00 1 1.2553 9.0 1 49 3.7243 1 1.6990 2 10
58.00 1 1.2041 12.1 1 42 3.6990 1 1.5798 22 10
66.00 1 1.4472 6.6 1 59 3.7853 1 1.8195 0 9
67.00 1 1.3222 12.8 1 52 3.6435 1 1.0414 1 10
88.00 1 1.1761 10.6 1 47 3.5563 0 1.7559 21 9
89.00 1 1.3222 14.0 1 63 3.6532 1 1.6232 1 9
92.00 1 1.4314 11.0 1 58 4.0755 1 1.4150 4 11

4.00 0 1.9542 10.2 1 59 4.0453 0 0.7782 12 10
4.00 0 1.9243 10.0 1 49 3.9590 0 1.6232 0 13
7.00 0 1.1139 12.4 1 48 3.7993 1 1.8573 0 10
7.00 0 1.5315 10.2 1 81 3.5911 0 1.8808 0 11
8.00 0 1.0792 9.9 1 57 3.8325 1 1.6532 0 8

12.00 0 1.1461 11.6 1 46 3.6435 0 1.1461 0 7
11.00 0 1.6128 14.0 1 60 3.7324 1 1.8451 3 9
12.00 0 1.3979 8.8 1 66 3.8388 1 1.3617 0 9
13.00 0 1.6628 4.9 0 71 3.6435 0 1.7924 0 9
16.00 0 1.1461 13.0 1 55 3.8573 0 0.9031 0 9
19.00 0 1.3222 13.0 1 59 3.7709 1 2.0000 1 10
19.00 0 1.3222 10.8 1 69 3.8808 1 1.5185 0 10
28.00 0 1.2304 7.3 1 82 3.7482 1 1.6721 0 9
41.00 0 1.7559 12.8 1 72 3.7243 1 1.4472 1 9
53.00 0 1.1139 12.0 1 66 3.6128 1 2.0000 1 11
57.00 0 1.2553 12.5 1 66 3.9685 0 1.9542 0 11
77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

The stepwise selection process consists of a series of alternating step-up and step-
down phases. The former adds variables to the model, while the latter removes vari-
ables from the model.

Stepwise regression analysis is requested by specifying the SELECTION=STEPWISE
option in the MODEL statement. The option SLENTRY=0.25 specifies that a vari-
able has to be significant at the 0.25 level before it can be entered into the model,
while the option SLSTAY=0.15 specifies that a variable in the model has to be
significant at the 0.15 level for it to remain in the model. The DETAILS option
requests detailed results for the variable selection process.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein SCalc
/ selection=stepwise slentry=0.25

slstay=0.15 details;
run;
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Results of the stepwise regression analysis are displayed inOutput 54.1.1through
Output 54.1.7.

Output 54.1.1. Individual Score Test Results for All Variables

The PHREG Procedure

Model Information

Data Set WORK.MYELOMA
Dependent Variable Time Survival Time
Censoring Variable VStatus 0=Alive 1=Dead
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored

65 48 17 26.15

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

LogBUN 8.5164 0.0035
HGB 5.0664 0.0244
Platelet 3.1816 0.0745
Age 0.0183 0.8924
LogWBC 0.5658 0.4519
Frac 0.9151 0.3388
LogPBM 0.5846 0.4445
Protein 0.1466 0.7018
SCalc 1.1109 0.2919

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

18.4550 9 0.0302

Individual score tests are used to determine which of the nine explanatory variables is
first selected into the model. In this case, the score test for each variable is the global
score test for the model containing that variable as the only explanatory variable.
The chi-square statistic is compared to a chi-square distribution with one degree
of freedom. Output 54.1.1displays the chi-square statistics and the corresponding
p-values. The variableLogBUN has the largest chi-square value (8.5164), and it is
significant (p = 0.0035) at the SLENTRY=0.25 level. The variableLogBUN is thus
entered into the model.Output 54.1.2displays the model results. Since the Wald
chi-square statistic is significant (p = 0.0039) at the SLSTAY=0.15 level,LogBUN
stays in the model.
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Output 54.1.2. First Model in the Stepwise Selection Process

Step 1. Variable LogBUN is entered. The model contains the following
explanatory variables:

LogBUN

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 309.716 301.959
AIC 309.716 303.959
SBC 309.716 305.830

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.7572 1 0.0053
Score 8.5164 1 0.0035
Wald 8.3392 1 0.0039

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

LogBUN 1 1.74595 0.60460 8.3392 0.0039 5.731

Output 54.1.3. Score Tests Adjusted for the Variable LogBUN

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

HGB 4.3468 0.0371
Platelet 2.0183 0.1554
Age 0.7159 0.3975
LogWBC 0.0704 0.7908
Frac 1.0354 0.3089
LogPBM 1.0334 0.3094
Protein 0.5214 0.4703
SCalc 1.4150 0.2342

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

9.3164 8 0.3163
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Output 54.1.4. Second Model in the Stepwise Selection Process

Step 2. Variable HGB is entered. The model contains the following explanatory
variables:

LogBUN HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 309.716 297.767
AIC 309.716 301.767
SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.9493 2 0.0025
Score 12.7252 2 0.0017
Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336
HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

The next step consists of selecting another variable to add to the model.Output 54.1.3
displays the chi-square statistics andp-values of individual score tests (adjusted for
LogBUN) for the remaining eight variables. The score chi-square for a given variable
is the value of the likelihood score test for testing the significance of the variable in
the presence ofLogBUN. The variableHGB is selected because it has the highest
chi-square value (4.3468), and it is significant (p = 0.0371) at the SLENTRY=0.25
level. Output 54.1.4displays the fitted model containing bothLogBUN andHGB.
Based on the Wald statistics, neitherLogBUN norHGB is removed from the model.
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Output 54.1.5. Third Model in the Stepwise Regression

Step 3. Variable SCalc is entered. The model contains the following
explanatory variables:

LogBUN HGB SCalc

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 309.716 296.078
AIC 309.716 302.078
SBC 309.716 307.692

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13.6377 3 0.0034
Score 15.3053 3 0.0016
Wald 14.4542 3 0.0023

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

LogBUN 1 1.63593 0.62359 6.8822 0.0087 5.134
HGB 1 -0.12643 0.05868 4.6419 0.0312 0.881
SCalc 1 0.13286 0.09868 1.8127 0.1782 1.142

Output 54.1.5shows Step 3 of the selection process, in which the variableSCalc is
added, resulting in the model withLogBUN, HGB, andSCalc as the explanatory
variables. Note thatSCalc has the smallest Wald chi-square statistic, and it is not
significant (p = 0.1782) at the SLSTAY=0.15 level. The variableSCalc is then
removed from the model in a step-down phase in Step 4 (Output 54.1.6). The removal
of SCalc brings the stepwise selection process to a stop in order to avoid repeatedly
entering and removing the same variable.
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Output 54.1.6. Final Model in the Stepwise Regression

Step 4. Variable SCalc is removed. The model contains the following
explanatory variables:

LogBUN HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 309.716 297.767
AIC 309.716 301.767
SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.9493 2 0.0025
Score 12.7252 2 0.0017
Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336
HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

NOTE: Model building terminates because the variable to be entered is the
variable that was removed in the last step.

The procedure also displays a summary table of the steps in the stepwise selection
process, as shown inOutput 54.1.7.

The stepwise selection process results in a model with two explanatory variables,
LogBUN andHGB.
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Output 54.1.7. Model Selection Summary

Summary of Stepwise Selection

Variable Number Score Wald
Step Entered Removed In Chi-Square Chi-Square Pr > ChiSq

1 LogBUN 1 8.5164 . 0.0035
2 HGB 2 4.3468 . 0.0371
3 SCalc 3 1.8225 . 0.1770
4 SCalc 2 . 1.8127 0.1782

Example 54.2. Best Subset Selection

An alternative to stepwise selection of variables is best subset selection. The proce-
dure uses the branch and bound algorithm of Furnival and Wilson (1974) to find a
specified number of best models containing one, two, three variables, and so on, up
to the single model containing all of the explanatory variables. The criterion used to
determine “best” is based on the global score chi-square statistic. For two models A
and B, each having the same number of explanatory variables, model A is considered
to be better than model B if the global score chi-square statistic for A exceeds that
for B.

Best subset selection analysis is requested by specifying the SELECTION=SCORE
option in the MODEL statement. The BEST=3 option requests the procedure to
identify only the three best models for each size. In other words, PROC PHREG will
list the three models having the highest score statistics of all the models possible for
a given number of covariates.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein SCalc
/ selection=score best=3;

run;
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Output 54.2.1displays the results of this analysis. The number of explanatory vari-
ables in the model is given in the first column, and the names of the variables are
listed on the right. The models are listed in descending order of their score chi-
square values within each model size. For example, among all models containing
two explanatory variables, the model that contains the variablesLogBUN andHGB
has the largest score value (12.7252), the model that contains the variablesLogBUN
andPlatelet has the second largest score value (11.1842), and the model that contains
the variablesLogBUN andSCalc has the third largest score value (9.9962).

Output 54.2.1. Best Variable Combinations
The PHREG Procedure

Regression Models Selected by Score Criterion

Number of Score
Variables Chi-Square Variables Included in Model

1 8.5164 LogBUN
1 5.0664 HGB
1 3.1816 Platelet

2 12.7252 LogBUN HGB
2 11.1842 LogBUN Platelet
2 9.9962 LogBUN SCalc

3 15.3053 LogBUN HGB SCalc
3 13.9911 LogBUN HGB Age
3 13.5788 LogBUN HGB Frac

4 16.9873 LogBUN HGB Age SCalc
4 16.0457 LogBUN HGB Frac SCalc
4 15.7619 LogBUN HGB LogPBM SCalc

5 17.6291 LogBUN HGB Age Frac SCalc
5 17.3519 LogBUN HGB Age LogPBM SCalc
5 17.1922 LogBUN HGB Age LogWBC SCalc

6 17.9120 LogBUN HGB Age Frac LogPBM SCalc
6 17.7947 LogBUN HGB Age LogWBC Frac SCalc
6 17.7744 LogBUN HGB Platelet Age Frac SCalc

7 18.1517 LogBUN HGB Platelet Age Frac LogPBM SCalc
7 18.0568 LogBUN HGB Age LogWBC Frac LogPBM SCalc
7 18.0223 LogBUN HGB Platelet Age LogWBC Frac SCalc

8 18.3925 LogBUN HGB Platelet Age LogWBC Frac LogPBM SCalc
8 18.1636 LogBUN HGB Platelet Age Frac LogPBM Protein SCalc
8 18.1309 LogBUN HGB Platelet Age LogWBC Frac Protein SCalc

9 18.4550 LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc

Example 54.3. Conditional Logistic Regression for m:n
Matching

Conditional logistic regression is used to investigate the relationship between an out-
come and a set of prognostic factors in matched case-control studies. The outcome is
whether the subject is a case or a control. If there is only one case and one control,
the matching is 1:1. Them:nmatching refers to the situation in which there is a vary-
ing number of cases and controls in the matched sets. You can perform conditional
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logistic regression with the PHREG procedure by using the discrete logistic model
and forming a stratum for each matched set. In addition, you need to create dummy
survival times so that all the cases in a matched set have the same event time value,
and the corresponding controls are censored at later times.

Consider the following set of low infant birth-weight data extracted from Appendix 1
of Hosmer and Lemeshow(1989). These data represent 189 women, of whom 59 had
low birth-weight babies and 130 had normal weight babies. Under investigation are
the following risk factors: weight in pounds at the last menstrual period (LWT), pres-
ence of hypertension (HT), smoking status during pregnancy (Smoke), and presence
of uterine irritability (UI). ForHT, Smoke, andUI, a value of 1 indicates a “yes” and
a value of 0 indicates a “no.” The woman’s age (Age) is used as the matching vari-
able. The SAS data setLBW contains a subset of the data corresponding to women
between the ages of 16 and 32.

data LBW;
input id Age Low LWT Smoke HT UI @@;
Time=2-Low;
datalines;

25 16 1 130 0 0 0 143 16 0 110 0 0 0
166 16 0 112 0 0 0 167 16 0 135 1 0 0
189 16 0 135 1 0 0 206 16 0 170 0 0 0
216 16 0 95 0 0 0 37 17 1 130 1 0 1

45 17 1 110 1 0 0 68 17 1 120 1 0 0
71 17 1 120 0 0 0 83 17 1 142 0 1 0
93 17 0 103 0 0 0 113 17 0 122 1 0 0

116 17 0 113 0 0 0 117 17 0 113 0 0 0
147 17 0 119 0 0 0 148 17 0 119 0 0 0
180 17 0 120 1 0 0 49 18 1 148 0 0 0

50 18 1 110 1 0 0 89 18 0 107 1 0 1
100 18 0 100 1 0 0 101 18 0 100 1 0 0
132 18 0 90 1 0 1 133 18 0 90 1 0 1
168 18 0 229 0 0 0 205 18 0 120 1 0 0
208 18 0 120 0 0 0 23 19 1 91 1 0 1

33 19 1 102 0 0 0 34 19 1 112 1 0 1
85 19 0 182 0 0 1 96 19 0 95 0 0 0
97 19 0 150 0 0 0 124 19 0 138 1 0 0

129 19 0 189 0 0 0 135 19 0 132 0 0 0
142 19 0 115 0 0 0 181 19 0 105 0 0 0
187 19 0 235 1 1 0 192 19 0 147 1 0 0
193 19 0 147 1 0 0 197 19 0 184 1 1 0
224 19 0 120 1 0 0 27 20 1 150 1 0 0

31 20 1 125 0 0 1 40 20 1 120 1 0 0
44 20 1 80 1 0 1 47 20 1 109 0 0 0
51 20 1 121 1 0 1 60 20 1 122 1 0 0
76 20 1 105 0 0 0 87 20 0 105 1 0 0

104 20 0 120 0 0 1 146 20 0 103 0 0 0
155 20 0 169 0 0 1 160 20 0 141 0 0 1
172 20 0 121 1 0 0 177 20 0 127 0 0 0
201 20 0 120 0 0 0 211 20 0 170 1 0 0
217 20 0 158 0 0 0 20 21 1 165 1 1 0

28 21 1 200 0 0 1 30 21 1 103 0 0 0
52 21 1 100 0 0 0 84 21 1 130 1 1 0
88 21 0 108 1 0 1 91 21 0 124 0 0 0

128 21 0 185 1 0 0 131 21 0 160 0 0 0
144 21 0 110 1 0 1 186 21 0 134 0 0 0
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219 21 0 115 0 0 0 42 22 1 130 1 0 1
67 22 1 130 1 0 0 92 22 0 118 0 0 0
98 22 0 95 0 1 0 137 22 0 85 1 0 0

138 22 0 120 0 1 0 140 22 0 130 1 0 0
161 22 0 158 0 0 0 162 22 0 112 1 0 0
174 22 0 131 0 0 0 184 22 0 125 0 0 0
204 22 0 169 0 0 0 220 22 0 129 0 0 0

17 23 1 97 0 0 1 59 23 1 187 1 0 0
63 23 1 120 0 0 0 69 23 1 110 1 0 0
82 23 1 94 1 0 0 130 23 0 130 0 0 0

139 23 0 128 0 0 0 149 23 0 119 0 0 0
164 23 0 115 1 0 0 173 23 0 190 0 0 0
179 23 0 123 0 0 0 182 23 0 130 0 0 0
200 23 0 110 0 0 0 18 24 1 128 0 0 0

19 24 1 132 0 1 0 29 24 1 155 1 0 0
36 24 1 138 0 0 0 61 24 1 105 1 0 0

118 24 0 90 1 0 0 136 24 0 115 0 0 0
150 24 0 110 0 0 0 156 24 0 115 0 0 0
185 24 0 133 0 0 0 196 24 0 110 0 0 0
199 24 0 110 0 0 0 225 24 0 116 0 0 0

13 25 1 105 0 1 0 15 25 1 85 0 0 1
24 25 1 115 0 0 0 26 25 1 92 1 0 0
32 25 1 89 0 0 0 46 25 1 105 0 0 0

103 25 0 118 1 0 0 111 25 0 120 0 0 1
120 25 0 155 0 0 0 121 25 0 125 0 0 0
169 25 0 140 0 0 0 188 25 0 95 1 0 1
202 25 0 241 0 1 0 215 25 0 120 0 0 0
221 25 0 130 0 0 0 35 26 1 117 1 0 0

54 26 1 96 0 0 0 75 26 1 154 0 1 0
77 26 1 190 1 0 0 95 26 0 113 1 0 0

115 26 0 168 1 0 0 154 26 0 133 1 0 0
218 26 0 160 0 0 0 16 27 1 150 0 0 0

43 27 1 130 0 0 1 125 27 0 124 1 0 0
4 28 1 120 1 0 1 79 28 1 95 1 0 0

105 28 0 120 1 0 0 109 28 0 120 0 0 0
112 28 0 167 0 0 0 151 28 0 140 0 0 0
159 28 0 250 1 0 0 212 28 0 134 0 0 0
214 28 0 130 0 0 0 10 29 1 130 0 0 1

94 29 0 123 1 0 0 114 29 0 150 0 0 0
123 29 0 140 1 0 0 190 29 0 135 0 0 0
191 29 0 154 0 0 0 209 29 0 130 1 0 0

65 30 1 142 1 0 0 99 30 0 107 0 0 1
141 30 0 95 1 0 0 145 30 0 153 0 0 0
176 30 0 110 0 0 0 195 30 0 137 0 0 0
203 30 0 112 0 0 0 56 31 1 102 1 0 0
107 31 0 100 0 0 1 126 31 0 215 1 0 0
163 31 0 150 1 0 0 222 31 0 120 0 0 0

22 32 1 105 1 0 0 106 32 0 121 0 0 0
134 32 0 132 0 0 0 170 32 0 134 1 0 0
175 32 0 170 0 0 0 207 32 0 186 0 0 0
;

The variableLow is used to determine whether the subject is a case (Low=1, low
birth-weight baby) or a control (Low=0, normal weight baby). The dummy time
variableTime takes the value 1 for cases and 2 for controls.
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The following SAS statements produce a conditional logistic regression analysis of
the data. The variableTime is the response, andLow is the censoring variable.
Note that the data set is created so that all the cases have the same event time, and
the controls have later censored times. The matching variableAge is used in the
STRATA statement so each unique age value defines a stratum. The variablesLWT,
Smoke, HT, andUI are specified as explanatory variables. The TIES=DISCRETE
option requests the discrete logistic model.

proc phreg data=LBW;
model Time*Low(0)= LWT Smoke HT UI / ties=discrete;
strata Age;

run;

The procedure displays a summary of the number of event and censored observations
for each stratum. These are the number of cases and controls for each matched set
shown inOutput 54.3.1.

Output 54.3.1. Summary of Number of Case and Controls
The PHREG Procedure

Model Information

Data Set WORK.LBW
Dependent Variable Time
Censoring Variable Low
Censoring Value(s) 0
Ties Handling DISCRETE

Summary of the Number of Event and Censored Values

Percent
Stratum Age Total Event Censored Censored

1 16 7 1 6 85.71
2 17 12 5 7 58.33
3 18 10 2 8 80.00
4 19 16 3 13 81.25
5 20 18 8 10 55.56
6 21 12 5 7 58.33
7 22 13 2 11 84.62
8 23 13 5 8 61.54
9 24 13 5 8 61.54

10 25 15 6 9 60.00
11 26 8 4 4 50.00
12 27 3 2 1 33.33
13 28 9 2 7 77.78
14 29 7 1 6 85.71
15 30 7 1 6 85.71
16 31 5 1 4 80.00
17 32 6 1 5 83.33

-------------------------------------------------------------------
Total 174 54 120 68.97
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Results of the conditional logistic regression analysis are shown inOutput 54.3.2.
Based on the Wald test for individual variables, the variablesLWT, Smoke, andHT
are statistically significant whileUI is marginal.

The hazards ratios, computed by exponentiating the parameter estimates, are useful
in interpreting the results of the analysis. If the hazards ratio of a prognostic factor is
larger than 1, an increment in the factor increases the hazard rate. If the hazards ratio
is less than 1, an increment in the factor decreases the hazard rate. Results indicate
that women were more likely to have low birth-weight babies if they were under-
weight in the last menstrual cycle, were hypertensive, smoked during pregnancy, or
suffered uterine irritability.

Output 54.3.2. Conditional Logistic Regression Analysis for the Low Birth-Weight
Study

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 159.069 141.108
AIC 159.069 149.108
SBC 159.069 157.064

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 17.9613 4 0.0013
Score 17.3152 4 0.0017
Wald 15.5577 4 0.0037

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

LWT 1 -0.01498 0.00706 4.5001 0.0339 0.985
Smoke 1 0.80805 0.36797 4.8221 0.0281 2.244
HT 1 1.75143 0.73932 5.6120 0.0178 5.763
UI 1 0.88341 0.48032 3.3827 0.0659 2.419

For matched case-control studies with one case per matched set (1:n matching), the
likelihood function for the conditional logistic regression reduces to that of the Cox
model for the continuous time scale. For this situation, you can use the default
TIES=BRESLOW.
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Example 54.4. Model Using Time-Dependent Explanatory
Variables

Time-dependent variables can be used to model the effects of subjects transferring
from one treatment group to another. One example of the need for such strategies
is the Stanford heart transplant program. Patients are accepted if physicians judge
them suitable for heart transplant. Then, when a donor becomes available, physicians
choose transplant recipients according to various medical criteria. A patient’s status
can be changed during the study from waiting for a transplant to being a transplant
recipient. Transplant status can be defined by the time-dependent covariate function
z = z(t) as

z(t) =
{

0 if the patient has not received the transplant at timet
1 if the patient has received the transplant at timet

The Stanford heart transplant data that appear inCrowley and Hu(1977) consist of
103 patients, 69 of whom received transplants. The data are saved in a SAS data set
calledHeart. For each patient in the program, there is a birth date (Bir–Date), a
date of acceptance (Acc–Date), and a date last seen (Ter–Date). The survival time
(Time) in days is defined asTime = Ter–Date − Acc–Date. The survival time
is said to be uncensored (Status=1) or censored (Status=0), depending on whether
Ter–Date is the date of death or the closing date of the study. The age in years
at acceptance into the program isAcc–Age = (Acc–Date − Bir–Date) / 365.
Previous open-heart surgery for each patient is indicated by the variablePrevSurg.
For each transplant recipient, there is a date of transplant (Xpl–Date) and three mea-
sures (NMismatch, Antigen, Mismatch) of tissue-type mismatching. The waiting
period (WaitTime) in days for a transplant recipient is calculated asWaitTime =
Xpl–Date− Acc–Date, and the age in years at transplant isXpl–Age = (Xpl–Date
− Bir–Date) / 365. For those who do not receive heart transplants, theWaitTime,
Xpl–Age, NMismatch, Antigen, andMismatch variables contain missing values.

The input data contains dates that have a two-digit year representation. The SAS
option YEARCUTOFF=1900 is specified to ensure that a two-digit year xx is year
19xx.
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The code is as follows:

options yearcutoff=1900;

data Heart;
input ID

@5 Bir_Date mmddyy8.
@14 Acc_Date mmddyy8.
@23 Xpl_Date mmddyy8.
@32 Ter_Date mmddyy8.
@41 Status 1.
@43 PrevSurg 1.
@45 NMismatch 1.
@47 Antigen 1.
@49 Mismatch 4.
@54 Reject 1.
@56 NotTyped $1.;

label Bir_Date =’Date of birth’
Acc_Date =’Date of acceptance’
Xpl_Date =’Date of transplant’
Ter_Date =’Date last seen’
Status = ’Dead=1 Alive=0’
PrevSurg =’Previous surgery’
NMismatch= ’No of mismatches’
Antigen = ’HLA-A2 antigen’
Mismatch =’Mismatch score’
NotTyped = ’y=not tissue-typed’;

Time= Ter_Date - Acc_Date;
Acc_Age=int( (Acc_Date - Bir_Date)/365 );
if ( Xpl_Date ne .) then do;

WaitTime= Xpl_Date - Acc_Date;
Xpl_Age= int( (Xpl_Date - Bir_Date)/365 );

end;
datalines;

1 01 10 37 11 15 67 01 03 68 1 0
2 03 02 16 01 02 68 01 07 68 1 0
3 09 19 13 01 06 68 01 06 68 01 21 68 1 0 2 0 1.11 0
4 12 23 27 03 28 68 05 02 68 05 05 68 1 0 3 0 1.66 0
5 07 28 47 05 10 68 05 27 68 1 0
6 11 18 13 06 13 68 06 15 68 1 0
7 08 29 17 07 12 68 08 31 68 05 17 70 1 0 4 0 1.32 1
8 03 27 23 08 01 68 09 09 68 1 0
9 06 11 21 08 09 68 11 01 68 1 0

10 02 09 26 08 11 68 08 22 68 10 07 68 1 0 2 0 0.61 1
11 08 22 20 08 15 68 09 09 68 01 14 69 1 0 1 0 0.36 0
12 07 09 15 09 17 68 09 24 68 1 0
13 02 22 14 09 19 68 10 05 68 12 08 68 1 0 3 0 1.89 1
14 09 16 14 09 20 68 10 26 68 07 07 72 1 0 1 0 0.87 1
15 12 04 14 09 27 68 09 27 68 1 1
16 05 16 19 10 26 68 11 22 68 08 29 69 1 0 2 0 1.12 1
17 06 29 48 10 28 68 12 02 68 1 0
18 12 27 11 11 01 68 11 20 68 12 13 68 1 0 3 0 2.05 0
19 10 04 09 11 18 68 12 24 68 1 0
20 10 19 13 01 29 69 02 15 69 02 25 69 1 0 3 1 2.76 1
21 09 29 25 02 01 69 02 08 69 11 29 71 1 0 2 0 1.13 1
22 06 05 26 03 18 69 03 29 69 05 07 69 1 0 3 0 1.38 1
23 12 02 10 04 11 69 04 13 69 04 13 71 1 0 3 0 0.96 1
24 07 07 17 04 25 69 07 16 69 11 29 69 1 0 3 1 1.62 1
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25 02 06 36 04 28 69 05 22 69 04 01 74 0 0 2 0 1.06 0
26 10 18 38 05 01 69 03 01 73 0 0
27 07 21 60 05 04 69 01 21 70 1 0
28 05 30 15 06 07 69 08 16 69 08 17 69 1 0 2 0 0.47 0
29 02 06 19 07 14 69 08 17 69 1 0
30 09 20 24 08 19 69 09 03 69 12 18 71 1 0 4 0 1.58 1
31 10 04 14 08 23 69 09 07 69 1 0
32 04 02 05 08 29 69 09 14 69 11 13 69 1 0 4 0 0.69 1
33 01 01 21 11 27 69 01 16 70 04 01 74 0 0 3 0 0.91 0
34 05 24 29 12 12 69 01 03 70 04 01 74 0 0 2 0 0.38 0
35 08 04 26 01 21 70 02 01 70 1 0
36 05 01 21 04 04 70 05 19 70 07 12 70 1 0 2 0 2.09 1
37 10 24 08 04 25 70 05 13 70 06 29 70 1 0 3 1 0.87 1
38 11 14 28 05 05 70 05 09 70 05 09 70 1 0 3 0 0.87 0
39 11 12 19 05 20 70 05 21 70 07 11 70 1 0 y
40 11 30 21 05 25 70 07 04 70 04 01 74 0 1 4 0 0.75 0
41 04 30 25 08 19 70 10 15 70 04 01 74 0 1 2 0 0.98 0
42 03 13 34 08 21 70 08 23 70 1 0
43 06 01 27 10 22 70 10 23 70 1 1
44 05 02 28 11 30 70 01 08 71 1 1
45 10 30 34 01 05 71 01 05 71 02 18 71 1 0 1 0 0.0 0
46 06 01 22 01 10 71 01 11 71 10 01 73 1 1 2 0 0.81 1
47 12 28 23 02 02 71 02 22 71 04 14 71 1 0 3 0 1.38 1
48 01 23 15 02 05 71 02 13 71 1 0
49 06 21 34 02 15 71 03 22 71 04 01 74 0 1 4 0 1.35 0
50 03 28 25 02 15 71 05 08 71 10 21 73 1 1 y
51 06 29 22 03 24 71 04 24 71 01 02 72 1 0 4 1 1.08 1
52 01 24 30 04 25 71 08 04 71 1 0
53 02 27 24 07 02 71 08 11 71 01 05 72 1 0 y
54 09 16 23 07 02 71 07 04 71 1 0
55 02 24 19 08 09 71 08 18 71 10 08 71 1 0 2 0 1.51 1
56 12 05 32 09 03 71 11 08 71 04 01 74 0 0 4 0 0.98 0
57 06 08 30 09 13 71 02 08 72 1 0
58 09 17 23 09 23 71 10 13 71 08 30 72 1 1 2 1 1.82 1
59 05 12 30 09 29 71 12 15 71 04 01 74 0 1 2 0 0.19 0
60 10 29 22 11 18 71 11 20 71 01 09 72 1 0 3 0 0.66 1
61 05 12 19 12 04 71 12 05 71 1 0
62 08 01 32 12 09 71 02 15 72 1 0
63 04 15 39 12 12 71 01 07 72 04 01 74 0 0 3 1 1.93 0
64 04 09 23 02 01 72 03 04 72 09 06 73 1 1 1 0 0.12 0
65 11 19 20 03 06 72 03 17 72 05 22 72 1 0 2 0 1.12 1
66 01 02 19 03 20 72 04 20 72 1 0
67 09 03 52 03 23 72 05 18 72 01 01 73 1 0 3 0 1.02 0
68 01 10 27 04 07 72 04 09 72 06 13 72 1 0 3 1 1.68 1
69 06 05 24 06 01 72 06 10 72 04 01 74 0 0 2 0 1.20 0
70 06 17 19 06 17 72 06 21 72 07 16 72 1 0 3 1 1.68 1
71 02 22 25 07 21 72 08 20 72 04 01 74 0 0 3 0 0.97 0
72 11 22 45 08 14 72 08 17 72 04 01 74 0 0 3 1 1.46 0
73 05 13 16 09 11 72 10 07 72 12 09 72 1 0 3 1 2.16 1
74 07 20 43 09 18 72 09 22 72 10 04 72 1 0 1 0 0.61 0
75 07 25 20 09 29 72 09 30 72 1 0
76 09 03 20 10 04 72 11 18 72 04 01 74 0 1 3 1 1.70 0
77 08 27 31 10 06 72 10 26 72 1 0
78 02 20 24 11 03 72 05 31 73 04 01 74 0 0 3 0 0.81 0
79 02 18 19 11 30 72 02 04 73 03 05 73 1 0 2 0 1.08 1
80 06 27 26 12 06 72 12 31 72 04 01 74 0 1 3 0 1.41 0
81 02 21 20 01 12 73 01 17 73 04 01 74 0 0 4 1 1.94 0
82 09 19 42 11 01 71 01 01 73 0 0
83 10 04 19 01 24 73 02 24 73 04 13 73 1 0 4 0 3.05 0
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84 05 13 30 01 30 73 03 07 73 12 29 73 1 0 4 0 0.60 1
85 02 13 25 02 06 73 02 10 73 1 0
86 03 30 24 03 01 73 03 08 73 04 01 74 0 0 3 1 1.44 0
87 12 19 26 03 21 73 05 19 73 07 08 73 1 0 2 0 2.25 1
88 11 16 18 03 28 73 04 27 73 04 01 74 0 0 3 0 0.68 0
89 03 19 22 04 05 73 08 21 73 10 28 73 1 0 4 1 1.33 1
90 03 25 21 04 06 73 09 12 73 10 08 73 1 1 3 1 0.82 0
91 09 08 25 04 13 73 03 18 74 1 0
92 05 03 28 04 27 73 03 02 74 04 01 74 0 0 1 0 0.16 0
93 10 10 25 07 11 73 08 07 73 04 01 74 0 0 2 0 0.33 0
94 11 11 29 09 14 73 09 17 73 02 25 74 1 1 3 0 1.20 1
95 06 11 33 09 22 73 09 23 73 10 07 73 1 0 y
96 02 09 47 10 04 73 10 16 73 04 01 74 0 0 2 0 0.46 0
97 04 11 50 11 22 73 12 12 73 04 01 74 0 0 3 1 1.78 0
98 04 28 45 12 14 73 03 19 74 04 01 74 0 0 4 1 0.77 0
99 02 24 24 12 25 73 01 14 74 1 0

100 01 31 39 02 22 74 03 31 74 04 01 74 0 1 3 0 0.67 0
101 08 25 24 03 02 74 04 01 74 0 0
102 10 30 33 03 22 74 04 01 74 0 0
103 05 20 28 09 13 67 09 18 67 1 0
;

Crowley and Hu(1977) have presented a number of analyses to assess the effects of
various explanatory variables on the survival of patients. This example fits two of the
models that they have considered.

The first model consists of two explanatory variables—the transplant status and the
age at acceptance. The transplant status (XStatus) is a time-dependent variable de-
fined by the programming statements between the MODEL statement and the RUN
statement. TheXStatus variable takes the value 1 or 0 at timet (measured from
the date of acceptance), depending on whether or not the patient has received a trans-
plant at that time. Note that the value ofXStatus changes for subjects in each risk set
(subjects still alive just before each distinct event time); therefore, the variable cannot
be created in the DATA step. The variableAcc–Age, which is not time-dependent,
accounts for the possibility that pretransplant risks vary with age.

proc phreg data= Heart;
model Time*Status(0)= XStatus Acc_Age;
if (WaitTime = . or Time < WaitTime) then XStatus=0.;
else XStatus= 1.0;

run;

Results of this analysis are shown inOutput 54.4.1. Transplantation appears to be
associated with a slight decrease in risk, although the effect is not significant (p =
0.8432). The age at acceptance as a pretransplant risk factor adds significantly to the
model (p = 0.0294). The risk increases significantly with age at acceptance.
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Output 54.4.1. Heart Transplant Study Analysis I
The PHREG Procedure

Model Information

Data Set WORK.HEART
Dependent Variable Time
Censoring Variable Status Dead=1 Alive=0
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored

103 75 28 27.18

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 596.649 591.312
AIC 596.649 595.312
SBC 596.649 599.947

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.3370 2 0.0694
Score 4.7900 2 0.0912
Wald 4.7812 2 0.0916

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

XStatus 1 -0.06046 0.30572 0.0391 0.8432 0.941
Acc_Age 1 0.03147 0.01445 4.7443 0.0294 1.032
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The second model consists of three explanatory variables—the transplant status, the
transplant age, and the mismatch score. Four transplant recipients who were not
typed have noMismatch values; they are excluded from the analysis by the use of
a WHERE clause. The transplant age (XAge) and the mismatch score (XScore) are
also time-dependent and are defined in a fashion similar to that ofXStatus. While
the patient is waiting for a transplant,XAge andXScore have a value of 0. After the
patient has migrated to the recipient population,XAge takes on the value ofXpl–Age
(transplant age for the recipient), andXScore takes on the value ofMismatch (a
measure of the degree of dissimilarity between donor and recipient).

proc phreg data= Heart;
model Time*Status(0)= XStatus XAge XScore;
where NotTyped ^= ’y’;
if (WaitTime = . or Time < WaitTime) then do;

XStatus=0.;
XAge=0.;
XScore= 0.;

end;
else do;

XStatus= 1.0;
XAge= Xpl_Age;
XScore= Mismatch;

end;
run;

Results of the analysis are shown inOutput 54.4.2. Note that only 99 patients are
included in this analysis, instead of 103 patients as in the previous analysis, since
four transplant recipients who were not typed are excluded. The variableXAge is
statistically significant (p = 0.0146) with a hazards ratio exceeding 1. Therefore,
patients who had a transplant at younger ages lived longer than those who received
a transplant later in their lives. The variableXScore has only minimal effect on the
survival (p = 0.1129).
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Output 54.4.2. Heart Transplant Study Analysis II
The PHREG Procedure

Model Information

Data Set WORK.HEART
Dependent Variable Time
Censoring Variable Status Dead=1 Alive=0
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored

99 71 28 28.28

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 561.646 551.911
AIC 561.646 557.911
SBC 561.646 564.699

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.7350 3 0.0210
Score 9.0127 3 0.0291
Wald 9.0156 3 0.0291

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

XStatus 1 -3.17799 1.18612 7.1787 0.0074 0.042
XAge 1 0.05517 0.02259 5.9649 0.0146 1.057
XScore 1 0.44424 0.28026 2.5125 0.1129 1.559

Example 54.5. Time-Dependent Repeated Measurements of a
Covariate

Repeated determinations may be made during the course of a study of variables
thought to be related to survival. Consider an experiment to study the dosing ef-
fect of a tumor-promoting agent. Forty-five rodents initially exposed to a carcinogen
were randomly assigned to three dose groups. After the first death of an animal,
the rodents were examined every week for the number of papillomas. Investigators
were interested in determining the effects of dose on the carcinoma incidence after
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adjusting for the number of papillomas.

The input data set TUMOR consists of the following 19 variables:

• ID (subject identification)

• Time (survival time of the subject)

• Dead (censoring status where 1=dead and 0=censored)

• Dose (dose of the tumor-promoting agent)

• P1–P15 (number of papillomas at the 15 times that animals died. These 15
death times are weeks 27, 34, 37, 41, 43, 45, 46, 47, 49, 50, 51, 53, 65, 67, and
71. For instance, subject 1 died at week 47; it had no papilloma at week 27,
five papillomas at week 34, six at week 37, eight at week 41, and 10 at weeks
43, 45, 46, and 47. For an animal that died before week 71, the number of
papillomas is missing for those times beyond its death.)

The following SAS statements create the data set TUMOR:

data Tumor;
infile datalines missover;
input ID Time Dead Dose P1-P15;
label ID=’Subject ID’;
datalines;

1 47 1 1.0 0 5 6 8 10 10 10 10
2 71 1 1.0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
3 81 0 1.0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 65 1 1.0 0 0 0 1 1 1 1 1 1 1 1 1 1
7 71 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 69 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 67 1 1.0 0 0 1 1 2 2 2 2 3 3 3 3 3 3

10 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 37 1 1.0 9 9 9
12 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 77 0 1.0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
14 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 54 0 2.5 0 1 1 1 2 2 2 2 2 2 2 2
17 53 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0
18 38 0 2.5 5 13 14
19 54 0 2.5 2 6 6 6 6 6 6 6 6 6 6 6
20 51 1 2.5 15 15 15 16 16 17 17 17 17 17 17
21 47 1 2.5 13 20 20 20 20 20 20 20
22 27 1 2.5 22
23 41 1 2.5 6 13 13 13
24 49 1 2.5 0 3 3 3 3 3 3 3 3
25 53 0 2.5 0 0 1 1 1 1 1 1 1 1 1 1
26 50 1 2.5 0 0 2 3 4 6 6 6 6 6
27 37 1 2.5 3 15 15
28 49 1 2.5 2 3 3 3 3 4 4 4 4
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29 46 1 2.5 4 6 7 9 9 9 9
30 48 0 2.5 15 26 26 26 26 26 26 26
31 54 0 10.0 12 14 15 15 15 15 15 15 15 15 15 15
32 37 1 10.0 12 16 17
33 53 1 10.0 3 6 6 6 6 6 6 6 6 6 6 6
34 45 1 10.0 4 12 15 20 20 20
35 53 0 10.0 6 10 13 13 13 15 15 15 15 15 15 20
36 49 1 10.0 0 2 2 2 2 2 2 2 2
37 39 0 10.0 7 8 8
38 27 1 10.0 17
39 49 1 10.0 0 6 9 14 14 14 14 14 14
40 43 1 10.0 14 18 20 20 20
41 28 0 10.0 8
42 34 1 10.0 11 18
43 45 1 10.0 10 12 16 16 16 16
44 37 1 10.0 0 1 1
45 43 1 10.0 9 19 19 19 19
;

The number of papillomas (NPap) for each animal in the study was measured re-
peatedly over time. One way of handling time-dependent repeated measurements
in the PHREG procedure is to use programming statements to capture the appro-
priate covariate values of the subjects in each risk set. In this example,NPap is a
time-dependent explanatory variable with values that are calculated by means of the
programming statements shown in the following SAS statements:

proc phreg data=Tumor;
model Time*Dead(0)=Dose NPap;
array pp{*} P1-P14;
array tt{*} t1-t15;
t1 = 27;
t2 = 34;
t3 = 37;
t4 = 41;
t5 = 43;
t6 = 45;
t7 = 46;
t8 = 47;
t9 = 49;
t10= 50;
t11= 51;
t12= 53;
t13= 65;
t14= 67;
t15= 71;
if Time < tt[1] then NPap=0;
else if time >= tt[15] then NPap=P15;
else do i=1 to dim(pp);

if tt[i] <= Time < tt[i+1] then NPap= pp[i];
end;

run;
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At each death time, theNPap value of each subject in the risk set is recalculated to
reflect the actual number of papillomas at the given death time. For instance, subject
one in the data setTumor was in the risk sets at weeks 27 and 34; at week 27, the
animal had no papilloma, while at week 34, it had five papillomas. Results of the
analysis are shown inOutput 54.5.1.

Output 54.5.1. Cox Regression Analysis on the Survival of Rodents
The PHREG Procedure

Model Information

Data Set WORK.TUMOR
Dependent Variable Time
Censoring Variable Dead
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored

45 25 20 44.44

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 166.793 143.269
AIC 166.793 147.269
SBC 166.793 149.707

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 23.5243 2 <.0001
Score 28.0498 2 <.0001
Wald 21.1646 2 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Dose 1 0.06885 0.05620 1.5010 0.2205 1.071
NPap 1 0.11714 0.02998 15.2705 <.0001 1.124
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After the number of papillomas is adjusted for, the dose effect of the tumor-promoting
agent is not statistically significant.

Another way to handle time-dependent repeated measurements in the PHREG pro-
cedure is to use the counting process style of input. Multiple records are created
for each subject, one record for each distinct pattern of the time-dependent measure-
ments. Each record contains aT1 value and aT2 value representing the time inter-
val (T1,T2] during which the values of the explanatory variables remain unchanged.
Each record also contains the censoring status atT2.

One advantage of using the counting process formulation is that you can easily obtain
various residuals and influence statistics that are not available when programming
statements are used to compute the values of the time-dependent variables. On the
other hand, creating multiple records for the counting process formulation requires
extra effort in data manipulation.

Consider a counting process style of input data set namedTumor1. It contains mul-
tiple observations for each subject in the data setTumor. In addition to variablesID,
Time, Dead, andDose, four new variables are generated:

• T1 (left endpoint of the risk interval)

• T2 (right endpoint of the risk interval)

• NPap (number of papillomas in the time interval (T1,T2])

• Status (censoring status atT2)

For example, five observations are generated for the rodent that died at week 47 and
that had no papilloma at week 27, five papillomas at week 34, six at week 37, eight
at week 41, and 10 at weeks 43, 45, 46, and 47. The values ofT1, T2, NPap, and
Status for these five observations are (0,27,0,0), (27,34,5,0), (34,37,6,0), (37,41,8,0),
and (41,47,10,1). Note that the variablesID, Time, andDead are not needed for the
estimation of the regression parameters, but they are useful for plotting the residuals.
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The following SAS statements create the data setTumor1:

data Tumor1(keep=ID Time Dead Dose T1 T2 NPap Status);
array pp{*} P1-P14;
array qq{*} P2-P15;
array tt{1:15} _temporary_

(27 34 37 41 43 45 46 47 49 50 51 53 65 67 71);
set Tumor;
T1 = 0;
T2 = 0;
Status = 0;
if ( Time = tt[1] ) then do;

T2 = tt[1];
NPap = p1;
Status = Dead;
output;

end;
else do _i_=1 to dim(pp);

if ( tt[_i_] = Time ) then do;
T2= Time;
NPap = pp[_i_] ;
Status = Dead;
output;

end;
else if (tt[_i_] < Time ) then do;

if (pp[_i_] ^= qq[_i_] ) then do;
if qq[_i_] = . then T2= Time;
else T2= tt[_i_] ;
NPap= pp[_i_] ;
Status= 0;
output;
T1 = T2;

end;
end;

end;
if ( Time >= tt[15] ) then do;

T2 = Time;
NPap = P15;
Status = Dead;
output;

end;
run;
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In the following SAS statements, the counting process MODEL specification is used.
The DFBETA statistics are output to a SAS data set namedOut1. Note thatOut1
contains multiple observations for each subject, that is, one observation for each risk
interval (T1,T2].

proc phreg data=Tumor1;
model (T1,T2)*Status(0)=Dose NPap;
output out=Out1 resmart=mart dfbeta=db1-db2/order=data;
id ID Time Dead;

run;

The output from PROC PHREG (not shown) is identical toOutput 54.5.1except for
the “Summary of the Number of Event and Censored Values” table. The number
of event observations remains unchanged between the two specifications of PROC
PHREG, but the number of censored observations differs due to the splitting of each
subject’s data into multiple observations for the counting process style of input.

Next, the MEANS procedure sums up the component statistics for each subject and
outputs the results to a SAS data set namedOut2.

proc means data=Out1 noprint;
by ID Time Dead;
var mart db1-db2;
output out=Out2 sum=mart db_dose db_npap;

run;

Finally, DFBETA statistics are plotted against subject ID for easy identification of
influential points.

symbol1 v=dot h=0.8 c=blue;
axis1 label = (angle=-90 rotate=90 ’DFBETA for Dose’)

minor = none
order = (-.04 to .04 by .01);

axis2 label = (angle=-90 rotate=90 ’DFBETA for NPap’)
minor = none
order = (-.030 to .020 by .005);

title ’Plot of DFBETA’;
proc gplot data=Out2;

plot db_dose * ID / frame hminor=0 vaxis=axis1 cframe=ligr;
plot db_npap * ID / frame hminor=0 vaxis=axis2 cframe=ligr;

run;
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The plots of the DFBETA statistics are shown inOutput 54.5.2andOutput 54.5.3.
Subject 30 appears to have a large influence on both theDose and NPap coeffi-
cients. Subjects 31 and 35 have considerable influences on the DOSE coefficient,
while subjects 22 and 44 have rather large influences on theNPap coefficient.

Output 54.5.2. Plot of DFBETA Statistic for DOSE versus Subject Number

Output 54.5.3. Plot of DFBETA Statistic for NPAP versus Subject Number
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Example 54.6. Survivor Function Estimates for Specific
Covariate Values

You may want to use your regression analysis results to generate predicted sur-
vival curves for subjects not in the study. This example illustrates how to use the
BASELINE statement to obtain the survivor function for a new set of explanatory
variable values. The various sets of explanatory variable values must be contained in
a SAS data set.

In previous examples,LogBUN andHGB were identified as the most important prog-
nostic factors for the myeloma data. Suppose you are interested in obtaining the sur-
vivor function estimates for the following two realizations ofLogBUN andHGB,
which are saved in a SAS data set calledInrisks.

data Inrisks;
input LogBUN HGB;
datalines;

1.00 10.0
1.80 12.0
;

In the BASELINE statement, you specify the name of the data set
(COVARIATE=Inrisk) that contains the various sets of explanatory variable
values and the name of the output SAS data set (OUT=Pred1) that contains the
survivor function estimates. The option SURVIVAL=S puts the variableS containing
the survivor function estimates in the output data setPred1. Similarly, the options
LOWER=S–lower and UPPER=S–upper put the variablesS–lower andS–upper
in Pred1; these variables contain, respectively, the lower and upper 95% confidence
limits for the survival. The NOPRINT option in the PROC PHREG statement
suppresses the displayed output (the analysis results are shown inExample 54.1).
The PRINT procedure displays the observations in the data setPred1.

proc phreg data=Myeloma noprint;
model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Inrisks out=Pred1 survival=S

lower=S_lower upper=S_upper;
run;
proc print data=Pred1;
run;
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The first 32 observations of the data setPred1 are shown inOutput 54.6.1. They
represent the survivor function for the realizationLogBUN=1.00 andHGB=10.0.
The first observation has survival time 0 and survivor function estimate 1.0. Each of
the remaining 31 observations represents each unique event time in the input data set
Myeloma. These observations are presented in ascending order of the event times.
Likewise, the next 32 observations of the data setPred1 (starting from the 33rd
observation) represent the survivor function for the realizationLogBUN=1.80 and
HGB=12.0.

Output 54.6.1. Survivor Function Estimates for LogBUN=1.0 and HGB=10.0
Log

Obs BUN HGB Time S S_lower S_upper

1 1 10 0.00 1.00000 . .
2 1 10 1.25 0.98622 0.96600 1.00000
3 1 10 2.00 0.96438 0.92775 1.00000
4 1 10 3.00 0.95687 0.91513 1.00000
5 1 10 5.00 0.93966 0.88745 0.99494
6 1 10 6.00 0.90211 0.83101 0.97929
7 1 10 7.00 0.87192 0.78793 0.96487
8 1 10 9.00 0.86073 0.77215 0.95947
9 1 10 11.00 0.80252 0.69458 0.92725

10 1 10 13.00 0.78969 0.67751 0.92044
11 1 10 14.00 0.77554 0.65896 0.91274
12 1 10 15.00 0.76116 0.64048 0.90458
13 1 10 16.00 0.73142 0.60343 0.88654
14 1 10 17.00 0.69988 0.56494 0.86706
15 1 10 18.00 0.68345 0.54525 0.85667
16 1 10 19.00 0.64951 0.50561 0.83438
17 1 10 24.00 0.63105 0.48401 0.82278
18 1 10 25.00 0.61267 0.46287 0.81096
19 1 10 26.00 0.59428 0.44209 0.79887
20 1 10 32.00 0.57437 0.41972 0.78601
21 1 10 35.00 0.55400 0.39725 0.77258
22 1 10 37.00 0.53276 0.37421 0.75849
23 1 10 41.00 0.48783 0.32796 0.72564
24 1 10 51.00 0.45964 0.29978 0.70476
25 1 10 52.00 0.42933 0.27013 0.68234
26 1 10 54.00 0.39588 0.23828 0.65773
27 1 10 58.00 0.35744 0.20219 0.63191
28 1 10 66.00 0.31314 0.16511 0.59386
29 1 10 67.00 0.26060 0.12215 0.55597
30 1 10 88.00 0.19554 0.07520 0.50849
31 1 10 89.00 0.12708 0.03552 0.45460
32 1 10 92.00 0.00000 . .

By default, the procedure also outputs the set of survivor function estimates for
LogBUN=1.3929 andHGB=10.2015, which are the sample means ofLogBUN and
HGB for the input data inMyeloma. (Note that in a stratified analysis, the sample
means are calculated within each stratum.) The estimated survivor function esti-
mates for these sample means are the last 32 observations in the data setPred1.
You can suppress this set of survival estimates by using the NOMEAN option in the
BASELINE statement.
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proc phreg data=Myeloma noprint;
model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Inrisks out=Pred2 survival=S

lower=S_lower upper=S_upper / nomean;
run;

The data setPred2 consists of the first 64 observations ofPred1. If you are inter-
ested only in the survivor function estimates for the sample means of the explanatory
variables, you can omit the COVARIATES= option in the BASELINE statement.

proc phreg data=Myeloma noprint;
model Time*VStatus(0)=LogBUN HGB;
baseline out=Pred3 survival=S lower=S_lower upper=S_upper;

run;

The data setPred3 contains the last 32 observations ofPred1.

The following SAS statements are used to plot the survival curves inPred1. For con-
venience, the variablePattern is added to the data setPred1 to identify the various
patterns of explanatory variables.

data Pred1;
set Pred1;
if LogBUN= 1.0 and HGB=10.0 then Pattern=1;
else if LogBUN= 1.8 and HGB=12.0 then Pattern=2;
else Pattern=3;

legend1 label=none shape=symbol(3, .8)
value=(f=swiss h=.8 ’LogBUN=1.00 HGB=10.0’

’LogBUN=1.80 HGB=12.0’ ’LogBUN=1.39 HGB=10.2’);
axis1 label=(h=1 f=swiss a=90) minor=(n=1);
axis2 label=(h=1 f=swiss ’Survival Time in Months’) minor=(n=4);

proc gplot data=Pred1;
plot S*Time=Pattern / legend=legend1 vaxis=axis1

haxis=axis2 cframe=ligr;
symbol1 interpol=stepLJ h=1 v=square c=blue;
symbol2 interpol=stepLJ h=1 v=diamond c=yellow;
symbol3 interpol=stepLJ h=1 v=circle c=red;
note f=swiss h=1.5 j=c ’Myeloma Study’;
footnote h=.8 f=duplex

’LogBUN=1.39 and HGB=10.2 correspond to the sample means’;
run;
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The survivor function estimates for these three patterns of explanatory variables are
displayed inOutput 54.6.2. Note that these survivor functions are portrayed as right-
continuous functions.

Output 54.6.2. Survival Curves for Specific Covariate Patterns

Example 54.7. Analysis of Residuals

Residuals are used to investigate the lack of fit of a model to a given subject. You can
obtain martingale and deviance residuals for the Cox proportional hazards regression
analysis by requesting that they be included in the OUTPUT data set. You can plot
these statistics and look for outliers.

Consider the stepwise regression analysis performed inExample 54.1. The final
model included variablesLogBUN and HGB. You can generate residual statistics
for this analysis by refitting the model containing those variables and including an
OUTPUT statement. The keywords XBETA, RESMART, and RESDEV identify new
variables that contain the linear predictor scoresz′jβ̂, martingale residuals, and de-
viance residuals. These variables arexb, mart, anddev, respectively.
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proc phreg data=Myeloma noprint;
model Time*Vstatus(0)=LogBUN HGB;
output out=Outp xbeta=xb resmart=mart resdev=dev;

run;

The following statements plot the residuals against the linear predictor scores:

proc gplot data=Outp;
plot (mart dev)*xb / vref=0 cframe=ligr;
symbol1 value=circle c=blue;

run;

The resulting plots are shown inOutput 54.7.1andOutput 54.7.2. The martingale
residuals are skewed because of the single event setting of the Cox model. The mar-
tingale residual plot shows an isolation point (with linear predictor score 1.09 and
martingale residual−3.37), but this observation is no longer distinguishable in the
deviance residual plot. In conclusion, there is no indication of a lack of fit of the
model to individual observations.

Output 54.7.1. Martingale Residual Plot
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Output 54.7.2. Deviance Residual Plot

Example 54.8. Analysis of Recurrent Events Data

Recurrent events data consists of times to a number of repeated events for each sam-
ple unit; for example, times of recurrent episodes of a disease in patients. Various
ways for analyzing recurrent events data are described in the section“Analysis of
Multivariate Failure Time Data”on page 3247. The bladder cancer data listed inWei,
Lin, and Weissfeld(1989) is used here to illustrate these methods.

The data consist of 86 patients with superficial bladder tumors, which were removed
when the patients entered the study. Of these patients, 48 were randomized into the
placebo group, and 38 were randomized into the thiotepa group. Many patients had
multiple recurrences of tumors during the study, and new tumors were removed at
each visit. The data set contains the first four recurrences of the tumor for each
patient, and each recurrence time was measured from the patient’s entry time into the
study.

The data consist of the following eight variables:

• Trt, treatment group (1=placebo and 2=thiotepa)

• Time, follow-up time

• Number, number of initial tumors

• Size, initial tumor size

• T1, T2, T3, andT4, times of the four potential recurrences of the bladder
tumor. A patient with only two recurrences has missing values inT3 andT4.
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In the data setBladder, four observations are created for each patient, one for each
of the four potential tumor recurrences. In addition to values ofTrt, Number, and
Size for the patient, each observation contains the following variables:

• ID, patient’s identification (which is the sequence number of the subject)

• Visit, visit number (with valuek for thekth potential tumor recurrence)

• TStart, time of the (k-1)th recurrence forVisit=k, or the entry time 0 if
VISIT=1, or the follow-up time if the (k-1)th recurrence does not occur

• TStop, time of thekth recurrence ifVisit=k or follow-up time if thekth recur-
rence does not occur

• Status, event status ofTStop (1=recurrence and 0=censored)

For instance, a patient with only one recurrence time at month 6, who was followed
until month 10, will have values forVisit, TStart, TStop, andStatus of (1,0,6,1),
(2,6,10,0), (3,10,10,0), and (4,10,10,0). The last two observations are redundant for
the intensity model and the proportional means model, but they are important for the
analysis of the marginal Cox models. If the follow-up time is beyond the time of
the fourth turmor recurrence, it is tempting to create a fifth observation with the time
of the fourth tumor recurrence as theTStart value, the follow-up time as theTStop
value, and aStatus value of 0. However,Therneau and Grambsch(2000), Section
8.5) have warned against incorporating such observations into the analysis.

The following SAS statements create the data setBladder:

data Bladder;
keep ID TStart TStop Status Trt Number Size Visit;
retain ID TStart 0;
array tt T1-T4;
infile datalines missover;
input Trt Time Number Size T1-T4;
ID + 1;
TStart=0;
do over tt;

Visit=_i_;
if tt = . then do;

TStop=Time;
Status=0;

end;
else do;

TStop=tt;
Status=1;

end;
output;
TStart=TStop;

end;
if (TStart < Time) then delete;
datalines;

1 0 1 1
1 1 1 3



3306 � Chapter 54. The PHREG Procedure

1 4 2 1
1 7 1 1
1 10 5 1
1 10 4 1 6
1 14 1 1
1 18 1 1
1 18 1 3 5
1 18 1 1 12 16
1 23 3 3
1 23 1 3 10 15
1 23 1 1 3 16 23
1 23 3 1 3 9 21
1 24 2 3 7 10 16 24
1 25 1 1 3 15 25
1 26 1 2
1 26 8 1 1
1 26 1 4 2 26
1 28 1 2 25
1 29 1 4
1 29 1 2
1 29 4 1
1 30 1 6 28 30
1 30 1 5 2 17 22
1 30 2 1 3 6 8 12
1 31 1 3 12 15 24
1 32 1 2
1 34 2 1
1 36 2 1
1 36 3 1 29
1 37 1 2
1 40 4 1 9 17 22 24
1 40 5 1 16 19 23 29
1 41 1 2
1 43 1 1 3
1 43 2 6 6
1 44 2 1 3 6 9
1 45 1 1 9 11 20 26
1 48 1 1 18
1 49 1 3
1 51 3 1 35
1 53 1 7 17
1 53 3 1 3 15 46 51
1 59 1 1
1 61 3 2 2 15 24 30
1 64 1 3 5 14 19 27
1 64 2 3 2 8 12 13
2 1 1 3
2 1 1 1
2 5 8 1 5
2 9 1 2
2 10 1 1
2 13 1 1
2 14 2 6 3
2 17 5 3 1 3 5 7
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2 18 5 1
2 18 1 3 17
2 19 5 1 2
2 21 1 1 17 19
2 22 1 1
2 25 1 3
2 25 1 5
2 25 1 1
2 26 1 1 6 12 13
2 27 1 1 6
2 29 2 1 2
2 36 8 3 26 35
2 38 1 1
2 39 1 1 22 23 27 32
2 39 6 1 4 16 23 27
2 40 3 1 24 26 29 40
2 41 3 2
2 41 1 1
2 43 1 1 1 27
2 44 1 1
2 44 6 1 2 20 23 27
2 45 1 2
2 46 1 4 2
2 46 1 4
2 49 3 3
2 50 1 1
2 50 4 1 4 24 47
2 54 3 4
2 54 2 1 38
2 59 1 3
;
run;

First, consider fitting the intensity model (Andersen and Gill1982) and the pro-
portional means model (Lin et al. 2000). The counting process style of input is
used in the PROC PHREG specification. For the proportional means model, infer-
ence is based on the robust sandwich covariance estimate, which is requested by the
COVB(AGGREGATE) option in the PROC PHREG statement. The COVM option
is specified for the analysis of the intensity model to use the model-based covariance
estimate. Note that some of the observations in the data setBladder have a degen-
erated interval of risk. The presence of these observations does not affect the results
of the analysis since none of these observations are included in any of the risk sets.
However, the procedure will run more efficiently without these observations; conse-
quently, in the following SAS statements, the WHERE clause is used to eliminate
these redundant observations.

title ’Intensity Model and Proportional Means Model’;
proc phreg data=Bladder covm covs(aggregate);

model (TStart, TStop) * Status(0) = Trt Number Size;
id id;
where TStart < TStop;

run;
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Results of fitting the intensity model and the proportional means model are shown
in Output 54.8.1andOutput 54.8.2, respectively. The robust sandwich standard er-
ror estimate forTrt is larger than its model-based counterpart, rendering the effect
of thiotepa less significant in the proportional means model (p=0.0747) than in the
intensity model (p=0.0215).

Output 54.8.1. Analysis of the Intensity Model

The PHREG Procedure

Analysis of Maximum Likelihood Estimates
with Model-Based Variance Estimate

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Trt 1 -0.45979 0.19996 5.2873 0.0215 0.631
Number 1 0.17165 0.04733 13.1541 0.0003 1.187
Size 1 -0.04256 0.06903 0.3801 0.5375 0.958

Output 54.8.2. Analysis of the Proportional Means Model

Analysis of Maximum Likelihood Estimates
with Sandwich Variance Estimate

Parameter Standard StdErr Hazard
Variable DF Estimate Error Ratio Chi-Square Pr > ChiSq Ratio

Trt 1 -0.45979 0.25801 1.290 3.1757 0.0747 0.631
Number 1 0.17165 0.06131 1.296 7.8373 0.0051 1.187
Size 1 -0.04256 0.07555 1.094 0.3174 0.5732 0.958

Next, consider the conditional models of PWP (Prentice, Williams, and Peterson
1981). In the PWP models, the risk set for the (k+1)th recurrence is restricted to
those patients who have experienced the firstk recurrences. For example, a patient
who experienced only one recurrence is an event observation for the first recurrence;
this patient is a censored observation for the second recurrence and should not be
included in the risk set for the third or fourth recurrence. The following DATA step
eliminates those observations that should not be in the risk sets, forming a new in-
put data set (namedBladder2) for fitting the PWP models. The variableGaptime,
represented the gap times between successive recurrences, is also created.
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data Bladder2(drop=LastStatus);
retain LastStatus;
set Bladder;
by ID;
if first.id then LastStatus=1;
if (Status=0 and LastStatus=0) then delete;
LastStatus=Status;
Gaptime=Tstop-Tstart;

run;

The following statements fit the PWP total time model. VariablesTrt1, Trt2, Trt3, and
Trt4 are visit-specific variables forTrt; variablesNumber1, Number2, Numvber3,
andNumber4 are visit-specific variables forNumber; and variablesSize1, Size2,
Size3, andSize4 are visit-specific variables forSize.

title ’PWP Total Time Model with Noncommon Effects’;
proc phreg data=Bladder2;

model (TStart,Tstop) * Status(0) = Trt1-Trt4 Number1-Number4
Size1-Size4;

Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;

run;

Results of the analysis of the PWP total time model are shown inOutput 54.8.3.
Note that patients who were at risk for a second recurrence are those who had a first
recurrence. There is no significant treatment effect on the total time in any of the four
tumor recurrences.
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Output 54.8.3. Analysis of the PWP Total Time Model with Noncommon Effects

The PHREG Procedure

Summary of the Number of Event and Censored Values

Percent
Stratum Visit Total Event Censored Censored

1 1 85 47 38 44.71
2 2 46 29 17 36.96
3 3 27 22 5 18.52
4 4 20 14 6 30.00

-------------------------------------------------------------------
Total 178 112 66 37.08

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Trt1 1 -0.51757 0.31576 2.6868 0.1012 0.596
Trt2 1 -0.45967 0.40642 1.2792 0.2581 0.631
Trt3 1 0.11700 0.67183 0.0303 0.8617 1.124
Trt4 1 -0.04059 0.79251 0.0026 0.9592 0.960
Number1 1 0.23605 0.07607 9.6287 0.0019 1.266
Number2 1 -0.02044 0.09052 0.0510 0.8213 0.980
Number3 1 0.01219 0.18208 0.0045 0.9466 1.012
Number4 1 0.18915 0.24443 0.5989 0.4390 1.208
Size1 1 0.06790 0.10125 0.4498 0.5024 1.070
Size2 1 -0.15425 0.12300 1.5728 0.2098 0.857
Size3 1 0.14891 0.26299 0.3206 0.5713 1.161
Size4 1 0.0000732 0.34297 0.0000 0.9998 1.000

The following statements fit the PWP gap-time model.

title ’PWP Gap Time Model with Noncommon Effects’;
proc phreg data=Bladder2;

model Gaptime * Status(0) = Trt1-Trt4 Number1-Number4
Size1-Size4;

Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;

run;

Results of the analysis of the PWP gap-time model are shown inOutput 54.8.4. Note
that the regression coefficients for the first tumor recurrence are the same as those of
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the total time model, since the total time and and the gap time are the same for the
first recurrence. There is no significant treatment effect on the gap times for any of
the four tumor recurrences.

Output 54.8.4. Analysis of the PWP Gap Time Model with Noncommon Effects

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Trt1 1 -0.51757 0.31576 2.6868 0.1012 0.596
Trt2 1 -0.25911 0.40511 0.4091 0.5224 0.772
Trt3 1 0.22105 0.54909 0.1621 0.6873 1.247
Trt4 1 -0.19498 0.64184 0.0923 0.7613 0.823
Number1 1 0.23605 0.07607 9.6287 0.0019 1.266
Number2 1 -0.00571 0.09667 0.0035 0.9529 0.994
Number3 1 0.12935 0.15970 0.6561 0.4180 1.138
Number4 1 0.42079 0.19816 4.5091 0.0337 1.523
Size1 1 0.06790 0.10125 0.4498 0.5024 1.070
Size2 1 -0.11636 0.11924 0.9524 0.3291 0.890
Size3 1 0.24995 0.23113 1.1695 0.2795 1.284
Size4 1 0.03557 0.29043 0.0150 0.9025 1.036

You can fit the PWP total time model with common effects with the following SAS
statements. However, the analysis is not shown here.

title2 ’PWP Total Time Model with Common Effects’;
proc phreg data=Bladder2;

model (tstart,tstop) * status(0) = Trt Number Size;
strata Visit;

run;

You can fit the PWP gap time model with common effects with the following state-
ments. Again, the analysis is not shown here.

title2 ’PWP Gap Time Model with Common Effects’;
proc phreg data=Bladder2;

model Gaptime * Status(0) = Trt Number Vize;
strata Visit;

run;

Recurrent events data are a special case of multiple events data in which the recur-
rence times are regarded as multivariate failure times and the marginal approach of
WLW (Wei, Lin, and Weissfeld1989) can be used. WLW fits a Cox model to each
of the component times and makes statistical inference of the regression parameters
based on a robust sandwich covariance matrix estimate. No specific correlation struc-
ture is imposed on the multivariate failure times. For thekth marginal model, letβk

denote the row vector of regression parameters, letβ̂k denote the maximum likeli-
hood estimate ofβk, let Âk denote the covariance matrix obtained by inverting the
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observed information matrix, and letRk denote the matrix of score residuals. WLW
showed that the joint distribution of(β̂1, . . . , β̂4)′ can be approximated by a mul-
tivariate normal distribution with mean vector(β1, . . . ,β4)′ and robust covariance
matrix


V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


with the submatrixVij given by

Vij = Âi(R′
iRj)Âj

In this example, there are four marginal proportional hazards models, one for each
potential recurrence time. Instead of fitting one model at a time, you can fit all four
marginal models in one analysis by using the STRATA statement and model-specific
covariates. Using theVisit as the STRATA variable on the input data setBladder,
PROC PHREG simultaneously fits all four marginal models, one for eachVisit value.
The COVS(AGGREGATE) option is specified to compute the robust sandwich vari-
ance estimate by summing up the score residuals for each distinct pattern ofID value.
The TEST statementTREATMENT is used to perform the global test of no treatment
effect for each tumor recurrence, the AVERAGE option is specified to estimate the
parameter for the common treatment effect, and the E option displays the optimal
weights for the common treatment effect.

proc phreg data=Bladder covs(aggregate);
model TStop*Status(0)=Trt1-Trt4 Number1-Number4 Size1-Size4;
Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;
id ID;
TREATMENT: test trt1,trt2,trt3,trt4/average e;
run;
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Out of the 86 patients, 47 patients have only one tumor recurrence, 29 patients have
two recurrences, 22 patients have three recurrences, and 14 patients have four re-
currences (Output 54.8.5). Parameter estimates for the four marginal models are
shown inOutput 54.8.6. The 4 DF Wald test (Output 54.8.7) indicates a lack of ev-
idence of a treatment effect in any of the four recurrences (p=0.4105). The optimal
weights for estimating the parameter of the common treatment effect are 0.67684,
0.25723, -0.07547, and 0.14140 forTrt1, Trt2, Trt3, andTrt4, respectively, which
gives a parameter estimate of -0.5489 with a standard error estimate of 0.2853. A
more sensitive test for a treatment effect is the 1 DF test based on this common pa-
rameter; however, there is still insufficient evidence for such effect at the 0.05 level
(p=0.0543).

Output 54.8.5. Summary of Bladder Tumor Recurrences in 86 Patients

The PHREG Procedure

Summary of the Number of Event and Censored Values

Percent
Stratum Visit Total Event Censored Censored

1 1 86 47 39 45.35
2 2 86 29 57 66.28
3 3 86 22 64 74.42
4 4 86 14 72 83.72

-------------------------------------------------------------------
Total 344 112 232 67.44

Output 54.8.6. Analysis of Marginal Cox Models

Analysis of Maximum Likelihood Estimates

Parameter Standard StdErr Hazard
Variable DF Estimate Error Ratio Chi-Square Pr > ChiSq Ratio

Trt1 1 -0.51762 0.30750 0.974 2.8336 0.0923 0.596
Trt2 1 -0.61944 0.36391 0.926 2.8975 0.0887 0.538
Trt3 1 -0.69988 0.41516 0.903 2.8419 0.0918 0.497
Trt4 1 -0.65079 0.48971 0.848 1.7661 0.1839 0.522
Number1 1 0.23599 0.07208 0.947 10.7204 0.0011 1.266
Number2 1 0.13756 0.08690 0.946 2.5059 0.1134 1.147
Number3 1 0.16984 0.10356 0.984 2.6896 0.1010 1.185
Number4 1 0.32880 0.11382 0.909 8.3453 0.0039 1.389
Size1 1 0.06789 0.08529 0.842 0.6336 0.4260 1.070
Size2 1 -0.07612 0.11812 0.881 0.4153 0.5193 0.927
Size3 1 -0.21131 0.17198 0.943 1.5097 0.2192 0.810
Size4 1 -0.20317 0.19106 0.830 1.1308 0.2876 0.816
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Output 54.8.7. Tests of Treatment Effects

Linear Coefficients for Test TREATMENT

Average
Parameter Row1 Row2 Row3 Row4 Effect

Trt1 1 0 0 0 0.67684
Trt2 0 1 0 0 0.25723
Trt3 0 0 1 0 -0.07547
Trt4 0 0 0 1 0.14140
Number1 0 0 0 0 0.00000
Number2 0 0 0 0 0.00000
Number3 0 0 0 0 0.00000
Number4 0 0 0 0 0.00000
Size1 0 0 0 0 0.00000
Size2 0 0 0 0 0.00000
Size3 0 0 0 0 0.00000
Size4 0 0 0 0 0.00000
CONSTANT 0 0 0 0 0.00000

Test TREATMENT Results

Wald
Chi-Square DF Pr > ChiSq

3.9668 4 0.4105

Average Effect for Test TREATMENT

Standard
Estimate Error z-Score Pr > |z|

-0.5489 0.2853 -1.9240 0.0543

Example 54.9. Analysis of Clustered Data

When experimental units are naturally or artificially clustered, failure times of experi-
mental units within a cluster are correlated.Lee, Wei, and Amato(1992) estimate the
regression parameters in the Cox model by the maximum partial likelihood estimates
under an independent working assumption and use a robust sandwich covariance ma-
trix estimate to account for the intracluster dependence. A subset of data from the
Diabetic Retinopathy Study (DRS) is used to illustrate the methodology as inLin
(1994).

The data consist of 197 diabetic patients who have a high risk of experiencing blind-
ness in both eyes as defined by DRS criteria. One eye of each patient is treated with
laser photocoagulation. The hypothesis of interest is whether the laser treatment de-
lays the occurrence of blindness. Since juvenile and adult diabetes have very different
courses, it is also desirable to examine how the age of onset of diabetes may affect
the time of blindness. Since there are no biological differences between the left eye
and the right eye, it is natural to assume a common baseline hazard function for the
failure times of the left and the right eyes.
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Each patient is a cluster that contributes two observations to the input data set, one
for each eye. The following variables are in the input data setBlind:

• ID, patient’s identification

• Time, failure time

• Status, event indicator (0=censored and 1=uncensored)

• Treatment, treatment received (1=laser photocoagulation and 0=otherwise)

• DiabeticType, type of diabetes (0=juvenile onset with age of onset at 20 or
under, and 1= adult onset with age of onset over 20)

data Blind;
input ID Time Status DiabeticType Treatment @@;
datalines;
5 46.23 0 1 1 5 46.23 0 1 0 14 42.50 0 0 1 14 31.30 1 0 0

16 42.27 0 0 1 16 42.27 0 0 0 25 20.60 0 0 1 25 20.60 0 0 0
29 38.77 0 0 1 29 0.30 1 0 0 46 65.23 0 0 1 46 54.27 1 0 0
49 63.50 0 0 1 49 10.80 1 0 0 56 23.17 0 0 1 56 23.17 0 0 0
61 1.47 0 0 1 61 1.47 0 0 0 71 58.07 0 1 1 71 13.83 1 1 0

100 46.43 1 1 1 100 48.53 0 1 0 112 44.40 0 1 1 112 7.90 1 1 0
120 39.57 0 1 1 120 39.57 0 1 0 127 30.83 1 1 1 127 38.57 1 1 0
133 66.27 0 1 1 133 14.10 1 1 0 150 20.17 1 0 1 150 6.90 1 0 0
167 58.43 0 1 1 167 41.40 1 1 0 176 58.20 0 0 1 176 58.20 0 0 0
185 57.43 0 1 1 185 57.43 0 1 0 190 56.03 0 0 1 190 56.03 0 0 0
202 67.53 0 0 1 202 67.53 0 0 0 214 61.40 0 1 1 214 0.60 1 1 0
220 10.27 1 0 1 220 1.63 1 0 0 243 66.20 0 0 1 243 66.20 0 0 0
255 5.67 1 0 1 255 13.83 1 0 0 264 58.83 0 0 1 264 29.97 1 0 0
266 60.27 0 1 1 266 26.37 1 1 0 284 5.77 1 1 1 284 1.33 1 1 0
295 5.90 1 0 1 295 35.53 1 0 0 300 25.63 1 1 1 300 21.90 1 1 0
302 33.90 1 0 1 302 14.80 1 0 0 315 1.73 1 0 1 315 6.20 1 0 0
324 46.90 0 1 1 324 22.00 1 1 0 328 31.13 0 0 1 328 31.13 0 0 0
335 30.20 1 0 1 335 22.00 1 0 0 342 70.90 0 0 1 342 70.90 0 0 0
349 25.80 1 1 1 349 13.87 1 1 0 357 5.73 1 1 1 357 48.30 1 1 0
368 53.43 0 0 1 368 53.43 0 0 0 385 1.90 1 0 1 385 51.10 0 0 0
396 9.90 1 1 1 396 9.90 1 1 0 405 34.20 0 0 1 405 34.20 0 0 0
409 46.73 0 1 1 409 2.67 1 1 0 419 18.73 0 1 1 419 13.83 1 1 0
429 32.03 0 1 1 429 4.27 1 1 0 433 69.87 0 1 1 433 13.90 1 1 0
445 66.80 0 0 1 445 66.80 0 0 0 454 64.73 0 0 1 454 64.73 0 0 0
468 1.70 1 0 1 468 1.70 1 0 0 480 1.77 1 0 1 480 43.03 1 0 0
485 29.03 0 0 1 485 29.03 0 0 0 491 56.57 0 1 1 491 56.57 0 1 0
503 8.30 1 1 1 503 8.30 1 1 0 515 21.57 0 1 1 515 18.43 1 1 0
522 31.57 0 0 1 522 31.57 0 0 0 538 31.63 0 1 1 538 31.63 1 1 0
547 39.77 0 1 1 547 39.77 0 1 0 550 18.70 1 0 1 550 6.53 1 0 0
554 18.90 0 0 1 554 18.90 0 0 0 557 56.80 0 0 1 557 22.23 1 0 0
561 55.60 0 0 1 561 14.00 1 0 0 568 42.17 1 0 1 568 42.17 1 0 0
572 10.70 0 0 1 572 5.33 1 0 0 576 66.33 0 0 1 576 59.80 1 0 0
581 52.33 0 1 1 581 5.83 1 1 0 606 58.17 0 0 1 606 2.17 1 0 0
610 14.30 1 0 1 610 48.43 1 0 0 615 25.83 0 0 1 615 25.83 0 0 0
618 45.40 0 0 1 618 45.40 0 0 0 624 47.60 0 0 1 624 47.60 0 0 0
631 13.33 1 0 1 631 9.60 1 0 0 636 42.10 0 0 1 636 42.10 0 0 0
645 39.93 0 0 1 645 39.93 0 0 0 653 14.27 1 0 1 653 7.60 1 0 0
662 34.57 1 0 1 662 1.80 1 0 0 664 65.80 0 0 1 664 4.30 1 0 0
683 4.10 1 1 1 683 12.20 1 1 0 687 60.93 0 0 1 687 60.93 0 0 0
701 57.20 0 0 1 701 57.20 0 0 0 706 38.07 0 1 1 706 12.73 1 1 0
717 54.10 0 1 1 717 54.10 1 1 0 722 59.27 0 0 1 722 9.40 1 0 0
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731 21.57 1 0 1 731 9.90 1 0 0 740 54.10 0 0 1 740 54.10 0 0 0
749 50.47 0 1 1 749 50.47 0 1 0 757 46.17 0 0 1 757 46.17 0 0 0
760 46.30 0 0 1 760 46.30 0 0 0 766 38.83 0 1 1 766 38.83 0 1 0
769 44.60 0 0 1 769 44.60 0 0 0 772 43.07 0 0 1 772 43.07 0 0 0
778 26.23 1 1 1 778 40.03 0 1 0 780 41.60 0 0 1 780 18.03 1 0 0
793 38.07 0 1 1 793 38.07 0 1 0 800 65.23 0 1 1 800 65.23 0 1 0
804 7.07 1 1 1 804 66.77 0 1 0 810 13.77 1 0 1 810 13.77 1 0 0
815 9.63 0 1 1 815 9.63 1 1 0 832 46.23 0 0 1 832 46.23 0 0 0
834 45.73 0 0 1 834 1.50 1 0 0 838 33.63 1 1 1 838 33.63 1 1 0
857 40.17 0 0 1 857 40.17 0 0 0 866 63.33 1 1 1 866 27.60 1 1 0
887 38.47 1 1 1 887 1.63 1 1 0 903 55.23 0 1 1 903 55.23 0 1 0
910 52.77 0 1 1 910 25.30 1 1 0 920 57.17 0 0 1 920 46.20 1 0 0
925 9.87 0 1 1 925 1.70 1 1 0 931 57.90 0 0 1 931 57.90 0 0 0
936 5.90 0 0 1 936 5.90 0 0 0 945 32.20 0 0 1 945 32.20 0 0 0
949 10.33 1 0 1 949 0.83 1 0 0 952 6.13 1 0 1 952 50.90 0 0 0
962 43.67 0 0 1 962 25.93 1 0 0 964 38.30 0 0 1 964 38.30 0 0 0
971 38.77 0 1 1 971 19.40 1 1 0 978 38.07 0 0 1 978 21.97 1 0 0
983 38.30 0 0 1 983 38.30 0 0 0 987 26.20 1 0 1 987 70.03 0 0 0

1002 62.57 0 0 1 1002 18.03 1 0 0 1017 13.83 1 1 1 1017 1.57 1 1 0
1029 46.50 0 1 1 1029 13.37 1 1 0 1034 11.07 1 0 1 1034 1.97 1 0 0
1037 42.47 0 1 1 1037 22.20 1 1 0 1042 38.73 0 1 1 1042 38.73 0 1 0
1069 51.13 0 1 1 1069 51.13 0 1 0 1074 6.10 1 0 1 1074 46.50 0 0 0
1098 2.10 1 0 1 1098 11.30 1 0 0 1102 17.73 1 0 1 1102 42.30 0 0 0
1112 26.47 0 0 1 1112 26.47 0 0 0 1117 10.77 0 0 1 1117 10.77 0 0 0
1126 55.33 0 1 1 1126 55.33 0 1 0 1135 58.67 0 0 1 1135 58.67 0 0 0
1145 12.93 1 1 1 1145 4.97 1 1 0 1148 54.20 0 1 1 1148 26.47 1 1 0
1167 49.57 0 0 1 1167 49.57 0 0 0 1184 24.43 1 1 1 1184 9.87 1 1 0
1191 50.23 0 1 1 1191 50.23 0 1 0 1205 13.97 1 0 1 1205 30.40 1 0 0
1213 43.33 0 0 1 1213 43.33 1 0 0 1228 42.23 0 1 1 1228 42.23 0 1 0
1247 74.93 0 0 1 1247 74.93 0 0 0 1250 66.93 0 1 1 1250 66.93 0 1 0
1253 73.43 0 0 1 1253 73.43 0 0 0 1267 67.47 0 1 1 1267 38.57 1 1 0
1281 3.67 0 1 1 1281 3.67 1 1 0 1287 48.87 1 0 1 1287 67.03 0 0 0
1293 65.60 0 0 1 1293 65.60 0 0 0 1296 15.83 0 0 1 1296 15.83 1 0 0
1309 20.07 0 1 1 1309 8.83 1 1 0 1312 67.43 0 0 1 1312 67.43 0 0 0
1317 1.47 0 0 1 1317 1.47 0 0 0 1321 62.93 0 0 1 1321 22.13 1 0 0
1333 6.30 1 0 1 1333 56.97 0 0 0 1347 59.70 0 0 1 1347 18.93 1 0 0
1361 13.80 1 0 1 1361 19.00 1 0 0 1366 55.13 0 1 1 1366 55.13 0 1 0
1373 13.57 1 0 1 1373 5.43 1 0 0 1397 42.20 0 1 1 1397 42.20 0 1 0
1410 38.27 0 1 1 1410 38.27 0 1 0 1413 7.10 0 0 1 1413 7.10 1 0 0
1425 63.63 0 1 1 1425 26.17 1 1 0 1447 59.00 0 0 1 1447 24.73 1 0 0
1461 54.37 0 1 1 1461 54.37 0 1 0 1469 54.60 0 1 1 1469 10.97 1 1 0
1480 63.87 0 1 1 1480 21.10 1 1 0 1487 62.37 0 1 1 1487 43.70 1 1 0
1491 62.80 0 1 1 1491 62.80 0 1 0 1499 63.33 0 1 1 1499 14.37 1 1 0
1503 58.53 0 1 1 1503 58.53 0 1 0 1513 58.07 0 1 1 1513 58.07 0 1 0
1524 58.50 0 1 1 1524 58.50 0 1 0 1533 1.50 1 1 1 1533 14.37 0 1 0
1537 54.73 0 0 1 1537 38.40 1 0 0 1552 50.63 0 0 1 1552 2.83 1 0 0
1554 51.10 0 1 1 1554 51.10 0 1 0 1562 49.93 0 1 1 1562 6.57 1 1 0
1572 46.27 0 1 1 1572 46.27 1 1 0 1581 10.60 0 1 1 1581 10.60 0 1 0
1585 42.77 0 1 1 1585 42.77 0 1 0 1596 34.37 1 0 1 1596 42.27 0 0 0
1600 42.07 0 0 1 1600 42.07 0 0 0 1603 38.77 0 0 1 1603 38.77 0 0 0
1619 74.97 0 1 1 1619 61.83 1 1 0 1627 6.57 1 0 1 1627 66.97 0 0 0
1636 38.87 1 0 1 1636 68.30 0 0 0 1640 42.43 1 0 1 1640 46.63 1 0 0
1643 67.07 0 0 1 1643 67.07 0 0 0 1649 2.70 1 0 1 1649 2.70 0 0 0
1666 63.80 0 0 1 1666 63.80 0 0 0 1672 32.63 0 0 1 1672 32.63 0 0 0
1683 62.00 0 1 1 1683 62.00 0 1 0 1688 13.10 1 0 1 1688 54.80 0 0 0
1705 8.00 0 0 1 1705 8.00 0 0 0 1717 51.60 0 1 1 1717 42.33 1 1 0
1727 49.97 0 1 1 1727 2.90 1 1 0 1746 45.90 0 0 1 1746 1.43 1 0 0
1749 41.93 0 1 1 1749 41.93 0 1 0
;
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run;

As a preliminary analysis, PROC FREQ is used to break down the numbers of blind-
ness in the control and treated eyes.

proc freq data=Blind;
table Treatment*Status;
run;

Output 54.9.1. Breakdown of Blindness in the Control and Treated Groups

The FREQ Procedure

Table of Treatment by Status

Treatment Status

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+

0 | 96 | 101 | 197
| 24.37 | 25.63 | 50.00
| 48.73 | 51.27 |
| 40.17 | 65.16 |

---------+--------+--------+
1 | 143 | 54 | 197

| 36.29 | 13.71 | 50.00
| 72.59 | 27.41 |
| 59.83 | 34.84 |

---------+--------+--------+
Total 239 155 394

60.66 39.34 100.00

By the end of the study, 54 treated eyes and 101 untreated eyes have developed blind-
ness (Output 54.9.1).

The analysis ofLee, Wei, and Amato(1992) can be carried out by the follow-
ing PROC PHREG specification. The explanatory variables in this Cox model are
Treatment, DiabeticType, and theTreatment × DiabeticType interaction. The
COVS(AGGREGATE) is specified to compute the robust sandwich covariance ma-
trix estimate.

proc phreg data=Blind covs(aggregate);
model Time*Status(0)=Treatment DiabeticType Interaction;
Interaction= Treatment * DiabeticType;
id ID;
run;

The robust standard error estimates are smaller than the model-based counterparts
(Output 54.9.2), since the ratio of the robust standard error estimate relative to the
model-based estimate is less than 1 for each variable. Laser photocoagulation appears
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to be effective (p=0.0217) in delaying the occurrence of blindness. The effect is much
more prominent for adult onset diabetes than for juvenile onset diabetes.

Output 54.9.2. Inference Based on the Robust Sandwich Covariance

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard StdErr Hazard
Variable DF Estimate Error Ratio Chi-Square Pr > ChiSq Ratio

Treatment 1 -0.42467 0.18497 0.850 5.2713 0.0217 0.654
DiabeticType 1 0.34084 0.19558 0.982 3.0371 0.0814 1.406
Interaction 1 -0.84566 0.30353 0.865 7.7622 0.0053 0.429

Example 54.10. Model Assessment Using Cumulative Sums
of Martingale Residuals (Experimental)

The Mayo liver disease example ofLin, Wei, and Ying(1993) is reproduced here
to illustrate the checking of the functional form of a covariate and the assessment of
the proportional hazards assumption. The data consist of 418 patients with primary
biliary cirrhosis (PBC), among which 161 had died as of the date of data listing. A
subset of the variables are saved in the SAS data setLiver. The data set contains the
following variables:

• Time, follow-up time in years

• Status, event indicator with value 1 for death time and value 0 for censored
time

• Age, age in years from birth to study registration

• Albumin, serum albumin level in gm/dl

• Bilirubin, serum bilirubin level in mg/dl

• Edema, edema presence

• Protime, prothrombin time in seconds

data Liver;
input Time Status Age Albumin Bilirubin Edema Protime @@;
label Time="Follow-up Time in Years";
Time= Time / 365.25;
datalines;

400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6
1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6
3577 0 45.6893 3.85 0.7 0.0 10.6 1217 1 56.2218 2.27 0.8 1.0 11.0
3584 1 64.6461 3.87 0.8 0.0 11.0 3672 0 40.4435 3.66 0.7 0.0 10.8
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769 1 52.1834 3.15 2.7 0.0 10.5 131 1 53.9302 2.80 11.4 1.0 12.4
4232 0 49.5606 3.56 0.7 0.5 11.0 1356 1 59.9535 3.51 5.1 0.0 13.0
3445 0 64.1889 3.83 0.6 0.0 11.4 673 1 56.2765 3.63 3.4 0.0 11.6

264 1 55.9671 2.94 17.4 1.0 11.7 4079 1 44.5202 4.00 2.1 0.0 9.9
4127 0 45.0732 4.10 0.7 0.0 11.3 1444 1 52.0246 3.68 5.2 0.0 9.9

77 1 54.4394 3.31 21.6 0.5 12.0 549 1 44.9473 3.23 17.2 1.0 13.0
4509 0 63.8768 3.78 0.7 0.0 10.6 321 1 41.3854 2.54 3.6 0.0 11.0
3839 1 41.5524 3.44 4.7 0.0 10.3 4523 0 53.9959 3.34 1.8 0.0 10.6
3170 1 51.2827 3.19 0.8 0.0 12.0 3933 0 52.0602 3.70 0.8 0.0 10.5
2847 1 48.6188 3.20 1.2 0.0 10.6 3611 0 56.4107 3.39 0.3 0.0 10.6

223 1 61.7276 3.01 7.1 1.0 12.0 3244 1 36.6270 3.53 3.3 0.0 11.0
2297 1 55.3922 3.00 0.7 0.0 10.6 4467 0 46.6694 3.34 1.3 0.0 11.0
1350 1 33.6345 3.26 6.8 0.0 11.7 4453 0 33.6947 3.54 2.1 0.0 11.0
4556 0 48.8706 3.64 1.1 0.0 10.6 3428 1 37.5825 3.55 3.3 1.0 11.7
4025 0 41.7933 3.93 0.6 0.0 10.9 2256 1 45.7988 2.84 5.7 0.0 12.7
2576 0 47.4278 3.65 0.5 0.0 9.8 4427 0 49.1362 3.70 1.9 0.0 11.0

708 1 61.1526 3.82 0.8 0.0 11.0 2598 1 53.5086 3.36 1.1 0.0 10.6
3853 1 52.0876 3.60 0.8 0.0 10.6 2386 1 50.5407 3.70 6.0 0.0 10.6
1000 1 67.4086 3.10 2.6 0.0 11.0 1434 1 39.1978 3.40 1.3 1.0 11.0
1360 1 65.7632 3.94 1.8 0.0 11.0 1847 1 33.6181 3.80 1.1 0.0 10.6
3282 1 53.5715 3.18 2.3 0.5 12.4 4459 0 44.5695 4.08 0.7 0.0 10.6
2224 1 40.3943 3.50 0.8 0.0 10.6 4365 0 58.3819 3.40 0.9 0.0 10.3
4256 0 43.8987 3.94 0.6 0.0 13.0 3090 1 60.7064 2.75 1.3 0.0 13.2

859 1 46.6283 3.12 22.5 1.0 11.6 1487 1 62.9076 3.50 2.1 0.0 11.0
3992 0 40.2026 3.60 1.2 0.0 10.0 4191 1 46.4531 3.70 1.4 0.0 11.0
2769 1 51.2882 3.91 1.1 0.0 10.0 4039 0 32.6133 4.09 0.7 0.0 10.6
1170 1 49.3388 3.46 20.0 0.5 12.4 3458 0 56.3997 4.64 0.6 0.0 10.6
4196 0 48.8460 3.57 1.2 0.0 11.5 4184 0 32.4928 3.54 0.5 0.0 10.0
4190 0 38.4942 3.60 0.7 0.0 11.0 1827 1 51.9206 3.99 8.4 0.0 11.0
1191 1 43.5181 2.53 17.1 0.5 11.5 71 1 51.9425 3.08 12.2 0.5 11.6

326 1 49.8261 3.41 6.6 0.5 12.1 1690 1 47.9452 3.02 6.3 0.0 10.6
3707 0 46.5161 4.24 0.8 0.0 10.9 890 1 67.4114 3.72 7.2 0.0 11.2
2540 1 63.2635 3.65 14.4 0.0 11.7 3574 1 67.3101 4.09 4.5 0.0 11.1
4050 0 56.0137 3.50 1.3 0.5 12.9 4032 0 55.8303 3.76 0.4 0.0 11.2
3358 1 47.2170 3.48 2.1 0.0 11.5 1657 1 52.7584 3.21 5.0 0.0 10.9

198 1 37.2786 4.40 1.1 0.0 10.7 2452 0 41.3936 4.06 0.6 0.5 12.0
1741 1 52.4435 3.65 2.0 0.0 11.4 2689 1 33.4757 4.22 1.6 0.0 11.0

460 1 45.6071 3.47 5.0 0.5 11.9 388 1 76.7091 3.13 1.4 1.0 12.2
3913 0 36.5339 3.67 1.3 0.0 11.1 750 1 53.9165 3.11 3.2 0.0 11.8

130 1 46.3901 2.64 17.4 1.0 11.7 3850 0 48.8460 3.70 1.0 0.0 10.4
611 1 71.8932 3.26 2.0 0.5 11.4 3823 0 28.8843 3.77 1.0 0.0 10.2

3820 0 48.4682 3.35 1.8 0.0 10.2 552 1 51.4689 3.00 2.3 0.0 12.0
3581 0 44.9500 3.60 0.9 0.0 10.4 3099 0 56.5695 3.97 0.9 0.0 10.1

110 1 48.9637 3.67 2.5 1.0 11.1 3086 1 43.0171 3.64 1.1 0.0 11.1
3092 0 34.0397 4.20 1.1 0.0 10.3 3222 1 68.5092 3.90 2.1 0.0 10.6
3388 0 62.5216 4.03 0.6 0.0 17.1 2583 1 50.3573 3.50 0.4 0.0 10.3
2504 0 44.0630 3.61 0.5 0.0 10.6 2105 1 38.9103 3.54 1.9 0.0 10.9
2350 0 41.1526 4.18 5.5 0.0 10.7 3445 1 55.4579 3.67 2.0 0.0 11.8

980 1 51.2334 3.74 6.7 0.0 11.1 3395 1 52.8268 4.30 3.2 0.0 11.7
3422 0 42.6393 4.19 0.7 0.0 10.3 3336 0 61.0705 3.63 3.0 0.5 9.9
1083 1 49.6564 3.11 6.5 0.0 11.0 2288 1 48.8542 3.30 3.5 0.0 10.2

515 1 54.2560 3.83 0.6 0.0 9.5 2033 0 35.1513 3.98 3.5 0.0 10.6
191 1 67.9069 3.08 1.3 1.0 13.2 3297 0 55.4360 4.13 0.6 0.0 10.7
971 1 45.8207 3.23 5.1 1.0 13.0 3069 0 52.8898 3.90 0.6 0.0 10.8

2468 0 47.1814 3.51 1.3 0.0 10.0 824 1 53.5989 3.12 1.2 0.0 11.1
3255 0 44.1040 4.08 0.5 0.0 10.0 1037 1 41.9493 2.89 16.2 0.0 12.6
3239 0 63.6140 3.87 0.9 0.0 9.7 1413 1 44.2272 3.43 17.4 0.0 11.5

850 1 62.0014 3.80 2.8 0.0 13.2 2944 0 40.5530 3.83 1.9 0.0 9.8
2796 1 62.6448 3.95 1.5 0.0 10.1 3149 0 42.3354 3.67 0.7 0.0 10.7
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3150 0 42.9678 3.57 0.4 0.0 11.0 3098 0 55.9617 3.35 0.8 0.0 9.8
2990 0 62.8611 3.60 1.1 0.0 10.1 1297 1 51.2498 3.93 7.3 0.0 10.5
2106 0 46.7625 3.31 1.1 0.0 11.6 3059 0 54.0753 4.09 1.1 0.0 10.0
3050 0 47.0363 3.77 0.9 0.0 10.6 2419 1 55.7262 3.48 1.0 0.0 9.9

786 1 46.1027 3.60 2.9 0.0 11.0 943 1 52.2875 3.26 28.0 0.5 10.0
2976 0 51.2005 3.84 0.7 0.0 11.4 2615 0 33.8645 3.89 1.2 0.5 9.4
2995 0 75.0116 3.37 1.2 0.5 10.7 1427 1 30.8638 3.26 7.2 0.0 9.8

762 1 61.8042 3.79 3.0 0.5 9.9 2891 0 34.9870 3.63 1.0 0.0 10.0
2870 0 55.0418 3.03 0.9 0.0 9.4 1152 1 69.9411 3.01 2.3 0.0 10.9
2863 0 49.6044 3.85 0.5 0.0 11.1 140 1 69.3771 2.56 2.4 1.0 14.1
2666 0 43.5565 3.35 0.6 0.5 11.2 853 1 59.4086 3.52 25.5 0.0 11.5
2835 0 48.7584 3.42 0.6 0.0 10.0 2475 0 36.4928 3.37 3.4 0.0 11.2
1536 1 45.7604 3.46 2.5 0.0 10.1 2772 0 57.3717 3.62 0.6 0.0 10.5
2797 0 42.7433 3.56 2.3 0.0 9.6 186 1 58.8172 3.19 3.2 0.0 12.0
2055 1 53.4976 4.08 0.3 0.0 9.9 264 1 43.4141 3.34 8.5 0.5 13.3
1077 1 53.3060 3.45 4.0 0.0 11.3 2721 0 41.3552 3.26 5.7 0.0 9.5
1682 1 60.9582 3.86 0.9 0.0 10.3 2713 0 47.7536 3.80 0.4 0.0 9.2
1212 1 35.4908 4.22 1.3 0.0 10.1 2692 0 48.6626 3.61 1.2 0.0 9.0
2574 0 52.6680 4.52 0.5 0.0 10.1 2301 0 49.8700 3.34 1.3 0.0 9.8
2657 0 30.2752 3.42 3.0 0.0 9.8 2644 0 55.5674 3.85 0.5 0.0 9.7
2624 0 52.1533 3.80 0.8 0.0 10.1 1492 1 41.6099 3.56 3.2 0.0 10.1
2609 0 55.4524 4.01 0.9 0.0 10.4 2580 0 70.0041 4.08 0.6 0.0 10.2
2573 0 43.9425 3.83 1.8 0.0 9.9 2563 0 42.5681 4.38 4.7 0.0 10.4
2556 0 44.5695 3.58 1.4 0.0 10.3 2555 0 56.9446 3.69 0.6 0.0 9.9
2241 0 40.2601 3.73 0.5 0.0 10.1 974 1 37.6071 3.55 11.0 0.0 9.8
2527 0 48.3614 3.54 0.8 0.0 10.5 1576 1 70.8364 3.53 2.0 0.5 12.7

733 1 35.7919 3.43 14.0 0.0 11.5 2332 0 62.6229 3.48 0.7 0.0 11.0
2456 0 50.6475 3.63 1.3 0.0 9.9 2504 0 54.5270 3.93 2.3 0.0 10.2

216 1 52.6927 3.35 24.5 0.0 15.2 2443 0 52.7201 3.69 0.9 0.0 9.8
797 1 56.7721 3.19 10.8 0.0 10.4 2449 0 44.3970 4.30 1.5 0.0 9.1

2330 0 29.5551 3.90 3.7 0.0 11.5 2363 0 57.0404 3.36 1.4 0.0 11.6
2365 0 44.6270 3.97 0.6 0.0 10.1 2357 0 35.7974 2.90 0.7 0.0 9.6
1592 0 40.7173 3.43 2.1 0.0 10.2 2318 0 32.2327 3.55 4.7 0.0 9.9
2294 0 41.0924 3.20 0.6 0.0 10.8 2272 0 61.6400 3.80 0.5 0.0 10.0
2221 0 37.0568 4.04 0.5 0.0 9.9 2090 1 62.5791 3.74 0.7 0.0 10.2
2081 1 48.9774 3.55 2.5 0.0 10.3 2255 0 61.9904 4.07 0.6 0.0 11.0
2171 0 72.7721 3.33 0.6 0.5 10.1 904 1 61.2950 3.20 3.9 0.0 10.0
2216 0 52.6242 4.01 0.7 0.0 9.5 2224 0 49.7632 3.37 0.9 0.0 10.0
2195 0 52.9144 3.76 1.3 0.0 10.3 2176 0 47.2635 3.98 1.2 0.0 9.9
2178 0 50.2040 3.40 0.5 0.0 10.2 1786 1 69.3470 3.43 0.9 0.0 9.9
1080 1 41.1691 3.85 5.9 0.0 10.7 2168 0 59.1650 3.68 0.5 0.0 10.4

790 1 36.0794 3.31 11.4 0.0 10.8 2170 0 34.5955 3.89 0.5 0.0 10.1
2157 0 42.7132 4.17 1.6 0.0 9.6 1235 1 63.6304 3.22 3.8 0.0 10.6
2050 0 56.6297 3.65 0.9 0.0 9.7 597 1 46.2642 3.38 4.5 0.0 12.4

334 1 61.2430 2.43 14.1 1.0 11.0 1945 0 38.6201 3.66 1.0 0.0 9.7
2022 0 38.7707 3.66 0.7 0.0 10.1 1978 0 56.6954 3.70 0.5 0.0 9.6

999 1 58.9514 3.35 2.3 0.0 9.7 1967 0 36.9227 3.35 0.7 0.0 9.6
348 1 62.4148 3.05 4.5 0.5 11.4 1979 0 34.6092 3.41 3.3 0.0 11.5

1165 1 58.3354 1.96 3.4 0.0 10.7 1951 0 50.1821 3.02 0.4 0.0 10.6
1932 0 42.6858 3.06 0.9 0.0 9.8 1776 0 34.3792 3.35 0.9 0.0 11.2
1882 0 33.1828 4.16 13.0 0.0 11.9 1908 0 38.3819 3.79 1.5 0.0 9.7
1882 0 59.7618 2.95 1.6 0.0 10.1 1874 0 66.4120 3.35 0.6 0.5 9.8

694 1 46.7899 2.94 0.8 0.0 11.2 1831 0 56.0794 3.72 0.4 0.0 10.1
837 0 41.3744 3.62 4.4 0.0 9.8 1810 0 64.5722 2.97 1.9 0.0 9.9
930 1 67.4880 2.81 8.0 0.0 10.0 1690 1 44.8296 3.22 3.9 0.0 9.6

1790 0 45.7714 3.65 0.6 0.0 9.6 1435 0 32.9500 3.77 2.1 0.0 10.1
732 0 41.2211 2.83 6.1 0.0 10.0 1785 0 55.4168 3.51 0.8 0.0 10.0

1783 0 47.9808 3.20 1.3 0.0 10.6 1769 0 40.7912 3.36 0.6 0.0 10.9
1457 0 56.9747 3.61 0.5 0.0 9.9 1770 0 68.4627 3.35 1.1 0.0 10.0
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1765 0 78.4394 3.03 7.1 0.0 11.2 737 0 39.8576 3.75 3.1 0.0 10.0
1735 0 35.3101 3.85 0.7 0.0 10.3 1701 0 31.4442 3.74 1.1 0.0 9.7
1614 0 58.2642 4.23 0.5 0.0 10.6 1702 0 51.4880 3.44 1.1 0.0 9.6
1615 0 59.9699 2.97 3.1 0.0 9.8 1656 0 74.5243 3.59 5.6 0.0 10.9
1677 0 52.3641 3.14 3.2 0.0 9.5 1666 0 42.7871 3.06 2.8 0.0 9.5
1301 0 34.8747 3.57 1.1 0.5 11.4 1542 0 44.1396 3.12 3.4 0.0 11.2
1084 0 46.3819 3.20 3.5 0.0 10.0 1614 0 56.3094 3.32 0.5 0.0 10.2

179 1 70.9076 2.33 6.6 1.0 12.1 1191 1 55.3949 2.75 6.4 0.5 11.0
1363 0 45.0842 3.50 3.6 0.0 10.1 1568 0 26.2779 3.74 1.0 0.0 10.2
1569 0 50.4723 3.50 1.0 0.0 9.7 1525 0 38.3984 2.93 0.5 0.0 9.8
1558 0 47.4196 3.46 2.2 0.0 9.6 1447 0 47.9808 3.07 1.6 0.0 9.6
1349 0 38.3162 3.77 2.2 0.0 9.5 1481 0 50.1081 3.85 1.0 0.0 10.7
1434 0 35.0883 3.56 1.0 0.5 9.8 1420 0 32.5038 3.70 5.6 0.0 9.9
1433 0 56.1533 3.77 0.5 0.0 9.8 1412 0 46.1547 3.69 1.6 0.0 9.6

41 1 65.8836 2.10 17.9 1.0 12.9 1455 0 33.9439 3.52 1.3 0.0 9.5
1030 0 62.8611 3.99 1.1 0.0 9.6 1418 0 48.5640 3.44 1.3 0.0 9.5
1401 0 46.3491 3.48 0.8 0.0 10.0 1408 0 38.8528 3.36 2.0 0.0 9.8
1234 0 58.6475 3.46 6.4 0.0 10.1 1067 0 48.9363 3.89 8.7 0.5 9.6

799 1 67.5729 3.99 4.0 0.5 9.8 1363 0 65.9849 3.57 1.4 0.0 9.8
901 0 40.9008 3.18 3.2 0.0 9.9 1329 0 50.2450 3.73 8.6 0.0 11.2

1320 0 57.1964 2.98 8.5 1.0 12.3 1302 0 60.5366 3.07 6.6 0.0 10.9
877 0 35.3511 3.83 2.4 0.0 10.3 1321 0 31.3812 3.31 0.8 0.0 10.9
533 0 55.9863 3.43 1.2 0.0 11.3 1300 0 52.7255 3.37 1.1 0.0 10.2

1293 0 38.0917 3.76 2.4 0.0 10.8 207 1 58.1711 2.23 5.2 0.0 12.3
1295 0 45.2101 3.57 1.0 0.0 10.5 1271 0 37.7988 3.95 0.7 0.0 10.6
1250 0 60.6598 3.25 1.0 0.0 10.6 1230 0 35.5346 3.93 0.5 0.0 10.8
1216 0 43.0664 3.61 2.9 0.0 10.6 1216 0 56.3915 3.45 0.6 0.0 10.7
1149 0 30.5736 3.56 0.8 0.0 10.5 1153 0 61.1828 3.58 0.4 0.0 10.4

994 0 58.2998 2.75 0.4 0.0 10.8 939 0 62.3326 3.35 1.7 0.0 10.2
839 0 37.9986 3.16 2.0 0.0 10.5 788 0 33.1526 3.79 6.4 0.0 10.8

4062 0 60.0000 3.65 0.7 0.0 11.0 3561 1 65.0000 3.04 1.4 0.5 12.1
2844 0 54.0000 4.03 0.7 0.0 9.8 2071 1 75.0000 3.96 0.7 0.5 11.3
3030 0 62.0000 2.48 0.8 0.0 10.0 1680 0 43.0000 3.68 0.7 0.0 9.5

41 1 46.0000 2.93 5.0 0.0 10.4 2403 0 44.0000 3.81 0.4 0.5 10.5
1170 0 61.0000 3.41 1.3 0.5 10.9 2011 1 64.0000 3.69 1.1 0.0 10.5
3523 0 40.0000 4.04 0.6 0.0 11.2 3468 0 63.0000 3.94 0.6 0.0 11.5
4795 0 34.0000 3.24 1.8 0.0 18.0 1236 0 52.0000 3.42 1.5 0.0 10.3
4214 0 49.0000 3.99 1.2 0.0 11.2 2111 1 54.0000 3.60 1.0 0.0 12.1
1462 1 63.0000 3.40 0.7 0.0 10.1 1746 1 54.0000 3.63 3.5 0.0 10.3

94 1 46.0000 3.56 3.1 0.5 13.6 785 1 53.0000 2.87 12.6 0.0 11.8
1518 1 56.0000 3.92 2.8 0.0 10.6 466 1 56.0000 3.51 7.1 0.0 11.8
3527 0 55.0000 4.15 0.6 0.0 10.1 2635 0 65.0000 3.34 2.1 0.0 10.1
2286 1 56.0000 3.64 1.8 0.0 10.0 791 1 47.0000 3.42 16.0 0.0 13.8
3492 0 60.0000 4.38 0.6 0.0 10.6 3495 0 53.0000 4.19 5.4 0.0 11.2

111 1 54.0000 3.29 9.0 0.0 13.1 3231 0 50.0000 4.01 0.9 0.0 10.5
625 1 48.0000 2.84 11.1 0.0 12.2 3157 0 36.0000 3.76 8.9 0.0 10.6

3021 0 48.0000 3.76 0.5 0.0 10.1 559 1 70.0000 3.81 0.6 0.5 11.0
2812 1 51.0000 3.92 3.4 0.0 9.3 2834 0 52.0000 3.14 0.9 0.0 12.3
2855 0 54.0000 3.82 1.4 0.0 10.3 662 1 48.0000 4.10 2.1 0.0 9.0

727 1 66.0000 3.40 15.0 0.0 11.1 2716 0 53.0000 4.19 0.6 0.0 9.9
2698 0 62.0000 3.40 1.3 0.0 10.6 990 1 59.0000 3.12 1.3 0.0 9.6
2338 0 39.0000 3.75 1.6 0.0 10.4 1616 1 67.0000 3.26 2.2 0.5 11.1
2563 0 58.0000 3.46 3.0 0.0 10.4 2537 0 64.0000 3.49 0.8 0.0 10.3
2534 0 46.0000 2.89 0.8 0.0 10.6 778 1 64.0000 3.15 1.8 0.0 10.4

617 0 41.0000 2.31 5.5 0.0 10.4 2267 0 49.0000 3.04 18.0 0.0 9.7
2249 0 44.0000 3.50 0.6 0.0 9.9 359 1 59.0000 3.35 2.7 0.0 11.5
1925 0 63.0000 3.58 0.9 0.0 10.0 249 1 61.0000 3.01 1.3 0.0 10.7
2202 0 64.0000 3.49 1.1 0.0 9.8 43 1 49.0000 2.77 13.8 0.0 11.1
1197 1 42.0000 4.52 4.4 0.0 10.8 1095 1 50.0000 3.36 16.0 0.0 10.0
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489 1 51.0000 3.52 7.3 0.5 11.1 2149 0 37.0000 3.55 0.6 0.0 10.3
2103 0 62.0000 3.29 0.7 0.0 9.8 1980 0 51.0000 3.10 0.7 0.0 10.6
1347 0 52.0000 3.24 1.7 0.0 10.5 1478 1 44.0000 3.63 9.5 0.0 10.2
1987 0 33.0000 3.76 2.2 0.0 9.9 1168 1 60.0000 3.62 1.8 0.5 9.9

597 1 63.0000 2.73 3.3 0.5 11.1 1725 0 33.0000 4.08 2.9 0.0 10.5
1899 0 41.0000 3.66 1.7 0.0 11.0 221 1 51.0000 2.58 14.0 0.0 11.6
1022 0 37.0000 3.00 0.8 0.5 10.8 1639 0 59.0000 3.40 1.3 0.0 9.7
1635 0 55.0000 2.93 0.7 0.0 10.6 1654 0 54.0000 2.38 1.7 0.0 9.8
1653 0 49.0000 3.00 13.6 0.5 9.9 1560 0 40.0000 3.50 0.9 0.0 10.9
1581 0 67.0000 3.06 0.7 0.0 10.0 1419 0 68.0000 3.15 3.0 0.0 10.0
1443 0 41.0000 2.80 1.2 0.0 11.0 1368 0 69.0000 3.03 0.4 0.0 10.9

193 1 52.0000 2.96 0.7 0.5 9.9 1367 0 57.0000 3.07 2.0 0.5 12.1
1329 0 36.0000 3.98 1.4 0.0 11.0 1343 0 50.0000 3.48 1.6 0.0 10.2
1328 0 64.0000 3.65 0.5 0.0 10.2 1375 0 62.0000 3.49 7.3 0.0 10.9
1260 0 42.0000 2.82 8.1 0.0 10.4 1223 0 44.0000 3.34 0.5 0.0 10.6

935 1 69.0000 3.19 4.2 0.0 11.1 943 0 52.0000 3.01 0.8 0.0 10.6
1141 0 66.0000 3.33 2.5 0.0 10.8 1092 0 40.0000 3.60 4.6 0.0 10.4
1150 0 52.0000 3.64 1.0 0.0 10.6 703 1 46.0000 2.68 4.5 0.0 11.5
1129 0 54.0000 3.69 1.1 0.0 10.8 1086 0 51.0000 3.17 1.9 0.5 10.7
1067 0 43.0000 3.73 0.7 0.0 10.8 1072 0 39.0000 3.81 1.5 0.0 10.8
1119 0 51.0000 3.57 0.6 0.0 10.6 1097 0 67.0000 3.58 1.0 0.0 10.8

989 0 35.0000 3.23 0.7 0.0 10.8 681 1 67.0000 2.96 1.2 0.0 10.9
1103 0 39.0000 3.83 0.9 0.0 11.2 1055 0 57.0000 3.42 1.6 0.0 9.9

691 0 58.0000 3.75 0.8 0.0 10.4 976 0 53.0000 3.29 0.7 0.0 10.6
;
run;

Consider fitting a Cox model for the survival time of the PCB patients with covariates
Bilirubin, log(Protime), log(Albumin), Age andEdema. The log tranform, which
is often applied to blood chemistry measurements, is deliberately not employed for
Bilirubin. It is of interest to assess the functional form of the variableBilirubin in the
Cox model.

ods html;
ods graphics on;

proc phreg data=Liver;
model Time*Status(0)=Bilirubin logProtime logAlbumin Age Edema;
logProtime=log(Protime);
logAlbumin=log(Albumin);
assess var=(Bilirubin) / resample;
run;

ods graphics off;
ods html close;

The ASSESS statement creates a plot of the cumulative martingale residuals against
the values of the covariateBilirubin, which is specified in the VAR= option. The
RESAMPLE option computes thep-value of a Kolmogorov-type supremum test
based on a sample of 1,000 simulated residual patterns.

Parameter estimates of the model fit are shown inOutput 54.10.1. The plot inOutput
54.10.2displays the observed cumulative martingale residual process forBilirubin
together with 20 simulated realizations from the null distribution. This graphical
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display is requested by specifying the experimental ODS GRAPHICS statement and
the experimental ASSESS statement. For general information about ODS graphics,
seeChapter 15, “Statistical Graphics Using ODS.”For specific information about the
graphics available in the PHREG procedure, see the section“ODS Graphics”on page
3271. It is obvious that the observed process is atypical compared to the simulated
realizations. Also, none of the 1,000 simulated realizations has an absolute maxi-
mum exceeding that of the observed cumulative martingale residual process. Both
the graphical and numerical results indicate that a transform is deemed necessary for
Bilirubin in the model.

Output 54.10.1. Cox Model with Bilirubin as a Covariate

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Bilirubin 1 0.11733 0.01298 81.7567 <.0001 1.124
logProtime 1 2.77581 0.71482 15.0794 0.0001 16.052
logAlbumin 1 -3.17195 0.62945 25.3939 <.0001 0.042
Age 1 0.03779 0.00805 22.0288 <.0001 1.039
Edema 1 0.84772 0.28125 9.0850 0.0026 2.334
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Output 54.10.2. Cumulative Martingale Residuals vs Bilirubin (Experimental)

The cumulative martingale residual plots inOutput 54.10.3provide guidance in sug-
gesting a more appropriate functional form for a covariate. The four curves were
created from simple forms of misspecification using 1,000 simulated times from a
exponential model with 20% censoring. The true and fitted models are shown in
Table 54.3.
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Output 54.10.3. Typical Cumulative Residual Plot Patterns

Table 54.3. Model Misspecifications
Plot Data Fitted Model
(a) log(X) X
(b) {X, X2} X
(c) {X, X2, X3} {X, X2}
(d) I(X > 5) X

The curve of observed cumulative martingale residuals inOutput 54.10.2most re-
sembles the behavior of the curve in plot (a) ofOutput 54.10.3, indicating that
log(Bilirubin) might be a more appropriate term in the model thanBilirubin.

Next, the analysis of the natural history of the PBC is repeated with log(Bilirubin) re-
placingBilirubin, and the functional form of log(Bilirubin) is assessed. Also assessed
is the proportional hazards assumption for the Cox model.

ods html;
ods graphics on;

proc phreg data=Liver;
model Time*Status(0)=logBilirubin logProtime logAlbumin Age Edema;
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logBilirubin=log(Bilirubin);
logProtime=log(Protime);
logAlbumin=log(Albumin);
assess var=(logBilirubin) ph / crpanel resample seed=19;
run;

ods graphics off;
ods html close;

The SEED= option specifies a integer seed for generating random numbers. The
CRPANEL option in the ASSESS statement requests a panel of four plots. Each
plot displays the observed cumulative martingale residual process along with two
simulated realizations. The PH option checks the proportional hazards assumption
of the model by plotting the observed standardized score process with 20 simulated
realizations for each covariate in the model.

Output 54.10.4displays the parameter estimates of the fitted model. The cumulative
martingale residual plots inOutput 54.10.5and Output 54.10.6show that the ob-
served martingale residual process is more typical of the simulated realizations. The
p-value for the Kolmogorov-type supremum test based on 1,000 simulations is 0.052,
indicating that the log transform is a much improved functional form forBilirubin.

Output 54.10.4. Model with log(Bilirubin) as a Covariate

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

logBilirubin 1 0.87072 0.08263 111.0484 <.0001 2.389
logProtime 1 2.37789 0.76674 9.6181 0.0019 10.782
logAlbumin 1 -2.53264 0.64819 15.2664 <.0001 0.079
Age 1 0.03940 0.00765 26.5306 <.0001 1.040
Edema 1 0.85934 0.27114 10.0447 0.0015 2.362
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Output 54.10.5. Panel Plot of Cumulative Martingale Residuals vs log(Bilirubin)
(Experimental)

Output 54.10.6. Cumulative Martingale Residuals vs log(Bilirubin) (Experimental)
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Output 54.10.7and Output 54.10.8display the results of proportional hazards as-
sumption assessment for log(Bilirubin) and log(Protime) respectively. The latter plot
reveals nonproportional hazards for log(Protime).

Output 54.10.7. Standardized Score Process for log(Bilirubin) (Experimental)
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Output 54.10.8. Standardized Score Process for log(Protime) (Experimental)

Plots for log(Albumin), Age, andEdema are not shown here. The Kolmogorov-
type supremum test results for all the covariates are shown inOutput 54.10.9. In
addition to log(Protime), the proportional hazards assumption appears to be violated
for Edema.

Output 54.10.9. Kolmogorov-type Supremum Tests for Proportional Hazards
Assumption

Supremum Test for Proportionals Hazards Assumption

Maximum
Absolute Pr >

Variable Value Replications Seed MaxAbsVal

logBilirubin 1.0880 1000 19 0.1480
logProtime 1.7243 1000 19 0.0010
logAlbumin 0.8443 1000 19 0.4390
Age 0.7387 1000 19 0.4780
Edema 1.4350 1000 19 0.0310
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Chapter 55
The PLAN Procedure
Overview

The PLAN procedure constructs designs and randomizes plans for factorial exper-
iments, especially nested and crossed experiments and randomized block designs.
PROC PLAN can also be used for generating lists of permutations and combinations
of numbers. The PLAN procedure can construct the following types of experimental
designs:

• full factorials, with and without randomization

• certain balanced and partially balanced incomplete block designs

• generalized cyclic incomplete block designs

• Latin square designs

For other kinds of experimental designs, especially fractional factorial, response sur-
face, and orthogonal array designs, refer to the FACTEX and OPTEX procedures and
the ADX Interface in SAS/QC software.

PROC PLAN generates designs by first generating a selection of the levels for the first
factor. Then, for the second factor, PROC PLAN generates a selection of its levels
for each level of the first factor. In general, for a given factor, the PLAN procedure
generates a selection of its levels for all combinations of levels for the factors that
precede it. The selection can be done in five different ways:

• randomized selection, for which the levels are returned in a random order

• ordered selection, for which the levels are returned in a standard order every
time a selection is generated

• cyclic selection, for which the levels returned are computed by cyclically per-
muting the levels of the previous selection

• permuted selection, for which the levels are a permutation of the integers
1, . . . , n

• combination selection, for which them levels are selected as a combination of
the integers1, . . . , n takenm at a time

The randomized selection method can be used to generate randomized plans. Also,
by appropriate use of cyclic selection, any of the designs in the very wide class of
generalized cyclic block designs (Jarrett and Hall1978) can be generated.

There is no limit to the depth to which the different factors can be nested, and any
number of randomized plans can be generated.
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You can also declare a list of factors to be selected simultaneously with the lowest
(that is, the most nested) factor. The levels of the factors in this list can be seen
as constituting the treatment to be applied to the cells of the design. For this reason,
factors in this list are calledtreatments. With this list, you can generate and randomize
plans in one run of PROC PLAN.

Getting Started

Three Replications with Four Factors

Suppose you want to determine if the order in which four drugs are given affects
the response of a subject. If you have only three subjects to test, you can use the
following statements to design the experiment.

proc plan seed=27371;
factors Replicate=3 ordered Drug=4;

run;

These statements produce a design with three replicates of the four levels of the factor
Drug arranged in random order. The three levels ofReplicate are arranged in order,
as shown inFigure 55.1

The PLAN Procedure

Factor Select Levels Order

Replicate 3 3 Ordered
Drug 4 4 Random

Replicate --Drug-

1 3 2 4 1
2 1 2 4 3
3 4 1 2 3

Figure 55.1. Three Replications and Four Factors

You may also want to apply one of four different treatments to each cell of this plan
(for example, applying different amounts of each drug). The following statements
create the output shown inFigure 55.2

factors Replicate=3 ordered Drug=4;
treatments Treatment=4;

run;
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The PLAN Procedure

Plot Factors

Factor Select Levels Order

Replicate 3 3 Ordered
Drug 4 4 Random

Treatment Factors

Factor Select Levels Order

Treatment 4 4 Random

Replicate --Drug- --Treatment--

1 3 1 2 4 2 1 3 4
2 4 3 2 1 4 1 2 3
3 3 2 4 1 1 4 2 3

Figure 55.2. Using the TREATMENTS Statement

Randomly Assigning Subjects to Treatments

You can use the PLAN procedure to design a completely randomized design. Suppose
you have 12 experimental units, and want to assign one of two treatments to each
unit. Use a DATA step to store the unrandomized design in a SAS data set, then call
PROC PLAN to randomize it by specifying one RANDOM factor of 12 levels. The
following statements produceFigure 55.3andFigure 55.4:

title ’Completely Randomized Design’;
/* The unrandomized design */
data a;

do unit=1 to 12;
if (unit <= 6) then treat=1;
else treat=2;
output;

end;
run;

/* Randomize the design */
proc plan seed=27371;

factors unit=12;
output data=a out=b;

run;

proc sort data=b;
by unit;

proc print;
run;
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Figure 55.3shows that the 12 levels of theunit factor have been randomly reordered
and then lists the new ordering.

Completely Randomized Design

The PLAN Procedure

Factor Select Levels Order

unit 12 12 Random

----------------unit---------------

8 5 1 4 6 2 12 7 3 9 10 11

Figure 55.3. A Completely Randomized Design for Two Treatments

After the data is sorted by theunit variable, the randomized design is displayed in
Figure 55.4.

Completely Randomized Design

Obs unit treat

1 1 1
2 2 1
3 3 2
4 4 1
5 5 1
6 6 1
7 7 2
8 8 1
9 9 2

10 10 2
11 11 2
12 12 2

Figure 55.4. A Completely Randomized Design for Two Treatments

You can also generate the plan by using a TREATMENTS statement instead of a
DATA step. The following statements generate the same plan.

proc plan seed=27371;
factors unit=12;
treatments treat=12 cyclic (1 1 1 1 1 1 2 2 2 2 2 2);
output out=b;

run;
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Syntax

The following statements are available in PROC PLAN.

PROC PLAN < options > ;
FACTORS factor-selections < / NOPRINT > ;
OUTPUT OUT=SAS-data-set < factor-value-settings > ;
TREATMENTS factor-selections ;

To use PROC PLAN, you need to specify the PROC PLAN statement and at least one
FACTORS statement before the first RUN statement. The TREATMENTS statement,
OUTPUT statement, and additional FACTORS statements can appear either before
the first RUN statement or after it. The rest of this section gives detailed syntax
information for each of the statements, beginning with the PROC PLAN statement.
The remaining statements are described in alphabetical order.

You can use PROC PLAN interactively by specifying multiple groups of statements,
separated by RUN statements. For details, see the“Using PROC PLAN Interactively”
section on page 3346.

PROC PLAN Statement

PROC PLAN < options > ;

The PROC PLAN statement starts the PLAN procedure and, optionally, specifies a
random number seed or a default method for selecting levels of factors. By default,
the procedure uses a random number seed generated from reading the time of day
from the computer’s clock and randomly selects levels of factors. These defaults can
be modified with the SEED= and ORDERED options, respectively. Unlike many
SAS/STAT procedures, the PLAN procedure does not have a DATA= option in the
PROC statement; in this procedure, both the input and output data sets are specified
in the OUTPUT statement.

You can specify the following options in the PROC PLAN statement:

SEED=number
specifies an integer used to start the pseudo-random number generator for selecting
factor levels randomly. If you don’t specify a seed, or specify a value less than or
equal to zero, the seed is by default generated from reading the time of day from the
computer’s clock.

ORDERED
selects the levels of the factor as the integers1, 2, . . . ,m, in order. For more de-
tail, see the“Selection-Types”section on page 3340 and see the“Specifying Factor
Structures”section on page 3348.
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FACTORS Statement

FACTORS factor-selections < / NOPRINT > ;

The FACTORS statement specifies the factors of the plan and generates the plan.
Taken together, thefactor-selectionsspecify the plan to be generated; more than one
factor-selectionrequest can be used in a FACTORS statement. The form of afactor-
selectionis

name=m < OF n > < selection-type >

where

name is a valid SAS name. This gives the name of a factor in the design.

m is a positive integer that gives the number of values to be selected. If
n is specified, the value ofm must be less than or equal ton.

n is a positive integer that gives the number of values to be selected
from.

selection-type specifies one of five methods for selectingm values. Possible val-
ues are COMB, CYCLIC, ORDERED, PERM or RANDOM. The
CYCLIC selection-typehas additional optional specifications that
enable you to specify an initial block of numbers to be cyclically per-
muted and an increment used to permute the numbers. By default,
theselection-typeis RANDOM, unless you use the ORDERED op-
tion in the PROC PLAN statement. In this case, the defaultselection-
typeis ORDERED. For details, see the following section,“Selection-
Types”; for examples, see the“Syntax Examples”section.

The following option can appear in the FACTORS statement after the slash:

NOPRINT
suppresses the display of the plan. This is particularly useful when you require only
an output data set. Note that this option temporarily disables the Output Delivery
System (ODS); seeChapter 14, “Using the Output Delivery System,”for more in-
formation.

Selection-Types

PROC PLAN interpretsselection-typeas follows:

RANDOM selects them levels of the factor randomly without replacement from
the integers1, 2, . . . , n. Or, if n is not specified, RANDOM selects
levels by randomly ordering the integers1, 2, . . . ,m.

ORDERED selects the levels of the factor as the integers1, 2, . . . ,m, in that order.

PERM selects them levels of the factor as a permutation of the integers
1, . . . m according to an algorithm that cycles through allm! permu-
tations. The permutations are produced in a sorted standard order; see
Example 55.6on page 3358.
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COMB selects them levels of the factor as a combination of the integers
1, . . . , n takenm at a time, according to an algorithm that cycles
through alln!/(m!(n − m)!) combinations. The combinations are
produced in a sorted standard order; seeExample 55.6on page 3358.

CYCLIC <(initial-block) >< increment>
selects the levels of the factor by cyclically permuting the integers
1, 2, . . . , n. Wrapping occurs atm if n is not specified, and atn if n
is specified. Additional optional specifications are as follows:

With theselection-typeCYCLIC, you can optionally specify aninitial-
block and anincrement. The initial-block must be specified within
parentheses, and it specifies the block of numbers to permute. The first
permutation is the block you specify, the second is the block permuted
by 1 (or by theincrementyou specify), and so on. By default, the
initial-block is the integers1, 2, . . . ,m. If you specify aninitial-block,
it must havem values. Values specified in theinitial-block do not have
to be given in increasing order.

The incrementspecifies the increment by which to permute the block
of numbers. By default, theincrementis 1.

Syntax Examples

This section gives some simple syntax examples. For more complex examples and
details on how to generate various designs, see the“Specifying Factor Structures”
section on page 3348. The examples in this section assume that you use the default
random selection method and do not use the ORDERED option in the PROC PLAN
statement.

The following specification generates a random permutation of the numbers 1, 2, 3,
4, and 5.

factors A=5;

The following specification generates a random permutation of 5 of the integers from
1 to 8, selected without replacement.

factors A=5 of 8;

Adding the ORDEREDselection-typeto the two previous specifications generates an
ordered list of the integers 1 to 5. The following specification cyclically permutes the
integers 1, 2, 3, and 4.

factors A=4 cyclic;

Since this simple request generates only one permutation of the numbers, the pro-
cedure generates an ordered list of the integers 1 to 4. The following specification
cyclically permutes the integers 5 to 8.
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factors A=4 of 8 cyclic (5 6 7 8);

In this case, since only one permutation is performed, the procedure generates an
ordered list of the integers 5 to 8. The following specification produces an ordered
list for A, with values 1 and 2.

factors A=2 ordered B=4 of 8 cyclic (5 6 7 8) 2;

The associated factor levels forB are 5, 6, 7, 8 for level 1 ofA; and 7, 8, 1, 2 for level
2 of A.

Handling More than One Factor-Selection

For cases with more than onefactor-selectionin the same FACTORS statement,
PROC PLAN constructs the design as follows:

1. PROC PLAN first generates levels for the firstfactor-selection. These levels
are permutations of integers (1, 2, and so on) appropriate for the selection type
chosen. If you do not specify a selection type, PROC PLAN uses the default
(RANDOM); if you specify the ORDERED option in the PROC PLAN state-
ment, the procedure uses ORDERED as the default selection type.

2. For every integer generated for the firstfactor-selection, levels are generated
for the secondfactor-selection. These levels are generated according to the
specifications following the second equal sign.

3. This process is repeated until levels for allfactor-selectionshave been gener-
ated.

The following statements give an example of generating a design with two random
factors:

proc plan;
factors One=4 Two=3;

run;

The procedure first generates a random permutation of the integers 1 to 4 and then,
for each of these, generates a random permutation of the integers 1 to 3. You can
think of factorTwo as being nested within factorOne, where the levels of factor
One are to be randomly assigned to 4 units.

As another example, six random permutations of the numbers 1, 2, 3 can be generated
by specifying

proc plan;
factors a=6 ordered b=3;

run;
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OUTPUT Statement

OUTPUT OUT=SAS-data-set < DATA=SAS-data-set >
< factor-value-settings > ;

The OUTPUT statement applies only to the last plan generated. If you use PROC
PLAN interactively, the OUTPUT statement for a given plan must be immediately
preceded by the FACTORS statement (and the TREATMENTS statement, if appro-
priate) for the plan. See the“Output Data Sets”section on page 3346 for more in-
formation on how output data sets are constructed. You can specify the following
options in the OUTPUT statement:

OUT=SAS-data-set
DATA=SAS-data-set

You can use the OUTPUT statement both to output the last plan generated and to use
the last plan generated to randomize another SAS data set.

When you specify only the OUT= option in the OUTPUT statement, PROC PLAN
saves the last plan generated to the specified data set. The output data set contains
one variable for each factor in the plan and one observation for each cell in the plan.
The value of a variable in a given observation is the level of the corresponding factor
for that cell. The OUT= option is required.

When you specify both the DATA= and OUT= options in the OUTPUT statement,
then PROC PLAN uses the last plan generated to randomize the input data set
(DATA=), saving the results to the output data set (OUT=). The output data set has
the same form as the input data set but has modified values for the variables that
correspond to factors (see the“Output Data Sets”section on page 3346 for details).
Values for variables not corresponding to factors are transferred without change.

factor-value-settings
specify the values input or output for the factors in the design. The form forfactor-
value-settingsis different when only an OUT= data set is specified and when both
OUT= and DATA= data sets are specified. Both forms are discussed in the following
section.

Factor-Value-Settings with Only an OUT= Data Set

When you specify only an OUT= data set, the form for eachfactor-value-setting
specification is one of the following:

factor-name < NVALS= list-of-n-numbers >
< ORDERED | RANDOM >

or

factor-name < CVALS= list-of-n-strings >
< ORDERED | RANDOM >

where

factor-name is a factor in the last FACTORS statement preceding the OUTPUT
statement.
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NVALS= listsn numeric values for the factor. By default, the procedure uses
NVALS=(1 2 3 · · ·n).

CVALS= listsn character strings for the factor. Each string can have up to 40
characters, and each string must be enclosed in quotes.Warning:
When you use the CVALS= option, the variable created in the out-
put data set has a length equal to the length of the longest string
given as a value; shorter strings are padded with trailing blanks.
For example, the values output for the first level of a two-level fac-
tor with the following two different specifications are not the same.

CVALS=(’String 1’ "String 2")

CVALS=(’String 1’ "A longer string")

The value output with the second specification is ’String 1’ fol-
lowed by seven blanks. In order to match two such values (for ex-
ample, when merging two plans), you must use the TRIM function
in the DATA step (refer toSAS Language Reference: Dictionary).

ORDERED | RANDOM specifies how values (those given with the NVALS= or
CVALS= option, or the default values) are associated with the lev-
els of a factor (the integers1, 2, . . . , n). The default association
type is ORDERED, for which the first value specified is output for
a factor level setting of 1, the second value specified is output for
a level of 2, and so on. You can also specify an association type of
RANDOM, for which the levels are associated with the values in
a random order. Specifying RANDOM is useful for randomizing
crossed experiments (see the“Randomizing Designs”section on
page 3351).

The following statements give an example of using the OUTPUT statement with only
an OUT= data set and with both the NVALS= and CVALS= specifications.

proc plan;
factors a=6 ordered b=3;
output out=design a nvals=(10 to 60 by 10)

b cvals=(’HSX’ ’SB2’ ’DNY’);
run;

The DESIGN data set contains two variables,a andb. The values of the variable
a are 10 when factora equals 1, 20 when factora equals 2, and so on. Values of
the variableb are ‘HSX’ when factorb equals 1, ‘SB2’ when factorb equals 2, and
‘DNY’ when factorb equals 3.

Factor-Value-Settings with OUT= and DATA= Data Sets

If you specify an input data set with DATA=, then PROC PLAN assumes that each
factor in the last plan generated corresponds to a variable in the input set. If the
variable name is different from the name of the factor to which it corresponds, the
two can be associated in the values specification by
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input-variable-name = factor-name

Then, the NVALS= or CVALS= specification can be used. The values given by
NVALS= or CVALS= specify the input values as well as the output values for the
corresponding variable.

Since the procedure assumes that the collection of input factor values constitutes
a plan position description (see the“Output Data Sets”section on page 3346), the
values must correspond to integers less than or equal tom, the number of values
selected for the associated factor. If any input values do not correspond, then the
collection does not define a plan position, and the corresponding observation is output
without changing the values of any of the factor variables.

The following statements demonstrate the use of factor-value settings. The input
SAS data seta contains variablesBlock andPlot, which are renamedDay andHour,
respectively.

proc plan;
factors Day=7 Hour=6;
output data=a out=b

Block = Day cvals=(’Mon’ ’Tue’ ’Wed’ ’Thu’
’Fri’ ’Sat’ ’Sun’ )

Plot = Hour;
run;

For another example of using both a DATA= and OUT= data set, see the“Randomly
Assigning Subjects to Treatments”section on page 3337.

TREATMENTS Statement

TREATMENTS factor-selections ;

The TREATMENTS statement specifies thetreatmentsof the plan to gener-
ate, but it does not generate a plan. If you supply several FACTORS and
TREATMENTS statements before the first RUN statement, the procedure uses only
the last TREATMENTS specification and applies it to the plans generated by each of
the FACTORS statements. The TREATMENTS statement has the same form as the
FACTORSstatement. The individualfactor-selectionsalso have the same form as in
theFACTORSstatement:

name=m < OF n > < selection-type >

The procedure generates eachtreatmentsimultaneously with the lowest (that is, the
most nested) factor in the last FACTORS statement. Them value for eachtreatment
must be at least as large as them for the most-nested factor.

The following statements give an example of using both a FACTORS and a
TREATMENTS statement. First the FACTORS statement sets up the rows and
columns of a3 × 3 square (factorsr andc). Then, the TREATMENTS statement
augments the square with two cyclic treatments. The resulting design is a3 × 3
Graeco-Latin square, a type of design useful in main-effects factorial experiments.
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proc plan;
factors r=3 ordered c=3 ordered;
treatments a=3 cyclic

b=3 cyclic 2;
run;

The resulting Graeco-Latin square design is reproduced below. Notice how the values
of r andc are ordered (1, 2, 3) as requested.

r --c-- --a-- --b--

1 1 2 3 1 2 3 1 2 3
2 1 2 3 2 3 1 3 1 2
3 1 2 3 3 1 2 2 3 1

Details

Using PROC PLAN Interactively

After specifying a design with a FACTORS statement and running PROC PLAN with
a RUN statement, you can generate additional plans and output data sets without
reinvoking PROC PLAN.

In PROC PLAN, all statements can be used interactively. You can execute statements
singly or in groups by following the single statement or group of statements with a
RUN statement.

If you use PROC PLAN interactively, you can end the procedure with a DATA step,
another PROC step, an ENDSAS statement, or a QUIT statement. The syntax of this
statement is

quit;

When you use PROC PLAN interactively, additional RUN statements do not end the
procedure but tell PROC PLAN to execute additional statements.

Output Data Sets

To understand how PROC PLAN creates output data sets, you need to look at how
the procedure represents a plan. A plan is a list of values for all the factors, the values
being chosen according to the factor-selection requests you specify. For example,
consider the plan produced by the following statements:

proc plan seed=12345;
factors a=3 b=2;
run;
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The plan as displayed by PROC PLAN is shown inFigure 55.5.

The PLAN Procedure

Factor Select Levels Order

a 3 3 Random
b 2 2 Random

a -b-

2 2 1
1 1 2
3 2 1

Figure 55.5. A Simple Plan

The first cell of the plan hasa=2 andb=2, the seconda=2 andb=1, the thirda=1
andb=1, and so on. If you output the plan to a data set with the OUTPUT statement,
by default the output data set contains a numeric variable with that factor’s name; the
values of this numeric variable are the numbers of the successive levels selected for
the factor in the plan. For example, the following statements produceFigure 55.6.

proc plan seed=12345;
factors a=3 b=2;
output out=out;

proc print data=out;
run;

Obs a b

1 2 2
2 2 1
3 1 1
4 1 2
5 3 2
6 3 1

Figure 55.6. Output Data Set from Simple Plan

Alternatively, you can specify the values that are output for a factor with the CVALS=
or NVALS= option. Also, you can specify that the internal values be associated with
the output values in a random order with the RANDOM option. See the“OUTPUT
Statement”section on page 3343.

If you also specify an input data set (DATA=), each factor is associated with a vari-
able in the DATA= data set. This occurs either implicitly by the factor and variable
having the same name or explicitly as described in the specifications for the OUTPUT
statement. In this case, the values of the variables corresponding to the factors are
first read and then interpreted as describing the position of a cell in the plan. Then
the respective values taken by the factors at that position are assigned to the variables
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in the OUT= data set. For example, consider the data set defined by the following
statements.

data in;
input a b;
datalines;

1 1
2 1
3 1
;

Suppose you specify this data set as an input data set for the OUTPUT statement.

proc plan seed=12345;
factors a=3 b=2;
output out=out data=in;

proc print data=out;
run;

PROC PLAN interprets the first observation as referring to the cell in the first row and
column of the plan, sincea=1 andb=1; likewise, the second observation is interpreted
as the cell in the second row and first column, and the third observation as the cell
in the third row and first column. In the output data seta andb have the values they
have in the plan at these positions, as shown inFigure 55.7.

Obs a b

1 2 2
2 1 1
3 3 2

Figure 55.7. Output Form of Input Data Set from Simple Plan

When the factors are random, this has the effect of randomizing the input data set in
the same manner as the plan produced (see the“Randomizing Designs”section on
page 3351 and the“Randomly Assigning Subjects to Treatments”section on page
3337).

Specifying Factor Structures

By appropriately combining features of the PLAN procedure, you can construct an
extensive set of designs. The basic tools are thefactor-selections, which are used
in the FACTORS and TREATMENTS statements.Table 55.1 summarizes how the
procedure interprets variousfactor-selections(assuming that the ORDERED option
is not specified in the PROC PLAN statement).
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Table 55.1. Factor Selection Interpretation

Form of
Request Interpretation Example Results
name=m produce a random per-

mutation of the integers
1, 2, . . . ,m.

t=15 lists a random order-
ing of the numbers
1, 2, . . . , 15.

name=m
cyclic

cyclically permute the
integers1, 2, . . . ,m.

t=5 cyclic selects the integers 1 to
5. On the next iter-
ation, selects 2,3,4,5,1;
then 3,4,5,1,2; and so on.

name=m of n choose a random sample
of m integers (with-
out replacement) from
the set of integers
1, 2, . . . , n.

t=5 of 15 lists a random selection
of 5 numbers from 1 to
15. First, the proce-
dure selects 5 numbers
and then arranges them
in random order.

name=m of n
ordered

has the same effect as
name=m ordered.

t=5 of 15

ordered

lists the integers 1 to 5 in
increasing order (same
as t=5 ordered).

name=m of n
cyclic

permutem of then inte-
gers.

t=5 of 30

cyclic

selects the integers 1 to
5. On the next iter-
ation, selects 2,3,4,5,6;
then 3,4,5,6,7; and so
on. The 30th iteration
30,1,2,3,4; the 31st iter-
ation produces 1,2,3,4,5;
and so on.

name=m
perm

produce a list of all per-
mutations ofm integers.

t=5 perm lists the integers
1,2,3,4,5 on the first
iteration; on the second
lists 1,2,3,5,4; and on
the 119th iteration lists
5,4,3,1,2; and on the last
(120th) lists 5,4,3,2,1.

name=m of n
comb

choose combinations of
m integers fromn inte-
gers.

t=3 of 5

comb

lists all combinations of
5 choose 3 integers. The
first iteration is 1,2,3; the
second is 1,2,4; the third
is 1,2,5; and so on until
the last iteration 3,4,5.
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Table 55.1. (continued)

Form of
Request Interpretation Example Results
name=m of n
cyclic
(initial-block)

permutem of the n in-
tegers, starting with the
values specified in the
initial-block.

t=4 of 30

cyclic

(2 10 15 18)

selects the integers
2,10,15,18. On the
next iteration, se-
lects 3,11,16,19; then
4,12,17,20; and so on.
The thirteenth iteration
is 14,22,27,30; the
fourteenth iteration is
15,23,28,1; and so on.

name=m of n
cyclic
(initial-block)
increment

permutem of the n in-
tegers. Start with the
values specified in the
initial-block, then add
the increment to each
value.

t=4 of 30

cyclic

(2 10 15 18)

2

selects the integers
2,10,15,18. On the
next iteration, se-
lects 4,12,17,20; then
6,14,19,22; and so on.
The wrap occurs at
the eighth iteration.
The eighth iteration is
16,24,29,2; and so on.

In Table 55.1, in order for more than one iteration to appear in the plan, another
name=jfactor selection (withj > 1) must precede the example factor selection. For
example, the following statements produce six of the iterations described in the last
entry ofTable 55.1.

proc plan;
factors c=6 ordered t=4 of 30 cyclic (2 10 15 18) 2;

run;

The following statements create a randomized complete block design and output the
design to a data set.

proc plan ordered;
factors blocks=3 cell=5;
treatments t=5 random;
output out=rcdb;

run;

Table 55.2lists other kinds of experiment designs that can be constructed by PROC
PLAN, along with section and page references for them in this chapter.
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Table 55.2. Experimental Design Examples
Design Page Number
Completely randomized design page 3337
Split-plot design page 3352
Nested design page 3353
Latin square design page 3356
Generalized cyclic incomplete block designpage 3357

Randomizing Designs

In many situations, proper randomization is crucial for the validity of any conclusions
to be drawn from an experiment. Randomization is used both to neutralize the effect
of any unknown systematic biases that may be involved in the design as well as to
provide a basis for the assumptions underlying the analysis.

You can use PROC PLAN to randomize an already-existing design: one produced by
a previous call to PROC PLAN, perhaps, or a more specialized design taken from a
standard reference such asCochran and Cox(1957). The method is to specify the
appropriate block structure in the FACTORS statement and then to specify the data
set where the design is stored with the DATA= option in the OUTPUT statement. For
an illustration of this method, see the“Randomly Assigning Subjects to Treatments”
section on page 3337).

Two sorts of randomization are provided for, corresponding to the RANDOM fac-
tor selection and association types in the FACTORS and OUTPUT statements, re-
spectively. Designs in which factors are completely nested (for example, block de-
signs) should be randomized by specifying that the selection type of each factor is
RANDOM in the FACTORS statement, which is the default (seeExample 55.3on
page 3354). On the other hand, if the factors are crossed (for example, row-and-
column designs), they should be randomized by one random reassignment of their
values for the whole design. To do this, specify that the association type of each
factor is RANDOM in the OUTPUT statement (seeExample 55.4on page 3356).

Displayed Output

The PLAN procedure displays

• them value for each factor, which is the number of values to be selected

• then value for each factor, which is the number of values to be selected from

• the selection type for each factor, as specified in the FACTORS statement

• the initial block and increment number for cyclic factors

• the factor value selections making up each plan

In addition, notes are written to the log giving the starting and ending values of the
random number seed for each call to PROC PLAN.
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ODS Table Names

PROC PLAN assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 55.3. ODS Tables Produced by PROC PLAN

ODS Table Name Description Statement
FInfo General factor information FACTOR & no TREATMENT
PFInfo Plot factor information FACTOR & TREATMENT
Plan Computed plan default
TFInfo Treatment factor information FACTOR & TREATMENT

Examples

Example 55.1. A Split-Plot Design

This plan is appropriate for a split-plot design with main plots forming a randomized
complete block design. In this example, there are three blocks, four main plots per
block, and two subplots per main plot. First, three random permutations (one for each
of theblocks) of the integers 1, 2, 3, and 4 are produced. The four integers correspond
to the four levels of the main plot factora; the permutation determines how the levels
of a are assigned to the main plots within a block. For each of these twelve numbers
(four numbers per block for three blocks), a random permutation of the integers 1 and
2 is produced. Each two-integer permutation determines the assignment of the two
levels of the subplot factorb within a main plot. The following statements produce
Output 55.1.1:

title ’Split Plot Design’;
proc plan seed=37277;

factors block=3 ordered a=4 b=2;
run;
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Output 55.1.1. A Split-Plot Design

Split Plot Design

The PLAN Procedure

Factor Select Levels Order

block 3 3 Ordered
a 4 4 Random
b 2 2 Random

block a -b-

1 4 2 1
3 2 1
1 2 1
2 2 1

2 4 1 2
3 1 2
1 2 1
2 1 2

3 4 2 1
2 2 1
3 2 1
1 2 1

Example 55.2. A Hierarchical Design

In this example, three plants are nested within four pots, which are nested within three
houses. The FACTORS statement requests a random permutation of the numbers 1, 2,
and 3 to chooseHouses randomly. The second step requests a random permutation
of the numbers 1, 2, 3, and 4 for each of those first three numbers to randomly assign
Pots to Houses. Finally, the FACTORS statement requests a random permutation
of 1, 2, and 3 for each of the twelve integers in the second set of permutations. This
last step randomly assignsPlants to Pots. The following statements produceOutput
55.2.1:

title ’Hierarchical Design’;
proc plan seed=17431;

factors Houses=3 Pots=4 Plants=3 / noprint;
output out=nested;

run;

proc print data=nested;
run;
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Output 55.2.1. A Hierarchical Design

Hierarchical Design

Obs Houses Pots Plants

1 1 3 2
2 1 3 3
3 1 3 1
4 1 1 3
5 1 1 1
6 1 1 2
7 1 2 2
8 1 2 3
9 1 2 1

10 1 4 3
11 1 4 2
12 1 4 1
13 2 4 1
14 2 4 3
15 2 4 2
16 2 2 2
17 2 2 1
18 2 2 3
19 2 3 2
20 2 3 3
21 2 3 1
22 2 1 2
23 2 1 3
24 2 1 1
25 3 4 1
26 3 4 3
27 3 4 2
28 3 1 3
29 3 1 2
30 3 1 1
31 3 2 1
32 3 2 2
33 3 2 3
34 3 3 3
35 3 3 2
36 3 3 1

Example 55.3. An Incomplete Block Design

Jarrett and Hall(1978) give an example of a generalized cyclic design with good
efficiency characteristics. The design consists of two replicates of 52 treatments in
13 blocks of size 8. The following statements use the PLAN procedure to generate
this design in an appropriately randomized form and store it in a SAS data set. Then,
the TABULATE procedure is used to display the randomized plan. The following
statements produceOutput 55.3.1andOutput 55.3.2:

title ’Generalized Cyclic Block Design’;
proc plan seed=33373;

treatments trtmts=8 of 52 cyclic (1 2 3 4 32 43 46 49) 4;
factors blocks=13 plots=8;
output out=c;

quit;

proc tabulate;
class blocks plots;
var trtmts;
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table blocks, plots*(trtmts*f=8.) / rts=8;
run;

Output 55.3.1. A Generalized Cyclic Block Design

Generalized Cyclic Block Design

The PLAN Procedure

Plot Factors

Factor Select Levels Order

blocks 13 13 Random
plots 8 8 Random

Treatment Factors

Factor Select Levels Order Initial Block / Increment

trtmts 8 52 Cyclic (1 2 3 4 32 43 46 49) / 4

blocks -----plots----- ---------trtmts--------

10 7 4 8 1 2 3 5 6 1 2 3 4 32 43 46 49
8 1 2 4 3 8 6 5 7 5 6 7 8 36 47 50 1
9 2 5 4 7 3 1 8 6 9 10 11 12 40 51 2 5
6 4 2 6 8 3 7 1 5 13 14 15 16 44 3 6 9
7 4 7 6 3 1 2 8 5 17 18 19 20 48 7 10 13
4 4 8 1 5 3 6 7 2 21 22 23 24 52 11 14 17
2 6 2 3 8 7 5 1 4 25 26 27 28 4 15 18 21
3 6 2 3 1 7 4 5 8 29 30 31 32 8 19 22 25
1 1 2 7 8 5 6 3 4 33 34 35 36 12 23 26 29
5 5 7 6 8 4 3 1 2 37 38 39 40 16 27 30 33

12 5 8 1 4 7 3 6 2 41 42 43 44 20 31 34 37
13 3 5 1 8 4 2 6 7 45 46 47 48 24 35 38 41
11 4 1 5 2 3 8 6 7 49 50 51 52 28 39 42 45
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Output 55.3.2. A Generalized Cyclic Block Design

Generalized Cyclic Block Design

--------------------------------------------------------------------------------
| | plots |
| |-----------------------------------------------------------------------|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| |--------+--------+--------+--------+--------+--------+--------+--------|
| | trtmts | trtmts | trtmts | trtmts | trtmts | trtmts | trtmts | trtmts |
| |--------+--------+--------+--------+--------+--------+--------+--------|
| | Sum | Sum | Sum | Sum | Sum | Sum | Sum | Sum |
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|blocks| | | | | | | | |
|------| | | | | | | | |
|1 | 33| 34| 26| 29| 12| 23| 35| 36|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|2 | 18| 26| 27| 21| 15| 25| 4| 28|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|3 | 32| 30| 31| 19| 22| 29| 8| 25|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|4 | 23| 17| 52| 21| 24| 11| 14| 22|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|5 | 30| 33| 27| 16| 37| 39| 38| 40|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|6 | 6| 14| 44| 13| 9| 15| 3| 16|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|7 | 48| 7| 20| 17| 13| 19| 18| 10|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|8 | 5| 6| 8| 7| 50| 47| 1| 36|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|9 | 51| 9| 40| 11| 10| 5| 12| 2|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|10 | 4| 32| 43| 2| 46| 49| 1| 3|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|11 | 50| 52| 28| 49| 51| 42| 45| 39|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|12 | 43| 37| 31| 44| 41| 34| 20| 42|
|------+--------+--------+--------+--------+--------+--------+--------+--------|
|13 | 47| 35| 45| 24| 46| 38| 41| 48|
--------------------------------------------------------------------------------

Example 55.4. A Latin Square Design

All of the preceding examples involve designs with completely nested block struc-
tures, for which PROC PLAN was especially designed. However, by appropriate
coordination of its facilities, a much wider class of designs can be accommodated.
A Latin square design is based on experimental units that have a row-and-column
block structure. The following example uses the CYCLIC option for a treatment fac-
tor tmts to generate a simple4× 4 Latin square. Randomizing a Latin square design
involves randomly permuting the row, column, and treatment values independently.
In order to do this, use the RANDOM option in the OUTPUT statement of PROC
PLAN. The example also usesfactor-value-settingsin the OUTPUT statement. The
following statements produceOutput 55.4.1:
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title ’Latin Square Design’;
proc plan seed=37430;

factors rows=4 ordered cols=4 ordered / noprint;
treatments tmts=4 cyclic;
output out=g

rows cvals=(’Day 1’ ’Day 2’ ’Day 3’ ’Day 4’) random
cols cvals=(’Lab 1’ ’Lab 2’ ’Lab 3’ ’Lab 4’) random
tmts nvals=( 0 100 250 450 ) random;

quit;

proc tabulate;
class rows cols;
var tmts;
table rows, cols*(tmts*f=6.) / rts=8;

run;

Output 55.4.1. A Randomized Latin Square Design

Latin Square Design

------------------------------------
| | cols |
| |---------------------------|
| |Lab 1 |Lab 2 |Lab 3 |Lab 4 |
| |------+------+------+------|
| | tmts | tmts | tmts | tmts |
| |------+------+------+------|
| | Sum | Sum | Sum | Sum |
|------+------+------+------+------|
|rows | | | | |
|------| | | | |
|Day 1 | 0| 250| 100| 450|
|------+------+------+------+------|
|Day 2 | 250| 450| 0| 100|
|------+------+------+------+------|
|Day 3 | 100| 0| 450| 250|
|------+------+------+------+------|
|Day 4 | 450| 100| 250| 0|
------------------------------------

Example 55.5. A Generalized Cyclic Incomplete Block Design

The following statements depict how to create an appropriately randomized gener-
alized cyclic incomplete block design forv treatments (given by the value oft) in b
blocks (given by the value ofb) of sizek (with values ofp indexing the cells within
a block) with initial block(e1 e2 · · · ek) and increment numberi.

factors b= b p=k ;

treatments t= k of v cyclic ( e1 e2 · · · ek ) i ;
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For example, the specification

proc plan seed=37430;
factors b=10 p=4;
treatments t=4 of 30 cyclic (1 3 4 26) 2;

run;

generates the generalized cyclic incomplete block design given in Example 1 of
Jarrett and Hall(1978), which is given by the rows and columns of the plan asso-
ciated with the treatment factort in Output 55.5.1.

Output 55.5.1. A Generalized Cyclic Incomplete Block Design

The PLAN Procedure

Plot Factors

Factor Select Levels Order

b 10 10 Random
p 4 4 Random

Treatment Factors

Initial Block
Factor Select Levels Order / Increment

t 4 30 Cyclic (1 3 4 26) / 2

b ---p--- -----t-----

2 2 3 1 4 1 3 4 26
1 3 2 4 1 3 5 6 28
3 2 3 4 1 5 7 8 30

10 4 2 3 1 7 9 10 2
9 4 1 2 3 9 11 12 4
4 1 3 2 4 11 13 14 6
5 1 2 4 3 13 15 16 8
8 3 2 4 1 15 17 18 10
7 2 4 1 3 17 19 20 12
6 2 1 4 3 19 21 22 14

Example 55.6. Permutations and Combinations

Occasionally, you may need to generate all possible permutations ofn things, or all
possible combinations ofn things takenm at a time.

For example, suppose you are planning an experiment in cognitive psychology where
you want to present four successive stimuli to each subject. You want to observe each
permutation of the four stimuli. The following statements use PROC PLAN to create
a data set containing all possible permutations of 4 numbers in random order.
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title ’All Permutations of 1,2,3,4’;
proc plan seed=60359;

factors Subject = 24
Order = 4 ordered;

treatments Stimulus = 4 perm;
output out=Psych;

proc sort data=Psych out=Psych;
by Subject Order;

proc tabulate formchar=’ ’ noseps;
class Subject Order;
var Stimulus;
table Subject, Order*(Stimulus*f=8.)*sum=’ ’ / rts=9;

run;

The variableSubject is set at 24 levels because there are4! = 24 total permutations
to be listed. IfSubject> 24, the list repeats.Output 55.6.1andOutput 55.6.2display
the PROC PLAN output. Note that the variableSubject is listed in random order.

Output 55.6.1. List of Permutations

All Permutations of 1,2,3,4

The PLAN Procedure

Plot Factors

Factor Select Levels Order

Subject 24 24 Random
Order 4 4 Ordered

Treatment Factors

Factor Select Levels Order

Stimulus 4 4 Perm
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Output 55.6.2. List of Permutations

All Permutations of 1,2,3,4

The PLAN Procedure

Subject -Order- -Stimulus-

4 1 2 3 4 1 2 3 4
15 1 2 3 4 1 2 4 3
24 1 2 3 4 1 3 2 4

1 1 2 3 4 1 3 4 2
5 1 2 3 4 1 4 2 3

17 1 2 3 4 1 4 3 2
19 1 2 3 4 2 1 3 4
14 1 2 3 4 2 1 4 3

6 1 2 3 4 2 3 1 4
23 1 2 3 4 2 3 4 1

8 1 2 3 4 2 4 1 3
2 1 2 3 4 2 4 3 1

13 1 2 3 4 3 1 2 4
16 1 2 3 4 3 1 4 2
12 1 2 3 4 3 2 1 4
18 1 2 3 4 3 2 4 1
21 1 2 3 4 3 4 1 2

9 1 2 3 4 3 4 2 1
22 1 2 3 4 4 1 2 3
10 1 2 3 4 4 1 3 2

7 1 2 3 4 4 2 1 3
11 1 2 3 4 4 2 3 1

3 1 2 3 4 4 3 1 2
20 1 2 3 4 4 3 2 1

The output data setPsych contains 96 observations of the 3 variables (Subject,
Order, andStimulus). Sorting the output data set bySubject and byOrder within
Subject results in all possible permutations ofStimulus in random order. PROC
TABULATE displays these permutations inOutput 55.6.3.
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Output 55.6.3. Randomized Permutations

All Permutations of 1,2,3,4

Order

1 2 3 4

Stimulus Stimulus Stimulus Stimulus

Subject
1 1 3 4 2
2 2 4 3 1
3 4 3 1 2
4 1 2 3 4
5 1 4 2 3
6 2 3 1 4
7 4 2 1 3
8 2 4 1 3
9 3 4 2 1
10 4 1 3 2
11 4 2 3 1
12 3 2 1 4
13 3 1 2 4
14 2 1 4 3
15 1 2 4 3
16 3 1 4 2
17 1 4 3 2
18 3 2 4 1
19 2 1 3 4
20 4 3 2 1
21 3 4 1 2
22 4 1 2 3
23 2 3 4 1
24 1 3 2 4

As another example, suppose you have six alternative treatments, any four of which
can occur together in a block (in no particular order). The following statements use
PROC PLAN to create a data set containing all possible combinations of six numbers
taken four at a time. In this case, you use ODS to create the data set.

title ’All Combinations of (6 Choose 4) Integers’;
ods output Plan=Combinations;
proc plan;

factors Block=15 ordered
Treat= 4 of 6 comb;

run;
proc print data=Combinations noobs;
run;

The variableBlock has 15 levels since there are a total of6!/(4!2!) = 15 combina-
tions of four integers chosen from six integers. The data set formed by ODS from the
displayed plan has one row for each block, with the four values ofTreat correspond-
ing to four different variables, as shown inOutput 55.6.4.



3362 � Chapter 55. The PLAN Procedure

Output 55.6.4. List of Combinations

All Combinations of (6 Choose 4) Integers

The PLAN Procedure

Factor Select Levels Order

Block 15 15 Ordered
Treat 4 6 Comb

Block -Treat-

1 1 2 3 4
2 1 2 3 5
3 1 2 3 6
4 1 2 4 5
5 1 2 4 6
6 1 2 5 6
7 1 3 4 5
8 1 3 4 6
9 1 3 5 6

10 1 4 5 6
11 2 3 4 5
12 2 3 4 6
13 2 3 5 6
14 2 4 5 6
15 3 4 5 6

Output 55.6.5. Combinations Data Set Created by ODS

All Combinations of (6 Choose 4) Integers

Block Treat1 Treat2 Treat3 Treat4

1 1 2 3 4
2 1 2 3 5
3 1 2 3 6
4 1 2 4 5
5 1 2 4 6
6 1 2 5 6
7 1 3 4 5
8 1 3 4 6
9 1 3 5 6

10 1 4 5 6
11 2 3 4 5
12 2 3 4 6
13 2 3 5 6
14 2 4 5 6
15 3 4 5 6
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Chapter 56
The PLS Procedure
Overview

The PLS procedure fits models using any one of a number of linear predictive meth-
ods, includingpartial least squares(PLS). Ordinary least squares regression, as im-
plemented in SAS/STAT procedures such as PROC GLM and PROC REG, has the
single goal of minimizing sample response prediction error, seeking linear functions
of the predictors that explain as much variation in each response as possible. The
techniques implemented in the PLS procedure have the additional goal of accounting
for variation in the predictors, under the assumption that directions in the predictor
space that are well sampled should provide better prediction fornew observations
when the predictors are highly correlated. All of the techniques implemented in the
PLS procedure work by extracting successive linear combinations of the predictors,
calledfactors(also calledcomponents, latent vectors, or latent variables), which op-
timally address one or both of these two goals—explaining response variation and
explaining predictor variation. In particular, the method of partial least squares bal-
ances the two objectives, seeking for factors that explain both response and predictor
variation.

Note that the name “partial least squares” also applies to a more general statistical
method that isnot implemented in this procedure. The partial least squares method
was originally developed in the 1960s by the econometrician Herman Wold (1966)
for modeling “paths” of causal relation between any number of “blocks” of variables.
However, the PLS procedure fits onlypredictivepartial least squares models, with
one “block” of predictors and one “block” of responses. If you are interested in
fitting more general path models, you should consider using the CALIS procedure.

Basic Features

The techniques implemented by the PLS procedure are

• principal components regression, which extracts factors to explain as much
predictor sample variation as possible.

• reduced rank regression, which extracts factors to explain as much response
variation as possible. This technique, also known as (maximum) redundancy
analysis, differs from multivariate linear regression only when there are multi-
ple responses.

• partial least squares regression, which balances the two objectives of explaining
response variation and explaining predictor variation. Two different formula-
tions for partial least squares are available: the original predictive method of
Wold (1966) and the SIMPLS method of de Jong (1993).
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The number of factors to extract depends on the data. Basing the model on more
extracted factors improves the model fit to the observed data, but extracting too many
factors can causeover-fitting, that is, tailoring the model too much to the current data,
to the detriment of future predictions. The PLS procedure enables you to choose the
number of extracted factors bycross validation, that is, fitting the model to part of the
data, minimizing the prediction error for the unfitted part, and iterating with different
portions of the data in the roles of fitted and unfitted. Various methods of cross
validation are available, including one-at-a-time validation, and splitting the data into
blocks. The PLS procedure also offers test set validation, where the model is fit to
the entire primary input data set and the fit is evaluated over a distinct test data set.

You can use the general linear modeling approach of the GLM procedure to specify
a model for your design, allowing for general polynomial effects as well as classifi-
cation or ANOVA effects. You can save the model fit by the PLS procedure in a data
set and apply it to new data by using the SCORE procedure.

Getting Started

Spectrometric Calibration

The example in this section illustrates basic features of the PLS procedure. The
data are reported in Umetrics (1995); the original source is Lindberg, Persson, and
Wold (1983). Suppose that you are researching pollution in the Baltic Sea, and you
would like to use the spectra of samples of sea water to determine the amounts of
three compounds present in samples from the Baltic Sea: lignin sulfonate (ls: pulp
industry pollution), humic acids (ha: natural forest products), and optical whitener
from detergent (dt). Spectrometric calibration is a type of problem in which partial
least squares can be very effective. The predictors are the spectra emission intensities
at different frequencies in sample spectrum, and the responses are the amounts of
various chemicals in the sample.

For the purposes of calibrating the model, samples with known compositions are
used. The calibration data consist of 16 samples of known concentrations ofls, ha,
anddt, with spectra based on 27 frequencies (or, equivalently, wavelengths). The
following statements create a SAS data set namedSample for these data.

data Sample;
input obsnam $ v1-v27 ls ha dt @@;
datalines;

EM1 2766 2610 3306 3630 3600 3438 3213 3051 2907 2844 2796
2787 2760 2754 2670 2520 2310 2100 1917 1755 1602 1467
1353 1260 1167 1101 1017 3.0110 0.0000 0.00

EM2 1492 1419 1369 1158 958 887 905 929 920 887 800
710 617 535 451 368 296 241 190 157 128 106

89 70 65 56 50 0.0000 0.4005 0.00
EM3 2450 2379 2400 2055 1689 1355 1109 908 750 673 644

640 630 618 571 512 440 368 305 247 196 156
120 98 80 61 50 0.0000 0.0000 90.63

EM4 2751 2883 3492 3570 3282 2937 2634 2370 2187 2070 2007
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1974 1950 1890 1824 1680 1527 1350 1206 1080 984 888
810 732 669 630 582 1.4820 0.1580 40.00

EM5 2652 2691 3225 3285 3033 2784 2520 2340 2235 2148 2094
2049 2007 1917 1800 1650 1464 1299 1140 1020 909 810

726 657 594 549 507 1.1160 0.4104 30.45
EM6 3993 4722 6147 6720 6531 5970 5382 4842 4470 4200 4077

4008 3948 3864 3663 3390 3090 2787 2481 2241 2028 1830
1680 1533 1440 1314 1227 3.3970 0.3032 50.82

EM7 4032 4350 5430 5763 5490 4974 4452 3990 3690 3474 3357
3300 3213 3147 3000 2772 2490 2220 1980 1779 1599 1440
1320 1200 1119 1032 957 2.4280 0.2981 70.59

EM8 4530 5190 6910 7580 7510 6930 6150 5490 4990 4670 4490
4370 4300 4210 4000 3770 3420 3060 2760 2490 2230 2060
1860 1700 1590 1490 1380 4.0240 0.1153 89.39

EM9 4077 4410 5460 5857 5607 5097 4605 4170 3864 3708 3588
3537 3480 3330 3192 2910 2610 2325 2064 1830 1638 1476
1350 1236 1122 1044 963 2.2750 0.5040 81.75

EM10 3450 3432 3969 4020 3678 3237 2814 2487 2205 2061 2001
1965 1947 1890 1776 1635 1452 1278 1128 981 867 753

663 600 552 507 468 0.9588 0.1450 101.10
EM11 4989 5301 6807 7425 7155 6525 5784 5166 4695 4380 4197

4131 4077 3972 3777 3531 3168 2835 2517 2244 2004 1809
1620 1470 1359 1266 1167 3.1900 0.2530 120.00

EM12 5340 5790 7590 8390 8310 7670 6890 6190 5700 5380 5200
5110 5040 4900 4700 4390 3970 3540 3170 2810 2490 2240
2060 1870 1700 1590 1470 4.1320 0.5691 117.70

EM13 3162 3477 4365 4650 4470 4107 3717 3432 3228 3093 3009
2964 2916 2838 2694 2490 2253 2013 1788 1599 1431 1305
1194 1077 990 927 855 2.1600 0.4360 27.59

EM14 4380 4695 6018 6510 6342 5760 5151 4596 4200 3948 3807
3720 3672 3567 3438 3171 2880 2571 2280 2046 1857 1680
1548 1413 1314 1200 1119 3.0940 0.2471 61.71

EM15 4587 4200 5040 5289 4965 4449 3939 3507 3174 2970 2850
2814 2748 2670 2529 2328 2088 1851 1641 1431 1284 1134
1020 918 840 756 714 1.6040 0.2856 108.80

EM16 4017 4725 6090 6570 6354 5895 5346 4911 4611 4422 4314
4287 4224 4110 3915 3600 3240 2913 2598 2325 2088 1917
1734 1587 1452 1356 1257 3.1620 0.7012 60.00

;

Fitting a PLS Model

To isolate a few underlying spectral factors that provide a good predictive model, you
can fit a PLS model to the 16 samples using the following SAS statements:

proc pls data=sample;
model ls ha dt = v1-v27;

run;

By default, the PLS procedure extracts at most 15 factors. The procedure lists the
amount of variation accounted for by each of these factors, both individual and cu-
mulative; this listing is shown inFigure 56.1.
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Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155
2 2.1830 99.6436 24.2435 66.1590
3 0.1781 99.8217 24.5339 90.6929
4 0.1197 99.9414 3.7898 94.4827
5 0.0415 99.9829 1.0045 95.4873
6 0.0106 99.9935 2.2808 97.7681
7 0.0017 99.9952 1.1693 98.9374
8 0.0010 99.9961 0.5041 99.4415
9 0.0014 99.9975 0.1229 99.5645

10 0.0010 99.9985 0.1103 99.6747
11 0.0003 99.9988 0.1523 99.8270
12 0.0003 99.9991 0.1291 99.9561
13 0.0002 99.9994 0.0312 99.9873
14 0.0004 99.9998 0.0065 99.9938
15 0.0002 100.0000 0.0062 100.0000

Figure 56.1. PLS Variation Summary

Note that all of the variation in both the predictors and the responses is accounted
for by only 15 factors; this is because there are only 16 sample observations. More
importantly, almost all of the variation is accounted for with even fewer factors—one
or two for the predictors and three to eight for the responses.

Selecting the Number of Factors by Cross Validation

A PLS model is not complete until you choose the number of factors. You can choose
the number of factors by using cross validation, in which the data set is divided into
two or more groups. You fit the model to all groups except one, then you check the
capability of the model to predict responses for the group omitted. Repeating this for
each group, you then can measure the overall capability of a given form of the model.
The Predicted REsidual Sum of Squares (PRESS) statistic is based on the residuals
generated by this process.

To select the number of extracted factors by cross validation, you specify the CV=
option with an argument that says which cross validation method to use. For exam-
ple, a common method is split-sample validation, in which the different groups are
comprised of everynth observation beginning with the first, everynth observation
beginning with the second, and so on. You can use the CV=SPLIT option to specify
split-sample validation withn = 7 by default, as in the following SAS statements:

proc pls data=sample cv=split;
model ls ha dt = v1-v27;

run;

The resulting output is shown inFigure 56.2andFigure 56.3.
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Split-sample Validation for the Number of Extracted Factors

Number of Root
Extracted Mean

Factors PRESS

0 1.107747
1 0.957983
2 0.931314
3 0.520222
4 0.530501
5 0.586786
6 0.475047
7 0.477595
8 0.483138
9 0.485739

10 0.48946
11 0.521445
12 0.525653
13 0.531049
14 0.531049
15 0.531049

Minimum root mean PRESS 0.4750
Minimizing number of factors 6

Figure 56.2. Split-Sample Validated PRESS Statistics for Number of Factors

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155
2 2.1830 99.6436 24.2435 66.1590
3 0.1781 99.8217 24.5339 90.6929
4 0.1197 99.9414 3.7898 94.4827
5 0.0415 99.9829 1.0045 95.4873
6 0.0106 99.9935 2.2808 97.7681

Figure 56.3. PLS Variation Summary for Split-Sample Validated Model

The absolute minimum PRESS is achieved with six extracted factors. Notice, how-
ever, that this is not much smaller than the PRESS for three factors. By using the
CVTEST option, you can perform a statistical model comparison suggested by van
der Voet (1994) to test whether this difference is significant, as shown in the following
SAS statements:



3372 � Chapter 56. The PLS Procedure

proc pls data=sample cv=split cvtest(seed=12345);
model ls ha dt = v1-v27;

run;

The model comparison test is based on a rerandomization of the data. By default, the
seed for this randomization is based on the system clock, but it is specified here. The
resulting output is shown inFigure 56.4andFigure 56.5.

The PLS Procedure

Split-sample Validation for the Number of Extracted Factors

Number of Root
Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.107747 9.272858 0.0010
1 0.957983 10.62305 <.0001
2 0.931314 8.950878 <.0001
3 0.520222 5.133259 0.1430
4 0.530501 5.168427 0.1330
5 0.586786 6.437266 0.0150
6 0.475047 0 1.0000
7 0.477595 2.809763 0.4750
8 0.483138 7.189526 0.0110
9 0.485739 7.931726 0.0060

10 0.48946 6.612597 0.0140
11 0.521445 6.666235 0.0130
12 0.525653 7.092861 0.0070
13 0.531049 7.538298 0.0020
14 0.531049 7.538298 0.0020
15 0.531049 7.538298 0.0020

Minimum root mean PRESS 0.4750
Minimizing number of factors 6
Smallest number of factors with p > 0.1 3

Figure 56.4. Testing Split-Sample Validation for Number of Factors

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155
2 2.1830 99.6436 24.2435 66.1590
3 0.1781 99.8217 24.5339 90.6929

Figure 56.5. PLS Variation Summary for Tested Split-Sample Validated Model

Thep-value of 0.1430 in comparing the cross-validated residuals from models with
6 and 3 factors indicates that the difference between the two models is insignificant;
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therefore, the model with fewer factors is preferred. The variation summary shows
that over 99% of the predictor variation and over 90% of the response variation are
accounted for by the three factors.

Predicting New Observations

Now that you have chosen a three-factor PLS model for predicting pollutant con-
centrations based on sample spectra, suppose that you have two new samples. The
following SAS statements create a data set containing the spectra for the new sam-
ples:

data newobs;
input obsnam $ v1-v27 @@;
datalines;

EM17 3933 4518 5637 6006 5721 5187 4641 4149 3789
3579 3447 3381 3327 3234 3078 2832 2571 2274
2040 1818 1629 1470 1350 1245 1134 1050 987

EM25 2904 2997 3255 3150 2922 2778 2700 2646 2571
2487 2370 2250 2127 2052 1713 1419 1200 984

795 648 525 426 351 291 240 204 162
;

You can apply the PLS model to these samples to estimate pollutant concentration.
To do so, append the new samples to the original 16, and specify that the predicted
values for all 18 be output to a data set, as shown in the following statements:

data all; set sample newobs;
proc pls data=all nfac=3;

model ls ha dt = v1-v27;
output out=pred p=p_ls p_ha p_dt;

proc print data=pred;
where (obsnam in (’EM17’,’EM25’));
var obsnam p_ls p_ha p_dt;

run;

The new observations are not used in calculating the PLS model, since they have no
response values. Their predicted concentrations are shown inFigure 56.6.

Obs obsnam p_ls p_ha p_dt

17 EM17 2.54261 0.31877 81.4174
18 EM25 -0.24716 1.37892 46.3212

Figure 56.6. Predicted Concentrations for New Observations
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Syntax

The following statements are available in PROC PLS. Items within the brackets< >
are optional.

PROC PLS < options > ;
BY variables ;
CLASS variables < / option > ;
MODEL dependent-variables = effects < / options > ;
OUTPUT OUT= SAS-data-set < options > ;

To analyze a data set, you must use the PROC PLS and MODEL statements. You can
use the other statements as needed.

PROC PLS Statement

PROC PLS < options > ;

You use the PROC PLS statement to invoke the PLS procedure and, optionally, to
indicate the analysis data and method. The following options are available.

CENSCALE
lists the centering and scaling information for each response and predictor.

CV=ONE
CV=SPLIT < (n) >
CV=BLOCK < (n) >
CV=RANDOM < (cv-random-opts) >
CV=TESTSET(SAS-data-set)

specifies the cross validation method to be used. By default, no cross validation is per-
formed. The method CV=ONE requests one-at-a-time cross validation, CV=SPLIT
requests that everynth observation be excluded, CV=BLOCK requests thatn blocks
of consecutive observations be excluded, CV=RANDOM requests that observations
be excluded at random, and CV=TESTSET(SAS-data-set) specifies a test set of
observations to be used for validation (formally, this is called “test set validation”
rather than “cross validation”). You can, optionally, specifyn for CV=SPLIT and
CV=BLOCK; the default isn = 7. You can also specify the following optional
cv-random-optionsin parentheses after the CV=RANDOM option:

NITER=n specifies the number of random subsets to exclude. The default
value is 10.

NTEST=n specifies the number of observations in each random subset chosen
for exclusion. The default value is one-tenth of the total number of
observations.

SEED=n specifies an integer used to start the pseudo-random number gener-
ator for selecting the random test set. If you don’t specify a seed,
or specify a value less than or equal to zero, the seed is by default
generated from reading the time of day from the computer’s clock.
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CVTEST < (cvtest-options) >
specifies that van der Voet’s (1994) randomization-based model comparison test
be performed to test models with different numbers of extracted factors against
the model that minimizes the predicted residual sum of squares; see the“Cross
Validation” section on page 3384 for more information. You can also specify the
following cv-test-optionsin parentheses after the CVTEST option:

PVAL=n specifies the cut-off probability for declaring an insignificant dif-
ference. The default value is 0.10.

STAT=test-statistic specifies the test statistic for the model comparison. You can
specify either T2, for Hotelling’sT 2 statistic, or PRESS, for the
predicted residual sum of squares. The default value is T2.

NSAMP=n specifies the number of randomizations to perform. The default
value is 1000.

SEED=n specifies the seed value for randomization generation (the clock
time is used by default).

DATA=SAS-data-set
names the SAS data set to be used by PROC PLS. The default is the most recently
created data set.

DETAILS
lists the details of the fitted model for each successive factor. The details listed are
different for different extraction methods: see the“Displayed Output”section on page
3387 for more information.

METHOD=PLS < ( PLS-options ) >
METHOD=SIMPLS
METHOD=PCR
METHOD=RRR

specifies the general factor extraction method to be used. The value PLS requests
partial least squares, SIMPLS requests the SIMPLS method of de Jong (1993), PCR
requests principal components regression, and RRR requests reduced rank regres-
sion. The default is METHOD=PLS. You can also specify the following optional
PLS-optionsin parentheses after METHOD=PLS:

ALGORITHM=NIPALS | SVD | EIG | RLGW names the specific algorithm used to
compute extracted PLS factors. NIPALS requests the usual iter-
ative NIPALS algorithm, SVD bases the extraction on the singu-
lar value decomposition ofX ′Y , EIG bases the extraction on the
eigenvalue decomposition ofY ′XX ′Y , and RLGW is an iterative
approach that is efficient when there are many predictors (Ränner
et al. 1994). ALGORITHM=SVD is the most accurate but least
efficient approach; the default is ALGORITHM=NIPALS.

MAXITER=n specifies the maximum number of iterations for the NIPALS and
RLGW algorithms. The default value is 200.
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EPSILON=n specifies the convergence criterion for the NIPALS and RLGW al-
gorithms. The default value is10−12.

MISSING=NONEExperimental
MISSING=AVG
MISSING=EM < ( EM-options ) >

specifies how observations with missing values are to be handled in computing the
fit. The default is MISSING=NONE, for which observations with any missing vari-
ables (dependent or independent) are excluded from the analysis. MISSING=AVG
specifies that the fit be computed by filling in missing values with the average of
the nonmissing values for the corresponding variable. If you specify MISSING=EM
then the procedure first computes the model with MISSING=AVG, then fills in miss-
ing values by their predicted values based on that model and computes the model
again. You can also specify the following optionalEM-optionsin parentheses after
MISSING=EM:

MAXITER=n specifies the maximum number of iterations for the imputation/fit
loop. The default value is 1. If you specify a large value of
MAXITER= then the loop will iterate until it converges (as con-
trolled by the EPSILON= option).

EPSILON=n specifies the convergence criterion for the imputation/fit loop. The
default value for is10−8. This option is only effective if you spec-
ify a large value for the MAXITER= option.

NFAC=n
specifies the number of factors to extract. The default ismin{15, p,N}, wherep is
the number of predictors (the number of dependent variables for METHOD=RRR)
andN is the number of runs (observations). This is probably more than you need
for most applications. Extracting too many factors can lead to an over-fit model, one
that matches the training data too well, sacrificing predictive ability. Thus, if you use
the default NFAC= specification, you should also either use the CV= option to select
the appropriate number of factors for the final model or consider the analysis to be
preliminary and examine the results to determine the appropriate number of factors
for a subsequent analysis.

NOCENTER
suppresses centering of the responses and predictors before fitting. This is useful
if the analysis variables are already centered and scaled. See the“Centering and
Scaling”section on page 3386 for more information.

NOCVSTDIZE
suppresses re-centering and re-scaling of the responses and predictors before each
model is fit in the cross validation. See the“Centering and Scaling”section on page
3386 for more information.
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NOPRINT
suppresses the normal display of results. This is useful when you want only the output
statistics saved in a data set. Note that this option temporarily disables the Output
Delivery System (ODS); seeChapter 14, “Using the Output Delivery System,”for
more information.

NOSCALE
suppresses scaling of the responses and predictors before fitting. This is useful if the
analysis variables are already centered and scaled. See the“Centering and Scaling”
section on page 3386 for more information.

VARSCALE
specifies that continuous model variables should be centered and scaled prior to cen-
tering and scaling the model effects in which they are involved. The rescaling speci-
fied by the VARSCALE option may be more appropriate if the model involves cross
products between model variables; however, the VARSCALE option still may not
produce the model you expect. See the“Centering and Scaling”section on page
3386 for more information.

VARSS
lists, in addition to the average response and predictor sum of squares accounted for
by each successive factor, the amount of variation accounted for in each response and
predictor.

BY Statement

BY variables ;

You can specify a BY statement with PROC PLS to obtain separate analyses on ob-
servations in groups defined by the BY variables. When a BY statement appears, the
procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.

If you specify more than one BY statement, the procedure uses only the latest BY
statement and ignores any previous ones.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the PLS procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables < / option > ;

The CLASS statement names the classification variables to be used in the analysis. If
the CLASS statement is used, it must appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels
are determined from the entire formatted values of the CLASS variables. Note that
this represents a slight change from previous releases in the way in which class levels
are determined. In releases prior to Version 9, class levels were determined using no
more than the first 16 characters of the formatted values. If you wish to revert to this
previous behavior you can use the TRUNCATE option on the CLASS statement. In
any case, you can use formats to group values into levels. Refer to the discussion of
the FORMAT procedure in theSAS Procedures Guideand to the discussions of the
FORMAT statement and SAS formats inSAS Language Reference: Dictionary.

Any variable in the model that is not listed in the CLASS statement is assumed to be
continuous. Continuous variables must be numeric.

You can specify the following option in the CLASS statement after a slash(/):

TRUNCATE
specifies that class levels should be determined using only up to the first 16 characters
of the formatted values of CLASS variables. When formatted values are longer than
16 characters, you can use this option in order to revert to the levels as determined in
releases previous to Version 9.

MODEL Statement

MODEL response-variables = predictor-effects < / options >;

The MODEL statement names the responses and the predictors, which determine the
Y andX matrices of the model, respectively. Usually you simply list the names of
the predictor variables as the model effects, but you can also use the effects notation
of PROC GLM to specify polynomial effects and interactions; see the“Specification
of Effects” section on page 1784 inChapter 32, “The GLM Procedure,”for further
details. The MODEL statement is required. You can specify only one MODEL state-
ment (in contrast to the REG procedure, for example, which allows several MODEL
statements in the same PROC REG run).

You can specify the following options in the MODEL statement after a slash (/).

INTERCEPT
By default, the responses and predictors are centered; thus, no intercept is required in
the model. You can specify the INTERCEPT option to override the default.
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SOLUTION
lists the coefficients of the final predictive model for the responses. The coefficients
for predicting the centered and scaled responses based on the centered and scaled
predictors are displayed, as well as the coefficients for predicting the raw responses
based on the raw predictors.

OUTPUT Statement

OUTPUT OUT= SAS-data-set keyword=names < . . . keyword=names >;

You use the OUTPUT statement to specify a data set to receive quantities that can be
computed for every input observation, such as extracted factors and predicted values.
The followingkeywordsare available:

PREDICTED predicted values for responses

YRESIDUAL residuals for responses

XRESIDUAL residuals for predictors

XSCORE extracted factors (X-scores, latent vectors, latent variables,T )

YSCORE extracted responses (Y-scores,U )

STDY standardized (centered and scaled) responses

STDX standardized (centered and scaled) predictors

H approximate leverage

PRESS approximate predicted residuals

TSQUARE scaled sum of squares of score values

STDXSSE sum of squares of residuals for standardized predictors

STDYSSE sum of squares of residuals for standardized responses

Suppose that there areNx predictors andNy responses and that the model hasNf

selected factors.

• The keywords XRESIDUAL and STDX define an output variable for each pre-
dictor, soNx names are required after each one.

• The keywords PREDICTED, YRESIDUAL, STDY, and PRESS define an out-
put variable for each response, soNy names are required after each of these
keywords.

• The keywords XSCORE and YSCORE specify an output variable for each se-
lected model factor. For these keywords, you provide only one base name, and
the variables corresponding to each successive factor are named by appending
the factor number to the base name. For example, ifNf = 3 then a specifica-
tion of XSCORE=T would produce the variables T1, T2, and T3.

• Finally, the keywords H, TSQUARE, STDXSSE, and STDYSSE each spec-
ify a single output variable, so only one name is required after each of these
keywords.
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Details

Regression Methods

All of the predictive methods implemented in PROC PLS work essentially by finding
linear combinations of the predictors (factors) to use to predict the responses linearly.
The methods differ only in how the factors are derived, as explained in the following
sections.

Partial Least Squares

Partial least squares (PLS) works by extracting one factor at a time. LetX = X0

be the centered and scaled matrix of predictors andY = Y0 the centered and scaled
matrix of response values. The PLS method starts with a linear combinationt =
X0w of the predictors, wheret is called ascorevector andw is its associatedweight
vector. The PLS method predicts bothX0 andY0 by regression ont:

X̂0 = tp′, where p′ = (t′t)−1t′X0

Ŷ0 = tc′, where c′ = (t′t)−1t′Y0

The vectorsp andc are called the X- and Y-loadings, respectively.

The specific linear combinationt = X0w is the one that has maximum covariance
t′u with some response linear combinationu = Y0q. Another characterization is
that the X- and Y-weightsw andq are proportional to the first left and right singu-
lar vectors of the covariance matrixX ′

0Y0 or, equivalently, the first eigenvectors of
X ′

0Y0Y
′
0X0 andY ′

0X0X
′
0Y0, respectively.

This accounts for how the first PLS factor is extracted. The second factor is extracted
in the same way by replacingX0 andY0 with the X- and Y-residuals from the first
factor

X1 = X0 − X̂0

Y1 = Y0 − Ŷ0

These residuals are also called thedeflatedX andY blocks. The process of extracting
a score vector and deflating the data matrices is repeated for as many extracted factors
as are desired.

SIMPLS

Note that each extracted PLS factor is defined in terms of different X-variablesXi.
This leads to difficulties in comparing different scores, weights, and so forth. The
SIMPLS method of de Jong (1993) overcomes these difficulties by computing each
scoreti = Xri in terms of the original (centered and scaled) predictorsX. The
SIMPLS X-weight vectorsri are similar to the eigenvectors ofSS′ = X ′Y Y ′X,
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but they satisfy a different orthogonality condition. Ther1 vector is just the first
eigenvectore1 (so that the first SIMPLS score is the same as the first PLS score), but
whereas the second eigenvector maximizes

e′
1SS′e2 subject toe′

1e2 = 0

the second SIMPLS weightr2 maximizes

r′1SS′r2 subject tor′1X
′Xr2 = t′1t2 = 0

The SIMPLS scores are identical to the PLS scores for one response but slightly
different for more than one response; refer to de Jong (1993) for details. The X- and
Y-loadings are defined as in PLS, but since the scores are all defined in terms ofX,
it is easy to compute the overall model coefficientsB:

Ŷ =
∑

i

tici
′

=
∑

i

Xrici
′

= XB, where B = RC ′

Principal Components Regression

Like the SIMPLS method, principal components regression (PCR) defines all the
scores in terms of the original (centered and scaled) predictorsX. However, un-
like both the PLS and SIMPLS methods, the PCR method chooses the X-weights/X-
scores without regard to the response data. The X-scores are chosen to explain as
much variation inX as possible; equivalently, the X-weights for the PCR method
are the eigenvectors of the predictor covariance matrixX ′X. Again, the X- and Y-
loadings are defined as in PLS; but, as in SIMPLS, it is easy to compute overall model
coefficients for the original (centered and scaled) responsesY in terms of the original
predictorsX.

Reduced Rank Regression

As discussed in the preceding sections, partial least squares depends on selecting fac-
tors t = Xw of the predictors andu = Y q of the responses that have maximum
covariance, whereas principal components regression effectively ignoresu and se-
lectst to have maximum variance, subject to orthogonality constraints. In contrast,
reduced rank regression selectsu to account for as much variation in thepredicted
responses as possible, effectively ignoring the predictors for the purposes of factor
extraction. In reduced rank regression, the Y-weightsqi are the eigenvectors of the
covariance matrix̂Y ′

LSŶLS of the responses predicted by ordinary least squares re-
gression; the X-scores are the projections of the Y-scoresY qi onto the X space.
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Relationships Between Methods

When you develop a predictive model, it is important to consider not only the ex-
planatory power of the model for current responses, but also how well sampled the
predictive functions are, since this impacts how well the model can extrapolate to
future observations. All of the techniques implemented in the PLS procedure work
by extracting successive factors, or linear combinations of the predictors, that op-
timally address one or both of these two goals—explaining response variation and
explaining predictor variation. In particular, principal components regression selects
factors that explain as much predictor variation as possible, reduced rank regression
selects factors that explain as much response variation as possible, and partial least
squares balances the two objectives, seeking for factors that explain both response
and predictor variation.

To see the relationships between these methods, consider how each one extracts a
single factor from the following artificial data set consisting of two predictors and
one response:

data data;
input x1 x2 y;
datalines;

3.37651 2.30716 0.75615
0.74193 -0.88845 1.15285
4.18747 2.17373 1.42392
0.96097 0.57301 0.27433

-1.11161 -0.75225 -0.25410
-1.38029 -1.31343 -0.04728

1.28153 -0.13751 1.00341
-1.39242 -2.03615 0.45518

0.63741 0.06183 0.40699
-2.52533 -1.23726 -0.91080

2.44277 3.61077 -0.82590
;

proc pls data=data nfac=1 method=rrr;
title "Reduced Rank Regression";
model y = x1 x2;

proc pls data=data nfac=1 method=pcr;
title "Principal Components Regression";
model y = x1 x2;

proc pls data=data nfac=1 method=pls;
title "Partial Least Squares Regression";
model y = x1 x2;

run;

The amount of model and response variation explained by the first factor for each
method is shown inFigure 56.7throughFigure 56.9.
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Reduced Rank Regression

The PLS Procedure

Percent Variation Accounted for by
Reduced Rank Regression Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 15.0661 15.0661 100.0000 100.0000

Figure 56.7. Variation Explained by First Reduced Rank Regression Factor

Principal Components Regression

The PLS Procedure

Percent Variation Accounted for by Principal Components

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 92.9996 92.9996 9.3787 9.3787

Figure 56.8. Variation Explained by First Principal Components Regression Factor

Partial Least Squares Regression

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 88.5357 88.5357 26.5304 26.5304

Figure 56.9. Variation Explained by First Partial Least Squares Regression Factor

Notice that, while the first reduced rank regression factor explainsall of the response
variation, it accounts for only about 15% of the predictor variation. In contrast, the
first principal components regression factor accounts for most of the predictor vari-
ation (93%) but only 9% of the response variation. The first partial least squares
factor accounts for only slightly less predictor variation than principal components
but about three times as much response variation.

Figure 56.10illustrates how partial least squares balances the goals of explaining
response and predictor variation in this case.
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Figure 56.10. Depiction of First Factors for Three Different Regression Methods

The ellipse shows the general shape of the 11 observations in the predictor space,
with the contours of increasingy overlaid. Also shown are the directions of the first
factor for each of the three methods. Notice that, while the predictors vary most in the
x1 = x2 direction, the response changes most in the orthogonalx1 = -x2 direction.
This explains why the first principal component accounts for little variation in the
response and why the first reduced rank regression factor accounts for little variation
in the predictors. The direction of the first partial least squares factor represents a
compromise between the other two directions.

Cross Validation

None of the regression methods implemented in the PLS procedure fit the observed
data any better than ordinary least squares (OLS) regression; in fact, all of the meth-
ods approach OLS as more factors are extracted. The crucial point is that, when there
are many predictors, OLS canover-fit the observed data; biased regression methods
with fewer extracted factors can provide better predictability offutureobservations.
However, as the preceding observations imply, the quality of the observed data fit can-
not be used to choose the number of factors to extract; the number of extracted factors
must be chosen on the basis of how well the model fits observations not involved in
the modeling procedure itself.

One method of choosing the number of extracted factors is to fit the model to only
part of the available data (thetraining set) and to measure how well models with
different numbers of extracted factors fit the other part of the data (thetest set). This
is calledtest set validation. However, it is rare that you have enough data to make
both parts large enough for pure test set validation to be useful. Alternatively, you
can make several different divisions of the observed data into training set and test set.
This is calledcross validation, and there are several different types. Inone-at-a-time
cross validation, the first observation is held out as a single-element test set, with all
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other observations as the training set; next, the second observation is held out, then
the third, and so on. Another method is to hold out successive blocks of observations
as test sets, for example, observations 1 through 7, then observations 8 through 14,
and so on; this is known asblockedvalidation. A similar method issplit-samplecross
validation, in which successive groups of widely separated observations are held out
as the test set, for example, observations {1, 11, 21, . . . }, then observations {2, 12, 22,
. . . }, and so on. Finally, test sets can be selected from the observed data randomly;
this is known asrandom samplecross validation.

Which validation you should use depends on your data. Test set validation is preferred
when you have enough data to make a division into a sizable training set and test set
that represent the predictive population well. You can specify that the number of
extracted factors be selected by test set validation by using the CV=TESTSET(data
set) option, wheredata setis the name of the data set containing the test set. If you do
not have enough data for test set validation, you can use one of the cross validation
techniques. The most common technique is one-at-a-time validation (which you can
specify with the CV=ONE option or just the CV option), unless the observed data
is serially correlated, in which case either blocked or split-sample validation may
be more appropriate (CV=BLOCK or CV=SPLIT); you can specify the number of
test sets in blocked or split-sample validation with a number in parentheses after the
CV= option. Note that CV=ONE is the most computationally intensive of the cross
validation methods, since it requires a recomputation of the PLS model for every
input observation. Also, note that using random subset selection with CV=RANDOM
may lead two different researchers to produce different PLS models on the same data
(unless the same seed is used).

Whichever validation method you use, the number of factors chosen is usually the
one that minimizes the predicted residual sum of squares (PRESS); this is the default
choice if you specify any of the CV methods with PROC PLS. However, often models
with fewer factors have PRESS statistics that are only marginally larger than the
absolute minimum. To address this, van der Voet (1994) has proposed a statistical
test for comparing the predicted residuals from different models; when you apply
van der Voet’s test, the number of factors chosen is the fewest with residuals that are
insignificantly larger than the residuals of the model with minimum PRESS.

To see how van der Voet’s test works, letRi,jk be thejth predicted residual for
responsek for the model withi extracted factors; the PRESS statistic is

∑
jk R2

i,jk.
Also, let imin be the number of factors for which PRESS is minimized. The critical
value for van der Voet’s test is based on the differences between squared predicted
residuals

Di,jk = R2
i,jk −R2

imin,jk

One alternative for the critical value isCi =
∑

jk Di,jk, which is just the difference
between the PRESS statistics fori andimin factors; alternatively, van der Voet sug-
gests Hotelling’sT 2 statisticCi = d′

i,·S
−1
i di,· wheredi,· is the sum of the vectors

di,j = {Di,j1, . . . , Di,jNy}′ andSi is the sum of squares and crossproducts matrix

Si =
∑

j

di,jd′
i,j
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Virtually, the significance level for van der Voet’s test is obtained by comparing
Ci with the distribution of values that result from randomly exchangingR2

i,jk and
R2

imin,jk. In practice, a Monte Carlo sample of such values is simulated and the sig-
nificance level is approximated as the proportion of simulated critical values that are
greater thanCi. If you apply van der Voet’s test by specifying the CVTEST option,
then, by default, the number of extracted factors chosen is the least number with an
approximate significance level that is greater than 0.10.

Centering and Scaling

By default, the predictors and the responses are centered and scaled to have mean 0
and standard deviation 1. Centering the predictors and the responses ensures that the
criterion for choosing successive factors is based on how muchvariationthey explain,
in either the predictors or the responses or both. (See the“Regression Methods”
section on page 3380 for more details on how different methods explain variation.)
Without centering, both the mean variable value and the variation around that mean
are involved in selecting factors. Scaling serves to place all predictors and responses
on an equal footing relative to their variation in the data. For example, ifTime and
Temp are two of the predictors, then scaling says that a change ofstd(Time) in Time
is roughly equivalent to a change ofstd(Temp) in Temp.

Usually, both the predictors and responses should be centered and scaled. However,
if their values already represent variation around a nominal or target value, then you
can use the NOCENTER option in the PROC PLS statement to suppress centering.
Likewise, if the predictors or responses are already all on comparable scales, then
you can use the NOSCALE option to suppress scaling.

Note that, if the predictors involve crossproduct terms, then, by default, the variables
arenot standardized before standardizing the cross product. That is, if theith values
of two predictors are denotedx1

i andx2
i , then the default standardizedith value of the

cross product is
x1

i x
2
i −mean(x1

jx
2
j )

std(x1
jx

2
j )

If you want the cross product to be based instead on standardized variables

x1
i −m1

s1
× x2

i −m2

s2

wheremk = mean(xk
j ) andsk = std(xk

j ) for k = 1, 2, then you should use the
VARSCALE option in the PROC PLS statement. Standardizing the variables sepa-
rately is usually a good idea, but unless the model also contains all cross products
nested within each term, the resulting model may not be equivalent to a simple linear
model in the same terms. To see this, note that a model involving the cross product
of two standardized variables

x1
i −m1

s1
× x2

i −m2

s2
= x1

i x
2
i

1
s1s2

− x1
i

m2

s1s2
− x2

i

m1

s1s2
+

m1m2

s1s2

involves both the crossproduct term and the linear terms for the unstandardized vari-
ables.
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When cross validation is performed for the number of effects, there is some disagree-
ment among practitioners as to whether each cross validation training set should be
retransformed. By default, PROC PLS does so, but you can suppress this behavior by
specifying the NOCVSTDIZE option in the PROC PLS statement.

Missing Values

By default, PROC PLS handles missing values very simply. Observations with any
missing independent variables (including all class variables) are excluded from the
analysis, and no predictions are computed for such observations. Observations with
no missing independent variables but any missing dependent variables are also ex-
cluded from the analysis, but predictions are computed.

However, the experimental MISSING= option on the PROC PLS statement provides
more sophisticated ways of modeling in the presence of missing values. If you specify
MISSING=AVG or MISSING=EM, then all observations in the input data set con-
tribute to both the analysis and the OUTPUT OUT= data set. With MISSING=AVG,
the fit is computed by filling in missing values with the average of the nonmissing
values for the corresponding variable. With MISSING=EM, the procedure first com-
putes the model with MISSING=AVG, then fills in missing values by their predicted
values based on that model and computes the model again. Alternatively, you can
specify MISSING=EM(MAXITER=n) with a large value ofn in order to perform
this imputation/fit loop until convergence.

Displayed Output

By default, PROC PLS displays just the amount of predictor and response variation
accounted for by each factor.

If you perform a cross validation for the number of factors by specifying the CV
option on the PROC PLS statement, then the procedure displays a summary of the
cross validation for each number of factors, along with information about the optimal
number of factors.

If you specify the DETAILS option on the PROC PLS statement, then details of the
fitted model are displayed for each successive factor. These details include for each
number of factors

• the predictor loadings

• the predictor weights

• the response weights

• the coded regression coefficients (for METHOD = SIMPLS, PCR, or RRR)

If you specify the CENSCALE option on the PROC PLS statement, then centering
and scaling information for each response and predictor is displayed.

If you specify the VARSS option on the PROC PLS statement, the procedure displays,
in addition to the average response and predictor sum of squares accounted for by



3388 � Chapter 56. The PLS Procedure

each successive factor, the amount of variation accounted for in each response and
predictor.

If you specify the SOLUTION option on the MODEL statement, then PROC PLS dis-
plays the coefficients of the final predictive model for the responses. The coefficients
for predicting the centered and scaled responses based on the centered and scaled
predictors are displayed, as well as the coefficients for predicting the raw responses
based on the raw predictors.

ODS Table Names

PROC PLS assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 56.1. ODS Tables Produced in PROC PLS

ODS Table Name Description Statement Option
CVResults Results of cross validation PROC CV
CenScaleParms Parameter estimates for centered and

scaled data
MODEL SOLUTION

CodedCoef Coded coefficients PROC DETAILS
ParameterEstimates Parameter estimates for raw data MODEL SOLUTION
PercentVariation Variation accounted for by each factor PROC default
ResidualSummary Residual summary from cross validation PROC CV
XEffectCenScale Centering and scaling information for

predictor effects
PROC CENSCALE

XLoadings Loadings for independents PROC DETAILS
XVariableCenScale Centering and scaling information for

predictor variables
PROC CENSCALE

and VARSCALE
XWeights Weights for independents PROC DETAILS
YVariableCenScale Centering and scaling information for re-

sponses
PROC CENSCALE

YWeights Weights for dependents PROC DETAILS

Examples

Example 56.1. Examining Model Details

The following example, from Umetrics (1995), demonstrates different ways to exam-
ine a PLS model. The data come from the field of drug discovery. New drugs are
developed from chemicals that are biologically active. Testing a compound for bio-
logical activity is an expensive procedure, so it is useful to be able to predict biolog-
ical activity from cheaper chemical measurements. In fact, computational chemistry
makes it possible to calculate certain chemical measurements without even making
the compound. These measurements include size, lipophilicity, and polarity at vari-
ous sites on the molecule. The following statements create a data set namedpenta,
which contains these data.
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data penta;
input obsnam $ S1 L1 P1 S2 L2 P2

S3 L3 P3 S4 L4 P4
S5 L5 P5 log_RAI @@;

n = _n_;
datalines;

VESSK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
1.9607 -1.6324 0.5746 1.9607 -1.6324 0.5746
2.8369 1.4092 -3.1398 0.00

VESAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.28

VEASK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746
2.8369 1.4092 -3.1398 0.20

VEAAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.51

VKAAK -2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.11

VEWAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 2.73
VEAAP -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
-1.2201 0.8829 2.2253 0.18

VEHAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 1.53

VAAAK -2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 -0.10

GEAAK 2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 -0.52

LEAAK -4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.40

FEAAK -4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.30

VEGGK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049
2.8369 1.4092 -3.1398 -1.00

VEFAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 1.57
VELAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

-4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.59

AAAAA 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 -0.10
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AAYAA 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
-1.3944 2.3230 0.0139 0.0744 -1.7333 0.0902

0.0744 -1.7333 0.0902 0.46
AAWAA 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 0.75

VAWAA -2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902

0.0744 -1.7333 0.0902 1.43
VAWAK -2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902

-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 1.45

VKWAA -2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902

0.0744 -1.7333 0.0902 1.71
VWAAK -2.6931 -2.5271 -1.2871 -4.7548 3.6521 0.8524

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.04

VAAWK -2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 -4.7548 3.6521 0.8524
2.8369 1.4092 -3.1398 0.23

EKWAP 3.0777 0.3891 -0.0701 2.8369 1.4092 -3.1398
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
-1.2201 0.8829 2.2253 1.30

VKWAP -2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
-1.2201 0.8829 2.2253 2.35

RKWAP 2.8827 2.5215 -3.4435 2.8369 1.4092 -3.1398
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
-1.2201 0.8829 2.2253 1.98

VEWVK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.7548 3.6521 0.8524 -2.6931 -2.5271 -1.2871

2.8369 1.4092 -3.1398 1.71
PGFSP -1.2201 0.8829 2.2253 2.2261 -5.3648 0.3049

-4.9217 1.2977 0.4473 1.9607 -1.6324 0.5746
-1.2201 0.8829 2.2253 0.90

FSPFR -4.9217 1.2977 0.4473 1.9607 -1.6324 0.5746
-1.2201 0.8829 2.2253 -4.9217 1.2977 0.4473

2.8827 2.5215 -3.4435 0.64
RYLPT 2.8827 2.5215 -3.4435 -1.3944 2.3230 0.0139

-4.1921 -1.0285 -0.9801 -1.2201 0.8829 2.2253
0.9243 -2.0921 -1.3996 0.40

GGGGG 2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049
2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049
2.2261 -5.3648 0.3049 .

;
data ptrain; set penta; if (n <= 15);
data ptest ; set penta; if (n > 15);
run;

You would like to study the relationship between these measurements and the activity
of the compound, represented by the logarithm of the relative Bradykinin activating
activity (log–RAI). Notice that these data consist of many predictors relative to the
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number of observations. Partial least squares is especially appropriate in this situation
as a useful tool for finding a few underlying predictive factors that account for most
of the variation in the response. Typically, the model is fit for part of the data (the
“training” or “work” set), and the quality of the fit is judged by how well it predicts
the other part of the data (the “test” or “prediction” set). For this example, the first
15 observations serve as the training set and the rest constitute the test set (refer to
Ufkes et al. 1978, 1982).

When you fit a PLS model, you hope to find a few PLS factors that explain most of
the variation in both predictors and responses. Factors that explain response variation
provide good predictive models for new responses, and factors that explain predictor
variation are well represented by the observed values of the predictors. The following
statements fit a PLS model with two factors and save predicted values, residuals, and
other information for each data point in a data set namedoutpls.

proc pls data=ptrain nfac=2;
model log_RAI = S1-S5 L1-L5 P1-P5;
output out=outpls predicted = yhat1

yresidual = yres1
xresidual = xres1-xres15
xscore = xscr
yscore = yscr;

run;

The PLS procedure displays a table, shown inOutput 56.1.1, showing how much
predictor and response variation is explained by each PLS factor.

Output 56.1.1. Amount of Training Set Variation Explained

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 16.9014 16.9014 89.6399 89.6399
2 12.7721 29.6735 7.8368 97.4767

FromOutput 56.1.1, note that 97% of the response variation is already explained, but
only 29% of the predictor variation is explained.

Partial least squares algorithms choose successive orthogonal factors that maximize
the covariance between each X-score and the corresponding Y-score. For a good PLS
model, the first few factors show a high correlation between the X- and Y-scores. The
correlation usually decreases from one factor to the next. You can plot the X-scores
versus the Y-scores for the first PLS factor using the following SAS statements.
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%let ifac = 1;
data pltanno; set outpls;

length text $ 2;
retain function ’label’ position ’5’ hsys ’3’ xsys ’2’ ysys ’2’

color ’blue’ style ’swissb’;
text=%str(n); x=xscr&ifac; y=yscr&ifac;

axis1 label=(angle=270 rotate=90 "Y score &ifac")
major=(number=5) minor=none;

axis2 label=("X-score &ifac") minor=none;
symbol1 v=none i=none;
proc gplot data=outpls;

plot yscr&ifac*xscr&ifac=1
/ anno=pltanno vaxis=axis1 haxis=axis2 frame cframe=ligr;

run;

By changing the macro variableifac to 2 instead of 1, you can use the same statements
to plot the X-scores versus the Y-scores for the second PLS factor. The resulting plots
are shown inOutput 56.1.2andOutput 56.1.3. The numbers on the plot represent the
observation number in thepenta data set.

Output 56.1.2. First X- and Y-scores for Penta-Peptide Model 1
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Output 56.1.3. Second X- and Y-scores for Penta-Peptide Model 1

For this example, the figures show high correlation between X- and Y-scores for the
first factor but somewhat lower correlation for the second factor.

You can also plot the X-scores against each other to look for irregularities in the data.
You should look for patterns or clearly grouped observations. If you see a curved
pattern, for example, you may want to add a quadratic term. Two or more groupings
of observations indicate that it might be better to analyze the groups separately, per-
haps by including classification effects in the model. The following SAS statements
produce a plot of the first and second X-scores:

data pltanno; set outpls;
length text $ 2;
retain function ’label’ position ’5’ hsys ’3’ xsys ’2’ ysys ’2’

color ’blue’ style ’swissb’;
text=%str(n); x=xscr1; y=xscr2;

axis1 label=(angle=270 rotate=90 "X score 2")
major=(number=5) minor=none;

axis2 label=("X-score 1") minor=none;
symbol1 v=none i=none;
proc gplot data=outpls;

plot xscr2*xscr1=1
/ anno=pltanno vaxis=axis1 haxis=axis2 frame cframe=ligr;

run;

The plot is shown inOutput 56.1.4.
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Output 56.1.4. First and Second X-scores for Penta-Peptide Model 1

This plot appears to show most of the observations close together, with a few being
more spread out with larger positive X-scores for factor 2. There are no clear grouping
patterns, but observation 13 stands out; note that this observation is the most extreme
on all three plots so far. This run may be overly influential in the PLS analysis; thus,
you should check to make sure it is reliable.

Plots of the weights give the directions toward which each PLS factor projects. They
show which predictors are most represented in each factor. Those predictors with
small weights in absolute value are less important than those with large weights.

You can use the DETAILS option in the PROC PLS statement to display various
model details, including the X-weights. You can then use the ODS statement to send
the weights to an output data set, as follows:

ods output XWeights=xweights;
proc pls data=ptrain nfac=2 details;

model log_RAI = S1-S5 L1-L5 P1-P5;
run;

Once the X-weights are in a data set, you can use the following statements to plot the
weights for the first two PLS factors against one another:

proc transpose data=xweights(drop=NumberOfFactors InnerRegCoef)
out =xweights;

data xweights; set xweights;
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rename col1=w1 col2=w2;
data wt_anno; set xweights;

length text $ 2;
retain function ’label’

position ’5’
hsys ’3’
xsys ’2’
ysys ’2’
color ’blue’
style ’swissb’;

text=%str(_name_); x=w1; y=w2;
run;

axis1 label=(angle=270 rotate=90 "X weight 2")
major=(number=5) minor=none;

axis2 label=("X-weight 1") minor=none;
symbol1 v=none i=none;
proc gplot data=xweights;

plot w2*w1=1 / anno=wt_anno vaxis=axis1
haxis=axis2 frame cframe=ligr;

run; quit;

The plot of the X-weights is shown inOutput 56.1.5.

Output 56.1.5. First and Second X-weights for Penta-Peptide Model 1

The weights plot shows a cluster of X-variables that are weighted at nearly zero for
both factors. These variables add little to the model fit, and removing them may
improve the model’s predictive capability.
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To explore further which predictors can be eliminated from the analysis, you can
look at the regression coefficients for the standardized data. Predictors with small
coefficients (in absolute value) make a small contribution to the response prediction.
Another statistic summarizing the contribution a variable makes to the model is the
Variable Importance for Projection(VIP) of Wold (1994). Whereas the regression
coefficients represent the importance each predictor has in the prediction of just the
response, the VIP represents the value of each predictor in fitting the PLS model
for both predictors and response. If a predictor has a relatively small coefficient (in
absolute value)and a small value of VIP, then it is a prime candidate for deletion.
Wold in Umetrics (1995) considers a value less than 0.8 to be “small” for the VIP.
The following statements produce coefficients and the VIP.

/*
/ Put coefficients, weights, and R**2’s into data sets.
/-------------------------------------------------------*/
ods listing close;
ods output PercentVariation = pctvar

XWeights = xweights
CenScaleParms = solution;

proc pls data=ptrain nfac=2 details;
model log_RAI = S1 L1 P1

S2 L2 P2
S3 L3 P3
S4 L4 P4
S5 L5 P5 / solution;

run;
ods listing;

/*
/ Just reformat the coefficients.
/-------------------------------------------------------*/
data solution; set solution;

format log_RAI 8.5;
if (RowName = ’Intercept’) then delete;
rename RowName = Predictor log_RAI = B;

run;

/*
/ Transpose weights and R**2’s.
/-------------------------------------------------------*/
data xweights; set xweights; _name_=’W’||trim(left(_n_));
data pctvar ; set pctvar ; _name_=’R’||trim(left(_n_));
proc transpose data=xweights(drop=NumberOfFactors InnerRegCoef)

out =xweights;
proc transpose data=pctvar(keep=_name_ CurrentYVariation)

out =pctvar;
run;

/*
/ Sum the normalized squared weights times the
/ normalized R**2’s. The VIP is defined as the square
/ root of this weighted average times the number of
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/ predictors.
/-------------------------------------------------------*/
proc sql;

create table vip as
select *,

w1 /sqrt(uss(w1)) as wnorm1,
w2 /sqrt(uss(w2)) as wnorm2

from xweights left join pctvar(drop=_name_) on 1;
data vip; set vip; keep _name_ vip;

array wnorm{2};
array r{2};
VIP = 0;
do i = 1 to 2;

VIP = VIP + r{i}*(wnorm{i}**2)/sum(of r1-r2);
end;

VIP = sqrt(VIP * 15);
data vipbpls; merge solution vip(drop=_name_);
proc print data=vipbpls;
run;

The output appears inOutput 56.1.6.

Output 56.1.6. Estimated PLS Regression Coefficients and VIP (Model 1)

Obs Predictor B VIP

1 S1 -0.13831 0.61108
2 L1 0.05720 0.31822
3 P1 -0.19064 0.75127
4 S2 0.12383 0.50482
5 L2 0.05909 0.27123
6 P2 0.09361 0.35927
7 S3 -0.28415 1.57775
8 L3 0.47131 2.43480
9 P3 0.26613 1.13222

10 S4 -0.09145 1.22255
11 L4 0.12265 1.17994
12 P4 -0.04878 0.88380
13 S5 0.03320 0.21288
14 L5 0.03320 0.21288
15 P5 -0.03320 0.21288

For this data set, the variablesL1, L2, P2, S5, L5, and P5 have small absolute
coefficients and small VIP. Looking back at the weights plot inOutput 56.1.5, you
can see that these variables tend to be the ones near zero for both PLS factors. You
should consider dropping these variables from the model.
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Example 56.2. Examining Outliers

This example is a continuation ofExample 56.1on page 3388.

A PLS model effectively models both the predictors and the responses. In order to
check for outliers, you should, therefore, look at the Euclidean distance from each
point to the PLS model in both the standardized predictors and the standardized re-
sponses. No point should be dramatically farther from the model than the rest. If there
is a group of points that are all farther from the model than the rest, they may have
something in common, in which case they should be analyzed separately. The fol-
lowing statements compute and plot these distances to the reduced model, dropping
variablesL1, L2, P2, P4, S5, L5, andP5:

proc pls data=ptrain nfac=2 noprint;
model log_RAI = S1 P1

S2
S3 L3 P3
S4 L4 ;

output out=stdres stdxsse=stdxsse
stdysse=stdysse;

data stdres; set stdres;
xdist = sqrt(stdxsse);
ydist = sqrt(stdysse);

run;

symbol1 i=needles v=dot c=blue;
proc gplot data=stdres;

plot xdist*n=1 / cframe=ligr;
proc gplot data=stdres;

plot ydist*n=1 / cframe=ligr;
run;

The plots are shown inOutput 56.2.1andOutput 56.2.2.
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Output 56.2.1. Distances from the X-variables to the Model (Training Set)

Output 56.2.2. Distances from the Y-variables to the Model (Training Set)
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There appear to be no profound outliers in either the predictor space or the response
space.

Example 56.3. Choosing a PLS Model by Test Set Validation

The following example demonstrates issues in spectrometric calibration. The data
(Umetrics 1995) consist of spectrographic readings on 33 samples containing known
concentrations of two amino acids, tyrosine and tryptophan. The spectra are mea-
sured at 30 frequencies across the overall range of frequencies. For example,Output
56.3.1shows the observed spectra for three samples, one with only tryptophan, one
with only tyrosine, and one with a mixture of the two, all at a total concentration of
10−6.

Output 56.3.1. Spectra for Three Samples of Tyrosine and Tryptophan

Of the 33 samples, 18 are used as a training set and 15 as a test set. The data originally
appear in McAvoy et al. (1989).

These data were created in a lab, with the concentrations fixed in order to provide
a wide range of applicability for the model. You want to use a linear function of
the logarithms of the spectra to predict the logarithms of tyrosine and tryptophan
concentration, as well as the logarithm of the total concentration. Actually, because
of the possibility of zeros in both the responses and the predictors, slightly different
transformations are used. The following statements create SAS data sets containing
the training and test data, namedftrain andftest, respectively:
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data ftrain;
input obsnam $ tot tyr f1-f30 @@;
try = tot - tyr;
if (tyr) then tyr_log = log10(tyr); else tyr_log = -8;
if (try) then try_log = log10(try); else try_log = -8;
tot_log = log10(tot);
datalines;

17mix35 0.00003 0
-6.215 -5.809 -5.114 -3.963 -2.897 -2.269 -1.675 -1.235
-0.900 -0.659 -0.497 -0.395 -0.335 -0.315 -0.333 -0.377
-0.453 -0.549 -0.658 -0.797 -0.878 -0.954 -1.060 -1.266
-1.520 -1.804 -2.044 -2.269 -2.496 -2.714

19mix35 0.00003 3E-7
-5.516 -5.294 -4.823 -3.858 -2.827 -2.249 -1.683 -1.218
-0.907 -0.658 -0.501 -0.400 -0.345 -0.323 -0.342 -0.387
-0.461 -0.554 -0.665 -0.803 -0.887 -0.960 -1.072 -1.272
-1.541 -1.814 -2.058 -2.289 -2.496 -2.712

21mix35 0.00003 7.5E-7
-5.519 -5.294 -4.501 -3.863 -2.827 -2.280 -1.716 -1.262
-0.939 -0.694 -0.536 -0.444 -0.384 -0.369 -0.377 -0.421
-0.495 -0.596 -0.706 -0.824 -0.917 -0.988 -1.103 -1.294
-1.565 -1.841 -2.084 -2.320 -2.521 -2.729

23mix35 0.00003 1.5E-6
-5.294 -4.705 -4.262 -3.605 -2.726 -2.239 -1.681 -1.250
-0.925 -0.697 -0.534 -0.437 -0.381 -0.359 -0.369 -0.426
-0.499 -0.591 -0.701 -0.843 -0.925 -0.989 -1.109 -1.310
-1.579 -1.852 -2.090 -2.316 -2.521 -2.743

25mix35 0.00003 3E-6
-4.600 -4.069 -3.764 -3.262 -2.598 -2.191 -1.680 -1.273
-0.958 -0.729 -0.573 -0.470 -0.422 -0.407 -0.422 -0.468
-0.538 -0.639 -0.753 -0.887 -0.968 -1.037 -1.147 -1.357
-1.619 -1.886 -2.141 -2.359 -2.585 -2.792

27mix35 0.00003 7.5E-6
-3.812 -3.376 -3.026 -2.726 -2.249 -1.919 -1.541 -1.198
-0.951 -0.764 -0.639 -0.570 -0.528 -0.525 -0.550 -0.606
-0.689 -0.781 -0.909 -1.031 -1.126 -1.191 -1.303 -1.503
-1.784 -2.058 -2.297 -2.507 -2.727 -2.970

29mix35 0.00003 0.000015
-3.053 -2.641 -2.382 -2.194 -1.977 -1.913 -1.728 -1.516
-1.317 -1.158 -1.029 -0.963 -0.919 -0.915 -0.933 -0.981
-1.055 -1.157 -1.271 -1.409 -1.505 -1.546 -1.675 -1.880
-2.140 -2.415 -2.655 -2.879 -3.075 -3.319

28mix35 0.00003 0.0000225
-2.626 -2.248 -2.004 -1.839 -1.742 -1.791 -1.786 -1.772
-1.728 -1.666 -1.619 -1.591 -1.575 -1.580 -1.619 -1.671
-1.754 -1.857 -1.982 -2.114 -2.210 -2.258 -2.379 -2.570
-2.858 -3.117 -3.347 -3.568 -3.764 -4.012

26mix35 0.00003 0.000027
-2.370 -1.990 -1.754 -1.624 -1.560 -1.655 -1.772 -1.899
-1.982 -2.074 -2.157 -2.211 -2.267 -2.317 -2.369 -2.460
-2.545 -2.668 -2.807 -2.951 -3.030 -3.075 -3.214 -3.376
-3.685 -3.907 -4.129 -4.335 -4.501 -4.599

24mix35 0.00003 0.0000285
-2.326 -1.952 -1.702 -1.583 -1.507 -1.629 -1.771 -1.945
-2.115 -2.297 -2.448 -2.585 -2.696 -2.808 -2.913 -3.030
-3.163 -3.265 -3.376 -3.534 -3.642 -3.721 -3.858 -4.012
-4.262 -4.501 -4.704 -4.822 -4.956 -5.292

22mix35 0.00003 0.00002925
-2.277 -1.912 -1.677 -1.556 -1.487 -1.630 -1.791 -1.969
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-2.203 -2.437 -2.655 -2.844 -3.032 -3.214 -3.378 -3.503
-3.646 -3.812 -3.958 -4.129 -4.193 -4.262 -4.415 -4.501
-4.823 -5.111 -5.113 -5.294 -5.290 -5.294

20mix35 0.00003 0.0000297
-2.266 -1.912 -1.688 -1.546 -1.500 -1.640 -1.801 -2.011
-2.277 -2.545 -2.823 -3.094 -3.376 -3.572 -3.812 -4.012
-4.262 -4.415 -4.501 -4.705 -4.823 -4.823 -4.956 -5.111
-5.111 -5.516 -5.524 -5.806 -5.806 -5.806

18mix35 0.00003 0.00003
-2.258 -1.900 -1.666 -1.524 -1.479 -1.621 -1.803 -2.043
-2.308 -2.626 -2.895 -3.214 -3.568 -3.907 -4.193 -4.423
-4.825 -5.111 -5.111 -5.516 -5.516 -5.516 -5.516 -5.806
-5.806 -5.806 -5.806 -5.806 -6.210 -6.215

trp2 0.0001 0
-5.922 -5.435 -4.366 -3.149 -2.124 -1.392 -0.780 -0.336
-0.002 0.233 0.391 0.490 0.540 0.563 0.541 0.488

0.414 0.313 0.203 0.063 -0.028 -0.097 -0.215 -0.411
-0.678 -0.953 -1.208 -1.418 -1.651 -1.855

mix5 0.0001 0.00001
-3.932 -3.411 -2.964 -2.462 -1.836 -1.308 -0.796 -0.390
-0.076 0.147 0.294 0.394 0.446 0.460 0.443 0.389

0.314 0.220 0.099 -0.033 -0.128 -0.197 -0.308 -0.506
-0.785 -1.050 -1.313 -1.529 -1.745 -1.970

mix4 0.0001 0.000025
-2.996 -2.479 -2.099 -1.803 -1.459 -1.126 -0.761 -0.424
-0.144 0.060 0.195 0.288 0.337 0.354 0.330 0.274

0.206 0.105 -0.009 -0.148 -0.242 -0.306 -0.424 -0.626
-0.892 -1.172 -1.425 -1.633 -1.877 -2.071

mix3 0.0001 0.00005
-2.128 -1.661 -1.344 -1.160 -0.996 -0.877 -0.696 -0.495
-0.313 -0.165 -0.042 0.032 0.069 0.079 0.050 -0.006
-0.082 -0.179 -0.295 -0.436 -0.523 -0.584 -0.706 -0.898
-1.178 -1.446 -1.696 -1.922 -2.128 -2.350

mix6 0.0001 0.00009
-1.140 -0.757 -0.497 -0.362 -0.329 -0.412 -0.513 -0.647
-0.772 -0.877 -0.958 -1.040 -1.104 -1.162 -1.233 -1.317
-1.425 -1.543 -1.661 -1.804 -1.877 -1.959 -2.034 -2.249
-2.502 -2.732 -2.964 -3.142 -3.313 -3.576

;

data ftest;
input obsnam $ tot tyr f1-f30 @@;
try = tot - tyr;
if (tyr) then tyr_log = log10(tyr); else tyr_log = -8;
if (try) then try_log = log10(try); else try_log = -8;
tot_log = log10(tot);
datalines;

43trp6 1E-6 0
-5.915 -5.918 -6.908 -5.428 -4.117 -5.103 -4.660 -4.351
-4.023 -3.849 -3.634 -3.634 -3.572 -3.513 -3.634 -3.572
-3.772 -3.772 -3.844 -3.932 -4.017 -4.023 -4.117 -4.227
-4.492 -4.660 -4.855 -5.428 -5.103 -5.428

59mix6 1E-6 1E-7
-5.903 -5.903 -5.903 -5.082 -4.213 -5.083 -4.838 -4.639
-4.474 -4.213 -4.001 -4.098 -4.001 -4.001 -3.907 -4.001
-4.098 -4.098 -4.206 -4.098 -4.213 -4.213 -4.335 -4.474
-4.639 -4.838 -4.837 -5.085 -5.410 -5.410

51mix6 1E-6 2.5E-7
-5.907 -5.907 -5.415 -4.843 -4.213 -4.843 -4.843 -4.483
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-4.343 -4.006 -4.006 -3.912 -3.830 -3.830 -3.755 -3.912
-4.006 -4.001 -4.213 -4.213 -4.335 -4.483 -4.483 -4.642
-4.841 -5.088 -5.088 -5.415 -5.415 -5.415

49mix6 1E-6 5E-7
-5.419 -5.091 -5.091 -4.648 -4.006 -4.846 -4.648 -4.483
-4.343 -4.220 -4.220 -4.220 -4.110 -4.110 -4.110 -4.220
-4.220 -4.343 -4.483 -4.483 -4.650 -4.650 -4.846 -4.846
-5.093 -5.091 -5.419 -5.417 -5.417 -5.907

53mix6 1E-6 7.5E-7
-5.083 -4.837 -4.837 -4.474 -3.826 -4.474 -4.639 -4.838
-4.837 -4.639 -4.639 -4.641 -4.641 -4.639 -4.639 -4.837
-4.838 -4.838 -5.083 -5.082 -5.083 -5.410 -5.410 -5.408
-5.408 -5.900 -5.410 -5.903 -5.900 -6.908

57mix6 1E-6 9E-7
-5.082 -4.836 -4.639 -4.474 -3.826 -4.636 -4.638 -4.638
-4.837 -5.082 -5.082 -5.408 -5.082 -5.080 -5.408 -5.408
-5.408 -5.408 -5.408 -5.408 -5.408 -5.900 -5.900 -5.900
-5.900 -5.900 -5.900 -5.900 -6.908 -6.908

41tyro6 1E-6 1E-6
-5.104 -4.662 -4.662 -4.358 -3.705 -4.501 -4.662 -4.859
-5.104 -5.431 -5.433 -5.918 -5.918 -5.918 -5.431 -5.918
-5.918 -5.918 -5.918 -5.918 -5.918 -5.918 -5.918 -6.908
-5.918 -5.918 -6.908 -6.908 -5.918 -5.918

28trp5 0.00001 0
-5.937 -5.937 -5.937 -4.526 -3.544 -3.170 -2.573 -2.115
-1.792 -1.564 -1.400 -1.304 -1.244 -1.213 -1.240 -1.292
-1.373 -1.453 -1.571 -1.697 -1.801 -1.873 -2.008 -2.198
-2.469 -2.706 -2.990 -3.209 -3.384 -3.601

37mix5 0.00001 1E-6
-5.109 -4.865 -4.501 -4.029 -3.319 -3.070 -2.569 -2.207
-1.895 -1.684 -1.516 -1.423 -1.367 -1.348 -1.374 -1.415
-1.503 -1.596 -1.718 -1.839 -1.927 -1.997 -2.118 -2.333
-2.567 -2.874 -3.106 -3.313 -3.579 -3.781

33mix5 0.00001 2.5E-6
-4.366 -4.129 -3.781 -3.467 -3.037 -2.939 -2.593 -2.268
-1.988 -1.791 -1.649 -1.565 -1.520 -1.509 -1.524 -1.580
-1.665 -1.758 -1.882 -2.037 -2.090 -2.162 -2.284 -2.465
-2.761 -3.037 -3.270 -3.520 -3.709 -3.937

31mix5 0.00001 5E-6
-3.790 -3.373 -3.119 -2.915 -2.671 -2.718 -2.555 -2.398
-2.229 -2.085 -1.971 -1.902 -1.860 -1.837 -1.881 -1.949
-2.009 -2.127 -2.230 -2.381 -2.455 -2.513 -2.624 -2.827
-3.117 -3.373 -3.586 -3.785 -4.040 -4.366

35mix5 0.00001 7.5E-6
-3.321 -2.970 -2.765 -2.594 -2.446 -2.548 -2.616 -2.617
-2.572 -2.550 -2.508 -2.487 -2.488 -2.487 -2.529 -2.593
-2.688 -2.792 -2.908 -3.037 -3.149 -3.189 -3.273 -3.467
-3.781 -4.029 -4.241 -4.501 -4.669 -4.865

39mix5 0.00001 9E-6
-3.142 -2.812 -2.564 -2.404 -2.281 -2.502 -2.589 -2.706
-2.842 -2.964 -3.068 -3.103 -3.182 -3.268 -3.361 -3.411
-3.517 -3.576 -3.705 -3.849 -3.932 -3.932 -4.029 -4.234
-4.501 -4.664 -4.860 -5.104 -5.431 -5.433

26tyro5 0.00001 0.00001
-3.037 -2.696 -2.464 -2.321 -2.239 -2.444 -2.602 -2.823
-3.144 -3.396 -3.742 -4.063 -4.398 -4.699 -4.893 -5.138
-5.140 -5.461 -5.463 -5.945 -5.461 -5.138 -5.140 -5.138
-5.138 -5.463 -5.461 -5.461 -5.461 -5.461

tyro2 0.0001 0.0001
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-1.081 -0.710 -0.470 -0.337 -0.327 -0.433 -0.602 -0.841
-1.119 -1.423 -1.750 -2.121 -2.449 -2.818 -3.110 -3.467
-3.781 -4.029 -4.241 -4.366 -4.501 -4.366 -4.501 -4.501
-4.668 -4.668 -4.865 -4.865 -5.109 -5.111

;

The following statements fit a PLS model with 10 factors.

proc pls data=ftrain nfac=10;
model tot_log tyr_log try_log = f1-f30;

run;

The table shown inOutput 56.3.2indicates that only three or four factors are required
to explain almost all of the variation in both the predictors and the responses.

Output 56.3.2. Amount of Training Set Variation Explained

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 81.1654 81.1654 48.3385 48.3385
2 16.8113 97.9768 32.5465 80.8851
3 1.7639 99.7407 11.4438 92.3289
4 0.1951 99.9357 3.8363 96.1652
5 0.0276 99.9634 1.6880 97.8532
6 0.0132 99.9765 0.7247 98.5779
7 0.0052 99.9817 0.2926 98.8705
8 0.0053 99.9870 0.1252 98.9956
9 0.0049 99.9918 0.1067 99.1023

10 0.0034 99.9952 0.1684 99.2707

In order to choose the optimal number of PLS factors, you can explore how well
models based on the training data with different numbers of factors fit the test data.
To do so, use the CV=TESTSET option, with an argument pointing to the test data
setftest, as in the following statements:

proc pls data=ftrain nfac=10 cv=testset(ftest)
cvtest(stat=press seed=12345);

model tot_log tyr_log try_log = f1-f30;
run;

The results of the test set validation are shown inOutput 56.3.3. They indicate that,
although five PLS factors give the minimum predicted residual sum of squares, the
residuals for four factors are insignificantly different from those for five. Thus, the
smaller model is preferred.
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Output 56.3.3. Test Set Validation for the Number of PLS Factors

The PLS Procedure

Test Set Validation for the Number of Extracted Factors

Number of Root
Extracted Mean Prob >

Factors PRESS PRESS

0 3.056797 <.0001
1 2.630561 <.0001
2 1.00706 0.0070
3 0.664603 0.0020
4 0.521578 0.3800
5 0.500034 1.0000
6 0.513561 0.5100
7 0.501431 0.6870
8 1.055791 0.1530
9 1.435085 0.1010

10 1.720389 0.0320

Minimum root mean PRESS 0.5000
Minimizing number of factors 5
Smallest number of factors with p > 0.1 4

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 81.1654 81.1654 48.3385 48.3385
2 16.8113 97.9768 32.5465 80.8851
3 1.7639 99.7407 11.4438 92.3289
4 0.1951 99.9357 3.8363 96.1652

The factor loadings show how the PLS factors are constructed from the centered and
scaled predictors. For spectral calibration, it is useful to plot the loadings against
the frequency. In many cases, the physical meanings that can be attached to factor
loadings help to validate the scientific interpretation of the PLS model. You can
use the following statements to plot the loadings for the four PLS factors against
frequency.

ods listing close;
ods output XLoadings=xloadings;
proc pls data=ftrain nfac=4 details method=pls;

model tot_log tyr_log try_log = f1-f30;
run;
ods listing;
proc transpose data=xloadings(drop=NumberOfFactors)

out =xloadings;
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data xloadings; set xloadings;
n = _n_;
rename col1=Factor1 col2=Factor2

col3=Factor3 col4=Factor4;
run;
goptions border;
axis1 label=("Loading" ) major=(number=5) minor=none;
axis2 label=("Frequency") minor=none;
symbol1 v=none i=join c=red l=1;
symbol2 v=none i=join c=green l=1 /*l= 3*/;
symbol3 v=none i=join c=blue l=1 /*l=34*/;
symbol4 v=none i=join c=yellow l=1 /*l=46*/;
legend1 label=none cborder=black;
proc gplot data=xloadings;

plot (Factor1 Factor2 Factor3 Factor4)*n
/ overlay legend=legend1 vaxis=axis1

haxis=axis2 vref=0 lvref=2 frame cframe=ligr;
run; quit;

The resulting plot is shown inOutput 56.3.4.

Output 56.3.4. Predictor Loadings Across Frequencies
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Notice that all four factors handle frequencies below and above about 7 or 8 differ-
ently. For example, the first factor is very nearly a simple contrast between the aver-
ages of the two sets of frequencies, and the second factor appears to be a weighted
sum of only the frequencies in the first set.
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Chapter 57
The POWER Procedure
Overview

Power and sample size analysis enables you to optimize the resource usage and design
of a study, improving chances of conclusive results with maximum efficiency. The
POWER procedure performs prospective power and sample size analyses for a variety
of goals, such as the following:

• determining the sample size required to get a significant result with adequate
probability (power)

• characterizing the power of a study to detect a meaningful effect

• conducting what-if analyses to assess sensitivity of the power or required sam-
ple size to other factors

Hereprospectiveindicates that the analysis pertains to planning for a future study.
This is in contrast toretrospectivepower analysis for a past study, which is not sup-
ported by the procedure.

A variety of statistical analyses are covered:

• t tests for means

• equivalence tests for means

• confidence intervals for means

• tests of binomial proportions

• multiple regression

• tests of correlation and partial correlation

• one-way analysis of variance

• rank tests for comparing two survival curves

For more complex linear models, seeChapter 34, “The GLMPOWER Procedure.”

Input for PROC POWER includes the components considered in study planning:

• design

• statistical model and test

• significance level (alpha)

• surmised effects and variability

• power

• sample size
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You designate one of these components by a missing value in the input, in order to
identify it as the result parameter. The procedure calculates this result value over one
or more scenarios of input values for all other components. Power and sample size
are the most common result values, but for some analyses the result can be something
else. For example, you can solve for the sample size of a single group for a two-
samplet test.

In addition to tabular results, PROC POWER produces graphs. You can produce the
most common types of plots easily with default settings and use a variety of options
for more customized graphics. For example, you can control the choice of axis vari-
ables, axis ranges, number of plotted points, mapping of graphical features (such as
color, line style, symbol and panel) to analysis parameters, and legend appearance.

The POWER procedure is one of several tools available in SAS/STAT software for
power and sample size analysis. PROC GLMPOWER supports more complex lin-
ear models. The Power and Sample Size application provides a user interface and
implements many of the analyses supported in the procedures.

The following sections of this chapter describe how to use PROC POWER and dis-
cuss the underlying statistical methodology. The“Getting Started”section on page
3412 introduces PROC POWER with simple examples of power computation for a
one-samplet test and sample size determination for a two-samplet test. The“Syntax”
section on page 3420 describes the syntax of the procedure. The“Details” section on
page 3488 summarizes the methods employed by PROC POWER and provides de-
tails on several special topics. The“Examples”section on page 3536 illustrates the
use of the POWER procedure with several applications.

For more discussion and examples on the main concepts in power and sample
size analysis, refer to Castelloe (2000), Castelloe and O’Brien (2001), Muller and
Benignus (1992), O’Brien and Muller (1993), and Lenth (2001).

Getting Started

Computing Power for a One-Sample t Test

Suppose you want to improve the accuracy of a machine used to print logos on sports
jerseys. The machine has an inherently high variability, but its horizontal alignment
can be adjusted. The operator agrees to pay for a costly adjustment if you can es-
tablish a non-zero mean horizontal displacement in either direction with high confi-
dence. You have 150 jerseys at your disposal to measure, and you want to determine
your chances of a significant result (power) using a one-samplet test with a 2-sided
α = 0.05.

You decide that 8 mm is the smallest displacement worth addressing. Hence, you
will assume a true mean of 8 in the power computation. Experience indicates that the
standard deviation is about 40.

Use the ONESAMPLEMEANS statement in the POWER procedure to compute the
power. Indicate power as the result parameter by specifying the POWER= option
with a missing value (.). Specify your conjectures for the mean and standard deviation
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using the MEAN= and STDDEV= options and the sample size using the NTOTAL=
option. The statements required to perform this analysis are as follows:

proc power;
onesamplemeans

mean = 8
ntotal = 150
stddev = 40
power = .;

run;

Default values for the TEST=, DIST=, ALPHA=, NULL=, and SIDES= options spec-
ify a 2-sidedt test for a mean of 0, assuming a normal distribution with a significance
level ofα = 0.05.

Figure 57.1shows the output.

The POWER Procedure
One-sample t Test for Mean

Fixed Scenario Elements

Distribution Normal
Method Exact
Mean 8
Standard Deviation 40
Total Sample Size 150
Number of Sides 2
Null Mean 0
Alpha 0.05

Computed Power

Power

0.682

Figure 57.1. Sample Size Analysis for One-Sample t Test

The power is about 0.68. In other words, there is about a 2/3 chance that thet test
will produce a significant result demonstrating the machine’s average off-center dis-
placement. This probability depends on the assumptions for the mean and standard
deviation.

Now, suppose you want to account for some of your uncertainty in conjecturing the
true mean and standard deviation by evaluating the power for four scenarios using
reasonable low and high values, 5 and 10 for the mean, and 30 and 50 for the standard
deviation. Also, you may be able to measure more than 150 jerseys, and you would
like to know under what circumstances you could get by with fewer. You want to plot
power for sample sizes between 100 and 200 to visualize how sensitive the power is
to changes in sample size for these four scenarios of means and standard deviations.
The following statements perform this analysis:
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proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

The new mean and standard deviation values are specified using the MEAN= and
STDDEV= options in the ONESAMPLEMEANS statement. The PLOT statement
with X=N produces a plot with sample size on the x-axis. (The result parameter,
in this case the power, is always plotted on the other axis.) The MIN= and MAX=
options in the PLOT statement determine the sample size range.

Figure 57.2shows the output, andFigure 57.3shows the plot.

The POWER Procedure
One-sample t Test for Mean

Fixed Scenario Elements

Distribution Normal
Method Exact
Total Sample Size 150
Number of Sides 2
Null Mean 0
Alpha 0.05

Computed Power

Std
Index Mean Dev Power

1 5 30 0.527
2 5 50 0.229
3 10 30 0.982
4 10 50 0.682

Figure 57.2. Sample Size Analysis for One-Sample t Test with Input Ranges
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Figure 57.3. Plot of Power versus Sample Size for One-Sample t Test with Input
Ranges

The power ranges from about 0.23 to 0.98 for a sample size of 150 depending on the
mean and standard deviation. InFigure 57.3, the line style identifies the mean, and the
plotting symbol identifies the standard deviation. The locations of plotting symbols
indicate computed powers; the curves are linear interpolations of these points. The
plot suggests sufficient power for a mean of 10 and standard deviation of 30 (for any
of the sample sizes) but insufficient power for the other three scenarios.

Determining Required Sample Size for a Two-Sample t Test

In this example you want to compare two physical therapy treatments designed to
increase muscle flexibility. You need to determine the number of patients required to
achieve a power of at least0.9 to detect a group mean difference in a two-samplet
test. You will useα = 0.05 (two-tailed).

The mean flexibility with the standard treatment (as measured on a scale of 1 to 20)
is well known to be about 13 and is thought to be between 14 and 15 with the new
treatment. You conjecture three alternative scenarios for the means,

1. µ1 = 13, µ2 = 14

2. µ1 = 13, µ2 = 14.5

3. µ1 = 13, µ2 = 15

You conjecture two scenarios for the common group standard deviation:
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1. σ = 1.2

2. σ = 1.7

You also want to try three weighting schemes:

1. equal group sizes (balanced, or 1:1)

2. twice as many patients with the new treatment (1:2)

3. three times as many patients with the new treatment (1:3)

This makes3× 2× 3 = 18 scenarios in all.

Use the TWOSAMPLEMEANS statement in the POWER procedure to determine the
sample sizes required to give 90% power for each of these 18 scenarios. Indicate total
sample size as the result parameter by specifying the NTOTAL= option with a missing
value (.). Specify your conjectures for the means using the GROUPMEANS= option.
Using the “matched” notation (discussed in the“Specifying Value Lists in Analysis
Statements”section on page 3490), enclose the two group means for each scenario in
parentheses. Use the STDDEV= option to specify scenarios for the common standard
deviation. Specify the weighting schemes using the GROUPWEIGHTS= option. You
could again use the matched notation. But for illustrative purposes, specify the sce-
narios for each group weight separately using the “crossed” notation, with scenarios
for each group weight separated by a vertical bar (|). The statements that perform the
analysis are as follows:

proc power;
twosamplemeans

groupmeans = (13 14) (13 14.5) (13 15)
stddev = 1.2 1.7
groupweights = 1 | 1 2 3
power = 0.9
ntotal = .;

run;

Default values for the TEST=, DIST=, NULLDIFF=, ALPHA=, and SIDES= op-
tions specify a 2-sidedt test of group mean difference equal to 0, assuming a normal
distribution with a significance level ofα = 0.05. The results are shown inFigure
57.4.
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The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Group 1 Weight 1
Nominal Power 0.9
Number of Sides 2
Null Difference 0
Alpha 0.05

Computed N Total

Std Actual N
Index Mean1 Mean2 Dev Weight2 Power Total

1 13 14.0 1.2 1 0.907 64
2 13 14.0 1.2 2 0.908 72
3 13 14.0 1.2 3 0.905 84
4 13 14.0 1.7 1 0.901 124
5 13 14.0 1.7 2 0.905 141
6 13 14.0 1.7 3 0.900 164
7 13 14.5 1.2 1 0.910 30
8 13 14.5 1.2 2 0.906 33
9 13 14.5 1.2 3 0.916 40

10 13 14.5 1.7 1 0.900 56
11 13 14.5 1.7 2 0.901 63
12 13 14.5 1.7 3 0.908 76
13 13 15.0 1.2 1 0.913 18
14 13 15.0 1.2 2 0.927 21
15 13 15.0 1.2 3 0.922 24
16 13 15.0 1.7 1 0.914 34
17 13 15.0 1.7 2 0.921 39
18 13 15.0 1.7 3 0.910 44

Figure 57.4. Sample Size Analysis for Two-Sample t Test Using Group Means

The interpretation is that in the best-case scenario (large mean difference of 2, small
standard deviation of 1.2, and balanced design), a sample size ofN = 18 (n1 = n2 =
9) patients is sufficient to achieve a power of at least 0.9. In the worst-case scenario
(small mean difference of 1, large standard deviation of 1.7, and a 1:3 unbalanced
design), a sample size ofN = 164 (n1 = 41, n2 = 123) patients is necessary. The
Nominal Power of 0.9 in the Fixed Scenario Elements table represents the input target
power, and the Actual Power column in the Computed N Total table is the power at
the sample size (N Total) adjusted to achieve the specified sample weighting exactly.

Note the following characteristics of the analysis, and ways you can modify them if
you wish.

• The total sample sizes are rounded up to multiples of the weight sums (2 for
the 1:1 design, 3 for the 1:2 design, and 4 for the 1:3 design) to ensure that
each group size is an integer. To request raw fractional sample size solutions,
use the NFRACTIONAL option.

• Only the group weight that varies (the one for group 2) is displayed as an
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output column, while the weight for group 1 appears in the Fixed Scenario
Elements table. To display the group weights together in output columns, use
the matched version of the value list rather than the crossed version.

• If you can only specify differences between group means (instead of their indi-
vidual values), or if you want to display the mean differences instead of the in-
dividual means, use the MEANDIFF= option instead of the GROUPMEANS=
option.

The following statements implement all of these modifications.

proc power;
twosamplemeans

nfractional
meandiff = 1 to 2 by 0.5
stddev = 1.2 1.7
groupweights = (1 1) (1 2) (1 3)
power = 0.9
ntotal = .;

run;

Figure 57.5shows the new results.
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The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Nominal Power 0.9
Number of Sides 2
Null Difference 0
Alpha 0.05

Computed Ceiling N Total

Mean Std Fractional Actual Ceiling
Index Diff Dev Weight1 Weight2 N Total Power N Total

1 1.0 1.2 1 1 62.507429 0.902 63
2 1.0 1.2 1 2 70.065711 0.904 71
3 1.0 1.2 1 3 82.665772 0.901 83
4 1.0 1.7 1 1 123.418482 0.901 124
5 1.0 1.7 1 2 138.598159 0.901 139
6 1.0 1.7 1 3 163.899094 0.900 164
7 1.5 1.2 1 1 28.961958 0.900 29
8 1.5 1.2 1 2 32.308867 0.906 33
9 1.5 1.2 1 3 37.893351 0.901 38

10 1.5 1.7 1 1 55.977156 0.900 56
11 1.5 1.7 1 2 62.717357 0.901 63
12 1.5 1.7 1 3 73.954291 0.900 74
13 2.0 1.2 1 1 17.298518 0.913 18
14 2.0 1.2 1 2 19.163836 0.913 20
15 2.0 1.2 1 3 22.282926 0.910 23
16 2.0 1.7 1 1 32.413512 0.905 33
17 2.0 1.7 1 2 36.195531 0.907 37
18 2.0 1.7 1 3 42.504535 0.903 43

Figure 57.5. Sample Size Analysis for Two-Sample t Test Using Mean Differences

Note that the Nominal Power of 0.9 applies to the raw computed sample size
(Fractional N Total), and the Actual Power column applies to the rounded sample
size (Ceiling N Total). Some of the adjusted sample sizes inFigure 57.5are lower
than those inFigure 57.4because underlying group sample sizes are allowed to be
fractional (for example, the first Ceiling N Total of 63 corresponding to equal group
sizes of 31.5).
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Syntax

The following statements are available in PROC POWER.

PROC POWER < options > ;

MULTREG < options > ;
ONECORR < options > ;
ONESAMPLEFREQ < options > ;
ONESAMPLEMEANS < options > ;
ONEWAYANOVA < options > ;
PAIREDFREQ < options > ;
PAIREDMEANS < options > ;
TWOSAMPLEFREQ < options > ;
TWOSAMPLEMEANS < options > ;
TWOSAMPLESURVIVAL < options > ;

PLOT < plot-options > < / graph-options > ;

The statements in the POWER procedure consist of the PROC POWER statement, a
set ofanalysis statements(for requesting specific power and sample size analyses),
and the PLOT statement (for producing graphs). The PROC POWER statement
and at least one of the analysis statements are required. The analysis statements
are MULTREG, ONECORR, ONESAMPLEFREQ, ONESAMPLEMEANS,
ONEWAYANOVA, PAIREDFREQ, PAIREDMEANS, TWOSAMPLEFREQ,
TWOSAMPLEMEANS, and TWOSAMPLESURVIVAL.

You can use multiple analysis statements and multiple PLOT statements. Each anal-
ysis statement produces a separate sample size analysis. Each PLOT statement refers
to the previous analysis statement and generates a separate graph (or set of graphs).

The name of an analysis statement describes the framework of the statistical analy-
sis for which sample size calculations are desired. You use options in the analysis
statements to identify the result parameter to compute, to specify the statistical test
and computational options, and to provide one or more scenarios for the values of
relevant analysis parameters.

Table 57.1summarizes the basic functions of each statement in PROC POWER. The
syntax of each statement inTable 57.1is described in the following pages.

Table 57.1. Statements in the POWER Procedure

Statement Description
PROC POWER invokes the procedure

MULTREG tests of one or more coefficients in multiple linear
regression

ONECORR Fisher’sz test andt test of (partial) correlation
ONESAMPLEFREQ tests of a single binomial proportion
ONESAMPLEMEANS one-samplet test, confidence interval precision, or

equivalence test
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Table 57.1. (continued)

Statement Description
ONEWAYANOVA one-way ANOVA including single-degree-of-

freedom contrasts
PAIREDFREQ McNemar’s test for paired proportions
PAIREDMEANS paired t test, confidence interval precision, or

equivalence test
TWOSAMPLEFREQ chi-square, likelihood ratio, and Fisher’s exact

tests for two independent proportions
TWOSAMPLEMEANS two-samplet test, confidence interval precision, or

equivalence test
TWOSAMPLESURVIVAL log-rank, Gehan, and Tarone-Ware tests for com-

paring two survival curves

PLOT displays plots for previous sample size analysis

See the“Summary of Analyses”section on page 3488 for a summary of the analyses
available and the syntax required for them.

PROC POWER Statement

PROC POWER < options > ;

The PROC POWER statement invokes the POWER procedure. You can specify the
following option.

PLOTONLY
specifies that only graphical results from the PLOT statement should be produced.

MULTREG Statement

MULTREG < options > ;

The MULTREG statement performs power and sample size analyses for Type III
F tests of sets of predictors in multiple linear regression, assuming either fixed or
normally distributed predictors.

Summary of Options

Table 57.2summarizes categories of options available in the MULTREG statement.

Table 57.2. Summary of Options in the MULTREG Statement

Task Options
Define analysis TEST=

Specify analysis information ALPHA=
MODEL=
NFULLPREDICTORS=
NOINT
NREDUCEDPREDICTORS=
NTESTPREDICTORS=
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Table 57.2. (continued)

Task Options
Specify effects PARTIALCORR=

RSQUAREDIFF=
RSQUAREFULL=
RSQUAREREDUCED=

Specify sample size NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.3summarizes the valid result parameters in the MULTREG statement.

Table 57.3. Summary of Result Parameters in the MULTREG Statement

Analyses Solve for Syntax
TEST=TYPE3 Power POWER = .

Sample size NTOTAL = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

MODEL=keyword-list
specifies the assumed distribution of the tested predictors. MODEL=FIXED indi-
cates a fixed predictor distribution. MODEL=RANDOM (the default) indicates a
joint multivariate normal distribution for the response and tested predictors. You may
use the aliases CONDITIONAL for FIXED and UNCONDITIONAL for RANDOM.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thekeyword-list.

FIXED fixed predictors

RANDOM random (multivariate normal) predictors

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.
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NFULLPREDICTORS=number-list
NFULLPRED=number-list

specifies the number of predictors in the full model, not counting the intercept. See
the“Specifying Value Lists in Analysis Statements”section on page 3490 for infor-
mation on specifying thenumber-list.

NOINT
specifies a no-intercept model (for both full and reduced models). By default, the
intercept is included in the model. If you wish to test the intercept, you can specify
the NOINT option and simply consider the intercept to be one of the predictors being
tested. See the“Specifying Value Lists in Analysis Statements”section on page 3490
for information on specifying thenumber-list.

NREDUCEDPREDICTORS=number-list
NREDUCEDPRED=number-list
NREDPRED=number-list

specifies the number of predictors in the reduced model, not counting the intercept.
This is the same as the difference between values of the NFULLPREDICTORS=
and NTESTPREDICTORS= options. Note that supplying a value of 0 is the same
as specifying anF test of a Pearson correlation. This option cannot be used at the
same time as the NTESTPREDICTORS= option. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.

NTESTPREDICTORS=number-list
NTESTPRED=number-list

specifies the number of predictors being tested. This is the same as the difference
between values of the NFULLPREDICTORS= and NREDUCEDPREDICTORS=
options. Note that supplying identical values for the NTESTPREDICTORS=
and NFULLPREDICTORS= options is the same as specifying anF test of
a Pearson correlation. This option cannot be used at the same time as the
NREDUCEDPREDICTORS= option. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). The minimum acceptable value for the sample size depends
on the MODEL=, NOINT, NFULLPREDICTORS=, NTESTPREDICTORS=, and
NREDUCEDPREDICTORS= options. It ranges fromp + 1 to p + 3, wherep is
the value of the NFULLPREDICTORS option. SeeTable 57.26on page 3501 for
further information on minimum NTOTAL values, and see the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
number-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by
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• MODEL

• NFULLPREDICTORS

• NTESTPREDICTORS

• NREDUCEDPREDICTORS

• ALPHA

• PARTIALCORR

• RSQUAREFULL

• RSQUAREREDUCED

• RSQUAREDIFF

• NTOTAL

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the MULTREG state-
ment. The OUTPUTORDER=REVERSE option arranges the parameters in the out-
put in the reverse of the order that their corresponding options are specified in the
MULTREG statement.

PARTIALCORR= number-list
PCORR=number-list

specifies the partial correlation between the tested predictors and the response, adjust-
ing for any other predictors in the model. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

RSQUAREDIFF=number-list
RSQDIFF=number-list

specifies the difference inR2 between the full and reduced models. This is equiva-
lent to the proportion of variation explained by the predictors you are testing. It is
also equivalent to the squared semipartial correlation of the tested predictors with the
response. See the“Specifying Value Lists in Analysis Statements”section on page
3490 for information on specifying thenumber-list.

RSQUAREFULL= number-list
RSQFULL=number-list

specifies theR2 of the full model, whereR2 is the proportion of variation explained
by the model. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thenumber-list.
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RSQUAREREDUCED=number-list
RSQREDUCED=number-list
RSQRED=number-list

specifies theR2 of the reduced model, whereR2 is the proportion of variation ex-
plained by the model. If the reduced model is an empty or intercept-only model
(in other words, if NREDUCEDPREDICTORS = 0 or NTESTPREDICTORS =
NFULLPREDICTORS), then RSQUAREREDUCED = 0 is assumed. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thenumber-list.

TEST= TYPE3
specifies a Type IIIF test of a set of predictors adjusting for any other predictors in
the model. This is the default test option.

Restrictions on Option Combinations

To specify the number of predictors, use any two of these three options:

• the number of predictors in the full model (NFULLPREDICTORS=)

• the number of predictors in the reduced model (NREDUCEDPREDICTORS=)

• the number of predictors being tested (NTESTPREDICTORS=)

To specify the effect, choose one of the following parameterizations:

• partial correlation (using the PARTIALCORR= option)

• R2 for the full and reduced models (using any two of RSQUAREDIFF=,
RSQUAREFULL=, and RSQUAREREDUCED=)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
MULTREG statement.

Type III F Test of a Set of Predictors

You can express effects in terms of partial correlation. Default values of the TEST=,
MODEL=, and ALPHA= options specify a Type IIIF test with a significance level
of 0.05, assuming normally distributed predictors.

proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 3
partialcorr = 0.35
ntotal = 100
power = .;

run;

You can also express effects in terms ofR2.
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proc power;
multreg

model = fixed
nfullpredictors = 7
ntestpredictors = 3
rsquarefull = 0.9
rsquarediff = 0.1
ntotal = .
power = 0.9;

run;

ONECORR Statement

ONECORR < options > ;

The ONECORR statement performs power and sample size analyses for tests of sim-
ple and partial Pearson correlation between two variables. Both Fisher’sz test and
thet test are supported.

Summary of Options

Table 57.4summarizes categories of options available in the ONECORR statement.

Table 57.4. Summary of Options in the ONECORR Statement

Task Options
Define analysis DIST=

TEST=

Specify analysis information ALPHA=
MODEL=
NPARTIALVARS=
NULL=
SIDES=

Specify effects CORR=

Specify sample size NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.5summarizes the valid result parameters in the ONECORR statement.

Table 57.5. Summary of Result Parameters in the ONECORR Statement

Analyses Solve for Syntax
TEST=PEARSON Power POWER = .

Sample size NTOTAL = .
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Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

CORR=number-list
specifies the correlation between two variables, possibly adjusting for other variables
as determined by the NPARTIALVARS= option. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.

DIST=FISHERZ
DIST=T

specifies the underlying distribution assumed for the test statistic. FISHERZ cor-
responds to Fisher’sz normalizing transformation of the correlation coefficient. T
corresponds to thet transformation of the correlation coefficient. Note that DIST=T
is equivalent to analyses in the MULTREG statement with NTESTPREDICTORS=1.
The default value is FISHERZ.

MODEL=keyword-list
specifies the assumed distribution of the first variable when DIST=T. The second
variable is assumed to have a normal distribution. MODEL=FIXED indicates a fixed
distribution. MODEL=RANDOM (the default) indicates a joint bivariate normal dis-
tribution with the second variable. You may use the aliases CONDITIONAL for
FIXED and UNCONDITIONAL for RANDOM. This option can only be used for
DIST=T. See the“Specifying Value Lists in Analysis Statements”section on page
3490 for information on specifying thekeyword-list.

FIXED fixed variables

RANDOM random (bivariate normal) variables

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NPARTIALVARS= number-list
NPVARS=number-list

specifies the number of variables adjusted for in the correlation between the two pri-
mary variables. The default value is 0, corresponding to a simple correlation. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thenumber-list.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). Values for the sample size must be at leastp + 3 when DIST=T
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and MODEL=CONDITIONAL, and at leastp + 4 when either DIST=FISHER
or when DIST=T and MODEL=UNCONDITIONAL, wherep is the value of the
NPARTIALVARS option. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

NULLCORR=number-list
NULLC=number-list

specifies the null value of the correlation. The default value is 0. This option can
only be used with the DIST=FISHERZ analysis. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by

• MODEL

• SIDES

• NULL

• ALPHA

• NPARTIALVARS

• CORR

• NTOTAL

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the ONECORR state-
ment. The OUTPUTORDER=REVERSE option arranges the parameters in the out-
put in the reverse of the order that their corresponding options are specified in the
ONECORR statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

TEST= PEARSON
specifies a test of the Pearson correlation coefficient between two variables, possibly
adjusting for other variables. This is the default test option.

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
ONECORR statement.
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Fisher’s z test for Pearson Correlation

Default values of TEST=PEARSON, ALPHA=.05, SIDES=2, and
NPARTIALVARS=0 are assumed.

proc power;
onecorr dist=fisherz
null = 0.15
corr = 0.35
ntotal = 180
power = .

run;

t test for Pearson Correlation

Default values of TEST=PEARSON, MODEL=RANDOM, ALPHA=.05, and
SIDES=2 are assumed.

proc power;
onecorr dist=t
npartialvars = 4
corr = 0.45
ntotal = .
power = 0.85

run;

ONESAMPLEFREQ Statement

ONESAMPLEFREQ < options > ;

The ONESAMPLEFREQ statement performs power and sample size analyses for
exact and approximate tests of a single binomial proportion.

Summary of Options

Table 57.6summarizes categories of options available in the ONESAMPLEFREQ
statement.

Table 57.6. Summary of Options in the ONESAMPLEFREQ Statement

Task Options
Define analysis TEST=

Specify analysis information ALPHA=
NULLPROPORTION=
SIDES=

Specify effect PROPORTION=

Specify sample size NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Choose computational method METHOD=

Control ordering in output OUTPUTORDER=
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Table 57.7summarizes the valid result parameters for different analyses in the
ONESAMPLEFREQ statement.

Table 57.7. Summary of Result Parameters in the ONESAMPLEFREQ Statement

Analyses Solve for Syntax
TEST=ADJZ METHOD=EXACT Power POWER = .

TEST=ADJZ METHOD=NORMAL Power POWER = .
Sample size NTOTAL = .

TEST=EXACT Power POWER = .

TEST=Z METHOD=EXACT Power POWER = .

TEST=Z METHOD=NORMAL Power POWER = .
Sample size NTOTAL = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

METHOD=EXACT
METHOD=NORMAL

specifies the computational method. METHOD=EXACT (the default) computes ex-
act results using the binomial distribution. METHOD=NORMAL computes approx-
imate results using the normal approximation to the binomial distribution.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

NULLPROPORTION=number-list
NULLP=number-list

specifies the null proportion. A value of 0.5 corresponds to the sign test. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for information
on specifying thenumber-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by
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• SIDES

• NULLPROPORTION

• ALPHA

• PROPORTION

• NTOTAL

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the ONESAMPLEFREQ
statement. The OUTPUTORDER=REVERSE option arranges the parameters in the
output in the reverse of the order that their corresponding options are specified in the
ONESAMPLEFREQ statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

PROPORTION=number-list
P=number-list

specifies the binomial proportion, that is, the expected proportion of successes in the
hypothetical binomial trial. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for information
on specifying thekeyword-list. Valid keywords are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value

L lower 1-sided with alternative less than null value

The default value is 2.

TEST= ADJZ
TEST= EXACT
TEST= Z

specifies the statistical analysis. TEST=ADJZ specifies a normal-approximatez test
with continuity adjustment. TEST=EXACT (the default) specifies the exact binomial
test. TEST=Z specifies a normal-approximatez test without any continuity adjust-
ment, which is the same as the chi-square test when SIDES=2.
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Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
ONESAMPLEFREQ statement.

Exact Test of a Binomial Proportion

Defaults for the SIDES= and ALPHA= options specify a 2-sided test with a 0.05
significance level.

proc power;
onesamplefreq test=binomial

nullproportion = 0.2
proportion = 0.3
ntotal = 100
power = .;

run;

z Test

Defaults for the SIDES= and ALPHA= options specify a 2-sided test with a 0.05
significance level.

proc power;
onesamplefreq test=z

nullproportion = 0.8
proportion = 0.85
sides = u
ntotal = .
power = .9;

run;

z Test with Continuity Adjustment

Defaults for the SIDES= and ALPHA= options specify a 2-sided test with a 0.05
significance level.

proc power;
onesamplefreq test=adjz

nullproportion = 0.15
proportion = 0.1
sides = l
ntotal = .
power = .9;

run;

ONESAMPLEMEANS Statement

ONESAMPLEMEANS < options > ;

The ONESAMPLEMEANS statement performs power and sample size analyses for
t tests, equivalence tests, and confidence interval precision involving one sample.
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Summary of Options

Table 57.8summarizes categories of options available in the ONESAMPLEMEANS
statement.

Table 57.8. Summary of Options in the ONESAMPLEMEANS Statement

Task Options
Define analysis CI=

DIST=
TEST=

Specify analysis information ALPHA=
LOWER=
NULL=
SIDES=
UPPER=

Specify effects HALFWIDTH=
MEAN=

Specify variability CV=
STDDEV=

Specify sample size NTOTAL=

Specify power and related POWER=
probabilities PROBTYPE=

PROBWIDTH=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.9summarizes the valid result parameters for different analyses in the
ONESAMPLEMEANS statement.

Table 57.9. Summary of Result Parameters in the ONESAMPLEMEANS
Statement

Analyses Solve for Syntax
TEST=T DIST=NORMAL Power POWER = .

Sample size NTOTAL = .
Alpha ALPHA = .
Mean MEAN = .
Standard Deviation STDDEV = .

TEST=T DIST=LOGNORMAL Power POWER = .
Sample size NTOTAL = .

TEST=EQUIV Power POWER = .
Sample size NTOTAL = .

CI=T Prob(width) PROBWIDTH = .
Sample size NTOTAL = .



3434 � Chapter 57. The POWER Procedure

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

CI
CI= T

specifies an analysis of precision of the confidence interval for the mean. Instead of
power, the relevant probability for this analysis is the probability of achieving a de-
sired precision. Specifically, it is the probability that the half-width of the confidence
interval will be at most the value specified by the HALFWIDTH= option. If neither
the CI= option nor the TEST= option is used, the default is TEST=T.

CV=number-list
specifies the coefficient of variation, defined as the ratio of the standard deviation
to the mean. You can use this option only with DIST=LOGNORMAL. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thenumber-list.

DIST=LOGNORMAL
DIST=NORMAL

specifies the underlying distribution assumed for the test statistic. NORMAL cor-
responds the normal distribution, and LOGNORMAL corresponds to the lognormal
distribution. The default value is NORMAL.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the
distance between the point estimate and a finite endpoint. This option can only be
used with the CI=T analysis. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

LOWER=number-list
specifies the lower equivalence bound for the mean. This option can only be used with
the TEST=EQUIV analysis. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

MEAN=number-list
specifies the mean, in the original scale. The mean is arithmetic if DIST=NORMAL
and geometric if DIST=LOGNORMAL. This option can only be used with the
TEST=T and TEST=EQUIV analyses. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.
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NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

NULLMEAN= number-list
NULLM=number-list

specifies the null mean, in the original scale (whether DIST=NORMAL or
DIST=LOGNORMAL). The default value is 0 when DIST=NORMAL and 1 when
DIST=LOGNORMAL. This option can only be used with the TEST=T analysis.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thenumber-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by

• SIDES

• NULLMEAN

• LOWER

• UPPER

• ALPHA

• MEAN

• HALFWIDTH

• STDDEV

• CV

• NTOTAL

• POWER

• PROBTYPE

• PROBWIDTH

The OUTPUTORDER=SYNTAX option arranges the parameters in the out-
put in the same order that their corresponding options are specified in the
ONESAMPLEMEANS statement. The OUTPUTORDER=REVERSE option ar-
ranges the parameters in the output in the reverse of the order that their corresponding
options are specified in the ONESAMPLEMEANS statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a
missing value (POWER=.). The power is expressed as a probability, a number be-
tween 0 and 1, rather than as a percentage. This option can only be used with the
TEST=T and TEST=EQUIV analyses. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.
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PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of
CONDITIONAL (the default) indicates the conditional probability that the confi-
dence interval half-width is at most the value specified by the HALFWIDTH= op-
tion, given that the true mean is captured by the confidence interval. A value of
UNCONDITIONAL indicates the unconditional probability that the confidence in-
terval half-width is at most the value specified by the HALFWIDTH= option. You
may use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= op-
tion can only be used with the CI=T analysis. See the“Specifying Value Lists
in Analysis Statements”section on page 3490 for information on specifying the
keyword-list.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less
than or equal to the value specified by the HALFWIDTH= option. A missing value
(PROBWIDTH=.) requests a solution for this probability. The type of probability is
controlled with the PROBTYPE= option. Values are expressed as probabilities (for
example, 0.9) rather than percentages. This option can only be used with the CI=T
analysis. See the“Specifying Value Lists in Analysis Statements”section on page
3490 for information on specifying thenumber-list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test or confi-
dence interval. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thekeyword-list. Valid keywords and their
interpretation for the TEST= analyses are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value

L lower 1-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence
limit and infinity, and SIDES=L refers to an interval between negative infinity and the
upper confidence limit. For both of these cases and SIDES=1, the confidence interval
computations are equivalent. The SIDES= option can only be used with the TEST=T
and CI=T analyses. The default value is 2.

STDDEV=number-list
STD=number-list

specifies the standard deviation. You can use this option only with DIST=NORMAL.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thenumber-list.



ONESAMPLEMEANS Statement � 3437

TEST
TEST=EQUIV
TEST=T

specifies the statistical analysis. TEST=EQUIV specifies an equivalence test of the
mean using a two one-sided tests (TOST) analysis (Schuirmann 1987). TEST or
TEST=T (the default) specifies at test on the mean. If neither the TEST= option nor
the CI= option is used, the default is TEST=T.

UPPER=number-list
specifies the upper equivalence bound for the mean, in the original scale (whether
DIST=NORMAL or DIST=LOGNORMAL). This option can only be used with the
TEST=EQUIV analysis. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (using the TEST= option)

• confidence interval precision (using the CI= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
ONESAMPLEMEANS statement.

One-sample t Test

Default values for the DIST=, SIDES=, NULLMEAN=, and ALPHA= options spec-
ify a 2-sided test for zero mean with a normal distribution and a significance level of
0.05.

proc power;
onesamplemeans test=t

mean = 7
stddev = 3
ntotal = 50
power = .;

run;

One-sample t Test with Lognormal Data

Default values for the SIDES=, NULLMEAN=, and ALPHA= options specify a 2-
sided test for unit mean with a significance level of 0.05.

proc power;
onesamplemeans test=t dist=lognormal

mean = 7
cv = 0.8
ntotal = .
power = 0.9;

run;
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Equivalence Test for Mean of Normal Data

Default values for the DIST= and ALPHA= options specify a normal distribution and
a significance level of 0.05.

proc power;
onesamplemeans test=equiv

lower = 2
upper = 7
mean = 4
stddev = 3
ntotal = 100
power = .;

run;

Equivalence Test for Mean of Lognormal Data

The default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onesamplemeans test=equiv dist=lognormal

lower = 1
upper = 5
mean = 3
cv = 0.6
ntotal = .
power = 0.85;

run;

Confidence Interval for Mean

By default CI=T analyzes the conditional probability of obtaining the desired preci-
sion, given that the interval contains the true mean. The defaults of SIDES=2 and
ALPHA=0.05 specify a 2-sided interval with a confidence level of 0.95.

proc power;
onesamplemeans ci = t

halfwidth = 14
stddev = 8
ntotal = 50
probwidth = .;

run;

ONEWAYANOVA Statement

ONEWAYANOVA < options > ;

The ONEWAYANOVA statement performs power and sample size analyses for one-
degree-of-freedom contrasts and the overallF test in one-way analysis of variance.
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Summary of Options

Table 57.10summarizes categories of options available in the ONEWAYANOVA
statement.

Table 57.10. Summary of Options in the ONEWAYANOVA Statement

Task Options
Define analysis TEST=

Specify analysis information ALPHA=
CONTRAST=
SIDES=
NULLCONTRAST=

Specify effects GROUPMEANS=

Specify variability STDDEV=

Specify sample size and allocation GROUPNS=
GROUPWEIGHTS=
NPERGROUP=
NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.11summarizes the valid result parameters for different analyses in the
ONEWAYANOVA statement.

Table 57.11. Summary of Result Parameters in the ONEWAYANOVA Statement

Analyses Solve for Syntax
TEST=CONTRAST Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

TEST=OVERALL Power POWER = .
Sample size NTOTAL = .

NPERGROUP = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

CONTRAST= ( values ) < ( ... values ) >
specifies coefficients for single-degree-of-freedom hypothesis tests. You must pro-
vide a coefficient for every mean appearing in the GROUPMEANS= option. Specify
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multiple contrasts either with additional sets of coefficients or with additional
CONTRAST= options. For example, you can specify two different contrasts of five
means using

CONTRAST = (1 -1 0 0 0) (1 0 -1 0 0)

GROUPMEANS=grouped-number-list
GMEANS=grouped-number-list

specifies the group means. This option is used to implicitly set the number of groups.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thegrouped-number-list.

GROUPNS= grouped-number-list
GNS= grouped-number-list

specifies the group sample sizes. The number of groups represented must be the same
as with the GROUPMEANS= option. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thegrouped-number-
list.

GROUPWEIGHTS= grouped-number-list
GWEIGHTS= grouped-number-list

specifies the sample size allocation weights for the groups. This option controls how
the total sample size is divided between the groups. Each set of values across all
groups represents relative allocation weights. Additionally, if the NFRACTIONAL
option is not used, the total sample size is restricted to be equal to a multiple of
the sum of the group weights (so that the resulting design has an integer sample
size for each group while adhering exactly to the group allocation weights). The
number of groups represented must be the same as with the GROUPMEANS= option.
Values must be integers unless the NFRACTIONAL option is used. The default value
is 1 for each group, amounting to a balanced design. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
grouped-number-list.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NPERGROUP= number-list
NPERG= number-list

specifies the common sample size per group or requests a solution for the common
sample size per group with a missing value (NPERGROUP=.). Use of this option
implicitly specifies a balanced design. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.
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NULLCONTRAST= number-list
NULLC=number-list

specifies the null value of the contrast. The default value is 0. This option can only
be used with the TEST=CONTRAST analysis. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by

• CONTRAST

• SIDES

• NULLCONTRAST

• ALPHA

• GROUPMEANS

• STDDEV

• GROUPWEIGHTS

• NTOTAL

• NPERGROUP

• GROUPNS

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the ONEWAYANOVA
statement. The OUTPUTORDER=REVERSE option arranges the parameters in the
output in the reverse of the order that their corresponding options are specified in the
ONEWAYANOVA statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for information
on specifying thekeyword-list. Valid keywords are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value
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L lower 1-sided with alternative less than null value

This option can only be used with the TEST=CONTRAST analysis. The default
value is 2.

STDDEV=number-list
STD=number-list

specifies the error standard deviation. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

TEST= CONTRAST
TEST= OVERALL

specifies the statistical analysis. TEST=CONTRAST specifies a one-degree-of-
freedom test of a contrast of means. The test is the usualF test for the 2-sided case
and the usualt test for the 1-sided case. TEST=OVERALL specifies the overallF
test of equality of all means. The default is TEST=CONTRAST if the CONTRAST=
option is used, and TEST=OVERALL otherwise.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameteriza-
tions:

• sample size per group in a balanced design (using the NPERGROUP= option)

• total sample size and allocation weights (using the NTOTAL= and
GROUPWEIGHTS= options)

• individual group sample sizes (using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
ONEWAYANOVA statement.

One-Degree-of-Freedom Contrast

You can use the NPERGROUP= option in a balanced design. Default values for
the SIDES=, NULLCONTRAST=, and ALPHA= options specify a 2-sided test for a
contrast value of 0 with a significance level of 0.05.

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

You can also specify an unbalanced design with the NTOTAL= and
GROUPWEIGHTS= options.
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proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupweights = (1 2 2)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPN= option.

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupns = (20 40 40)
power = .;

run;

Overall F Test

The default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onewayanova test=overall

groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

PAIREDFREQ Statement

PAIREDFREQ < options > ;

The PAIREDFREQ statement performs power and sample size analyses for
McNemar’s test for paired proportions.

Summary of Options

Table 57.12summarizes categories of options available in the PAIREDFREQ state-
ment.

Table 57.12. Summary of Options in the PAIREDFREQ Statement

Task Options
Define analysis DIST=

TEST=

Specify analysis information ALPHA=
NULLDISCPROPRATIO=
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Table 57.12. (continued)

Task Options
SIDES=

Specify effects DISCPROPDIFF=
DISCPROPORTIONS=
DISCPROPRATIO=
REFPROPORTION=
TOTALPROPDISC=

Specify sample size NPAIRS=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Choose computational method METHOD=

Control ordering in output OUTPUTORDER=

Table 57.13summarizes the valid result parameters in the PAIREDFREQ statement.

Table 57.13. Summary of Result Parameters in the PAIREDFREQ Statement

Analyses Solve for Syntax
TEST=MCNEMAR METHOD=CONNOR Power POWER = .

Sample size NPAIRS = .

TEST=MCNEMAR METHOD=EXACT Power POWER = .

TEST=MCNEMAR METHOD=MIETTINEN Power POWER = .
Sample size NPAIRS = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

DISCPROPORTIONS=grouped-number-list
DISCPS=grouped-number-list

specifies the two discordant proportions,p10 and p01. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
grouped-number-list.

DISCPROPDIFF=number-list
DISCPDIFF=number-list

specifies the differencep01−p10 between discordant proportions. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.
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DISCPROPRATIO=number-list
DISCPRATIO=number-list

specifies the ratiop01/p10 of discordant proportions. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying
thenumber-list.

DIST=EXACT–COND
DIST=NORMAL

specifies the underlying distribution assumed for the test statistic. EXACT–COND
corresponds to the exact conditional test, based on the exact binomial distribution
of the two types of discordant pairs given the total number of discordant pairs.
NORMAL corresponds to the conditional test based on the normal approximation
to the binomial distribution of the two types of discordant pairs given the total num-
ber of discordant pairs. The default value is EXACT–COND.

METHOD=CONNOR
METHOD=EXACT
METHOD=MIETTINEN

specifies the computational method. METHOD=EXACT (the default) uses the exact
binomial distributions of the total number of discordant pairs and the two types of
discordant pairs. METHOD=CONNOR uses an approximation from Connor (1987),
and METHOD=MIETTINEN uses an approximation from Miettinen (1968). The
CONNOR and MIETTINEN methods are valid only for DIST=NORMAL.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option. This option cannot be
used with METHOD=EXACT.

NPAIRS= number-list
specifies the total number of proportion pairs (concordant and discordant) or re-
quests a solution for the number of pairs with a missing value (NPAIRS=.). See
the“Specifying Value Lists in Analysis Statements”section on page 3490 for infor-
mation on specifying thenumber-list.

NULLDISCPROPRATIO= number-list
NULLDISCPRATIO= number-list
NULLRATIO= number-list
NULLR=number-list

specifies the null value of the ratio of discordant proportions. The default value is
1. See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thenumber-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by
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• SIDES

• NULLDISCPROPRATIO

• ALPHA

• DISCPROPORTIONS

• DISCPROPDIFF

• TOTALPROPDISC

• REFPROPORTION

• DISCPROPRATIO

• NPAIRS

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in
the same order that their corresponding options are specified in the PAIREDFREQ
statement. The OUTPUTORDER=REVERSE option arranges the parameters in the
output in the reverse of the order that their corresponding options are specified in the
PAIREDFREQ statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

REFPROPORTION=number-list
REFP=number-list

specifies the reference discordant proportionp10. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test or confi-
dence interval. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thekeyword-list. Valid keywords and their
interpretation are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value

L lower 1-sided with alternative less than null value

The default value is 2.

TEST=MCNEMAR
specifies the McNemar test of paired proportions. This is the default test option.
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TOTALPROPDISC=number-list
TOTALPDISC=number-list
PDISC=number-list

specifies the sum of the two discordant proportions,p10 + p01. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

• discordant proportions (using the DISCPROPORTIONS= option)

• difference and sum of discordant proportions (using the
DISCPROPORTIONDIFF= and TOTALPROPDISC= options)

• ratio of discordant proportions and reference discordant proportion (using the
DISCPROPRATIO= and REFPROPORTION= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
PAIREDFREQ statement.

McNemar Exact Conditional Test

You can express effects in terms of the individual discordant proportions. Default
values for the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options
specify a 2-sided McNemar test for no effect with a significance level of 0.05.

proc power;
pairedfreq dist=exact_cond

discproportions = 0.15 | 0.45
npairs = 80
power = .;

run;

You can also express effects in terms of the difference and sum of discordant propor-
tions.

proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
totalpropdisc = 0.6
npairs = .
power = 0.9;

run;

You can also express effects in terms of the ratio of discordant proportions and the
denominator of the ratio.
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proc power;
pairedfreq dist=exact_cond

discpropratio = 3
refproportion = 0.15
npairs = 80
power = .;

run;

McNemar Normal Approximation Test

The default value for the METHOD= option specifies an exact sample
size computation. Default values for the TEST=, SIDES=, ALPHA=, and
NULLDISCPROPRATIO= options specify a 2-sided McNemar test for no effect
with a significance level of 0.05.

proc power;
pairedfreq dist=normal

discproportions = 0.15 | 0.45
npairs = .
power = .9;

run;

PAIREDMEANS Statement

PAIREDMEANS < options > ;

The PAIREDMEANS statement performs power and sample size analyses fort tests,
equivalence tests, and confidence interval precision involving paired samples.

Summary of Options

Table 57.14summarizes categories of options available in the PAIREDMEANS state-
ment.

Table 57.14. Summary of Options in the PAIREDMEANS Statement

Task Options
Define analysis CI=

DIST=
TEST=

Specify analysis information ALPHA=
LOWER=
NULLDIFF=
NULLRATIO=
SIDES=
UPPER=

Specify effects HALFWIDTH=
MEANDIFF=
MEANRATIO=
PAIREDMEANS=

Specify variability CORR=
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Table 57.14. (continued)

Task Options
CV=
PAIREDCVS=
PAIREDSTDDEVS=
STDDEV=

Specify sample size NPAIRS=

Specify power and related POWER=
probabilities PROBTYPE=

PROBWIDTH=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.15summarizes the valid result parameters for different analyses in the
PAIREDMEANS statement.

Table 57.15. Summary of Result Parameters in the PAIREDMEANS Statement

Analyses Solve for Syntax
TEST=DIFF Power POWER = .

Sample size NPAIRS = .

TEST=RATIO Power POWER = .
Sample size NPAIRS = .

TEST=EQUIV–DIFF Power POWER = .
Sample size NPAIRS = .

TEST=EQUIV–RATIO Power POWER = .
Sample size NPAIRS = .

CI=DIFF Prob(width) PROBWIDTH = .
Sample size NPAIRS = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

CI
CI=DIFF

specifies an analysis of precision of the confidence interval for the mean differ-
ence. Instead of power, the relevant probability for this analysis is the probabil-
ity of achieving a desired precision. Specifically, it is the probability that the half-
width of the observed confidence interval will be at most the value specified by the
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HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the
default is TEST=DIFF.

CORR=number-list
specifies the correlation between members of a pair. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying
thenumber-list.

CV=number-list
specifies the coefficient of variation assumed to be common to both members of a
pair. The coefficient of variation is defined as the ratio of the standard deviation to the
mean. You can use this option only with DIST=LOGNORMAL. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

DIST=LOGNORMAL
DIST=NORMAL

specifies the underlying distribution assumed for the test statistic. NORMAL
corresponds the normal distribution, and LOGNORMAL corresponds to the log-
normal distribution. The default value (also the only acceptable value in each
case) is NORMAL for TEST=DIFF, TEST=EQUIV–DIFF, and CI=DIFF; and
LOGNORMAL for TEST=RATIO and TEST=EQUIV–RATIO.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as
the distance between the point estimate and a finite endpoint. This option can only
be used with the CI=DIFF analysis. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the
original scale (whether DIST=NORMAL or DIST=LOGNORMAL). This option can
only be used with the TEST=EQUIV–DIFF and TEST=EQUIV–RATIO analyses.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thenumber-list.

MEANDIFF=number-list
specifies the mean difference, defined as the mean of the difference between the sec-
ond and first members of a pair,µ2 − µ1. This option can only be used with the
TEST=DIFF and TEST=EQUIV–DIFF analyses. When TEST=EQUIV–DIFF, the
mean difference is interpreted as the treatment mean minus the reference mean. See
the“Specifying Value Lists in Analysis Statements”section on page 3490 for infor-
mation on specifying thenumber-list.

MEANRATIO=number-list
specifies the geometric mean ratio, defined asγ2/γ1. This option can only
be used with the TEST=RATIO and TEST=EQUIV–RATIO analyses. When
TEST=EQUIV–RATIO, the mean ratio is interpreted as the treatment mean divided
by the reference mean. See the“Specifying Value Lists in Analysis Statements”sec-
tion on page 3490 for information on specifying thenumber-list.
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NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NPAIRS= number-list
specifies the number of pairs or requests a solution for the number of pairs with a
missing value (NPAIRS=.). See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

NULLDIFF=number-list
NULLD=number-list

specifies the null mean difference. The default value is 0. This option can only be
used with the TEST=DIFF analysis. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NULLRATIO= number-list
NULLR=number-list

specifies the null mean ratio. The default value is 1. This option can only be used with
the TEST=RATIO analysis. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by

• SIDES

• NULLDIFF

• NULLRATIO

• LOWER

• UPPER

• ALPHA

• PAIREDFREQ

• MEANDIFF

• MEANRATIO

• HALFWIDTH

• STDDEV

• PAIREDSTDDEVS

• CV

• PAIREDCVS

• CORR

• NPAIRS
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• POWER

• PROBTYPE

• PROBWIDTH

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the PAIREDMEANS
statement. The OUTPUTORDER=REVERSE option arranges the parameters in the
output in the reverse of the order that their corresponding options are specified in the
PAIREDMEANS statement.

PAIREDCVS=grouped-number-list
specifies the coefficient of variation for each member of a pair. Unlike the CV=
option, the PAIREDCVS= option supports different values for each member of a pair.
This option can only be used with DIST=LOGNORMAL. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
grouped-number-list.

PAIREDMEANS=grouped-number-list
PMEANS=grouped-number-list

specifies the two paired means, in the original scale. The means are arithmetic if
DIST=NORMAL and geometric if DIST=LOGNORMAL. This option cannot be
used with the CI=DIFF analysis. When TEST=EQUIV–DIFF, the means are in-
terpreted as the reference mean (first) and the treatment mean (second). See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thegrouped-number-list.

PAIREDSTDDEVS=grouped-number-list
PAIREDSTDS=grouped-number-list
PSTDDEVS=grouped-number-list
PSTDS=grouped-number-list

specifies the standard deviation of each member of a pair. Unlike the STDDEV= op-
tion, the PAIREDSTDDEVS= option supports different values for each member of a
pair. This option can only be used with DIST=NORMAL. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
grouped-number-list.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. This option cannot be used with the CI=DIFF
analysis. See the“Specifying Value Lists in Analysis Statements”section on page
3490 for information on specifying thenumber-list.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of
CONDITIONAL (the default) indicates the conditional probability that the confi-
dence interval half-width is at most the value specified by the HALFWIDTH= op-
tion, given that the true mean difference is captured by the confidence interval. A
value of UNCONDITIONAL indicates the unconditional probability that the confi-
dence interval half-width is at most the value specified by the HALFWIDTH= option.
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You may use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE=
option can only be used with the CI=DIFF analysis. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying
thekeyword-list.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less
than or equal to the value specified by the HALFWIDTH= option. A missing value
(PROBWIDTH=.) requests a solution for this probability. The type of probability
is controlled with the PROBTYPE= option. Values are expressed as probabilities
(for example, 0.9) rather than percentages. This option can only be used with the
CI=DIFF analysis. See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test or confi-
dence interval. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thekeyword-list. Valid keywords and their
interpretation for the TEST= analyses are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value

L lower 1-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence
limit and infinity, and SIDES=L refers to an interval between negative infinity and
the upper confidence limit. For both of these cases and SIDES=1, the confidence
interval computations are equivalent. The SIDES= option cannot be used with the
TEST=EQUIV–DIFF and TEST=EQUIV–RATIO analyses. The default value is 2.

STDDEV=number-list
STD=number-list

specifies the standard deviation assumed to be common to both members of a pair.
This option can only be used with DIST=NORMAL. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying
thenumber-list.
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TEST
TEST=DIFF
TEST=EQUIV–DIFF
TEST=EQUIV–RATIO
TEST=RATIO

specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a paired
t test on the mean difference. TEST=EQUIV–DIFF specifies an additive equivalence
test of the mean difference using a two one-sided tests (TOST) analysis (Schuirmann
1987). TEST=EQUIV–RATIO specifies a multiplicative equivalence test of the mean
ratio using a TOST analysis. TEST=RATIO specifies a pairedt test on the geometric
mean ratio. If neither the TEST= option nor the CI= option is used, the default is
TEST=DIFF.

UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the
original scale (whether DIST=NORMAL or DIST=LOGNORMAL). This option can
only be used with the TEST=EQUIV–DIFF and TEST=EQUIV–RATIO analyses.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thenumber-list.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (using the TEST= option)

• confidence interval precision (using the CI= option)

To specify the means, choose one of the following parameterizations:

• individual means (using the PAIREDMEANS= option)

• mean difference (using the MEANDIFF= option)

• mean ratio (using the MEANRATIO= option)

To specify the coefficient of variation, choose one of the following parameterizations:

• common coefficient of variation (using the CV= option)

• individual coefficients of variation (using the PAIREDCVS= option)

To specify the standard deviation, choose one of the following parameterizations:

• common standard deviation (using the STDDEV= option)

• individual standard deviations (using the PAIREDSTDDEVS= option)



PAIREDMEANS Statement � 3455

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
PAIREDMEANS statement.

Paired t Test

You can express effects in terms of the mean difference and variability in terms of a
correlation and common standard deviation. Default values for the DIST=, SIDES=,
NULLDIFF=, and ALPHA= options specify a 2-sided test for no difference with a
normal distribution and a significance level of 0.05.

proc power;
pairedmeans test=diff

meandiff = 7
corr = 0.4
stddev = 12
npairs = 50
power = .;

run;

You can also express effects in terms of individual means and variability in terms of
correlation and individual standard deviations.

proc power;
pairedmeans test=diff

pairedmeans = 8 | 15
corr = 0.4
pairedstddevs = (7 12)
npairs = .
power = 0.9;

run;

Paired t Test of Mean Ratio with Lognormal Data

You can express variability in terms of correlation and a common coefficient of varia-
tion. Defaults for the DIST=, SIDES=, NULLRATIO= and ALPHA= options specify
a 2-sided test of mean ratio = 1 assuming a lognormal distribution and a significance
level of 0.05.

proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
cv = 1.2
npairs = 30
power = .;

run;

You can also express variability in terms of correlation and individual coefficients of
variation.
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proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
pairedcvs = 0.8 | 0.9
npairs = 30
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data

Default values for the DIST= and ALPHA= options specify a normal distribution and
a significance level of 0.05.

proc power;
pairedmeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
corr = 0.2
stddev = 8
npairs = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data

Default values for the DIST= and ALPHA= options specify a lognormal distribution
and a significance level of 0.05.

proc power;
pairedmeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
corr = 0.2
cv = 1.1
npairs = 50
power = .;

run;

Confidence Interval for Mean Difference

By default CI=DIFF analyzes the conditional probability of obtaining the desired
precision, given that the interval contains the true mean difference. The defaults of
SIDES=2 and ALPHA=0.05 specify a 2-sided interval with a confidence level of
0.95.
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proc power;
pairedmeans ci = diff

halfwidth = 4
corr = 0.35
stddev = 8
npairs = 30
probwidth = .;

run;

TWOSAMPLEFREQ Statement

TWOSAMPLEFREQ < options > ;

The TWOSAMPLEFREQ statement performs power and sample size analyses for
tests of two independent proportions. Pearson’s chi-square, Fisher’s exact, and like-
lihood ratio chi-square tests are supported.

Summary of Options

Table 57.16summarizes categories of options available in the TWOSAMPLEFREQ
statement.

Table 57.16. Summary of Options in the TWOSAMPLEFREQ Statement

Task Options
Define analysis TEST=

Specify analysis information ALPHA=
NULLPROPORTIONDIFF=
NULLODDSRATIO=
NULLRELATIVERISK=
SIDES=

Specify effects GROUPPROPORTIONS=
ODDSRATIO=
PROPORTIONDIFF=
REFPROPORTION=
RELATIVERISK=

Specify sample size and allocation GROUPNS=
GROUPWEIGHTS=
NPERGROUP=
NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.17summarizes the valid result parameters for different analyses in the
TWOSAMPLEFREQ statement.
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Table 57.17. Summary of Result Parameters in the TWOSAMPLEFREQ
Statement

Analyses Solve for Syntax
TEST=FISHER Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

TEST=LRCHI Power POWER = .
Sample size NTOTAL = .

NPERGROUP = .
TEST=PCHI Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

GROUPPROPORTIONS=grouped-number-list
GPROPORTIONS=grouped-number-list
GROUPPS=grouped-number-list
GPS=grouped-number-list

specifies the two independent proportions,p1 and p2. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
grouped-number-list.

GROUPNS= grouped-number-list
GNS= grouped-number-list

specifies the two group sample sizes or requests a solution for one group sample size
given the other. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thegrouped-number-list.

GROUPWEIGHTS= grouped-number-list
GWEIGHTS= grouped-number-list

specifies the sample size allocation weights for the two groups, or requests a solution
for one group weight given the other. This option controls how the total sample size
is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used,
the total sample size is restricted to be equal to a multiple of the sum of the two group
weights (so that the resulting design has an integer sample size for each group while
adhering exactly to the group allocation weights). Values must be integers unless the
NFRACTIONAL option is used. The default value is (1 1), a balanced design with a
weight of 1 for each group. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thegrouped-number-list.
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NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NPERGROUP= number-list
NPERG= number-list

specifies the common sample size per group or requests a solution for the common
sample size per group with a missing value (NPERGROUP=.). Use of this option
implicitly specifies a balanced design. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

NULLODDSRATIO= number-list
NULLOR=number-list

specifies the null odds ratio. The default value is 1. This option can only be used along
with the ODDSRATIO= option in the TEST=PCHI analysis. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

NULLPROPORTIONDIFF=number-list
NULLPDIFF=number-list

specifies the null proportion difference. The default value is 0. This option can only
be used along with the GROUPPROPORTIONS= or PROPORTIONDIFF= option in
the TEST=PCHI analysis. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

NULLRELATIVERISK= number-list
NULLRR=number-list

specifies the null relative risk. The default value is 1. This option can only be
used along with the RELATIVERISK= option in the TEST=PCHI analysis. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thenumber-list.

ODDSRATIO=number-list
OR=number-list

specifies the odds ratio[p2/(1− p2)] / [p1/(1− p1)]. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying
thenumber-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by
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• SIDES

• NULLDIFF

• NULLODDSRATIO

• NULLRELATIVERISK

• ALPHA

• GROUPPROPORTIONS

• REFPROPORTION

• PROPORTIONDIFF

• ODDSRATIO

• RELATIVERISK

• GROUPWEIGHTS

• NTOTAL

• NPERGROUP

• GROUPNS

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the
same order that their corresponding options are specified in the TWOSAMPLEFREQ
statement. The OUTPUTORDER=REVERSE option arranges the parameters in the
output in the reverse of the order that their corresponding options are specified in the
TWOSAMPLEFREQ statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

PROPORTIONDIFF=number-list
PDIFF=number-list

specifies the proportion differencep2 − p1. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.

REFPROPORTION=number-list
REFP=number-list

specifies the reference proportionp1. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

RELATIVERISK= number-list
RR=number-list

specifies the relative riskp2/p1. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.
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SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statisti-
cal test or confidence interval. See the“Specifying Value Lists in
Analysis Statements” section on page 3490 for information on spec-
ifying the keyword-list. Valid keywords and their interpretation are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value

L lower 1-sided with alternative less than null value

The default value is 2.

TEST=FISHER
TEST=LRCHI
TEST=PCHI

specifies the statistical analysis. TEST=FISHER specifies Fisher’s exact test.
TEST=LRCHI specifies the likelihood ratio chi-square test. TEST=PCHI (the de-
fault) specifies Pearson’s chi-square test.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

• individual proportions (using the GROUPPROPORTIONS= option)

• difference between proportions and reference proportion (using the
PROPORTIONDIFF and REFPROPORTION= options)

• odds ratio and reference proportion (using the ODDSRATIO= and
REFPROPORTION= options)

• relative risk and reference proportion (using the RELATIVERISK= and
REFPROPORTION= options)

To specify the sample size and allocation, choose one of the following parameteriza-
tions:

• sample size per group in a balanced design (using the NPERGROUP= option)

• total sample size and allocation weights (using the NTOTAL= and
GROUPWEIGHTS= options)

• individual group sample sizes (using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
TWOSAMPLEFREQ statement.
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Pearson Chi-square Test for Two Proportions

You can use the NPERGROUP= option in a balanced design and express effects in
terms of the individual proportions. Default values for the SIDES= and ALPHA=
options specify a 2-sided test with a significance level of 0.05.

proc power;
twosamplefreq test=pchi

groupproportions = (.15 .25)
nullproportiondiff = .03
npergroup = 50
power = .;

run;

You can also specify an unbalanced design using the NTOTAL= and
GROUPWEIGHTS= options and express effects in terms of the odds ratio.
The default value of the NULLODDSRATIO= option specifies a test of no effect.

proc power;
twosamplefreq test=pchi

oddsratio = 2.5
refproportion = 0.3
groupweights = (1 2)
ntotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and express effects
in terms of relative risks. The default value of the NULLRELATIVERISK= option
specifies a test of no effect.

proc power;
twosamplefreq test=pchi

relativerisk = 1.5
refproportion = 0.2
groupns = 40 | 60
power = .;

run;

You can also express effects in terms of the proportion difference. The default value
of the NULLPROPORTIONDIFF= option specifies a test of no effect, and the default
value of the GROUPWEIGHTS= option specifies a balanced design.

proc power;
twosamplefreq test=pchi

proportiondiff = 0.15
refproportion = 0.4
ntotal = 100
power = .;

run;
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Fisher’s Exact Conditional Test for Two Proportions

Default values for the SIDES= and ALPHA= options specify a 2-sided test with a
significance level of 0.05.

proc power;
twosamplefreq test=fisher

groupproportions = (.35 .15)
npergroup = 50
power = .;

run;

Likelihood Ratio Chi-square Test for Two Proportions

Default values for the SIDES= and ALPHA= options specify a 2-sided test with a
significance level of 0.05.

proc power;
twosamplefreq test=lrchi

oddsratio = 2
refproportion = 0.4
npergroup = .
power = 0.9;

run;

TWOSAMPLEMEANS Statement

TWOSAMPLEMEANS < options > ;

The TWOSAMPLEMEANS statement performs power and sample size analyses for
pooled and unpooledt tests, equivalence tests, and confidence interval precision in-
volving two independent samples.

Summary of Options

Table 57.18 summarizes categories of options available in the
TWOSAMPLEMEANS statement.

Table 57.18. Summary of Options in the TWOSAMPLEMEANS Statement

Task Options
Define analysis CI=

DIST=
TEST=

Specify analysis information ALPHA=
LOWER=
NULLDIFF=
NULLRATIO=
SIDES=
UPPER=

Specify effects HALFWIDTH=
GROUPMEANS=
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Table 57.18. (continued)

Task Options
MEANDIFF=
MEANRATIO=

Specify variability CV=
GROUPSTDDEVS=
STDDEV=

Specify sample size and allocation GROUPNS=
GROUPWEIGHTS=
NPERGROUP=
NTOTAL=

Specify power and related POWER=
probabilities PROBTYPE=

PROBWIDTH=

Control sample size rounding NFRACTIONAL

Control ordering in output OUTPUTORDER=

Table 57.19summarizes the valid result parameters for different analyses in the
TWOSAMPLEMEANS statement.

Table 57.19. Summary of Result Parameters in the TWOSAMPLEMEANS
Statement

Analyses Solve for Syntax
TEST=DIFF Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

Group sample size GROUPNS =n1 | .
GROUPNS = . |n2
GROUPNS = (n1 .)
GROUPNS = (.n2)

Group weight GROUPWEIGHTS =w1 | .
GROUPWEIGHTS = . |w2
GROUPWEIGHTS = (w1 .)
GROUPWEIGHTS = (.w2)

Alpha ALPHA = .
Group mean GROUPMEANS =mean1| .

GROUPMEANS = . |mean2
GROUPMEANS = (mean1.)
GROUPMEANS = (.mean2)

Mean difference MEANDIFF = .
Standard deviation STDDEV = .

TEST=DIFF–SATT Power POWER = .
Sample size NTOTAL = .

NPERGROUP = .
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Table 57.19. (continued)

Analyses Solve for Syntax
TEST=RATIO Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

TEST=EQUIV–DIFF Power POWER = .
Sample size NTOTAL = .

NPERGROUP = .

TEST=EQUIV–RATIO Power POWER = .
Sample size NTOTAL = .

NPERGROUP = .

CI=DIFF Prob(width) PROBWIDTH = .
Sample size NTOTAL = .

NPERGROUP = .

Dictionary of Options

ALPHA= number-list
specifies the level of significance of the statistical test or requests a solution for alpha
with a missing value (ALPHA=.). The default is 0.05, corresponding to the usual
0.05× 100% = 5% level of significance. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

CI
CI=DIFF

specifies an analysis of precision of the confidence interval for the mean difference,
assuming equal variances. Instead of power, the relevant probability for this analysis
is the probability that the interval half-width is at most the value specified by the
HALFWIDTH= option. If neither the TEST= option nor the CI= option is used, the
default is TEST=DIFF.

CV=number-list
specifies the coefficient of variation assumed to be common to both groups. The
coefficient of variation is defined as the ratio of the standard deviation to the mean.
You can use this option only with DIST=LOGNORMAL. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
number-list.

DIST=LOGNORMAL
DIST=NORMAL

specifies the underlying distribution assumed for the test statistic. NORMAL
corresponds the normal distribution, and LOGNORMAL corresponds to the log-
normal distribution. The default value (also the only acceptable value in each
case) is NORMAL for TEST=DIFF, TEST=DIFF–SATT, TEST=EQUIV–DIFF, and
CI=DIFF; and LOGNORMAL for TEST=RATIO and TEST=EQUIV–RATIO.
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GROUPMEANS=grouped-number-list
GMEANS=grouped-number-list

specifies the two group means or requests a solution for one group mean given the
other. Means are in the original scale. They are arithmetic if DIST=NORMAL and
geometric if DIST=LOGNORMAL. This option cannot be used with the CI=DIFF
analysis. When TEST=EQUIV–DIFF, the means are interpreted as the reference
mean (first) and the treatment mean (second). See the“Specifying Value Lists
in Analysis Statements”section on page 3490 for information on specifying the
grouped-number-list.

GROUPNS= grouped-number-list
GNS= grouped-number-list

specifies the two group sample sizes or requests a solution for one group sample size
given the other. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thegrouped-number-list.

GROUPSTDDEVS=grouped-number-list
GSTDDEVS=grouped-number-list
GROUPSTDS=grouped-number-list
GSTDS=grouped-number-list

specifies the standard deviation of each group. Unlike the STDDEV= option, the
GROUPSTDDEVS= option supports different values for each group. It is valid
only for the Satterthwaitet test (TEST=DIFF–SATT DIST=NORMAL). See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thegrouped-number-list.

GROUPWEIGHTS= grouped-number-list
GWEIGHTS= grouped-number-list

specifies the sample size allocation weights for the two groups, or requests a solution
for one group weight given the other. This option controls how the total sample size
is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used,
the total sample size is restricted to be equal to a multiple of the sum of the two group
weights (so that the resulting design has an integer sample size for each group while
adhering exactly to the group allocation weights). Values must be integers unless the
NFRACTIONAL option is used. The default value is (1 1), a balanced design with a
weight of 1 for each group. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thegrouped-number-list.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as
the distance between the point estimate and a finite endpoint. This option can only
be used with the CI=DIFF analysis. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the
original scale (whether DIST=NORMAL or DIST=LOGNORMAL). Values must
be greater than 0 when DIST=LOGNORMAL. This option can only be used with
the TEST=EQUIV–DIFF and TEST=EQUIV–RATIO analyses. See the“Specifying
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Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

MEANDIFF=number-list
specifies the mean difference, defined asµ2 − µ1, or requests a solution for the mean
difference with a missing value (MEANDIFF=.). This option can only be used with
the TEST=DIFF, TEST=DIFF–SATT, and TEST=EQUIV–DIFF analyses. When
TEST=EQUIV–DIFF, the mean difference is interpreted as the treatment mean minus
the reference mean. See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

MEANRATIO=number-list
specifies the geometric mean ratio, defined asγ2/γ1. This option can only
be used with the TEST=RATIO and TEST=EQUIV–RATIO analyses. When
TEST=EQUIV–RATIO, the mean ratio is interpreted as the treatment mean divided
by the reference mean. See the“Specifying Value Lists in Analysis Statements”sec-
tion on page 3490 for information on specifying thenumber-list.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.

NPERGROUP= number-list
NPERG= number-list

specifies the common sample size per group or requests a solution for the common
sample size per group with a missing value (NPERGROUP=.). Use of this option
implicitly specifies a balanced design. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

NULLDIFF=number-list
NULLD=number-list

specifies the null mean difference. The default value is 0. This option can only be
used with the TEST=DIFF and TEST=DIFF–SATT analyses. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

NULLRATIO= number-list
NULLR=number-list

specifies the null mean ratio. The default value is 1. This option can only be used with
the TEST=RATIO analysis. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.
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OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by

• SIDES

• NULLDIFF

• NULLRATIO

• LOWER

• UPPER

• ALPHA

• GROUPMEANS

• MEANDIFF

• MEANRATIO

• HALFWIDTH

• STDDEV

• GROUPSTDDEVS

• CV

• GROUPWEIGHTS

• NTOTAL

• NPERGROUP

• GROUPNS

• POWER

• PROBTYPE

• PROBWIDTH

The OUTPUTORDER=SYNTAX option arranges the parameters in the out-
put in the same order that their corresponding options are specified in the
TWOSAMPLEMEANS statement. The OUTPUTORDER=REVERSE option ar-
ranges the parameters in the output in the reverse of the order that their corresponding
options are specified in the TWOSAMPLEMEANS statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. This option cannot be used with the CI=DIFF
analysis. See the“Specifying Value Lists in Analysis Statements”section on page
3490 for information on specifying thenumber-list.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of
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CONDITIONAL (the default) indicates the conditional probability that the confi-
dence interval half-width is at most the value specified by the HALFWIDTH= option,
given that the true mean difference is captured by the confidence interval. A value of
UNCONDITIONAL indicates the unconditional probability that the confidence inter-
val half-width is at most the value specified by the HALFWIDTH= option. You may
use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can
only be used with the CI=DIFF analysis. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thekeyword-list.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less
than or equal to the value specified by the HALFWIDTH= option. A missing value
(PROBWIDTH=.) requests a solution for this probability. The type of probability
is controlled with the PROBTYPE= option. Values are expressed as probabilities
(for example, 0.9) rather than percentages. This option can only be used with the
CI=DIFF analysis. See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test or confi-
dence interval. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thekeyword-list. Valid keywords and their
interpretation for the TEST= analyses are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with alternative greater than null value

L lower 1-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence
limit and infinity, and SIDES=L refers to an interval between negative infinity and
the upper confidence limit. For both of these cases and SIDES=1, the confidence
interval computations are equivalent. The SIDES= option cannot be used with the
TEST=EQUIV–DIFF and TEST=EQUIV–RATIO analyses. The default value is 2.

STDDEV=number-list
specifies the standard deviation assumed to be common to both groups, or requests a
solution for the common standard deviation with a missing value (STDDEV=.). This
option can only be used with DIST=NORMAL. See the“Specifying Value Lists in
Analysis Statements”section on page 3490 for information on specifying thenumber-
list.



3470 � Chapter 57. The POWER Procedure

TEST
TEST=DIFF
TEST=DIFF–SATT
TEST=EQUIV–DIFF
TEST=EQUIV–RATIO
TEST=RATIO

specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a
pooledt test on the mean difference, assuming equal variances. TEST=DIFF–SATT
specifies a Satterthwaite unpooledt test on the mean difference, assuming un-
equal variances. TEST=EQUIV–DIFF specifies an additive equivalence test of the
mean difference using a two one-sided tests (TOST) analysis (Schuirman 1987).
TEST=EQUIV–RATIO specifies a multiplicative equivalence test of the mean ra-
tio using a TOST analysis. TEST=RATIO specifies a pooledt test on the mean ratio,
assuming equal coefficients of variation. If neither the TEST= option nor the CI=
option is used, the default is TEST=DIFF.

UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the
original scale (whether DIST=NORMAL or DIST=LOGNORMAL). This option can
only be used with the TEST=EQUIV–DIFF and TEST=EQUIV–RATIO analyses.
See the“Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thenumber-list.

Restrictions on Option Combinations
To define the analysis, choose one of the following parameterizations:

• a statistical test (using the TEST= option)

• confidence interval precision (using the CI= option)

To specify the means, choose one of the following parameterizations:

• individual group means (using the GROUPMEANS= option)

• mean difference (using the MEANDIFF= option)

• mean ratio (using the MEANRATIO= option)

To specify standard deviations in the Satterthwaitet test (TEST=DIFF–SATT),
choose one of the following parameterizations:

• common standard deviation (using the STDDEV= option)

• individual group standard deviations (using the GROUPSTDDEVS= option)

To specify the sample sizes and allocation, choose one of the following parameteri-
zations:

• sample size per group in a balanced design (using the NPERGROUP= option)

• total sample size and allocation weights (using the NTOTAL= and
GROUPWEIGHTS= options)

• individual group sample sizes (using the GROUPNS= option)
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Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
TWOSAMPLEMEANS statement.

Two-sample t Test Assuming Equal Variances

You can use the NPERGROUP= option in a balanced design and express effects in
terms of the mean difference. Default values for the DIST=, SIDES=, NULLDIFF=,
and ALPHA= options specify a 2-sided test for no difference with a normal distribu-
tion and a significance level of 0.05.

proc power;
twosamplemeans test=diff

meandiff = 7
stddev = 12
npergroup = 50
power = .;

run;

You can also specify an unbalanced design using the NTOTAL= and
GROUPWEIGHTS= options and express effects in terms of individual group
means.

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupweights = (2 3)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option.

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupns = (25 40)
power = .;

run;
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Two-sample Satterthwaite t Test Assuming Unequal Variances

Default values for the DIST=, SIDES=, NULLDIFF=, and ALPHA= options specify
a 2-sided test for no difference with a normal distribution and a significance level of
0.05.

proc power;
twosamplemeans test=diff_satt

meandiff = 3
groupstddevs = 5 | 8
groupweights = (1 2)
ntotal = 60
power = .;

run;

Two-sample Pooled t Test of Mean Ratio with Lognormal Data

Default values for the DIST=, SIDES=, NULLRATIO=, and ALPHA= options spec-
ify a 2-sided test of mean ratio = 1 assuming a lognormal distribution and a signifi-
cance level of 0.05.

proc power;
twosamplemeans test=ratio

meanratio = 7
cv = 0.8
groupns = 50 | 70
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data

A default value of GROUPWEIGHTS=(1 1) specifies a balanced design. Default
values for the DIST= and ALPHA= options specify a significance level of 0.05 and
an assumption of normally distributed data.

proc power;
twosamplemeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
stddev = 8
ntotal = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data

Default values for the DIST= and ALPHA= options specify a significance level of
0.05 and an assumption of lognormally distributed data.
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proc power;
twosamplemeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
cv = 0.75
npergroup = 50
power = .;

run;

Confidence Interval for Mean Difference

By default CI=DIFF analyzes the conditional probability of obtaining the desired
precision, given that the interval contains the true mean difference. The defaults of
SIDES=2 and ALPHA=0.05 specify a 2-sided interval with a confidence level of
0.95.

proc power;
twosamplemeans ci = diff

halfwidth = 4
stddev = 8
groupns = (30 35)
probwidth = .;

run;

TWOSAMPLESURVIVAL Statement

TWOSAMPLESURVIVAL < options > ;

The TWOSAMPLESURVIVAL statement performs power and sample size analyses
for comparing two survival curves. The log-rank, Gehan, and Tarone-Ware rank tests
are supported.

Summary of Options

Table 57.20 summarizes categories of options available in the
TWOSAMPLESURVIVAL statement.

Table 57.20. Summary of Options in the TWOSAMPLESURVIVAL Statement

Task Options
Define analysis TEST=

Specify analysis information ALPHA=
ACCRUALTIME=
FOLLOWUPTIME=
TOTALTIME=
SIDES=

Specify effects CURVE=
GROUPMEDSURVTIMES=
GROUPSURVEXPHAZARDS=
GROUPSURVIVAL=
HAZARDRATIO=
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Table 57.20. (continued)

Task Options
REFSURVEXPHAZARD=
REFSURVIVAL=

Specify loss information GROUPLOSS=
GROUPLOSSEXPHAZARDS=
GROUPMEDLOSSTIMES=

Specify sample size and allocation GROUPNS=
GROUPWEIGHTS=
NPERGROUP=
NTOTAL=

Specify power POWER=

Control sample size rounding NFRACTIONAL

Specify computational method NSUBINTERVAL=

Control ordering in output OUTPUTORDER=

Table 57.21summarizes the valid result parameters for different analyses in the
TWOSAMPLESURVIVAL statement.

Table 57.21. Summary of Result Parameters in the TWOSAMPLESURVIVAL
Statement

Analyses Solve for Syntax
TEST=GEHAN Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

TEST=LOGRANK Power POWER = .
Sample size NTOTAL = .

NPERGROUP = .
TEST=TARONEWARE Power POWER = .

Sample size NTOTAL = .
NPERGROUP = .

Dictionary of Options

ACCRUALTIME= number-list
ACCTIME=number-list
ACCRUALT= number-list
ACCT=number-list

specifies the accrual time. Accrual is assumed to occur uniformly from time 0 to
the time specified by the ACCRUALTIME= option. If the GROUPSURVIVAL= or
REFSURVIVAL= options are used, then the value of the total time (the sum of ac-
crual and follow-up times) must be less than or equal to the largest time ineachmul-
tipoint (piecewise linear) survival curve. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.
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ALPHA= number-list
specifies the level of significance of the statistical test. The default is 0.05, corre-
sponding to the usual 0.05× 100% = 5% level of significance. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

CURVE("label")= points
defines a survival curve.

For the CURVE= option,

label identifies the curve in the output and with the GROUPLOSS=,
GROUPSURVIVAL=, and REFSURVIVAL= options.

points specifies one or more (time, survival) pairs on the curve, where the
survival value denotes the probability of surviving until at least the
specified time.

A single-point curve is interpreted as exponential, and a multipoint curve is inter-
preted as piecewise linear. Points can be expressed in either of two forms:

• a series of time:survival pairs separated by spaces. For example,

1:0.9 2:0.7 3:0.6

• a DOLIST of times enclosed in parentheses, followed by a colon (:), followed
by a DOLIST of survival values enclosed in parentheses. For example,

(1 to 3 by 1):(0.9 0.7 0.6)

The DOLIST format is the same as in the DATA step language.

Points can also be expressed as combinations of the two forms, for example,

1:0.9 2:0.8 (3 to 6 by 1):(0.7 0.65 0.6 0.55)

The points have the following restrictions:

• the time values must be nonnegative and strictly increasing

• the survival values must be strictly decreasing

• the survival value at a time of 0 must be equal to 1

• if there is only one point, then the time must be greater than 0, and the survival
value cannot be 0 or 1
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FOLLOWUPTIME=number-list
FUTIME=number-list
FOLLOWUPT=number-list
FUT=number-list

specifies the follow-up time, the amount of time in the study past the accrual time. If
the GROUPSURVIVAL= or REFSURVIVAL= options are used, then the value of the
total time (the sum of accrual and follow-up times) must be less than or equal to the
largest time ineachmultipoint (piecewise linear) survival curve. See the“Specifying
Value Lists in Analysis Statements”section on page 3490 for information on speci-
fying thenumber-list.

GROUPLOSS= grouped-name-list
GLOSS= grouped-name-list

specifies the exponential loss survival curve for each group, using labels specified
with the CURVE= option. Loss is assumed to follow an exponential curve, indi-
cating the expected rate of loss to follow-up over time. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
grouped-name-list.

GROUPLOSSEXPHAZARDS= grouped-number-list
GLOSSEXPHAZARDS= grouped-number-list
GROUPLOSSEXPHS= grouped-number-list
GLOSSEXPHS= grouped-number-list

specifies the exponential hazards of the loss in each group. Loss is as-
sumed to follow an exponential curve, indicating the expected rate of loss
to follow-up over time. If none of the GROUPLOSSEXPHAZARDS=,
GROUPLOSS=, and GROUPMEDLOSSTIMES= options are used, the de-
fault of GROUPLOSSEXPHAZARDS=(0 0) indicates no loss to follow-up. See
the “Specifying Value Lists in Analysis Statements”section on page 3490 for
information on specifying thegrouped-number-list.

GROUPMEDLOSSTIMES= grouped-number-list
GMEDLOSSTIMES= grouped-number-list
GROUPMEDLOSSTS= grouped-number-list
GMEDLOSSTS= grouped-number-list

specifies the median times of the loss in each group. Loss is assumed to follow an
exponential curve, indicating the expected rate of loss to follow-up over time. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for information
on specifying thegrouped-number-list.

GROUPMEDSURVTIMES= grouped-number-list
GMEDSURVTIMES= grouped-number-list
GROUPMEDSURVTS= grouped-number-list
GMEDSURVTS= grouped-number-list

specifies the median survival times in each group. When the
GROUPMEDSURVTIMES= option is used, the survival curve in each group is
assumed to be exponential. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thegrouped-number-list.
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GROUPNS= grouped-number-list
GNS= grouped-number-list

specifies the two group sample sizes or requests a solution for one group sample size
given the other. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thegrouped-number-list.

GROUPSURVEXPHAZARDS= grouped-number-list
GSURVEXPHAZARDS= grouped-number-list
GROUPSURVEXPHS= grouped-number-list
GEXPHS= grouped-number-list

specifies exponential hazard rates of the survival curve for each group. See the
“Specifying Value Lists in Analysis Statements”section on page 3490 for informa-
tion on specifying thegrouped-number-list.

GROUPSURVIVAL= grouped-name-list
GSURVIVAL= grouped-name-list
GROUPSURV= grouped-name-list
GSURV= grouped-name-list

specifies the survival curve for each group, using labels specified with the CURVE=
option. See the“Specifying Value Lists in Analysis Statements”section on page 3490
for information on specifying thegrouped-name-list.

GROUPWEIGHTS= grouped-number-list
GWEIGHTS= grouped-number-list

specifies the sample size allocation weights for the two groups, or requests a solution
for one group weight given the other. This option controls how the total sample size
is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used,
the total sample size is restricted to be equal to a multiple of the sum of the two group
weights (so that the resulting design has an integer sample size for each group while
adhering exactly to the group allocation weights). Values must be integers unless the
NFRACTIONAL option is used. The default value is (1 1), a balanced design with a
weight of 1 for each group. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thegrouped-number-list.

HAZARDRATIO= number-list
HR= number-list

specifies the hazard ratio of the second group’s survival curve to the first group’s
survival curve. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thenumber-list.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the“Sample Size
Adjustment Options”section on page 3494 for information on the ramifications of
the presence (and absence) of the NFRACTIONAL option.
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NPERGROUP= number-list
NPERG= number-list

specifies the common sample size per group or requests a solution for the common
sample size per group with a missing value (NPERGROUP=.). Use of this option
implicitly specifies a balanced design. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

NSUBINTERVAL= number-list
NSUBINTERVALS= number-list
NSUB= number-list
NSUBS= number-list

specifies the number of subintervals per unit time to use in internal calculations.
Higher values increase computational time and memory requirements but generally
lead to more accurate results. The default value is 12. See the“Specifying Value
Lists in Analysis Statements”section on page 3490 for information on specifying the
number-list.

NTOTAL= number-list
specifies the sample size or requests a solution for the sample size with a missing
value (NTOTAL=.). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thenumber-list.

OUTPUTORDER=INTERNAL
OUTPUTORDER=REVERSE
OUTPUTORDER=SYNTAX

controls how the input and default analysis parameters are ordered in the output.
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by

• SIDES

• ACCRUALTIME

• FOLLOWUPTIME

• TOTALTIME

• NSUBINTERVAL

• ALPHA

• REFSURVIVAL

• GROUPSURVIVAL

• REFSURVEXPHAZARD

• HAZARDRATIO

• GROUPSURVEXPHAZARDS

• GROUPMEDSURVTIMES

• GROUPLOSSEXPHAZARDS

• GROUPLOSS

• GROUPMEDLOSSTIMES

• GROUPWEIGHTS
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• NTOTAL

• NPERGROUP

• GROUPNS

• POWER

The OUTPUTORDER=SYNTAX option arranges the parameters in the out-
put in the same order that their corresponding options are specified in the
TWOSAMPLESURVIVAL statement. The OUTPUTORDER=REVERSE op-
tion arranges the parameters in the output in the reverse of the order that their
corresponding options are specified in the TWOSAMPLESURVIVAL statement.

POWER= number-list
specifies the desired power of the test or requests a solution for the power with a miss-
ing value (POWER=.). The power is expressed as a probability, a number between
0 and 1, rather than as a percentage. See the“Specifying Value Lists in Analysis
Statements”section on page 3490 for information on specifying thenumber-list.

REFSURVEXPHAZARD= number-list
REFSURVEXPH= number-list

specifies the exponential hazard rate of the survival curve for the first (reference)
group. See the“Specifying Value Lists in Analysis Statements”section on page 3490
for information on specifying thenumber-list.

REFSURVIVAL= name-list
REFSURV= name-list

specifies the survival curve for the first (reference) group, using labels specified with
the CURVE= option. See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for information on specifying thename-list.

SIDES=keyword-list
specifies the number of sides (or tails) and direction of the statistical test or confi-
dence interval. See the“Specifying Value Lists in Analysis Statements”section on
page 3490 for information on specifying thekeyword-list. Valid keywords and their
interpretation are

1 1-sided with alternative hypothesis in same direction as effect

2 2-sided

U upper 1-sided with the alternative hypothesis favoring better survival in the sec-
ond group

L lower 1-sided with the alternative hypothesis favoring better survival in the first
(reference) group

The default value is 2.
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TEST=GEHAN
TEST=LOGRANK
TEST=TARONEWARE

specifies the statistical analysis. TEST=GEHAN specifies the Gehan rank test.
TEST=LOGRANK (the default) specifies the log-rank test. TEST=TARONEWARE
specifies the Tarone-ware rank test.

TOTALTIME=number-list
TOTALT=number-list

specifies the total time, which is equal to the sum of accrual and follow-up times.
If the GROUPSURVIVAL= or REFSURVIVAL= options are used, then the value of
the total time must be less than or equal to the largest time ineachmultipoint (piece-
wise linear) survival curve. See the“Specifying Value Lists in Analysis Statements”
section on page 3490 for information on specifying thenumber-list.

Restrictions on Option Combinations

To specify the survival curves, choose one of the following parameterizations:

• arbitrary piecewise linear or exponential curves (using the CURVE= and
GROUPSURVIVAL= options)

• curves with proportional hazards (using the CURVE=, REFSURVIVAL=, and
HAZARDRATIO= options)

• exponential curves, using one of the following parameterizations:

– median survival times (using the GROUPMEDSURVTIMES= option)

– the hazard ratio and the hazard of the reference curve (using the
HAZARDRATIO= and REFSURVEXPHAZARD= options)

– the individual hazards (using the GROUPSURVEXPHAZARDS= op-
tion)

To specify the study time, use any two of the following three options:

• accrual time (using the ACCRUALTIME= option)

• follow-up time (using the FOLLOWUPTIME= option)

• total time, the sum of accrual and follow-up times (using the TOTALTIME=
option)

To specify the sample size and allocation, choose one of the following parameteriza-
tions:

• sample size per group in a balanced design (using the NPERGROUP= option)

• total sample size and allocation weights (using the NTOTAL= and
GROUPWEIGHTS= options)

• individual group sample sizes (using the GROUPNS= option)

To specify the exponential loss curves, choose one of the following parameterizations:
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• a point on the loss curve of each group (using the CURVE= and
GROUPLOSS= options)

• median loss times (using the GROUPMEDLOSSTIMES= option)

• the individual loss hazards (using the GROUPLOSSEXPHAZARDS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the
TWOSAMPLESURVIVAL statement.

Log-Rank Test for Two Survival Curves

You can use the NPERGROUP= option in a balanced design and specify piecewise
linear or exponential survival curves using the CURVE= and GROUPSURVIVAL=
options. Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and
GROUPLOSSEXPHAZARDS= options specify a 2-sided test with a significance
level of 0.05, an assumption of no loss to follow-up, and the use of 12 subintervals
per unit time in computations.

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
curve("Treatment") = (5):(.6)
groupsurvival = "Control" | "Treatment"
accrualtime = 2
followuptime = 1
npergroup = 50
power = .;

run;

In the preceding example, the “Control” curve is piecewise linear (since it has more
than one point), and the “Treatment” curve is exponential (since it has only one point).

You can also specify an unbalanced design using the NTOTAL= and
GROUPWEIGHTS= options and specify piecewise linear or exponential sur-
vival curves with proportional hazards using the CURVE=, REFSURVIVAL=, and
HAZARDRATIO= options.

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
ntotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and specify exponen-
tial survival curves in terms of median survival times.
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proc power;
twosamplesurvival test=logrank

groupmedsurvtimes = (16 22)
accrualtime = 6
totaltime = 18
groupns = 40 | 60
power = .;

run;

You can also specify exponential survival curves in terms of the hazard ratio and
reference hazard. The default value of the GROUPWEIGHTS= option specifies a
balanced design.

proc power;
twosamplesurvival test=logrank

hazardratio = 1.2
refsurvexphazard = 0.7
accrualtime = 2
totaltime = 4
ntotal = 100
power = .;

run;

You can also specify exponential survival curves in terms of the individual hazards.

proc power;
twosamplesurvival test=logrank

groupsurvexphazards = 0.7 | 0.84
accrualtime = 2
totaltime = 4
ntotal = .
power = 0.9;

run;

Gehan Rank Test for Two Survival Curves

Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and
GROUPLOSSEXPHAZARDS= options specify a 2-sided test with a signifi-
cance level of 0.05, an assumption of no loss to follow-up, and the use of 12
subintervals per unit time in computations.

proc power;
twosamplesurvival test=gehan

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = .
power = 0.8;

run;
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Tarone-Ware Rank Test for Two Survival Curves

Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and
GROUPLOSSEXPHAZARDS= options specify a 2-sided test with a signifi-
cance level of 0.05, an assumption of no loss to follow-up, and the use of 12
subintervals per unit time in computations.

proc power;
twosamplesurvival test=taroneware

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = 100
power = .;

run;

PLOT Statement

PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis
defined by the previous analysis statement. Theplot-options define the plot charac-
teristics, and thegraph-options are SAS/GRAPH-style options.

Options

You can specify the followingplot-options in the PLOT statement.

INTERPOL=JOIN
INTERPOL=NONE

specifies the type of curve to draw through the computed points. The
INTERPOL=JOIN option connects computed points by straight lines. The
INTERPOL=NONE option leaves computed points unconnected.

KEY= BYCURVE < ( bycurve-options ) >
KEY= BYFEATURE < ( byfeature-options ) >
KEY= ONCURVES

specifies the style of key (or “legend”) for the plot. The default is
KEY=BYFEATURE, which specifies a key with a column of entries for each
plot feature (line style, color, and/or symbol). Each entry shows the mapping
between a value of the feature and the value(s) of the analysis parameter(s) linked to
that feature. The KEY=BYCURVE option specifies a key with each row identifying
a distinct curve in the plot. The KEY=ONCURVES option places a curve-specific
label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the
KEY=BYCURVE option.
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NUMBERS=OFF

NUMBERS=ON specifies how the key should identify curves. If NUMBERS=OFF,
then the key includes symbol, color, and line style samples to iden-
tify the curves. If NUMBERS=ON, then the key includes numbers
matching numeric labels placed adjacent to the curves. The default
is NUMBERS=ON.

POS=BOTTOM

POS=INSET specifies the position of the key. The POS=BOTTOM option places
the key below the x-axis. The POS=INSET option places the key
inside the plotting region and attempts to choose the least crowded
corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after the
KEY=BYFEATURE option.

POS=BOTTOM

POS=INSET specifies the position of the key. The POS=BOTTOM option places
the key below the x-axis. The POS=INSET option places the key
inside the plotting region and attempts to choose the least crowded
corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS
MARKERS=COMPUTED
MARKERS=NICE
MARKERS=NONE

specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations corre-
sponding to the values of the relevant input parameter from the analysis statement
preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the
locations of actual computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corre-
sponding to the argument axis).

The MARKERS=NONE option disables plotting symbols.

MAX=number
specifies the maximum of the range of values for the parameter associated with the
“argument” axis (the axis that isnot representing the parameter being solved for). The
default is the maximum value occurring for this parameter in the analysis statement
preceding the PLOT statement.

MIN=number
specifies the minimum of the range of values for the parameter associated with the
“argument” axis (the axis that isnot representing the parameter being solved for). The
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default is the minimum value occurring for this parameter in the analysis statement
preceding the PLOT statement.

NPOINTS=number
NPTS=number

specifies the number of values for the parameter associated with the “argument” axis
(the axis that isnot representing the parameter being solved for). You cannot use
the NPOINTS= and STEP= options simultaneously. The default value for typical
situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argu-
ment” axis (the axis that isnot representing the parameter being solved for). You
cannot use the STEP= and NPOINTS= options simultaneously. By default, the
NPOINTS= option is used instead of the STEP= option.

VARY ( feature < BY parameter-list > ... feature < BY parameter-list > )
specifies how plot features should be linked to varying analysis parameters. Available
plot features are COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to
a separate plot with a heading identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names separated by spaces. Each name
must match the name of an analysis option used in the analysis statement preceding
the PLOT statement. Also, the name must be theprimary name for the analysis
option, that is, the one listed first in the syntax description.

If you omit the< BY parameter-list > portion for a feature, then one or more multi-
valued parameters from the analysis will be automatically selected for you.

X=EFFECT
X=N
X=POWER

specifies a plot with the requested type of parameter on the x-axis and the parame-
ter being solved for on the y-axis. When X=EFFECT, the parameter assigned to the
x-axis is the one most representative of “effect size.” When X=N, the parameter as-
signed to the x-axis is the sample size. When X=POWER, the parameter assigned to
the x-axis is the one most representative of “power” (either power itself or a similar
probability, such as Prob(Width) for confidence interval analyses). You cannot use
the X= and Y= options simultaneously. The default is X=POWER, unless the result
parameter is power or Prob(Width), in which case the default is X=N.

You can only use the X=N option when a scalar sample size parameter is used as
input in the analysis. For example, X=N can be used with total sample size or sample
size per group, or with two group sample sizes when one is being solved for.

Table 57.22summarizes the parameters representing effect size in different analyses.
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Table 57.22. Effect Size Parameters For Different Analyses

Analysis Statement and Options Effect Size Parameters
MULTREG Partial correlation or R2

difference

ONECORR Correlation

ONESAMPLEFREQ Proportion

ONESAMPLEMEANS TEST=T,
ONESAMPLEMEANS TEST=EQUIV Mean

ONESAMPLEMEANS CI=T CI half-width

ONEWAYANOVA none

PAIREDFREQ Discordant proportion difference
or ratio

PAIREDMEANS TEST=DIFF,
PAIREDMEANS TEST=EQUIV–DIFF Mean difference

PAIREDMEANS TEST=RATIO,
PAIREDMEANS TEST=EQUIV–RATIO Mean ratio

PAIREDMEANS CI=DIFF CI half-width

TWOSAMPLEFREQ Proportion difference, odds ratio,
or relative risk

TWOSAMPLEMEANS TEST=DIFF,
TWOSAMPLEMEANS TEST=DIFF–SATT,
TWOSAMPLEMEANS TEST=EQUIV–DIFF Mean difference

TWOSAMPLEMEANS TEST=RATIO,
TWOSAMPLEMEANS TEST=EQUIV–RATIO Mean ratio

TWOSAMPLEMEANS CI=DIFF CI half-width

TWOSAMPLESURVIVAL Hazard ratio if used, else none

XOPTS= ( x-options )
specifies plot characteristics pertaining to the x-axis.

You can specify the followingx-options in parentheses.

CROSSREF=NO

CROSSREF=YESspecifies whether the reference lines defined by the REF=x-
option should be crossed with a reference line on the y-axis that
indicates the solution point on the curve.

REF=number-list specifies locations for reference lines extending from the x-axis
across the entire plotting region. See the“Specifying Value Lists
in Analysis Statements”section on page 3490 for information on
specifying thenumber-list.
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Y=EFFECT
Y=N
Y=POWER

specifies a plot with the requested type of parameter on the y-axis and the parame-
ter being solved for on the x-axis. When Y=EFFECT, the parameter assigned to the
y-axis is the one most representative of “effect size.” When Y=N, the parameter as-
signed to the y-axis is the sample size. When Y=POWER, the parameter assigned to
the y-axis is the one most representative of “power” (either power itself or a similar
probability, such as Prob(Width) for confidence interval analyses). You cannot use
the Y= and X= options simultaneously. By default, the X= option is used instead of
the Y= option.

YOPTS= ( y-options )
specifies plot characteristics pertaining to the y-axis.

You can specify the followingy-options in parentheses.

CROSSREF=NO

CROSSREF=YESspecifies whether the reference lines defined by the REF=y-
option should be crossed with a reference line on the x-axis that
indicates the solution point on the curve.

REF=number-list specifies locations for reference lines extending from the y-axis
across the entire plotting region. See the“Specifying Value Lists
in Analysis Statements”section on page 3490 for information on
specifying thenumber-list.

You can specify the followinggraph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description”
field of the graphics catalog. The description does not appear on the plots. By default,
PROC POWER assigns a description either of the form “Y versusX” (for a single-
panel plot) or of the form “Y versusX (S),” whereY is the parameter on the y-axis,X
is the parameter on the x-axis, andS is a description of the subset represented on the
current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The
default name is PLOTn, wheren is the number of the plot statement within the current
invocation of PROC POWER. If the name duplicates the name of an existing entry,
SAS/GRAPH software adds a number to the duplicate name to create a unique entry;
for example, PLOT11 and PLOT12 for the second and third panels of a multipanel
plot generated in the first PLOT statement in an invocation of PROC POWER.
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Details

Overview of Power Concepts

In statistical hypothesis testing, you typically express the belief that some effect exists
in a population by specifying an alternative hypothesisH1. You state a null hypoth-
esisH0 as the assertion that the effect doesnot exist and attempt to gather evidence
to rejectH0 in favor of H1. Evidence is gathered in the form of sample data, and
a statistical test is used to assessH0. If H0 is rejected but there really isno effect,
this is called aType 1 error. The probability of a Type 1 error is usually designated
“alpha” or α, and statistical tests are designed to ensure thatα is suitably small (for
example, less than 0.05).

If there really is an effect in the population butH0 is not rejected in the statistical
test, then aType 2 errorhas been made. The probability of a Type 2 error is usually
designated “beta” orβ. The probability1− β of avoiding a Type 2 error, that is, cor-
rectly rejectingH0 and achieving statistical significance, is called thepower. (Note:
Another more general definition of power is the probability of rejectingH0 for any
given set of circumstances, even those corresponding toH0 being true. The POWER
procedure uses this more general definition.)

An important goal in study planning is to ensure an acceptably high level of power.
Sample size plays a prominent role in power computations because the focus is often
on determining a sufficient sample size to achieve a certain power, or assessing the
power for a range of different sample sizes.

Some of the analyses in the POWER procedure focus onprecisionrather than power.
An analysis of confidence interval precision is analogous to a traditional power anal-
ysis, with “CI Half-Width” taking the place of effect size and “Prob(Width)” taking
the place of power. TheCI Half-Width is the margin of error associated with the
confidence interval, the distance between the point estimate and an endpoint. The
Prob(Width)is the probability of obtaining a confidence interval withat mosta target
half-width.

Summary of Analyses

Table 57.23gives a summary of the analyses supported in the POWER procedure.
The name of the analysis statement reflects the type of data and design. The TEST=,
CI=, and DIST= options specify the focus of the statistical hypothesis (in other words,
the criterion on which the research question is based) and the test statistic to be used
in data analysis.

Table 57.23. Summary of Analyses

Statement Options
Multiple linear regression:
Type III F test

MULTREG

Correlation: Fisher’sz test ONECORR DIST=FISHERZ

Correlation:t test ONECORR DIST=T
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Table 57.23. (continued)

Statement Options
Binomial proportion: Exact
test

ONESAMPLEFREQ TEST=EXACT

Binomial proportion:z test ONESAMPLEFREQ TEST=Z

Binomial proportion: z test
with continuity adjustment

ONESAMPLEFREQ TEST=ADJZ

One-samplet test ONESAMPLEMEANS TEST=T

One-samplet test with log-
normal data

ONESAMPLEMEANS TEST=T
DIST=LOGNORMAL

One-sample equivalence test
for mean of normal data

ONESAMPLEMEANS TEST=EQUIV

One-sample equivalence test
for mean of lognormal data

ONESAMPLEMEANS TEST=EQUIV
DIST=LOGNORMAL

Confidence interval for a
mean

ONESAMPLEMEANS CI=T

One-way ANOVA: One-
degree-of-freedom contrast

ONEWAYANOVA TEST=CONTRAST

One-way ANOVA: Overall
F test

ONEWAYANOVA TEST=OVERALL

McNemar exact conditional
test

PAIREDFREQ

McNemar normal approxi-
mation test

PAIREDFREQ DIST=NORMAL

Pairedt test PAIREDMEANS TEST=DIFF

Paired t test of mean ratio
with lognormal data

PAIREDMEANS TEST=RATIO

Paired additive equivalence
of mean difference with nor-
mal data

PAIREDMEANS TEST=EQUIV–DIFF

Paired multiplicative equiva-
lence of mean ratio with log-
normal data

PAIREDMEANS TEST=EQUIV–RATIO

Confidence interval for mean
of paired differences

PAIREDMEANS CI=DIFF

Pearson chi-square test for
two independent proportions

TWOSAMPLEFREQ TEST=PCHI

Fisher’s exact test for two in-
dependent proportions

TWOSAMPLEFREQ TEST=FISHER

Likelihood ratio chi-square
test for two independent pro-
portions

TWOSAMPLEFREQ TEST=LRCHI

Two-samplet test assuming
equal variances

TWOSAMPLEMEANS TEST=DIFF
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Table 57.23. (continued)

Statement Options
Two-sample Satterthwaitet
test assuming unequal vari-
ances

TWOSAMPLEMEANS TEST=DIFF–SATT

Two-sample pooledt test of
mean ratio with lognormal
data

TWOSAMPLEMEANS TEST=RATIO

Two-sample additive equiv-
alence of mean difference
with normal data

TWOSAMPLEMEANS TEST=EQUIV–DIFF

Two-sample multiplicative
equivalence of mean ratio
with lognormal data

TWOSAMPLEMEANS TEST=EQUIV–RATIO

Two-sample confidence in-
terval for mean difference

TWOSAMPLEMEANS CI=DIFF

Log-rank test for comparing
two survival curves

TWOSAMPLESURVIVALTEST=LOGRANK

Gehan rank test for compar-
ing two survival curves

TWOSAMPLESURVIVALTEST=GEHAN

Tarone-Ware rank test for
comparing two survival
curves

TWOSAMPLESURVIVALTEST=TARONEWARE

Specifying Value Lists in Analysis Statements

To specify one or more scenarios for an analysis parameter (or set of parameters), you
provide a list of values for the statement option that corresponds to the parameter(s).
To identify the parameter you wish to solve for, you place missing values in the
appropriate list.

There are five basic types of such lists:keyword-lists, number-lists, grouped-number-
lists, name-lists, andgrouped-name-lists. Some parameters, such as the direction of a
test, have values represented by one or more keywords in akeyword-list. Scenarios for
scalar-valued parameters, such as power, are represented by anumber-list. Scenarios
for groups of scalar-valued parameters, such as group sample sizes in a multigroup
design, are represented by agrouped-number-list. Scenarios for named parameters,
such as reference survival curves, are represented by aname-list. Scenarios for groups
of named parameters, such as group survival curves, are represented by agrouped-
name-list.

The following subsections explain these five basic types of lists.

Keyword-lists

A keyword-list is a list of one or more keywords separated by spaces. For example,
you can specify both 2-sided and upper-tailed versions of a one-samplet test:

SIDES = 2 U
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Number-lists

A number-list can be one of two things: a series of one or more numbers expressed
in the form of one or more DOLISTs, or a missing value indicator (.).

The DOLIST format is the same as in the DATA step language. For example, for
the one-samplet test you can specify four scenarios (30, 50, 70, and 100) for a total
sample size in any of the following ways.

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100

A missing value identifies a parameter as the result parameter; it is valid only with
options representing parameters you can solve for in a given analysis. For example,
you can request a solution for NTOTAL:

NTOTAL = .

Grouped-number-lists

A grouped-number-list specifies multiple scenarios for numeric values in two or more
groups, possibly including missing value indicators to solve for a specific group.
The list can assume one of two general forms, a “crossed” version and a “matched”
version.

Crossed Grouped-number-lists

The crossed version of a grouped number list consists of a series ofnumber-lists
(see the“Number-lists” section on page 3491), one representing each group, each
separated by a vertical bar (|). The values for each group represent multiple scenarios
for that group, and the scenarios for each individual group are crossed to produce the
set of all scenarios for the analysis option. For example, you can specify the following
six scenarios for the sizes(n1, n2) of two groups

(20, 30)(20, 40)(20, 50)
(25, 30)(25, 40)(25, 50)

as follows:

GROUPNS = 20 25 | 30 40 50

If the analysis can solve for a value in one group given the other groups, then one of
the number-lists in a crossed grouped-number-list can be a missing value indicator
(.). For example, in a two-samplet test you can posit three scenarios for the group 2
sample size while solving for the group 1 sample size:

GROUPNS = . | 30 40 50

Some analyses can involve more than two groups. For example, you can specify 2×
3× 1 = 6 scenarios for the means of three groups in a one-way ANOVA as follows:

GROUPMEANS = 10 12 | 10 to 20 by 5 | 24
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Matched Grouped-number-lists

The matched version of a grouped number list consists of a series of numeric lists
each enclosed in parentheses. Each list consists of a value for each group and rep-
resents a single scenario for the analysis option. Multiple scenarios for the analysis
option are represented by multiple lists. For example, you can express the crossed
grouped-number-list

GROUPNS = 20 25 | 30 40 50

alternatively in a matched format:

GROUPNS = (20 30) (20 40) (20 50) (25 30) (25 40) (25 50)

The matched version is particularly useful when you wish to include only a subset of
all combinations of individual group values. For example, you may want to pair 20
only with 50, and 25 only with 30 and 40:

GROUPNS = (20 50) (25 30) (25 40)

If the analysis can solve for a value in one group given the other groups, then you
can replace the value for that group with a missing value indicator (.). If used, the
missing value indicator must occur in the same group in every scenario. For example,
you can solve for the group 1 sample size (as in the“Crossed Grouped-number-lists”
section on page 3491) using a matched format:

GROUPNS = (. 30) (. 40) (. 50)

Some analyses can involve more than two groups. For example, you can specify two
scenarios for the means of three groups in a one-way ANOVA:

GROUPMEANS = (15 24 32) (12 25 36)

Name-lists

A name-list is a list of one or more names in single or double quotes separated by
spaces. For example, you can specify two scenarios for the reference survival curve
in a log-rank test:

REFSURVIVAL = "Curve A" "Curve B"

Grouped-name-lists

A grouped-name-list specifies multiple scenarios for names in two or more groups.
The list can assume one of two general forms, a “crossed” version and a “matched”
version.
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Crossed Grouped-name-lists

The crossed version of a grouped name list consists of a series ofname-lists (see
the“Name-lists”section on page 3492), one representing each group, each separated
by a vertical bar (|). The values for each group represent multiple scenarios for that
group, and the scenarios for each individual group are crossed to produce the set of
all scenarios for the analysis option. For example, you can specify the following six
scenarios for the survival curves(c1, c2) of two groups

(“Curve A”, “Curve C”)(“Curve A”, “Curve D”)(“Curve A”, “Curve E”)
(“Curve B”, “Curve C”)(“Curve B”, “Curve D”)(“Curve B”, “Curve E”)

as follows:

GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

Matched Grouped-name-lists

The matched version of a grouped name list consists of a series of name lists each
enclosed in parentheses. Each list consists of a name for each group and represents
a single scenario for the analysis option. Multiple scenarios for the analysis option
are represented by multiple lists. For example, you can express the crossed grouped-
name-list

GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

alternatively in a matched format:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve A" "Curve D")
("Curve A" "Curve E")
("Curve B" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

The matched version is particularly useful when you wish to include only a subset
of all combinations of individual group values. For example, you may want to pair
“Curve A” only with “Curve C”, and “Curve B” only with “Curve D” and “Curve E”:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")
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Sample Size Adjustment Options

By default, PROC POWER rounds sample sizes conservatively (down in the input, up
in the output) so that all total sizes (and individual group sample sizes, if a multigroup
design) are integers. This is generally considered conservative because it selects the
closest realistic design providingat mostthe power of the (possibly fractional) input
or mathematically optimized design. In addition, in a multigroup design, all group
sizes are adjusted to be multiples of the corresponding group weights. For example,
if GROUPWEIGHTS = (2 6), then all group 1 sample sizes become multiples of 2,
and all group 2 sample sizes become multiples of 6 (and all total sample sizes become
multiples of 8).

With the NFRACTIONAL option, sample size input is not rounded, and sample size
output (whether total or group-wise) are reported in two versions, a raw “fractional”
version and a “ceiling” version rounded up to the nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted
(“actual”) sample sizes are reported. Whenever computed output sample sizes are
adjusted, both the original input (“nominal”) power and the achieved (“actual”) power
at the adjusted sample size are reported.

Error and Information Output

The Error column in the main output table explains reasons for missing results and
flags numerical results that are bounds rather than exact answers. For example, con-
sider the sample size analysis implemented by the following statements:

proc power;
twosamplefreq test=pchi

oddsratio= 1.0001
refproportion=.4
nulloddsratio=1
power=.9
ntotal=.;

run;
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The POWER Procedure
Pearson Chi-square Test for Two Proportions

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Null Odds Ratio 1
Reference (Group 1) Proportion 0.4
Odds Ratio 1.0001
Nominal Power 0.9
Number of Sides 2
Alpha 0.05
Group 1 Weight 1
Group 2 Weight 1

Computed N Total

Actual
Power N Total Error

0.206 2.15E+09 Solution is a lower bound

Figure 57.6. Error Column

The output inFigure 57.6reveals that the sample size to achieve a power of 0.9 could
not be computed, but that the sample size 2.15E+09 achieves a power of 0.206.

The Information column provides further details about Error entries, warnings about
any boundary conditions detected, and notes about any adjustments to input. Note
that the Information column is hidden by default in the main output. You can view it
by using the ODS OUTPUT statement to save the output as a data set and the PRINT
procedure. For example, the following SAS statements print both the Error and Info
columns for a power computation in a two-samplet test.

proc power;
twosamplemeans

meandiff= 0 7
stddev=2
ntotal=2 5
power=.;

ods output output=Power;
proc print noobs data=Power;

var MeanDiff NominalNTotal NTotal Power Error Info;
run;

The output is shown inFigure 57.7.
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Mean Nominal
Diff NTotal NTotal Power Error Info

0 2 2 . Invalid input N too small / No effect
0 5 4 0.050 Input N adjusted / No effect
7 2 2 . Invalid input N too small
7 5 4 0.477 Input N adjusted

Figure 57.7. Error and Information Columns

The mean difference of 0 specified with the MEANDIFF= option leads to a “No
effect” message to appear in the Info column. The sample size of 2 specified with
the NTOTAL= option leads to an “Invalid input” message in the Error column and
an “NTotal too small” message in the Info column. The sample size of 5 leads to an
“Input N adjusted” message in the Info column because it is rounded down to 4 to
produce integer group sizes of 2 per group.

Displayed Output

If you use the PLOTONLY option in the PROC POWER statement, the procedure
only displays graphical output. Otherwise, the displayed output of the POWER pro-
cedure includes the following:

• the “Fixed Scenario Elements” table, which shows all applicable single-valued
analysis parameters, in the following order: distribution, method, parameters
input explicitly, and parameters supplied with defaults

• an output table showing the following when applicable (in order): the index
of the scenario, all multivalued input, ancillary results, the primary computed
result, and error descriptions

• plots (if requested)

For each input parameter, the order of the input values is preserved in the output.

Ancillary results include the following:

• Actual Power, the achieved power, if it differs from the input (Nominal) power
value

• Actual Prob(Width), the achieved precision probability, if it differs from the
input (Nominal) probability value

• Actual Alpha, the achieved significance level, if it differs from the input
(Nominal) alpha value

• fractional sample size, if the NFRACTIONAL option is used in the analysis
statement

If sample size is the result parameter and the NFRACTIONAL option is used in
the analysis statement, then both “Fractional” and “Ceiling” sample size results are
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displayed. Fractional sample sizes correspond to the “Nominal” values of power or
precision probability. Ceiling sample sizes are simply the fractional sample sizes
rounded up to the nearest integer; they correspond to “Actual” values of power or
precision probability.

ODS Table Names

PROC POWER assigns a name to each table that it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select ta-
bles and create output data sets. These names are listed inTable 57.24. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 57.24. ODS Tables Produced in PROC POWER

ODS Table Name Description Statement
FixedElements factoid with single-valued analy-

sis parameters
default*

Output all input and computed analysis
parameters, error messages, and
information messages for each
scenario

default

PlotContent data contained in plots, includ-
ing analysis parameters and in-
dices identifying plot features.
(Note: this table is saved as
a data set and not displayed in
PROC POWER output.)

PLOT

*Depends on input.

The ODS path names are created as follows:

• Power.<analysis statement name>< n >.FixedElements

• Power.<analysis statement name>< n >.Output

• Power.<analysis statement name>< n >.PlotContent

• Power.<analysis statement name>< n >.Plot< m >

where

• The Plot< m > objects are the graphs.

• The< n > indexing the analysis statement name is only used if there is more
than one instance.

• The< n > indexing the plots increases with every panel in every plot state-
ment, resetting to 1 only at new analysis statements.
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Computational Resources

Memory

In the TWOSAMPLESURVIVAL statement, the amount of required memory is
roughly proportional to the product of the number of subintervals (specified by
the NSUBINTERVAL= option) and the total time of the study (specified by the
ACCRUALTIME=, FOLLOWUPTIME=, and TOTALTIME= options).

CPU Time

In the Satterthwaitet test analysis (TWOSAMPLEMEANS TEST=DIFF–SATT), the
required CPU time grows as the mean difference decreases relative to the standard
deviations. In the PAIREDFREQ statement, the required CPU time for the exact
power computation (METHOD=EXACT) grows with the sample size.

Computational Methods and Formulas

This section describes the approaches used in PROC POWER to compute power for
each analysis. The first subsection defines some common notation. The following
subsections describe the various power analyses, including discussions of the data,
statistical test, and power formula for each analysis. Unless otherwise indicated,
computed values for parameters besides power (for example, sample size) are ob-
tained by solving power formulas for the desired parameters.

Common Notation

Table 57.25displays notation for some of the more common parameters across anal-
yses. The Associated Syntax column shows examples of relevant analysis statement
options, where applicable.

Table 57.25. Common Notation

Symbol Description Associated Syntax
α significance level ALPHA=
N total sample size NTOTAL=, NPAIRS=
ni sample size inith group NPERGROUP=,

GROUPNS=
wi allocation weight forith group (stan-

dardized to sum to 1)
GROUPWEIGHTS=

µ (arithmetic) mean MEAN=
µi (arithmetic) mean inith group GROUPMEANS=,

PAIREDMEANS=
µdiff (arithmetic) mean difference,µ2−µ1

or µT − µR

MEANDIFF=

µ0 null mean or mean difference (arith-
metic)

NULL=, NULLDIFF=

γ geometric mean MEAN=
γi geometric mean inith group GROUPMEANS=,

PAIREDMEANS=
γ0 null mean or mean ratio (geometric) NULL=, NULLRATIO=
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Table 57.25. (continued)

Symbol Description Associated Syntax
σ standard deviation (or common stan-

dard deviation per group)
STDDEV=

σi standard deviation inith group GROUPSTDDEVS=,
PAIREDSTDDEVS=

σdiff standard deviation of differences
CV coefficient of variation, defined as the

ratio of the standard deviation to the
(arithmetic) mean

CV=, PAIREDCVS=

ρ correlation CORR=
µT , µR treatment and reference (arithmetic)

means for equivalence test
GROUPMEANS=,
PAIREDMEANS=

γT , γR treatment and reference geometric
means for equivalence test

GROUPMEANS=,
PAIREDMEANS=

θL lower equivalence bound LOWER=
θU upper equivalence bound UPPER=
t(ν, δ) t distribution with d.f.ν and noncen-

trality δ
F (ν1, ν2, λ) F distribution with numerator d.f.ν1,

denominator d.f.ν2, and noncentral-
ity λ

tp;ν pth percentile oft distribution with
d.f. ν

Fp;ν1,ν2 pth percentile ofF distribution with
numerator d.f. ν1 and denominator
d.f. ν2

Bin(N, p) binomial distribution with sample
sizeN and proportionp

A “lower 1-sided” test is associated with SIDES=L (or SIDES=1 with the effect
smaller than the null value), and an “upper 1-sided” test is associated with SIDES=U
(or SIDES=1 with the effect larger than the null value).

Owen (1965) defines a function, known as Owen’sQ, that is convenient for repre-
senting terms in power formulas for confidence intervals and equivalence tests:

Qν(t, δ; a, b) =
√

2π

Γ(ν
2 )2

ν−2
2

∫ b

a
Φ
(

tx√
ν
− δ

)
xν−1φ(x)dx

whereφ(·) andΦ(·) are the density and cumulative distribution function of the stan-
dard normal distribution, respectively.
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Analyses in the MULTREG Statement

Type III F Test in Multiple Regression (TEST=TYPE3)

Maxwell (2000) discusses a number of different ways to represent effect sizes (and to
compute exact power based on them) in multiple regression. PROC POWER supports
two of these, multiple partial correlation andR2 in full and reduced models.

Let p denote the total number of predictors in the full model (excluding the intercept)
andY the response variable. You are testing that the coefficients ofp1 ≥ 1 predictors
in a setX1 are 0, controlling for all of the other predictorsX−1, which is comprised
of p− p1 ≥ 0 variables.

The hypotheses can be expressed in two different ways. The first is in terms of
ρY X1|X−1

, the multiple partial correlation between the predictors inX1 and the re-
sponseY adjusting for the predictors inX−1:

H0 : ρ2
Y X1|X−1

= 0

H1 : ρ2
Y X1|X−1

> 0

The second is in terms of the multiple correlations in full (ρY |(X1,X−1)) and reduced
(ρY |X−1

) nested models:

H0 : ρ2
Y |(X1,X−1) − ρ2

Y |X−1
= 0

H1 : ρ2
Y |(X1,X−1) − ρ2

Y |X−1
> 0

Note that the squared values ofρY |(X1,X−1) andρY |X−1
are the populationR2 values

for full and reduced models.

The test statistic can be written in terms of the sample multiple partial correlation
RY X1|X−1

,

F =


(N − 1− p)

R2
Y X1|X−1

1−R2
Y X1|X−1

, intercept

(N − p)
R2

Y X1|X−1

1−R2
Y X1|X−1

, no intercept

or the sample multiple correlations in full (RY |(X1,X−1)) and reduced (RY |X−1
) mod-

els,

F =


(N − 1− p)

R2
Y |(X1,X−1)

−R2
Y |X−1

1−R2
Y |(X1,X−1)

, intercept

(N − p)
R2

Y |(X1,X−1)
−R2

Y |X−1

1−R2
Y |(X1,X−1)

, no intercept
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The test is the usual Type IIIF test in multiple regression:

Reject H0 if

{
F ≥ F1−α(p1, N − 1− p), intercept
F ≥ F1−α(p1, N − p), no intercept

Although the test is invariant to whether the predictors are assumed to be random
or fixed, the power is affected by this assumption. If the response and predictors are
assumed to have a joint multivariate normal distribution, then the exact power is given
by the following formula:

power =


P

[(
N−1−p

p1

)( R2
Y |(X1,X−1)

1−R2
Y |(X1,X−1)

)
≥ F1−α(p1, N − 1− p)

]
, intercept

P

[(
N−p
p1

)( R2
Y |(X1,X−1)

1−R2
Y |(X1,X−1)

)
≥ F1−α(p1, N − p)

]
, no intercept

=


P

[
R2

Y |(X1,X−1) ≥
F1−α(p1,N−1−p)

F1−α(p1,N−1−p)+N−1−p
p1

]
, intercept

P

[
R2

Y |(X1,X−1) ≥
F1−α(p1,N−p)

F1−α(p1,N−p)+N−p
p1

]
, no intercept

The distribution ofR2
Y |(X1,X−1) (for any ρ2

Y |(X1,X−1)) is given in Chapter 32 of
Johnson, Kotz, and Balakrishnan (1995). Sample size tables are presented in Gatsonis
and Sampson (1989).

If the predictors are assumed to have fixed values, then the exact power is given by
the noncentralF distribution. The noncentrality parameter is

λ = N
ρ2

Y X1|X−1

1− ρ2
Y X1|X−1

or equivalently,

λ = N
ρ2

Y |(X1,X−1) − ρ2
Y |X−1

1− ρ2
Y |(X1,X−1)

The power is

power =
{

P (F (p1, N − 1− p, λ) ≥ F1−α(p1, N − 1− p)) , intercept
P (F (p1, N − p, λ) ≥ F1−α(p1, N − p)) , no intercept

The minimum acceptable input value ofN depends on several factors, as shown in
Table 57.26.
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Table 57.26. Minimum Acceptable Sample Size Values in the MULTREG
Statement

Predictor Type Intercept in Model? p1 = 1? Minimum N

Random Yes Yes p + 3
Random Yes No p + 2
Random No Yes p + 2
Random No No p + 1

Fixed Yes Yes or No p + 2
Fixed No Yes or No p + 1

Analyses in the ONECORR Statement

Fisher’s z Test for Pearson Correlation (TEST=PEARSON DIST=FISHERZ)

Fisher’sz transformation (Fisher 1921) of the sample correlationRY |(X1,X−1) is de-
fined as

z =
1
2

log
(

1 + RY |(X1,X−1)

1−RY |(X1,X−1)

)

Fisher’sz test assumes the approximate normal distributionN(µ, σ2) for z, where

µ =
1
2

log
(

1 + ρY |(X1,X−1)

1− ρY |(X1,X−1)

)
+

ρY |(X1,X−1)

2(N − 1− p?)

and

σ2 =
1

N − 3− p?

wherep? is the number of variables partialled out (Anderson 1984, pp. 132–133) and
ρY |(X1,X−1) is the partial correlation betweenY andX1 adjusting for the set of zero
or more variablesX−1.

The test statistic

z? = (N − 3− p?)
1
2

[
z − 1

2
log
(

1 + ρ0

1− ρ0

)
− ρ0

2(N − 1− p?)

]
is assumed to have a normal distributionN(δ, ν) whereρ0 is the null partial correla-
tion andδ andν are derived from section 16.33 of Stuart and Ord (1994):

δ = (N − 3− p?)
1
2

[
1
2

log
(

1 + ρY |(X1,X−1)

1− ρY |(X1,X−1)

)
+

ρY |(X1,X−1)

2(N − 1− p?)

(
1 +

5 + ρ2
Y |(X1,X−1)

4(N − 1− p?)
+

11 + 2ρ2
Y |(X1,X−1) + 3ρ4

Y |(X1,X−1)

8(N − 1− p?)2

)
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−1
2

log
(

1 + ρ0

1− ρ0

)
− ρ0

2(N − 1− p?)

]
ν =

N − 3− p?

N − 1− p?

[
1 +

4− ρ2
Y |(X1,X−1)

2(N − 1− p?)
+

22− 6ρ2
Y |(X1,X−1) − 3ρ4

Y |(X1,X−1)

6(N − 1− p?)2

]

The approximate power is computed as

power =


Φ
(

δ−z1−α

ν
1
2

)
, upper 1-sided

Φ
(
−δ−z1−α

ν
1
2

)
, lower 1-sided

Φ
(

δ−z1−α
2

ν
1
2

)
+ Φ

(
−δ−z1−α

2

ν
1
2

)
, 2-sided

Because the test is biased, the achieved significance level may differ from the nominal
significance level. The actual alpha is computed in the same way as the power except
with the correlationρY |(X1,X−1) replaced by the null correlationρ0.

t Test for Pearson Correlation (TEST=PEARSON DIST=T)

The 2-sided case is identical to multiple regression with an intercept andp1 = 1,
which is discussed in the“Analyses in the MULTREG Statement”section on page
3500.

Let p? denote the number of variables partialled out. For the 1-sided cases, the test
statistic is

t = (N − 2− p?)
1
2

RY X1|X−1(
1−R2

Y X1|X−1

) 1
2

which is assumed to have a null distribution oft(N − 2− p?).

If the X andY variables are assumed to have a joint multivariate normal distribution,
then the exact power is given by the following formula:

power =


P

(N − 2− p?)
1
2

RY X1|X−1(
1−R2

Y X1|X−1

) 1
2
≥ t1−α(N − 2− p?)

 , upper 1-sided

P

(N − 2− p?)
1
2

RY X1|X−1(
1−R2

Y X1|X−1

) 1
2
≤ tα(N − 2− p?)

 , lower 1-sided
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=


P

RY |(X1,X−1) ≥
t1−α(N−2−p?)(

t21−α(N−2−p?)+ 1
N−2−p?

) 1
2

 , upper 1-sided

P

RY |(X1,X−1) ≤
tα(N−2−p?)(

t2α(N−2−p?)+ 1
N−2−p?

) 1
2

 , lower 1-sided

The distribution ofRY |(X1,X−1) (given the underlying true correlationρY |(X1,X−1))
is given in Chapter 32 of Johnson, Kotz, and Balakrishnan (1995).

If the X variables are assumed to have fixed values, then the exact power is given by
the noncentralt distributiont(N − 2− p?, δ), where the noncentrality is

δ = N
1
2

ρY X1|X−1(
1− ρ2

Y X1|X−1

) 1
2

The power is

power =
{

P (t(N − 2− p?, δ) ≥ t1−α(N − 2− p?)) , upper 1-sided
P (t(N − 2− p?, δ) ≤ tα(N − 2− p?)) , lower 1-sided

Analyses in the ONESAMPLEFREQ Statement

Exact Test of a Binomial Proportion (TEST=EXACT)

Let X be distributed asBin(N, p). The hypotheses for the test of the proportionp
are as follows:

H0 : p = p0

H1 :


p 6= p0, 2-sided
p > p0, upper 1-sided
p < p0, lower 1-sided

The exact test assumes binomially distributed data and requiresN ≥ 1 and0 < p0 <
1. The test statistic is

X = number of successes∼ Bin(N, p)

The significance probabilityα is split symmetrically for 2-sided tests, in the sense
that each tail is filled with as much as possible up toα/2.

Exact power computations are based on the binomial distribution and computing for-
mulas such as the following from Johnson and Kotz (1970, equation 3.20):

P (X ≥ C|N, p) = P

(
Fν1,ν2 ≤

ν2p

ν1(1− p)

)
whereν1 = 2C andν2 = 2(N − C + 1)
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LetCL andCU denote lower and upper critical values, respectively. Letαa denote the
achieved (actual) significance level, which for 2-sided tests is the sum of the favorable
major tail (αM ) and the opposite minor tail (αm).

For the upper 1-sided case,

CU = min{C : P (X ≥ C|p0) ≤ α}
RejectH0 if X ≥ CU

αa = P (X ≥ CU |p0)
power = P (X ≥ CU |p)

For the lower 1-sided case,

CL = max{C : P (X ≤ C|p0) ≤ α}
RejectH0 if X ≤ CL

αa = P (X ≤ CL|p0)
power = P (X ≤ CL|p)

For the 2-sided case,

CL = max{C : P (X ≤ C|p0) ≤
α

2
}

CU = min{C : P (X ≥ C|p0) ≤
α

2
}

RejectH0 if X ≤ CL orX ≥ CU

αa = P (X ≤ CL orX ≥ CU |p0)
power = P (X ≤ CL orX ≥ CU |p)

z Test for Binomial Proportion (TEST=Z)

For the normal approximation test, the test statistic is

Z(X) =
X −Np0

[Np0(1− p0)]
1
2

For the METHOD=EXACT option, the computations are the same as described in the
“Exact Test of a Binomial Proportion (TEST=EXACT)”section on page 3504 except
for the definitions of the critical values.

For the upper 1-sided case,

CU = min{C : Z(C) ≥ z1−α}

For the lower 1-sided case,

CL = max{C : Z(C) ≤ zα}
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For the 2-sided case,

CL = max{C : Z(C) ≤ zα
2
}

CU = min{C : Z(C) ≥ z1−α
2
}

For the METHOD=NORMAL option, the test statisticZ(X) is assumed to have the
normal distribution

N

(
N

1
2 (p− p0)

[p0(1− p0)]
1
2

,
p(1− p)

p0(1− p0)

)

The approximate power is computed as

power =



Φ

(
zα+

√
N

p−p0√
p0(1−p0)√

p(1−p)
p0(1−p0)

)
, upper 1-sided

Φ

(
zα−

√
N

p−p0√
p0(1−p0)√

p(1−p)
p0(1−p0)

)
, lower 1-sided

Φ

(
z α

2
+
√

N
p−p0√

p0(1−p0)√
p(1−p)

p0(1−p0)

)
+ Φ

(
z α

2
−
√

N
p−p0√

p0(1−p0)√
p(1−p)

p0(1−p0)

)
, 2-sided

The approximate sample size is computed in closed form for the 1-sided cases by
inverting the power equation,

N =

(
zpower

√
p(1− p) + z1−α

√
p0(1− p0

p− p0

)2

and by numerical inversion for the 2-sided case.

z Test for Binomial Proportion with Continuity Adjustment (TEST=ADJZ)

For the normal approximation test with continuity adjustment, the test statistic is
(Pagano and Gauvreau 1993 p. 295):

Zc(X) =
X −Np0 + 0.5(1{X<Np0})− 0.5(1{X>Np0})

[Np0(1− p0)]
1
2

For the METHOD=EXACT option, the computations are the same as described in the
“Exact Test of a Binomial Proportion (TEST=EXACT)”section on page 3504 except
for the definitions of the critical values.

For the upper 1-sided case,

CU = min{C : Zc(C) ≥ z1−α}
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For the lower 1-sided case,

CL = max{C : Zc(C) ≤ zα}

For the 2-sided case,

CL = max{C : Zc(C) ≤ zα
2
}

CU = min{C : Zc(C) ≥ z1−α
2
}

For the METHOD=NORMAL option, the test statisticZc(X) is assumed to have the
normal distributionN(µ, σ2) whereµ andσ2 are derived as follows.

For convenience of notation, define

k =
1

2
√

Np0(1− p0)

Then

E [Zc(X)] = 2kNp− 2kNp0 + kP (X < Np0)− kP (X > Np0)

and

Var [Zc(X)] =
p(1− p)

p0(1− p0)
+ k2 [1− P (X = Np0)]

−k2 [P (X < Np0)− P (X > Np0)]
2

+4k2
[
E
(
X1{X<Np0}

)
− E

(
X1{X>Np0}

)]
−4k2Np [P (X < Np0)− P (X > Np0)]

The probabilitiesP (X = Np0), P (X < Np0), andP (X > Np0) and the truncated
expectationsE

(
X1{X<Np0}

)
andE

(
X1{X>Np0}

)
are approximated by assuming

the normal-approximate distribution ofX, N(Np,Np(1−p)). Lettingφ(·) andΦ(·)
denote the standard normal PDF and CDF, respectively, and definingd as

d =
Np0 −Np

[Np(1− p)]
1
2

the terms are computed as follows:

P (X = Np0) = 0
P (X < Np0) = Φ(d)
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P (X > Np0) = 1− Φ(d)

E
(
X1{X<Np0}

)
= NpΦ(d)− [Np(1− p)]

1
2 φ(d)

E
(
X1{X>Np0}

)
= Np [1− Φ(d)] + [Np(1− p)]

1
2 φ(d)

The mean and variance ofZc(X) are thus approximated by

µ = k [2Np− 2Np0 + 2Φ(d)− 1]

and

σ2 = 4k2
[
Np(1− p) + Φ(d) (1− Φ(d))− 2 (Np(1− p))

1
2 φ(d)

]
The approximate power is computed as

power =


Φ
( zα+µ

σ

)
, upper 1-sided

Φ
( zα−µ

σ

)
, lower 1-sided

Φ
( z α

2
+µ

σ

)
+ Φ

( z α
2
−µ

σ

)
, 2-sided

Analyses in the ONESAMPLEMEANS Statement

One-sample t Test (TEST=T)

The hypotheses for the one-samplet test are

H0 : µ = µ0

H1 :


µ 6= µ0, 2-sided
µ > µ0, upper 1-sided
µ < µ0, lower 1-sided

The test assumes normally distributed data and requiresN ≥ 2. The test statistics are

t = N
1
2

(
x̄− µ0

s

)
∼ t(N − 1, δ)

t2 ∼ F (1, N − 1, δ2)

wherex̄ is the sample mean,s is the sample standard deviation, and

δ = N
1
2

(
µ− µ0

σ

)
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The test is

Reject H0 if


t2 ≥ F1−α(1, N − 1), 2-sided
t ≥ t1−α(N − 1), upper 1-sided
t ≤ tα(N − 1), lower 1-sided

Exact power computations fort tests are discussed in O’Brien and Muller (1993,
section 8.2), although not specifically for the one-sample case. The power is based
on the noncentralt andF distributions:

power =


P
(
F (1, N − 1, δ2) ≥ F1−α(1, N − 1)

)
, 2-sided

P (t(N − 1, δ) ≥ t1−α(N − 1)) , upper 1-sided
P (t(N − 1, δ) ≤ tα(N − 1)) , lower 1-sided

Solutions forN , α, andδ are obtained by numerically inverting the power equation.
Closed-form solutions for other parameters, in terms ofδ, are as follows:

µ = δσN− 1
2 + µ0

σ =
{

δ−1N
1
2 (µ− µ0), |δ| > 0

undefined, otherwise

One-sample t Test with Lognormal Data (TEST=T DIST=LOGNORMAL)

The lognormal case is handled by re-expressing the analysis equivalently as a
normality-based test on the log-transformed data, using properties of the lognormal
distribution as discussed in Johnson and Kotz (1970, chapter 14). The approaches in
the“One-sample t Test (TEST=T)”section on page 3508 then apply.

In contrast to the usualt test on normal data, the hypotheses with lognormal data are
defined in terms of geometric means rather than arithmetic means. This is because
the transformation of a null arithmetic mean of lognormal data to the normal scale
depends on the unknown coefficient of variation, resulting in an ill-defined hypothesis
on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.

The hypotheses for the one-samplet test with lognormal data are

H0 :
γ

γ0
= 1

H1 :


γ
γ0
6= 1, 2-sided

γ
γ0

> 1, upper 1-sided
γ
γ0

< 1, lower 1-sided
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Let µ? andσ? be the (arithmetic) mean and standard deviation of the normal distri-
bution of the log-transformed data. The hypotheses can be rewritten as follows:

H0 : µ? = log(γ0)

H1 :


µ? 6= log(γ0), 2-sided
µ? > log(γ0), upper 1-sided
µ? < log(γ0), lower 1-sided

whereµ? = log(γ).

The test assumes lognormally distributed data and requiresN ≥ 2.

The power is

power=


P
(
F (1, N − 1, δ2) ≥ F1−α(1, N − 1)

)
, 2-sided

P (t(N − 1, δ) ≥ t1−α(N − 1)) , upper 1-sided
P (t(N − 1, δ) ≤ tα(N − 1)) , lower 1-sided

where

δ = N
1
2

(
µ? − log(γ0)

σ?

)
σ? =

[
log(CV2 + 1)

] 1
2

Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL)

The hypotheses for the equivalence test are

H0 : µ < θL or µ > θU

H1 : θL ≤ µ ≤ θU

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The
test assumes normally distributed data and requiresN ≥ 2. Phillips (1990) derives an
expression for the exact power assuming a two-sample balanced design; the results
are easily adapted to a one-sample design:

power = QN−1

(
(−t1−α(N − 1)),

µ− θU

σN− 1
2

; 0,
(N − 1)

1
2 (θU − θL)

2σN− 1
2 (t1−α(N − 1))

)
−

QN−1

(
(t1−α(N − 1)),

µ− θL

σN− 1
2

; 0,
(N − 1)

1
2 (θU − θL)

2σN− 1
2 (t1−α(N − 1))

)

whereQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common Notation”section
on page 3498.
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Equivalence Test for Mean of Lognormal Data (TEST=EQUIV DIST=LOGNORMAL)

The lognormal case is handled by re-expressing the analysis equivalently as a
normality-based test on the log-transformed data, using properties of the lognormal
distribution as discussed in Johnson and Kotz (1970, chapter 14). The approaches in
the“Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL)”
section on page 3510 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with log-
normal data are defined in terms of geometric means rather than arithmetic means.
This is because the transformation of an arithmetic mean of lognormal data to the nor-
mal scale depends on the unknown coefficient of variation, resulting in an ill-defined
hypothesis on the log-transformed data. Geometric means transform cleanly and are
more natural for lognormal data.

The hypotheses for the equivalence test are

H0 : γ ≤ θL or γ ≥ θU

H1 : θL < γ < θU

where 0 < θL < θU

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on
the log-transformed data. The test assumes lognormally distributed data and requires
N ≥ 2. Diletti, Hauschke, and Steinijans (1991) derive an expression for the exact
power assuming a crossover design; the results are easily adapted to a one-sample
design:

power = QN−1

(
(−t1−α(N − 1)),

log (γ)− log(θU )

σ?N− 1
2

;

0,
(N − 1)

1
2 (log(θU )− log(θL))

2σ?N− 1
2 (t1−α(N − 1))

)
−

QN−1

(
(t1−α(N − 1)),

log (γ)− log(θL)

σ?N− 1
2

;

0,
(N − 1)

1
2 (log(θU )− log(θL))

2σ?N− 1
2 (t1−α(N − 1))

)

where

σ? =
[
log(CV2 + 1)

] 1
2

is the standard deviation of the log-transformed data, andQ·(·, ·; ·, ·) is Owen’s Q
function, defined in the“Common Notation”section on page 3498.
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Confidence Interval for Mean (CI=T)

This analysis of precision applies to the standardt-based confidence interval:[
x̄− t1−α

2
(N − 1) s√

N
, x̄ + t1−α

2
(N − 1) s√

N

]
, 2-sided[

x̄− t1−α(N − 1) s√
N

, ∞
)

, upper 1-sided(
−∞, x̄ + t1−α(N − 1) s√

N

]
, lower 1-sided

wherex̄ is the sample mean ands is the sample standard deviation. The “half-width”
is defined as the distance from the point estimatex̄ to a finite endpoint,

half-width =

{
t1−α

2
(N − 1) s√

N
, 2-sided

t1−α(N − 1) s√
N

, 1-sided

A “valid” conference interval captures the true mean. The exact probability of obtain-
ing at most the target confidence interval half-widthh, unconditional or conditional
on validity, is given by Beal (1989):

Pr(half-width≤ h) =


P

(
χ2(N − 1) ≤ h2N(N−1)

σ2(t2
1−α

2
(N−1))

)
, 2-sided

P
(
χ2(N − 1) ≤ h2N(N−1)

σ2(t21−α(N−1))

)
, 1-sided

Pr(half-width≤ h |
validity)

=


(

1
1−α

)
2
[
QN−1

(
(t1−α

2
(N − 1)), 0;

0, b1)−QN−1(0, 0; 0, b1)] , 2-sided(
1

1−α

)
QN−1 ((t1−α(N − 1)), 0; 0, b1) , 1-sided

where

b1 =
h(N − 1)

1
2

σ(t1−α
c
(N − 1))N− 1

2

c = number of sides

andQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common Notation”section on
page 3498.

A “quality” confidence interval is both sufficiently narrow (half-width≤ h) and valid:

Pr(quality) = Pr(half-width≤ h and validity)

= Pr(half-width≤ h | validity)(1− α)
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Analyses in the ONEWAYANOVA Statement

One-Degree-of-Freedom Contrast (TEST=CONTRAST)

The hypotheses are

H0 : c1µ1 + · · ·+ cGµG = c0

H1 :


c1µ1 + · · ·+ cGµG 6= c0, 2-sided
c1µ1 + · · ·+ cGµG > c0, upper 1-sided
c1µ1 + · · ·+ cGµG < c0, lower 1-sided

whereG is the number of groups,{c1, . . . , cG} are the contrast coefficients, andc0 is
the null contrast value.

The test is the usualF test for a contrast in one-way ANOVA. It assumes normal data
with common group variances and requiresN ≥ G + 1 andni ≥ 1.

O’Brien and Muller (1993, section 8.2.3.2) give the exact power as

power=


P
(
F (1, N −G, δ2) ≥ F1−α(1, N −G)

)
, 2-sided

P (t(N −G, δ) ≥ t1−α(N −G)) , upper 1-sided
P (t(N −G, δ) ≤ tα(N −G)) , lower 1-sided

where

δ = N
1
2

∑G
i=1 ciµi − c0

σ
(∑G

i=1
c2i
wi

) 1
2


Overall F Test (TEST=OVERALL)

The hypotheses are

H0 : µ1 = µ2 = · · · = µG

H1 : µi 6= µj for somei,j

whereG is the number of groups.

The test is the usual overallF test for equality of means in one-way ANOVA. It
assumes normal data with common group variances and requiresN ≥ G + 1 and
ni ≥ 1.

O’Brien and Muller (1993, section 8.2.3.1) give the exact power as

power= P (F (G− 1, N −G, λ) ≥ F1−α(G− 1, N −G))
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where the noncentrality is

λ = N

(∑G
i=1 wi(µi − µ̄)2

σ2

)

and

µ̄ =
G∑

i=1

wiµi

Analyses in the PAIREDFREQ Statement

Overview of Conditional McNemar tests

Notation:

Case
Failure Success

Control Failure n00 n01 n0·
Success n10 n11 n1·

n·0 n·1 N

n00 = #{control=failure, case=failure }

n01 = #{control=failure, case=success }

n10 = #{control=success, case=failure }

n11 = #{control=success, case=success }

N = n00 + n01 + n10 + n11

nD = n01 + n10 ≡ # discordant pairs

π̂ij =
nij

N
πij = theoretical population value of̂πij

π1· = π10 + π11

π·1 = π01 + π11

OR = “odds ratio”=
π01

π10

OR0 = null odds ratio

All McNemar tests covered in PROC POWER areconditional, meaning thatnD is
assumed fixed at its observed value.
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For the usualOR0 = 0, the hypotheses are

H0 : π·1 = π1·

H1 :


π·1 6= π1·, 2-sided
π·1 > π1·, upper 1-sided
π·1 < π1·, lower 1-sided

The test statistic for both tests covered in PROC POWER (DIST=EXACT–COND
and DIST=NORMAL) is the McNemar statisticQM , which has the following form
whenOR0 = 0:

QM0 =
(n01 − n10)2

n01 + n10

For the conditional McNemar tests, this is equivalent to the square of theZ(X) statis-
tic for the test of a single proportion (normal approximation to binomial), where the
proportion is π01

π01+π10
, the null is0.5, and “N ” is nD (see, e.g., Schork and Williams

1980):

Z(X) =
n01 − nD(0.5)

[nD0.5(1− 0.5)]
1
2

·∼N

n
1
2
D( π01

π01+π10
− 0.5)

[0.5(1− 0.5)]
1
2

,

π01
π01+π10

(
1− π01

π01+π10

)
0.5(1− 0.5)


=

n01 − (n01 + n10)(0.5)

[(n01 + n10)0.5(1− 0.5)]
1
2

=
n01 − n10

[n01 + n10]
1
2

=
√

QM0

This can be generalized to a custom null forπ01
π01+π10

, which is equivalent to specifying
a custom odds ratio:

[
π01

π01 + π10

]
0

≡

 1
1 + 1

π01
π10


0

≡ 1
1 + 1

OR0

So, a conditional McNemar test (asymptotic or exact) with a custom null is equivalent
to the test of a single proportionp1 ≡ π01

π01+π10
with a null valuep0 ≡ 1

1+ 1
OR0

, with a

sample size ofnD:

H0 : p1 = p0

H1 :


p1 6= p0, 2-sided
p1 > p0, 1-sided U
p1 < p0, 1-sided L
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which is equivalent to

H0 : OR = OR0

H1 :


OR 6= OR0, 2-sided
OR > OR0, 1-sided U
OR < OR0, 1-sided L

The general form of the test statistic is thus

QM =
(n01 − nDp0)

2

nDp0(1− p0)

The two most common conditional McNemar tests assume either the exact condi-
tional distribution ofQM (covered by the DIST=EXACT–COND analysis) or a stan-
dard normal distribution forQM (covered by the DIST=NORMAL analysis).

McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT –COND)

For DIST=EXACT–COND, the power is calculated assuming that the test is con-
ducted using the exact conditional distribution ofQM (conditional onnD). The
power is calculated by first computing the conditional power for each possiblenD.
The unconditional power is computed as a weighted average over all possible out-
comes ofnD:

power=
N∑

nD=0

P (nD)P (Rejectp1 = p0|nD)

wherenD ∼ Bin(π01 + π10, N), andP (Rejectp1 = p0|nD) is calculated using the
exact method in the“Exact Test of a Binomial Proportion (TEST=EXACT)”section
on page 3504.

The achieved significance level, reported as Actual Alpha in the analysis, is computed
in the same way except using the actual alpha of the one-sample test in place of its
power:

actual alpha=
N∑

nD=0

P (nD)α?(p1, p0|nD)

whereα?(p1, p0|nD) is the actual alpha calculated using the exact method in the
“Exact Test of a Binomial Proportion (TEST=EXACT)”section on page 3504 with
proportionp1, null p0, and sample sizenD.
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McNemar Normal Approximation Test (TEST=MCNEMAR DIST=NORMAL)

For DIST=NORMAL, power is calculated assuming the test is conducted using the
normal-approximate distribution ofQM (conditional onnD).

For the METHOD=EXACT option, the power is calculated in the same way
as described in the“McNemar Exact Conditional Test (TEST=MCNEMAR
DIST=EXACT–COND)” section on page 3516, except thatP (Rejectp1 = p0|nD)
is calculated using the exact method in the“z Test for Binomial Proportion
(TEST=Z)” section on page 3505. The achieved significance level is calculated
in the same way as described at the end of the“McNemar Exact Conditional Test
(TEST=MCNEMAR DIST=EXACT–COND)” section on page 3516.

For the METHOD=MIETTINEN option, approximate sample size for the 1-sided
cases is computed according to equation (5.6) in Miettinen (1968):

N =

{
z1−α(p10 + p01) + zpower

[
(p10 + p01)2 − 1

4(p01 − p10)2(3 + p10 + p01)
] 1

2

}2

(p10 + p01)(p01 − p10)2

Approximate power for the 1-sided cases is computed by solving the sample size
equation for power, and approximate power for the 2-sided case follows easily by
summing the 1-sided powers each atα/2:

power=



Φ

(
(p01−p10)[N(p10+p01)]

1
2−z1−α(p10+p01)

[(p10+p01)2− 1
4
(p01−p10)2(3+p10+p01)]

1
2

)
, upper 1-sided

Φ

(
−(p01−p10)[N(p10+p01)]

1
2−z1−α(p10+p01)

[(p10+p01)2− 1
4
(p01−p10)2(3+p10+p01)]

1
2

)
, lower 1-sided

Φ

(
(p01−p10)[N(p10+p01)]

1
2−z1−α

2
(p10+p01)

[(p10+p01)2− 1
4
(p01−p10)2(3+p10+p01)]

1
2

)
+

Φ

(
−(p01−p10)[N(p10+p01)]

1
2−z1−α

2
(p10+p01)

[(p10+p01)2− 1
4
(p01−p10)2(3+p10+p01)]

1
2

)
, 2-sided

The 2-sided solution forN is obtained by numerically inverting the power equation.

In general, compared to METHOD=CONNOR, the METHOD=MIETTINEN ap-
proximation tends to be slightly more accurate but may be slightly anticonservative
in the sense of underestimating sample size and overestimating power (Lachin 1992,
p. 1250).

For the METHOD=CONNOR option, approximate sample size for the 1-sided cases
is computed according to equation (3) in Connor (1987):

N =

{
z1−α(p10 + p01)

1
2 + zpower

[
p10 + p01 − (p01 − p10)2

] 1
2

}2

(p01 − p10)2
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Approximate power for the 1-sided cases is computed by solving the sample size
equation for power, and approximate power for the 2-sided case follows easily by
summing the 1-sided powers each atα/2:

power=



Φ
(

(p01−p10)N
1
2−z1−α(p10+p01)

1
2

[p10+p01−(p01−p10)2]
1
2

)
, upper 1-sided

Φ
(
−(p01−p10)N

1
2−z1−α(p10+p01)

1
2

[p10+p01−(p01−p10)2]
1
2

)
, lower 1-sided

Φ

(
(p01−p10)N

1
2−z1−α

2
(p10+p01)

1
2

[p10+p01−(p01−p10)2]
1
2

)
+

Φ

(
−(p01−p10)N

1
2−z1−α

2
(p10+p01)

1
2

[p10+p01−(p01−p10)2]
1
2

)
, 2-sided

The 2-sided solution forN is obtained by numerically inverting the power equation.

In general, compared to METHOD=MIETTINEN, the METHOD=CONNOR ap-
proximation tends to be slightly less accurate but slightly conservative in the sense of
overestimating sample size and underestimating power (Lachin 1992, p. 1250).

Analyses in the PAIREDMEANS Statement

Paired t Test (TEST=DIFF)

The hypotheses for the pairedt test are

H0 : µdiff = µ0

H1 :


µdiff 6= µ0, 2-sided
µdiff > µ0, upper 1-sided
µdiff < µ0, lower 1-sided

The test assumes normally distributed data and requiresN ≥ 2. The test statistics are

t = N
1
2

(
d̄− µ0

sd

)
∼ t(N − 1, δ)

t2 ∼ F (1, N − 1, δ2)

whered̄ andsd are the sample mean and standard deviation of the differences and

δ = N
1
2

(
µdiff − µ0

σdiff

)
and

σdiff =
(
σ2

1 + σ2
2 − 2ρσ1σ2

) 1
2
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The test is

Reject H0 if


t2 ≥ F1−α(1, N − 1), 2-sided
t ≥ t1−α(N − 1), upper 1-sided
t ≤ tα(N − 1), lower 1-sided

Exact power computations fort tests are given in O’Brien and Muller (1993, section
8.2.2):

power =


P
(
F (1, N − 1, δ2) ≥ F1−α(1, N − 1)

)
, 2-sided

P (t(N − 1, δ) ≥ t1−α(N − 1)) , upper 1-sided
P (t(N − 1, δ) ≤ tα(N − 1)) , lower 1-sided

Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)

The lognormal case is handled by re-expressing the analysis equivalently as a
normality-based test on the log-transformed data, using properties of the lognormal
distribution as discussed in Johnson and Kotz (1970, chapter 14). The approaches in
the“Paired t Test (TEST=DIFF)”section on page 3518 then apply.

In contrast to the usualt test on normal data, the hypotheses with lognormal data are
defined in terms of geometric means rather than arithmetic means.

The hypotheses for the pairedt test with lognormal pairs{Y1, Y2} are

H0 :
γ2

γ1
= γ0

H1 :


γ2

γ1
6= γ0, 2-sided

γ2

γ1
> γ0, upper 1-sided

γ2

γ1
< γ0, lower 1-sided

Letµ?
1, µ?

2, σ?
1, σ?

2, andρ? be the (arithmetic) means, standard deviations, and correla-
tion of the bivariate normal distribution of the log-transformed data{log Y1, log Y2}.
The hypotheses can be rewritten as follows:

H0 : µ?
2 − µ?

1 = log(γ0)

H1 :


µ?

2 − µ?
1 6= log(γ0), 2-sided

µ?
2 − µ?

1 > log(γ0), upper 1-sided
µ?

2 − µ?
1 < log(γ0), lower 1-sided

where

µ?
1 = log γ1

µ?
2 = log γ2

σ?
1 =

[
log(CV2

1 + 1)
] 1

2
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σ?
2 =

[
log(CV2

2 + 1)
] 1

2

ρ? =
log {ρCV1CV2 + 1}

σ?
1σ

?
2

andCV1, CV2, andρ are the coefficients of variation and the correlation of the origi-
nal untransformed pairs{Y1, Y2}. The conversion fromρ to ρ? is shown in Jones and
Miller (1966).

The test assumes lognormally distributed data and requiresN ≥ 2. The power is

power=


P
(
F (1, N − 1, δ2) ≥ F1−α(1, N − 1)

)
, 2-sided

P (t(N − 1, δ) ≥ t1−α(N − 1)) , upper 1-sided
P (t(N − 1, δ) ≤ tα(N − 1)) , lower 1-sided

where

δ = N
1
2

(
µ?

1 − µ?
2 − log(γ0)
σ?

)
and

σ? =
(
σ?2

1 + σ?2
2 − 2ρ?σ?

1σ
?
2

) 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV –DIFF)

The hypotheses for the equivalence test are

H0 : µdiff < θL or µdiff > θU

H1 : θL ≤ µdiff ≤ θU

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The
test assumes normally distributed data and requiresN ≥ 2. Phillips (1990) derives an
expression for the exact power assuming a two-sample balanced design; the results
are easily adapted to a paired design:

power = QN−1

(
(−t1−α(N − 1)),

µdiff − θU

σdiffN− 1
2

; 0,
(N − 1)

1
2 (θU − θL)

2σdiffN− 1
2 (t1−α(N − 1))

)
−

QN−1

(
(t1−α(N − 1)),

µdiff − θL

σdiffN− 1
2

; 0,
(N − 1)

1
2 (θU − θL)

2σdiffN− 1
2 (t1−α(N − 1))

)

where

σdiff =
(
σ2

1 + σ2
2 − 2ρσ1σ2

) 1
2

andQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common Notation”section on
page 3498.
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Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
(TEST=EQUIV–RATIO)

The lognormal case is handled by re-expressing the analysis equivalently as a
normality-based test on the log-transformed data, using properties of the lognor-
mal distribution as discussed in Johnson and Kotz (1970, chapter 14). The ap-
proaches in the“Additive Equivalence Test for Mean Difference with Normal Data
(TEST=EQUIV–DIFF)” section on page 3520 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with log-
normal data are defined in terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0 :
γT

γR
≤ θL or

γT

γR
≥ θU

H1 : θL <
γT

γR
< θU

where 0 < θL < θU

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on
the log-transformed data. The test assumes lognormally distributed data and requires
N ≥ 2. Diletti, Hauschke, and Steinijans (1991) derive an expression for the exact
power assuming a crossover design; the results are easily adapted to a paired design:

power = QN−1

(−t1−α(N − 1)),
log
(

γT
γR

)
− log(θU )

σ?N− 1
2

;

0,
(N − 1)

1
2 (log(θU )− log(θL))

2σ?N− 1
2 (t1−α(N − 1))

)
−

QN−1

(t1−α(N − 1)),
log
(

γT
γR

)
− log(θL)

σ?N− 1
2

;

0,
(N − 1)

1
2 (log(θU )− log(θL))

2σ?N− 1
2 (t1−α(N − 1))

)

whereσ? is the standard deviation of the differences between the log-transformed
pairs (in other words, the standard deviation oflog(YT )− log(YR), whereYT andYR

are observations from the treatment and reference, respectively), computed as

σ? =
(
σ?2

R + σ?2
T − 2ρ?σ?

Rσ?
T

) 1
2

σ?
R =

[
log(CV2

R + 1)
] 1

2

σ?
T =

[
log(CV2

T + 1)
] 1

2

ρ? =
log {ρCVRCVT + 1}

σ?
Rσ?

T
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whereCVR, CVT , andρ are the coefficients of variation and the correlation of the
original untransformed pairs{YT , YR}, andQ·(·, ·; ·, ·) is Owen’s Q function. The
conversion fromρ to ρ? is shown in Jones and Miller (1966), and Owen’s Q function
is defined in the“Common Notation”section on page 3498.

Confidence Interval for Mean Difference (CI=DIFF)

This analysis of precision applies to the standardt-based confidence interval:[
d̄− t1−α

2
(N − 1) sd√

N
, d̄ + t1−α

2
(N − 1) sd√

N

]
, 2-sided[

d̄− t1−α(N − 1) sd√
N

, ∞
)

, upper 1-sided(
−∞, d̄ + t1−α(N − 1) sd√

N

]
, lower 1-sided

whered̄ andsd are the sample mean and standard deviation of the differences. The
“half-width” is defined as the distance from the point estimated̄ to a finite endpoint,

half-width =

{
t1−α

2
(N − 1) sd√

N
, 2-sided

t1−α(N − 1) sd√
N

, 1-sided

A “valid” conference interval captures the true mean difference. The exact probability
of obtaining at most the target confidence interval half-widthh, unconditional or
conditional on validity, is given by Beal (1989):

Pr(half-width≤ h) =


P

(
χ2(N − 1) ≤ h2N(N−1)

σ2
diff(t2

1−α
2

(N−1))

)
, 2-sided

P
(
χ2(N − 1) ≤ h2N(N−1)

σ2
diff(t21−α(N−1))

)
, 1-sided

Pr(half-width≤ h |
validity)

=


(

1
1−α

)
2
[
QN−1

(
(t1−α

2
(N − 1)), 0;

0, b1)−QN−1(0, 0; 0, b1)] , 2-sided(
1

1−α

)
QN−1 ((t1−α(N − 1)), 0; 0, b1) , 1-sided

where

σdiff =
(
σ2

1 + σ2
2 − 2ρσ1σ2

) 1
2

b1 =
h(N − 1)

1
2

σdiff(t1−α
c
(N − 1))N− 1

2

c = number of sides

andQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common Notation”section on
page 3498.

A “quality” confidence interval is both sufficiently narrow (half-width≤ h) and valid:

Pr(quality) = Pr(half-width≤ h and validity)

= Pr(half-width≤ h | validity)(1− α)
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Analyses in the TWOSAMPLEFREQ Statement

Overview of the 2× 2 Table

Notation:

Group 2
Failure Success

Group 1 Failure x1 x2 m
Success n1 − x1 n2 − x2 N −m

n1 n2 N

x1 = # successes in group 1

x2 = # successes in group 2

m = x1 + x2 = total # successes

p̂1 =
x1

n1

p̂2 =
x2

n2

p̂ =
m

N
= w1p̂1 + w2p̂2

The hypotheses are

H0 : p2 − p1 = p0

H1 :


p2 − p1 6= p0, 2-sided
p2 − p1 > p0, upper 1-sided
p2 − p1 < p0, lower 1-sided

wherep0 is constrained to be0 for all but the unconditional Pearson chi-square test.

Internal calculations are performed in terms ofp1, p2, andp0. An input set consisting
of OR, p1, andOR0 is transformed as follows:

p2 =
(OR)p1

1− p1 + (OR)p1

p10 = p1

p20 =
OR0p10

1− p10 + (OR0)p10

p0 = p20 − p10
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An input set consisting ofRR, p1, andRR0 is transformed as follows:

p2 = (RR)p1

p10 = p1

p20 = (RR0)p10

p0 = p20 − p10

Note that the transformation of eitherOR0 or RR0 to p0 is not unique. The chosen
parameterization fixes the null valuep10 at the input value ofp1.

Pearson Chi-square Test for Two Proportions (TEST=PCHI)

The usual Pearson chi-square test is unconditional. The test statistic

zP =
p̂2 − p̂1 − p0[

p̂(1− p̂)
(

1
n1

+ 1
n2

)] 1
2

= [Nw1w2]
1
2

p̂2 − p̂1 − p0

p̂(1− p̂)

is assumed to have a null distribution ofN(0, 1).

Sample size for the 1-sided cases is given by equation (4) in Fleiss, Tytun, and Ury
(1980). One-sided power is computed as suggested by Diegert and Diegert (1981)
by inverting the sample size formula. Power for the 2-sided case is computed by
adding the lower-sided and upper-sided powers each withα/2, and sample size for
the 2-sided case is obtained by numerically inverting the power formula. A custom
null valuep0 for the proportion differencep2 − p1 is also supported.

power=



Φ
(

(p2−p1−p0)(Nw1w2)
1
2−z1−α[(w1p1+w2p2)(1−w1p1−w2p2)]

1
2

[w2p1(1−p1)+w1p2(1−p2)]
1
2

)
, upper 1-sided

Φ
(
−(p2−p1−p0)(Nw1w2)

1
2−z1−α[(w1p1+w2p2)(1−w1p1−w2p2)]

1
2

[w2p1(1−p1)+w1p2(1−p2)]
1
2

)
, lower 1-sided

Φ

(
(p2−p1−p0)(Nw1w2)

1
2−z1−α

2
[(w1p1+w2p2)(1−w1p1−w2p2)]

1
2

[w2p1(1−p1)+w1p2(1−p2)]
1
2

)
+

Φ

(
−(p2−p1−p0)(Nw1w2)

1
2−z1−α

2
[(w1p1+w2p2)(1−w1p1−w2p2)]

1
2

[w2p1(1−p1)+w1p2(1−p2)]
1
2

)
, 2-sided

For the 1-sided cases, a closed-form inversion of the power equation yield an approx-
imate total sample size

N =

[
z1−α {(w1p1 + w2p2)(1− w1p1 − w2p2)}

1
2 + zpower {w2p1(1− p1) + w1p2(1− p2)}

1
2

]2
w1w2(p2 − p1 − p0)2

For the 2-sided case, the solution forN is obtained by numerically inverting the
power equation.
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Likelihood Ratio chi-square Test for Two Proportions (TEST=LRCHI)

The usual likelihood ratio chi-square test is unconditional. The test statistic

zLR = (−1{p2<p1})

√√√√2N
2∑

i=1

[
wip̂i log

(
p̂i

p̂

)
+ wi(1− p̂i) log

(
1− p̂i

1− p̂

)]

is assumed to have a null distribution ofN(0, 1) and an alternative distribution of
N(δ, 1) where

δ = N
1
2 (−1{p2<p1})

√√√√2
2∑

i=1

[
wipi log

(
pi

w1p1 + w2p2

)
+ wi(1− pi) log

(
1− pi

1− (w1p1 + w2p2)

)]

The approximate power is

power=


Φ (δ − z1−α) , upper 1-sided
Φ (−δ − z1−α) , lower 1-sided

Φ
(
δ − z1−α

2

)
+ Φ

(
−δ − z1−α

2

)
, 2-sided

For the 1-sided cases, a closed-form inversion of the power equation yield an approx-
imate total sample size

N =
(

zpower + z1−α

δ

)2

For the 2-sided case, the solution forN is obtained by numerically inverting the
power equation.

Fisher’s Exact Conditional Test for Two Proportions (Test=FISHER)

Fisher’s exact test is conditional on the observed total number of successesm. Power
and sample size computations for the METHOD=WALTERS option are based on
a test with similar power properties, the continuity-adjusted arcsine test. The test
statistic

zA = (4Nw1w2)
1
2

[
arcsin

([
p̂2 +

1
2Nw2

(1{p̂2<p̂1} − 1{p̂2>p̂1})
] 1

2

)

−arcsin

([
p̂1 +

1
2Nw1

(1{p̂1<p̂2} − 1{p̂1>p̂2})
] 1

2

)]

is assumed to have a null distribution ofN(0, 1) and an alternative distribution of
N(δ, 1) where

δ = (4Nw1w2)
1
2

[
arcsin

([
p2 +

1
2Nw2

(1{p2<p1} − 1{p2>p1})
] 1

2

)

−arcsin

([
p1 +

1
2Nw1

(1{p1<p2} − 1{p1>p2})
] 1

2

)]
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The approximate power for the 1-sided balanced case is given by Walters (1979) and
is easily extended to the unbalanced and 2-sided cases:

power=


Φ (δ − z1−α) , upper 1-sided
Φ (−δ − z1−α) , lower 1-sided

Φ
(
δ − z1−α

2

)
+ Φ

(
−δ − z1−α

2

)
, 2-sided

Analyses in the TWOSAMPLEMEANS Statement

Two-sample t Test Assuming Equal Variances (TEST=DIFF)

The hypotheses for the two-samplet test are

H0 : µdiff = µ0

H1 :


µdiff 6= µ0, 2-sided
µdiff > µ0, upper 1-sided
µdiff < µ0, lower 1-sided

The test assumes normally distributed data and common standard deviation per group,
and it requiresN ≥ 3, n1 ≥ 1, andn2 ≥ 1. The test statistics are

t = N
1
2 (w1w2)

1
2

(
x̄2 − x̄1 − µ0

sp

)
∼ t(N − 2, δ)

t2 ∼ F (1, N − 2, δ2)

wherex̄1 andx̄2 are the sample means andsp is the pooled standard deviation, and

δ = N
1
2 (w1w2)

1
2

(
µdiff − µ0

σ

)
The test is

Reject H0 if


t2 ≥ F1−α(1, N − 2), 2-sided
t ≥ t1−α(N − 2), upper 1-sided
t ≤ tα(N − 2), lower 1-sided

Exact power computations fort tests are given in O’Brien and Muller (1993, section
8.2.1):

power =


P
(
F (1, N − 2, δ2) ≥ F1−α(1, N − 2)

)
, 2-sided

P (t(N − 2, δ) ≥ t1−α(N − 2)) , upper 1-sided
P (t(N − 2, δ) ≤ tα(N − 2)) , lower 1-sided
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Solutions forN , n1, n2, α, andδ are obtained by numerically inverting the power
equation. Closed-form solutions for other parameters, in terms ofδ, are as follows:

µdiff = δσ(Nw1w2)−
1
2 + µ0

µ1 = δσ(Nw1w2)−
1
2 + µ0 − µ2

µ2 = δσ(Nw1w2)−
1
2 + µ0 − µ1

σ =
{

δ−1(Nw1w2)
1
2 (µdiff − µ0), |δ| > 0

undefined, otherwise

w1 =

 1
2 ±

1
2

[
1− 4δ2σ2

N(µdiff−µ0)2

] 1
2
, 0 < |δ| ≤ 1

2N
1
2
|µdiff−µ0|

σ

undefined, otherwise

w2 =

 1
2 ±

1
2

[
1− 4δ2σ2

N(µdiff−µ0)2

] 1
2
, 0 < |δ| ≤ 1

2N
1
2
|µdiff−µ0|

σ

undefined, otherwise

Finally, here is a derivation of the solution forw1:

Solve theδ equation forw1 (which requires the quadratic formula). Then determine
the range ofδ givenw1:

min
w1

(δ) =
{

0, when w1 = 0 or 1, if (µdiff − µ0) ≥ 0
1
2N

1
2

(µdiff−µ0)
σ , when w1 = 1

2 , if (µdiff − µ0) < 0

max
w1

(δ) =
{

0, when w1 = 0 or 1, if (µdiff − µ0) < 0
1
2N

1
2

(µdiff−µ0)
σ , when w1 = 1

2 , if (µdiff − µ0) ≥ 0

This implies

|δ| ≤ 1
2
N

1
2
|µdiff − µ0|

σ

Two-sample Satterthwaite t Test Assuming Unequal Variances (TEST=DIFF –SATT)

The hypotheses for the two-sample Satterthwaitet test are

H0 : µdiff = µ0

H1 :


µdiff 6= µ0, 2-sided
µdiff > µ0, upper 1-sided
µdiff < µ0, lower 1-sided

The test assumes normally distributed data and requiresN ≥ 3, n1 ≥ 1, andn2 ≥ 1.
The test statistics are

t =
x̄2 − x̄1 − µ0[

s2
1

n1
+ s2

2
n2

] 1
2

= N
1
2
x̄2 − x̄1 − µ0[

s2
1

w1
+ s2

2
w2

] 1
2

F = t2
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wherex̄1 andx̄2 are the sample means ands1 ands2 are the sample standard devia-
tions.

As DiSantostefano and Muller (1995, p. 585) state, the test is based on assuming that
underH0, F is distributed asF (1, ν), whereν is given by Satterthwaite’s approxi-
mation (Satterthwaite 1946),

ν =

[
σ2
1

n1
+ σ2

2
n2

]2
[

σ2
1

n1

]2

n1−1 +

[
σ2
2

n2

]2

n2−1

=

[
σ2
1

w1
+ σ2

2
w2

]2
[

σ2
1

w1

]2

Nw1−1 +

[
σ2
2

w2

]2

Nw2−1

Sinceν is unknown, in practice it must be replaced by an estimate

ν̂ =

[
s2
1

n1
+ s2

2
n2

]2
[

s21
n1

]2

n1−1 +

[
s22
n2

]2

n2−1

=

[
s2
1

w1
+ s2

2
w2

]2
[

s21
w1

]2

Nw1−1 +

[
s22
w2

]2

Nw2−1

So the test is

Reject H0 if


F ≥ F1−α(1, ν̂), 2-sided
t ≥ t1−α(ν̂), upper 1-sided
t ≤ tα(ν̂), lower 1-sided

Exact solutions for power for the 2-sided and upper 1-sided cases are given in Moser,
Stevens, and Watts (1989). The lower 1-sided case follows easily using symmetry.
The equations are as follows:

power =



∫∞
0 P (F (1, N − 2, λ) >
h(u)F1−α(1, v(u))|u) f(u)du, 2-sided∫∞

0 P
(
t(N − 2, λ

1
2 ) >

[h(u)]
1
2 t1−α(v(u))|u

)
f(u)du, upper 1-sided∫∞

0 P
(
t(N − 2, λ

1
2 ) <

[h(u)]
1
2 tα(v(u))|u

)
f(u)du, lower 1-sided

where

h(u) =

(
1
n1

+ u
n2

)
(n1 + n2 − 2)[

(n1 − 1) + (n2 − 1)uσ2
1

σ2
2

] (
1
n1

+ σ2
2

σ2
1n2

)
v(u) =

(
1
n1

+ u
n2

)2

1
n2

1(n1−1)
+ u2

n2
2(n2−1)

λ =
(µdiff − µ0)2

σ2
1

n1
+ σ2

2
n2
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f(u) =
Γ
(

n1+n2−2
2

)
Γ
(

n1−1
2

)
Γ
(

n2−1
2

) [σ2
1(n2 − 1)

σ2
2(n1 − 1)

]n2−1
2

·

u
n2−3

2

[
1 +

(
n2 − 1
n1 − 1

)
uσ2

1

σ2
2

]−(
n1+n2−2

2

)

The densityf(u) is obtained from the fact that

uσ2
1

σ2
2

∼ F (n2 − 1, n1 − 1)

Two-sample Pooled t Test of Mean Ratio with Lognormal Data (TEST=RATIO)

The lognormal case is handled by re-expressing the analysis equivalently as a
normality-based test on the log-transformed data, using properties of the lognormal
distribution as discussed in Johnson and Kotz (1970, chapter 14). The approaches in
the “Two-sample t Test Assuming Equal Variances (TEST=DIFF)”section on page
3526 then apply.

In contrast to the usualt test on normal data, the hypotheses with lognormal data are
defined in terms of geometric means rather than arithmetic means. The test assumes
equal coefficients of variation in the two groups.

The hypotheses for the two-samplet test with lognormal data are

H0 :
γ2

γ1
= γ0

H1 :


γ2

γ1
6= γ0, 2-sided

γ2

γ1
> γ0, upper 1-sided

γ2

γ1
< γ0, lower 1-sided

Let µ?
1, µ?

2, andσ? be the (arithmetic) means and common standard deviation of the
corresponding normal distributions of the log-transformed data. The hypotheses can
be rewritten as follows:

H0 : µ?
2 − µ?

1 = log(γ0)

H1 :


µ?

2 − µ?
1 6= log(γ0), 2-sided

µ?
2 − µ?

1 > log(γ0), upper 1-sided
µ?

2 − µ?
1 < log(γ0), lower 1-sided

where

µ?
1 = log γ1

µ?
2 = log γ2
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The test assumes lognormally distributed data and requiresN ≥ 3, n1 ≥ 1, and
n2 ≥ 1.

The power is

power=


P
(
F (1, N − 2, δ2) ≥ F1−α(1, N − 2)

)
, 2-sided

P (t(N − 2, δ) ≥ t1−α(N − 2)) , upper 1-sided
P (t(N − 2, δ) ≤ tα(N − 2)) , lower 1-sided

where

δ = N
1
2 (w1w2)

1
2

(
µ?

2 − µ?
1 − log(γ0)
σ?

)
σ? =

[
log(CV2 + 1)

] 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV –DIFF)

The hypotheses for the equivalence test are

H0 : µdiff < θL or µdiff > θU

H1 : θL ≤ µdiff ≤ θU

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987).
The test assumes normally distributed data and requiresN ≥ 3, n1 ≥ 1, andn2 ≥ 1.
Phillips (1990) derives an expression for the exact power assuming a balanced design;
the results are easily adapted to an unbalanced design:

power = QN−2

(
(−t1−α(N − 2)),

µdiff − θU

σN− 1
2 (w1w2)−

1
2

;

0,
(N − 2)

1
2 (θU − θL)

2σN− 1
2 (w1w2)−

1
2 (t1−α(N − 2))

)
−

QN−2

(
(t1−α(N − 2)),

µdiff − θL

σN− 1
2 (w1w2)−

1
2

;

0,
(N − 2)

1
2 (θU − θL)

2σN− 1
2 (w1w2)−

1
2 (t1−α(N − 2))

)

whereQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common Notation”section
on page 3498.
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Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
(TEST=EQUIV–RATIO)

The lognormal case is handled by re-expressing the analysis equivalently as a
normality-based test on the log-transformed data, using properties of the lognor-
mal distribution as discussed in Johnson and Kotz (1970, chapter 14). The ap-
proaches in the“Additive Equivalence Test for Mean Difference with Normal Data
(TEST=EQUIV–DIFF)” section on page 3530 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with log-
normal data are defined in terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0 :
γT

γR
≤ θL or

γT

γR
≥ θU

H1 : θL <
γT

γR
< θU

where 0 < θL < θU

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on
the log-transformed data. The test assumes lognormally distributed data and requires
N ≥ 3, n1 ≥ 1, andn2 ≥ 1. Diletti, Hauschke, and Steinijans (1991) derive an
expression for the exact power assuming a crossover design; the results are easily
adapted to an unbalanced two-sample design:

power = QN−2

(−t1−α(N − 2)),
log
(

γT
γR

)
− log(θU )

σ?N− 1
2 (w1w2)−

1
2

;

0,
(N − 2)

1
2 (log(θU )− log(θL))

2σ?N− 1
2 (w1w2)−

1
2 (t1−α(N − 2))

)
−

QN−2

(t1−α(N − 2)),
log
(

γT
γR

)
− log(θL)

σ?N− 1
2 (w1w2)−

1
2

;

0,
(N − 2)

1
2 (log(θU )− log(θL))

2σ?N− 1
2 (w1w2)−

1
2 (t1−α(N − 2))

)

where

σ? =
[
log(CV2 + 1)

] 1
2

is the (assumed common) standard deviation of the normal distribution of the log-
transformed data, andQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common
Notation”section on page 3498.
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Confidence Interval for Mean Difference (CI=DIFF)

This analysis of precision applies to the standardt-based confidence interval:[
(x̄2 − x̄1)− t1−α

2
(N − 2) sp√

Nw1w2
,

(x̄2 − x̄1) + t1−α
2
(N − 2) sp√

Nw1w2

]
, 2-sided[

(x̄2 − x̄1)− t1−α(N − 2) sp√
Nw1w2

, ∞
)

, upper 1-sided(
−∞, (x̄2 − x̄1) + t1−α(N − 2) sp√

Nw1w2

]
, lower 1-sided

wherex̄1 andx̄2 are the sample means andsp is the pooled standard deviation. The
“half-width” is defined as the distance from the point estimatex̄2 − x̄1 to a finite
endpoint,

half-width =

{
t1−α

2
(N − 2) sp√

Nw1w2
, 2-sided

t1−α(N − 2) sp√
Nw1w2

, 1-sided

A “valid” conference interval captures the true mean. The exact probability of obtain-
ing at most the target confidence interval half-widthh, unconditional or conditional
on validity, is given by Beal (1989):

Pr(half-width≤ h) =


P

(
χ2(N − 2) ≤ h2N(N−2)(w1w2)

σ2(t2
1−α

2
(N−2))

)
, 2-sided

P
(
χ2(N − 2) ≤ h2N(N−2)(w1w2)

σ2(t21−α(N−2))

)
, 1-sided

Pr(half-width≤ h |
validity)

=


(

1
1−α

)
2
[
QN−2

(
(t1−α

2
(N − 2)), 0;

0, b2)−QN−2(0, 0; 0, b2)] , 2-sided(
1

1−α

)
QN−2 ((t1−α(N − 2)), 0; 0, b2) , 1-sided

where

b2 =
h(N − 2)

1
2

σ(t1−α
c
(N − 2))N− 1

2 (w1w2)−
1
2

c = number of sides

andQ·(·, ·; ·, ·) is Owen’s Q function, defined in the“Common Notation”section on
page 3498.

A “quality” confidence interval is both sufficiently narrow (half-width≤ h) and valid:

Pr(quality) = Pr(half-width≤ h and validity)

= Pr(half-width≤ h | validity)(1− α)
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Analyses in the TWOSAMPLESURVIVAL Statement

Rank Tests for Two Survival Curves (TEST=LOGRANK, TEST=GEHAN,
TEST=TARONEWARE)

The method is from Lakatos (1988) and Cantor (1997, pp. 83–92).

Define the following notation:

Xj(i) = ith input time point on survival curve for groupj

Sj(i) = input survivor function value corresponding toXj(i)
hj(t) = hazard rate for groupj at timet

Ψj(t) = loss hazard rate for groupj at timet

λj = exponential hazard rate for groupj

R = hazard ratio of group 2 to group 1≡ (assumed constant) value ofh2(t)
h1(t)

mj = median survival time for groupj

b = number of subintervals per time unit

T = accrual time

τ = post-accrual follow-up time

Lj = exponential loss rate for groupj

XLj = input time point on loss curve for groupj

SLj = input survivor function value corresponding toXLj

mLj = median survival time for groupj

ri = rank forith time point

Each survival curve can be specified in one of several ways.

• For exponential curves:

– a single point(Xj(1), Sj(1)) on the curve
– median survival time
– hazard rate
– hazard ratio (for curve 2, with respect to curve 1)

• For piecewise linear curves with proportional hazards:

– a set of points{(X1(1), S1(1)), (X1(2), S1(2)), . . .} (for curve 1)
– hazard ratio (for curve 2, with respect to curve 1)

• For arbitrary piecewise linear curves:

– a set of points{(Xj(1), Sj(1)), (Xj(2), Sj(2)), . . .}

A total of M evenly spaced time points{t0 = 0, t1, t2, . . . , tM = T + τ} are used in
calculations, where

M = floor ((T + τ)b)
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The hazard function is calculated for each survival curve at each time point. For an
exponential curve, the (constant) hazard is given by one of the following, depending
on the input parameterization:

hj(t) =



λj

λ1R
− log( 1

2
)

mj
− log(Sj(1))

Xj(1)
− log(S1(1))

X1(1) R

For a piecewise linear curve, define the following additional notation:

t−i = largest input timeX such thatX ≤ ti

t+i = smallest input timeX such thatX > ti

The hazard is computed using linear interpolation as follows:

hj(ti) =
Sj(t−i )− Sj(t+i )[

Sj(t+i )− Sj(t−i )
] [

ti − t−i
]
+ Sj(t−i )

[
t+i − t−i

]
With proportional hazards, the hazard rate of group 2’s curve in terms of the hazard
rate of group 1’s curve is

h2(t) = h1(t)R

Hazard function values{Ψj(ti)} for the loss curves are computed in an analogous
way from{Lj , XLj , SLj ,mLj}.

The expected number at riskNj(i) at timei in groupj is calculated for each group
and time points0 throughM − 1, as follows:

Nj(0) = Nwj

Nj(i + 1) = Nj(i)
[
1− hj(ti)

(
1
b

)
−Ψj(ti)

(
1
b

)
−
(

1
b(T + τ − ti)

)
1{ti>τ}

]

Defineθi as the ratio of hazards andφi as the ratio of expected numbers at risk for
time ti:

θi =
h2(ti)
h1(ti)

φi =
N2(i)
N1(i)
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The expected number of deaths in each subinterval is calculated as follows:

Di = [h1(ti)N1(i) + h2(ti)N2(i)]
(

1
b

)
The rank values are calculated as follows according to which test statistic is used:

ri =


1, log-rank
N1(i) + N2(i), Gehan√

N1(i) + N2(i), Tarone-Ware

The distribution of the test statistic is approximated byN(E, 1) where

E =

∑M−1
i=0 Diri

[
φiθi

1+φiθi
− φi

1+φi

]
√∑M−1

i=0 Dir2
i

φi

(1+φi)2

Note thatN
1
2 can be factored out of the meanE, and so it can be expressed equiva-

lently as

E = N
1
2 E? = N

1
2

∑M−1
i=0 D?

i r
?
i

[
φiθi

1+φiθi
− φi

1+φi

]
√∑M−1

i=0 D?
i r

?
i
2 φi

(1+φi)2


whereE? is free ofN and

D?
i = [h1(ti)N?

1 (i) + h2(ti)N?
2 (i)]

(
1
b

)

r?
i =


1, log-rank
N?

1 (i) + N?
2 (i), Gehan√

N?
1 (i) + N?

2 (i), Tarone-Ware

N?
j (0) = wj

N?
j (i + 1) = N?

j (i)
[
1− hj(ti)

(
1
b

)
−Ψj(ti)

(
1
b

)
−
(

1
b(T + τ − ti)

)
1{ti>τ}

]

The approximate power is

power=


Φ
(
−N

1
2 E? − z1−α

)
, upper 1-sided

Φ
(
N

1
2 E? − z1−α

)
, lower 1-sided

Φ
(
−N

1
2 E? − z1−α

2

)
+ Φ

(
N

1
2 E? − z1−α

2

)
, 2-sided

Note that the upper and lower 1-sided cases are expressed differently than in other
analyses. This is becauseE? > 0 corresponds to a higher survival curve in group
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1 and thus, by the convention used in PROC power for 2-group analyses, the lower
side.

For the 1-sided cases, a closed-form inversion of the power equation yield an approx-
imate total sample size

N =
(

zpower + z1−α

E?

)2

For the 2-sided case, the solution forN is obtained by numerically inverting the
power equation.

Examples

Example 57.1. One-Way ANOVA

This example deals with the same situation as inExample 34.1on page 1951 of
Chapter 34, “The GLMPOWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reduc-
ing lactic acid buildup for long-distance runners. You are planning a similar study in
which you will allocate five different fluids to runners on a 10-mile course and mea-
sure lactic acid buildup immediately after the race. The fluids consist of water and
two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two con-
centrations, low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any
particular fluid is about 3.75, and that the expected lactic acid values will correspond
roughly to those inTable 57.27. You are least familiar with the LZ1 drink and hence
decide to consider a range of reasonable values for that mean.

Table 57.27. Mean Lactic Acid Buildup by Fluid
Water EZD1 EZD2 LZ1 LZ2
35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown inTable 57.28with appro-
priate contrast coefficients.

Table 57.28. Planned Comparisons
Contrast Coefficients

Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 -1 -1 -1 -1
EZD versus LZ 0 1 1 -1 -1
EZD1 versus EZD2 0 1 -1 0 0
LZ1 versus LZ2 0 0 0 1 -1

For each of these contrasts you want to determine the sample size required to achieve
a power of 0.9 for detecting an effect with magnitude in accord withTable 57.27.
You are not yet attempting to choose a single sample size for the study, but rather
checking the range of sample sizes needed for individual contrasts. You plan to test
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each contrast atα = 0.025. In the interests of reducing costs, you will provide
twice as many runners with water as with any of the electrolytes; in other words, you
will use a sample size weighting scheme of 2:1:1:1:1. Use the ONEWAYANOVA
statement in the POWER procedure to compute the sample sizes. The statements
required to perform this analysis are as follows:

proc power;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
run;

The NTOTAL= option with a missing value (.) indicates total sample size as the re-
sult parameter. The GROUPMEANS= option with values fromTable 57.27specifies
your conjectures for the means. With only one mean varying (the LZ1 mean), the
“crossed” notation is simpler, showing scenarios for each group mean separated by
a vertical bar (|). See the“Specifying Value Lists in Analysis Statements”section
on page 3490 for more details on crossed and matched notations for grouped val-
ues. The contrasts inTable 57.28are specified with the CONTRAST option, using
the “matched” notation with each contrast enclosed in parentheses. The STDDEV=,
ALPHA=, and POWER= options specify the error standard deviation, significance
level, and power. The GROUPWEIGHTS= option specifies the weighting schemes.
Default values for the NULL= and SIDES= options specify a 2-sidedt test of the
contrast equal to 0. SeeOutput 57.1.1for the output.
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Output 57.1.1. Sample Sizes for One-Way ANOVA Contrasts

The POWER Procedure
Single DF Contrast in One-Way ANOVA

Fixed Scenario Elements

Method Exact
Alpha 0.025
Standard Deviation 3.75
Group Weights 2 1 1 1 1
Nominal Power 0.9
Number of Sides 2
Null Contrast Value 0

Computed N Total

Actual N
Index -----Contrast----- -------------Means------------- Power Total

1 4 -1 -1 -1 -1 35.6 33.7 30.2 29 25.9 0.947 30
2 4 -1 -1 -1 -1 35.6 33.7 30.2 28 25.9 0.901 24
3 0 1 1 -1 -1 35.6 33.7 30.2 29 25.9 0.929 60
4 0 1 1 -1 -1 35.6 33.7 30.2 28 25.9 0.922 48
5 0 1 -1 0 0 35.6 33.7 30.2 29 25.9 0.901 174
6 0 1 -1 0 0 35.6 33.7 30.2 28 25.9 0.901 174
7 0 0 0 1 -1 35.6 33.7 30.2 29 25.9 0.902 222
8 0 0 0 1 -1 35.6 33.7 30.2 28 25.9 0.902 480

The sample sizes inOutput 57.1.1range from 24 for the comparison of water versus
electrolytes to 480 for the comparison of LZ1 versus LZ2, both assuming the smaller
LZ1 mean. The sample size for the latter comparison is relatively large because the
small mean difference of28− 25.9 = 2.1 is hard to detect.

The Nominal Power of 0.9 in the Fixed Scenario Elements table inOutput 57.1.1
represents the input target power, and the Actual Power column in the Computed N
Total table is the power at the sample size (N Total) adjusted to achieve the specified
sample weighting. Note that all of the sample sizes are rounded up to multiples of
6 to preserve integer group sizes (since the group weights add up to 6). You can
use the NFRACTIONAL option in the ONEWAYANOVA statement to compute raw
fractional sample sizes.

Suppose you want to plot the required sample size for the range of power values
from 0.5 to 0.95. First, define the analysis by specifying the same statements as
before, but add the PLOTONLY option to the PROC POWER statement to disable the
nongraphical results. Next, specify the PLOT statement with X=POWER to request
a plot with power on the x-axis. (The result parameter, here sample size, is always
plotted on the other axis.) Use the MIN= and MAX= options in the PLOT statement
to specify the power range.

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
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alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=power min=.5 max=.95;

run;

SeeOutput 57.1.2for the resulting plot.

Output 57.1.2. Plot of Sample Size versus Power for One-Way ANOVA Contrasts

In Output 57.1.2, the line style identifies the contrast, and the plotting symbol identi-
fies the group means scenario. The plot shows that the required sample size is highest
for the (0 0 0 1 -1) contrast, corresponding to the test of LZ1 versus LZ2 that was
previously found to require the most resources, in either cell means scenario.

Note that some of the plotted points inOutput 57.1.2are unevenly spaced. This is
because the plotted points are theroundedsample size results at their correspond-
ing actual power levels. The range specified with the MIN= and MAX= values
in the PLOT statement correspond tonominalpower levels. In some cases, actual
power is substantially higher than nominal power. To obtain plots with evenly spaced
points (but withfractional sample sizes at the computed points), you can use the
NFRACTIONAL option in the analysis statement preceding the PLOT statement.

Finally, suppose you want to plot the power for the range of sample sizes you will
likely consider for the study (the range of 24 to 480 that achieves 0.9 power for dif-
ferent comparisons). In the ONEWAYANOVA statement, identify power as the result
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(POWER=.), and specify NTOTAL=24. The following statements produce the plot:

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = 24
power = .
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=n min=24 max=480;

run;

The X=N option in the PLOT statement requests a plot with sample size on the x-axis.

Note that the value specified with the NTOTAL=24 option is not used. It is
overridden in the plot by the MIN= and MAX= options in the PLOT statement,
and the PLOTONLY option in the PROC POWER statement disables nongraphi-
cal results. But the NTOTAL= option (along with a value) is still needed in the
ONEWAYANOVA statement as a placeholder, to identify the desired parameteriza-
tion for sample size.

SeeOutput 57.1.3for the plot.

Output 57.1.3. Plot of Power versus Sample Size for One-Way ANOVA Contrasts
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AlthoughOutput 57.1.2andOutput 57.1.3surface essentially the same computations
for practical power ranges, they each provide a different quick visual assessment.
Output 57.1.2reveals the range of required sample sizes for powers of interest, and
Output 57.1.3reveals the range of achieved powers for sample sizes of interest.

Example 57.2. The Sawtooth Power Function in Proportion
Analyses

For many common statistical analyses, the power curve is monotonically increasing:
the more samples you take, the more power you achieve. However, in statistical
analyses of discrete data, such as tests of proportions, the power curve is often non-
monotonic. A small increase in sample size can result in adecreasein power, a
decrease that is sometimes substantial. The explanation is that the actual significance
level (in other words, the achieved Type 1 error rate) for discrete tests strays below
the target level and varies with sample size. The power loss from a decrease in the
Type 1 error rate may outweigh the power gain from an increase in sample size. The
example discussed in this section demonstrates this “sawtooth” phenomenon. For
additional discussion on the topic, refer to Chernick and Liu (2002).

Suppose you have a new scheduling system for an airline, and you want to determine
how many flights you must observe to have at least an 80% chance of establishing an
improvement in the proportion of late arrivals on a specific travel route. You will use
a 1-sided exact binomial proportion test with a null proportion of 30%, the frequency
of late arrivals under the previous scheduling system, and a nominal significance level
of α = 0.05. Well-supported predictions estimate the new late arrival rate to be about
20%, and you will base your sample size determination on this assumption.

The POWER procedure does not currently compute exact sample size directly for
the exact binomial test. But you can get an initial estimate by computing the ap-
proximate sample size required for az test. Use the ONESAMPLEFREQ statement
in the POWER procedure with TEST=Z and METHOD=NORMAL to compute the
approximate sample size to achieve a power of 0.8 using thez test. The following
statements perform the analysis:

proc power;
onesamplefreq test=z method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

The NTOTAL= option with a missing value (.) indicates sample size as the re-
sult parameter. The SIDES=1 option specifies a 1-sided test. The ALPHA=,
NULLPROPORTION=, and POWER= options specify the significance level of 0.05,
null value of 0.3, and target power of 0.8. The PROPORTION= option specifies your
conjecture of 0.3 for the true proportion.
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Output 57.2.1. Approximate Sample Size for z Test of a Proportion

The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation
Number of Sides 1
Null Proportion 0.3
Alpha 0.05
Binomial Proportion 0.2
Nominal Power 0.8

Computed N Total

Actual N
Power Total

0.800 119

The results, shown inOutput 57.2.1, indicate that you need to observe aboutN=119
flights to have an 80% chance of rejecting the hypothesis of a late arrival proportion
of 30% or higher, if the true proportion is 20%, using thez test. A similar analysis
(Output 57.2.2) reveals an approximate sample size ofN=129 for thez test with
continuity correction, which performed using TEST=ADJZ:

proc power;
onesamplefreq test=adjz method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;
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Output 57.2.2. Approximate Sample Size for z Test with Continuity Correction

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

Fixed Scenario Elements

Method Normal approximation
Number of Sides 1
Null Proportion 0.3
Alpha 0.05
Binomial Proportion 0.2
Nominal Power 0.8

Computed N Total

Actual N
Power Total

0.801 129

Based on the approximate sample size results, you decide to explore the power of the
exact binomial test for sample sizes between 110 and 140. The following statements
produce the plot:

proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The TEST=EXACT option in the ONESAMPLEFREQ statement specifies the exact
binomial test, and the missing value (.) for the POWER= option indicates power
as the result parameter. The PLOTONLY option in the PROC POWER statement
disables nongraphical output. The PLOT statement with X=N requests a plot with
sample size on the x-axis. The MIN= and MAX= options in the PLOT statement
specify the sample size range. The YOPTS=(REF=) and XOPTS=(REF=) options
add reference lines to highlight the approximate sample size results. The STEP=1
option produces a point at each integer sample size. The sample size value specified
with the NTOTAL= option in the ONESAMPLEFREQ statement is overridden by
the MIN= and MAX= options in the PLOT statement.Output 57.2.3shows the plot.
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Output 57.2.3. Plot of Power versus Sample Size for Exact Binomial Test

Note the sawtooth pattern inOutput 57.2.3. Although the power surpasses the tar-
get level of 0.8 atN=119, it decreases to 0.79 withN=120 and further to 0.76 with
N=122 before rising again to 0.81 withN=123. Not untilN=130 does the power
stay above the 0.8 target. Thus, a more conservative sample size recommendation of
130 might be appropriate, depending on the precise goals of the sample size determi-
nation.

In addition to considering alternative sample sizes, you may also want to assess the
sensitivity of the power to inaccuracies in assumptions about the true proportion.
The following statements produce a plot including true proportion values of 0.18 and
0.22. They are identical to the previous statements except for the additional true pro-
portion values specified with the PROPORTION= option in the ONESAMPLEFREQ
statement.

proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.18 0.2 0.22
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

Output 57.2.4shows the plot.
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Output 57.2.4. Plot for Assessing Sensitivity to True Proportion Value

The plot reveals a dramatic sensitivity to the true proportion value. ForN=119, the
power is about 0.92 if the true proportion is 0.22, and as low as 0.62 if the proportion
is 0.18. Note also that the power jumps occur at the same sample sizes in all three
curves; the curves are only shifted and stretched vertically. This is because spikes
and valleys in power curves are invariant to the true proportion value; they are due to
changes in the critical value of the test.

A closer look at some ancillary output from the analysis sheds light on this property
of the sawtooth pattern. You can add an ODS OUTPUT statement to save the plot
content corresponding toOutput 57.2.3to a data set:

proc power plotonly;
ods output plotcontent=PlotData;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The PlotData data set contains parameter values for each point in
the plot. The parameters including underlying characteristics of
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the putative test. The following statements print the critical value
and actual significance level along with sample size and power.

proc print data=PlotData;
var NTotal LowerCritVal Alpha Power;

run;

Output 57.2.5shows the plot data.

Output 57.2.5. Numerical Content of Plot

Lower
Obs NTotal CritVal Alpha Power

1 110 24 0.0356 0.729
2 111 24 0.0313 0.713
3 112 25 0.0446 0.771
4 113 25 0.0395 0.756
5 114 25 0.0349 0.741
6 115 26 0.0490 0.795
7 116 26 0.0435 0.781
8 117 26 0.0386 0.767
9 118 26 0.0341 0.752

10 119 27 0.0478 0.804
11 120 27 0.0425 0.790
12 121 27 0.0377 0.776
13 122 27 0.0334 0.762
14 123 28 0.0465 0.812
15 124 28 0.0414 0.799
16 125 28 0.0368 0.786
17 126 28 0.0327 0.772
18 127 29 0.0453 0.820
19 128 29 0.0404 0.807
20 129 29 0.0359 0.794
21 130 30 0.0493 0.838
22 131 30 0.0441 0.827
23 132 30 0.0394 0.815
24 133 30 0.0351 0.803
25 134 31 0.0480 0.845
26 135 31 0.0429 0.834
27 136 31 0.0384 0.823
28 137 31 0.0342 0.811
29 138 32 0.0466 0.851
30 139 32 0.0418 0.841
31 140 32 0.0374 0.830

Note that whenever the critical value changes, the actualα jumps up to a value close
to the nominalα=0.05, and the power also jumps up. Then while the critical value
stays constant, the actualα and power slowly decrease. The critical value is inde-
pendent of the true proportion value. So, you can achieve a locally maximal power
by choosing a sample size corresponding to a spike on the sawtooth curve, and this
choice is locally optimalregardlessof the unknown value of the true proportion.
Locally optimal sample sizes in this case include 115, 119, 123, 127, 130, and 134.

As a point of interest, the power does not always jump sharply and decrease
gradually. The shape of the sawtooth depends on the direction of the test and
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the location of the null proportion relative to 0.5. For example, if the di-
rection of the hypothesis in this example is reversed (by switching true and
null proportion values) so that the rejection region is in the upper tail, then
the power curve exhibits sharp decreases and gradual increases. The follow-
ing statements are similar to those producing the plot inOutput 57.2.3but with
values of the PROPORTION= and NULLPROPORTION= options switched.

proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.2
proportion = 0.3
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1;
run;

The resulting plot is shown inOutput 57.2.6.

Output 57.2.6. Plot of Power versus Sample Size for Another 1-Sided Test

Finally, 2-sided tests can lead to even more irregular power curve shapes, since
changes in lower and upper critical values affect the power in different ways. The
following statements produce a plot of power versus sample size for the scenario of
a 2-sided test with high alpha and a true proportion close to the null value.
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proc power plotonly;
onesamplefreq test=exact

sides = 2
alpha = 0.2
nullproportion = 0.1
proportion = 0.09
ntotal = 10
power = .;

plot x=n min=2 max=100 step=1;
run;

The resulting plot is shown inOutput 57.2.7.

Output 57.2.7. Plot of Power versus Sample Size for a 2-Sided Test

Due to the irregular shapes of power curves for proportion tests, the question “Which
sample size should I use?” is often insufficient. A sample size solution produced
directly in PROC POWER reveals the smallest possible sample size to achieve your
target power. But as the Examples in this section demonstrate, it is helpful to consult
graphs for answers to questions such as the following:

• Which sample size will guarantee that all higher sample sizes also achieve my
target power?

• Given a candidate sample size, can I increase it slightly to achieve locally max-
imal power, or perhaps even decrease it and get higher power?
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Example 57.3. Simple AB/BA Crossover Designs

Crossover trials are experiments in which each subject is given a sequence of dif-
ferent treatments. They are especially common in clinical trials for medical studies.
The reduction in variability from taking multiple measurements on a subject allows
for more precise treatment comparisons. The simplest such design is the AB/BA
crossover, in which each subject receives each of two treatments in a randomized
order.

Under certain simplifying assumptions, you can test the treatment difference in an
AB/BA crossover trial using either a paired or two-samplet test (or equivalence test,
depending on the hypothesis). This example will demonstrate when and how you can
use the PAIREDMEANS statement in PROC POWER to perform power analyses for
AB/BA crossover designs.

Senn (1993, Chapter 3) discusses a study comparing the effects of two bronchodilator
medications in treatment of asthma, using an AB/BA crossover design. Suppose
you want to plan a similar study comparing two new medications, “Xilodol” and
“Brantium.” Half of the patients would be assigned to sequence AB, getting a dose
of Xilodol in the first treatment period, a wash-out period of one week, and then a
dose of Brantium in the second treatment period. The other half would be assigned
to sequence BA, following the same schedule but with the drugs reversed. In each
treatment period you would administer the drugs in the morning and then measure
peak expiratory flow (PEF) at the end of the day, with higher PEF representing better
lung function.

You conjecture that the mean and standard deviation of PEF are aboutµA = 310 and
σA = 40 for Xilodol andµB = 330 andσB = 55 for Brantium, and that each pair of
measurements on the same subject will have a correlation of about 0.3. You want
to compute the power of both 1-sided and 2-sided tests of mean difference, with a
significance level ofα = 0.01, for a sample size of 100 patients and also plot the
power for a range of 50 to 200 patients. Note that the allocation ratio of patients to
the two sequences is irrelevant in this analysis.

The choice of statistical test depends on which assumptions are reasonable. One
possibility is at test. A paired or two-samplet test is valid when there is no carry-
over effect and no interactions between patients, treatments, and periods. See Senn
(1993, Chapter 3) for more details. The choice between a paired or a two-sample test
depends on what you assume about the period effect. If you assume no period effect,
then a pairedt test is the appropriate analysis for the design, with the first member of
each pair being the Xilodol measurement (regardless of which sequence the patient
belongs to). Otherwise the two-samplet test approach is called for, since this analysis
adjusts for the period effect using an extra degree of freedom.

Suppose you assume no period effect. Then you can use the PAIREDMEANS state-
ment in PROC POWER with the TEST=DIFF option to perform a sample size anal-
ysis for the pairedt test. Indicate power as the result parameter by specifying the
POWER= option with a missing value (.). Specify the conjectured means and stan-
dard deviations for each drug using the PAIREDMEANS= and PAIREDSTDDEVS=
options and the correlation using the CORR= option. Specify both 1- and 2-sided
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tests using the SIDES= option, the significance level using the ALPHA= option, and
the sample size (in terms of number of pairs) using the NPAIRS= option. Generate
a plot of power versus sample size by specifying the PLOT statement with X=N to
request a plot with sample size on the x-axis. (The result parameter, here power, is
always plotted on the other axis.) Use the MIN= and MAX= options in the PLOT
statement to specify the sample size range (as numbers of pairs).

The following statements perform the sample size analysis.

proc power;
pairedmeans test=diff

pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
sides = 1 2
alpha = 0.01
npairs = 100
power = .;

plot x=n min=50 max=200;
run;

Default values for the NULLDIFF= and DIST= options specify a null mean differ-
ence of 0 and the assumption of normally distributed data. The output is shown in
Output 57.3.1andOutput 57.3.2.

Output 57.3.1. Power for Paired t Analysis of Crossover Design

The POWER Procedure
Paired t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Alpha 0.01
Mean 1 330
Mean 2 310
Standard Deviation 1 40
Standard Deviation 2 55
Correlation 0.3
Number of Pairs 100
Null Difference 0

Computed Power

Index Sides Power

1 1 0.865
2 2 0.801
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Output 57.3.2. Plot of Power versus Sample Size for Paired t Analysis of
Crossover Design

The Computed Power table inOutput 57.3.1shows that the power with 100 patients
is about 0.8 for the 2-sided test and 0.87 for the 1-sided test with the alternative of
larger Brantium mean. InOutput 57.3.2, the line style identifies the number of sides
of the test. The plotting symbols identify locations of actual computed powers; the
curves are linear interpolations of these points. The plot demonstrates how much
higher the power is for the 1-sided test than the 2-sided test for the range of sample
sizes.

Suppose now that instead of detecting a difference between Xilodol and Brantium,
you want to establish that they are similar, in particular, that the absolute mean PEF
difference is at most 35. You might consider this goal if, for example, one of the
drugs has fewer side effects and if a difference of no more than 35 is considered
clinically small. Instead of a standardt test, you would conduct anequivalence test
of the treatment mean difference for the two drugs. You would test the hypothesis
that the true difference is less than -35 or more than 35 against the alternative that the
mean difference is between -35 and 35, using an additive model and a two one-sided
tests (“TOST”) analysis.

Assuming no period effect, you can use the PAIREDMEANS statement with the
TEST=EQUIV–DIFF option to perform a sample size analysis for the paired equiv-
alence test. Indicate power as the result parameter by specifying the POWER= op-
tion with a missing value (.). Use the LOWER= and UPPER= options to specify the
equivalence bounds of -35 and 35. Use the PAIREDMEANS=, PAIREDSTDDEVS=,
CORR=, and ALPHA= options in the same way as in thet test at the beginning of
this example to specify the remaining parameters.
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The following statements perform the sample size analysis.

proc power;
pairedmeans test=equiv_add

lower = -35
upper = 35
pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
alpha = 0.01
npairs = 100
power = .;

run;

The default option DIST=NORMAL specifies an assumption of normally distributed
data. The output is shown inOutput 57.3.3.

Output 57.3.3. Power for Paired Equivalence Test for Crossover Design

The POWER Procedure
Equivalence Test for Paired Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Lower Equivalence Bound -35
Upper Equivalence Bound 35
Alpha 0.01
Reference Mean 330
Treatment Mean 310
Standard Deviation 1 40
Standard Deviation 2 55
Correlation 0.3
Number of Pairs 100

Computed Power

Power

0.598

The power for the paired equivalence test with 100 patients is about 0.6.

Example 57.4. Noninferiority Test with Lognormal Data

The typical goal in noninferiority testing is to conclude that a new treatment or pro-
cess or product is not appreciably worse than some standard. This is accomplished by
convincingly rejecting a 1-sided null hypothesis that the new treatment is apprecia-
bly worse than the standard. When designing such studies, investigators must define
precisely what constitutes “appreciably worse.”
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You can use the POWER procedure for sample size analyses for a variety of noninferi-
ority tests, by specifying custom, 1-sided null hypotheses for common tests. This ex-
ample illustrates the strategy (often called Blackwelder’s scheme, Blackwelder 1982)
by comparing the means of two independent lognormal samples. The logic applies to
one-sample, two-sample, and paired-sample problems involving normally distributed
measures and proportions.

Suppose you are designing a study hoping to show that a new (less expensive) man-
ufacturing process does not produce appreciably more pollution than the current pro-
cess. Quantifying “appreciably worse” as 10%, you seek to show that the mean pol-
lutant level from the new process is less than 110% of that from the current process.
In standard hypothesis testing notation, you seek to reject

H0:
µnew

µcurrent
≥ 1.10

in favor of

HA:
µnew

µcurrent
< 1.10

This is described graphically inFigure 57.8. Mean ratios below 100% are better
levels for the new process; a ratio of 100% indicates absolute equivalence; ratios of
100–110% are “tolerably” worse; and ratios exceeding 110% are appreciably worse.

100% 110%

not appreciably worse (HA) appreciably worse (H0) 

(tolerably worse)(better)

µnew/µcurrent

Figure 57.8. Hypotheses for the Pollutant Study

An appropriate test for this situation is the common two-groupt test on log-
transformed data. The hypotheses become

H0 : log (µnew)− log (µcurrent) ≥ log(1.10)
HA : log (µnew)− log (µcurrent) < log(1.10)

Measurements of the pollutant level will be taken using laboratory models of the two
processes and will be treated as independent lognormal observations with a coeffi-
cient of variation (σ/µ) between 0.5 and 0.6 for both processes. You will end up with
300 measurements for the current process and 180 for the new one. It is important to
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avoid a Type 1 error here, so you set the Type 1 error rate to 0.01. Your theoretical
work suggests that the new process will actually reduce the pollutant by about 10%
(to 90% of current), but you need to compute and graph the power of the study if the
new levels are actually between 70% and 120% of current levels.

Implement the sample size analysis using the TWOSAMPLEMEANS statement in
PROC POWER with the TEST=RATIO option, Indicate power as the result param-
eter by specifying the POWER= option with a missing value (.). Specify a series
of scenarios for the mean ratio between 0.7 and 1.2 using the MEANRATIO= op-
tion. Use the NULLRATIO= option to specify the null mean ratio of 1.10. Specify
SIDES=L to indicate a 1-sided test with the alternative hypothesis stating that the
mean ratio islower than the null value. Specify the significance level, scenarios for
the coefficient of variation, and the group sample sizes using the ALPHA=, CV=,
and GROUPNS= options. Generate a plot of power versus mean ratio by specifying
the PLOT statement with X=EFFECT to request a plot with mean ratio on the x-
axis. (The result parameter, here power, is always plotted on the other axis.) Use the
STEP= option in the PLOT statement to specify an interval of 0.05 between computed
points in the plot.

The following statements perform the desired analysis.

proc power;
twosamplemeans test=ratio

meanratio = 0.7 to 1.2 by 0.1
nullratio = 1.10
sides = L
alpha = 0.01
cv = 0.5 0.6
groupns = (300 180)
power = .;

plot x=effect step=0.05;
run;

Note the use of SIDES=L, which forces computations for cases that need a rejec-
tion region that is opposite to the one providing the most one-tailed power; in this
case, it is the lower tail. Such cases will show power that is less than the pre-
scribed Type 1 error rate. The default option DIST=LOGNORMAL specifies the
assumption of lognormally distributed data. The default MIN= and MAX= options
in the plot statement specify an x-axis range identical to the effect size range in the
TWOSAMPLEMEANS statement (mean ratios between 0.7 and 1.2).

See the output inOutput 57.4.1andOutput 57.4.2.
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Output 57.4.1. Power for Noninferiority Test of Ratio

The POWER Procedure
Two-sample t Test for Mean Ratio

Fixed Scenario Elements

Distribution Lognormal
Method Exact
Number of Sides L
Null Geometric Mean Ratio 1.1
Alpha 0.01
Group 1 Sample Size 300
Group 2 Sample Size 180

Computed Power

Geo
Mean

Index Ratio CV Power

1 0.7 0.5 >.999
2 0.7 0.6 >.999
3 0.8 0.5 >.999
4 0.8 0.6 >.999
5 0.9 0.5 0.985
6 0.9 0.6 0.933
7 1.0 0.5 0.424
8 1.0 0.6 0.306
9 1.1 0.5 0.010

10 1.1 0.6 0.010
11 1.2 0.5 <.001
12 1.2 0.6 <.001
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Output 57.4.2. Plot of Power versus Mean Ratio for Noninferiority Test

The Computed Power table inOutput 57.4.1shows that power exceeds 0.90 if the true
mean ratio is 90% or less, as surmised. But power is unacceptably low (0.31–0.42)
if the processes happen to be truly equivalent. Note that the power is identical to the
alpha level (0.01) if the true mean ratio is 1.10 and below 0.01 if the true mean ratio is
appreciably worse (> 110%). InOutput 57.4.2, the line style identifies the coefficient
of variation. The plotting symbols identify locations of actual computed powers; the
curves are linear interpolations of these points.

Example 57.5. Multiple Regression and Correlation

You are working with a team of preventive cardiologists investigating whether el-
evated serum homocysteine levels are linked to atherosclerosis (plaque buildup in
coronary arteries). The planned analysis is an ordinary least squares regression to
assess the relationship between total homocysteine level (tHcy) and a plaque burden
index (PBI), adjusting for six other variables: age, gender, plasma levels of folate, vi-
taminsB6 andB12, and a serum cholesterol index. You will regress PBI on tHcy and
the six other predictors (plus the intercept) and use a Type IIIF test to assess whether
tHcy is a significant predictor after adjusting for the others. You wonder whether 100
subjects will provide adequate statistical power.

This is a correlational study at a single time. Subjects will be screened so that about
half will have had a heart problem. All eight variables will be measured during one
visit. Most clinicians are familiar with simple correlations between two variables, so
you decide to pose the statistical problem in terms of estimating and testing the partial
correlation betweenX1 = tHcy andY = PBI, controlling for the six other predictor
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variables (RY X1|X−1
). This greatly simplifies matters, especially the elicitation of the

conjectured effect.

You use partial regression plots like that shown inFigure 57.9to teach the team that
the partial correlation between PBI and tHcy is the correlation of two sets of resid-
uals obtained from ordinary regression models, one from regressing PBI on the six
covariates and the other from regressing tHcy on the same covariates. Thus each
subject has “expected” tHcy and PBI values based on the six covariates. The car-
diologists believe that subjects who are relatively higher than expected on tHcy will
also be relatively higher than expected on PBI. The partial correlation quantifies that
adjusted association just like a standard simple correlation does with the unadjusted
linear association between two variables.
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Figure 57.9. Partial Regression Plot

Based on previously published studies of various coronary risk factors and after view-
ing a set of scatterplots showing various correlations, the team surmises that the true
partial correlation is likely to be at least 0.35.

You want to compute the statistical power for a sample size ofN = 100, usingα
= 0.05. You also want to plot power for sample sizes between 50 and 150. Use
the MULTREG statement to compute the power and the PLOT statement to produce
the graph. Since the predictors are observed rather than fixed in advanced, and a
joint multivariate normal assumption seems tenable, use MODEL=RANDOM. The
following statements perform the power analysis:
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proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 1
partialcorr = 0.35
ntotal = 100
power = .;

plot x=n min=50 max=150;
run;

The POWER=. option identifies power as the parameter to compute. The
NFULLPREDICTORS= option specifies 7 total predictors (not including the inter-
cept), and the NTESTPREDICTORS= option indicates that 1 of those predictors is
being tested. The PARTIALCORR= and NTOTAL= options specify the partial cor-
relation and sample size, respectively. The default value for the ALPHA= option sets
the significance level to 0.05. The X=N option in the plot statement requests a plot of
sample size on the x-axis, and the MIN= and MAX= options specify the sample size
range.

Output 57.5.1shows the output, andOutput 57.5.2shows the plot.

Output 57.5.1. Power Analysis for Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

Fixed Scenario Elements

Method Exact
Model Random X
Number of Predictors in Full Model 7
Number of Test Predictors 1
Partial Correlation 0.35
Total Sample Size 100
Alpha 0.05

Computed Power

Power

0.939
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Output 57.5.2. Plot of Power versus Sample Size for Multiple Regression

For the sample sizeN = 100, the study is almost balanced with respect to Type 1 and
Type 2 error rates, withα = 0.05 andβ = 1 - 0.937 = 0.063. The study thus seems
well designed at this sample size.

Now suppose that in a follow-up meeting with the cardiologists, you discover that
their specific intent is to demonstrate that the (partial) correlation between PBI and
tHcy is greater than 0.2. You suggest changing the planned data analysis to a 1-sided
Fisher’sz test with a null correlation of 0.2. The following statements perform a
power analysis for this test:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = 100
power = .;

run;

The DIST=FISHERZ option in the ONECORR statement specifies Fisher’sz test.
The NPVARS= option specifies that 6 additional variables are adjusted for in the
partial correlation. The CORR= option specifies the conjectured correlation of 0.35,
and the NULLCORR= option indicates the null value of 0.2. The SIDES= option
specifies a 1-sided test.

Output 57.5.3shows the output.
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Output 57.5.3. Power Analysis for Fisher’s z Test

The POWER Procedure
Fisher’s z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher’s z transformation of r
Method Normal approximation
Number of Sides 1
Null Correlation 0.2
Number of Variables Partialled Out 6
Correlation 0.35
Total Sample Size 100
Nominal Alpha 0.05

Computed Power

Actual
Alpha Power

0.05 0.466

The power for Fisher’sz test is less than 50%, the decrease being mostly due to the
smaller effect size (relative to the null value). When asked for a recommendation for
a new sample size goal, you compute the required sample size to achieve a power
of 0.95 (to balance Type 1 and Type 2 errors) and 0.85 (a threshold deemed to be
minimally acceptable to the team). The following statements perform the sample
size determination:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = .
power = 0.85 0.95;

run;

The NTOTAL=. option identifies sample size as the parameter to compute, and the
POWER= option specifies the target powers.
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Output 57.5.4. Sample Size Determination for Fisher’s z Test

The POWER Procedure
Fisher’s z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher’s z transformation of r
Method Normal approximation
Number of Sides 1
Null Correlation 0.2
Number of Variables Partialled Out 6
Correlation 0.35
Nominal Alpha 0.05

Computed N Total

Nominal Actual Actual N
Index Power Alpha Power Total

1 0.85 0.05 0.850 280
2 0.95 0.05 0.950 417

The results inOutput 57.5.4reveal a required sample size of 417 to achieve a power
of 0.95 and 280 to achieve a power of 0.85.

Example 57.6. Comparing Two Survival Curves

You are consulting for a clinical research group planning a trial to compare survival
rates for proposed and standard cancer treatments. The planned data analysis is a
log-rank test to nonparametrically compare the overall survival curves for the two
treatments. Your goal is to determine an appropriate sample size to achieve a power
of 0.8 for a 2-sided test withα = 0.05 using a balanced design.

The survival curve for patients on the standard treatment is well-known to be approx-
imately exponential with a median survival time of five years. The research group
conjectures that the new proposed treatment will yield a (nonexponential) survival
curve similar to the dashed line inOutput 57.6.1. Patients will be accrued uniformly
over two years and then followed for an additional three years past the accrual period.
Some loss to follow-up is expected, with roughly exponential rates that would result
in about 50% loss with the standard treatment within 10 years. The loss to follow-up
with the proposed treatment is more difficult to predict, but 50% loss would expected
to occur sometime between years 5 and 20.
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Output 57.6.1. Survival Curves

Use the TWOSAMPLESURVIVAL statement with the TEST=LOGRANK option to
compute the required sample size for the log-rank test. The following statements
perform the analysis:

proc power;
twosamplesurvival test=logrank

curve("Standard") = 5 : 0.5
curve("Proposed") = (1 to 5 by 1):(0.95 0.9 0.75 0.7 0.6)
groupsurvival = "Standard" | "Proposed"
accrualtime = 2
followuptime = 3
groupmedlosstimes = 10 | 20 5
power = 0.8
npergroup = .;

run;

The CURVE= option defines the two survival curves. The “Standard” curve has only
one point, specifying an exponential form with a survival probability of 0.5 at year
5. The “Proposed” curve is a piecewise linear curve defined by the five points shown
in Output 57.6.1. The GROUPSURVIVAL= option assigns the survival curves to the
two groups, and the ACCRUALTIME= and FOLLOWUPTIME= options specify the
accrual and follow-up times. The GROUPMEDLOSSTIMES= option specifies the
years at which 50% loss is expected to occur. The POWER= option specifies the
target power, and the NPERGROUP=. option identifies sample size per group as the
parameter to compute. Default values for the SIDES= and ALPHA= options specify
a 2-sided test withα = 0.05.
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Output 57.6.2shows the results.

Output 57.6.2. Sample Size Determination for Log-Rank Test

The POWER Procedure
Log-Rank Test for Two Survival Curves

Fixed Scenario Elements

Method Lakatos normal approximation
Accrual Time 2
Follow-up Time 3
Group 1 Survival Curve Standard
Form of Survival Curve 1 Exponential
Group 2 Survival Curve Proposed
Form of Survival Curve 2 Piecewise Linear
Group 1 Median Loss Time 10
Nominal Power 0.8
Number of Sides 2
Number of Time Sub-Intervals 12
Alpha 0.05

Computed N Per Group

Median
Loss Actual N Per

Index Time 2 Power Group

1 20 0.800 228
2 5 0.801 234

The required sample size per group to achieve a power of 0.8 is 228 if the median
loss time is 20 years for the proposed treatment. Only six more patients are required
in each group if the median loss time is as short as five years.

Example 57.7. Confidence Interval Precision

An investment firm has hired you to help plan a study to estimate the success of a
new investment strategy called “IntuiVest.” The study involves complex simulations
of market conditions over time, and it tracks the balance of a hypothetical broker-
age account starting with $50,000. Each simulation is very expensive in terms of
computing time. You are asked to determine an appropriate number of simulations to
estimate the average change in the account balance at the end of three years. The goal
is to have a 95% chance of obtaining a 90% confidence interval whose half-width is
at most $1,000. That is, the firm wants to have a 95% chance of being able to cor-
rectly claim at the end of the study that “Our research shows with 90% confidence
that IntuiVest yields a profit of $X +/- $1,000 at the end of three years on an initial
investment of $50,000 (under simulated market conditions).”

The probability of achieving the desired precision (that is, a small interval width)
can be calculated either unconditionally or conditionally given that the true mean is
captured by the interval. You decide to use the conditional form, considering two of
its advantages:
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• The conditional probability is usually lower than the unconditional probabil-
ity for the same sample size, meaning that the conditional form is generally
conservative.

• The overall probability of achieving the desired precisionand capturing the
true mean is easily computed as the product of the half-width probability and
the confidence level. In this case, the overall probability is0.95×0.9 = 0.855.

Based on some initial simulations, you expect a standard deviation between $25,000
and $45,000 for the ending account balance. You will consider both of these values
in the sample size analysis.

As mentioned in the“Overview of Power Concepts”section on page 3488, an analy-
sis of confidence interval precision is analogous to a traditional power analysis, with
“CI Half-Width” taking the place of effect size and “Prob(Width)” taking the place of
power. In this example, the target CI Half-Width is 1000, and the desired Prob(Width)
is 0.95.

In addition to computing sample sizes for a half-width of $1,000, you are asked to
plot the required number of simulations for a range of half-widths between $500 and
$2,000. Use the ONESAMPLEMEANS statement with the CI=T option to imple-
ment the sample size determination. The following statements perform the analysis:

proc power;
onesamplemeans ci=t

alpha = 0.1
halfwidth = 1000
stddev = 25000 45000
probwidth = 0.95
ntotal = .;

plot x=effect min=500 max=2000;
run;

The NTOTAL=. option identifies sample size as the parameter to compute.
The ALPHA=0.1 option specifies a confidence level of1 − α = 0.9. The
HALFWIDTH= option specifies the target half-width, and the STDDEV= option
specifies the conjectured standard deviation values. The PROBWIDTH= option spec-
ifies the desired probability of achieving the target precision. The default value
PROBTYPE=CONDITIONAL specifies that this probability is conditional on the
true mean being captured by the interval. The default of SIDES=2 indicates a 2-sided
interval.

Output 57.7.1shows the output, andOutput 57.7.2shows the plot.
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Output 57.7.1. Sample Size Determination for Confidence Interval Precision

The POWER Procedure
Confidence Interval for Mean

Fixed Scenario Elements

Distribution Normal
Method Exact
Alpha 0.1
CI Half-Width 1000
Nominal Prob(Width) 0.95
Number of Sides 2
Prob Type Conditional

Computed N Total

Actual
Std Prob N

Index Dev (Width) Total

1 25000 0.951 1788
2 45000 0.950 5652

Output 57.7.2. Plot of Sample Size vs. Confidence Interval Half-Width

The number of simulations required in order to have a 95% chance of obtaining a
half-width of at most 1000 is between 1788 and 5652, depending on the standard
deviation. The plot reveals that over 20,000 simulations would be required for a half-
width of 500 assuming the higher standard deviation.
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Example 57.8. Customizing Plots

The example in this section demonstrates various ways you can modify and enhance
plots:

• assigning analysis parameters to axes

• fine-tuning a sample size axis

• adding reference lines

• linking plot features to analysis parameters

• choosing key (legend) styles

• modifying symbol locations

The example plots are all based on a sample size analysis for a two-samplet test of
group mean difference. You start by computing the sample size required to achieve a
power of 0.9 using a 2-sided test withα = 0.05, assuming the first mean is 12, the
second mean is either 15 or 18, and the standard deviation is either 7 or 9.

Use the TWOSAMPLEMEANS statement with the TEST=DIFF option to compute
the required sample sizes. Indicate total sample size as the result parameter by sup-
plying a missing value (.) with the NTOTAL= option. Use the GROUPMEANS=,
STDDEV=, and POWER= option to specify values of the other parameters. The
following statements perform the sample size computations.

proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

run;

Default values for the NULLDIFF=, SIDES=, GROUPWEIGHTS=, and DIST= op-
tions specify a null mean difference of 0, 2-sided test, balanced design, and assump-
tion of normally distributed data.

Output 57.8.1shows that the required sample size ranges from 60 to 382 depending
on the unknown standard deviation and second mean.
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Output 57.8.1. Computed Sample Sizes

The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Group 1 Mean 12
Nominal Power 0.9
Number of Sides 2
Null Difference 0
Alpha 0.05
Group 1 Weight 1
Group 2 Weight 1

Computed N Total

Std Actual N
Index Mean2 Dev Power Total

1 15 7 0.902 232
2 15 9 0.901 382
3 18 7 0.904 60
4 18 9 0.904 98

Assigning Analysis Parameters to Axes

Use the PLOT statement to produce plots for all power and sample size analyses
in PROC POWER. For the sample size analysis described at the beginning of this
example, suppose you want to plot the required sample size on the y-axis against a
range of powers between 0.5 and 0.95 on the x-axis. The X= and Y= options specify
which parameter to plot against the result, and which axis to assign to this parameter.
You can use either the X= or Y= option, but not both. Use the X=POWER option
in PLOT statement to request a plot with power on the x-axis. The result parameter,
here total sample size, is always plotted on the other axis. Use the MIN= and MAX=
options to specify the range of the axis indicated with either the X= or the Y= option.
Here, specify MIN=0.5 and MAX=0.95 to specify the power range. The following
statements produce the plot.

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

plot x=power min=0.5 max=0.95;
run;

Note that the value (0.9) of the POWER= option in the TWOSAMPLEMEANS state-
ment is only a placeholder when the PLOTONLY option is used and both the MIN=
and MAX= options are used, because the values of the MIN= and MAX= options
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override the value of 0.9. But the POWER= option itself is still required in the
TWOSAMPLEMEANS statement, to provide a complete specification of the sam-
ple size analysis.

The resulting plot is shown inOutput 57.8.2.

Output 57.8.2. Plot of Sample Size versus Power

The line style identifies the group means scenario, and the plotting symbol identifies
the standard deviation scenario. The locations of plotting symbols indicate computed
sample sizes; the curves are linear interpolations of these points. By default, each
curve consists of approximately 20 computed points (sometimes slightly more or
less, depending on the analysis).

If you would rather plot power on the y-axis versus sample size on the x-axis, you
have two general strategies to choose from. One strategy is to use the Y= option
instead of the X= option in the PLOT statement:

plot y=power min=0.5 max=0.95;
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Output 57.8.3. Plot of Power versus Sample Size using First Strategy

Note that the resulting plot (Output 57.8.3) is essentially a mirror image ofOutput
57.8.2. The axis ranges are set such that each curve inOutput 57.8.3contains similar
values of Y instead of X. Each plotted point represents the computed value of the
x-axis at the input value of the y-axis.

A second strategy for plotting power versus sample size (when originally solving for
sample size) is to invert the analysis and base the plot on computed power for a given
range of sample sizes. This strategy works well for monotonic power curves (as is
the case for thet test and most other continuous analyses). It is advantageous in the
sense of preserving the traditional role of the y-axis as the computed parameter. A
common way to implement this strategy is

• Determine the range of sample sizes sufficient to cover at the desired power
range for all curves (where each “curve” represents a scenario for standard
deviation and second group mean).

• Use this range for the x-axis of a plot.

To determine the required sample sizes for target powers of 0.5 and 0.95, change the
values in the POWER= option to reflect this range:



3570 � Chapter 57. The POWER Procedure

proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.5 0.95
ntotal = .;

run;

Output 57.8.4reveals that a sample size range of 24 to 470 is approximately suffi-
cient to cover the desired power range of 0.5 to 0.95 for all curves (“approximately”
because the actual power at the rounded sample size of 24 is slightly higher than the
nominal power of 0.5).

Output 57.8.4. Computed Sample Sizes

The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Group 1 Mean 12
Number of Sides 2
Null Difference 0
Alpha 0.05
Group 1 Weight 1
Group 2 Weight 1

Computed N Total

Std Nominal Actual N
Index Mean2 Dev Power Power Total

1 15 7 0.50 0.502 86
2 15 7 0.95 0.951 286
3 15 9 0.50 0.505 142
4 15 9 0.95 0.950 470
5 18 7 0.50 0.519 24
6 18 7 0.95 0.953 74
7 18 9 0.50 0.516 38
8 18 9 0.95 0.952 120

To plot power on the y-axis for sample sizes between 20 and 500, use the X=N option
in the PLOT statement with MIN=20 and MAX=500:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500;
run;
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Each curve in the resulting plot inOutput 57.8.5covers at least a power range of 0.5
to 0.95.

Output 57.8.5. Plot of Power versus Sample Size Using Second Strategy

Finally, suppose you want to produce a plot of sample size versus effect size for a
power of 0.9. In this case, the “effect size” is defined to be the mean difference. You
need to reparameterize the analysis by using the MEANDIFF= option instead of the
GROUPMEANS= option to produce a plot, since each plot axis must be represented
by a scalar parameter. Use the X=EFFECT option in the PLOT statement to assign
the mean difference to the x-axis. The following statements produce a plot of required
sample size to detect mean differences between 3 and 6.

proc power plotonly;
twosamplemeans test=diff

meandiff = 3 6
stddev = 7 9
power = 0.9
ntotal = .;

plot x=effect min=3 max=6;
run;

The resulting plotOutput 57.8.6shows how the required sample size decreases with
increasing mean difference.
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Output 57.8.6. Plot of Sample Size versus Mean Difference

Fine-Tuning a Sample Size Axis

Consider the following plot request for a sample size analysis similar to the one in
Output 57.8.1but with only a single scenario, and with unbalanced sample size allo-
cation of 2:1.

proc power plotonly;
ods output plotcontent=PlotData;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;

The MIN=, MAX=, and NPOINTS= options in the PLOT statement request a plot
with 20 points between 20 and 50. But the resulting plot (Output 57.8.7) appears to
have only 11 points, and they range from 18 to 48.
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Output 57.8.7. Plot with Overlapping Points

The reason that this plot has fewer points than usual is due to the rounding of sample
sizes. If you do not use the NFRACTIONAL option in the analysis statement (here,
the TWOSAMPLEMEANS statement), then the set of sample size points determined
by the MIN=, MAX=, NPOINTS=, and STEP= options in the PLOT statement may
be rounded to satisfy the allocation weights. In this case, they are rounded down to
the nearest multiples of 3 (the sum of the weights), and many of the points overlap. To
see the overlap, you can print theNominalNTotal (unadjusted) andNTotal (rounded)
variables in thePlotContent ODS object (here saved to a data set calledPlotData):

proc print data=PlotData;
var NominalNTotal NTotal;

run;

The output is shown inOutput 57.8.8.
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Output 57.8.8. Sample Sizes

Nominal
Obs NTotal NTotal

1 18.0 18
2 19.6 18
3 21.2 21
4 22.7 21
5 24.3 24
6 25.9 24
7 27.5 27
8 29.1 27
9 30.6 30

10 32.2 30
11 33.8 33
12 35.4 33
13 36.9 36
14 38.5 36
15 40.1 39
16 41.7 39
17 43.3 42
18 44.8 42
19 46.4 45
20 48.0 48

Besides overlapping of sample size points, another peculiarity that might occur with-
out the NFRACTIONAL option is unequal spacing; for example, in the plot inOutput
57.8.9, created with the following statements.

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=5;
run;
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Output 57.8.9. Plot with Unequally Spaced Points

If you want to guarantee evenly spaced, nonoverlapping sample size points in your
plots, you can either (1) use the NFRACTIONAL option in the analysis statement
preceding the PLOT statement, or (2) use the STEP= option and provide values for
the MIN=, MAX=, and STEP= options in the PLOT statement that are multiples of
the sum of the allocation weights. Note that this sum is simply 1 for one-sample
and paired designs and 2 for balanced two-sample designs. So, any integer step
value works well for one-sample and paired designs, and any even step value works
well for balanced two-sample designs. Both of these strategies will avoid rounding
adjustments.

The following statements implement the first strategy to create the plot inOutput
57.8.10, using the NFRACTIONAL option in the TWOSAMPLEMEANS statement.

proc power plotonly;
twosamplemeans test=diff

nfractional
groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;
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Output 57.8.10. Plot with Fractional Sample Sizes

To implement the second strategy, use multiples of 3 for the STEP=, MIN=, and
MAX= options in the PLOT statement (because the sum of the allocation weights is
2+1 = 3). The following statements use STEP=3, MIN=18, and MAX=48 to create
a plot that looks identical toOutput 57.8.7but suffers no overlapping of points.

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=18 max=48 step=3;
run;

Adding Reference Lines

Suppose you want to add reference lines to highlight power=0.8 and power=0.9 on
the plot inOutput 57.8.5. You can add simple reference lines using the YOPTS=
option and REF= sub-option in the PLOT statement to produceOutput 57.8.11, using
the following statements.

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
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stddev = 7 9
power = .
ntotal = 100;

plot x=n min=20 max=500
yopts=(ref=0.8 0.9);

run;

Output 57.8.11. Plot with Simple Reference Lines on Y-Axis

Or, you can specify CROSSREF=YES to add reference lines that intersect each curve
and cross over to the other axis:

plot x=n min=20 max=500
yopts=(ref=0.8 0.9 crossref=yes);

The resulting plot is shown inOutput 57.8.12.
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Output 57.8.12. Plot with CROSSREF=YES Style Reference Lines from Y-Axis

You can also add reference lines for the x-axis by using the XOPTS= option instead
of the YOPTS= option. For example, the following plot statement producesOutput
57.8.13, which has crossing reference lines highlighting the sample size of 100.

plot x=n min=20 max=500
xopts=(ref=100 crossref=yes);
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Output 57.8.13. Plot with CROSSREF=YES Style Reference Lines from X-Axis

Linking Plot Features to Analysis Parameters

You can use the VARY option in the PLOT statement to specify which of the follow-
ing features you wish to associate with analysis parameters.

• line style

• plotting symbol

• color

• panel

You can specify mappings between each of these features and one or more analysis
parameters, or you can simply choose a subset of these features to use (and rely on
default settings to associate these features with multiple-valued analysis parameters).

Suppose you supplement the sample size analysis inOutput 57.8.5to include three
values of alpha, using the following statements.
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proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
alpha = 0.01 0.025 0.1
power = .
ntotal = 100;

plot x=n min=20 max=500;
run;

The defaults for the VARY option in the PLOT statement specify line style varying
by the ALPHA= parameter, plotting symbol varying by the GROUPMEANS= pa-
rameter, panel varying by the STDDEV= parameter, and color remaining constant.
The resulting plot, consisting of two panels, is shown inOutput 57.8.14andOutput
57.8.15.

Output 57.8.14. Plot with Default VARY Settings: Panel 1 of 2
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Output 57.8.15. Plot with Default VARY Settings: Panel 2 of 2

Suppose you want to produce a plot with only one panel that varies color in addition
to line style and plotting symbol. Include the LINESTYLE, SYMBOL, and COLOR
keywords in the VARY option in the PLOT statement, as follows, to produce the plot
in Output 57.8.16.

plot x=n min=20 max=500
vary (linestyle, symbol, color);
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Output 57.8.16. Plot with Varying Color Instead of Panel

Finally, suppose you want to specify which features are usedandwhich analysis pa-
rameters they are linked to. The following PLOT statement produces a two-panel plot
(shown inOutput 57.8.17andOutput 57.8.18) in which line style varies by standard
deviation, plotting symbol varies by both alpha and sides, and panel varies by means.

plot x=n min=20 max=500
vary (linestyle by stddev,

symbol by alpha sides,
panel by groupmeans);
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Output 57.8.17. Plot with Features Explicitly Linked to Parameters: Panel 1 of 2

Output 57.8.18. Plot with Features Explicitly Linked to Parameters: Panel 2 of 2
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Choosing Key (Legend) Styles

The default style for the key (or “legend”) is one that displays the association between
levels of features and levels of analysis parameters, located below the x-axis. For
example,Output 57.8.5demonstrates this style of key.

You can reproduceOutput 57.8.5with the same key but a different location, inside the
plotting region, using the POS=INSET option within the KEY=BYFEATURE option
in the PLOT statement. The following statements product the plot inOutput 57.8.19.

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500
key = byfeature(pos=inset);

run;

Output 57.8.19. Plot with a By-Feature Key Inside the Plotting Region

Alternatively, you can specify a key that identifies each individual curve separately
by number using the KEY=BYCURVE option in the PLOT statement:

plot x=n min=20 max=500
key = bycurve;



Example 57.8. Customizing Plots � 3585

The resulting plot is shown inOutput 57.8.20.

Output 57.8.20. Plot with a Numbered By-Curve Key

Use the NUMBERS=OFF option within the KEY=BYCURVE option to specify a
nonnumbered key that identifies curves with samples of line styles, symbols, and
colors:

plot x=n min=20 max=500
key = bycurve(numbers=off pos=inset);

The POS=INSET suboption places the key within the plotting region. The resulting
plot is shown inOutput 57.8.21.
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Output 57.8.21. Plot with a Nonnumbered By-Curve Key

Finally, you can attach labels directly to curves with the KEY=ONCURVES option.
The following plot statement producesOutput 57.8.22.

plot x=n min=20 max=500
key = oncurves;
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Output 57.8.22. Plot with Directly Labeled Curves

Modifying Symbol Locations

The default locations for plotting symbols are the points computed directly from the
power and sample size algorithms. For example,Output 57.8.5shows plotting sym-
bols corresponding to computed points. The curves connecting these points are inter-
polated (as indicated by the INTERPOL= option in the PLOT statement).

You can modify the locations of plotting symbols using the MARKERS= option in
the plot statement. The MARKERS=ANALYSIS option places plotting symbols at
locations corresponding to the input specified in the analysis statement preceding the
PLOT statement. You may prefer this as an alternative to using reference lines to
highlight specific points. For example, you can reproduceOutput 57.8.5, but with
the plotting symbols located at the sample sizes shown inOutput 57.8.1, using the
following statements.

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 232 382 60 98;

plot x=n min=20 max=500
markers=analysis;

run;

The analysis statement here is the TWOSAMPLEMEANS statement. The
MARKERS=ANALYSIS option in the PLOT statement causes the plotting
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symbols to occur at sample sizes specified by the NTOTAL= option in the
TWOSAMPLEMEANS statement: 232, 382, 60, and 98. The resulting plot is shown
in Output 57.8.23.

Output 57.8.23. Plot with MARKERS=ANALYSIS

You can also use the MARKERS=NICE option to align symbols with the tick marks
on one of the axes (the x-axis when the X= option is used, or the y-axis when the Y=
is used):

plot x=n min=20 max=500
markers=nice;

The plot created by this PLOT statement is shown inOutput 57.8.24.
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Output 57.8.24. Plot with MARKERS=NICE

Note that the plotting symbols are aligned with the tick marks on the x-axis because
the X= option is specified.
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Chapter 58
The PRINCOMP Procedure
Overview

The PRINCOMP procedure performs principal component analysis. As input you
can use raw data, a correlation matrix, a covariance matrix, or a sums of squares and
crossproducts (SSCP) matrix. You can create output data sets containing eigenvalues,
eigenvectors, and standardized or unstandardized principal component scores.

Principal component analysis is a multivariate technique for examining relationships
among several quantitative variables. The choice between using factor analysis and
principal component analysis depends in part upon your research objectives. You
should use the PRINCOMP procedure if you are interested in summarizing data and
detecting linear relationships. Plots of principal components are especially valuable
tools in exploratory data analysis. You can use principal components to reduce the
number of variables in regression, clustering, and so on. SeeChapter 5, “Introduction
to Multivariate Procedures,”for a detailed comparison of the PRINCOMP and
FACTOR procedures.

Experimental graphics are now available with the PRINCOMP procedure. For more
information, see the“ODS Graphics”section on page 3613.

Principal component analysis was originated by Pearson (1901) and later developed
by Hotelling (1933). The application of principal components is discussed by Rao
(1964), Cooley and Lohnes (1971), and Gnanadesikan (1977). Excellent statistical
treatments of principal components are found in Kshirsagar (1972), Morrison (1976),
and Mardia, Kent, and Bibby (1979).

Given a data set withp numeric variables, you can computep principal components.
Each principal component is a linear combination of the original variables, with coef-
ficients equal to the eigenvectors of the correlation or covariance matrix. The eigen-
vectors are customarily taken with unit length. The principal components are sorted
by descending order of the eigenvalues, which are equal to the variances of the com-
ponents.

Principal components have a variety of useful properties (Rao 1964; Kshirsagar
1972):

• The eigenvectors are orthogonal, so the principal components represent jointly
perpendicular directions through the space of the original variables.

• The principal component scores are jointly uncorrelated. Note that this prop-
erty is quite distinct from the previous one.

• The first principal component has the largest variance of any unit-length linear
combination of the observed variables. Thejth principal component has the
largest variance of any unit-length linear combination orthogonal to the first
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j − 1 principal components. The last principal component has the smallest
variance of any linear combination of the original variables.

• The scores on the firstj principal components have the highest possible gen-
eralized variance of any set of unit-length linear combinations of the original
variables.

• The firstj principal components provide a least-squares solution to the model

Y = XB + E

whereY is ann× p matrix of the centered observed variables;X is then× j
matrix of scores on the firstj principal components;B is the j × p matrix
of eigenvectors;E is ann × p matrix of residuals; and you want to minimize
trace(E′E), the sum of all the squared elements inE. In other words, the
first j principal components are the best linear predictors of the original vari-
ables among all possible sets ofj variables, although any nonsingular linear
transformation of the firstj principal components would provide equally good
prediction. The same result is obtained if you want to minimize the determinant
or the Euclidean (Schur, Frobenious) norm ofE′E rather than the trace.

• In geometric terms, thej-dimensional linear subspace spanned by the firstj
principal components provides the best possible fit to the data points as mea-
sured by the sum of squared perpendicular distances from each data point to
the subspace. This is in contrast to the geometric interpretation of least squares
regression, which minimizes the sum of squared vertical distances. For ex-
ample, suppose you have two variables. Then, the first principal component
minimizes the sum of squared perpendicular distances from the points to the
first principal axis. This is in contrast to least squares, which would minimize
the sum of squared vertical distances from the points to the fitted line.

Principal component analysis can also be used for exploring polynomial relationships
and for multivariate outlier detection (Gnanadesikan 1977), and it is related to fac-
tor analysis, correspondence analysis, allometry, and biased regression techniques
(Mardia, Kent, and Bibby 1979).

Getting Started

The following example uses the PRINCOMP procedure to analyze job performance.
Police officers were rated by their supervisors in 14 categories as part of standard
police departmental administrative procedure.

The following statements create theJobratings data set:

options validvarname=any;

data Jobratings;
input (’Communication Skills’n

’Problem Solving’n
’Learning Ability’n
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’Judgment Under Pressure’n
’Observational Skills’n
’Willingness to Confront Problems’n
’Interest in People’n
’Interpersonal Sensitivity’n
’Desire for Self-Improvement’n
’Appearance’n
’Dependability’n
’Physical Ability’n
’Integrity’n
’Overall Rating’n) (1.);

datalines;
26838853879867
74758876857667
56757863775875
67869777988997

...

99899899899899
76656399567486
;

The data setJobratings contains 14 variables. Each variable contains the job ratings
using a scale measurement from 1 to 10 (1=fail to comply, 10=exceptional). The
last variableOverall Rating contains a score as an overall index on how each officer
performs.

The following statement requests a principal component analysis on theJobratings
data set and outputs the scores to theScores data set (OUT=Scores). Note that
variableOverall Rating is excluded from the analysis.

proc princomp data=Jobratings(drop=’Overall Rating’n) out=scores;
run;

Figure 58.1to Figure 58.3display the PROC PRINCOMP output, beginning with
simple statistics followed by the correlation matrix. The PROC PRINCOMP state-
ment requests by default principal components computed from the correlation matrix,
so the total variance is equal to the number of variables, 13. In this example, it would
also be reasonable to use the COV option, which would cause variables with a high
variance (such asDependability) to have more influence on the results than variables
with a low variance (such asLearning Ability). If you used the COV option, scores
would be computed from centered rather than standardized variables.
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The PRINCOMP Procedure

Observations 103
Variables 13

Simple Statistics

Judgment
Communication Problem Learning Under Observational

Skills Solving Ability Pressure Skills

Mean 6.650485437 6.631067961 6.990291262 6.737864078 6.932038835
StD 1.764068036 1.590352602 1.339411238 1.731830976 1.761584269

Simple Statistics

Willingness
to Confront Interest Interpersonal Desire for

Problems in People Sensitivity Self-Improvement Appearance

Mean 7.291262136 6.708737864 6.621359223 6.572815534 7.000000000
StD 1.525155524 1.892353385 1.760773587 1.729796212 1.798692335

Simple Statistics

Physical
Dependability Ability Integrity

Mean 6.825242718 7.203883495 7.213592233
StD 1.917040123 1.555251845 1.845240223

Figure 58.1. Number of Observations and Simple Statistics from the PRINCOMP
Procedure
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Correlation Matrix

Judgment
Communication Problem Learning Under

Skills Solving Ability Pressure

Communication Skills 1.0000 0.6280 0.5546 0.5538
Problem Solving 0.6280 1.0000 0.5690 0.6195
Learning Ability 0.5546 0.5690 1.0000 0.4892
Judgment Under Pressure 0.5538 0.6195 0.4892 1.0000
Observational Skills 0.5381 0.4284 0.6230 0.3733
Willingness to Confront Problems 0.5265 0.5015 0.5245 0.4004
Interest in People 0.4391 0.3972 0.2735 0.6226
Interpersonal Sensitivity 0.5030 0.4398 0.1855 0.6134
Desire for Self-Improvement 0.5642 0.4090 0.5737 0.4826
Appearance 0.4913 0.3873 0.3988 0.2266
Dependability 0.5471 0.4546 0.5110 0.5471
Physical Ability 0.2192 0.3201 0.2269 0.3476
Integrity 0.5081 0.3846 0.3142 0.5883

Correlation Matrix

Willingness Interest
Observational to Confront in

Skills Problems People

Communication Skills 0.5381 0.5265 0.4391
Problem Solving 0.4284 0.5015 0.3972
Learning Ability 0.6230 0.5245 0.2735
Judgment Under Pressure 0.3733 0.4004 0.6226
Observational Skills 1.0000 0.7300 0.2616
Willingness to Confront Problems 0.7300 1.0000 0.2233
Interest in People 0.2616 0.2233 1.0000
Interpersonal Sensitivity 0.1655 0.1291 0.8051
Desire for Self-Improvement 0.5985 0.5307 0.4857
Appearance 0.4177 0.4825 0.2679
Dependability 0.5626 0.4870 0.6074
Physical Ability 0.4274 0.4872 0.3768
Integrity 0.3906 0.3260 0.7452

Figure 58.2. Correlation Matrix from the PRINCOMP Procedure
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Correlation Matrix

Interpersonal Desire for
Sensitivity Self-Improvement Appearance

Communication Skills 0.5030 0.5642 0.4913
Problem Solving 0.4398 0.4090 0.3873
Learning Ability 0.1855 0.5737 0.3988
Judgment Under Pressure 0.6134 0.4826 0.2266
Observational Skills 0.1655 0.5985 0.4177
Willingness to Confront Problems 0.1291 0.5307 0.4825
Interest in People 0.8051 0.4857 0.2679
Interpersonal Sensitivity 1.0000 0.3713 0.2600
Desire for Self-Improvement 0.3713 1.0000 0.4474
Appearance 0.2600 0.4474 1.0000
Dependability 0.5408 0.5981 0.5089
Physical Ability 0.2182 0.3752 0.3820
Integrity 0.6920 0.5664 0.4135

Correlation Matrix

Physical
Dependability Ability Integrity

Communication Skills 0.5471 0.2192 0.5081
Problem Solving 0.4546 0.3201 0.3846
Learning Ability 0.5110 0.2269 0.3142
Judgment Under Pressure 0.5471 0.3476 0.5883
Observational Skills 0.5626 0.4274 0.3906
Willingness to Confront Problems 0.4870 0.4872 0.3260
Interest in People 0.6074 0.3768 0.7452
Interpersonal Sensitivity 0.5408 0.2182 0.6920
Desire for Self-Improvement 0.5981 0.3752 0.5664
Appearance 0.5089 0.3820 0.4135
Dependability 1.0000 0.4461 0.6536
Physical Ability 0.4461 1.0000 0.3810
Integrity 0.6536 0.3810 1.0000

Figure 58.3. (Continued) Correlation Matrix from the PRINCOMP Procedure

Figure 58.4displays the eigenvalues. The first principal component explains about
50% of the total variance, the second principal component explains about 13.6%, and
the third principal component explains about 7.7%. Note that the eigenvalues sum to
the total variance. The eigenvalues indicate that three to five components provide a
good summary of the data, with three components accounting for about 71.7% of the
total variance and five components explaining about 82.7%. Subsequent components
contribute less than 5% each.
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Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 6.54740242 4.77468744 0.5036 0.5036
2 1.77271499 0.76747933 0.1364 0.6400
3 1.00523565 0.26209665 0.0773 0.7173
4 0.74313901 0.06479499 0.0572 0.7745
5 0.67834402 0.22696368 0.0522 0.8267
6 0.45138034 0.06922167 0.0347 0.8614
7 0.38215866 0.08432613 0.0294 0.8908
8 0.29783254 0.02340663 0.0229 0.9137
9 0.27442591 0.01208809 0.0211 0.9348

10 0.26233782 0.01778332 0.0202 0.9550
11 0.24455450 0.04677622 0.0188 0.9738
12 0.19777828 0.05508241 0.0152 0.9890
13 0.14269586 0.0110 1.0000

Figure 58.4. Eigenvalues from the PRINCOMP Procedure

Figure 58.5andFigure 58.6display the eigenvectors. From the eigenvectors matrix,
you can represent the first principal componentPrin1 as a linear combination of the
original variables

Prin1 = 0.303548× (Communication Skills)
+0.278034× (Problem Solving)
+0.266521× (Learning Ability)
.

.

.

+0.298246× (Integrity)

and, similarly, the second principal componentPrin2 is

Prin2 = 0.052039× (Communication Skills)
+0.057046× (Problem Solving)
+0.288152× (Learning Ability)
.

.

.

−0.301812× (Integrity)

where the variables are standardized.
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The PRINCOMP Procedure

Eigenvectors

Prin1 Prin2 Prin3 Prin4

Communication Skills 0.303548 0.052039 -.329181 -.227039
Problem Solving 0.278034 0.057046 -.400112 0.300476
Learning Ability 0.266521 0.288152 -.354591 -.020735
Judgment Under Pressure 0.294376 -.199458 -.255164 0.397306
Observational Skills 0.276641 0.366979 0.065959 0.035711
Willingness to Confront Problems 0.267580 0.392989 0.098723 0.184409
Interest in People 0.278060 -.432916 0.118113 0.046047
Interpersonal Sensitivity 0.253814 -.495662 -.064547 -.060000
Desire for Self-Improvement 0.299833 0.099077 0.061097 -.211279
Appearance 0.237358 0.190065 0.248353 -.544587
Dependability 0.319480 -.049742 0.169476 -.156070
Physical Ability 0.213868 0.097499 0.614959 0.514519
Integrity 0.298246 -.301812 0.190222 -.169062

Eigenvectors

Prin5 Prin6 Prin7 Prin8

Communication Skills 0.181087 -.416563 0.143543 0.333846
Problem Solving 0.453604 0.096750 0.048904 0.199259
Learning Ability -.219329 0.578388 -.114808 0.064088
Judgment Under Pressure -.030188 0.102087 0.068204 -.591822
Observational Skills -.325257 -.301254 -.297894 0.163484
Willingness to Confront Problems 0.038278 -.458585 -.044796 -.365684
Interest in People -.111279 0.030870 -.011105 0.154829
Interpersonal Sensitivity 0.107807 -.170305 -.088194 0.192725
Desire for Self-Improvement -.427477 0.105369 0.689011 0.087453
Appearance 0.568044 0.221643 0.049267 -.257497
Dependability -.130575 0.202301 -.594850 0.081242
Physical Ability 0.203995 0.173168 0.169247 0.302536
Integrity -.130757 -.100039 0.029456 -.317545

Figure 58.5. Eigenvectors from the PRINCOMP Procedure
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Eigenvectors

Prin9 Prin10 Prin11 Prin12

Communication Skills -.430955 0.375983 0.028370 -.252778
Problem Solving 0.256098 -.372914 -.434417 0.069863
Learning Ability 0.224706 0.287031 0.210540 -.284355
Judgment Under Pressure -.358618 0.178270 0.118318 0.306490
Observational Skills 0.258377 0.223793 -.079692 0.565290
Willingness to Confront Problems 0.129976 -.330710 0.275249 -.386151
Interest in People 0.321200 -.081470 0.393841 -.210915
Interpersonal Sensitivity 0.137468 -.074821 0.285447 0.276824
Desire for Self-Improvement -.121474 -.363854 -.052085 0.151436
Appearance 0.087395 0.061890 0.168369 0.236655
Dependability -.495598 -.377561 -.164909 -.090904
Physical Ability -.149625 0.258321 -.006202 -.055828
Integrity 0.271060 0.297010 -.612497 -.276273

Eigenvectors

Prin13

Communication Skills -.122809
Problem Solving -.116642
Learning Ability 0.248555
Judgment Under Pressure -.126636
Observational Skills -.168555
Willingness to Confront Problems 0.177688
Interest in People -.610215
Interpersonal Sensitivity 0.643410
Desire for Self-Improvement 0.053834
Appearance -.113705
Dependability -.018094
Physical Ability 0.133430
Integrity 0.114965

Figure 58.6. (Continued) Eigenvectors from the PRINCOMP Procedure

The first component reflects overall performance since the first eigenvector shows
approximately equal loadings on all variables. The second eigenvector has high pos-
itive loadings on the variablesObservational Skills andWillingness to Confront
Problems but even higher negative loadings on the variablesInterest in People and
Interpersonal Sensitivity. This component seems to reflect the ability to take action,
but it also reflects a lack of interpersonal skills. The third eigenvector has a very high
positive loading on the variablePhysical Ability and high negative loadings on the
variablesProblem Solving andLearning Ability. This component seems to reflect
physical strength, but also shows poor learning and problem-solving skills.

In short, the three components represent:

First Component:overall performance

Second Component:smart, tough, and introverted

Third Component:superior strength and average intellect
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Syntax

The following statements are available in PROC PRINCOMP.

PROC PRINCOMP < options > ;
BY variables ;
FREQ variable ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;

Usually only the VAR statement is used in addition to the PROC PRINCOMP state-
ment. The rest of this section provides detailed syntax information for each of the pre-
ceding statements, beginning with the PROC PRINCOMP statement. The remaining
statements are described in alphabetical order.

PROC PRINCOMP Statement

PROC PRINCOMP < options > ;

The PROC PRINCOMP statement starts the PRINCOMP procedure and, optionally,
identifies input and output data sets, specifies details of the analysis, or suppresses the
display of output. You can specify the following options in the PROC PRINCOMP
statement.

Task Options
Specify data sets DATA=

OUT=
OUTSTAT=

Specify details of analysis COV
N=
NOINT
PREFIX=
SINGULAR=
STD
VARDEF=

Suppress the display of output NOPRINT

The following list provides details on these options.

COVARIANCE
COV

computes the principal components from the covariance matrix. If you omit the COV
option, the correlation matrix is analyzed. Use of the COV option causes variables
with large variances to be more strongly associated with components with large eigen-
values and causes variables with small variances to be more strongly associated with
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components with small eigenvalues. You should not specify the COV option unless
the units in which the variables are measured are comparable or the variables are
standardized in some way.

DATA=SAS-data-set
specifies the SAS data set to be analyzed. The data set can be an ordinary SAS data
set or a TYPE=ACE, TYPE=CORR, TYPE=COV, TYPE=FACTOR, TYPE=SSCP,
TYPE=UCORR, or TYPE=UCOV data set (seeAppendix A, “Special SAS Data
Sets,”). Also, the PRINCOMP procedure can read the–TYPE–=‘COVB’ matrix
from a TYPE=EST data set. If you omit the DATA= option, the procedure uses the
most recently created SAS data set.

N=number
specifies the number of principal components to be computed. The default is the
number of variables. The value of the N= option must be an integer greater than or
equal to zero.

NOINT
omits the intercept from the model. In other words, the NOINT option requests that
the covariance or correlation matrix not be corrected for the mean. When you use the
PRINCOMP procedure with the NOINT option, the covariance matrix and, hence,
the standard deviations are not corrected for the mean. If you are interested in the
standard deviations corrected for the mean, you can get them by using a procedure
such as the MEANS procedure.

If you use a TYPE=SSCP data set as input to the PRINCOMP procedure and list
the variableIntercept in the VAR statement, the procedure acts as if you had also
specified the NOINT option. If you use NOINT and also create an OUTSTAT= data
set, the data set is TYPE=UCORR or TYPE=UCOV rather than TYPE=CORR or
TYPE=COV.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set that contains all the original data as well as the prin-
cipal component scores. If you want to create a permanent SAS data set, you must
specify a two-level name (refer toSAS Language Reference: Conceptsfor informa-
tion on permanent SAS data sets).

OUTSTAT=SAS-data-set
creates an output SAS data set that contains means, standard deviations, number of
observations, correlations or covariances, eigenvalues, and eigenvectors. If you spec-
ify the COV option, the data set is TYPE=COV or TYPE=UCOV, depending on the
NOINT option, and it contains covariances; otherwise, the data set is TYPE=CORR
or TYPE=UCORR, depending on the NOINT option, and it contains correlations. If
you specify the PARTIAL statement, the OUTSTAT= data set containsR-squares as
well. If you want to create a permanent SAS data set, you must specify a two-level



3606 � Chapter 58. The PRINCOMP Procedure

name (refer toSAS Language Reference: Conceptsfor information on permanent
SAS data sets).

PREFIX=name
specifies a prefix for naming the principal components. By default, the names are
Prin1, Prin2, . . . , Prinn. If you specify PREFIX=ABC, the components are named
ABC1, ABC2, ABC3, and so on. The number of characters in the prefix plus the
number of digits required to designate the variables should not exceed the current
name length defined by the VALIDVARNAME= system option.

SINGULAR=p
SING=p

specifies the singularity criterion, where0 < p < 1. If a variable in a PARTIAL
statement has an R-square as large as1− p when predicted from the variables listed
before it in the statement, the variable is assigned a standardized coefficient of 0. By
default, SINGULAR=1E−8.

STANDARD
STD

standardizes the principal component scores in the OUT= data set to unit variance. If
you omit the STANDARD option, the scores have variance equal to the corresponding
eigenvalue. Note that STANDARD has no effect on the eigenvalues themselves.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor used in calculating variances and standard deviations. By default,
VARDEF=DF. The following table displays the values and associated divisors.

Value Divisor Formula
DF error degrees of freedom n− i (before partialling)

n− p− i (after partialling)

N number of observations n

WEIGHT | WGT sum of weights
∑n

j=1 wj

WDF sum of weights minus one
(∑n

j=1 wj

)
− i (before partialling)(∑n

j=1 wj

)
− p− i (after partialling)

In the formulas for VARDEF=DF and VARDEF=WDF,p is the number of degrees of
freedom of the variables in the PARTIAL statement, andi is 0 if the NOINT option
is specified and 1 otherwise.
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BY Statement

BY variables ;

You can specify a BY statement with PROC PRINCOMP to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the PRINCOMP procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement specifies a variable that provides frequencies for each observa-
tion in the DATA= data set. Specifically, ifn is the value of the FREQ variable for a
given observation, then that observation is usedn times.

The analysis produced using a FREQ statement reflects the expanded number of ob-
servations. The total number of observations is considered equal to the sum of the
FREQ variable. You could produce the same analysis (without the FREQ statement)
by first creating a new data set that contains the expanded number of observations.
For example, if the value of the FREQ variable is 5 for the first observation, the first
5 observations in the new data set would be identical. Each observation in the old
data set would be replicatednj times in the new data set, wherenj is the value of the
FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than one, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.
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PARTIAL Statement

PARTIAL variables ;

If you want to analyze a partial correlation or covariance matrix, specify the names
of the numeric variables to be partialled out in the PARTIAL statement. The
PRINCOMP procedure computes the principal components of the residuals from the
prediction of the VAR variables by the PARTIAL variables. If you request an OUT=
or OUTSTAT= data set, the residual variables are named by prefixing the characters
R– to the VAR variables. Thus, the number of characters required to distinguish the
VAR variables should be, at most, two characters fewer than the current name length
defined by the VALIDVARNAME= system option.

VAR Statement

VAR variables ;

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR
statement, all numeric variables not specified in other statements are analyzed. If,
however, the DATA= data set is TYPE=SSCP, the default set of variables used as
VAR variables does not includeIntercept so that the correlation or covariance matrix
is constructed correctly. If you want to analyzeIntercept as a separate variable, you
should specify it in the VAR statement.

WEIGHT Statement

WEIGHT variable ;

If you want to use relative weights for each observation in the input data set, place the
weights in a variable in the data set and specify the name in a WEIGHT statement.
This is often done when the variance associated with each observation is different and
the values of the weight variable are proportional to the reciprocals of the variances.

The observation is used in the analysis only if the value of the WEIGHT statement
variable is nonmissing and is greater than zero.

Details

Missing Values

Observations with missing values for any variable in the VAR, PARTIAL, FREQ, or
WEIGHT statement are omitted from the analysis and are given missing values for
principal component scores in the OUT= data set. If a correlation, covariance, or
SSCP matrix is read, it can contain missing values as long as every pair of variables
has at least one nonmissing entry.
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Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables
containing the principal component scores. The N= option determines the number of
new variables. The names of the new variables are formed by concatenating the value
given by the PREFIX= option (orPrin if PREFIX= is omitted) and the numbers 1, 2,
3, and so on. The new variables have mean 0 and variance equal to the corresponding
eigenvalue, unless you specify the STANDARD option to standardize the scores to
unit variance. Also, if you specify the COV option, the procedure computes the
principal component scores from the corrected or the uncorrected (if the NOINT
option is specified) variables rather than the standardized variables.

If you use a PARTIAL statement, the OUT= data set also contains the residuals from
predicting the VAR variables from the PARTIAL variables. The names of the residual
variables are formed by prefixingR– to the names of the VAR variables.

An OUT= data set cannot be created if the DATA= data set is TYPE=ACE,
TYPE=CORR, TYPE=COV, TYPE=EST, TYPE=FACTOR, TYPE=SSCP,
TYPE=UCORR, or TYPE=UCOV.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set produced by the
CORR procedure. The following table relates the TYPE= value for the OUTSTAT=
data set to the options specified in the PROC PRINCOMP statement.

Options TYPE=
(default) CORR
COV COV
NOINT UCORR
COV NOINT UCOV

Notice that the default (neither the COV nor NOINT option) produces a
TYPE=CORR data set.

The new data set contains the following variables:

• the BY variables, if any

• two new variables,–TYPE– and–NAME– , both character variables

• the variables analyzed, that is, those in the VAR statement; or, if there is no
VAR statement, all numeric variables not listed in any other statement; or, if
there is a PARTIAL statement, the residual variables as described under the
OUT= data set

Each observation in the new data set contains some type of statistic as indicated by
the–TYPE– variable. The values of the–TYPE– variable are as follows:
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–TYPE–
MEAN mean of each variable. If you specify the PARTIAL statement, this

observation is omitted.

STD standard deviations. If you specify the COV option, this observation
is omitted, so the SCORE procedure does not standardize the variables
before computing scores. If you use the PARTIAL statement, the stan-
dard deviation of a variable is computed as its root mean squared error
as predicted from the PARTIAL variables.

USTD uncorrected standard deviations. When you specify the NOINT option
in the PROC PRINCOMP statement, the OUTSTAT= data set contains
standard deviations not corrected for the mean. However, if you also
specify the COV option in the PROC PRINCOMP statement, this ob-
servation is omitted.

N number of observations on which the analysis is based. This value
is the same for each variable. If you specify the PARTIAL statement
and the value of the VARDEF= option is DF or unspecified, then the
number of observations is decremented by the degrees of freedom for
the PARTIAL variables.

SUMWGT the sum of the weights of the observations. This value is the
same for each variable. If you specify the PARTIAL statement and
VARDEF=WDF, then the sum of the weights is decremented by the
degrees of freedom for the PARTIAL variables. This observation is
output only if the value is different from that in the observation with

–TYPE–=‘N’.

CORR correlations between each variable and the variable specified
by the –NAME– variable. The number of observations with

–TYPE–=‘CORR’ is equal to the number of variables being analyzed.
If you specify the COV option, no–TYPE–=‘CORR’ observations are
produced. If you use the PARTIAL statement, the partial correlations,
not the raw correlations, are output.

UCORR uncorrected correlation matrix. When you specify the NOINT op-
tion without the COV option in the PROC PRINCOMP statement, the
OUTSTAT= data set contains a matrix of correlations not corrected for
the means. However, if you also specify the COV option in the PROC
PRINCOMP statement, this observation is omitted.

COV covariances between each variable and the variable specified by the

–NAME– variable.–TYPE–=‘COV’ observations are produced only
if you specify the COV option. If you use the PARTIAL statement, the
partial covariances, not the raw covariances, are output.

UCOV uncorrected covariance matrix. When you specify the NOINT and
COV options in the PROC PRINCOMP statement, the OUTSTAT=
data set contains a matrix of covariances not corrected for the means.

EIGENVAL eigenvalues. If the N= option requested fewer than the maximum num-
ber of principal components, only the specified number of eigenvalues
are produced, with missing values filling out the observation.
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SCORE eigenvectors. The–NAME– variable contains the name of the corre-
sponding principal component as constructed from the PREFIX= op-
tion. The number of observations with–TYPE–=‘SCORE’ equals the
number of principal components computed. The eigenvectors have unit
length unless you specify the STD option, in which case the unit-length
eigenvectors are divided by the square roots of the eigenvalues to pro-
duce scores with unit standard deviations.

To obtain the principal component scores, if the COV option is not
specified, these coefficients should be multiplied by the standardized
data. With the COV option, these coefficients should be multiplied
by the centered data. Means obtained from the observation with

–TYPE–=’MEAN’ and standard deviations obtained from the obser-
vation with –TYPE–=’STD’ should be used for centering and stan-
dardizing the data.

USCORE scoring coefficients to be applied without subtracting the mean from the
raw variables.–TYPE–=‘USCORE’ observations are produced when
you specify the NOINT option in the PROC PRINCOMP statement.

To obtain the principal component scores, these coefficients should be
multiplied by the data that are standardized by the uncorrected standard
deviations obtained from the observation with–TYPE–=’USTD’.

RSQUARED R-squares for each VAR variable as predicted by the PARTIAL vari-
ables

B regression coefficients for each VAR variable as predicted by the
PARTIAL variables. This observation is produced only if you spec-
ify the COV option.

STB standardized regression coefficients for each VAR variable as predicted
by the PARTIAL variables. If you specify the COV option, this obser-
vation is omitted.

The data set can be used with the SCORE procedure to compute principal com-
ponent scores, or it can be used as input to the FACTOR procedure specifying
METHOD=SCORE to rotate the components. If you use the PARTIAL statement,
the scoring coefficients should be applied to the residuals, not the original variables.

Computational Resources

Let

n = number of observations

v = number of VAR variables

p = number of PARTIAL variables

c = number of components
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• The minimum allocated memory required is

232v + 120p + 48c + max(8cv, 8vp + 4(v + p)(v + p + 1))

bytes

• The time required to compute the correlation matrix is roughly proportional to

n(v + p)2 +
p

2
(v + p)(v + p + 1)

• The time required to compute eigenvalues is roughly proportional tov3.

• The time required to compute eigenvectors is roughly proportional tocv2.

Displayed Output

The PRINCOMP procedure displays the following items if the DATA= data set is not
TYPE=CORR, TYPE=COV, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV:

• Simple Statistics, including the Mean and Std (standard deviation) for each
variable. If you specify the NOINT option, the uncorrected standard deviation
(UStD) is displayed.

• the Correlation or, if you specify the COV option, the Covariance Matrix

The PRINCOMP procedure displays the following items if you use the PARTIAL
statement.

• Regression Statistics, giving theR-square and RMSE (root mean square error)
for each VAR variable as predicted by the PARTIAL variables (not shown)

• Standardized Regression Coefficients or, if you specify the COV option,
Regression Coefficients for predicting the VAR variables from the PARTIAL
variables (not shown)

• the Partial Correlation Matrix or, if you specify the COV option, the Partial
Covariance Matrix (not shown)

The PRINCOMP procedure displays the following item if you specify the COV op-
tion:

• the Total Variance

The PRINCOMP procedure displays the following items unless you specify the
NOPRINT option:

• Eigenvalues of the correlation or covariance matrix, as well as the Difference
between successive eigenvalues, the Proportion of variance explained by each
eigenvalue, and the Cumulative proportion of variance explained

• the Eigenvectors
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ODS Table Names

PROC PRINCOMP assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

For more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 58.1. ODS Tables Produced in PROC PRINCOMP

ODS Table Name Description Statement / Option
Corr Correlation Matrix default unless COV is specified
Cov Covariance Matrix default if COV is specified
Eigenvalues Eigenvalues default
Eigenvectors Eigenvectors default
NObsNVar Number of Observations,

Variables and (Partial) Variables
default

ParCorr Partial Correlation Matrix PARTIAL statement
ParCov Uncorrected Partial Covariance

Matrix
PARTIAL statement COV

RegCoef Regression Coefficients PARTIAL statement COV
RSquareRMSE Regression Statistics: R-Squares

and RMSEs
PARTIAL statement

SimpleStatistics Simple Statistics default
StdRegCoef Standardized Regression

Coefficients
PARTIAL statement

TotalVariance Total Variance PROC PRINCOMP COV

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the PRINCOMP
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release.

To request these graphs, you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

You can specify the N= option in the PRINCOMP statement to control the number of
principal components to be displayed.

ODS Graph Names

PROC PRINCOMP assigns a name to each graph it creates using ODS. You can use
these names to reference the graphs when using ODS. The names are listed inTable
58.2.
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To request these graphs, you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

Table 58.2. ODS Graphics Produced by PROC PRINCOMP

ODS Graph Name Plot Description Statement
EigenvaluePlot Eigenvalues and Proportion Plot default

PaintedPrinCompScoresPlot Painted Component Scores Plot:
2nd versus 3rd, painted by 1st

default andnvar∗ >= 3

PrinCompMatrixPlot Component Scores Matrix Plot default andnvar >= 2

PrinCompPatternPlot Component Pattern Plot default

PrinCompScoresPlot12 Component Scores Plot: 1st versus
2nd

default andnvar >= 2

PrinCompScoresPlot13 Component Scores Plot: 1st versus
3rd

default andnvar >= 3

Examples

Example 58.1. Temperatures

This example analyzes mean daily temperatures in selected cities in January and July.
Both the raw data and the principal components are plotted to illustrate how principal
components are orthogonal rotations of the original variables.

The following statements create theTemperature data set:

data Temperature;
title ’Mean Temperature in January and July for Selected Cities ’;
input City $1-15 January July;
cards;

Mobile 51.2 81.6
Phoenix 51.2 91.2
Little Rock 39.5 81.4
Sacramento 45.1 75.2
Denver 29.9 73.0
Hartford 24.8 72.7
Wilmington 32.0 75.8
Washington DC 35.6 78.7
Jacksonville 54.6 81.0
Miami 67.2 82.3
Atlanta 42.4 78.0
Boise 29.0 74.5
Chicago 22.9 71.9
Peoria 23.8 75.1
Indianapolis 27.9 75.0
Des Moines 19.4 75.1
Wichita 31.3 80.7
Louisville 33.3 76.9

∗number of variables to be analyzed
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New Orleans 52.9 81.9
Portland, ME 21.5 68.0
Baltimore 33.4 76.6
Boston 29.2 73.3
Detroit 25.5 73.3
Sault Ste Marie 14.2 63.8
Duluth 8.5 65.6
Minneapolis 12.2 71.9
Jackson 47.1 81.7
Kansas City 27.8 78.8
St Louis 31.3 78.6
Great Falls 20.5 69.3
Omaha 22.6 77.2
Reno 31.9 69.3
Concord 20.6 69.7
Atlantic City 32.7 75.1
Albuquerque 35.2 78.7
Albany 21.5 72.0
Buffalo 23.7 70.1
New York 32.2 76.6
Charlotte 42.1 78.5
Raleigh 40.5 77.5
Bismarck 8.2 70.8
Cincinnati 31.1 75.6
Cleveland 26.9 71.4
Columbus 28.4 73.6
Oklahoma City 36.8 81.5
Portland, OR 38.1 67.1
Philadelphia 32.3 76.8
Pittsburgh 28.1 71.9
Providence 28.4 72.1
Columbia 45.4 81.2
Sioux Falls 14.2 73.3
Memphis 40.5 79.6
Nashville 38.3 79.6
Dallas 44.8 84.8
El Paso 43.6 82.3
Houston 52.1 83.3
Salt Lake City 28.0 76.7
Burlington 16.8 69.8
Norfolk 40.5 78.3
Richmond 37.5 77.9
Spokane 25.4 69.7
Charleston, WV 34.5 75.0
Milwaukee 19.4 69.9
Cheyenne 26.6 69.1
;

The following statements plot thetemperature data set. For information on the
%PLOTIT macro, seeAppendix B, “Using the %PLOTIT Macro.”

title2 ’Plot of Raw Data’;
%plotit(data=Temperature,labelvar=City,

plotvars=July January, color=black, colors=black);
run;
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The results are displayed inOutput 58.1.1, which shows a scatter diagram of the 64
pairs of data points with July temperatures plotted against January temperatures.

Output 58.1.1. Plot of Raw Data

The following statement requests a principal component analysis on the
Temperature data set and outputs the scores to thePrin data set (OUT=
Prin):

proc princomp data=Temperature cov out=Prin;
var July January;
run;

Output 58.1.2displays the PROC PRINCOMP output. The standard deviation of
January (11.712) is higher than the standard deviation ofJuly (5.128). The COV
option in the PROC PRINCOMP statement requests the principal components to be
computed from the covariance matrix. The total variance is 163.474. The first prin-
cipal component explains about 94% of the total variance, and the second principal
component explains only about 6%. The eigenvalues sum to the total variance.
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Note thatJanuary receives a higher loading onPrin1 because it has a higher standard
deviation thanJuly, and the PRINCOMP procedure calculates the scores using the
centered variables rather than the standardized variables.

Output 58.1.2. Results of Principal Component Analysis

Mean Temperature in January and July for Selected Cities

The PRINCOMP Procedure

Observations 64
Variables 2

Simple Statistics

July January

Mean 75.60781250 32.09531250
StD 5.12761910 11.71243309

Covariance Matrix

July January

July 26.2924777 46.8282912
January 46.8282912 137.1810888

Total Variance 163.47356647

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 154.310607 145.147647 0.9439 0.9439
2 9.162960 0.0561 1.0000

Eigenvectors

Prin1 Prin2

July 0.343532 0.939141
January 0.939141 -.343532

The following statement plots thePrin data set created from the previous PROC
PRINCOMP statement:

title2 ’Plot of Principal Components’;
%plotit(data=Prin,labelvar=City,

plotvars=Prin2 Prin1, color=black, colors=black);
run;
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Output 58.1.3displays a plot of the second principal componentPrin2 against the first
principal componentPrin1. It is clear from this plot that the principal components are
orthogonal rotations of the original variables and that the first principal component
has a larger variance than the second principal component. In fact,Prin1 has a larger
variance than either of the original variablesJuly andJanuary.

Output 58.1.3. Plot of Principal Components
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Example 58.2. Crime Rates

The following data provide crime rates per 100,000 people in seven categories for
each of the fifty states in 1977. Since there are seven numeric variables, it is impos-
sible to plot all the variables simultaneously. Principal components can be used to
summarize the data in two or three dimensions, and they help to visualize the data.
The following statements produceOutput 58.2.1:

data Crime;
title ’Crime Rates per 100,000 Population by State’;
input State $1-15 Murder Rape Robbery Assault

Burglary Larceny Auto_Theft;
cards;

Alabama 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7
Alaska 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3
Arizona 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5
Arkansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4
California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5
Colorado 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1
Connecticut 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2
Delaware 6.0 24.9 157.0 194.2 1682.6 3678.4 467.0
Florida 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4
Georgia 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9
Hawaii 7.2 25.5 128.0 64.1 1911.5 3920.4 489.4
Idaho 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6
Illinois 9.9 21.8 211.3 209.0 1085.0 2828.5 528.6
Indiana 7.4 26.5 123.2 153.5 1086.2 2498.7 377.4
Iowa 2.3 10.6 41.2 89.8 812.5 2685.1 219.9
Kansas 6.6 22.0 100.7 180.5 1270.4 2739.3 244.3
Kentucky 10.1 19.1 81.1 123.3 872.2 1662.1 245.4
Louisiana 15.5 30.9 142.9 335.5 1165.5 2469.9 337.7
Maine 2.4 13.5 38.7 170.0 1253.1 2350.7 246.9
Maryland 8.0 34.8 292.1 358.9 1400.0 3177.7 428.5
Massachusetts 3.1 20.8 169.1 231.6 1532.2 2311.3 1140.1
Michigan 9.3 38.9 261.9 274.6 1522.7 3159.0 545.5
Minnesota 2.7 19.5 85.9 85.8 1134.7 2559.3 343.1
Mississippi 14.3 19.6 65.7 189.1 915.6 1239.9 144.4
Missouri 9.6 28.3 189.0 233.5 1318.3 2424.2 378.4
Montana 5.4 16.7 39.2 156.8 804.9 2773.2 309.2
Nebraska 3.9 18.1 64.7 112.7 760.0 2316.1 249.1
Nevada 15.8 49.1 323.1 355.0 2453.1 4212.6 559.2
New Hampshire 3.2 10.7 23.2 76.0 1041.7 2343.9 293.4
New Jersey 5.6 21.0 180.4 185.1 1435.8 2774.5 511.5
New Mexico 8.8 39.1 109.6 343.4 1418.7 3008.6 259.5
New York 10.7 29.4 472.6 319.1 1728.0 2782.0 745.8
North Carolina 10.6 17.0 61.3 318.3 1154.1 2037.8 192.1
North Dakota 0.9 9.0 13.3 43.8 446.1 1843.0 144.7
Ohio 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4
Oklahoma 8.6 29.2 73.8 205.0 1288.2 2228.1 326.8
Oregon 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9
Pennsylvania 5.6 19.0 130.3 128.0 877.5 1624.1 333.2
Rhode Island 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4
South Carolina 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1
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South Dakota 2.0 13.5 17.9 155.7 570.5 1704.4 147.5
Tennessee 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0
Texas 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6
Utah 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5
Vermont 1.4 15.9 30.8 101.2 1348.2 2201.0 265.2
Virginia 9.0 23.3 92.1 165.7 986.2 2521.2 226.7
Washington 4.3 39.6 106.2 224.8 1605.6 3386.9 360.3
West Virginia 6.0 13.2 42.2 90.9 597.4 1341.7 163.3
Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7
Wyoming 5.4 21.9 39.7 173.9 811.6 2772.2 282.0
;

proc princomp out=Crime_Components;
run;
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Output 58.2.1. Results of Principal Component Analysis: PROC PRINCOMP

Crime Rates per 100,000 Population by State

The PRINCOMP Procedure

Observations 50
Variables 7

Simple Statistics

Murder Rape Robbery Assault

Mean 7.444000000 25.73400000 124.0920000 211.3000000
StD 3.866768941 10.75962995 88.3485672 100.2530492

Simple Statistics

Burglary Larceny Auto_Theft

Mean 1291.904000 2671.288000 377.5260000
StD 432.455711 725.908707 193.3944175

Correlation Matrix

Auto_
Murder Rape Robbery Assault Burglary Larceny Theft

Murder 1.0000 0.6012 0.4837 0.6486 0.3858 0.1019 0.0688
Rape 0.6012 1.0000 0.5919 0.7403 0.7121 0.6140 0.3489
Robbery 0.4837 0.5919 1.0000 0.5571 0.6372 0.4467 0.5907
Assault 0.6486 0.7403 0.5571 1.0000 0.6229 0.4044 0.2758
Burglary 0.3858 0.7121 0.6372 0.6229 1.0000 0.7921 0.5580
Larceny 0.1019 0.6140 0.4467 0.4044 0.7921 1.0000 0.4442
Auto_Theft 0.0688 0.3489 0.5907 0.2758 0.5580 0.4442 1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 4.11495951 2.87623768 0.5879 0.5879
2 1.23872183 0.51290521 0.1770 0.7648
3 0.72581663 0.40938458 0.1037 0.8685
4 0.31643205 0.05845759 0.0452 0.9137
5 0.25797446 0.03593499 0.0369 0.9506
6 0.22203947 0.09798342 0.0317 0.9823
7 0.12405606 0.0177 1.0000

Eigenvectors

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7

Murder 0.300279 -.629174 0.178245 -.232114 0.538123 0.259117 0.267593
Rape 0.431759 -.169435 -.244198 0.062216 0.188471 -.773271 -.296485
Robbery 0.396875 0.042247 0.495861 -.557989 -.519977 -.114385 -.003903
Assault 0.396652 -.343528 -.069510 0.629804 -.506651 0.172363 0.191745
Burglary 0.440157 0.203341 -.209895 -.057555 0.101033 0.535987 -.648117
Larceny 0.357360 0.402319 -.539231 -.234890 0.030099 0.039406 0.601690
Auto_Theft 0.295177 0.502421 0.568384 0.419238 0.369753 -.057298 0.147046
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The eigenvalues indicate that two or three components provide a good summary of the
data, two components accounting for 76% of the total variance and three components
explaining 87%. Subsequent components contribute less than 5% each.

The first component is a measure of overall crime rate since the first eigenvector
shows approximately equal loadings on all variables. The second eigenvector has
high positive loadings on variablesAuto–Theft andLarceny and high negative load-
ings on variablesMurder and Assault. There is also a small positive loading on
Burglary and a small negative loading onRape. This component seems to measure
the preponderance of property crime over violent crime. The interpretation of the
third component is not obvious.

A simple way to examine the principal components in more detail is to display the
output data set sorted by each of the large components. The following statements
produceOutput 58.2.2throughOutput 58.2.3:

proc sort data=Crime_Components;
by Prin1;

run;

proc print;
id State;
var Prin1 Prin2 Murder Rape Robbery

Assault Burglary Larceny Auto_Theft;
title2 ’States Listed in Order of Overall Crime Rate’;
title3 ’As Determined by the First Principal Component’;

run;

proc sort data=Crime_Components;
by Prin2;

run;

proc print;
id State;
var Prin1 Prin2 Murder Rape Robbery

Assault Burglary Larceny Auto_Theft;
title2 ’States Listed in Order of Property Vs. Violent Crime’;
title3 ’As Determined by the Second Principal Component’;

run;
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Output 58.2.2. OUT= Data Set Sorted by First Principal Component

Crime Rates per 100,000 Population by State
States Listed in Order of Overall Crime Rate

As Determined by the First Principal Component

A
u

B t
R A u L o

M o s r a _
S P P u b s g r T
t r r r R b a l c h
a i i d a e u a e e
t n n e p r l r n f
e 1 2 r e y t y y t

North Dakota -3.96408 0.38767 0.9 9.0 13.3 43.8 446.1 1843.0 144.7
South Dakota -3.17203 -0.25446 2.0 13.5 17.9 155.7 570.5 1704.4 147.5
West Virginia -3.14772 -0.81425 6.0 13.2 42.2 90.9 597.4 1341.7 163.3
Iowa -2.58156 0.82475 2.3 10.6 41.2 89.8 812.5 2685.1 219.9
Wisconsin -2.50296 0.78083 2.8 12.9 52.2 63.7 846.9 2614.2 220.7
New Hampshire -2.46562 0.82503 3.2 10.7 23.2 76.0 1041.7 2343.9 293.4
Nebraska -2.15071 0.22574 3.9 18.1 64.7 112.7 760.0 2316.1 249.1
Vermont -2.06433 0.94497 1.4 15.9 30.8 101.2 1348.2 2201.0 265.2
Maine -1.82631 0.57878 2.4 13.5 38.7 170.0 1253.1 2350.7 246.9
Kentucky -1.72691 -1.14663 10.1 19.1 81.1 123.3 872.2 1662.1 245.4
Pennsylvania -1.72007 -0.19590 5.6 19.0 130.3 128.0 877.5 1624.1 333.2
Montana -1.66801 0.27099 5.4 16.7 39.2 156.8 804.9 2773.2 309.2
Minnesota -1.55434 1.05644 2.7 19.5 85.9 85.8 1134.7 2559.3 343.1
Mississippi -1.50736 -2.54671 14.3 19.6 65.7 189.1 915.6 1239.9 144.4
Idaho -1.43245 -0.00801 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6
Wyoming -1.42463 0.06268 5.4 21.9 39.7 173.9 811.6 2772.2 282.0
Arkansas -1.05441 -1.34544 8.8 27.6 83.2 203.4 972.6 1862.1 183.4
Utah -1.04996 0.93656 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5
Virginia -0.91621 -0.69265 9.0 23.3 92.1 165.7 986.2 2521.2 226.7
North Carolina -0.69925 -1.67027 10.6 17.0 61.3 318.3 1154.1 2037.8 192.1
Kansas -0.63407 -0.02804 6.6 22.0 100.7 180.5 1270.4 2739.3 244.3
Connecticut -0.54133 1.50123 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2
Indiana -0.49990 0.00003 7.4 26.5 123.2 153.5 1086.2 2498.7 377.4
Oklahoma -0.32136 -0.62429 8.6 29.2 73.8 205.0 1288.2 2228.1 326.8
Rhode Island -0.20156 2.14658 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4
Tennessee -0.13660 -1.13498 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0
Alabama -0.04988 -2.09610 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7
New Jersey 0.21787 0.96421 5.6 21.0 180.4 185.1 1435.8 2774.5 511.5
Ohio 0.23953 0.09053 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4
Georgia 0.49041 -1.38079 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9
Illinois 0.51290 0.09423 9.9 21.8 211.3 209.0 1085.0 2828.5 528.6
Missouri 0.55637 -0.55851 9.6 28.3 189.0 233.5 1318.3 2424.2 378.4
Hawaii 0.82313 1.82392 7.2 25.5 128.0 64.1 1911.5 3920.4 489.4
Washington 0.93058 0.73776 4.3 39.6 106.2 224.8 1605.6 3386.9 360.3
Delaware 0.96458 1.29674 6.0 24.9 157.0 194.2 1682.6 3678.4 467.0
Massachusetts 0.97844 2.63105 3.1 20.8 169.1 231.6 1532.2 2311.3 1140.1
Louisiana 1.12020 -2.08327 15.5 30.9 142.9 335.5 1165.5 2469.9 337.7
New Mexico 1.21417 -0.95076 8.8 39.1 109.6 343.4 1418.7 3008.6 259.5
Texas 1.39696 -0.68131 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6
Oregon 1.44900 0.58603 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9
South Carolina 1.60336 -2.16211 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1
Maryland 2.18280 -0.19474 8.0 34.8 292.1 358.9 1400.0 3177.7 428.5
Michigan 2.27333 0.15487 9.3 38.9 261.9 274.6 1522.7 3159.0 545.5
Alaska 2.42151 0.16652 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3
Colorado 2.50929 0.91660 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1
Arizona 3.01414 0.84495 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5
Florida 3.11175 -0.60392 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4
New York 3.45248 0.43289 10.7 29.4 472.6 319.1 1728.0 2782.0 745.8
California 4.28380 0.14319 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5
Nevada 5.26699 -0.25262 15.8 49.1 323.1 355.0 2453.1 4212.6 559.2



3624 � Chapter 58. The PRINCOMP Procedure

Output 58.2.3. OUT= Data Set Sorted by Second Principal Component

Crime Rates per 100,000 Population by State
States Listed in Order of Property Vs. Violent Crime

As Determined by the Second Principal Component

A
u

B t
R A u L o

M o s r a _
S P P u b s g r T
t r r r R b a l c h
a i i d a e u a e e
t n n e p r l r n f
e 1 2 r e y t y y t

Mississippi -1.50736 -2.54671 14.3 19.6 65.7 189.1 915.6 1239.9 144.4
South Carolina 1.60336 -2.16211 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1
Alabama -0.04988 -2.09610 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7
Louisiana 1.12020 -2.08327 15.5 30.9 142.9 335.5 1165.5 2469.9 337.7
North Carolina -0.69925 -1.67027 10.6 17.0 61.3 318.3 1154.1 2037.8 192.1
Georgia 0.49041 -1.38079 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9
Arkansas -1.05441 -1.34544 8.8 27.6 83.2 203.4 972.6 1862.1 183.4
Kentucky -1.72691 -1.14663 10.1 19.1 81.1 123.3 872.2 1662.1 245.4
Tennessee -0.13660 -1.13498 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0
New Mexico 1.21417 -0.95076 8.8 39.1 109.6 343.4 1418.7 3008.6 259.5
West Virginia -3.14772 -0.81425 6.0 13.2 42.2 90.9 597.4 1341.7 163.3
Virginia -0.91621 -0.69265 9.0 23.3 92.1 165.7 986.2 2521.2 226.7
Texas 1.39696 -0.68131 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6
Oklahoma -0.32136 -0.62429 8.6 29.2 73.8 205.0 1288.2 2228.1 326.8
Florida 3.11175 -0.60392 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4
Missouri 0.55637 -0.55851 9.6 28.3 189.0 233.5 1318.3 2424.2 378.4
South Dakota -3.17203 -0.25446 2.0 13.5 17.9 155.7 570.5 1704.4 147.5
Nevada 5.26699 -0.25262 15.8 49.1 323.1 355.0 2453.1 4212.6 559.2
Pennsylvania -1.72007 -0.19590 5.6 19.0 130.3 128.0 877.5 1624.1 333.2
Maryland 2.18280 -0.19474 8.0 34.8 292.1 358.9 1400.0 3177.7 428.5
Kansas -0.63407 -0.02804 6.6 22.0 100.7 180.5 1270.4 2739.3 244.3
Idaho -1.43245 -0.00801 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6
Indiana -0.49990 0.00003 7.4 26.5 123.2 153.5 1086.2 2498.7 377.4
Wyoming -1.42463 0.06268 5.4 21.9 39.7 173.9 811.6 2772.2 282.0
Ohio 0.23953 0.09053 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4
Illinois 0.51290 0.09423 9.9 21.8 211.3 209.0 1085.0 2828.5 528.6
California 4.28380 0.14319 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5
Michigan 2.27333 0.15487 9.3 38.9 261.9 274.6 1522.7 3159.0 545.5
Alaska 2.42151 0.16652 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3
Nebraska -2.15071 0.22574 3.9 18.1 64.7 112.7 760.0 2316.1 249.1
Montana -1.66801 0.27099 5.4 16.7 39.2 156.8 804.9 2773.2 309.2
North Dakota -3.96408 0.38767 0.9 9.0 13.3 43.8 446.1 1843.0 144.7
New York 3.45248 0.43289 10.7 29.4 472.6 319.1 1728.0 2782.0 745.8
Maine -1.82631 0.57878 2.4 13.5 38.7 170.0 1253.1 2350.7 246.9
Oregon 1.44900 0.58603 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9
Washington 0.93058 0.73776 4.3 39.6 106.2 224.8 1605.6 3386.9 360.3
Wisconsin -2.50296 0.78083 2.8 12.9 52.2 63.7 846.9 2614.2 220.7
Iowa -2.58156 0.82475 2.3 10.6 41.2 89.8 812.5 2685.1 219.9
New Hampshire -2.46562 0.82503 3.2 10.7 23.2 76.0 1041.7 2343.9 293.4
Arizona 3.01414 0.84495 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5
Colorado 2.50929 0.91660 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1
Utah -1.04996 0.93656 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5
Vermont -2.06433 0.94497 1.4 15.9 30.8 101.2 1348.2 2201.0 265.2
New Jersey 0.21787 0.96421 5.6 21.0 180.4 185.1 1435.8 2774.5 511.5
Minnesota -1.55434 1.05644 2.7 19.5 85.9 85.8 1134.7 2559.3 343.1
Delaware 0.96458 1.29674 6.0 24.9 157.0 194.2 1682.6 3678.4 467.0
Connecticut -0.54133 1.50123 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2
Hawaii 0.82313 1.82392 7.2 25.5 128.0 64.1 1911.5 3920.4 489.4
Rhode Island -0.20156 2.14658 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4
Massachusetts 0.97844 2.63105 3.1 20.8 169.1 231.6 1532.2 2311.3 1140.1
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Another recommended procedure is to make scatter plots of the first few compo-
nents. The sorted listings help to identify observations on the plots. The following
statements produceOutput 58.2.4throughOutput 58.2.5:

title2 ’Plot of the First Two Principal Components’;

%plotit(data=Crime_Components,labelvar=State,
plotvars=Prin2 Prin1, color=black, colors=black);

run;

title2 ’Plot of the First and Third Principal Components’;

%plotit(data=Crime_Components,labelvar=State,
plotvars=Prin3 Prin1, color=black, colors=black);

run;

Output 58.2.4. Plot of the First Two Principal Components
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Output 58.2.5. Plot of the First and Third Principal Components

It is possible to identify regional trends on the plot of the first two components.
Nevada and California are at the extreme right, with high overall crime rates but an
average ratio of property crime to violent crime. North and South Dakota are on the
extreme left with low overall crime rates. Southeastern states tend to be in the bottom
of the plot, with a higher-than-average ratio of violent crime to property crime. New
England states tend to be in the upper part of the plot, with a greater-than-average
ratio of property crime to violent crime.

The most striking feature of the plot of the first and third principal components is that
Massachusetts and New York are outliers on the third component.

Example 58.3. Basketball Data

The data in this example are rankings of 35 college basketball teams. The rankings
were made before the start of the 1985–86 season by 10 news services.

The purpose of the principal component analysis is to compute a single variable that
best summarizes all 10 of the preseason rankings.

Note that the various news services rank different numbers of teams, varying from
20 through 30 (there is a missing rank in one of the variables,WashPost). And,
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of course, each service does not rank the same teams, so there are missing values in
these data. Each of the 35 teams is ranked by at least one news service.

The PRINCOMP procedure omits observations with missing values. To obtain prin-
cipal component scores for all of the teams, it is necessary to replace the missing
values. Since it is the best teams that are ranked, it is not appropriate to replace miss-
ing values with the mean of the nonmissing values. Instead, an ad hoc method is used
that replaces missing values by the mean of the unassigned ranks. For example, if 20
teams are ranked by a news service, then ranks 21 through 35 are unassigned. The
mean of ranks 21 through 35 is 28, so missing values for that variable are replaced
by the value 28. To prevent the method of missing-value replacement from having
an undue effect on the analysis, each observation is weighted according to the num-
ber of nonmissing values it has. SeeExample 59.3in Chapter 59, “The PRINQUAL
Procedure,”for an alternative analysis of these data.

Since the first principal component accounts for 78% of the variance, there is substan-
tial agreement among the rankings. The eigenvector shows that all the news services
are about equally weighted, so a simple average would work almost as well as the
first principal component. The following statements produceOutput 58.3.1through
Output 58.3.3:

/*-----------------------------------------------------------*/
/* */
/* Preseason 1985 College Basketball Rankings */
/* (rankings of 35 teams by 10 news services) */
/* */
/* Note: (a) news services rank varying numbers of teams; */
/* (b) not all teams are ranked by all news services; */
/* (c) each team is ranked by at least one service; */
/* (d) rank 20 is missing for UPI. */
/* */
/*-----------------------------------------------------------*/

data HoopsRanks;
input School $13. CSN DurSun DurHer WashPost USAToday

Sport InSports UPI AP SI;
label CSN = ’Community Sports News (Chapel Hill, NC)’

DurSun = ’Durham Sun’
DurHer = ’Durham Morning Herald’
WashPost = ’Washington Post’
USAToday = ’USA Today’
Sport = ’Sport Magazine’
InSports = ’Inside Sports’
UPI = ’United Press International’
AP = ’Associated Press’
SI = ’Sports Illustrated’
;

format CSN--SI 5.1;
cards;

Louisville 1 8 1 9 8 9 6 10 9 9
Georgia Tech 2 2 4 3 1 1 1 2 1 1
Kansas 3 4 5 1 5 11 8 4 5 7
Michigan 4 5 9 4 2 5 3 1 3 2
Duke 5 6 7 5 4 10 4 5 6 5
UNC 6 1 2 2 3 4 2 3 2 3
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Syracuse 7 10 6 11 6 6 5 6 4 10
Notre Dame 8 14 15 13 11 20 18 13 12 .
Kentucky 9 15 16 14 14 19 11 12 11 13
LSU 10 9 13 . 13 15 16 9 14 8
DePaul 11 . 21 15 20 . 19 . . 19
Georgetown 12 7 8 6 9 2 9 8 8 4
Navy 13 20 23 10 18 13 15 . 20 .
Illinois 14 3 3 7 7 3 10 7 7 6
Iowa 15 16 . . 23 . . 14 . 20
Arkansas 16 . . . 25 . . . . 16
Memphis State 17 . 11 . 16 8 20 . 15 12
Washington 18 . . . . . . 17 . .
UAB 19 13 10 . 12 17 . 16 16 15
UNLV 20 18 18 19 22 . 14 18 18 .
NC State 21 17 14 16 15 . 12 15 17 18
Maryland 22 . . . 19 . . . 19 14
Pittsburgh 23 . . . . . . . . .
Oklahoma 24 19 17 17 17 12 17 . 13 17
Indiana 25 12 20 18 21 . . . . .
Virginia 26 . 22 . . 18 . . . .
Old Dominion 27 . . . . . . . . .
Auburn 28 11 12 8 10 7 7 11 10 11
St. Johns 29 . . . . 14 . . . .
UCLA 30 . . . . . . 19 . .
St. Joseph’s . . 19 . . . . . . .
Tennessee . . 24 . . 16 . . . .
Montana . . . 20 . . . . . .
Houston . . . . 24 . . . . .
Virginia Tech . . . . . . 13 . . .
;

/* PROC MEANS is used to output a data set containing the */
/* maximum value of each of the newspaper and magazine */
/* rankings. The output data set, maxrank, is then used */
/* to set the missing values to the next highest rank plus */
/* thirty-six, divided by two (that is, the mean of the */
/* missing ranks). This ad hoc method of replacing missing */
/* values is based more on intuition than on rigorous */
/* statistical theory. Observations are weighted by the */
/* number of nonmissing values. */
/* */

title ’Pre-Season 1985 College Basketball Rankings’;
proc means data=HoopsRanks;

output out=MaxRank
max=CSNMax DurSunMax DurHerMax

WashPostMax USATodayMax SportMax
InSportsMax UPIMax APMax SIMax;

run;
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Output 58.3.1. Summary Statistics for Basketball Rankings Using PROC MEANS

Pre-Season 1985 College Basketball Rankings

The MEANS Procedure

Variable Label N Mean
-----------------------------------------------------------------------
CSN Community Sports News (Chapel Hill, NC) 30 15.5000000
DurSun Durham Sun 20 10.5000000
DurHer Durham Morning Herald 24 12.5000000
WashPost Washington Post 19 10.4210526
USAToday USA Today 25 13.0000000
Sport Sport Magazine 20 10.5000000
InSports Inside Sports 20 10.5000000
UPI United Press International 19 10.0000000
AP Associated Press 20 10.5000000
SI Sports Illustrated 20 10.5000000
-----------------------------------------------------------------------

Variable Label Std Dev Minimum
--------------------------------------------------------------------------------
CSN Community Sports News (Chapel Hill, NC) 8.8034084 1.0000000
DurSun Durham Sun 5.9160798 1.0000000
DurHer Durham Morning Herald 7.0710678 1.0000000
WashPost Washington Post 6.0673607 1.0000000
USAToday USA Today 7.3598007 1.0000000
Sport Sport Magazine 5.9160798 1.0000000
InSports Inside Sports 5.9160798 1.0000000
UPI United Press International 5.6273143 1.0000000
AP Associated Press 5.9160798 1.0000000
SI Sports Illustrated 5.9160798 1.0000000
--------------------------------------------------------------------------------

Variable Label Maximum
-----------------------------------------------------------------
CSN Community Sports News (Chapel Hill, NC) 30.0000000
DurSun Durham Sun 20.0000000
DurHer Durham Morning Herald 24.0000000
WashPost Washington Post 20.0000000
USAToday USA Today 25.0000000
Sport Sport Magazine 20.0000000
InSports Inside Sports 20.0000000
UPI United Press International 19.0000000
AP Associated Press 20.0000000
SI Sports Illustrated 20.0000000
-----------------------------------------------------------------
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data Basketball;
set HoopsRanks;
if _n_=1 then set MaxRank;
array Services{10} CSN--SI;
array MaxRanks{10} CSNMax--SIMax;
keep School CSN--SI Weight;
Weight=0;
do i=1 to 10;

if Services{i}=. then Services{i}=(MaxRanks{i}+36)/2;
else Weight=Weight+1;

end;
run;

proc princomp data=Basketball n=1 out=PCBasketball standard;
var CSN--SI;
weight Weight;

run;

Output 58.3.2. Principal Components Analysis of Basketball Rankings Using
PROC PRINCOMP

The PRINCOMP Procedure

Observations 35
Variables 10

Simple Statistics

CSN DurSun DurHer WashPost USAToday

Mean 13.33640553 13.06451613 12.88018433 13.83410138 12.55760369
StD 22.08036285 21.66394183 21.38091837 23.47841791 20.48207965

Simple Statistics

Sport InSports UPI AP SI

Mean 13.83870968 13.24423963 13.59216590 12.83410138 13.52534562
StD 23.37756267 22.20231526 23.25602811 21.40782406 22.93219584
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Output 58.3.2. (continued)

Correlation Matrix

CSN DurSun DurHer

CSN Community Sports News (Chapel Hill, NC) 1.0000 0.6505 0.6415
DurSun Durham Sun 0.6505 1.0000 0.8341
DurHer Durham Morning Herald 0.6415 0.8341 1.0000
WashPost Washington Post 0.6121 0.7667 0.7035
USAToday USA Today 0.7456 0.8860 0.8877
Sport Sport Magazine 0.4806 0.6940 0.7788
InSports Inside Sports 0.6558 0.7702 0.7900
UPI United Press International 0.7007 0.9015 0.7676
AP Associated Press 0.6779 0.8437 0.8788
SI Sports Illustrated 0.6135 0.7518 0.7761

Correlation Matrix

Wash In
Post USAToday Sport Sports UPI AP SI

CSN 0.6121 0.7456 0.4806 0.6558 0.7007 0.6779 0.6135
DurSun 0.7667 0.8860 0.6940 0.7702 0.9015 0.8437 0.7518
DurHer 0.7035 0.8877 0.7788 0.7900 0.7676 0.8788 0.7761
WashPost 1.0000 0.7984 0.6598 0.8717 0.6953 0.7809 0.5952
USAToday 0.7984 1.0000 0.7716 0.8475 0.8539 0.9479 0.8426
Sport 0.6598 0.7716 1.0000 0.7176 0.6220 0.8217 0.7701
InSports 0.8717 0.8475 0.7176 1.0000 0.7920 0.8830 0.7332
UPI 0.6953 0.8539 0.6220 0.7920 1.0000 0.8436 0.7738
AP 0.7809 0.9479 0.8217 0.8830 0.8436 1.0000 0.8212
SI 0.5952 0.8426 0.7701 0.7332 0.7738 0.8212 1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 7.88601647 0.7886 0.7886

Eigenvectors

Prin1

CSN Community Sports News (Chapel Hill, NC) 0.270205
DurSun Durham Sun 0.326048
DurHer Durham Morning Herald 0.324392
WashPost Washington Post 0.300449
USAToday USA Today 0.345200
Sport Sport Magazine 0.293881
InSports Inside Sports 0.324088
UPI United Press International 0.319902
AP Associated Press 0.342151
SI Sports Illustrated 0.308570



3632 � Chapter 58. The PRINCOMP Procedure

proc sort data=PCBasketball;
by Prin1;

run;

proc print;
var School Prin1;
title ’Pre-Season 1985 College Basketball Rankings’;
title2 ’College Teams as Ordered by PROC PRINCOMP’;

run;

Output 58.3.3. Basketball Rankings Using PROC PRINCOMP

Pre-Season 1985 College Basketball Rankings
College Teams as Ordered by PROC PRINCOMP

OBS School Prin1

1 Georgia Tech -0.58068
2 UNC -0.53317
3 Michigan -0.47874
4 Kansas -0.40285
5 Duke -0.38464
6 Illinois -0.33586
7 Syracuse -0.31578
8 Louisville -0.31489
9 Georgetown -0.29735

10 Auburn -0.09785
11 Kentucky 0.00843
12 LSU 0.00872
13 Notre Dame 0.09407
14 NC State 0.19404
15 UAB 0.19771
16 Oklahoma 0.23864
17 Memphis State 0.25319
18 Navy 0.28921
19 UNLV 0.35103
20 DePaul 0.43770
21 Iowa 0.50213
22 Indiana 0.51713
23 Maryland 0.55910
24 Arkansas 0.62977
25 Virginia 0.67586
26 Washington 0.67756
27 Tennessee 0.70822
28 St. Johns 0.71425
29 Virginia Tech 0.71638
30 St. Joseph’s 0.73492
31 UCLA 0.73965
32 Pittsburgh 0.75078
33 Houston 0.75534
34 Montana 0.75790
35 Old Dominion 0.76821

Example 58.4. PRINCOMP Graphics (Experimental)
This example illustrates the experimental ODS graphics in PROC PRINCOMP, using
the example in the the“Getting Started”section on page 3596.

The following statements request plots in PROC PRINCOMP.
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ods html;
ods graphics on;

proc princomp data=Jobratings(drop=’Overall Rating’n) n=5;
run;

ods graphics off;
ods html close;

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement. For general information about ODS graphics, seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the PRINCOMP procedure, see the“ODS Graphics”section on page
3613.

The N= 5 option in the PROC PRINCOMP statement sets the number of principal
components to 5.

Output 58.4.1shows the eigenvalue plots. Each point in the plot on the left shows an
eigenvalue; each point in the plot on the right shows the (cumulative) proportion of
variance explained by each component.

Output 58.4.1. Eigenvalue Scatter Plot (Experimental)

Output 58.4.2shows a scatter matrix plot between the first five components. The
histogram of each component is displayed in the diagonal element of the matrix.
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Output 58.4.2. Component Scores Matrix Plot (Experimental)

Output 58.4.3shows a component pattern profile. The Y-axis shows the correlation
between a component and a variable. There is one profile for each component. Line
patterns are used to differentiate correlations between components.

The nearly horizontal profile from the first component indicates that the first com-
ponent is mostly correlated evenly across all variables. The second component
is positively correlated with the variablesObservational Skills and Willingness
to Confront Problems and is negatively correlated with the variablesInterest in
People andInterpersonal Sensitivity.
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Output 58.4.3. Component Pattern Plot (Experimental)

Output 58.4.4shows a scatter plot of the first and second components. Observation
numbers are used as the plotting symbol.
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Output 58.4.4. Component Scores Plot: 1st versus 2nd (Experimental)

Output 58.4.5shows a scatter plot of the first and third components.
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Output 58.4.5. Component Scores Plot: 1st versus 3rd (Experimental)

Output 58.4.6shows a scatter plot of the second and third components, displaying
density with color. Color interpolation is based on the first component, going from
blue (or light gray) (minimum density), magenta (or dark gray) (median density), and
to red (or black) (maximum density).
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Output 58.4.6. Painted Components Scores Plot: 2nd versus 3rd, Painted by 1st
(Experimental)
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Chapter 59
The PRINQUAL Procedure
Overview

The PRINQUAL procedure obtains linear and nonlinear transformations of variables
by using the method of alternating least squares to optimize properties of the trans-
formed variables’ covariance or correlation matrix. Nonoptimal transformations for
logarithm, rank, exponentiation, inverse sine, and logit are also available with PROC
PRINQUAL. Experimental graphics are now available with the PRINQUAL proce-
dure. For more information, see the“ODS Graphics”section on page 3677.

The PRINQUAL (principal components of qualitative data) procedure is a data trans-
formation procedure that is based on the work of Kruskal and Shepard (1974); Young,
Takane, and de Leeuw (1978); Young (1981); and Winsberg and Ramsay (1983). You
can use PROC PRINQUAL to

• generalize ordinary principal component analysis to a method capable of ana-
lyzing data that are not quantitative

• perform metric and nonmetric multidimensional preference (MDPREF) analy-
ses (Carroll 1972)

• preprocess data, transforming variables prior to their use in other data analyses

• summarize mixed quantitative and qualitative data and detect nonlinear rela-
tionships

• reduce the number of variables for subsequent use in regression analyses, clus-
ter analyses, and other analyses

The PRINQUAL procedure provides three methods of transforming a set of qualita-
tive and quantitative variables to optimize the transformed variables’ covariance or
correlation matrix. These methods are

• maximum total variance (MTV)

• minimum generalized variance (MGV)

• maximum average correlation (MAC)

All three methods attempt to find transformations that decrease the rank of the covari-
ance matrix computed from the transformed variables. Transforming the variables to
maximize the variance accounted for by a few linear combinations (using the MTV
method) locates the observations in a space with dimensionality that approximates
the stated number of linear combinations as much as possible, given the transforma-
tion constraints. Transforming the variables to minimize their generalized variance or
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maximize the sum of correlations also reduces the dimensionality. The transformed
qualitative (nominal and ordinal) variables can be thought of as quantified by the
analysis, with the quantification done in the context set by the algorithm. The data
are quantified so that the proportion of variance accounted for by a stated number of
principal components is locally maximal, the generalized variance of the variables is
locally minimal, or the average of the correlations is locally maximal.

The data can contain variables with nominal, ordinal, interval, and ratio scales of mea-
surement (Siegel 1956). Any mix is allowed with all methods. PROC PRINQUAL
can

• transform nominal variables by scoring the categories to optimize the covari-
ance matrix (Fisher 1938)

• transform ordinal variables monotonically by scoring the ordered categories
so that order is weakly preserved (adjacent categories can be merged) and the
covariance matrix is optimized. You can untie ties optimally or leave them tied
(Kruskal 1964). You can also transform ordinal variables to ranks.

• transform interval and ratio scale of measurement variables linearly, or
transform them nonlinearly with spline transformations (de Boor 1978; van
Rijckevorsel 1982) or monotone spline transformations (Winsberg and Ramsay
1983). In addition, nonoptimal transformations for logarithm, exponential,
power, logit, and inverse trigonometric sine are available.

• for all transformations, estimate missing data without constraint, with category
constraints (missing values within the same group get the same value), and
with order constraints (missing value estimates in adjacent groups can be tied
to preserve a specified ordering). Refer to Gifi (1990) and Young (1981).

The PROC PRINQUAL iterations produce a set of transformed variables. Each vari-
able’s new scoring satisfies a set of constraints based on the original scoring of the
variable and the specified transformation type. First, all variables are required to
satisfy transformation standardization constraints; that is, all variables have a fixed
mean and variance. The other constraints include linear constraints, weak order con-
straints, category constraints, and smoothness constraints. The new set of scores is
selected from the sets of possible scorings that do not violate the constraints so that
the method criterion is locally optimized.

The displayed output from PROC PRINQUAL is a listing of the iteration his-
tory. However, the primary output from PROC PRINQUAL is an output data set.
By default, the procedure creates an output data set that contains variables with

–TYPE–=’SCORE’. These observations contain original variables, transformed
variables, components, or data approximations. If you specify the CORRELATIONS
option in the PROC PRINQUAL statement, the data set also contains observations
with –TYPE–=’CORR’; these observations contain correlations or component struc-
ture information.
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The Three Methods of Variable Transformation

The three methods of variable transformation provided by PROC PRINQUAL are
discussed in the following sections.

The Maximum Total Variance (MTV) Method

The MTV method (Young, Takane, and de Leeuw 1978) is based on the principal
component model, and it attempts to maximize the sum of the firstr eigenvalues of
the covariance matrix. This method transforms variables to be (in a least-squares
sense) as similar to linear combinations ofr principal component score variables as
possible, wherer can be much smaller than the number of variables. This maximizes
the total variance of the firstr components (the trace of the covariance matrix of the
first r principal components). Refer to Kuhfeld, Sarle, and Young (1985).

On each iteration, the MTV algorithm alternates classical principal component anal-
ysis (Hotelling 1933) with optimal scaling (Young 1981). When all variables are
ordinal preference ratings, this corresponds to Carroll’s (1972) MDPREF analysis.
You can request the dummy variable initialization method suggested by Tenenhaus
and Vachette (1977), who independently proposed the same iterative algorithm for
nominal and interval scale-of-measurement variables.

The Minimum Generalized Variance (MGV) Method

The MGV method (Sarle 1984) uses an iterated multiple regression algorithm in an
attempt to minimize the determinant of the covariance matrix of the transformed vari-
ables. This method transforms each variable to be (in a least-squares sense) as similar
to linear combinations of the remaining variables as possible. This locally minimizes
the generalized variance of the transformed variables, the determinant of the covari-
ance matrix, the volume of the parallelepiped defined by the transformed variables,
and the sphericity (the extent to which a quadratic form in the optimized covariance
matrix defines a sphere). Refer to Kuhfeld, Sarle, and Young (1985).

On each iteration for each variable, the MGV algorithm alternates multiple regression
with optimal scaling. The multiple regression involves predicting the selected vari-
able from all other variables. You can request a dummy variable initialization using a
modification of the Tenenhaus and Vachette (1977) method that is appropriate with a
regression algorithm. This method can be viewed as a way of investigating the nature
of the linear and nonlinear dependencies in, and the rank of, a data matrix containing
variables that can be nonlinearly transformed. This method tries to create a less-than-
full-rank data matrix. The matrix contains the transformation of each variable that is
most similar to what the other transformed variables predict.

The Maximum Average Correlation (MAC) Method

The MAC method (de Leeuw 1985) uses an iterated constrained multiple regression
algorithm in an attempt to maximize the average of the elements of the correlation
matrix. This method transforms each variable to be (in a least-squares sense) as
similar to the average of the remaining variables as possible.

On each iteration for each variable, the MAC algorithm alternates computing an
equally weighted average of the other variables with optimal scaling. The MAC
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method is similar to the MGV method in that each variable is scaled to be as similar
to a linear combination of the other variables as possible, given the constraints on
the transformation. However, optimal weights are not computed. You can use the
MAC method when all variables are positively correlated or when no monotonicity
constraints are placed on any transformations. Do not use this method with nega-
tively correlated variables when some optimal transformations are constrained to be
increasing because the signs of the correlations are not taken into account. The MAC
method is useful as an initialization method for the MTV and MGV methods.

Getting Started

In the following example, PROC PRINQUAL uses the MTV method. Suppose that
the problem is to linearize a curve through three-dimensional space. Let

X1 = X3

X2 = X1 −X5

X3 = X2 −X6

where X= −1.00,−0.98,−0.96, . . . , 1.00.

These three variables define a curve in three-dimensional space. The GPLOT pro-
cedure is used to display two-dimensional views of this curve. These data are com-
pletely described by three linear components, but they define a single curve, which
could be described as a single nonlinear component.

PROC PRINQUAL is used to attempt to straighten the curve into a one-dimensional
line with a continuous transformation of each variable. The N=1 option in the PROC
PRINQUAL statement requests one principal component. The TRANSFORM state-
ment requests a cubic spline transformation with nine knots.Splinesare curves,
which are usually required to be continuous and smooth. Splines are usually de-
fined as piecewise polynomials of degreen with function values and firstn − 1
derivatives that agree at the points where they join. The abscissa values of the join
points are calledknots. The term “spline” is also used for polynomials (splines with
no knots) and piecewise polynomials with more than one discontinuous derivative.
Splines with no knots are generally smoother than splines with knots, which are gen-
erally smoother than splines with multiple discontinuous derivatives. Splines with
few knots are generally smoother than splines with many knots; however, increas-
ing the number of knots usually increases the fit of the spline function to the data.
Knots give the curve freedom to bend to more closely follow the data. Refer to Smith
(1979) for an excellent introduction to splines. For another example of using splines,
seeExample 75.1in Chapter 75, “The TRANSREG Procedure.”

One component accounts for 71 percent of the variance of the untransformed data,
and after 45 iterations, over 98 percent of the variance of the transformed data is
accounted for by one component (seeFigure 59.2). Note that the algorithm would
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not have converged with 50 iterations and the default convergence criterion, so more
iterations may be needed for this problem.

PROC PRINQUAL creates an output data set (which is not displayed) that contains
both the original and transformed variables. The original variables have the names
X1, X2, andX3. Transformed variables are namedTX1, TX2, andTX3. All obser-
vations in the output data set have–TYPE–=’SCORE’, since the CORRELATIONS
option is not specified in the PROC PRINQUAL statement. The GPLOT procedure
uses this output data set and displays the nonlinear transformations of all three vari-
ables and the nearly one-dimensional scatter plot (seeFigure 59.3andFigure 59.4).

PROC PRINQUAL tries to project each variable on the first principal component.
Notice that the curve in this example is closer to a circle than to a function from some
views (see the plot ofX3 vs. X2 in Figure 59.1) and that the first component does
not run approximately from one end point of the curve to the other (seeFigure 59.4).
Since the curve has these characteristics, PROC PRINQUAL linearizes the scatter
plot by collapsing the scatter around the principal axis, not by straightening the curve
into a single line. PROC PRINQUAL would straighten simpler curves.

The following statements produceFigure 59.1throughFigure 59.4:

* Generate a Three-Dimensional Curve;
data X;

do X = -1 to 1 by 0.02;
X1 = X ** 3;
X2 = X1 - X ** 5;
X3 = X2 - X ** 6;
output;

end;
drop X;

run;

goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=X;
title;
axis1 minor=none label=(angle=90 rotate=0)

order=(-1 to 1);
axis2 minor=none order=(-1 to 1);
plot X1*X2 / &opts name=’prqin1’;
plot X3*X2 / &opts name=’prqin2’ vreverse;
plot X1*X3 / &opts name=’prqin3’;
symbol1 color=blue;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:prqin1 2:prqin2 3:prqin3;

run; quit;
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* Try to Straighten the Curve;
proc prinqual data=X n=1 maxiter=50 covariance converge=0.007;

title ’Iteratively Derive Variable Transformations’;
transform spline(X1-X3 / nknots=9);

run;

* Plot the Transformations;
goptions nodisplay;
proc gplot;

title;
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot TX1*X1 / &opts name=’prqin4’;
plot TX2*X2 / &opts name=’prqin5’;
plot TX3*X3 / &opts name=’prqin6’;
symbol1 color=blue;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:prqin4 2:prqin6 3:prqin5;

run; quit;

* Plot the Straightened Scatter Plot;
goptions nodisplay;
proc gplot;

axis1 minor=none label=(angle=90 rotate=0)
order=(-1 to 1);

axis2 minor=none order=(-1 to 1);
plot TX1*TX2 / &opts name=’prqin7’;
plot TX3*TX2 / &opts name=’prqin8’ vreverse;
plot TX1*TX3 / &opts name=’prqin9’;
symbol1 color=blue;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:prqin7 2:prqin8 3:prqin9;

run; quit;
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Figure 59.1. Three-Dimensional Curve Example Output
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Iteratively Derive Variable Transformations

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration Average Maximum Proportion Criterion
Number Change Change of Variance Change Note

----------------------------------------------------------------------------
1 0.16253 1.33045 0.71369
2 0.07871 0.94549 0.79035 0.07667
3 0.06518 0.80219 0.86334 0.07299
4 0.05322 0.57928 0.91379 0.05045
5 0.04154 0.38404 0.94204 0.02825
6 0.03181 0.24391 0.95640 0.01436
7 0.02461 0.15397 0.96349 0.00709
8 0.01982 0.10205 0.96704 0.00355
9 0.01662 0.07393 0.96894 0.00189

10 0.01439 0.06232 0.97005 0.00112
11 0.01288 0.05436 0.97081 0.00075
12 0.01189 0.04911 0.97139 0.00058
13 0.01119 0.04531 0.97188 0.00049
14 0.01068 0.04276 0.97232 0.00044
15 0.01027 0.04115 0.97273 0.00041
16 0.00993 0.04039 0.97313 0.00040
17 0.00965 0.04249 0.97351 0.00038
18 0.00940 0.04400 0.97388 0.00037
19 0.00919 0.04509 0.97423 0.00036
20 0.00900 0.04587 0.97458 0.00034
21 0.00883 0.04643 0.97491 0.00033
22 0.00867 0.04681 0.97523 0.00032
23 0.00852 0.04705 0.97555 0.00031
24 0.00839 0.04719 0.97585 0.00031
25 0.00827 0.04724 0.97615 0.00030
26 0.00816 0.04722 0.97644 0.00029
27 0.00805 0.04713 0.97672 0.00028
28 0.00795 0.04699 0.97700 0.00027
29 0.00785 0.04680 0.97726 0.00027
30 0.00776 0.04656 0.97752 0.00026
31 0.00768 0.04629 0.97777 0.00025
32 0.00760 0.04598 0.97802 0.00025
33 0.00752 0.04564 0.97826 0.00024
34 0.00745 0.04528 0.97849 0.00023
35 0.00739 0.04489 0.97872 0.00023
36 0.00733 0.04448 0.97894 0.00022
37 0.00729 0.04405 0.97915 0.00022
38 0.00724 0.04361 0.97936 0.00021
39 0.00720 0.04315 0.97957 0.00021
40 0.00716 0.04268 0.97977 0.00020
41 0.00713 0.04219 0.97997 0.00020
42 0.00709 0.04170 0.98016 0.00019
43 0.00706 0.04120 0.98035 0.00019
44 0.00703 0.04070 0.98054 0.00019
45 0.00699 0.04019 0.98072 0.00018 Converged

Algorithm converged.

Figure 59.2. PROC PRINQUAL MTV Iteration History
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Figure 59.3. Variable Transformation Plots



3650 � Chapter 59. The PRINQUAL Procedure

Figure 59.4. Plots of the Nearly One-Dimensional Curve
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Syntax

The following statements are available in PROC PRINQUAL.

PROC PRINQUAL < options > ;
TRANSFORM transform(variables < / t-options >)

< . . . transform(variables < / t-options >) > ;
BY variables ;
FREQ variable ;
ID variables ;
WEIGHT variable ;

To use PROC PRINQUAL, you need the PROC PRINQUAL and TRANSFORM
statements. You can abbreviate alloptionsand t-optionsto their first three letters.
This is a special feature of PROC PRINQUAL and is not generally true of other
SAS/STAT procedures.

The rest of this section provides detailed syntax information for each of the preceding
statements, beginning with the PROC PRINQUAL statement. The remaining state-
ments are described in alphabetical order.

PROC PRINQUAL Statement

PROC PRINQUAL < options > ;

The PROC PRINQUAL statement starts the PRINQUAL procedure. Optionally, this
statement identifies an input data set, creates an output data set, specifies the algo-
rithm and other computational details, and controls displayed output. The following
table summarizes options available in the PROC PRINQUAL statement.
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Task Option
Identify input data set
specifies input SAS data set DATA=

Specify details for output data set
outputs approximations to transformed variables APPROXIMATIONS
specifies prefix for approximation variables APREFIX=
outputs correlations and component structure matrix CORRELATIONS
specifies a multidimensional preference analysis MDPREF
specifies output data set OUT=
specifies prefix for principal component scores variables PREFIX=
replaces raw data with transformed data REPLACE
outputs principal component scores SCORES
standardizes principal component scores STANDARD
specifies transformation standardization TSTANDARD=
specifies prefix for transformed variables TPREFIX=

Control iterative algorithm
analyzes covariances COVARIANCE
initializes using dummy variables DUMMY
specifies iterative algorithm METHOD=
specifies number of principal components N=
suppresses numerical error checking NOCHECK
specifies number of MGV models before refreshing REFRESH=
restarts iterations REITERATE
specifies singularity criterion SINGULAR=
specifies input observation type TYPE=

Control the number of iterations
specifies minimum criterion change CCONVERGE=
specifies number of first iteration to be displayed CHANGE=
specifies minimum data change CONVERGE=
specifies number of MAC initialization iterations INITITER=
specifies maximum number of iterations MAXITER=

Specify details for handling missing values
includes monotone special missing values MONOTONE=
excludes observations with missing values NOMISS
unties special missing values UNTIE=

Suppress displayed output
suppresses displayed output NOPRINT

The following list describes these options in alphabetical order.

APREFIX=name
APR=name

specifies a prefix for naming the approximation variables. By default, APREFIX=A.
Specifying the APREFIX= option also implies the APPROXIMATIONS option.
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APPROXIMATIONS
APPROX
APP

includes principal component approximations to the transformed variables (Eckart
and Young 1936) in the output data set. Variable names are constructed from
the value of the APREFIX= option and the input variable names. If you spec-
ify the APREFIX= option, then approximations are automatically included. If you
specify the APPROXIMATIONS option and not the APREFIX= option, then the
APPROXIMATIONS option uses the default, APREFIX=A, to construct the variable
names.

CCONVERGE=n
CCO=n

specifies the minimum change in the criterion being optimized that is required to
continue iterating. By default, CCONVERGE=0.0. The CCONVERGE= option is
ignored for METHOD=MAC. For the MGV method, specify CCONVERGE=-2 to
ensure data convergence.

CHANGE=n
CHA=n

specifies the number of the first iteration to be displayed in the iteration history table.
The default is CHANGE=1. When you specify a larger value forn, the firstn − 1
iterations are not displayed, thus speeding up the analysis. The CHANGE= option is
most useful with the MGV method, which is much slower than the other methods.

CONVERGE=n
CON=n

specifies the minimum average absolute change in standardized variable scores that
is required to continue iterating. By default, CONVERGE=0.00001. Average change
is computed over only those variables that can be transformed by the iterations,
that is, all LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, and
SSPLINE variables and nonoptimal transformation variables with missing values.
For more information, see the section“Optimal Transformations”on page 3662.

COVARIANCE
COV

computes the principal components from the covariance matrix. The variables are
always centered to mean zero. If you do not specify the COVARIANCE option, the
variables are also standardized to variance one, which means the analysis is based on
the correlation matrix.

CORRELATIONS
COR

includes correlations and the component structure matrix in the output data set. By
default, this information is not included.

DATA=SAS-data-set
specifies the SAS data set to be analyzed. The data set must be an ordinary SAS data
set; it cannot be a TYPE=CORR or TYPE=COV data set. If you omit the DATA=
option, the PRINQUAL procedure uses the most recently created SAS data set.
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DUMMY
DUM

expands variables specified for OPSCORE optimal transformations to dummy vari-
ables for the initialization (Tenenhaus and Vachette 1977). By default, the initial val-
ues of OPSCORE variables are the actual data values. The dummy variable nominal
initialization requires considerable time and memory, so it might not be possible to
use the DUMMY option with large data sets. No separate report of the initialization
is produced. Initialization results are incorporated into the first iteration displayed in
the iteration history table. For details, see the section“Optimal Transformations”on
page 3662.

INITITER=n
INI=n

specifies the number of MAC iterations required to initialize the data before start-
ing MTV or MGV iterations. By default, INITITER=0. The INITITER= option is
ignored if METHOD=MAC.

MAXITER=n
MAX=n

specifies the maximum number of iterations. By default, MAXITER=30.

MDPREF
MDP

specifies a multidimensional preference analysis by implying the STANDARD,
SCORES, and CORRELATIONS options. This option also suppresses warnings
when there are more variables than observations.

METHOD=MAC | MGV | MTV
MET=MAC | MGV | MTV

specifies the optimization method. By default, METHOD=MTV. Values of the
METHOD= option are MTV for maximum total variance, MGV for minimum gen-
eralized variance, or MAC for maximum average correlation. You can use the MAC
method when all variables are positively correlated or when no monotonicity con-
straints are placed on any transformations. See the section“The Three Methods of
Variable Transformation”on page 3643.

MONOTONE=two-letters
MON=two-letters

specifies the first and last special missing value in the list of those special missing val-
ues to be estimated using within-variable order and category constraints. By default,
there are no order constraints on missing value estimates. Thetwo-lettersvalue must
consist of two letters in alphabetical order. For example, MONOTONE=DF means
that the estimate of .D must be less than or equal to the estimate of .E, which must be
less than or equal to the estimate of .F; no order constraints are placed on estimates
of .–, .A through .C, and .G through .Z. For details, see the“Missing Values”section
on page 3667, and“Optimal Scaling”in Chapter 75, “The TRANSREG Procedure.”
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N=n
specifies the number of principal components to be computed. By default, N=2.

NOCHECK
NOC

turns off computationally intensive numerical error checking for the MGV method.
If you do not specify the NOCHECK option, the procedure computesR2 from the
squared length of the predicted values vector and compares this value to theR2 com-
puted from the error sum of squares that is a by-product of the sweep algorithm
(Goodnight 1978). If the two values ofR2 differ by more than the square root
of the value of the SINGULAR= option, a warning is displayed, the value of the
REFRESH= option is halved, and the model is refit after refreshing. Specifying the
NOCHECK option slightly speeds up the algorithm. Note that other less computa-
tionally intensive error checking is always performed.

NOMISS
NOM

excludes all observations with missing values from the analysis, but does not exclude
them from the OUT= data set. If you omit the NOMISS option, PROC PRINQUAL
simultaneously computes the optimal transformations of the nonmissing values and
estimates the missing values that minimize squared error.

Casewise deletion of observations with missing values occurs when you specify the
NOMISS option, when there are missing values in IDENTITY variables, when there
are weights less than or equal to 0, or when there are frequencies less than 1. Excluded
observations are output with a blank value for the–TYPE– variable, and they have
a weight of 0. They do not contribute to the analysis but are scored and transformed
assupplementaryor passive observations. See the“Passive Observations”section on
page 3674 and the“Missing Values”section on page 3667 for more information on
excluded observations and missing data.

NOPRINT
NOP

suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OUT=SAS-data-set
specifies an output SAS data set that contains results of the analysis. If you omit
the OUT= option, PROC PRINQUAL still creates an output data set and names
it using the DATAn convention. If you want to create a permanent SAS data set,
you must specify a two-level name. (Refer to the discussion inSAS Language
Reference: Concepts.) You can use the REPLACE, APPROXIMATIONS, SCORES,
and CORRELATIONS options to control what information is included in the output
data set. For details, see the“Output Data Set”section on page 3669.

PREFIX=name
PRE=name

specifies a prefix for naming the principal components. By default, PREFIX=Prin.
As a result, the principal component default names arePrin1, Prin2,. . ., Prinn.
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REFRESH=n
REF=n

specifies the number of variables to scale in the MGV method before computing a
new inverse. By default, REFRESH=5. PROC PRINQUAL uses the REFRESH=
option in the sweep algorithm of the MGV method. Large values for the REFRESH=
option make the method run faster but with increased error. Small values make the
method run more slowly and with more numerical accuracy.

REITERATE
REI

enables the PRINQUAL procedure to use previous transformations as starting points.
The REITERATE option affects only variables that are iteratively transformed
(specified as LINEAR, SPLINE, MSPLINE, SSPLINE, UNTIE, OPSCORE, and
MONOTONE). For iterative transformations, the REITERATE option requests a
search in the input data set for a variable that consists of the value of the TPREFIX=
option followed by the original variable name. If such a variable is found, it is used to
provide the initial values for the first iteration. The final transformation is a member
of the transformation family defined by the original variable, not the transformation
family defined by the initialization variable. See the“REITERATE Option Usage”
section on page 3673.

REPLACE
REP

replaces the original data with the transformed data in the output data set. The names
of the transformed variables in the output data set correspond to the names of the
original variables in the input data set. If you do not specify the REPLACE option,
both original variables and transformed variables (with names constructed from the
TPREFIX= option and the original variable names) are included in the output data
set.

SCORES
SCO

includes principal component scores in the output data set. By default, scores are not
included.

SINGULAR=n
SIN=n

specifies the largest value within rounding error of zero. By default,
SINGULAR=1E−8. The PRINQUAL procedure uses the value of the SINGULAR=
option for checking(1 − R2) when constructing full-rank matrices of predictor
variables, checking denominators before dividing, and so on.

STANDARD
STD

standardizes the principal component scores in the output data set to mean zero and
variance one instead of the default mean zero and variance equal to the corresponding
eigenvalue. See theSCORESoption.
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TPREFIX=name
TPR=name

specifies a prefix for naming the transformed variables. By default, TPREFIX=T. The
TPREFIX= option is ignored if you specify the REPLACE option.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables in the OUT= data set. By
default, TSTANDARD=ORIGINAL. When the TSTANDARD= option is specified in
the PROC statement, it specifies the default standardization for all variables. When
you specify TSTANDARD= as at-option, it overrides the default standardization just
for selected variables.

CENTER centers the output variables to mean zero, but the variances are the
same as the variances of the input variables.

NOMISS sets the means and variances of the transformed variables in the
OUT= data set, computed over all output values that correspond
to nonmissing values in the input data set, to the means and vari-
ances computed from the nonmissing observations of the original
variables. The TSTANDARD=NOMISS specification is useful with
missing data. When a variable is linearly transformed, the final vari-
able contains the original nonmissing values and the missing value
estimates. In other words, the nonmissing values are unchanged.
If your data have no missing values, TSTANDARD=NOMISS and
TSTANDARD=ORIGINAL produce the same results.

ORIGINAL sets the means and variances of the transformed variables to the means
and variances of the original variables. This is the default.

Z standardizes the variables to mean zero, variance one.

For nonoptimal variable transformations, the means and variances of the original vari-
ables are actually the means and variances of the nonlinearly transformed variables,
unless you specify the ORIGINAL nonoptimalt-option in the TRANSFORM state-
ment. For example, if a variableX with no missing values is specified as LOG, then,
by default, the final transformation ofX is simply LOG(X), not LOG(X) standardized
to the mean ofX and variance ofX.

TYPE=’text ’|name
TYP=’text ’|name

specifies the valid value for the–TYPE– variable in the input data set. If PROC
PRINQUAL finds an input–TYPE– variable, it uses only observations with a

–TYPE– value that matches the TYPE= value. This enables a PROC PRINQUAL
OUT= data set containing correlations to be used as input to PROC PRINQUAL with-
out requiring a WHERE statement to exclude the correlations. If a–TYPE– variable
is not in the data set, all observations are used. The default is TYPE=’SCORE’, so if
you do not specify the TYPE= option, only observations with–TYPE– = ’SCORE’
are used.
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PROC PRINQUAL displays a note when it reads observations with blank values of

–TYPE– , but it does not automatically exclude those observations. Data sets created
by the TRANSREG and PRINQUAL procedures have blank–TYPE– values for
those observations that were excluded from the analysis due to nonpositive weights,
nonpositive frequencies, or missing data. When these observations are read again,
they are excluded for the same reason that they were excluded from their original
analysis, not because their–TYPE– value is blank.

UNTIE=two-letters
UNT=two-letters

specifies the first and last special missing value in the list of those special missing
values that are to be estimated with within-variable order constraints but no category
constraints. Thetwo-lettersvalue must consist of two letters in alphabetical order.
By default, there are category constraints but no order constraints on special missing
value estimates. For details, see the“Missing Values”section on page 3667. Also,
see“Optimal Scaling”in Chapter 75, “The TRANSREG Procedure.”

BY Statement

BY variables ;

You can specify a BY statement with PROC PRINQUAL to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement options NOTSORTED or DESCENDING in the BY
statement for the PRINQUAL procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other
values in the observation, list the variable’s name in a FREQ statement. PROC
PRINQUAL then treats the data set as if each observation appearedn times, where
n is the value of the FREQ variable for the observation. Noninteger values of the
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FREQ variable are truncated to the largest integer less than the FREQ value. The
observation is used in the analysis only if the value of the FREQ statement variable
is greater than or equal to 1.

ID Statement

ID variables ;

The ID statement includes additional character or numeric variables in the output data
set. The variables must be contained in the input data set.

TRANSFORM Statement

TRANSFORM transform(variables < / t-options >)

< . . . transform(variables < / t-options >) > ;

The TRANSFORM statement lists the variables to be analyzed (variables) and spec-
ifies the transformation (transform) to apply to each variable listed. You must specify
a transformation for each variable list in the TRANSFORM statement. The variables
are variables in the data set. Thet-optionsare transformation options that provide
details for the transformation; these depend on thetransformchosen. Thet-options
are listed after a slash in the parentheses that enclose the variables.

For example, the following statements find a quadratic polynomial transformation of
all variables in the data set:

proc prinqual;
transform spline(_all_ / degree=2);

run;

Or, if N1 throughN10 are nominal variables andM1 throughM10 are ordinal vari-
ables, you can use the following statements.

proc prinqual;
transform opscore(N1-N10) monotone(M1-M10);

run;

The following sections describe the transformations available (specified withtrans-
form) and the options available for some of the transformations (specified witht-
options).

Families of Transformations

There are three types of transformation families: nonoptimal, optimal, and other.
Each family is summarized as follows.

Nonoptimal transformationspreprocess the specified variables, replacing each one
with a single new nonoptimal, nonlinear transforma-
tion.
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Optimal transformations replace the specified variables with new, iteratively de-
rived optimal transformation variables that fit the spec-
ified model better than the original variable (except
for contrived cases where the transformation fits the
model exactly as well as the original variable).

Other transformations are the IDENTITY and SSPLINE transformations.
These do not fit into either of the preceding categories.

The following table summarizes the transformations in each family.

Members
Family of Family
Nonoptimal transformations
inverse trigonometric sine ARSIN
exponential EXP
logarithm LOG
logit LOGIT
raises variables to specified power POWER
transforms to ranks RANK
Optimal transformations
linear LINEAR
monotonic, ties preserved MONOTONE
monotonic B-spline MSPLINE
optimal scoring OPSCORE
B-spline SPLINE
monotonic, ties not preserved UNTIE

Other transformations
identity, no transformation IDENTITY
iterative smoothing spline SSPLINE

Thetransformis followed by a variable (or list of variables) enclosed in parentheses.
Optionally, depending on thetransform, the parentheses can also containt-options,
which follow the variables and a slash. For example,

transform log(X Y);

computes the LOG transformation ofX andY. A more complex example is

transform spline(Y / nknots=2) log(X1 X2 X3);

The preceding statement uses the SPLINE transformation of the variableY and
the LOG transformation of the variablesX1, X2, andX3. In addition, it uses the
NKNOTS= option with the SPLINE transformation and specifies two knots.

The rest of this section provides syntax details for members of the three families of
transformations. Thet-optionsare discussed in the section“Transformation Options
(t-options)”on page 3663.
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Nonoptimal Transformations

Nonoptimal transformations are computed before the iterative algorithm begins.
Nonoptimal transformations create a single new transformed variable that replaces
the original variable. The new variable is not transformed by the subsequent iterative
algorithms (except for a possible linear transformation and missing value estimation).

The following list provides syntax and details for nonoptimal variable transforma-
tions.

ARSIN
ARS

finds an inverse trigonometric sine transformation. Variables following ARSIN must
be numeric, in the interval(−1.0 ≤ X ≤ 1.0), and they are typically continuous.

EXP
exponentiates variables (the variableX is transformed toaX ). To specify the value
of a, use the PARAMETER=t-option. By default,a is the mathematical constant
e = 2.718 . . .. Variables following EXP must be numeric, and they are typically
continuous.

LOG
transforms variables to logarithms (the variableX is transformed tologa(X)). To
specify the base of the logarithm, use the PARAMETER=t-option. The default is a
natural logarithm with basee = 2.718 . . .. Variables following LOG must be numeric
and positive, and they are typically continuous.

LOGIT
finds a logit transformation on the variables. The logit ofX is log(X/(1−X)). Unlike
other transformations, LOGIT does not have a three-letter abbreviation. Variables
following LOGIT must be numeric, in the interval(0.0 < X < 1.0), and they are
typically continuous.

POWER
POW

raises variables to a specified power (the variableX is transformed toXa). You must
specify the power parametera by specifying the PARAMETER=t-option following
the variables:

power(variable / parameter=number)

You can use POWER for squaring variables (PARAMETER=2), reciprocal trans-
formations (PARAMETER=−1), square roots (PARAMETER=0.5), and so on.
Variables following POWER must be numeric, and they are typically continuous.

RANK
RAN

transforms variables to ranks. Ranks are averaged within ties. The smallest input
value is assigned the smallest rank. Variables following RANK must be numeric.
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Optimal Transformations

Optimal transformations are iteratively derived. Missing values for these types of
variables can be optimally estimated (see the“Missing Values”section on page 3667).

The following list provides syntax and details for optimal transformations.

LINEAR
LIN

finds an optimal linear transformation of each variable. For variables with no missing
values, the transformed variable is the same as the original variable. For variables
with missing values, the transformed nonmissing values have a different scale and
origin than the original values. Variables following LINEAR must be numeric.

MONOTONE
MON

finds a monotonic transformation of each variable, with the restriction that ties are
preserved. The Kruskal (1964) secondary least-squares monotonic transformation is
used. This transformation weakly preserves order and category membership (ties).
Variables following MONOTONE must be numeric, and they are typically discrete.

MSPLINE
MSP

finds a monotonically increasing B-spline transformation with monotonic coefficients
(de Boor 1978; de Leeuw 1986) of each variable. You can specify the DEGREE=,
KNOTS=, NKNOTS=, and EVENLYt-optionswith MSPLINE. By default, PROC
PRINQUAL uses a quadratic spline. Variables following MSPLINE must be numeric,
and they are typically continuous.

OPSCORE
OPS

finds an optimal scoring of each variable. The OPSCORE transformation assigns
scores to each class (level) of the variable. Fisher’s (1938) optimal scoring method
is used. Variables following OPSCORE can be either character or numeric; numeric
variables should be discrete.

SPLINE
SPL

finds a B-spline transformation (de Boor 1978) of each variable. By default,
PROC PRINQUAL uses a cubic polynomial transformation. You can specify the
DEGREE=, KNOTS=, NKNOTS=, and EVENLYt-optionswith SPLINE. Variables
following SPLINE must be numeric, and they are typically continuous.

UNTIE
UNT

finds a monotonic transformation of each variable without the restriction that ties are
preserved. The PRINQUAL procedure uses the Kruskal (1964) primary least-squares
monotonic transformation method. This transformation weakly preserves order but
not category membership (it may untie some previously tied values). Variables fol-
lowing UNTIE must be numeric, and they are typically discrete.
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Other Transformations

IDENTITY
IDE

specifies variables that are not changed by the iterations. The IDENTITY trans-
formation is used for variables when no transformation and no missing data es-
timation are desired. However, the REFLECT, ADDITIVE, TSTANDARD=Z,
and TSTANDARD=CENTER options can linearly transform all variables, includ-
ing IDENTITY variables, after the iterations. Observations with missing values in
IDENTITY variables are excluded from the analysis, and no optimal scores are com-
puted for missing values in IDENTITY variables. Variables following IDENTITY
must be numeric.

SSPLINE
SSP

finds an iterative smoothing spline transformation of each variable. The SSPLINE
transformation does not generally minimize squared error. You can specify the
smoothing parameter with either the SM=t-option or the PARAMETER=t-option.
The default smoothing parameter is SM=0. Variables following SSPLINE must be
numeric, and they are typically continuous.

Transformation Options (t-options)

If you use a nonoptimal, optimal or other transformation, you can uset-options, which
specify additional details of the transformation. Thet-optionsare specified within the
parentheses that enclose variables and are listed after a slash. For example,

proc prinqual;
transform spline(X Y / nknots=3);

run;

The preceding statements find an optimal variable transformation (SPLINE) of the
variablesX andY and use at-option to specify the number of knots (NKNOTS=).
The following is a more complex example.

proc prinqual;
transform spline(Y / nknots=3) spline(X1 X2 / nknots=6);

run;

These statements use the SPLINE transformation for all three variables and uset-
optionsas well; the NKNOTS= option specifies the number of knots for the spline.

The following sections discuss thet-optionsavailable for nonoptimal, optimal, and
other transformations.

The following table summarizes thet-options.
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Table 59.1. t-options Available in the TRANSFORM Statement

Task Option
Nonoptimal transformation t-options
uses original mean and variance ORIGINAL

Parameter t-options
specifies miscellaneous parameters PARAMETER=
specifies smoothing parameter SM=

Spline t-options
specifies the degree of the spline DEGREE=
spaces the knots evenly EVENLY
specifies the interior knots or break points KNOTS=
createsn knots NKNOTS=

Other t-options
renames variables NAME=
reflects the variable around the mean REFLECT
specifies transformation standardization TSTANDARD=

Nonoptimal Transformation t-options

ORIGINAL
ORI

matches the variable’s final mean and variance to the mean and variance of the origi-
nal variable. By default, the mean and variance are based on the transformed values.
The ORIGINAL t-option is available for all of the nonoptimal transformations.

Parameter t-options

PARAMETER=number
PAR=number

specifies the transformation parameter. The PARAMETER=t-option is available
for the EXP, LOG, POWER, SMOOTH, and SSPLINE transformations. For EXP,
the parameter is the value to be exponentiated; for LOG, the parameter is the base
value; and for POWER, the parameter is the power. For SMOOTH and SSPLINE,
the parameter is the raw smoothing parameter. (You can specify a SAS/GRAPH-style
smoothing parameter with the SM=t-option.) The default for the PARAMETER=t-
optionfor the LOG and EXP transformations ise = 2.718 . . .. The default parameter
for SSPLINE is computed from SM=0. For the POWER transformation, you must
specify the PARAMETER=t-option; there is no default.

SM=n
specifies a SAS/GRAPH-style smoothing parameter in the range 0 to 100. You can
specify the SM=t-optiononly with the SSPLINE transformation. The smoothness of
the function increases as the value of the smoothing parameter increases. By default,
SM=0.
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Spline t-options

The followingt-optionsare available with the SPLINE and MSPLINE optimal trans-
formations.

DEGREE=n
DEG=n

specifies the degree of the B-spline transformation. The degree must be a nonnegative
integer. The defaults are DEGREE=3 for SPLINE variables and DEGREE=2 for
MSPLINE variables.

The polynomial degree should be a small integer, usually 0, 1, 2, or 3. Larger values
are rarely useful. If you have any doubt as to what degree to specify, use the default.

EVENLY
EVE

is used with the NKNOTS=t-option to space the knots evenly. The differences be-
tween adjacent knots are constant. If you specify NKNOTS=k, k knots are created
at

minimum+ i((maximum−minimum)/(k + 1))

for i = 1, . . . , k. For example, if you specify

spline(X / knots=2 evenly)

and the variableX has a minimum of 4 and a maximum of 10, then the two interior
knots are 6 and 8. Without the EVENLYt-option, the NKNOTS=t-option places
knots at percentiles, so the knots are not evenly spaced.

KNOTS=number-list | n TO m BY p
KNO=number-list | n TO m BY p

specifies the interior knots or break points. By default, there are no knots. The first
time you specify a value in the knot list, it indicates a discontinuity in thenth (from
DEGREE=n) derivative of the transformation function at the value of the knot. The
second mention of a value indicates a discontinuity in the(n− 1)th derivative of the
transformation function at the value of the knot. Knots can be repeated any number
of times for decreasing smoothness at the break points, but the values in the knot list
can never decrease.

You cannot use the KNOTS=t-optionwith the NKNOTS=t-option. You should keep
the number of knots small (see the section“Specifying the Number of Knots”on page
4613 inChapter 75, “The TRANSREG Procedure.”).

NKNOTS=n
NKN=n

createsn knots, the first at the100/(n + 1) percentile, the second at the200/(n + 1)
percentile, and so on. Knots are always placed at data values; there is no interpola-
tion. For example, if NKNOTS=3, knots are placed at the twenty-fifth percentile, the
median, and the seventy-fifth percentile. By default, NKNOTS=0. The NKNOTS=
t-optionmust be≥ 0.
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You cannot use the NKNOTS=t-optionwith the KNOTS=t-option. You should keep
the number of knots small (see the section“Specifying the Number of Knots”on page
4613 inChapter 75, “The TRANSREG Procedure,”).

Other t-options

The followingt-optionsare available for all transformations.

NAME=(variable-list)
NAM=(variable-list)

renames variables as they are used in the TRANSFORM statement. This option al-
lows a variable to be used more than once. For example, if the variableX is a character
variable, then the following step stores both the original character variableX and a
numeric variableXC that contains category numbers in the output data set.

proc prinqual data=A n=1 out=B;
transform linear(Y) opscore(X / name=(XC));
id X;

run;

REFLECT
REF

reflects the transformation

y = −(y − ȳ) + ȳ

after the iterations are completed and before the final standardization and results cal-
culations.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables in the OUT= data set. By
default, TSTANDARD=ORIGINAL. When the TSTANDARD= option is specified
in the PROC PRINQUAL statement, it specifies the default standardization for all
variables. When you specify TSTANDARD= as at-option, it overrides the default
standardization just for selected variables.

WEIGHT Statement

WEIGHT variable ;

When you use a WEIGHT statement, a weighted residual sum of squares is mini-
mized. The WEIGHT statement has no effect on degrees of freedom or number of
observations, but the weights affect most other calculations. The observation is used
in the analysis only if the value of the WEIGHT statement variable is greater than 0.
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Details

Missing Values

PROC PRINQUAL can estimate missing values, subject to optional constraints, so
that the covariance matrix is optimized. The procedure provides several approaches
for handling missing data. When you specify the NOMISS option in the PROC
PRINQUAL statement, observations with missing values are excluded from the anal-
ysis. Otherwise, missing data are estimated, using variable means as initial estimates.
Missing values for OPSCORE character variables are treated the same as any other
category during the initialization. See the section“Missing Values”on page 4599 in
Chapter 75, “The TRANSREG Procedure,”for more information on missing data
estimation.

Controlling the Number of Iterations

Several options in the PROC PRINQUAL statement control the number of iterations
performed. Iteration terminates when any one of the following conditions is satisfied:

• The number of iterations equals the value of the MAXITER= option.

• The average absolute change in variable scores from one iteration to the next
is less than the value of the CONVERGE= option.

• The criterion change is less than the value of the CCONVERGE= option.

With the MTV method, the change in the proportion of variance criterion can become
negative when the data have converged so that it is numerically impossible, within
machine precision, to increase the criterion. Because the MTV algorithm is conver-
gent, a negative criterion change is the result of very small amounts of rounding error.
The MGV method displays the average squared multiple correlation (which is not the
criterion being optimized), so the criterion change can become negative well before
convergence. The MAC method criterion (average correlation) is never computed, so
the CCONVERGE= option is ignored for METHOD=MAC. You can specify a neg-
ative value for either convergence option if you want to define convergence only in
terms of the other convergence option.

With the MGV method, iterations minimize the generalized variance (determinant),
but the generalized variance is not reported for two reasons. First, in most data sets,
the generalized variance is almost always near zero (or will be after one or two it-
erations), which is its minimum. This does not mean that iteration is complete; it
simply means that at least one multiple correlation is at or near one. The algorithm
continues minimizing the determinant in(m − 1), (m − 2) dimensions, and so on.
Because the generalized variance is almost always near zero, it does not provide a
good indication of how the iterations are progressing. The meanR2 provides a better
indication of convergence. The second reason for not reporting the generalized vari-
ance is that almost no additional time is required to computeR2 values for each step.
This is because the error sum of squares is a by-product of the algorithm at each step.
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Computing the determinant at the end of each iteration adds more computations to an
already computationally intensive algorithm.

You can increase the number of iterations to ensure convergence by increasing the
value of the MAXITER= option and decreasing the value of the CONVERGE= op-
tion. Because the average absolute change in standardized variable scores seldom
decreases below 1E−11, you typically do not specify a value for the CONVERGE=
option less than 1E−8 or 1E−10. Most of the data changes occur during the first few
iterations, but the data can still change after 50 or even 100 iterations. You can try dif-
ferent combinations of values for the CONVERGE= and MAXITER= options to en-
sure convergence without extreme overiteration. If the data do not converge with the
default specifications, specify the REITERATE option, or try CONVERGE=1E−8
and MAXITER=50, or CONVERGE=1E−10 and MAXITER=200.

Performing a Principal Component Analysis of Transformed
Data

PROC PRINQUAL produces an iteration history table that displays (for each itera-
tion) the iteration number, the maximum and average absolute change in standardized
variable scores computed over the iteratively transformed variables, the criterion be-
ing optimized, and the criterion change. In order to examine the results of the analysis
in more detail, you can analyze the information in the output data set using other SAS
procedures.

Specifically, use the PRINCOMP procedure to perform a components analysis on the
transformed data. PROC PRINCOMP accepts the raw data from PROC PRINQUAL
but issues a warning because the PROC PRINQUAL output data set has–NAME–
and–TYPE– variables, but it is not a TYPE=CORR data set. You can ignore this
warning.

If the output data set contains both scores and correlations, you must subset it for
analysis with PROC PRINCOMP. Otherwise, the correlation observations are treated
as ordinary observations and the PROC PRINCOMP results are incorrect. For exam-
ple, consider the following statements:

proc prinqual data=a out=b correlations replace;
transform spline(var1-var50 / nknots=3);

run;

proc princomp data=b;
where _TYPE_=’SCORE’;

run;

Also note that the proportion of variance accounted for, as reported by PROC
PRINCOMP, can exceed the proportion of variance accounted for in the last PROC
PRINQUAL iteration. This is because PROC PRINQUAL reports the variance ac-
counted for by the components analysis that generated the current scaling of the data,
not a components analysis of the current scaling of the data.
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Using the MAC Method

You can use the MAC algorithm alone by specifying METHOD=MAC, or you
can use it as an initialization algorithm for METHOD=MTV and METHOD=MGV
analyses by specifying the iteration option INITITER=. If any variables are neg-
atively correlated, do not use the MAC algorithm with monotonic transformations
(MONOTONE, UNTIE, and MSPLINE) because the signs of the correlations among
the variables are not used when computing variable approximations. If an approx-
imation is negatively correlated with the original variable, monotone constraints
would make the optimally scaled variable a constant, which is not allowed (see
the section“Avoiding Constant Transformations”on page 3672). When used with
other transformations, the MAC algorithm can reverse the scoring of the variables.
So, for example, if variableX is designated LOG(X) with METHOD=MAC and
TSTANDARD=ORIGINAL, the final transformation (for example,TX) may not be
LOG(X). If TX is not LOG(X), it has the same mean as LOG(X) and the same
variance as LOG(X), and it is perfectly negatively correlated with LOG(X). PROC
PRINQUAL displays a note for every variable that is reversed in this manner.

You can use the METHOD=MAC algorithm to reverse the scorings of some rating
variables before a factor analysis. The correlations among bipolar ratings such as
’like - dislike’, ’hot - cold’, and ’fragile - monumental’ are typically both positive
and negative. If some items are reversed to say ’dislike - like’, ’cold - hot’, and ’mon-
umental - fragile’, some of the negative signs can be eliminated, and the factor pattern
matrix would be cleaner. You can use PROC PRINQUAL with METHOD=MAC and
LINEAR transformations to reverse some items, maximizing the average of the in-
tercorrelations.

Output Data Set

The PRINQUAL procedure produces an output data set by default. By specifying the
OUT=, APPROXIMATIONS, SCORES, REPLACE, and CORRELATIONS options
in the PROC PRINQUAL statement, you can name this data set and control, to some
extent, the contents of it.

Structure and Content

The output data set can have 16 different forms, depending on the specified combi-
nations of the REPLACE, SCORES, APPROXIMATIONS, and CORRELATIONS
options. You can specify any combination of these options. To illustrate, assume that
the data matrix consists ofN observations andm variables, andn components are
computed. Then, define the following:

D the N × m matrix of original data with variable names that correspond to
the names of the variables in the input data set. However, when you use
the OPSCORE transformation on character variables, those variables are re-
placed by numeric variables that contain category numbers

T theN ×m matrix of transformed data with variable names constructed from
the value of the TPREFIX= option (if you do not specify the REPLACE
option) and the names of the variables in the input data set
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S theN ×n matrix of component scores with variable names constructed from
the value of the PREFIX= option and integers

A theN × m matrix of data approximations with variable names constructed
from the value of the APREFIX= option and the names of the variables in
the input data set

RTD them×m matrix of correlations between the transformed variables and the
original variables with variable names that correspond to the names of the
variables in the input data set. When missing values exist, casewise deletion
is used to compute the correlations.

RTT them ×m matrix of correlations among the transformed variables with the
variable names constructed from the value of the TPREFIX= option (if you
do not specify the REPLACE option) and the names of the variables in the
input data set

RTS the m × n matrix of correlations between the transformed variables and
the principal component scores (component structure matrix) with variable
names constructed from the value of the PREFIX= option and integers

RTA them×m matrix of correlations between the transformed variables and the
variable approximations with variable names constructed from the value of
the APREFIX= option and the names of the variables in the input data set

To create a data set WORK.A that contains all information, specify the following
options in the PROC PRINQUAL statement

proc prinqual scores approximations correlations out=a;

and also use a TRANSFORM statement appropriate for your data. Then the
WORK.A data set contains

D T S A

RTD RTT RTS RTA

To eliminate the bottom partitions that contain the correlations and component struc-
ture, do not specify the CORRELATIONS option. For example, use the following
PROC PRINQUAL statement with an appropriate TRANSFORM statement.

proc prinqual scores approximations out=a;

Then the WORK.A data set contains

D T S A

If you use the following PROC PRINQUAL statement (with an appropriate
TRANSFORM statement)
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proc prinqual out=a;

this creates a data set WORK.A of the form

D T

To output transformed data and component scores only, specify the following options
in the PROC PRINQUAL statement:

proc prinqual replace scores out=a;

Then the WORK.A data set contains

T S

–TYPE– and –NAME– Variables

In addition to the preceding information, the output data set contains two character
variables, the variable–TYPE– (length 8) and the variable–NAME– (length 32).

The–TYPE– variable has the value ’SCORE’ if the observation contains variables,
transformed variables, components, or data approximations; the–TYPE– variable
has the value ’CORR’ if the observation contains correlations or component structure.

By default, the–NAME– variable has values ’ROW1’, ’ROW2’, and so on, for
the observations with–TYPE–=’SCORE’. If you use an ID statement, the variable

–NAME– contains the formatted ID variable for SCORES observations. The values
of the variable–NAME– for observations with–TYPE–=’CORR’ are the names of
the transformed variables.

Certain procedures, such as PROC PRINCOMP, which can use the PROC
PRINQUAL output data set, issue a warning that the PROC PRINQUAL data set
contains–NAME– and–TYPE– variables but is not a TYPE=CORR data set. You
can ignore this warning.

Variable Names

The TPREFIX=, APREFIX=, and PREFIX= options specify prefixes for the trans-
formed and approximation variable names and for principal component score vari-
ables, respectively. PROC PRINQUAL constructs transformed and approximation
variable names from a prefix and the first characters of the original variable name.
The number of characters in the prefix plus the number of characters in the original
variable name (including the final digits, if any) required to uniquely designate the
new variables should not exceed 32. For example, if the APREFIX= parameter that
you specify is one character, PROC PRINQUAL adds the first 31 characters of the
original variable name; if your prefix is four characters, only the first 28 characters of
the original variable name are added.
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Effect of the TSTANDARD= and COVARIANCE Options

The values in the output data set are affected by the TSTANDARD= and
COVARIANCE options. If you specify TSTANDARD=NOMISS, the NOMISS
standardization is performed on the transformed data after the iterations have been
completed, but before the output data set is created. The new means and variances are
used in creating the output data set. Then, if you do not specify the COVARIANCE
option, the data are transformed to mean zero and variance one. The principal
component scores and data approximations are computed from the resulting matrix.
The data are then linearly transformed to have the mean and variance specified by the
TSTANDARD= option. The data approximations are transformed so that the means
within each pair of a transformed variable and its approximation are the same. The
ratio of the variance of a variable approximation to the variance of the corresponding
transformed variable equals the proportion of the variance of the variable that is
accounted for by the components model.

If you specify the COVARIANCE option and do not specify TSTANDARD=Z,
you can input the transformed data to PROC PRINCOMP, again specifying the
COVARIANCE option, to perform a components analysis of the results of PROC
PRINQUAL. Similarly, if you do not specify the COVARIANCE option with PROC
PRINQUAL and you input the transformed data to PROC PRINCOMP without the
COVARIANCE option, you receive the same report. However, some combina-
tions of PROC PRINQUAL options, such as COVARIANCE and TSTANDARD=Z,
while valid, produce approximations and scores that cannot be reproduced by PROC
PRINCOMP.

The component scores in the output data set are computed from the correla-
tions among the transformed variables, or from the covariances if you speci-
fied the COVARIANCE option. The component scores are computed after the
TSTANDARD=NOMISS transformation, if specified. The means of the component
scores in the output data set are always zero. The variances equal the corresponding
eigenvalues, unless you specify the STANDARD option; then the variances are set to
one.

Avoiding Constant Transformations

There are times when the optimal scaling produces a constant transformed variable.
This can happen with the MONOTONE, UNTIE, and MSPLINE transformations
when the target is negatively correlated with the original input variable. It can hap-
pen with all transformations when the target is uncorrelated with the original input
variable. When this happens, the procedure modifies the target to avoid a constant
transformation. This strategy avoids certain nonoptimal solutions.

If the transformation is monotonic and a constant transformed variable results, the
procedure multiplies the target by−1 and tries the optimal scaling again. If the trans-
formation is not monotonic or if the multiplication by−1 did not help, the procedure
tries using a random target. If the transformation is still constant, the previous non-
constant transformation is retained. When a constant transformation is avoided by
any strategy, this message is displayed: “A constant transformation was avoided for
name.”
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Constant Variables

Constant and almost constant variables are zeroed and ignored.

Character OPSCORE Variables

Character OPSCORE variables are replaced by a numeric variable containing cate-
gory numbers before the iterations, and the character values are discarded. Only the
first eight characters are considered when determining category membership. If you
want the original character variable in the output data set, give it a different name
in the OPSCORE specificiation (OPSCORE(x / name=(x2)) and name the original
variable on the ID statement (IDx;).

REITERATE Option Usage

You can use the REITERATE option to perform additional iterations when PROC
PRINQUAL stops before the data have adequately converged. For example, suppose
that you execute the following code:

proc prinqual data=A cor out=B;
transform mspline(X1-X5);

run;

If the transformations do not converge in the default 30 iterations, you can perform
more iterations without repeating the first 30 iterations.

proc prinqual data=B reiterate cor out=B;
transform mspline(X1-X5);

run;

Note that a WHERE statement is not necessary to exclude the correlation observa-
tions. They are automatically excluded because their–TYPE– variable value is not
’SCORE’.

You can also use the REITERATE option to specify starting values other than the
original values for the transformations. Providing alternate starting points may avoid
local optima. Here are two examples.

proc prinqual data=A out=B;
transform rank(X1-X5);

run;

proc prinqual data=B reiterate out=C;
/* Use ranks as the starting point. */
transform monotone(X1-X5);

run;

data B;
set A;



3674 � Chapter 59. The PRINQUAL Procedure

array TXS[5] TX1-TX5;
do j = 1 to 5;

TXS[j] = normal(0);
end;

run;

proc prinqual data=B reiterate out=C;
/* Use a random starting point. */
transform monotone(X1-X5);

run;

Note that divergence with the REITERATE option, particularly in the second iter-
ation, is not an error since the initial transformation is not required to be a valid
member of the transformation family. When you specify the REITERATE option,
the iteration does not terminate when the criterion change is negative during the first
ten iterations.

Passive Observations

Observations may be excluded from the analysis for several reasons, including zero
weight, zero frequency, missing values in variables designated IDENTITY, or miss-
ing values with the NOMISS option specified. These observations are passive in that
they do not contribute to determining transformations,R2, total variance, and so on.
However, some information can be computed for them, such as approximations, prin-
cipal component scores, and transformed values. Passive observations in the output
data set have a blank value for the variable–TYPE– .

Missing value estimates for passive observations may converge slowly with
METHOD=MTV. In the following example, the missing value estimates should be 2,
5, and 8. Since the nonpassive observations do not change, the procedure converges
in one iteration but the missing value estimates do not converge. The extra iterations
produced by specifying CONVERGE=−1 and CCONVERGE=−1, as shown in the
second PROC PRINQUAL step, generate the expected results.

data A;
input X Y;
datalines;

1 1
2 .
3 3
4 4
5 .
6 6
7 7
8 .
9 9
;

proc prinqual nomiss data=A nomiss n=1 out=B method=mtv;
transform lin(X Y);

run;
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proc print;
run;

proc prinqual nomiss data=A nomiss n=1 out=B method=mtv
converge=-1 cconverge=-1;
transform lin(X Y);

run;

proc print;
run;

Computational Resources

This section provides information on the computational resources required to run
PROC PRINQUAL.

Let

N = number of observations

m = number of variables

n = number of principal components

k = maximum spline degree

p = maximum number of knots

• For the MTV algorithm, more than

56m + 8Nm + 8 (6N + (p + k + 2)(p + k + 11))

bytes of array space are required.

• For the MGV and MAC algorithms, more than56m plus the maximum of the
data matrix size and the optimal scaling work space bytes of array space are
required. The data matrix size is8Nm bytes. The optimal scaling work space
requires less than8 (6N + (p + k + 2)(p + k + 11)) bytes.

• For the MTV and MGV algorithms, more than56m + 4m(m + 1) bytes of
array space are required.

• PROC PRINQUAL tries to store the original and transformed data in memory.
If there is not enough memory, a utility data set is used, potentially resulting in
a large increase in execution time. The amount of memory for the preceding
data formulas are underestimates of the amount of memory needed to handle
most problems. These formulas give an absolute minimum amount of mem-
ory required. If a utility data set is used, and if memory could be used with
perfect efficiency, then roughly the amount of memory stated previously would
be needed. In reality, most problems require at least two or three times the
minimum.



3676 � Chapter 59. The PRINQUAL Procedure

• PROC PRINQUAL sorts the data once. The sort time is roughly proportional
to mN3/2.

• For the MTV algorithm, the time required to compute the variable approxima-
tions is roughly proportional to2Nm2 + 5m3 + nm2.

• For the MGV algorithm, one regression analysis per iteration is required to
compute model parameter estimates. The time required for accumulating the
crossproduct matrix is roughly proportional toNm2. The time required to
compute the regression coefficients is roughly proportional tom3. For each
variable for each iteration, the swept crossproduct matrix is updated with time
roughly proportional to m(N+m). The swept crossproduct matrix is updated
for each variable with time roughly proportional tom2, until computations are
refreshed, requiring all sweeps to be performed again.

• The only computationally intensive part of the MAC algorithm is the optimal
scaling, since variable approximations are simple averages.

• Each optimal scaling is a multiple regression problem, although some trans-
formations are handled with faster special case algorithms. The number of
regressors for the optimal scaling problems depends on the original values of
the variable and the type of transformation. For each monotone spline transfor-
mation, an unknown number of multiple regressions is required to find a set of
coefficients that satisfies the constraints. The B-spline basis is generated twice
for each SPLINE and MSPLINE transformation for each iteration. The time
required to generate the B-spline basis is roughly proportional toNk2.

Displayed Output

The main output from the PRINQUAL procedure is the output data set. However, the
procedure does produce displayed output in the form of an iteration history table that
includes the following:

• Iteration Number

• the criterion being optimized

• criterion change

• Maximum and Average Absolute Change in standardized variable scores com-
puted over variables that can be iteratively transformed

• notes

• final convergence status

ODS Table Names

PROC PRINQUAL assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

For more information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 59.2. ODS Tables Produced in PROC PRINQUAL

ODS Table Name Description Statement Option
ConvergenceStatus Convergence Status default
Footnotes Iteration History Footnotes default
MAC MAC Iteration History PROC METHOD=MAC
MGV MGV Iteration History PROC METHOD=MGV
MTV MTV Iteration History PROC METHOD=MTV

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the PRINQUAL
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release. To request a graph you must specify the ODS GRAPHICS statement in
addition to the following option. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

The following table shows the available plotoption.

Option Plot Description
MDPREF Multidimensional preference analysis

ODS Graph Names

PROC PRINQUAL assigns a name to the graph it creates using ODS. You can use
this name to reference the graph when using ODS. The name is listed inTable 59.3.

To request a graph you must specify the ODS GRAPHICS statement in addition to
the option indicated inTable 59.3. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

Table 59.3. ODS Graphics Produced by PROC PRINQUAL

ODS Graph Name Plot Description Statement Option
PrinqualPlot Multidimensional preference analysis PROC MDPREF

Examples

Example 59.1. Multidimensional Preference Analysis of Cars
Data

This example uses PROC PRINQUAL to perform a nonmetric multidimensional pref-
erence (MDPREF) analysis (Carroll 1972). MDPREF analysis is a principal compo-
nent analysis of a data matrix with columns that correspond to people and rows that
correspond to objects. The data are ratings or rankings of each person’s preference
for each object. The data are the transpose of the usual multivariate data matrix. (In
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other words, the columns are people instead of the more typical matrix where rows
represent people.) The final result of an MDPREF analysis is a biplot (Gabriel 1981)
of the resulting preference space. A biplot displays the judges and objects in a single
plot by projecting them onto the plane in the transformed variable space that accounts
for the most variance.

The data are ratings by 25 judges of their preference for each of 17 automobiles.
The ratings are made on a 0 to 9 scale, with 0 meaning very weak preference and 9
meaning very strong preference for the automobile. These judgments were made in
1980 about that year’s products. There are two additional variables that indicate the
manufacturer and model of the automobile.

This example uses PROC PRINQUAL, PROC FACTOR, and the %PLOTIT macro.
PROC FACTOR is used before PROC PRINQUAL to perform a principal component
analysis of the raw judgments. PROC FACTOR is also used immediately after PROC
PRINQUAL since PROC PRINQUAL is a scoring procedure that optimally scores
the data but does not report the principal component analysis.

The %PLOTIT macro produces the biplot. For information on the %PLOTIT macro,
seeAppendix B, “Using the %PLOTIT Macro.”

The scree plot, in the standard principal component analysis reported by PROC
FACTOR, shows that two principal components should be retained for further use.
(See the scree plot inOutput 59.1.1—there is a clear separation between the first
two components and the remaining components.) There are nine eigenvalues that are
precisely zero because there are nine fewer observations than variables in the data
matrix. PROC PRINQUAL is then used to monotonically transform the raw judg-
ments to maximize the proportion of variance accounted for by the first two principal
components. The following statements create the data set and perform a principal
component analysis of the original data. These statements produceOutput 59.1.1.

title ’Preference Ratings for Automobiles Manufactured in 1980’;

data CarPref;
input Make $ 1-10 Model $ 12-22 @25 (Judge1-Judge25) (1.);
datalines;

Cadillac Eldorado 8007990491240508971093809
Chevrolet Chevette 0051200423451043003515698
Chevrolet Citation 4053305814161643544747795
Chevrolet Malibu 6027400723121345545668658
Ford Fairmont 2024006715021443530648655
Ford Mustang 5007197705021101850657555
Ford Pinto 0021000303030201500514078
Honda Accord 5956897609699952998975078
Honda Civic 4836709507488852567765075
Lincoln Continental 7008990592230409962091909
Plymouth Gran Fury 7006000434101107333458708
Plymouth Horizon 3005005635461302444675655
Plymouth Volare 4005003614021602754476555
Pontiac Firebird 0107895613201206958265907
Volkswagen Dasher 4858696508877795377895000
Volkswagen Rabbit 4858509709695795487885000
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Volvo DL 9989998909999987989919000
;

* Principal Component Analysis of the Original Data;
options ls=80 ps=65;
proc factor data=CarPref nfactors=2 scree;

ods select Eigenvalues ScreePlot;
var Judge1-Judge25;
title3 ’Principal Components of Original Data’;

run;

Output 59.1.1. Principal Component Analysis of Original Data

Preference Ratings for Automobiles Manufactured in 1980

Principal Components of Original Data

The FACTOR Procedure
Initial Factor Method: Principal Components

Eigenvalues of the Correlation Matrix: Total = 25 Average = 1

Eigenvalue Difference Proportion Cumulative

1 10.8857202 5.0349926 0.4354 0.4354
2 5.8507276 3.8077964 0.2340 0.6695
3 2.0429312 0.5207808 0.0817 0.7512
4 1.5221504 0.3078035 0.0609 0.8121
5 1.2143469 0.2564839 0.0486 0.8606
6 0.9578630 0.2197345 0.0383 0.8989
7 0.7381286 0.1497259 0.0295 0.9285
8 0.5884027 0.2117186 0.0235 0.9520
9 0.3766841 0.1091250 0.0151 0.9671

10 0.2675591 0.0773893 0.0107 0.9778
11 0.1901698 0.0463921 0.0076 0.9854
12 0.1437776 0.0349382 0.0058 0.9911
13 0.1088394 0.0607418 0.0044 0.9955
14 0.0480977 0.0056610 0.0019 0.9974
15 0.0424367 0.0202714 0.0017 0.9991
16 0.0221653 0.0221653 0.0009 1.0000
17 0.0000000 0.0000000 0.0000 1.0000
18 0.0000000 0.0000000 0.0000 1.0000
19 0.0000000 0.0000000 0.0000 1.0000
20 0.0000000 0.0000000 0.0000 1.0000
21 0.0000000 0.0000000 0.0000 1.0000
22 0.0000000 0.0000000 0.0000 1.0000
23 0.0000000 0.0000000 0.0000 1.0000
24 0.0000000 0.0000000 0.0000 1.0000
25 0.0000000 0.0000 1.0000
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Output 59.1.1. (continued)

Preference Ratings for Automobiles Manufactured in 1980

Principal Components of Original Data

The FACTOR Procedure
Initial Factor Method: Principal Components

Scree Plot of Eigenvalues
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To fit the nonmetric MDPREF model, you can use the PRINQUAL procedure. The
MONOTONE option is specified in the TRANSFORM statement to request a non-
metric MDPREF analysis; alternatively, you can instead specify the IDENTITY op-
tion for a metric analysis. Several options are used in the PROC PRINQUAL state-
ment. The option DATA=CarPref specifies the input data set, OUT=Results creates
an output data set, and N=2 and the default METHOD=MTV transform the data to
better fit a two-component model. The REPLACE option replaces the original data
with the monotonically transformed data in the OUT= data set. The MDPREF option
standardizes the component scores to variance one so that the geometry of the biplot
is correct, and it creates two variables in the OUT= data set namedPrin1 andPrin2.
These variables contain the standardized principal component scores and structure
matrix, which are used to make the biplot. If the variables in data matrixX are stan-
dardized to mean zero and variance one, andn is the number of rows inX, then
X = VΛ1/2W′ is the principal component model, whereX′X/(n− 1) = WΛW′.
TheW andΛ contain the eigenvectors and eigenvalues of the correlation matrix of
X. The first two columns ofV, the standardized component scores, andWΛ1/2,
which is the structure matrix, are output. The advantage of creating a biplot based
on principal components is that coordinates do not depend on the sample size. The
following statements transform the data and produceOutput 59.1.2.

* Transform the Data to Better Fit a Two Component Model;
proc prinqual data=CarPref out=Results n=2 replace mdpref;

id model;
transform monotone(Judge1-Judge25);
title2 ’Multidimensional Preference (MDPREF) Analysis’;
title3 ’Optimal Monotonic Transformation of Preference Data’;

run;
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Output 59.1.2. Transformation of Automobile Preference Data

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

Optimal Monotonic Transformation of Preference Data

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration Average Maximum Proportion Criterion
Number Change Change of Variance Change Note

----------------------------------------------------------------------------
1 0.24994 1.28017 0.66946
2 0.07223 0.36958 0.80194 0.13249
3 0.04522 0.29026 0.81598 0.01404
4 0.03096 0.25213 0.82178 0.00580
5 0.02182 0.23045 0.82493 0.00315
6 0.01602 0.19017 0.82680 0.00187
7 0.01219 0.14748 0.82793 0.00113
8 0.00953 0.11031 0.82861 0.00068
9 0.00737 0.06461 0.82904 0.00043

10 0.00556 0.04469 0.82930 0.00026
11 0.00445 0.04087 0.82944 0.00014
12 0.00381 0.03706 0.82955 0.00011
13 0.00319 0.03348 0.82965 0.00009
14 0.00255 0.02999 0.82971 0.00006
15 0.00213 0.02824 0.82976 0.00005
16 0.00183 0.02646 0.82980 0.00004
17 0.00159 0.02472 0.82983 0.00003
18 0.00139 0.02305 0.82985 0.00003
19 0.00123 0.02145 0.82988 0.00002
20 0.00109 0.01993 0.82989 0.00002
21 0.00096 0.01850 0.82991 0.00001
22 0.00086 0.01715 0.82992 0.00001
23 0.00076 0.01588 0.82993 0.00001
24 0.00067 0.01440 0.82994 0.00001
25 0.00059 0.00871 0.82994 0.00001
26 0.00050 0.00720 0.82995 0.00000
27 0.00043 0.00642 0.82995 0.00000
28 0.00037 0.00573 0.82995 0.00000
29 0.00031 0.00510 0.82995 0.00000
30 0.00027 0.00454 0.82995 0.00000 Not Converged

WARNING: Failed to converge, however criterion change is less than 0.0001.

The iteration history displayed by PROC PRINQUAL indicates that the proportion
of variance is increased from an initial 0.66946 to 0.82995. The proportion of vari-
ance accounted for by PROC PRINQUAL on the first iteration equals the cumulative
proportion of variance shown by PROC FACTOR for the first two principal com-
ponents. In this example, PROC PRINQUAL’s initial iteration performs a standard
principal component analysis of the raw data. The columns labeled Average Change,
Maximum Change, and Variance Change contain values that always decrease, indi-
cating that PROC PRINQUAL is improving the transformations at a monotonically
decreasing rate over the iterations. This does not always happen, and when it does
not, it suggests that the analysis may be converging to a degenerate solution. See
Example 59.3on page 3688 for a discussion of a degenerate solution. The algorithm
does not converge in 30 iterations. However, the criterion change is small, indicating
that more iterations are unlikely to have much effect on the results.
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The second PROC FACTOR analysis is performed on the transformed data. The
WHERE statement is used to retain only the monotonically transformed judgments.
The scree plot shows that the first two eigenvalues are now much larger than the
remaining smaller eigenvalues. The second eigenvalue has increased markedly at
the expense of the next several eigenvalues. Two principal components seem to be
necessary and sufficient to adequately describe these judges’ preferences for these
automobiles. The cumulative proportion of variance displayed by PROC FACTOR
for the first two principal components is 0.83. The following statements perform the
analysis and produceOutput 59.1.3:

* Final Principal Component Analysis;
proc factor data=Results nfactors=2 scree;

ods select Eigenvalues ScreePlot;
var Judge1-Judge25;
where _TYPE_=’SCORE’;
title3 ’Principal Components of Monotonically Transformed Data’;

run;

Output 59.1.3. Principal Components of Transformed Data

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

Principal Components of Monotonically Transformed Data

The FACTOR Procedure
Initial Factor Method: Principal Components

Eigenvalues of the Correlation Matrix: Total = 25 Average = 1

Eigenvalue Difference Proportion Cumulative

1 11.5959045 2.4429455 0.4638 0.4638
2 9.1529589 7.9952554 0.3661 0.8300
3 1.1577036 0.3072013 0.0463 0.8763
4 0.8505023 0.1284323 0.0340 0.9103
5 0.7220700 0.2613540 0.0289 0.9392
6 0.4607160 0.0958339 0.0184 0.9576
7 0.3648821 0.0877851 0.0146 0.9722
8 0.2770970 0.1250945 0.0111 0.9833
9 0.1520025 0.0506622 0.0061 0.9894

10 0.1013403 0.0292763 0.0041 0.9934
11 0.0720640 0.0200979 0.0029 0.9963
12 0.0519661 0.0336675 0.0021 0.9984
13 0.0182987 0.0027059 0.0007 0.9991
14 0.0155927 0.0093669 0.0006 0.9997
15 0.0062258 0.0055503 0.0002 1.0000
16 0.0006755 0.0006755 0.0000 1.0000
17 0.0000000 0.0000000 0.0000 1.0000
18 0.0000000 0.0000000 0.0000 1.0000
19 0.0000000 0.0000000 0.0000 1.0000
20 0.0000000 0.0000000 0.0000 1.0000
21 0.0000000 0.0000000 0.0000 1.0000
22 0.0000000 0.0000000 0.0000 1.0000
23 0.0000000 0.0000000 0.0000 1.0000
24 0.0000000 0.0000000 0.0000 1.0000
25 0.0000000 0.0000 1.0000
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Output 59.1.3. (continued)

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

Principal Components of Monotonically Transformed Data

The FACTOR Procedure
Initial Factor Method: Principal Components

Scree Plot of Eigenvalues
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The remainder of the example constructs the MDPREF biplot. A biplot is a plot that
displays the relation between the row points and the columns of a data matrix. The
rows ofV, the standardized component scores, andWΛ1/2, which is the structure
matrix, contain enough information to reproduceX. The(i, j) element ofX is the
product of rowi of V and rowj of WΛ1/2. If all but the first two columns ofV and
WΛ1/2 are discarded, the(i, j) element ofX is approximated by the product of row
i of V and rowj of WΛ1/2.

Since the MDPREF analysis is based on a principal component model, the dimen-
sions of the MDPREF biplot are the first two principal components. The first prin-
cipal component is the longest dimension through the MDPREF biplot. The first
principal component is overall preference, which is the most salient dimension in the
preference judgments. One end points in the direction that is on the average preferred
most by the judges, and the other end points in the least preferred direction. The sec-
ond principal component is orthogonal to the first principal component, and it is the
orthogonal direction that is the second most salient. The interpretation of the second
dimension varies from example to example.

With an MDPREF biplot, it is geometrically appropriate to represent each automobile
(object) by a point and each judge by a vector. The automobile points have coordi-
nates that are the scores of the automobile on the first two principal components.
The judge vectors emanate from the origin of the space and go through a point with
coordinates that are the coefficients of the judge (variable) on the first two principal
components.

The absolute length of a vector is arbitrary. However, the relative lengths of the
vectors indicate fit, with the squared lengths being proportional to the communalities
in the PROC FACTOR output. The direction of the vector indicates the direction that
is most preferred by the individual judge, with preference increasing as the vector
moves from the origin. Letv′ be row i of V, u′ be rowj of U = WΛ1/2, ‖v‖
be the length ofv, ‖u‖ be the length ofu, andθ be the angle betweenv andu.
The predicted degree of preference that an individual judge has for an automobile is
u′v = ‖u‖ ‖v‖ cos θ. Each car point can be orthogonally projected onto the vector.
The projection of cari on vectorj isu((u′v)/(u′u)) and the length of this projection
is ‖v‖ cos θ. The automobile that projects farthest along a vector in the direction it
points is that judge’s most preferred automobile, since the length of this projection,
‖v‖ cos θ, differs from the predicted preference,‖u‖ ‖v‖ cos θ, only by‖u‖, which
is constant within each judge.

To interpret the biplot, look for directions through the plot that show a continuous
change in some attribute of the automobiles, or look for regions in the plot that contain
clusters of automobile points and determine what attributes the automobiles have in
common. Those points that are tightly clustered in a region of the plot represent
automobiles that have the same preference patterns across the judges. Those vectors
that point in roughly the same direction represent judges who tend to have similar
preference patterns.
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The following statement constructs the biplot and producesOutput 59.1.4:

title3 ’Biplot of Automobiles and Judges’;
%plotit(data=results, datatype=mdpref 2);

The DATATYPE=MDPREF 2 option indicates that the coordinates come from an
MDPREF analysis, so the macro represents the scores as points and the structure
as vectors, with the vectors stretched by a factor of two to make a better graphical
display.

Output 59.1.4. Preference Ratings for Automobiles Manufactured in 1980

In the biplot, American automobiles are located on the left of the space, while
European and Japanese automobiles are located on the right. At the top of the space
are expensive American automobiles (Cadillac Eldorado, Lincoln Continental) while
at the bottom are inexpensive ones (Pinto, Chevette). The first principal component
differentiates American from imported automobiles, and the second arranges auto-
mobiles by price and other associated characteristics.

The two expensive American automobiles form a cluster, the sporty automobile
(Firebird) is by itself, the Volvo DL is by itself, and the remaining imported autos
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form a cluster, as do the remaining American autos. It seems there are 5 prototypical
automobiles in this set of 17, in terms of preference patterns among the 25 judges.

Most of the judges prefer the imported automobiles, especially the Volvo. There
is also a fairly large minority that prefer the expensive cars, whether or not they
are American (those with vectors that point towards one o’clock), or simply prefer
expensive American automobiles (vectors that point towards eleven o’clock). There
are two people who prefer anything except expensive American cars (five o’clock
vectors), and one who prefers inexpensive American cars (seven o’clock vector).

Several vectors point toward the upper-right corner of the plot, toward a region with
no cars. This is the region between the European and Japanese cars on the right and
the luxury cars on the top. This suggests that there is a market for luxury Japanese
and European cars.

Example 59.2. Multidimensional Preference Analysis of Cars
Data, ODS Graphics (Experimental)

The following graphical displays are requested by specifying the experimental ODS
GRAPHICS statement. For general information about ODS graphics seeChapter
15, “Statistical Graphics Using ODS.”For specific information about the graphics
available in the PRINQUAL procedure, see the“ODS Graphics”section on page
3677.

title ’Preference Ratings for Automobiles Manufactured in 1980’;

options validvarname=any;

data CarPref;
input Make $ 1-10 Model $ 12-22 @25 (’1’n-’25’n) (1.);
datalines;

Cadillac Eldorado 8007990491240508971093809
Chevrolet Chevette 0051200423451043003515698
Chevrolet Citation 4053305814161643544747795
Chevrolet Malibu 6027400723121345545668658
Ford Fairmont 2024006715021443530648655
Ford Mustang 5007197705021101850657555
Ford Pinto 0021000303030201500514078
Honda Accord 5956897609699952998975078
Honda Civic 4836709507488852567765075
Lincoln Continental 7008990592230409962091909
Plymouth Gran Fury 7006000434101107333458708
Plymouth Horizon 3005005635461302444675655
Plymouth Volare 4005003614021602754476555
Pontiac Firebird 0107895613201206958265907
Volkswagen Dasher 4858696508877795377895000
Volkswagen Rabbit 4858509709695795487885000
Volvo DL 9989998909999987989919000
;

ods html;
ods graphics on;

proc prinqual data=CarPref out=Results n=2 replace mdpref maxiter=100;
id model;
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transform monotone(’1’n-’25’n);
title2 ’Multidimensional Preference (MDPREF) Analysis’;
title3 ’Optimal Monotonic Transformation of Preference Data’;

run;

ods graphics off;
ods html close;

Output 59.2.1. Multidimensional Preference Analysis (Experimental)

Example 59.3. Principal Components of Basketball Rankings

The data in this example are 1985–1986 preseason rankings of 35 college basketball
teams by 10 different news services. The services do not all rank the same teams or
the same number of teams, so there are missing values in these data. Each of the 35
teams in the data set is ranked by at least one news service. One way of summarizing
these data is with a principal component analysis, since the rankings should all be
related to a single underlying variable, the first principal component.

You can use PROC PRINQUAL to estimate the missing ranks and compute scores
for all observations. You can formulate a PROC PRINQUAL analysis that assumes
that the observed ranks are ordinal variables and replaces the ranks with new numbers
that are monotonic with the ranks and better fit the one principal component model.
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The missing rank estimates need to be constrained since a news service would have
positioned the unranked teams below the teams it ranked. PROC PRINQUAL should
impose order constraints within the nonmissing values and between the missing and
nonmissing values, but not within the missing values. PROC PRINQUAL has so-
phisticated missing data handling facilities; however, these facilities cannot directly
handle this problem. The solution requires reformulating the problem.

By performing some preliminary data manipulations, specifying the N=1 option in
the PROC PRINQUAL statement, and specifying the UNTIE transformation in the
TRANSFORM statement, you can make the missing value estimates conform to the
requirements. The PROC MEANS step finds the largest rank for each variable. The
next DATA step replaces missing values with a value that is one larger than the largest
observed rank. The N=1 option (in the PRINQUAL procedure) specifies that the
variables should be transformed to make them as one-dimensional as possible. The
UNTIE transformation in the TRANSFORM statement monotonically transforms the
ranks, untying any ties in an optimal way. Because the only ties are for the values
that replace the missing values, and because these values are larger than the observed
values, the rescoring of the data satisfies the preceding requirements.

The following statements create the data set and perform the transformations dis-
cussed previously. These statements produceOutput 59.3.1.

* Example 2: Basketball Data
*
* Preseason 1985 College Basketball Rankings
* (rankings of 35 teams by 10 news services)
*
* Note: (a) Various news services rank varying numbers of teams.
* (b) Not all 35 teams are ranked by all news services.
* (c) Each team is ranked by at least one service.
* (d) Rank 20 is missing for UPI.;

title1 ’1985 Preseason College Basketball Rankings’;

data bballm;
input School $13. CSN DurhamSun DurhamHerald WashingtonPost

USA_Today SportMagazine InsideSports UPI AP
SportsIllustrated;

label CSN = ’Community Sports News (Chapel Hill, NC)’
DurhamSun = ’Durham Sun’
DurhamHerald = ’Durham Morning Herald’
WashingtonPost = ’Washington Post’
USA_Today = ’USA Today’
SportMagazine = ’Sport Magazine’
InsideSports = ’Inside Sports’
UPI = ’United Press International’
AP = ’Associated Press’
SportsIllustrated = ’Sports Illustrated’
;

format CSN--SportsIllustrated 5.1;
datalines;

Louisville 1 8 1 9 8 9 6 10 9 9
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Georgia Tech 2 2 4 3 1 1 1 2 1 1
Kansas 3 4 5 1 5 11 8 4 5 7
Michigan 4 5 9 4 2 5 3 1 3 2
Duke 5 6 7 5 4 10 4 5 6 5
UNC 6 1 2 2 3 4 2 3 2 3
Syracuse 7 10 6 11 6 6 5 6 4 10
Notre Dame 8 14 15 13 11 20 18 13 12 .
Kentucky 9 15 16 14 14 19 11 12 11 13
LSU 10 9 13 . 13 15 16 9 14 8
DePaul 11 . 21 15 20 . 19 . . 19
Georgetown 12 7 8 6 9 2 9 8 8 4
Navy 13 20 23 10 18 13 15 . 20 .
Illinois 14 3 3 7 7 3 10 7 7 6
Iowa 15 16 . . 23 . . 14 . 20
Arkansas 16 . . . 25 . . . . 16
Memphis State 17 . 11 . 16 8 20 . 15 12
Washington 18 . . . . . . 17 . .
UAB 19 13 10 . 12 17 . 16 16 15
UNLV 20 18 18 19 22 . 14 18 18 .
NC State 21 17 14 16 15 . 12 15 17 18
Maryland 22 . . . 19 . . . 19 14
Pittsburgh 23 . . . . . . . . .
Oklahoma 24 19 17 17 17 12 17 . 13 17
Indiana 25 12 20 18 21 . . . . .
Virginia 26 . 22 . . 18 . . . .
Old Dominion 27 . . . . . . . . .
Auburn 28 11 12 8 10 7 7 11 10 11
St. Johns 29 . . . . 14 . . . .
UCLA 30 . . . . . . 19 . .
St. Joseph’s . . 19 . . . . . . .
Tennessee . . 24 . . 16 . . . .
Montana . . . 20 . . . . . .
Houston . . . . 24 . . . . .
Virginia Tech . . . . . . 13 . . .
;

* Find maximum rank for each news service and replace
* each missing value with the next highest rank.;

proc means data=bballm noprint;
output out=maxrank

max=mcsn mdurs mdurh mwas musa mspom mins mupi map mspoi;
run;

data bball;
set bballm;
if _n_=1 then set maxrank;
array services[10] CSN--SportsIllustrated;
array maxranks[10] mcsn--mspoi;
keep School CSN--SportsIllustrated;
do i=1 to 10;

if services[i]=. then services[i]=maxranks[i]+1;
end;

run;



Example 59.3. Principal Components of Basketball Rankings � 3691

* Assume that the ranks are ordinal and that unranked teams
* would have been ranked lower than ranked teams. Monotonically
* transform all ranked teams while estimating the unranked teams.
* Enforce the constraint that the missing ranks are estimated to
* be less than the observed ranks. Order the unranked teams
* optimally within this constraint. Do this so as to maximize
* the variance accounted for by one linear combination. This
* makes the data as nearly rank one as possible, given the
* constraints.
*
* NOTE: The UNTIE transformation should be used with caution.
* If frequently produces degenerate results.;

proc prinqual data=bball out=tbball scores n=1 tstandard=z;
title2 ’Optimal Monotonic Transformation of Ranked Teams’;
title3 ’with Constrained Estimation of Unranked Teams’;
transform untie(CSN -- SportsIllustrated);
id School;

run;
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Output 59.3.1. Transformation of Basketball Team Rankings

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration Average Maximum Proportion Criterion
Number Change Change of Variance Change Note

----------------------------------------------------------------------------
1 0.18563 0.76531 0.85850
2 0.03225 0.14627 0.94362 0.08512
3 0.02126 0.10530 0.94669 0.00307
4 0.01467 0.07526 0.94801 0.00132
5 0.01067 0.05282 0.94865 0.00064
6 0.00800 0.03669 0.94899 0.00034
7 0.00617 0.02862 0.94919 0.00020
8 0.00486 0.02636 0.94932 0.00013
9 0.00395 0.02453 0.94941 0.00009

10 0.00327 0.02300 0.94947 0.00006
11 0.00275 0.02166 0.94952 0.00005
12 0.00236 0.02041 0.94956 0.00004
13 0.00205 0.01927 0.94959 0.00003
14 0.00181 0.01818 0.94962 0.00003
15 0.00162 0.01719 0.94964 0.00002
16 0.00147 0.01629 0.94966 0.00002
17 0.00136 0.01546 0.94968 0.00002
18 0.00128 0.01469 0.94970 0.00002
19 0.00121 0.01398 0.94971 0.00001
20 0.00115 0.01332 0.94973 0.00001
21 0.00111 0.01271 0.94974 0.00001
22 0.00105 0.01213 0.94975 0.00001
23 0.00099 0.01155 0.94976 0.00001
24 0.00095 0.01095 0.94977 0.00001
25 0.00091 0.01038 0.94978 0.00001
26 0.00088 0.00986 0.94978 0.00001
27 0.00084 0.00936 0.94979 0.00001
28 0.00081 0.00889 0.94980 0.00001
29 0.00077 0.00846 0.94980 0.00000
30 0.00073 0.00805 0.94980 0.00000 Not Converged

WARNING: Failed to converge, however criterion change is less than 0.0001.

An alternative approach is to use the pairwise deletion option of the CORR proce-
dure to compute the correlation matrix and then use PROC PRINCOMP or PROC
FACTOR to perform the principal component analysis. This approach has several
disadvantages. The correlation matrix may not be positive semidefinite (psd), an as-
sumption required for principal component analysis. PROC PRINQUAL always pro-
duces a psd correlation matrix. Even with pairwise deletion, PROC CORR removes
the six observations with only a single nonmissing value from this data set. Finally,
it is still not possible to calculate scores on the principal components for those teams
that have missing values.

It is possible to compute the composite ranking using PROC PRINCOMP and some
preliminary data manipulations, similar to those discussed previously.

Chapter 58, “The PRINCOMP Procedure,”contains an example where the average
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of the unused ranks in each poll is substituted for the missing values, and each ob-
servation is weighted by the number of nonmissing values. This method has much
to recommend it. It is much faster and simpler than using PROC PRINQUAL. It is
also much less prone to degeneracies and capitalization on chance. However, PROC
PRINCOMP does not allow the nonmissing ranks to be monotonically transformed
and the missing values untied to optimize fit.

PROC PRINQUAL monotonically transforms the observed ranks and estimates the
missing ranks (within the constraints given previously) to account for almost 95 per-
cent of the variance of the transformed data by just one dimension. PROC FACTOR
is then used to report details of the principal component analysis of the transformed
data. As shown by the Factor Pattern values inOutput 59.3.2, nine of the ten news
services have a correlation of 0.95 or larger with the scores on the first principal
component after the data are optimally transformed. The scores are sorted and the
composite ranking is displayed following the PROC FACTOR output. More confi-
dence can be placed in the stability of the scores for the teams that are ranked by the
majority of the news services than in scores for teams that are seldom ranked.

The monotonic transformations are plotted for each of the ten news services. These
plots are the values of the raw ranks (with the missing ranks replaced by the maximum
rank plus one) versus the rescored (transformed) ranks. The transformations are the
step functions that maximize the fit of the data to the principal component model.
Smoother transformations could be found by using MSPLINE transformations, but
MSPLINE transformations would not correctly handle the missing data problem.

The following statements perform the final analysis and produceOutput 59.3.2:

* Perform the Final Principal Component Analysis;
proc factor nfactors=1;

var TCSN -- TSportsIllustrated;
title4 ’Principal Component Analysis’;

run;

proc sort;
by Prin1;

run;

* Display Scores on the First Principal Component;
proc print;

title4 ’Teams Ordered by Scores on First Principal Component’;
var School Prin1;

run;

* Plot the Transformations;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot;
title;
axis1 minor=none label=(angle=90 rotate=0)
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order=(-3 to 2 by 1);
axis2 minor=none order=(0 to 40 by 10);
plot TCSN*CSN / &opts name=’prqex1’;
plot TDurhamSun*DurhamSun / &opts name=’prqex2’;
plot TDurhamHerald*DurhamHerald / &opts name=’prqex3’;
plot TWashingtonPost*WashingtonPost / &opts name=’prqex4’;
plot TUSA_Today*USA_Today / &opts name=’prqex5’;
plot TSportMagazine*SportMagazine / &opts name=’prqex6’;
plot TInsideSports*InsideSports / &opts name=’prqex7’;
plot TUPI*UPI / &opts name=’prqex8’;
plot TAP*AP / &opts name=’prqex9’;
plot TSportsIllustrated*SportsIllustrated / &opts name=’prqex10’;
symbol1 c=blue;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:prqex1 2:prqex2 3:prqex3 4:prqex4;
treplay 1:prqex5 2:prqex6 3:prqex7 4:prqex8;
treplay 1:prqex9 3:prqex10;

run; quit;
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Output 59.3.2. Alternative Approach for Analyzing Basketball Rankings

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams
Principal Component Analysis

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 10 Average = 1

Eigenvalue Difference Proportion Cumulative

1 9.49808040 9.27698055 0.9498 0.9498
2 0.22109985 0.13434105 0.0221 0.9719
3 0.08675881 0.01266762 0.0087 0.9806
4 0.07409119 0.03048596 0.0074 0.9880
5 0.04360523 0.00567364 0.0044 0.9924
6 0.03793160 0.02098385 0.0038 0.9962
7 0.01694775 0.00299099 0.0017 0.9979
8 0.01395675 0.00982630 0.0014 0.9992
9 0.00413045 0.00073249 0.0004 0.9997

10 0.00339797 0.0003 1.0000

1 factor will be retained by the NFACTOR criterion.

Factor Pattern

Factor1

TCSN CSN Transformation 0.91136
TDurhamSun DurhamSun Transformation 0.98887
TDurhamHerald DurhamHerald Transformation 0.97402
TWashingtonPost WashingtonPost Transformation 0.97408
TUSA_Today USA_Today Transformation 0.98867
TSportMagazine SportMagazine Transformation 0.95331
TInsideSports InsideSports Transformation 0.98521
TUPI UPI Transformation 0.98534
TAP AP Transformation 0.99590
TSportsIllustrated SportsIllustrated Transformation 0.98615

Variance Explained by Each Factor

Factor1

9.4980804

Final Communality Estimates: Total = 9.498080

TDurham TWashington
TCSN TDurhamSun Herald Post TUSA_Today

0.83057866 0.97785439 0.94870875 0.94882907 0.97747798

TSport TInside TSports
Magazine Sports TUPI TAP Illustrated

0.90879058 0.97064640 0.97088804 0.99181626 0.97249026
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Output 59.3.2. (continued)

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams
Teams Ordered by Scores on First Principal Component

OBS School Prin1

1 Georgia Tech -6.20315
2 UNC -5.93314
3 Michigan -5.71034
4 Kansas -4.78699
5 Duke -4.75896
6 Illinois -4.19220
7 Georgetown -4.02861
8 Louisville -3.73087
9 Syracuse -3.47497

10 Auburn -1.78429
11 LSU -0.35928
12 Memphis State 0.46737
13 Kentucky 0.63661
14 Notre Dame 0.71919
15 Navy 0.76187
16 UAB 0.98316
17 DePaul 1.09891
18 Oklahoma 1.12012
19 NC State 1.15144
20 UNLV 1.28766
21 Iowa 1.45260
22 Indiana 1.48123
23 Maryland 1.54935
24 Virginia 2.01385
25 Arkansas 2.02718
26 Washington 2.10878
27 Tennessee 2.27770
28 Virginia Tech 2.36103
29 St. Johns 2.37387
30 Montana 2.43502
31 UCLA 2.52481
32 Pittsburgh 3.00907
33 Old Dominion 3.03324
34 St. Joseph’s 3.39259
35 Houston 4.69614
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Output 59.3.3. Monotonic Transformation for Each News Service
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Output 59.3.3. (continued)
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Output 59.3.3. (continued)

The ordinary PROC PRINQUAL missing data handling facilities do not work for
these data because they do not constrain the missing data estimates properly. If you
code the missing ranks as missing and specify linear transformations, then you can
compute least-squares estimates of the missing values without transforming the ob-
served values. The first principal component then accounts for 92 percent of the
variance after 20 iterations. However, Virginia Tech is ranked number 11 by its score
even though it appeared in only one poll (InsideSports ranked it number 13, anchoring
it firmly in the middle). Specifying monotone transformations is also inappropriate
since they too allow unranked teams to move in between ranked teams.

With these data, the combination of monotone transformations and the freedom
to score the missing ranks without constraint leads to degenerate transformations.
PROC PRINQUAL tries to merge the 35 points into two points, producing a perfect
fit in one dimension. There is evidence for this after 20 iterations when the Average
Change, Maximum Change, and Variance Change values are all increasing, instead
of the more stable decreasing change rate seen in the analysis shown. The change
rates all stop increasing after 41 iterations, and it is clear by 70 or 80 iterations that
one component will account for 100 percent of the transformed variables variance
after sufficient iteration. While this may seem desirable (after all, it is a perfect fit),
you should, in fact, be on guard when this happens. Whenever convergence is slow,
the rates of change increase, or the final data perfectly fit the model, the solution is
probably degenerating due to too few constraints on the scorings.
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PROC PRINQUAL can account for 100 percent of the variance by scoring Montana
and UCLA with one positive value on all variables and scoring all the other teams
with one negative value on all variables. This inappropriate analysis suggests that all
ranked teams are equally good except for two teams that are less good. Both of these
two teams are ranked by only one news service, and their only nonmissing rank is
last in the poll. This accounts for the degeneracy.
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Chapter 60
The PROBIT Procedure
Overview

The PROBIT procedure calculates maximum likelihood estimates of regression pa-
rameters and the natural (or threshold) response rate for quantal response data from
biological assays or other discrete event data. This includes probit, logit, ordinal
logistic, and extreme value (or gompit) regression models.

Probit analysis developed from the need to analyze qualitative (dichotomous or poly-
tomous) dependent variables within the regression framework. Many response vari-
ables are binary by nature (yes/no), while others are measured ordinally rather than
continuously (degree of severity). Collett (1991) and Agresti (1990), for example,
have shown ordinary least squares (OLS) regression to be inadequate when the de-
pendent variable is discrete. Probit or logit analyses are more appropriate in this case.

The PROBIT procedure computes maximum likelihood estimates of the parameters
β andC of the probit equation using a modified Newton-Raphson algorithm. When
the response Y is binary, with values 0 and 1, the probit equation is

p = Pr(Y = 0) = C + (1− C)F (x′β)

where

β is a vector of parameter estimates

F is a cumulative distribution function (the normal, logistic, or extreme value)

x is a vector of explanatory variables

p is the probability of a response

C is the natural (threshold) response rate

Notice that PROC PROBIT, by default, models the probability of thelower response
levels. The choice of the distribution functionF (normal for the probit model, logistic
for the logit model, and extreme value or Gompertz for the gompit model) determines
the type of analysis. For most problems, there is relatively little difference between
the normal and logistic specifications of the model. Both distributions are symmetric
about the value zero. The extreme value (or Gompertz) distribution, however, is not
symmetric, approaching 0 on the left more slowly than it approaches 1 on the right.
You can use the extreme value distribution where such asymmetry is appropriate.

For ordinal response models, the response, Y, of an individual or an experimental unit
may be restricted to one of a (usually small) number,k +1(k ≥ 1), of ordinal values,
denoted for convenience by1, . . . , k, k + 1. For example, the severity of coronary
disease can be classified into three response categories as 1=no disease, 2=angina
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pectoris, and 3=myocardial infarction. The PROBIT procedure fits a common slopes
cumulative model, which is a parallel lines regression model based on the cumulative
probabilities of the response categories rather than on their individual probabilities.
The cumulative model has the form

Pr(Y ≤ 1 | x) = F (x′β)

Pr(Y ≤ i | x) = F (αi + x′β), 2 ≤ i ≤ k

whereα2, . . . , αk arek − 1 intercept parameters. By default, the covariate vectorx
contains an overall intercept term.

You can set or estimate the natural (threshold) response rateC. Estimation ofC
can begin either from an initial value that you specify or from the rate observed in a
control group. By default, the natural response rate is fixed at zero.

An observation in the data set analyzed by the PROBIT procedure may contain the
response and explanatory values for one subject. Alternatively, it may provide the
number of observed events from a number of subjects at a particular setting of the
explanatory variables. In this case, PROC PROBIT models the probability of an
event.

Getting Started

The following example illustrates how you can use the PROBIT procedure to com-
pute the threshold response rate and regression parameter estimates for quantal re-
sponse data.

Estimating the Natural Response Threshold Parameter

Suppose you want to test the effect of a drug at 12 dosage levels. You randomly
divide 180 subjects into 12 groups of 15—one group for each dosage level. You then
conduct the experiment and, for each subject, record the presence or absence of a
positive response to the drug. You summarize the data by counting the number of
subjects responding positively in each dose group. Your data set is as follows:

data study;
input Dose Respond;
Number = 15;
datalines;

0 3
1.1 4
1.3 4
2.0 3
2.2 5
2.8 4
3.7 5
3.9 9
4.4 8
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4.8 11
5.9 12
6.8 13
;
run;

The variabledose represents the amount of drug administered. The first group, re-
ceiving a dose level of 0, is the control group. The variablenumber represents the
number of subjects in each group. All groups are equal in size; hence,number has
the value 15 for all observations. The variablerespond represents the number of
subjects responding to the associated drug dosage.

You can model the probability of positive response as a function of dosage using the
following statements:

proc probit data=study log10 optc;
model respond/number=dose;
output out = new p = p_hat;
predpplot var = dose cfit = blue cframe=ligr inborder;
inset;
ippplot var = dose cfit = blue cframe=ligr inborder;
inset;

run;

The DATA= option specifies that PROC PROBIT analyze the SAS data setstudy.
The LOG10 option replaces the first continuous independent variable (dose) by its
common logarithm. The OPTC option estimates the natural response rate. When you
use the LOG10 option with the OPTC option, any observations with a dose value less
than or equal to zero are used in the estimation as a control group.

The OUTPUT statement creates a new data set,new, that contains all the variables
in the original data set, and a new variable,p–hat, that represents the predicted prob-
abilities.

The MODEL statement specifies a proportional response using the variablesrespond
andnumber in events/trialssyntax. The variabledose is the stimulus or explanatory
variable. The results from this analysis are displayed in the following figures.
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Probit Procedure

Model Information

Data Set WORK.STUDY
Events Variable Respond
Trials Variable Number
Number of Observations 12
Number of Events 81
Number of Trials 180
Number of Events In Control Group 3
Number of Trials In Control Group 15
Name of Distribution Normal
Log Likelihood -104.3945783

Algorithm converged.

Figure 60.1. Model Fitting Information for the PROBIT Procedure

Figure 60.1displays background information about the model fit. Included are the
name of the input data set, the response variables used, and the number of obser-
vations, events, and trials. The last line inFigure 60.1shows the final value of the
log-likelihood function.

Figure 60.2displays the table of parameter estimates for the model. The parameterC,
which is the natural response threshold or the proportion of individuals responding at
zero dose, is estimated to be 0.2409. Since both the intercept and the slope coefficient
have significantp-values (0.0020, 0.0010), you can write the model for

Pr(response) = C + (1− C)F (x′β)

as

Pr(response) = 0.2409 + 0.7591(Φ(−4.1439 + 6.2308× log10 (dose)))

whereΦ is the normal cumulative distribution function.

Probit Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -4.1438 1.3415 -6.7731 -1.5146 9.54 0.0020
Log10(Dose) 1 6.2308 1.8996 2.5076 9.9539 10.76 0.0010
_C_ 1 0.2409 0.0523 0.1385 0.3433

Figure 60.2. Model Parameter Estimates for the PROBIT Procedure

Finally, PROC PROBIT specifies the resulting tolerance distribution by providing
the mean MU and scale parameter SIGMA as well as the covariance matrix of the
distribution parameters.
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Probit Procedure

Probit Model in Terms of Tolerance Distribution

MU SIGMA

0.66506312 0.16049411

Estimated Covariance Matrix for Tolerance Parameters

MU SIGMA _C_

MU 0.001158 -0.000493 0.000954
SIGMA -0.000493 0.002394 -0.000999
_C_ 0.000954 -0.000999 0.002731

Figure 60.3. Tolerance Distribution Estimates for the PROBIT Procedure

Figure 60.4. Plot of Observed and Fitted Probabilities versus Dose Level

The PREDPPLOT statement creates the plot inFigure 60.4, showing the relation-
ship between dosage level, observed response proportions, and estimated probability
values. The dashed lines represent pointwise confidence bands for the fitted proba-
bilities, and a reference line is plotted at the estimated threshold value of .24.
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Figure 60.5. Inverse Predicted Probability Plot with Fiducial Limits

The IPPPLOT statement creates the plot inFigure 60.5, showing the inverse relation-
ship between dosage level and observed response proportions/estimated probability
values. The dashed lines represent pointwise fiducial limits for the predicted values
of the dose variable, and a reference line is also plotted at the estimated threshold
value of .24.

The INSET statement after each of these plot statements draws a box within the plot.
In the inset box, summary information about the model fitting is printed.

Syntax

The following statements are available in PROC PROBIT.

PROC PROBIT < options > ;
MODEL response=independents < / options > ;

BY variables ;
CLASS variables ;
OUTPUT < OUT=SAS-data-set > < options > ;
WEIGHT variable ;

CDFPLOT < VAR = variable > < options > ;
INSET < keyword-list > < / options > ;
IPPPLOT < VAR = variable > < options > ;
LPREDPLOT < VAR = variable > < options > ;
PREDPPLOT < VAR = variable > < options > ;
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A MODEL statement is required. Only a single MODEL statement can be used with
one invocation of the PROBIT procedure. If multiple MODEL statements are present,
only the last one is used. Main effects and higher-order terms can be specified in the
MODEL statement, similar to the GLM procedure. If a CLASS statement is used, it
must precede the MODEL statement.

The CDFPLOT, INSET, IPPPLOT, LPREDPLOT, and PREDPPLOT statements are
used to produce graphical output. You can use any appropriate combination of the
graphical statements after the MODEL statement.

PROC PROBIT Statement

PROC PROBIT < options > ;

The PROC PROBIT statement starts the procedure. You can specify the following
options in the PROC PROBIT statement.

COVOUT
writes the parameter estimate covariance matrix to the OUTEST= data set.

C=rate
OPTC

controls how the natural response is handled. Specify the OPTC option to request
that the natural response rateC be estimated. Specify the C=rate option to set the
natural response rate or to provide the initial estimate of the natural response rate.
The natural response rate value must be a number between 0 and 1.

• If you specify neither the OPTC nor the C= option, a natural response rate of
zero is assumed.

• If you specify both the OPTC and the C= option, the C= option should be a
reasonable initial estimate of the natural response rate. For example, you could
use the ratio of the number of responses to the number of subjects in a control
group.

• If you specify the C= option but not the OPTC option, the natural response rate
is set to the specified value and not estimated.

• If you specify the OPTC option but not the C= option, PROC PROBIT’s action
depends on the response variable, as follows:

– If you specify either the LN or LOG10 option and some subjects have the
first independent variable (dose) values less than or equal to zero, these
subjects are treated as a control group. The initial estimate ofC is then
the ratio of the number of responses to the number of subjects in this
group.

– If you do not specify the LN or LOG10 option or if there is no control
group, then one of the following occurs:

· If all responses are greater than zero, the initial estimate of the natu-
ral response rate is the minimal response rate ( the ratio of the num-
ber of responses to the number of subjects in a dose group) across all
dose levels.
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· If one or more of the responses is zero (making the response rate
zero in that dose group), the initial estimate of the natural rate is the
reciprocal of twice the largest number of subjects in any dose group
in the experiment.

DATA=SAS-data-set
specifies the SAS data set to be used by PROC PROBIT. By default, the procedure
uses the most recently created SAS data set.

GOUT=graphics-catalog
specifies a graphics catalog in which to save graphics output.

HPROB=p
specifies a minimum probability level for the Pearson chi-square to indicate a good
fit. The default value is 0.10. The LACKFIT option must also be specified for
this option to have any effect. For Pearson goodness-of-fit chi-square values with
probability greater than the HPROB= value, the fiducial limits, if requested with the
INVERSECL option, are computed using a critical value of 1.96. For chi-square val-
ues with probability less than the value of the HPROB= option, the critical value is a
0.95 two-sided quantile value taken from thet distribution with degrees of freedom
equal to(k − 1)×m− q, wherek is the number of levels for the response variable,
m is the number of different sets of independent variable values, andq is the number
of parameters fit in the model. Note that the HPROB= option can also appear in the
MODEL statement.

INEST= SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters
in the model. See the section“INEST= SAS-data-set” on page 3757 for a detailed
description of the contents of the INEST= data set.

INVERSECL
computes confidence limits for the values of the first continuous independent variable
(such as dose) that yield selected response rates. If the algorithm fails to converge
(this can happen whenC is nonzero), missing values are reported for the confidence
limits. See the section“Inverse Confidence Limits”on page 3761 for details. Note
that the INVERSECL option can also appear in the MODEL statement.

LACKFIT
performs two goodness-of-fit tests (a Pearson chi-square test and a log-likelihood
ratio chi-square test) for the fitted model.

To compute the test statistics, proper grouping of the observations into subpopula-
tions is needed. You can use the AGGREGATE or AGGREGATE= option for this
end. See the entry for the AGGREGATE and AGGREGATE= options under the
MODEL statement. If neither AGGREGATE nor AGGREGATE= is specified, PROC
PROBIT assumes each observation is from a separate subpopulation and computes
the goodness-of-fit test statistics only for theevents/trialssyntax.

Note: This test is not appropriate if the data are very sparse, with only a few values
at each set of the independent variable values.
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If the Pearson chi-square test statistic is significant, then the covariance estimates and
standard error estimates are adjusted.See the“Lack of Fit Tests”section on page 3759
for a description of the tests. Note that the LACKFIT option can also appear in the
MODEL statement.

LOG
LN

analyzes the data by replacing the first continuous independent variable by its natural
logarithm. This variable is usually the level of some treatment such as dosage. In
addition to the usual output given by the INVERSECL option, the estimated dose
values and 95% fiducial limits for dose are also displayed. If you specify the OPTC
option, any observations with a dose value less than or equal to zero are used in the
estimation as a control group. If you do not specify the OPTC option with the LOG
or LN option, then any observations with the first continuous independent variable
values less than or equal to zero are ignored.

LOG10
specifies an analysis like that of the LN or LOG option except that the common loga-
rithm (log to the base 10) of the dose value is used rather than the natural logarithm.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OPTC
controls how the natural response is handled. See the description of theC= optionon
page 3711 for details.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the classification variables specified in
the CLASS statement, including the levels of the response variable. Response level
ordering is important since PROC PROBIT always models the probability of response
levels at the beginning of the ordering. See the section“Response Level Ordering”
on page 3754 for further details. This ordering also determines which parameters in
the model correspond to each level in the data. The following table shows how PROC
PROBIT interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set
FORMATTED formatted value
FREQ descending frequency count; levels with the

most observations come first in the order
INTERNAL unformatted value
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By default, ORDER=FORMATTED. For the values FORMATTED and INTERNAL,
the sort order is machine dependent. For more information on sorting order, see the
chapter on the SORT procedure in theSAS Procedures Guide.

OUTEST= SAS-data-set
specifies a SAS data set to contain the parameter estimates and, if the COVOUT
option is specified, their estimated covariances. If you omit this option, the output
data set is not created. The contents of the data set are described in the section
“OUTEST=SAS-data-set” on page 3762.

XDATA= SAS-data-set
specifies an input SAS data set that contains values for all the independent variables
in the MODEL statement and variables in the CLASS statement. If there are covari-
ates specified in a MODEL statement, you specify fixed values for the effects in the
MODEL statement by the XDATA= data set when predicted values and/or fiducial
limits for a single continuous variable (dose variable) are required. These specified
values for the effects in the MODEL statement are also used for generating plots. See
the section“XDATA= SAS-data-set” on page 3763 for a detailed description of the
contents of the XDATA= data set.

BY Statement

BY variables ;

You can specify a BY statement with PROC PROBIT to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order on each of the BY variables, use
one of the following alternatives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the PROBIT procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CDFPLOT Statement

CDFPLOT <var = variable> <options >;

The CDFPLOT statement plots the predicted cumulative distribution function (CDF)
of the multinomial response variable as a function of a single continuous independent
variable (dose variable). You can only use this statement after a multinomial model
statement.

VAR= (variable)
specifies a single continuous variable (dose variable) in the independent variable list
of the MODEL statement. If a VAR= variable is not specified, the first single continu-
ous variable in the independent variable list of the MODEL statement is used. If such
a variable does not exist in the independent variable list of the MODEL statement, an
error is reported.

The predicted cumulative distribution function is defined as

F̂j(x) = C + (1− C)F (âj + x′b̂)

wherej = 1, . . . , k are the indexes of thek levels of the multinomial response vari-
able,F is the CDF of the distribution used to model the cumulative probabilities,b̂ is
the vector of estimated parameters,x is the covariate vector,̂aj are estimated ordinal
intercepts witĥa1 = 0, andC is the threshold parameter, either known or estimated
from the model. Letx1 be the covariate corresponding to the dose variable andx−1

be the vector of the rest of the covariates. Let the corresponding estimated parameters
be b̂1 andb̂−1. Then

F̂j(x) = C + (1− C)F (âj + x1b̂1 + x′−1b̂−1)

To plot F̂j as a function ofx1, x−1 must be specified. You can use the XDATA=
option to provide the values ofx−1 (see the XDATA= option in the PROC PROBIT
statement for details), or use the default values that follow the rules:

• If the effect contains a continuous variable (or variables), the overall mean of
this effect is used.

• If the effect is a single classification variable, the highest level of the variable
is used.

options
specify the levels of the multinomial response variable for which the cdf curves are
requested, and add features to the plot. There arek − 1 curves for ak-level multino-
mial response variable (for the highest level, it is the constant line 1). You can specify
any of them to be plotted by the LEVEL= option in the CDFPLOT statement. See
the LEVEL= option for how to specify the levels.

An attached box on the right side of the plot is used to label these curves with the
names of their levels. You can specify the color of this box using the CLABBOX=
option.
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You can use options in the CDFPLOT statement to

• superimpose specification limits

• specify the levels for which the cdf curves are requested

• specify graphical enhancements (such as color or text height)

Summary of Options

The following tables list alloptionsby function. The“Dictionary of Options”on
page 3718 describes each option in detail.

CDF Options

Table 60.1. Options for CDFPLOT
LEVEL=character-list specifies the names of the levels for which the cdf curves are

requested

NOTHRESH suppresses the threshold line

THRESHLABPOS=value specifies the position for the label of the threshold line

General Options

Table 60.2. Color Options
CAXIS=color specifies color for axis

CFIT=color specifies color for fitted curves

CFRAME=color specifies color for frame

CGRID=color specifies color for grid lines

CHREF=color specifies color for HREF= lines

CLABBOX=color specifies color for label box

CTEXT=color specifies color for text

CVREF=color specifies color for VREF= lines
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Table 60.3. Options to Enhance Plots Produced on Graphics Devices
ANNOTATE=

SAS-data-set
specifies an ANNOTATE data set

INBORDER requests a border around plot

LFIT=linetype specifies line style for fitted curves

LGRID=linetype specifies line style for grid lines

NOFRAME suppresses the frame around plotting areas

NOGRID suppresses grid lines

NOFIT suppresses cdf curves

NOHLABEL suppresses horizontal labels

NOHTICK suppresses horizontal ticks

NOVTICK suppresses vertical ticks

TURNVLABELS vertically strings out characters in vertical labels

WFIT=n specifies thickness for fitted curves

WGRID=n specifies thickness for grids

WREFL=n specifies thickness for reference lines

Table 60.4. Axis Options
HAXIS=value1 to value2
<by value3>

specifies tick mark values for horizontal axis

HOFFSET=value specifies offset for horizontal axis

HLOWER=value specifies lower limit on horizontal axis scale

HUPPER=value specifies upper limit on horizontal axis scale

NHTICK=n specifies number of ticks for horizontal axis

NVTICK=n specifies number of ticks for vertical axis

VAXIS=value1 to value2
<by value3>

specifies tick mark values for vertical axis

VAXISLABEL= ’label’ specifies label for vertical axis

VOFFSET=value specifies offset for vertical axis

VLOWER=value specifies lower limit on vertical axis scale

VUPPER=value specifies upper limit on vertical axis scale

WAXIS=n specifies thickness for axis

Table 60.5. Graphics Catalog Options
DESCRIPTION=’string’ specifies description for graphics catalog member

NAME=’ string’ specifies name for plot in graphics catalog

Table 60.6. Options for Text Enhancement
FONT=font specifies software font for text

HEIGHT=value specifies height of text used outside framed areas

INFONT=font specifies software font for text inside framed areas

INHEIGHT=value specifies height of text inside framed areas
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Table 60.7. Options for Reference Lines
HREF< (INTERSECT)>
=value-list

requests horizontal reference line

HREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for HREF= lines

HREFLABPOS=n specifies vertical position of labels for HREF= lines

LHREF=linetype specifies line style for HREF= lines

LVREF=linetype specifies line style for VREF= lines

VREF<(INTERSECT)>
=value-list

requests vertical reference line

VREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for VREF= lines

VREFLABPOS=n specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of theoptionsin the CDFPLOT
statement.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an ANNOTATE data set, as described inSAS/GRAPH Software: Reference,
that enables you to add features to the cdf plot. The ANNOTATE= data set you
specify in the CDFPLOT statement is used for all plots created by the statement.

CAXIS=color
CAXES=color

specifies the color used for the axes and tick marks. This option overrides any
COLOR= specifications in an AXIS statement. The default is the first color in the
device color list.

CFIT=color
specifies the color for the fitted cdf curves. The default is the first color in the device
color list.

CFRAME=color
CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded
by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CLABBOX= color
specifies the color for the area enclosed by the label box for cdf curves. This area is
not shaded by default.
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CHREF=color
CH=color

specifies the color for lines requested by the HREF= option. The default is the first
color in the device color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color
specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color
CV=color

specifies the color for lines requested by the VREF= option. The default is the first
color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters, that appears in the PROC GREPLAY
master menu. The default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts
for axis labels in an AXIS statement. The FONT= font takes precedence over the
FTEXT= font specified in the most recent GOPTIONS statement. Hardware charac-
ters are used by default.

HAXIS=value1 to value2<by value3>
specifies tick mark values for the horizontal axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. If value3is omitted, a value of 1 is used.

Examples of HAXIS= lists are:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in
percentage).

HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies
valueas the lower horizontal axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the HAXIS= option
is used.
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HOFFSET=value
specifies offset for horizontal axis. The default value is 1.

HUPPER=value
specifiesvalueas the upper horizontal axis tick mark. The tick mark interval and
the lower axis limit are determined automatically. This option has no effect if the
HAXIS= option is used.

HREF <(INTERSECT)> =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is
specified, a second reference line perpendicular to the vertical axis is drawn that
intersects the fit line at the same point as the horizontal axis reference line. If a
horizontal axis reference line label is specified, the intersecting vertical axis reference
line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=,
and LHREF= options.

HREFLABELS= ’label1’,. . .,’labeln’
HREFLABEL= ’label1’,. . .,’labeln’
HREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the HREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

HREFLABPOS= n
specifies the vertical position of labels for HREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 top
2 staggered from top
3 bottom
4 staggered from bottom
5 alternating from top
6 alternating from bottom

INBORDER
requests a border around cdf plots.

LEVEL= (character-list)
ORDINAL= (character-list)

specifies the names of the levels for which cdf curves are requested. Names should
be quoted and separated by space. If there is no correct name provided, no cdf curve
is plotted.

LFIT=linetype
specifies a line style for fitted curves. By default, fitted curves are drawn by connect-
ing solid lines (linetype = 1).
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LGRID=linetype
specifies a line style for all grid lines.linetypeis between 1 and 46. The default is 35.

LHREF=linetype
LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2,
which produces a dashed line.

LVREF=linetype
LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2,
which produces a dashed line.

NAME=’string’
specifies a name for the plot, up to eight characters, that appears in the PROC
GREPLAY master menu. The default is ’PROBIT’.

NOFIT
suppresses the fitted cdf curves.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

THRESHLABPOS= n
specifies the horizontal position of labels for the threshold line. The following table
shows valid values forn and the corresponding label placements.

n label placement
1 left
2 right
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VAXIS=value1 to value2<by value3>
specifies tick mark values for the vertical axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. This method of specification of tick marks is not valid for
logarithmic axes. Ifvalue3is omitted, a value of 1 is used.

Examples of VAXIS= lists are:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL= ’string’
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies
valueas the lower vertical axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is spec-
ified, a second reference line perpendicular to the horizontal axis is drawn that in-
tersects the fit line at the same point as the vertical axis reference line. If a verti-
cal axis reference line label is specified, the intersecting horizontal axis reference
line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and
VREFLABELS= options.

VREFLABELS= ’label1’,. . .,’labeln’
VREFLABEL= ’label1’,. . .,’labeln’
VREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

VREFLABPOS= n
specifies the horizontal position of labels for VREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 left
2 right

VUPPER=value
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies
valueas the upper vertical axis tick mark. The tick mark interval and the lower axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.
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WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis.
Classification variables can be either character or numeric. If a single response vari-
able is specified in the MODEL statement, it must also be specified in a CLASS
statement.

Class levels are determined from the formatted values of the CLASS variables. Thus,
you can use formats to group values into levels. See the discussion of the FORMAT
procedure inSAS Language Reference: Dictionary.

If the CLASS statement is used, it must appear before any of the MODEL statements.

INSET Statement

INSET <keyword-list> <options>;

The box or table of summary information produced on plots made with the
CDFPLOT, IPPPLOT, LPREDPLOT, andPREDPPLOTstatement is called aninset.
You can use the INSET statement to customize both the information that is printed in
the inset box and the appearance of the inset box. To supply the information that is
displayed in the inset box, you specifykeywordscorresponding to the information you
want shown. For example, the following statements produce a predicted probability
plot with the number of trials, the number of events, the name of the distribution, and
the estimated optimum natural threshold in the inset.

proc probit data=epidemic;
model r/n = dose;
predpplot ;
inset nobs ntrials nevents dist optc;

run;

By default, inset entries are identified with appropriate labels. However, you can
provide a customized label by specifying thekeywordfor that entry followed by the
equal sign (=) and the label in quotes. For example, the following INSET statement
produces an inset containing the number of observations and the name of the distri-
bution, labeled “Sample Size” and “Distribution” in the inset.
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inset nobs=’Sample Size’ dist=’Distribution’;

If you specify a keyword that does not apply to the plot you are creating, then the
keyword is ignored.

Theoptionscontrol the appearance of the box.

If you specify more than one INSET statement, only the first one is used.

Keywords Used in the INSET Statement

The following tables list keywords available in the INSET statement to display sum-
mary statistics, distribution parameters, and distribution fitting information.

Table 60.8. Summary Statistics
NOBS number of observations

NTRIALS number of trials

NEVENTS number of events

C the user inputted threshold

OPTC the estimated natural threshold

NRESPLEV number of levels of the response variable

Table 60.9. General Information
CONFIDENCE confidence coefficient for all confidence intervals or for the

Weibayes fit

DIST name of the distribution

Options Used in the INSET Statement

The following tables list the options available in the INSET statement.
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Table 60.10. General Appearance Options
FONT=font specifies software font for text

HEIGHT=value specifies height of text

HEADER=’quoted string’ specifies text for header or box title

NOFRAME omits frame around box

POS=value
<DATA | PERCENT> determines the position of the inset. Thevaluecan be a com-

pass point (N, NE, E, SE, S, SW, W, NW) or a pair of coordi-
nates (x, y) enclosed in parentheses. The coordinates can be
specified in axis percent units or axis data units.

REFPOINT=name specifies the reference point for an inset that is positioned
by a pair of coordinates with the POS= option. You use the
REFPOINT= option in conjunction with the POS= coordi-
nates. The REFPOINT= option specifies which corner of the
inset frame you have specified with coordinates (x, y) and it
can take the value of BR (bottom right), BL (bottom left), TR
(top right), or TL (top left). The default is REFPOINT=BL.
If the inset position is specified as a compass point, then the
REFPOINT= option is ignored.

Table 60.11. Color and Pattern Options
CFILL=color specifies color for filling box

CFILLH=color specifies color for filling box header

CFRAME=color specifies color for frame

CHEADER=color specifies color for text in header

CTEXT=color specifies color for text

IPPPLOT Statement

IPPPLOT <var = variable> <options>;

The IPPPLOT statement plots the inverse of the predicted probability against a single
continuous variable (dose variable) in the MODEL statement for the binomial model.
You can only use this statement after a binomial model statement. The confidence
limits for the predicted values of the dose variable are the computed fiducial limits,
not the inverse of the confidence limits of the predicted probabilities. Refer to the
section“Inverse Confidence Limits”on page 3761 for more details.

VAR= (variable)
specifies a single continuous variable (dose variable) in the independent variable list
of the MODEL statement. If a VAR= variable is not specified, the first single continu-
ous variable in the independent variable list of the MODEL statement is used. If such
a variable does not exist in the independent variable list of the MODEL statement, an
error is reported.

For the binomial model, the response variable is a probability. An estimate of the
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dose level̂x1 needed for a response ofp is given by

x̂1 = (F−1(p)− x′−1b̂−1)/b̂1

whereF is the cumulative distribution function used to model the probability,x−1 is
the vector of the rest of the covariates,b̂−1 is the vector of the estimated parameters
corresponding tox−1, and b̂1 is the estimated parameter for the dose variable of
interest.

To plot x̂1 as a function ofp, x−1 must be specified. You can use the XDATA=
option to provide the values ofx−1 (see the XDATA= option in the PROC PROBIT
statement for details), or use the default values that follow the rules:

• If the effect contains a continuous variable (or variables), the overall mean of
this effect is used.

• If the effect is a single classification variable, the highest level of the variable
is used.

options
add features to the plot.

You can use options in the IPPPLOT statement to

• superimpose specification limits

• suppress or add the observed data points on the plot

• suppress or add the fiducial limits on the plot

• specify graphical enhancements (such as color or text height)

Summary of Options

The following tables list alloptionsby function. The“Dictionary of Options”on
page 3728 describes each option in detail.

IPP Options

Table 60.12. Plot Layout Options for IPPPLOT
NOCONF suppresses fiducial limits

NODATA suppresses observed data points on the plot

NOTHRESH suppresses the threshold line

THRESHLABPOS=value specifies the position for the label of the threshold line

General Options
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Table 60.13. Color Options
CAXIS=color specifies color for axis

CFIT=color specifies color for fitted curves

CFRAME=color specifies color for frame

CGRID=color specifies color for grid lines

CHREF=color specifies color for HREF= lines

CTEXT=color specifies color for text

CVREF=color specifies color for VREF= lines

Table 60.14. Options to Enhance Plots Produced on Graphics Devices
ANNOTATE=

SAS-data-set
specifies an ANNOTATE data set

INBORDER requests a border around plot

LFIT=linetype specifies line style for fitted curves and confidence limits

LGRID=linetype specifies line style for grid lines

NOFRAME suppresses the frame around plotting areas

NOGRID suppresses grid lines

NOFIT suppresses fitted curves

NOHLABEL suppresses horizontal labels

NOHTICK suppresses horizontal ticks

NOVTICK suppresses vertical ticks

TURNVLABELS vertically strings out characters in vertical labels

WFIT=n specifies thickness for fitted curves

WGRID=n specifies thickness for grids

WREFL=n specifies thickness for reference lines

Table 60.15. Axis Options
HAXIS=value1 to value2
<by value3>

specifies tick mark values for horizontal axis

HOFFSET=value specifies offset for horizontal axis

HLOWER=value specifies lower limit on horizontal axis scale

HUPPER=value specifies upper limit on horizontal axis scale

NHTICK=n specifies number of ticks for horizontal axis

NVTICK=n specifies number of ticks for vertical axis

VAXIS=value1 to value2
<by value3>

specifies tick mark values for vertical axis

VAXISLABEL= ’label’ specifies label for vertical axis

VOFFSET=value specifies offset for vertical axis

VLOWER=value specifies lower limit on vertical axis scale

VUPPER=value specifies upper limit on vertical axis scale

WAXIS=n specifies thickness for axis
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Table 60.16. Options for Reference Lines
HREF<(INTERSECT)>
=value-list

requests horizontal reference line

HREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for HREF= lines

HREFLABPOS=n specifies vertical position of labels for HREF= lines

LHREF=linetype specifies line style for HREF= lines

LVREF=linetype specifies line style for VREF= lines

VREF<(INTERSECT)>
=value-list

requests vertical reference line

VREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for VREF= lines

VREFLABPOS=n specifies horizontal position of labels for VREF= lines

Table 60.17. Graphics Catalog Options
DESCRIPTION=’string’ specifies description for graphics catalog member

NAME=’ string’ specifies name for plot in graphics catalog

Table 60.18. Options for Text Enhancement
FONT=font specifies software font for text

HEIGHT=value specifies height of text used outside framed areas

INFONT=font specifies software font for text inside framed areas

INHEIGHT=value specifies height of text inside framed areas

Dictionary of Options

The following entries provide detailed descriptions of theoptionsin the IPPPLOT
statement.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an ANNOTATE data set, as described inSAS/GRAPH Software: Reference,
that enables you to add features to the ipp plot. The ANNOTATE= data set you
specify in the IPPPLOT statement is used for all plots created by the statement.

CAXIS=color
CAXES=color

specifies the color used for the axes and tick marks. This option overrides any
COLOR= specifications in an AXIS statement. The default is the first color in the
device color list.

CFIT=color
specifies the color for the fitted ipp curves. The default is the first color in the device
color list.
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CFRAME=color
CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded
by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color
CH=color

specifies the color for lines requested by the HREF= option. The default is the first
color in the device color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color
specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color
CV=color

specifies the color for lines requested by the VREF= option. The default is the first
color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters, that appears in the PROC GREPLAY
master menu. The default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts
for axis labels in an AXIS statement. The FONT= font takes precedence over the
FTEXT= font specified in the most recent GOPTIONS statement. Hardware charac-
ters are used by default.

HAXIS=value1 to value2<by value3>
specifies tick mark values for the horizontal axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. If value3is omitted, a value of 1 is used.

Examples of HAXIS= lists are:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in
percentage).
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HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies
valueas the lower horizontal axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the HAXIS= option
is used.

HOFFSET=value
specifies offset for horizontal axis. The default value is 1.

HUPPER=value
specifiesvalueas the upper horizontal axis tick mark. The tick mark interval and
the lower axis limit are determined automatically. This option has no effect if the
HAXIS= option is used.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is
specified, a second reference line perpendicular to the vertical axis is drawn that
intersects the fit line at the same point as the horizontal axis reference line. If a
horizontal axis reference line label is specified, the intersecting vertical axis reference
line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=,
and LHREF= options.

HREFLABELS= ’label1’,. . .,’labeln’
HREFLABEL= ’label1’,. . .,’labeln’
HREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the HREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

HREFLABPOS= n
specifies the vertical position of labels for HREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 top
2 staggered from top
3 bottom
4 staggered from bottom
5 alternating from top
6 alternating from bottom

INBORDER
requests a border around ipp plots.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves
are drawn by connecting solid lines (linetype = 1) and confidence limits are drawn by
connecting dashed lines (linetype = 3).



IPPPLOT Statement � 3731

LGRID=linetype
specifies a line style for all grid lines.linetypeis between 1 and 46. The default is 35.

LHREF=linetype
LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2,
which produces a dashed line.

LVREF=linetype
LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2,
which produces a dashed line.

NAME=’string’
specifies a name for the plot, up to eight characters, that appears in the PROC
GREPLAY master menu. The default is ’PROBIT’.

NOCONF
suppresses fiducial limits from the plot.

NODATA
suppresses observed data points from the plot.

NOFIT
suppresses the fitted ipp curves.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

THRESHLABPOS= n
specifies the vertical position of labels for the threshold line. The following table
shows valid values forn and the corresponding label placements.

n label placement
1 top
2 bottom
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VAXIS=value1 to value2<by value3>
specifies tick mark values for the vertical axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. This method of specification of tick marks is not valid for
logarithmic axes. Ifvalue3is omitted, a value of 1 is used.

Examples of VAXIS= lists are:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL= ’string’
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies
valueas the lower vertical axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is spec-
ified, a second reference line perpendicular to the horizontal axis is drawn that in-
tersects the fit line at the same point as the vertical axis reference line. If a verti-
cal axis reference line label is specified, the intersecting horizontal axis reference
line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and
VREFLABELS= options.

VREFLABELS= ’label1’,. . .,’labeln’
VREFLABEL= ’label1’,. . .,’labeln’
VREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

VREFLABPOS= n
specifies the horizontal position of labels for VREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 left
2 right

VUPPER=value
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies
valueas the upper vertical axis tick mark. The tick mark interval and the lower axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.
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WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

LPREDPLOT Statement

LPREDPLOT <var = variable> <options>;

The LPREDPLOT statement plots the linear predictorx′b against a single continuous
variable (dose variable) in the MODEL statement for either the binomial model or the
multinomial model. The confidence limits for the predicted values are only available
for the binomial model.

VAR= (variable)
specifies a single continuous variable (dose variable) in the independent variable list
of the MODEL statement for which the linear predictor plot is plotted. If a VAR=
variable is not specified, the first single continuous variable in the independent vari-
able list of the MODEL statement is used. If such a variable does not exist in the
independent variable list of the MODEL statement, an error is reported.

Let x1 be the covariate of the dose variable,x−1 be the vector of the rest of the
covariates,̂b−1 be the vector of estimated parameters corresponding tox−1, andb̂1

be the estimated parameter for the dose variable of interest.

To plot x̂′b as a function ofx1, x−1 must be specified. You can use the XDATA=
option to provide the values ofx−1 (see the XDATA= option in the PROC PROBIT
statement for details), or use the default values that follow the rules:

• If the effect contains a continuous variable (or variables), the overall mean of
this effect is used.

• If the effect is a single classification variable, the highest level of the variable
is used.

options
add features to the plot.

For the multinomial model, you can use the LEVEL= option to specify the levels for
which the linear predictor lines are plotted. The lines are labeled by the names of
their levels in the middle.

You can use options in the LPREDPLOT statement to

• superimpose specification limits
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• suppress or add the observed data points on the plot for the binomial model

• suppress or add the confidence limits for the binomial model

• specify the levels for which the linear predictor lines are requested for the
multinomial model

• specify graphical enhancements (such as color or text height)

Summary of Options

The following tables list alloptionsby function. The“Dictionary of Options”on
page 3736 describes each option in detail.

LPRED Options

Table 60.19. Plot Layout Options for LPREDPLOT
LEVEL=character-list specifies the names of the levels for which the linear predictor

lines are requested (only for the multinomial model )

NOCONF suppresses fiducial limits (only for the binomial model)

NODATA suppresses observed data points on the plot (only for the bino-
mial model)

NOTHRESH suppresses the threshold line

THRESHLABPOS=value specifies the position for the label of the threshold line

General Options

Table 60.20. Color Options
CAXIS=color specifies color for axis

CFIT=color specifies color for fitted curves

CFRAME=color specifies color for frame

CGRID=color specifies color for grid lines

CHREF=color specifies color for HREF= lines

CTEXT=color specifies color for text

CVREF=color specifies color for VREF= lines
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Table 60.21. Options to Enhance Plots Produced on Graphics Devices
ANNOTATE=

SAS-data-set
specifies an ANNOTATE data set

INBORDER requests a border around plot

LFIT=linetype specifies line style for fitted curves and confidence limits

LGRID=linetype specifies line style for grid lines

NOFRAME suppresses the frame around plotting areas

NOGRID suppresses grid lines

NOFIT suppresses fitted curves

NOHLABEL suppresses horizontal labels

NOHTICK suppresses horizontal ticks

NOVTICK suppresses vertical ticks

TURNVLABELS vertically strings out characters in vertical labels

WFIT=n specifies thickness for fitted curves

WGRID=n specifies thickness for grids

WREFL=n specifies thickness for reference lines

Table 60.22. Axis Options
HAXIS=value1 to value2
<by value3>

specifies tick mark values for horizontal axis

HOFFSET=value specifies offset for horizontal axis

HLOWER=value specifies lower limit on horizontal axis scale

HUPPER=value specifies upper limit on horizontal axis scale

NHTICK=n specifies number of ticks for horizontal axis

NVTICK=n specifies number of ticks for vertical axis

VAXIS=value1 to value2
<by value3>

specifies tick mark values for vertical axis

VAXISLABEL= ’label’ specifies label for vertical axis

VOFFSET=value specifies offset for vertical axis

VLOWER=value specifies lower limit on vertical axis scale

VUPPER=value specifies upper limit on vertical axis scale

WAXIS=n specifies thickness for axis

Table 60.23. Graphics Catalog Options
DESCRIPTION=’string’ specifies description for graphics catalog member

NAME=’ string’ specifies name for plot in graphics catalog

Table 60.24. Options for Text Enhancement
FONT=font specifies software font for text

HEIGHT=value specifies height of text used outside framed areas

INFONT=font specifies software font for text inside framed areas

INHEIGHT=value specifies height of text inside framed areas
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Table 60.25. Options for Reference Lines
HREF<(INTERSECT)>
=value-list

requests horizontal reference line

HREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for HREF= lines

HREFLABPOS=n specifies vertical position of labels for HREF= lines

LHREF=linetype specifies line style for HREF= lines

LVREF=linetype specifies line style for VREF= lines

VREF<(INTERSECT)>
=value-list

requests vertical reference line

VREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for VREF= lines

VREFLABPOS=n specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of theoptions in the
LPREDPLOT statement.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an ANNOTATE data set, as described inSAS/GRAPH Software: Reference,
that enables you to add features to the lpred plot. The ANNOTATE= data set you
specify in the LPREDPLOT statement is used for all plots created by the statement.

CAXIS=color
CAXES=color

specifies the color used for the axes and tick marks. This option overrides any
COLOR= specifications in an AXIS statement. The default is the first color in the
device color list.

CFIT=color
specifies the color for the fitted lpred lines. The default is the first color in the device
color list.

CFRAME=color
CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded
by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color
CH=color

specifies the color for lines requested by the HREF= option. The default is the first
color in the device color list.
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CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color
specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color
CV=color

specifies the color for lines requested by the VREF= option. The default is the first
color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters, that appears in the PROC GREPLAY
master menu. The default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts
for axis labels in an AXIS statement. The FONT= font takes precedence over the
FTEXT= font specified in the most recent GOPTIONS statement. Hardware charac-
ters are used by default.

HAXIS=value1 to value2<by value3>
specifies tick mark values for the horizontal axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. If value3is omitted, a value of 1 is used.

Examples of HAXIS= lists are:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in
percentage).

HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies
valueas the lower horizontal axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the HAXIS= option
is used.

HOFFSET=value
specifies offset for horizontal axis. The default value is 1.

HUPPER=value
specifiesvalueas the upper horizontal axis tick mark. The tick mark interval and
the lower axis limit are determined automatically. This option has no effect if the
HAXIS= option is used.
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HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is
specified, a second reference line perpendicular to the vertical axis is drawn that
intersects the fit line at the same point as the horizontal axis reference line. If a
horizontal axis reference line label is specified, the intersecting vertical axis reference
line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=,
and LHREF= options.

HREFLABELS= ’label1’,. . .,’labeln’
HREFLABEL= ’label1’,. . .,’labeln’
HREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the HREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

HREFLABPOS= n
specifies the vertical position of labels for HREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 top
2 staggered from top
3 bottom
4 staggered from bottom
5 alternating from top
6 alternating from bottom

INBORDER
requests a border around lpred plots.

LEVEL= (character-list)
ORDINAL= (character-list)

specifies the names of the levels for which linear predictor lines are requested. Names
should be quoted and separated by space. If there is no correct name provided, no
lpred line is plotted.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves
are drawn by connecting solid lines (linetype = 1) and confidence limits are drawn by
connecting dashed lines (linetype = 3).

LGRID=linetype
specifies a line style for all grid lines.linetypeis between 1 and 46. The default is 35.

LHREF=linetype
LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2,
which produces a dashed line.
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LVREF=linetype
LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2,
which produces a dashed line.

NAME=’string’
specifies a name for the plot, up to eight characters, that appears in the PROC
GREPLAY master menu. The default is ’PROBIT’.

NOCONF
suppresses confidence limits from the plot. This only works for the binomial model.
Confidence limits are not plotted for the multinomial model.

NODATA
suppresses observed data points from the plot. This only works for the binomial
model. Data points are not plotted for the multinomial model.

NOFIT
suppresses the fitted lpred lines.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

THRESHLABPOS= n
specifies the horizontal position of labels for the threshold line. The following table
shows valid values forn and the corresponding label placements.

n label placement
1 left
2 right
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VAXIS=value1 to value2<by value3>
specifies tick mark values for the vertical axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. This method of specification of tick marks is not valid for
logarithmic axes. Ifvalue3is omitted, a value of 1 is used.

Examples of VAXIS= lists are:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL= ’string’
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies
valueas the lower vertical axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is spec-
ified, a second reference line perpendicular to the horizontal axis is drawn that in-
tersects the fit line at the same point as the vertical axis reference line. If a verti-
cal axis reference line label is specified, the intersecting horizontal axis reference
line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and
VREFLABELS= options.

VREFLABELS= ’label1’,. . .,’labeln’
VREFLABEL= ’label1’,. . .,’labeln’
VREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

VREFLABPOS= n
specifies the horizontal position of labels for VREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 left
2 right

VUPPER=number
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies
numberas the upper vertical axis tick mark. The tick mark interval and the lower axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.



MODEL Statement � 3741

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted lines. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

MODEL Statement

<label:> MODEL response=effects < / options > ;

<label:> MODEL events/trials=effects < / options > ;

The MODEL statement names the variables used as the response and the independent
variables. Additionally, you can specify the distribution used to model the response,
as well as other options. Only a single MODEL statement can be used with one in-
vocation of the PROBIT procedure. If multiple MODEL statements are present, only
the last is used. Main effects and interaction terms can be specified in the MODEL
statement, similar to the GLM procedure.

The optionallabel is used to label output from the matching MODEL statement.

Theresponsecan be a single variable with a value that is used to indicate the level of
the observed response. Such a response variable must be listed in the CLASS state-
ment. For example, the response might be a variable calledSymptoms that takes on
the values ‘None,’ ‘Mild,’ or ‘Severe.’ Note that, for dichotomous response variables,
the probability of the lower sorted value is modeled by default (see the“Details”
section beginning on page 3754). Because the model fit by the PROBIT procedure
requires ordered response levels, you may need to use either the ORDER=DATA op-
tion in the PROC PROBIT statement or a numeric coding of the response to get the
desired ordering of levels.

Alternatively, the response can be specified as a pair of variable names separated by
a slash (/). The value of the first variable,events, is the number of positive responses
(or events). The value of the second variable,trials, is the number of trials. Both
variables must be numeric and non-negative, and the ratio of the first variable value
to the second variable value must be between 0 and 1, inclusive. For example, the
variables might behits, a variable containing the number of hits for a baseball player,
andAtBats, a variable containing the number of times at bat. A model for hitting
proportion (batting average) as a function of age could be specified as

model hits/AtBats=age;

The effectsfollowing the equal sign are the covariates in the model. Higher-order
effects, such as interactions and nested terms, are allowed in the list, similar to the
GLM procedure. Variable names and combinations of variable names representing
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higher-order terms are allowed to appear in this list. Class variables can be used as
effects, and indicator variables are generated for the class levels. If you do not specify
any covariates following the equal sign, an intercept-only model is fit.

The following options are available in the MODEL statement.

AGGREGATE
AGGREGATE= (variable-list)

specifies the subpopulations on which the Pearson chi-square test statistic and the
log-likelihood ratio chi-square test statistic (deviance) are calculated if the LACKFIT
option is specified. See the section“Rescaling the Covariance Matrix”on page 3760
for details of Pearson’s chi-square and deviance calculations.

Observations with common values in the given list of variables are regarded as com-
ing from the same subpopulation. Variables in the list can be any variables in the
input data set. Specifying the AGGREGATE option is equivalent to specifying the
AGGREGATE= option with a variable list that includes all independent variables in
the MODEL statement. The PROBIT procedure sorts the input data set according to
the variables specified in this list. Information for the sorted data set is reported in
the “Response-Covariate Profile” table.

The deviance and Pearson goodness-of-fit statistics are calculated if the LACKFIT
option is specified in the MODEL statement. The calculated results are reported in
the “Goodness-of-Fit” table. If the Pearson chi-square test is significant with the
test level specified by the HPROB= option, the fiducial limits, if required with the
INVERSECL option in the MODEL statement, are modified (see the section“Inverse
Confidence Limits”on page 3761 for details). Also, the covariance matrix is re-scaled
by the dispersion parameter when the SCALE= option is specified.

ALPHA= value
sets the significance level for the confidence intervals for regression parameters, fidu-
cial limits for the predicted values, and confidence intervals for the predicted proba-
bilities. The value must be between 0 and 1. The default value is ALPHA=0.05.

CONVERGE=value
specifies the convergence criterion. Convergence is declared when the maximum
change in the parameter estimates between Newton-Raphson steps is less than the
value specified. The change is a relative change if the parameter is greater than 0.01
in absolute value; otherwise, it is an absolute change.

By default, CONVERGE=1.0E-8.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COVB
displays the estimated covariance matrix of the parameter estimates.

DISTRIBUTION=distribution-type
DIST=distribution-type
D=distribution-type

specifies the cumulative distribution function used to model the response probabili-
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ties. The distributions are described in the“Details” section beginning on page 3754.
Valid values fordistribution-typeare

NORMAL the normal distribution for the probit model

LOGISTIC the logistic distribution for the logit model

EXTREMEVALUE | EXTREME | GOMPERTZ the extreme value, or Gompertz
distribution for the gompit model

By default, DISTRIBUTION=NORMAL.

HPROB=p
specifies a minimum probability level for the Pearson chi-square to indicate a good
fit. The default value is 0.10. The LACKFIT option must also be specified for
this option to have any effect. For Pearson goodness-of-fit chi-square values with
probability greater than the HPROB= value, the fiducial limits, if requested with the
INVERSECL option, are computed using a critical value of 1.96. For chi-square val-
ues with probability less than the value of the HPROB= option, the critical value is a
0.95 two-sided quantile value taken from thet distribution with degrees of freedom
equal to(k − 1)×m− q, wherek is the number of levels for the response variable,
m is the number of different sets of independent variable values, andq is the number
of parameters fit in the model. If you specify the HPROB= option in both the PROC
PROBIT and MODEL statements, the MODEL statement option takes precedence.

INITIAL=values
sets initial values for the parameters in the model other than the intercept. The values
must be given in the order in which the variables are listed in the MODEL statement.
If some of the independent variables listed in the MODEL statement are classifica-
tion variables, then there must be as many values given for that variable as there are
classification levels minus 1. The INITIAL option can be specified as follows.

Type of List Specification
list separated by blanks initial=3 4 5

list separated by commas initial=3,4,5

By default, all parameters have initial estimates of zero.

Note: The INITIAL= option is overwritten by the INEST= option in the PROC
PROBIT statement.

INTERCEPT=value
initializes the intercept parameter tovalue. By default, INTERCEPT=0.

INVERSECL
computes confidence limits for the values of the first continuous independent variable
(such as dose) that yield selected response rates. If the algorithm fails to converge
(this can happen whenC is nonzero), missing values are reported for the confidence
limits. See the section“Inverse Confidence Limits”on page 3761 for details.
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ITPRINT
displays the iteration history, the final evaluation of the gradient, and the second
derivative matrix (Hessian).

LACKFIT
performs two goodness-of-fit tests (a Pearson chi-square test and a log-likelihood
ratio chi-square test) for the fitted model.

To compute the test statistics, proper grouping of the observations into subpopula-
tions is needed. You can use the AGGREGATE or AGGREGATE= option to this
end. See the entry for the AGGREGATE and AGGREGATE= options under the
MODEL statement. If neither AGGREGATE nor AGGREGATE= is specified, PROC
PROBIT assumes each observation is from a separate subpopulation and computes
the goodness-of-fit test statistics only for theevents/trialssyntax.

Note: This test is not appropriate if the data are very sparse, with only a few values
at each set of the independent variable values.

If the Pearson chi-square test statistic is significant, then the covariance estimates
and standard error estimates are adjusted.See the section“Lack of Fit Tests”on page
3759 for a description of the tests. Note that the LACKFIT option can also appear in
the PROC PROBIT statement. See the section“PROC PROBIT Statement”on page
3711 for details.

MAXITER=value
MAXIT=value

specifies the maximum number of iterations to be performed in estimating the param-
eters. By default, MAXITER=50.

NOINT
fits a model with no intercept parameter. If the INTERCEPT= option is also speci-
fied, the intercept is fixed at the specified value; otherwise, it is set to zero. This is
most useful when the response is binary. When the response hask levels, thenk − 1
intercept parameters are fit. The NOINT option sets the intercept parameter corre-
sponding to the lowest response level equal to zero. A Lagrange multiplier, or score,
test for the restricted model is computed when the NOINT option is specified.

SCALE= scale
enables you to specify the method for estimating the dispersion parameter. To cor-
rect for overdispersion or underdispersion, the covariance matrix is multiplied by the
estimate of the dispersion parameter. Valid values forscaleare as follows:

D | DEVIANCE specifies that the dispersion parameter be estimated by
the deviance divided by its degrees of freedom.

P | PEARSON specifies that the dispersion parameter be estimated by
the Pearson chi-square statistic divided by its degrees of
freedom. This is set as the default.

You can use the AGGREGATE= option to define the subpopulations for calculating
the Pearson chi-square statistic and the deviance.
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The “Goodness-of-Fit ” table includes the Pearson chi-square statistic, the deviance,
their degrees of freedom, the ratio of each statistic divided by its degrees of freedom,
and the correspondingp-value.

SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of
independent variables. The sum of squares and cross-products matrix of the inde-
pendent variables is formed and swept. If the relative size of a pivot becomes less
than the value specified, then the variable corresponding to the pivot is considered
to be linearly dependent on the previous set of variables considered. By default,
SINGULAR=1E−12.

OUTPUT Statement

OUTPUT <OUT=SAS-data-set> <keyword=name. . .keyword=name>;

The OUTPUT statement creates a new SAS data set containing all variables in the
input data set and, optionally, the fitted probabilities, the estimate ofx′β, and the
estimate of its standard error. Estimates of the probabilities,x′β, and the standard
errors are computed for observations with missing response values as long as the
values of all the explanatory variables are nonmissing. This enables you to compute
these statistics for additional settings of the explanatory variables that are of interest
but for which responses are not observed.

You can specify multiple OUTPUT statements. Each OUTPUT statement creates a
new data set and applies only to the preceding MODEL statement. If you want to
create a permanent SAS data set, you must specify a two-level name (refer toSAS
Language Reference: Conceptsfor more information on permanent SAS data sets).

Details on the specifications in the OUTPUT statement are as follows:

keyword=name specifies the statistics to include in the output data set and as-
signs names to the new variables that contain the statistics.
Specify a keyword for each desired statistic (see the following
list of keywords), an equal sign, and the variable to contain the
statistic.

The keywords allowed and the statistics they represent are as
follows:

PROB | P cumulative probability estimates

p = C + (1− C)F (aj + x′β)

STD standard error estimates ofaj + x′b
XBETA estimates ofaj + x′β

OUT=SAS-data-setnames the output data set. By default, the new data set is named
using theDATAn convention.
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When thesingle variable responsesyntax is used, the–LEVEL– variable is added
to the output data set, and there arek − 1 output observations for each input ob-
servation, wherek is the number of response levels. There is no observation output
corresponding to the highest response level. For each of thek − 1 observations, the
PROB variable contains the fitted probability of obtaining a response level up to the
level indicated by the–LEVEL– variable, theXBETA variable containsaj + x′b,
wherej references the levels (a1 = 0), and theSTD variable contains the standard
error estimate of theXBETA variable. See the “Details” section, which follows, for
the formulas for the parameterizations.

PREDPPLOT Statement

PREDPPLOT <var = variable> <options>;

The PREDPPLOT statement plots the predicted probability against a single contin-
uous variable (dose variable) in the MODEL statement for both the binomial model
and the multinomial model. Confidence limits are only available for the binomial
model. An attached box on the right side of the plot is used to label predicted prob-
ability curves with the names of their levels for the multinomial model. You can
specify the color of this box using the CLABBOX= option.

VAR= (variable)
specifies a single continuous variable (dose variable) in the independent variable list
of the MODEL statement. If a VAR= variable is not specified, the first single continu-
ous variable in the independent variable list of the MODEL statement is used. If such
a variable does not exist in the independent variable list of the MODEL statement, an
error is reported.

The predicted probability is

p̂ = C + (1− C)F (x′b̂)

for the binomial model and

p̂1 = C + (1− C)F (x′b̂)

p̂j = (1− C)(F (âj + x′b̂)− F (âj−1 + x′b̂)) j = 2, . . . , k − 1

p̂k = (1− C)(1− F (âk−1 + x′b̂))

for the multinomial model withk response levels, whereF is the cumulative distri-
bution function used to model the probability,x′ is the vector of the covariates,âj

are the estimated ordinal intercepts withâ1 = 0, C is the threshold parameter, either
known or estimated from the model, andb̂′ is the vector of estimated parameters.

To plot p̂ (or p̂j) as a function of a continuous variablex1, the remaining covariates
x−1 must be specified. You can use the XDATA= option to provide the values of
x−1 (see the XDATA= option in the PROC PROBIT statement for details), or use the
default values that follow the rules:
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• If the effect contains a continuous variable (or variables), the overall mean of
this effect is used.

• If the effect is a single classification variable, the highest level of the variable
is used.

options
enable you to plot the observed data and add features to the plot.

You can use options in the PREDPPLOT statement to

• superimpose specification limits

• suppress or add observed data points for the binomial model

• suppress or add confidence limits for the binomial model

• specify the levels for which predicted probability curves are requested for the
multinomial model

• specify graphical enhancements (such as color or text height)

Summary of Options

The following tables list alloptionsby function. The“Dictionary of Options”on
page 3749 describes each option in detail.

PREDPPLOT Options

Table 60.26. Plot Layout Options for PREDPPLOT
LEVEL=character-list specifies the names of the levels for which the predicted prob-

ability curves are requested (only for the multinomial model)

NOCONF suppresses confidence limits

NODATA suppresses observed data points on the plot

NOTHRESH suppresses the threshold line

THRESHLABPOS=value specifies the position for the label of the threshold line

General Options

Table 60.27. Color Options
CAXIS=color specifies color for the axes

CFIT=color specifies color for fitted curves

CFRAME=color specifies color for frame

CGRID=color specifies color for grid lines

CHREF=color specifies color for HREF= lines

CLABBOX=color specifies color for label box

CTEXT=color specifies color for text

CVREF=color specifies color for VREF= lines



3748 � Chapter 60. The PROBIT Procedure

Table 60.28. Options to Enhance Plots Produced on Graphics Devices
ANNOTATE=

SAS-data-set
specifies an ANNOTATE data set

INBORDER requests a border around plot

LFIT=linetype specifies line style for fitted curves and confidence limits

LGRID=linetype specifies line style for grid lines

NOFRAME suppresses the frame around plotting areas

NOGRID suppresses grid lines

NOFIT suppresses fitted curves

NOHLABEL suppresses horizontal labels

NOHTICK suppresses horizontal ticks

NOVTICK suppresses vertical ticks

TURNVLABELS vertically strings out characters in vertical labels

WFIT=n specifies thickness for fitted curves

WGRID=n specifies thickness for grids

WREFL=n specifies thickness for reference lines

Table 60.29. Axis Options
HAXIS=value1 to value2
<by value3>

specifies tick mark values for horizontal axis

HOFFSET=value specifies offset for horizontal axis

HLOWER=value specifies lower limit on horizontal axis scale

HUPPER=value specifies upper limit on horizontal axis scale

NHTICK=n specifies number of ticks for horizontal axis

NVTICK=n specifies number of ticks for vertical axis

VAXIS=value1 to value2
<by value3>

specifies tick mark values for vertical axis

VAXISLABEL= ’label’ specifies label for vertical axis

VOFFSET=value specifies offset for vertical axis

VLOWER=value specifies lower limit on vertical axis scale

VUPPER=value specifies upper limit on vertical axis scale

WAXIS=n specifies thickness for axis

Table 60.30. Graphics Catalog Options
DESCRIPTION=’string’ specifies description for graphics catalog member

NAME=’ string’ specifies name for plot in graphics catalog

Table 60.31. Options for Text Enhancement
FONT=font specifies software font for text

HEIGHT=value specifies height of text used outside framed areas

INFONT=font specifies software font for text inside framed areas

INHEIGHT=value specifies height of text inside framed areas
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Table 60.32. Options for Reference Lines
HREF<(INTERSECT)>
=value-list

requests horizontal reference line

HREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for HREF= lines

HREFLABPOS=n specifies vertical position of labels for HREF= lines

LHREF=linetype specifies line style for HREF= lines

LVREF=linetype specifies line style for VREF= lines

VREF<(INTERSECT)>
=value-list

requests vertical reference line

VREFLABELS=
(’label1’,. . .,’labeln’)

specifies labels for VREF= lines

VREFLABPOS=n specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of theoptionsin the PREDPPLOT
statement.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an ANNOTATE data set, as described inSAS/GRAPH Software: Reference,
that enables you to add features to the predicted probability plot. The ANNOTATE=
data set you specify in the PREDPPLOT statement is used for all plots created by the
statement.

CAXIS=color
CAXES=color

specifies the color used for the axes and tick marks. This option overrides any
COLOR= specifications in an AXIS statement. The default is the first color in the
device color list.

CFIT=color
specifies the color for the fitted predicted probability curves. The default is the first
color in the device color list.

CFRAME=color
CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded
by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color
CH=color

specifies the color for lines requested by the HREF= option. The default is the first
color in the device color list.
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CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color
specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color
CV=color

specifies the color for lines requested by the VREF= option. The default is the first
color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters, that appears in the PROC GREPLAY
master menu. The default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts
for axis labels in an AXIS statement. The FONT= font takes precedence over the
FTEXT= font specified in the most recent GOPTIONS statement. Hardware charac-
ters are used by default.

HAXIS=value1 to value2<by value3>
specifies tick mark values for the horizontal axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. If value3is omitted, a value of 1 is used.

Examples of HAXIS= lists are:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas.

HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies
valueas the lower horizontal axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the HAXIS= option
is used.

HOFFSET=value
specifies the offset for the horizontal axis. The default value is 1.

HUPPER=value
specifiesvalueas the upper horizontal axis tick mark. The tick mark interval and
the lower axis limit are determined automatically. This option has no effect if the
HAXIS= option is used.
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HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is
specified, a second reference line perpendicular to the vertical axis is drawn that
intersects the fit line at the same point as the horizontal axis reference line. If a
horizontal axis reference line label is specified, the intersecting vertical axis reference
line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=,
and LHREF= options.

HREFLABELS= ’label1’,. . .,’labeln’
HREFLABEL= ’label1’,. . .,’labeln’
HREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the HREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

HREFLABPOS= n
specifies the vertical position of labels for HREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 top
2 staggered from top
3 bottom
4 staggered from bottom
5 alternating from top
6 alternating from bottom

INBORDER
requests a border around predicted probability plots.

LEVEL= (character-list)
ORDINAL= (character-list)

specifies the names of the levels for which predicted probability curves are requested.
Names should be quoted and separated by space. If there is no correct name provided,
no fitted probability curve is plotted.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves
are drawn by connecting solid lines (linetype = 1) and confidence limits are drawn by
connecting dashed lines (linetype = 3).

LGRID=linetype
specifies a line style for all grid lines.linetypeis between 1 and 46. The default is 35.

LHREF=linetype
LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2,
which produces a dashed line.
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LVREF=linetype
LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2,
which produces a dashed line.

NAME=’string’
specifies a name for the plot, up to eight characters, that appears in the PROC
GREPLAY master menu. The default is ’PROBIT’.

NOCONF
suppresses confidence limits from the plot. This only works for the binomial model.
Confidence limits are not plotted for the multinomial model.

NODATA
suppresses observed data points from the plot. This only works for the binomial
model. The data points are not plotted for the multinomial model.

NOFIT
suppresses the fitted predicted probability curves.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

THRESHLABPOS= n
specifies the horizontal position of labels for the threshold line. The following table
shows valid values forn and the corresponding label placements.

n label placement
1 left
2 right
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VAXIS=value1 to value2<by value3>
specifies tick mark values for the vertical axis.value1, value2, andvalue3must be
numeric, andvalue1must be less thanvalue2. The lower tick mark isvalue1. Tick
marks are drawn at increments ofvalue3. The last tick mark is the greatest value that
does not exceedvalue2. This method of specification of tick marks is not valid for
logarithmic axes. Ifvalue3is omitted, a value of 1 is used.

Examples of VAXIS= lists are:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL= ’string’
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies
valueas the lower vertical axis tick mark. The tick mark interval and the upper axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is spec-
ified, a second reference line perpendicular to the horizontal axis is drawn that in-
tersects the fit line at the same point as the vertical axis reference line. If a verti-
cal axis reference line label is specified, the intersecting horizontal axis reference
line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and
VREFLABELS= options.

VREFLABELS= ’label1’,. . .,’labeln’
VREFLABEL= ’label1’,. . .,’labeln’
VREFLAB= ’label1’,. . .,’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can be up to 16
characters.

VREFLABPOS= n
specifies the horizontal position of labels for VREF= lines. The following table shows
valid values forn and the corresponding label placements.

n label placement
1 left
2 right

VUPPER=value
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies
valueas the upper vertical axis tick mark. The tick mark interval and the lower axis
limit are determined automatically. This option has no effect if the VAXIS= option is
used.
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WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

WEIGHT Statement

WEIGHT variable ;

A WEIGHT statement can be used with PROC PROBIT to weight each observation
by the value of the variable specified. The contribution of each observation to the
likelihood function is multiplied by the value of the weight variable. Observations
with zero, negative, or missing weights are not used in model estimation.

Details

Missing Values

PROC PROBIT does not use any observations having missing values for any of the
independent variables, the response variables, or the weight variable. If only the
response variables are missing, statistics requested in the OUTPUT statement are
computed.

Response Level Ordering

For binary response data, PROC PROBIT fits the following model by default,

Φ−1

(
p− C

1− C

)
= x′β

wherep is the probability of the response level identified as the first level in the
“Weighted Frequency Counts for the Ordered Response Categories” table in the out-
put andΦ is the normal cumulative distribution function. By default, the covariate
vectorx contains an intercept term. This is sometimes called Abbot’s formula.

Because of the symmetry of the normal (and logistic) distribution, the effect of revers-
ing the order of the two response values is to change the signs ofβ in the preceding
equation.

By default, response levels appear in ascending, sorted order (that is, the lowest level
appears first and then the next lowest, and so on). There are a number of ways that
you can control the sort order of the response categories and, therefore, which level
is assigned the first ordered level. One of the most common sets of response levels is
{0,1}, with 1 representing the event with the probability that is to be modeled.
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Consider the example where Y takes the values 1 and 0 for event and nonevent, re-
spectively, and EXPOSURE is the explanatory variable. By default, PROC PROBIT
assigns the first ordered level to response level 0, causing the probability of the non-
event to be modeled. There are several ways to change this.

Besides recoding the variable Y, you can

• assign a format to Y such that the first formatted value (when the formatted
values are put in sorted order) corresponds to the event. For this example, Y=0
could be assigned formatted value ‘nonevent’ and Y=1 could be assigned for-
matted value ‘event.’ Since ORDER=FORMATTED by default, Y=1 becomes
the first ordered level. SeeExample 60.3for an illustration of this method.

proc format;
value disease 1=’event’ 0=’nonevent’;

run;
proc probit;

model y=exposure;
format y disease.;

run;

• arrange the input data set so that Y=1 appears first and use the ORDER=DATA
option in the PROC PROBIT statement. Since ORDER=DATA sorts levels
in order of their appearance in the data set, Y=1 becomes the first ordered
level. Note that this option causes class variables to be sorted by their order of
appearance in the data set, also.

Computational Method

The log-likelihood function is maximized by means of a ridge-stabilized Newton-
Raphson algorithm. Initial regression parameter estimates are set to zero. The
INITIAL= and INTERCEPT= options in the MODEL statement can be used to give
nonzero initial estimates.

The log-likelihood function,L, is computed as

L =
∑

i

wi ln(pi)

where the sum is over the observations in the data set,wi is the weight for theith
observation, andpi is the modeled probability of the observed response. In the case
of the events/trials syntax in the MODEL statement, each observation contributes
two terms corresponding to the probability of the event and the probability of its
complement:

L =
∑

i

wi[ri ln(pi) + (ni − ri) ln(1− pi)]

whereri is the number of events andni is the number of trials for observationi.
This log-likelihood function differs from the log-likelihood function for a binomial
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or multinomial distribution by additive terms consisting of the log of binomial or
multinomial coefficients. These terms are parameter-independent and do not affect
the model estimation or the standard errors and tests.

The estimated covariance matrix,V, of the parameter estimates is computed as the
negative inverse of the information matrix of second derivatives ofL with respect to
the parameters evaluated at the final parameter estimates. Thus, the estimated covari-
ance matrix is derived from the observed information matrix rather than the expected
information matrix (these are generally not the same). The standard error estimates
for the parameter estimates are taken as the square roots of the corresponding diago-
nal elements ofV.

If convergence of the maximum likelihood estimates is attained, a Type III chi-square
test statistic is computed for each effect, testing whether there is any contribution
from any of the levels of the effect. This statistic is computed as a quadratic form in
the appropriate parameter estimates using the corresponding submatrix of the asymp-
totic covariance matrix estimate. Refer toChapter 32, “The GLM Procedure,”and
Chapter 11, “The Four Types of Estimable Functions,”for more information about
Type III estimable functions.

The asymptotic covariance matrix is computed as the inverse of the observed informa-
tion matrix. Note that if the NOINT option is specified and class variables are used,
the first class variable contains a contribution from an intercept term. The results are
displayed in an ODS table namedType3Analysis.

Chi-square tests for individual parameters are Wald tests based on the observed infor-
mation matrix and the parameter estimates. If an effect has a single degree of freedom
in the parameter estimates table, the chi-square test for this parameter is equivalent to
the Type III test for this effect.

In releases previous to Version 8.2, a multiple degree of freedom statistic was com-
puted for each effect to test for contribution from any level of the effect. In general,
the Type III test statistic in a main effect only model (no interaction terms) will be
equal to the previously computed effect statistic, unless there are collinearities among
the effects. If there are collinearities, the Type III statistic will adjust for them, and
the value of the Type III statistic and the number of degrees of freedom might not be
equal to those of the previous effect statistic.

The theory behind these tests assumes large samples. If the samples are not large, it
may be better to base the tests on log-likelihood ratios. These changes in log like-
lihood can be obtained by fitting the model twice, once with all the parameters of
interest and once leaving out the parameters to be tested. Refer to Cox and Oakes
(1984) for a discussion of the merits of some possible test methods.

If some of the independent variables are perfectly correlated with the response pat-
tern, then the theoretical parameter estimates may be infinite. Although fitted prob-
abilities of 0 and 1 are not especially pathological, infinite parameter estimates are
required to yield these probabilities. Due to the finite precision of computer arith-
metic, the actual parameter estimates are not infinite. Indeed, since the tails of the
distributions allowed in the PROBIT procedure become small rapidly, an argument to
the cumulative distribution function of around 20 becomes effectively infinite. In the
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case of such parameter estimates, the standard error estimates and the corresponding
chi-square tests are not trustworthy.

Distributions

The distributions,F (x), allowed in the PROBIT procedure are specified with the
DISTRIBUTION= option in the model statement. The cumulative distribution func-
tions for the available distributions are∫ x

−∞

1√
2π

exp
(
−z2

2

)
dz(normal)

1
1 + e−x

(logistic)

1− e−ex
(extreme value or Gompertz)

The variances of these three distributions are not all equal to 1, and their means are
not all equal to zero. Their means and variances are shown in the following table,
whereγ is the Euler constant.

Distribution Mean Variance
Normal 0 1
Logistic 0 π2/3
extreme value or Gompertz −γ π2/6

When comparing parameter estimates using different distributions, you need to take
into account the different scalings and, for the extreme value (or Gompertz) distri-
bution, a possible shift in location. For example, if the fitted probabilities are in the
neighborhood of 0.1 to 0.9, then the parameter estimates from the logistic model
should be aboutπ/

√
3 larger than the estimates from the probit model.

INEST= SAS-data-set

The INEST= data set names a SAS data set that specifies initial estimates for all the
parameters in the model.

The INEST= data set must contain the intercept variables (namedIntercept for bi-
nary response model andIntercept, Intercept2, Intercept3, and so forth, for multi-
nomial response models) and all independent variables in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables,
and there must be at least one observation for each BY group. If there is more than
one observation in a BY group, the first one read is used for that BY group.

If the INEST= data set also contains the–TYPE– variable, only observations with

–TYPE– value ’PARMS’ are used as starting values. Combining the INEST= data
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set and the option MAXIT= in the MODEL statement, partial scoring can be done,
such as predicting on a validation data set by using the model built from a training
data set.

You can specify starting values for the iterative algorithm in the INEST= data set.
This data set overwrites the INITIAL= option in the MODEL statement, which is a
little difficult to use for models with multilevel interaction effects. The INEST= data
set has the same structure as the“OUTEST=SAS-data-set” on page 3762, but is not
required to have all the variables or observations that appear in the OUTEST= data
set. One simple use of the INEST= option is passing the previous OUTEST= data set
directly to the next model as an INEST= data set, assuming that the two models have
the same parameterization.

Model Specification

For a two-level response, the probability that the lesser response occurs is modeled
by the probit equation as

p = C + (1− C)F (x′b)

The probability of the other (complementary) event is1− p.

For a multilevel response with outcomes labeledli for i = 1, 2, . . . , k, the probability,
pj , of observing levellj is as follows.

p1 = C + (1− C)F (x′b)

p2 = (1− C)
(
F (a2 + x′b)− F (x′b)

)
...

pj = (1− C)
(
F (aj + x′b)− F (aj−1 + x′b)

)
...

pk = (1− C)(1− F (ak−1 + x′b))

Thus, for ak-level response, there arek − 2 additional parameters,a2, a3, . . . , ak−1,
estimated. These parameters are denoted byInterceptj, j = 2, 3, . . . , k − 1 in the
output.

An intercept parameter is always added to the set of independent variables as the first
term in the model unless the NOINT option is specified in the MODEL statement. If
a classification variable taking onk levels is used as one of the independent variables,
a set ofk indicator variables is generated to model the effect of this variable. Because
of the presence of the intercept term, there are at mostk − 1 degrees of freedom for
this effect in the model.
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Lack of Fit Tests

Two goodness-of-fit tests can be requested from the PROBIT procedure: a Pearson
chi-square test and a log-likelihood ratio chi-square test.

To compute the test statistics, you can use the AGGREGATE or AGGREGATE=
option grouping the observations into subpopulations. If neither AGGREGATE nor
AGGREGATE= is specified, PROC PROBIT assumes that each observation is from
a separate subpopulation and computes the goodness-of-fit test statistics only for the
events/trialssyntax.

If the Pearson goodness-of-fit chi-square test is requested and thep-value for the
test is too small, variances and covariances are adjusted by a heterogeneity factor
(the goodness-of-fit chi-square divided by its degrees of freedom) and a critical value
from thet distribution is used to compute the fiducial limits. The Pearson chi-square
test statistic is computed as

χ2
P =

m∑
i=1

k∑
j=1

(rij − nip̂ij)2

nip̂ij

where the sum oni is over grouping, the sum onj is over levels of response, therij

is the frequency of response levelj for theith grouping,ni is the total frequency for
theith grouping, and̂pij is the fitted probability for thejth level at theith grouping.

The likelihood ratio chi-square test statistic is computed as

χ2
D = 2

m∑
i=1

k∑
j=1

rij ln
(

rij

nip̂ij

)

This quantity is sometimes called the deviance. If the modeled probabilities fit the
data, these statistics should be approximately distributed as chi-square with degrees of
freedom equal to(k−1)×m−q, wherek is the number of levels of the multinomial or
binomial response,m is the number of sets of independent variable values (covariate
patterns), andq is the number of parameters fit in the model.

In order for the Pearson statistic and the deviance to be distributed as chi-square,
there must be sufficient replication within the groupings. When this is not true, the
data are sparse, and thep-values for these statistics are not valid and should be ig-
nored. Similarly, these statistics, divided by their degrees of freedom, cannot serve as
indicators of overdispersion. A large difference between the Pearson statistic and the
deviance provides some evidence that the data are too sparse to use either statistic.
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Rescaling the Covariance Matrix

One way of correcting overdispersion is to multiply the covariance matrix by a dis-
persion parameter. You can supply the value of the dispersion parameter directly,
or you can estimate the dispersion parameter based on either the Pearson chi-square
statistic or the deviance for the fitted model.

The Pearson chi-square statisticχ2
P and the devianceχ2

D are defined in the section
“Lack of Fit Tests”on page 3759. If the SCALE= option is specified in the MODEL
statement, the dispersion parameter is estimated by

σ̂2 =


χ2

P /(m(k − 1)− q) SCALE=PEARSON
χ2

D/(m(k − 1)− q) SCALE=DEVIANCE
(constant)2 SCALE=constant

In order for the Pearson statistic and the deviance to be distributed as chi-square,
there must be sufficient replication within the subpopulations. When this is not true,
the data are sparse, and thep-values for these statistics are not valid and should be
ignored. Similarly, these statistics, divided by their degrees of freedom, cannot serve
as indicators of overdispersion. A large difference between the Pearson statistic and
the deviance provides some evidence that the data are too sparse to use either statistic.

You can use the AGGREGATE (or AGGREGATE=) option to define the subpop-
ulation profiles. If you do not specify this option, each observation is regarded as
coming from a separate subpopulation. Forevents/trialssyntax, each observation
representsn Bernoulli trials, wheren is the value of thetrials variable; forsingle-
trial syntax, each observation represents a single trial. Without the AGGREGATE
(or AGGREGATE=) option, the Pearson chi-square statistic and the deviance are cal-
culated only forevents/trialssyntax.

Note that the parameter estimates are not changed by this method. However, their
standard errors are adjusted for overdispersion, affecting their significance tests.

Tolerance Distribution

For a single independent variable, such as a dosage level, the models for the probabil-
ities can be justified on the basis of a population with meanµ and scale parameterσ
of tolerances for the subjects. Then, given a dose x, the probability,P , of observing
a response in a particular subject is the probability that the subject’s tolerance is less
than the dose or

P = F

(
x− µ

σ

)
Thus, in this case, the intercept parameter,b0, and the regression parameter,b1, are
related toµ andσ by

b1 =
1
σ
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b0 = −µ

σ

Note: The parameterσ is not equal to the standard deviation of the population of
tolerances for the logistic and extreme value distributions.

Inverse Confidence Limits

In bioassay problems, estimates of the values of the independent variables that yield
a desired response are often needed. For instance, the value yielding a 50% response
rate (called the ED50 or LD50) is often used. The INVERSECL option requests that
confidence limits be computed for the value of the independent variable that yields a
specified response. These limits are computed only for the first continuous variable
effect in the model. The other variables are set either at their mean values if they
are continuous or at the reference (last) level if they are discrete variables. For a
discussion of inverse confidence limits, refer to Hubert, Bohidar, and Peace (1988).

For the PROBIT procedure, the response variable is a probability. An estimate of the
first continuous variable value needed to achieve a response ofp is given by

x̂1 =
1
b1

(
F−1(p)− x∗′b∗

)
whereF is the cumulative distribution function used to model the probability,x∗ is
the vector of independent variables excluding the first one, which can be specified
by the XDATA= option described in the section“XDATA= SAS-data-set” on page
3763,b∗ is the vector of parameter estimates excluding the first one, andb1 is the
estimated regression coefficient for the independent variable of interest. Note that,
for both binary and ordinal models, the INVERSECL option provides estimates of
the value ofx1 yieldingPr(first response level) = p, for various values ofp.

This estimator is given as a ratio of random variables, for example,r = a/b.
Confidence limits for this ratio can be computed using Fieller’s theorem. A brief
description of this theorem follows. Refer to Finney (1971) for a more complete
description of Fieller’s theorem.

If the random variablesa andb are thought to be distributed as jointly normal, then
for any fixed valuer the following probability statement holds ifz is anα/2 quantile
from the standard normal distribution andV is the variance-covariance matrix of a
andb.

Pr
(
(a− rb)2 > z2(Vaa − 2rVab + r2Vbb)

)
= α

Usually the inequality can be solved forr to yield a confidence interval. The PROBIT
procedure uses a value of 1.96 forz, corresponding to anα value of 0.05, unless the
goodness-of-fitp-value is less than the specified value of the HPROB= option. When
this happens, the covariance matrix is scaled by the heterogeneity factor, and at
distribution quantile is used forz.
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It is possible for the roots of the equation forr to be imaginary or for the confidence
interval to be all points outside of an interval. In these cases, the limits are set to
missing by the PROBIT procedure.

Although the normal and logistic distribution give comparable fitted values ofp if
the empirically observed proportions are not too extreme, they can give appreciably
different values when extrapolated into the tails. Correspondingly, the estimates of
the confidence limits and dose values can be different for the two distributions even
when they agree quite well in the body of the data. Extrapolation outside of the range
of the actual data are often sensitive to model assumptions, and caution is advised if
extrapolation is necessary.

OUTEST= SAS-data-set

The OUTEST= data set contains parameter estimates and the log likelihood for the
model. You can specify a label in the MODEL statement to distinguish between
the estimates for different modeling using the PROBIT procedure. If you specify
the COVOUT option, the OUTEST= data set also contains the estimated covariance
matrix of the parameter estimates.

The OUTEST= data set contains each variable used as a dependent or independent
variable in any MODEL statement. One observation consists of parameter values
for the model with the dependent variable having the value−1. If you specify the
COVOUT option, there are additional observations containing the rows of the esti-
mated covariance matrix. For these observations, the dependent variable contains the
parameter estimate for the corresponding row variable. The following variables are
also added to the data set:

–MODEL– a character variable containing the label of the MODEL statement, if
present, or blank otherwise

–NAME– a character variable containing the name of the dependent variable for
the parameter estimates observations or the name of the row for the
covariance matrix estimates

–TYPE– a character variable containing the type of the observation, either
PARMS for parameter estimates or COV for covariance estimates

–DIST– a character variable containing the name of the distribution modeled

–LNLIKE– a numeric variable containing the last computed value of the log like-
lihood

–C– a numeric variable containing the estimated threshold parameter

INTERCEPT a numeric variable containing the intercept parameter estimates and
covariances

Any BY variables specified are also added to the OUTEST= data set.
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XDATA= SAS-data-set

The XDATA= data set is used for specifiying values for the effects in the MODEL
statement when predicted values and/or fiducial limits for a single continuous variable
(dose variable) are required. It is also used for plots specified by the CDFPLOT,
IPPPLOT, LPREDPLOT, and PREDPPLOT statement.

The XDATA= data names a SAS data set that contains user input values for all the
independent variables in the MODEL statement and the variables in the CLASS state-
ment. The XDATA= data set has the same structure as the DATA= data set but is not
required to have all the variables or observations that appear in the DATA= data set.

The XDATA= data set must contain all the independent variables in the MODEL
statement and variables in the CLASS statement. Even though variables in the
CLASS statement may not be used in the MODEL statement, valid values are re-
quired for these variables in the XDATA= data set. Missing values are not allowed.
For independent variables in the MODEL statement, although the dose variable’s
value is not used in the computing of predicted values and/or fiducial limits for the
dose variable, missing values are not allowed in the XDATA= data set for any of
the independent variables. Missing values are allowed for the dependent variables
and other variables if they are included in the XDATA= data set and not listed in the
CLASS statement.

If BY processing is used, the XDATA= data set should also include the BY variables,
and there must be at least one valid observation for each BY group. If there is more
than one valid observation in one BY group, the last one read is used for that BY
group.

If there is no XDATA= data set in the PROC PROBIT statement, by default, the
PROBIT procedure will use overall mean for effects containing continuous variable
(or variables) and the highest level of a single classification variable as reference
level. The rules are summarized as follows:

• If the effect contains a continuous variable (or variables), the overall mean of
this effect is used.

• If the effect is a single classification variable, the highest level of the variable
is used.

Displayed Output

If you request the iteration history (ITPRINT), PROC PROBIT displays

• the current value of the log likelihood

• the ridging parameter for the modified Newton-Raphson optimization process

• the current estimate of the parameters

• the current estimate of the parameterC for a natural (threshold) model

• the values of the gradient and the Hessian on the last iteration



3764 � Chapter 60. The PROBIT Procedure

If you include CLASS variables, PROC PROBIT displays

• the numbers of levels for each CLASS variable

• the (ordered) values of the levels

• the number of observations used

After the model is fit, PROC PROBIT displays

• the name of the input data set

• the name of the dependent variables

• the number of observations used

• the number of events and the number of trials

• the final value of the log-likelihood function

• the parameter estimates

• the standard error estimates of the parameter estimates

• approximate chi-square test statistics for the test

If you specify the COVB or CORRB options, PROC PROBIT displays

• the estimated covariance matrix for the parameter estimates

• the estimated correlation matrix for the parameter estimates

If you specify the LACKFIT option, PROC PROBIT displays

• a count of the number of levels of the response and the number of distinct sets
of independent variables

• a goodness-of-fit test based on the Pearson chi-square

• a goodness-of-fit test based on the likelihood-ratio chi-square

If you specify only one independent variable, the normal distribution is used to model
the probabilities, and the response is binary, PROC PROBIT displays

• the mean MU of the stimulus tolerance

• the scale parameter SIGMA of the stimulus tolerance

• the covariance matrix for MU, SIGMA, and the natural response parameterC

If you specify the INVERSECL options, PROC PROBIT also displays

• the estimated dose along with the 95% fiducial limits for probability levels 0.01
to 0.10, 0.15 to 0.85 by 0.05, and 0.90 to 0.99
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ODS Table Names

PROC PROBIT assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 60.33. ODS Tables Produced in PROC PROBIT

ODS Table Name Description Statement Option
ClassLevels Class variable levels CLASS default
ConvergenceStatus Convergence status MODEL default
CorrB Parameter estimate correlation

matrix
MODEL CORRB

CovB Parameter estimate covariance
matrix

MODEL COVB

CovTolerance Covariance matrix for location
and scale

MODEL default∗

GoodnessOfFit Goodness of fit tests MODEL LACKFIT
IterHistory Iteration history MODEL ITPRINT
LagrangeStatistics Lagrange statistics MODEL NOINT
LastGrad Last evaluation of the gradient MODEL ITPRINT
LastHess Last evaluation of the Hessian MODEL ITPRINT
LogProbitAnalysis Probit analysis for log dose MODEL INVERSECL
ModelInfo Model information MODEL default
MuSigma Location and scale MODEL default∗

NObs Observations Summary PROC default
ParameterEstimates Parameter estimates MODEL default
ParmInfo Parameter indices MODEL default
ProbitAnalysis Probit analysis for linear dose MODEL INVERSECL
ResponseLevels Response-covariate profile MODEL LACKFIT
ResponseProfiles Counts for ordinal data MODEL default
Type3Analysis Type 3 tests MODEL default∗

∗ Depends on data.
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Examples

Example 60.1. Dosage Levels

In this example,Dose is a variable representing the level of a stimulus,N represents
the number of subjects tested at each level of the stimulus, andResponse is the
number of subjects responding to that level of the stimulus. Both probit and logit re-
sponse models are fit to the data. The LOG10 option in the PROC PROBIT statement
requests that the log base 10 ofDose is used as the independent variable. Specifically,
for a given level ofDose, the probabilityp of a positive response is modeled as

p = Pr(Response) = F (b0 + b1 × log10(Dose))

The probabilities are estimated first using the normal distribution function (the de-
fault) and then using the logistic distribution function. Note that, in this model speci-
fication, the natural rate is assumed to be zero.

The LACKFIT option specifies lack-of-fit tests and the INVERSECL option specifies
inverse confidence limits.

In the DATA step that reads the data, a number of observations are generated that
have a missing value for the response. Although the PROBIT procedure does not
use the observations with the missing values to fit the model, it does give predicted
values for all nonmissing sets of independent variables. These data points fill in the
plot of fitted and observed values in the logistic model displayed inOutput 60.1.2.
The plot, requested with the PREDPPLOT statement, displays the estimated logistic
cumulative distribution function and the observed response rates. The VAR= DOSE
option specifies the horizontal axis variable in the plot.

The following statements produceOutput 60.1.1:

data a;
infile cards eof=eof;
input Dose N Response;
Observed= Response/N;
output;
return;

eof: do Dose=0.5 to 7.5 by 0.25;
output;

end;
datalines;

1 10 1
2 12 2
3 10 4
4 10 5
5 12 8
6 10 8
7 10 10
;
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proc probit log10;
model Response/N=Dose / lackfit inversecl itprint;
output out=B p=Prob std=std xbeta=xbeta;
title ’Output from Probit Procedure’;

run;

symbol v=dot c=white;
proc probit log10;

model Response/N=Dose / d=logistic inversecl;
predpplot var = dose cfit = blue cframe=ligr inborder;
output out=B p=Prob std=std xbeta=xbeta;
title ’Output from Probit Procedure’;

run;

Output 60.1.1. Dosage Levels: PROC PROBIT
Output from Probit Procedure

Probit Procedure

Iteration History for Parameter Estimates

Iter Ridge Loglikelihood Intercept Log10(Dose)

0 0 -51.292891 0 0
1 0 -37.881166 -1.355817008 2.635206083
2 0 -37.286169 -1.764939171 3.3408954936
3 0 -37.280389 -1.812147863 3.4172391614
4 0 -37.280388 -1.812704962 3.418117919
5 0 -37.280388 -1.812704962 3.418117919
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Output from Probit Procedure

Probit Procedure

Model Information

Data Set WORK.B
Events Variable Response
Trials Variable N
Number of Observations 7
Number of Events 38
Number of Trials 74
Missing Values 29
Name of Distribution Normal
Log Likelihood -37.28038802

Last Evaluation of the Negative of the Gradient

Intercept Log10(Dose)

3.434907E-7 -2.09809E-8

Last Evaluation of the Negative of the Hessian

Intercept Log10(Dose)

Intercept 36.005280383 20.152675982
Log10(Dose) 20.152675982 13.078826305

Goodness-of-Fit Tests

Statistic Value DF Pr > ChiSq

Pearson Chi-Square 3.6497 5 0.6009
L.R. Chi-Square 4.6381 5 0.4616

Response-Covariate Profile

Response Levels 2
Number of Covariate Values 7

Thep-values in the Goodness-of-Fit table of 0.6009 for the Pearson chi-square and
0.4616 for the likelihood ratio chi-square indicate an adequate fit for the model fit
with the normal distribution.
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Output from Probit Procedure

Probit Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -1.8127 0.4493 -2.6934 -0.9320 16.27 <.0001
Log10(Dose) 1 3.4181 0.7455 1.9569 4.8794 21.02 <.0001

Probit Model in Terms of Tolerance Distribution

MU SIGMA

0.53032254 0.29255866

Estimated Covariance Matrix
for Tolerance Parameters

MU SIGMA

MU 0.002418 -0.000409
SIGMA -0.000409 0.004072

Tolerance distribution parameter estimates for the normal distribution indicate a mean
tolerance for the population of 0.5303.
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Output from Probit Procedure

Probit Procedure

Probit Analysis on Log10(Dose)

Probability Log10(Dose) 95% Fiducial Limits

0.01 -0.15027 -0.69518 0.07710
0.02 -0.07052 -0.55766 0.13475
0.03 -0.01992 -0.47064 0.17156
0.04 0.01814 -0.40534 0.19941
0.05 0.04911 -0.35233 0.22218
0.06 0.07546 -0.30731 0.24165
0.07 0.09857 -0.26793 0.25881
0.08 0.11926 -0.23273 0.27425
0.09 0.13807 -0.20080 0.28837
0.10 0.15539 -0.17147 0.30142
0.15 0.22710 -0.05086 0.35631
0.20 0.28410 0.04369 0.40124
0.25 0.33299 0.12343 0.44116
0.30 0.37690 0.19348 0.47857
0.35 0.41759 0.25658 0.51504
0.40 0.45620 0.31429 0.55182
0.45 0.49356 0.36754 0.58999
0.50 0.53032 0.41693 0.63057
0.55 0.56709 0.46296 0.67451
0.60 0.60444 0.50618 0.72271
0.65 0.64305 0.54734 0.77603
0.70 0.68374 0.58745 0.83550
0.75 0.72765 0.62776 0.90265
0.80 0.77655 0.66999 0.98008
0.85 0.83354 0.71675 1.07279
0.90 0.90525 0.77313 1.19191
0.91 0.92257 0.78646 1.22098
0.92 0.94139 0.80083 1.25265
0.93 0.96208 0.81653 1.28759
0.94 0.98519 0.83394 1.32672
0.95 1.01154 0.85367 1.37149
0.96 1.04250 0.87669 1.42424
0.97 1.08056 0.90480 1.48928
0.98 1.13116 0.94189 1.57602
0.99 1.21092 0.99987 1.71321

The LD50 (ED50 for log dose) is 0.5303, the dose corresponding to a probability of
0.5. This is the same as the mean tolerance for the normal distribution.
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Output from Probit Procedure

Probit Procedure

Probit Analysis on Dose

Probability Dose 95% Fiducial Limits

0.01 0.70750 0.20175 1.19427
0.02 0.85012 0.27691 1.36380
0.03 0.95517 0.33834 1.48444
0.04 1.04266 0.39324 1.58274
0.05 1.11971 0.44429 1.66793
0.06 1.18976 0.49282 1.74443
0.07 1.25478 0.53960 1.81473
0.08 1.31600 0.58515 1.88042
0.09 1.37427 0.62980 1.94252
0.10 1.43019 0.67380 2.00181
0.15 1.68696 0.88950 2.27147
0.20 1.92353 1.10584 2.51906
0.25 2.15276 1.32870 2.76161
0.30 2.38180 1.56128 3.01000
0.35 2.61573 1.80543 3.27374
0.40 2.85893 2.06200 3.56306
0.45 3.11573 2.33098 3.89038
0.50 3.39096 2.61175 4.27138
0.55 3.69051 2.90374 4.72619
0.60 4.02199 3.20759 5.28090
0.65 4.39594 3.52651 5.97077
0.70 4.82770 3.86765 6.84706
0.75 5.34134 4.24385 7.99189
0.80 5.97787 4.67724 9.55169
0.85 6.81617 5.20900 11.82480
0.90 8.03992 5.93105 15.55653
0.91 8.36704 6.11584 16.63320
0.92 8.73752 6.32165 17.89163
0.93 9.16385 6.55431 19.39034
0.94 9.66463 6.82245 21.21881
0.95 10.26925 7.13949 23.52275
0.96 11.02811 7.52816 26.56066
0.97 12.03830 8.03149 30.85201
0.98 13.52585 8.74763 37.67206
0.99 16.25233 9.99709 51.66627

The ED50 for dose is 3.39 with a 95% confidence interval of (2.61, 4.27).
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Plot of Observed and Fitted Probabilities

Probit Procedure

Model Information

Data Set WORK.A
Events Variable Response
Trials Variable N
Number of Observations 7
Number of Events 38
Number of Trials 74
Missing Values 29
Name of Distribution Logistic
Log Likelihood -37.11065336

Algorithm converged.

Plot of Observed and Fitted Probabilities

Probit Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -3.2246 0.8861 -4.9613 -1.4880 13.24 0.0003
Log10(Dose) 1 5.9702 1.4492 3.1299 8.8105 16.97 <.0001

The regression parameter estimates for the logistic model of -3.22 and 5.97 are ap-
proximatelyπ/

√
3 times as large as those for the normal model.
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Plot of Observed and Fitted Probabilities

Probit Procedure

Probit Analysis on Log10(Dose)

Probability Log10(Dose) 95% Fiducial Limits

0.01 -0.22955 -0.97441 0.04234
0.02 -0.11175 -0.75158 0.12404
0.03 -0.04212 -0.62018 0.17265
0.04 0.00780 -0.52618 0.20771
0.05 0.04693 -0.45265 0.23533
0.06 0.07925 -0.39205 0.25826
0.07 0.10686 -0.34037 0.27796
0.08 0.13103 -0.29521 0.29530
0.09 0.15259 -0.25502 0.31085
0.10 0.17209 -0.21875 0.32498
0.15 0.24958 -0.07552 0.38207
0.20 0.30792 0.03092 0.42645
0.25 0.35611 0.11742 0.46451
0.30 0.39820 0.19143 0.49932
0.35 0.43644 0.25684 0.53275
0.40 0.47221 0.31588 0.56619
0.45 0.50651 0.36986 0.60089
0.50 0.54013 0.41957 0.63807
0.55 0.57374 0.46559 0.67894
0.60 0.60804 0.50846 0.72474
0.65 0.64381 0.54896 0.77673
0.70 0.68205 0.58815 0.83637
0.75 0.72414 0.62752 0.90582
0.80 0.77233 0.66915 0.98876
0.85 0.83067 0.71631 1.09242
0.90 0.90816 0.77562 1.23343
0.91 0.92766 0.79014 1.26931
0.92 0.94922 0.80607 1.30912
0.93 0.97339 0.82378 1.35391
0.94 1.00100 0.84384 1.40523
0.95 1.03332 0.86713 1.46546
0.96 1.07245 0.89511 1.53864
0.97 1.12237 0.93053 1.63228
0.98 1.19200 0.97952 1.76329
0.99 1.30980 1.06166 1.98569
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Plot of Observed and Fitted Probabilities

Probit Procedure

Probit Analysis on Dose

Probability Dose 95% Fiducial Limits

0.01 0.58945 0.10607 1.10241
0.02 0.77312 0.17718 1.33058
0.03 0.90757 0.23978 1.48817
0.04 1.01813 0.29773 1.61327
0.05 1.11413 0.35266 1.71922
0.06 1.20018 0.40546 1.81244
0.07 1.27896 0.45670 1.89654
0.08 1.35218 0.50675 1.97379
0.09 1.42100 0.55588 2.04572
0.10 1.48625 0.60430 2.11339
0.15 1.77656 0.84038 2.41030
0.20 2.03199 1.07379 2.66961
0.25 2.27043 1.31046 2.91416
0.30 2.50152 1.55393 3.15736
0.35 2.73172 1.80652 3.40996
0.40 2.96627 2.06957 3.68292
0.45 3.21006 2.34345 3.98927
0.50 3.46837 2.62768 4.34578
0.55 3.74746 2.92138 4.77466
0.60 4.05546 3.22451 5.30573
0.65 4.40366 3.53961 5.98041
0.70 4.80891 3.87391 6.86079
0.75 5.29836 4.24155 8.05044
0.80 5.92009 4.66820 9.74455
0.85 6.77126 5.20365 12.37149
0.90 8.09391 5.96508 17.11715
0.91 8.46559 6.16800 18.59129
0.92 8.89644 6.39837 20.37592
0.93 9.40575 6.66469 22.58957
0.94 10.02317 6.97977 25.42292
0.95 10.79732 7.36428 29.20549
0.96 11.81534 7.85438 34.56521
0.97 13.25466 8.52173 42.88232
0.98 15.55972 9.53941 57.98207
0.99 20.40815 11.52549 96.75820

Both the ED50 and the LD50 are similar to those for the normal model.

The statement PREDPPLOT creates the plot of observed and fitted probabilities in
Output 60.1.2. The dashed line represent pointwise confidence bands for the proba-
bilities.
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Output 60.1.2. Plot of Observed and Fitted Probabilities

Example 60.2. Multilevel Response

In this example, two preparations, a standard preparation and a test preparation, are
each given at several dose levels to groups of insects. The symptoms are recorded
for each insect within each group, and two multilevel probit models are fit. Because
the natural sort order of the three levels is not the same as the response order, the
ORDER=DATA option is specified in the PROC PROBIT statement to get the desired
order.

The following statements produceOutput 60.2.1:

data multi;
input Prep $ Dose Symptoms $ N;
LDose=log10(Dose);
if Prep=’test’ then PrepDose=LDose;
else PrepDose=0;
datalines;

stand 10 None 33
stand 10 Mild 7
stand 10 Severe 10
stand 20 None 17
stand 20 Mild 13
stand 20 Severe 17
stand 30 None 14
stand 30 Mild 3
stand 30 Severe 28
stand 40 None 9
stand 40 Mild 8
stand 40 Severe 32
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test 10 None 44
test 10 Mild 6
test 10 Severe 0
test 20 None 32
test 20 Mild 10
test 20 Severe 12
test 30 None 23
test 30 Mild 7
test 30 Severe 21
test 40 None 16
test 40 Mild 6
test 40 Severe 19
;

proc probit order=data;
class Prep Symptoms;
nonpara: model Symptoms=Prep LDose PrepDose / lackfit;
weight N;
title ’Probit Models for Symptom Severity’;

run;

proc probit order=data;
class Prep Symptoms;
parallel: model Symptoms=Prep LDose / lackfit;
weight N;
title ’Probit Models for Symptom Severity’;

run;

The first model allows for nonparallelism between the dose response curves for the
two preparations by inclusion of an interaction betweenPrep andLDose. The in-
teraction term is labeledPrepDose in the “Analysis of Parameter Estimates” table.
The results of this first model indicate that the parameter for the interaction term is
not significant, having a Wald chi-square of 0.73. Also, since the first model is a gen-
eralization of the second, a likelihood ratio test statistic for this same parameter can
be obtained by multiplying the difference in log likelihoods between the two models
by 2. The value obtained,2×(−345.94−(−346.31)), is 0.73. This is in close agree-
ment with the Wald chi-square from the first model. The lack-of-fit test statistics for
the two models do not indicate a problem with either fit.

Output 60.2.1. Multilevel Response: PROC PROBIT
Probit Models for Symptom Severity

Probit Procedure

Class Level Information

Name Levels Values

Prep 2 stand test
Symptoms 3 None Mild Severe
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Probit Models for Symptom Severity

Probit Procedure

Model Information

Data Set WORK.MULTI
Dependent Variable Symptoms
Weight Variable N
Number of Observations 23
Missing Values 1
Name of Distribution Normal
Log Likelihood -345.9401767

Probit Models for Symptom Severity

Probit Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.8080 0.6252 2.5827 5.0333 37.10 <.0001
Intercept2 1 0.4684 0.0559 0.3589 0.5780 70.19 <.0001
Prep stand 1 -1.2573 0.8190 -2.8624 0.3479 2.36 0.1247
Prep test 0 0.0000 0.0000 0.0000 0.0000 . .
LDose 1 -2.1512 0.3909 -2.9173 -1.3851 30.29 <.0001
PrepDose 1 -0.5072 0.5945 -1.6724 0.6580 0.73 0.3935

Probit Models for Symptom Severity

Probit Procedure

Class Level Information

Name Levels Values

Prep 2 stand test
Symptoms 3 None Mild Severe
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Probit Models for Symptom Severity

Probit Procedure

Model Information

Data Set WORK.MULTI
Dependent Variable Symptoms
Weight Variable N
Number of Observations 23
Missing Values 1
Name of Distribution Normal
Log Likelihood -346.306141

Probit Models for Symptom Severity

Probit Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.4148 0.4126 2.6061 4.2235 68.50 <.0001
Intercept2 1 0.4678 0.0558 0.3584 0.5772 70.19 <.0001
Prep stand 1 -0.5675 0.1259 -0.8142 -0.3208 20.33 <.0001
Prep test 0 0.0000 0.0000 0.0000 0.0000 . .
LDose 1 -2.3721 0.2949 -2.9502 -1.7940 64.68 <.0001

The negative coefficient associated withLDose indicates that the probabil-
ity of having no symptoms (Symptoms=’None’) or no or mild symptoms
(Symptoms=’None’ or Symptoms=’Mild’) decreases asLDose increases; that
is, the probability of a severe symptom increases withLDose. This association is
apparent for both treatment groups.

The negative coefficient associated with the standard treatment group (Prep = stand)
indicates that the standard treatment is associated with more severe symptoms across
all Ldose values.

The following statements use the PREDPPLOT statement to create the plot shown
in Output 60.2.2of the probabilities of the response taking on individual levels as a
function ofLDose. Since there are two covariates,LDose andPrep, the value of the
CLASS variablePrep is fixed at the highest level,test. Although not shown here, the
CDFPLOT statement creates similar plots of the cumulative response probabilities,
instead of individual response level probabilities.

proc probit data=multi order=data;
class Prep Symptoms;
parallel: model Symptoms=Prep LDose / lackfit;
predpplot var=ldose level=("None" "Mild" "Severe")

cfit=blue cframe=ligr inborder noconf ;
weight N;
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title ’Probit Models for Symptom Severity’;
run;

Output 60.2.2. Plot of Predicted Probilities for the Test Preparation Group

The following statements use the XDATA= data set to create a plot of the predicted
probabilities withPrep set to thestand level. The resulting plot is shown inOutput
60.2.3.

data xrow;
input Prep $ Dose Symptoms $ N;
LDose=log10(Dose);
datalines;

stand 40 Severe 32
run;

proc probit data=multi order=data xdata=xrow;
class Prep Symptoms;
parallel: model Symptoms=Prep LDose / lackfit;
predpplot var=ldose level=("None" "Mild" "Severe")

cfit=blue cframe=ligr inborder noconf ;
weight N;
title ’Predicted Probabilities for Standard Preparation’;

run;
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Output 60.2.3. Plot of Predicted Probabilities for the Standard Preparation Group

Example 60.3. Logistic Regression

In this example, a series of people are questioned as to whether or not they would
subscribe to a new newspaper. For each person, the variablessex (Female, Male),
age, andsubs (1=yes,0=no) are recorded. The PROBIT procedure is used to fit a
logistic regression model to the probability of a positive response (subscribing) as a
function of the variablessex andage. Specifically, the probability of subscribing is
modeled as

p = Pr(subs = 1) = F (b0 + b1 × sex + b2 × age)

whereF is the cumulative logistic distribution function.

By default, the PROBIT procedure models the probability of the lower response level
for binary data. One way to modelPr(subs = 1) is to format the response variable
so that the formatted value corresponding tosubs=1 is the lower level. The following
statements format the values ofsubs as 1 = ’accept’ and 0 = ’reject’, so that PROBIT
modelsPr(accept) = Pr(subs = 1).

The following statements produceOutput 60.3.1:

data news;
input sex $ age subs;
datalines;

Female 35 0
Male 44 0
Male 45 1
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Female 47 1
Female 51 0
Female 47 0
Male 54 1
Male 47 1
Female 35 0
Female 34 0
Female 48 0
Female 56 1
Male 46 1
Female 59 1
Female 46 1
Male 59 1
Male 38 1
Female 39 0
Male 49 1
Male 42 1
Male 50 1
Female 45 0
Female 47 0
Female 30 1
Female 39 0
Female 51 0
Female 45 0
Female 43 1
Male 39 1
Male 31 0
Female 39 0
Male 34 0
Female 52 1
Female 46 0
Male 58 1
Female 50 1
Female 32 0
Female 52 1
Female 35 0
Female 51 0
;

proc format;
value subscrib 1 = ’accept’ 0 = ’reject’;

run;

proc probit;
class subs sex;
model subs=sex age / d=logistic itprint;
format subs subscrib.;
title ’Logistic Regression of Subscription Status’;

run;
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Output 60.3.1. Logistic Regression: PROC PROBIT
Logistic Regression of Subscription Status

Probit Procedure

Class Level Information

Name Levels Values

subs 2 accept reject
sex 2 Female Male

PROC PROBIT is modeling the probabilities of levels of subs having LOWER
Ordered Values in the response profile table.

Logistic Regression of Subscription Status

Probit Procedure

Iteration History for Parameter Estimates

Iter Ridge Loglikelihood Intercept sexFemale age

0 0 -27.725887 0 0 0
1 0 -20.142659 -3.634567629 -1.648455751 0.1051634384
2 0 -19.52245 -5.254865196 -2.234724956 0.1506493473
3 0 -19.490439 -5.728485385 -2.409827238 0.1639621828
4 0 -19.490303 -5.76187293 -2.422349862 0.1649007124
5 0 -19.490303 -5.7620267 -2.422407743 0.1649050312
6 0 -19.490303 -5.7620267 -2.422407743 0.1649050312

Model Information

Data Set WORK.NEWS
Dependent Variable subs
Number of Observations 40
Name of Distribution Logistic
Log Likelihood -19.49030281

PROC PROBIT is modeling the probabilities of levels of subs having LOWER
Ordered Values in the response profile table.
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Logistic Regression of Subscription Status

Probit Procedure

PROC PROBIT is modeling the probabilities of levels of subs having LOWER
Ordered Values in the response profile table.

Last Evaluation of the Negative of the Gradient

Intercept sexFemale age

-5.95457E-12 8.768328E-10 -1.636696E-8

Last Evaluation of the Negative of the Hessian

Intercept sexFemale age

Intercept 6.4597397447 4.6042218284 292.04051848
sexFemale 4.6042218284 4.6042218284 216.20829515
age 292.04051848 216.20829515 13487.329973

Algorithm converged.

Logistic Regression of Subscription Status

Probit Procedure

PROC PROBIT is modeling the probabilities of levels of subs having LOWER
Ordered Values in the response profile table.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -5.7620 2.7635 -11.1783 -0.3458 4.35 0.0371
sex Female 1 -2.4224 0.9559 -4.2959 -0.5489 6.42 0.0113
sex Male 0 0.0000 0.0000 0.0000 0.0000 . .
age 1 0.1649 0.0652 0.0371 0.2927 6.40 0.0114

FromOutput 60.3.1, there appears to be an effect due to both the variablessex and
age. The positive coefficient forage indicates that older people are more likely
to subscribe than younger people. The negative coefficient forsex indicates that
females are less likely to subscribe than males.
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Example 60.4. An Epidemiology Study

The data, which is from an epidemiology study, consists of five variables: the num-
ber, r, of individuals surviving after an epidemic, out ofn treated, for combinations
of medicine dosage (dose), treatment (treat = A, B), and sex (sex = 0(Female),
1(Male)).

To see if the two treatments have different effects on male and female individual
survival rate, the interaction term between the two variablestreat andsex is included
in the model.

The following invocation of PROC PROBIT fits the binary probit model to the
grouped data:

data epidemic;
input treat$ dose n r sex;
label dose = Dose;
datalines;

A 2.17 142 142 0
A .57 132 47 1
A 1.68 128 105 1
A 1.08 126 100 0
A 1.79 125 118 0
B 1.66 117 115 1
B 1.49 127 114 0
B 1.17 51 44 1
B 2.00 127 126 0
B .80 129 100 1
;

data xval;
input treat $ dose sex ;
datalines;

B 2. 1
;

title ’Epidemiology Study’;
proc probit optc lackfit covout data = epidemic

outest = out1 xdata = xval;
class treat sex;
model r/n = dose treat sex sex*treat/corrb covb inversecl;
output out = out2 p =p;

predpplot
var = dose
font = swiss
vref(intersect) = .6667
vreflab = ’two thirds’
vreflabpos = 2
cfit=blue
cframe=ligr
;

inset /
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cfill = white
ctext = blue
pos = se ;

ippplot
font = swiss
href(intersect) = .75
hreflab = ’three quarters’
vreflabpos = 2
threshlabpos = 2
cfit=blue
cframe=ligr
;

inset /
cfill = white
ctext = blue;

lpredplot
font = swiss
vref(intersect) = 1.
vreflab = ’unit probit’
vreflabpos = 2
cfit=blue
cframe=ligr
;

inset /
cfill = white
ctext = blue;

run;

The results of this analysis are shown in the following tables and figures.

Beginning with SAS Release 8.2, the PROBIT procedure does not support multiple
MODEL statements. Only the last one is used if there is more than one MODEL
statement in one invocation of the PROBIT procedure.

Output 60.4.1. Class Level Information
Epidemiology Study

Probit Procedure

Class Level Information

Name Levels Values

treat 2 A B
sex 2 0 1

Output 60.4.1displays the table of level information forall classification variables in
the CLASS statement.
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Output 60.4.2. Parameter Information
Epidemiology Study

Probit Procedure

Parameter Information

Parameter Effect treat sex

Intercept Intercept
dose dose
treatA treat A
treatB treat B
sex0 sex 0
sex1 sex 1
treatAsex0 treat*sex A 0
treatAsex1 treat*sex A 1
treatBsex0 treat*sex B 0
treatBsex1 treat*sex B 1

Output 60.4.2displays the table of parameter information for the effects in the
MODEL statement. The name of a parameter is generated from combining the vari-
able names and level names in the effect. The maximum length of a parameter name
is 32. The name of the effects are specified in the MODEL statement. The length of
names of effects can be specified by the NAMELEN= option in the PROC PROBIT
statement, with the default length 20.

Output 60.4.3. Model Information
Epidemiology Study

Probit Procedure

Model Information

Data Set WORK.EPIDEMIC
Events Variable r
Trials Variable n
Number of Observations 10
Number of Events 1011
Number of Trials 1204
Name of Distribution Normal
Log Likelihood -387.2467391

Algorithm converged.

Output 60.4.3displays background information about the model fit. Included are the
name of the input data set, the response variables used, and the number of observa-
tions, events, and trials. The table also includes the status of the convergence of the
model fitting algorithm and the final value of log-likelihood function.
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Output 60.4.4. Goodness-of-Fit Tests and Response-Covariate Profile
Epidemiology Study

Probit Procedure

Goodness-of-Fit Tests

Statistic Value DF Pr > ChiSq

Pearson Chi-Square 4.9317 4 0.2944
L.R. Chi-Square 5.7079 4 0.2220

Response-Covariate Profile

Response Levels 2
Number of Covariate Values 10

Output 60.4.4displays the table of goodness-of-fit tests requested with the LACKFIT
option in the PROC PROBIT statement. Two goodness-of-fit statistics, the Pearson
chi-square statistic and the likelihood ratio chi-square statistic, are computed.
The grouping method for computing these statistics can be specified by the
AGGREGATE= option. The details can be found in the AGGREGATE= option and
an example can be found in the second part of this example. By default, the PROBIT
procedure uses the covariates in the MODEL statement to do grouping. Observations
with the same values of the covariates in the MODEL statement are grouped into
cells and the two statistics are computed according to these cells. The total number
of cells, and the number of levels for the response variable are reported next in the
“Response-Covariate Profile.”

In this example, neither the Pearson chi-square nor the log-likelihood ratio chi-square
tests are significant at the 0.1 level, which is the default test level used by the PROBIT
procedure. That means that the model, which includes the interaction oftreat and
sex, is suitable for this epidemiology data set. (Further investigation shows that
models without the interaction oftreat andsex are not acceptable by either test.)

Output 60.4.5. Type III Tests
Epidemiology Study

Probit Procedure

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

dose 1 42.1691 <.0001
treat 1 16.1421 <.0001
sex 1 1.7710 0.1833
treat*sex 1 13.9343 0.0002

Output 60.4.5displays the Type III test results for all effects specified in the MODEL
statement, which include the degrees of freedom for the effect, the Wald Chi-Square
test statistic, and thep-value.



3788 � Chapter 60. The PROBIT Procedure

Output 60.4.6. Analysis of Parameter Estimates
Epidemiology Study

Probit Procedure

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -0.8871 0.3632 -1.5991 -0.1752 5.96 0.0146
dose 1 1.6774 0.2583 1.1711 2.1837 42.17 <.0001
treat A 1 -1.2537 0.2616 -1.7664 -0.7410 22.97 <.0001
treat B 0 0.0000 0.0000 0.0000 0.0000 . .
sex 0 1 -0.4633 0.2289 -0.9119 -0.0147 4.10 0.0429
sex 1 0 0.0000 0.0000 0.0000 0.0000 . .
treat*sex A 0 1 1.2899 0.3456 0.6126 1.9672 13.93 0.0002
treat*sex A 1 0 0.0000 0.0000 0.0000 0.0000 . .
treat*sex B 0 0 0.0000 0.0000 0.0000 0.0000 . .
treat*sex B 1 0 0.0000 0.0000 0.0000 0.0000 . .
_C_ 1 0.2735 0.0946 0.0881 0.4589

Output 60.4.6displays the table of parameter estimates for the model. The PROBIT
procedure displays information for all the parameters of an effect. Degenerate pa-
rameters are indicated by 0 degree of freedom. Confidence intervals are computed
for all parameters with non-zero degrees of freedom, including the natural threshold
C if the OPTC option is specified in the PROC PROBIT statement. The confidence
level can be specified by the ALPHA= option in the MODEL statement. The default
confidence level is95%.

From this table, you can see the following results:

• dose has significant positive effect on the survival rate.

• Individuals under treatment A have a lower survival rate.

• Male individuals have a higher survival rate.

• Female individuals under treatment A have a higher survival rate.
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Output 60.4.7. Estimated Covariance Matrix
Epidemiology Study

Probit Procedure

Estimated Covariance Matrix

Intercept dose treatA sex0 treatAsex0

Intercept 0.131944 -0.087353 0.053551 0.030285 -0.067056
dose -0.087353 0.066723 -0.047506 -0.034081 0.058620
treatA 0.053551 -0.047506 0.068425 0.036063 -0.075323
sex0 0.030285 -0.034081 0.036063 0.052383 -0.063599
treatAsex0 -0.067056 0.058620 -0.075323 -0.063599 0.119408
_C_ -0.028073 0.018196 -0.017084 -0.008088 0.019134

Estimated Covariance Matrix

_C_

Intercept -0.028073
dose 0.018196
treatA -0.017084
sex0 -0.008088
treatAsex0 0.019134
_C_ 0.008948

Output 60.4.8. Estimated Correlation Matrix
Epidemiology Study

Probit Procedure

Estimated Correlation Matrix

Intercept dose treatA sex0 treatAsex0

Intercept 1.000000 -0.930998 0.563595 0.364284 -0.534227
dose -0.930998 1.000000 -0.703083 -0.576477 0.656744
treatA 0.563595 -0.703083 1.000000 0.602359 -0.833299
sex0 0.364284 -0.576477 0.602359 1.000000 -0.804154
treatAsex0 -0.534227 0.656744 -0.833299 -0.804154 1.000000
_C_ -0.817027 0.744699 -0.690420 -0.373565 0.585364

Estimated Correlation Matrix

_C_

Intercept -0.817027
dose 0.744699
treatA -0.690420
sex0 -0.373565
treatAsex0 0.585364
_C_ 1.000000

Output 60.4.7andOutput 60.4.8display tables of estimated covariance matrix and
estimated correlation matrix for estimated parameters with a non-zero degree of free-
dom, respectively. They are computed by the inverse of the Hessian matrix of the
estimated parameters.
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Output 60.4.9. Probit Analysis on Dose
Epidemiology Study

Probit Procedure

Probit Analysis on dose

Probability dose 95% Fiducial Limits

0.01 -0.85801 -1.81301 -0.33743
0.02 -0.69549 -1.58167 -0.21116
0.03 -0.59238 -1.43501 -0.13093
0.04 -0.51482 -1.32476 -0.07050
0.05 -0.45172 -1.23513 -0.02130
0.06 -0.39802 -1.15888 0.02063
0.07 -0.35093 -1.09206 0.05742
0.08 -0.30877 -1.03226 0.09039
0.09 -0.27043 -0.97790 0.12040
0.10 -0.23513 -0.92788 0.14805
0.15 -0.08900 -0.72107 0.26278
0.20 0.02714 -0.55706 0.35434
0.25 0.12678 -0.41669 0.43322
0.30 0.21625 -0.29095 0.50437
0.35 0.29917 -0.17477 0.57064
0.40 0.37785 -0.06487 0.63387
0.45 0.45397 0.04104 0.69546
0.50 0.52888 0.14481 0.75654
0.55 0.60380 0.24800 0.81819
0.60 0.67992 0.35213 0.88157
0.65 0.75860 0.45879 0.94803
0.70 0.84151 0.56985 1.01942
0.75 0.93099 0.68770 1.09847
0.80 1.03063 0.81571 1.18970
0.85 1.14677 0.95926 1.30171
0.90 1.29290 1.12867 1.45386
0.91 1.32819 1.16747 1.49273
0.92 1.36654 1.20867 1.53590
0.93 1.40870 1.25284 1.58450
0.94 1.45579 1.30084 1.64012
0.95 1.50949 1.35397 1.70515
0.96 1.57258 1.41443 1.78353
0.97 1.65015 1.48626 1.88238
0.98 1.75326 1.57833 2.01720
0.99 1.91577 1.71776 2.23537

Output 60.4.9displays the computed values and fiducial limits for the first single con-
tinuous variabledose in the MODEL statement, given the probability levels, without
the effect of the natural threshold, and when the option INSERSECL in the MODEL
statement is specified. If there is no single continuous variable in the MODEL speci-
fication but the INVERSECL option is specified, an error is reported. If the XDATA=
option is used to input a data set for the independent variables in the MODEL state-
ment, the PROBIT procedure uses these values for the independent variables other
than the single continuous variable. Missing values are not permitted in the XDATA=
data set for the independent variables, although the value for the single continuous
variable is not used in the computing of the fiducial limits. A suitable valid value
should be given. In the data setxval created by the SAS statements on page 3784,
Dose = 2.
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See the section“XDATA= SAS-data-set” on page 3763 for the default values for
those effects other than the single continuous variable, for which the fiducial limits
are computed.

In this example, there are two classification variables,treat andsex. Fiducial limits
for thedose variable are computed for the highest level of the classification variables,
treat = B andsex = 1, which is the default specification. Since these are the default
values, you would get the same values and fiducial limits if you did not specify the
XDATA= option in this example. The confidence level for the fiducial limits can be
specified by the ALPHA= option in the MODEL statement. The default level is95%.

If a LOG10 or LOG option is used in the PROC PROBIT statement, the values and the
fiducial limits are computed for both the single continuous variable and its logarithm.

Output 60.4.10. Outest Data Set for Epidemiology Study
Obs _MODEL_ _NAME_ _TYPE_ _DIST_ _STATUS_ _LNLIKE_ r Intercept

1 r PARMS Normal 0 Converged -387.247 -1.00000 -0.88714
2 Intercept COV Normal 0 Converged -387.247 -0.88714 0.13194
3 dose COV Normal 0 Converged -387.247 1.67739 -0.08735
4 treatA COV Normal 0 Converged -387.247 -1.25367 0.05355
5 treatB COV Normal 0 Converged -387.247 0.00000 0.00000
6 sex0 COV Normal 0 Converged -387.247 -0.46329 0.03029
7 sex1 COV Normal 0 Converged -387.247 0.00000 0.00000
8 treatAsex0 COV Normal 0 Converged -387.247 1.28991 -0.06706
9 treatAsex1 COV Normal 0 Converged -387.247 0.00000 0.00000

10 treatBsex0 COV Normal 0 Converged -387.247 0.00000 0.00000
11 treatBsex1 COV Normal 0 Converged -387.247 0.00000 0.00000
12 _C_ COV Normal 0 Converged -387.247 0.27347 -0.02807

treat treat treat treat treat
Obs dose treatA B sex0 sex1 Asex0 Asex1 Bsex0 Bsex1 _C_

1 1.67739 -1.25367 0 -0.46329 0 1.28991 0 0 0 0.27347
2 -0.08735 0.05355 0 0.03029 0 -0.06706 0 0 0 -0.02807
3 0.06672 -0.04751 0 -0.03408 0 0.05862 0 0 0 0.01820
4 -0.04751 0.06843 0 0.03606 0 -0.07532 0 0 0 -0.01708
5 0.00000 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000
6 -0.03408 0.03606 0 0.05238 0 -0.06360 0 0 0 -0.00809
7 0.00000 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000
8 0.05862 -0.07532 0 -0.06360 0 0.11941 0 0 0 0.01913
9 0.00000 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000

10 0.00000 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000
11 0.00000 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000
12 0.01820 -0.01708 0 -0.00809 0 0.01913 0 0 0 0.00895

Output 60.4.10displays the OUTEST= data set. All parameters for an effect are
included.

The following three outputs,Output 60.4.11, Output 60.4.12, andOutput 60.4.13,
are generated from the three plot statements. The first plot, specified with the
PREDPPLOT statement, is the plot of the predicted probability against the single con-
tinuous variableDose, which is specified by the VAR= option in the PREDPPLOT
statement. This single continuous variable must be in the MODEL statement. If the
VAR= option is not used, the first single continuous variable in the MODEL state-
ment is used. In this example, you would get the same plot if the VAR =dose was
not used in the PREDPPLOT statement. You can specify values of other independent
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variables in the MODEL statement using an XDATA= data set, or by using the default
values.

The second plot, specified with the IPPPLOT statement, is the inverse of the predicted
probability plot with the fiducial limits. It should be pointed out that the fiducial
limits are not just the inverse of the confidence limits in the predicted probability
plot; see the section“Inverse Confidence Limits”on page 3761 for the computation
of these limits. The third plot, specified with the LPREDPLOT statement, is the
plot of the linear predictorx′β against the first single continuous variable (or the
single continuous variable specified by the VAR= option) with the Wald confidence
intervals.

After each plot statement, an optional INSET statement is used to draw a box within
the plot (inset box). In the inset box, information about the model fitting can be
specified. See“INSET Statement”on page 3723 for more detail.

Output 60.4.11. Predicted Probability Plot
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Output 60.4.12. Inverse Predicted Probability Plot

Output 60.4.13. Linear Predictor Plot

Combining INEST= data set and the MAXIT= option in the MODEL statement, the
PROBIT procedure can do prediction, if the parameterizations for the models used
for the training data and the validation data are exactly the same.

After the first invocation of PROC PROBIT, you have the estimated parameters and
their covariance matrix in the data set OUTEST =Out1, and the fitted probabilities
for the training data setepidemic in the data set OUTPUT =Out2. SeeOutput
60.4.10on page 3791 for the data setOut1 andOutput 60.4.14on page 3795 for the
data setOut2.
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The validation data are collected in data setvalidate. The second invocation of PROC
PROBIT simply passes the estimated parameters from the training data setepidemic
to the validation data setvalidate for prediction. The predicted probabilities are
stored in the data set OUTPUT = Out3 (seeOutput 60.4.15on page 3795). The third
invocation of PROC PROBIT passes the estimated parameters as initial values for a
new fit of the validation data set using the same model. Predicted probabilities are
stored in the data set OUTPUT = Out4 (seeOutput 60.4.16on page 3795). Goodness-
of-Fit tests are computed based on the cells grouped by the AGGREGATE= group
variable. Results are shown inOutput 60.4.17on page 3796.

data validate;
input treat $ dose sex n r group;
datalines;

B 2.0 0 44 43 1
B 2.0 1 54 52 2
B 1.5 1 36 32 3
B 1.5 0 45 40 4
A 2.0 0 66 64 5
A 2.0 1 89 89 6
A 1.5 1 45 39 7
A 1.5 0 66 60 8
B 2.0 0 44 44 1
B 2.0 1 54 54 2
B 1.5 1 36 30 3
B 1.5 0 45 41 4
A 2.0 0 66 65 5
A 2.0 1 89 88 6
A 1.5 1 45 38 7
A 1.5 0 66 59 8
;

proc probit optc data = validate inest = out1;
class treat sex;
model r/n = dose treat sex sex*treat / maxit = 0 ;
output out = out3 p =p;

run ;

proc probit optc lackfit data = validate inest = out1;
class treat sex;
model r/n = dose treat sex sex*treat / aggregate = group ;
output out = out4 p =p;

run ;
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Output 60.4.14. Out2
Obs treat dose n r sex p

1 A 2.17 142 142 0 0.99272
2 A 0.57 132 47 1 0.35925
3 A 1.68 128 105 1 0.81899
4 A 1.08 126 100 0 0.77517
5 A 1.79 125 118 0 0.96682
6 B 1.66 117 115 1 0.97901
7 B 1.49 127 114 0 0.90896
8 B 1.17 51 44 1 0.89749
9 B 2.00 127 126 0 0.98364

10 B 0.80 129 100 1 0.76414

Output 60.4.15. Out3
Obs treat dose sex n r group p

1 B 2.0 0 44 43 1 0.98364
2 B 2.0 1 54 52 2 0.99506
3 B 1.5 1 36 32 3 0.96247
4 B 1.5 0 45 40 4 0.91145
5 A 2.0 0 66 64 5 0.98500
6 A 2.0 1 89 89 6 0.91835
7 A 1.5 1 45 39 7 0.74300
8 A 1.5 0 66 60 8 0.91666
9 B 2.0 0 44 44 1 0.98364

10 B 2.0 1 54 54 2 0.99506
11 B 1.5 1 36 30 3 0.96247
12 B 1.5 0 45 41 4 0.91145
13 A 2.0 0 66 65 5 0.98500
14 A 2.0 1 89 88 6 0.91835
15 A 1.5 1 45 38 7 0.74300
16 A 1.5 0 66 59 8 0.91666

Output 60.4.16. Out4
Obs treat dose sex n r group p

1 B 2.0 0 44 43 1 0.98954
2 B 2.0 1 54 52 2 0.98262
3 B 1.5 1 36 32 3 0.86187
4 B 1.5 0 45 40 4 0.90095
5 A 2.0 0 66 64 5 0.98768
6 A 2.0 1 89 89 6 0.98614
7 A 1.5 1 45 39 7 0.88075
8 A 1.5 0 66 60 8 0.88964
9 B 2.0 0 44 44 1 0.98954

10 B 2.0 1 54 54 2 0.98262
11 B 1.5 1 36 30 3 0.86187
12 B 1.5 0 45 41 4 0.90095
13 A 2.0 0 66 65 5 0.98768
14 A 2.0 1 89 88 6 0.98614
15 A 1.5 1 45 38 7 0.88075
16 A 1.5 0 66 59 8 0.88964
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Output 60.4.17. Goodness-of-Fit Table
Probit Procedure

Goodness-of-Fit Tests

Statistic Value DF Pr > ChiSq

Pearson Chi-Square 2.8101 2 0.2454
L.R. Chi-Square 2.8080 2 0.2456
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Chapter 61
The REG Procedure
Overview

The REG procedure is one of many regression procedures in the SAS System. It
is a general-purpose procedure for regression, while other SAS regression proce-
dures provide more specialized applications. Other SAS/STAT procedures that per-
form at least one type of regression analysis are the CATMOD, GENMOD, GLM,
LOGISTIC, MIXED, NLIN, ORTHOREG, PROBIT, RSREG, and TRANSREG pro-
cedures. SAS/ETS procedures are specialized for applications in time-series or simul-
taneous systems. These other SAS/STAT regression procedures are summarized in
Chapter 2, “Introduction to Regression Procedures,”which also contains an overview
of regression techniques and defines many of the statistics computed by PROC REG
and other regression procedures.

PROC REG provides the following capabilities:

• multiple MODEL statements

• nine model-selection methods

• interactive changes both in the model and the data used to fit the model

• linear equality restrictions on parameters

• tests of linear hypotheses and multivariate hypotheses

• collinearity diagnostics

• predicted values, residuals, studentized residuals, confidence limits, and influ-
ence statistics

• correlation or crossproduct input

• requested statistics available for output through output data sets

• experimental ODS graphics are now available. For more information, see the
“ODS Graphics”section on page 3922. These plots are available in addition to
the line-printer and the traditional high resolution plots currently available in
PROC REG.

• plots

− plot model fit summary statistics and diagnostic statistics

− produce normal quantile-quantile (Q-Q) and probability-probability (P-P)
plots for statistics such as residuals

− specify special shorthand options to plot ridge traces, confidence inter-
vals, and prediction intervals

− display the fitted model equation, summary statistics, and reference lines
on the plot
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− control the graphics appearance with PLOT statement options and with
global graphics statements including the TITLE, FOOTNOTE, NOTE,
SYMBOL, and LEGEND statements

− “paint” or highlight line-printer scatter plots

− produce partial regression leverage line-printer plots

Nine model-selection methods are available in PROC REG. In the simplest method,
PROC REG fits the complete model that you specify. The other eight methods involve
various ways of including or excluding variables from the model. You specify these
methods with theSELECTION=option in the MODEL statement.

The methods are identified in the following list and are explained in detail in the
“Model-Selection Methods”section on page 3873.

NONE no model selection. This is the default. The complete model spec-
ified in the MODEL statement is fit to the data.

FORWARD forward selection. This method starts with no variables in the
model and adds variables.

BACKWARD backward elimination. This method starts with all variables in the
model and deletes variables.

STEPWISE stepwise regression. This is similar to the FORWARD method ex-
cept that variables already in the model do not necessarily stay
there.

MAXR forward selection to fit the best one-variable model, the best two-
variable model, and so on. Variables are switched so thatR2 is
maximized.

MINR similar to the MAXR method, except that variables are switched
so that the increase inR2 from adding a variable to the model is
minimized.

RSQUARE finds a specified number of models with the highestR2 in a range
of model sizes.

ADJRSQ finds a specified number of models with the highest adjustedR2 in
a range of model sizes.

CP finds a specified number of models with the lowestCp in a range
of model sizes.

Getting Started

Simple Linear Regression

Suppose that a response variableY can be predicted by a linear function of a regressor
variableX. You can estimateβ0, the intercept, andβ1, the slope, in

Yi = β0 + β1Xi + εi



Simple Linear Regression � 3801

for the observationsi = 1, 2, . . . , n. Fitting this model with the REG procedure
requires only the following MODEL statement, wherey is the outcome variable and
x is the regressor variable.

proc reg;
model y=x;

run;

For example, you might use regression analysis to find out how well you can predict
a child’s weight if you know that child’s height. The following data are from a study
of nineteen children. Height and weight are measured for each child.

title ’Simple Linear Regression’;
data Class;

input Name $ Height Weight Age @@;
datalines;

Alfred 69.0 112.5 14 Alice 56.5 84.0 13 Barbara 65.3 98.0 13
Carol 62.8 102.5 14 Henry 63.5 102.5 14 James 57.3 83.0 12
Jane 59.8 84.5 12 Janet 62.5 112.5 15 Jeffrey 62.5 84.0 13
John 59.0 99.5 12 Joyce 51.3 50.5 11 Judy 64.3 90.0 14
Louise 56.3 77.0 12 Mary 66.5 112.0 15 Philip 72.0 150.0 16
Robert 64.8 128.0 12 Ronald 67.0 133.0 15 Thomas 57.5 85.0 11
William 66.5 112.0 15
;

The equation of interest is

Weight = β0 + β1Height + ε

The variableWeight is the response or dependent variable in this equation, andβ0

andβ1 are the unknown parameters to be estimated. The variableHeight is the re-
gressor or independent variable, andε is the unknown error. The following commands
invoke the REG procedure and fit this model to the data.

proc reg;
model Weight = Height;

run;

Figure 61.1includes some information concerning model fit.
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Simple Linear Regression

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001
Error 17 2142.48772 126.02869
Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705
Dependent Mean 100.02632 Adj R-Sq 0.7570
Coeff Var 11.22330

Figure 61.1. ANOVA Table

The F statistic for the overall model is highly significant (F=57.076,p<0.0001),
indicating that the model explains a significant portion of the variation in the data.

The degrees of freedom can be used in checking accuracy of the data and model. The
model degrees of freedom are one less than the number of parameters to be estimated.
This model estimates two parameters,β0 andβ1; thus, the degrees of freedom should
be2 − 1 = 1. The corrected total degrees of freedom are always one less than the
total number of observations in the data set, in this case19− 1 = 18.

Several simple statistics follow the ANOVA table. The Root MSE is an estimate of
the standard deviation of the error term. The coefficient of variation, or Coeff Var, is
a unitless expression of the variation in the data. The R-Square and Adj R-Square are
two statistics used in assessing the fit of the model; values close to 1 indicate a better
fit. The R-Square of 0.77 indicates thatHeight accounts for 77% of the variation in
Weight.

The “Parameter Estimates” table shown inFigure 61.2contains the estimates of
β0 andβ1. The table also contains thet statistics and the correspondingp-values
for testing whether each parameter is significantly different from zero. Thep-
values (t = −4.43, p = 0.0004 and t = 7.55, p < 0.0001) indicate that
the intercept andHeight parameter estimates, respectively, are highly significant.
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Simple Linear Regression

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004
Height 1 3.89903 0.51609 7.55 <.0001

Figure 61.2. Parameter Estimates

From the parameter estimates, the fitted model is

Weight = −143.0 + 3.9× Height

The REG procedure can be used interactively. After you specify a model with the
MODEL statement and submit the PROC REG statements, you can submit further
statements without reinvoking the procedure. The following command can now be
issued to request a plot of the residual versus the predicted values, as shown inFigure
61.3.

plot r.*p.; run;

Figure 61.3. Plot of Residual vs. Predicted Values
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A trend in the residuals would indicate nonconstant variance in the data.Figure 61.3
may indicate a slight trend in the residuals; they appear to increase slightly as the
predicted values increase. A fan-shaped trend may indicate the need for a variance-
stabilizing transformation. A curved trend (such as a semi-circle) may indicate the
need for a quadratic term in the model. Since these residuals have no apparent trend,
the analysis is considered to be acceptable.

Polynomial Regression

Consider a response variableY that can be predicted by a polynomial function of a
regressor variableX. You can estimateβ0, the intercept,β1, the slope due toX, and
β2, the slope due toX2, in

Yi = β0 + β1Xi + β2X
2
i + εi

for the observationsi = 1, 2, . . . , n.

Consider the following example on population growth trends. The population of
the United States from 1790 to 2000 is fit to linear and quadratic functions of time.
Note that the quadratic term,YearSq, is created in the DATA step; this is done since
polynomial effects such asYear*Year cannot be specified in the MODEL statement
in PROC REG. The data are as follows:

data USPopulation;
input Population @@;
retain Year 1780;
Year=Year+10;
YearSq=Year*Year;
Population=Population/1000;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710 281422
;

The following statements begin the analysis. (Influence diagnostics and autocorre-
lation information for the full model are shown inFigure 61.43on page 3900 and
Figure 61.57on page 3916.)

symbol1 c=blue;
proc reg data=USPopulation;

var YearSq;
model Population=Year / r cli clm;
plot r.*p. / cframe=ligr;

run;

The DATA option ensures that the procedure uses the intended data set. Any variable
that you might add to the model but that is not included in the first MODEL state-
ment must appear in the VAR statement. In the MODEL statement, three options are
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specified: R requests a residual analysis to be performed, CLI requests 95% confi-
dence limits for an individual value, and CLM requests these limits for the expected
value of the dependent variable. You can request specific100(1 − α)% limits with
the ALPHA= option in the PROC REG or MODEL statement. A plot of the residuals
against the predicted values is requested by the PLOT statement.

The ANOVA table is displayed inFigure 61.4.

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 146869 146869 228.92 <.0001
Error 20 12832 641.58160
Corrected Total 21 159700

Root MSE 25.32946 R-Square 0.9197
Dependent Mean 94.64800 Adj R-Sq 0.9156
Coeff Var 26.76175

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -2345.85498 161.39279 -14.54 <.0001
Year 1 1.28786 0.08512 15.13 <.0001

Figure 61.4. ANOVA Table and Parameter Estimates

The ModelF statistic is significant (F=228.92,p<0.0001), indicating that the model
accounts for a significant portion of variation in the data. The R-Square indicates that
the model accounts for 92% of the variation in population growth. The fitted equation
for this model is

Population = −2345.85 + 1.29× Year

Figure 61.5shows the confidence limits for both individual and expected values re-
sulting from the CLM and CLI options.
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The REG Procedure
Model: MODEL1

Dependent Variable: Population

Output Statistics

Dependent Predicted Std Error
Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict

1 3.9290 -40.5778 10.4424 -62.3602 -18.7953 -97.7280 16.5725
2 5.3080 -27.6991 9.7238 -47.9826 -7.4156 -84.2950 28.8968
3 7.2390 -14.8205 9.0283 -33.6533 4.0123 -70.9128 41.2719
4 9.6380 -1.9418 8.3617 -19.3841 15.5004 -57.5827 53.6991
5 12.8660 10.9368 7.7314 -5.1906 27.0643 -44.3060 66.1797
6 17.0690 23.8155 7.1470 8.9070 38.7239 -31.0839 78.7148
7 23.1910 36.6941 6.6208 22.8834 50.5048 -17.9174 91.3056
8 31.4430 49.5727 6.1675 36.7075 62.4380 -4.8073 103.9528
9 39.8180 62.4514 5.8044 50.3436 74.5592 8.2455 116.6573

10 50.1550 75.3300 5.5491 63.7547 86.9053 21.2406 129.4195
11 62.9470 88.2087 5.4170 76.9090 99.5084 34.1776 142.2398
12 75.9940 101.0873 5.4170 89.7876 112.3870 47.0562 155.1184
13 91.9720 113.9660 5.5491 102.3907 125.5413 59.8765 168.0554
14 105.7100 126.8446 5.8044 114.7368 138.9524 72.6387 181.0505
15 122.7750 139.7233 6.1675 126.8580 152.5885 85.3432 194.1033
16 131.6690 152.6019 6.6208 138.7912 166.4126 97.9904 207.2134
17 151.3250 165.4805 7.1470 150.5721 180.3890 110.5812 220.3799
18 179.3230 178.3592 7.7314 162.2317 194.4866 123.1163 233.6020
19 203.2110 191.2378 8.3617 173.7956 208.6801 135.5969 246.8787
20 226.5420 204.1165 9.0283 185.2837 222.9493 148.0241 260.2088
21 248.7100 216.9951 9.7238 196.7116 237.2786 160.3992 273.5910
22 281.4220 229.8738 10.4424 208.0913 251.6562 172.7235 287.0240

Figure 61.5. Confidence Limits

The observed dependent variable is displayed for each observation along with its pre-
dicted value from the regression equation and the standard error of the mean predicted
value. The 95% CL Mean columns are the confidence limits for the expected value
of each observation. The 95% CL Predict columns are the confidence limits for the
individual observations.

Figure 61.6displays the residual analysis requested by the R option.
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Output Statistics

Std Error Student Cook’s
Obs Residual Residual Residual -2-1 0 1 2 D

1 44.5068 23.077 1.929 | |*** | 0.381
2 33.0071 23.389 1.411 | |** | 0.172
3 22.0595 23.666 0.932 | |* | 0.063
4 11.5798 23.909 0.484 | | | 0.014
5 1.9292 24.121 0.0800 | | | 0.000
6 -6.7465 24.300 -0.278 | | | 0.003
7 -13.5031 24.449 -0.552 | *| | 0.011
8 -18.1297 24.567 -0.738 | *| | 0.017
9 -22.6334 24.655 -0.918 | *| | 0.023

10 -25.1750 24.714 -1.019 | **| | 0.026
11 -25.2617 24.743 -1.021 | **| | 0.025
12 -25.0933 24.743 -1.014 | **| | 0.025
13 -21.9940 24.714 -0.890 | *| | 0.020
14 -21.1346 24.655 -0.857 | *| | 0.020
15 -16.9483 24.567 -0.690 | *| | 0.015
16 -20.9329 24.449 -0.856 | *| | 0.027
17 -14.1555 24.300 -0.583 | *| | 0.015
18 0.9638 24.121 0.0400 | | | 0.000
19 11.9732 23.909 0.501 | |* | 0.015
20 22.4255 23.666 0.948 | |* | 0.065
21 31.7149 23.389 1.356 | |** | 0.159
22 51.5482 23.077 2.234 | |**** | 0.511

Sum of Residuals 0
Sum of Squared Residuals 12832
Predicted Residual SS (PRESS) 16662

Figure 61.6. Residual Analysis

The residual, its standard error, and the studentized residuals are displayed for each
observation. The studentized residual is the residual divided by its standard error.
The magnitude of each studentized residual is shown in a plot. Studentized residuals
follow a t distribution and can be used to identify outlying or extreme observations.
Asterisks (*) extending beyond the dashed lines indicate that the residual is more
than three standard errors from zero. Many observations having absolute studentized
residuals greater than 2 may indicate an inadequate model. The wave pattern seen
in this plot is also an indication that the model is inadequate; a quadratic term may
be needed or autocorrelation may be present in the data. Cook’s D is a measure of
the change in the predicted values upon deletion of that observation from the data
set; hence, it measures the influence of the observation on the estimated regression
coefficients. A fairly close agreement between the PRESS statistic (seeTable 61.6on
page 3897) and the Sum of Squared Residuals indicates that the MSE is a reasonable
measure of the predictive accuracy of the fitted model (Neter, Wasserman, and Kutner,
1990).

A plot of the residuals versus predicted values is shown inFigure 61.7.
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Figure 61.7. Plot of Residual vs. Predicted Values

The wave pattern of the studentized residual plot is seen here again. The semi-circle
shape indicates an inadequate model; perhaps additional terms (such as the quadratic)
are needed, or perhaps the data need to be transformed before analysis. If a model fits
well, the plot of residuals against predicted values should exhibit no apparent trends.

Using the interactive feature of PROC REG, the following commands add the variable
YearSq to the independent variables and refit the model.

add YearSq;
print;
plot / cframe=ligr;
run;

The ADD statement requests thatYearSq be added to the model, and the PRINT
command displays the ANOVA table for the new model. The PLOT statement with
no variables recreates the most recent plot requested, in this case a plot of residual
versus predicted values.

Figure 61.8displays the ANOVA table and estimates for the new model.
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The REG Procedure
Model: MODEL1.1

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 159529 79765 8864.19 <.0001
Error 19 170.97193 8.99852
Corrected Total 21 159700

Root MSE 2.99975 R-Square 0.9989
Dependent Mean 94.64800 Adj R-Sq 0.9988
Coeff Var 3.16938

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 21631 639.50181 33.82 <.0001
Year 1 -24.04581 0.67547 -35.60 <.0001
YearSq 1 0.00668 0.00017820 37.51 <.0001

Figure 61.8. ANOVA Table and Parameter Estimates

The overallF statistic is still significant (F=8864.19,p<0.0001). The R-square has
increased from 0.9197 to 0.9989, indicating that the model now accounts for 99.9%
of the variation inPopulation. All effects are significant withp<0.0001 for each
effect in the model.

The fitted equation is now

Population = 21631− 24.046× Year + 0.0067× Yearsq

The confidence limits and residual analysis for the second model are displayed in
Figure 61.9.
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The REG Procedure
Model: MODEL1.1

Dependent Variable: Population

Output Statistics

Dependent Predicted Std Error
Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict

1 3.9290 6.2127 1.7565 2.5362 9.8892 -1.0631 13.4884
2 5.3080 5.7226 1.4560 2.6751 8.7701 -1.2565 12.7017
3 7.2390 6.5694 1.2118 4.0331 9.1057 -0.2021 13.3409
4 9.6380 8.7531 1.0305 6.5963 10.9100 2.1144 15.3918
5 12.8660 12.2737 0.9163 10.3558 14.1916 5.7087 18.8386
6 17.0690 17.1311 0.8650 15.3207 18.9415 10.5968 23.6655
7 23.1910 23.3254 0.8613 21.5227 25.1281 16.7932 29.8576
8 31.4430 30.8566 0.8846 29.0051 32.7080 24.3107 37.4024
9 39.8180 39.7246 0.9163 37.8067 41.6425 33.1597 46.2896

10 50.1550 49.9295 0.9436 47.9545 51.9046 43.3476 56.5114
11 62.9470 61.4713 0.9590 59.4641 63.4785 54.8797 68.0629
12 75.9940 74.3499 0.9590 72.3427 76.3571 67.7583 80.9415
13 91.9720 88.5655 0.9436 86.5904 90.5405 81.9836 95.1473
14 105.7100 104.1178 0.9163 102.2000 106.0357 97.5529 110.6828
15 122.7750 121.0071 0.8846 119.1556 122.8585 114.4612 127.5529
16 131.6690 139.2332 0.8613 137.4305 141.0359 132.7010 145.7654
17 151.3250 158.7962 0.8650 156.9858 160.6066 152.2618 165.3306
18 179.3230 179.6961 0.9163 177.7782 181.6139 173.1311 186.2610
19 203.2110 201.9328 1.0305 199.7759 204.0896 195.2941 208.5715
20 226.5420 225.5064 1.2118 222.9701 228.0427 218.7349 232.2779
21 248.7100 250.4168 1.4560 247.3693 253.4644 243.4378 257.3959
22 281.4220 276.6642 1.7565 272.9877 280.3407 269.3884 283.9400

Output Statistics

Std Error Student Cook’s
Obs Residual Residual Residual -2-1 0 1 2 D

1 -2.2837 2.432 -0.939 | *| | 0.153
2 -0.4146 2.623 -0.158 | | | 0.003
3 0.6696 2.744 0.244 | | | 0.004
4 0.8849 2.817 0.314 | | | 0.004
5 0.5923 2.856 0.207 | | | 0.001
6 -0.0621 2.872 -0.0216 | | | 0.000
7 -0.1344 2.873 -0.0468 | | | 0.000
8 0.5864 2.866 0.205 | | | 0.001
9 0.0934 2.856 0.0327 | | | 0.000

10 0.2255 2.847 0.0792 | | | 0.000
11 1.4757 2.842 0.519 | |* | 0.010
12 1.6441 2.842 0.578 | |* | 0.013
13 3.4065 2.847 1.196 | |** | 0.052
14 1.5922 2.856 0.557 | |* | 0.011
15 1.7679 2.866 0.617 | |* | 0.012
16 -7.5642 2.873 -2.632 | *****| | 0.208
17 -7.4712 2.872 -2.601 | *****| | 0.205
18 -0.3731 2.856 -0.131 | | | 0.001
19 1.2782 2.817 0.454 | | | 0.009
20 1.0356 2.744 0.377 | | | 0.009
21 -1.7068 2.623 -0.651 | *| | 0.044
22 4.7578 2.432 1.957 | |*** | 0.666

Sum of Residuals -4.4596E-11
Sum of Squared Residuals 170.97193
Predicted Residual SS (PRESS) 237.71229
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Figure 61.9. Confidence Limits and Residual Analysis

The plot of the studentized residuals shows that the wave structure is gone. The
PRESS statistic is much closer to the Sum of Squared Residuals now, and both statis-
tics have been dramatically reduced. Most of the Cook’s D statistics have also been
reduced.

Figure 61.10. Plot of Residual vs. Predicted Values

The plot of residuals versus predicted values seen inFigure 61.10has improved since
a major trend is no longer visible.

To create a plot of the observed values, predicted values, and confidence limits against
Year all on the same plot and to exert some control over the look of the resulting plot,
you can submit the following statements.

symbol1 v=dot c=yellow h=.3;
symbol2 v=square c=red;
symbol3 f=simplex c=blue h=2 v=’-’;
symbol4 f=simplex c=blue h=2 v=’-’;
plot (Population predicted. u95. l95.)*Year

/ overlay cframe=ligr;
run;
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Figure 61.11. Plot of Population vs Year with Confidence Limits

The SYMBOL statements requests that the actual data be displayed as dots, the pre-
dicted values as squares, and the upper and lower 95% confidence limits for an indi-
vidual value (sometimes called aprediction interval) as dashes. PROC REG provides
the short-hand commands CONF and PRED to request confidence and prediction in-
tervals for simple regression models; see the“PLOT Statement”section on page 3839
for details.

To complete an analysis of these data, you may want to examine influence statis-
tics and, since the data are essentially time series data, examine the Durbin-Watson
statistic. You might also want to examine other residual plots, such as the residuals
vs. regressors.

Using PROC REG Interactively

PROC REG can be used interactively. After you specify a model with a MODEL
statement and run REG with a RUN statement, a variety of statements can be executed
without reinvoking REG.

The“Interactive Analysis”section on page 3869 describes which statements can be
used interactively. These interactive statements can be executed singly or in groups
by following the single statement or group of statements with a RUN statement. Note
that the MODEL statement can be repeated. This is an important difference from the
GLM procedure, which allows only one MODEL statement.

If you use REG interactively, you can end the REG procedure with a DATA step,
another PROC step, an ENDSAS statement, or with a QUIT statement. The syntax
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of the QUIT statement is

quit;

When you are using REG interactively, additional RUN statements do not end REG
but tell the procedure to execute additional statements.

When a BY statement is used with PROC REG, interactive processing is not possible;
that is, once the first RUN statement is encountered, processing proceeds for each BY
group in the data set, and no further statements are accepted by the procedure.

When using REG interactively, you can fit a model, perform diagnostics, then refit
the model, and perform diagnostics on the refitted model. Most of the interactive
statements implicitly refit the model; for example, if you use the ADD statement to
add a variable to the model, the regression equation is automatically recomputed.
The two exceptions to this automatic recomputing are the PAINT and REWEIGHT
statements. These two statements do not cause the model to be refitted. To do so, you
can follow these statements either with a REFIT statement, which causes the model to
be explicitly recomputed, or with another interactive statement that causes the model
to be implicitly recomputed.

Syntax

The following statements are available in PROC REG.

PROC REG < options > ;
< label: > MODEL dependents=<regressors> < / options > ;
BY variables ;
FREQ variable ;
ID variables ;
VAR variables ;
WEIGHT variable ;
ADD variables ;
DELETE variables ;
< label: > MTEST <equation, . . . ,equation> < / options > ;
OUTPUT < OUT=SAS-data-set > keyword=names

< . . . keyword=names > ;
PAINT <condition | ALLOBS >

< / options > | < STATUS | UNDO> ;
PLOT <yvariable*xvariable> <=symbol>

< . . .yvariable*xvariable> <=symbol> < / options > ;
PRINT < options > < ANOVA > < MODELDATA > ;
REFIT;
RESTRICT equation, . . . ,equation ;
REWEIGHT <condition | ALLOBS >

< / options > | < STATUS | UNDO> ;
< label: > TEST equation,<, . . .,equation> < / option > ;
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Although there are numerous statements and options available in PROC REG, many
analyses use only a few of them. Often you can find the features you need by looking
at an example or by scanning this section.

In the preceding list, brackets denote optional specifications, and vertical bars denote
a choice of one of the specifications separated by the vertical bars. In all cases,label
is optional.

The PROC REG statement is required. To fit a model to the data, you must specify
the MODEL statement. If you want to use only the options available in the PROC
REG statement, you do not need a MODEL statement, but you must use a VAR
statement. (See the example in the“OUTSSCP= Data Sets”section on page 3868.)
Several MODEL statements can be used. In addition, several MTEST, OUTPUT,
PAINT, PLOT, PRINT, RESTRICT, and TEST statements can follow each MODEL
statement. The ADD, DELETE, and REWEIGHT statements are used interactively
to change the regression model and the data used in fitting the model. The ADD,
DELETE, MTEST, OUTPUT, PLOT, PRINT, RESTRICT, and TEST statements im-
plicitly refit the model; changes made to the model are reflected in the results from
these statements. The REFIT statement is used to refit the model explicitly and is
most helpful when it follows PAINT and REWEIGHT statements, which do not re-
fit the model. The BY, FREQ, ID, VAR, and WEIGHT statements are optionally
specified once for the entire PROC step, and they must appear before the first RUN
statement.

When TYPE=CORR, TYPE=COV, or TYPE=SSCP data sets are used as input data
sets to PROC REG, statements and options that require the original data are not
available. Specifically, the OUTPUT, PAINT, PLOT, and REWEIGHT statements
and the MODEL and PRINT statement options P, R, CLM, CLI, DW, DWPROB,
INFLUENCE, and PARTIAL are disabled.

You can specify the following statements with the REG procedure in addition to the
PROC REG statement:

ADD adds independent variables to the regression model.

BY specifies variables to define subgroups for the analysis.

DELETE deletes independent variables from the regression model.

FREQ specifies a frequency variable.

ID names a variable to identify observations in the tables.

MODEL specifies the dependent and independent variables in the regres-
sion model, requests a model selection method, displays predicted
values, and provides details on the estimates (according to which
options are selected).

MTEST performs multivariate tests across multiple dependent variables.

OUTPUT creates an output data set and names the variables to contain pre-
dicted values, residuals, and other diagnostic statistics.

PAINT paints points in scatter plots.

PLOT generates scatter plots.
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PRINT displays information about the model and can reset options.

REFIT refits the model.

RESTRICT places linear equality restrictions on the parameter estimates.

REWEIGHT excludes specific observations from analysis or changes the
weights of observations used.

TEST performs anF test on linear functions of the parameters.

VAR lists variables for which crossproducts are to be computed, vari-
ables that can be interactively added to the model, or variables to
be used in scatter plots.

WEIGHT declares a variable to weight observations.

PROC REG Statement

PROC REG < options > ;

The PROC REG statement is required. If you want to fit a model to the data, you
must also use a MODEL statement. If you want to use only the PROC REG options,
you do not need a MODEL statement, but you must use a VAR statement. If you
do not use a MODEL statement, then the COVOUT and OUTEST= options are not
available.

Table 61.1lists the options you can use with the PROC REG statement. Note that
any option specified in the PROC REG statement applies to all MODEL statements.

Table 61.1. PROC REG Statement Options

Option Description
Data Set Options
DATA= names a data set to use for the regression
OUTEST= outputs a data set that contains parameter estimates and other

model fit summary statistics
OUTSSCP= outputs a data set that contains sums of squares and crossproducts
COVOUT outputs the covariance matrix for parameter estimates to the

OUTEST= data set
EDF outputs the number of regressors, the error degrees of freedom,

and the modelR2 to the OUTEST= data set
OUTSTB outputs standardized parameter estimates to the OUTEST= data

set. Use only with the RIDGE= or PCOMIT= option.
OUTSEB outputs standard errors of the parameter estimates to the

OUTEST= data set
OUTVIF outputs the variance inflation factors to the OUTEST= data set.

Use only with the RIDGE= or PCOMIT= option.
PCOMIT= performs incomplete principal component analysis and outputs

estimates to the OUTEST= data set
PRESS outputs the PRESS statistic to the OUTEST= data set
RIDGE= performs ridge regression analysis and outputs estimates to the

OUTEST= data set
RSQUARE same effect as the EDF option
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Table 61.1. (continued)

Option Description
TABLEOUT outputs standard errors, confidence limits, and associated test

statistics of the parameter estimates to the OUTEST= data set

High Resolution Graphics Options
ANNOTATE= specifies an annotation data set
GOUT= specifies the graphics catalog in which graphics output is saved

Display Options
CORR displays correlation matrix for variables listed in MODEL and

VAR statements
SIMPLE displays simple statistics for each variable listed in MODEL and

VAR statements
USCCP displays uncorrected sums of squares and crossproducts matrix
ALL displays all statistics (CORR, SIMPLE, and USSCP)
NOPRINT suppresses output
LINEPRINTER creates plots requested as line printer plot

Other Options
ALPHA= sets significance value for confidence and prediction intervals and

tests
SINGULAR= sets criterion for checking for singularity

Following are explanations of the options that you can specify in the PROC REG
statement (in alphabetical order). Note that any option specified in the PROC REG
statement applies to all MODEL statements.

ALL
requests the display of many tables. Using the ALL option in the PROC REG state-
ment is equivalent to specifying ALL in every MODEL statement. The ALL option
also implies theCORR, SIMPLE, andUSSCPoptions.

ALPHA= number
sets the significance level used for the construction of confidence intervals. The value
must be between 0 and 1; the default value of 0.05 results in 95% intervals. This
option affects the PROC REG option TABLEOUT; the MODEL options CLB, CLI,
and CLM; the OUTPUT statement keywords LCL, LCLM, UCL, and UCLM; the
PLOT statement keywords LCL., LCLM., UCL., and UCLM.; and the PLOT state-
ment options CONF and PRED.

ANNOTATE=SAS-data-set
ANNO= SAS-data-set

specifies an input data set containing annotate variables, as described inSAS/GRAPH
Software: Reference. You can use this data set to add features to plots. Features
provided in this data set are applied to all plots produced in the current run of PROC
REG. To add features to individual plots, use the ANNOTATE= option in the PLOT
statement. This option cannot be used if theLINEPRINTERoption is specified.
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CORR
displays the correlation matrix for all variables listed in the MODEL or VAR state-
ment.

COVOUT
outputs the covariance matrices for the parameter estimates to the OUTEST= data
set. This option is valid only if theOUTEST= option is also specified. See the
“OUTEST= Data Set”section on page 3863.

DATA=SAS-data-set
names the SAS data set to be used by PROC REG. The data set can be an ordinary
SAS data set or a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set. If one of
these special TYPE= data sets is used, the OUTPUT, PAINT, PLOT, and REWEIGHT
statements and some options in the MODEL and PRINT statements are not available.
SeeAppendix A, “Special SAS Data Sets,”for more information on TYPE= data
sets. If the DATA= option is not specified, PROC REG uses the most recently created
SAS data set.

EDF
outputs the number of regressors in the model excluding and including the intercept,
the error degrees of freedom, and the modelR2 to the OUTEST= data set.

GOUT=graphics-catalog
specifies the graphics catalog in which graphics output is saved. The defaultgraphics-
catalogis WORK.GSEG. The GOUT= option cannot be used if theLINEPRINTER
option is specified.

LINEPRINTER | LP
creates plots requested as line printer plots. If you do not specify this option, re-
quested plots are created on a high resolution graphics device. This option is required
if plots are requested and you do not have SAS/GRAPH software.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables
the Output Delivery System (ODS); seeChapter 14, “Using the Output Delivery
System,” for more information.

OUTEST=SAS-data-set
requests that parameter estimates and optional model fit summary statistics be output
to this data set. See the“OUTEST= Data Set”section on page 3863 for details. If you
want to create a permanent SAS data set, you must specify a two-level name (refer to
the section “SAS Files” inSAS Language Reference: Conceptsfor more information
on permanent SAS data sets).

OUTSEB
outputs the standard errors of the parameter estimates to the OUTEST= data set. The
value SEB for the variable–TYPE– identifies the standard errors. If the RIDGE=
or PCOMIT= option is specified, additional observations are included and identified
by the values RIDGESEB and IPCSEB, respectively, for the variable–TYPE– . The
standard errors for ridge regression estimates and IPC estimates are limited in their
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usefulness because these estimates are biased. This option is available for all model
selection methods except RSQUARE, ADJRSQ, and CP.

OUTSSCP=SAS-data-set
requests that the sums of squares and crossproducts matrix be output to this
TYPE=SSCP data set. See the“OUTSSCP= Data Sets”section on page 3868 for
details. If you want to create a permanent SAS data set, you must specify a two-level
name (refer to the section “SAS Files” inSAS Language Reference: Conceptsfor
more information on permanent SAS data sets).

OUTSTB
outputs the standardized parameter estimates as well as the usual estimates to the
OUTEST= data set when the RIDGE= or PCOMIT= option is specified. The values
RIDGESTB and IPCSTB for the variable–TYPE– identify ridge regression esti-
mates and IPC estimates, respectively.

OUTVIF
outputs the variance inflation factors (VIF) to the OUTEST= data set when the
RIDGE= or PCOMIT= option is specified. The factors are the diagonal elements
of the inverse of the correlation matrix of regressors as adjusted by ridge regression
or IPC analysis. These observations are identified in the output data set by the values
RIDGEVIF and IPCVIF for the variable–TYPE– .

PCOMIT=list
requests an incomplete principal components (IPC) analysis for each valuem in the
list. The procedure computes parameter estimates using all but the lastm principal
components. Each value ofm produces a set of IPC estimates, which are output to
the OUTEST= data set. The values ofm are saved by the variable–PCOMIT– ,
and the value of the variable–TYPE– is set to IPC to identify the estimates. Only
nonnegative integers can be specified with the PCOMIT= option.

If you specify the PCOMIT= option, RESTRICT statements are ignored.

PRESS
outputs the PRESS statistic to the OUTEST= data set. The values of this statistic
are saved in the variable–PRESS– . This option is available for all model selection
methods except RSQUARE, ADJRSQ, and CP.

RIDGE=list
requests a ridge regression analysis and specifies the values of the ridge constant
k (see the“Computations for Ridge Regression and IPC Analysis”section on page
3916). Each value ofk produces a set of ridge regression estimates that are placed in
the OUTEST= data set. The values ofk are saved by the variable–RIDGE– , and the
value of the variable–TYPE– is set to RIDGE to identify the estimates.

Only nonnegative numbers can be specified with the RIDGE= option.Example 61.10
on page 3956 illustrates this option.

If ODS graphics are in effect (see the“ODS Graphics”section on page 3922), then
ridge regression plots are automatically produced. These plots consist of panels con-
taining ridge traces for the regressors, with at most eight ridge traces per panel.
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If you specify the RIDGE= option, RESTRICT statements are ignored.

RSQUARE
has the same effect as theEDF option.

SIMPLE
displays the sum, mean, variance, standard deviation, and uncorrected sum of squares
for each variable used in PROC REG.

SINGULAR=n
tunes the mechanism used to check for singularities. The default value is machine de-
pendent but is approximately 1E−7 on most machines. This option is rarely needed.
Singularity checking is described in the“Computational Methods”section on page
3917.

TABLEOUT
outputs the standard errors and100(1 − α)% confidence limits for the parameter
estimates, thet statistics for testing if the estimates are zero, and the associatedp-
values to the OUTEST= data set. The–TYPE– variable values STDERR, LnB,
UnB, T, and PVALUE, wheren = 100(1−α), identify these rows in the OUTEST=
data set. Theα-level can be set with the ALPHA= option in the PROC REG or
MODEL statement. TheOUTEST= option must be specified in the PROC REG
statement for this option to take effect.

USSCP
displays the uncorrected sums-of-squares and crossproducts matrix for all variables
used in the procedure.

ADD Statement

ADD variables ;

The ADD statement adds independent variables to the regression model. Only vari-
ables used in the VAR statement or used in MODEL statements before the first RUN
statement can be added to the model. You can use the ADD statement interactively
to add variables to the model or to include a variable that was previously deleted with
a DELETE statement. Each use of the ADD statement modifies the MODEL label.
See the“Interactive Analysis”section on page 3869 for an example.

BY Statement

BY variables ;

You can specify a BY statement with PROC REG to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in the order of the BY variables.
Thevariablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives.
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• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the REG procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

When a BY statement is used with PROC REG, interactive processing is not possible;
that is, once the first RUN statement is encountered, processing proceeds for each BY
group in the data set, and no further statements are accepted by the procedure. A BY
statement that appears after the first RUN statement is ignored.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Contents. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

DELETE Statement

DELETE variables ;

The DELETE statement deletes independent The DELETE statement performs the
opposite function of the ADD statement and is used in a similar manner. Each use of
the DELETE statement modifies the MODEL label. For an example of how the ADD
statement is used (and how the DELETE statement can be used), see the“Interactive
Analysis” section on page 3869.

FREQ Statement

FREQ variable ;

When a FREQ statement appears, each observation in the input data set is assumed
to representn observations, wheren is the value of the FREQ variable. The analysis
produced using a FREQ statement is the same as an analysis produced using a data
set that containsn observations in place of each observation in the input data set.
When the procedure determines degrees of freedom for significance tests, the total
number of observations is considered to be equal to the sum of the values of the
FREQ variable.

If the value of the FREQ variable is missing or is less than 1, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.

The FREQ statement must appear before the first RUN statement, or it is ignored.
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ID Statement

ID variables ;

When one of the MODEL statement options CLI, CLM, P, R, or INFLUENCE is
requested, the variables listed in the ID statement are displayed beside each observa-
tion. These variables can be used to identify each observation. If the ID statement is
omitted, the observation number is used to identify the observations.

Although there are no restrictions on the length of ID variables, PROC REG may
truncate ID values to 16 characters for display purposes.

MODEL Statement

< label: > MODEL dependents=<regressors> < / options > ;

After the keyword MODEL, the dependent (response) variables are specified, fol-
lowed by an equal sign and the regressor variables. Variables specified in the MODEL
statement must be numeric variables in the data set being analyzed. For example,
if you want to specify a quadratic term for variableX1 in the model, you cannot
use X1*X1 in the MODEL statement but must create a new variable (for example,
X1SQUARE=X1*X1) in a DATA step and use this new variable in the MODEL state-
ment. The label in the MODEL statement is optional.

Table 61.2lists the options available in the MODEL statement. Equations for the
statistics available are given in the“Model Fit and Diagnostic Statistics”section on
page 3896.

Table 61.2. MODEL Statement Options

Option Description
Model Selection and Details of Selection
SELECTION= specifies model selection method
BEST= specifies maximum number of subset models displayed

or output to the OUTEST= data set
DETAILS produces summary statistics at each step
DETAILS= specifies the display details for forward, backward, and

stepwise methods
GROUPNAMES= provides names for groups of variables
INCLUDE= includes firstn variables in the model
MAXSTEP= specifies maximum number of steps that may be performed
NOINT fits a model without the intercept term
PCOMIT= performs incomplete principal component analysis and outputs

estimates to the OUTEST= data set
SLE= sets criterion for entry into model
RIDGE= performs ridge regression analysis and outputs estimates to the

OUTEST= data set
SLS= sets criterion for staying in model
START= specifies number of variables in model to begin the comparing

and switching process
STOP= stops selection criterion



3822 � Chapter 61. The REG Procedure

Table 61.2. (continued)

Option Description
Fit Statistics
ADJRSQ computes adjustedR2

AIC computes Akaike’s information criterion
B computes parameter estimates for each model
BIC computes Sawa’s Bayesian information criterion
CP computes Mallows’Cp statistic
GMSEP computes estimated MSE of prediction assuming multivariate

normality
JP computesJp, the final prediction error
MSE computes MSE for each model
PC computes Amemiya’s prediction criterion
RMSE displays root MSE for each model
SBC computes the SBC statistic
SP computesSp statistic for each model
SSE computes error sum of squares for each model

Data Set Options
EDF outputs the number of regressors, the error degrees of freedom,

and the modelR2 to the OUTEST= data set
OUTSEB outputs standard errors of the parameter estimates to the

OUTEST= data set
OUTSTB outputs standardized parameter estimates to the OUTEST=

data set. Use only with the RIDGE= or PCOMIT= option.
OUTVIF outputs the variance inflation factors to the OUTEST= data set.

Use only with the RIDGE= or PCOMIT= option.
PRESS outputs the PRESS statistic to the OUTEST= data set
RSQUARE has same effect as the EDF option

Regression Calculations
I displays inverse of sums of squares and crossproducts
XPX displays sums-of-squares and crossproducts matrix

Details on Estimates
ACOV displays asymptotic covariance matrix of estimates assuming

heteroscedasticity
COLLIN produces collinearity analysis
COLLINOINT produces collinearity analysis with intercept adjusted out
CORRB displays correlation matrix of estimates
COVB displays covariance matrix of estimates
PARTIALR2 displays squared semi-partial correlation coefficients using

Type I sums of squares
PCORR1 displays squared partial correlation coefficients using Type I

sums of squares
PCORR2 displays squared partial correlation coefficients using Type II

sums of squares
SCORR1 displays squared semi-partial correlation coefficients using

Type I sums of squares
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Table 61.2. (continued)

Option Description
SCORR2 displays squared semi-partial correlation coefficients using

Type II sums of squares
SEQB displays a sequence of parameter estimates during

selection process
SPEC tests that first and second moments of model are correctly

specified
SS1 displays the sequential sums of squares
SS2 displays the partial sums of squares
STB displays standardized parameter estimates
TOL displays tolerance values for parameter estimates
VIF computes variance-inflation factors

Predicted and Residual Values
CLB computes100(1− α)% confidence limits for the parameter

estimates
CLI computes100(1− α)% confidence limits for an individual

predicted value
CLM computes100(1−α)% confidence limits for the expected value

of the dependent variable
DW computes a Durbin-Watson statistic
DWPROB computes a Durbin-Watson statistic and p-value
INFLUENCE computes influence statistics
P computes predicted values
PARTIAL displays partial regression plots for each regressor
R produces analysis of residuals

Display Options and Other Options
ALL requests the following options:

ACOV, CLB, CLI, CLM, CORRB, COVB, I, P, PCORR1,
PCORR2, R, SCORR1, SCORR2, SEQB, SPEC, SS1,
SS2, STB, TOL, VIF, XPX

ALPHA= sets significance value for confidence and prediction intervals
and tests

NOPRINT suppresses display of results
SIGMA= specifies the true standard deviation of error term for computing

CP and BIC
SINGULAR= sets criterion for checking for singularity

You can specify the following options in the MODEL statement after a slash (/).

ACOV
displays the estimated asymptotic covariance matrix of the estimates under the hy-
pothesis of heteroscedasticity. See the section“Testing for Heteroscedasticity”on
page 3910 for more information.
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ADJRSQ
computesR2 adjusted for degrees of freedom for each model selected (Darlington
1968; Judge et al. 1980).

AIC
outputs Akaike’s information criterion for each model selected (Akaike 1969;
Judge et al. 1980) to the OUTEST= data set. If SELECTION=ADJRSQ,
SELECTION=RSQUARE, or SELECTION=CP is specified, then the AIC statistic
is also added to the SubsetSelSummary table.

ALL
requests all these options: ACOV, CLB, CLI, CLM, CORRB, COVB, I, P, PCORR1,
PCORR2, R, SCORR1, SCORR2, SEQB, SPEC, SS1, SS2, STB, TOL, VIF, and
XPX.

ALPHA= number
sets the significance level used for the construction of confidence intervals for the
current MODEL statement. The value must be between 0 and 1; the default value of
0.05 results in 95% intervals. This option affects the MODEL options CLB, CLI, and
CLM; the OUTPUT statement keywords LCL, LCLM, UCL, and UCLM; the PLOT
statement keywords LCL., LCLM., UCL., and UCLM.; and the PLOT statement
options CONF and PRED. Specifying this option in the MODEL statement takes
precedence over theALPHA= option in the PROC REG statement.

B
is used with the RSQUARE, ADJRSQ, and CP model-selection methods to compute
estimated regression coefficients for each model selected.

BEST=n
is used with the RSQUARE, ADJRSQ, and CP model-selection methods. If
SELECTION=CP or SELECTION=ADJRSQ is specified, the BEST= option spec-
ifies the maximum number of subset models to be displayed or output to the
OUTEST= data set. For SELECTION=RSQUARE, the BEST= option requests the
maximum number of subset models for each size.

If the BEST= option is used without theB option (displaying estimated regression
coefficients), the variables in each MODEL are listed in order of inclusion instead of
the order in which they appear in the MODEL statement.

If the BEST= option is omitted and the number of regressors is less than 11, all
possible subsets are evaluated. If the BEST= option is omitted and the number of
regressors is greater than 10, the number of subsets selected is, at most, equal to the
number of regressors. A small value of the BEST= option greatly reduces the CPU
time required for large problems.

BIC
outputs Sawa’s Bayesian information criterion for each model selected (Sawa
1978; Judge et al. 1980) to the OUTEST= data set. If SELECTION=ADJRSQ,
SELECTION=RSQUARE, or SELECTION=CP is specified, then the BIC statistic is
also added to the SubsetSelSummary table.
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CLB
requests the100(1− α)% upper- and lower-confidence limits for the parameter esti-
mates. By default, the 95% limits are computed; theALPHA= option in the PROC
REG or MODEL statement can be used to change theα-level.

CLI
requests the100(1 − α)% upper- and lower-confidence limits for an individual pre-
dicted value. By default, the 95% limits are computed; theALPHA= option in the
PROC REG or MODEL statement can be used to change theα-level. The confi-
dence limits reflect variation in the error, as well as variation in the parameter esti-
mates. See the“Predicted and Residual Values”section on page 3879 andChapter 2,
“Introduction to Regression Procedures,”for more information.

CLM
displays the100(1− α)% upper- and lower-confidence limits for the expected value
of the dependent variable (mean) for each observation. By default, the 95% limits
are computed; theALPHA= in the PROC REG or MODEL statement can be used to
change theα-level. This is not a prediction interval (see theCLI option) because it
takes into account only the variation in the parameter estimates, not the variation in
the error term. See the section“Predicted and Residual Values”on page 3879 and
Chapter 2for more information.

COLLIN
requests a detailed analysis of collinearity among the regressors. This includes eigen-
values, condition indices, and decomposition of the variances of the estimates with
respect to each eigenvalue. See the“Collinearity Diagnostics”section on page 3895.

COLLINOINT
requests the same analysis as the COLLIN option with the intercept variable adjusted
out rather than included in the diagnostics. See the“Collinearity Diagnostics”section
on page 3895.

CORRB
displays the correlation matrix of the estimates. This is the(X′X)−1 matrix scaled
to unit diagonals.

COVB
displays the estimated covariance matrix of the estimates. This matrix is(X′X)−1s2,
wheres2 is the estimated mean squared error.

CP
outputs Mallows’Cp statistic for each model selected (Mallows 1973; Hocking
1976). See the“Criteria Used in Model-Selection Methods”section on page 3876 for
a discussion of the use ofCp. to the OUTEST= data set. If SELECTION=ADJRSQ,
SELECTION=RSQUARE, or SELECTION=CP is specified, then the CP statistic is
also added to the SubsetSelSummary table.

DETAILS
DETAILS=name

specifies the level of detail produced when the BACKWARD, FORWARD or
STEPWISE methods are used, wherenamecan be ALL, STEPS or SUMMARY. The
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DETAILS or DETAILS=ALL option produces entry and removal statistics for each
variable in the model building process, ANOVA and parameter estimates at each step,
and a selection summary table. The option DETAILS=STEPS provides the step in-
formation and summary table. The option DETAILS=SUMMARY produces only the
summary table. The default if the DETAILS option is omitted is DETAILS=STEPS.

DW
calculates a Durbin-Watson statistic to test whether or not the errors have first-order
autocorrelation. (This test is appropriate only for time series data.) The sample au-
tocorrelation of the residuals is also produced. See the section“Autocorrelation in
Time Series Data”on page 3915.

DWPROB
calculates a Durbin-Watson statistic and a p-value to test whether or not the errors
have first-order autocorrelation. Note that it is not necessary to specify the DW option
if the DWPROB option is specified. (This test is appropriate only for time series
data.) The sample autocorrelation of the residuals is also produced. See the section
“Autocorrelation in Time Series Data”on page 3915.

EDF
outputs the number of regressors in the model excluding and including the intercept,
the error degrees of freedom, and the modelR2 to the OUTEST= data set.

GMSEP
outputs the estimated mean square error of prediction assuming that both inde-
pendent and dependent variables are multivariate normal (Stein 1960; Darlington
1968). Note that Hocking’s formula (1976, eq. 4.20) contains a misprint: “n − 1”
should read “n − 2.”) to the OUTEST= data set. If SELECTION=ADJRSQ,
SELECTION=RSQUARE, or SELECTION=CP is specified, then the GMSEP statis-
tic is also added to the SubsetSelSummary table.

GROUPNAMES=’name1’ ’name2’ . . .
provides names for variable groups. This option is available only in the
BACKWARD, FORWARD, and STEPWISE methods. The group name can
be up to 32 characters. Subsets of independent variables listed in the MODEL
statement can be designated as variable groups. This is done by enclosing the
appropriate variables in braces. Variables in the same group are entered into or
removed from the regression model at the same time. However, if the tolerance of
any variable (see theTOL option on page 3832) in a group is less than the setting
of the SINGULAR= option, then the variable is not entered into the model with
the rest of its group. If the GROUPNAMES= option is not used, then the names
GROUP1, GROUP2,. . ., GROUPn are assigned to groups encountered in the
MODEL statement. Variables not enclosed by braces are used as groups of a single
variable.

For example,

model y={x1 x2} x3 / selection=stepwise
groupnames=’x1 x2’ ’x3’;
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As another example,

model y={ht wgt age} bodyfat / selection=forward
groupnames=’htwgtage’ ’bodyfat’;

I
displays the(X′X)−1 matrix. The inverse of the crossproducts matrix is bordered by
the parameter estimates and SSE matrices.

INCLUDE=n
forces the firstn independent variables listed in the MODEL statement to be in-
cluded in all models. The selection methods are performed on the other vari-
ables in the MODEL statement. The INCLUDE= option is not available with
SELECTION=NONE.

INFLUENCE
requests a detailed analysis of the influence of each observation on the estimates
and the predicted values. See the“Influence Diagnostics”section on page 3898 for
details.

JP
outputsJp, the estimated mean square error of prediction for each model selected
assuming that the values of the regressors are fixed and that the model is correct to
the OUTEST= data set. TheJp statistic is also called the final prediction error (FPE)
by Akaike (Nicholson 1948; Lord 1950; Mallows 1967; Darlington 1968; Rothman
1968; Akaike 1969; Hocking 1976; Judge et al. 1980). If SELECTION=ADJRSQ,
SELECTION=RSQUARE, or SELECTION=CP is specified, then theJp statistic is
also added to the SubsetSelSummary table.

MSE
computes the mean square error for each model selected (Darlington 1968).

MAXSTEP=n
specifies the maximum number of steps that are done when
SELECTION=FORWARD, SELECTION=BACKWARD or SELECTION=STEPWISE
is used. The default value is the number of independent variables in the model for
the forward and backward methods and three times this number for the stepwise
method.

NOINT
suppresses the intercept term that is otherwise included in the model.

NOPRINT
suppresses the normal display of regression results. Note that this option temporar-
ily disables the Output Delivery System (ODS); seeChapter 14, “Using the Output
Delivery System,”for more information.
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OUTSEB
outputs the standard errors of the parameter estimates to the OUTEST= data set. The
value SEB for the variable–TYPE– identifies the standard errors. If the RIDGE=
or PCOMIT= option is specified, additional observations are included and identi-
fied by the values RIDGESEB and IPCSEB, respectively, for the variable–TYPE– .
The standard errors for ridge regression estimates and incomplete principal compo-
nents (IPC) estimates are limited in their usefulness because these estimates are bi-
ased. This option is available for all model-selection methods except RSQUARE,
ADJRSQ, and CP.

OUTSTB
outputs the standardized parameter estimates as well as the usual estimates to the
OUTEST= data set when the RIDGE= or PCOMIT= option is specified. The values
RIDGESTB and IPCSTB for the variable–TYPE– identify ridge regression esti-
mates and IPC estimates, respectively.

OUTVIF
outputs the variance inflation factors (VIF) to the OUTEST= data set when the
RIDGE= or PCOMIT= option is specified. The factors are the diagonal elements
of the inverse of the correlation matrix of regressors as adjusted by ridge regression
or IPC analysis. These observations are identified in the output data set by the values
RIDGEVIF and IPCVIF for the variable–TYPE– .

P
calculates predicted values from the input data and the estimated model. The display
includes the observation number, the ID variable (if one is specified), the actual and
predicted values, and the residual. If the CLI, CLM, or R option is specified, the P
option is unnecessary. See the section“Predicted and Residual Values”on page 3879
for more information.

PARTIAL
requests partial regression leverage plots for each regressor. If ODS Graphics are in
effect (see the“ODS Graphics”section on page 3922), then these partial plots are
produced in panels with up to six plots per panel. See the“Influence Diagnostics”
section on page 3898 for more information.

PARTIALR2 < ( < TESTS > < SEQTESTS > ) >
See theSCORR1option.

PC
outputs Amemiya’s prediction criterion for each model selected (Amemiya 1976;
Judge et al. 1980) to the OUTEST= data set. If SELECTION=ADJRSQ,
SELECTION=RSQUARE, or SELECTION=CP is specified, then the PC statistic
is also added to the SubsetSelSummary table.

PCOMIT=list
requests an IPC analysis for each valuem in the list. The procedure computes param-
eter estimates using all but the lastmprincipal components. Each value ofmproduces
a set of IPC estimates, which is output to the OUTEST= data set. The values ofm
are saved by the variable–PCOMIT– , and the value of the variable–TYPE– is set
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to IPC to identify the estimates. Only nonnegative integers can be specified with the
PCOMIT= option.

If you specify the PCOMIT= option, RESTRICT statements are ignored. The
PCOMIT= option is ignored if you use the SELECTION= option in the MODEL
statement.

PCORR1
displays the squared partial correlation coefficients using Type I Sum of Squares (SS).
This is calculated as SS/(SS+SSE), where SSE is the error Sum of Squares.

PCORR2
displays the squared partial correlation coefficients using Type II sums of squares.
These are calculated the same way as with the PCORR1 option, except that Type II
SS are used instead of Type I SS.

PRESS
outputs the PRESS statistic to the OUTEST= data set. The values of this statistic
are saved in the variable–PRESS– . This option is available for all model-selection
methods except RSQUARE, ADJRSQ, and CP.

R
requests an analysis of the residuals. The results include everything requested by the
P optionplus the standard errors of the mean predicted and residual values, the stu-
dentized residual, and Cook’sD statistic to measure the influence of each observation
on the parameter estimates. See the section“Predicted and Residual Values”on page
3879 for more information.

RIDGE=list
requests a ridge regression analysis and specifies the values of the ridge constant
k (see the“Computations for Ridge Regression and IPC Analysis”section on page
3916). Each value ofk produces a set of ridge regression estimates that are placed in
the OUTEST= data set. The values ofk are saved by the variable–RIDGE– , and the
value of the variable–TYPE– is set to RIDGE to identify the estimates.

Only nonnegative numbers can be specified with the RIDGE= option.Example 61.10
on page 3956 illustrates this option.

If you specify the RIDGE= option, RESTRICT statements are ignored. The RIDGE=
option is ignored if you use the SELECTION= option in the MODEL statement.

RMSE
displays the root mean square error for each model selected.

RSQUARE
has the same effect as theEDF option.

SBC
outputs the SBC statistic for each model selected (Schwarz 1978; Judge et al. 1980)
to the OUTEST= data set. If SELECTION=ADJRSQ, SELECTION=RSQUARE,
or SELECTION=CP is specified, then the SBC statistic is also added to the
SubsetSelSummary table.
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SCORR1 < ( < TESTS > < SEQTESTS > ) >
displays the squared semi-partial correlation coefficients using Type I sums of
squares. This is calculated as SS/SST, where SST is the corrected total SS. If the
NOINT option is used, the uncorrected total SS is used in the denominator. The op-
tional arguments TESTS and SEQTESTS request F-tests, p-values, and cumulative
R-Square values as variables are sequentially added to a model. The F-test values are
computed as the Type I sum of squares for the variable in question divided by a mean
square error. If you specify the TESTS option, the denominator MSE is the residual
mean square for the full model specified in the MODEL statement. If you specify the
SEQTESTS option, the denominator MSE is the residual mean square for the model
containing all the independent variables that have been added to the model up to and
including the variable in question. The TESTS and SEQTESTS options are not sup-
ported if you specify model selection methods, or the RIDGE or PCOMIT options.
Note that thePARTIALR2 option is a synonym for the SCORR1 option.

SCORR2 < ( TESTS ) >
displays the squared semi-partial correlation coefficients using Type II sums of
squares. These are calculated the same way as with the SCORR1 option, except
that Type II SS are used instead of Type I SS. The optional TEST argument requests
F-tests and p-values as variables are sequentially added to a model. The F-test val-
ues are computed as the Type II sum of squares for the variable in question divided
by the residual mean square for the full model specified in the MODEL statement.
The TESTS option is not supported if you specify model selection methods, or the
RIDGE or PCOMIT options.

SELECTION=name
specifies the method used to select the model, wherenamecan be FORWARD (or
F), BACKWARD (or B), STEPWISE, MAXR, MINR, RSQUARE, ADJRSQ, CP, or
NONE (use the full model). The default method is NONE. See the“Model-Selection
Methods”section on page 3873 for a description of each method.

SEQB
produces a sequence of parameter estimates as each variable is entered into the model.
This is displayed as a matrix where each row is a set of parameter estimates.

SIGMA=n
specifies the true standard deviation of the error term to be used in computing the
CPandBIC statistics. If the SIGMA= option is not specified, an estimate from the
full model is used. This option is available in the RSQUARE, ADJRSQ, and CP
model-selection methods only.

SINGULAR=n
tunes the mechanism used to check for singularities. Specifying this option in the
MODEL statement takes precedence over the SINGULAR= option in the PROC REG
statement. The default value is machine dependent but is approximately 1E−7 on
most machines. This option is rarely needed. Singularity checking is described in the
“Computational Methods”section on page 3917.
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SLENTRY=value
SLE=value

specifies the significance level for entry into the model used in the FORWARD and
STEPWISE methods. The defaults are 0.50 for FORWARD and 0.15 for STEPWISE.

SLSTAY=value
SLS=value

specifies the significance level for staying in the model for the BACKWARD
and STEPWISE methods. The defaults are 0.10 for BACKWARD and 0.15 for
STEPWISE.

SP
outputs theSp statistic for each model selected (Hocking 1976) to the OUTEST= data
set. If SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is
specified, then the SP statistic is also added to the SubsetSelSummary table.

SPEC
performs a test that the first and second moments of the model are correctly specified.
See the section“Testing for Heteroscedasticity”on page 3910 for more information.

SS1
displays the sequential sums of squares (Type I SS) along with the parameter esti-
mates for each term in the model. SeeChapter 11, “The Four Types of Estimable
Functions,” for more information on the different types of sums of squares.

SS2
displays the partial sums of squares (Type II SS) along with the parameter estimates
for each term in the model. See theSS1option also.

SSE
computes the error sum of squares for each model selected.

START=s
is used to begin the comparing-and-switching process in the MAXR, MINR, and
STEPWISE methods for a model containing the firsts independent variables in the
MODEL statement, wheres is the START value. For these methods, the default is
START=0.

For the RSQUARE, ADJRSQ, and CP methods, START=s specifies the smallest
number of regressors to be reported in a subset model. For these methods, the default
is START=1.

The START= option cannot be used with model-selection methods other than the six
described here.

STB
produces standardized regression coefficients. A standardized regression coefficient
is computed by dividing a parameter estimate by the ratio of the sample standard
deviation of the dependent variable to the sample standard deviation of the regressor.
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STOP=s
causes PROC REG to stop when it has found the “best”s-variable model, wheres is
the STOP value. For the RSQUARE, ADJRSQ, and CP methods, STOP=s specifies
the largest number of regressors to be reported in a subset model. For the MAXR and
MINR methods, STOP=s specifies the largest number of regressors to be included in
the model.

The default setting for the STOP= option is the number of variables in the MODEL
statement. This option can be used only with the MAXR, MINR, RSQUARE,
ADJRSQ and CP methods.

TOL
produces tolerance values for the estimates. Tolerance for a variable is defined as
1−R2, whereR2 is obtained from the regression of the variable on all other regressors
in the model. See the section“Collinearity Diagnostics”on page 3895 for more detail.

VIF
produces variance inflation factors with the parameter estimates. Variance inflation is
the reciprocal of tolerance. See the section“Collinearity Diagnostics”on page 3895
for more detail.

XPX
displays theX′X crossproducts matrix for the model. The crossproducts matrix is
bordered by theX′Y andY′Y matrices.

MTEST Statement

< label: > MTEST < equation < , . . . , equation > > < / options > ;

where eachequationis a linear function composed of coefficients and variable names.
The label is optional.

The MTEST statement is used to test hypotheses in multivariate regression models
where there are several dependent variables fit to the same regressors. If no equations
or options are specified, the MTEST statement tests the hypothesis that all estimated
parameters except the intercept are zero.

The hypotheses that can be tested with the MTEST statement are of the form

(Lβ − cj)M = 0

whereL is a linear function on the regressor side,β is a matrix of parameters,c is a
column vector of constants,j is a row vector of ones, andM is a linear function on
the dependent side. The special case where the constants are zero is

LβM = 0

See the section“Multivariate Tests”on page 3910 for more details.

Each linear function extends across either the regressor variables or the dependent
variables. If the equation is across the dependent variables, then the constant term, if
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specified, must be zero. The equations for the regressor variables form theL matrix
andc vector in the preceding formula; the equations for dependent variables form the
M matrix. If no equations for the dependent variables are given, PROC REG uses an
identity matrix forM, testing the same hypothesis across all dependent variables. If
no equations for the regressor variables are given, PROC REG forms a linear function
corresponding to a test that all the nonintercept parameters are zero.

As an example, consider the following statements:

model y1 y2 y3=x1 x2 x3;
mtest x1,x2;
mtest y1-y2, y2 -y3, x1;
mtest y1-y2;

The first MTEST statement tests the hypothesis that theX1 andX2 parameters are
zero forY 1, Y 2 andY 3. In addition, the second MTEST statement tests the hypoth-
esis that theX1 parameter is the same for all three dependent variables. For the same
model, the third MTEST statement tests the hypothesis that all parameters except the
intercept are the same for dependent variablesY 1 andY 2.

You can specify the following options in the MTEST statement.

CANPRINT
displays the canonical correlations for the hypothesis combinations and the dependent
variable combinations. If you specify

mtest / canprint;

the canonical correlations between the regressors and the dependent variables are
displayed.

DETAILS
displays theM matrix and various intermediate calculations.

PRINT
displays theH andE matrices.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set > keyword=names
< . . . keyword=names > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic measures
calculated after fitting the model. The OUTPUT statement refers to the most recent
MODEL statement. At least onekeyword=namesspecification is required.

All the variables in the original data set are included in the new data set, along with
variables created in the OUTPUT statement. These new variables contain the values
of a variety of statistics and diagnostic measures that are calculated for each observa-
tion in the data set. If you want to create a permanent SAS data set, you must specify
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a two-level name (for example,libref.data-set-name). For more information on per-
manent SAS data sets, refer to the section “SAS Files” inSAS Language Reference:
Concepts.

The OUTPUT statement cannot be used when a TYPE=CORR, TYPE=COV, or
TYPE=SSCP data set is used as the input data set for PROC REG. See the“Input
Data Sets”section on page 3860 for more details.

The statistics created in the OUTPUT statement are described in this section. More
details are contained in the“Predicted and Residual Values”section on page 3879 and
the“Influence Diagnostics”section on page 3898. Also seeChapter 2, “Introduction
to Regression Procedures,”for definitions of the statistics available from the REG
procedure.

You can specify the following options in the OUTPUT statement.

OUT=SAS data set
gives the name of the new data set. By default, the procedure uses theDATAn con-
vention to name the new data set.

keyword=names
specifies the statistics to include in the output data set and names the new variables
that contain the statistics. Specify a keyword for each desired statistic (see the fol-
lowing list of keywords), an equal sign, and the variable or variables to contain the
statistic.

In the output data set, the first variable listed after a keyword in the OUTPUT state-
ment contains that statistic for the first dependent variable listed in the MODEL state-
ment; the second variable contains the statistic for the second dependent variable in
the MODEL statement, and so on. The list of variables following the equal sign
can be shorter than the list of dependent variables in the MODEL statement. In this
case, the procedure creates the new names in order of the dependent variables in the
MODEL statement.

For example, the SAS statements

proc reg data=a;
model y z=x1 x2;
output out=b

p=yhat zhat
r=yresid zresid;

run;

create an output data set namedb. In addition to the variables in the input data set,b
contains the following variables:

• yhat, with values that are predicted values of the dependent variabley

• zhat, with values that are predicted values of the dependent variablez

• yresid, with values that are the residual values ofy

• zresid, with values that are the residual values ofz
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You can specify the following keywords in the OUTPUT statement. See the“Model
Fit and Diagnostic Statistics”section on page 3896 for computational formulas.

Table 61.3. Keywords for OUTPUT Statement

Keyword Description
COOKD=names Cook’sD influence statistic
COVRATIO=names standard influence of observation on covariance of betas, as

discussed in the“Influence Diagnostics”section on page
3898

DFFITS=names standard influence of observation on predicted value
H=names leverage,xi(X′X)−1x′i
LCL=names lower bound of a100(1− α)% confidence interval for an

individual prediction. This includes the variance of the
error, as well as the variance of the parameter estimates.

LCLM=names lower bound of a100(1− α)% confidence interval for the
expected value (mean) of the dependent variable

PREDICTED | P=names predicted values
PRESS=names ith residual divided by(1− h), whereh is the leverage,

and where the model has been refit without theith
observation

RESIDUAL | R=names residuals, calculated as ACTUAL minus PREDICTED
RSTUDENT=names a studentized residual with the current observation deleted
STDI=names standard error of the individual predicted value
STDP=names standard error of the mean predicted value
STDR=names standard error of the residual
STUDENT=names studentized residuals, which are the residuals divided by their

standard errors
UCL=names upper bound of a100(1− α)% confidence interval for an

individual prediction
UCLM=names upper bound of a100(1− α)% confidence interval for the

expected value (mean) of the dependent variable

PAINT Statement

PAINT < condition | ALLOBS > < / options > ;

PAINT < STATUS | UNDO > ;

The PAINT statement selects observations to bepaintedor highlighted in a scatter
plot on line printer output; the PAINT statement is ignored if the LINEPRINTER
option is not specified in the PROC REG statement.

All observations that satisfyconditionare painted using some specific symbol. The
PAINT statement does not generate a scatter plot and must be followed by a PLOT
statement, which does generate a scatter plot. Several PAINT statements can be used
before a PLOT statement, and all prior PAINT statement requests are applied to all
later PLOT statements.
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The PAINT statement lists the observation numbers of the observations selected,
the total number of observations selected, and the plotting symbol used to paint the
points.

On a plot, paint symbols take precedence over all other symbols. If any position
contains more than one painted point, the paint symbol for the observation plotted
last is used.

The PAINT statement cannot be used when a TYPE=CORR, TYPE=COV, or
TYPE=SSCP data set is used as the input data set for PROC REG. Also, the PAINT
statement cannot be used for models with more than one dependent variable. Note
that the syntax for the PAINT statement is the same as the syntax for the REWEIGHT
statement.

For detailed examples of painting scatter plots, see the section“Painting Scatter
Plots”on page 3889.

Specifying Condition

Conditionis used to select observations to be painted. The syntax ofconditionis

variable compare value

or

variable compare value logical variable compare value

where

variable is one of the following:

• a variable name in the input data set

• OBS., which is the observation number

• keyword., wherekeywordis a keyword for a statistic requested in the
OUTPUT statement

compare is an operator that comparesvariable to value. Comparecan be any one
of the following: <, <=, >, >=, =, ˆ =. The operators LT, LE, GT, GE,
EQ, and NE can be used instead of the preceding symbols. Refer to the
“Expressions” section inSAS Language Reference: Conceptsfor more
information on comparison operators.

value gives an unformatted value ofvariable. Observations are selected to be
painted if they satisfy the condition created byvariable compare value.
Valuecan be a number or a character string. Ifvalueis a character string,
it must be eight characters or less and must be enclosed in quotes. In
addition,valueis case-sensitive. In other words, the statements

paint name=’henry’;

and
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paint name=’Henry’;

are not the same.

logical is one of two logical operators. Either AND or OR can be used. To specify
AND, use AND or the symbol &. To specify OR, use OR or the symbol |.

Examples of thevariable compare valueform are

paint name=’Henry’;
paint residual.>=20;
paint obs.=99;

Examples of thevariable compare value logical variable compare valueform
are

paint name=’Henry’|name=’Mary’;
paint residual.>=20 or residual.<=10;
paint obs.>=11 and residual.<=20;

Using ALLOBS

Instead of specifyingcondition, the ALLOBS option can be used to select all obser-
vations. This is most useful when you want to unpaint all observations. For example,

paint allobs / reset;

resets the symbols for all observations.

Options in the PAINT Statement

The following options can be used when either a condition is specified, the ALLOBS
option is specified, or when nothing is specified before the slash. If only an option
is listed, the option applies to the observations selected in the previous PAINT state-
ment,not to the observations selected by reapplying the condition from the previous
PAINT statement. For example, in the statements

paint r.>0 / symbol=’a’;
reweight r.>0;
refit;
paint / symbol=’b’;

the second PAINT statement paints only those observations selected in the first
PAINT statement. No additional observations are painted even if, after refitting the
model, there are new observations that meet the condition in the first PAINT state-
ment.

Note: Options are not available when either the UNDO or STATUS option is used.
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You can specify the following options after a slash (/).

NOLIST
suppresses the display of the selected observation numbers. If the NOLIST option is
not specified, a list of observations selected is written to the log. The list includes the
observation numbers and painting symbol used to paint the points. The total number
of observations selected to be painted is also shown.

RESET
changes the painting symbol to the current default symbol, effectively unpainting the
observations selected. If you set the default symbol by using the SYMBOL= option in
the PLOT statement, the RESET option in the PAINT statement changes the painting
symbol to the symbol you specified. Otherwise, the default symbol of ’1’ is used.

SYMBOL = ’character’
specifies a painting symbol. If the SYMBOL= option is omitted, the painting symbol
is either the one used in the most recent PAINT statement or, if there are no previous
PAINT statements, the symbol ’@’. For example,

paint / symbol=’#’;

changes the painting symbol for the observations selected by the most recent PAINT
statement to ’#’. As another example,

paint temp lt 22 / symbol=’c’;

changes the painting symbol to ’c’ for all observations with TEMP<22. In general,
the numbers 1, 2,. . . , 9 and the asterisk are not recommended as painting symbols.
These symbols are used as default symbols in the PLOT statement, where they repre-
sent the number of replicates at a point. If SYMBOL=” is used, no painting is done
in the current plot. If SYMBOL=’ ’ is used, observations are painted with a blank
and are no longer seen on the plot.

STATUS and UNDO

Instead of specifyingconditionor the ALLOBS option, you can use the STATUS or
UNDO option as follows:

STATUS
lists (on the log) the observation number and plotting symbol of all currently painted
observations.

UNDO
undoes changes made by the most recent PAINT statement. Observations may be,
but are not necessarily, unpainted. For example,

paint obs. <=10 / symbol=’a’;
...other interactive statements

paint obs.=1 / symbol=’b’;
...other interactive statements

paint undo;
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The last PAINT statement changes the plotting symbol used for observation 1 back
to ’a’. If the statement

paint / reset;

is used instead, observation 1 is unpainted.

PLOT Statement

PLOT < yvariable*xvariable >< =symbol >
< . . . yvariable*xvariable > < =symbol > < / options >;

The PLOT statement in PROC REG displays scatter plots withyvariableon the ver-
tical axis andxvariableon the horizontal axis. Line printer plots are generated if
the LINEPRINTER option is specified in the PROC REG statement; otherwise, the
traditional high-resolution graphics plots are created. Points in line printer plots can
be marked withsymbols, while global graphics statements such as GOPTIONS and
SYMBOL are used to enhance the high-resolution graphics plots. Note that the plots
you request using the PLOT statement are independent of the experimental ODS
graphics (see the“ODS Graphics”section on page 3922) that are now available in
PROC REG.

As with most other interactive statements, the PLOT statement implicitly refits the
model. For example, if a PLOT statement is preceded by a REWEIGHT statement,
the model is recomputed, and the plot reflects the new model.

If there are multiple MODEL statements preceding a PLOT statement, then the PLOT
statement refers to the latest MODEL statement.

The PLOT statement cannot be used when TYPE=CORR, TYPE=COV, or
TYPE=SSCP data sets are used as input to PROC REG.

You can specify several PLOT statements for each MODEL statement, and you can
specify more than one plot in each PLOT statement. For detailed examples of using
the PLOT statement and its options, see the section“Producing Scatter Plots”on page
3882.

Specifying Yvariables, Xvariables, and Symbol

More than oneyvariable∗xvariablepair can be specified to request multiple plots.
Theyvariablesandxvariablescan be

• any variables specified in the VAR or MODEL statement before the first RUN
statement

• keyword., wherekeywordis a regression diagnostic statistic available in the
OUTPUT statement (seeTable 61.4on page 3842). For example,

plot predicted.*residual.;
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generates one plot of the predicted values by the residuals for each dependent
variable in the MODEL statement. These statistics can also be plotted against
any of the variables in the VAR or MODEL statements.

• the keyword OBS. (the observation number), which can be plotted against any
of the preceding variables

• the keyword NPP. or NQQ., which can be used with any of the preceding
variables to construct normal P-P or Q-Q plots, respectively (see the section
“Construction of Q-Q and P-P Plots”on page 3917 andExample 61.8on page
3953 for more information)

• keywords for model fit summary statistics available in the OUTEST= data set
with –TYPE–= PARMS (seeTable 61.4on page 3842). A SELECTION=
method (other than NONE) must be requested in the MODEL statement for
these variables to be plotted. If one member of ayvariable∗xvariable pair
is from the OUTEST= data set, the other member must also be from the
OUTEST= data set.

The OUTPUT statement and the OUTEST= option are not required when their key-
words are specified in the PLOT statement.

Theyvariableandxvariablespecifications can be replaced by a set of variables and
statistics enclosed in parentheses. When this occurs, all possible combinations of
yvariableandxvariableare generated. For example, the following two statements
are equivalent.

plot (y1 y2)*(x1 x2);
plot y1*x1 y1*x2 y2*x1 y2*x2;

The statement

plot;

is equivalent to respecifying the most recent PLOT statement without any op-
tions. However, the line printer options COLLECT, HPLOTS=, SYMBOL=, and
VPLOTS=, described in the“Line Printer Plots”section on page 3848, apply across
PLOT statements and remain in effect if they have been previously specified.

Options used for the traditional high-resolution graphics plots are described in the
following section; see for more information.

Traditional High-Resolution Graphics Plots

The display of high-resolution graphics plots is described in the following paragraphs,
the options are summarized inTable 61.4and described in the section“Dictionary of
PLOT Statement Options”on page 3844, and the“Examples”section on page 3924
contains several examples of the graphics output.

Several line printer statements and options are not supported for high-resolution
graphics. In particular the PAINT statement is disabled, as are the PLOT state-
ment options CLEAR, COLLECT, HPLOTS=, NOCOLLECT, SYMBOL=, and
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VPLOTS=. To display more than one plot per page or to collect plots from mul-
tiple PLOT statements, use the PROC GREPLAY statement (refer toSAS/GRAPH
Software: Reference). Also note that high-resolution graphics options are not recog-
nized for line printer plots.

The fitted model equation and a label are displayed in the top margin of the plot; this
display can be suppressed with the NOMODEL option. If the label is requested but
cannot fit on one line, it is not displayed. The equation and label are displayed on one
line when possible; if more lines are required, the label is displayed in the first line
with the model equation in successive lines. If displaying the entire equation causes
the plot to be unacceptably small, the equation is truncated.Table 61.5on page 3843
lists options to control the display of the equation. The“Examples”section on page
3924 illustrates the display of the model equation.

Four statistics are displayed by default in the right margin: the number of observa-
tions, R2, the adjustedR2, and the root mean square error. (SeeOutput 61.4.1on
page 3949.) The display of these statistics can be suppressed with the NOSTAT op-
tion. You can specify other options to request the display of various statistics in the
right margin; seeTable 61.5on page 3843.

A default reference line at zero is displayed if residuals are plotted; seeOutput 61.7.1
on page 3952. If the dependent variable is plotted against the independent variable
in a simple linear regression model, the fitted regression line is displayed by default.
(SeeOutput 61.4.1on page 3949.) Default reference lines can be suppressed with the
NOLINE option; the lines are not displayed if the OVERLAY option is specified.

Specialized plots are requested with special options. For each coefficient, the
RIDGEPLOT option plots the ridge estimates against the ridge valuesk; see the de-
scription of the RIDGEPLOT option in the section“Dictionary of PLOT Statement
Options”beginning on page 3844 andExample 61.10on page 3956 for more details.
The CONF option plots100(1 − α)% confidence intervals for the mean while the
PRED option plots100(1 − α)% prediction intervals; see the description of these
options in the section“Dictionary of PLOT Statement Options”beginning on page
3844 and inExample 61.9on page 3955 for more details.

If a SELECTION= method is requested, the fitted model equation and the statistics
displayed in the margin correspond to the selected model. For the ADJRSQ and CP
methods, the selected model is treated as a submodel of the full model. If a CP.*NP.
plot is requested, the CHOCKING= and CMALLOWS= options display model selec-
tion reference lines; see the descriptions of these options in the section“Dictionary of
PLOT Statement Options”beginning on page 3844 andExample 61.5on page 3949
for more details.

PLOT Statement variable Keywords

The following table lists the keywords available as PLOT statementxvariablesand
yvariables. All keywords have a trailing dot; for example, “COOKD.” requests
Cook’s D statistic. Neither the OUTPUT statement nor the OUTEST= option needs
to be specified.
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Table 61.4. Keywords for PLOT Statement xvariablesand yvariables

Keyword Description
Diagnostic Statistics
COOKD. Cook’s D influence statistics
COVRATIO. standard influence of observation on covariance of betas
DFFITS. standard influence of observation on predicted value
H. leverage
LCL. lower bound of100(1− α)% confidence interval for individual

prediction
LCLM. lower bound of100(1− α)% confidence interval for the mean of

the dependent variable
PREDICTED.

| PRED.| P.
predicted values

PRESS. residuals from refitting the model with current observation deleted
RESIDUAL. | R. residuals
RSTUDENT. studentized residuals with the current observation deleted
STDI. standard error of the individual predicted value
STDP. standard error of the mean predicted value
STDR. standard error of the residual
STUDENT. residuals divided by their standard errors
UCL. upper bound of100(1− α)% confidence interval for individual

prediction
UCLM. upper bound of100(1− α)% confidence interval for the mean of

the dependent variables

Other Keywords Used with Diagnostic Statistics
NPP. normal probability-probability plot
NQQ. normal quantile-quantile plot
OBS. observation number (cannot plot against OUTEST= statistics)

Model Fit Summary Statistics
ADJRSQ. adjusted R-square
AIC. Akaike’s information criterion
BIC. Sawa’s Bayesian information criterion
CP. Mallows’Cp statistic
EDF. error degrees of freedom
GMSEP. estimated MSE of prediction, assuming multivariate normality
IN. number of regressors in the model not including the intercept
JP. final prediction error
MSE. mean squared error
NP. number of parameters in the model (including the intercept)
PC. Amemiya’s prediction criterion
RMSE. root MSE
RSQ. R-square
SBC. SBC statistic
SP. SP statistic
SSE. error sum of squares
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Summary of PLOT Statement Graphics Options

The following table lists the PLOT statementoptionsby function. Theseoptionsare
available unless the LINEPRINTER option is specified in the PROC REG statement.
For complete descriptions, see the section“Dictionary of PLOT Statement Options”
beginning on page 3844.

Table 61.5. High-Resolution Graphics Options

Option Description
General Graphics Options
ANNOTATE=

SAS-data-set
specifies the annotate data set

CHOCKING=color requests a reference line forCp model selection criteria
CMALLOWS=color requests a reference line for theCp model selection criterion
CONF requests plots of100(1− α)% confidence intervals for the mean
DESCRIPTION=

’string’
specifies a description for graphics catalog member

NAME=’ string’ names the plot in graphics catalog
OVERLAY overlays plots from the same model
PRED requests plots of100(1− α)% prediction intervals for individual

responses
RIDGEPLOT requests the ridge trace for ridge regression

Axis and Legend Options
LEGEND=LEGENDn specifies LEGEND statement to be used
HAXIS=values specifies tick mark values for horizontal axis
VAXIS=values specifies tick mark values for vertical axis

Reference Line Options
HREF=values specifies reference lines perpendicular to horizontal axis
LHREF=linetype specifies line style for HREF= lines
LLINE= linetype specifies line style for lines displayed by default
LVREF=linetype specifies line style for VREF= lines
NOLINE suppresses display of any default reference line
VREF=values specifies reference lines perpendicular to vertical axis

Color Options
CAXIS=color specifies color for axis line and tick marks
CFRAME=color specifies color for frame
CHREF=color specifies color for HREF= lines
CLINE=color specifies color for lines displayed by default
CTEXT=color specifies color for text
CVREF=color specifies color for VREF= lines

Options for Displaying the Fitted Model Equation
MODELFONT=font specifies font of model equation and model label
MODELHT=value specifies text height of model equation and model label
MODELLAB= ’label’ specifies model label
NOMODEL suppresses display of the fitted model and the label

Options for Displaying Statistics in the Plot Margin
AIC displays Akaike’s information criterion
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Table 61.5. (continued)

Option Description
BIC displays Sawa’s Bayesian information criterion
CP displays Mallows’Cp statistic
EDF displays the error degrees of freedom
GMSEP displays the estimated MSE of prediction assuming

multivariate normality
IN displays the number of regressors in the model not including

the intercept
JP displays the Jp statistic
MSE displays the mean squared error
NOSTAT suppresses display of the default statistics: the number of

observations, R-square, adjusted R-square, and the
root mean square error

NP displays the number of parameters in the model including the
intercept, if any

PC displays the PC statistic
SBC displays the SBC statistic
SP displays the S(p) statistic
SSE displays the error sum of squares
STATFONT=font specifies font of text displayed in the margin
STATHT=value specifies height of text displayed in the margin

Dictionary of PLOT Statement Options

The following entries describe the PLOT statementoptionsin detail. Note that these
optionsare available unless you specify the LINEPRINTER option in the PROC REG
statement.

AIC
displays Akaike’s information criterion in the plot margin.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an input data set that contains appropriate variables for annotation. This ap-
plies only to displays created with the current PLOT statement. Refer toSAS/GRAPH
Software: Referencefor more information.

BIC
displays Sawa’s Bayesian information criterion in the plot margin.

CAXIS=color
CAXES=color
CA=color

specifies the color for the axes, frame, and tick marks.

CFRAME=color
CFR=color

specifies the color for filling the area enclosed by the axes and the frame.
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CHOCKING=color
requests reference lines corresponding to the equationsCp = p andCp = 2p− pfull,
wherepfull is the number of parameters in the full model (excluding the intercept)
andp is the number of parameters in the subset model (including the intercept). The
color must be specified; theCp = p line is solid and theCp = 2p − pfull line is
dashed. Only PLOT statements of the form PLOT CP.*NP. produce these lines.

For the purpose of parameter estimation, Hocking (1976) suggests selecting a model
where Cp ≤ 2p − pfull. For the purpose of prediction, Hocking suggests the
criterion Cp ≤ p. You can request the single reference lineCp = p with the
CMALLOWS= option. If, for example, you specify both CHOCKING=RED and
CMALLOWS=BLUE, then theCp = 2p − pfull line is red and theCp = p line is
blue (seeExample 61.5on page 3949).

CHREF=color
CH=color

specifies the color for lines requested with the HREF= option.

CLINE=color
CL=color

specifies the color for lines displayed by default. See theNOLINE option later in
this section for details.

CMALLOWS= color
requests aCp = p reference line, wherep is the number of parameters (including the
intercept) in the subset model. Thecolor must be specified; the line is solid. Only
PLOT statements of the form PLOT CP.*NP. produce this line.

Mallows (1973) suggests that all subset models withCp small and nearp be con-
sidered for further study. See theCHOCKING= option for related model selection
criteria.

CONF
is a keyword used as a shorthand option to request plots that include(100 − α)%
confidence intervals for the mean response (seeExample 61.9on page 3955). The
ALPHA= option in the PROC REG or MODEL statement selects the significance
level α, which is 0.05 by default. The CONF option is valid for simple regression
models only, and is ignored for plots where confidence intervals are inappropriate.
The CONF option replaces the CONF95 option; however, the CONF95 option is
still supported when the ALPHA= option is not specified. The OVERLAY option is
ignored when the CONF option is specified.

CP
displays Mallows’Cp statistic in the plot margin.

CTEXT=color
CT=color

specifies the color for text including tick mark labels, axis labels, the fitted model
label and equation, the statistics displayed in the margin, and legends. (SeeExample
61.6on page 3950.)
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CVREF=color
CV=color

specifies the color for lines requested with the VREF= option.

DESCRIPTION=’string ’
DESC=’string ’

specifies a descriptive string, up to 40 characters, that appears in the description field
of the PROC GREPLAY master menu.

EDF
displays the error degrees of freedom in the plot margin.

GMSEP
displays the estimated mean square error of prediction in the plot margin. Note that
the estimate is calculated under the assumption that both independent and dependent
variables have a multivariate normal distribution.

HAXIS=values
HA=values

specifies tick mark values for the horizontal axis.

HREF=values
specifies where reference lines perpendicular to the horizontal axis are to appear.

IN
displays the number of regressors in the model (not including the intercept) in the
plot margin.

JP
displays the Jp statistic in the plot margin.

LEGEND=LEGENDn
specifies the LEGENDn statement to be used. The LEGENDn statement is a global
graphics statement; refer toSAS/GRAPH Software: Referencefor more information.

LHREF=linetype
LH=linetype

specifies the line style for lines requested with the HREF= option. The defaultline-
typeis 2. Note that LHREF=1 requests a solid line. Refer toSAS/GRAPH Software:
Referencefor a table of available line types.

LLINE= linetype
LL= linetype

specifies the line style for reference lines displayed by default; see the NOLINE op-
tion for details. The defaultlinetypeis 2. Note that LLINE=1 requests a solid line.

LVREF=linetype
LV=linetype

specifies the line style for lines requested with the VREF= option. The defaultline-
typeis 2. Note that LVREF=1 requests a solid line.

MODELFONT=font
specifies the font used for displaying the fitted model label and the fitted model equa-
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tion. Refer toSAS/GRAPH Software: Referencefor tables of software fonts.

MODELHT=height
specifies the text height for the fitted model label and the fitted model equation.

MODELLAB=’ label ’
specifies the label to be displayed with the fitted model equation. By default, no
label is displayed. If the label does not fit on one line, it is not displayed. See the
explanation in the section“Traditional High-Resolution Graphics Plots”beginning
on page 3840 for more information.

MSE
displays the mean squared error in the plot margin.

NAME=’string ’
specifies a descriptive string, up to eight characters, that appears in the name field of
the PROC GREPLAY master menu. The defaultstring is REG.

NOLINE
suppresses the display of default reference lines. A default reference line at zero
is displayed if residuals are plotted. If the dependent variable is plotted against the
independent variable in a simple regression model, then the fitted regression line is
displayed by default. Default reference lines are not displayed if the OVERLAY
option is specified.

NOMODEL
suppresses the display of the fitted model equation.

NOSTAT
suppresses the display of statistics in the plot margin. By default, the number of
observations, R-square, adjusted R-square, and the root MSE are displayed.

NP
displays the number of regressors in the model including the intercept, if any, in the
plot margin.

OVERLAY
overlays all plots specified in the PLOT statement from the same model on one set
of axes. The variables for the first plot label the axes. The procedure automatically
scales the axes to fit all of the variables unless the HAXIS= or VAXIS= option is
used. Default reference lines are not displayed. A default legend is produced; the
LEGEND= option can be used to customize the legend. SeeExample 61.11on page
3958.

PC
displays the PC statistic in the plot margin.

PRED
is a keyword used as a shorthand option to request plots that include(100 − α)%
prediction intervals for individual responses (seeExample 61.9on page 3955). The
ALPHA= option in the PROC REG or MODEL statement selects the significance
level α, which is 0.05 by default. The PRED option is valid for simple regression
models only, and is ignored for plots where prediction intervals are inappropriate.
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The PRED option replaces the PRED95 option; however, the PRED95 option is still
supported when the ALPHA= option is not specified. The OVERLAY option is ig-
nored when the PRED option is specified.

RIDGEPLOT
creates overlaid plots of ridge estimates against ridge values for each coefficient. The
points corresponding to the estimates of each coefficient in the plot are connected by
lines. For ridge estimates to be computed and plotted, the OUTEST= option must
be specified in the PROC REG statement, and the RIDGE= list must be specified in
either the PROC REG or the MODEL statement. SeeExample 61.10on page 3956.

SBC
displays the SBC statistic in the plot margin.

SP
displays the Sp statistic in the plot margin.

SSE
displays the error sum of squares in the plot margin.

STATFONT=font
specifies the font used for displaying the statistics that appear in the plot margin.
Refer toSAS/GRAPH Software: Referencefor tables of software fonts.

STATHT=height
specifies the text height of the statistics that appear in the plot margin.

USEALL
specifies that predicted values at data points with missing dependent variable(s) are
included on appropriate plots. By default, only points used in constructing the SSCP
matrix appear on plots.

VAXIS=values
VA=values

specifies tick mark values for the vertical axis.

VREF=values
specifies where reference lines perpendicular to the vertical axis are to appear.

Line Printer Plots

Line printer plots are requested with the LINEPRINTER option in the PROC REG
statement. Points in line printer plots can be marked withsymbols, which can be
specified as a single character enclosed in quotes or the name of any variable in the
input data set.

If a character variable is used for the symbol, the first (left-most) nonblank character
in the formatted value of the variable is used as the plotting symbol. If a character in
quotes is specified, that character becomes the plotting symbol. If a character is used
as the plotting symbol, and if there are different plotting symbols needed at the same
point, the symbol ’?’ is used at that point.

If an unformatted numeric variable is used for the symbol, the symbols ’1’, ’2’,. . . ,
’9’ are used for variable values 1, 2,. . . , 9. For noninteger values, only the integer
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portion is used as the plotting symbol. For values of 10 or greater, the symbol ’*’ is
used. For negative values, a ’?’ is used. If a numeric variable is used, and if there
is more than one plotting symbol needed at the same point, the sum of the variable
values is used at that point. If the sum exceeds 9, the symbol ’*’ is used.

If a symbol is not specified, the number of replicates at the point is displayed. The
symbol ’*’ is used if there are ten or more replicates.

If the LINEPRINTER option is used, you can specify the following options in the
PLOT statement after a slash (/):

CLEAR
clears any collected scatter plots before plotting begins but does not turn off the
COLLECT option. Use this option when you want to begin a new collection with
the plots in the current PLOT statement. For more information on collecting plots,
see theCOLLECTandNOCOLLECToptions in this section.

COLLECT
specifies that plots begin to be collected from one PLOT statement to the next and
that subsequent plots show an overlay of all collected plots. This option enables
you to overlay plots before and after changes to the model or to the data used to fit
the model. Plots collected before changes are unaffected by the changes and can be
overlaid on later plots. You can request more than one plot with this option, and you
do not need to request the same number of plots in subsequent PLOT statements. If
you specify an unequal number of plots, plots in corresponding positions are overlaid.
For example, the statements

plot residual.*predicted. y*x / collect;
run;

produce two plots. If these statements are then followed by

plot residual.*x;
run;

two plots are again produced. The first plot shows residual against X values overlaid
on residual against predicted values. The second plot is the same as that produced by
the first PLOT statement.

Axes are scaled for the first plot or plots collected. The axes are not rescaled as more
plots are collected.

Once specified, the COLLECT option remains in effect until theNOCOLLECTop-
tion is specified.

HPLOTS=number
sets the number of scatter plots that can be displayed across the page. The procedure
begins with one plot per page. The value of the HPLOTS= option remains in effect
until you change it in a later PLOT statement. See theVPLOTS= option for an
example.
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NOCOLLECT
specifies that the collection of scatter plots ends after adding the plots in the current
PLOT statement. PROC REG starts with the NOCOLLECT option in effect. After
you specify the NOCOLLECT option, any following PLOT statement produces a
new plot that contains only the plots requested by that PLOT statement.

For more information, see theCOLLECToption.

OVERLAY
allows requested scatter plots to be superimposed. The axes are scaled so that points
on all plots are shown. If the HPLOTS= or VPLOTS= option is set to more than
one, the overlaid plot occupies the first position on the page. The OVERLAY option
is similar to the COLLECT option in that both options produce superimposed plots.
However, OVERLAY superimposes only the plots in the associated PLOT statement;
COLLECT superimposes plots across PLOT statements. The OVERLAY option can
be used when the COLLECT option is in effect.

SYMBOL=’ character’
changes the default plotting symbol used for all scatter plots produced in the cur-
rent and in subsequent PLOT statements. Both SYMBOL=” and SYMBOL=’ ’ are
allowed.

If the SYMBOL= option has not been specified, the default symbol is ’1’ for posi-
tions with one observation, ’2’ for positions with two observations, and so on. For
positions with more than 9 observations, ’*’ is used. The SYMBOL= option (or a
plotting symbol) is needed to avoid any confusion caused by this default convention.
Specifying a particular symbol is especially important when either the OVERLAY or
COLLECT option is being used.

If you specify the SYMBOL= option and use a number forcharacter, that number is
used for all points in the plot. For example, the statement

plot y*x / symbol=’1’;

produces a plot with the symbol ’1’ used for all points.

If you specify a plotting symbol and the SYMBOL= option, the plotting symbol
overrides the SYMBOL= option. For example, in the statements

plot y*x y*v=’.’ / symbol=’*’;

the symbol used for the plot of Y against X is ’*’, and a ’.’ is used for the plot of Y
against V.

If a paint symbol is defined with a PAINT statement, the paint symbol takes prece-
dence over both the SYMBOL= option and the default plotting symbol for the PLOT
statement.
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VPLOTS=number
sets the number of scatter plots that can be displayed down the page. The procedure
begins with one plot per page. The value of the VPLOTS= option remains in effect
until you change it in a later PLOT statement.

For example, to specify a total of six plots per page, with two rows of three plots, use
the HPLOTS= and VPLOTS= options as follows:

plot y1*x1 y1*x2 y1*x3 y2*x1 y2*x2 y2*x3 /
hplots=3 vplots=2;

run;

PRINT Statement

PRINT < options > < ANOVA > < MODELDATA > ;

The PRINT statement enables you to interactively display the results of MODEL
statement options, produce an ANOVA table, display the data for variables used in the
current model, or redisplay the options specified in a MODEL or a previous PRINT
statement. In addition, like most other interactive statements in PROC REG, the
PRINT statement implicitly refits the model; thus, effects of REWEIGHT statements
are seen in the resulting tables. If the experimental ODS graphics are in effect (see
the “ODS Graphics”section on page 3922), the PRINT statement also requests the
display of the ODS graphics associated with the current model.

The following specifications can appear in the PRINT statement:

options interactively displays the results of MODEL statement options,
where options is one or more of the following: ACOV, ALL,
CLI, CLM, COLLIN, COLLINOINT, CORRB, COVB, DW, I,
INFLUENCE, P, PARTIAL, PCORR1, PCORR2, R, SCORR1,
SCORR2, SEQB, SPEC, SS1, SS2, STB, TOL, VIF, or XPX. See
the“MODEL Statement”section on page 3821 for a description of
these options.

ANOVA produces the ANOVA table associated with the current model.
This is either the model specified in the last MODEL statement
or the model that incorporates changes made by ADD, DELETE
or REWEIGHT statements after the last MODEL statement.

MODELDATA displays the data for variables used in the current model.

Use the statement

print;

to reprint options in the most recently specified PRINT or MODEL statement.

Options that require original data values, such as R or INFLUENCE, cannot be used
when a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is used as the input data
set to PROC REG. See the“Input Data Sets”section on page 3860 for more detail.
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REFIT Statement

REFIT;

The REFIT statement causes the current model and corresponding statistics to be re-
computed immediately. No output is generated by this statement. The REFIT state-
ment is needed after one or more REWEIGHT statements to cause them to take effect
before subsequent PAINT or REWEIGHT statements. This is sometimes necessary
when you are using statistical conditions in REWEIGHT statements. For example,
with these statements

paint student.>2;
plot student.*p.;
reweight student.>2;
refit;
paint student.>2;
plot student.*p.;

the second PAINT statement paints any additional observations that meet the condi-
tion after deleting observations and refitting the model. The REFIT statement is used
because the REWEIGHT statement does not cause the model to be recomputed. In
this particular example, the same effect could be achieved by replacing the REFIT
statement with a PLOT statement.

Most interactive statements can be used to implicitly refit the model; any plots or
statistics produced by these statements reflect changes made to the model and changes
made to the data used to compute the model. The two exceptions are the PAINT and
REWEIGHT statements, which do not cause the model to be recomputed.

RESTRICT Statement

RESTRICT equation < , . . . , equation > ;

A RESTRICT statement is used to place restrictions on the parameter estimates in
the MODEL preceding it. More than one RESTRICT statement can follow each
MODEL statement. Each RESTRICT statement replaces any previous RESTRICT
statement. To lift all restrictions on a model, submit a new MODEL statement. If
there are several restrictions, separate them with commas. The statement

restrict equation1=equation2=equation3;

is equivalent to imposing the two restrictions

restrict equation1=equation2;
restrict equation2=equation3;

Each restriction is written as a linear equation and can be written as

equation
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or

equation = equation

The form of eachequationis

c1 × variable1 ± c2 × variable2 ± · · · ± cn × variablen

where thecj ’s are constants and thevariablej ’s are any regressor variables.

When no equal sign appears, the linear combination is set equal to zero. Each vari-
able name mentioned must be a variable in the MODEL statement to which the
RESTRICT statement refers. The keyword INTERCEPT can also be used as a vari-
able name, and it refers to the intercept parameter in the regression model.

Note that the parameters associated with the variables are restricted, not the variables
themselves. Restrictions should be consistent and not redundant.

Examples of valid RESTRICT statements include the following:

restrict x1;
restrict a+b=l;
restrict a=b=c;
restrict a=b, b=c;
restrict 2*f=g+h, intercept+f=0;
restrict f=g=h=intercept;

The third and fourth statements in this list produce identical restrictions. You cannot
specify

restrict f-g=0,
f-intercept=0,
g-intercept=1;

because the three restrictions are not consistent. If these restrictions are included in
a RESTRICT statement, one of the restrict parameters is set to zero and has zero
degrees of freedom, indicating that PROC REG is unable to apply a restriction.

The restrictions usually operate even if the model is not of full rank. Check to ensure
that DF= −1 for each restriction. In addition, the Model DF should decrease by 1
for each restriction.

The parameter estimates are those that minimize the quadratic criterion (SSE) subject
to the restrictions. If a restriction cannot be applied, its parameter value and degrees
of freedom are listed as zero.

The method used for restricting the parameter estimates is to introduce a Lagrangian
parameter for each restriction (Pringle and Raynor 1971). The estimates of these
parameters are displayed with test statistics. Note that thet statistic reported for
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the Lagrangian parameters does not follow a Student’st distribution, but its square
follows a beta distribution (LaMotte 1994). Thep-value for these parameters is com-
puted using the beta distribution.

The Lagrangian parameterγ measures the sensitivity of the SSE to the restriction con-
stant. If the restriction constant is changed by a small amountε, the SSE is changed
by 2γε. Thet ratio tests the significance of the restrictions. Ifγ is zero, the restricted
estimates are the same as the unrestricted estimates, and a change in the restriction
constant in either direction increases the SSE.

RESTRICT statements are ignored if the PCOMIT= or RIDGE= option is specified
in the PROC REG statement.

REWEIGHT Statement

REWEIGHT < condition | ALLOBS > < / options > ;

REWEIGHT < STATUS | UNDO > ;

The REWEIGHT statement interactively changes the weights of observations that are
used in computing the regression equation. The REWEIGHT statement can change
observation weights, or set them to zero, which causes selected observations to be ex-
cluded from the analysis. When a REWEIGHT statement sets observation weights to
zero, the observations are not deleted from the data set. More than one REWEIGHT
statement can be used. The requests from all REWEIGHT statements are applied
to the subsequent statements. Each use of the REWEIGHT statement modifies the
MODEL label.

The model and corresponding statistics are not recomputed after a REWEIGHT state-
ment. For example, with the following statements

reweight r.>0;
reweight r.>0;

the second REWEIGHT statement does not exclude any additional observations since
the model is not recomputed after the first REWEIGHT statement. Use either a
REFITstatement to explicitly refit the model, or implicitly refit the model by follow-
ing the REWEIGHT statement with any other interactive statement except a PAINT
statement or another REWEIGHT statement.

The REWEIGHT statement cannot be used if a TYPE=CORR, TYPE=COV, or
TYPE=SSCP data set is used as an input data set to PROC REG. Note that the syntax
used in the REWEIGHT statement is the same as the syntax in the PAINT statement.

The syntax of the REWEIGHT statement is described in the following sections. For
detailed examples of using this statement see the section“Reweighting Observations
in an Analysis”on page 3903.
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Specifying Condition
Conditionis used to find observations to be reweighted. The syntax ofconditionis

variable compare value

or

variable compare value logical variable compare value

where

variable is one of the following:

• a variable name in the input data set
• OBS. which is the observation number
• keyword., wherekeywordis a keyword for a statistic requested in

the OUTPUT statement. The keyword specification is applied to
all dependent variables in the model.

compare is an operator that comparesvariable to value. Comparecan be any
one of the following: <, <=, >, >=, =, ˆ =. The operators LT, LE, GT,
GE, EQ, and NE can be used instead of the preceding symbols. Refer
to the “Expressions” chapter inSAS Language Reference: Conceptsfor
more information on comparison operators.

value gives an unformatted value ofvariable. Observations are selected to
be reweighted if they satisfy the condition created byvariable com-
pare value. Valuecan be a number or a character string. Ifvalue is
a character string, it must be eight characters or less and must be en-
closed in quotes. In addition,value is case-sensitive. In other words,
the following two statements are not the same:

reweight name=’steve’;

reweight name=’Steve’;

logical is one of two logical operators. Either AND or OR can be used. To
specify AND, use AND or the symbol &. To specify OR, use OR or
the symbol|.

Examples of thevariable compare valueform are

reweight obs. le 10;
reweight temp=55;
reweight type=’new’;

Examples of thevariable compare value logical variable compare valueform
are

reweight obs.<=10 and residual.<2;
reweight student.<-2 or student.>2;
reweight name=’Mary’ | name=’Susan’;
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Using ALLOBS

Instead of specifyingcondition, you can use the ALLOBS option to select all ob-
servations. This is most useful when you want to restore the original weights of all
observations. For example,

reweight allobs / reset;

resets weights for all observations and uses all observations in the subsequent analy-
sis. Note that

reweight allobs;

specifies that all observations be excluded from analysis. Consequently, using
ALLOBS is useful only if you also use one of the options discussed in the following
section.

Options in the REWEIGHT Statement

The following options can be used when either a condition, ALLOBS, or nothing
is specified before the slash. If only an option is listed, the option applies to the
observations selected in the previous REWEIGHT statement, not to the observations
selected by reapplying the condition from the previous REWEIGHT statement. For
example, with the statements

reweight r.>0 / weight=0.1;
refit;
reweight;

the second REWEIGHT statement excludes from the analysis only those observations
selected in the first REWEIGHT statement. No additional observations are excluded
even if there are new observations that meet the condition in the first REWEIGHT
statement.

Note: Options are not available when either the UNDO or STATUS option is used.

NOLIST
suppresses the display of the selected observation numbers. If you omit the NOLIST
option, a list of observations selected is written to the log.

RESET
resets the observation weights to their original values as defined by the WEIGHT
statement or to WEIGHT=1 if no WEIGHT statement is specified. For example,

reweight / reset;

resets observation weights to the original weights in the data set. If previous
REWEIGHT statements have been submitted, this REWEIGHT statement applies
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only to the observations selected by the previous REWEIGHT statement. Note that,
although the RESET option does reset observation weights to their original values, it
does not cause the model and corresponding statistics to be recomputed.

WEIGHT=value
changes observation weights to the specified nonnegative real number. If you omit
the WEIGHT= option, the observation weights are set to zero, and observations are
excluded from the analysis. For example,

reweight name=’Alan’;
...other interactive statements

reweight / weight=0.5;

The first REWEIGHT statement changes weights to zero for all observations with
name=’Alan’, effectively deleting these observations. The subsequent analysis
does not include these observations. The second REWEIGHT statement applies
only to those observations selected by the previous REWEIGHT statement, and it
changes the weights to 0.5 for all the observations with NAME=’Alan’. Thus, the
next analysis includes all original observations; however, those observations with
NAME=’Alan’ have their weights set to 0.5.

STATUS and UNDO

If you omit conditionand the ALLOBS options, you can specify one of the following
options.

STATUS
writes to the log the observation’s number and the weight of all reweighted obser-
vations. If an observation’s weight has been set to zero, it is reported as deleted.
However, the observation is not deleted from the data set, only from the analysis.

UNDO
undoes the changes made by the most recent REWEIGHT statement. Weights may
be, but are not necessarily, reset. For example, in these statements

reweight student.>2 / weight=0.1;
reweight;
reweight undo;

the first REWEIGHT statement sets the weights of observations that satisfy the con-
dition to 0.1. The second REWEIGHT statement sets the weights of the same obser-
vations to zero. The third REWEIGHT statement undoes the second, changing the
weights back to 0.1.
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TEST Statement

< label: > TEST equation < , . . . , equation > < / options > ;

The TEST statement tests hypotheses about the parameters estimated in the preceding
MODEL statement. It has the same syntax as theRESTRICTstatement except that it
allows an option. Each equation specifies a linear hypothesis to be tested. The rows
of the hypothesis are separated by commas.

Variable names must correspond to regressors, and each variable name represents the
coefficient of the corresponding variable in the model. An optional label is useful to
identify each test with a name. The keyword INTERCEPT can be used instead of a
variable name to refer to the model’s intercept.

The REG procedure performs anF test for the joint hypotheses specified in a single
TEST statement. More than one TEST statement can accompany a MODEL state-
ment. The numerator is the usual quadratic form of the estimates; the denominator is
the mean squared error. If hypotheses can be represented by

Lβ = c

then the numerator of theF test is

Q = (Lb− c)′(L(X′X)−L′)−1(Lb− c)

divided by degrees of freedom, whereb is the estimate ofβ. For example,

model y=a1 a2 b1 b2;
aplus: test a1+a2=1;
b1: test b1=0, b2=0;
b2: test b1, b2;

The last two statements are equivalent; since no constant is specified, zero is assumed.

Note that, when theACOV option is specified in the MODEL statement, tests are
recomputed using the heteroscedasticity consistent covariance matrix (see the section
“Testing for Heteroscedasticity”on page 3910).

One option can be specified in the TEST statement after a slash (/):

PRINT
displays intermediate calculations. This includesL(X′X)−L′ bordered byLb − c,
and(L(X′X)−L′)−1 bordered by(L(X′X)−L′)−1(Lb− c).
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VAR Statement

VAR variables ;

The VAR statement is used to include numeric variables in the crossproducts matrix
that are not specified in the first MODEL statement.

Variables not listed in MODEL statements before the first RUN statement must be
listed in the VAR statement if you want the ability to add them interactively to the
model with an ADD statement, to include them in a new MODEL statement, or to
plot them in a scatter plot with the PLOT statement.

In addition, if you want to use options in the PROC REG statement and do not want
to fit a model to the data (with a MODEL statement), you must use a VAR statement.

WEIGHT Statement

WEIGHT variable ;

A WEIGHT statement names a variable in the input data set with values that are
relative weights for a weighted least-squares fit. If the weight value is proportional to
the reciprocal of the variance for each observation, then the weighted estimates are
the best linear unbiased estimates (BLUE).

Values of the weight variable must be nonnegative. If an observation’s weight is zero,
the observation is deleted from the analysis. If a weight is negative or missing, it is set
to zero, and the observation is excluded from the analysis. A more complete descrip-
tion of the WEIGHT statement can be found inChapter 32, “The GLM Procedure.”

Observation weights can be changed interactively with the REWEIGHT statement;
see the section“REWEIGHT Statement”beginning on page 3854.

Details

Missing Values

PROC REG constructs only one crossproducts matrix for the variables in all regres-
sions. If any variable needed for any regression is missing, the observation is ex-
cluded from all estimates. If you include variables with missing values in the VAR
statement, the corresponding observations are excluded from all analyses, even if you
never include the variables in a model. PROC REG assumes that you may want to
include these variables after the first RUN statement and deletes observations with
missing values.
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Input Data Sets

PROC REG does not compute new regressors. For example, if you want a quadratic
term in your model, you should create a new variable when you prepare the input
data. For example, the statement

model y=x1 x1*x1;

is not valid. Note that this MODEL statement is valid in the GLM procedure.

The input data set for most applications of PROC REG contains standard rectangu-
lar data, but special TYPE=CORR, TYPE=COV, or TYPE=SSCP data sets can also
be used. TYPE=CORR and TYPE=COV data sets created by the CORR procedure
contain means and standard deviations. In addition, TYPE=CORR data sets contain
correlations and TYPE=COV data sets contain covariances. TYPE=SSCP data sets
created in previous runs of PROC REG that used the OUTSSCP= option contain the
sums of squares and crossproducts of the variables. SeeAppendix A, “Special SAS
Data Sets,”and the “SAS Files” section inSAS Language Reference: Conceptsfor
more information on special SAS data sets.

These summary files save CPU time. It takesnk2 operations (wheren=number of
observations andk=number of variables) to calculate crossproducts; the regressions
are of the orderk3. Whenn is in the thousands andk is less than10, you can save 99
percent of the CPU time by reusing the SSCP matrix rather than recomputing it.

When you want to use a special SAS data set as input, PROC REG must determine
the TYPE for the data set. PROC CORR and PROC REG automatically set the type
for their output data sets. However, if you create the data set by some other means
(such as a DATA step) you must specify its type with the TYPE= data set option. If
the TYPE for the data set is not specified when the data set is created, you can specify
TYPE= as a data set option in the DATA= option in the PROC REG statement. For
example,

proc reg data=a(type=corr);

When TYPE=CORR, TYPE=COV, or TYPE=SSCP data sets are used with PROC
REG, statements and options that require the original data values have no effect. The
OUTPUT, PAINT, PLOT, and REWEIGHT statements and the MODEL and PRINT
statement options P, R, CLM, CLI, DW, INFLUENCE, and PARTIAL are disabled
since the original observations needed to calculate predicted and residual values are
not present.

Example Using TYPE=CORR Data Set

This example uses PROC CORR to produce an input data set for PROC REG. The
fitness data for this analysis can be found inExample 61.1on page 3924.

proc corr data=fitness outp=r noprint;
var Oxygen RunTime Age Weight RunPulse MaxPulse RestPulse;



Input Data Sets � 3861

proc print data=r;
proc reg data=r;

model Oxygen=RunTime Age Weight;
run;

Since the OUTP= data set from PROC CORR is automatically set to TYPE=CORR,
the TYPE= data set option is not required in this example. The data set containing the
correlation matrix is displayed by the PRINT procedure as shown inFigure 61.12.
Figure 61.13shows results from the regression using the TYPE=CORR data as an
input data set.

Rest
Obs _TYPE_ _NAME_ Oxygen RunTime Age Weight RunPulse MaxPulse Pulse

1 MEAN 47.3758 10.5861 47.6774 77.4445 169.645 173.774 53.4516
2 STD 5.3272 1.3874 5.2114 8.3286 10.252 9.164 7.6194
3 N 31.0000 31.0000 31.0000 31.0000 31.000 31.000 31.0000
4 CORR Oxygen 1.0000 -0.8622 -0.3046 -0.1628 -0.398 -0.237 -0.3994
5 CORR RunTime -0.8622 1.0000 0.1887 0.1435 0.314 0.226 0.4504
6 CORR Age -0.3046 0.1887 1.0000 -0.2335 -0.338 -0.433 -0.1641
7 CORR Weight -0.1628 0.1435 -0.2335 1.0000 0.182 0.249 0.0440
8 CORR RunPulse -0.3980 0.3136 -0.3379 0.1815 1.000 0.930 0.3525
9 CORR MaxPulse -0.2367 0.2261 -0.4329 0.2494 0.930 1.000 0.3051

10 CORR RestPulse -0.3994 0.4504 -0.1641 0.0440 0.352 0.305 1.0000

Figure 61.12. TYPE=CORR Data Set Created by PROC CORR

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 656.27095 218.75698 30.27 <.0001
Error 27 195.11060 7.22632
Corrected Total 30 851.38154

Root MSE 2.68818 R-Square 0.7708
Dependent Mean 47.37581 Adj R-Sq 0.7454
Coeff Var 5.67416

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 93.12615 7.55916 12.32 <.0001
RunTime 1 -3.14039 0.36738 -8.55 <.0001
Age 1 -0.17388 0.09955 -1.75 0.0921
Weight 1 -0.05444 0.06181 -0.88 0.3862

Figure 61.13. Regression on TYPE=CORR Data Set
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Example Using TYPE=SSCP Data Set

The following example uses the saved crossproducts matrix:

proc reg data=fitness outsscp=sscp noprint;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse;

proc print data=sscp;
proc reg data=sscp;

model Oxygen=RunTime Age Weight;
run;

First, all variables are used to fit the data and create the SSCP data set.Figure 61.14
shows the PROC PRINT display of the SSCP data set. The SSCP data set is then used
as the input data set for PROC REG, and a reduced model is fit to the data.Figure
61.15also shows the PROC REG results for the reduced model. (For the PROC REG
results for the full model, seeFigure 61.27on page 3877.)

In the preceding example, the TYPE= data set option is not required since PROC
REG sets the OUTSSCP= data set to TYPE=SSCP.

Obs _TYPE_ _NAME_ Intercept RunTime Age Weight RunPulse MaxPulse RestPulse Oxygen

1 SSCP Intercept 31.00 328.17 1478.00 2400.78 5259.00 5387.00 1657.00 1468.65
2 SSCP RunTime 328.17 3531.80 15687.24 25464.71 55806.29 57113.72 17684.05 15356.14
3 SSCP Age 1478.00 15687.24 71282.00 114158.90 250194.00 256218.00 78806.00 69767.75
4 SSCP Weight 2400.78 25464.71 114158.90 188008.20 407745.67 417764.62 128409.28 113522.26
5 SSCP RunPulse 5259.00 55806.29 250194.00 407745.67 895317.00 916499.00 281928.00 248497.31
6 SSCP MaxPulse 5387.00 57113.72 256218.00 417764.62 916499.00 938641.00 288583.00 254866.75
7 SSCP RestPulse 1657.00 17684.05 78806.00 128409.28 281928.00 288583.00 90311.00 78015.41
8 SSCP Oxygen 1468.65 15356.14 69767.75 113522.26 248497.31 254866.75 78015.41 70429.86
9 N 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00

Figure 61.14. TYPE=SSCP Data Set Created by PROC CORR



Output Data Sets � 3863

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 656.27095 218.75698 30.27 <.0001
Error 27 195.11060 7.22632
Corrected Total 30 851.38154

Root MSE 2.68818 R-Square 0.7708
Dependent Mean 47.37581 Adj R-Sq 0.7454
Coeff Var 5.67416

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 93.12615 7.55916 12.32 <.0001
RunTime 1 -3.14039 0.36738 -8.55 <.0001
Age 1 -0.17388 0.09955 -1.75 0.0921
Weight 1 -0.05444 0.06181 -0.88 0.3862

Figure 61.15. Regression on TYPE=SSCP Data Set

Output Data Sets

OUTEST= Data Set

The OUTEST= specification produces a TYPE=EST output SAS data set containing
estimates and optional statistics from the regression models. For each BY group on
each dependent variable occurring in each MODEL statement, PROC REG outputs
an observation to the OUTEST= data set. The variables output to the data set are as
follows:

• the BY variables, if any

• –MODEL– , a character variable containing the label of the corresponding
MODEL statement, or MODELn if no label is specified, wheren is 1 for the
first MODEL statement, 2 for the second model statement, and so on

• –TYPE– , a character variable with the value ’PARMS’ for every observation

• –DEPVAR– , the name of the dependent variable

• –RMSE– , the root mean squared error or the estimate of the standard deviation
of the error term

• Intercept, the estimated intercept, unless the NOINT option is specified

• all the variables listed in any MODEL or VAR statement. Values of these
variables are the estimated regression coefficients for the model. A variable
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that does not appear in the model corresponding to a given observation has a
missing value in that observation. The dependent variable in each model is
given a value of−1.

If you specify the COVOUT option, the covariance matrix of the estimates is output
after the estimates; the–TYPE– variable is set to the value ’COV’ and the names of
the rows are identified by the 8-byte character variable,–NAME– .

If you specify the TABLEOUT option, the following statistics listed by–TYPE– are
added after the estimates:

• STDERR, the standard error of the estimate

• T, thet statistic for testing if the estimate is zero

• PVALUE, the associatedp-value

• LnB, the100(1− α) lower confidence for the estimate, wheren is the nearest
integer to100(1−α) andα defaults to0.05 or is set using the ALPHA= option
in the PROC REG or MODEL statement

• UnB, the100(1− α) upper confidence for the estimate

Specifying the option ADJRSQ, AIC, BIC, CP, EDF, GMSEP, JP, MSE, PC,
RSQUARE, SBC, SP, or SSE in the PROC REG or MODEL statement automati-
cally outputs these statistics and the modelR2 for each model selected, regardless
of the model selection method. Additional variables, in order of occurrence, are as
follows.

• –IN– , the number of regressors in the model not including the intercept

• –P– , the number of parameters in the model including the intercept, if any

• –EDF– , the error degrees of freedom

• –SSE– , the error sum of squares, if the SSE option is specified

• –MSE– , the mean squared error, if the MSE option is specified

• –RSQ– , theR2 statistic

• –ADJRSQ– , the adjustedR2, if the ADJRSQ option is specified

• –CP– , theCp statistic, if the CP option is specified

• –SP– , theSp statistic, if the SP option is specified

• –JP– , theJp statistic, if the JP option is specified

• –PC– , the PC statistic, if the PC option is specified

• –GMSEP– , the GMSEP statistic, if the GMSEP option is specified

• –AIC– , the AIC statistic, if the AIC option is specified

• –BIC– , the BIC statistic, if the BIC option is specified

• –SBC– , the SBC statistic, if the SBC option is specified
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The following is an example with a display of the OUTEST= data set. This example
uses the population data given in the section“Polynomial Regression”beginning on
page 3804.Figure 61.16on page 3865 throughFigure 61.18on page 3866 show the
regression equations and the resulting OUTEST= data set.

proc reg data=USPopulation outest=est;
m1: model Population=Year;
m2: model Population=Year YearSq;

proc print data=est;
run;

The REG Procedure
Model: m1

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 146869 146869 228.92 <.0001
Error 20 12832 641.58160
Corrected Total 21 159700

Root MSE 25.32946 R-Square 0.9197
Dependent Mean 94.64800 Adj R-Sq 0.9156
Coeff Var 26.76175

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -2345.85498 161.39279 -14.54 <.0001
Year 1 1.28786 0.08512 15.13 <.0001

Figure 61.16. Regression Output for Model M1
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The REG Procedure
Model: m2

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 159529 79765 8864.19 <.0001
Error 19 170.97193 8.99852
Corrected Total 21 159700

Root MSE 2.99975 R-Square 0.9989
Dependent Mean 94.64800 Adj R-Sq 0.9988
Coeff Var 3.16938

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 21631 639.50181 33.82 <.0001
Year 1 -24.04581 0.67547 -35.60 <.0001
YearSq 1 0.00668 0.00017820 37.51 <.0001

Figure 61.17. Regression Output for Model M2

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Year Population YearSq

1 m1 PARMS Population 25.3295 -2345.85 1.2879 -1 .
2 m2 PARMS Population 2.9998 21630.89 -24.0458 -1 .006684346

Figure 61.18. OUTEST= Data Set

The following modification of the previous example uses the TABLEOUT and
ALPHA= options to obtain additional information in the OUTEST= data set:

proc reg data=USPopulation outest=est tableout alpha=0.1;
m1: model Population=Year/noprint;
m2: model Population=Year YearSq/noprint;

proc print data=est;
run;

Notice that the TABLEOUT option causes standard errors,t statistics,p-values, and
confidence limits for the estimates to be added to the OUTEST= data set. Also note
that the ALPHA= option is used to set the confidence level at 90%. The OUTEST=
data set follows.
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Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Year Population YearSq

1 m1 PARMS Population 25.3295 -2345.85 1.2879 -1 .
2 m1 STDERR Population 25.3295 161.39 0.0851 . .
3 m1 T Population 25.3295 -14.54 15.1300 . .
4 m1 PVALUE Population 25.3295 0.00 0.0000 . .
5 m1 L90B Population 25.3295 -2624.21 1.1411 . .
6 m1 U90B Population 25.3295 -2067.50 1.4347 . .
7 m2 PARMS Population 2.9998 21630.89 -24.0458 -1 0.0067
8 m2 STDERR Population 2.9998 639.50 0.6755 . 0.0002
9 m2 T Population 2.9998 33.82 -35.5988 . 37.5096

10 m2 PVALUE Population 2.9998 0.00 0.0000 . 0.0000
11 m2 L90B Population 2.9998 20525.11 -25.2138 . 0.0064
12 m2 U90B Population 2.9998 22736.68 -22.8778 . 0.0070

Figure 61.19. The OUTEST= Data Set When TABLEOUT is Specified

A slightly different OUTEST= data set is created when you use the RSQUARE se-
lection method. This example requests only the “best” model for each subset size
but asks for a variety of model selection statistics, as well as the estimated regression
coefficients. An OUTEST= data set is created and displayed. SeeFigure 61.20and
Figure 61.21for results.

proc reg data=fitness outest=est;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=rsquare mse jp gmsep cp aic bic sbc b best=1;
proc print data=est;
run;
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The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

R-Square Selection Method

Number in Estimated MSE
Model R-Square C(p) AIC BIC of Prediction J(p) MSE SBC

1 0.7434 13.6988 64.5341 65.4673 8.0546 8.0199 7.53384 67.40210
------------------------------------------------------------------------------------------------------------------

2 0.7642 12.3894 63.9050 64.8212 7.9478 7.8621 7.16842 68.20695
------------------------------------------------------------------------------------------------------------------

3 0.8111 6.9596 59.0373 61.3127 6.8583 6.7253 5.95669 64.77326
------------------------------------------------------------------------------------------------------------------

4 0.8368 4.8800 56.4995 60.3996 6.3984 6.2053 5.34346 63.66941
------------------------------------------------------------------------------------------------------------------

5 0.8480 5.1063 56.2986 61.5667 6.4565 6.1782 5.17634 64.90250
------------------------------------------------------------------------------------------------------------------

6 0.8487 7.0000 58.1616 64.0748 6.9870 6.5804 5.36825 68.19952

Number in --------------------------------------Parameter Estimates--------------------------------------
Model R-Square Intercept Age Weight RunTime RunPulse RestPulse MaxPulse

1 0.7434 82.42177 . . -3.31056 . . .
----------------------------------------------------------------------------------------------------------------------

2 0.7642 88.46229 -0.15037 . -3.20395 . . .
----------------------------------------------------------------------------------------------------------------------

3 0.8111 111.71806 -0.25640 . -2.82538 -0.13091 . .
----------------------------------------------------------------------------------------------------------------------

4 0.8368 98.14789 -0.19773 . -2.76758 -0.34811 . 0.27051
----------------------------------------------------------------------------------------------------------------------

5 0.8480 102.20428 -0.21962 -0.07230 -2.68252 -0.37340 . 0.30491
----------------------------------------------------------------------------------------------------------------------

6 0.8487 102.93448 -0.22697 -0.07418 -2.62865 -0.36963 -0.02153 0.30322

Figure 61.20. PROC REG Output for Physical Fitness Data: Best Models

Max
Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Age Weight RunTime RunPulse RestPulse Pulse

1 MODEL1 PARMS Oxygen 2.74478 82.422 . . -3.31056 . . .
2 MODEL1 PARMS Oxygen 2.67739 88.462 -0.15037 . -3.20395 . . .
3 MODEL1 PARMS Oxygen 2.44063 111.718 -0.25640 . -2.82538 -0.13091 . .
4 MODEL1 PARMS Oxygen 2.31159 98.148 -0.19773 . -2.76758 -0.34811 . 0.27051
5 MODEL1 PARMS Oxygen 2.27516 102.204 -0.21962 -0.072302 -2.68252 -0.37340 . 0.30491
6 MODEL1 PARMS Oxygen 2.31695 102.934 -0.22697 -0.074177 -2.62865 -0.36963 -0.021534 0.30322

Obs Oxygen _IN_ _P_ _EDF_ _MSE_ _RSQ_ _CP_ _JP_ _GMSEP_ _AIC_ _BIC_ _SBC_

1 -1 1 2 29 7.53384 0.74338 13.6988 8.01990 8.05462 64.5341 65.4673 67.4021
2 -1 2 3 28 7.16842 0.76425 12.3894 7.86214 7.94778 63.9050 64.8212 68.2069
3 -1 3 4 27 5.95669 0.81109 6.9596 6.72530 6.85833 59.0373 61.3127 64.7733
4 -1 4 5 26 5.34346 0.83682 4.8800 6.20531 6.39837 56.4995 60.3996 63.6694
5 -1 5 6 25 5.17634 0.84800 5.1063 6.17821 6.45651 56.2986 61.5667 64.9025
6 -1 6 7 24 5.36825 0.84867 7.0000 6.58043 6.98700 58.1616 64.0748 68.1995

Figure 61.21. PROC PRINT Output for Physical Fitness Data: OUTEST= Data
Set

OUTSSCP= Data Sets

The OUTSSCP= option produces a TYPE=SSCP output SAS data set containing
sums of squares and crossproducts. A special row (observation) and column (vari-
able) of the matrix calledIntercept contain the number of observations and sums.
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Observations are identified by the character variable–NAME– . The data set con-
tains all variables used in MODEL statements. You can specify additional variables
that you want included in the crossproducts matrix with a VAR statement.

The SSCP data set is used when a large number of observations are explored in many
different runs. The SSCP data set can be saved and used for subsequent runs, which
are much less expensive since PROC REG never reads the original data again. If you
run PROC REG once to create only a SSCP data set, you should list all the variables
that you may need in a VAR statement or include all the variables that you may need
in a MODEL statement.

The following example uses the fitness data fromExample 61.1on page 3924 to
produce an output data set with the OUTSSCP= option. The resulting output is shown
in Figure 61.22.

proc reg data=fitness outsscp=sscp;
var Oxygen RunTime Age Weight RestPulse RunPulse MaxPulse;

proc print data=sscp;
run;

Since a model is not fit to the data and since the only request is to create the SSCP
data set, a MODEL statement is not required in this example. However, since the
MODEL statement is not used, the VAR statement is required.

Obs _TYPE_ _NAME_ Intercept Oxygen RunTime Age Weight RestPulse RunPulse MaxPulse

1 SSCP Intercept 31.00 1468.65 328.17 1478.00 2400.78 1657.00 5259.00 5387.00
2 SSCP Oxygen 1468.65 70429.86 15356.14 69767.75 113522.26 78015.41 248497.31 254866.75
3 SSCP RunTime 328.17 15356.14 3531.80 15687.24 25464.71 17684.05 55806.29 57113.72
4 SSCP Age 1478.00 69767.75 15687.24 71282.00 114158.90 78806.00 250194.00 256218.00
5 SSCP Weight 2400.78 113522.26 25464.71 114158.90 188008.20 128409.28 407745.67 417764.62
6 SSCP RestPulse 1657.00 78015.41 17684.05 78806.00 128409.28 90311.00 281928.00 288583.00
7 SSCP RunPulse 5259.00 248497.31 55806.29 250194.00 407745.67 281928.00 895317.00 916499.00
8 SSCP MaxPulse 5387.00 254866.75 57113.72 256218.00 417764.62 288583.00 916499.00 938641.00
9 N 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00

Figure 61.22. SSCP Data Set Created with OUTSSCP= Option: REG Procedure

Interactive Analysis

PROC REG enables you to change interactively both the model and the data used to
compute the model, and to produce and highlight scatter plots. See the section“Using
PROC REG Interactively”on page 3812 for an overview of interactive analysis using
PROC REG. The following statements can be used interactively (without reinvoking
PROC REG): ADD, DELETE, MODEL, MTEST, OUTPUT, PAINT, PLOT, PRINT,
REFIT, RESTRICT, REWEIGHT, and TEST. All interactive features are disabled if
there is a BY statement.

The ADD, DELETE and REWEIGHT statements can be used to modify the cur-
rent MODEL. Every use of an ADD, DELETE or REWEIGHT statement causes the
model label to be modified by attaching an additional number to it. This number
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is the cumulative total of the number of ADD, DELETE or REWEIGHT statements
following the current MODEL statement.

A more detailed explanation of changing the data used to compute the model is given
in the section“Reweighting Observations in an Analysis”on page 3903. Extra fea-
tures for line printer scatter plots are discussed in the section“Line Printer Scatter
Plot Features”on page 3882.

The following example illustrates the usefulness of the interactive features. First, the
full regression model is fit to the class data (see the“Getting Started”section on page
3800), andFigure 61.23is produced.

proc reg data=Class;
model Weight=Age Height;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 7215.63710 3607.81855 27.23 <.0001
Error 16 2120.09974 132.50623
Corrected Total 18 9335.73684

Root MSE 11.51114 R-Square 0.7729
Dependent Mean 100.02632 Adj R-Sq 0.7445
Coeff Var 11.50811

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -141.22376 33.38309 -4.23 0.0006
Age 1 1.27839 3.11010 0.41 0.6865
Height 1 3.59703 0.90546 3.97 0.0011

Figure 61.23. Interactive Analysis: Full Model
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Next, the regression model is reduced by the following statements, andFigure 61.24
is produced.

delete age;
print;
run;

The REG Procedure
Model: MODEL1.1

Dependent Variable: Weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001
Error 17 2142.48772 126.02869
Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705
Dependent Mean 100.02632 Adj R-Sq 0.7570
Coeff Var 11.22330

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004
Height 1 3.89903 0.51609 7.55 <.0001

Figure 61.24. Interactive Analysis: Reduced Model

Note that the MODEL label has been changed from MODEL1 to MODEL1.1, as the
original MODEL has been changed by the delete statement.

The following statements generate a scatter plot of the residuals against the predicted
values from the full model.Figure 61.25is produced, and the scatter plot shows a
possible outlier.

add age;
plot r.*p. / cframe=ligr;
run;



3872 � Chapter 61. The REG Procedure

Figure 61.25. Interactive Analysis: Scatter Plot

The following statements delete the observation with the largest residual, refit the
regression model, and produce a scatter plot of residuals against predicted values for
the refitted model.Figure 61.26shows the new scatter plot.

reweight r.>20;
plot / cframe=ligr;
run;
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Figure 61.26. Interactive Analysis: Scatter Plot for Refitted Model

Model-Selection Methods

The nine methods of model selection implemented in PROC REG are specified with
the SELECTION= option in the MODEL statement. Each method is discussed in this
section.

Full Model Fitted (NONE)

This method is the default and provides no model selection capability. The com-
plete model specified in the MODEL statement is used to fit the model. For many
regression analyses, this may be the only method you need.

Forward Selection (FORWARD)

The forward-selection technique begins with no variables in the model. For each
of the independent variables, the FORWARD method calculatesF statistics that re-
flect the variable’s contribution to the model if it is included. Thep-values for these
F statistics are compared to the SLENTRY= value that is specified in the MODEL
statement (or to 0.50 if the SLENTRY= option is omitted). If noF statistic has a sig-
nificance level greater than the SLENTRY= value, the FORWARD selection stops.
Otherwise, the FORWARD method adds the variable that has the largestF statistic
to the model. The FORWARD method then calculatesF statistics again for the vari-
ables still remaining outside the model, and the evaluation process is repeated. Thus,
variables are added one by one to the model until no remaining variable produces a
significantF statistic. Once a variable is in the model, it stays.
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Backward Elimination (BACKWARD)

The backward elimination technique begins by calculatingF statistics for a model,
including all of the independent variables. Then the variables are deleted from the
model one by one until all the variables remaining in the model produceF statistics
significant at the SLSTAY= level specified in the MODEL statement (or at the 0.10
level if the SLSTAY= option is omitted). At each step, the variable showing the
smallest contribution to the model is deleted.

Stepwise (STEPWISE)

The stepwise method is a modification of the forward-selection technique and differs
in that variables already in the model do not necessarily stay there. As in the forward-
selection method, variables are added one by one to the model, and theF statistic for
a variable to be added must be significant at the SLENTRY= level. After a variable
is added, however, the stepwise method looks at all the variables already included
in the model and deletes any variable that does not produce anF statistic significant
at the SLSTAY= level. Only after this check is made and the necessary deletions
accomplished can another variable be added to the model. The stepwise process
ends when none of the variables outside the model has anF statistic significant at
the SLENTRY= level and every variable in the model is significant at the SLSTAY=
level, or when the variable to be added to the model is the one just deleted from it.

Maximum R 2 Improvement (MAXR)

The maximumR2 improvement technique does not settle on a single model. Instead,
it tries to find the “best” one-variable model, the “best” two-variable model, and so
forth, although it is not guaranteed to find the model with the largestR2 for each size.

The MAXR method begins by finding the one-variable model producing the highest
R2. Then another variable, the one that yields the greatest increase inR2, is added.
Once the two-variable model is obtained, each of the variables in the model is com-
pared to each variable not in the model. For each comparison, the MAXR method
determines if removing one variable and replacing it with the other variable increases
R2. After comparing all possible switches, the MAXR method makes the switch
that produces the largest increase inR2. Comparisons begin again, and the process
continues until the MAXR method finds that no switch could increaseR2. Thus, the
two-variable model achieved is considered the “best” two-variable model the tech-
nique can find. Another variable is then added to the model, and the comparing-and-
switching process is repeated to find the “best” three-variable model, and so forth.

The difference between the STEPWISE method and the MAXR method is that all
switches are evaluated before any switch is made in the MAXR method . In the
STEPWISE method, the “worst” variable may be removed without considering what
adding the “best” remaining variable might accomplish. The MAXR method may
require much more computer time than the STEPWISE method.
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Minimum R 2 (MINR) Improvement

The MINR method closely resembles the MAXR method, but the switch chosen is
the one that produces the smallest increase inR2. For a given number of variables in
the model, the MAXR and MINR methods usually produce the same “best” model,
but the MINR method considers more models of each size.

R2 Selection (RSQUARE)

The RSQUARE method finds subsets of independent variables that best predict a
dependent variable by linear regression in the given sample. You can specify the
largest and smallest number of independent variables to appear in a subset and the
number of subsets of each size to be selected. The RSQUARE method can efficiently
perform all possible subset regressions and display the models in decreasing order of
R2 magnitude within each subset size. Other statistics are available for comparing
subsets of different sizes. These statistics, as well as estimated regression coefficients,
can be displayed or output to a SAS data set.

The subset models selected by the RSQUARE method are optimal in terms ofR2

for the given sample, but they are not necessarily optimal for the population from
which the sample is drawn or for any other sample for which you may want to make
predictions. If a subset model is selected on the basis of a largeR2 value or any other
criterion commonly used for model selection, then all regression statistics computed
for that model under the assumption that the model is given a priori, including all
statistics computed by PROC REG, are biased.

While the RSQUARE method is a useful tool for exploratory model building, no sta-
tistical method can be relied on to identify the “true” model. Effective model build-
ing requires substantive theory to suggest relevant predictors and plausible functional
forms for the model.

The RSQUARE method differs from the other selection methods in that RSQUARE
always identifies the model with the largestR2 for each number of variables con-
sidered. The other selection methods are not guaranteed to find the model with the
largestR2. The RSQUARE method requires much more computer time than the other
selection methods, so a different selection method such as the STEPWISE method is
a good choice when there are many independent variables to consider.

Adjusted R 2 Selection (ADJRSQ)

This method is similar to the RSQUARE method, except that the adjustedR2 statistic
is used as the criterion for selecting models, and the method finds the models with
the highest adjustedR2 within the range of sizes.

Mallows’ C p Selection (CP)

This method is similar to the ADJRSQ method, except that Mallows’Cp statistic is
used as the criterion for model selection. Models are listed in ascending order ofCp.
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Additional Information on Model-Selection Methods

If the RSQUARE or STEPWISE procedure (as documented inSAS User’s Guide:
Statistics, Version 5 Edition) is requested, PROC REG with the appropriate model-
selection method is actually used.

Reviews of model-selection methods by Hocking (1976) and Judge et al. (1980)
describe these and other variable-selection methods.

Criteria Used in Model-Selection Methods

When many significance tests are performed, each at a level of, for example, 5 per-
cent, the overall probability of rejecting at least one true null hypothesis is much
larger than 5 percent. If you want to guard against including any variables that do not
contribute to the predictive power of the model in the population, you should specify a
very small SLE= significance level for the FORWARD and STEPWISE methods and
a very small SLS= significance level for the BACKWARD and STEPWISE methods.

In most applications, many of the variables considered have some predictive power,
however small. If you want to choose the model that provides the best prediction
using the sample estimates, you need only to guard against estimating more param-
eters than can be reliably estimated with the given sample size, so you should use a
moderate significance level, perhaps in the range of 10 percent to 25 percent.

In addition toR2, theCp statistic is displayed for each model generated in the model-
selection methods. TheCp statistic is proposed by Mallows (1973) as a criterion for
selecting a model. It is a measure of total squared error defined as

Cp =
SSEp

s2
− (N − 2p)

wheres2 is the MSE for the full model, andSSEp is the sum-of-squares error for
a model withp parameters including the intercept, if any. IfCp is plotted againstp,
Mallows recommends the model whereCp first approachesp. When the right model
is chosen, the parameter estimates are unbiased, and this is reflected inCp nearp. For
further discussion, refer to Daniel and Wood (1980).

The AdjustedR2 statistic is an alternative toR2 that is adjusted for the number of
parameters in the model. The adjustedR2 statistic is calculated as

ADJRSQ= 1− (n− i)(1−R2)
n− p

wheren is the number of observations used in fitting the model, andi is an indicator
variable that is 1 if the model includes an intercept, and 0 otherwise.
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Limitations in Model-Selection Methods

The use of model-selection methods can be time-consuming in some cases because
there is no built-in limit on the number of independent variables, and the calculations
for a large number of independent variables can be lengthy. The recommended limit
on the number of independent variables for the MINR method is20 + i, wherei is
the value of the INCLUDE= option.

For the RSQUARE, ADJRSQ, or CP methods, with a large value of the BEST=
option, adding one more variable to the list from which regressors are selected may
significantly increase the CPU time. Also, the time required for the analysis is highly
dependent on the data and on the values of the BEST=, START=, and STOP= options.

Parameter Estimates and Associated Statistics

The following example uses the fitness data fromExample 61.1on page 3924.Figure
61.28shows the parameter estimates and the tables from the SS1, SS2, STB, CLB,
COVB, and CORRB options:

proc reg data=fitness;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse

/ ss1 ss2 stb clb covb corrb;
run;

The procedure first displays an Analysis of Variance table (Figure 61.27). The F
statistic for the overall model is significant, indicating that the model explains a sig-
nificant portion of the variation in the data.

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001
Error 24 128.83794 5.36825
Corrected Total 30 851.38154

Root MSE 2.31695 R-Square 0.8487
Dependent Mean 47.37581 Adj R-Sq 0.8108
Coeff Var 4.89057

Figure 61.27. ANOVA Table

The procedure next displays Parameter Estimates and some associated statistics
(Figure 61.28). First, the estimates are shown, followed by their Standard Errors.
The next two columns of the table contain thet statistics and the corresponding prob-
abilities for testing the null hypothesis that the parameter is not significantly different
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from zero. These probabilities are usually referred to asp-values. For example, the
Intercept term in the model is estimated to be 102.9 and is significantly different
from zero. The next two columns of the table are the result of requesting the SS1 and
SS2 options, and they show sequential and partial Sums of Squares (SS) associated
with each variable. The Standardized Estimates (produced by the STB option) are the
parameter estimates that result when all variables are standardized to a mean of 0 and
a variance of 1. These estimates are computed by multiplying the original estimates
by the standard deviation of the regressor (independent) variable and then dividing by
the standard deviation of the dependent variable. The CLB option adds the upper and
lower95% confidence limits for the parameter estimates; theα level can be changed
by specifying the ALPHA= option in the PROC REG or MODEL statement.

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Parameter Estimates

Parameter Standard Standardized
Variable DF Estimate Error t Value Pr > |t| Type I SS Type II SS Estimate 95% Confidence Limits

Intercept 1 102.93448 12.40326 8.30 <.0001 69578 369.72831 0 77.33541 128.53355
RunTime 1 -2.62865 0.38456 -6.84 <.0001 632.90010 250.82210 -0.68460 -3.42235 -1.83496
Age 1 -0.22697 0.09984 -2.27 0.0322 17.76563 27.74577 -0.22204 -0.43303 -0.02092
Weight 1 -0.07418 0.05459 -1.36 0.1869 5.60522 9.91059 -0.11597 -0.18685 0.03850
RunPulse 1 -0.36963 0.11985 -3.08 0.0051 38.87574 51.05806 -0.71133 -0.61699 -0.12226
MaxPulse 1 0.30322 0.13650 2.22 0.0360 26.82640 26.49142 0.52161 0.02150 0.58493
RestPulse 1 -0.02153 0.06605 -0.33 0.7473 0.57051 0.57051 -0.03080 -0.15786 0.11480

Figure 61.28. SS1, SS2, STB, CLB, COVB, and CORRB Options: Parameter
Estimates

The final two tables are produced as a result of requesting the COVB and CORRB
options (Figure 61.29). These tables show the estimated covariance matrix of the
parameter estimates, and the estimated correlation matrix of the estimates.
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The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Covariance of Estimates

Variable Intercept RunTime Age Weight RunPulse MaxPulse RestPulse

Intercept 153.84081152 0.7678373769 -0.902049478 -0.178237818 0.280796516 -0.832761667 -0.147954715
RunTime 0.7678373769 0.1478880839 -0.014191688 -0.004417672 -0.009047784 0.0046249498 -0.010915224
Age -0.902049478 -0.014191688 0.009967521 0.0010219105 -0.001203914 0.0035823843 0.0014897532
Weight -0.178237818 -0.004417672 0.0010219105 0.0029804131 0.0009644683 -0.001372241 0.0003799295
RunPulse 0.280796516 -0.009047784 -0.001203914 0.0009644683 0.0143647273 -0.014952457 -0.000764507
MaxPulse -0.832761667 0.0046249498 0.0035823843 -0.001372241 -0.014952457 0.0186309364 0.0003425724
RestPulse -0.147954715 -0.010915224 0.0014897532 0.0003799295 -0.000764507 0.0003425724 0.0043631674

Correlation of Estimates

Variable Intercept RunTime Age Weight RunPulse MaxPulse RestPulse

Intercept 1.0000 0.1610 -0.7285 -0.2632 0.1889 -0.4919 -0.1806
RunTime 0.1610 1.0000 -0.3696 -0.2104 -0.1963 0.0881 -0.4297
Age -0.7285 -0.3696 1.0000 0.1875 -0.1006 0.2629 0.2259
Weight -0.2632 -0.2104 0.1875 1.0000 0.1474 -0.1842 0.1054
RunPulse 0.1889 -0.1963 -0.1006 0.1474 1.0000 -0.9140 -0.0966
MaxPulse -0.4919 0.0881 0.2629 -0.1842 -0.9140 1.0000 0.0380
RestPulse -0.1806 -0.4297 0.2259 0.1054 -0.0966 0.0380 1.0000

Figure 61.29. SS1, SS2, STB, CLB, COVB, and CORRB Options: Covariances
and Correlations

For further discussion of the parameters and statistics, see the“Displayed Output”
section on page 3918, andChapter 2, “Introduction to Regression Procedures.”

Predicted and Residual Values

The display of the predicted values and residuals is controlled by the P, R, CLM, and
CLI options in the MODEL statement. The P option causes PROC REG to display
the observation number, the ID value (if an ID statement is used), the actual value,
the predicted value, and the residual. The R, CLI, and CLM options also produce the
items under the P option. Thus, P is unnecessary if you use one of the other options.

The R option requests more detail, especially about the residuals. The standard errors
of the mean predicted value and the residual are displayed. The studentized residual,
which is the residual divided by its standard error, is both displayed and plotted. A
measure of influence, Cook’sD, is displayed. Cook’sD measures the change to
the estimates that results from deleting each observation (Cook 1977, 1979). This
statistic is very similar to DFFITS.

The CLM option requests that PROC REG display the100(1−α)% lower and upper
confidence limits for the mean predicted values. This accounts for the variation due
to estimating the parameters only. If you want a100(1−α)% confidence interval for
observed values, then you can use the CLI option, which adds in the variability of the
error term. Theα level can be specified with the ALPHA= option in the PROC REG
or MODEL statement.

You can use these statistics in PLOT and PAINT statements. This is useful in per-
forming a variety of regression diagnostics. For definitions of the statistics produced
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by these options, seeChapter 2, “Introduction to Regression Procedures.”

The following example uses the US population data found on the section“Polynomial
Regression”beginning on page 3804.

data USPop2;
input Year @@;
YearSq=Year*Year;
datalines;

2010 2020 2030
;
data USPop2;

set USPopulation USPop2;

proc reg data=USPop2;
id Year;
model Population=Year YearSq / r cli clm;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 159529 79765 8864.19 <.0001
Error 19 170.97193 8.99852
Corrected Total 21 159700

Root MSE 2.99975 R-Square 0.9989
Dependent Mean 94.64800 Adj R-Sq 0.9988
Coeff Var 3.16938

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 21631 639.50181 33.82 <.0001
Year 1 -24.04581 0.67547 -35.60 <.0001
YearSq 1 0.00668 0.00017820 37.51 <.0001

Figure 61.30. Regression Using the R, CLI, and CLM Options
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The REG Procedure
Model: MODEL1

Dependent Variable: Population

Output Statistics

Dependent Predicted Std Error
Obs Year Variable Value Mean Predict 95% CL Mean 95% CL Predict

1 1790 3.9290 6.2127 1.7565 2.5362 9.8892 -1.0631 13.4884
2 1800 5.3080 5.7226 1.4560 2.6751 8.7701 -1.2565 12.7017
3 1810 7.2390 6.5694 1.2118 4.0331 9.1057 -0.2021 13.3409
4 1820 9.6380 8.7531 1.0305 6.5963 10.9100 2.1144 15.3918
5 1830 12.8660 12.2737 0.9163 10.3558 14.1916 5.7087 18.8386
6 1840 17.0690 17.1311 0.8650 15.3207 18.9415 10.5968 23.6655
7 1850 23.1910 23.3254 0.8613 21.5227 25.1281 16.7932 29.8576
8 1860 31.4430 30.8566 0.8846 29.0051 32.7080 24.3107 37.4024
9 1870 39.8180 39.7246 0.9163 37.8067 41.6425 33.1597 46.2896

10 1880 50.1550 49.9295 0.9436 47.9545 51.9046 43.3476 56.5114
11 1890 62.9470 61.4713 0.9590 59.4641 63.4785 54.8797 68.0629
12 1900 75.9940 74.3499 0.9590 72.3427 76.3571 67.7583 80.9415
13 1910 91.9720 88.5655 0.9436 86.5904 90.5405 81.9836 95.1473
14 1920 105.7100 104.1178 0.9163 102.2000 106.0357 97.5529 110.6828
15 1930 122.7750 121.0071 0.8846 119.1556 122.8585 114.4612 127.5529
16 1940 131.6690 139.2332 0.8613 137.4305 141.0359 132.7010 145.7654
17 1950 151.3250 158.7962 0.8650 156.9858 160.6066 152.2618 165.3306
18 1960 179.3230 179.6961 0.9163 177.7782 181.6139 173.1311 186.2610
19 1970 203.2110 201.9328 1.0305 199.7759 204.0896 195.2941 208.5715
20 1980 226.5420 225.5064 1.2118 222.9701 228.0427 218.7349 232.2779
21 1990 248.7100 250.4168 1.4560 247.3693 253.4644 243.4378 257.3959
22 2000 281.4220 276.6642 1.7565 272.9877 280.3407 269.3884 283.9400
23 2010 . 304.2484 2.1073 299.8377 308.6591 296.5754 311.9214
24 2020 . 333.1695 2.5040 327.9285 338.4104 324.9910 341.3479
25 2030 . 363.4274 2.9435 357.2665 369.5883 354.6310 372.2238

Output Statistics

Std Error Student Cook’s
Obs Year Residual Residual Residual -2-1 0 1 2 D

1 1790 -2.2837 2.432 -0.939 | *| | 0.153
2 1800 -0.4146 2.623 -0.158 | | | 0.003
3 1810 0.6696 2.744 0.244 | | | 0.004
4 1820 0.8849 2.817 0.314 | | | 0.004
5 1830 0.5923 2.856 0.207 | | | 0.001
6 1840 -0.0621 2.872 -0.0216 | | | 0.000
7 1850 -0.1344 2.873 -0.0468 | | | 0.000
8 1860 0.5864 2.866 0.205 | | | 0.001
9 1870 0.0934 2.856 0.0327 | | | 0.000

10 1880 0.2255 2.847 0.0792 | | | 0.000
11 1890 1.4757 2.842 0.519 | |* | 0.010
12 1900 1.6441 2.842 0.578 | |* | 0.013
13 1910 3.4065 2.847 1.196 | |** | 0.052
14 1920 1.5922 2.856 0.557 | |* | 0.011
15 1930 1.7679 2.866 0.617 | |* | 0.012
16 1940 -7.5642 2.873 -2.632 | *****| | 0.208
17 1950 -7.4712 2.872 -2.601 | *****| | 0.205
18 1960 -0.3731 2.856 -0.131 | | | 0.001
19 1970 1.2782 2.817 0.454 | | | 0.009
20 1980 1.0356 2.744 0.377 | | | 0.009
21 1990 -1.7068 2.623 -0.651 | *| | 0.044
22 2000 4.7578 2.432 1.957 | |*** | 0.666
23 2010 . . . .
24 2020 . . . .
25 2030 . . . .

Sum of Residuals -4.4596E-11
Sum of Squared Residuals 170.97193
Predicted Residual SS (PRESS) 237.71229

Figure 61.31. Regression Using the R, CLI, and CLM Options

After producing the usual Analysis of Variance and Parameter Estimates tables
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(Figure 61.30), the procedure displays the results of requesting the options for pre-
dicted and residual values (Figure 61.31). For each observation, the requested infor-
mation is shown. Note that the ID variable is used to identify each observation. Also
note that, for observations with missing dependent variables, the predicted value,
standard error of the predicted value, and confidence intervals for the predicted value
are still available.

The plot of studentized residuals and Cook’sD statistics are displayed as a result
of requesting the R option. In the plot of studentized residuals, a large number of
observations with absolute values greater than two indicates an inadequate model. A
version of the studentized residual plot can be created on a high-resolution graphics
device; seeExample 61.7on page 3952 for a similar example.

Line Printer Scatter Plot Features

This section discusses the special options available with line printer scatter plots.
Detailed examples of high resolution graphics plots and options are given inExample
61.6on page 3950.

Producing Scatter Plots

The interactive PLOT statement available in PROC REG enables you to look at scatter
plots of data and diagnostic statistics. These plots can help you to evaluate the model
and detect outliers in your data. Several options enable you to place multiple plots on
a single page, superimpose plots, and collect plots to be overlaid by later plots. The
PAINT statement can be used to highlight points on a plot. See the section“Painting
Scatter Plots”on page 3889 for more information on painting.

TheClass data set introduced in is used in the following examples.

You can superimpose several plots with the OVERLAY option. With the following
statements, a plot ofWeight againstHeight is overlaid with plots of the predicted
values and the 95% prediction intervals. The model on which the statistics are based
is the full model includingHeight andAge. These statements produceFigure 61.32:

proc reg data=Class lineprinter;
model Weight=Height Age / noprint;
plot (ucl. lcl. p.)*Height=’-’ Weight*Height

/ overlay symbol=’o’;
run;
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The REG Procedure
Model: MODEL1

Dependent Variable: Weight

---+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----
U U95 | |
p | |
p 175 + +
e | |
r | - |

| |
B | |
o 150 + - o +
u | -- |
n | - |
d | -- - o |

| - - o |
o 125 + - - +
f | - |

| - o - o |
9 | - - - o - |
5 | -- -- ? ? - |
% 100 + o - o - +

| - |
C | - o - |
. | - o oo - o o - - |
I | - -- - - |
. 75 + ? - +
( | |
I | - |
n | - |
d | - -- |
i 50 + o -- +
v | |
i | |
d | |
u | - |
a 25 + +
l | |

---+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----
P 50 52 54 56 58 60 62 64 66 68 70 72
r

Height

Figure 61.32. Scatter Plot Showing Data, Predicted Values, and Confidence
Limits

In this plot, the data values are marked with the symbol ’o’ and the predicted val-
ues and prediction interval limits are labeled with the symbol ’-’. The plot is scaled
to accommodate the points from all plots. This is an important difference from the
COLLECT option, which does not rescale plots after the first plot or plots are col-
lected. You could separate the overlaid plots by using the following statements:

plot;
run;

This places each of the four plots on a separate page, while the statements
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plot / overlay;
run;

repeat the previous overlaid plot. In general, the statement

plot;

is equivalent to respecifying the most recent PLOT statement without any options.
However, the COLLECT, HPLOTS=, SYMBOL=, and VPLOTS= options apply
across PLOT statements and remain in effect.

The next example shows how you can overlay plots of statistics before and after a
change in the model. For the full model involvingHeight andAge, the ordinary
residuals and the studentized residuals are plotted against the predicted values. The
COLLECT option causes these plots to be collected or retained for re-display later.
The option HPLOTS=2 allows the two plots to appear side by side on one page. The
symbol ’f’ is used on these plots to identify them as resulting from the full model.
These statements produceFigure 61.33:

plot r.*p. student.*p. / collect hplots=2 symbol=’f’;
run;
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The REG Procedure
Model: MODEL1

-+-----+-----+-----+-----+-----+- -+-----+-----+-----+-----+-----+--
| | | |

30 + + 3 + +
| | | |
| | | |
| | | |
| | | |
| | | |
| f | | f |

20 + + 2 + +
| | | |
| | | |
| | | |
| f | | |
| f | | f |

R | f | | f f |
E 10 + f + S 1 + f +
S | | T | |
I | | U | |
D | f | D | f |
U | | E | |
A | f | N | f |
L | | T | |

0 + f f + 0 + f f +
| | | |
| f | | f |
| f | | f f |
| f | | |
| f | | f |
| | | |

-10 + + -1 + +
| | | f f |
| f f | | |
| | | f |
| f | | f |
| | | |
| f | | |

-20 + + -2 + +
-+-----+-----+-----+-----+-----+- -+-----+-----+-----+-----+-----+--
40 60 80 100 120 140 40 60 80 100 120 140

PRED PRED

Figure 61.33. Collecting Residual Plots for the Full Model

Note that these plots are not overlaid. The COLLECT option does not overlay the
plots in one PLOT statement but retains them so that they can be overlaid by later
plots. When the COLLECT option appears in a PLOT statement, the plots in that
statement become the first plots in the collection.

Next, the model is reduced by deleting theAge variable. The PLOT statement re-
quests the same plots as before but labels the points with the symbol ’r’ denoting the
reduced model. The following statements produceFigure 61.34:

delete Age;
plot r.*p. student.*p. / symbol=’r’;
run;
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The REG Procedure
Model: MODEL1.1

-+-----+-----+-----+-----+-----+- -+-----+-----+-----+-----+-----+--
| | | |

30 + + 3 + +
| | | |
| | | |
| | | |
| | | |
| | | |
| f | | f |

20 + + 2 + +
| r | | |
| | | r |
| | | |
| rf | | r |
| ? r | | f r |

R | r f | | ? r f |
E 10 + f + S 1 + f +
S | | T | |
I | r | U | |
D | f | D | rf |
U | r | E | r |
A | ? | N | ? |
L | | T | |

0 + ? ? + 0 + ? ? +
| r | | r |
| f | | f |
| f r | | f ? |
| r f | | r |
| ? | | ? |
| | | |

-10 + + -1 + +
| | | f f |
| f fr | | r r |
| r | | f |
| f | | r ? |
| r r | | |
| f | | |

-20 + + -2 + +
-+-----+-----+-----+-----+-----+- -+-----+-----+-----+-----+-----+--
40 60 80 100 120 140 40 60 80 100 120 140

PRED PRED

Figure 61.34. Overlaid Residual Plots for Full and Reduced Models

Notice that the COLLECT option causes the corresponding plots to be overlaid.
Also notice that the DELETE statement causes the model label to be changed from
MODEL1 to MODEL1.1. The points labeled ’f’ are from the full model, and points
labeled ’r’ are from the reduced model. Positions labeled ’?’ contain at least one
point from each model. In this example, the OVERLAY option cannot be used be-
cause all of the plots to be overlaid cannot be specified in one PLOT statement. With
the COLLECT option, any changes to the model or the data used to fit the model do
not affect plots collected before the changes. Collected plots are always reproduced
exactly as they first appear. (Similarly, a PAINT statement does not affect plots col-
lected before the PAINT statement is issued.)
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The previous example overlays the residual plots for two different models. You may
prefer to see them side by side on the same page. This can also be done with the
COLLECT option by using a blank plot. Continuing from the last example, the
COLLECT, HPLOTS=2, and SYMBOL=’r’ options are still in effect. In the fol-
lowing PLOT statement, the CLEAR option deletes the collected plots and allows the
specified plot to begin a new collection. The plot created is the residual plot for the
reduced model. These statements produceFigure 61.35:

plot r.*p. / clear;
run;

The REG Procedure
Model: MODEL1.1

-+-----+-----+-----+-----+-----+-
| |
| |
| |
| |

20 + +
| r |
| |
| |
| r |
| r r |
| r |

10 + +
| |
| r |

R | |
E | r |
S | r |
I | |
D 0 + r r +
U | r |
A | |
L | r |

| r |
| r |
| |

-10 + +
| |
| r |
| r |
| |
| r r |
| |

-20 + +
| |
| |
| |
| |
-+-----+-----+-----+-----+-----+-
40 60 80 100 120 140

PRED

Figure 61.35. Residual Plot for Reduced Model Only
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The next statements add the variable AGE to the model and place the residual plot
for the full model next to the plot for the reduced model. Notice that a blank plot
is created in the first plot request by placing nothing between the quotes. Since the
COLLECT option is in effect, this plot is superimposed on the residual plot for the
reduced model. The residual plot for the full model is created by the second request.
The result is the desired side-by-side plots. The NOCOLLECT option turns off the
collection process after the specified plots are added and displayed. Any PLOT state-
ments that follow show only the newly specified plots. These statements produce
Figure 61.36:

add Age;
plot r.*p.=’’ r.*p.=’f’ / nocollect;
run;
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The REG Procedure
Model: MODEL1.2

-+-----+-----+-----+-----+-----+- -+-----+-----+-----+-----+-----+-
| | | |
| | 30 + +
| | | |
| | | |

20 + + | |
| r | | |
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E | r | E 10 + f +
S | r | S | |
I | | I | |
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A | | A | f |
L | r | L | |
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| r | | |
| | | f |

-10 + + | f |
| | | f |
| r | | f |
| r | | |
| | -10 + +
| r r | | |
| | | f f |

-20 + + | |
| | | f |
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-+-----+-----+-----+-----+-----+- -+-----+-----+-----+-----+-----+-
40 60 80 100 120 140 40 60 80 100 120 140

PRED PRED

Figure 61.36. Side-by-Side Residual Plots for the Full and Reduced Models

Frequently, when the COLLECT option is in effect, you want the current and fol-
lowing PLOT statements to show only the specified plots. To do this, use both the
CLEAR and NOCOLLECT options in the current PLOT statement.

Painting Scatter Plots

Painting scatter plots is a useful interactive tool that enables you to mark points of
interest in scatter plots. Painting can be used to identify extreme points in scatter plots
or to reveal the relationship between two scatter plots. The CLASS data (from the
“Simple Linear Regression”section on page 3800) is used to illustrate some of these
applications. First, a scatter plot of the studentized residuals against the predicted
values is generated. This plot is shown inFigure 61.37.
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proc reg data=Class lineprinter;
model Weight=Age Height / noprint;
plot student.*p.;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

---+------+------+------+------+------+------+------+------+------+---
STUDENT | |

| |
3 + +

| |
| |
| |
| |
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i 1 + 1 +
z | |
e | |
d | 11 |

| 1 |
R | |
e 0 + 1 1 +
s | 1 |
i | |
d | 1 2 |
u | 1 |
a | |
l -1 + +

| 1 1 |
| |
| 1 |
| 1 |
| |

-2 + +
| |
---+------+------+------+------+------+------+------+------+------+---

50 60 70 80 90 100 110 120 130 140

Predicted Value of Weight PRED

Figure 61.37. Plotting Studentized Residuals Against Predicted Values

Then, the following statements identify the observation ’Henry’ in the scatter plot
and produceFigure 61.38:

paint Name=’Henry’ / symbol = ’H’;
plot;
run;
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The REG Procedure
Model: MODEL1

Dependent Variable: Weight

---+------+------+------+------+------+------+------+------+------+---
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Figure 61.38. Painting One Observation

Next, the following statements identify observations with large absolute residuals:

paint student.>=2 or student.<=-2 / symbol=’s’;
plot;
run;

The log shows the observation numbers found with these conditions and gives the
painting symbol and the number of observations found. Note that the previous PAINT
statement is also used in the PLOT statement.Figure 61.39shows the scatter plot
produced by the preceding statements.
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The REG Procedure
Model: MODEL1

Dependent Variable: Weight
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Figure 61.39. Painting Several Observations

The following statements relate two different scatter plots. These statements produce
Figure 61.40.

paint student.>=1 / symbol=’p’;
paint student.<1 and student.>-1 / symbol=’s’;
paint student.<=-1 / symbol=’n’;
plot student. * p. cookd. * h. / hplots=2;
run;
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The REG Procedure
Model: MODEL1

-+-----+-----+-----+-----+-----+-- -+----+----+----+----+----+----+-
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Figure 61.40. Painting Observations on More than One Plot

Models of Less Than Full Rank

If the model is not full rank, there are an infinite number of least-squares solutions
for the estimates. PROC REG chooses a nonzero solution for all variables that are
linearly independent of previous variables and a zero solution for other variables.
This solution corresponds to using a generalized inverse in the normal equations, and
the expected values of the estimates are the Hermite normal form ofX multiplied by
the true parameters:

E(b) = (X′X)−(X′X)β
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Degrees of freedom for the zeroed estimates are reported as zero. The hypotheses
that are not testable havet tests reported as missing. The message that the model is
not full rank includes a display of the relations that exist in the matrix.

The next example uses the fitness data fromExample 61.1on page 3924. The vari-
ableDif=RunPulse−RestPulse is created. When this variable is included in the
model along withRunPulse andRestPulse, there is a linear dependency (or ex-
act collinearity) between the independent variables.Figure 61.41shows how this
problem is diagnosed.

data fit2;
set fitness; Dif=RunPulse-RestPulse;

proc reg data=fit2;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse Dif;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001
Error 24 128.83794 5.36825
Corrected Total 30 851.38154

Root MSE 2.31695 R-Square 0.8487
Dependent Mean 47.37581 Adj R-Sq 0.8108
Coeff Var 4.89057

NOTE: Model is not full rank. Least-squares solutions for the parameters are
not unique. Some statistics will be misleading. A reported DF of 0 or B
means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a
linear combination of other variables as shown.

Dif = RunPulse - RestPulse

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 102.93448 12.40326 8.30 <.0001
RunTime 1 -2.62865 0.38456 -6.84 <.0001
Age 1 -0.22697 0.09984 -2.27 0.0322
Weight 1 -0.07418 0.05459 -1.36 0.1869
RunPulse B -0.36963 0.11985 -3.08 0.0051
MaxPulse 1 0.30322 0.13650 2.22 0.0360
RestPulse B -0.02153 0.06605 -0.33 0.7473
Dif 0 0 . . .

Figure 61.41. Model That Is Not Full Rank: REG Procedure
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PROC REG produces a message informing you that the model is less than full rank.
Parameters with DF=0 are not estimated, and parameters with DF=B are biased. In
addition, the form of the linear dependency among the regressors is displayed.

Collinearity Diagnostics

When a regressor is nearly a linear combination of other regressors in the model,
the affected estimates are unstable and have high standard errors. This problem is
calledcollinearity or multicollinearity. It is a good idea to find out which variables
are nearly collinear with which other variables. The approach in PROC REG follows
that of Belsley, Kuh, and Welsch (1980). PROC REG provides several methods for
detecting collinearity with the COLLIN, COLLINOINT, TOL, and VIF options.

The COLLIN option in the MODEL statement requests that a collinearity analysis
be performed. First,X′X is scaled to have 1s on the diagonal. If you specify the
COLLINOINT option, the intercept variable is adjusted out first. Then the eigen-
values and eigenvectors are extracted. The analysis in PROC REG is reported with
eigenvalues ofX′X rather than singular values ofX. The eigenvalues ofX′X are
the squares of the singular values ofX.

The condition indices are the square roots of the ratio of the largest eigenvalue to
each individual eigenvalue. The largest condition index is the condition number of
the scaledX matrix. Belsey, Kuh, and Welsch (1980) suggest that, when this number
is around 10, weak dependencies may be starting to affect the regression estimates.
When this number is larger than 100, the estimates may have a fair amount of numer-
ical error (although the statistical standard error almost always is much greater than
the numerical error).

For each variable, PROC REG produces the proportion of the variance of the estimate
accounted for by each principal component. A collinearity problem occurs when
a component associated with a high condition index contributes strongly (variance
proportion greater than about 0.5) to the variance of two or more variables.

The VIF option in the MODEL statement provides the Variance Inflation Factors
(VIF). These factors measure the inflation in the variances of the parameter estimates
due to collinearities that exist among the regressor (independent) variables. There are
no formal criteria for deciding if a VIF is large enough to affect the predicted values.

The TOL option requests the tolerance values for the parameter estimates. The toler-
ance is defined as1/V IF .

For a complete discussion of the preceding methods, refer to Belsley, Kuh, and
Welsch (1980). For a more detailed explanation of using the methods with PROC
REG, refer to Freund and Littell (1986).

This example uses the COLLIN option on the fitness data found inExample 61.1on
page 3924. The following statements produceFigure 61.42.

proc reg data=fitness;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse

/ tol vif collin;
run;
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The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001
Error 24 128.83794 5.36825
Corrected Total 30 851.38154

Root MSE 2.31695 R-Square 0.8487
Dependent Mean 47.37581 Adj R-Sq 0.8108
Coeff Var 4.89057

Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error t Value Pr > |t| Tolerance Inflation

Intercept 1 102.93448 12.40326 8.30 <.0001 . 0
RunTime 1 -2.62865 0.38456 -6.84 <.0001 0.62859 1.59087
Age 1 -0.22697 0.09984 -2.27 0.0322 0.66101 1.51284
Weight 1 -0.07418 0.05459 -1.36 0.1869 0.86555 1.15533
RunPulse 1 -0.36963 0.11985 -3.08 0.0051 0.11852 8.43727
MaxPulse 1 0.30322 0.13650 2.22 0.0360 0.11437 8.74385
RestPulse 1 -0.02153 0.06605 -0.33 0.7473 0.70642 1.41559

Collinearity Diagnostics

Condition ---------------------------------Proportion of Variation---------------------------------
Number Eigenvalue Index Intercept RunTime Age Weight RunPulse MaxPulse RestPulse

1 6.94991 1.00000 0.00002326 0.00021086 0.00015451 0.00019651 0.00000862 0.00000634 0.00027850
2 0.01868 19.29087 0.00218 0.02522 0.14632 0.01042 0.00000244 0.00000743 0.39064
3 0.01503 21.50072 0.00061541 0.12858 0.15013 0.23571 0.00119 0.00125 0.02809
4 0.00911 27.62115 0.00638 0.60897 0.03186 0.18313 0.00149 0.00123 0.19030
5 0.00607 33.82918 0.00133 0.12501 0.11284 0.44442 0.01506 0.00833 0.36475
6 0.00102 82.63757 0.79966 0.09746 0.49660 0.10330 0.06948 0.00561 0.02026
7 0.00017947 196.78560 0.18981 0.01455 0.06210 0.02283 0.91277 0.98357 0.00568

Figure 61.42. Regression Using the TOL, VIF, and COLLIN Options

Model Fit and Diagnostic Statistics

This section gathers the formulas for the statistics available in the MODEL, PLOT,
and OUTPUT statements. The model to be fit isY = Xβ + ε, and the parameter
estimate is denoted byb = (X′X)−X′Y. The subscripti denotes values for theith
observation, the parenthetical subscript(i) means that the statistic is computed using
all observations except theith observation, and the subscriptjj indicates thejth
diagonal matrix entry. The ALPHA= option in the PROC REG or MODEL statement
is used to set theα value for thet statistics.

Table 61.6contains the summary statistics for assessing the fit of the model.
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Table 61.6. Formulas and Definitions for Model Fit Summary Statistics

MODEL Option
or Statistic

Definition or Formula

n the number of observations
p the number of parameters including the intercept
i 1 if there is an intercept, 0 otherwise

σ̂2 the estimate of pure error variance from the SIGMA=
option or from fitting the full model

SST0 the uncorrected total sum of squares for the dependent
variable

SST1 the total sum of squares corrected for the mean for the
dependent variable

SSE the error sum of squares

MSE
SSE
n− p

R2 1− SSE
SSTi

ADJRSQ 1− (n− i)(1−R2)
n− p

AIC n ln
(

SSE
n

)
+ 2p

BIC n ln
(

SSE
n

)
+ 2(p + 2)q − 2q2 whereq =

nσ̂2

SSE

CP(Cp)
SSE
σ̂2

+ 2p− n

GMSEP
MSE(n + 1)(n− 2)

n(n− p− 1)
=

1
n

Sp(n + 1)(n− 2)

JP(Jp)
n + p

n
MSE

PC
n + p

n− p
(1−R2) = Jp

(
n

SSTi

)
PRESS the sum of squares ofpredri (seeTable 61.7)

RMSE
√

MSE

SBC n ln
(

SSE
n

)
+ p ln(n)

SP(Sp)
MSE

n− p− 1

Table 61.7contains the diagnostic statistics and their formulas; these formulas
and further information can be found inChapter 2, “Introduction to Regression
Procedures,”and in the“Influence Diagnostics”section on page 3898. Each statistic
is computed for each observation.
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Table 61.7. Formulas and Definitions for Diagnostic Statistics

MODEL Option
or Statistic

Formula

PRED (̂Yi) Xib
RES (ri) Yi − Ŷi

H (hi) xi(X′X)−x′
i

STDP
√

hiσ̂2

STDI
√

(1 + hi)σ̂2

STDR
√

(1− hi)σ̂2

LCL Ŷi − tα
2
STDI

LCLM Ŷi − tα
2
STDP

UCL Ŷi + tα
2
STDI

UCLM Ŷi + tα
2
STDP

STUDENT
ri

STDRi

RSTUDENT
ri

σ̂(i)

√
1− hi

COOKD
1
p

STUDENT2(
STDP

STDR2 )

COVRATIO
det(σ̂2

(i)(X
′
(i)x(i))−1

det(σ̂2(X′X)−1)

DFFITS
(Ŷi − Ŷ(i))
(σ̂(i)

√
hi)

DFBETASj

bj − b(i)j

σ̂(i)

√
(X′X)jj

PRESS(predri)
ri

1− hi

Influence Diagnostics

This section discusses the INFLUENCE option, which produces several influence
statistics, and the PARTIAL option, which produces partial regression leverage plots.

The INFLUENCE Option

The INFLUENCE option (in the MODEL statement) requests the statistics proposed
by Belsley, Kuh, and Welsch (1980) to measure the influence of each observation on
the estimates. Influential observations are those that, according to various criteria,
appear to have a large influence on the parameter estimates.

Let b(i) be the parameter estimates after deleting theith observation; lets(i)2 be
the variance estimate after deleting theith observation; letX(i) be theX matrix
without theith observation; let̂y(i) be theith value predicted without using theith
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observation; letri = yi − ŷi be theith residual; and lethi be theith diagonal of the
projection matrix for the predictor space, also called thehat matrix:

hi = xi(X′X)−1x′
i

Belsley, Kuh, and Welsch propose a cutoff of2p/n, wheren is the number of ob-
servations used to fit the model andp is the number of parameters in the model.
Observations withhi values above this cutoff should be investigated.

For each observation, PROC REG first displays the residual, the studentized resid-
ual (RSTUDENT), and thehi. The studentized residual RSTUDENT differs slightly
from STUDENT since the error variance is estimated bys2

(i) without theith observa-

tion, not bys2. For example,

RSTUDENT=
ri

s(i)

√
(1− hi)

Observations with RSTUDENT larger than 2 in absolute value may need some atten-
tion.

The COVRATIO statistic measures the change in the determinant of the covariance
matrix of the estimates by deleting theith observation:

COVRATIO =
det

(
s2(i)(X′

(i)X(i))−1
)

det(s2(X′X)−1)

Belsley, Kuh, and Welsch suggest that observations with

|COVRATIO− 1| ≥ 3p

n

wherep is the number of parameters in the model andn is the number of observations
used to fit the model, are worth investigation.

The DFFITS statistic is a scaled measure of the change in the predicted value for
the ith observation and is calculated by deleting theith observation. A large value
indicates that the observation is very influential in its neighborhood of theX space.

DFFITS=
ŷi − ŷ(i)

s(i)

√
h(i)

Large values of DFFITS indicate influential observations. A general cutoff to con-
sider is 2; a size-adjusted cutoff recommended by Belsley, Kuh, and Welsch is
2
√

p/n, wheren andp are as defined previously.

The DFFITS statistic is very similar to Cook’sD, defined in the section“Predicted
and Residual Values”on page 3879.
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The DFBETAS statistics are the scaled measures of the change in each parameter
estimate and are calculated by deleting theith observation:

DFBETASj =
bj − b(i)j

s(i)

√
(X′X)jj

where(X′X)jj is the(j, j)th element of(X′X)−1.

In general, large values of DFBETAS indicate observations that are influential in
estimating a given parameter. Belsley, Kuh, and Welsch recommend 2 as a general
cutoff value to indicate influential observations and2/

√
n as a size-adjusted cutoff.

Figure 61.43shows the tables produced by the INFLUENCE option for the popula-
tion example (the section“Polynomial Regression”beginning on page 3804). See
Figure 61.30for the fitted regression equation.

proc reg data=USPopulation;
model Population=Year YearSq / influence;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Output Statistics

Hat Diag Cov -----------DFBETAS-----------
Obs Residual RStudent H Ratio DFFITS Intercept Year YearSq

1 -2.2837 -0.9361 0.3429 1.5519 -0.6762 -0.4924 0.4862 -0.4802
2 -0.4146 -0.1540 0.2356 1.5325 -0.0855 -0.0540 0.0531 -0.0523
3 0.6696 0.2379 0.1632 1.3923 0.1050 0.0517 -0.0505 0.0494
4 0.8849 0.3065 0.1180 1.3128 0.1121 0.0335 -0.0322 0.0310
5 0.5923 0.2021 0.0933 1.2883 0.0648 0.0040 -0.0032 0.0025
6 -0.0621 -0.0210 0.0831 1.2827 -0.0063 0.0012 -0.0012 0.0013
7 -0.1344 -0.0455 0.0824 1.2813 -0.0136 0.0054 -0.0055 0.0056
8 0.5864 0.1994 0.0870 1.2796 0.0615 -0.0339 0.0343 -0.0347
9 0.0934 0.0318 0.0933 1.2969 0.0102 -0.0067 0.0067 -0.0068

10 0.2255 0.0771 0.0990 1.3040 0.0255 -0.0182 0.0183 -0.0183
11 1.4757 0.5090 0.1022 1.2550 0.1717 -0.1272 0.1275 -0.1276
12 1.6441 0.5680 0.1022 1.2420 0.1916 -0.1426 0.1426 -0.1424
13 3.4065 1.2109 0.0990 1.0320 0.4013 -0.2895 0.2889 -0.2880
14 1.5922 0.5470 0.0933 1.2345 0.1755 -0.1173 0.1167 -0.1160
15 1.7679 0.6064 0.0870 1.2123 0.1871 -0.1076 0.1067 -0.1056
16 -7.5642 -3.2147 0.0824 0.3286 -0.9636 0.4130 -0.4063 0.3987
17 -7.4712 -3.1550 0.0831 0.3425 -0.9501 0.2131 -0.2048 0.1957
18 -0.3731 -0.1272 0.0933 1.2936 -0.0408 -0.0007 0.0012 -0.0016
19 1.2782 0.4440 0.1180 1.2906 0.1624 0.0415 -0.0432 0.0449
20 1.0356 0.3687 0.1632 1.3741 0.1628 0.0732 -0.0749 0.0766
21 -1.7068 -0.6406 0.2356 1.4380 -0.3557 -0.2107 0.2141 -0.2176
22 4.7578 2.1312 0.3429 0.9113 1.5395 1.0656 -1.0793 1.0933

Sum of Residuals -4.4596E-11
Sum of Squared Residuals 170.97193
Predicted Residual SS (PRESS) 237.71229

Figure 61.43. Regression Using the INFLUENCE Option

In Figure 61.43, observations 16, 17, and 19 exceed the cutoff value of 2 for
RSTUDENT. None of the observations exceeds the general cutoff of 2 for DFFITS or
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the DFBETAS, but observations 16, 17, and 19 exceed at least one of the size-adjusted
cutoffs for these statistics. Observations 1 and 19 exceed the cutoff for the hat diago-
nals, and observations 1, 2, 16, 17, and 18 exceed the cutoffs for COVRATIO. Taken
together, these statistics indicate that you should look first at observations 16, 17, and
19 and then perhaps investigate the other observations that exceeded a cutoff.

The PARTIAL Option

The PARTIAL option in the MODEL statement produces partial regression leverage
plots. If the experimental ODS graphics are not in effect, this option requires the use
of the LINEPRINTER option in the PROC REG statement. One plot is created for
each regressor in the current full model. For example, plots are produced for regres-
sors included by using ADD statements; plots are not produced for interim models in
the various model-selection methods but only for the full model. If you use a model-
selection method and the final model contains only a subset of the original regressors,
the PARTIAL option still produces plots for all regressors in the full model. If the
experimental ODS graphics are in effect, these plots are produced as high-resolution
graphics, in panels with a maximum of six partial regression leverage plots plots per
panel. Multiple panels are displayed for models with more than six regressors.

For a given regressor, the partial regression leverage plot is the plot of the dependent
variable and the regressor after they have been made orthogonal to the other regres-
sors in the model. These can be obtained by plotting the residuals for the dependent
variable against the residuals for the selected regressor, where the residuals for the
dependent variable are calculated with the selected regressor omitted, and the residu-
als for the selected regressor are calculated from a model where the selected regressor
is regressed on the remaining regressors. A line fit to the points has a slope equal to
the parameter estimate in the full model.

When the experimental ODS graphics are not in effect, points in the plot are marked
by the number of replicates appearing at one position. The symbol ’*’ is used if there
are ten or more replicates. If an ID statement is specified, the left-most nonblank
character in the value of the ID variable is used as the plotting symbol.

The following statements use the fitness data inExample 61.1on page 3924 with the
PARTIAL option and the ODS GRAPHICS statement to produce the partial regres-
sion leverage plots. The plots are shown inFigure 61.44. For general information
about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”For spe-
cific information about the graphics available in the REG procedure, see the“ODS
Graphics”section on page 3922.

ods html;
ods graphics on;

proc reg data=fitness;
model Oxygen=RunTime Weight Age / partial;

run;

ods graphics off;
ods html close;
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Figure 61.44. Partial Regression Leverage Plots (Experimental)

The following statements create a similar panel of partial regression plots using
the OUTPUT dataset and the GPLOT procedure. Four plots (created by regressing
Oxygen and one of the variables on the remaining variables) are displayed inFigure
61.45. Notice that theInt variable is explicitly added to be used as the intercept term.

data fitness2;
set fitness;
Int=1;

proc reg data=fitness2 noprint;
model Oxygen Int = RunTime Weight Age / noint;
output out=temp r=ry rx;

symbol1 c=blue;
proc gplot data=temp;

plot ry*rx / cframe=ligr;
label ry=’Oxygen’

rx=’Intercept’;
run;
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Figure 61.45. Partial Regression Leverage Plots

Reweighting Observations in an Analysis

Reweighting observations is an interactive feature of PROC REG that enables you
to change the weights of observations used in computing the regression equation.
Observations can also be deleted from the analysis (not from the data set) by changing
their weights to zero. TheClass data (in the“Getting Started”section on page 3800)
are used to illustrate some of the features of the REWEIGHT statement. First, the
full model is fit, and the residuals are displayed inFigure 61.46.

proc reg data=Class;
model Weight=Age Height / p;
id Name;

run;
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The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Output Statistics

Dependent Predicted
Obs Name Variable Value Residual

1 Alfred 112.5000 124.8686 -12.3686
2 Alice 84.0000 78.6273 5.3727
3 Barbara 98.0000 110.2812 -12.2812
4 Carol 102.5000 102.5670 -0.0670
5 Henry 102.5000 105.0849 -2.5849
6 James 83.0000 80.2266 2.7734
7 Jane 84.5000 89.2191 -4.7191
8 Janet 112.5000 102.7663 9.7337
9 Jeffrey 84.0000 100.2095 -16.2095

10 John 99.5000 86.3415 13.1585
11 Joyce 50.5000 57.3660 -6.8660
12 Judy 90.0000 107.9625 -17.9625
13 Louise 77.0000 76.6295 0.3705
14 Mary 112.0000 117.1544 -5.1544
15 Philip 150.0000 138.2164 11.7836
16 Robert 128.0000 107.2043 20.7957
17 Ronald 133.0000 118.9529 14.0471
18 Thomas 85.0000 79.6676 5.3324
19 William 112.0000 117.1544 -5.1544

Sum of Residuals 0
Sum of Squared Residuals 2120.09974
Predicted Residual SS (PRESS) 3272.72186

Figure 61.46. Full Model for CLASS Data, Residuals Shown

Upon examining the data and residuals, you realize that observation 17 (Ronald) was
mistakenly included in the analysis. Also, you would like to examine the effect of
reweighting to 0.5 those observations with residuals that have absolute values greater
than or equal to 17.

reweight obs.=17;
reweight r. le -17 or r. ge 17 / weight=0.5;
print p;
run;

At this point, a message (on the log) appears that tells you which observations have
been reweighted and what the new weights are.Figure 61.47is produced.
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The REG Procedure
Model: MODEL1.2

Dependent Variable: Weight

Output Statistics

Weight Dependent Predicted
Obs Name Variable Variable Value Residual

1 Alfred 1.0000 112.5000 121.6250 -9.1250
2 Alice 1.0000 84.0000 79.9296 4.0704
3 Barbara 1.0000 98.0000 107.5484 -9.5484
4 Carol 1.0000 102.5000 102.1663 0.3337
5 Henry 1.0000 102.5000 104.3632 -1.8632
6 James 1.0000 83.0000 79.9762 3.0238
7 Jane 1.0000 84.5000 87.8225 -3.3225
8 Janet 1.0000 112.5000 103.6889 8.8111
9 Jeffrey 1.0000 84.0000 98.7606 -14.7606

10 John 1.0000 99.5000 85.3117 14.1883
11 Joyce 1.0000 50.5000 58.6811 -8.1811
12 Judy 0.5000 90.0000 106.8740 -16.8740
13 Louise 1.0000 77.0000 76.8377 0.1623
14 Mary 1.0000 112.0000 116.2429 -4.2429
15 Philip 1.0000 150.0000 135.9688 14.0312
16 Robert 0.5000 128.0000 103.5150 24.4850
17 Ronald 0 133.0000 117.8121 15.1879
18 Thomas 1.0000 85.0000 78.1398 6.8602
19 William 1.0000 112.0000 116.2429 -4.2429

Sum of Residuals 0
Sum of Squared Residuals 1500.61194
Predicted Residual SS (PRESS) 2287.57621

NOTE: The above statistics use observation weights or frequencies.

Figure 61.47. Model with Reweighted Observations

The first REWEIGHT statement excludes observation 17, and the second
REWEIGHT statement reweights observations 12 and 16 to 0.5. An important
feature to note from this example is that the model is not refit until after the PRINT
statement. REWEIGHT statements do not cause the model to be refit. This is so that
multiple REWEIGHT statements can be applied to a subsequent model.

In this example, since the intent is to reweight observations with large residuals, the
observation that was mistakenly included in the analysis should be deleted; then,
the model should be fit for those remaining observations, and the observations with
large residuals should be reweighted. To accomplish this, use the REFIT statement.
Note that the model label has been changed from MODEL1 to MODEL1.2 as two
REWEIGHT statements have been used. These statements produceFigure 61.48:

reweight allobs / weight=1.0;
reweight obs.=17;
refit;
reweight r. le -17 or r. ge 17 / weight=.5;
print;
run;
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The REG Procedure
Model: MODEL1.5

Dependent Variable: Weight

Output Statistics

Weight Dependent Predicted
Obs Name Variable Variable Value Residual

1 Alfred 1.0000 112.5000 120.9716 -8.4716
2 Alice 1.0000 84.0000 79.5342 4.4658
3 Barbara 1.0000 98.0000 107.0746 -9.0746
4 Carol 1.0000 102.5000 101.5681 0.9319
5 Henry 1.0000 102.5000 103.7588 -1.2588
6 James 1.0000 83.0000 79.7204 3.2796
7 Jane 1.0000 84.5000 87.5443 -3.0443
8 Janet 1.0000 112.5000 102.9467 9.5533
9 Jeffrey 1.0000 84.0000 98.3117 -14.3117

10 John 1.0000 99.5000 85.0407 14.4593
11 Joyce 1.0000 50.5000 58.6253 -8.1253
12 Judy 1.0000 90.0000 106.2625 -16.2625
13 Louise 1.0000 77.0000 76.5908 0.4092
14 Mary 1.0000 112.0000 115.4651 -3.4651
15 Philip 1.0000 150.0000 134.9953 15.0047
16 Robert 0.5000 128.0000 103.1923 24.8077
17 Ronald 0 133.0000 117.0299 15.9701
18 Thomas 1.0000 85.0000 78.0288 6.9712
19 William 1.0000 112.0000 115.4651 -3.4651

Sum of Residuals 0
Sum of Squared Residuals 1637.81879
Predicted Residual SS (PRESS) 2473.87984

NOTE: The above statistics use observation weights or frequencies.

Figure 61.48. Observations Excluded from Analysis, Model Refitted and
Observations Reweighted

Notice that this results in a slightly different model than the previous set of state-
ments: only observation 16 is reweighted to 0.5. Also note that the model label is
now MODEL1.5 since five REWEIGHT statements have been used for this model.

Another important feature of the REWEIGHT statement is the ability to nullify the
effect of a previous or all REWEIGHT statements. First, assume that you have several
REWEIGHT statements in effect and you want to restore the original weights of
all the observations. The following REWEIGHT statement accomplishes this and
producesFigure 61.49:

reweight allobs / reset;
print;
run;
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The REG Procedure
Model: MODEL1.6

Dependent Variable: Weight

Output Statistics

Dependent Predicted
Obs Name Variable Value Residual

1 Alfred 112.5000 124.8686 -12.3686
2 Alice 84.0000 78.6273 5.3727
3 Barbara 98.0000 110.2812 -12.2812
4 Carol 102.5000 102.5670 -0.0670
5 Henry 102.5000 105.0849 -2.5849
6 James 83.0000 80.2266 2.7734
7 Jane 84.5000 89.2191 -4.7191
8 Janet 112.5000 102.7663 9.7337
9 Jeffrey 84.0000 100.2095 -16.2095

10 John 99.5000 86.3415 13.1585
11 Joyce 50.5000 57.3660 -6.8660
12 Judy 90.0000 107.9625 -17.9625
13 Louise 77.0000 76.6295 0.3705
14 Mary 112.0000 117.1544 -5.1544
15 Philip 150.0000 138.2164 11.7836
16 Robert 128.0000 107.2043 20.7957
17 Ronald 133.0000 118.9529 14.0471
18 Thomas 85.0000 79.6676 5.3324
19 William 112.0000 117.1544 -5.1544

Sum of Residuals 0
Sum of Squared Residuals 2120.09974
Predicted Residual SS (PRESS) 3272.72186

Figure 61.49. Restoring Weights of All Observations

The resulting model is identical to the original model specified at the beginning of this
section. Notice that the model label is now MODEL1.6. Note that the Weight column
does not appear, since all observations have been reweighted to have weight=1.

Now suppose you want only to undo the changes made by the most recent
REWEIGHT statement. Use REWEIGHT UNDO for this. The following statements
produceFigure 61.50:

reweight r. le -12 or r. ge 12 / weight=.75;
reweight r. le -17 or r. ge 17 / weight=.5;
reweight undo;
print;
run;
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The REG Procedure
Model: MODEL1.9

Dependent Variable: Weight

Output Statistics

Weight Dependent Predicted
Obs Name Variable Variable Value Residual

1 Alfred 0.7500 112.5000 125.1152 -12.6152
2 Alice 1.0000 84.0000 78.7691 5.2309
3 Barbara 0.7500 98.0000 110.3236 -12.3236
4 Carol 1.0000 102.5000 102.8836 -0.3836
5 Henry 1.0000 102.5000 105.3936 -2.8936
6 James 1.0000 83.0000 80.1133 2.8867
7 Jane 1.0000 84.5000 89.0776 -4.5776
8 Janet 1.0000 112.5000 103.3322 9.1678
9 Jeffrey 0.7500 84.0000 100.2835 -16.2835

10 John 0.7500 99.5000 86.2090 13.2910
11 Joyce 1.0000 50.5000 57.0745 -6.5745
12 Judy 0.7500 90.0000 108.2622 -18.2622
13 Louise 1.0000 77.0000 76.5275 0.4725
14 Mary 1.0000 112.0000 117.6752 -5.6752
15 Philip 1.0000 150.0000 138.9211 11.0789
16 Robert 0.7500 128.0000 107.0063 20.9937
17 Ronald 0.7500 133.0000 119.4681 13.5319
18 Thomas 1.0000 85.0000 79.3061 5.6939
19 William 1.0000 112.0000 117.6752 -5.6752

Sum of Residuals 0
Sum of Squared Residuals 1694.87114
Predicted Residual SS (PRESS) 2547.22751

NOTE: The above statistics use observation weights or frequencies.

Figure 61.50. Example of UNDO in REWEIGHT Statement

The resulting model reflects changes made only by the first REWEIGHT statement
since the third REWEIGHT statement negates the effect of the second REWEIGHT
statement. Observations 1, 3, 9, 10, 12, 16, and 17 have their weights changed to
0.75. Note that the label MODEL1.9 reflects the use of nine REWEIGHT statements
for the current model.

Now suppose you want to reset the observations selected by the most recent
REWEIGHT statement to their original weights. Use the REWEIGHT statement
with the RESET option to do this. The following statements produceFigure 61.51:

reweight r. le -12 or r. ge 12 / weight=.75;
reweight r. le -17 or r. ge 17 / weight=.5;
reweight / reset;
print;
run;
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The REG Procedure
Model: MODEL1.12

Dependent Variable: Weight

Output Statistics

Weight Dependent Predicted
Obs Name Variable Variable Value Residual

1 Alfred 0.7500 112.5000 126.0076 -13.5076
2 Alice 1.0000 84.0000 77.8727 6.1273
3 Barbara 0.7500 98.0000 111.2805 -13.2805
4 Carol 1.0000 102.5000 102.4703 0.0297
5 Henry 1.0000 102.5000 105.1278 -2.6278
6 James 1.0000 83.0000 80.2290 2.7710
7 Jane 1.0000 84.5000 89.7199 -5.2199
8 Janet 1.0000 112.5000 102.0122 10.4878
9 Jeffrey 0.7500 84.0000 100.6507 -16.6507

10 John 0.7500 99.5000 86.6828 12.8172
11 Joyce 1.0000 50.5000 56.7703 -6.2703
12 Judy 1.0000 90.0000 108.1649 -18.1649
13 Louise 1.0000 77.0000 76.4327 0.5673
14 Mary 1.0000 112.0000 117.1975 -5.1975
15 Philip 1.0000 150.0000 138.7581 11.2419
16 Robert 1.0000 128.0000 108.7016 19.2984
17 Ronald 0.7500 133.0000 119.0957 13.9043
18 Thomas 1.0000 85.0000 80.3076 4.6924
19 William 1.0000 112.0000 117.1975 -5.1975

Sum of Residuals 0
Sum of Squared Residuals 1879.08980
Predicted Residual SS (PRESS) 2959.57279

NOTE: The above statistics use observation weights or frequencies.

Figure 61.51. REWEIGHT Statement with RESET option

Note that observations that meet the condition of the second REWEIGHT statement
(residuals with an absolute value greater than or equal to 17) now have weights reset
to their original value of 1. Observations 1, 3, 9, 10, and 17 have weights of 0.75,
but observations 12 and 16 (which meet the condition of the second REWEIGHT
statement) have their weights reset to 1.

Notice how the last three examples show three ways to change weights back to a pre-
vious value. In the first example, ALLOBS and the RESET option are used to change
weights for all observations back to their original values. In the second example, the
UNDO option is used to negate the effect of a previous REWEIGHT statement, thus
changing weights for observations selected in the previous REWEIGHT statement to
the weights specified in still another REWEIGHT statement. In the third example,
the RESET option is used to change weights for observations selected in a previ-
ous REWEIGHT statement back to their original values. Finally, note that the label
MODEL1.12 indicates that twelve REWEIGHT statements have been applied to the
original model.
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Testing for Heteroscedasticity

The regression model is specified asyi = xiβ + εi, where theεi’s are identically
and independently distributed:E(ε) = 0 andE(ε′ε) = σ2I. If the εi’s are not in-
dependent or their variances are not constant, the parameter estimates are unbiased,
but the estimate of the covariance matrix is inconsistent. In the case of heteroscedas-
ticity, the ACOV option provides a consistent estimate of the covariance matrix. If
the regression data are from a simple random sample, the ACOV option produces the
covariance matrix. This matrix is

(X′X)−1(X′diag(e2
i )X)(X′X)−1

where

ei = yi − xib

The SPEC option performs a model specification test. The null hypothesis for this
test maintains that the errors are homoscedastic, independent of the regressors and
that several technical assumptions about the model specification are valid. For details,
see theorem 2 and assumptions 1–7 of White (1980). When the model is correctly
specified and the errors are independent of the regressors, the rejection of this null hy-
pothesis is evidence of heteroscedasticity. In implementing this test, an estimator of
the average covariance matrix (White 1980, p. 822) is constructed and inverted. The
nonsingularity of this matrix is one of the assumptions in the null hypothesis about
the model specification. When PROC REG determines this matrix to be numerically
singular, a generalized inverse is used and a note to this effect is written to the log. In
such cases, care should be taken in interpreting the results of this test.

When you specify the SPEC option, tests listed in the TEST statement are performed
with both the usual covariance matrix and the heteroscedasticity consistent covariance
matrix. Tests performed with the consistent covariance matrix are asymptotic. For
more information, refer to White (1980).

Both the ACOV and SPEC options can be specified in a MODEL or PRINT statement.

Multivariate Tests

The MTEST statement described in the“MTEST Statement”section on page 3832
can test hypotheses involving several dependent variables in the form

(Lβ − cj)M = 0

whereL is a linear function on the regressor side,β is a matrix of parameters,c is a
column vector of constants,j is a row vector of ones, andM is a linear function on
the dependent side. The special case where the constants are zero is

LβM = 0
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To test this hypothesis, PROC REG constructs two matrices calledH andE that
correspond to the numerator and denominator of a univariateF test:

H = M′(LB− cj)′(L(X′X)−L′)−1(LB− cj)M

E = M′(Y′Y −B′(X′X)B)M

These matrices are displayed for each MTEST statement if the PRINT option is spec-
ified.

Four test statistics based on the eigenvalues ofE−1H or (E + H)−1H are formed.
These are Wilks’ Lambda, Pillai’s Trace, the Hotelling-Lawley Trace, and Roy’s
maximum root. These test statistics are discussed inChapter 2, “Introduction to
Regression Procedures.”

The following statements perform a multivariate analysis of variance and produce
Figure 61.52throughFigure 61.56:

* Manova Data from Morrison (1976, 190);
data a;

input sex $ drug $ @;
do rep=1 to 4;

input y1 y2 @;
sexcode=(sex=’m’)-(sex=’f’);
drug1=(drug=’a’)-(drug=’c’);
drug2=(drug=’b’)-(drug=’c’);
sexdrug1=sexcode*drug1;
sexdrug2=sexcode*drug2;
output;

end;
datalines;

m a 5 6 5 4 9 9 7 6
m b 7 6 7 7 9 12 6 8
m c 21 15 14 11 17 12 12 10
f a 7 10 6 6 9 7 8 10
f b 10 13 8 7 7 6 6 9
f c 16 12 14 9 14 8 10 5
;
proc reg;

model y1 y2=sexcode drug1 drug2 sexdrug1 sexdrug2;
y1y2drug: mtest y1=y2, drug1,drug2;
drugshow: mtest drug1, drug2 / print canprint;

run;
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The REG Procedure
Model: MODEL1

Dependent Variable: y1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 316.00000 63.20000 12.04 <.0001
Error 18 94.50000 5.25000
Corrected Total 23 410.50000

Root MSE 2.29129 R-Square 0.7698
Dependent Mean 9.75000 Adj R-Sq 0.7058
Coeff Var 23.50039

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 9.75000 0.46771 20.85 <.0001
sexcode 1 0.16667 0.46771 0.36 0.7257
drug1 1 -2.75000 0.66144 -4.16 0.0006
drug2 1 -2.25000 0.66144 -3.40 0.0032
sexdrug1 1 -0.66667 0.66144 -1.01 0.3269
sexdrug2 1 -0.41667 0.66144 -0.63 0.5366

Figure 61.52. Multivariate Analysis of Variance: REG Procedure
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The REG Procedure
Model: MODEL1

Dependent Variable: y2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 69.33333 13.86667 2.19 0.1008
Error 18 114.00000 6.33333
Corrected Total 23 183.33333

Root MSE 2.51661 R-Square 0.3782
Dependent Mean 8.66667 Adj R-Sq 0.2055
Coeff Var 29.03782

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.66667 0.51370 16.87 <.0001
sexcode 1 0.16667 0.51370 0.32 0.7493
drug1 1 -1.41667 0.72648 -1.95 0.0669
drug2 1 -0.16667 0.72648 -0.23 0.8211
sexdrug1 1 -1.16667 0.72648 -1.61 0.1257
sexdrug2 1 -0.41667 0.72648 -0.57 0.5734

Figure 61.53. Multivariate Analysis of Variance: REG Procedure

The REG Procedure
Model: MODEL1

Multivariate Test: y1y2drug

Multivariate Statistics and Exact F Statistics

S=1 M=0 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.28053917 23.08 2 18 <.0001
Pillai’s Trace 0.71946083 23.08 2 18 <.0001
Hotelling-Lawley Trace 2.56456456 23.08 2 18 <.0001
Roy’s Greatest Root 2.56456456 23.08 2 18 <.0001

Figure 61.54. Multivariate Analysis of Variance: First Test

The four multivariate test statistics are all highly significant, giving strong evidence
that the coefficients ofdrug1 anddrug2 are not the same across dependent variables
y1 andy2.
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The REG Procedure
Model: MODEL1

Multivariate Test: drugshow

Error Matrix (E)

94.5 76.5
76.5 114

Hypothesis Matrix (H)

301 97.5
97.5 36.333333333

Adjusted Approximate Squared
Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.905903 0.899927 0.040101 0.820661
2 0.244371 . 0.210254 0.059717

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Eigenvalue Difference Proportion Cumulative

1 4.5760 4.5125 0.9863 0.9863
2 0.0635 0.0137 1.0000

Test of H0: The canonical correlations in the
current row and all that follow are zero

Likelihood Approximate
Ratio F Value Num DF Den DF Pr > F

1 0.16862952 12.20 4 34 <.0001
2 0.94028273 1.14 1 18 0.2991

Figure 61.55. Multivariate Analysis of Variance: Second Test
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The REG Procedure
Model: MODEL1

Multivariate Test: drugshow

Multivariate Statistics and F Approximations

S=2 M=-0.5 N=7.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.16862952 12.20 4 34 <.0001
Pillai’s Trace 0.88037810 7.08 4 36 0.0003
Hotelling-Lawley Trace 4.63953666 19.40 4 19.407 <.0001
Roy’s Greatest Root 4.57602675 41.18 2 18 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Figure 61.56. Multivariate Analysis of Variance: Second Test (continued)

The four multivariate test statistics are all highly significant, giving strong evidence
that the coefficients ofdrug1 anddrug2 are not zero for both dependent variables.

Autocorrelation in Time Series Data

When regression is performed on time series data, the errors may not be independent.
Often errors are autocorrelated; that is, each error is correlated with the error immedi-
ately before it. Autocorrelation is also a symptom of systematic lack of fit. The DW
option provides the Durbin-Watsond statistic to test that the autocorrelation is zero:

d =
∑n

i=2(ei − ei−1)2∑n
i=1 e2

i

The value ofd is close to 2 if the errors are uncorrelated. The distribution ofd is
reported by Durbin and Watson (1951). Tables of the distribution are found in most
econometrics textbooks, such as Johnston (1972) and Pindyck and Rubinfeld (1981).

The sample autocorrelation estimate is displayed after the Durbin-Watson statistic.
The sample is computed as

r =
∑n

i=2 eiei−1∑n
i=1 e2

i

This autocorrelation of the residuals may not be a very good estimate of the autocorre-
lation of the true errors, especially if there are few observations and the independent
variables have certain patterns. If there are missing observations in the regression,
these measures are computed as though the missing observations did not exist.

Positive autocorrelation of the errors generally tends to make the estimate of the error
variance too small, so confidence intervals are too narrow and true null hypotheses
are rejected with a higher probability than the stated significance level. Negative
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autocorrelation of the errors generally tends to make the estimate of the error variance
too large, so confidence intervals are too wide and the power of significance tests
is reduced. With either positive or negative autocorrelation, least-squares parameter
estimates are usually not as efficient as generalized least-squares parameter estimates.
For more details, refer to Judge et al. (1985, Chapter 8) and theSAS/ETS User’s
Guide.

The following SAS statements request the DW option for the US population data (see
Figure 61.57):

proc reg data=USPopulation;
model Population=Year YearSq / dw;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Durbin-Watson D 1.191
Number of Observations 22
1st Order Autocorrelation 0.323

Figure 61.57. Regression Using DW Option

Computations for Ridge Regression and IPC Analysis

In ridge regression analysis, the crossproduct matrix for the independent variables is
centered (the NOINT option is ignored if it is specified) and scaled to one on the diag-
onal elements. The ridge constantk (specified with the RIDGE= option) is then added
to each diagonal element of the crossproduct matrix. The ridge regression estimates
are the least-squares estimates obtained by using the new crossproduct matrix.

Let X be ann × p matrix of the independent variables after centering the data, and
let Y be ann × 1 vector corresponding to the dependent variable. LetD be ap × p
diagonal matrix with diagonal elements as inX′X. The ridge regression estimate
corresponding to the ridge constantk can be computed as

D− 1
2 (Z′Z + kIp)−1Z′Y

whereZ = XD− 1
2 andIp is ap×p identity matrix.

For IPC analysis, the smallestm eigenvalues ofZ′Z (wherem is specified with the
PCOMIT= option) are omitted to form the estimates.

For information about ridge regression and IPC standardized parameter estimates,
parameter estimate standard errors, and variance inflation factors, refer to Rawlings
(1988), Neter, Wasserman, and Kutner (1990), and Marquardt and Snee (1975).
Unlike Rawlings (1988), the REG procedure uses the mean squared errors of the
submodels instead of the full model MSE to compute the standard errors of the pa-
rameter estimates.
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Construction of Q-Q and P-P Plots

If a normal probability-probability or quantile-quantile plot for the variablex is re-
quested, then nonmissing values ofx are first ordered from smallest to largest:

x(1) ≤ x(2) ≤ · · · ≤ x(n)

If a Q-Q plot is requested (with a PLOT statement of the form PLOT
yvariable∗NQQ.), the ith ordered valuex(i) is represented by a point withy-

coordinatex(i) andx-coordinateΦ−1
(

i−0.375
n+0.25

)
, whereΦ(·) is the standard normal

distribution.

If a P-P plot is requested (with a PLOT statement of the form PLOTyvariable∗NPP.),
the ith ordered valuex(i) is represented by a point withy-coordinate i

n and x-

coordinateΦ
(

x(i)−µ

σ

)
, whereµ is the mean of the nonmissingx-values andσ is the

standard deviation. If anx-value has multiplicityk (that is,x(i) = · · · = x(i+k−1)),

then only the point
(
Φ

(
x(i)−µ

σ

)
, i+k−1

n

)
is displayed.

Computational Methods

The REG procedure first composes a crossproducts matrix. The matrix can be cal-
culated from input data, reformed from an input correlation matrix, or read in from
an SSCP data set. For each model, the procedure selects the appropriate crossprod-
ucts from the main matrix. The normal equations formed from the crossproducts are
solved using a sweep algorithm (Goodnight 1979). The method is accurate for data
that are reasonably scaled and not too collinear.

The mechanism that PROC REG uses to check for singularity involves the diagonal
(pivot) elements ofX′X as it is being swept. If a pivot is less than SINGULAR*CSS,
then a singularity is declared and the pivot is not swept (where CSS is the corrected
sum of squares for the regressor and SINGULAR is machine dependent but is ap-
proximately 1E−7 on most machines or reset in the PROC statement).

The sweep algorithm is also used in many places in the model-selection methods.
The RSQUARE method uses the leaps and bounds algorithm by Furnival and Wilson
(1974).

Computer Resources in Regression Analysis

The REG procedure is efficient for ordinary regression; however, requests for op-
tional features can greatly increase the amount of time required.

The major computational expense in the regression analysis is the collection of the
crossproducts matrix. Forp variables andn observations, the time required is pro-
portional tonp2. For each model run, PROC REG needs time roughly proportional
to k3, wherek is the number of regressors in the model. Add an additionalnk2 for
one of the R, CLM, or CLI options and anothernk2 for the INFLUENCE option.
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Most of the memory that PROC REG needs to solve large problems is used for
crossproducts matrices. PROC REG requires4p2 bytes for the main crossproducts
matrix plus4k2 bytes for the largest model. If several output data sets are requested,
memory is also needed for buffers.

See the“Input Data Sets”section on page 3860 for information on how to use
TYPE=SSCP data sets to reduce computing time.

Displayed Output

Many of the more specialized tables are described in detail in previous sections.
Most of the formulas for the statistics are inChapter 2, “Introduction to Regression
Procedures,” while other formulas can be found in the section“Model Fit and
Diagnostic Statistics”on page 3896 and the“Influence Diagnostics”section on page
3898.

The analysis-of-variance table includes

• the Source of the variation, Model for the fitted regression, Error for the resid-
ual error, and C Total for the total variation after correcting for the mean. The
Uncorrected Total Variation is produced when the NOINT option is used.

• the degrees of freedom (DF) associated with the source

• the Sum of Squares for the term

• the Mean Square, the sum of squares divided by the degrees of freedom

• the F Value for testing the hypothesis that all parameters are zero except for the
intercept. This is formed by dividing the mean square for Model by the mean
square for Error.

• the Prob>F, the probability of getting a greaterF statistic than that observed if
the hypothesis is true. This is the significance probability.

Other statistics displayed include the following:

• Root MSE is an estimate of the standard deviation of the error term. It is
calculated as the square root of the mean square error.

• Dep Mean is the sample mean of the dependent variable.

• C.V. is the coefficient of variation, computed as 100 times Root MSE divided
by Dep Mean. This expresses the variation in unitless values.

• R-Square is a measure between 0 and 1 that indicates the portion of the (cor-
rected) total variation that is attributed to the fit rather than left to residual error.
It is calculated as SS(Model) divided by SS(Total). It is also called thecoef-
ficient of determination. It is the square of the multiple correlation; in other
words, the square of the correlation between the dependent variable and the
predicted values.
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• Adj R-Sq, the adjustedR2, is a version ofR2 that has been adjusted for degrees
of freedom. It is calculated as

R̄2 = 1− (n− i)(1−R2)
n− p

wherei is equal to 1 if there is an intercept and 0 otherwise;n is the number
of observations used to fit the model; andp is the number of parameters in the
model.

The parameter estimates and associated statistics are then displayed, and they include
the following:

• the Variable used as the regressor, including the nameIntercept to represent
the estimate of the intercept parameter

• the degrees of freedom (DF) for the variable. There is one degree of freedom
unless the model is not full rank.

• the Parameter Estimate

• the Standard Error, the estimate of the standard deviation of the parameter es-
timate

• T for H0: Parameter=0, thet test that the parameter is zero. This is computed
as the Parameter Estimate divided by the Standard Error.

• the Prob > |T|, the probability that at statistic would obtain a greater absolute
value than that observed given that the true parameter is zero. This is the two-
tailed significance probability.

If model-selection methods other than NONE, RSQUARE, ADJRSQ, or CP are used,
the analysis-of-variance table and the parameter estimates with associated statistics
are produced at each step. Also displayed are

• C(p), which is Mallows’Cp statistic

• bounds on the condition number of the correlation matrix for the variables in
the model (Berk 1977)

After statistics for the final model are produced, the following is displayed when the
method chosen is FORWARD, BACKWARD, or STEPWISE:

• a Summary table listing Step number, Variable Entered or Removed, Partial
and Model R-Square, and C(p) and F statistics

The RSQUARE method displays its results beginning with the model containing the
fewest independent variables and producing the largestR2. Results for other models
with the same number of variables are then shown in order of decreasingR2, and so
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on, for models with larger numbers of variables. The ADJRSQ and CP methods group
models of all sizes together and display results beginning with the model having the
optimal value of adjustedR2andCp, respectively.

For each model considered, the RSQUARE, ADJRSQ, and CP methods display the
following:

• Number in Model or IN, the number of independent variables used in each
model

• R-Square or RSQ, the squared multiple correlation coefficient

If the B option is specified, the RSQUARE, ADJRSQ, and CP methods produce the
following:

• Parameter Estimates, the estimated regression coefficients

If the B option is not specified, the RSQUARE, ADJRSQ, and CP methods display
the following:

• Variables in Model, the names of the independent variables included in the
model

ODS Table Names

PROC REG assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 61.8. ODS Tables Produced in PROC REG

ODS Table Name Description Statement Option
ACovEst Consistent covariance of

estimates matrix
MODEL ALL, ACOV

ACovTestANOVA Test ANOVA using ACOV
estimates

TEST ACOV (MODEL statement)

ANOVA Model ANOVA table MODEL default
CanCorr Canonical correlations for

hypothesis combinations
MTEST CANPRINT

CollinDiag Collinearity Diagnostics
table

MODEL COLLIN

CollinDiagNoInt Collinearity Diagnostics for
no intercept model

MODEL COLLINOINT

ConditionBounds Bounds on condition
number

MODEL (SELECTION=BACKWARD
| FORWARD | STEPWISE
| MAXR | MINR) and
DETAILS
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Table 61.8. (continued)

ODS Table Name Description Statement Option
Corr Correlation matrix for

analysis variables
PROC ALL, CORR

CorrB Correlation of estimates MODEL CORRB
CovB Covariance of estimates MODEL COVB
CrossProducts Bordered modelX’X matrix MODEL ALL, XPX
DWStatistic Durbin-Watson statistic MODEL ALL, DW
DependenceEquations Linear dependence

equations
MODEL default if needed

Eigenvalues MTest eigenvalues MTEST CANPRINT
Eigenvectors MTest eigenvectors MTEST CANPRINT
EntryStatistics Entry statistics for selection

methods
MODEL (SELECTION=BACKWARD

| FORWARD | STEPWISE
| MAXR | MINR) and
DETAILS

ErrorPlusHypothesis MTest error plus hypothesis
matrixH+E

MTEST PRINT

ErrorSSCP MTest error matrixE MTEST PRINT
FitStatistics Model fit statistics MODEL default
HypothesisSSCP MTest hypothesis matrix MTEST PRINT
InvMTestCov Inv(L Ginv(X’X) L ’) and

Inv(Lb -c)
MTEST DETAILS

InvTestCov Inv(L Ginv(X’X) L ’) and
Inv(Lb -c)

TEST PRINT

InvXPX BorderedX’X inverse matrix MODEL I
MTestCov L Ginv(X’X) L ’ andLb -c MTEST DETAILS
MTransform MTest matrixM , across

dependents
MTEST DETAILS

MultStat Multivariate test statistics MTEST default
NObs Number of observations default
OutputStatistics Output statistics table MODEL ALL, CLI, CLM,

INFLUENCE, P, R
ParameterEstimates Model parameter estimates MODEL default
RemovalStatistics Removal statistics for

selection methods
MODEL (SELECTION=BACKWARD

| STEPWISE | MAXR |
MINR) and DETAILS

ResidualStatistics Residual statistics and
PRESS statistic

MODEL ALL, CLI, CLM,
INFLUENCE, P, R

SelParmEst Parameter estimates for
selection methods

MODEL SELECTION=BACKWARD
| FORWARD | STEPWISE |
MAXR | MINR

SelectionSummary Selection summary for
forward, backward and
stepwise methods

MODEL SELECTION=BACKWARD
| FORWARD | STEPWISE

SeqParmEst Sequential parameter
estimates

MODEL SEQB
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Table 61.8. (continued)

ODS Table Name Description Statement Option
SimpleStatistics Simple statistics for analysis

variables
PROC ALL, SIMPLE

SpecTest White’s heteroscedasticity
test

MODEL ALL, SPEC

SubsetSelSummary Selection summary for
R-Square, Adj-RSq and
Cp methods

MODEL SELECTION=RSQUARE |
ADJRSQ | CP

TestANOVA Test ANOVA table TEST default
TestCov L Ginv(X’X) L ’ andLb -c TEST PRINT
USSCP Uncorrected SSCP matrix

for analysis variables
PROC ALL, USSCP

ODS Graphics (Experimental)

This section describes the use of ODS for creating statistical graphs with the REG
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

When the experimental ODS graphics are in effect, the REG procedure produces a
variety of plots. For models with multiple dependent variables, separate plots are pro-
duced for each dependent variable. For jobs with more than one MODEL statement,
plots are produced for each model statement.

The plots available are as follows:

• With a single regressor, a scatterplot of the input data overlayed with the fitted
regression line, confidence band, and prediction limits.

• A summary panel of fit diagnostics:

– Residuals versus the predicted values

– Studentized residuals versus the predicted values

– Studentized residuals versus the leverage

– Normal quantile plot of the residuals

– Dependent variable values versus the predicted values

– Cook’s D versus observation number

– Histogram of the residuals
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– A “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of
the centered fit and the residuals. This plot “shows how much variation
in the data is explained by the fit and how much remains in the residuals”
(Cleveland, 1993).

If the PLOTS(UNPACKPANELS) option is specified in the PROC REG state-
ment, then the eight plots in the fit diagnostics panel are displayed individually.

• Panels of the residuals versus the regressors in the model. Note that each panel
contains at most six plots, and multiple panels are used in the case that there
are more than six regressors (including the intercept) in the model.

• If the PARTIAL option is specified in a MODEL statement, panels of the partial
regression plots for each regressor (see the“The PARTIAL Option” section on
page 3901). Note that each panel contains at most six partial plots, and multiple
panels are used in the case that there are more than six regressors in the model.

• If the RIDGE= option is specified in the model statement, panels of ridge traces
versus the specified ridge parameters for each regressor in the model. At most
eight ridge traces are included on a panel and multiple panels are used for
models with more than eight regressors.

PLOTS (general-plot-options)
specifies characteristics of the graphics produced when you use the experimental
ODS GRAPHICS statement. You can specify the followinggeneral-plot-options in
parentheses after the PLOTS option:

UNPACK | UNPACKPANELS specifies that plots in the fit diagnostics panel should
be displayed separately.

MAXPOINTS=number | NONE specifies that plots with elements that require pro-
cessing more thannumber points are suppressed. The default
is MAXPOINTS=5000. This cutoff is ignored if you specify
MAXPOINTS=NONE.

ODS Graph Names

PROC REG assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed inTable 61.9.

To request these graphs you must specify the ODS GRAPHICS statement. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”
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Table 61.9. ODS Graphics Produced by PROC REG

ODS Graph Name Plot Description PLOTS Option
ActualByPredicted Dependent variable versus predicted

values
UNPACKPANELS

CooksD Cook’s D statistic versus observa-
tion number

UNPACKPANELS

DiagnosticsPanel Panel of fit diagnostics
Fit Regression line, confidence band,

and prediction limits overlayed on
scatterplot of data

PartialPlotPaneli Paneli of partial regression plots
QQPlot Normal quantile plot residuals UNPACKPANELS
ResidualByPredicted Residuals versus predicted values UNPACKPANELS
ResidualHistogram Histogram of fit residuals UNPACKPANELS
ResidualPaneli Paneli of residuals versus regressors
RFPlot Side-by-side plots of quantiles of

centered fit and residuals
UNPACKPANELS

RidgePaneli Paneli of ridge traces
RStudentByLeverage Studentized residuals versus lever-

age
UNPACKPANELS

RStudentByPredicted Studentized residuals versus pre-
dicted values

UNPACKPANELS

Examples

Example 61.1. Aerobic Fitness Prediction

Aerobic fitness (measured by the ability to consume oxygen) is fit to some simple ex-
ercise tests. The goal is to develop an equation to predict fitness based on the exercise
tests rather than on expensive and cumbersome oxygen consumption measurements.
Three model-selection methods are used: forward selection, backward selection, and
MAXR selection. The following statements produceOutput 61.1.1throughOutput
61.1.5. (Collinearity diagnostics for the full model are shown inFigure 61.42on page
3896.)
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*-------------------Data on Physical Fitness-------------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C.State Univ. The variables are Age |
| (years), Weight (kg), Oxygen intake rate (ml per kg body |
| weight per minute), time to run 1.5 miles (minutes), heart |
| rate while resting, heart rate while running (same time |
| Oxygen rate measured), and maximum heart rate recorded while |
| running. |
| ***Certain values of MaxPulse were changed for this analysis.|
*--------------------------------------------------------------*;
data fitness;

input Age Weight Oxygen RunTime RestPulse RunPulse MaxPulse @@;
datalines;

44 89.47 44.609 11.37 62 178 182 40 75.07 45.313 10.07 62 185 185
44 85.84 54.297 8.65 45 156 168 42 68.15 59.571 8.17 40 166 172
38 89.02 49.874 9.22 55 178 180 47 77.45 44.811 11.63 58 176 176
40 75.98 45.681 11.95 70 176 180 43 81.19 49.091 10.85 64 162 170
44 81.42 39.442 13.08 63 174 176 38 81.87 60.055 8.63 48 170 186
44 73.03 50.541 10.13 45 168 168 45 87.66 37.388 14.03 56 186 192
45 66.45 44.754 11.12 51 176 176 47 79.15 47.273 10.60 47 162 164
54 83.12 51.855 10.33 50 166 170 49 81.42 49.156 8.95 44 180 185
51 69.63 40.836 10.95 57 168 172 51 77.91 46.672 10.00 48 162 168
48 91.63 46.774 10.25 48 162 164 49 73.37 50.388 10.08 67 168 168
57 73.37 39.407 12.63 58 174 176 54 79.38 46.080 11.17 62 156 165
52 76.32 45.441 9.63 48 164 166 50 70.87 54.625 8.92 48 146 155
51 67.25 45.118 11.08 48 172 172 54 91.63 39.203 12.88 44 168 172
51 73.71 45.790 10.47 59 186 188 57 59.08 50.545 9.93 49 148 155
49 76.32 48.673 9.40 56 186 188 48 61.24 47.920 11.50 52 170 176
52 82.78 47.467 10.50 53 170 172
;
proc reg data=fitness;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse
/ selection=forward;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse
/ selection=backward;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse
/ selection=maxr;

run;

The FORWARD model-selection method begins with no variables in the model and
addsRunTime, thenAge,...
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Output 61.1.1. Forward Selection Method: PROC REG
The REG Procedure

Model: MODEL1
Dependent Variable: Oxygen

Forward Selection: Step 1

Variable RunTime Entered: R-Square = 0.7434 and C(p) = 13.6988

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 632.90010 632.90010 84.01 <.0001
Error 29 218.48144 7.53384
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 82.42177 3.85530 3443.36654 457.05 <.0001
RunTime -3.31056 0.36119 632.90010 84.01 <.0001

Bounds on condition number: 1, 1
--------------------------------------------------------------------------------

Forward Selection: Step 2

Variable Age Entered: R-Square = 0.7642 and C(p) = 12.3894

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 650.66573 325.33287 45.38 <.0001
Error 28 200.71581 7.16842
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 88.46229 5.37264 1943.41071 271.11 <.0001
Age -0.15037 0.09551 17.76563 2.48 0.1267
RunTime -3.20395 0.35877 571.67751 79.75 <.0001

Bounds on condition number: 1.0369, 4.1478
--------------------------------------------------------------------------------

...thenRunPulse, thenMaxPulse,...
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Forward Selection: Step 3

Variable RunPulse Entered: R-Square = 0.8111 and C(p) = 6.9596

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 690.55086 230.18362 38.64 <.0001
Error 27 160.83069 5.95669
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 111.71806 10.23509 709.69014 119.14 <.0001
Age -0.25640 0.09623 42.28867 7.10 0.0129
RunTime -2.82538 0.35828 370.43529 62.19 <.0001
RunPulse -0.13091 0.05059 39.88512 6.70 0.0154

Bounds on condition number: 1.3548, 11.597
--------------------------------------------------------------------------------

Forward Selection: Step 4

Variable MaxPulse Entered: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 712.45153 178.11288 33.33 <.0001
Error 26 138.93002 5.34346
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 98.14789 11.78569 370.57373 69.35 <.0001
Age -0.19773 0.09564 22.84231 4.27 0.0488
RunTime -2.76758 0.34054 352.93570 66.05 <.0001
RunPulse -0.34811 0.11750 46.90089 8.78 0.0064
MaxPulse 0.27051 0.13362 21.90067 4.10 0.0533

Bounds on condition number: 8.4182, 76.851
--------------------------------------------------------------------------------

...and finally,Weight. The final variable available to add to the model,RestPulse,
is not added since it does not meet the 50% (the default value of the SLE option is
0.5 for FORWARD selection) significance-level criterion for entry into the model.
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Forward Selection: Step 5

Variable Weight Entered: R-Square = 0.8480 and C(p) = 5.1063

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 721.97309 144.39462 27.90 <.0001
Error 25 129.40845 5.17634
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 102.20428 11.97929 376.78935 72.79 <.0001
Age -0.21962 0.09550 27.37429 5.29 0.0301
Weight -0.07230 0.05331 9.52157 1.84 0.1871
RunTime -2.68252 0.34099 320.35968 61.89 <.0001
RunPulse -0.37340 0.11714 52.59624 10.16 0.0038
MaxPulse 0.30491 0.13394 26.82640 5.18 0.0316

Bounds on condition number: 8.7312, 104.83
--------------------------------------------------------------------------------

No other variable met the 0.5000 significance level for entry into the model.

Summary of Forward Selection

Variable Number Partial Model
Step Entered Vars In R-Square R-Square C(p) F Value Pr > F

1 RunTime 1 0.7434 0.7434 13.6988 84.01 <.0001
2 Age 2 0.0209 0.7642 12.3894 2.48 0.1267
3 RunPulse 3 0.0468 0.8111 6.9596 6.70 0.0154
4 MaxPulse 4 0.0257 0.8368 4.8800 4.10 0.0533
5 Weight 5 0.0112 0.8480 5.1063 1.84 0.1871

The BACKWARD model-selection method begins with the full model.
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Output 61.1.2. Backward Selection Method: PROC REG
The REG Procedure

Model: MODEL2
Dependent Variable: Oxygen

Backward Elimination: Step 0

All Variables Entered: R-Square = 0.8487 and C(p) = 7.0000

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001
Error 24 128.83794 5.36825
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 102.93448 12.40326 369.72831 68.87 <.0001
Age -0.22697 0.09984 27.74577 5.17 0.0322
Weight -0.07418 0.05459 9.91059 1.85 0.1869
RunTime -2.62865 0.38456 250.82210 46.72 <.0001
RunPulse -0.36963 0.11985 51.05806 9.51 0.0051
RestPulse -0.02153 0.06605 0.57051 0.11 0.7473
MaxPulse 0.30322 0.13650 26.49142 4.93 0.0360

Bounds on condition number: 8.7438, 137.13
--------------------------------------------------------------------------------

RestPulse is the first variable deleted,...
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Backward Elimination: Step 1

Variable RestPulse Removed: R-Square = 0.8480 and C(p) = 5.1063

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 721.97309 144.39462 27.90 <.0001
Error 25 129.40845 5.17634
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 102.20428 11.97929 376.78935 72.79 <.0001
Age -0.21962 0.09550 27.37429 5.29 0.0301
Weight -0.07230 0.05331 9.52157 1.84 0.1871
RunTime -2.68252 0.34099 320.35968 61.89 <.0001
RunPulse -0.37340 0.11714 52.59624 10.16 0.0038
MaxPulse 0.30491 0.13394 26.82640 5.18 0.0316

Bounds on condition number: 8.7312, 104.83
--------------------------------------------------------------------------------

...followed byWeight. No other variables are deleted from the model since the vari-
ables remaining (Age,RunTime, RunPulse, andMaxPulse) are all significant at
the 10% (the default value of the SLS option is 0.1 for the BACKWARD elimination
method) significance level.
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Backward Elimination: Step 2

Variable Weight Removed: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 712.45153 178.11288 33.33 <.0001
Error 26 138.93002 5.34346
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 98.14789 11.78569 370.57373 69.35 <.0001
Age -0.19773 0.09564 22.84231 4.27 0.0488
RunTime -2.76758 0.34054 352.93570 66.05 <.0001
RunPulse -0.34811 0.11750 46.90089 8.78 0.0064
MaxPulse 0.27051 0.13362 21.90067 4.10 0.0533

Bounds on condition number: 8.4182, 76.851
--------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1000 level.

Summary of Backward Elimination

Variable Number Partial Model
Step Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 RestPulse 5 0.0007 0.8480 5.1063 0.11 0.7473
2 Weight 4 0.0112 0.8368 4.8800 1.84 0.1871

The MAXR method tries to find the “best” one-variable model, the “best” two-
variable model, and so on. For the fitness data, the one-variable model contains
RunTime; the two-variable model containsRunTime andAge;
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Output 61.1.3. Maximum R-Square Improvement Selection Method: PROC REG
The REG Procedure

Model: MODEL3
Dependent Variable: Oxygen

Maximum R-Square Improvement: Step 1

Variable RunTime Entered: R-Square = 0.7434 and C(p) = 13.6988

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 632.90010 632.90010 84.01 <.0001
Error 29 218.48144 7.53384
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 82.42177 3.85530 3443.36654 457.05 <.0001
RunTime -3.31056 0.36119 632.90010 84.01 <.0001

Bounds on condition number: 1, 1
--------------------------------------------------------------------------------

The above model is the best 1-variable model found.

Maximum R-Square Improvement: Step 2

Variable Age Entered: R-Square = 0.7642 and C(p) = 12.3894

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 650.66573 325.33287 45.38 <.0001
Error 28 200.71581 7.16842
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 88.46229 5.37264 1943.41071 271.11 <.0001
Age -0.15037 0.09551 17.76563 2.48 0.1267
RunTime -3.20395 0.35877 571.67751 79.75 <.0001

Bounds on condition number: 1.0369, 4.1478
--------------------------------------------------------------------------------

The above model is the best 2-variable model found.

the three-variable model containsRunTime, Age, andRunPulse; the four-variable
model containsAge, RunTime, RunPulse, andMaxPulse; the five-variable model
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Maximum R-Square Improvement: Step 3

Variable RunPulse Entered: R-Square = 0.8111 and C(p) = 6.9596

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 690.55086 230.18362 38.64 <.0001
Error 27 160.83069 5.95669
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 111.71806 10.23509 709.69014 119.14 <.0001
Age -0.25640 0.09623 42.28867 7.10 0.0129
RunTime -2.82538 0.35828 370.43529 62.19 <.0001
RunPulse -0.13091 0.05059 39.88512 6.70 0.0154

Bounds on condition number: 1.3548, 11.597
--------------------------------------------------------------------------------

The above model is the best 3-variable model found.

Maximum R-Square Improvement: Step 4

Variable MaxPulse Entered: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 712.45153 178.11288 33.33 <.0001
Error 26 138.93002 5.34346
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 98.14789 11.78569 370.57373 69.35 <.0001
Age -0.19773 0.09564 22.84231 4.27 0.0488
RunTime -2.76758 0.34054 352.93570 66.05 <.0001
RunPulse -0.34811 0.11750 46.90089 8.78 0.0064
MaxPulse 0.27051 0.13362 21.90067 4.10 0.0533

Bounds on condition number: 8.4182, 76.851
--------------------------------------------------------------------------------

The above model is the best 4-variable model found.

containsAge, Weight, RunTime, RunPulse, andMaxPulse; and finally, the six-
variable model contains all the variables in the MODEL statement.
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Maximum R-Square Improvement: Step 5

Variable Weight Entered: R-Square = 0.8480 and C(p) = 5.1063

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 721.97309 144.39462 27.90 <.0001
Error 25 129.40845 5.17634
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 102.20428 11.97929 376.78935 72.79 <.0001
Age -0.21962 0.09550 27.37429 5.29 0.0301
Weight -0.07230 0.05331 9.52157 1.84 0.1871
RunTime -2.68252 0.34099 320.35968 61.89 <.0001
RunPulse -0.37340 0.11714 52.59624 10.16 0.0038
MaxPulse 0.30491 0.13394 26.82640 5.18 0.0316

Bounds on condition number: 8.7312, 104.83
--------------------------------------------------------------------------------

The above model is the best 5-variable model found.

Maximum R-Square Improvement: Step 6

Variable RestPulse Entered: R-Square = 0.8487 and C(p) = 7.0000

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001
Error 24 128.83794 5.36825
Corrected Total 30 851.38154

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 102.93448 12.40326 369.72831 68.87 <.0001
Age -0.22697 0.09984 27.74577 5.17 0.0322
Weight -0.07418 0.05459 9.91059 1.85 0.1869
RunTime -2.62865 0.38456 250.82210 46.72 <.0001
RunPulse -0.36963 0.11985 51.05806 9.51 0.0051
RestPulse -0.02153 0.06605 0.57051 0.11 0.7473
MaxPulse 0.30322 0.13650 26.49142 4.93 0.0360

Bounds on condition number: 8.7438, 137.13
--------------------------------------------------------------------------------

The above model is the best 6-variable model found.

No further improvement in R-Square is possible.
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Note that for all three of these methods,RestPulse contributes least to the model. In
the case of forward selection, it is not added to the model. In the case of backward
selection, it is the first variable to be removed from the model. In the case of MAXR
selection,RestPulse is included only for the full model.

For the STEPWISE, BACKWARDS and FORWARD selection methods, you can
control the amount of detail displayed by using the DETAILS option. For example,
the following statements display only the selection summary table for the FORWARD
selection method.

proc reg data=fitness;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=forward details=summary;
run;

Output 61.1.4. Forward Selection Summary
The REG Procedure

Model: MODEL1
Dependent Variable: Oxygen

Summary of Forward Selection

Variable Number Partial Model
Step Entered Vars In R-Square R-Square C(p) F Value Pr > F

1 RunTime 1 0.7434 0.7434 13.6988 84.01 <.0001
2 Age 2 0.0209 0.7642 12.3894 2.48 0.1267
3 RunPulse 3 0.0468 0.8111 6.9596 6.70 0.0154
4 MaxPulse 4 0.0257 0.8368 4.8800 4.10 0.0533
5 Weight 5 0.0112 0.8480 5.1063 1.84 0.1871

Next, the RSQUARE model-selection method is used to requestR2 andCp statis-
tics for all possible combinations of the six independent variables. The following
statements produceOutput 61.1.5

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse
/ selection=rsquare cp;

title ’Physical fitness data: all models’;
run;
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Output 61.1.5. All Models by the RSQUARE Method: PROC REG
Physical fitness data: all models

The REG Procedure
Model: MODEL2

Dependent Variable: Oxygen

R-Square Selection Method

Number in
Model R-Square C(p) Variables in Model

1 0.7434 13.6988 RunTime
1 0.1595 106.3021 RestPulse
1 0.1584 106.4769 RunPulse
1 0.0928 116.8818 Age
1 0.0560 122.7072 MaxPulse
1 0.0265 127.3948 Weight

------------------------------------------------------------------------------
2 0.7642 12.3894 Age RunTime
2 0.7614 12.8372 RunTime RunPulse
2 0.7452 15.4069 RunTime MaxPulse
2 0.7449 15.4523 Weight RunTime
2 0.7435 15.6746 RunTime RestPulse
2 0.3760 73.9645 Age RunPulse
2 0.3003 85.9742 Age RestPulse
2 0.2894 87.6951 RunPulse MaxPulse
2 0.2600 92.3638 Age MaxPulse
2 0.2350 96.3209 RunPulse RestPulse
2 0.1806 104.9523 Weight RestPulse
2 0.1740 105.9939 RestPulse MaxPulse
2 0.1669 107.1332 Weight RunPulse
2 0.1506 109.7057 Age Weight
2 0.0675 122.8881 Weight MaxPulse

------------------------------------------------------------------------------
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3 0.8111 6.9596 Age RunTime RunPulse
3 0.8100 7.1350 RunTime RunPulse MaxPulse
3 0.7817 11.6167 Age RunTime MaxPulse
3 0.7708 13.3453 Age Weight RunTime
3 0.7673 13.8974 Age RunTime RestPulse
3 0.7619 14.7619 RunTime RunPulse RestPulse
3 0.7618 14.7729 Weight RunTime RunPulse
3 0.7462 17.2588 Weight RunTime MaxPulse
3 0.7452 17.4060 RunTime RestPulse MaxPulse
3 0.7451 17.4243 Weight RunTime RestPulse
3 0.4666 61.5873 Age RunPulse RestPulse
3 0.4223 68.6250 Age RunPulse MaxPulse
3 0.4091 70.7102 Age Weight RunPulse
3 0.3900 73.7424 Age RestPulse MaxPulse
3 0.3568 79.0013 Age Weight RestPulse
3 0.3538 79.4891 RunPulse RestPulse MaxPulse
3 0.3208 84.7216 Weight RunPulse MaxPulse
3 0.2902 89.5693 Age Weight MaxPulse
3 0.2447 96.7952 Weight RunPulse RestPulse
3 0.1882 105.7430 Weight RestPulse MaxPulse

------------------------------------------------------------------------------
4 0.8368 4.8800 Age RunTime RunPulse MaxPulse
4 0.8165 8.1035 Age Weight RunTime RunPulse
4 0.8158 8.2056 Weight RunTime RunPulse MaxPulse
4 0.8117 8.8683 Age RunTime RunPulse RestPulse
4 0.8104 9.0697 RunTime RunPulse RestPulse MaxPulse
4 0.7862 12.9039 Age Weight RunTime MaxPulse
4 0.7834 13.3468 Age RunTime RestPulse MaxPulse
4 0.7750 14.6788 Age Weight RunTime RestPulse
4 0.7623 16.7058 Weight RunTime RunPulse RestPulse
4 0.7462 19.2550 Weight RunTime RestPulse MaxPulse
4 0.5034 57.7590 Age Weight RunPulse RestPulse
4 0.5025 57.9092 Age RunPulse RestPulse MaxPulse
4 0.4717 62.7830 Age Weight RunPulse MaxPulse
4 0.4256 70.0963 Age Weight RestPulse MaxPulse
4 0.3858 76.4100 Weight RunPulse RestPulse MaxPulse

------------------------------------------------------------------------------
5 0.8480 5.1063 Age Weight RunTime RunPulse MaxPulse
5 0.8370 6.8461 Age RunTime RunPulse RestPulse MaxPulse
5 0.8176 9.9348 Age Weight RunTime RunPulse RestPulse
5 0.8161 10.1685 Weight RunTime RunPulse RestPulse MaxPulse
5 0.7887 14.5111 Age Weight RunTime RestPulse MaxPulse
5 0.5541 51.7233 Age Weight RunPulse RestPulse MaxPulse

------------------------------------------------------------------------------
6 0.8487 7.0000 Age Weight RunTime RunPulse RestPulse MaxPulse

The models inOutput 61.1.5are arranged first by the number of variables in the model
and second by the magnitude ofR2 for the model. Before making a final decision
about which model to use, you would want to perform collinearity diagnostics. Note
that, since many different models have been fit and the choice of a final model is
based onR2, the statistics are biased and thep-values for the parameter estimates are
not valid.
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Example 61.2. Predicting Weight by Height and Age

In this example, the weights of school children are modeled as a function of their
heights and ages. Modeling is performed separately for boys and girls. The example
shows the use of a BY statement with PROC REG, multiple MODEL statements,
and the OUTEST= and OUTSSCP= options, which create data sets. Since the BY
statement is used, interactive processing is not possible in this example; no statements
can appear after the first RUN statement. The following statements produceOutput
61.2.1throughOutput 61.2.4:

*------------Data on Age, Weight, and Height of Children-------*
| Age (months), height (inches), and weight (pounds) were |
| recorded for a group of school children. |
| From Lewis and Taylor (1967). |
*--------------------------------------------------------------*;

data htwt;
input sex $ age :3.1 height weight @@;
datalines;

f 143 56.3 85.0 f 155 62.3 105.0 f 153 63.3 108.0 f 161 59.0 92.0
f 191 62.5 112.5 f 171 62.5 112.0 f 185 59.0 104.0 f 142 56.5 69.0
f 160 62.0 94.5 f 140 53.8 68.5 f 139 61.5 104.0 f 178 61.5 103.5
f 157 64.5 123.5 f 149 58.3 93.0 f 143 51.3 50.5 f 145 58.8 89.0
f 191 65.3 107.0 f 150 59.5 78.5 f 147 61.3 115.0 f 180 63.3 114.0
f 141 61.8 85.0 f 140 53.5 81.0 f 164 58.0 83.5 f 176 61.3 112.0
f 185 63.3 101.0 f 166 61.5 103.5 f 175 60.8 93.5 f 180 59.0 112.0
f 210 65.5 140.0 f 146 56.3 83.5 f 170 64.3 90.0 f 162 58.0 84.0
f 149 64.3 110.5 f 139 57.5 96.0 f 186 57.8 95.0 f 197 61.5 121.0
f 169 62.3 99.5 f 177 61.8 142.5 f 185 65.3 118.0 f 182 58.3 104.5
f 173 62.8 102.5 f 166 59.3 89.5 f 168 61.5 95.0 f 169 62.0 98.5
f 150 61.3 94.0 f 184 62.3 108.0 f 139 52.8 63.5 f 147 59.8 84.5
f 144 59.5 93.5 f 177 61.3 112.0 f 178 63.5 148.5 f 197 64.8 112.0
f 146 60.0 109.0 f 145 59.0 91.5 f 147 55.8 75.0 f 145 57.8 84.0
f 155 61.3 107.0 f 167 62.3 92.5 f 183 64.3 109.5 f 143 55.5 84.0
f 183 64.5 102.5 f 185 60.0 106.0 f 148 56.3 77.0 f 147 58.3 111.5
f 154 60.0 114.0 f 156 54.5 75.0 f 144 55.8 73.5 f 154 62.8 93.5
f 152 60.5 105.0 f 191 63.3 113.5 f 190 66.8 140.0 f 140 60.0 77.0
f 148 60.5 84.5 f 189 64.3 113.5 f 143 58.3 77.5 f 178 66.5 117.5
f 164 65.3 98.0 f 157 60.5 112.0 f 147 59.5 101.0 f 148 59.0 95.0
f 177 61.3 81.0 f 171 61.5 91.0 f 172 64.8 142.0 f 190 56.8 98.5
f 183 66.5 112.0 f 143 61.5 116.5 f 179 63.0 98.5 f 186 57.0 83.5
f 182 65.5 133.0 f 182 62.0 91.5 f 142 56.0 72.5 f 165 61.3 106.5
f 165 55.5 67.0 f 154 61.0 122.5 f 150 54.5 74.0 f 155 66.0 144.5
f 163 56.5 84.0 f 141 56.0 72.5 f 147 51.5 64.0 f 210 62.0 116.0
f 171 63.0 84.0 f 167 61.0 93.5 f 182 64.0 111.5 f 144 61.0 92.0
f 193 59.8 115.0 f 141 61.3 85.0 f 164 63.3 108.0 f 186 63.5 108.0
f 169 61.5 85.0 f 175 60.3 86.0 f 180 61.3 110.5 m 165 64.8 98.0
m 157 60.5 105.0 m 144 57.3 76.5 m 150 59.5 84.0 m 150 60.8 128.0
m 139 60.5 87.0 m 189 67.0 128.0 m 183 64.8 111.0 m 147 50.5 79.0
m 146 57.5 90.0 m 160 60.5 84.0 m 156 61.8 112.0 m 173 61.3 93.0
m 151 66.3 117.0 m 141 53.3 84.0 m 150 59.0 99.5 m 164 57.8 95.0
m 153 60.0 84.0 m 206 68.3 134.0 m 250 67.5 171.5 m 176 63.8 98.5
m 176 65.0 118.5 m 140 59.5 94.5 m 185 66.0 105.0 m 180 61.8 104.0
m 146 57.3 83.0 m 183 66.0 105.5 m 140 56.5 84.0 m 151 58.3 86.0
m 151 61.0 81.0 m 144 62.8 94.0 m 160 59.3 78.5 m 178 67.3 119.5
m 193 66.3 133.0 m 162 64.5 119.0 m 164 60.5 95.0 m 186 66.0 112.0
m 143 57.5 75.0 m 175 64.0 92.0 m 175 68.0 112.0 m 175 63.5 98.5
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m 173 69.0 112.5 m 170 63.8 112.5 m 174 66.0 108.0 m 164 63.5 108.0
m 144 59.5 88.0 m 156 66.3 106.0 m 149 57.0 92.0 m 144 60.0 117.5
m 147 57.0 84.0 m 188 67.3 112.0 m 169 62.0 100.0 m 172 65.0 112.0
m 150 59.5 84.0 m 193 67.8 127.5 m 157 58.0 80.5 m 168 60.0 93.5
m 140 58.5 86.5 m 156 58.3 92.5 m 156 61.5 108.5 m 158 65.0 121.0
m 184 66.5 112.0 m 156 68.5 114.0 m 144 57.0 84.0 m 176 61.5 81.0
m 168 66.5 111.5 m 149 52.5 81.0 m 142 55.0 70.0 m 188 71.0 140.0
m 203 66.5 117.0 m 142 58.8 84.0 m 189 66.3 112.0 m 188 65.8 150.5
m 200 71.0 147.0 m 152 59.5 105.0 m 174 69.8 119.5 m 166 62.5 84.0
m 145 56.5 91.0 m 143 57.5 101.0 m 163 65.3 117.5 m 166 67.3 121.0
m 182 67.0 133.0 m 173 66.0 112.0 m 155 61.8 91.5 m 162 60.0 105.0
m 177 63.0 111.0 m 177 60.5 112.0 m 175 65.5 114.0 m 166 62.0 91.0
m 150 59.0 98.0 m 150 61.8 118.0 m 188 63.3 115.5 m 163 66.0 112.0
m 171 61.8 112.0 m 162 63.0 91.0 m 141 57.5 85.0 m 174 63.0 112.0
m 142 56.0 87.5 m 148 60.5 118.0 m 140 56.8 83.5 m 160 64.0 116.0
m 144 60.0 89.0 m 206 69.5 171.5 m 159 63.3 112.0 m 149 56.3 72.0
m 193 72.0 150.0 m 194 65.3 134.5 m 152 60.8 97.0 m 146 55.0 71.5
m 139 55.0 73.5 m 186 66.5 112.0 m 161 56.8 75.0 m 153 64.8 128.0
m 196 64.5 98.0 m 164 58.0 84.0 m 159 62.8 99.0 m 178 63.8 112.0
m 153 57.8 79.5 m 155 57.3 80.5 m 178 63.5 102.5 m 142 55.0 76.0
m 164 66.5 112.0 m 189 65.0 114.0 m 164 61.5 140.0 m 167 62.0 107.5
m 151 59.3 87.0
;

title ’----- Data on age, weight, and height of children ------’;

proc reg outest=est1 outsscp=sscp1 rsquare;
by sex;
eq1: model weight=height;
eq2: model weight=height age;

proc print data=sscp1;
title2 ’SSCP type data set’;

proc print data=est1;
title2 ’EST type data set’;

run;



3940 � Chapter 61. The REG Procedure

Output 61.2.1. Height and Weight Data: Female Children
----- Data on age, weight, and height of children ------

------------------------------------ sex=f -------------------------------------

The REG Procedure
Model: eq1

Dependent Variable: weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 21507 21507 141.09 <.0001
Error 109 16615 152.42739
Corrected Total 110 38121

Root MSE 12.34615 R-Square 0.5642
Dependent Mean 98.87838 Adj R-Sq 0.5602
Coeff Var 12.48620

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -153.12891 21.24814 -7.21 <.0001
height 1 4.16361 0.35052 11.88 <.0001

----- Data on age, weight, and height of children ------

------------------------------------ sex=f -------------------------------------

The REG Procedure
Model: eq2

Dependent Variable: weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 22432 11216 77.21 <.0001
Error 108 15689 145.26700
Corrected Total 110 38121

Root MSE 12.05268 R-Square 0.5884
Dependent Mean 98.87838 Adj R-Sq 0.5808
Coeff Var 12.18939

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -150.59698 20.76730 -7.25 <.0001
height 1 3.60378 0.40777 8.84 <.0001
age 1 1.90703 0.75543 2.52 0.0130
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Output 61.2.2. Height and Weight Data: Male Children
----- Data on age, weight, and height of children ------

------------------------------------ sex=m -------------------------------------

The REG Procedure
Model: eq1

Dependent Variable: weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 31126 31126 206.24 <.0001
Error 124 18714 150.92222
Corrected Total 125 49840

Root MSE 12.28504 R-Square 0.6245
Dependent Mean 103.44841 Adj R-Sq 0.6215
Coeff Var 11.87552

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -125.69807 15.99362 -7.86 <.0001
height 1 3.68977 0.25693 14.36 <.0001

----- Data on age, weight, and height of children ------

------------------------------------ sex=m -------------------------------------

The REG Procedure
Model: eq2

Dependent Variable: weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 32975 16487 120.24 <.0001
Error 123 16866 137.11922
Corrected Total 125 49840

Root MSE 11.70979 R-Square 0.6616
Dependent Mean 103.44841 Adj R-Sq 0.6561
Coeff Var 11.31945

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -113.71346 15.59021 -7.29 <.0001
height 1 2.68075 0.36809 7.28 <.0001
age 1 3.08167 0.83927 3.67 0.0004
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For both females and males, the overallF statistics for both models are significant,
indicating that the model explains a significant portion of the variation in the data.
For females, the full model is

weight = −150.57 + 3.60× height + 1.91× age

and, for males, the full model is

weight = −113.71 + 2.68× height + 3.08× age

Output 61.2.3. SSCP Matrix
----- Data on age, weight, and height of children ------

SSCP type data set

Obs sex _TYPE_ _NAME_ Intercept height weight age

1 f SSCP Intercept 111.0 6718.40 10975.50 1824.90
2 f SSCP height 6718.4 407879.32 669469.85 110818.32
3 f SSCP weight 10975.5 669469.85 1123360.75 182444.95
4 f SSCP age 1824.9 110818.32 182444.95 30363.81
5 f N 111.0 111.00 111.00 111.00
6 m SSCP Intercept 126.0 7825.00 13034.50 2072.10
7 m SSCP height 7825.0 488243.60 817919.60 129432.57
8 m SSCP weight 13034.5 817919.60 1398238.75 217717.45
9 m SSCP age 2072.1 129432.57 217717.45 34515.95

10 m N 126.0 126.00 126.00 126.00

The OUTSSCP= data set is shown inOutput 61.2.3. Note how the BY groups are
separated. Observations with–TYPE–=‘N’ contain the number of observations in
the associated BY group. Observations with–TYPE–=‘SSCP’ contain the rows of
the uncorrected sums of squares and crossproducts matrix. The observations with

–NAME–=‘Intercept’ contain crossproducts for the intercept.

Output 61.2.4. OUTEST Data Set
----- Data on age, weight, and height of children ------

EST type data set

Obs sex _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept height weight age _IN_ _P_ _EDF_ _RSQ_

1 f eq1 PARMS weight 12.3461 -153.129 4.16361 -1 . 1 2 109 0.56416
2 f eq2 PARMS weight 12.0527 -150.597 3.60378 -1 1.90703 2 3 108 0.58845
3 m eq1 PARMS weight 12.2850 -125.698 3.68977 -1 . 1 2 124 0.62451
4 m eq2 PARMS weight 11.7098 -113.713 2.68075 -1 3.08167 2 3 123 0.66161

The OUTEST= data set is displayed inOutput 61.2.4; again, the BY groups are sep-
arated. The–MODEL– column contains the labels for models from the MODEL
statements. If no labels are specified, the defaults MODEL1 and MODEL2 would
appear as values for–MODEL– . Note that–TYPE–=‘PARMS’ for all observa-
tions, indicating that all observations contain parameter estimates. The–DEPVAR–
column displays the dependent variable, and the–RMSE– column gives the Root
Mean Square Error for the associated model. TheIntercept column gives the esti-
mate for the intercept for the associated model, and variables with the same name
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as variables in the original data set (height, age) give parameter estimates for those
variables. The dependent variable,weight, is shown with a value of−1. The–IN–
column contains the number of regressors in the model not including the intercept;

–P– contains the number of parameters in the model;–EDF– contains the error
degrees of freedom; and–RSQ– contains theR2 statistic. Finally, note that the

–IN– , –P– , –EDF– and–RSQ– columns appear in the OUTEST= data set since
the RSQUARE option is specified in the PROC REG statement.

Example 61.3. Regression with Quantitative and Qualitative
Variables

At times it is desirable to have independent variables in the model that are qualitative
rather than quantitative. This is easily handled in a regression framework. Regression
uses qualitative variables to distinguish between populations. There are two main
advantages of fitting both populations in one model. You gain the ability to test for
different slopes or intercepts in the populations, and more degrees of freedom are
available for the analysis.

Regression with qualitative variables is different from analysis of variance and anal-
ysis of covariance. Analysis of variance uses qualitative independent variables only.
Analysis of covariance uses quantitative variables in addition to the qualitative vari-
ables in order to account for correlation in the data and reduce MSE; however, the
quantitative variables are not of primary interest and merely improve the precision of
the analysis.

Consider the case whereYi is the dependent variable,X1i is a quantitative variable,
X2i is a qualitative variable taking on values 0 or 1, andX1iX2i is the interaction.
The variableX2i is called a dummy, binary, or indicator variable. With values 0 or 1,
it distinguishes between two populations. The model is of the form

Yi = β0 + β1X1i + β2X2i + β3X1iX2i + εi

for the observationsi = 1, 2, . . . , n. The parameters to be estimated areβ0, β1,
β2, andβ3. The number of dummy variables used is one less than the number of
qualitative levels. This yields a nonsingularX ′X matrix. See Chapter 10 of Neter,
Wasserman, and Kutner (1990) for more details.

An example from Neter, Wasserman, and Kutner (1990) follows. An economist is
investigating the relationship between the size of an insurance firm and the speed at
which they implement new insurance innovations. He believes that the type of firm
may affect this relationship and suspects that there may be some interaction between
the size and type of firm. The dummy variable in the model allows the two firms
to have different intercepts. The interaction term allows the firms to have different
slopes as well.

In this study,Yi is the number of months from the time the first firm implemented the
innovation to the time it was implemented by theith firm. The variableX1i is the
size of the firm, measured in total assets of the firm. The variableX2i denotes the
firm type and is 0 if the firm is a mutual fund company and 1 if the firm is a stock
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company. The dummy variable allows each firm type to have a different intercept and
slope.

The previous model can be broken down into a model for each firm type by plugging
in the values forX2i. If X2i = 0, the model is

Yi = β0 + β1X1i + εi

This is the model for a mutual company. IfX2i = 1, the model for a stock firm is

Yi = (β0 + β2) + (β1 + β3)X1i + εi

This model has interceptβ0 + β2 and slopeβ1 + β3.

The data∗ follow. Note that the interaction term is created in the DATA step since
polynomial effects such assize* type are not allowed in the MODEL statement in
the REG procedure.

title ’Regression With Quantitative and Qualitative Variables’;
data insurance;

input time size type @@;
sizetype=size*type;
datalines;

17 151 0 26 92 0 21 175 0 30 31 0 22 104 0
0 277 0 12 210 0 19 120 0 4 290 0 16 238 0

28 164 1 15 272 1 11 295 1 38 68 1 31 85 1
21 224 1 20 166 1 13 305 1 30 124 1 14 246 1
;
run;

The following statements begin the analysis:

proc reg data=insurance;
model time = size type sizetype;

run;

The ANOVA table is displayed inOutput 61.3.1.

∗From Neter, J. et al.,Applied Linear Statistical Models, Third Edition, Copyright (c) 1990, Richard
D. Irwin. Reprinted with permission of The McGraw-Hill Companies.
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Output 61.3.1. ANOVA Table and Parameter Estimates
Regression With Quantitative and Qualitative Variables

The REG Procedure
Model: MODEL1

Dependent Variable: time

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 1504.41904 501.47301 45.49 <.0001
Error 16 176.38096 11.02381
Corrected Total 19 1680.80000

Root MSE 3.32021 R-Square 0.8951
Dependent Mean 19.40000 Adj R-Sq 0.8754
Coeff Var 17.11450

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 33.83837 2.44065 13.86 <.0001
size 1 -0.10153 0.01305 -7.78 <.0001
type 1 8.13125 3.65405 2.23 0.0408
sizetype 1 -0.00041714 0.01833 -0.02 0.9821

The overallF statistic is significant (F=45.490,p<0.0001). The interaction term is
not significant (t=−0.023,p=0.9821). Hence, this term should be removed and the
model re-fitted, as shown in the following statements.

delete sizetype;
print;

run;

The DELETE statement removes the interaction term (sizetype) from the model.
The new ANOVA table is shown inOutput 61.3.2.
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Output 61.3.2. ANOVA Table and Parameter Estimates
Regression With Quantitative and Qualitative Variables

The REG Procedure
Model: MODEL1.1

Dependent Variable: time

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 1504.41333 752.20667 72.50 <.0001
Error 17 176.38667 10.37569
Corrected Total 19 1680.80000

Root MSE 3.22113 R-Square 0.8951
Dependent Mean 19.40000 Adj R-Sq 0.8827
Coeff Var 16.60377

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 33.87407 1.81386 18.68 <.0001
size 1 -0.10174 0.00889 -11.44 <.0001
type 1 8.05547 1.45911 5.52 <.0001

The overallF statistic is still significant (F=72.497, p<0.0001). The intercept
and the coefficients associated withsize and type are significantly different from
zero (t=18.675,p<0.0001;t=−11.443,p<0.0001;t=5.521,p<0.0001, respectively).
Notice that theR2 did not change with the omission of the interaction term.

The fitted model is

time = 33.87− 0.102× size + 8.055× type

The fitted model for a mutual fund company (X2i = 0) is

time = 33.87− 0.102× size

and the fitted model for a stock company (X2i = 1) is

time = (33.87 + 8.055)− 0.102× size

So the two models have different intercepts but the same slope.

Now plot the residual versus predicted values using the firm type as the plot symbol
(PLOT=TYPE); this can be useful in determining if the firm types have different
residual patterns. PROC REG does not support theplot y*x=type syntax for
high-resolution graphics, so use PROC GPLOT to createOutput 61.3.3. First, the
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OUTPUT statement saves the residuals and predicted values from the new model in
the OUT= data set.

output out=out r=r p=p;
run;
symbol1 v=’0’ c=blue f=swissb;
symbol2 v=’1’ c=yellow f=swissb;
axis1 label=(angle=90);
proc gplot data=out;

plot r*p=type / nolegend vaxis=axis1 cframe=ligr;
plot p*size=type / nolegend vaxis=axis1 cframe=ligr;

run;

Output 61.3.3. Plot of Residual vs. Predicted Values

The residuals show no major trend. Neither firm type by itself shows a trend either.
This indicates that the model is satisfactory.

A plot of the predicted values versussize appears inOutput 61.3.4, where the firm
type is again used as the plotting symbol.
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Output 61.3.4. Plot of Predicted vs. Size

The different intercepts are very evident in this plot.

Example 61.4. Displaying Plots for Simple Linear Regression

This example introduces the basic PROC REG graphics syntax used to produce a
standard plot of data from the aerobic fitness data set (Example 61.1on page 3924).
A simple linear regression ofOxygen on RunTime is performed, and a plot of
Oxygen∗RunTime is requested. The fitted model, the regression line, and the four
default statistics are also displayed inOutput 61.4.1.

data fitness;
set fitness;
label Age =’age(years)’

Weight =’weight(kg)’
Oxygen =’oxygen uptake(ml/kg/min)’
RunTime =’1.5 mile time(min)’
RestPulse=’rest pulse’
RunPulse =’running pulse’
MaxPulse =’maximum running pulse’;

proc reg data=fitness;
model Oxygen=RunTime;
plot Oxygen*RunTime / cframe=ligr;

run;
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Output 61.4.1. Simple Linear Regression

Example 61.5. Creating a Cp Plot

TheCp statistics for model selection are plotted against the number of parameters in
the model, and the CHOCKING= and CMALLOWS= options draw useful reference
lines. Note the four default statistics in the plot margin, the default model equation,
and the default legend inOutput 61.5.1.

title ’Cp Plot with Reference Lines’;
symbol1 c=green;
proc reg data=fitness;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse
/ selection=rsquare noprint;

plot cp.*np.
/ chocking=red cmallows=blue

vaxis=0 to 15 by 5 cframe=ligr;
run;
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Output 61.5.1. Cp Plot

Using the criteria suggested by Hocking (1976) (see the section“Dictionary of
PLOT Statement Options”beginning on page 3844),Output 61.5.1indicates that
a 6-variable model is a reasonable choice for doing parameter estimation, while a
5-variable model may be suitable for doing prediction.

Example 61.6. Controlling Plot Appearance with Graphic
Options

This example uses model fit summary statistics from the OUTEST= data set to create
a plot for a model selection analysis. Global graphics statements and PLOT statement
options are used to control the appearance of the plot.

goptions ctitle=black htitle=3.5pct ftitle=swiss
ctext =magenta htext =3.0pct ftext =swiss
cback =ligr border;

symbol1 v=circle c=red h=1 w=2;
title1 ’Selection=Rsquare’;
title2 ’plot Rsquare versus the number of parameters P in ’

’each model’;

proc reg data=fitness;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=rsquare noprint;
plot rsq.*np.

/ aic bic edf gmsep jp np pc sbc sp
haxis=2 to 7 by 1
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caxis=red cframe=white ctext=blue
modellab=’Full Model’ modelht=2.4
statht=2.4;

run;

In the GOPTIONS statement,

BORDER frames the entire display

CBACK= specifies the background color

CTEXT= selects the default color for the border and all text, including titles,
footnotes, and notes

CTITLE= specifies the title, footnote, note, and border color

HTEXT= specifies the height for all text in the display

HTITLE= specifies the height for the first title line

FTEXT= selects the default font for all text, including titles, footnotes, notes,
the model label and equation, the statistics, the axis labels, the tick
values, and the legend

FTITLE= specifies the first title font

For more information on the GOPTIONS statement and other global graphics state-
ments, refer toSAS/GRAPH Software: Reference.

Output 61.6.1. Controlling Plot Appearance and Plotting OUTEST= Statistics
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In Output 61.6.1, note the following:

• The PLOT statement option CTEXT= affects all text not controlled by the
CTITLE= option in the GOPTIONS statement. Hence, the GOPTIONS state-
ment option CTEXT=MAGENTA has no effect. Therefore, the color of the
title is black and all other text is blue.

• The area enclosed by the axes and the frame has a white background, while the
background outside the plot area is gray.

• The MODELHT= option allows the entire model equation to fit on one line.

• The STATHT= option allows the statistics in the margin to fit in one column.

• The displayed statistics and the fitted model equation refer to the selected
model. See the“Traditional High-Resolution Graphics Plots”section begin-
ning on page 3840 for more information.

Example 61.7. Plotting Model Diagnostic Statistics

This example illustrates how you can display diagnostics for checking the adequacy
of a regression model. The following statements plot the studentized deleted resid-
uals against the observation number for the full model. Vertical reference lines at
±tinv(.95, n−p−1) = ±1.714 are added to identify possible outlyingOxygen val-
ues. A vertical reference line is displayed at zero by default when the RSTUDENT
option is specified. The graph is shown inOutput 61.7.1. Observations 15 and 17 are
indicated as possible outliers.

title ’Check for Outlying Observations’;
symbol v=dot h=1 c=green;

proc reg data=fitness;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse;
plot rstudent.*obs.

/ vref= -1.714 1.714 cvref=blue lvref=1
href= 0 to 30 by 5 chref=red cframe=ligr;

run;
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Output 61.7.1. Plotting Model Diagnostic Statistics

Example 61.8. Creating PP and QQ Plots

The following program creates probability-probability plots and quantile-quantile
plots of the residuals (Output 61.8.1andOutput 61.8.2, respectively). An annotation
data set is created to produce the (0,0)−(1,1) reference line for the PP-plot. Note that
the NOSTAT option for the PP-plot suppresses the statistics that would be displayed
in the margin.
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data annote1;
length function color $8;
retain ysys xsys ’2’ color ’black’;
function=’move’;

x=0;
y=0;
output;

function=’draw’;
x=1;
y=1;
output;

run;

symbol1 c=blue;
proc reg data=fitness;

title ’PP Plot’;
model Oxygen=RunTime / noprint;
plot npp.*r.

/ annotate=annote1 nostat cframe=ligr
modellab="’Best’ Two-Parameter Model:";

run;
title ’QQ Plot’;
plot r.*nqq.

/ noline mse cframe=ligr
modellab="’Best’ Two-Parameter Model:";

run;

Output 61.8.1. Normal Probability-Probability Plot for the Residuals



Example 61.9. Displaying Confidence and Prediction Intervals � 3955

Output 61.8.2. Normal Quantile-Quantile Plot for the Residuals

Example 61.9. Displaying Confidence and Prediction Intervals

This example illustrates how you can use shorthand commands to plot the dependent
variable, the predicted value, and the 95% confidence or prediction intervals against
a regressor. The following statements use the PRED option to create a plot with pre-
diction intervals; the CONF option works similarly. Results are displayed inOutput
61.9.1. Note that the statistics displayed by default in the margin are suppressed while
three other statistics are exhibited.

legend1 position=(bottom left inside)
across=1 cborder=red offset=(0,0)
shape=symbol(3,1) label=none
value=(height=.8);

title ’Prediction Intervals’;
symbol1 c=yellow v=- h=1;
symbol2 c=red;
symbol3 c=blue;
symbol4 c=blue;

proc reg data=fitness;
model Oxygen=RunTime / noprint;
plot Oxygen*RunTime / pred nostat mse aic bic

caxis=red ctext=blue cframe=ligr
legend=legend1 modellab=’ ’;

run;
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Output 61.9.1. Prediction Intervals

Plots can be produced with both confidence and prediction intervals using the follow-
ing statement.

plot Oxygen*RunTime / conf pred;

Example 61.10. Displaying the Ridge Trace for Acetylene Data

This example andExample 61.11use the acetylene data in Marquardt and Snee
(1975) to illustrate the RIDGEPLOT and OUTVIF options.

data acetyl;
input x1-x4 @@;
x1x2 = x1 * x2;
x1x1 = x1 * x1;
label x1 = ’reactor temperature(celsius)’

x2 = ’h2 to n-heptone ratio’
x3 = ’contact time(sec)’
x4 = ’conversion percentage’
x1x2= ’temperature-ratio interaction’
x1x1= ’squared temperature’;

datalines;
1300 7.5 .012 49 1300 9 .012 50.2 1300 11 .0115 50.5
1300 13.5 .013 48.5 1300 17 .0135 47.5 1300 23 .012 44.5
1200 5.3 .04 28 1200 7.5 .038 31.5 1200 11 .032 34.5
1200 13.5 .026 35 1200 17 .034 38 1200 23 .041 38.5
1100 5.3 .084 15 1100 7.5 .098 17 1100 11 .092 20.5
1100 17 .086 29.5
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;

title ’Ridge Trace of Acetylene Data’;
symbol1 v=x c=blue;
symbol2 v=circle c=yellow;
symbol3 v=square c=cyan;
symbol4 v=triangle c=green;
symbol5 v=plus c=orange;
legend2 position=(bottom right inside)

across=3 cborder=black offset=(0,0)
label=(color=blue position=(top center)

’independent variables’) cframe=white;

proc reg data=acetyl outvif
outest=b ridge=0 to 0.02 by .002;

model x4=x1 x2 x3 x1x2 x1x1/noprint;
plot / ridgeplot nomodel legend=legend2 nostat

vref=0 lvref=1 cvref=blue cframe=ligr;
run;

The results produced by the RIDGEPLOT option are shown inOutput 61.10.1. The
OUTVIF option outputs the variance inflation factors to the OUTEST= data set,
which is used inExample 61.11.

Output 61.10.1. Using the RIDEGPLOT Option for Ridge Regression

If you specify the experimental ODS GRAPHICS statement (see the“ODS Graphics”
section on page 3922), a plot of ridge traces is produced, without the need to spec-
ify the RIDGEPLOT option in the PLOT statement. For general information about
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ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”The following
statements provide an example:

ods html;
ods graphics on;

proc reg data=acetyl outest=b ridge=0 to 0.02 by .002;
model x4=x1 x2 x3 x1x2 x1x1/noprint;

run;

ods graphics off;
ods html close;

Output 61.10.2. Ridge Traces Produced with ODS Graphics (Experimental)

Example 61.11. Plotting Variance Inflation Factors

This example uses the REG procedure to create plots from a data set. The variance
inflation factors (output by the OUTVIF option in the previous example) are plotted
against the ridge regression control valuesk. The following statements createOutput
61.11.1:
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data b (keep=_RIDGE_ x1-x3 x1x2 x1x1);
set b;
if _TYPE_=’RIDGEVIF’;
label x1=’variance inflation factor’;

run;

legend3 position=(top right inside) across=3
cborder=black cframe=white
label=(color=blue position=(top center)

’independent variables’)
value=(’X1’ ’X2’ ’X3’ ’X1X2’ ’X1X1’);

symbol1 c=blue /*v=circle */;
symbol2 c=yellow /*v=x */;
symbol3 c=cyan /*v=triangle*/;
symbol4 c=green /*v=square */;
symbol5 c=orange /*v=diamond */;
title ’Variance Inflation Factors of Acetylene Data’;

proc reg data=b;
var _RIDGE_ x3 x1x2 x1x1;
model x1=x2 / noprint;
plot (x1 x2 x3 x1x2 x1x1)*_RIDGE_

/ nomodel nostat legend=legend3 overlay
vaxis = 0 to 75 by 25 cframe=ligr
haxis = 0 to .02 by .002;

footnote "Note: the VIF at k=0 is 7682 for X1, "
"6643 for X1X1, 345 for X1X2, and 320 for X2";

run;

The GPLOT procedure can create the same plot with the following statements. The
resulting display is not shown in this report.

axis1 label=(a=90 r=0 ’variance inflation factor’)
order=(0 to 75 by 25) minor=none;

proc gplot data=b;
plot (x1 x2 x3 x1x2 x1x1)*_RIDGE_

/ legend=legend3 overlay frame
vaxis = axis1
haxis = 0 to .02 by .002 hminor=0;

footnote "Note: the VIF at k=0 is 7682 for X1, "
"6643 for X1X1, 345 for X1X2, and 320 for X2";

run;
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Output 61.11.1. Using PROC REG to Plot the VIFs

Example 61.12. ODS Graphics

This example highlights the use of ODS for creating statistical graphs with the REG
procedure. The USPopulation example is revisited, showing how these graphics can
be used to enrich the analysis. Note that the ODS graphics available with PROC REG
can be obtained in addition to the graphics you can request with the PLOT statement.

To request the ODS plots you need to specify the experimental ODS GRAPHICS
statement. For general information about ODS graphics, seeChapter 15, “Statistical
Graphics Using ODS.”For specific information about the graphics available in the
REG procedure, see the“ODS Graphics”section on page 3922.

The following statements produce the default plots:

ods html;
ods graphics on;

proc reg data=USPopulation;
Linear: model Population=Year;
Quadratic:model Population=Year YearSq;

run;quit;

ods graphics off;
ods html close;
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Output 61.12.1. Fit Diagnostics For the Model Linear in Year (Experimental)

When the experimental ODS graphics are in effect, the fit diagnostic panelOutput
61.12.1is produced by default. These diagnostic plots suggest that while the lin-
ear model captures the increasing trend in the data, the model could be significantly
improved by adding a term which is quadratic in the variable year:

• The plots of residual and studentized residual versus predicted value show a
clear quadratic pattern.

• The plot of studentized residual versus leverage seems to indicate that there
are two outlying data points. However, the plot of Cook’s D distance versus
observation number reveals that these two points are just the data points for the
endpoint years 1790 and 2000. These points show up as apparent outliers be-
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cause the departure of the linear model from the underlying quadratic behavior
in the data shows up most strongly at these endpoints.

• The normal quantile plot of the residuals and the residual histogram are not
consistent with the assumption of gaussian errors. This occurs as the residuals
themselves still contain the quadratic behavior that is not captured by the linear
model.

• The plot of the dependent variable versus the predicted value exhibits a
quadratic form around the 45 degree line which represents a perfect fit.

• The “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of
the centered fit and the residuals shows that the spread in the residuals is no
greater than the spread in the centered fit. For inappropriate models, the spread
of the residuals in such a plot is often greater than the spread of the centered
fit. In this case, the RF plot shows that the linear model does indeed capture
the increasing trend in the data, and hence accounts for much of the variation
in the response.

Output 61.12.2. Residual By Year For the Model Linear in Year (Experimental)

The plot of residual versus the regressor shown inOutput 61.12.2also indicates the
need for a quadratic term in the model. There is a strong quadratic trend still remain-
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ing in the residuals. Note for models with multiple regressors the plots of residual
versus each of the regressors are displayed in panels with up to six plots per panel.

Output 61.12.3. Fit Plot with Confidence Band and Prediction Limits
(Experimental)

Output 61.12.3shows as scatterplot of the data overlayed with the regression line,
and 95% confidence band and prediction limits. Note that this plot also indicates that
the model fails to capture the quadratic nature of the data. This plot is produced for
models containing a single regressor. You can use the ALPHA= option in the model
statement to change the significance level of the confidence band and prediction lim-
its.
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Output 61.12.4. Fit Diagnostics For the Model Linear in Year (Experimental)

By contrast,Output 61.12.4shows the fit diagnostics panel for the model that includes
a quadratic term for year. These diagnostics indicate that this model is significantly
more successful than the corresponding linear model:

• The plots of residuals and studentized residuals versus predicted values exhibit
no obvious patterns.

• The points on the plot of the dependent variable versus the predicted values
lie along a 45 degree line, indicating that the model successfully predicts the
behavior of the dependent variable.

• The plot of studentized residual versus leverage shows that the years 1790 and
2000 are leverage points with 2000 showing up as an outlier. This is confirmed
by the plot of Cook’s D distance versus observation number. This suggests that
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while the quadratic model fits the current data well, the model may not be quite
so successful over a wider range of data. You might want to investigate whether
the population trend over the last couple of decades is growing slightly faster
than quadratically.

If you want to obtain the plots in the Diagnostics Panel as individual plots, you can do
so by specifying the PLOTS(UNPACKPANELS) option in the PROC REG statement.
The following statements provide an example:

ods html;
ods graphics on;

proc reg data=USPopulation plots(unpackpanels);
Quadratic:model Population=Year YearSq;

run;quit;

ods graphics off;
ods html close;

Output 61.12.5. Residual Histogram (Experimental)

The residual histogram is shown inOutput 61.12.5.



3966 � Chapter 61. The REG Procedure

References

Akaike, H. (1969), “Fitting Autoregressive Models for Prediction,”Annals of the
Institute of Statistical Mathematics, 21, 243–247.

Allen, D.M. (1971), “Mean Square Error of Prediction as a Criterion for Selecting
Variables,”Technometrics, 13, 469–475.

Allen, D.M. and Cady, F.B. (1982),Analyzing Experimental Data by Regression,
Belmont, CA: Lifetime Learning Publications.

Amemiya, T. (1976), “Selection of Regressors,” Technical Report No. 225, Stanford,
CA: Stanford University.

Belsley, D.A., Kuh, E., and Welsch, R.E. (1980),Regression Diagnostics, New York:
John Wiley & Sons, Inc.

Berk, K.N. (1977), “Tolerance and Condition in Regression Computations,”Journal
of the American Statistical Association, 72, 863–866.

Bock, R.D. (1975),Multivariate Statistical Methods in Behavioral Research, New
York: McGraw-Hill Book Co.

Box, G.E.P. (1966), “The Use and Abuse of Regression,”Technometrics, 8, 625–629.

Cleveland, W.S. (1993),Visualizing Data, Summit, NJ: Hobart Press.

Cook, R.D. (1977), “Detection of Influential Observations in Linear Regression,”
Technometrics, 19, 15–18.

Cook, R.D. (1979), “Influential Observations in Linear Regression,”Journal of the
American Statistical Association, 74, 169–174.

Daniel, C. and Wood, F. (1980),Fitting Equations to Data, Revised Edition, New
York: John Wiley & Sons, Inc.

Darlington, R.B. (1968), “Multiple Regression in Psychological Research and
Practice,”Psychological Bulletin, 69, 161–182.

Draper, N. and Smith, H. (1981),Applied Regression Analysis, Second Edition, New
York: John Wiley & Sons, Inc.

Durbin, J. and Watson, G.S. (1951), “Testing for Serial Correlation in Least Squares
Regression,”Biometrika, 37, 409–428.

Freund, R.J. and Littell, R.C. (1986),SAS System for Regression, 1986 Edition, Cary,
NC: SAS Institute Inc.

Furnival, G.M. and Wilson, R.W. (1974), “Regression by Leaps and Bounds,”
Technometrics, 16, 499–511.

Gauss, K.F. (1809),Werke, 4, 1–93.

Goodnight, J.H. (1979), “A Tutorial on the SWEEP Operator,”The American
Statistician, 33, 149–158. (Also available asThe Sweep Operator: Its
Importance in Statistical Computing, SAS Technical Report R-106.)



References � 3967

Grunfeld, Y. (1958), “The Determinants of Corporate Investment,” unpublished
thesis, Chicago, discussed in Boot, J.C.G. (1960), “Investment Demand: An
Empirical Contribution to the Aggregation Problem,”International Economic
Review, 1, 3–30.

Hocking, R.R. (1976), “The Analysis and Selection of Variables in Linear
Regression,”Biometrics, 32, 1–50.

Johnston, J. (1972),Econometric Methods, New York: McGraw-Hill Book Co.

Judge, G.G., Griffiths, W.E., Hill, R.C., and Lee, T. (1980),The Theory and Practice
of Econometrics, New York: John Wiley & Sons, Inc.

Judge, G.G., Griffiths, W.E., Hill, R.C., Lutkepohl, H., and Lee, T.C. (1985), “The
Theory and Practice of Econometrics,” Second Edition, New York: John Wiley
& Sons, Inc.

Kennedy, W.J. and Gentle, J.E. (1980),Statistical Computing, New York: Marcel
Dekker, Inc.

Lewis, T. and Taylor, L.R. (1967),Introduction to Experimental Ecology, New York:
Academic Press, Inc.

LaMotte, L.R. (1994), “A Note on the Role of Independence int Statistics
Constructed From Linear Statistics in Regression Models,”The American
Statistician, 48, 238–240.

Lord, F.M. (1950), “Efficiency of Prediction when a Progression Equation from One
Sample is Used in a New Sample,” Research Bulletin No. 50-40, Princeton, NJ:
Educational Testing Service.

Mallows, C.L. (1967), “Choosing a Subset Regression,” unpublished report, Bell
Telephone Laboratories.

Mallows, C.L. (1973), “Some Comments onCp,” Technometrics, 15, 661–675.

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979),Multivariate Analysis, London:
Academic Press, Inc.

Markov, A.A. (1900),Wahrscheinlichkeitsrechnung, Tebrer, Leipzig.

Marquardt, D.W. and Snee, R.D. (1975), “Ridge Regression in Practice,”American
Statistician, 29 (1), 3–20.

Morrison, D.F. (1976),Multivariate Statistical Methods, Second Edition, New York:
McGraw-Hill, Inc.

Mosteller, F. and Tukey, J.W. (1977),Data Analysis and Regression, Reading, MA:
Addison-Wesley Publishing Co., Inc.

Neter, J., Wasserman, W., and Kutner, M.H. (1990),Applied Linear Statistical
Models, Homewood, Illinois: Richard D. Irwin, Inc.

Neter, J., Wasserman, W., and Kutner, M. H. (1990),Applied Linear Statistical
Models, Third Edition, Homewood, IL: Irwin.



3968 � Chapter 61. The REG Procedure

Nicholson, G.E., Jr. (1948), “The Application of a Regression Equation to a New
Sample,” unpublished Ph.D. dissertation, University of North Carolina at Chapel
Hill.

Pillai, K.C.S. (1960),Statistical Table for Tests of Multivariate Hypotheses, Manila:
The Statistical Center, University of the Philippines.

Pindyck, R.S. and Rubinfeld, D.L. (1981),Econometric Models and Econometric
Forecasts, Second Edition, New York: McGraw-Hill Book Co.

Pringle, R.M. and Raynor, A.A. (1971),Generalized Inverse Matrices with
Applications to Statistics, New York: Hafner Publishing Company.

Rao, C.R. (1973),Linear Statistical Inference and Its Applications, Second Edition,
New York: John Wiley & Sons, Inc.

Rawlings, J.O. (1988),Applied Regression Analysis: A Research Tool, Belmont,
California: Wadsworth, Inc.

Rothman, D. (1968), Letter to the editor,Technometrics, 10, 432.

Sall, J.P. (1981),SAS Regression Applications, Revised Edition, SAS Technical
Report A-102, Cary, NC: SAS Institute Inc.

Sawa, T. (1978), “Information Criteria for Discriminating Among Alternative
Regression Models,”Econometrica, 46, 1273–1282.

Schwarz, G. (1978), “Estimating the Dimension of a Model,”Annals of Statistics, 6,
461–464.

Stein, C. (1960), “Multiple Regression,” inContributions to Probability and
Statistics, eds. I. Olkin et al., Stanford, CA: Stanford University Press.

Timm, N.H. (1975), Multivariate Analysis with Applications in Education and
Psychology, Monterey, CA: Brooks-Cole Publishing Co.

Weisberg, S. (1980),Applied Linear Regression, New York: John Wiley & Sons, Inc.

White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator
and a Direct Test for Heteroskedasticity,”Econometrics, 48, 817–838.



Chapter 62
The ROBUSTREG Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3971

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3972
M Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3972
LTS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3979

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3982
PROC ROBUSTREG Statement. . . . . . . . . . . . . . . . . . . . . . .3983
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3988
CLASS Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3989
ID Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3989
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3989
OUTPUT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3990
PERFORMANCE Statement. . . . . . . . . . . . . . . . . . . . . . . . .3991
TEST Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3992
WEIGHT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3992

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3992
M Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3993
High Breakdown Value Estimation. . . . . . . . . . . . . . . . . . . . . .3999
MM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4006
Robust Multivariate Location and Scale Estimates. . . . . . . . . . . . . .4009
Leverage Point and Outlier Detection. . . . . . . . . . . . . . . . . . . . .4010
INEST= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4011
OUTEST= Data Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4011
Computational Resources. . . . . . . . . . . . . . . . . . . . . . . . . . .4012
ODS Table Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4012
ODS Graphics (Experimental). . . . . . . . . . . . . . . . . . . . . . . . .4013

EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4016
Example 62.1. Comparison of Robust Estimates. . . . . . . . . . . . . . .4016
Example 62.2. Robust ANOVA. . . . . . . . . . . . . . . . . . . . . . . .4020
Example 62.3. Growth Study of De Long and Summers. . . . . . . . . . .4024

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4029



3970 � Chapter 62. The ROBUSTREG Procedure



Chapter 62
The ROBUSTREG Procedure
Overview

The main purpose of robust regression is to detect outliers and provide resistant (sta-
ble) results in the presence of outliers. In order to achieve this stability, robust regres-
sion limits the influence of outliers. Historically, three classes of problems have been
addressed with robust regression techniques:

• problems with outliers in they-direction (response direction)

• problems with multivariate outliers in thex-space (i.e., outliers in the covariate
space, which are also referred to as leverage points)

• problems with outliers in both they-direction and thex-space

Many methods have been developed in response to these problems. However, in
statistical applications of outlier detection and robust regression, the methods most
commonly used today are Huber M estimation, high breakdown value estimation,
and combinations of these two methods. The new ROBUSTREG procedure in this
version provides four such methods: M estimation, LTS estimation, S estimation, and
MM estimation.

1. M estimation was introduced by Huber (1973), and it is the simplest approach
both computationally and theoretically. Although it is not robust with respect
to leverage points, it is still used extensively in analyzing data for which it can
be assumed that the contamination is mainly in the response direction.

2. Least Trimmed Squares (LTS) estimation is a high breakdown value method
introduced by Rousseeuw (1984). The breakdown value is a measure of the
proportion of contamination that an estimation method can withstand and still
maintain its robustness. The performance of this method was improved by the
FAST-LTS algorithm of Rousseeuw and Van Driessen (2000).

3. S estimation is a high breakdown value method introduced by Rousseeuw and
Yohai (1984). With the same breakdown value, it has a higher statistical effi-
ciency than LTS estimation.

4. MM estimation, introduced by Yohai (1987), combines high breakdown value
estimation and M estimation. It has both the high breakdown property and a
higher statistical efficiency than S estimation.

Experimental graphics are now available with the ROBUSTREG procedure. For
more information, see the section“ODS Graphics”on page 4013.
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Getting Started

The following examples demonstrate how you can use the ROBUSTREG procedure
to fit a linear regression model and conduct outlier and leverage point diagnostics.

M Estimation

This example shows how you can use the ROBUSTREG procedure to do M estima-
tion, which is a commonly used method for outlier detection and robust regression
when contamination is mainly in the response direction.

data stack;
input x1 x2 x3 y;
datalines;

80 27 89 42
80 27 88 37
75 25 90 37
62 24 87 28
62 22 87 18
62 23 87 18
62 24 93 19
62 24 93 20
58 23 87 15
58 18 80 14
58 18 89 14
58 17 88 13
58 18 82 11
58 19 93 12
50 18 89 8
50 18 86 7
50 19 72 8
50 19 79 8
50 20 80 9
56 20 82 15
70 20 91 15
;

The data setstack is the well-known stackloss data set presented by Brownlee (1965).
The data describe the operation of a plant for the oxidation of ammonia to nitric acid
and consist of 21 four-dimensional observations. The explanatory variables for the
response stackloss (y) are the rate of operation (x1), the cooling water inlet tempera-
ture (x2), and the acid concentration (x3).

The following ROBUSTREG statements analyze the data:

proc robustreg data=stack;
model y = x1 x2 x3 / diagnostics leverage;
id x1;
test x3;

run;
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By default, the procedure does M estimation with the bisquare weight function, and
it uses the median method for estimating the scale parameter. The MODEL statement
specifies the covariate effects. The DIAGNOSTICS option requests a table for outlier
diagnostics, and the LEVERAGE option adds leverage point diagnostic results to this
table for continuous covariate effects. The ID statement specifies that variablex1
is used to identify each observation in this table. If the ID statement is omitted,
the observation number is used to identify the observations. The TEST statement
requests a test of significance for the covariate effects specified. The results of this
analysis are displayed in the following figures.

The ROBUSTREG Procedure

Model Information

Data Set WORK.STACK
Dependent Variable y
Number of Covariates 3
Number of Observations 21
Method M Estimation

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation MAD

x1 53.0000 58.0000 62.0000 60.4286 9.1683 5.9304
x2 18.0000 20.0000 24.0000 21.0952 3.1608 2.9652
x3 82.0000 87.0000 89.5000 86.2857 5.3586 4.4478
y 10.0000 15.0000 19.5000 17.5238 10.1716 5.9304

Figure 62.1. Model Fitting Information and Summary Statistics

Figure 62.1displays the model fitting information and summary statistics for the re-
sponse variable and the continuous covariates. The columns labeled Q1, Median,
and Q3 provide the lower quantile, median, and upper quantile. The column labeled
MAD provides a robust estimate of the univariate scale, which is computed as the cor-
rected median absolute deviation (MAD). The columns labeled Mean and Standard
Deviation provide the usual mean and standard deviation. Large difference between
the standard deviation and the MAD for a variable indicates some big jumps for this
variable. In the stackloss data, the stackloss (reponse variabley) has the biggest dif-
ference between the standard deviation and the dispersion.

The ROBUSTREG Procedure

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -42.2854 9.5045 -60.9138 -23.6569 19.79 <.0001
x1 1 0.9276 0.1077 0.7164 1.1387 74.11 <.0001
x2 1 0.6507 0.2940 0.0744 1.2270 4.90 0.0269
x3 1 -0.1123 0.1249 -0.3571 0.1324 0.81 0.3683
Scale 1 2.2819

Figure 62.2. Model Parameter Estimates
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Figure 62.2displays the table of robust parameter estimates, standard errors, and con-
fidence limits. The row labeled Scale provides a point estimate of the scale parameter
in the linear regression model, which is obtained by the median method. See the
section“M Estimation” on page 3993 for more information about scale estimation
methods. For the stackloss data, M estimation yields the fitted linear model:

ŷ = −42.2845 + 0.9276x1 + 0.6507x2− 0.1123x3

The ROBUSTREG Procedure

Diagnostics

Robust Standardized
Mahalanobis MCD Robust

Obs x1 Distance Distance Leverage Residual Outlier

1 80.000000 2.2536 5.5284 * 1.0995
2 80.000000 2.3247 5.6374 * -1.1409
3 75.000000 1.5937 4.1972 * 1.5604
4 62.000000 1.2719 1.5887 3.0381 *

21 70.000000 2.1768 3.6573 * -4.5733 *

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.0952 3.0000
Leverage 0.1905 3.0575

Figure 62.3. Diagnostics

Figure 62.3displays outlier and leverage point diagnostics. Standardized robust resid-
uals are computed based on the estimated parameters. Both the Mahalanobis distance
and the robust MCD distance are displayed. Outliers and leverage points, identified
with asterisks, are defined by the standardized robust residuals and robust MCD dis-
tances which exceed the corresponding cutoff values displayed in the diagnostics
profile. Observations 4 and 21 are outliers because their standardized robust residu-
als exceed the cutoff value in absolute value. The procedure detects 4 observations
with high leverage, which is contributed mainly byx1, especially for the first three
observations. This can be verified by the definition of the robust MCD distance in the
section“Robust Multivariate Location and Scale Estimates”on page 4009. Leverage
points (points with high leverage) with smaller standardized robust residuals than the
cutoff value in absolute value are called good leverage points; otherwise, called bad
leverage points. Observations 21 is a bad leverage point.

Two particularly useful plots for revealing outliers and leverage points are a scat-
ter plot of the standardized robust residuals against the robust distances (RDPLOT)
and a scatter plot of the robust distances against the classical Mahalanobis distances
(DDPLOT).

For the stackloss data, the following statements produce the RDPLOT inFigure
62.4 and the DDPLOT inFigure 62.5. The histogram and the normal quantile-
quantile plots for the standardized robust residuals are also created with the
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RESHISTOGRAM and RESQQPLOT options in the PROC statement. SeeFigure
62.6andFigure 62.7.

Figure 62.4. RDPLOT for Stackloss Data (Experimental)

Figure 62.5. DDPLOT for Stackloss Data (Experimental)
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Figure 62.6. Histogram (Experimental)

Figure 62.7. Q-Q PLOT (Experimental)
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ods html;
ods graphics on;

proc robustreg data=stack
plots=(rdplot ddplot reshistogram resqqplot);

model y = x1 x2 x3;
run;

ods graphics off;
ods html close;

These plots are helpful in identifying outliers, good, and bad high leverage points.

These graphical displays are requested by specifying the experimental ODS
GRAPHICS statement and the experimentalPLOT | PLOTS=option in the PROC
statement. For general information about ODS graphics, seeChapter 15, “Statistical
Graphics Using ODS.”For specific information about the graphics available in the
ROBUSTREG procedure, see the section“ODS Graphics”on page 4013.

The ROBUSTREG Procedure

Goodness-of-Fit

Statistic Value

R-Square 0.6659
AICR 29.5231
BICR 36.3361
Deviance 125.7905

Figure 62.8. Goodness-of-Fit

Figure 62.8displays robust versions of goodness-of-fit statistics for the model. You
can use the robust information criteria, AICR and BICR, for model selection and
comparison. For both AICR and BICR, the lower the value the more describable the
model.

The ROBUSTREG Procedure

Robust Linear Tests

Test

Test Chi-
Test Statistic Lambda DF Square Pr > ChiSq

Rho 0.9378 0.7977 1 1.18 0.2782
Rn2 0.8092 1 0.81 0.3683

Figure 62.9. Test of Significance

Figure 62.9 displays the test results requested by the TEST statement. The
ROBUSTREG procedure conducts two robust linear tests, theρ-test and theR2

n-test.
See the section“Linear Tests”on page 3998 for information on how the procedure
computes test statistics and the correction factorlambda. You can conclude that the
effectx3 is not significant.
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For the bisquare weight function, the default constantc is 4.685 such that the asymp-
totic efficiency of the M estimates is95% with the Gaussian distribution. See the
section“M Estimation” on page 3993 for details. The smaller the constantc, the
lower the asymptotic efficiency but the sharper the M estimate as an outlier detector.
For the stackloss data set, you could consider using a sharper outlier detector.

In the following invocation of the ROBUSTREG procedure, a smaller constant, e.g.
c = 3.5, is used.

proc robustreg method=m(wf=bisquare(c=3.5)) data=stack;
model y = x1 x2 x3 / diagnostics leverage;
id x1;
test x3;

run;

The ROBUSTREG Procedure

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -37.1076 5.4731 -47.8346 -26.3805 45.97 <.0001
x1 1 0.8191 0.0620 0.6975 0.9407 174.28 <.0001
x2 1 0.5173 0.1693 0.1855 0.8492 9.33 0.0022
x3 1 -0.0728 0.0719 -0.2138 0.0681 1.03 0.3111
Scale 1 1.4265

Figure 62.10. Model Parameter Estimates

Figure 62.10displays the table of robust parameter estimates, standard errors, and
confidence limits with the constantc = 3.5. The refitted linear model is:

ŷ = −37.1076 + 0.8191x1 + 0.5173x2− 0.0728x3

The ROBUSTREG Procedure

Diagnostics

Robust Standardized
Mahalanobis MCD Robust

Obs x1 Distance Distance Leverage Residual Outlier

1 80.000000 2.2536 5.5284 * 4.2719 *
2 80.000000 2.3247 5.6374 * 0.7158
3 75.000000 1.5937 4.1972 * 4.4142 *
4 62.000000 1.2719 1.5887 5.7792 *

21 70.000000 2.1768 3.6573 * -6.2727 *

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.1905 3.0000
Leverage 0.1905 3.0575

Figure 62.11. Diagnostics
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Figure 62.11displays outlier and leverage point diagnostics with the constantc = 3.5.
Besides observations 4 and 21, observations 1 and 3 are also detected as outliers.

LTS Estimation

If the data are contaminated in thex-space, M estimation does not do well. The
following example shows how you can use LTS estimation to deal with this situation.

data hbk;
input index$ x1 x2 x3 y @@;
datalines;

1 10.1 19.6 28.3 9.7 39 2.1 0.0 1.2 -0.7
2 9.5 20.5 28.9 10.1 40 0.5 2.0 1.2 -0.5
3 10.7 20.2 31.0 10.3 41 3.4 1.6 2.9 -0.1
4 9.9 21.5 31.7 9.5 42 0.3 1.0 2.7 -0.7
5 10.3 21.1 31.1 10.0 43 0.1 3.3 0.9 0.6
6 10.8 20.4 29.2 10.0 44 1.8 0.5 3.2 -0.7
7 10.5 20.9 29.1 10.8 45 1.9 0.1 0.6 -0.5
8 9.9 19.6 28.8 10.3 46 1.8 0.5 3.0 -0.4
9 9.7 20.7 31.0 9.6 47 3.0 0.1 0.8 -0.9
10 9.3 19.7 30.3 9.9 48 3.1 1.6 3.0 0.1
11 11.0 24.0 35.0 -0.2 49 3.1 2.5 1.9 0.9
12 12.0 23.0 37.0 -0.4 50 2.1 2.8 2.9 -0.4
13 12.0 26.0 34.0 0.7 51 2.3 1.5 0.4 0.7
14 11.0 34.0 34.0 0.1 52 3.3 0.6 1.2 -0.5
15 3.4 2.9 2.1 -0.4 53 0.3 0.4 3.3 0.7
16 3.1 2.2 0.3 0.6 54 1.1 3.0 0.3 0.7
17 0.0 1.6 0.2 -0.2 55 0.5 2.4 0.9 0.0
18 2.3 1.6 2.0 0.0 56 1.8 3.2 0.9 0.1
19 0.8 2.9 1.6 0.1 57 1.8 0.7 0.7 0.7
20 3.1 3.4 2.2 0.4 58 2.4 3.4 1.5 -0.1
21 2.6 2.2 1.9 0.9 59 1.6 2.1 3.0 -0.3
22 0.4 3.2 1.9 0.3 60 0.3 1.5 3.3 -0.9
23 2.0 2.3 0.8 -0.8 61 0.4 3.4 3.0 -0.3
24 1.3 2.3 0.5 0.7 62 0.9 0.1 0.3 0.6
25 1.0 0.0 0.4 -0.3 63 1.1 2.7 0.2 -0.3
26 0.9 3.3 2.5 -0.8 64 2.8 3.0 2.9 -0.5
27 3.3 2.5 2.9 -0.7 65 2.0 0.7 2.7 0.6
28 1.8 0.8 2.0 0.3 66 0.2 1.8 0.8 -0.9
29 1.2 0.9 0.8 0.3 67 1.6 2.0 1.2 -0.7
30 1.2 0.7 3.4 -0.3 68 0.1 0.0 1.1 0.6
31 3.1 1.4 1.0 0.0 69 2.0 0.6 0.3 0.2
32 0.5 2.4 0.3 -0.4 70 1.0 2.2 2.9 0.7
33 1.5 3.1 1.5 -0.6 71 2.2 2.5 2.3 0.2
34 0.4 0.0 0.7 -0.7 72 0.6 2.0 1.5 -0.2
35 3.1 2.4 3.0 0.3 73 0.3 1.7 2.2 0.4
36 1.1 2.2 2.7 -1.0 74 0.0 2.2 1.6 -0.9
37 0.1 3.0 2.6 -0.6 75 0.3 0.4 2.6 0.2
38 1.5 1.2 0.2 0.9
;

The data sethbk is an artificial data set generated by Hawkins, Bradu, and Kass
(1984). Both ordinary least squares (OLS) estimation and M estimation (not shown
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here) suggest that observations 11 to 14 are serious outliers. However, these four
observations were generated from the underlying model, whereas observations 1 to
10 were contaminated. The reason that OLS estimation and M estimation do not pick
up the contaminated observations is that they cannot distinguish good leverage points
(observations 11 to 14) from bad leverage points (observations 1 to 10). In such cases,
the LTS method identifies the true outliers.

The following statements invoke the ROBUSTREG procedure with the LTS estima-
tion method.

proc robustreg data=hbk fwls method=lts;
model y = x1 x2 x3 / diagnostics leverage;
id index;

run;

The ROBUSTREG Procedure

Model Information

Data Set WORK.HBK
Dependent Variable y
Number of Covariates 3
Number of Observations 75
Method LTS Estimation

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation MAD

x1 0.8000 1.8000 3.1000 3.2067 3.6526 1.9274
x2 1.0000 2.2000 3.3000 5.5973 8.2391 1.6309
x3 0.9000 2.1000 3.0000 7.2307 11.7403 1.7791
y -0.5000 0.1000 0.7000 1.2787 3.4928 0.8896

Figure 62.12. Model Fitting Information and Summary Statistics

Figure 62.12displays the model fitting information and summary statistics for the
response variable and independent covariates.

The ROBUSTREG Procedure

LTS Profile

Total Number of Observations 75
Number of Squares Minimized 57
Number of Coefficients 4
Highest Possible Breakdown Value 0.2533

Figure 62.13. LTS Profile

Figure 62.13displays information about the LTS fit, which includes the breakdown
value of the LTS estimate. Roughly speaking, the breakdown value is a measure of
the proportion of contamination that an estimation method can withstand and still
maintain its robustness. In this example the LTS estimate minimizes the sum of 57
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smallest squares of residuals. It can still pick up the right model if the remaining
18 observations are contaminated. This corresponds to the breakdown value around
0.25, which is set as the default.

The ROBUSTREG Procedure

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.3431
x1 1 0.0901
x2 1 0.0703
x3 1 -0.0731
Scale (sLTS) 0 0.7451
Scale (Wscale) 0 0.5749

Figure 62.14. LTS Parameter Estimates

Figure 62.14displays parameter estimates for covariates and scale. Two robust es-
timates of the scale parameter are displayed. See the section“Final Weighted Scale
Estimator”on page 4002 for how these estimates are computed. The weighted scale
estimate (Wscale) is a more efficient estimate of the scale parameter.

The ROBUSTREG Procedure

Diagnostics

Robust Standardized
Mahalanobis MCD Robust

Obs index Distance Distance Leverage Residual Outlier

1 1 1.9168 29.4424 * 17.0868 *
3 2 1.8558 30.2054 * 17.8428 *
5 3 2.3137 31.8909 * 18.3063 *
7 4 2.2297 32.8621 * 16.9702 *
9 5 2.1001 32.2778 * 17.7498 *

11 6 2.1462 30.5892 * 17.5155 *
13 7 2.0105 30.6807 * 18.8801 *
15 8 1.9193 29.7994 * 18.2253 *
17 9 2.2212 31.9537 * 17.1843 *
19 10 2.3335 30.9429 * 17.8021 *
21 11 2.4465 36.6384 * 0.0406
23 12 3.1083 37.9552 * -0.0874
25 13 2.6624 36.9175 * 1.0776
27 14 6.3816 41.0914 * -0.7875

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.1333 3.0000
Leverage 0.1867 3.0575

Figure 62.15. Diagnostics

Figure 62.15displays outlier and leverage point diagnostics. The ID variableindex is
used to identify the observations. The first ten observations are identified as outliers
and observations 11 to 14 are identified as good leverage points.
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The ROBUSTREG Procedure

Parameter Estimates for Final Weighted Least Squares Fit

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -0.1805 0.1044 -0.3852 0.0242 2.99 0.0840
x1 1 0.0814 0.0667 -0.0493 0.2120 1.49 0.2222
x2 1 0.0399 0.0405 -0.0394 0.1192 0.97 0.3242
x3 1 -0.0517 0.0354 -0.1210 0.0177 2.13 0.1441
Scale 0 0.5572

Figure 62.16. Final Weighted LS Estimates

Figure 62.16displays the final weighted least squares estimates. These estimates are
least squares estimates computed after deleting the detected outliers.

Syntax

PROC ROBUSTREG < options > ;
BY variables ;
CLASS variables ;
ID variables ;
MODEL response = <effects> < / options > ;
OUTPUT < OUT= SAS-data-set > < options > ;
PERFORMANCE < options > ;
TEST ’label’ effects ;
WEIGHT variable ;

The PROC ROBUSTREG statement invokes the procedure. The METHOD= option
in the PROC ROBUSTREG statement selects one of the four estimation methods, M,
LTS, S, and MM. By default, Huber M estimation is used. The MODEL statement is
required and specifies the variables used in the regression. Main effects and interac-
tion terms can be specified in the MODEL statement, as in the GLM procedure. The
CLASS statement specifies which explanatory variables are treated as categorical.
These variables are allowed in the MODEL statement only for M estimation, and not
for other estimation methods. The ID statement names variables to identify observa-
tions in the outlier diagnostics tables. The WEIGHT statement identifies a variable
in the input data set whose values are used to weight the observations. The OUTPUT
statement creates an output data set containing final weights, predicted values, and
residuals. The TEST statement requests robust linear tests for the model parameters.
The PERFORMANCE statement tunes the performance of the procedure by using
single or multiple processors available on the hardware. In one invocation of PROC
ROBUSTREG, multiple OUTPUT and TEST statements are allowed.
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PROC ROBUSTREG Statement

PROC ROBUSTREG < options > ;

The PROC ROBUSTREG statement invokes the procedure. You can specify the
following options in the PROC ROBUSTREG statement.

COVOUT
saves the estimated covariance matrix in the OUTEST= data set for M estimation and
MM estimation.

DATA=SAS-data-set
specifies the input SAS data set used by PROC ROBUSTREG. By default, the most
recently created SAS data set is used.

FWLS
requests that final weighted least squares estimators be computed.

INEST= SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters in
the model. See the section“INEST= Data Set”on page 4011 for a detailed description
of the contents of the INEST= data set.

ITPRINT
displays the iteration history for the iteratively reweighted least squares algorithm
used by M and MM estimation. You can also use this option in the MODEL state-
ment.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the classification variables (specified in
the CLASS statement). This ordering determines which parameters in the model
correspond to each level in the data. The following table explains how PROC
ROBUSTREG interprets values of the ORDER= option.

Table 62.1. Options for Order
Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED formatted value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, refer to the
chapter titled “The SORT Procedure” in theSAS Procedures Guide.
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OUTEST=SAS-data-set
specifies an output SAS data set containing the parameter estimates, and, if the
COVOUT option is specified, the estimated covariance matrix. See the section
“OUTEST= Data Set”on page 4011 for a detailed description of the contents of
the OUTEST= data set.

SEED=number
specifies the seed for the random number generator used to randomly select the sub-
groups and subsets for LTS and S estimation. By default or you specify zero, the
ROBUSTREG procedure generates a seed between one and one billion.

METHOD= method type< ( options) >
specifies the estimation method andoptions specify some additional options for the
estimation method. PROC ROBUSTREG provides four estimation methods: M esti-
mation, LTS estimation, S estimation, and MM estimation. The default method is M
estimation.

Since the LTS and S methods use subsampling algorithms, it is not suitable to apply
these methods to an analysis with continuous independent variables which have only
a few nonzero values or a few nonzero values within one BY group.

Options with METHOD=M

With METHOD=M, you can specify the following additionaloptions:

ASYMPCOV=H1 | H2 | H3
specifies the type of asymptotic covariance computed for the M estimate. The three
types are described in the section“Asymptotic Covariance and Confidence Intervals”
on page 3997. By default, ASYMPCOV= H1.

CONVERGENCE=criterion<(EPS=value)>
specifies a convergence criterion for the M estimate.

Table 62.2. Options to Specify Convergence Criteria
Type Option
residual CONVERGENCE= RESID
weight CONVERGENCE= WEIGHT
coefficient CONVERGENCE= COEF

By default, CONVERGENCE = COEF. You can specify the precision of the conver-
gence can be specified with the EPS= option. By default, EPS=1.E−8.

MAXITER=n
sets the maximum number of iterations during the parameter estimation. By default,
MAXITER=1000.

SCALE=scale type | value
specifies the scale parameter or a method for estimating the scale parameter.
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Table 62.3. Options to Specify Scale
Scale Option Default d
Median estimate SCALE=MED
Tukey estimate SCALE=TUKEY<(D=d)> 2.5
Huber estimate SCALE=HUBER<(D=d)> 2.5
Fixed constant SCALE=value

By default, SCALE = MED.

WF | WEIGHTFUNCTION=function type
specifies the weight function used for the M estimate. The ROBUSTREG proce-
dure provides ten weight functions, which are listed in the following table. You can
specify the parameters in these functions with the A=, B=, and C= options. These
functions are described in the section“M Estimation” on page 3993. The default
weight function is bisquare.

Table 62.4. Options to Specify Weight Functions
Weight Function Option Default a, b, c
andrews WF = ANDREWS<(C=c)> 1.339
bisquare WF = BISQUARE<(C=c)> 4.685
cauchy WF = CAUCHY<(C=c)> 2.385
fair WF = FAIR<(C=c)> 1.4
hampel WF = HAMPEL<( <A=a> <B=b> <C=c>)> 2, 4, 8
huber WF = HUBER<(C=c)> 1.345
logistic WF = LOGISTIC<(C=c)> 1.205
median WF = MEDIAN<(C=c)> 0.01
talworth WF = TALWORTH<(C=c)> 2.795
welsch WF = WELSCH<(C=c)> 2.985

Options with METHOD=LTS

With METHOD=LTS, you can specify the following additionaloptions:

CSTEP=n
specifies the number of C-steps for the LTS estimate. See the section“LTS Estimate”
on page 4000 for how the default value is determined.

IADJUST=ALL | NONE
requests (IADJUST=ALL) or suppresses (IADJUST=NONE) the intercept adjust-
ment for all estimates in the LTS-algorithm. By default, the intercept adjustment is
used for data sets with less than 10000 observations. See the section“Algorithm” on
page 4001 for details.

H=n
specifies the quantile for the LTS estimate. See the section“LTS Estimate”on page
4000 for how the default value is determined.
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NBEST=n
specifies the number of best solutions kept for each subgroup during the computa-
tion of the LTS estimate. The default number is 10, which is the maximum number
allowed.

NREP=n
specifies the number of repeats of least squares fit in subgroups during the computa-
tion of the LTS estimate See the section“LTS Estimate”on page 4000 for how the
default number is determined.

SUBANALYSIS
requests a display of the subgrouping information and parameter estimates within
subgroups. This option may generate the following ODS tables:

Table 62.5. ODS Tables Available with SUBANALYSIS
ODS Table Name Description
BestEstimates Best final estimates for LTS

BestSubEstimates Best estimates for each subgroup

CStep C-Step information for LTS

Groups Grouping information for LTS

Some of these tables are data dependent.

SUBGROUPSIZE=n
specifies the data set size of the subgroups in the computation of the LTS estimate.
The default number is 300.

Options with METHOD=S

With METHOD=S, you can specify the following additionaloptions:

ASYMPCOV=H1 | H2 | H3 | H4
specifies the type of asymptotic covariance computed for the S estimate. The four
types are described in the section“Asymptotic Covariance and Confidence Intervals”
on page 4005. By default, ASYMPCOV= H4.

CHIF= TUKEY | YOHAI
specifies theχ function for the S estimate. PROC ROBUSTREG provides twoχ
functions, Tukey’s BISQUARE function and Yohai’s OPTIMAL function, which you
can request with CHIF=TUKEY and CHIF=YOHAI, respectively. The default is
Tukey’s bisquare function.

EFF=value
specifies the efficiency for the S estimate. The parameterk0 in theχ function is deter-
mined by this efficiency. The default efficiency is determined such that the consistent
S estimate has the breakdown value of25%.
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MAXITER=n
sets the maximum number of iterations for computing the scale parameter of the S
estimate. By default, MAXITER=1000.

NREP=n
specifies the number of repeats of subsampling in the computation of the S estimate.
See the section“Algorithm” on page 4004 for how the default number of repeats is
determined.

NOREFINE
suppresses the refinement for the S estimate. See the section“Algorithm” on page
4004 for details.

SUBSETSIZE=n
specifies the size of the subset for the S estimate. See the section“Algorithm” on
page 4004 for how its default value is determined.

TOLERANCE=value
specifies the tolerance for the S estimate of the scale. The default value is .001.

Options with METHOD=MM

With METHOD=MM, you can specify the following additionaloptions:

ASYMPCOV=H1 | H2 | H3 | H4
specifies the type of asymptotic covariance computed for the MM estimate. The four
types are described in the “Details” section. By default, ASYMPCOV= H4.

BIASTEST<(ALPHA= number)>
requests the bias test for the final MM estimate. See the section“Bias Test”on page
4008 for details about this test.

CHIF= TUKEY | YOHAI
selects theχ function for the MM estimate. PROC ROBUSTREG provides twoχ
functions: Tukey’s BISQUARE function and Yohai’s OPTIMAL function, which you
can request with CHIF=TUKEY and CHIF=YOHAI, respectively. The default is
Tukey’s bisquare function. Thisχ function is also used by the initial S estimate if
you specify the INITEST=S option.

CONVERGENCE=criterion<(EPS=number)>
specifies a convergence criterion for the MM estimate.

Table 62.6. Options to Specify Convergence Criteria
Type Option
residual CONVERGENCE= RESID
weight CONVERGENCE= WEIGHT
coefficient CONVERGENCE= COEF

By default, CONVERGENCE = COEF. You can specify the precision of the conver-
gence with the EPS= option. By default, EPS=1.E−8.
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EFF=value
specifies the efficiency for the MM estimate. The parameterk1 in theχ function is
determined by this efficiency. The default efficiency is set to85%, which corresponds
to k1 = 3.440 for CHIF=TUKEY or k1 = 0.868 for CHIF=YOHAI.

INITH=n
specifies the integerh for the initial LTS estimator used by the MM estimator. See
the section“Algorithm” on page 4007 for how to specifyh and how the default is
determined.

INITEST= LTS | S
specifies the initial estimator for the MM estimator. By default, the LTS estimator is
used as the initial estimator for the MM estimator.

K0=number
specifies the parameterk0 in theχ function for the MM estimate. For CHIF=TUKEY,
the default isk0 = 2.9366. For CHIF=YOHAI, the default isk0 = 0.7405. These
default values correspond to the25% breakdown value of the MM estimator.

MAXITER=n
sets the maximum number of iterations during the parameter estimation. By default,
MAXITER=1000.

BY Statement

BY variables ;

You can specify a BY statement with PROC ROBUSTREG to obtain separate anal-
yses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the ROBUSTREG procedure. The NOTSORTED option does
not mean that the data are unsorted, but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
theSAS Procedures Guide.
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CLASS Statement

CLASS variables ;

Explanatory variables that are classification variables rather than quantitative numeric
variables must be listed in the CLASS statement. For each explanatory variable listed
in the CLASS statement, indicator variables are generated for the levels assumed by
the CLASS variable. If the CLASS statement is used, it must appear before the
MODEL statement.

ID Statement

ID variables ;

When the diagnostics table is requested with the DIAGNOSTICS option in the
MODEL statement, the variables listed in the ID statement are displayed besides the
observation number. These variables can be used to identify each observation. If the
ID statement is omitted, the observation number is used to identify the observations.

MODEL Statement

<label:>MODEL response = <effects> < / options > ;

Main effects and interaction terms can be specified in the MODEL statement, as in
the GLM procedure. Class variables are not allowed in the MODEL statement when
you specify MM estimation or LTS estimation using the METHOD= option in the
PROC statement.

The optionallabel is used to label output from the matching MODEL statement.

Options

You can specify the following options for the model fit.

ALPHA= value
specifies the significance level for the confidence intervals for regression parameters.
The value must be between 0 and 1. By default, ALPHA = 0.05.

CORRB
produces the estimated correlation matrix of the parameter estimates.

COVB
produces the estimated covariance matrix of the parameter estimates.

CUTOFF=value
specifies the multiplier of the cutoff value for outlier detection. By default, CUTOFF
= 3.

DIAGNOSTICS<(ALL)>
requests the outlier diagnostics. By default, only observations identified as outliers or
leverage points are displayed. To request that all observations be displayed, specify
the ALL option.
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ITPRINT
displays the iteration history for the iteratively reweighted least squares algorithm
used by M and MM estimation. You can also use this option in the PROC statement.

LEVERAGE<(CUTOFF=value| CUTOFFALPHA= value| QUANTILE=n)>
requests an analysis of leverage points for the continuous covariates. The results
are added to the diagnostics table, which you can request with the DIAGNOSTICS
option in the MODEL statement. You can specify the cutoff value for leverage point

detection with the CUTOFF= option. The default cutoff value is
√
χ2
p;1−α, whereα

can be specified with the CUTOFFALPHA= option. By default,α = .025. You can
use the QUANTILE= option to specify the quantile to be minimized for the MCD
algorithm used for the leverage point analysis. By default, QUANTILE=[(3n + p +
1)/4], wheren is the number of observations andp is the number of independent
variables. The LEVERAGE option is ignored if the model includes class variables as
covariates.

Since the MCD algorithm uses subsampling, it is not suitable to apply the leverage
point analysis to continuous variables which have only a few nonzero values or a few
nonzero values within one BY group.

NOGOODFIT
suppresses the computation of goodness-of-fit statistics.

NOINT
specifies no-intercept regression.

SINGULAR=value
specifies the tolerance for testing singularity of the information matrix and the
crossproducts matrix for the initial least-squares estimates. Roughly, the test re-
quires that a pivot be at least this value times the original diagonal value. By default,
SINGULAR = 1.E−12.

OUTPUT Statement

OUTPUT <OUT=SAS-data-set> keyword=name <. . .keyword=name>
;

The OUTPUT statement creates an output SAS data set containing statistics calcu-
lated after fitting the model. At least one specification of the formkeyword=nameis
required.

All variables in the original data set are included in the new data set, along with the
variables created withkeywordoptions in the OUTPUT statement. These new vari-
ables contain fitted values and estimated quantiles. If you want to create a permanent
SAS data set, you must specify a two-level name (refer toSAS Language Reference:
Conceptsfor more information on permanent SAS data sets).

The following specifications can appear in the OUTPUT statement:

OUT=SAS-data-setspecifies the new data set. By default, the procedure uses the
DATAn convention to name the new data set.
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keyword=name specifies the statistics to include in the output data set and gives
names to the new variables. Specify a keyword for each desired
statistic (see the following list), an equal sign, and the variable
to contain the statistic.

The keywords allowed and the statistics they represent are as follows:

LEVERAGE specifies a variable to indicate leverage points. To include
this variable in the OUTPUT data set, you must specify the
LEVERAGE option in the PROC statement. See the section
“Leverage Point and Outlier Detection”on page 4010 for how
to define LEVERAGE.

OUTLIER specifies a variable to indicate outliers. See the section
“Leverage Point and Outlier Detection”on page 4010 for how
to define OUTLIER.

PREDICTED | P specifies a variable to contain the estimated response.

RESIDUAL | R specifies a variable to contain the residuals

yi − xTi b

SRESIDUAL | SR specifies a variable to contain the standardized residuals

yi − xTi b
σ̂

STDP specifies a variable to contain the estimates of the standard er-
rors of the estimated response.

WEIGHT specifies a variable to contain the computed final weights.

PERFORMANCE Statement

You use the PERFORMANCE statement to specify options that tune the performance
of PROC ROBUSTREG. By default these options are chosen to maximize perfor-
mance. See Chen (2002) for some empirical results.

PERFORMANCE < options > ;

The following option is available:

CPUCOUNT=n

specifies the number of threads to use in the computation of LTS or S estimation
(initial LTS or S estimation for MM estimation). By default this will be equal to the
number of processors on the hardware.
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TEST Statement

<label:>TEST effects ;

With M estimation and MM estimation, the TEST statement provides a means for
obtaining a test for the canonical linear hypothesis concerning the model parameters:

θj = 0, j = q + 1, ..., p

wherep is the total number of parameters in the model, andq is the number of pa-
rameters for testing of significance.

PROC ROBUSTREG provides two kinds of robust tests: theρ-test and theR2
n-test.

They are described in the “Details” section. No test is available for LTS and S esti-
mation.

The optionallabel is used to label output from the corresponding TEST statement.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a weight variable in the input data set.

If you want to use fixed weights for each observation in the input data set, place
the weights in a variable in the data set and specify the name in a WEIGHT state-
ment. The values of the WEIGHT variable can be nonintegral and are not truncated.
Observations with nonpositive or missing values for the weight variable do not con-
tribute to the fit of the model.

Details

This section describes the statistical and computational aspects of the ROBUSTREG
procedure. The following notation is used throughout this section.

Let X = (xij) denote ann × p matrix, y = (y1, ..., yn)T a givenn-vector of re-
sponses, andθ = (θ1, ..., θp)T an unknownp-vector of parameters or coefficients
whose components are to be estimated. The matrixX is called the design matrix.
Consider the usual linear model

y = Xθ + e

wheree = (e1, ..., en)T is ann-vector of unknown errors. It is assumed that (for a
givenX) the componentsei of e are independent and identically distributed according
to a distributionL(·/σ), whereσ is a scale parameter (usually unknown). The vector
of residuals for a given value of̂θ is denoted byr = (r1, ..., rn)T and theith row of
the matrixX is denoted byxTi .
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M Estimation

M estimation in the context of regression was first introduced by Huber (1973) as an
result of making the least squares approach robust. Although M estimators are not
robust with respect to leverage points, they are popular in applications where leverage
points are not an issue.

Instead of minimizing a sum of squares of the residuals, a Huber-type M estimator
θ̂M of θ minimizes a sum of less rapidly increasing functions of the residuals:

Q(θ) =
n∑
i=1

ρ(
ri
σ

)

wherer = y − Xθ. For the ordinary least squares estimation,ρ is the quadratic
function.

If σ is known, by taking derivatives with respect toθ, θ̂M is also a solution of the
system ofp equations:

n∑
i=1

ψ(
ri
σ

)xij = 0, j = 1, ..., p

whereψ = ρ′. If ρ is convex,θ̂M is the unique solution.

The ROBUSTREG procedure solves this system by using iteratively reweighted least
squares (IRLS). The weight functionw(x) is defined as

w(x) =
ψ(x)
x

The ROBUSTREG procedure provides ten kinds of weight functions (correspond-
ing to tenρ-functions) through the WEIGHTFUNCTION= option in the MODEL
statement. See the section“Weight Functions”on page 3995 for a complete discus-
sion. You can specify the scale parameterσ with the SCALE= option in the PROC
statement.

If σ is unknown, bothθ andσ are estimated by minimizing the function

Q(θ, σ) =
n∑
i=1

[ρ(
ri
σ

) + a]σ, a > 0

The algorithm proceeds by alternately improvingθ̂ in a location step and̂σ in a scale
step.

For the scale step, three methods are available to estimateσ, which you can select
with the SCALE= option.
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1. (SCALE=HUBER<(D=d)>) Computêσ by the iteration

(σ̂(m+1))2 =
1
nh

n∑
i=1

χd(
ri

σ̂(m)
)(σ̂(m))2

where

χd(x) =
{
x2/2 if |x| < d
d2/2 otherwise

is the Huber function andh = n−p
n (d2 + (1− d2)Φ(d)− .5− d

√
2πe−

1
2
d2) is

the Huber constant (refer to Huber 1981, p. 179). You can specifyd with the
D= option. By default,d = 2.5.

2. (SCALE=TUKEY<(D=d)>) Computêσ by solving the supplementary equa-
tion

1
n− p

n∑
i=1

χd(
ri
σ

) = β

where

χd(x) =
{

3x2

d2
− 3x4

d4
+ x6

d6
if |x| < d

1 otherwise

Hereψ = 1
6χ

′
1 is Tukey’s biweight function, andβ =

∫
χd(s)dΦ(s) is the

constant such that the solution̂σ is asymptotically consistent whenL(·/σ) =
Φ(·) (refer to Hampel et. al. 1986, p. 149). You can specifyd with the D=
option. By default,d = 2.5.

3. (SCALE=MED) Computêσ by the iteration

σ̂(m+1) = median{|yi − xTi θ̂
(m)|/β0, i = 1, ..., n}

whereβ0 = Φ−1(.75) is the constant such that the solutionσ̂ is asymptotically
consistent whenL(·/σ) = Φ(·) (refer to Hampel et. al. 1986, p. 312).

Note that SCALE = MED is the default.

Algorithm

The basic algorithm for computing M estimates for regression is iteratively
reweighted least squares (IRLS). As the name suggests, a weighted least squares fit
is carried out inside an iteration loop. For each iteration, a set of weights for the
observations is used in the least squares fit. The weights are constructed by applying
a weight function to the current residuals. Initial weights are based on residuals
from an initial fit. The ROBUSTREG procedure uses the unweighted least squares
fit as a default initial fit. The iteration terminates when a convergence criterion is
satisfied. The maximum number of iterations is set to 1000. You can specify the
weight function and the convergence criteria.
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Weight Functions

You can specify the weight function for M estimation with the
WEIGHTFUNCTION= option. The ROBUSTREG procedure provides ten
weight functions. By default, the procedure uses the bisquare weight function.
In most cases, M estimates are more sensitive to the parameters of these weight
functions than to the type of the weight function. The median weight function is not
stable and is seldom recommended in data analysis; it is included in the procedure
for completeness. You can specify the parameters for these weight functions. Except
for the hampel and median weight functions, default values for these parameters are
defined such that the corresponding M estimates have95% asymptotic efficiency in
the location model with the Gaussian distribution (see Holland and Welsch (1977)).

The following list shows the weight functions available.

andrews W (x, c) =

{
sin(x

c
)

x
c

if |x| ≤ πc

0 otherwise

bisquare W (x, c) =
{

(1− (xc )
2)2 if |x| < c

0 otherwise

cauchy W (x, c) = 1

1+(
|x|
c

)2

fair W (x, c) = 1

(1+
|x|
c

)
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hampel W (x, a, b, c) =


1 |x| < a
a
|x| a < |x| ≤ b
a
|x|

c−|x|
c−b b < |x| ≤ c

0 otherwise

huber W (x, c) =
{

1 if |x| < c
c
|x| otherwise

logistic W (x, c) = tanh(x
c
)

x
c

median W (x, c) =
{ 1

c if x = 0
1
|x| otherwise

talworth W (x, c) =
{

1 if |x| < c
0 otherwise
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welsch W (x, c) = exp(−1
2(xc )

2)

SeeTable 62.4on page 3985 for the default values of the constants in these weight
functions.

Convergence Criteria

The following convergence criteria are available in PROC ROBUSTREG:

1. Relative change in the scaled residuals (CONVERGENCE= RESID)

2. Relative change in the coefficients (CONVERGENCE= COEF)

3. Relative change in weights (CONVERGENCE= W)

You can specify the criteria with the CONVERGENCE= option in the PROC state-
ment. The default is CONVERGENCE= COEF.

You can specify the precision of the convergence criterion with the EPS= sub-option.

In addition to these convergence criteria, a convergence criterion based on scale-
independent measure of the gradient is always checked. See Coleman, et. al. (1980).
A warning is issued if this criterion is not satisfied.

Asymptotic Covariance and Confidence Intervals

The following three estimators of the asymptotic covariance of the robust estimator
are available in PROC ROBUSTREG:

H1: K2 [1/(n− p)]
∑

(ψ(ri))2

[(1/n)
∑

(ψ′(ri))]2
(XTX)−1

H2: K
[1/(n− p)]

∑
(ψ(ri))2

[(1/n)
∑

(ψ′(ri))]
W−1

H3: K−1 1
(n− p)

∑
(ψ(ri))2W−1(XTX)W−1

whereK = 1 + p
n
var(ψ′)
(Eψ′)2 is a correction factor andWjk =

∑
ψ′(ri)xijxik. Refer to

Huber (1981, p. 173) for more details.
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You can specify the asymptotic covariance estimate with the option ASYMPCOV=
option. The ROBUSTREG procedure uses H1 as the default because of its simplicity
and stability. Confidence intervals are computed from the diagonal elements of the
estimated asymptotic covariance matrix.

R2 and Deviance

The robust version ofR2 is defined as

R2 =
∑
ρ(yi−µ̂

ŝ )−
∑
ρ(yi−xT

i θ̂
ŝ )∑

ρ(yi−µ̂
ŝ )

and the robust deviance is defined as the optimal value of the objective function on
theσ2-scale:

D = 2(ŝ)2
∑

ρ(
yi − xTi θ̂

ŝ
)

whereρ′ = ψ, θ̂ is the M estimator ofθ, µ̂ is the M estimator of location, and̂s is the
M estimator of the scale parameter in the full model.

Linear Tests

Two tests are available in PROC ROBUSTREG for the canonical linear hypothesis

H0 : θj = 0, j = q + 1, ..., p

The first test is a robust version of the F test, which is refered to as theρ-test. Denote
the M estimators in the full and reduced model asθ̂0 ∈ Ω0 andθ̂1 ∈ Ω1, respectively.
Let

Q0 = Q(θ̂0) = min{Q(θ)|θ ∈ Ω0}
Q1 = Q(θ̂1) = min{Q(θ)|θ ∈ Ω1}

with

Q =
n∑
i=1

ρ(
ri
σ

)

The robust F test is based on the test statistic

S2
n =

2
p− q

[Q1 −Q0]
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AsymptoticallyS2
n ∼ λχ2

p−q underH0, where the standardization factor isλ =∫
ψ2(s)dΦ(s)/

∫
ψ′(s)dΦ(s) and Φ is the cumulative distribution function of the

standard normal distribution. Large values ofS2
n are significant. This test is a special

case of the generalτ -test of Hampel et. al. (1986, Section 7.2).

The second test is a robust version of the Wald test, which is refered to asR2
n-test.

The test uses a test statistic

R2
n = n(θ̂q+1, ..., θ̂p)H−1

22 (θ̂q+1, ..., θ̂p)T

where 1
nH22 is the(p− q)× (p− q) lower right block of the asymptotic covariance

matrix of the M estimatêθM of θ in ap-parameter linear model.

UnderH0, the statisticR2
n has an asymptoticχ2 distribution withp − q degrees of

freedom. Large absolute values ofR2
n are significant. Refer to Hampel et. al. (1986,

Chapter 7).

Model Selection

When M estimation is used, two criteria are available in PROC ROBUSTREG for
model selection. The first criterion is a counterpart of the Akaike (1974) AIC criterion
for robust regression, and it is defined as

AICR = 2
n∑
i=1

ρ(ri:p) + αp

whereri:p = (yi − xTi θ̂)/σ̂, σ̂ is a robust estimate ofσ andθ̂ is the M estimator with
p-dimensional design matrix.

As with AIC, α is the weight of the penalty for dimensions. The ROBUSTREG
procedure usesα = 2Eψ2/Eψ′ (Ronchetti (1985)) and estimates it using the final
robust residuals.

The second criterion is a robust version of the Schwarz information criteria(BIC), and
it is defined as

BICR = 2
n∑
i=1

ρ(ri:p) + p log(n)

High Breakdown Value Estimation

Thebreakdown valueof an estimator is defined as the smallest fraction of contamina-
tion that can cause the estimator to take on values arbitrarily far from its value on the
uncontamined data. The breakdown value of an estimator can be used as a measure of
the robustness of the estimator. Rousseeuw and Leroy (1987) and others introduced
the following high breakdown value estimators for linear regression.
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LTS Estimate

The least trimmed squares (LTS) estimate proposed by Rousseeuw (1984) is defined
as thep-vector

θ̂LTS = arg min
θ
QLTS(θ)

where

QLTS(θ) =
h∑
i=1

r2(i)

r2(1) ≤ r2(2) ≤ ... ≤ r2(n) are the ordered squared residualsr2i = (yi − xTi θ)
2, i =

1, ..., n, andh is defined in the rangen2 + 1 ≤ h ≤ 3n+p+1
4 .

You can specify the parameterh with the H= option in the PROC statement. By
default,h = [3n+p+1

4 ]. The breakdown value isn−hn for the LTS estimate.

The least median of squares (LMS) estimate is defined as thep-vector

θ̂LMS = arg min
θ
QLMS(θ)

where

QLMS(θ) = r2(h)

r2(1) ≤ r2(2) ≤ ... ≤ r2(n) are the ordered squared residualsr2i = (yi − xTi θ)
2, i =

1, ..., n, andh is defined in the rangen2 + 1 ≤ h ≤ 3n+p+1
4 .

The breakdown value for the LMS estimate is alson−h
n . However the LTS estimate

has several advantages over the LMS estimate. Its objective function is smoother,
making the LTS estimate less “jumpy” (i.e. sensitive to local effects) than the LMS
estimate. Its statistical efficiency is better, because the LTS estimate is asymptotically
normal whereas the LMS estimate has a lower convergence rate (Rousseeuw and
Leroy (1987)). Another important advantage is that, using the FAST-LTS algorithm
of Rousseeuw and Van Driessen (2000), the LTS estimate takes less computing time
and is more accurate.

The ROBUSTREG procedure computes LTS estimates using the FAST-LTS algo-
rithm. The estimates are often used to detect outliers in the data, which are then
downweighted in the resulting weighted LS regression.
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Algorithm

Least trimmed squares (LTS) regression is based on the subset ofh observations
(out of a total ofn observations) whose least squares fit possesses the smallest sum of
squared residuals. The coveragehmay be set betweenn2 andn. The LTS method was
proposed by Rousseeuw (1984, p. 876) as a highly robust regression estimator with
breakdown valuen−hn . The ROBUSTREG procedure uses the FAST-LTS algorithm
given by Rousseeuw and Van Driessen (1998). The intercept adjustment technique is
also used in this implementation. However, because this adjustment is expensive to
compute, it is optional. You can use the IADJUST option in the PROC statement to
request or suppress the intercept adjustment. By default, PROC ROBUSTREG does
intercept adjustment for data sets with less than 10000 observations. The algorithm is
described briefly as follows. Refer to Rousseeuw and Van Driessen (2000) for details.

1. The defaulth is [3n+p+1
4 ], wherep is the number of independent variables. You

can specify any integerh with [n2 ] + 1 ≤ h ≤ [3n+p+1
4 ] with the H= option

in the MODEL statement. The breakdown value for LTS,n−h
n , is reported.

The defaulth is a good compromise between breakdown value and statistical
efficiency.

2. If p = 1 (single regressor) the procedure uses the exact algorithm of
Rousseeuw and Leroy (1987, p. 172-172).

3. If p ≥ 2, the procedure uses the following algorithm. Ifn < 2ssubs,
wheressubsis the size of the subgroups (you can specifyssubsusing the
SUBGROUPSIZE= option in the PROC statement, by default,ssubs= 300),
draw a randomp-subset and compute the regression coefficients using these
p points (if the regression is degenerate, draw anotherp-subset). Compute the
absolute residuals for all observations in the data set and select the firsth points
with smallest absolute residuals. From this selectedh-subset, carry outnsteps
C-steps (Concentration step, see Rousseeuw and Van Driessen (2000) for de-
tails. You can specifynstepswith the CSTEP= option in the PROC statement,
by default,nsteps= 2). Redrawp-subsets and repeat the preceding comput-
ing procedurenreptimes and find thenbsol(at most) solutions with the lowest
sums ofh squared residuals.nrep can be specified with the NREP= option
in the PROC statement. By default, NREP=min{500,

(
n
p

)
}. For smalln and

p, all
(
n
p

)
subsets are used and the NREP= option is ignored (Rousseeuw and

Hubert (1996)).nbsolcan be specified with the NBEST= option in the PROC
statement. By default, NBEST=10. For each of thesenbsolbest solutions, take
C-steps until convergence and find the best final solution.

4. If n ≥ 5ssubs, construct 5 disjoint random subgroups with sizessubs. If
2ssubs< n < 5ssubs, the data are split into at most four subgroups with
ssubsor more observations in each subgroup, so that each observation belongs
to a subgroup and such that the subgroups have roughly the same size. Let
nsubsdenote the number of subgroups. Inside each subgroup, repeat the pro-
cedure in Step 3[ nrep

nsubs] times and keep thenbsol best solutions. Pool the
subgroups, yielding the merged set of sizenmerged. In the merged set, for each
of thensubs×nbsolbest solutions, carry outnstepsC-steps usingnmerged and
hmerged = [nmerged hn ] and keep thenbsolbest solutions. In the full data set, for
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each of thesenbsolbest solutions, take C-steps usingn andh until convergence
and find the best final solution.

R2

The robust version ofR2 for the LTS estimate is defined as

R2
LTS = 1−

s2LTS(X, y)
s2LTS(1, y)

for models with the intercept term and as

R2
LTS = 1−

s2LTS(X, y)
s2LTS(0, y)

for models without the intercept term, where

sLTS(X, y) = dh,n

√√√√1
h

h∑
i=1

r2(i)

sLTS is a preliminary estimate of the parameterσ in the distribution functionL(·/σ).

Here dh,n is chosen to makesLTS consistent assuming a Gaussian model.
Specifically,

dh,n = 1/

√
1− 2n

hch,n
φ(1/ch,n)

ch,n = 1/Φ−1(
h+ n

2n
)

with Φ andφ being the distribution function and the density function of the standard
normal distribution, respectively.

Final Weighted Scale Estimator

The ROBUSTREG procedure displays two scale estimators,sLTS and Wscale. The
estimate Wscale is a more efficient scale estimate based on the preliminary estimate
sLTS , and it is defined as

Wscale=

√ ∑
iwir

2
i∑

iwi − p

where

wi =
{

0 if |ri|/sLTS > k
1 otherwise

You can specifyk with the CUTOFF= option in the MODEL statement. By default,
k = 3.
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S Estimate

The S estimate proposed by Rousseeuw and Yohai (1984) is defined as thep-vector

θ̂S = arg min
θ
S(θ)

where the dispersionS(θ) is the solution of

1
n− p

n∑
i=1

χ(
yi − xTi θ

S
) = β.

Hereβ is set to
∫
χ(s)dΦ(s) such that̂θS andS(θ̂S) are asymptotically consistent

estimates ofθ andσ for the Gaussian regression model. The breakdown value of the
S estimate is

β

sups χ(s)

The ROBUSTREG procedure provides two choices forχ: the Tukey function and the
Yohai function.

The Tukey function, which you can specify with the option CHIF=TUKEY, is

χk0(s) =
{

3( sk0 )2 − 3( sk0 )4 + ( sk0 )6, if |s| ≤ k0

1 otherwise

The constantk0 controls the breakdown value and efficiency of the S estimate. By
specifying the efficiency using the EFF= option, you can determine the corresponding
k0. The defaultk0 is 2.9366 such that the breakdown value of the S estimate is 0.25
with a corresponding asymptotic efficiency for the Gaussian model of75.9%.

The Yohai function, which you can specify with the option CHIF=YOHAI, is

χk0(s) =


s2

2 if |s| ≤ 2k0

k2
0[b0 + b1( sk0 )2 + b2( sk0 )4

+b3( sk0 )6 + b4( sk0 )8] if 2k0 < |s| ≤ 3k0

3.25k2
0 if |s| > 3k0

whereb0 = 1.792, b1 = −0.972, b2 = 0.432, b3 = −0.052, andb4 = 0.002. By
specifying the efficiency using the EFF= option, you can determine the corresponding
k0. By default,k0 is set to 0.7405 such that the breakdown value of the S estimate is
0.25 with a corresponding asymptotic efficiency for the Gaussian model of72.7%.
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Algorithm

The ROBUSTREG procedure implements the algorithm by Marazzi (1993) for the
S estimate, which is a refined version of the algorithm proposed by Ruppert (1992).
The refined algorithm is briefly described as follows.

Initialize iter = 1.

1. Draw a randomq-subset of the totaln observations and compute the regression
coefficients using theseq observations (if the regression is degenerate, draw
anotherq-subset), whereq ≥ p can be specified with the SUBSIZE= option.
By default,q = p.

2. Compute the residuals:ri = yi −
∑p

i=1 xijθj for i = 1, ..., n. If iter = 1, set
s∗ = 2median{|ri|, i = 1, ..., n}; if s∗ = 0, sets∗ = min{|ri|, i = 1, ..., n};
while

∑n
i=1 χ(ri/s∗) > (n− p)β, sets∗ = 1.5s∗; go to Step 3.

If iter > 1 and
∑n

i=1 χ(ri/s∗) <= (n− p)β, go to the Step 3; else go to Step
5.

3. Solve fors the equation

1
n− p

n∑
i=1

χ(ri/s) = β

using an iterative algorithm.

4. If iter > 1 ands > s∗, go to Step 5. Otherwise, sets∗ = s andθ∗ = θ. If
s∗ < TOLS, returns∗ andθ∗; else go to Step 5.

5. if iter < NREP , setiter = iter + 1 and return to Step 1; else returns∗ and
θ∗.

The ROBUSTREG procedure does the following refinement step by default. You
can request this refinement not be done using the NOREFINE option in the PROC
statement.

6. Let ψ = χ′. Using the valuess∗ andθ∗ from the previous steps, compute M
estimatesθM andσM of θ andσ with the setup for M estimation in the section
“M Estimation” on page 3993. IfσM > s∗, give a warning and returns∗ and
θ∗; otherwise, returnσM andθM .

You can specifyTOLS with the TOLERANCE= option; by default,TOLS = .001.
Alternately You can specifyNREP with the NREP= option. You can also use the
options NREP= NREP0 or NREP= NREP1 to determineNREP according to the
following table. NREP= NREP0 is set as the default.
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Table 62.7. Default NREP
P NREP0 NREP1
1 150 500
2 300 1000
3 400 1500
4 500 2000
5 600 2500
6 700 3000
7 850 3000
8 1250 3000
9 1500 3000
>9 1500 3000

R2 and Deviance

The robust version ofR2 for the S estimate is defined as

R2
S = 1−

(n− p)S2
p

(n− 1)S2
µ

for the model with the intercept term and

R2
S = 1−

(n− p)S2
p

nS2
0

for the model without the intercept term, whereSp is the S estimate of the scale in
the full model,Sµ is the S estimate of the scale in the regression model with only
the intercept term, andS0 is the S estimate of the scale without any regressor. The
devianceD is defined as the optimal value of the objective function on theσ2-scale:

D = S2
p

Asymptotic Covariance and Confidence Intervals

Since the S estimate satisfies the first-order necessary conditions as the M estimate, it
has the same asymptotic covariance as that of the M estimate. All three estimators of
the asymptotic covariance for the M estimate in the section“Asymptotic Covariance
and Confidence Intervals”on page 3997 can be used for the S estimate. Besides, the
weighted covariance estimator H4 described in the section“Asymptotic Covariance
and Confidence Intervals”on page 4008 is also available and is set as the default.
Confidence intervals for estimated parameters are computed from the diagonal ele-
ments of the estimated asymptotic covariance matrix.
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MM Estimation

MM estimation is a combination of high breakdown value estimation and efficient
estimation, which was introduced by Yohai (1987). It has three steps:

1. Compute an initial (consistent) high breakdown value estimateθ̂′. The
ROBUSTREG procedure provides two kinds of estimates as the initial
estimate, the LTS estimate and the S estimate. By default, the LTS estimate
because of its speed, efficiency, and high breakdown value. The breakdown
value of the final MM estimate is decided by the breakdown value of the initial
LTS estimate and the constantk0 in theχ function. To use the S estimate as
the initial estimate, you specify the INITEST=S option in the PROC statement.
In this case, the breakdown value of the final MM estimate is decided only by
the constantk0. Instead of computing the LTS estimate or the S estimate as
initial estimates, you can also specify the initial estimate explicitly using the
INEST= option in the PROC statement. See the section“INEST= Data Set”
on page 4011 for details.

2. Find σ̂′ such that

1
n− p

n∑
i=1

χ(
yi − xTi θ̂

′

σ̂′ ) = β

whereβ =
∫
χ(s)dΦ(s).

The ROBUSTREG procedure provides two choices forχ: the Tukey function
and the Yohai function.

The Tukey function, which you can specify with the option CHIF=TUKEY, is

χk0(s) =
{

3( sk0 )2 − 3( sk0 )4 + ( sk0 )6, if |s| ≤ k0

1 otherwise

wherek0 can be specified with the K0= option. The defaultk0 = 2.9366 such
that the asymptotically consistent scale estimateσ̂′ has the breakdown value of
25%.

The Yohai function, which you can specify with the option CHIF=YOHAI, is

χk0(s) =


s2

2 if |s| ≤ 2k0

k2
0[b0 + b1( sk0 )2 + b2( sk0 )4

+b3( sk0 )6 + b4( sk0 )8] if 2k0 < |s| ≤ 3k0

3.25k2
0 if |s| > 3k0

whereb0 = 1.792, b1 = −0.972, b2 = 0.432, b3 = −0.052, andb4 = 0.002.
You can specifyk0 with the K0= option. The defaultk0 is .7405 such that the
asymptotically consistent scale estimateσ̂′ has the breakdown value of25%.
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3. Find a local minimum̂θMM of

QMM =
n∑
i=1

ρ(
yi − xTi θ

σ̂′ )

such thatQMM (θ̂MM ) ≤ QMM (θ̂′). The algorithm for M estimation is used
here.

The ROBUSTREG procedure provides two choices forχ: the Tukey function
and the Yohai function.

The Tukey function, which you can specify with the option CHIF=TUKEY, is

ρ(s) = χk1(s) =
{

3( sk1 )2 − 3( sk1 )4 + ( sk1 )6, if |s| ≤ k1

1 otherwise

where k1 can be specified with the K1= option. The defaultk1 is 3.440
such that the MM estimate has85% asymptotic efficiency with the Gaussian
distribution.

The Yohai function, which you can specify with the option CHIF=Yohai, is

ρ(s) = χk1(s) =


s2

2 if |s| ≤ 2k1

k2
1[b0 + b1( sk1 )2 + b2( sk1 )4

+b3( sk1 )6 + b4( sk1 )8] if 2k1 < |s| ≤ 3k1

3.25k2
1 if |s| > 3k1

wherek1 can be specified with the K1= option. The defaultk1 is 0.868 such
that the MM estimate has85% asymptotic efficiency with the Gaussian distri-
bution.

Algorithm

The initial LTS estimate is computed using the algorithm described in the section
“LTS Estimate”on page 4000. You can control the quantile of the LTS estimate with
the option INITH=h, whereh is an integer between[n2 ]+1 and[3n+p+1

4 ]. By default,
h = [3n+p+1

4 ], which corresponds to a breakdown value of around25%.

The initial S estimate is computed using the algorithm described in the section“S
Estimate”on page 4003. You can control the breakdown value and efficiency of this
initial S estimate by the constantk0 which can be specified with the K0 option.

The scale parameterσ is solved by an iterative algorithm

(σ(m+1))2 =
1

(n− p)β

n∑
i=1

χk0(
ri

σ(m)
)(σ(m))2

whereβ =
∫
χk0(s)dΦ(s).

Once the scale parameter is computed, the iteratively reweighted least squares (IRLS)
algorithm with fixed scale parameter is used to compute the final MM estimator.
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Convergence Criteria

In the iterative algorithm for the scale parameter, the relative change of the scale
parameter controls the convergence.

In the iteratively reweighted least squares algorithm, the same convergence criteria
for the M estimate used before are used here.

Bias Test

Although the final MM estimate inherits the high-breakdown-value properity, its bias
due to the distortion of the outliers can be high. Yohai, Stahel, and Zamar (1991)
introduced a bias test. The ROBUSTREG procedure implements this test when you
specify the BIASTEST option in the PROC statement. This test bases on the initial
scale estimatêσ′ and the final scale estimatêσ′

1, which is the solution of

1
n− p

n∑
i=1

χ(
yi − xTi θ̂MM

σ̂′
1

) = β

Letψk0(·) = χ′
k0

(·) andψk1(·) = χ′
k1

(·), where′ denotes the derivative with respect
to the argument. Compute

r̃i = (yi − xTi θ̂
′)/σ̂′ for i = 1, ..., n

v0 =
(1/n)

∑
ψ′
k0

(r̃i)
(σ̂′

1/n)
∑
ψk0(r̃i)r̃i

p
(0)
i =

ψk0(r̃i)
(1/n)

∑
ψ′
k0

(r̃i)
for i = 1, ..., n

p
(1)
i =

ψk1(r̃i)
(1/n)

∑
ψ′
k1

(r̃i)
for i = 1, ..., n

d2 =
1
n

∑
(p(1)
i − p

(0)
i )2

T =
2n(σ̂′

1 − σ̂′)
v0d2(σ̂′)2

Standard asymptotic theory shows thatT approximately follows aχ2-distribution
with p degrees of freedom. IfT exceeds theα quantileχ2

α of theχ2-distribution
with p degrees of freedom, then the ROBUSTREG procedure gives a warning and
recommends to use other methods. Otherwise the final MM estimate and the initial
scale estimate are reported. You can specifyα with the ALPHA= option following
the BIASTEST option. By default, ALPHA= 0.99.

Asymptotic Covariance and Confidence Intervals

Since the MM estimate is computed as a M estimate with a fixed scale in the last step,
the asymptotic covariance for the M estimate can be used here for the asymptotic
covariance of the MM estimate. Besides the three estimators H1, H2, and H3 as
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described in the section“Asymptotic Covariance and Confidence Intervals”on page
3997, a weighted covariance estimator H4 is available:

H4: K2 [1/(n− p)]
∑

(ψ(ri))2

[(1/n)
∑

(ψ′(ri))]2
W−1

whereK = 1 + p
n
var(ψ′)
(Eψ′)2 is the correction factor andWjk = 1

w̄

∑
wixijxik, w̄ =

1
n

∑
wi.

You can specify these estimators with the option ASYMPCOV= [H1 | H2 | H3 | H4].
The ROBUSTREG procedure uses H4 as default. Confidence intervals for estimated
parameters are computed from the diagonal elements of the estimated asymptotic
covariance matrix.

R2 and Deviance

The robust version ofR2 for the MM estimate is defined as

R2 =
∑
ρ(yi−µ̂

ŝ )−
∑
ρ(yi−xT

i θ̂
ŝ )∑

ρ(yi−µ̂
ŝ )

and the robust deviance is defined as the optimal value of the objective function on
theσ2-scale:

D = 2(ŝ)2
∑

ρ(
yi − xTi θ̂

ŝ
)

whereρ′ = ψ, θ̂ is the MM estimator ofθ, µ̂ is the MM estimator of location, and̂s
is the MM estimator of the scale parameter in the full model.

Linear Tests

For MM estimation, the sameρ-test andR2
n-test used for M estimation can be used.

See the section“Linear Tests”on page 3998 for details.

Model Selection

For MM estimation, the same two model selection methods used for M estimation
can be used. See the section“Model Selection”on page 3999 for details.

Robust Multivariate Location and Scale Estimates

The ROBUSTREG procedure uses the robust multivariate location and scale esti-
mates for leverage points detection. The procedure provides the minimum covariance
determinant (MCD) method, which was introduced by Rousseeuw (1984).
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Algorithm

PROC ROBUSTREG implements the algorithm given by Rousseeuw and Van
Driessen (1999) for MCD, which is similar to the algorithm for LTS.

Robust Distance

The Mahalanobis Distance is defined as

MD(xi) = [(xi − x̄)T C̄(X)−1(xi − x̄)]1/2

where x̄ = 1
n

∑n
i=1 xi and C̄ = 1

n−1

∑n
i=1(xi − x̄)T (xi − x̄). Here xi =

(xi1, ..., xi(p−1))T do not include the constant variable. The relation between the
Mahalanobis distanceMD(xi) and the hat matrixH = (hij) = X(XTX)−1XT is

hii =
1

n− 1
MD2

i +
1
n

The Robust Distance is defined as

RD(xi) = [(xi − T (X))TC(X)−1(xi − T (X))]1/2

whereT (X) andC(X) are the robust multivariate location and scale obtained by
MCD.

These distances are used to detect leverage points.

Leverage Point and Outlier Detection

LetC(p) =
√
χ2
p;1−α be the cutoff value. The variable LEVERAGE is defined as

LEVERAGE =
{

0 if RD(xi) ≤ C(p)
1 otherwise

You can specify a cutoff value with the LEVERAGE option in the MODEL statement.

Residualsri, i = 1, ..., n based on robust regression estimates are used to detect
vertical outliers. The variable OUTLIER is defined as

OUTLIER =
{

0 if |ri| ≤ kσ
1 otherwise

You can specify the multiplierk of the cutoff value by using the CUTOFF= option in
the MODEL statement.

An ODS table called DIAGNOSTICS contains these two variables.
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INEST= Data Set

When you use the M or MM estimation, you cna use the INEST= data set to specify
initial estimates for all the parameters in the model. The INEST= option is ignored
if you specify LTS or S estimation using the METHOD=LTS or METHOD=S op-
tion or if you specify the INITEST= option after the METHOD=MM option in the
PROC statement. The INEST= data set must contain the intercept variable (named
Intercept) and all independent variables in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables,
and there must be at least one observation for each BY group. If there is more than
one observation in one BY group, the first one read is used for that BY group.

If the INEST= data set also contains the–TYPE– variable, only observations with

–TYPE– value “PARMS” are used as starting values.

You can specify starting values for the iteratively reweighted least squares algorithm
in the INEST= data set. The INEST= data set has the same structure as the OUTEST=
data set but is not required to have all the variables or observations that appear in the
OUTEST= data set. One simple use of the INEST= option is passing the previous
OUTEST= data set directly to the next model as an INEST= data set, assuming that
the two models have the same parameterization.

OUTEST= Data Set

The OUTEST= data set contains parameter estimates for the model. You can specify
a label in the MODEL statement to distinguish between the estimates for different
modeling using the ROBUSTREG procedure. If the COVOUT option is specified,
the OUTEST= data set also contains the estimated covariance matrix of the parameter
estimates. Note that, if the ROBUSTREG procedure does not converge, the parameter
estimates are set to missing in the OUTEST data set.

The OUTES= data set contains all variables specified in the MODEL statement and
the BY statement. One observation consists of parameter values for the model with
the dependent variable having the value−1. If the COVOUT option is specified, there
are additional observations containing the rows of the estimated covariance matrix.
For these observations, the dependent variable contains the parameter estimate for the
corresponding row variable. The following variables are also added to the data set:

–MODEL– a character variable containing the label of the MODEL statement,
if present. Otherwise, the variable’s value is blank

–NAME– a character variable containing the name of the dependent variable
for the parameter estimates observations or the name of the row for
the covariance matrix estimates

–TYPE– a character variable containing the type of the observation, either
PARMS for parameter estimates or COV for covariance estimates

–METHOD– a character variable of containing the type of estimation method,
either M estimation, or LTS estimation, or S estimation, or MM
estimation
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–STATUS– a character variable containing the status of model fitting, either
Converged, or Warning, or Failed

INTERCEPT a numeric variable containing the intercept parameter estimates and
covariances

–SCALE– a numeric variable containing the scale parameter estimates

Any BY variables specified are also added to the OUTEST= data set.

Computational Resources

The algorithms for the various different estimation methods need different amount of
memory for working space. Letp be the number of parameters estimated andn be
the number of observations used in the model estimation.

For M estimation, the minimum working space (in bytes) needed is

3n+ 2p2 + 30p

If sufficient space is available, the input data set is also kept in memory; otherwise,
the input data set is reread for computing the iteratively reweighted least squares
estimates and the execution time of the procedure increases substantially. For each
reweighted least squares,O(np2 + p3) multiplications and additions are required for
computing the cross product matrix and its inverse. TheO(v) notation means that,
for large values of the argument,v,O(v) is approximately a constant timesv.

Since the iteratively reweighted least squares algorithm converges very quickly (nor-
mally within less than 20 iterations), the computation of M estimates is fast.

LTS estimation is more expensive in computation. The minimum working space (in
bytes) needed is

np+ 12n+ 4p2 + 60p

The memory is mainly used to store the current data used by LTS for modeling.
The LTS algorithm uses subsampling and spends much of its computing time on
resampling and computing estimates for subsamples. Since it resamples if singularity
is detected, it may take more time if the data set has serious singularities.

The MCD algorithm for high leverage point diagnostics is similar to the LTS algo-
rithm.

ODS Table Names

The ROBUSTREG procedures assigns a name to each table it creates. You can spec-
ify these names when using the Output Delivery System (ODS) to select tables and
create output data sets. These names are listed in the following table.
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Table 62.8. ODS Tables Produced in PROC ROBUSTREG

ODS Table Name Description Statement Option
BestEstimates Best final estimates for LTS PROC SUBANALYSIS
BestSubEstimates Best estimates for each subgroup PROC SUBANALYSIS∗

BiasTest Bias test for MM estimation PROC BIASTEST
ClassLevels Class variable levels CLASS default∗

CorrB Parameter estimate correlation matrix MODEL CORRB
CovB Parameter estimate covariance matrix MODEL COVB
CStep C-Step for LTS fitting PROC SUBANALYSIS
Diagnostics Outlier diagnostics MODEL DIAGNOSTICS
DiagSummary Summary of the outlier diagnostics MODEL default
GoodFit R2, deviance, AIC, and BIC MODEL default
InitLTSProfile Profile for initial LTS estimate PROC METHOD
InitSProfile Profile for initial S estimate PROC METHOD
IterHistory Iteration history PROC ITPRINT
LTSEstimates LTS parameter estimates PROC METHOD
LTSLocationScale Location and scale for LTS PROC METHOD
LTSProfile Profile for LTS estimate PROC METHOD
LTSRsquare R2 for LTS estimate PROC METHOD
MMProfile Profile for MM estimate PROC METHOD
ModelInfo Model information MODEL default
NObs Observations Summary PROC default
ParameterEstimates Parameter estimates MODEL default
ParameterEstimatesF Final weighted LS estimates PROC FWLS
ParameterEstimatesR Reduced parameter estimates TEST default
ParmInfo Parameter indices MODEL default
SProfile Profile for S estimate PROC METHOD
Groups Groups for LTS fitting PROC SUBANALYSIS∗

SummaryStatistics Summary statistics for model variables MODEL default
TestsProfile Results for tests TEST default

∗ Depends on data.

ODS Graphics (Experimental)

Graphical displays are important in robust regression and outlier detection. Two plots
are particularly useful for revealing outliers and leverage points. The first is a scatter
plot of the standardized robust residuals against the robust distances (RDPLOT). The
second is a scatter plot of the robust distances against the classical Mahalanobis dis-
tances (DDPLOT). SeeFigure 62.4on page 3975 andFigure 62.5on page 3975 for
examples. In addition to these two plots, a histogram and a quantile-quantile plot of
the standardized robust residuals are also helpful. SeeFigure 62.6on page 3976 and
Figure 62.7on page 3976 for examples.

This section describes the use of ODS for creating these four plots with the
ROBUSTREG procedure. These graphics are experimental in this release, mean-
ing that both the graphical results and the syntax for specifying them are subject to
change in a future release.
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To request these plots you must specify the ODS GRAPHICS statement in addition
to the PLOT= (or PLOTS=) option, which is described as follows. For more informa-
tion on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics Using
ODS.”

You can specify the PLOT= or PLOTS= option in the PROC statement to request one
or more plots:

PLOT=keyword
PLOTS=(keyword-list)

requests plots for robust regression. You can specify one or more of the following
keywords:

Table 62.9. Options for Plots
Keyword Plot
DDPLOT Robust distance - Mahalanobis distance

RDPLOT Standardized robust residual - Robust distance

RESHISTOGRAM Histogram of standardized robust residuals

RESQQPLOT Q-Q plot of standardized robust residuals

ALL All plots

With the RDPLOT and DDPLOT options, you can label the points on the plots by
specifying the LABEL= suboption immediately after the keyword:

PLOT=DDPLOT<(LABEL= label method)>
PLOT=RDPLOT<(LABEL= label method)>

You can specify one of the followinglabel methods:

Table 62.10. Label Methods
Value of LABEL= Label Method
ALL label all points

OUTLIER label outliers

LEVERAGE label leverage points

NONE no labels

By default, the ROBUSTREG procedure labels both outliers and leverage points.

If you specify ID variables in the ID statement, the values of the first ID variable are
used as labels; otherwise, observation numbers are used as labels.

The histogram is superimposed with a normal density curve and a kernel density
curve.

ODS Graph Names

PROC ROBUSTREG assigns a name to each graph it creates using ODS. You can
use these names to reference the graphs when using ODS. The names are listed in
Table 62.11on page 4015.



ODS Graphics (Experimental) � 4015

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the PLOT= (or PLOTS=) option described inTable 62.9on page 4014. For more
information on the ODS GRAPHICS statement, seeChapter 15, “Statistical Graphics
Using ODS.”

Table 62.11. ODS Graphics Produced by PROC ROBUSTREG

ODS Graph Name Plot Description Statement PLOTS= Option
DDPlot Robust distance - Mahalanobis

distance
PROC DDPLOT

RDPlot Standardized robust residual -
Robust distance

PROC RDPLOT

ResidualHistogram Histogram of standardized robust
residuals

PROC RESHISTOGRAM

ResidualQQPlot Q-Q plot of standardized robust
residuals

PROC RESQQPLOT
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Examples

Example 62.1. Comparison of Robust Estimates

This example illustrates differences in the performance of robust estimates available
in the ROBUSTREG procedure.

The following statements generate 1000 random observations. The first 900 obser-
vations are from a linear model and the last 100 observations are significantly biased
in they-direction. In other words, ten percent of the observations are contaminated
with outliers.

data a (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 900 then y=100 + e;
else y=10 + 5*x1 + 3*x2 + .5 * e;
output;

end;
run;

proc reg data=a;
model y = x1 x2;

run;

proc robustreg data=a method=m ;
model y = x1 x2;

run;

proc robustreg data=a method=mm;
model y = x1 x2;

run;

Output 62.1.1. OLS Estimates for Data with 10% Contamination
The REG Procedure

Model: MODEL1
Dependent Variable: y

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 19.06712 0.86322 22.09 <.0001
x1 1 3.55485 0.86892 4.09 <.0001
x2 1 2.12341 0.83039 2.56 0.0107
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Output 62.1.2. M Estimates for Data with 10% Contamination
The ROBUSTREG Procedure

Model Information

Data Set WORK.B
Dependent Variable y
Number of Covariates 2
Number of Observations 1000
Method M Estimation

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 10.0024 0.0174 9.9683 10.0364 331908 <.0001
x1 1 5.0077 0.0175 4.9735 5.0420 82106.9 <.0001
x2 1 3.0161 0.0167 2.9834 3.0488 32612.5 <.0001
Scale 1 0.5780

Output 62.1.3. MM Estimates for Data with 10% Contamination
The ROBUSTREG Procedure

Model Information

Data Set WORK.B
Dependent Variable y
Number of Covariates 2
Number of Observations 1000
Method MM Estimation

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 10.0035 0.0176 9.9690 10.0379 323947 <.0001
x1 1 5.0085 0.0178 4.9737 5.0433 79600.6 <.0001
x2 1 3.0181 0.0168 2.9851 3.0511 32165.0 <.0001
Scale 0 0.6733

The tables of parameter estimates generated by the ROBUSTREG procedure using
M estimation and MM estimation are shown inOutput 62.1.2and Output 62.1.3.
For comparison, the ordinary least squares (OLS) estimates produced by the REG
procedure are shown inOutput 62.1.1. Both the M estimate and the MM estimate
correctly estimate the regression coefficients for the underlying model (10, 5, and 3),
but the OLS estimate does not.

The next statements demonstrate that if the percentage of contamination is increased
to 40%, the M estimates and MM estimates with default options fail to pick up the
underlying model. However, by tuning the constantc for the M estimate and the
constants INITH and K0 for the MM estimate, you can increase the breakdown values
of these estimates and capture the right model.Output 62.1.4and Output 62.1.5
display these estimates.
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data b (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 600 then y=100 + e;
else y=10 + 5*x1 + 3*x2 + .5 * e;
output;

end;
run;

proc robustreg data=b method=m(wf=bisquare(c=2));
model y = x1 x2;

run;

proc robustreg data=b method=mm(inith=502 k0=1.8);
model y = x1 x2;

run;

Output 62.1.4. M Estimates for Data with 40% Contamination
The ROBUSTREG Procedure

Model Information

Data Set WORK.B
Dependent Variable y
Number of Covariates 2
Number of Observations 1000
Method M Estimation

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 10.0137 0.0219 9.9708 10.0565 209688 <.0001
x1 1 4.9905 0.0220 4.9473 5.0336 51399.1 <.0001
x2 1 3.0399 0.0210 2.9987 3.0811 20882.4 <.0001
Scale 1 1.0531

Output 62.1.5. MM Estimates for Data with 40% Contamination
The ROBUSTREG Procedure

Model Information

Data Set WORK.B
Dependent Variable y
Number of Covariates 2
Number of Observations 1000
Method MM Estimation

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 10.0103 0.0213 9.9686 10.0520 221639 <.0001
x1 1 4.9890 0.0218 4.9463 5.0316 52535.7 <.0001
x2 1 3.0363 0.0201 2.9970 3.0756 22895.4 <.0001
Scale 0 1.8997
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When there are bad leverage points, the M estimates fail to pick up the underlying
model no matter what constantc you use. In this case, other estimates (LTS, S, and
MM estimates) in PROC ROBUSTREG, which are robust to bad leverage points, will
pick up the underlying model.

The following statements generate 1000 observations with1% bad high leverage
points.

data b (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 600 then y=100 + e;
else y=10 + 5*x1 + 3*x2 + .5 * e;
if i < 11 then x1=200 * rannor(1234);
if i < 11 then x2=200 * rannor(1234);
if i < 11 then y= 100*e;
output;

end;
run;

proc robustreg data=b method=s(k0=1.8);
model y = x1 x2;

run;

proc robustreg data=b method=mm(inith=502 k0=1.8);
model y = x1 x2;

run;

Output 62.1.6. S Estimates for Data with 1% Leverage Points
The ROBUSTREG Procedure

Model Information

Data Set WORK.C
Dependent Variable y
Number of Covariates 2
Number of Observations 1000
Method S Estimation

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 9.9808 0.0216 9.9383 10.0232 212532 <.0001
x1 1 5.0303 0.0208 4.9896 5.0710 58656.3 <.0001
x2 1 3.0217 0.0222 2.9782 3.0652 18555.7 <.0001
Scale 0 2.2094
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Output 62.1.7. MM Estimates for Data with 1% Leverage Points
The ROBUSTREG Procedure

Model Information

Data Set WORK.C
Dependent Variable y
Number of Covariates 2
Number of Observations 1000
Method MM Estimation

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 9.9820 0.0215 9.9398 10.0241 215369 <.0001
x1 1 5.0303 0.0206 4.9898 5.0707 59469.1 <.0001
x2 1 3.0222 0.0221 2.9789 3.0655 18744.9 <.0001
Scale 0 2.2134

Output 62.1.6displays the S estimates andOutput 62.1.7displays the MM estimates
with initial LTS estimates.

Example 62.2. Robust ANOVA

The classical analysis of variance (ANOVA) technique based on least squares as-
sumes that the underlying experimental errors are normally distributed. However,
data often contain outliers due to recording or other errors. In other cases, extreme
responses occurs when control variables in the experiments is set to extremes. It is
important to distinguish these extreme points and determine whether they are out-
liers or important extreme cases. You can use the ROBUSTREG procedure for robust
analysis of variance based on M estimation. Typically, there are no high leverage
points in a well-designed experiment, so M estimation is appropriate.

The following example shows how to use the ROBUSTREG procedure for robust
ANOVA.

An experiment was carried out to study the effects of two successive treatments (T1,
T2) on the recovery time of mice with certain diseases. Sixteen mice were randomly
assigned into four groups for the four different combinations of the treatments. The
recovery times (time) were recorded (in hours).

data recover;
input id T1 $ T2 $ time;
datalines;

1 0 0 20.2
2 0 0 23.9
3 0 0 21.9
4 0 0 42.4
5 1 0 27.2
6 1 0 34.0
7 1 0 27.4
8 1 0 28.5
9 0 1 25.9
10 0 1 34.5
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11 0 1 25.1
12 0 1 34.2
13 1 1 35.0
14 1 1 33.9
15 1 1 38.3
16 1 1 39.9
;

The following statements invoke the GLM procedure for a standard ANOVA.

proc glm data=recover;
class T1 T2;
model time = T1 T2 T1*T2;

run;

Output 62.2.1. Overall ANOVA
The GLM Procedure

Dependent Variable: time

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 209.9118750 69.9706250 1.86 0.1905

Error 12 451.9225000 37.6602083

Corrected Total 15 661.8343750

R-Square Coeff Var Root MSE time Mean

0.317167 19.94488 6.136791 30.76875

Output 62.2.2. Model ANOVA
The GLM Procedure

Dependent Variable: time

Source DF Type I SS Mean Square F Value Pr > F

T1 1 81.4506250 81.4506250 2.16 0.1671
T2 1 106.6056250 106.6056250 2.83 0.1183
T1*T2 1 21.8556250 21.8556250 0.58 0.4609

Source DF Type III SS Mean Square F Value Pr > F

T1 1 81.4506250 81.4506250 2.16 0.1671
T2 1 106.6056250 106.6056250 2.83 0.1183
T1*T2 1 21.8556250 21.8556250 0.58 0.4609

Output 62.2.1indicates that the overall model effect is not significant at the10% level
andOutput 62.2.2indicates that neither treatment is significant at the10% level.
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The following statements invoke the ROBUSTREG procedure with the same model.

proc robustreg data=recover;
class T1 T2;
model time = T1 T2 T1*T2 / diagnostics;
T1_T2: test T1*T2;
output out=robout r=resid sr=stdres;

run;

Output 62.2.3shows some basic information about the model and the response vari-
abletime.

Output 62.2.3. Model Fitting Information and Summary Statistics
The ROBUSTREG Procedure

Model Information

Data Set WORK.RECOVER
Dependent Variable time
Number of Covariates 2
Number of Continuous Covariates 0
Number of Discrete Covariates 2
Number of Observations 16
Method M Estimation

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation MAD

time 25.5000 31.2000 34.7500 30.7688 6.6425 6.8941

The Parameter Estimates table inOutput 62.2.4indicates that the main effects of both
treatments are significant at the5% level.

Output 62.2.4. Model Parameter Estimates
The ROBUSTREG Procedure

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 36.7655 2.0489 32.7497 40.7814 321.98 <.0001
T1 0 1 -6.8307 2.8976 -12.5100 -1.1514 5.56 0.0184
T1 1 0.0000 0.0000 0.0000 0.0000 . .
T2 0 1 -7.6755 2.8976 -13.3548 -1.9962 7.02 0.0081
T2 1 0.0000 0.0000 0.0000 0.0000 . .
T1*T2 0 0 1 -0.2619 4.0979 -8.2936 7.7698 0.00 0.9490
T1*T2 0 1 0.0000 0.0000 0.0000 0.0000 . .
T1*T2 1 0 0.0000 0.0000 0.0000 0.0000 . .
T1*T2 1 1 0.0000 0.0000 0.0000 0.0000 . .
Scale 1 3.5346
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Output 62.2.5. Diagnostics
The ROBUSTREG Procedure

Diagnostics

Standardized
Robust

Obs Residual Outlier

4 5.7722 *

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.0625 3.0000

The reason for the difference between the traditional ANOVA and the robust ANOVA
is explained byOutput 62.2.5, which shows that the fourth observation is an outlier.
Further investigation shows that the original value of 24.4 for the fourth observation
was recorded incorrectly.

Output 62.2.6displays the robust test results. The interaction between the two treat-
ments is not significant.Output 62.2.7displays the robust residuals and standardized
robust residuals.

Output 62.2.6. Test of Significance
The ROBUSTREG Procedure

Robust Linear Tests

T1_T2

Test Chi-
Test Statistic Lambda DF Square Pr > ChiSq

Rho 0.0041 0.7977 1 0.01 0.9431
Rn2 0.0041 1 0.00 0.9490

Output 62.2.7. ROBUSTREG Output
Obs T1 T2 time resid stdres

1 0 0 20.2 -1.7974 -0.50851
2 0 0 23.9 1.9026 0.53827
3 0 0 21.9 -0.0974 -0.02756
4 0 0 42.4 20.4026 5.77222
5 1 0 27.2 -1.8900 -0.53472
6 1 0 34.0 4.9100 1.38911
7 1 0 27.4 -1.6900 -0.47813
8 1 0 28.5 -0.5900 -0.16693
9 0 1 25.9 -4.0348 -1.14152

10 0 1 34.5 4.5652 1.29156
11 0 1 25.1 -4.8348 -1.36785
12 0 1 34.2 4.2652 1.20668
13 1 1 35.0 -1.7655 -0.49950
14 1 1 33.9 -2.8655 -0.81070
15 1 1 38.3 1.5345 0.43413
16 1 1 39.9 3.1345 0.88679
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Example 62.3. Growth Study of De Long and Summers
Robust regression and outlier detection techniques have considerable applications to
econometrics. The following example from Zaman, Rousseeuw, and Orhan (2001)
shows how these techniques substantially improve the ordinary least squares (OLS)
results for the growth study of De Long and Summers.

De Long and Summers (1991) studied the national growth of 61 countries from 1960
to 1985 using OLS.

data growth;
input country$ GDP LFG EQP NEQ GAP @@;
datalines;

Argentin 0.0089 0.0118 0.0214 0.2286 0.6079
Austria 0.0332 0.0014 0.0991 0.1349 0.5809
Belgium 0.0256 0.0061 0.0684 0.1653 0.4109
Bolivia 0.0124 0.0209 0.0167 0.1133 0.8634
Botswana 0.0676 0.0239 0.1310 0.1490 0.9474
Brazil 0.0437 0.0306 0.0646 0.1588 0.8498
Cameroon 0.0458 0.0169 0.0415 0.0885 0.9333
Canada 0.0169 0.0261 0.0771 0.1529 0.1783
Chile 0.0021 0.0216 0.0154 0.2846 0.5402
Colombia 0.0239 0.0266 0.0229 0.1553 0.7695
CostaRic 0.0121 0.0354 0.0433 0.1067 0.7043
Denmark 0.0187 0.0115 0.0688 0.1834 0.4079
Dominica 0.0199 0.0280 0.0321 0.1379 0.8293
Ecuador 0.0283 0.0274 0.0303 0.2097 0.8205
ElSalvad 0.0046 0.0316 0.0223 0.0577 0.8414
Ethiopia 0.0094 0.0206 0.0212 0.0288 0.9805
Finland 0.0301 0.0083 0.1206 0.2494 0.5589
France 0.0292 0.0089 0.0879 0.1767 0.4708
Germany 0.0259 0.0047 0.0890 0.1885 0.4585
Greece 0.0446 0.0044 0.0655 0.2245 0.7924
Guatemal 0.0149 0.0242 0.0384 0.0516 0.7885
Honduras 0.0148 0.0303 0.0446 0.0954 0.8850
HongKong 0.0484 0.0359 0.0767 0.1233 0.7471
India 0.0115 0.0170 0.0278 0.1448 0.9356
Indonesi 0.0345 0.0213 0.0221 0.1179 0.9243
Ireland 0.0288 0.0081 0.0814 0.1879 0.6457
Israel 0.0452 0.0305 0.1112 0.1788 0.6816
Italy 0.0362 0.0038 0.0683 0.1790 0.5441
IvoryCoa 0.0278 0.0274 0.0243 0.0957 0.9207
Jamaica 0.0055 0.0201 0.0609 0.1455 0.8229
Japan 0.0535 0.0117 0.1223 0.2464 0.7484
Kenya 0.0146 0.0346 0.0462 0.1268 0.9415
Korea 0.0479 0.0282 0.0557 0.1842 0.8807
Luxembou 0.0236 0.0064 0.0711 0.1944 0.2863
Madagasc -0.0102 0.0203 0.0219 0.0481 0.9217
Malawi 0.0153 0.0226 0.0361 0.0935 0.9628
Malaysia 0.0332 0.0316 0.0446 0.1878 0.7853
Mali 0.0044 0.0184 0.0433 0.0267 0.9478
Mexico 0.0198 0.0349 0.0273 0.1687 0.5921
Morocco 0.0243 0.0281 0.0260 0.0540 0.8405
Netherla 0.0231 0.0146 0.0778 0.1781 0.3605
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Nigeria -0.0047 0.0283 0.0358 0.0842 0.8579
Norway 0.0260 0.0150 0.0701 0.2199 0.3755
Pakistan 0.0295 0.0258 0.0263 0.0880 0.9180
Panama 0.0295 0.0279 0.0388 0.2212 0.8015
Paraguay 0.0261 0.0299 0.0189 0.1011 0.8458
Peru 0.0107 0.0271 0.0267 0.0933 0.7406
Philippi 0.0179 0.0253 0.0445 0.0974 0.8747
Portugal 0.0318 0.0118 0.0729 0.1571 0.8033
Senegal -0.0011 0.0274 0.0193 0.0807 0.8884
Spain 0.0373 0.0069 0.0397 0.1305 0.6613
SriLanka 0.0137 0.0207 0.0138 0.1352 0.8555
Tanzania 0.0184 0.0276 0.0860 0.0940 0.9762
Thailand 0.0341 0.0278 0.0395 0.1412 0.9174
Tunisia 0.0279 0.0256 0.0428 0.0972 0.7838
U.K. 0.0189 0.0048 0.0694 0.1132 0.4307
U.S. 0.0133 0.0189 0.0762 0.1356 0.0000
Uruguay 0.0041 0.0052 0.0155 0.1154 0.5782
Venezuel 0.0120 0.0378 0.0340 0.0760 0.4974
Zambia -0.0110 0.0275 0.0702 0.2012 0.8695
Zimbabwe 0.0110 0.0309 0.0843 0.1257 0.8875
;

The regression equation they used is:

GDP = β0 + β1LFG+ β2GAP + β3EQP + β4NEQ+ ε,

where the response variable is the growth in gross domestic product per worker
(GDP ) and the regressors are labor force growth (LFG), relative GDP gap (GAP ),
equipment investment (EQP ), and non-equipment investment (NEQ).

The following statements invoke the REG procedure for the OLS analysis:

proc reg data=growth;
model GDP = LFG GAP EQP NEQ ;

run;

Output 62.3.1. OLS Estimates
The REG Procedure

Model: MODEL1
Dependent Variable: GDP

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.01430 0.01028 -1.39 0.1697
LFG 1 -0.02981 0.19838 -0.15 0.8811
GAP 1 0.02026 0.00917 2.21 0.0313
EQP 1 0.26538 0.06529 4.06 0.0002
NEQ 1 0.06236 0.03482 1.79 0.0787

The OLS analysis ofOutput 62.3.1indicates thatGAP andEQP have a significant
influence onGDP at the5% level.
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The following statements invoke the ROBUSTREG procedure with the default M
estimation.

proc robustreg data=growth;
model GDP = LFG GAP EQP NEQ / diagnostics leverage;
output out=robout r=resid sr=stdres;

run;

Output 62.3.2. Model Fitting Information and Summary Statistics
The ROBUSTREG Procedure

Model Information

Data Set MYLIB.GROWTH
Dependent Variable GDP
Number of Covariates 4
Number of Observations 61
Method M Estimation

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation MAD

LFG 0.0118 0.0239 0.0281 0.0211 0.00979 0.00949
GAP 0.5796 0.8015 0.8863 0.7258 0.2181 0.1778
EQP 0.0265 0.0433 0.0720 0.0523 0.0296 0.0325
NEQ 0.0956 0.1356 0.1812 0.1399 0.0570 0.0624
GDP 0.0121 0.0231 0.0310 0.0224 0.0155 0.0150

Output 62.3.2displays model information and summary statistics for variables in the
model.

Output 62.3.3. M estimates
The ROBUSTREG Procedure

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -0.0247 0.0097 -0.0437 -0.0058 6.53 0.0106
LFG 1 0.1040 0.1867 -0.2619 0.4699 0.31 0.5775
GAP 1 0.0250 0.0086 0.0080 0.0419 8.36 0.0038
EQP 1 0.2968 0.0614 0.1764 0.4172 23.33 <.0001
NEQ 1 0.0885 0.0328 0.0242 0.1527 7.29 0.0069
Scale 1 0.0099
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Output 62.3.4. Diagnostics
The ROBUSTREG Procedure

Diagnostics

Robust Standardized
Mahalanobis MCD Robust

Obs Distance Distance Leverage Residual Outlier

1 2.6083 4.0639 * -0.9424
5 3.4351 6.7391 * 1.4200
8 3.1876 4.6843 * -0.1972
9 3.6752 5.0599 * -1.8784

17 2.6024 3.8186 * -1.7971
23 2.1225 3.8238 * 1.7161
27 2.6461 5.0336 * 0.0909
31 2.9179 4.7140 * 0.0216
53 2.2600 4.3193 * -1.8082
57 3.8701 5.4874 * 0.1448
58 2.5953 3.9671 * -0.0978
59 2.9239 4.1663 * 0.3573
60 1.8562 2.7135 -4.9798 *
61 1.9634 3.9128 * -2.5959

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.0164 3.0000
Leverage 0.2131 3.3382

Output 62.3.5. Goodness-of-Fit
The ROBUSTREG Procedure

Goodness-of-Fit

Statistic Value

R-Square 0.3178
AICR 80.2134
BICR 91.5095
Deviance 0.0070

Output 62.3.3displays the M estimates. BesidesGAP andEQP , the robust analysis
also indicates thatNEQ is significant. This new finding is explained byOutput
62.3.4, which shows that Zambia, the sixtieth country in the data, is an outlier.Output
62.3.4also identifies leverage points based the robust MCD distances; however, there
are no serious high leverage points in this data set.Output 62.3.5displays robust
versions of goodness-of-fit statistics for the model.

The following statements invoke the ROBUSTREG procedure with LTS estimation,
which was used by Zaman, Rousseeuw, and Orhan (2001). The results are consistent
with those of M estimation.

proc robustreg method=lts(h=33) fwls data=growth;
model GDP = LFG GAP EQP NEQ / diagnostics leverage ;
output out=robout r=resid sr=stdres;

run;
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Output 62.3.6. LTS estimates
The ROBUSTREG Procedure

LTS Profile

Total Number of Observations 61
Number of Squares Minimized 33
Number of Coefficients 5
Highest Possible Breakdown Value 0.4590

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.0249
LFG 1 0.1123
GAP 1 0.0214
EQP 1 0.2669
NEQ 1 0.1110
Scale (sLTS) 0 0.0076
Scale (Wscale) 0 0.0109

Output 62.3.6displays the LTS estimates.

Output 62.3.7. Diagnostics and LTS-Rsquare
The ROBUSTREG Procedure

Diagnostics

Robust Standardized
Mahalanobis MCD Robust

Obs Distance Distance Leverage Residual Outlier

1 2.6083 4.0639 * -1.0715
5 3.4351 6.7391 * 1.6574
8 3.1876 4.6843 * -0.2324
9 3.6752 5.0599 * -2.0896

17 2.6024 3.8186 * -1.6367
23 2.1225 3.8238 * 1.7570
27 2.6461 5.0336 * 0.2334
31 2.9179 4.7140 * 0.0971
53 2.2600 4.3193 * -1.2978
57 3.8701 5.4874 * 0.0605
58 2.5953 3.9671 * -0.0857
59 2.9239 4.1663 * 0.4113
60 1.8562 2.7135 -4.4984 *
61 1.9634 3.9128 * -2.1201

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.0164 3.0000
Leverage 0.2131 3.3382

R-Square for LTS
Estimation

R-Square 0.7418

Output 62.3.7displays outlier and leverage point diagnostics based on the LTS esti-
mates.
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Output 62.3.8. Final Weighted LS estimates
The ROBUSTREG Procedure

Parameter Estimates for Final Weighted Least Squares Fit

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -0.0222 0.0093 -0.0405 -0.0039 5.65 0.0175
LFG 1 0.0446 0.1771 -0.3026 0.3917 0.06 0.8013
GAP 1 0.0245 0.0082 0.0084 0.0406 8.89 0.0029
EQP 1 0.2824 0.0581 0.1685 0.3964 23.60 <.0001
NEQ 1 0.0849 0.0314 0.0233 0.1465 7.30 0.0069
Scale 0 0.0116

Output 62.3.8displays the final weighted lease squares estimates, which are identical
to those reported in Zaman, Rousseeuw, and Orhan (2001).
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Chapter 63
The RSREG Procedure
Overview

The RSREG procedure uses the method of least squares to fit quadratic response
surface regression models. Response surface models are a kind of general linear
model in which attention focuses on characteristics of the fit response function and in
particular, where optimum estimated response values occur.

In addition to fitting a quadratic function, you can use the RSREG procedure to

• test for lack of fit

• test for the significance of individual factors

• analyze the canonical structure of the estimated response surface

• compute the ridge of optimum response

• predict new values of the response

Comparison to Other SAS Software

Other SAS/STAT procedures can be used to fit the response surface, but the RSREG
procedure is more specialized. The following statements model a three-factor re-
sponse surface in PROC RSREG:

proc rsreg;
model y=x1 x2 x3;

run;

These statements are more compact than the statements for other regression proce-
dures in SAS/STAT software. For example, the equivalent statements for the GLM
procedure are

proc glm;
model y=x1 x1*x1

x2 x1*x2 x2*x2
x3 x1*x3 x2*x3 x3*x3;

run;

Additionally, PROC RSREG includes specialized methodology for analyzing the fit-
ted response surface, such as canonical analysis and optimum response ridges.

Note that the ADX Interface in SAS/QC software provides aninteractiveenviron-
ment for constructing and analyzing many different kinds of experiments, including
response surface experiments. The ADX Interface is the preferred interactive SAS
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System tool for analyzing experiments, since it includes facilities for checking un-
derlying assumptions and graphically optimizing the response surface. The RSREG
procedure is appropriate for analyzing experiments in a batch environment.

Terminology

Variables are referred to according to the following conventions:

factor variables independent variables used in constructing the quadratic re-
sponse surface. To estimate the necessary parameters, each
variable must have at least three distinct values in the data.
Independent variables must be numeric.

response variables the dependent variables to which the quadratic response surface
is fit. Dependent variables must be numeric.

covariates additional independent variables for use in the regression
but not in the formation of the quadratic response surface.
Covariates must be numeric.

WEIGHT variable a variable for weighting the observations in the regression. The
WEIGHT variable must be numeric.

ID variables variables not in the above lists that are transferred to an output
data set containing statistics for each observation in the input
data set. This data set is created using the OUT= option in the
PROC RSREG statement. ID variables can be either character
or numeric.

BY variables variables for grouping observations. Separate analyses are ob-
tained for each BY group. BY variables can be either character
or numeric.

Getting Started

A Response Surface with a Simple Optimum

This example uses the three-factor quadratic model discussed in John (1971).
Schneider and Stockett (1963) performed an experiment aimed at reducing the un-
pleasant odor of a chemical produced with several factors. The objective is to mini-
mize the unpleasant odor of a chemical. The following statements read the data.

title ’Response Surface with a Simple Optimum’;
data smell;

input Odor T R H @@;
label

T = "Temperature"
R = "Gas-Liquid Ratio"
H = "Packing Height";

datalines;
66 40 .3 4 39 120 .3 4 43 40 .7 4 49 120 .7 4
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58 40 .5 2 17 120 .5 2 -5 40 .5 6 -40 120 .5 6
65 80 .3 2 7 80 .7 2 43 80 .3 6 -22 80 .7 6

-31 80 .5 4 -35 80 .5 4 -26 80 .5 4
;

The INPUT statement names the variables contained in the SAS data setsmell; the
variableOdor is the response, while the variablesT, R, andH are the independent
factors.

The following statements invoke PROC RSREG on the data setsmell. Figure 63.1
throughFigure 63.3display the results of the analysis, including a lack-of-fit test
requested with the LACKFIT option.

proc rsreg data=smell;
model Odor = T R H / lackfit;

run;

Response Surface with a Simple Optimum

The RSREG Procedure

Coding Coefficients for the Independent Variables

Factor Subtracted off Divided by

T 80.000000 40.000000
R 0.500000 0.200000
H 4.000000 2.000000

Response Surface for Variable Odor

Response Mean 15.200000
Root MSE 22.478508
R-Square 0.8820
Coefficient of Variation 147.8849

Type I Sum
Regression DF of Squares R-Square F Value Pr > F

Linear 3 7143.250000 0.3337 4.71 0.0641
Quadratic 3 11445 0.5346 7.55 0.0264
Crossproduct 3 293.500000 0.0137 0.19 0.8965
Total Model 9 18882 0.8820 4.15 0.0657

Sum of
Residual DF Squares Mean Square F Value Pr > F

Lack of Fit 3 2485.750000 828.583333 40.75 0.0240
Pure Error 2 40.666667 20.333333
Total Error 5 2526.416667 505.283333

Figure 63.1. Summary Statistics and Analysis of Variance

Figure 63.1displays the coding coefficients for the transformation of the indepen-
dent variables to lie between−1 and 1, simple statistics for the response variable,
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hypothesis tests for linear, quadratic, and crossproduct terms, and the lack-of-fit test.
The hypothesis tests can be used to gain a rough idea of importance of the effects;
here the crossproduct terms are not significant. However, the lack-of-fit for the model
is significant, so more complicated modeling or further experimentation with addi-
tional variables should be performed before firm statements are made concerning the
underlying process.

Response Surface with a Simple Optimum

The RSREG Procedure

Parameter
Estimate

Standard from Coded
Parameter DF Estimate Error t Value Pr > |t| Data

Intercept 1 568.958333 134.609816 4.23 0.0083 -30.666667
T 1 -4.102083 1.489024 -2.75 0.0401 -12.125000
R 1 -1345.833333 335.220685 -4.01 0.0102 -17.000000
H 1 -22.166667 29.780489 -0.74 0.4902 -21.375000
T*T 1 0.020052 0.007311 2.74 0.0407 32.083333
R*T 1 1.031250 1.404907 0.73 0.4959 8.250000
R*R 1 1195.833333 292.454665 4.09 0.0095 47.833333
H*T 1 0.018750 0.140491 0.13 0.8990 1.500000
H*R 1 -4.375000 28.098135 -0.16 0.8824 -1.750000
H*H 1 1.520833 2.924547 0.52 0.6252 6.083333

Sum of
Factor DF Squares Mean Square F Value Pr > F Label

T 4 5258.016026 1314.504006 2.60 0.1613 Temperature
R 4 11045 2761.150641 5.46 0.0454 Gas-Liquid Ratio
H 4 3813.016026 953.254006 1.89 0.2510 Packing Height

Figure 63.2. Parameter Estimates and Hypothesis Tests

Parameter estimates and the factor ANOVA are shown inFigure 63.2. Looking at
the parameter estimates, you can see that the crossproduct terms are not significantly
different from zero, as noted previously. The “Estimate” column contains estimates
based on the raw data, and the “Parameter Estimate from Coded Data” column con-
tains those based on the coded data. The factor ANOVA table displays tests for all
four parameters corresponding to each factor—the parameters corresponding to the
linear effect, the quadratic effect, and the effects of the cross products with each of
the other two factors. The only factor with a significant over-all effect isR, indicating
that the level of noise left unexplained by the model is still too high to estimate the
effects ofT andH accurately. This may be due to the lack of fit.
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Response Surface with a Simple Optimum

The RSREG Procedure
Canonical Analysis of Response Surface Based on Coded Data

Critical Value
Factor Coded Uncoded Label

T 0.121913 84.876502 Temperature
R 0.199575 0.539915 Gas-Liquid Ratio
H 1.770525 7.541050 Packing Height

Predicted value at stationary point: -52.024631

Eigenvectors
Eigenvalues T R H

48.858807 0.238091 0.971116 -0.015690
31.103461 0.970696 -0.237384 0.037399

6.037732 -0.032594 0.024135 0.999177

Stationary point is a minimum.

Figure 63.3. Canonical Analysis and Eigenvectors

Figure 63.3contains the canonical analysis and eigenvectors. The canonical analysis
indicates that the directions of principle orientation for the predicted response surface
are along the axes associated with the three factors, confirming the small interaction
effect in the Regression ANOVA. The largest eigenvalue (48.8588) corresponds to
the eigenvector{0.238091, 0.971116, −0.015690}, the largest component of which
(0.971116) is associated withR; similarly, the second largest eigenvalue (31.1035)
is associated withT. The third eigenvalue (6.0377), associated withH, is quite a bit
smaller than the other two, indicating that the response surface is relatively insensitive
to changes in this factor. The coded form of the canonical analysis indicates that the
estimated response surface is at a minimum whenT andR are both near the middle of
their respective ranges andH is relatively high; in uncoded, terms, the model predicts
that the unpleasant odor will be minimized whenT = 84.876502, R = 0.539915,
andH = 7.541050.

To plot the response surface with respect to two of the factor variables, first fixH, the
least significant factor variable, at its estimated optimum value and generate a grid
of points forT andR. To ensure that the grid data do not affect parameter estimates,
the response variable (Odor) is set to missing. (See the“Missing Values”section on
page 4048.) The following statements produce and graph the necessary data. Initial
data steps creates a grid overT andR, with H set to a constant value, and combine
this grid with the original data. Then, PROC RSREG is used to create predictions
for the combined data. Finally, PROC G3D is used to create a surface plot of the
predictions.
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data grid;
do;

Odor = . ;
H = 7.541;
do T = 20 to 140 by 5;

do R = .1 to .9 by .05;
output;

end;
end;

end;
data grid;

set smell grid;
run;

proc rsreg data=grid out=predict noprint;
model Odor = T R H / predict;

run;

data plot;
set predict;
if H = 7.541;

proc g3d data=plot;
plot T*R=Odor / rotate=38 tilt=75 xticknum=3 yticknum=3
zmax=300 zmin=-60 ctop=red cbottom=blue caxis=black;

run;

The first DATA step creates grid points forT andR at H=7.541 and setsOdor to
missing, and the second DATA step concatenates these grid points with the origi-
nal data. Predicted values are created in the SAS data setpredict by invoking the
RSREG procedure with the PREDICT option in the MODEL statement. The anal-
ysis is not displayed due to the NOPRINT option. The third DATA step subsets
the predicted values over just the grid points (excluding the predictions at the original
points). PROC G3D is then used to create the three-dimensional plot shown inFigure
63.4.
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Figure 63.4. The Response Surface Obtained from the PREDICT Option

Syntax

The following statements are available in PROC RSREG.

PROC RSREG < options > ;
MODEL responses= independents < / options > ;
RIDGE < options > ;
WEIGHT variable ;
ID variables ;
BY variables ;

The PROC RSREG and MODEL statements are required. The BY, ID, MODEL,
RIDGE, and WEIGHT statements are described after the PROC RSREG statement,
and they can appear in any order.

PROC RSREG Statement

PROC RSREG < options > ;

The PROC RSREG statement invokes the procedure. You can specify the following
options in the PROC RSREG statement.
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DATA=SAS-data-set
specifies the input SAS data set that contains the data to be analyzed. By default,
PROC RSREG uses the most recently created SAS data set.

NOPRINT
suppresses the normal display of results when only the output data set is required.
For more information, see the description of the NOPRINT option in the “MODEL
Statement” and “RIDGE Statement” sections. Note that this option temporarily dis-
ables the Output Delivery System (ODS); seeChapter 14, “Using the Output Delivery
System,” for more information.

OUT=SAS-data-set
creates an output SAS data set that contains statistics for each observation in the input
data set. In particular, this data set contains the BY variables, the ID variables, the
WEIGHT variable, the variables in the MODEL statement, and the output options
requested in the MODEL statement. You must specify output options in the MODEL
statement; otherwise, the output data set is created but contains no observations. To
create a permanent SAS data set, you must specify a two-level name (refer to the
discussion inSAS Language Reference: Conceptsfor more information on permanent
SAS data sets). For details on the data set created by PROC RSREG, see the“Output
Data Sets”section on page 4051.

BY Statement

BY variables ;

You can specify a BY statement with PROC RSREG to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the RSREG procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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ID Statement

ID variables ;

The ID statement names variables that are to be transferred to the data set created by
the OUT= option in the PROC RSREG statement.

MODEL Statement

MODEL responses=independents < / options > ;

The MODEL statement lists response (dependent) variables followed by an equal
sign and then lists independent variables, some of which may be covariates. The
output options to the MODEL statement specify which statistics are output to the
data set created using the OUT= option in the PROC RSREG statement. If none of
the options are selected, the data set is created but contains no observations. The
option keywords become values of the special variable–TYPE– in the output data
set. Any of the following options can be specified.

Task Options
Analyze Original Data NOCODE

Fit Model to First BY Group Only BYOUT

Declare Covariates COVAR=

Request Additional Statistics PRESS

Request Additional Tests LACKFIT

Suppress Displayed Output NOANOVA
NOOPTIMAL
NOPRINT

Output Statistics ACTUAL
PREDICT
RESIDUAL
L95
U95
L95M
U95M
D

ACTUAL
specifies that the observed response values from the input data set be written to the
output data set.

BYOUT
uses only the first BY group to estimate the model. Subsequent BY groups have
scoring statistics computed in the output data set only. The BYOUT option is used
only when a BY statement is specified.
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COVAR=n
declares that the firstn variables on the right-hand side of the model are simple linear
regressors (covariates) and not factors in the quadratic response surface. By default,
PROC RSREG forms quadratic and crossproduct effects for all regressor variables
in the MODEL statement. See the“Handling Covariates”section on page 4050 for
more details andExample 63.2on page 4059 for an example using covariates.

D
specifies that Cook’sD influence statistic be written to the output data set. See
Chapter 2, “Introduction to Regression Procedures,”for details and formulas.

LACKFIT
performs a lack-of-fit test. Refer to Draper and Smith (1981) for a discussion of
lack-of-fit tests.

L95
specifies that the lower bound of a 95% confidence interval for an individual predicted
value be written to the output data set. The variance used in calculating this bound is
a function of both the mean square error and the variance of the parameter estimates.
SeeChapter 2for details and formulas.

L95M
specifies that the lower bound of a 95% confidence interval for the expected value
of the dependent variable be written to the output data set. The variance used in
calculating this bound is a function of the variance of the parameter estimates. See
Chapter 2for details and formulas.

NOANOVA
NOAOV

suppresses the display of the analysis of variance and parameter estimates from the
model fit.

NOCODE
performs the canonical and ridge analyses with the parameter estimates derived from
fitting the response to the original values of the factors variables, rather than their
coded values (see the“Coding the Factor Variables”section on page 4047 for more
details.) Use this option if the data are already stored in a coded form.

NOOPTIMAL
NOOPT

suppresses the display of the canonical analysis for the quadratic response surface.

NOPRINT
suppresses the display of both the analysis of variance and the canonical analysis.

PREDICT
specifies that the values predicted by the model be written to the output data set.

PRESS
computes and displays the predicted residual sum of squares (PRESS) statistic for
each dependent variable in the model. The PRESS statistic is added to the summary
information at the beginning of the analysis of variance, so if the NOANOVA or
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NOPRINT option is specified, PRESS has no effect. SeeChapter 2for details and
formulas.

RESIDUAL
specifies that the residuals, calculated as ACTUAL− PREDICTED, be written to the
output data set.

U95
specifies that the upper bound of a 95% confidence interval for an individual predicted
value be written to the output data set. The variance used in calculating this bound is
a function of both the mean square error and the variance of the parameter estimates.
SeeChapter 2for details and formulas.

U95M
specifies that the upper bound of a 95% confidence interval for the expected value
of the dependent variable be written to the output data set. The variance used in
calculating this bound is a function of the variance of the parameter estimates. See
Chapter 2for details and formulas.

RIDGE Statement

RIDGE < options > ;

A RIDGE statement computes the ridge of optimum response. The ridge starts at a
given pointx0, and the point on the ridge at radiusr fromx0 is the collection of factor
settings that optimizes the predicted response at this radius. You can think of the ridge
as climbing or falling as fast as possible on the surface of predicted response. Thus,
the ridge analysis can be used as a tool to help interpret an existing response surface
or to indicate the direction in which further experimentation should be performed.

The default starting point,x0, has each coordinate equal to the point midway between
the highest and lowest values of the factor in the design. The default radii at which
the ridge is computed are 0, 0.1,. . . , 0.9, 1. If, as usual, the ridge analysis is based
on the response surface fit to coded values for the factor variables (see the“Coding
the Factor Variables”section on page 4047 for details), then this results in a ridge that
starts at the point with a coded zero value for each coordinate and extends toward, but
not beyond, the edge of the range of experimentation. Alternatively, both the center
point for the ridge and the radii at which it is to be computed can be specified.

You can specify the following options in the RIDGE statement:

CENTER=uncoded-factor-values
gives the coordinates of the pointx0 from which to begin the ridge. The coordinates
should be given in the original (uncoded) factor variable values and should be sepa-
rated by commas. There must be as many coordinates specified as there are factors
in the model, and the order of the coordinates must be the same as that used in the
MODEL statement. This starting point should be well inside the range of experi-
mentation. The default sets each coordinate equal to the value midway between the
highest and lowest values for the associated factor.
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MAXIMUM
MAX

computes the ridge of maximum response. Both the MIN and MAX options can be
specified; at least one must be specified.

MINIMUM
MIN

computes the ridge of minimum response. Both the MIN and MAX options can be
specified; at least one must be specified.

NOPRINT
suppresses the display of the ridge analysis when only an output data set is required.

OUTR=SAS-data-set
creates an output SAS data set containing the computed optimum ridge. For details,
see the“Output Data Sets”section on page 4051.

RADIUS=coded-radii
gives the distances from the ridge starting point at which to compute the optimum.
The values in the list represent distances between coded points. The list can take any
of the following forms or can be composed of mixtures of them:

m1,m2, . . . ,mn several values

m TO n a sequence wherem equals the starting value,n equals the ending
value, and the increment equals 1

m TO n BY i a sequence wherem equals the starting value,n equals the ending
value, andi equals the increment

Mixtures of the preceding forms should be separated by commas. The default list
runs from 0 to 1 by increments of 0.1. The following are examples of valid lists.

radius=0 to 5 by .5;
radius=0, .2, .25, .3, .5 to 1.0 by .1;

WEIGHT Statement
WEIGHT variable ;

When a WEIGHT statement is used, a weighted residual sum of squares∑
i

wi(yi − ŷi)2

is minimized, wherewi is the value of the variable specified in the WEIGHT state-
ment,yi is the observed value of the response variable, andŷi is the predicted value
of the response variable.

The observation is used in the analysis only if the value of the WEIGHT statement
variable is greater than zero. The WEIGHT statement has no effect on degrees of free-
dom or number of observations. If the weights for the observations are proportional
to the reciprocals of the error variances, then the weighted least-squares estimates are
best linear unbiased estimators (BLUE).



Introduction to Response Surface Experiments � 4045

Details

Introduction to Response Surface Experiments

Many industrial experiments are conducted to discover which values of given factor
variables optimize a response. If each factor is measured at three or more values,
a quadratic response surface can be estimated by least-squares regression. The pre-
dicted optimal value can be found from the estimated surface if the surface is shaped
like a simple hill or a valley. If the estimated surface is more complicated, or if the
predicted optimum is far from the region of experimentation, then the shape of the
surface can be analyzed to indicate the directions in which new experiments should
be performed.

Suppose that a response variabley is measured at combinations of values of two
factor variables,x1 andx2. The quadratic response-surface model for this variable is
written as

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + ε

The steps in the analysis for such data are

1. model fitting and analysis of variance to estimate parameters

2. canonical analysis to investigate the shape of the predicted response surface

3. ridge analysis to search for the region of optimum response

Model Fitting and Analysis of Variance

The first task in analyzing the response surface is to estimate the parameters of the
model by least-squares regression and to obtain information about the fit in the form
of an analysis of variance. The estimated surface is typically curved: a “hill” whose
peak occurs at the unique estimated point of maximum response, a “valley,” or a
“saddle-surface” with no unique minimum or maximum. Use the results of this phase
of the analysis to answer the following questions:

• What is the contribution of each type of effect—linear, quadratic, and
crossproduct—to the statistical fit? The ANOVA table with sources labeled
“Regression” addresses this question.

• What part of the residual error is due to lack of fit? Does the quadratic re-
sponse model adequately represent the true response surface? If you specify
the LACKFIT option in the MODEL statement, then the ANOVA table with
sources labeled “Residual” addresses this question.

• What is the contribution of each factor variable to the statistical fit? Can the
response be predicted as well if the variable is removed? The ANOVA table
with sources labeled “Factor” addresses this question.

• What are the predicted responses for a grid of factor values? (See the section
“Plotting the Surface”on page 4048 and the“Searching for Multiple Response
Conditions”section on page 4048.)
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Lack-of-Fit Test

The test for lack-of-fit compares the variation around the model with “pure” variation
within replicated observations. This measures the adequacy of the quadratic response
surface model. In particular, if there areni replicated observationsYi1, . . . , Yini of
the response all at the same valuesxi of the factors, then we can predict the true
response atxi either by using the predicted valuêYi based on the model or by using
the mean̄Yi of the replicated values. The test for lack-of-fit decomposes the residual
error into a component due to the variation of the replications around their mean value
(the “pure” error), and a component due to the variation of the mean values around
the model prediction (the “bias” error):

∑
i

ni∑
j=1

(
Yij − Ŷi

)2
=

∑
i

ni∑
j=1

(
Yij − Ȳi

)2 +
∑

i

ni

(
Ȳi − Ŷi

)2

If the model is adequate, then both components estimate the nominal level of error;
however, if the bias component of error is much larger than the pure error, then this
constitutes evidence that there is significant lack of fit.

If some observations in your design are replicated, you can test for lack of fit by spec-
ifying the LACKFIT option in the MODEL statement. Note that, since all other tests
use total error rather than pure error, you may want to hand-calculate the tests with
respect to pure error if the lack-of-fit is significant. On the other hand, significant
lack-of-fit indicates the quadratic model is inadequate, so if this is a problem you can
also try to refine the model, possibly using PROC GLM for general polynomial mod-
eling; refer toChapter 32, “The GLM Procedure,”for more information.Example
63.1on page 4055 illustrates the use of the LACKFIT option.

Canonical Analysis

The second task in analyzing the response surface is to examine the overall shape
of the curve and determine whether the estimated stationary point is a maximum,
a minimum, or a saddle point. The canonical analysis can be used to answer the
following questions:

• Is the surface shaped like a hill, a valley, a saddle surface, or a flat surface?

• If there is a unique optimum combination of factor values, where is it?

• To which factor or factors are the predicted responses most sensitive?

The eigenvalues and eigenvectors in the matrix of second-order parameters charac-
terize the shape of the response surface. The eigenvectors point in the directions of
principle orientation for the surface, and the signs and magnitudes of the associated
eigenvalues give the shape of the surface in these directions. Positive eigenvalues
indicate directions of upward curvature, and negative eigenvalues indicate directions
of downward curvature. The larger an eigenvalue is in absolute value, the more pro-
nounced is the curvature of the response surface in the associated direction. Often,
all of the coefficients of an eigenvector except for one are relatively small, indicating
that the vector points roughly along the axis associated with the factor corresponding
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to the single large coefficient. In this case, the canonical analysis can be used to de-
termine the relative sensitivity of the predicted response surface to variations in that
factor. (See the“Getting Started”section on page 4034 for an example.)

Ridge Analysis

If the estimated surface is found to have a simple optimum well within the range of
experimentation, the analysis performed by the preceding two steps may be sufficient.
In more complicated situations, further search for the region of optimum response
is required. The method of ridge analysis computes the estimated ridge of optimum
response for increasing radii from the center of the original design. The ridge analysis
answers the following question:

• If there is not a unique optimum of the response surface within the range of
experimentation, in which direction should further searching be done in order
to locate the optimum?

You can use the RIDGE statement to compute the ridge of maximum or minimum
response.

Coding the Factor Variables

For the results of the canonical and ridge analyses to be interpretable, the values of
different factor variables should be comparable. This is because the canonical and
ridge analyses of the response surface are not invariant with respect to differences in
scale and location of the factor variables. The analysis of variance is not affected by
these changes. Although the actual predicted surface does not change, its parame-
terization does. The usual solution to this problem is to code each factor variable so
that its minimum in the experiment is−1 and its maximum is 1 and to carry through
the analysis with the coded values instead of the original ones. This practice has the
added benefit of making 1 a reasonable boundary radius for the ridge analysis since
1 represents approximately the edge of the experimental region. By default, PROC
RSREG computes the linear transformation to perform this coding as the data are ini-
tially read in, and the canonical and ridge analyses are performed on the model fit to
the coded data. The actual form of the coding operation for each value of a variable
is

coded value = (original value−M)/S

whereM is the average of the highest and lowest values for the variable in the design
andS is half their difference.
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Missing Values

If an observation has missing data for any of the variables used by the procedure,
then that observation is not used in the estimation process. If one or more response
variables are missing, but no factor or covariate variables are missing, then predicted
values and confidence limits are computed for the output data set, but the residual and
Cook’sD statistic are missing.

Plotting the Surface

You can generate predicted values for a grid of points with the PREDICT option (see
the“Getting Started”section on page 4034 for an example) and then use these values
to create a contour plot or a three-dimensional plot of the response surface over a
two-dimensional grid. Any two factor variables can be chosen to form the grid for
the plot. Several plots can be generated by using different pairs of factor variables.

Searching for Multiple Response Conditions

Suppose you want to find the factor setting that produces responses in a certain region.
For example, you have the following data with two factors and three responses:

data a;
input x1 x2 y1 y2 y3;
datalines;

-1 -1 1.8 1.940 3.6398
-1 1 2.6 1.843 4.9123

1 -1 5.4 1.063 6.0128
1 1 0.7 1.639 2.3629
0 0 8.5 0.134 9.0910
0 0 3.0 0.545 3.7349
0 0 9.8 0.453 10.4412
0 0 4.1 1.117 5.0042
0 0 4.8 1.690 6.6245
0 0 5.9 1.165 6.9420
0 0 7.3 1.013 8.7442
0 0 9.3 1.179 10.2762
1.4142 0 3.9 0.945 5.0245

-1.4142 0 1.7 0.333 2.4041
0 1.4142 3.0 1.869 5.2695
0 -1.4142 5.7 0.099 5.4346

;

You want to find the values ofx1 and x2 that maximizey1 subject toy2<2 and
y3<y2+y1. The exact answer is not easy to obtain analytically, but you can obtain
a practically feasible solution by checking conditions across a grid of values in the
range of interest. First, append a grid of factor values to the observed data, with
missing values for the responses.

data b;
set a end=eof;
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output;
if eof then do;

y1=.;
y2=.;
y3=.;
do x1=-2 to 2 by .1;

do x2=-2 to 2 by .1;
output;

end;
end;

end;
run;

Next, use PROC RSREG to fit a response surface model to the data and to compute
predicted values for both the observed data and the grid, putting the predicted values
in a data setc.

proc rsreg data=b out=c;
model y1 y2 y3=x1 x2 / predict;

run;

Finally, find the subset of predicted values that satisfy the constraints, sort by the
unconstrained variable, and display the top five predictions.

data d;
set c;
if y2<2;
if y3<y2+y1;

proc sort data=d;
by descending y1;

run;

data d; set d;
i = _n_;

proc print;
where (i <= 5);

run;

The final results are displayed inFigure 63.5. They indicate that optimal values of
the factors are around 0.3 forx1 and around -0.5 forx2.

Obs x1 x2 _TYPE_ y1 y2 y3 i

1 0.3 -0.5 PREDICT 6.92570 0.75784 7.60471 1
2 0.3 -0.6 PREDICT 6.91424 0.74174 7.54194 2
3 0.3 -0.4 PREDICT 6.91003 0.77870 7.64341 3
4 0.4 -0.6 PREDICT 6.90769 0.73357 7.51836 4
5 0.4 -0.5 PREDICT 6.90540 0.75135 7.56883 5

Figure 63.5. Top Five Predictions
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Handling Covariates

Covariate regressors are added to a response surface model because they are believed
to account for a sizable yet relatively uninteresting portion of the variation in the
data. What the experimenter is really interested in is the response corrected for the
effect of the covariates. A common example is the block effect in a block design. In
the canonical and ridge analyses of a response surface, which estimate responses at
hypothetical levels of the factor variables, the actual value of the predicted response is
computed using the average values of the covariates. The estimated response values
do optimize the estimated surface of the response corrected for covariates, but true
prediction of the response requires actual values for the covariates. You can use
the COVAR= option in the MODEL statement to include covariates in the response
surface model.Example 63.2on page 4059 illustrates the use of this option.

Computational Method

Canonical Analysis

For each response variable, the model can be written in the form

yi = x′
iAxi + b′xi + c′zi + εi

where

yi is theith observation of the response variable.

xi = (xi1, xi2, . . . , xik)′ are thek factor variables for theith observation.

zi = (zi1, zi2, . . . , ziL)′ are theL covariates, including the intercept term.

A is thek × k symmetrized matrix of quadratic parameters, with diagonal ele-
ments equal to the coefficients of the pure quadratic terms in the model and
off-diagonal elements equal to half the coefficient of the corresponding cross
product.

b is thek × 1 vector of linear parameters.

c is theL× 1 vector of covariate parameters, one of which is the intercept.

εi is the error associated with theith observation. Tests performed by PROC
RSREG assume that errors are independently and normally distributed with
mean zero and varianceσ2.

The parameters inA, b, andc are estimated by least squares. To optimizey with
respect tox, take partial derivatives, set them to zero, and solve:

∂y

∂x
= 2x′A + b′ = 0 =⇒ x = −1

2
A−1b

You can determine if the solution is a maximum or minimum by looking at the eigen-
values ofA:
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If the eigenvalues. . . then the solution is. . .
are all negative a maximum
are all positive a minimum
have mixed signs a saddle point
contain zeros in a flat area

Ridge Analysis

The eigenvector for the largest eigenvalue gives the direction of steepest ascent from
the stationary point, if positive, or steepest descent, if negative. The eigenvectors
corresponding to small or zero eigenvalues point in directions of relative flatness.

The point on the optimum response ridge at a given radiusR from the ridge origin is
found by optimizing

(x0 + d)′A(x0 + d) + b′(x0 + d)

overd satisfyingd′d = R2, wherex0 is thek × 1 vector containing the ridge origin
andA andb are as previously discussed. By the method of Lagrange multipliers, the
optimald has the form

d = −(A− µI)−1(Ax0 + 0.5b)

whereI is thek× k identity matrix andµ is chosen so thatd′d = R2. There may be
several values ofµ that satisfy this constraint; the right one depends on which sort of
response ridge is of interest. If you are searching for the ridge of maximum response,
then the appropriateµ is the unique one that satisfies the constraint and is greater
than all the eigenvalues ofA. Similarly, the appropriateµ for the ridge of minimum
response satisfies the constraint and is less than all the eigenvalues ofA. (Refer to
Myers and Montgomery (1995) for details.)

Output Data Sets

OUT=SAS-data-set

An output data set containing statistics requested with options in the MODEL state-
ment for each observation in the input data set is created whenever the OUT= option
is specified in the PROC RSREG statement. The data set contains the following
variables.

• the BY variables

• the ID variables

• the WEIGHT variable

• the independent variables in the MODEL statement
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• the variable–TYPE– , which identifies the observation type in the output data
set. –TYPE– is a character variable with a length of eight, and it takes on
the values ’ACTUAL’, ’PREDICT’, ’RESIDUAL’, ’U95M’, ’L95M’, ’U95’,
’L95’, and ’D’, corresponding to the options specified.

• the response variables containing special output values identified by the

–TYPE– variable

All confidence limits use the two-tailed Student’st value.

OUTR=SAS-data-set

An output data set containing the optimum response ridge is created when the
OUTR= option is specified in the RIDGE statement. The data set contains the fol-
lowing variables:

• the current values of the BY variables

• a character variable–DEPVAR– containing the name of the dependent vari-
able

• a character variable–TYPE– identifying the type of ridge being computed,
MINIMUM or MAXIMUM. If both MAXIMUM and MINIMUM are spec-
ified, the data set contains observations for the minimum ridge followed by
observations for the maximum ridge.

• a numeric variable–RADIUS– giving the distance from the ridge starting
point

• the values of the model factors at the estimated optimum point at distance

–RADIUS– from the ridge starting point

• a numeric variable–PRED– , which is the estimated expected value of the
dependent variable at the optimum

• a numeric variable–STDERR– , which is the standard error of the estimated
expected value

Displayed Output

All estimates and hypothesis tests assume that the model is correctly specified and
the errors are distributed according to classical statistical assumptions.

The output displayed by PROC RSREG includes the following.

Estimation and Analysis of Variance

• The actual form of the coding operation for each value of a variable is

coded value=
1
S

(original value−M)

whereM is the average of the highest and lowest values for the variable in
the design andS is half their difference. The Subtracted off column contains
the M values for this formula for each factor variable, and S is found in the
Divided by column.
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• The summary table for the response variable contains the following informa-
tion.

− Response Mean is the mean of the response variable in the sample. When
a WEIGHT statement is used, the meanȳ is calculated by

ȳ =
∑

i wiyi∑
i wi

− Root MSE estimates the standard deviation of the response variable and
is calculated as the square root of the Total Error mean square.

− The R-Square value isR2, or the coefficient of determination.R2 mea-
sures the proportion of the variation in the response that is attributed to
the model rather than to random error.

− The Coefficient of Variation is 100 times the ratio of the Root MSE to the
Response Mean.

• A table analyzing the significance of the terms of the regression is displayed.
Terms are brought into the regression in four steps: (1) the Intercept and any
covariates in the model, (2) Linear terms like X1 and X2, (3) pure Quadratic
terms like X1*X1 or X2*X2, and (4) Crossproduct terms like X1*X2.

− The Degrees of Freedom should be the same as the number of correspond-
ing parameters unless one or more of the parameters are not estimable.

− Type I Sum of Squares, also called the sequential sums of squares, mea-
sure the reduction in the error sum of squares as sets of terms (Linear,
Quadratic, and so forth) are added to the model.

− R-Square measures the portion of totalR2 contributed as each set of terms
(Linear, Quadratic, and so forth) is added to the model.

− Each F Value tests the null hypothesis that all parameters in the term are
zero using the Total Error mean square as the denominator. This item
is a test of a Type I hypothesis, containing the usualF test numerator,
conditional on the effects of subsequent variables not being in the model.

− Pr > F is the significance value or probability of obtaining at least as great
anF ratio given that the null hypothesis is true.

• The Total Error Sum of Squares can be partitioned into Lack of Fit and Pure
Error. When Lack of Fit is significant, there is variation around the model other
than random error (such as cubic effects of the factor variables).

− The Total Error Mean Square estimatesσ2, the variance.
− F Value tests the null hypothesis that the variation is adequately described

by random error.

• A table containing the parameter estimates from the model is displayed.

− The Parameter Estimate column contains the parameter estimates based
on theuncodedvalues of the factor variables. If an effect is a linear com-
bination of previous effects, the parameter for the effect is not estimable.
When this happens, the degrees of freedom are zero, the parameter esti-
mate is set to zero, and the estimates and tests on other parameters are
conditional on this parameter being zero.
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− The Standard Error column contains the estimated standard deviations of
the parameter estimates based onuncodeddata.

− The t Value column containst values of a test of the null hypothesis that
the true parameter is zero when theuncodedvalues of the factor variables
are used.

− Pr > |T| gives the significance value or probability of a greater absolutet
ratio given that the true parameter is zero.

− The Parameter Estimate from Coded Data column contains the parameter
estimates based on thecodedvalues of the factor variables. These are the
estimates used in the subsequent canonical and ridge analyses.

• The sum of squares are partitioned by the Factors in the model, and an analysis
table is displayed. The test on a factor, say X1, is a joint test on all the parame-
ters involving that factor. For example, the test for X1 tests the null hypothesis
that the true parameters for X1, X1*X1, and X1*X2 are all zero.

Canonical Analysis

• The Critical Value columns contains the values of the factor variables that cor-
respond to the stationary point of the fitted response surface. The critical values
can be at a minimum, maximum, or saddle point.

• The Eigenvalues and Eigenvectors are from the matrix of quadratic parameter
estimates based on the coded data. They characterize the shape of the response
surface.

Ridge Analysis

• Coded Radius is the distance from the coded version of the associated point to
the coded version of the origin of the ridge. The origin is given by the point at
radius zero.

• Estimated Response is the estimated value of the response variable at the asso-
ciated point. The Standard Error of this estimate is also given. This quantity
is useful for assessing the relative credibility of the prediction at a given ra-
dius. Typically, this standard error increases rapidly as the ridge moves up to
and beyond the design perimeter, reflecting the inherent difficulty of making
predictions beyond the range of experimentation.

• Uncoded Factor Values are the values of the uncoded factor variables that give
the optimum response at this radius from the ridge origin.

ODS Table Names

PROC RSREG assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 63.1. ODS Tables Produced in PROC RSREG

ODS Table Name Description Statement
Coding Coding coefficients for the independent

variables
default

ErrorANOVA Error analysis of variance default
FactorANOVA Factor analysis of variance default
FitStatistics Overall statistics for fit default
ModelANOVA Model analysis of variance default
ParameterEstimates Estimated linear parameters default
Ridge Ridge analysis for optimum response RIDGE
Spectral Spectral analysis default
StationaryPoint Stationary point of response surface default

Examples

Example 63.1. A Saddle-Surface Response Using Ridge
Analysis

Frankel (1961) reports an experiment aimed at maximizing the yield ofmercaptoben-
zothiazole(MBT) by varying processing time and temperature. Myers (1976) uses
a two-factor model in which the estimated surface does not have a unique optimum.
A ridge analysis is used to determine the region in which the optimum lies. The ob-
jective is to find the settings of time and temperature in the processing of a chemical
that maximize the yield. The following statements read the data and invoke PROC
RSREG. These statements produceOutput 63.1.1throughOutput 63.1.5:

data d;
input Time Temp MBT;
label Time = "Reaction Time (Hours)"

Temp = "Temperature (Degrees Centigrade)"
MBT = "Percent Yield Mercaptobenzothiazole";

datalines;
4.0 250 83.8

20.0 250 81.7
12.0 250 82.4
12.0 250 82.9
12.0 220 84.7
12.0 280 57.9
12.0 250 81.2

6.3 229 81.3
6.3 271 83.1

17.7 229 85.3
17.7 271 72.7

4.0 250 82.0
;
proc sort;

by Time Temp;
run;
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proc rsreg;
model MBT=Time Temp / lackfit;
ridge max;

run;

Output 63.1.1. Coding and Response Variable Information

The RSREG Procedure

Coding Coefficients for the Independent Variables

Factor Subtracted off Divided by

Time 12.000000 8.000000
Temp 250.000000 30.000000

Response Surface for Variable MBT: Percent Yield Mercaptobenzothiazole

Response Mean 79.916667
Root MSE 4.615964
R-Square 0.8003
Coefficient of Variation 5.7760

Output 63.1.2. Analyses of Variance

The RSREG Procedure

Type I Sum
Regression DF of Squares R-Square F Value Pr > F

Linear 2 313.585803 0.4899 7.36 0.0243
Quadratic 2 146.768144 0.2293 3.44 0.1009
Crossproduct 1 51.840000 0.0810 2.43 0.1698
Total Model 5 512.193947 0.8003 4.81 0.0410

Sum of
Residual DF Squares Mean Square F Value Pr > F

Lack of Fit 3 124.696053 41.565351 39.63 0.0065
Pure Error 3 3.146667 1.048889
Total Error 6 127.842720 21.307120

Parameter
Estimate

Standard from Coded
Parameter DF Estimate Error t Value Pr > |t| Data

Intercept 1 -545.867976 277.145373 -1.97 0.0964 82.173110
Time 1 6.872863 5.004928 1.37 0.2188 -1.014287
Temp 1 4.989743 2.165839 2.30 0.0608 -8.676768
Time*Time 1 0.021631 0.056784 0.38 0.7164 1.384394
Temp*Time 1 -0.030075 0.019281 -1.56 0.1698 -7.218045
Temp*Temp 1 -0.009836 0.004304 -2.29 0.0623 -8.852519

Sum of
Factor DF Squares Mean Square F Value Pr > F Label

Time 3 61.290957 20.430319 0.96 0.4704 Reaction Time (Hours)
Temp 3 461.250925 153.750308 7.22 0.0205 Temperature (Degrees Centigrade)
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Output 63.1.2shows that the lack of fit for the model is highly significant. Since the
quadratic model does not fit the data very well, firm statements about the underlying
process should not be based only on the current analysis. Note from the analysis
of variance for the model that the test for the time factor is not significant. If further
experimentation is undertaken, it might be best to fixTime at a moderate to high value
and to concentrate on the effect of temperature. In the actual experiment discussed
here, extra runs were made that confirmed the results of the following analysis.

Output 63.1.3. Canonical Analysis

The RSREG Procedure
Canonical Analysis of Response Surface Based on Coded Data

Critical Value
Factor Coded Uncoded Label

Time -0.441758 8.465935 Reaction Time (Hours)
Temp -0.309976 240.700718 Temperature (Degrees Centigrade)

Predicted value at stationary point: 83.741940

Eigenvectors
Eigenvalues Time Temp

2.528816 0.953223 -0.302267
-9.996940 0.302267 0.953223

Stationary point is a saddle point.

The canonical analysis (Output 63.1.3) indicates that the predicted response surface
is shaped like a saddle. The eigenvalue of 2.5 shows that the valley orientation of
the saddle is less curved than the hill orientation, with eigenvalue of−9.99. The
coefficients of the associated eigenvectors show that the valley is more aligned with
Time and the hill withTemp. Because the canonical analysis resulted in a saddle
point, the estimated surface does not have a unique optimum.

Output 63.1.4. Ridge Analysis

The RSREG Procedure

Estimated Ridge of Maximum Response for Variable MBT: Percent Yield Mercaptobenzothiazole

Coded Estimated Standard Uncoded Factor Values
Radius Response Error Time Temp

0.0 82.173110 2.665023 12.000000 250.000000
0.1 82.952909 2.648671 11.964493 247.002956
0.2 83.558260 2.602270 12.142790 244.023941
0.3 84.037098 2.533296 12.704153 241.396084
0.4 84.470454 2.457836 13.517555 239.435227
0.5 84.914099 2.404616 14.370977 237.919138
0.6 85.390012 2.410981 15.212247 236.624811
0.7 85.906767 2.516619 16.037822 235.449230
0.8 86.468277 2.752355 16.850813 234.344204
0.9 87.076587 3.130961 17.654321 233.284652
1.0 87.732874 3.648568 18.450682 232.256238
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However, the ridge analysis inOutput 63.1.4indicates that maximum yields will
result from relatively high reaction times and low temperatures. A contour plot of the
predicted response surface, shown inOutput 63.1.5, confirms this conclusion.

Output 63.1.5. Contour Plot of Predicted Response Surface

The statements that produce this plot follow. Note that contour and three-dimensional
plots can be created interactively using SAS/INSIGHT software or the ADX Interface
in SAS/QC software. Initial DATA steps create a grid overTime and Temp and
combine this grid with the original data, using a variableflag to indicate the grid.
Then, PROC RSREG is used to create predictions for the combined data. Finally,
PROC GCONTOUR to displays a contour plot of the predictions over just the grid.

data b;
set d;
flag=1;
MBT=.;
do Time=0 to 20 by 1;

do Temp=220 to 280 by 5;
output;

end;
end;

data c;
set d b;

proc rsreg data=c out=e noprint;
model MBT=Time Temp / predict;
id flag;

run;
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axis1 label=(angle=90) minor=none;
axis2 order=(220 to 280 by 20) minor=none;

proc gcontour data=e(where=(flag=1));
plot Time*Temp=MBT

/ nlevels=12 vaxis=axis1 haxis=axis2 nolegend autolabel
llevels=2 2 2 1 1 1 1 1 1 1 1 1 ;

run;

Example 63.2. Response Surface Analysis with Covariates

One way of viewing covariates is as extra sources of variation in the dependent vari-
able that may mask the variation due to primary factors. This example demonstrates
the use of the COVAR= option in PROC RSREG to fit a response surface model to
the dependent variable values corrected for the covariates.

You have a chemical process with a yield that you hypothesize to be dependent on
three factors: reaction time, reaction temperature, and reaction pressure. You perform
an experiment to measure this dependence. You are willing to include up to 20 runs
in your experiment, but you can perform no more than 8 runs on the same day, so the
design for the experiment is composed of three blocks. Additionally, you know that
the grade of raw material for the reaction has a significant impact on the yield. You
have no control over this, but you keep track of it. The following statements create a
SAS data set containing the results of the experiment:

data Experiment;
input Day Grade Time Temp Pressure Yield;
datalines;

1 67 -1 -1 -1 32.98
1 68 -1 1 1 47.04
1 70 1 -1 1 67.11
1 66 1 1 -1 26.94
1 74 0 0 0 103.22
1 68 0 0 0 42.94
2 75 -1 -1 1 122.93
2 69 -1 1 -1 62.97
2 70 1 -1 -1 72.96
2 71 1 1 1 94.93
2 72 0 0 0 93.11
2 74 0 0 0 112.97
3 69 1.633 0 0 78.88
3 67 -1.633 0 0 52.53
3 68 0 1.633 0 68.96
3 71 0 -1.633 0 92.56
3 70 0 0 1.633 88.99
3 72 0 0 -1.633 102.50
3 70 0 0 0 82.84
3 72 0 0 0 103.12
;
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Your first analysis neglects to take the covariates into account. The following state-
ments use PROC RSREG to fit a response surface to the observed yield, but note that
Day andGrade are omitted.

proc rsreg data=Experiment;
model Yield = Time Temp Pressure;

run;

The ANOVA results (shown inOutput 63.2.1) indicate thatnoprocess variable effects
are significantly larger than the background noise.

Output 63.2.1. Analysis of Variance Ignoring Covariates

The RSREG Procedure

Type I Sum
Regression DF of Squares R-Square F Value Pr > F

Linear 3 1880.842426 0.1353 0.67 0.5915
Quadratic 3 2370.438681 0.1706 0.84 0.5023
Crossproduct 3 241.873250 0.0174 0.09 0.9663
Total Model 9 4493.154356 0.3233 0.53 0.8226

Sum of
Residual DF Squares Mean Square

Total Error 10 9405.129724 940.512972

However, when the yields are adjusted for covariate effects of day and grade of raw
material, very strong process variable effects are revealed. The following statements
produce the ANOVA results inOutput 63.2.2. Note that in order to include the effects
of the classification factorDay as covariates, you need to create dummy variables
indicating each day separately.

data Experiment; set Experiment;
d1 = (Day = 1);
d2 = (Day = 2);
d3 = (Day = 3);

proc rsreg data=Experiment;
model Yield = d1-d3 Grade Time Temp Pressure / covar=4;

run;
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Output 63.2.2. Analysis of Variance Including Covariates

The RSREG Procedure

Type I Sum
Regression DF of Squares R-Square F Value Pr > F

Covariates 3 13695 0.9854 316957 <.0001
Linear 3 156.524497 0.0113 3622.53 <.0001
Quadratic 3 22.989775 0.0017 532.06 <.0001
Crossproduct 3 23.403614 0.0017 541.64 <.0001
Total Model 12 13898 1.0000 80413.2 <.0001

Sum of
Residual DF Squares Mean Square

Total Error 7 0.100820 0.014403

The results show very strong effects due to both the covariates and the process vari-
ables.
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Chapter 64
The SCORE Procedure
Overview

The SCORE procedure multiplies values from two SAS data sets, one containing
coefficients (for example, factor-scoring coefficients or regression coefficients) and
the other containing raw data to be scored using the coefficients from the first data
set. The result of this multiplication is a SAS data set containing linear combinations
of the coefficients and the raw data values.

Many statistical procedures output coefficients that PROC SCORE can apply to raw
data to produce scores. The new score variable is formed as a linear combination of
raw data and scoring coefficients. For each observation in the raw data set, PROC
SCORE multiplies the value of a variable in the raw data set by the matching scor-
ing coefficient from the data set of scoring coefficients. This multiplication process
is repeated for each variable in the VAR statement. The resulting products are then
summed to produce the value of the new score variable. This entire process is re-
peated for each observation in the raw data set. In other words, PROC SCORE cross
multiplies part of one data set with another.

Raw Data Set

The raw data set can contain the original data used to calculate the scoring coeffi-
cients, or it can contain an entirely different data set. The raw data set must contain
all the variables needed to produce scores. In addition, the scoring coefficients and
the variables in the raw data set that are used in scoring must have the same names.
See the section“Getting Started”beginning on page 4067.

Scoring Coefficients Data Set

The data set containing scoring coefficients must contain two special variables: the

–TYPE– variable and the–NAME– or –MODEL– variable.

• The–TYPE– variable identifies the observations that contain scoring coeffi-
cients.

• The–NAME– or –MODEL– variable provides a SAS name for the new score
variable.

PROC SCORE first looks for a–NAME– variable in the SCORE= input data set. If
there is such a variable, the variable’s value is what SCORE uses to name the new
score variable. If the SCORE= data set does not have a–NAME– variable, then
PROC SCORE looks for a–MODEL– variable.

For example, PROC FACTOR produces an output data set that contains factor-
scoring coefficients. In this output data set, the scoring coefficients are identified by
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–TYPE–=’SCORE’. For–TYPE–=’SCORE’, the–NAME– variable has values of
’Factor1’, ’Factor2’, and so forth. PROC SCORE gives the new score variables the
namesFactor1, Factor2, and so forth.

As another example, the REG procedure produces an output data set that contains
parameter estimates. In this output data set, the parameter estimates are identified
by –TYPE–=’PARMS’. The –MODEL– variable contains the label used in the
MODEL statement in PROC REG, or it uses MODELn if no label is specified. This
label is the name PROC SCORE gives to the new score variable.

Standardization of Raw Data

PROC SCORE automatically standardizes or centers the DATA= variables for you,
based on information from the original variables and analysis from the SCORE= data
set.

If the SCORE= scoring coefficients data set contains observations with

–TYPE–=’MEAN’ and –TYPE–=’STD’, then PROC SCORE standardizes
the raw data before scoring. For example, this type of SCORE= data set can come
from PROC PRINCOMP without the COV option.

If the SCORE= scoring coefficients data set contains observations with

–TYPE–=’MEAN’ but –TYPE–=’STD’ is absent, then PROC SCORE cen-
ters the raw data (the means are substracted) before scoring. For example, this type
of SCORE= data set can come from PROC PRINCOMP with the COV option.

If the SCORE= scoring coefficients data set does not contain observations with

–TYPE–=’MEAN’ and –TYPE–=’STD’, or if you use the NOSTD option, then
PROC SCORE does not center or standardize the raw data.

If the SCORE= scoring coefficients are obtained from observations with

–TYPE–=’USCORE’, then PROC SCORE “standardizes” the raw data using
the uncorrected standard deviations identified by–TYPE–=’USTD’, and the means
are not subtracted from the raw data. For example, this type of SCORE= data set
can come from PROC PRINCOMP with the NOINT option. For more information
on –TYPE–=’USCORE’ scoring coefficients in TYPE=UCORR or TYPE=UCOV
output data sets, seeAppendix A, “Special SAS Data Sets.”

You can use PROC SCORE to score the data that were also used to generate the scor-
ing coefficents, although more typically, scoring results are directly obtained from the
OUT= data set in a procedure that computes scoring coefficients. When scoring new
data, it is important to realize that PROC SCORE assumes that the new data have ap-
proximately the same scales as the original data. For example, if you specify the COV
option with PROC PRINCOMP for the original analysis, the scoring coefficients in
the PROC PRINCOMP OUTSTAT= data set are not appropriate for standardized
data. With the COV option, PROC PRINCOMP will not output–TYPE–=’STD’
observations to the OUTSTAT= data set, and PROC SCORE will only subtract the
means of the original (not new) variables from the new variables before multiply-
ing. Without the COV option in PROC PRINCOMP, both the original variable means
and standard deviations will be in the OUTSTAT= data set, and PROC SCORE will



Getting Started � 4067

subtract the original variable means from the new variables and divide them by the
original variable standard deviations before multiplying.

In general, procedures that output scoring coefficients in their OUTSTAT= data sets
provide the necessary information for PROC SCORE to determine the appropriate
standardization. However, if you use PROC SCORE with a scoring coefficients data
set that you constructed without–TYPE–=’MEAN’ and –TYPE–=’STD’ observa-
tions, you might have to do the relevant centering or standardization of the new data
first. If you do this, you must use the means and standard deviations of the original
variables, that is, the variables that were used to generate the coefficients, not the
means and standard deviations of the variables to be scored.

See the section“Getting Started”on page 4067 for further illustration.

Getting Started

The SCORE procedure multiplies the values from two SAS data sets and creates a
new data set to contain the results of the multiplication. The variables in the new
data set are linear combinations of the variables in the two input data sets. Typically,
one of these data sets contains raw data that you want to score, and the other data set
contains scoring coefficients.

The following example demonstrates how to use the SCORE procedure to multiply
values from two SAS data sets, one containing factor-scoring coefficients and the
other containing raw data to be scored using the scoring coefficients.

Suppose you are interested in the performance of three different types of schools: pri-
vate schools, state-run urban schools, and state-run rural schools. You want to com-
pare the schools’ performances as measured by student grades on standard tests in
English, mathematics, and biology. You administer these tests and record the scores
for each of the three types of schools.

The following DATA step creates the SAS data setSchools. The data are provided
by Chaseling (1996).

data Schools;
input Type $ English Math Biology @@;
datalines;

p 52 55 45 p 42 49 40 p 63 64 54
p 47 50 51 p 64 69 47 p 63 67 54
p 59 63 42 p 56 61 41 p 41 44 72
p 39 42 45 p 56 63 44 p 63 73 42
p 62 68 46 p 51 61 51 p 45 56 54
p 63 66 63 p 65 67 57 p 49 50 47
p 47 48 34 p 53 54 46 p 49 40 43
p 50 41 50 p 82 72 80 p 68 61 62
p 68 61 46 p 63 53 48 p 77 72 74
p 50 47 60 p 61 49 48 p 64 54 45
p 60 53 40 p 80 69 75 p 76 69 77
p 55 48 51 p 85 76 80 p 70 64 48
p 61 51 61 p 51 47 58 p 78 72 79
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p 52 47 46 u 49 47 58 u 64 72 45
u 36 44 46 u 32 43 46 u 52 57 42
u 45 47 53 u 44 52 43 u 54 63 42
u 39 45 49 u 48 51 46 u 53 61 54
u 28 32 33 u 52 59 44 u 54 61 51
u 60 65 66 u 60 63 63 u 47 52 49
u 28 31 32 u 43 46 45 u 40 42 48
u 66 51 48 u 79 68 77 u 58 52 49
u 34 29 33 u 47 35 40 u 60 49 49
u 62 50 51 u 69 50 47 u 59 41 52
u 56 44 43 u 76 61 74 u 50 36 52
u 69 56 52 u 57 41 55 u 56 44 51
u 52 42 42 u 51 36 42 u 44 31 57
u 79 68 77 u 61 44 41 r 38 28 22
r 35 28 24 r 50 47 48 r 36 28 38
r 69 65 53 r 55 44 41 r 62 58 45
r 57 55 32 r 47 42 66 r 45 38 45
r 56 55 42 r 39 36 33 r 63 51 42
r 42 41 48 r 51 44 52 r 47 42 44
r 53 42 47 r 62 59 48 r 80 74 81
r 95 79 95 r 65 60 43 r 67 60 53
r 42 43 50 r 70 68 55 r 63 56 48
r 37 33 34 r 49 47 49 r 42 43 50
r 44 46 47 r 62 55 44 r 67 64 52
r 77 77 69 r 43 42 52 r 51 54 45
r 67 65 45 r 65 73 49 r 34 29 32
r 50 47 49 r 55 48 46 r 38 36 51
;

The data setSchools contains the character variableType, which represents the type
of school. Valid values are p (private schools), r (state-run rural schools), and u (state-
run urban schools).

The three numeric variables in the data set areEnglish, Math, andBiology, which
represent the student scores for English, mathematics, and biology, respectively. The
double trailing at sign (@@) in the INPUT statement specifies that observations are
input from each line until all values are read.

The following statements invoke the FACTOR procedure to compute the data set
of factor scoring coefficients. The statements perform a principle components fac-
tor analysis using all three numeric variables in the SAS data setSchools. The
OUTSTAT= option requests that PROC FACTOR output the factor scores to the data
setScores. The NOPRINT option suppresses display of the output.

proc factor data=Schools score outstat=Scores noprint;
var english math biology;

run;
proc score data=schools score=Scores out=New;

var english math biology;
id type;

run;
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The SCORE procedure is then invoked usingSchools as the raw data set to be scored
andScores as the scoring data set. The OUT= option creates the SAS data setNew
to contain the linear combinations.

The VAR statement specifies that the variablesEnglish, Math, andBiology are used
in computing scores. The ID statement copies the variableType from theSchools
data set to the output data setNew.

The following statements print the SAS output data setScores, the first two ob-
servations from the original data setSchools, and the first two observations of the
resulting data setNew.

title ’OUTSTAT= Data Set from PROC FACTOR’;
proc print data=Scores;

run;
title ’First Two Observations of the DATA= Data Set from PROC SCORE’;

proc print data=Schools(obs=2);
run;
title ’First Two Observations of the OUT= Data Set from PROC SCORE’;

proc print data=New(obs=2);
run;

Figure 64.1displays the output data setScores produced by the FACTOR proce-
dure. The last observation (observation number 11) contains the scoring coefficients
(–TYPE–=’SCORE’). Only one factor has been retained.Figure 64.1also lists the
first two observations of the original SAS data setSchools and the first two observa-
tions of the output data setNew from the SCORE procedure.
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OUTSTAT= Data Set from PROC FACTOR

Obs _TYPE_ _NAME_ English Math Biology

1 MEAN 55.525 52.325 50.350
2 STD 12.949 12.356 12.239
3 N 120.000 120.000 120.000
4 CORR English 1.000 0.833 0.672
5 CORR Math 0.833 1.000 0.594
6 CORR Biology 0.672 0.594 1.000
7 COMMUNAL 0.881 0.827 0.696
8 PRIORS 1.000 1.000 1.000
9 EIGENVAL 2.405 0.437 0.159

10 PATTERN Factor1 0.939 0.910 0.834
11 SCORE Factor1 0.390 0.378 0.347

First Two Observations of the DATA= Data Set from PROC SCORE

Obs Type English Math Biology

1 p 52 55 45
2 p 42 49 40

First Two Observations of the OUT= Data Set from PROC SCORE

Obs Type Factor1

1 p -0.17604
2 p -0.80294

Figure 64.1. Views of the Scores, Schools, and New Data Sets

The score variableFactor1 in theNew data set is named according to the value of
the –NAME– variable in theScores data set. The values of the variableFactor1
are computed as follows: the original data set variables are standardized to a mean
of 0 and a variance of 1 because theScores data set contains observations with

–TYPE–=’MEAN’ and –TYPE–=’STD’. These standardized variables are then
multiplied by their respective standardized scoring coefficients from the data set
Scores. These products are summed over all three variables, and the sum is the value
of the new variableFactor1. The first two values of the scored variableFactor1 are
obtained as follows:

(
(52− 55.525)

12.949
× 0.390

)
+

(
(55− 52.325)

12.356
× 0.378

)
+

(
(45− 50.350)

12.239
× 0.347

)
= −0.17604

(
(42− 55.525)

12.949
× 0.390

)
+

(
(49− 52.325)

12.356
× 0.378

)
+

(
(40− 50.350)

12.239
× 0.347

)
= −0.80294

The following statements request that the GCHART procedure produce a horizontal
bar chart of the variableType. The length of each bar represents the mean of the
variableFactor1.
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proc gchart;
hbar type/type=mean sumvar=Factor1;

run;

Figure 64.2. Bar Chart of School Type

Figure 64.2displays the mean score of the variableFactor1 for each of the three
school types. For private schools (Type=p), the average value of the variableFactor1
is 0.384, while for state-run schools the average value is much lower. The state-run
urban schools (Type=u) have the lowest mean value of -0.202, and the state-run rural
schools (Type=r) have a mean value of -0.183.

Syntax

The following statements are available in the SCORE procedure.

PROC SCORE DATA= SAS-data-set < options > ;
BY variables ;
ID variables ;
VAR variables ;

The only required statement is the PROC SCORE statement. The BY, ID, and VAR
statements are described following the PROC SCORE statement.
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PROC SCORE Statement

PROC SCORE DATA= SAS-data-set < options > ;

You can specify the following options in the PROC SCORE statement.

DATA=SAS-data-set
names the input SAS data set containing the raw data to score. This specification is
required.

NOSTD
suppresses centering and scaling of the raw data. Ordinarily, if PROC SCORE
finds –TYPE–=‘MEAN’, –TYPE–= ‘USCORE’, –TYPE–=‘USTD’, or

–TYPE–=‘STD’ observations in the SCORE= data set, the procedure uses
these to standardize the raw data before scoring.

OUT=SAS-data-set
specifies the name of the SAS data set created by PROC SCORE. If you want to
create a permanent SAS data set, you must specify a two-level name. (Refer to “SAS
Files” in SAS Language Reference: Conceptsfor more information on permanent
SAS data sets.) If the OUT= option is omitted, PROC SCORE still creates an output
data set and automatically names it according to the DATAn convention, just as if
you omitted a data set name in a DATA statement.

PREDICT
specifies that PROC SCORE should treat coefficients of−1 in the SCORE= data set
as 0. In regression applications, the dependent variable is coded with a coefficient of
−1. Applied directly to regression results, PROC SCORE produces negative resid-
uals (see the description of the RESIDUAL option, which follows); the PREDICT
option produces predicted values instead.

RESIDUAL
reverses the sign of each score. Applied directly to regression results, PROC SCORE
produces negative residuals (PREDICT−ACTUAL); the RESIDUAL option pro-
duces positive residuals (ACTUAL−PREDICT) instead.

SCORE=SAS-data-set
names the data set containing the scoring coefficients. If you omit the SCORE=
option, the most recently created SAS data set is used. This data set must have two
special variables:–TYPE– and either–NAME– or –MODEL– .

TYPE=name | ‘string’
specifies the observations in the SCORE= data set that contain scoring coefficients.
The TYPE= procedure option is unrelated to the data set option that has the same
name. PROC SCORE examines the values of the special variable–TYPE– in the
SCORE= data set. When the value of–TYPE– matches TYPE=name, the observa-
tion in the SCORE= data set is used to score the raw data in the DATA= data set.

If you omit the TYPE= option, scoring coefficients are read from observations with
either–TYPE–=’SCORE’ or–TYPE–=’USCORE’. Because the default for PROC
SCORE is TYPE=SCORE, you need not specify the TYPE= option for factor scoring
or for computing scores from OUTSTAT= data sets from the CANCORR, CANDISC,
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PRINCOMP, or VARCLUS procedure. When you use regression coefficients from
PROC REG, specify TYPE=PARMS.

The maximum length of the argument specified in the TYPE= option depends on
the length defined by the VALIDVARNAME= SAS system option. For additional
information, refer toSAS Language Reference: Dictionary.

Note that the TYPE= option setting is not case-sensitive. For example, the two option
settings, TYPE=’MyScore’ and TYPE=’myscore’, are equivalent.

BY Statement

BY variables ;

You can specify a BY statement with PROC SCORE to obtain separate scoring for
observations in groups defined by the BY variables. You can also specify a BY state-
ment to apply separate groups of scoring coefficients to the entire DATA= data set.

If your SCORE= input data set is not sorted in ascending order, use one of the fol-
lowing alternatives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the SCORE procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

If the DATA= data set does not contain any of the BY variables, the entire DATA=
data set is scored by each BY group of scoring coefficients in the SCORE= data set.

If the DATA= data set contains some but not all of the BY variables, or if some
BY variables do not have the same type or length in the DATA= data set as in the
SCORE= data set, then PROC SCORE prints an error message and stops.

If all the BY variables appear in the DATA= data set with the same type and length as
in the SCORE= data set, then each BY group in the DATA= data set is scored using
scoring coefficients from the corresponding BY group in the SCORE= data set. The
BY groups in the DATA= data set must be in the same order as in the SCORE= data
set. All BY groups in the DATA= data set must also appear in the SCORE= data set.
If you do not specify the NOTSORTED option, some BY groups can appear in the
SCORE= data set but not in the DATA= data set; such BY groups are not used in
computing scores.
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ID Statement

ID variables ;

The ID statement identifies variables from the DATA= data set to be included in the
OUT= data set. If there is no ID statement, all variables from the DATA= data set are
included in the OUT= data set. The ID variables can be character or numeric.

VAR Statement

VAR variables ;

The VAR statement specifies the variables to be used in computing scores. These vari-
ables must be in both the DATA= and SCORE= input data sets and must be numeric.
If you do not specify a VAR statement, the procedure uses all numeric variables in the
SCORE= data set. You should almost always specify a VAR statement with PROC
SCORE because you would rarely use all the numeric variables in your data set to
compute scores.

Details

Missing Values

If one of the scoring variables in the DATA= data set has a missing value for an
observation, all the scores have missing values for that observation. The exception to
this criterion is if the PREDICT option is specified, the variable with a coefficient of
−1 can tolerate a missing value and still produce a prediction score. Also, a variable
with a coefficient of 0 can tolerate a missing value.

If a scoring coefficient in the SCORE= data set has a missing value for an observation,
the coefficient is not used in creating the new score variable for the observation. In
other words, missing values of scoring coefficients are treated as zeros. This treatment
affects only the observation in which the missing value occurs.

Regression Parameter Estimates from PROC REG

If the SCORE= data set is an OUTEST= data set produced by PROC REG and if
you specify TYPE=PARMS, the interpretation of the new score variables depends
on the PROC SCORE options chosen and the variables listed in the VAR statement.
If the VAR statement contains only the independent variables used in a model in
PROC REG, the new score variables give the predicted values. If the VAR state-
ment contains the dependent variables and the independent variables used in a model
in PROC REG, the interpretation of the new score variables depends on the PROC
SCORE options chosen. If you omit both the PREDICT and the RESIDUAL op-
tions, the new score variables give negative residuals (PREDICT−ACTUAL). If
you specify the RESIDUAL option, the new score variables give positive residuals
(ACTUAL−PREDICT). If you specify the PREDICT option, the new score variables
give predicted values.
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Unless you specify the NOINT option for PROC REG, the OUTEST= data set con-
tains the variableIntercept. The SCORE procedure uses the intercept value in com-
puting the scores.

Output Data Set

PROC SCORE produces an output data set but displays no output. The output OUT=
data set contains the following:

• the ID variables, if any

• all variables from the DATA= data set, if no ID variables are specified

• the BY variables, if any

• the new score variables, named from the–NAME– or –MODEL– values in
the SCORE= data set

Computational Resources

Let

v = number of variables used in computing scores

s = number of new score variables

b = maximum number of new score variables in a BY group

n = number of observations

Memory

The array storage required is approximately8(4v+(3+v)b+s) bytes. When you do
not use BY processing, the array storage required is approximately8(4v + (4 + v)s)
bytes.

Time

The time required to construct the scoring matrix is roughly proportional tovs and
the time needed to compute the scores is roughly proportional tonvs.

Examples

The following three examples use a subset of theFitness data set. The complete data
set is given inChapter 61, “The REG Procedure.”
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Example 64.1. Factor Scoring Coefficients

This example shows how to use PROC SCORE with factor scoring coefficients. First,
the FACTOR procedure produces an output data set containing scoring coefficients in
observations identified by–TYPE–=’SCORE’. These data, together with the origi-
nal data setFitness, are supplied to PROC SCORE, resulting in a data set contain-
ing scoresFactor1 andFactor2. These statements produceOutput 64.1.1through
Output 64.1.3:

/* This data set contains only the first 12 observations */
/* from the full data set used in the chapter on PROC REG. */
data Fitness;

input Age Weight Oxygen RunTime RestPulse RunPulse @@;
datalines;

44 89.47 44.609 11.37 62 178 40 75.07 45.313 10.07 62 185
44 85.84 54.297 8.65 45 156 42 68.15 59.571 8.17 40 166
38 89.02 49.874 9.22 55 178 47 77.45 44.811 11.63 58 176
40 75.98 45.681 11.95 70 176 43 81.19 49.091 10.85 64 162
44 81.42 39.442 13.08 63 174 38 81.87 60.055 8.63 48 170
44 73.03 50.541 10.13 45 168 45 87.66 37.388 14.03 56 186
;

proc factor data=Fitness outstat=FactOut
method=prin rotate=varimax score;

var Age Weight RunTime RunPulse RestPulse;
title ’FACTOR SCORING EXAMPLE’;
run;

proc print data=FactOut;
title2 ’Data Set from PROC FACTOR’;

run;

proc score data=Fitness score=FactOut out=FScore;
var Age Weight RunTime RunPulse RestPulse;
run;

proc print data=FScore;
title2 ’Data Set from PROC SCORE’;

run;

Output 64.1.1shows the PROC FACTOR output. The scoring coefficients for the two
factors are shown at the end of the PROC FACTOR output.
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Output 64.1.1. Creating an OUTSTAT= Data Set with PROC FACTOR

FACTOR SCORING EXAMPLE

The FACTOR Procedure
Initial Factor Method: Principal Components

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1

Eigenvalue Difference Proportion Cumulative

1 2.30930638 1.11710686 0.4619 0.4619
2 1.19219952 0.30997249 0.2384 0.7003
3 0.88222702 0.37965990 0.1764 0.8767
4 0.50256713 0.38886717 0.1005 0.9773
5 0.11369996 0.0227 1.0000

Factor Pattern

Factor1 Factor2

Age 0.29795 0.93675
Weight 0.43282 -0.17750
RunTime 0.91983 0.28782
RunPulse 0.72671 -0.38191
RestPulse 0.81179 -0.23344
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The FACTOR Procedure
Initial Factor Method: Principal Components

Variance Explained by Each Factor

Factor1 Factor2

2.3093064 1.1921995

Final Communality Estimates: Total = 3.501506

Age Weight RunTime RunPulse RestPulse

0.96628351 0.21883401 0.92893333 0.67396207 0.71349297

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2

1 0.92536 0.37908
2 -0.37908 0.92536

Rotated Factor Pattern

Factor1 Factor2

Age -0.07939 0.97979
Weight 0.46780 -0.00018
RunTime 0.74207 0.61503
RunPulse 0.81725 -0.07792
RestPulse 0.83969 0.09172
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The FACTOR Procedure
Rotation Method: Varimax

Variance Explained by Each Factor

Factor1 Factor2

2.1487753 1.3527306

Final Communality Estimates: Total = 3.501506

Age Weight RunTime RunPulse RestPulse

0.96628351 0.21883401 0.92893333 0.67396207 0.71349297

The FACTOR Procedure
Rotation Method: Varimax

Squared Multiple Correlations of the Variables with Each Factor

Factor1 Factor2

1.0000000 1.0000000

Standardized Scoring Coefficients

Factor1 Factor2

Age -0.17846 0.77600
Weight 0.22987 -0.06672
RunTime 0.27707 0.37440
RunPulse 0.41263 -0.17714
RestPulse 0.39952 -0.04793

Output 64.1.2lists the OUTSTAT= data set from PROC FACTOR. Note that
observations 18 and 19 have–TYPE–=’SCORE’. Observations 1 and 2 have

–TYPE–=’MEAN’ and –TYPE–=’STD’, respectively. These four observations are
used by PROC SCORE.
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Output 64.1.2. OUTSTAT= Data Set from PROC FACTOR Reproduced with
PROC PRINT

FACTOR SCORING EXAMPLE
Data Set from PROC FACTOR

Rest
Obs _TYPE_ _NAME_ Age Weight RunTime RunPulse Pulse

1 MEAN 42.4167 80.5125 10.6483 172.917 55.6667
2 STD 2.8431 6.7660 1.8444 8.918 9.2769
3 N 12.0000 12.0000 12.0000 12.000 12.0000
4 CORR Age 1.0000 0.0128 0.5005 -0.095 -0.0080
5 CORR Weight 0.0128 1.0000 0.2637 0.173 0.2396
6 CORR RunTime 0.5005 0.2637 1.0000 0.556 0.6620
7 CORR RunPulse -0.0953 0.1731 0.5555 1.000 0.4853
8 CORR RestPulse -0.0080 0.2396 0.6620 0.485 1.0000
9 COMMUNAL 0.9663 0.2188 0.9289 0.674 0.7135

10 PRIORS 1.0000 1.0000 1.0000 1.000 1.0000
11 EIGENVAL 2.3093 1.1922 0.8822 0.503 0.1137
12 UNROTATE Factor1 0.2980 0.4328 0.9198 0.727 0.8118
13 UNROTATE Factor2 0.9368 -0.1775 0.2878 -0.382 -0.2334
14 TRANSFOR Factor1 0.9254 -0.3791 . . .
15 TRANSFOR Factor2 0.3791 0.9254 . . .
16 PATTERN Factor1 -0.0794 0.4678 0.7421 0.817 0.8397
17 PATTERN Factor2 0.9798 -0.0002 0.6150 -0.078 0.0917
18 SCORE Factor1 -0.1785 0.2299 0.2771 0.413 0.3995
19 SCORE Factor2 0.7760 -0.0667 0.3744 -0.177 -0.0479

Since the PROC SCORE statement does not contain the NOSTD option, the data in
theFitness data set are standardized before scoring. For each variable specified in
the VAR statement, the mean and standard deviation are obtained from theFactOut
data set. For each observation in theFitness data set, the variables are then stan-
dardized. For example, for observation 1 in theFitness data set, the variableAge is
standardized to0.5569 = [(44− 42.4167)/2.8431].

After the data in theFitness data set are standardized, the standardized values of
the variables in the VAR statement are multiplied by the matching coefficients in the
FactOut data set, and the resulting products are summed. This sum is output as a
value of the new score variable.

Output 64.1.3displays theFScore data set produced by PROC SCORE. This
data set contains the variablesAge, Weight, Oxygen, RunTime, RestPulse, and
RunPulse from theFitness data set. It also containsFactor1 andFactor2, the two
new score variables.
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Output 64.1.3. OUT= Data Set from PROC SCORE Reproduced with PROC
PRINT

FACTOR SCORING EXAMPLE
Data Set from PROC SCORE

Run Rest Run
Obs Age Weight Oxygen Time Pulse Pulse Factor1 Factor2

1 44 89.47 44.609 11.37 62 178 0.82129 0.35663
2 40 75.07 45.313 10.07 62 185 0.71173 -0.99605
3 44 85.84 54.297 8.65 45 156 -1.46064 0.36508
4 42 68.15 59.571 8.17 40 166 -1.76087 -0.27657
5 38 89.02 49.874 9.22 55 178 0.55819 -1.67684
6 47 77.45 44.811 11.63 58 176 -0.00113 1.40715
7 40 75.98 45.681 11.95 70 176 0.95318 -0.48598
8 43 81.19 49.091 10.85 64 162 -0.12951 0.36724
9 44 81.42 39.442 13.08 63 174 0.66267 0.85740

10 38 81.87 60.055 8.63 48 170 -0.44496 -1.53103
11 44 73.03 50.541 10.13 45 168 -1.11832 0.55349
12 45 87.66 37.388 14.03 56 186 1.20836 1.05948

Example 64.2. Regression Parameter Estimates

In this example, PROC REG computes regression parameter estimates for the
Fitness data. (SeeExample 64.1to create theFitness data set.) The parameter
estimates are output to a data set and used as scoring coefficients. For the first part of
this example, PROC SCORE is used to score theFitness data, which are the same
data used in the regression.

In the second part of this example, PROC SCORE is used to score a new data set,
Fitness2. For PROC SCORE, the TYPE= specification is PARMS, and the names of
the score variables are found in the variable–MODEL– , which gets its values from
the model label. The following code producesOutput 64.2.1throughOutput 64.2.3:

proc reg data=Fitness outest=RegOut;
OxyHat: model Oxygen=Age Weight RunTime RunPulse RestPulse;

title ’REGRESSION SCORING EXAMPLE’;
run;

proc print data=RegOut;
title2 ’OUTEST= Data Set from PROC REG’;

run;

proc score data=Fitness score=RegOut out=RScoreP type=parms;
var Age Weight RunTime RunPulse RestPulse;

run;

proc print data=RScoreP;
title2 ’Predicted Scores for Regression’;

run;

proc score data=Fitness score=RegOut out=RScoreR type=parms;
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var Oxygen Age Weight RunTime RunPulse RestPulse;
run;

proc print data=RScoreR;
title2 ’Negative Residual Scores for Regression’;

run;

Output 64.2.1shows the PROC REG output. The column labeled “Parameter
Estimates” lists the parameter estimates. These estimates are output to theRegOut
data set.

Output 64.2.1. Creating an OUTEST= Data Set with PROC REG

REGRESSION SCORING EXAMPLE

The REG Procedure
Model: oxyhat

Dependent Variable: Oxygen

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 509.62201 101.92440 15.80 0.0021
Error 6 38.70060 6.45010
Corrected Total 11 548.32261

Root MSE 2.53970 R-Square 0.9294
Dependent Mean 48.38942 Adj R-Sq 0.8706
Coeff Var 5.24847

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 151.91550 31.04738 4.89 0.0027
Age 1 -0.63045 0.42503 -1.48 0.1885
Weight 1 -0.10586 0.11869 -0.89 0.4068
RunTime 1 -1.75698 0.93844 -1.87 0.1103
RunPulse 1 -0.22891 0.12169 -1.88 0.1090
RestPulse 1 -0.17910 0.13005 -1.38 0.2176

Output 64.2.2lists the RegOut data set. Notice that–TYPE–=’PARMS’ and

–MODEL–=’OXYHAT’, which are from the label in the MODEL statement in
PROC REG.
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Output 64.2.2. OUTEST= Data Set from PROC REG Reproduced with PROC
PRINT

REGRESSION SCORING EXAMPLE
OUTEST= Data Set from PROC REG

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Age

1 oxyhat PARMS Oxygen 2.53970 151.916 -0.63045

Rest
Obs Weight RunTime RunPulse Pulse Oxygen

1 -0.10586 -1.75698 -0.22891 -0.17910 -1

Output 64.2.3lists the data sets created by PROC SCORE. Since the SCORE= data
set does not contain observations with–TYPE–=’MEAN’ or –TYPE–=’STD’, the
data in theFitness data set are not standardized before scoring. The SCORE= data
set contains the variableIntercept, so this intercept value is used in computing the
score. To produce theRScoreP data set, the VAR statement in PROC SCORE in-
cludes only the independent variables from the model in PROC REG. As a result,
the OxyHat variable contains predicted values. To produce theRScoreR data set,
the VAR statement in PROC SCORE includes both the dependent variables and the
independent variables from the model in PROC REG. As a result, theOxyHat vari-
able contains negative residuals (PREDICT−ACTUAL). If the RESIDUAL option is
specified, the variableOxyHat contains positive residuals (ACTUAL−PREDICT). If
the PREDICT option is specified, theOxyHat variable contains predicted values.
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Output 64.2.3. Predicted and Residual Scores from the OUT= Data Set Created
by PROC SCORE and Reproduced Using PROC PRINT

REGRESSION SCORING EXAMPLE
Predicted Scores for Regression

Run Rest Run
Obs Age Weight Oxygen Time Pulse Pulse oxyhat

1 44 89.47 44.609 11.37 62 178 42.8771
2 40 75.07 45.313 10.07 62 185 47.6050
3 44 85.84 54.297 8.65 45 156 56.1211
4 42 68.15 59.571 8.17 40 166 58.7044
5 38 89.02 49.874 9.22 55 178 51.7386
6 47 77.45 44.811 11.63 58 176 42.9756
7 40 75.98 45.681 11.95 70 176 44.8329
8 43 81.19 49.091 10.85 64 162 48.6020
9 44 81.42 39.442 13.08 63 174 41.4613

10 38 81.87 60.055 8.63 48 170 56.6171
11 44 73.03 50.541 10.13 45 168 52.1299
12 45 87.66 37.388 14.03 56 186 37.0080

REGRESSION SCORING EXAMPLE
Negative Residual Scores for Regression

Run Rest Run
Obs Age Weight Oxygen Time Pulse Pulse oxyhat

1 44 89.47 44.609 11.37 62 178 -1.73195
2 40 75.07 45.313 10.07 62 185 2.29197
3 44 85.84 54.297 8.65 45 156 1.82407
4 42 68.15 59.571 8.17 40 166 -0.86657
5 38 89.02 49.874 9.22 55 178 1.86460
6 47 77.45 44.811 11.63 58 176 -1.83542
7 40 75.98 45.681 11.95 70 176 -0.84811
8 43 81.19 49.091 10.85 64 162 -0.48897
9 44 81.42 39.442 13.08 63 174 2.01935

10 38 81.87 60.055 8.63 48 170 -3.43787
11 44 73.03 50.541 10.13 45 168 1.58892
12 45 87.66 37.388 14.03 56 186 -0.38002

The second part of this example uses the parameter estimates to score a new data set.
The following code producesOutput 64.2.4andOutput 64.2.5:

/* The FITNESS2 data set contains observations 13-16 from */
/* the FITNESS data set used in EXAMPLE 2 in the PROC REG */
/* chapter. */
data Fitness2;

input Age Weight Oxygen RunTime RestPulse RunPulse;
datalines;

45 66.45 44.754 11.12 51 176
47 79.15 47.273 10.60 47 162
54 83.12 51.855 10.33 50 166
49 81.42 49.156 8.95 44 180
;

proc print data=Fitness2;
title ’REGRESSION SCORING EXAMPLE’;
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title2 ’New Raw Data Set to be Scored’;
run;

proc score data=Fitness2 score=RegOut out=NewPred type=parms
nostd predict;

var Oxygen Age Weight RunTime RunPulse RestPulse;
run;

proc print data=NewPred;
title2 ’Predicted Scores for Regression’;
title3 ’for Additional Data from FITNESS2’;

run;

Output 64.2.4lists theFitness2 data set.

Output 64.2.4. Listing of the Fitness2 Data Set

REGRESSION SCORING EXAMPLE
New Raw Data Set to be Scored

Run Rest Run
Obs Age Weight Oxygen Time Pulse Pulse

1 45 66.45 44.754 11.12 51 176
2 47 79.15 47.273 10.60 47 162
3 54 83.12 51.855 10.33 50 166
4 49 81.42 49.156 8.95 44 180

PROC SCORE scores theFitness2 data set using the parameter estimates in the
RegOut data set. These parameter estimates result from fitting a regression equa-
tion to theFitness data set. The NOSTD option is specified, so the raw data are
not standardized before scoring. (However, the NOSTD option is not necessary here.
The SCORE= data set does not contain observations with–TYPE–=’MEAN’ or

–TYPE–=’STD’, so standardization is not performed.) The VAR statement contains
the dependent variables and the independent variables used in PROC REG. In addi-
tion, the PREDICT option is specified. This combination gives predicted values for
the new score variable. The name of the new score variable isOxyHat, from the
value of the–MODEL– variable in the SCORE= data set.Output 64.2.5shows the
data set produced by PROC SCORE.
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Output 64.2.5. Predicted Scores from the OUT= Data Set Created by PROC
SCORE and Reproduced Using PROC PRINT

REGRESSION SCORING EXAMPLE
Predicted Scores for Regression

for Additional Data from FITNESS2

Run Rest Run
Obs Age Weight Oxygen Time Pulse Pulse oxyhat

1 45 66.45 44.754 11.12 51 176 47.5507
2 47 79.15 47.273 10.60 47 162 49.7802
3 54 83.12 51.855 10.33 50 166 43.9682
4 49 81.42 49.156 8.95 44 180 47.5949

Example 64.3. Custom Scoring Coefficients

This example uses a specially created custom scoring data set and producesOutput
64.3.1. The first scoring coefficient creates a variable that isAge−Weight; the
second scoring coefficient evaluates the variableRunPulse−RstPulse; and the
third scoring coefficient totals all six variables. Since the scoring coefficients data
set (data setA) does not contain any observations with–TYPE–=’MEAN’ or

–TYPE–=’STD’, the data in theFitness data set (seeExample 64.1) are not stan-
dardized before scoring.

data A;
input _type_ $ _name_ $

Age Weight RunTime RunPulse RestPulse;
datalines;

SCORE AGE_WGT 1 -1 0 0 0
SCORE RUN_RST 0 0 0 1 -1
SCORE TOTAL 1 1 1 1 1
;

proc print data=A;
title ’CONSTRUCTED SCORING EXAMPLE’;
title2 ’Scoring Coefficients’;

run;

proc score data=Fitness score=A out=B;
var Age Weight RunTime RunPulse RestPulse;

run;

proc print data=B;
title2 ’Scored Data’;

run;
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Output 64.3.1. Custom Scoring Data Set and Scored Fitness Data: PROC PRINT

CONSTRUCTED SCORING EXAMPLE
Scoring Coefficients

Run Run Rest
Obs _type_ _name_ Age Weight Time Pulse Pulse

1 SCORE AGE_WGT 1 -1 0 0 0
2 SCORE RUN_RST 0 0 0 1 -1
3 SCORE TOTAL 1 1 1 1 1

Output 64.3.2. Custom Scored Fitness Data: PROC PRINT

CONSTRUCTED SCORING EXAMPLE
Scored Data

Run Rest Run
Obs Age Weight Oxygen Time Pulse Pulse AGE_WGT RUN_RST TOTAL

1 44 89.47 44.609 11.37 62 178 -45.47 116 384.84
2 40 75.07 45.313 10.07 62 185 -35.07 123 372.14
3 44 85.84 54.297 8.65 45 156 -41.84 111 339.49
4 42 68.15 59.571 8.17 40 166 -26.15 126 324.32
5 38 89.02 49.874 9.22 55 178 -51.02 123 369.24
6 47 77.45 44.811 11.63 58 176 -30.45 118 370.08
7 40 75.98 45.681 11.95 70 176 -35.98 106 373.93
8 43 81.19 49.091 10.85 64 162 -38.19 98 361.04
9 44 81.42 39.442 13.08 63 174 -37.42 111 375.50

10 38 81.87 60.055 8.63 48 170 -43.87 122 346.50
11 44 73.03 50.541 10.13 45 168 -29.03 123 340.16
12 45 87.66 37.388 14.03 56 186 -42.66 130 388.69
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Chapter 65
The SIM2D Procedure
Overview

The SIM2D procedure produces a spatial simulation for a Gaussian random field with
a specified mean and covariance structure in two dimensions using an LU decompo-
sition technique.

The simulation can be conditional or unconditional. If it is conditional, a set of co-
ordinates and associated field values are read from a SAS data set. The resulting
simulation honors these data values.

You can specify the mean structure as a quadratic in the coordinates. You can specify
the covariance by naming the form and supplying the associated parameters.

PROC SIM2D can handle anisotropic and nested semivariogram models. Three co-
variance models are supported: Gaussian, exponential, and spherical. A single nugget
effect is also supported.

You can specify the locations of simulation points in a GRID statement or they can
be read from a SAS data set. The grid specification is most suitable for a regular grid;
the data set specification can handle any irregular pattern of points.

The SIM2D procedure writes the simulated values for each grid point to an output
data set. The SIM2D procedure does not produce any displayed output.

Introduction to Spatial Simulation

The purpose of spatial simulation is to produce a set of partial realizations of a spatial
random field (SRF)Z(s), s ∈ D ⊂ R2 in a way that preserves a specified mean
µ(s) = E [Z(s)] and covariance structureCz(s1 − s2) = cov (Z(s1), Z(s2)).

The realizations are partial in the sense that they occur only at a finite set of loca-
tions(s1, s2, · · · , sn). These locations are typically on a regular grid, but they can be
arbitrary locations in the plane.

There are a number of different types of spatial simulation and associated computa-
tional methods. PROC SIM2D produces simulations for continuous processes in two
dimensions. This means that the possible values of the measured quantityZ(s0) at
locations0 = (x0, y0) can vary continuously over a certain range.

An additional assumption, needed for computational purposes, is that the spatial ran-
dom fieldZ(s) is Gaussian.

Spatial simulation is different from spatial prediction, where the emphasis is on pro-
ducing a point estimate at a given grid location. In this sense, spatial prediction is
local. In contrast, spatial simulation is global; the emphasis is on the entire realiza-
tion (Z(s1), Z(s2), · · · , Z(sn)).
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Given the correct meanµ(s) and covariance structureCz(s1 − s2), SRF quantities
that are difficult or impossible to calculate in a spatial prediction context can easily
be approximated by repeated simulations.

Getting Started

Spatial simulation, just like spatial prediction, requires a model of spatial dependence,
usually in terms of the covarianceCz(h). For a given set of spatial dataZ(si), i =
1, · · · , n, the covariance structure (both the form and parameter values) can be found
by the VARIOGRAM procedure. This example uses the coal seam thickness data
that is also used in the“Getting Started”section ofChapter 80, “The VARIOGRAM
Procedure.”

Preliminary Spatial Data Analysis

In this example, the data consist of coal seam thickness measurements (in feet) taken
over an approximately square area. The coordinates are offsets from a point in the
southwest corner of the measurement area, with the north and east distances in units
of thousands of feet.

It is instructive to see the locations of the measured points in the area where you
want to perform spatial simulations. It is generally desirable to have these locations
scattered evenly around the simulation area.

First, the data are input and the sample locations plotted.

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
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88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

proc gplot data=thick;
title ’Locations of Measured Samples’;
plot north*east / frame cframe=ligr haxis=axis1

vaxis=axis2;
symbol1 v=dot color=blue;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
label east = ’East’

north = ’North’
;

run;

Figure 65.1. Locations of Measured Samples

proc g3d data=thick;
title ’Surface Plot of Coal Seam Thickness’;
scatter east*north=thick / xticknum=5 yticknum=5
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grid zmin=20 zmax=65;
label east = ’East’

north = ’North’
thick = ’Thickness’

;
run;

Figure 65.2. Surface Plot of Coal Seam Thickness

Figure 65.2shows the small scale variation typical of spatial data, but there does not
appear to be any surface trend. Hence, you can work with the original thickness data
rather than residuals from a trend surface fit. In fact, a reasonable approximation of
the spatial process generating the coal seam data is given by

Z(s) = µ + ε(s)

where theε(s) is a Gaussian SRF with Gaussian covariance structure

Cz(h) = c0 exp
(
−h2

a2
0

)
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Note that the term “Gaussian” is used in two ways in this description. For a set of
locationss1, s2, · · · , sn, the random vector

Z(s) =


Z(s1)
Z(s2)

...
Z(sn)


has a multivariate Gaussian or normal distributionNn (µ,Σ). The (i,j)th element of
Σ is computed byCz(si−sj), which happens to be a Gaussian functional form. Any
functional form forCz(h) yielding a valid covariance matrixΣ can be used. Both
the functional form ofCz(h) and the parameter values

µ = 40.14

c0 = 7.5

a0 = 30.0

are visually estimated using PROC VARIOGRAM, a DATA step, and the GPLOT
procedure. Refer to the“Getting Started”section beginning on page 4852 in the
chapter on the VARIOGRAM procedure for details on how these parameter values
are obtained.

The choice of a Gaussian functional form forCz(h) is simply based on the data,
and it is not at all crucial to the simulation. However, itis crucial to the simulation
method used in PROC SIM2D thatZ(s) be a Gaussian SRF. For details, see the
section“Computational and Theoretical Details of Spatial Simulation”beginning on
page 4106.

Investigating Variability by Simulation

The variability ofZ(s), modeled by

Z(s) = µ + ε(s)

with the Gaussian covariance structureCz(h) found previously is not obvious from
the covariance model form and parameters. The variation around the mean of the
surface is relatively small, making it difficult visually to pick up differences in surface
plots of simulated realizations. Instead, you investigate variations at selected grid
points.

To do this investigation, this example uses PROC SIM2D and specifies the Gaussian
model with the parameters found previously. Five thousand simulations (iterations)
are performed on two points: the extreme south-west point of the region and a point
towards the north-east corner of the region. Because of the irregular nature of these
points, a GDATA= data set is produced with the coordinates of the selected points.

Summary statistics are computed for each of these grid points by using a BY state-
ment in PROC UNIVARIATE.
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data grid;
input xc yc;
datalines;
0 0
75 75

run;

proc sim2d data=thick outsim=sim1;
simulate var=thick numreal=5000 seed=79931

scale=7.5 range=30.0 form=gauss;
mean 40.14;
coordinates xc=east yc=north;
grid gdata=grid xc=xc yc=yc;

run;

proc sort data=sim1;
by gxc gyc;

run;

proc univariate data=sim1;
var svalue;
by gxc gyc;
title ’Simulation Statistics at Selected Grid Points’;

run;

Simulation Statistics at Selected Grid Points

------ X-coordinate of the grid point=0 Y-coordinate of the grid point=0 -------

The UNIVARIATE Procedure
Variable: SVALUE (Simulated Value at Grid Point)

Moments

N 5000 Sum Weights 5000
Mean 40.1387121 Sum Observations 200693.561
Std Deviation 0.54603592 Variance 0.29815523
Skewness -0.0217334 Kurtosis -0.0519914
Uncorrected SS 8057071.54 Corrected SS 1490.478
Coeff Variation 1.36037231 Std Error Mean 0.00772211

Basic Statistical Measures

Location Variability

Mean 40.13871 Std Deviation 0.54604
Median 40.14620 Variance 0.29816
Mode . Range 3.81973

Interquartile Range 0.76236

Figure 65.3. Simulation Statistics at Grid Point (XC=0, YC=0)
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Simulation Statistics at Selected Grid Points

------ X-coordinate of the grid point=0 Y-coordinate of the grid point=0 -------

The UNIVARIATE Procedure
Variable: SVALUE (Simulated Value at Grid Point)

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 5197.892 Pr > |t| <.0001
Sign M 2500 Pr >= |M| <.0001
Signed Rank S 6251250 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 41.9369
99% 41.4002
95% 41.0273
90% 40.8334
75% Q3 40.5168
50% Median 40.1462
25% Q1 39.7544
10% 39.4509
5% 39.2384
1% 38.8656
0% Min 38.1172

Extreme Observations

------Lowest----- -----Highest-----

Value Obs Value Obs

38.1172 2691 41.8085 1149
38.2959 1817 41.8251 3612
38.3370 3026 41.8446 3757
38.3834 2275 41.9338 135
38.4198 3100 41.9369 4536

Figure 65.4. Simulation Statistics at Grid Point (XC=75, YC=75)

Syntax

The following statements are available in PROC SIM2D.

PROC SIM2D options ;
COORDINATES coordinate-variables ;
GRID grid-options ;
SIMULATE simulate-options ;
MEAN mean-options ;
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The SIMULATE and MEAN statements are hierarchical; you can specify any number
of SIMULATE statements, but you must specify at least one. If you specify a MEAN
statement, it refers to the preceding SIMULATE statement. If you do not specify a
MEAN statement, a zero mean model is simulated.

You must specify a single COORDINATES statement to identify thex andy coordi-
nate variables in the input data set when you perform a conditional simulation. You
must also specify a single GRID statement to specify the grid information.

The following table outlines the options available in PROC SIM2D classified by func-
tion.

Table 65.1. Options Available in the SIM2D Procedure

Task Statement Option
Data Set Options
specify input data set PROC SIM2D DATA=
specify grid data set GRID GDATA=
specify quadratic form data set MEAN QDATA=
write simulated values PROC SIM2D OUTSIM=

Declaring the Role of Variables
specify the conditioning variable SIMULATE VAR=
specify the x and y coordinate variables in
the DATA= data set

COORDINATES XC= YC=

specify the x and y coordinate variables in
the GDATA= data set

GRID XC= YC=

specify the constant coefficient variable in
the QDATA= data set

MEAN CONST=

specify the linear x coefficient variable in the
QDATA= data set

MEAN CX=

specify the linear y coefficient variable in the
QDATA= data set

MEAN CY=

specify the quadratic x coefficient variable in
the QDATA= data set

MEAN CXX=

specify the quadratic y coefficient variable in
the QDATA= data set

MEAN CYY=

specify the quadratic xy coefficient variable
in the QDATA= data set

MEAN CXY=

Controlling the Simulation
specify the number of realizations SIMULATE NUMREAL=
specify the seed value for the random gener-
ator

SIMULATE SEED=

Controlling the Mean Quadratic Surface
specify the CONST term MEAN CONST=
specify the linear x term MEAN CX=
specify the linear y term MEAN CY=
specify the quadratic x term MEAN CXX=
specify the quadratic y term MEAN CYY=
specify the quadratic cross term MEAN CXY=
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Table 65.1. (continued)

Task Statement Option
Controlling the Semivariogram Model
specify a nugget effect SIMULATE NUGGET=
specify a functional form SIMULATE FORM=
specify nested functional forms SIMULATE FORM=(f1, · · · , fk)
specify a range parameter SIMULATE RANGE=
specify nested range parameters SIMULATE RANGE=(r1, · · · , rk)
specify a scale parameter SIMULATE SCALE=
specify nested scale parameters SIMULATE SCALE=(s1, · · · , sk)
specify an angle for an anisotropic model SIMULATE ANGLE=
specify nested angles SIMULATE ANGLE=(a1, · · · , ak)
specify a minor-major axis ratio for an
anisotropic model

SIMULATE RATIO=

specify nested minor-major axis ratios SIMULATE RATIO=(ra1, · · · , rak)

PROC SIM2D Statement

PROC SIM2D options ;
You can specify the following options with the PROC SIM2D statement.

DATA=SAS-data-set
specifies a SAS data set containing thex and y coordinate variables and the
SIMULATE VAR= variables. This data set is required if any of the SIMULATE
statements are conditional, that is, if you specify the VAR= option. If none of the
SIMULATE statements are conditional then you do not need the DATA= option, and
this option is ignored if you specify it.

NARROW
restricts the variables included in the OUTSIM= data set. When you specify the
NARROW option, only four variables are included. This option is useful when a
large number of simulations are produced. Including only four variables reduces
the memory required for the OUTSIM= data set. For details on the variables that are
excluded with the NARROW option, see the section“Output Data Set”on page 4110.

OUTSIM=SAS-data-set
specifies a SAS data set to store the simulation values, iteration number, simulate
statement label, variable name, and grid location. For details, see the section“Output
Data Set”on page 4110.

COORDINATES Statement

COORDINATES coordinate-variables ;

The following two options give the name of the variables in the DATA= data set
containing the values of thex andy coordinates of the conditioning data.

Only one COORDINATES statement is allowed, and it is applied to all SIMULATE
statements that have a VAR= specification. In other words, it is assumed that all the
VAR= variables in all SIMULATE statements have the samex andy coordinates.
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You can abbreviate the COORDINATES statement as COORD.

XCOORD=(variable-name)
XC=(variable-name)

gives the name of the variable containing thex coordinate of the data in the DATA=
data set.

YCOORD=(variable-name)
YC=(variable-name)

gives the name of the variable containing they coordinate of the data locations in the
DATA= data set.

GRID Statement

GRID grid-options ;

The following options can be used to specify the grid of spatial locations at which to
perform the simulations. A single GRID statement is required and is applied to all
SIMULATE statements.

There are two basic methods for specifying the grid. You can specify thex andy
coordinates explicitly, or they can be read from a SAS data set. The options for the
explicit specification of grid locations are as follows.

X=number
X=x1, . . . , xm

X=x1 to xm

X=x1 to xm by δx
specifies thex coordinate of the grid locations.

Y=number
Y=y1, . . . , ym

Y=y1 to ym

Y=y1 to ym by δy
specifies they coordinate of the grid locations.

For example, the following two GRID statements are equivalent:

grid x=1,2,3,4,5 y=0,2,4,6,8,10;
grid x=1 to 5 y=0 to 10 by 2;

To specify grid locations from a SAS data set, you must provide the name of the data
set and the variables containing the values of thex andy coordinates.

GRIDDATA=SAS-data-set
GDATA=SAS-data-set

specifies a SAS data set containing thex andy grid coordinates.
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XCOORD=(variable-name)
XC=(variable-name)

gives the name of the variable containing thex coordinate of the grid locations in the
GRIDDATA= data set.

YCOORD=(variable-name)
YC=(variable-name)

gives the name of the variable containing they coordinate of the grid locations in the
GRIDDATA= data set.

SIMULATE Statement

SIMULATE simulate-options ;

The SIMULATE statement specifies details on the simulation and the covariance
model used in the simulation. You can specify the following options with a
SIMULATE statement, which can be abbreviated by SIM.

NUMREAL=number
NUMR=number
NR=number

specifies the number of realizations to produce for the spatial process specified by
the covariance model. Note that the number of observations in the OUTSIM= data
set contributed by a given SIMULATE statement is the product of the NUMREAL=
value with the number of grid points. This can cause the OUTSIM= data set to
become large even for moderate values of the NUMREAL= option.

VAR= (variable-name)
specifies the single numeric variable used as the conditioning variable in the simula-
tion. In other words, the simulation is conditional on the values of the VAR= variable
found in the DATA= data set. If you omit the VAR= option, the simulation isuncon-
ditional. Since multiple SIMULATE statements are allowed, you can perform both
unconditional and conditional simulations with a single PROC SIM2D statement.

Covariance Model Specification

There are two ways to specify a semivariogram or covariance model. In the first
method, you can specify the required parameters SCALE, RANGE, and FORM, and
possibly the optional parameters NUGGET, ANGLE, and RATIO, explicitly in the
SIMULATE statement.

In the second method, you can specify an MDATA= data set. This data set contains
variables corresponding to the required SCALE, RANGE, and FORM parameters,
and, optionally, variables for the NUGGET, ANGLE, and RATIO parameters.

The two methods are exclusive; either you specify all parameters explicitly, or they
are all are read from the MDATA= data set.
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ANGLE=angle
ANGLE= (angle1,. . . ,anglek)

specifies the angle of the major axis for anisotropic models, measured in degrees
clockwise from the N-S axis. In the case of a nested semivariogram model, you can
specify an angle for each nesting. The default is ANGLE=0.

FORM=form–spec
FORM=(form–spec1, form–spec2,. . . ,form–speck)

specifies the functional form or forms of the semivariogram model, whereform–spec
can take only the values SPHERICAL, EXPONENTIAL, and GAUSSIAN. The
two ways of specifying the FORM= parameter allows specification of both nested
and nonnested models. The following abbreviations are permitted. For the spher-
ical model, you can specify theform–specas FORM=SPHERICAL, FORM=SPH,
or FORM=S. For the exponential model, you can specify theform–spec as
FORM=EXPONENTIAL, FORM=EXP, or FORM=E. For the Gaussian model, you
can specify theform–specas FORM=GAUSSIAN, FORM=GAUSS, or FORM=G.

MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semi-
variogram model. The MDATA= data set must contain variables named SCALE,
RANGE, and FORM, and it can optionally contain the variables NUGGET, ANGLE,
and RATIO.

The FORM variables must be character, and they can assume the same values al-
lowed in the explicit FORM= syntax described previously. The RANGE and SCALE
variables must be numeric. The optional variables ANGLE, RATIO, and NUGGET
must also be numeric if present.

The number of observations present in the MDATA= data set corresponds to the level
of nesting of the covariance or semivariogram model. For example, to specify a non-
nested model using a spherical covariance, an MDATA= data set might look like the
following.

data md1;
input scale range form $;
datalines;
25 10 sph

run;

The PROC SIM2D statement to use the MDATA= specification is of the form

proc sim2d data=...;
sim var=.... mdata=md1;

run;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc sim2d data=...;
sim var=.... scale=25 range=10 form=sph;

run;
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The following MDATA= data set is an example of an anisotropic nested model:

data md2;
input scale range form $ nugget angle ratio;
datalines;
20 8 S 5 35 .7
12 3 G 5 0 .8
4 1 G 5 45 .5
;

proc sim2d data=...;
sim var=.... mdata=md2;

run;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc sim2d data=...;
sim var=.... scale=(20,12,4) range=(8,3,1) form=(S,G,G)

angle=(35,0,45) ratio=(.7,.8,.5) nugget=5;
run;

This example is somewhat artificial in that it is usually hard to detect different
anisotropy directions and ratios for different nestings using an experimental semi-
variogram. Note that the NUGGET value is the same for all nestings. This is always
the case; the nugget effect is a single additive term for all models. For further details,
refer to the section“The Nugget Effect”on page 2051 inChapter 37, “The KRIGE2D
Procedure.”

The SIMULATE statement can be given a label. This is useful for identification in
the OUTSIM= data set when multiple SIMULATE statements are specified.

For example,

proc sim2d data=...;
gauss1: sim var=.... form=gauss;
mean ....;
gauss2: sim var=.... form gauss;
mean ....;
exp1: sim var=.... form=exp;
mean ....;
exp2: sim var=.... form=exp;
mean ....;

run;

In the OUTSIM= data set, the values ’GAUSS1’, ’GAUSS2’, ’EXP1’, and ’EXP2’
for the LABEL variable help to identify the realizations corresponding to the four
SIMULATE statements. If you do not provide a label for a SIMULATE statement,
a default label of SIMn is given, wheren is the number of unlabeled SIMULATE
statements seen so far.
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NUGGET=number
specifies the nugget effect for the model. This effect is due to a discontinuity in
the semivariogram as determined by plotting the sample semivariogram (refer to the
section“The Nugget Effect”on page 2051 in the chapter on the KRIGE2D procedure
for details). For models without any nugget effect, the NUGGET= option is left out.
The default is NUGGET=0.

RANGE=range
RANGE=(range1,. . . ,rangek)

specifies the range parameter in the semivariogram models. In the case of a nested
semivariogram model, you must specify a range for each nesting.

The range parameter is the divisor in the exponent in all supported models. It has
the units of distance or distance squared for these models, and it is related to the
correlation scale for the underlying spatial process. Refer to the section“Theoretical
Semivariogram Models”beginning on page 2045 in the chapter on the KRIGE2D
procedure for details on how the RANGE= values are determined.

RATIO=ratio
RATIO=(ratio1,. . . ,ratiok)

specifies the ratio of the length of the minor axis to the length of the major axis for
anisotropic models. The value of the RATIO= option must be between 0 and 1. In
the case of a nested semivariogram model, you can specify a ratio for each nesting.
The default is RATIO=1.

SCALE=scale
SCALE= (scale1,. . . ,scalek)

specifies the scale parameter in semivariogram models. In the case of a nested semi-
variogram model, you must specify a scale for each nesting.

The scale parameter is the multiplicative factor in all supported models; it has the
same units as the variance of the VAR= variable. Refer to the section“Theoretical
Semivariogram Models”beginning on page 2045 in the chapter on the KRIGE2D
procedure for details on how the SCALE= values are determined.

SEED=seed value
specifies the seed to use for the random number generator. If you omit the SEED=
value, the system clock is used.

SINGULAR=number
gives the singularity criteria for solving the set of linear equations involved in the
computation of the mean and covariance of the conditional distribution associated
with a given SIMULATE statement. The larger the value of the SINGULAR= option,
the easier it is for the covariance matrix system to be declared singular. The default is
SINGULAR=1E-8. For more details on the use of the SINGULAR= option, see the
section“Computational and Theoretical Details of Spatial Simulation”beginning on
page 4106.



MEAN Statement � 4105

MEAN Statement

MEAN spec1,. . . ,spec6 ;

MEAN QDATA= SAS-data-set CONST=var1 CX=var2 CY=var3

CXX=var4 CYY=var5 CXY=var6 ;

MEAN QDATA= SAS-data-set ;

A mean functionµ(s) that is a quadratic in the coordinates can be written

µ(s) = µ(x, y) = β0 + β1x + β2y + β3x
2 + β4y

2 + β5xy

The MEAN statement is used to specify the quadratic surface to use as the mean
function for the simulated SRF. There are three ways to specify the MEAN statement.
The MEAN statement allows the specification of the coefficientsβ0, · · · , β5 either
explicitly or through a QDATA= data set.

An example of an explicit specification is

mean 1.4 + 2.5*x + 3.6*y + .47*x*x + .58*y*y + .69*x*y;

In this example, all terms have a nonzero coefficient. Any term with a zero coefficient
is simply left out of the specification. For example,

mean 1.4;

is a valid quadratic form with all terms having zero coefficients except the constant
term.

An equivalent way of specifying the mean function is through the QDATA= data set.
For example, the following MEAN statement

mean 1.4 + 2.5*x + 3.6*y + .47*x*x + .58*y*y + .69*x*y;

can be alternatively specified by the following DATA step and MEAN statement:

data q1;
input c1 c2 c3 c4 c5 c6;
datalines;
1.4 2.5 3.6 .47 .58 .69

run;
proc sim2d data=....;

simulate ...;
mean qdata=q1 const=c1 cx=c2 cy=c3 cxx=c4

cyy=c5 cxy=c6;
run;
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The QDATA= data set specifies the data set containing the coefficients. The param-
eters CONST=, CX=, CY=, CXX=, CYY=, and CYX= specify the variables in the
QDATA= data set that correspond to the constant, linear x, linear y, and so on. For
any coefficient not specified in this list, the QDATA= data set is checked for the pres-
ence of variables with default names of CONST, CX, CY, CXX, CYY, and CXY. If
these variables are present, their values are taken as the corresponding coefficients.
Hence, you can rewrite the previous example as

data q1;
input const cx cy cxx cyy cxy;
datalines;
1.4 2.5 3.6 .47 .58 .69
;

proc sim2d data=....;
simulate ...;
mean qdata=q1;

run;

If a given coefficient does not appear in the list or in the data set with the default
name, a value of zero is assumed.

Details

Computational and Theoretical Details of Spatial Simulation

Introduction

There are a number of approaches to simulating spatial random fields or, more gener-
ally, simulating sets of dependent random variables. This includes sequential indica-
tor methods, turning bands, and the Karhunen-Loeve Expansion. Refer to Christakos
(1992, Chapter 8) and Duetsch and Journel (1992, Chapter V) for details.

A particularly simple method available for Gaussian spatial random fields is the LU
decomposition method. This method is computationally efficient. For a given covari-
ance matrix, theLU = LLT decomposition is computed once, and the simulation
proceeds by repeatedly generating a vector of independentN(0, 1) random variables
and multiplying by theL matrix.

One problem with this technique is memory requirements; memory is required to
hold the full data and grid covariance matrix in core. While this is especially limiting
in the three-dimensional case, you can use PROC SIM2D, which handles only two-
dimensional data, for moderately sized simulation problems.

Theoretical Development

It is a simple matter to produce anN(0, 1) random number, and by stackingk N(0, 1)
random numbers in a column vector, you can obtain a vector with independent stan-
dard normal componentsW ∼ Nk(0, I). The meaning of the termsindependence
andrandomnessin the context of a deterministic algorithm required for the genera-
tion of these numbers is a little subtle; refer to Knuth (1981, Vol. 2, Chapter 3) for
details.
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Rather thanW ∼ Nk(0, I), what is required is the generation of a vector
Z ∼ Nk(0,C), that is,

Z =


Z1

Z2
...

Zk


with covariance matrix

C =


C11 C12 · · · C1k

C21 C22 · · · C2k

...
Ck1 Ck2 · · · Ckk


If the covariance matrix is symmetric and positive definite, it has a Cholesky rootL
such thatC can be factored as

C = LLT

whereL is lower triangular. Refer to Ralston and Rabinowitz (1978, Chapter 9,
Section 3-3) for details. This vectorZ can be generated by the transformationZ =
LW. Note that this is where the assumption of a Gaussian SRF is crucial. When
W ∼ Nk(0, I), thenZ = LW is also Gaussian. The mean ofZ is

E(Z) = L(E(W)) = 0

and the variance is

Var(Z) = Var(LW) = E(LWWTLT ) = LE(WWT )LT = LLT = C

Consider now an SRFZ(s), s ∈ D ⊂ R2, with spatial covariance functionC(h).
Fix locationss1, s2, · · · , sk, and letZ denote the random vector

Z =


Z(s1)
Z(s2)

...
Z(sk)


with corresponding covariance matrix

Cz =


C(0) C(s1 − s2) · · · C(s1 − sk)

C(s2 − s1) C(0) · · · C(s2 − sk)
...

C(sk − s1) C(sk − s2) · · · C(0)
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Since this covariance matrix is symmetric and positive definite, it has a Cholesky root,
and theZ(si), i = 1, · · · , k can be simulated as described previously. This is how the
SIM2D procedure implements unconditional simulation in the zero mean case. More
generally,

Z(s) = µ(s) + ε(s)

with µ(s) being a quadratic form in the coordinatess = (x, y), and theε(s) being an
SRF having the same covariance matrixCz as previously. In this case, theµ(si), i =
1, · · · , k is computed once and added to the simulated vectorε(si), i = 1, · · · , k for
each realization.

For a conditional simulation, this distribution of

Z =


Z(s1)
Z(s2)

...
Z(sk)


must be conditioned on the observed data. The relevant general result concerning
conditional distributions of multivariate normal random variables is the following.
Let X ∼ Nm(µ,Σ), where

X =
[

X1

X2

]

µ =
[

µ1

µ2

]

and

Σ =
(

Σ11 Σ12

Σ21 Σ22

)

The subvectorX1 is k× 1, X2 is n× 1, Σ11 is k× k, Σ22 is n× n, andΣ12 = ΣT
21

is k × n, with k + n = m. The full vectorX is partitioned into two subvectorsX1

andX2, andΣ is similarly partitioned into covariances and cross covariances.

With this notation, the distribution ofX1 conditioned onX2 = x2 is Nk(µ̃, Σ̃), with

µ̃ = µ1 + Σ12Σ−1
22 (x2 − µ2)

and

Σ̃ = Σ11 −Σ12Σ−1
22 Σ21
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Refer to Searle (1971, pp. 46–47) for details. The correspondence with the condi-
tional spatial simulation problem is as follows. Let the coordinates of the observed
data points be denoted̃s1, s̃2, · · · , s̃n, with valuesz̃1, z̃2, · · · , z̃n. Let Z̃ denote the
random vector

Z̃ =


Z(s̃1)
Z(s̃2)

...
Z(s̃n)


The random vector̃Z corresponds toX2, while Z corresponds toX1. Then(
Z | Z̃ = z̃

)
∼ Nk(µ̃, C̃) as in the previous distribution. The matrix

C̃ = C11 −C12C−1
22 C21

is again positive definite, so a Cholesky factorization can be performed.

The dimensionn for Z̃ is simply the number of nonmissing observations for the
VAR= variable; the values̃z1, z̃2, · · · , z̃n are the values of this variable. The coor-
dinates̃s1, s̃2, · · · , s̃n are also found in the DATA= data set, with the variables cor-
responding to the x and y coordinates identified in the COORDINATES statement.
Note that all VAR= variables use the same set of conditioning coordinates; this fixes
the matrixC22 for all simulations.

The dimensionk for Z is the number of grid points specified in the GRID statement.
Since there is a single GRID statement, this fixes the matrixC11 for all simulations.
Similarly, C12 is fixed.

The Cholesky factorizatioñC = LLT is computed once, as is the mean correction

µ̃ = µ1 + C12C−1
22 (x2 − µ2)

Note that the meansµ1 andµ2 are computed using the grid coordinatess1, s2, · · · , sk,
the data coordinates̃s1, s̃2, · · · , s̃n, and the quadratic form specification from the
MEAN statement. The simulation is now performed exactly as in the unconditional
case. Ak × 1 vector of independent standardN(0, 1) random variables is generated
and multiplied byL, andµ̃ is added to the transformed vector. This is repeatedN
times, whereN is the value specified for the NR= option.

Computational Details
In the computation of̃µ andΣ described in the previous section, the inverseΣ−1

22 is
never actually computed; an equation of the form

Σ22A = B

is solved forA using a modified Gaussian elimination algorithm that takes advantage
of the fact thatΣ22 is symmetric with constant diagonalCz(0) that is larger than
all off-diagonal elements. The SINGULAR= option pertains to this algorithm. The
value specified for the SINGULAR= option is scaled byCz(0) before comparison
with the pivot element.
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Memory Usage

For conditional simulations, the largest matrix held in core at any one time depends on
the number of grid points and data points. Using the previous notation, the data-data
covariance matrixC22 is n × n, wheren is the number of nonmissing observations
for the VAR= variable in the DATA= data set. The grid-data cross covarianceC12 is
n× k, wherek is the number of grid points. The grid-grid covarianceC11 is k × k.
The maximum memory required at any one time for storing these matrices is

max (k(k + 1), n(n + 1) + 2(n× k))× sizeof(double)

There are additional memory requirements that add to the total memory usage, but
usually these matrix calculations dominate, especially when the number of grid points
is large.

Output Data Set

The SIM2D procedure produces a single output data set: the OUTSIM=SAS-data-
set. The OUTSIM= data set contains all the needed information to uniquely identify
the simulated values.

The OUTSIM= data set contains the following variables:

• LABEL, which is the label for the current SIMULATE statement

• VARNAME, which is the name of the conditioning variable for the current
SIMULATE statement

• –ITER– , which is the iteration number within the current SIMULATE state-
ment

• GXC, which is the x-coordinate for the current grid point

• GYC, which is the y-coordinate for the current grid point

• SVALUE, which is the value of the simulated variable

If you specify the NARROW option in the PROC SIM2D statement, theLABEL
andVARNAME variables are not included in the OUTSIM= data set. This option is
useful in the case where the number of data points, grid points, and realizations are
such that they generate a very large OUTSIM= data set. The size of the OUTSIM=
data set is reduced when these variables are not included.

In the case of an unconditional simulation, theVARNAME variable is not included.
In the case of mixed conditional and unconditional simulations (that is, when multiple
SIMULATE statements are specified and one or more contain a VAR= specification
and one or more donot contain a VAR= specification), theVARNAME variable is
included but is given a missing value for those observations corresponding to an un-
conditional simulation.



Example 65.1. Simulation � 4111

Example

Example 65.1. Simulation
Continuing with the coal seam thickness example from the“Getting Started”sec-
tion beginning on page 4092, this example asks a more complicated question. This
question is economic in nature, and the (approximate) answer requires the use of
simulation.

Simulating a Subregion for Economic Feasibility

The coal seam must be of a minimum thickness, called acutoff value, for a mining
operation to be profitable. Suppose that, for a subregion of the measured area, the cost
of mining is higher than the remaining areas due to the geology of the overburden.
This higher cost results in a higher thickness cutoff value for the subregion. Suppose
also that it is determined from a detailed cost analysis that at least 60 percent of the
subregion must exceed a seam thickness of 39.7 feet for profitability.

How can you use the SRF model (µ andCz(s)) and the measured seam thickness
valuesZ(si), i = 1, · · · , 75 to determine, in some approximate way, if at least 60
percent of the subregion exceeds this minimum?

Spatial prediction does not appear to be helpful in answering this question. While it is
easy to determine if a predicted value at a location in the subregion is above the 39.7
feet cutoff value, it is not clear how to incorporate the standard error associated with
the predicted value. The standard error is what characterizes the stochastic nature of
the prediction (and the underlying SRF). It is clear that it must be included in any
realistic approach to the problem.

A conditional simulation, on the other hand, seems to be a natural way of obtaining
an approximate answer. By simulating the SRF on a sufficiently fine grid in the
subregion, you can determine the proportion of grid points in which the mean value
over realizations exceeds the 39.7 feet cutoff and compare it with the 60 percent value
needed for profitability.

It is desirable in any simulation study that the quantity being estimated (in this case,
the proportion exceeding the 39.7 feet cutoff) not depend on the number of simu-
lations performed. For example, suppose that the maximum seam thickness is sim-
ulated. It is likely that the maximum value increases as the number of simulations
performed increases. Hence, a simulation is not useful for such an estimate. A sim-
ulation is useful for determining thedistributionof the maximum, but there are gen-
eral theoretical results for such distributions, making such a simulation unnecessary.
Refer to Leadbetter, Lindgren, and Rootzen (1983) for details.

In the case of simulating the proportion exceeding the 39.7 feet cutoff, it is expected
that this quantity will settle down to a fixed value as the number of realizations in-
creases. At a fixed grid point, the quantity being compared with the cutoff value is the
mean over all simulated realizations; this mean value settles down to a fixed number
as the number of realizations increases. In the same manner, the proportion of the
grid where the mean values exceed the cutoff also becomes constant. This can be
tested using PROC SIM2D.



4112 � Chapter 65. The SIM2D Procedure

A crucial, nonprovable assumption in applying SRF theory to the coal seam thickness
data is that the valuesZ(si), i = 1, · · · , 75 represent asinglerealization from the set
of all possible realizations consistent with the SRF model (µ andCz(h)). A condi-
tional simulation repeatedly produces other possible simulated realizations consistent
with the model and data. However, the only concern of the mining company is with
this single unique realization. It is not concerned with similar coal fields to be mined
sometime in the future; it may never see another coal field remotely similar to this
one, or it may not be in business in the future.

Hence the proportion found by generating repeated simulated realizations must some-
how relate back to the unique realization that is the coal field (seam thickness). This
is done by interpreting the proportion found from a simulation to the spatial mean
proportion for the unique realization. The term “spatial mean” is simply an appropri-
ate integral over the fixed (but unknown) spatial functionz(s). (The SRF is denoted
Z(s); a particular realization, a deterministic function of the spatial coordinates, is
denotedz(s).)

This interpretation requires an ergodic assumption, which is also needed in the orig-
inal estimation ofCz(s). Refer to Cressie (1993, pp. 53–58) for a discussion of
ergodicity and Gaussian SRFs.

Implementation Using PROC SIM2D

The subregion to be considered is the southeast corner of the field, which is a square
region with length 40 distance units (in thousands of feet). PROC SIM2D is run
on the entire data set for conditioning, while the simulation grid covers only this
subregion. It is convenient to be able to vary the seed, the grid increment, and the
number of simulations performed. The following macro implements the computation
of the percent area exceeding the cutoff value by using the seed, the grid increment,
and the number of simulated realizations as macro arguments.

The data set produced by PROC SIM2D is transposed so that each grid location is a
separate variable. The MEANS procedure is then used to average the simulated value
at each grid point over all realizations. It is this average that is compared to the cutoff
value. The last DATA step does the comparison and determines the percent of the
grid locations that exceed this cutoff value and writes the results to the listing file in
the form of a report.

The macro is first invoked with a relatively coarse grid (grid increment of 10 distance
units) and a small number of realizations (5). The next invocation uses a finer grid
and 50 realizations, and the final invocation uses the same grid increment and 500
realizations. Each time, the macro is invoked with a different seed. The simulations
indicate that around 87 percent of the subregion exceeds the cutoff value.

The number of grid points in the simulation increases with the square of the decrease
in the grid increment, leading to long CPU processing times. Increasing the number
of realizations results in a linear increase in processing times. Hence, using as coarse
a grid as possible allows more realizations and experimentation with different seeds.

/*- Set the covariance model parameters and cutoff value -*/
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%let cc0=7.5;
%let aa0=30.0;
%let form=gauss;
%let cut=39.7;

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

%macro area_sim(seed=,nr=,ginc=);

%let ngrid=%eval(40/&ginc+1);
%let tgrid=%eval(&ngrid*&ngrid);

proc sim2d data=thick outsim=sim1;
simulate var=thick numreal=&nr seed=&seed

scale=&cc0 range=&aa0 form=&form;
mean 40.14;
coordinates xc=east yc=north;
grid x=60 to 100 by &ginc

y=0 to 40 by &ginc;
run;

proc transpose data=sim1 out=sim2 prefix=sims;
by _iter_;
var svalue;

run;
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proc means data=sim2 noprint n mean;
var sims1-sims&tgrid;
output out=msim n=numsim mean=ms1-ms&tgrid;

run;

/*- Determine the percentage of sites exceeding cutoff -*/
data _null_;

file print;
array simss ms1-ms&tgrid;
set msim;

/*- Loop over the grid sites to test cutoff -*/
cflag=0;
do ss=1 to &tgrid;

tempv=simss[ss];
if simss[ss] > &cut then do;

cflag + 1;
end;

end;

area_per=100*(cflag/&tgrid);
put // +5 ’Conditional Simulation of Coal Seam’

’ Thickness for Subregion’;
put / +5 ’Subregion is South-East Corner 40 by 40’

’ distance units’;
put / +5 "Seed:&seed" +2 "Grid Increment:&ginc";
put / +5 "Total Number of Grid Points:&tgrid" +2

"Number of Simulations:&nr";
put / +5 "Percent of Subregion Exceeding Cutoff of

&cut ft.:"
+2 area_per 5.2;

run;
%mend area_sim;

%area_sim(seed=12345,nr=5,ginc=10);
%area_sim(seed=54321,nr=50,ginc=1);
%area_sim(seed=655311,nr=500,ginc=1);

Output 65.1.1. Conditional Simulation of Coal Seam Thickness
Conditional Simulation of Coal Seam Thickness for Subregion

Subregion is South-East Corner 40 by 40 distance units

Seed:12345 Grid Increment:10

Total Number of Grid Points:25 Number of Simulations:5

Percent of Subregion Exceeding Cutoff of 39.7 ft.: 80.00
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Conditional Simulation of Coal Seam Thickness for Subregion

Subregion is South-East Corner 40 by 40 distance units

Seed:54321 Grid Increment:1

Total Number of Grid Points:1681 Number of Simulations:50

Percent of Subregion Exceeding Cutoff of 39.7 ft.: 88.34

Conditional Simulation of Coal Seam Thickness for Subregion

Subregion is South-East Corner 40 by 40 distance units

Seed:655311 Grid Increment:1

Total Number of Grid Points:1681 Number of Simulations:500

Percent of Subregion Exceeding Cutoff of 39.7 ft.: 87.63
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Chapter 66
The STDIZE Procedure
Overview

The STDIZE procedure standardizes one or more numeric variables in a SAS data
set by subtracting a location measure and dividing by a scale measure. A variety
of location and scale measures are provided, including estimates that are resistant
to outliers and clustering. Some of the well-known standardization methods such as
mean, median, std, range, Huber’s estimate, Tukey’s biweight estimate, and Andrew’s
wave estimate are available in the STDIZE procedure.

In addition, you can multiply each standardized value by a constant and add a con-
stant. Thus, the final output value is

result = add + multiply × original − location

scale

where

result = final output value
add = constant to add (ADD= option)
multiply = constant to multiply by (MULT= option)
original = original input value
location = location measure
scale = scale measure

PROC STDIZE can also find quantiles in one pass of the data, a capability that is
especially useful for very large data sets. With such data sets, the UNIVARIATE
procedure may have high or excessive memory or time requirements.

Getting Started

The following example demonstrates how you can use the STDIZE procedure to
obtain location and scale measures of your data.

In the following hypothetical data set, a random sample of grade 12 students is se-
lected from a number of co-educational schools. Each school is classified as one of
two types: Urban or Rural. There are 40 observations.

The variables areid (student identification),Type (type of school attended: ‘ur-
ban’=urban area and ‘rural’=rural area), andtotal (total assessment scores in History,
Geometry, and Chemistry).

The following DATA step creates the SAS data setTotalScores.
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data TotalScores;
title ’High School Scores Data’;
input id Type $ total;
datalines;

1 rural 135
2 rural 125
3 rural 223
4 rural 224
5 rural 133
6 rural 253
7 rural 144
8 rural 193
9 rural 152

10 rural 178
11 rural 120
12 rural 180
13 rural 154
14 rural 184
15 rural 187
16 rural 111
17 rural 190
18 rural 128
19 rural 110
20 rural 217
21 urban 192
22 urban 186
23 urban 64
24 urban 159
25 urban 133
26 urban 163
27 urban 130
28 urban 163
29 urban 189
30 urban 144
31 urban 154
32 urban 198
33 urban 150
34 urban 151
35 urban 152
36 urban 151
37 urban 127
38 urban 167
39 urban 170
40 urban 123
;
run;
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Suppose you would now like to standardize the total scores in different types of
schools prior to any further analysis. Before standardizing the total scores, you can
use the Schematic Plots from PROC UNIVARIATE to summarize the total scores for
both types of schools.

proc univariate data=TotalScores plot;
var total;
by Type;

run;

The PLOT option in the PROC UNIVARIATE statement creates the Schematic Plots
and several other types of plots. The Schematic Plots display side-by-side box plots
for each BY group (Figure 66.1). The vertical axis represents the total scores, and the
horizontal axis displays two box plots: the one on the left is for the rural scores and
the one on the right is for the urban scores.
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High School Scores Data

The UNIVARIATE Procedure
Variable: total

Schematic Plots
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High School Scores Data

The UNIVARIATE Procedure
Variable: total

Schematic Plots

Type rural urban

Figure 66.1. Schematic Plots from PROC UNIVARIATE
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Inspection reveals that one urban score is a low outlier. Also, if you compare the
lengths of two boxplots, there seems to be twice as much dispersion for the rural
scores as for the urban scores.

High School Scores Data

---------------------------------- Type=urban ----------------------------------

The UNIVARIATE Procedure
Variable: total

Extreme Observations

----Lowest---- ----Highest---

Value Obs Value Obs

64 23 170 39
123 40 186 22
127 37 189 29
130 27 192 21
133 25 198 32

Figure 66.2. Table for Extreme Observations When Type=urban

Figure 66.2displays the table from PROC UNIVARIATE for the lowest and highest
five total scores for urban schools. The outlier (Obs = 3), marked inFigure 66.1by
the symbol ‘0’, has a score of 64.

The following statements use the traditional standardization method
(METHOD=STD) to compute the location and scale measures:

proc stdize data=totalscores method=std pstat;
title2 ’METHOD=STD’;
var total;
by Type;

run;
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High School Scores Data
METHOD=STD

---------------------------------- Type=rural ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = mean Scale = standard deviation

Name Location Scale N

total 167.050000 41.956713 20

High School Scores Data
METHOD=STD

---------------------------------- Type=urban ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = mean Scale = standard deviation

Name Location Scale N

total 153.300000 30.066768 20

Figure 66.3. Location and Scale Measures Table When METHOD=STD

Figure 66.3displays the table of location and scale measures from the PROC STDIZE
statement. PROC STDIZE uses the mean as the location measure and the standard
deviation as the scale measure for standardizing. The PSTAT option displays this
table; otherwise, no display is created.

The ratio of the scale of rural scores to the scale of urban scores is approximately 1.4
(41.96/30.07). This ratio is smaller than the dispersion ratio observed in the previous
Schematic Plots.

The STDIZE procedure provides several location and scale measures that are resistant
to outliers. The following statements invoke three different standardization methods
and display the Location and Scale Measures tables:

proc stdize data=totalscores method=mad pstat;
title2 ’METHOD=MAD’;
var total;
by Type;

run;
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proc stdize data=totalscores method=iqr pstat;
title2 ’METHOD=IQR’;
var total;
by Type;

run;

proc stdize data=totalscores method=abw(4) pstat;
title2 ’METHOD=ABW(4)’;
var total;
by Type;

run;

The results from this analysis are displayed in the following figures.

High School Scores Data
METHOD=MAD

---------------------------------- Type=rural ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = median Scale = median abs dev from median

Name Location Scale N

total 166.000000 32.000000 20

High School Scores Data
METHOD=MAD

---------------------------------- Type=urban ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = median Scale = median abs dev from median

Name Location Scale N

total 153.000000 15.500000 20

Figure 66.4. Location and Scale Measures Table When METHOD=MAD

Figure 66.4displays the table of location and scale measures when the standardization
method is MAD. The location measure is the median, and the scale measure is the
median absolute deviation from median. The ratio of the scale of rural scores to the
scale of urban scores is approximately 2.06 (32.0/15.5) and is close to the dispersion
ratio observed in the previous Schematic Plots.
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High School Scores Data
METHOD=IQR

---------------------------------- Type=rural ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = median Scale = interquartile range

Name Location Scale N

total 166.000000 61.000000 20

High School Scores Data
METHOD=IQR

---------------------------------- Type=urban ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = median Scale = interquartile range

Name Location Scale N

total 153.000000 30.000000 20

Figure 66.5. Location and Scale Measures Table When METHOD=IQR

Figure 66.5displays the table of location and scale measures when the standardization
method is IQR. The location measure is the median, and the scale measure is the
interquartile range. The ratio of the scale of rural scores to the scale of urban scores
is approximately 2.03 (61/30) and is, in fact, the dispersion ratio observed in the
previous Schematic Plots.
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High School Scores Data
METHOD=ABW(4)

---------------------------------- Type=rural ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = biweight 1-step M-estimate Scale = biweight A-estimate

Name Location Scale N

total 162.889603 56.662855 20

High School Scores Data
METHOD=ABW(4)

---------------------------------- Type=urban ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = biweight 1-step M-estimate Scale = biweight A-estimate

Name Location Scale N

total 156.014608 28.615980 20

Figure 66.6. Location and Scale Measures Table When METHOD=ABW

Figure 66.6displays the table of location and scale measures when the standardization
method is ABW. The location measure is the biweight 1-step M-estimate, and the
scale measure is the biweight A-estimate. Note that the initial estimate for ABW is
MAD. The tuning constant (4) of ABW is obtained by the following steps:

1. For rural scores, the location estimate for MAD is 166.0 and the scale estimate
for MAD is 32.0. The maximum of the rural scores is 253 (not shown), and the
minimum is 110 (not shown). Thus, the tuning constant needs to be 3 so that it
does not reject any observation that has a score between 110 to 253.

2. For urban scores, the location estimate for MAD is 153.0 and the scale estimate
for MAD is 15.5. The maximum of the rural scores is 198, and the minimum
(also an outlier) is 64. Thus, the tuning constant needs to be 4 so that it rejects
the outlier (64) but includes the maximum (198) as an normal observation.

3. The maximum of the tuning constants, obtained in steps 1 and 2, is 4.

Refer to Goodall (1983, Chapter 11) for details on the tuning constant. The ratio of
the scale of rural scores to the scale of urban scores is approximately 2.06 (32.0/15.5).
It is also close to the dispersion ratio observed in the previous Schematic Plots.

The preceding analysis shows that METHOD=MAD, METHOD=IQR, and
METHOD=ABW all provide better dispersion ratios than does METHOD=STD.
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You can recompute the standard deviation after deleting the outlier from the original
data set for comparison. The following statements create a DATA setNoOutlier that
excludes the outlier from theTotalScores data set and invoke PROC STDIZE with
METHOD=STD.

data NoOutlier;
set totalscores;
if (total = 64) then delete;

run;

proc stdize data=NoOutlier method=std pstat;
title2 ’after removing outlier, METHOD=STD’;
var total;
by Type;

run;

High School Scores Data
after removing outlier, METHOD=STD

---------------------------------- Type=rural ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = mean Scale = standard deviation

Name Location Scale N

total 167.050000 41.956713 20

High School Scores Data
after removing outlier, METHOD=STD

---------------------------------- Type=urban ----------------------------------

The STDIZE Procedure

Location and Scale Measures

Location = mean Scale = standard deviation

Name Location Scale N

total 158.000000 22.088207 19

Figure 66.7. After Deleting the Outlier, Location and Scale Measures Table When
METHOD=STD

Figure 66.7displays the location and scale measures after deleting the outlier. The
lack of resistance of the standard deviation to outliers is clearly illustrated: if you
delete the outlier, the sample standard deviation of urban scores changes from 30.07
to 22.09. The new ratio of the scale of rural scores to the scale of urban scores is
approximately 1.90 (41.96/22.09).
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Syntax

The following statements are available in the STDIZE procedure.

PROC STDIZE < options > ;
BY variables ;
FREQ variable ;
LOCATION variables ;
SCALE variables ;
VAR variables ;
WEIGHT variable ;

The PROC STDIZE statement is required. The BY, LOCATION, FREQ, VAR,
SCALE, and WEIGHT statements are described in alphabetical order following the
PROC STDIZE statement.

PROC STDIZE Statement

PROC STDIZE < options > ;

The PROC STDIZE statement invokes the procedure. You can specify the following
options in the PROC STDIZE statement.

Table 66.1. Summary of PROC STDIZE Statement Options

Task Options Description
Specify standardization methods METHOD= specifies the name of the standardization

method
INITIAL= specifies the method for computing initial es-

timates for the A estimates

Unstandardize variables UNSTD unstandardizes variables when you also spec-
ify the METHOD=IN option

Process missing values NOMISS omits observations with any missing values
from computation

MISSING= specifies the method or a numeric value for
replacing missing values

REPLACE replaces missing data by zero in the standard-
ized data

REPONLY replaces missing data by the location measure
(does not standardize the data)

Specify data set details DATA= specifies the input data set
OUT= specifies the output data set
OUTSTAT= specifies the output statistic data set

Specify computational settings VARDEF= specifies the variances divisor
NMARKERS= specifies the number of markers when you

also specify PCTLMTD=ONEPASS
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Table 66.1. (continued)

Task Options Description
MULT= specifies the constant to multiply each value

by after standardizing
ADD= specifies the constant to add to each value af-

ter standardizing and multiplying by the value
specified in the MULT= option

FUZZ= specifies the relative fuzz factor for writing
the output

Specify percentiles PCTLDEF= specifies the definition of per-
centiles when you also specify the
PCTLMTD=ORD–STAT option

PCTLMTD= specifies the method used to estimate per-
centiles

PCTLPTS= writes observations containing percentiles to
the data set specified in the OUTSTAT=
option

Normalize scale estimators NORM normalizes the scale estimator to be consis-
tent for the standard deviation of a normal dis-
tribution

SNORM normalizes the scale estimator to have an ex-
pectation of approximately 1 for a standard
normal distribution

Specify output PSTAT displays the location and scale measures

These options and their abbreviations are described, in alphabetical order, in the re-
mainder of this section.

ADD= c
specifies a constant,c, to add to each value after standardizing and multiplying by the
value you specify in the MULT= option. The default value is 0.

DATA=SAS-data-set
specifies the input data set to be standardized. If you omit the DATA= option, the
most recently created data set is used.

FUZZ=c
specifies the relative fuzz factor. The default value is 1E-14. For the OUT= data set,
the score is computed as follows:

if |Result| < Scale× Fuzz, then Result= 0

For the OUTSTAT= data set and the Location and Scale table, the scale and location
values are computed as follows:

if Scale< |Location| × Fuzz, then Scale= 0
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Otherwise,

if |Location| < Scale× Fuzz, then Location= 0

INITIAL=method
specifies the method for computing initial estimates for the A estimates (ABW,
AWAVE, and AHUBER). The following methods are not allowed: INITIAL=ABW,
INITIAL=AHUBER, INITIAL=AWAVE, and INITIAL=IN. The default is
INITIAL=MAD.

METHOD=name
specifies the name of the method for computing location and scale measures. Valid
values fornameare as follows: MEAN, MEDIAN, SUM, EUCLEN, USTD, STD,
RANGE, MIDRANGE, MAXABS, IQR, MAD, ABW, AHUBER, AWAVE, AGK,
SPACING, L, and IN.

For details on these methods, see the descriptions in the“Standardization Methods”
section on page 4136. The default is METHOD=STD.

MISSING= method
MISSING= value

specifies the method (or a numeric value) for replacing missing values. If you omit the
MISSING= option, the REPLACE option replaces missing values with the location
measure given by the METHOD= option. Specify the MISSING= option when you
want to replace missing values with a different value. You can specify any name that
is valid in the METHOD= option except the name IN. The corresponding location
measure is used to replace missing values.

If a numeric value is given, the value replaces missing values after standardizing the
data. However, you can specify the REPONLY option with the MISSING= option to
suppress standardization for cases in which you want only to replace missing values.

MULT= c
specifies a constant,c, by which to multiply each value after standardizing. The
default value is 1.

NMARKERS= n
specifies the number of markers used when you specify the one-pass algorithm
(PCTLMTD=ONEPASS). The valuen must be greater than or equal to 5. The default
value is 105.

NOMISS
omits observations with missing values for any of the analyzed variables from cal-
culation of the location and scale measures. If you omit the NOMISS option, all
nonmissing values are used.

NORM
normalizes the scale estimator to be consistent for the standard deviation of a nor-
mal distribution when you specify the option METHOD=AGK, METHOD=IQR,
METHOD=MAD, or METHOD=SPACING.
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OUT=SAS-data-set
specifies the name of the SAS data set created by PROC STDIZE. The output data
set is a copy of the DATA= data set except that the analyzed variables have been stan-
dardized. Note that analyzed variables are those specified in the VAR statement or,
if there is no VAR statement, all numeric variables not listed in any other statement.
See the section“Output Data Sets”on page 4141 for more information.

If you want to create a permanent SAS data set, you must specify a two-level name.
(Refer to “SAS Files” inSAS Language Reference: Conceptsfor more information
on permanent SAS data sets.)

If you omit the OUT= option, PROC STDIZE creates an output data set named ac-
cording to the DATAn convention.

OUTSTAT=SAS-data-set
specifies the name of the SAS data set containing the location and scale measures and
other computed statistics. See the section“Output Data Sets”on page 4141 for more
information.

PCTLDEF= percentiles
specifies which of five definitions is used to calculate percentiles when you specify
the option PCTLMTD=ORD–STAT. By default, PCTLDEF=5.

Note that the option PCTLMTD=ONEPASS implies a specification of PCTLDEF=5.
See the section“Computational Methods for the PCTLDEF= Option”on page 4140
for details on the PCTLDEF= option.

PCTLMTD=ORD–STAT
PCTLMTD=ONEPASS | P2

specifies the method used to estimate percentiles. Specify the
PCTLMTD=ORD–STAT option to compute the percentiles by the order statistics
method. The PCTLMTD=ONEPASS option modifies an algorithm invented by
Jain and Chlamtac (1985). See the“Computing Quantiles”section on page 4139 for
more details on this algorithm.

The PCTLMTD=ONEPASS option modifies an algorithm invented by Jain and
Chlamtac (1985). See the“Computing Quantiles”section on page 4139 for more
details on this algorithm.

PCTLPTS= n
writes percentiles to the OUTSTAT= data set. Values ofn can be any decimal number
between 0 and 100, inclusive.

A requested percentile is identified by the–TYPE– variable in the OUTSTAT=
data set with a value of Pn. For example, suppose you specify the option
PCTLPTS=10, 30. The corresponding observations in the OUTSTAT= data set that
contain the 10th and the 30th percentiles would then have values–TYPE–=P10 and

–TYPE–=P30, respectively.
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PSTAT
displays the location and scale measures.

REPLACE
replaces missing data with the value 0 in the standardized data (this value corresponds
to the location measure before standardizing). To replace missing data by other val-
ues, see the preceding description of the MISSING= option. You cannot specify both
the REPLACE and REPONLY options.

REPONLY
replaces missing data only; PROC STDIZE does not standardize the data.
Missing values are replaced with the location measure unless you also specify the
MISSING=valueoption, in which case missing values are replaced withvalue. You
cannot specify both the REPLACE and REPONLY options.

SNORM
normalizes the scale estimator to have an expectation of approximately 1 for a stan-
dard normal distribution when you specify the METHOD=SPACING option.

UNSTD
UNSTDIZE

unstandardizes variables when you specify the METHOD=IN(ds) option. The loca-
tion and scale measures, along with constants for addition and multiplication that the
unstandardization is based upon, are identified by the–TYPE– variable in theds
data set.

Theds data set must have a–TYPE– variable and contain the following two obser-
vations: a–TYPE–= ‘LOCATION’ observation and a–TYPE–= ‘SCALE’ obser-
vation. The variable–TYPE– can also contain the optional observations, ‘ADD’ and
‘MULT’; if these observations are not found in theds data set, the constants specified
in the ADD= and MULT= options (or their default values) are used for unstandard-
ization.

See the“OUTSTAT= Data Set”section on page 4141 for details on the statistics that
each value of–TYPE– represents. The formula used for unstandardization is as
follows: If the final output value from the previous standardization is calculated as

result = add + multiply × original − location

scale

original = scale× result− add

multiply
+ location

VARDEF= DF
VARDEF= N
VARDEF= WDF
VARDEF= WEIGHT | WGT

specifies the divisor to be used in the calculation of variances. By default,
VARDEF=DF. The values and associated divisors are as follows.
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Value Divisor Formula

DF degrees of freedom n− 1
N number of observations n
WDF sum of weights minus 1 (

∑
i wi)− 1

WEIGHT | WGT sum of weights
∑

i wi

BY Statement
BY variables ;

You can specify a BY statement with PROC STDIZE to obtain separate standardiza-
tion for observations in groups defined by the BY variables.

If your DATA= input data set is not sorted in ascending order, use one of the following
alternatives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the STDIZE procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

When you specify the option METHOD=IN(ds), the following rules are applied to
BY-group processing:

• If the ds data set does not contain any of the BY variables, the entire DATA=
data set is standardized by the location and scale measures (along with the
constants for addition and multiplication) in theds data set.

• If the ds data set contains some, but not all, of the BY variables or if some BY
variables do not have the same type or length in theds data set that they have
in the DATA= data set, PROC STDIZE displays an error message and stops.

• If all of the BY variables appear in theds data set with the same type and
length as in the DATA= data set, each BY group in the DATA= data set is
standardized using the location and scale measures (along with the constants
for addition and multiplication) from the corresponding BY group in theds
data set. The BY groups in theds data set must be in the same order as they
appear in the DATA= data set. All BY groups in the DATA= data set must also
appear in theds data set. If you do not specify the NOTSORTED option, some
BY groups can appear in theds data set but not in the DATA= data set; such
BY groups are not used in standardizing data.
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FREQ Statement

FREQ | FREQUENCY variable ;

If one variable in the input data set represents the frequency of occurrence for other
values in the observation, specify the variable name in a FREQ statement. PROC
STDIZE treats the data set as if each observation appearedn times, wheren is the
value of the FREQ variable for the observation. Nonintegral values of the FREQ
variable are truncated to the largest integer less than the FREQ value. If the FREQ
variable has a value that is less than 1 or is missing, the observation is not used in the
analysis.

LOCATION Statement

LOCATION variables ;

The LOCATION statement specifies a list of numeric variables that contain location
measures in the input data set specified by the METHOD=IN option.

SCALE Statement

SCALE variables ;

The SCALE statement specifies the list of numeric variables containing scale mea-
sures in the input data set specified by the METHOD=IN option.

VAR Statement

VAR | VARIABLES variables ;

The VAR statement lists numeric variables to be standardized. If you omit the VAR
statement, all numeric variables not listed in the BY, FREQ, and WEIGHT statements
are used.

WEIGHT Statement

WGT | WEIGHT variable ;

The WEIGHT statement specifies a numeric variable in the input data set with values
that are used to weight each observation. Only one variable can be specified.

The WEIGHT variable values can be nonintegers. An observation is used in
the analysis only if the value of the WEIGHT variable is greater than zero. The
WEIGHT variable applies only when you specify the option METHOD=MEAN,
METHOD=SUM, METHOD=EUCLEN, METHOD=USTD, METHOD=STD,
METHOD=AGK, or METHOD=L.

PROC STDIZE uses the value of the WEIGHT variablewi, as follows.

The sample mean and (uncorrected) sample variances are computed as

xw =
∑

i

wixi/
∑

i

wi
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usw
2 =

∑
i

wixi
2/d

sw
2 =

∑
i

wi(xi − xw)2/d

wherewi is the weight value of theith observation,xi is the value of theith obser-
vation, andd is the divisor controlled by the VARDEF= option (see the VARDEF=
option for details).

PROC STDIZE uses the value of the WEIGHT variable to calculate the following
statistics:

MEAN the weighted mean,xw

SUM the weighted sum,
∑

i wixi

USTD the weighted uncorrected standard deviation,
√

us2
w

STD the weighted standard deviation,
√

s2
w

EUCLEN the weighted Euclidean length, computed as the square root of the
weighted uncorrected sum of squares:√∑

i

wixi
2

AGK the AGK estimate. This estimate is documented further in the
ACECLUS procedure as the METHOD=COUNT option. See
the discussion of the WEIGHT statement inChapter 16, “The
ACECLUS Procedure,” for information on how the WEIGHT
variable is applied to the AGK estimate.

L the Lp estimate. This estimate is documented further in the
FASTCLUS procedure as the LEAST= option. See the discus-
sion of the WEIGHT statement inChapter 28, “The FASTCLUS
Procedure,”for information on how the WEIGHT variable is used
to compute weighted cluster means. Note that the number of clus-
ters is always 1.

Details

Standardization Methods

The following table lists standardization methods and their corresponding location
and scale measures available with the METHOD= option.
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Table 66.2. Available Standardization Methods

Method Location Scale
MEAN mean 1
MEDIAN median 1
SUM 0 sum
EUCLEN 0 Euclidean length
USTD 0 standard deviation about origin
STD mean standard deviation
RANGE minimum range
MIDRANGE midrange range/2
MAXABS 0 maximum absolute value
IQR median interquartile range
MAD median median absolute deviation from

median
ABW(c) biweight 1-step M-estimate biweight A-estimate
AHUBER(c) Huber 1-step M-estimate Huber A-estimate
AWAVE(c) Wave 1-step M-estimate Wave A-estimate
AGK(p) mean AGK estimate (ACECLUS)
SPACING(p) mid minimum-spacing minimum spacing
L(p) L(p) L(p)
IN(ds) read from data set read from data set

For METHOD=ABW(c), METHOD=AHUBER(c), or METHOD=AWAVE(c), c is a
positive numeric tuning constant.

For METHOD=AGK(p), p is a numeric constant giving the proportion of pairs to be
included in the estimation of the within-cluster variances.

For METHOD=SPACING(p), p is a numeric constant giving the proportion of data
to be contained in the spacing.

For METHOD=L(p), p is a numeric constant greater than or equal to 1 specifying
the power to which differences are to be raised in computing an L(p) or Minkowski
metric.

For METHOD=IN(ds), ds is the name of a SAS data set that meets either one of the
following two conditions:

• contains a–TYPE– variable. The observation that contains the location mea-
sure corresponds to the value–TYPE–= ’LOCATION’ and the observation
that contains the scale measure corresponds to the value–TYPE–= ’SCALE’.
You can also use a data set created by the OUTSTAT= option from another
PROC STDIZE statement as theds data set. See the section“Output Data
Sets”on page 4141 for the contents of the OUTSTAT= data set.

• contains the location and scale variables specified by the LOCATION and
SCALE statements.

PROC STDIZE reads in the location and scale variables in theds data set by first
looking for the–TYPE– variable in theds data set. If it finds this variable, PROC
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STDIZE continues to search for all variables specified in the VAR statement. If it does
not find the–TYPE– variable, PROC STDIZE searches for the location variables
specified in the LOCATION statement and the scale variables specified in the SCALE
statement.

For robust estimators, refer to Goodall (1983) and Iglewicz (1983). The MAD
method has the highest breakdown point (50%), but it is somewhat inefficient. The
ABW, AHUBER, and AWAVE methods provide a good compromise between break-
down and efficiency. The L(p) location estimates are increasingly robust asp drops
from 2 (corresponding to least squares, or mean estimation) to 1 (corresponding to
least absolute value, or median estimation). However, the L(p) scale estimates are not
robust.

The SPACING method is robust to both outliers and clustering (Jannsen et al. 1995)
and is, therefore, a good choice for cluster analysis or nonparametric density estima-
tion. The mid-minimum spacing method estimates the mode for smallp. The AGK
method is also robust to clustering and more efficient than the SPACING method, but
it is not as robust to outliers and takes longer to compute. If you expectg clusters,
the argument to METHOD=SPACING or METHOD=AGK should be1

g or less. The
AGK method is less biased than the SPACING method for small samples. As a gen-
eral guide, it is reasonable to use AGK for samples of size 100 or less and SPACING
for samples of size 1000 or more, with the treatment of intermediate sample sizes
depending on the available computer resources.

Computation of the Statistics

Formulas for statistics of METHOD=MEAN, METHOD=MEDIAN,
METHOD=SUM, METHOD=USTD, METHOD=STD, METHOD=RANGE,
and METHOD=IQR are given in the chapter on elementary statistics procedures in
theSAS Procedures Guide.

Note that the computations of median and upper and lower quartiles depend on the
PCTLMTD= option.

The other statistics listed inTable 66.2, except for METHOD=IN, are described as
follows:

EUCLEN Euclidean length.√∑n
i=1 xi

2 wherexi is theith observation andn is the total num-
ber of observations in the sample.

L(p) Minkowski metric. This metric is documented as the LEAST=p
option in the PROC FASTCLUS statement of the FASTCLUS pro-
cedure (seeChapter 28, “The FASTCLUS Procedure,”).

If you specify METHOD=L(p) in the PROC STDIZE statement,
your results are similar to those obtained from PROC FASTCLUS
if you specify the LEAST=p option with MAXCLUS=1 (and use
the default values of the MAXITER= option). The difference be-
tween the two types of calculations concerns the maximum number
of iterations. In PROC STDIZE, it is a criteria for convergence on
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all variables; In PROC FASTCLUS, it is a criteria for convergence
on a single variable.

The location and scale measures for L(p) are output to the
OUTSEED= data set in PROC FASTCLUS.

MIDRANGE (maximum+ minimum)/2

ABW(c) Tukey’s biweight. Refer to Goodall (1983, pp. 376–378, p. 385)
for the biweight 1-step M-estimate. Also refer to Iglewicz (1983,
pp. 416–418) for the biweight A-estimate.

AHUBER(c) Hubers. Refer to Goodall (1983, pp. 371–374) for the Huber 1-
step M-estimate. Also refer to Iglewicz (1983, pp. 416–418) for
the Huber A-estimate of scale.

AWAVE(c) Andrews’ Wave. Refer to Goodall (1983, p. 376) for the Wave
1-step M-estimate. Also refer to Iglewicz (1983, pp. 416 –418) for
the Wave A-estimate of scale.

AGK(p) The noniterative univariate form of the estimator described by Art,
Gnanadesikan, and Kettenring (1982).

The AGK estimate is documented in the section on the METHOD=
option in the PROC ACECLUS statement of the ACECLUS proce-
dure (also see the“Background”section on page 388 inChapter 16,
“The ACECLUS Procedure,”). Specifying METHOD=AGK(p)
in the PROC STDIZE statement is the same as specifying
METHOD=COUNT and P=p in the PROC ACECLUS statement.

SPACING(p) The absolute difference between two data values. The minimum
spacing for a proportionp is the minimum absolute difference be-
tween two data values that contain a proportionp of the data be-
tween them. The mid minimum-spacing is the mean of these two
data values.

Computing Quantiles

PROC STDIZE offers two methods for computing quantiles: the one-pass approach
and the order-statistics approach (like that used in the UNIVARIATE procedure).

The one-pass approach used in PROC STDIZE modifies the P2 algorithm for his-
tograms proposed by Jain and Chlamtac (1985). The primary difference comes from
the movement of markers. The one-pass method allows a marker to move to the right
(or left) by more than one position (to the largest possible integer) as long as it does
not result in two markers being in the same position. The modification is necessary
in order to incorporate the FREQ variable.

You may obtain inaccurate results if you use the one-pass approach to estimate quan-
tiles beyond the quartiles (that is, when you estimate quantiles< P25 or> P75). A
large sample size (10,000 or more) is often required if the tail quantiles (quantiles
<= P10 or >= P90 ) are requested. Note that, for variables with highly skewed or
heavy-tailed distributions, tail quantile estimates may be inaccurate.
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The order-statistics approach for estimating quantiles is faster than the one-pass
method but requires that the entire data set be stored in memory. The accuracy in es-
timating the quantiles is comparable for both methods when the requested percentiles
are between the lower and upper quartiles. The default is PCTLMTD=ORD–STAT
if enough memory is available; otherwise, PCTLMTD=ONEPASS.

Computational Methods for the PCTLDEF= Option
You can specify one of five methods for computing quantile statistics when
you use the order-statistics approach (PCTLMTD=ORD–STAT); other-
wise, the PCTLDEF=5 method is used when you use the one-pass approach
(PCTLMTD=ONEPASS).

Let n be the number of nonmissing values for a variable, and letx1, x2, . . . , xn rep-
resent the ordered values of the variable. For thetth percentile, letp = t/100. In the
following definitions numbered 1, 2, 3, and 5, let

np = j + g

wherej is the integer part andg is the fractional part ofnp. For definition 4, let

(n + 1)p = j + g

Given the preceding definitions, thetth percentile,y, is defined as follows:

PCTLDEF=1 weighted average atxnp

y = (1− g)xj + gxj+1

wherex0 is taken to bex1

PCTLDEF=2 observation numbered closest tonp

y = xi

wherei is the integer part ofnp+1/2 if g 6= 1/2. If g = 1/2, then
y = xj if j is even, or
y = xj+1 if j is odd

PCTLDEF=3 empirical distribution function

y = xj if g = 0

y = xj+1 if g > 0

PCTLDEF=4 weighted average aimed atxp(n+1)

y = (1− g)xj + gxj+1

wherexn+1 is taken to bexn

PCTLDEF=5 empirical distribution function with averaging

y = (xj + xj+1)/2 if g = 0

y = xj+1 if g > 0
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Missing Values

Missing values can be replaced by the location measure or by any specified constant
(see the REPLACE option and the MISSING= option). You can also suppress stan-
dardization if you want only to replace missing values (see the REPONLY option).

If you specify the NOMISS option, PROC STDIZE omits observations with any miss-
ing values in the analyzed variables from computation of the location and scale mea-
sures.

Output Data Sets

OUT= Data Set

The output data set is a copy of the DATA= data set except that the analyzed variables
have been standardized. Analyzed variables are those listed in the VAR statement or,
if there is no VAR statement, all numeric variables not listed in any other statement.

OUTSTAT= Data Set

The new data set contains the following variables:

• the BY variables, if any

• –TYPE– , a character variable

• the analyzed variables

Each observation in the new data set contains a type of statistic as indicated by the

–TYPE– variable. The values of the–TYPE– variable are as follows:

–TYPE–
LOCATION location measure of each variable

SCALE scale measure of each variable

ADD constant specified in the ADD= option. This value is the same
for each variable.

MULT constant specified in the MULT= option. This value is the same
for each variable.

N total number of nonmissing positive frequencies of each vari-
able

NORM norm measure of each variable. This observation is pro-
duced only when you specify the NORM option with
METHOD=AGK, METHOD=IQR, METHOD=MAD, or
METHOD=SPACING or when you specify the SNORM
option with METHOD=SPACING.

NObsRead number of physical records read

NObsUsed number of physical records used in the analysis

NObsMiss number of physical records containing missing values
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SumFreqsRead sum of the frequency variable (or the sum of NObsUsed ones
when there is no frequency variable) for all observations read

SumFreqsUsed sum of the frequency variable (or the sum of NObsUsed ones
when there is no frequency variable) for all observations used
in the analysis

SumWeightsRead sum of the weight variable (or the sum of NObsUsed ones
when there is no weight variable) for all observations read

SumWeightsUsed sum of the weight variable (or the sum of NObsUsed ones
when there is no weight variable) for all observations used in
the analysis

Pn percentiles of each variable, as specified by the PCTLPTS=
option. The argumentn is any real number such that0 ≤ n ≤
100.

Displayed Output

If you specify the PSTAT option, PROC STDIZE displays the following statistics for
each variable:

• the name of the variable, Name

• the location estimate, Location

• the scale estimate, Scale

• the norm estimate, Norm (when you specify the NORM op-
tion with METHOD=AGK, METHOD=IQR, METHOD=MAD, or
METHOD=SPACING or when you specify the SNORM option with
METHOD=SPACING)

• the total nonmissing positive frequencies, N

ODS Table Names

PROC STDIZE assigns a name to the single table it creates. You can use this name
to reference the table when using the Output Delivery System (ODS) to select output
or create an output data set. For more information on ODS, seeChapter 14, “Using
the Output Delivery System.”

Table 66.3. ODS Table Produced in PROC STDIZE

ODS Table Name Description Option
Statistics Location and Scale Measures PSTAT
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Examples

Example 66.1. Standardization of Variables in Cluster
Analysis

To illustrate the effect of standardization in cluster analysis, this example uses
the Fish data set described in the “Getting Started” section ofChapter 28, “The
FASTCLUS Procedure.”The numbers are measurements taken on 159 fish caught
from the same lake (Laengelmavesi) near Tampere in Finland; this data set is avail-
able from the Data Archive of theJournal of Statistics Education. The complete data
set is displayed inChapter 67, “The STEPDISC Procedure.”

The species (Bream, Parkki, Pike, Perch, Roach, Smelt, and Whitefish), weight, three
different length measurements (measured from the nose of the fish to the beginning
of its tail, the notch of its tail, and the end of its tail), height, and width of each fish
are recorded. The height and width are recorded as percentages of the third length
variable.

Several new variables are created in theFish data set:Weight3, Height, Width,
and logLengthRatio. The weight of a fish indicates its size—a heavier Tuna tends
to be larger than a lighter Tuna. To get a one dimensional measure of the size of
a fish, take the cubic root of the weight (Weight3). The variablesHeight, Width,
Length1, Length2, andLength3 are rescaled in order to adjust for dimensionality.
The logLengthRatio variable measures the tail length.

Because the new variablesWeight3–logLengthRatio depend on the variable
Weight, observations with missing values forWeight are not added to the data set.
Consequently, there are 157 observations in the SAS data setFish.

Before you perform a cluster analysis on coordinate data, it is necessary to consider
scaling or transforming the variables since variables with large variances tend to have
a larger effect on the resulting clusters than those with small variances.

This example uses three different approaches to standardize or transform the data
prior to the cluster analysis. The first approach uses several standardization methods
provided in the STDIZE procedure. However, since standardization is not always
appropriate prior to the clustering (refer to Milligan and Cooper, 1987, for a Monte
Carlo study on various methods of variable standardization), the second approach
performs the cluster analysis with no standardization. The third approach invokes the
ACECLUS procedure to transform the data into a within-cluster covariance matrix.

The clustering is performed by the FASTCLUS procedure to find seven clusters. Note
that the variablesLength2 andLength3 are eliminated from this analysis since they
both are significantly and highly correlated with the variableLength1. The correla-
tion coefficients are 0.9958 and 0.9604, respectively. An output data set is created,
and the FREQ procedure is invoked to compare the clusters with the species classifi-
cation.

The DATA step is as follows:
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proc format;
value specfmt

1=’Bream’
2=’Roach’
3=’Whitefish’
4=’Parkki’
5=’Perch’
6=’Pike’
7=’Smelt’;

data Fish (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Species Weight Length1 Length2 Length3 HtPct

WidthPct @@;

if Weight <= 0 or Weight=. then delete;
Weight3=Weight**(1/3);
Height=HtPct*Length3/(Weight3*100);
Width=WidthPct*Length3/(Weight3*100);
Length1=Length1/Weight3;
Length2=Length2/Weight3;
Length3=Length3/Weight3;
logLengthRatio=log(Length3/Length1);

format Species specfmt.;
symbol = put(Species, specfmt2.);
datalines;

1 242.0 23.2 25.4 30.0 38.4 13.4
1 290.0 24.0 26.3 31.2 40.0 13.8
1 340.0 23.9 26.5 31.1 39.8 15.1
1 363.0 26.3 29.0 33.5 38.0 13.3

... [155 more records]
;
run;

The following macro,Std, standardizes theFish data. The macro reads a single argu-
ment,mtd, which selects the METHOD= specification to be used in PROC STDIZE.

/*--- macro for standardization ---*/

%macro Std(mtd);
title2 "Data is standardized by PROC STDIZE with

METHOD= &mtd";
proc stdize data=fish out=sdzout method=&mtd;

var Length1 logLengthRatio Height Width Weight3;
run;

%mend Std;

The following macro,FastFreq, includes a PROC FASTCLUS statement for per-
forming cluster analysis and a PROC FREQ statement for cross-tabulating species
with the cluster membership information that is derived from the previous PROC
FASTCLUS statement. The macro reads a single argument,ds, which selects the
input data set to be used in PROC FASTCLUS.
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/*--- macro for clustering and cross-tabulating ---*/
/*--- cluster membership with species ---*/
%macro FastFreq(ds);

proc fastclus data=&ds out=clust maxclusters=7 maxiter=100 noprint;
var Length1 logLengthRatio Height Width Weight3;

run;

proc freq data=clust;
tables species*cluster;

run;
%mend FastFreq;

The following analysis, (labeled ‘Approach 1’) includes 18 different methods of
standardization followed by clustering. Since there is a large amount of out-
put from this approach, only results from METHOD=STD, METHOD=RANGE,
METHOD=AGK(.14), and METHOD=SPACING(.14) are shown. The following
statements produceOutput 66.1.1throughOutput 66.1.4.

/**********************************************************/
/* */
/* Approach 1: data is standardized by PROC STDIZE */
/* */
/**********************************************************/

%Std(MEAN);
%FastFreq(sdzout);

%Std(MEDIAN);
%FastFreq(sdzout);

%Std(SUM);
%FastFreq(sdzout);

%Std(EUCLEN);
%FastFreq(sdzout);

%Std(USTD);
%FastFreq(sdzout);

%Std(STD);
%FastFreq(sdzout);

%Std(RANGE);
%FastFreq(sdzout);

%Std(MIDRANGE);
%FastFreq(sdzout);

%Std(MAXABS);
%FastFreq(sdzout);

%Std(IQR);
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%FastFreq(sdzout);

%Std(MAD);
%FastFreq(sdzout);

%Std(AGK(.14));
%FastFreq(sdzout);

%Std(SPACING(.14));
%FastFreq(sdzout);

%Std(ABW(5));
%FastFreq(sdzout);

%Std(AWAVE(5));
%FastFreq(sdzout);

%Std(L(1));
%FastFreq(sdzout);

%Std(L(1.5));
%FastFreq(sdzout);

%Std(L(2));
%FastFreq(sdzout);
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Output 66.1.1. Data Is Standardized by PROC STDIZE with METHOD=STD
Fish Measurement Data

Data is standardized by PROC STDIZE with METHOD= STD

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 34

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21.66 | 0.00 | 21.66
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 19

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.10 | 12.10
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 38.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 6

| 0.00 | 1.27 | 0.00 | 0.64 | 0.00 | 0.00 | 1.91 | 3.82
| 0.00 | 33.33 | 0.00 | 16.67 | 0.00 | 0.00 | 50.00 |
| 0.00 | 10.53 | 0.00 | 7.69 | 0.00 | 0.00 | 6.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 11

| 0.00 | 0.00 | 0.00 | 0.00 | 7.01 | 0.00 | 0.00 | 7.01
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 0 | 17 | 0 | 12 | 0 | 0 | 27 | 56

| 0.00 | 10.83 | 0.00 | 7.64 | 0.00 | 0.00 | 17.20 | 35.67
| 0.00 | 30.36 | 0.00 | 21.43 | 0.00 | 0.00 | 48.21 |
| 0.00 | 89.47 | 0.00 | 92.31 | 0.00 | 0.00 | 54.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 17

| 10.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.83
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 0 | 13 | 0 | 0 | 0 | 1 | 14

| 0.00 | 0.00 | 8.28 | 0.00 | 0.00 | 0.00 | 0.64 | 8.92
| 0.00 | 0.00 | 92.86 | 0.00 | 0.00 | 0.00 | 7.14 |
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 2.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 17 19 13 13 11 34 50 157

10.83 12.10 8.28 8.28 7.01 21.66 31.85 100.00
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Output 66.1.2. Data Is Standardized by PROC STDIZE with METHOD=RANGE
Fish Measurement Data

Data is standardized by PROC STDIZE with METHOD= RANGE

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 34

| 0.00 | 0.00 | 21.66 | 0.00 | 0.00 | 0.00 | 0.00 | 21.66
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 19

| 0.00 | 0.00 | 0.00 | 12.10 | 0.00 | 0.00 | 0.00 | 12.10
| 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 61.29 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 6

| 0.00 | 0.00 | 0.00 | 1.91 | 1.91 | 0.00 | 0.00 | 3.82
| 0.00 | 0.00 | 0.00 | 50.00 | 50.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 9.68 | 13.04 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 11

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.01 | 0.00 | 7.01
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 0 | 0 | 0 | 9 | 20 | 0 | 27 | 56

| 0.00 | 0.00 | 0.00 | 5.73 | 12.74 | 0.00 | 17.20 | 35.67
| 0.00 | 0.00 | 0.00 | 16.07 | 35.71 | 0.00 | 48.21 |
| 0.00 | 0.00 | 0.00 | 29.03 | 86.96 | 0.00 | 100.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 17

| 10.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.83
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 14

| 0.00 | 8.92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.92
| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 17 14 34 31 23 11 27 157

10.83 8.92 21.66 19.75 14.65 7.01 17.20 100.00
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Output 66.1.3. Data Is Standardized by PROC STDIZE with METHOD=AGK(.14)
Fish Measurement Data

Data is standardized by PROC STDIZE with METHOD= AGK(.14)

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 34

| 0.00 | 0.00 | 21.66 | 0.00 | 0.00 | 0.00 | 0.00 | 21.66
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 0 | 0 | 0 | 17 | 0 | 0 | 2 | 19

| 0.00 | 0.00 | 0.00 | 10.83 | 0.00 | 0.00 | 1.27 | 12.10
| 0.00 | 0.00 | 0.00 | 89.47 | 0.00 | 0.00 | 10.53 |
| 0.00 | 0.00 | 0.00 | 73.91 | 0.00 | 0.00 | 5.71 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 6

| 0.00 | 0.00 | 0.00 | 1.91 | 0.00 | 1.91 | 0.00 | 3.82
| 0.00 | 0.00 | 0.00 | 50.00 | 0.00 | 50.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 13.04 | 0.00 | 13.04 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 11

| 7.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.01
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 0 | 0 | 0 | 3 | 0 | 20 | 33 | 56

| 0.00 | 0.00 | 0.00 | 1.91 | 0.00 | 12.74 | 21.02 | 35.67
| 0.00 | 0.00 | 0.00 | 5.36 | 0.00 | 35.71 | 58.93 |
| 0.00 | 0.00 | 0.00 | 13.04 | 0.00 | 86.96 | 94.29 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 17

| 0.00 | 0.00 | 0.00 | 0.00 | 10.83 | 0.00 | 0.00 | 10.83
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 14

| 0.00 | 8.92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.92
| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 11 14 34 23 17 23 35 157

7.01 8.92 21.66 14.65 10.83 14.65 22.29 100.00
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Output 66.1.4. Data Is Standardized by PROC STDIZE with
METHOD=SPACING(.14)

Fish Measurement Data
Data is standardized by PROC STDIZE with METHOD= SPACING(.14)

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 34

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21.66 | 21.66
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 0 | 0 | 0 | 17 | 0 | 2 | 0 | 19

| 0.00 | 0.00 | 0.00 | 10.83 | 0.00 | 1.27 | 0.00 | 12.10
| 0.00 | 0.00 | 0.00 | 89.47 | 0.00 | 10.53 | 0.00 |
| 0.00 | 0.00 | 0.00 | 85.00 | 0.00 | 5.26 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 6

| 1.91 | 0.00 | 0.00 | 1.91 | 0.00 | 0.00 | 0.00 | 3.82
| 50.00 | 0.00 | 0.00 | 50.00 | 0.00 | 0.00 | 0.00 |
| 13.04 | 0.00 | 0.00 | 15.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 11

| 0.00 | 0.00 | 7.01 | 0.00 | 0.00 | 0.00 | 0.00 | 7.01
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 20 | 0 | 0 | 0 | 0 | 36 | 0 | 56

| 12.74 | 0.00 | 0.00 | 0.00 | 0.00 | 22.93 | 0.00 | 35.67
| 35.71 | 0.00 | 0.00 | 0.00 | 0.00 | 64.29 | 0.00 |
| 86.96 | 0.00 | 0.00 | 0.00 | 0.00 | 94.74 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 17

| 0.00 | 10.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.83
| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 14

| 0.00 | 0.00 | 0.00 | 0.00 | 8.92 | 0.00 | 0.00 | 8.92
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 23 17 11 20 14 38 34 157

14.65 10.83 7.01 12.74 8.92 24.20 21.66 100.00

The following analysis (labeled ‘Approach 2’) applies the cluster analysis directly to
the original data. The following statements produceOutput 66.1.5.

/**********************************************************/
/* */
/* Approach 2: data is untransformed */
/* */
/**********************************************************/

title2 ’Data is untransformed’;
%FastFreq(fish);
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Output 66.1.5. Untransformed Data
Fish Measurement Data
Data is untransformed

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 13 | 0 | 0 | 0 | 0 | 0 | 21 | 34

| 8.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 21.66
| 38.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 61.76 |
| 44.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.73 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 3 | 4 | 0 | 0 | 12 | 0 | 0 | 19

| 1.91 | 2.55 | 0.00 | 0.00 | 7.64 | 0.00 | 0.00 | 12.10
| 15.79 | 21.05 | 0.00 | 0.00 | 63.16 | 0.00 | 0.00 |
| 10.34 | 25.00 | 0.00 | 0.00 | 30.77 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 6

| 1.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.91 | 3.82
| 50.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50.00 |
| 10.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.82 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 2 | 3 | 0 | 0 | 6 | 0 | 0 | 11

| 1.27 | 1.91 | 0.00 | 0.00 | 3.82 | 0.00 | 0.00 | 7.01
| 18.18 | 27.27 | 0.00 | 0.00 | 54.55 | 0.00 | 0.00 |
| 6.90 | 18.75 | 0.00 | 0.00 | 15.38 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 8 | 9 | 0 | 1 | 20 | 0 | 18 | 56

| 5.10 | 5.73 | 0.00 | 0.64 | 12.74 | 0.00 | 11.46 | 35.67
| 14.29 | 16.07 | 0.00 | 1.79 | 35.71 | 0.00 | 32.14 |
| 27.59 | 56.25 | 0.00 | 6.67 | 51.28 | 0.00 | 40.91 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 0 | 0 | 10 | 0 | 1 | 4 | 2 | 17

| 0.00 | 0.00 | 6.37 | 0.00 | 0.64 | 2.55 | 1.27 | 10.83
| 0.00 | 0.00 | 58.82 | 0.00 | 5.88 | 23.53 | 11.76 |
| 0.00 | 0.00 | 100.00 | 0.00 | 2.56 | 100.00 | 4.55 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 14

| 0.00 | 0.00 | 0.00 | 8.92 | 0.00 | 0.00 | 0.00 | 8.92
| 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 93.33 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 29 16 10 15 39 4 44 157

18.47 10.19 6.37 9.55 24.84 2.55 28.03 100.00

The following analysis (labeled ‘Approach 3’) transforms the original data with the
ACECLUS procedure and creates a TYPE=ACE output data set that is used as an in-
put data set for the cluster analysis. The following statements produceOutput 66.1.6.

/**********************************************************/
/* */
/* Approach 3: data is transformed by PROC ACECLUS */
/* */
/**********************************************************/

title2 ’Data is transformed by PROC ACECLUS’;
proc aceclus data=fish out=ace p=.02 noprint;

var Length1 logLengthRatio Height Width Weight3;
run;
%FastFreq(ace);
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Output 66.1.6. Data Is Transformed by PROC ACECLUS
Fish Measurement Data

Data is transformed by PROC ACECLUS

The FREQ Procedure

Table of Species by CLUSTER

Species CLUSTER(Cluster)

Frequency |
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| 5| 6| 7| Total
----------+--------+--------+--------+--------+--------+--------+--------+
Bream | 13 | 0 | 0 | 0 | 0 | 0 | 21 | 34

| 8.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 21.66
| 38.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 61.76 |
| 44.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.73 |

----------+--------+--------+--------+--------+--------+--------+--------+
Roach | 3 | 4 | 0 | 0 | 12 | 0 | 0 | 19

| 1.91 | 2.55 | 0.00 | 0.00 | 7.64 | 0.00 | 0.00 | 12.10
| 15.79 | 21.05 | 0.00 | 0.00 | 63.16 | 0.00 | 0.00 |
| 10.34 | 25.00 | 0.00 | 0.00 | 30.77 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Whitefish | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 6

| 1.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.91 | 3.82
| 50.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50.00 |
| 10.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.82 |

----------+--------+--------+--------+--------+--------+--------+--------+
Parkki | 2 | 3 | 0 | 0 | 6 | 0 | 0 | 11

| 1.27 | 1.91 | 0.00 | 0.00 | 3.82 | 0.00 | 0.00 | 7.01
| 18.18 | 27.27 | 0.00 | 0.00 | 54.55 | 0.00 | 0.00 |
| 6.90 | 18.75 | 0.00 | 0.00 | 15.38 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Perch | 8 | 9 | 0 | 1 | 20 | 0 | 18 | 56

| 5.10 | 5.73 | 0.00 | 0.64 | 12.74 | 0.00 | 11.46 | 35.67
| 14.29 | 16.07 | 0.00 | 1.79 | 35.71 | 0.00 | 32.14 |
| 27.59 | 56.25 | 0.00 | 6.67 | 51.28 | 0.00 | 40.91 |

----------+--------+--------+--------+--------+--------+--------+--------+
Pike | 0 | 0 | 10 | 0 | 1 | 4 | 2 | 17

| 0.00 | 0.00 | 6.37 | 0.00 | 0.64 | 2.55 | 1.27 | 10.83
| 0.00 | 0.00 | 58.82 | 0.00 | 5.88 | 23.53 | 11.76 |
| 0.00 | 0.00 | 100.00 | 0.00 | 2.56 | 100.00 | 4.55 |

----------+--------+--------+--------+--------+--------+--------+--------+
Smelt | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 14

| 0.00 | 0.00 | 0.00 | 8.92 | 0.00 | 0.00 | 0.00 | 8.92
| 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 93.33 | 0.00 | 0.00 | 0.00 |

----------+--------+--------+--------+--------+--------+--------+--------+
Total 29 16 10 15 39 4 44 157

18.47 10.19 6.37 9.55 24.84 2.55 28.03 100.00

Table 66.4displays a table summarizing each classification results. In this table,
the first column represents the standardization method, the second column represents
the number of clusters that the 7 species are classified into, and the third column
represents the total number of observations that are misclassified.
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Table 66.4. Summary of Clustering Results
Method of Standardization Number of Clusters Misclassification
MEAN 5 71
MEDIAN 5 71
SUM 6 51
EUCLEN 6 45
USTD 6 45
STD 5 33
RANGE 7 32
MIDRANGE 7 32
MAXABS 7 26
IQR 5 28
MAD 4 35
ABW(5) 6 34
AWAVE(5) 6 29
AGK(.14) 7 28
SPACING(.14) 7 25
L(1) 6 41
L(1.5) 5 33
L(2) 5 33
untransformed 5 71
PROC ACECLUS 5 71

Consider the results displayed inOutput 66.1.1. In that analysis, the method of stan-
dardization is STD, and the number of clusters and the number of misclassifications
are computed as shown inTable 66.5.

Table 66.5. Computations of Numbers of Clusters and Misclassification When
Standardization Method Is STD

Species Cluster Number Misclassification in Each Species
Bream 6 0
Roach 7 0
Whitefish 7 3
Parkki 5 0
Perch 7 29
Pike 1 0
Smelt 3 1

In Output 66.1.1, the Bream species is classified as cluster 6 since all 34 Bream fish
are categorized into cluster 6 with no misclassification. A similar pattern is seen with
the Roach, Parkki, Pike, and Smelt species.

For the Whitefish species, two fish are categorized into cluster 2, one fish is catego-
rized into cluster 4, and three fish are categorized into cluster 7. Because the majority
of this species is categorized into cluster 7, it is recorded inTable 66.5as being clas-
sified as cluster 7 with 3 misclassifications. A similar pattern is seen with the Perch
species: it is classified as cluster 7 with 29 misclassifications.
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In summary, when the standardization method is STD, seven species of fish are clas-
sified into only 5 clusters and the total number of misclassified observations is 33.

The result of this analysis demonstrates that when variables are standardized by
the STDIZE procedure with methods including RANGE, MIDRANGE, MAXABS,
AGK(.14), and SPACING(.14), the FASTCLUS procedure produces the correct num-
ber of clusters and less misclassification than it does when other standardization
methods are used. The SPACING method attains the best result, probably because the
variablesLength1 andHeight both exhibit marked groupings (bimodality) in their
distributions.
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Chapter 67
The STEPDISC Procedure
Overview

Given a classification variable and several quantitative variables, the STEPDISC pro-
cedure performs a stepwise discriminant analysis to select a subset of the quantitative
variables for use in discriminating among the classes. The set of variables that make
up each class is assumed to be multivariate normal with a common covariance ma-
trix. The STEPDISC procedure can use forward selection, backward elimination, or
stepwise selection (Klecka 1980). The STEPDISC procedure is a useful prelude to
further analyses using the CANDISC procedure or the DISCRIM procedure.

With PROC STEPDISC, variables are chosen to enter or leave the model according
to one of two criteria:

• the significance level of anF -test from an analysis of covariance, where the
variables already chosen act as covariates and the variable under consideration
is the dependent variable

• the squared partial correlation for predicting the variable under consideration
from the CLASS variable, controlling for the effects of the variables already
selected for the model

Forward selection begins with no variables in the model. At each step, PROC
STEPDISC enters the variable that contributes most to the discriminatory power of
the model as measured by Wilks’ Lambda, the likelihood ratio criterion. When none
of the unselected variables meets the entry criterion, the forward selection process
stops.

Backward elimination begins with all variables in the model except those that are
linearly dependent on previous variables in the VAR statement. At each step, the
variable that contributes least to the discriminatory power of the model as measured
by Wilks’ Lambda is removed. When all remaining variables meet the criterion to
stay in the model, the backward elimination process stops.

Stepwise selection begins, like forward selection, with no variables in the model. At
each step, the model is examined. If the variable in the model that contributes least
to the discriminatory power of the model as measured by Wilks’ lambda fails to meet
the criterion to stay, then that variable is removed. Otherwise, the variable not in
the model that contributes most to the discriminatory power of the model is entered.
When all variables in the model meet the criterion to stay and none of the other
variables meet the criterion to enter, the stepwise selection process stops. Stepwise
selection is the default method of variable selection.
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It is important to realize that, in the selection of variables for entry, only one variable
can be entered into the model at each step. The selection process does not take into
account the relationships between variables that have not yet been selected. Thus,
some important variables could be excluded in the process. Also, Wilks’ Lambda
may not be the best measure of discriminatory power for your application. However,
if you use PROC STEPDISC carefully, in combination with your knowledge of the
data and careful cross-validation, it can be a valuable aid in selecting variables for a
discrimination model.

As with any stepwise procedure, it is important to remember that, when many sig-
nificance tests are performed, each at a level of, for example, 5% (0.05), the overall
probability of rejecting at least one true null hypothesis is much larger than 5%. If you
want to prevent including any variables that do not contribute to the discriminatory
power of the model in the population, you should specify a very small significance
level. In most applications, all variables considered have some discriminatory power,
however small. To choose the model that provides the best discrimination using the
sample estimates, you need only to guard against estimating more parameters than
can be reliably estimated with the given sample size.

Costanza and Afifi (1979) use Monte Carlo studies to compare alternative stopping
rules that can be used with the forward selection method in the two-group multivariate
normal classification problem. Five different numbers of variables, ranging from 10
to 30, are considered in the studies. The comparison is based on conditional and
estimated unconditional probabilities of correct classification. They conclude that
the use of a moderate significance level, in the range of 10 percent to 25 percent,
often performs better than the use of a much larger or a much smaller significance
level.

The significance level and the squared partial correlation criteria select variables in
the same order, although they may select different numbers of variables. Increasing
the sample size tends to increase the number of variables selected when using sig-
nificance levels, but it has little effect on the number selected using squared partial
correlations.

SeeChapter 6, “Introduction to Discriminant Procedures,”for more information on
discriminant analysis.

Getting Started
The data in this example are measurements on 159 fish caught in Finland’s lake
Laengelmavesi; this data set is available from the Data Archive of theJournal of
Statistics Education. For each of the seven species (bream, parkki, pike, perch, roach,
smelt, and whitefish), the weight, length, height, and the width of each fish are tallied.
Three different length measurements are recorded: from the nose of the fish to the
beginning of its tail, from the nose to the notch of its tail, and from the nose to the
end of its tail. The height and width are recorded as percentages of the third length
variable. PROC STEPDISC will select a subset of the six quantitative variables that
may be useful for differentiating between the fish species. This subset is used in
conjunction with PROC CANDISC and PROC DISCRIM to develop discrimination
models.
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The following program creates the data setfish and uses PROC STEPDISC to select
a subset of potential discriminator variables. By default, PROC STEPDISC uses
stepwise selection on all numeric variables that are not listed in other statements, and
the significance levels for a variable to enter the subset and to stay in the subset are
set to 0.15.

proc format;
value specfmt

1=’Bream’
2=’Roach’
3=’Whitefish’
4=’Parkki’
5=’Perch’
6=’Pike’
7=’Smelt’;

data fish (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Species Weight Length1 Length2 Length3 HtPct WidthPct @@;
Height=HtPct*Length3/100;
Width=WidthPct*Length3/100;
format Species specfmt.;
datalines;

1 242.0 23.2 25.4 30.0 38.4 13.4 1 290.0 24.0 26.3 31.2 40.0 13.8
1 340.0 23.9 26.5 31.1 39.8 15.1 1 363.0 26.3 29.0 33.5 38.0 13.3
1 430.0 26.5 29.0 34.0 36.6 15.1 1 450.0 26.8 29.7 34.7 39.2 14.2
1 500.0 26.8 29.7 34.5 41.1 15.3 1 390.0 27.6 30.0 35.0 36.2 13.4
1 450.0 27.6 30.0 35.1 39.9 13.8 1 500.0 28.5 30.7 36.2 39.3 13.7
1 475.0 28.4 31.0 36.2 39.4 14.1 1 500.0 28.7 31.0 36.2 39.7 13.3
1 500.0 29.1 31.5 36.4 37.8 12.0 1 . 29.5 32.0 37.3 37.3 13.6
1 600.0 29.4 32.0 37.2 40.2 13.9 1 600.0 29.4 32.0 37.2 41.5 15.0
1 700.0 30.4 33.0 38.3 38.8 13.8 1 700.0 30.4 33.0 38.5 38.8 13.5
1 610.0 30.9 33.5 38.6 40.5 13.3 1 650.0 31.0 33.5 38.7 37.4 14.8
1 575.0 31.3 34.0 39.5 38.3 14.1 1 685.0 31.4 34.0 39.2 40.8 13.7
1 620.0 31.5 34.5 39.7 39.1 13.3 1 680.0 31.8 35.0 40.6 38.1 15.1
1 700.0 31.9 35.0 40.5 40.1 13.8 1 725.0 31.8 35.0 40.9 40.0 14.8
1 720.0 32.0 35.0 40.6 40.3 15.0 1 714.0 32.7 36.0 41.5 39.8 14.1
1 850.0 32.8 36.0 41.6 40.6 14.9 1 1000.0 33.5 37.0 42.6 44.5 15.5
1 920.0 35.0 38.5 44.1 40.9 14.3 1 955.0 35.0 38.5 44.0 41.1 14.3
1 925.0 36.2 39.5 45.3 41.4 14.9 1 975.0 37.4 41.0 45.9 40.6 14.7
1 950.0 38.0 41.0 46.5 37.9 13.7
2 40.0 12.9 14.1 16.2 25.6 14.0 2 69.0 16.5 18.2 20.3 26.1 13.9
2 78.0 17.5 18.8 21.2 26.3 13.7 2 87.0 18.2 19.8 22.2 25.3 14.3
2 120.0 18.6 20.0 22.2 28.0 16.1 2 0.0 19.0 20.5 22.8 28.4 14.7
2 110.0 19.1 20.8 23.1 26.7 14.7 2 120.0 19.4 21.0 23.7 25.8 13.9
2 150.0 20.4 22.0 24.7 23.5 15.2 2 145.0 20.5 22.0 24.3 27.3 14.6
2 160.0 20.5 22.5 25.3 27.8 15.1 2 140.0 21.0 22.5 25.0 26.2 13.3
2 160.0 21.1 22.5 25.0 25.6 15.2 2 169.0 22.0 24.0 27.2 27.7 14.1
2 161.0 22.0 23.4 26.7 25.9 13.6 2 200.0 22.1 23.5 26.8 27.6 15.4
2 180.0 23.6 25.2 27.9 25.4 14.0 2 290.0 24.0 26.0 29.2 30.4 15.4
2 272.0 25.0 27.0 30.6 28.0 15.6 2 390.0 29.5 31.7 35.0 27.1 15.3
3 270.0 23.6 26.0 28.7 29.2 14.8 3 270.0 24.1 26.5 29.3 27.8 14.5
3 306.0 25.6 28.0 30.8 28.5 15.2 3 540.0 28.5 31.0 34.0 31.6 19.3
3 800.0 33.7 36.4 39.6 29.7 16.6 3 1000.0 37.3 40.0 43.5 28.4 15.0
4 55.0 13.5 14.7 16.5 41.5 14.1 4 60.0 14.3 15.5 17.4 37.8 13.3
4 90.0 16.3 17.7 19.8 37.4 13.5 4 120.0 17.5 19.0 21.3 39.4 13.7
4 150.0 18.4 20.0 22.4 39.7 14.7 4 140.0 19.0 20.7 23.2 36.8 14.2
4 170.0 19.0 20.7 23.2 40.5 14.7 4 145.0 19.8 21.5 24.1 40.4 13.1
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4 200.0 21.2 23.0 25.8 40.1 14.2 4 273.0 23.0 25.0 28.0 39.6 14.8
4 300.0 24.0 26.0 29.0 39.2 14.6
5 5.9 7.5 8.4 8.8 24.0 16.0 5 32.0 12.5 13.7 14.7 24.0 13.6
5 40.0 13.8 15.0 16.0 23.9 15.2 5 51.5 15.0 16.2 17.2 26.7 15.3
5 70.0 15.7 17.4 18.5 24.8 15.9 5 100.0 16.2 18.0 19.2 27.2 17.3
5 78.0 16.8 18.7 19.4 26.8 16.1 5 80.0 17.2 19.0 20.2 27.9 15.1
5 85.0 17.8 19.6 20.8 24.7 14.6 5 85.0 18.2 20.0 21.0 24.2 13.2
5 110.0 19.0 21.0 22.5 25.3 15.8 5 115.0 19.0 21.0 22.5 26.3 14.7
5 125.0 19.0 21.0 22.5 25.3 16.3 5 130.0 19.3 21.3 22.8 28.0 15.5
5 120.0 20.0 22.0 23.5 26.0 14.5 5 120.0 20.0 22.0 23.5 24.0 15.0
5 130.0 20.0 22.0 23.5 26.0 15.0 5 135.0 20.0 22.0 23.5 25.0 15.0
5 110.0 20.0 22.0 23.5 23.5 17.0 5 130.0 20.5 22.5 24.0 24.4 15.1
5 150.0 20.5 22.5 24.0 28.3 15.1 5 145.0 20.7 22.7 24.2 24.6 15.0
5 150.0 21.0 23.0 24.5 21.3 14.8 5 170.0 21.5 23.5 25.0 25.1 14.9
5 225.0 22.0 24.0 25.5 28.6 14.6 5 145.0 22.0 24.0 25.5 25.0 15.0
5 188.0 22.6 24.6 26.2 25.7 15.9 5 180.0 23.0 25.0 26.5 24.3 13.9
5 197.0 23.5 25.6 27.0 24.3 15.7 5 218.0 25.0 26.5 28.0 25.6 14.8
5 300.0 25.2 27.3 28.7 29.0 17.9 5 260.0 25.4 27.5 28.9 24.8 15.0
5 265.0 25.4 27.5 28.9 24.4 15.0 5 250.0 25.4 27.5 28.9 25.2 15.8
5 250.0 25.9 28.0 29.4 26.6 14.3 5 300.0 26.9 28.7 30.1 25.2 15.4
5 320.0 27.8 30.0 31.6 24.1 15.1 5 514.0 30.5 32.8 34.0 29.5 17.7
5 556.0 32.0 34.5 36.5 28.1 17.5 5 840.0 32.5 35.0 37.3 30.8 20.9
5 685.0 34.0 36.5 39.0 27.9 17.6 5 700.0 34.0 36.0 38.3 27.7 17.6
5 700.0 34.5 37.0 39.4 27.5 15.9 5 690.0 34.6 37.0 39.3 26.9 16.2
5 900.0 36.5 39.0 41.4 26.9 18.1 5 650.0 36.5 39.0 41.4 26.9 14.5
5 820.0 36.6 39.0 41.3 30.1 17.8 5 850.0 36.9 40.0 42.3 28.2 16.8
5 900.0 37.0 40.0 42.5 27.6 17.0 5 1015.0 37.0 40.0 42.4 29.2 17.6
5 820.0 37.1 40.0 42.5 26.2 15.6 5 1100.0 39.0 42.0 44.6 28.7 15.4
5 1000.0 39.8 43.0 45.2 26.4 16.1 5 1100.0 40.1 43.0 45.5 27.5 16.3
5 1000.0 40.2 43.5 46.0 27.4 17.7 5 1000.0 41.1 44.0 46.6 26.8 16.3
6 200.0 30.0 32.3 34.8 16.0 9.7 6 300.0 31.7 34.0 37.8 15.1 11.0
6 300.0 32.7 35.0 38.8 15.3 11.3 6 300.0 34.8 37.3 39.8 15.8 10.1
6 430.0 35.5 38.0 40.5 18.0 11.3 6 345.0 36.0 38.5 41.0 15.6 9.7
6 456.0 40.0 42.5 45.5 16.0 9.5 6 510.0 40.0 42.5 45.5 15.0 9.8
6 540.0 40.1 43.0 45.8 17.0 11.2 6 500.0 42.0 45.0 48.0 14.5 10.2
6 567.0 43.2 46.0 48.7 16.0 10.0 6 770.0 44.8 48.0 51.2 15.0 10.5
6 950.0 48.3 51.7 55.1 16.2 11.2 6 1250.0 52.0 56.0 59.7 17.9 11.7
6 1600.0 56.0 60.0 64.0 15.0 9.6 6 1550.0 56.0 60.0 64.0 15.0 9.6
6 1650.0 59.0 63.4 68.0 15.9 11.0
7 6.7 9.3 9.8 10.8 16.1 9.7 7 7.5 10.0 10.5 11.6 17.0 10.0
7 7.0 10.1 10.6 11.6 14.9 9.9 7 9.7 10.4 11.0 12.0 18.3 11.5
7 9.8 10.7 11.2 12.4 16.8 10.3 7 8.7 10.8 11.3 12.6 15.7 10.2
7 10.0 11.3 11.8 13.1 16.9 9.8 7 9.9 11.3 11.8 13.1 16.9 8.9
7 9.8 11.4 12.0 13.2 16.7 8.7 7 12.2 11.5 12.2 13.4 15.6 10.4
7 13.4 11.7 12.4 13.5 18.0 9.4 7 12.2 12.1 13.0 13.8 16.5 9.1
7 19.7 13.2 14.3 15.2 18.9 13.6 7 19.9 13.8 15.0 16.2 18.1 11.6
;
proc stepdisc data=fish;

class Species;
run;

PROC STEPDISC begins by displaying summary information about the analysis; see
Figure 67.1. This information includes the number of observations with nonmissing
values, the number of classes in the classification variable (specified by the CLASS
statement), the number of quantitative variables under consideration, the significance
criteria for variables to enter and to stay in the model, and the method of variable
selection being used. The frequency of each class is also displayed.
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Fish Measurement Data

The STEPDISC Procedure

The Method for Selecting Variables is STEPWISE

Observations 158 Variable(s) in the Analysis 6
Class Levels 7 Variable(s) will be Included 0

Significance Level to Enter 0.15
Significance Level to Stay 0.15

Class Level Information

Variable
Species Name Frequency Weight Proportion

Bream Bream 34 34.0000 0.215190
Parkki Parkki 11 11.0000 0.069620
Perch Perch 56 56.0000 0.354430
Pike Pike 17 17.0000 0.107595
Roach Roach 20 20.0000 0.126582
Smelt Smelt 14 14.0000 0.088608
Whitefish Whitefish 6 6.0000 0.037975

Figure 67.1. Summary Information

For each entry step, the statistics for entry are displayed for all variables not currently
selected; seeFigure 67.2. The variable selected to enter at this step (if any) is dis-
played, as well as all the variables currently selected. Next are multivariate statistics
that take into account all previously selected variables and the newly entered variable.
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Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 1

Statistics for Entry, DF = 6, 151

Variable R-Square F Value Pr > F Tolerance

Weight 0.3750 15.10 <.0001 1.0000
Length1 0.6017 38.02 <.0001 1.0000
Length2 0.6098 39.32 <.0001 1.0000
Length3 0.6280 42.49 <.0001 1.0000
Height 0.7553 77.69 <.0001 1.0000
Width 0.4806 23.29 <.0001 1.0000

Variable Height will be entered.

Variable(s) that have been Entered

Height

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.244670 77.69 6 151 <.0001
Pillai’s Trace 0.755330 77.69 6 151 <.0001
Average Squared Canonical 0.125888
Correlation

Figure 67.2. Step 1: Variable HEIGHT Selected for Entry

For each removal step (Figure 67.3), the statistics for removal are displayed for all
variables currently entered. The variable to be removed at this step (if any) is dis-
played. If no variable meets the criterion to be removed and the maximum number of
steps as specified by the MAXSTEP= option has not been attained, then the procedure
continues with another entry step.
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Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 2

Statistics for Removal, DF = 6, 151

Variable R-Square F Value Pr > F

Height 0.7553 77.69 <.0001

No variables can be removed.

Statistics for Entry, DF = 6, 150

Partial
Variable R-Square F Value Pr > F Tolerance

Weight 0.7388 70.71 <.0001 0.4690
Length1 0.9220 295.35 <.0001 0.6083
Length2 0.9229 299.31 <.0001 0.5892
Length3 0.9173 277.37 <.0001 0.5056
Width 0.8783 180.44 <.0001 0.3699

Variable Length2 will be entered.

Variable(s) that have been Entered

Length2 Height

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.018861 157.04 12 300 <.0001
Pillai’s Trace 1.554349 87.78 12 302 <.0001
Average Squared Canonical 0.259058
Correlation

Figure 67.3. Step 2: No Variable is Removed; Variable Length1 Added

The stepwise procedure terminates either when no variable can be removed and no
variable can be entered or when the maximum number of steps as specified by the
MAXSTEP= option has been attained. In this example at Step 7 no variables can be
either removed or entered (Figure 67.4). Steps 3 through 6 are not displayed in this
document.
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Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 7

Statistics for Removal, DF = 6, 146

Partial
Variable R-Square F Value Pr > F

Weight 0.4521 20.08 <.0001
Length1 0.2987 10.36 <.0001
Length2 0.5250 26.89 <.0001
Length3 0.7948 94.25 <.0001
Height 0.7257 64.37 <.0001
Width 0.5757 33.02 <.0001

No variables can be removed.

No further steps are possible.

Figure 67.4. Step 7: No Variables Entered or Removed

PROC STEPDISC ends by displaying a summary of the steps.

Fish Measurement Data

The STEPDISC Procedure

Stepwise Selection Summary

Average
Squared

Number Partial Wilks’ Pr < Canonical Pr >
Step In Entered Removed R-Square F Value Pr > F Lambda Lambda Correlation ASCC

1 1 Height 0.7553 77.69 <.0001 0.24466983 <.0001 0.12588836 <.0001
2 2 Length2 0.9229 299.31 <.0001 0.01886065 <.0001 0.25905822 <.0001
3 3 Length3 0.8826 186.77 <.0001 0.00221342 <.0001 0.38427100 <.0001
4 4 Width 0.5775 33.72 <.0001 0.00093510 <.0001 0.45200732 <.0001
5 5 Weight 0.4461 19.73 <.0001 0.00051794 <.0001 0.49488458 <.0001
6 6 Length1 0.2987 10.36 <.0001 0.00036325 <.0001 0.51744189 <.0001

Figure 67.5. Step Summary

All the variables in the data set are found to have potential discriminatory power.
These variables are used to develop discrimination models in both the CANDISC
and DISCRIM procedure chapters.
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Syntax

The following statements are available in PROC STEPDISC.

PROC STEPDISC < options > ;
CLASS variable ;

BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

The BY, CLASS, FREQ, VAR, and WEIGHT statements are described after the
PROC STEPDISC statement.

PROC STEPDISC Statement

PROC STEPDISC < options > ;

The PROC STEPDISC statement invokes the STEPDISC procedure. The PROC
STEPDISC statement has the following options.

Table 67.1. STEPDISC Procedure Options

Task Options
Specify Data Set DATA=

Select Method METHOD=

Selection Criterion SLENTRY=
SLSTAY=
PR2ENTRY=
PR2STAY=

Selection Process INCLUDE=
MAXSTEP=
START=
STOP=

Determine Singularity SINGULAR=

Control Displayed Output
Correlations BCORR

PCORR
TCORR
WCORR

Covariances BCOV
PCOV
TCOV
WCOV

SSCP Matrices BSSCP
PSSCP
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Table 67.1. (continued)

Task Options
TSSCP
WSSCP

Miscellaneous ALL
SIMPLE
STDMEAN

Suppress Output SHORT

ALL
activates all of the display options.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the
between-class SSCP matrix divided byn(c − 1)/c, wheren is the number of ob-
servations andc is the number of classes. The between-class covariances should be
interpreted in comparison with the total-sample and within-class covariances, not as
formal estimates of population parameters.

BSSCP
displays the between-class SSCP matrix.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can be an ordinary SAS data set or
one of several specially structured data sets created by statistical procedures available
with SAS/STAT software. These specially structured data sets include TYPE=CORR,
COV, CSSCP, and SSCP. If the DATA= option is omitted, the procedure uses the most
recently created SAS data set.

INCLUDE=n
includes the firstn variables in the VAR statement in every model. By default,
INCLUDE=0.

MAXSTEP=n
specifies the maximum number of steps. By default, MAXSTEP= two times the
number of variables in the VAR statement.

METHOD=BACKWARD | BW
METHOD=FORWARD | FW
METHOD=STEPWISE | SW

specifies the method used to select the variables in the model. The BACKWARD
method specifies backward elimination, FORWARD specifies forward selection, and
STEPWISE specifies stepwise selection. By default, METHOD=STEPWISE.
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PCORR
displays pooled within-class correlations (partial correlations based on the pooled
within-class covariances).

PCOV
displays pooled within-class covariances.

PR2ENTRY=p
PR2E=p

specifies the partialR2 for adding variables in the forward selection mode, where
p ≤ 1.

PR2STAY=p
PR2S=p

specifies the partialR2 for retaining variables in the backward elimination mode,
wherep ≤ 1.

PSSCP
displays the pooled within-class corrected SSCP matrix.

SHORT
suppresses the displayed output from each step.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.

SINGULAR=p
specifies the singularity criterion for entering variables, where0 < p < 1. PROC
STEPDISC precludes the entry of a variable if the squared multiple correlation of the
variable with the variables already in the model exceeds1 − p. With more than one
variable already in the model, PROC STEPDISC also excludes a variable if it would
cause any of the variables already in the model to have a squared multiple correlation
(with the entering variable and the other variables in the model) exceeding1− p. By
default, SINGULAR= 1E−8.

SLENTRY=p
SLE=p

specifies the significance level for adding variables in the forward selection mode,
where0 ≤ p ≤ 1. The default value is 0.15.

SLSTAY=p
SLS=p

specifies the significance level for retaining variables in the backward elimination
mode, where0 ≤ p ≤ 1. The default value is 0.15.

START=n
specifies that the firstn variables in the VAR statement be used to begin the selection
process. When you specify METHOD=FORWARD or METHOD=STEPWISE, the
default value is 0; when you specify METHOD=BACKWARD, the default value is
the number of variables in the VAR statement.
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STDMEAN
displays total-sample and pooled within-class standardized class means.

STOP=n
specifies the number of variables in the final model. The STEPDISC procedure stops
the selection process when a model withn variables is found. This option applies
only when you specify METHOD=FORWARD or METHOD=BACKWARD. When
you specify METHOD=FORWARD, the default value is the number of variables in
the VAR statement; when you specify METHOD=BACKWARD, the default value is
0.

TCORR
displays total-sample correlations.

TCOV
displays total-sample covariances.

TSSCP
displays the total-sample corrected SSCP matrix.

WCORR
displays within-class correlations for each class level.

WCOV
displays within-class covariances for each class level.

WSSCP
displays the within-class corrected SSCP matrix for each class level.

BY Statement
BY variables ;

You can specify a BY statement with PROC STEPDISC to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the STEPDISC procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CLASS Statement

CLASS variable ;

The values of the CLASS variable define the groups for analysis. Class levels are
determined by the formatted values of the CLASS variable. The CLASS variable can
be numeric or character. A CLASS statement is required.

FREQ Statement

FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other val-
ues in the observation, include the name of the variable in a FREQ statement. The
procedure then treats the data set as if each observation appearsn times, wheren is
the value of the FREQ variable for the observation. The total number of observa-
tions is considered to be equal to the sum of the FREQ variable when the procedure
determines degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not
used in the analysis. If the value is not an integer, the value is truncated to an integer.

VAR Statement

VAR variables ;

The VAR statement specifies the quantitative variables eligible for selection. The
default is all numeric variables not listed in other statements.

WEIGHT Statement

WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in
a variable in the data set and specify the name in a WEIGHT statement. This is often
done when the variance associated with each observation is different and the values
of the WEIGHT variable are proportional to the reciprocals of the variances. If the
value of the WEIGHT variable is missing or is less than zero, then a value of zero for
the weight is assumed.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT
statement does not alter the degrees of freedom.
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Details

Missing Values

Observations containing missing values are omitted from the analysis.

Input Data Sets

The input data set can be an ordinary SAS data set or one of several specially
structured data sets created by statistical procedures available with SAS/STAT soft-
ware. For more information on these data sets, seeAppendix A, “Special SAS Data
Sets.”The BY variable in these data sets becomes the CLASS variable in PROC
STEPDISC. These specially structured data sets include

• TYPE=CORR data sets created by PROC CORR using a BY statement

• TYPE=COV data sets created by PROC PRINCOMP using both the COV op-
tion and a BY statement

• TYPE=CSSCP data sets created by PROC CORR using the CSSCP option and
a BY statement, where the OUT= data set is assigned TYPE=CSSCP with the
TYPE= data set option

• TYPE=SSCP data sets created by PROC REG using both the OUTSSCP= op-
tion and a BY statement

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, the
STEPDISC procedure reads the number of observations for each class from the ob-
servations with–TYPE–=’N’ and the variable means in each class from the obser-
vations with–TYPE–=’MEAN’. The procedure then reads the within-class corre-
lations from the observations with–TYPE–=’CORR’, the standard deviations from
the observations with–TYPE–=’STD’ (data set TYPE=CORR), the within-class co-
variances from the observations with–TYPE–=’COV’ (data set TYPE=COV), or the
within-class corrected sums of squares and crossproducts from the observations with

–TYPE–=’CSSCP’ (data set TYPE=CSSCP).

When the data set does not include any observations with–TYPE–=’CORR’ (data
set TYPE=CORR),–TYPE–=’COV’ (data set TYPE=COV), or–TYPE–=’CSSCP’
(data set TYPE=CSSCP) for each class, PROC STEPDISC reads the pooled
within-class information from the data set. In this case, the STEPDISC
procedure reads the pooled within-class correlations from the observations
with –TYPE–=’PCORR’, the pooled within-class standard deviations from
the observations with–TYPE–=’PSTD’ (data set TYPE=CORR), the pooled
within-class covariances from the observations with–TYPE–=’PCOV’ (data
set TYPE=COV), or the pooled within-class corrected SSCP matrix from the
observations with–TYPE–=’PSSCP’ (data set TYPE=CSSCP).

When the input data set is TYPE=SSCP, the STEPDISC procedure reads the
number of observations for each class from the observations with–TYPE–=’N’,
the sum of weights of observations from the variable INTERCEPT in observa-
tions with –TYPE–=’SSCP’ and –NAME–=’INTERCEPT’, the variable sums
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from the variable=variablenamesin observations with–TYPE–=’SSCP’ and

–NAME–=’INTERCEPT’, and the uncorrected sums of squares and crossproducts
from the variable=variablenamesin observations with–TYPE–=’SSCP’ and

–NAME–=variablenames.

Computational Resources

In the following discussion, let

n = number of observations

c = number of class levels

v = number of variables in the VAR list

l = length of the CLASS variable

t = v + c− 1.

Memory Requirements

The amount of memory in bytes for temporary storage needed to process the data is

c(4v2 + 28v + 3l + 4c + 72) + 16v2 + 92v + 4t2 + 20t + 4l

Additional temporary storage of 72 bytes at each step is also required to store the
results.

Time Requirements

The following factors determine the time requirements of a stepwise discriminant
analysis.

• The time needed for reading the data and computing covariance matrices is
proportional tonv2. The STEPDISC procedure must also look up each class
level in the list. This is faster if the data are sorted by the CLASS variable. The
time for looking up class levels is proportional to a value ranging fromn to
n ln(c).

• The time needed for stepwise discriminant analysis is proportional to the num-
ber of steps required to select the set of variables in the discrimination model.
The number of steps required depends on the data set itself and the selection
method and criterion used in the procedure. Each forward or backward step
takes time proportional to(v + c)2.
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Displayed Output

The STEPDISC procedure displays the following output:

• Class Level Information, including the values of the classification variable, the
Frequency of each value, the Weight of each value, and the Proportion of each
value in the total sample

Optional output includes

• Within-Class SSCP Matrices for each group

• Pooled Within-Class SSCP Matrix

• Between-Class SSCP Matrix

• Total-Sample SSCP Matrix

• Within-Class Covariance Matrices for each group

• Pooled Within-Class Covariance Matrix

• Between-Class Covariance Matrix, equal to the between-class SSCP matrix
divided byn(c − 1)/c, wheren is the number of observations andc is the
number of classes

• Total-Sample Covariance Matrix

• Within-Class Correlation Coefficients andPr > |r| to test the hypothesis that
the within-class population correlation coefficients are zero

• Pooled Within-Class Correlation Coefficients andPr > |r| to test the hypoth-
esis that the partial population correlation coefficients are zero

• Between-Class Correlation Coefficients andPr > |r| to test the hypothesis that
the between-class population correlation coefficients are zero

• Total-Sample Correlation Coefficients andPr > |r| to test the hypothesis that
the total population correlation coefficients are zero

• descriptive Simple Statistics includingN (the number of observations), Sum,
Mean, Variance, and Standard Deviation for the total sample and within each
class

• Total-Sample Standardized Class Means, obtained by subtracting the grand
mean from each class mean and dividing by the total-sample standard devi-
ation

• Pooled Within-Class Standardized Class Means, obtained by subtracting the
grand mean from each class mean and dividing by the pooled within-class stan-
dard deviation

At each step, the following statistics are displayed:

• for each variable considered for entry or removal: Partial R-Square, the squared
(partial) correlation, theF statistic, andPr > F , the probability level, from a
one-way analysis of covariance
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• the minimum Tolerance for entering each variable. A variable is entered only
if its tolerance and the tolerances for all variables already in the model are
greater than the value specified in the SINGULAR= option. The tolerance for
the entering variable is1 − R2 from regressing the entering variable on the
other variables already in the model. The tolerance for a variable already in the
model is1 − R2 from regressing that variable on the entering variable and the
other variables already in the model. Withm variables already in the model,
for each entering variable,m + 1 multiple regressions are performed using
the entering variable and each of them variables already in the model as a
dependent variable. Thesem + 1 tolerances are computed for each entering
variable, and the minimum tolerance is displayed for each.

The tolerance is computed using the total-sample correlation matrix. It is cus-
tomary to compute tolerance using the pooled within-class correlation matrix
(Jennrich 1977), but it is possible for a variable with excellent discriminatory
power to have a high total-sample tolerance and a low pooled within-class tol-
erance. For example, PROC STEPDISC enters a variable that yields perfect
discrimination (that is, produces a canonical correlation of one), but a program
using pooled within-class tolerance does not.

• the variable Label, if any

• the name of the variable chosen

• the variables already selected or removed

• Wilks’ Lambda and the associatedF approximation with degrees of freedom
andPr < F , the associated probability level after the selected variable has
been entered or removed. Wilks’ lambda is the likelihood ratio statistic for
testing the hypothesis that the means of the classes on the selected variables
are equal in the population (see the “Multivariate Tests” section inChapter 2,
“Introduction to Regression Procedures.”) Lambda is close to zero if any two
groups are well separated.

• Pillai’s Trace and the associatedF approximation with degrees of freedom
andPr > F , the associated probability level after the selected variable has
been entered or removed. Pillai’s trace is a multivariate statistic for testing the
hypothesis that the means of the classes on the selected variables are equal in
the population (see the “Multivariate Tests” section inChapter 2).

• Average Squared Canonical Correlation (ASCC). The ASCC is Pillai’s trace
divided by the number of groups minus 1. The ASCC is close to 1 if all groups
are well separated and if all or most directions in the discriminant space show
good separation for at least two groups.

• Summary to give statistics associated with the variable chosen at each step.
The summary includes the following:

− Step number

− Variable Entered or Removed

− Number In, the number of variables in the model

− Partial R-Square

− theF Value for entering or removing the variable
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− Pr > F , the probability level for theF statistic

− Wilks’ Lambda

− Pr < Lambda based on theF approximation to Wilks’ Lambda

− Average Squared Canonical Correlation

− Pr > ASCC based on theF approximation to Pillai’s trace

− the variable Label, if any

ODS Table Names

PROC STEPDISC assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 67.2. ODS Tables Produced in PROC STEPDISC

ODS Table Name Description PROC STEPWISE Option
BCorr Between-class correlations BCORR
BCov Between-class covariances BCOV
BSSCP Between-class SSCP matrix BSSCP
Counts Number of observations, variables,

classes, df
default

CovDF DF for covariance matrices, not
printed

any *COV option

Levels Class level information default
Messages Entry/removal messages default
Multivariate Multivariate statistics default
PCorr Pooled within-class correlations PCORR
PCov Pooled within-class covariances PCOV
PSSCP Pooled within-class SSCP matrix PSSCP
PStdMeans Pooled standardized class means STDMEAN
SimpleStatistics Simple statistics SIMPLE
Steps Stepwise selection entry/removal default
Summary Stepwise selection summary default
TCorr Total-sample correlations TCORR
TCov Total-sample covariances TCOV
TSSCP Total-sample SSCP matrix TSSCP
TStdMeans Total standardized class means STDMEAN
Variables Variable lists default
WCorr Within-class correlations WCORR
WCov Within-class covariances WCOV
WSSCP Within-class SSCP matrices WSSCP
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Example

Example 67.1. Performing a Stepwise Discriminant Analysis

The iris data published by Fisher (1936) have been widely used for examples in dis-
criminant analysis and cluster analysis. The sepal length, sepal width, petal length,
and petal width are measured in millimeters on fifty iris specimens from each of three
species:Iris setosa, I. versicolor, andI. virginica.

proc format;
value specname

1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

data iris;
title ’Fisher (1936) Iris Data’;
input SepalLength SepalWidth PetalLength PetalWidth

Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’

SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

datalines;
50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
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49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;

A stepwise discriminant analysis is performed using stepwise selection.

In the PROC STEPDISC statement, the BSSCP and TSSCP options display the
between-class SSCP matrix and the total-sample corrected SSCP matrix. By default,
the significance level of anF test from an analysis of covariance is used as the se-
lection criterion. The variable under consideration is the dependent variable, and the
variables already chosen act as covariates. The following SAS statements produce
Output 67.1.1throughOutput 67.1.8:

proc stepdisc data=iris bsscp tsscp;
class Species;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

Output 67.1.1. Iris Data: Summary Information
Fisher (1936) Iris Data

The STEPDISC Procedure

The Method for Selecting Variables is STEPWISE

Observations 150 Variable(s) in the Analysis 4
Class Levels 3 Variable(s) will be Included 0

Significance Level to Enter 0.15
Significance Level to Stay 0.15

Class Level Information

Variable
Species Name Frequency Weight Proportion

Setosa Setosa 50 50.0000 0.333333
Versicolor Versicolor 50 50.0000 0.333333
Virginica Virginica 50 50.0000 0.333333
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Output 67.1.2. Iris Data: Between-Class and Total-Sample SSCP Matrices
Fisher (1936) Iris Data

The STEPDISC Procedure

Between-Class SSCP Matrix

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length in mm. 6321.21333 -1995.26667 16524.84000 7127.93333
SepalWidth Sepal Width in mm. -1995.26667 1134.49333 -5723.96000 -2293.26667
PetalLength Petal Length in mm. 16524.84000 -5723.96000 43710.28000 18677.40000
PetalWidth Petal Width in mm. 7127.93333 -2293.26667 18677.40000 8041.33333

Total-Sample SSCP Matrix

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length in mm. 10216.83333 -632.26667 18987.30000 7692.43333
SepalWidth Sepal Width in mm. -632.26667 2830.69333 -4911.88000 -1812.42667
PetalLength Petal Length in mm. 18987.30000 -4911.88000 46432.54000 19304.58000
PetalWidth Petal Width in mm. 7692.43333 -1812.42667 19304.58000 8656.99333

In Step 1, the tolerance is 1.0 for each variable under consideration because no vari-
ables have yet entered the model. VariablePetalLength is selected because itsF
statistic, 1180.161, is the largest among all variables.

Output 67.1.3. Iris Data: Stepwise Selection Step 1
Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 1

Statistics for Entry, DF = 2, 147

Variable Label R-Square F Value Pr > F Tolerance

SepalLength Sepal Length in mm. 0.6187 119.26 <.0001 1.0000
SepalWidth Sepal Width in mm. 0.4008 49.16 <.0001 1.0000
PetalLength Petal Length in mm. 0.9414 1180.16 <.0001 1.0000
PetalWidth Petal Width in mm. 0.9289 960.01 <.0001 1.0000

Variable PetalLength will be entered.

Variable(s) that have been Entered

PetalLength

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.058628 1180.16 2 147 <.0001
Pillai’s Trace 0.941372 1180.16 2 147 <.0001
Average Squared Canonical Correlation 0.470686

In Step 2, with variablePetalLength already in the model,PetalLength is tested
for removal before selecting a new variable for entry. SincePetalLength meets the
criterion to stay, it is used as a covariate in the analysis of covariance for variable se-
lection. VariableSepalWidth is selected because itsF statistic, 43.035, is the largest
among all variables not in the model and its associated tolerance, 0.8164, meets the
criterion to enter. The process is repeated in Steps 3 and 4. VariablePetalWidth is
entered in Step 3, and variableSepalLength is entered in Step 4.
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Output 67.1.4. Iris Data: Stepwise Selection Step 2
Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 2

Statistics for Removal, DF = 2, 147

Variable Label R-Square F Value Pr > F

PetalLength Petal Length in mm. 0.9414 1180.16 <.0001

No variables can be removed.

Statistics for Entry, DF = 2, 146

Partial
Variable Label R-Square F Value Pr > F Tolerance

SepalLength Sepal Length in mm. 0.3198 34.32 <.0001 0.2400
SepalWidth Sepal Width in mm. 0.3709 43.04 <.0001 0.8164
PetalWidth Petal Width in mm. 0.2533 24.77 <.0001 0.0729

Variable SepalWidth will be entered.

Variable(s) that have been Entered

SepalWidth PetalLength

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.036884 307.10 4 292 <.0001
Pillai’s Trace 1.119908 93.53 4 294 <.0001
Average Squared Canonical Correlation 0.559954
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Output 67.1.5. Iris Data: Stepwise Selection Step 3
Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 3

Statistics for Removal, DF = 2, 146

Partial
Variable Label R-Square F Value Pr > F

SepalWidth Sepal Width in mm. 0.3709 43.04 <.0001
PetalLength Petal Length in mm. 0.9384 1112.95 <.0001

No variables can be removed.

Statistics for Entry, DF = 2, 145

Partial
Variable Label R-Square F Value Pr > F Tolerance

SepalLength Sepal Length in mm. 0.1447 12.27 <.0001 0.1323
PetalWidth Petal Width in mm. 0.3229 34.57 <.0001 0.0662

Variable PetalWidth will be entered.

Variable(s) that have been Entered

SepalWidth PetalLength PetalWidth

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.024976 257.50 6 290 <.0001
Pillai’s Trace 1.189914 71.49 6 292 <.0001
Average Squared Canonical Correlation 0.594957
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Output 67.1.6. Iris Data: Stepwise Selection Step 4
Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 4

Statistics for Removal, DF = 2, 145

Partial
Variable Label R-Square F Value Pr > F

SepalWidth Sepal Width in mm. 0.4295 54.58 <.0001
PetalLength Petal Length in mm. 0.3482 38.72 <.0001
PetalWidth Petal Width in mm. 0.3229 34.57 <.0001

No variables can be removed.

Statistics for Entry, DF = 2, 144

Partial
Variable Label R-Square F Value Pr > F Tolerance

SepalLength Sepal Length in mm. 0.0615 4.72 0.0103 0.0320

Variable SepalLength will be entered.

All variables have been entered.

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.023439 199.15 8 288 <.0001
Pillai’s Trace 1.191899 53.47 8 290 <.0001
Average Squared Canonical Correlation 0.595949

Since no more variables can be added to or removed from the model, the procedure
stops at Step 5 and displays a summary of the selection process.

Output 67.1.7. Iris Data: Stepwise Selection Step 5
Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 5

Statistics for Removal, DF = 2, 144

Partial
Variable Label R-Square F Value Pr > F

SepalLength Sepal Length in mm. 0.0615 4.72 0.0103
SepalWidth Sepal Width in mm. 0.2335 21.94 <.0001
PetalLength Petal Length in mm. 0.3308 35.59 <.0001
PetalWidth Petal Width in mm. 0.2570 24.90 <.0001

No variables can be removed.

No further steps are possible.
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Output 67.1.8. Iris Data: Stepwise Selection Summary
Fisher (1936) Iris Data

The STEPDISC Procedure

Stepwise Selection Summary

Average
Squared

Number Partial Wilks’ Pr < Canonical Pr >
Step In Entered Removed Label R-Square F Value Pr > F Lambda Lambda Correlation ASCC

1 1 PetalLength Petal Length in mm. 0.9414 1180.16 <.0001 0.05862828 <.0001 0.47068586 <.0001
2 2 SepalWidth Sepal Width in mm. 0.3709 43.04 <.0001 0.03688411 <.0001 0.55995394 <.0001
3 3 PetalWidth Petal Width in mm. 0.3229 34.57 <.0001 0.02497554 <.0001 0.59495691 <.0001
4 4 SepalLength Sepal Length in mm. 0.0615 4.72 0.0103 0.02343863 <.0001 0.59594941 <.0001
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Chapter 68
The SURVEYFREQ Procedure
Overview

The SURVEYFREQ procedure produces one-way ton-way frequency and crosstab-
ulation tables from sample survey data. These tables include estimates of population
totals and proportions, and the corresponding standard errors. PROC SURVEYFREQ
computes the variance estimates based on the sample design used to obtain the survey
data. The design can be a complex multistage survey design with stratification, clus-
tering, and unequal weighting. PROC SURVEYFREQ also provides design-based
tests of independence and association between variables.

PROC SURVEYFREQ uses the Taylor expansion method to estimate sampling er-
rors of estimators based on complex sample designs. This method is appropriate for
all designs where the first-stage sample is selected with replacement, or where the
first-stage sampling fraction is small, as it often is in practice. The Taylor expansion
method obtains a linear approximation for the estimator and then uses the variance es-
timate for this approximation to estimate the variance of the estimate itself (Woodruff
1971, Fuller 1975). When there are clusters or primary sampling units (PSUs) in the
sample design, the procedure estimates variance from the variation among PSUs.
When the design is stratified, the procedure combines stratum variance estimates to
compute the overall variance estimate.

Getting Started

The following example shows how you can use PROC SURVEYFREQ to analyze
sample survey data. The example uses data from a customer satisfaction survey for a
student information system (SIS), a software product that provides modules for stu-
dent registration, class scheduling, attendance, grade reporting, and other functions.

The software company conducted a survey of school personnel who use the SIS.
A probability sample of SIS users was selected from the study population, which in-
cluded SIS users at middle schools and high schools in the three-state area of Georgia,
South Carolina, and North Carolina. The sample design for this survey was a two-
stage stratified design. A first-stage sample of schools was selected from the list of
schools using the SIS in the three-state area. The list of schools, or the first-stage
sampling frame, was stratified by state and by customer status (whether the school
was a new user of the system, or a renewal user). Within the first-stage strata, schools
were selected with probability proportional to size and with replacement, where the
size measure was school enrollment. From each sample school, five staff members
were randomly selected to complete the SIS satisfaction questionnaire. These staff
members included three teachers, and two administrators or guidance staff members.
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The SAS data setSIS–Survey contains the survey results, as well as the sample
design information needed to analyze the data. This data set includes an observation
for each school staff member responding to the survey. The variableResponse
contains the staff member’s response on overall satisfaction with the system.

The variableState contains the school’s state, and the variableNewUser contains
the school’s customer status (’New Customer’ or ’Renewal Customer’). These two
variables determine the first stage strata from which schools were selected. The vari-
ableSchool contains the school identification code and identifies the first-stage sam-
pling units, or clusters. The variableSamplingWeight contains the overall sampling
weight for each respondent. Overall sampling weights were computed from the se-
lection probabilities at each stage of sampling and were adjusted for nonresponse.

Other variables in the data setSIS–Survey includeSchoolType andDepartment.
The variableSchoolType identifies the school as a high school or a middle school.
The variableDepartment identifies the staff member as a teacher, or an administrator
or guidance department member.

The following PROC SURVEYFREQ statements request a one-way table for the vari-
ableResponse.

title ’School Information System Survey’;
proc surveyfreq data=SIS_Survey;

tables Response;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The PROC SURVEYFREQ statement invokes the procedure and identifies the input
data set to be analyzed. The TABLES statement requests a one-way table for the vari-
ableResponse. The table request syntax for PROC SURVEYFREQ is very similar
to the PROC FREQ table request syntax. This example shows a request for a sin-
gle one-way table, but you can also request two-way tables or multiway tables. As
in PROC FREQ, you can request more than one table in the same TABLES state-
ment, and you can use multiple TABLES statements in the same invocation of PROC
SURVEYFREQ.

The STRATA, CLUSTER, and WEIGHT statements provide sample design informa-
tion to the procedure, so that the analysis is done according to the sample design used
for the survey, and the estimates apply to the study population. The STRATA state-
ment names the variablesState andNewUser, which identify the first-stage strata.
Note that the design for this example also includes stratification at the second stage
of selection (by type of school personnel), but you specify only the first-stage strata
for PROC SURVEYFREQ. The CLUSTER statement identifiesSchool as the clus-
ter or first-stage sampling unit. The WEIGHT statement names the sampling weight
variable.
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Figure 68.1andFigure 68.2display the output produced by PROC SURVEYFREQ,
which includes the Data Summary table and the one-way Table ofResponse. The
Data Summary table is produced by default unless you specify the NOSUMMARY
option. This table shows there are are 6 strata, 370 clusters or schools, and 1850
observations or respondents in theSIS–Survey data set. The sum of the sampling
weights is approximately 39,000, which estimates the total number of school person-
nel using the SIS in the study area.

School Information System Survey

The SURVEYFREQ Procedure

Data Summary

Number of Strata 6
Number of Clusters 370
Number of Observations 1850
Sum of Weights 38899.6482

Figure 68.1. SIS–Survey Data Summary

Figure 68.2displays the one-way table forResponse, which provides estimates of
the population total (weighted frequency) and the population percentage for each
category, or level, ofResponse. The response level ’Very Unsatisfied’ has a fre-
quency of 304, which means that 304 sample respondents fall into this category. It
is estimated that 17.17% of all school personnel in the study population fall into this
category, and the standard error of this estimate is 1.29%. Note that the estimates
apply to the population of all SIS users in the study area, as opposed to describing
only the sample of 1850 respondents. The estimate of the total number of school
personnel ’Very Unsatisfied’ is 6,678, with a standard deviation of 502. The standard
errors computed by PROC SURVEYFREQ are based on the multistage stratified de-
sign used for the survey. This differs from some of the traditional analysis procedures,
which assume the design is simple random sampling from an infinite population.

School Information System Survey

Table of Response

Weighted Std Dev of Std Err of
Response Frequency Frequency Wgt Freq Percent Percent

------------------------------------------------------------------------------
Very Unsatisfied 304 6678 501.61039 17.1676 1.2872

Unsatisfied 326 6907 495.94101 17.7564 1.2712
Neutral 581 12291 617.20147 31.5965 1.5795

Satisfied 455 9309 572.27868 23.9311 1.4761
Very Satisfied 184 3714 370.66577 9.5483 0.9523

Total 1850 38900 129.85268 100.000
------------------------------------------------------------------------------

Figure 68.2. One-Way Table of Response
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The following PROC SURVEYFREQ statements request confidence limits for the
percentage estimates and a chi-square goodness-of-fit test for the one-way table of
Response.

proc surveyfreq data=SIS_Survey nosummary;
tables Response / cl nowt chisq;
Strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The NOSUMMARY option in the PROC statement suppresses the Data Summary
table. In the TABLES statement, the CL option requests confidence limits for the per-
centages in the one-way table. The NOWT option suppresses display of the weighted
frequencies and their standard deviations. The CHISQ option requests a Rao-Scott
chi-square goodness-of-fit test.

Figure 68.3shows the one-way table ofResponse, which includes confidence limits
for the percentages. The 95% confidence limits for the percentage of users that are
’Very Unsatisfied’ are 14.64% and 19.70%. To change theα level of the confidence
limits, which equals 5% by default, you can use the ALPHA= option. As for the other
estimates and standard errors produced by PROC SURVEYFREQ, these confidence
limit computations take into account the complex sample design used for the survey,
and the results apply to the entire study population.

School Information System Survey

The SURVEYFREQ Procedure

Table of Response

Std Err of 95% Confidence Limits
Response Frequency Percent Percent for Percent

--------------------------------------------------------------------------------
Very Unsatisfied 304 17.1676 1.2872 14.6364 19.6989

Unsatisfied 326 17.7564 1.2712 15.2566 20.2562
Neutral 581 31.5965 1.5795 28.4904 34.7026

Satisfied 455 23.9311 1.4761 21.0285 26.8338
Very Satisfied 184 9.5483 0.9523 7.6756 11.4210

Total 1850 100.000
--------------------------------------------------------------------------------

Figure 68.3. Confidence Limits for Response Percentages
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Figure 68.4shows the chi-square goodness-of-fit results for the table ofResponse.
The null hypothesis for this test is equal proportions for the levels of the one-way
table. (To test a null hypothesis of specified proportions instead of equal proportions,
you can use the TESTP= option to specify null hypothesis proportions.)

The chi-square test invoked by the CHISQ option is the Rao-Scott design-adjusted
chi-square test, which takes the survey design into account and provides inferences
for the entire study population. To produce the Rao-Scott chi-square statistic, PROC
SURVEYFREQ first computes the usual Pearson chi-square statistic based on the
weighted frequencies, and then adjusts this value with a design correction. AnF
approximation is also provided. For the table ofResponse, theF value is 632.85
with a p-value < .0001, which leads to rejection of the null hypothesis of equal
proportions for all response levels.

Table of Response

Rao-Scott Chi-Square Test

Pearson Chi-Square 5294.7773
Design Correction 2.0916

Rao-Scott Chi-Square 2531.3980
DF 4
Pr > ChiSq <.0001

F Value 632.8495
Num DF 4
Den DF 1456
Pr > F <.0001

Sample Size = 1850

Figure 68.4. Chi-Square Goodness-of-Fit Test for Response

Continuing to analyze theSIS–Survey data, the following PROC SURVEYFREQ
statements request a two-way table for the variablesSchoolType by Response.

proc surveyfreq data=SIS_Survey nosummary;
tables SchoolType * Response;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The STRATA, CLUSTER and WEIGHT statements do not change from the one-way
table example, since the survey design and the input data set are the same. These
SURVEYFREQ statements request a different table, but specify the same sample
design information.
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Figure 68.5shows the two-way table produced. The first variable named in the two-
way table request,SchoolType, is referred to as therow variable, and the second
variable named,Response, is referred to as thecolumn variable. Two-way tables
display all column variable levels for each row variable level. So this two-way table
lists all levels of the column variableResponse for each level of the row variable
SchoolType, ’Middle School’ and ’High School’. AlsoSchoolType = ’Total’ shows
the distribution ofResponse overall for both types of schools. AndResponse =
’Total’ provides totals over all levels of response, for each type of school and overall.
To suppress these totals, you can use the NOTOTAL option.

By default, without any other TABLES statement options, a two-way table displays
the frequency, weighted frequency and its standard deviation, and percentage and its
standard error for each table cell, or combination of row and column variable levels.
But there are several options available to customize your table display by adding more
information or suppressing some of the default information.

School Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response

Weighted Std Dev of Std Err of
SchoolType Response Frequency Frequency Wgt Freq Percent Percent

----------------------------------------------------------------------------------------------------
Middle School Very Unsatisfied 116 2496 351.43834 6.4155 0.9030

Unsatisfied 109 2389 321.97957 6.1427 0.8283
Neutral 234 4856 504.20553 12.4847 1.2953

Satisfied 197 4064 443.71188 10.4467 1.1417
Very Satisfied 94 1952 302.17144 5.0193 0.7758

Total 750 15758 1000 40.5089 2.5691
----------------------------------------------------------------------------------------------------

High School Very Unsatisfied 188 4183 431.30589 10.7521 1.1076
Unsatisfied 217 4518 446.31768 11.6137 1.1439

Neutral 347 7434 574.17175 19.1119 1.4726
Satisfied 258 5245 498.03221 13.4845 1.2823

Very Satisfied 90 1762 255.67158 4.5290 0.6579

Total 1100 23142 1003 59.4911 2.5691
----------------------------------------------------------------------------------------------------

Total Very Unsatisfied 304 6678 501.61039 17.1676 1.2872
Unsatisfied 326 6907 495.94101 17.7564 1.2712

Neutral 581 12291 617.20147 31.5965 1.5795
Satisfied 455 9309 572.27868 23.9311 1.4761

Very Satisfied 184 3714 370.66577 9.5483 0.9523

Total 1850 38900 129.85268 100.000
----------------------------------------------------------------------------------------------------

Figure 68.5. Two-Way Table of SchoolType by Response
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The following PROC SURVEYFREQ statements request a two-way table of
SchoolType by Response with row percentages, and also request a chi-square test
for association between the two variables.

proc surveyfreq data=SIS_Survey nosummary;
tables SchoolType * Response / row nowt chisq;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The ROW option in the TABLES statement requests row percentages, which dis-
play the distribution ofResponse as a percentage of each level of the row variable
SchoolType. The NOWT option suppresses display of the weighted frequencies and
their standard deviations. The CHISQ option requests a Rao-Scott chi-square test of
association betweenSchoolType andResponse.

Figure 68.6displays the two-way table produced. For middle schools, it is estimated
that 25.79% of school personnel are satisfied with the school information system, and
12.39% are very satisfied. For high schools, these estimates are 22.67% and 7.61%,
respectively.

School Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response

Std Err of Row Std Err of
SchoolType Response Frequency Percent Percent Percent Row Percent

--------------------------------------------------------------------------------------------------
Middle School Very Unsatisfied 116 6.4155 0.9030 15.8373 1.9920

Unsatisfied 109 6.1427 0.8283 15.1638 1.8140
Neutral 234 12.4847 1.2953 30.8196 2.5173

Satisfied 197 10.4467 1.1417 25.7886 2.2947
Very Satisfied 94 5.0193 0.7758 12.3907 1.7449

Total 750 40.5089 2.5691 100.000
--------------------------------------------------------------------------------------------------

High School Very Unsatisfied 188 10.7521 1.1076 18.0735 1.6881
Unsatisfied 217 11.6137 1.1439 19.5218 1.7280

Neutral 347 19.1119 1.4726 32.1255 2.0490
Satisfied 258 13.4845 1.2823 22.6663 1.9240

Very Satisfied 90 4.5290 0.6579 7.6128 1.0557

Total 1100 59.4911 2.5691 100.000
--------------------------------------------------------------------------------------------------

Total Very Unsatisfied 304 17.1676 1.2872
Unsatisfied 326 17.7564 1.2712

Neutral 581 31.5965 1.5795
Satisfied 455 23.9311 1.4761

Very Satisfied 184 9.5483 0.9523

Total 1850 100.000
--------------------------------------------------------------------------------------------------

Figure 68.6. Two-Way Table with Row Percentages
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Figure 68.7displays the chi-square test results. The Rao-Scott chi-square statistic
equals 190.19, and the correspondingF value is 47.55 with ap-value< .0001. This
indicates a significant association between school type (middle school or high school)
and satisfaction with the student information system.

Table of SchoolType by Response

Rao-Scott Chi-Square Test

Pearson Chi-Square 394.9453
Design Correction 2.0766

Rao-Scott Chi-Square 190.1879
DF 4
Pr > ChiSq <.0001

F Value 47.5470
Num DF 4
Den DF 1456
Pr > F <.0001

Sample Size = 1850

Figure 68.7. Chi-Square Test of No Association

Syntax

The following statements are available in PROC SURVEYFREQ.

PROC SURVEYFREQ < options > ;
BY variables ;
CLUSTER variables ;
STRATA variables < / option > ;
TABLES requests < / options > ;
WEIGHT variable ;

The PROC SURVEYFREQ statement invokes the procedure, identifies the data set
to be analyzed, and provides sample design information. The PROC SURVEYFREQ
statement is required.

The TABLES statement specifies frequency or crosstabulation tables and requests
tests and statistics for those tables. The STRATA statement lists the variables that
form the strata in a stratified sample design. The CLUSTER statement specifies
cluster identification variables in a clustered sample design. The WEIGHT state-
ment names the sampling weight variable. You can use a BY statement with PROC
SURVEYFREQ to obtain separate analyses for groups defined by the BY variables.

All statements can appear multiple times except the PROC SURVEYFREQ statement
and the WEIGHT statement, which can appear only once.
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The rest of this section gives detailed syntax information for the BY, CLUSTER,
STRATA, TABLES, and WEIGHT statements in alphabetical order after the descrip-
tion of the PROC SURVEYFREQ statement.

PROC SURVEYFREQ Statement

PROC SURVEYFREQ < options > ;

The PROC SURVEYFREQ statement invokes the procedure. In this statement, you
identify the data set to be analyzed and specify sample design information. The
DATA= option names the input data set to be analyzed. If your analysis includes
a finite population correction factor, you can input either the sampling rate or the
population total using the RATE= or TOTAL= option. If your design is stratified,
with different sampling rates or totals for different strata, then you can input these
stratum rates or totals in a SAS data set containing the stratification variables.

You can specify the following options in the PROC SURVEYFREQ statement:

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC SURVEYFREQ. If you omit the
DATA= option, the procedure uses the most recently created SAS data set.

MISSING
requests that the procedure treat missing values as a valid category for all categori-
cal variables, which includeTABLES variables,STRATA variables, andCLUSTER
variables. For more information, see the section“Missing Values”on page 4205.

NOSUMMARY
suppresses the display of the Data Summary table, which PROC SURVEYFREQ
produces by default. For a description of this table, see the section“Data and Sample
Design Summary Table”on page 4225.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which the values of the frequency and crosstabulation table
variables are to be reported. The following table shows how PROC SURVEYFREQ
interprets values of the ORDER= option:

DATA orders values according to their order in the input data set.

FORMATTED orders values by their formatted values. This order is operating-
environment dependent. By default, the order is ascending.

FREQ orders values by descending frequency count. The frequency count
of a variable value is its (nonweighted) frequency of occurrence or
sample size, and not its weighted frequency.

INTERNAL orders values by their unformatted values, which yields the same
order that the SORT procedure does. This order is operating-
environment dependent.

By default, ORDER=INTERNAL.
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PAGE
displays only one table per page. Otherwise, PROC SURVEYFREQ displays multi-
ple tables per page as space permits.

RATE=value | SAS-data-set
R=value | SAS-data-set

specifies the sampling rate as a nonnegativevalue, or identifies an input data set that
gives the stratum sampling rates in a variable named–RATE– . The procedure uses
this information to compute a finite population correction for variance estimation. If
your sample design has multiple stages, you should specify thefirst-stage sampling
rate, which is the ratio of the number of PSUs selected to the total number of PSUs
in the population.

For a nonstratified sample design, or for a stratified sample design with the same
sampling rate in all strata, you should specify a nonnegativevalue for the RATE=
option. If your design is stratified with different sampling rates in the strata, then you
should name a SAS data set that contains the stratification variables and the sampling
rates. See the section“Population Totals and Sampling Rates”on page 4204 for more
details.

The sampling ratevalue must be a nonnegative number. You can specifyvalue as a
number between 0 and 1. Or you can specifyvalue in percentage form as a num-
ber between 1 and 100, and PROC SURVEYFREQ will convert that number to a
proportion. The procedure treats the value 1 as 100%, and not the percentage form
1%.

If you do not specify theTOTAL= option or the RATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.

TOTAL=value | SAS-data-set
N=value | SAS-data-set

specifies the total number of primary sampling units (PSUs) in the study population as
a positivevalue, or identifies an input data set that gives the stratum population totals
in a variable named–TOTAL– . The procedure uses this information to compute a
finite population correction for variance estimation.

For a nonstratified sample design, or for a stratified sample design with the same
population total in all strata, you should specify a positivevalue for the TOTAL=
option. If your sample design is stratified with different population totals in the strata,
then you should name a SAS data set that contains the stratification variables and the
population totals. See the section“Population Totals and Sampling Rates”on page
4204 for more details.

If you do not specify the TOTAL= option or theRATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.
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BY Statement

BY variables ;

You can specify a BY statement with PROC SURVEYFREQ to obtain separate anal-
yses on observations in groups defined by the BY variables. Thevariablesare one or
more variables in the input data set.

Note that using a BY statement provides completely separate analyses of the BY
groups. It does not provide a statistically valid subpopulation or domain analysis, the
difference being that in domain analysis the total number of units in the subpopula-
tion is not known with certainty. You should include the domain variable(s) in your
TABLES request to obtain domain analysis. See the section“Domain Analysis”on
page 4205 for more details.

If you specify more than one BY statement, the procedure uses only the last BY
statement and ignores any previous BY statements.

When a BY statement appears, the procedure expects the input data set to be sorted
in order of the BY variables. If your input data set is not sorted in ascending order,
use one of the following alternatives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FREQ procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLUSTER Statement

CLUSTER variables ;

The CLUSTER statement names variables that identify the first-stage clusters, or
PSUs, in a clustered sample design. The combinations of categories of CLUSTER
variables define the clusters in the sample. If there is aSTRATA statement, clusters
are nested within strata.

If your sample design has clustering at multiple stages, you should specify only the
first-stage clusters or primary sampling units (PSUs) in the CLUSTER statement. See
the section“Specifying the Sample Design”on page 4203 for more information.

The CLUSTERvariablesare one or more variables in the DATA= input data set.
These variables can either be character or numeric, but the procedure treats them as
categorical variables. The formatted values of the CLUSTER variables determine the
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CLUSTER variable levels. Thus, you can use formats to group values into levels.
Refer to the discussion of the FORMAT procedure in theSAS Procedures Guideand
to the discussions of the FORMAT statement and SAS formats inSAS Language
Reference: Dictionary.

You can use multiple CLUSTER statements to specify CLUSTER variables. The
procedure uses variables from all CLUSTER statements to create clusters.

STRATA Statement

STRATA variables < / option > ;

The STRATA statement names variables that form the strata in a stratified sample
design. The combinations of categories of STRATA variables define the strata in the
sample, where strata are nonoverlapping subgroups that were sampled independently.

If your sample design has stratification at multiple stages, you should identify only the
first-stage strata in the STRATA statement. See the section“Specifying the Sample
Design”on page 4203 for more information.

The STRATAvariablesare one or more variables in the DATA= input data set. These
variables can be either character or numeric, but the procedure treats them as categor-
ical. The formatted values of the STRATA variables determine the STRATA variable
levels. Thus, you can use formats to group values into levels. Refer to the discussion
of the FORMAT procedure in theSAS Procedures Guideand to the discussions of the
FORMAT statement and SAS formats inSAS Language Reference: Dictionary.

You can specify the following option in the STRATA statement after a slash (/):

LIST
displays a “Stratum Information” table, which lists all strata together with the corre-
sponding values of the STRATA variables. This table provides the number of obser-
vations and number of clusters for each stratum, as well as the sampling fraction if
you specify theRATE= or theTOTAL= option. See the section“Stratum Information
Table”on page 4225 for more information.

TABLES Statement

TABLES requests < / options > ;

The TABLES statement requests one-way ton-way frequency and crosstabulation
tables and statistics for those tables.

If you omit the TABLES statement, PROC SURVEYFREQ generates one-way
frequency tables for all data set variables that are not listed in the other statements.

The following argument is required in the TABLES statement.

requests
specify the frequency and crosstabulation tables to produce. Arequestis composed
of one variable name or several variable names separated by asterisks. To request a
one-way frequency table, use a single variable. To request a two-way crosstabulation
table, use an asterisk between two variables. To request a multiway table (ann-way
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table, wheren>2), separate the desired variables with asterisks. The unique values of
these variables form the rows, columns, and layers of the table.

For two-way tables to multiway tables, the values of the last variable form the
crosstabulation table columns, while the values of the next-to-last variable form the
rows. Each level (or combination of levels) of the other variables forms one layer.
PROC SURVEYFREQ produces a separate crosstabulation table for each layer. For
example, a specification ofA*B*C*D in a TABLES statement producesk tables,
wherek is the number of different combinations of levels forA andB. Each table
lists the levels forD (columns) within each level ofC (rows).

You can use multiple TABLES statements in the PROC SURVEYFREQ step. You
can also specify any number of table requests in a single TABLES statement. To
specify multiple table requests quickly, use a grouping syntax by placing parentheses
around several variables and joining other variables or variable combinations. For
example, the following statements illustrate grouping syntax:

Table 68.1. Grouping Syntax
Request Equivalent to
tablesA*(B C); tablesA*B A*C;
tables (A B)*(C D); tablesA*C B*C A*D B*D;
tables (A B C)*D; tablesA*D B*D C*D;
tablesA – – C; tablesA B C;
tables (A – – C)*D; tablesA*D B*D C*D;

The TABLES statement variables are one or more variables from the DATA= input
data set. These variables can be either character or numeric, but the procedure treats
them as categorical variables. PROC SURVEYFREQ uses the formatted values of
the TABLES variable to determine the categorical variable levels. So if you assign a
format to a variable with a FORMAT statement, PROC SURVEYFREQ formats the
values before dividing observations into the levels of a frequency or crosstabulation
table. Refer to the discussion of the FORMAT procedure in theSAS Procedures
Guideand to the discussions of the FORMAT statement and SAS formats inSAS
Language Reference: Dictionary.

The frequency or crosstabulation table lists the values of both character and numeric
variables in ascending order based on internal (unformatted) variable values unless
you change the order with theORDER=option. To list the values in ascending or-
der by formatted value, use ORDER=FORMATTED in the PROC SURVEYFREQ
statement.

Without Options
If you request a frequency or crosstabulation table without specifying options, PROC
SURVEYFREQ produces the following for each table level or cell:

• frequency (sample size)

• weighted frequency (estimated total)

• standard error of weighted frequency

• percentage (estimated proportion)

• standard error of percentage
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The table displays weighted frequencies if your analysis includes a WEIGHT state-
ment, or if you specify the WTFREQ option in the TABLES statement. The table also
displays the number of observations with missing values. See the section“One-Way
Frequency Tables”on page 4226 and the section“Crosstabulation Tables”on page
4227 for more information.

Options

The following table lists the options available with the TABLES statement.
Descriptions follow in alphabetical order.

Table 68.2. TABLES Statement Options

Option Description
Control Statistical Analysis
ALPHA= sets the level for confidence limits
CHISQ requests Rao-Scott chi-square test
CHISQ1 requests Rao-Scott modified chi-square test
DDF= specifies denominator DF for Wald chi-square tests
LRCHISQ requests Rao-Scott likelihood ratio test
LRCHISQ1 requests Rao-Scott modified likelihood ratio test
TESTP= specifies null proportions for one-way chi-square tests
WCHISQ requests Wald chi-square test
WLLCHISQ requests Wald log-linear chi-square test
Control Additional Table Information
CL displays confidence limits for percents
CLWT displays confidence limits for weighted frequencies
COL displays column percents and standard errors
CV displays coefficients of variation for percents
CVWT displays coefficients of variation for weighted frequencies
DEFF displays design effects for percents
EXPECTED displays expected weighted frequencies for two-way tables
ROW displays row percents and standard errors
VAR displays variances for percents
VARWT displays variances for weighted frequencies
WTFREQ displays weighted frequencies and standard errors

when there is no WEIGHT statement
Control Displayed Output
NOFREQ suppresses display of frequency counts
NOPERCENT suppresses display of percents
NOPRINT suppresses display of tables but displays statistical tests
NOSPARSE suppresses display of zero rows and columns in two-way tables
NOSTD suppresses display of standard errors for all estimates
NOTOTAL suppresses display of row and column totals
NOWT suppresses display of weighted frequencies
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You can specify the following options in a TABLES statement:

ALPHA= α
sets the level for confidence limits. The value of the ALPHA= option must be be-
tween 0 and 1, and the default is 0.05. A confidence level ofα produces100(1−α)%
confidence limits. The default of ALPHA=0.05 produces 95% confidence limits.

You request confidence limits for percentages with theCL option, and you request
confidence limits for weighted frequencies with theCLWT option. See the section
“Confidence Limits”on page 4213 for more information.

CHISQ
requests the Rao-Scott chi-square test. This test applies a design effect correction
to the Pearson chi-square statistic computed from the weighted frequencies. See the
section“Rao-Scott Chi-Square Test”on page 4216 for more information.

By default for one-way tables, the CHISQ option provides a design-based
goodness-of-fit test for equal proportions. To compute the test for other null
hypothesis proportions, specify the null proportions with theTESTP=option.

The CHISQ option uses proportion estimates to compute the design effect correction.
To use null hypothesis proportions instead, specify theCHISQ1option.

CHISQ1
requests the Rao-Scott modified chi-square test. This test applies a design effect cor-
rection to the Pearson chi-square statistic computed from the weighted frequencies,
and bases the design effect correction on null hypothesis proportions. See the section
“Rao-Scott Chi-Square Test”on page 4216 for more information. To compute the de-
sign effect correction from proportion estimates instead of null proportions, specify
theCHISQoption.

By default for one-way tables, the CHISQ option provides a design-based
goodness-of-fit test for equal proportions. To compute the test for other null
hypothesis proportions, specify the null proportions with theTESTP=option.

CL
requests confidence limits for the percentages, or proportion estimates, in the
crosstabulation table. PROC SURVEYFREQ determines the confidence coefficient
from theALPHA= option, which by default equals 0.05 and produces 95% confi-
dence limits. See the section“Confidence Limits”on page 4213 for more informa-
tion.

CLWT
requests confidence limits for the weighted frequencies, or estimated totals, in the
crosstabulation table. PROC SURVEYFREQ determines the confidence coefficient
from theALPHA= option, which by default equals 0.05 and produces 95% confi-
dence limits. See the section“Confidence Limits”on page 4213 for more informa-
tion.
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COL
displays the column percentage, or estimated proportion of the column total, for each
cell in a two-way table. The COL option also displays the standard errors of the
column percentages. See the section“Row and Column Proportions”on page 4212
for more information. This option has no effect for one-way tables.

CV
displays the coefficient of variation for each percentage, or proportion estimate, in
the crosstabulation table. See the section“Coefficient of Variation”on page 4214 for
more information.

CVWT
displays the coefficient of variation for each weighted frequency, or estimated total,
in the crosstabulation table. See the section“Coefficient of Variation”on page 4214
for more information.

DDF=df
specifies the denominator degrees of freedom for theF-statistics used in the Wald
chi-square tests. By default, the denominator degrees of freedom is the number of
clusters minus the number of strata. See the section“Wald Chi-Square Test”on page
4221 and the section“Wald Log-Linear Chi-Square Test”on page 4223 for more
information. You request the Wald chi-square test with theWCHISQoption, and you
request the Wald log-linear chi-square test with theWLLCHISQ option.

DEFF
displays the design effect for each overall proportion estimate in the crosstabulation
table. See the section“Design Effect”on page 4215 for more information.

EXPECTED
displays expected weighted frequencies for the table cells in a two-way table. The
expected frequencies are computed under the null hypothesis that the row and column
variables are independent. See the section“Expected Weighted Frequency”on page
4215 for more information. This option has no effect for one-way tables.

LRCHISQ
requests the Rao-Scott likelihood ratio chi-square test. This test applies a design ef-
fect correction to the likelihood ratio chi-square statistic computed from the weighted
frequencies. See the section“Rao-Scott Likelihood Ratio Chi-Square Test”on page
4219 for more information.

By default for one-way tables, the LRCHISQ option provides a design-based test for
equal proportions. To compute the test for other null hypothesis proportions, specify
the null proportions with theTESTP=option.

The LRCHISQ option uses proportion estimates to compute the design effect correc-
tion. To use null hypothesis proportions instead, specify theLRCHISQ1option.

LRCHISQ1
requests the Rao-Scott modified likelihood ratio chi-square test. This test applies
a design effect correction to the likelihood ratio chi-square statistic computed from
the weighted frequencies, and bases the design effect correction on null hypothesis
proportions. See the section“Rao-Scott Likelihood Ratio Chi-Square Test”on page
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4219 for more information. To compute the design effect correction from proportion
estimates instead of null proportions, specify theLRCHISQoption.

By default for one-way tables, the LRCHISQ option provides a design-based test for
equal proportions. To compute the test for other null hypothesis proportions, specify
the null proportions with theTESTP=option.

NOFREQ
suppresses the display of cell frequencies in the crosstabulation table. The NOFREQ
option also suppresses the display of row, column, and overall table frequencies.

NOPERCENT
suppresses the display of cell percentages in the crosstabulation table. The
NOPERCENT option also suppresses the display of standard errors of the percent-
ages.

NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all re-
quested statistical tests. Note that this option disables the Output Delivery System
(ODS) for the suppressed tables. For more information, seeChapter 14, “Using the
Output Delivery System.”

NOSPARSE
suppresses the display of variable levels with zero frequency in two-way tables. By
default, the procedure displays all levels of the column variable within each level
of the row variable, including any column variable levels with zero frequency for
that row. For multiway tables, the procedure displays all levels of the row variable
for each layer of the table by default, including any row variable levels with zero
frequency for the layer. Also by default, the procedure displays all variable levels
that occur in the input data set, including those levels with no observations actually
used in the analysis due to missing or nonpositive weights or missing values. See the
section“Missing Values”on page 4205 for details.

NOSTD
suppresses the display of all standard errors in the crosstabulation table.

NOTOTAL
suppresses the display of row totals, column totals, and overall totals in the crosstab-
ulation table.

NOWT
suppresses the display of weighted frequencies in the crosstabulation table. The
NOWT option also suppresses the display of standard errors of the weighted fre-
quencies.

ROW
displays the row percentage, or estimated proportion of the row total, for each cell
in a two-way table. The ROW option also displays the standard errors of the row
percentages. See the section“Row and Column Proportions”on page 4212 for more
information. This option has no effect for one-way tables.
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TESTP=(values)
specifies null hypothesis proportions, or test percentages, for one-way chi-square
tests. You can separatevalueswith blanks or commas. Specifyvaluesin probability
form as numbers between 0 and 1, where the proportions sum to 1. Or specifyval-
uesin percentage form as numbers between 0 and 100, where the percentages sum
to 100. PROC SURVEYFREQ treats the value 1 as the percentage form 1%. The
number of TESTP= values must equal the number of variable levels in the one-way
table. List these values in the order in which the corresponding variable levels appear
in the output.

When you specify the TESTP= option, PROC SURVEYFREQ displays the specified
test percentages in the one-way frequency table. The TESTP= option has no effect
for two-way tables.

PROC SURVEYFREQ uses the TESTP= values for all one-way chi-square tests you
request in the TABLES statement. The available one-way chi-square tests include
the Rao-Scott (Pearson) chi-square test and the Rao-Scott likelihood ratio chi-square
test and their modified versions, requested by optionsCHISQ, CHISQ1, LRCHISQ,
andLRCHISQ1. See the section“Rao-Scott Chi-Square Test”on page 4216 and the
section“Rao-Scott Likelihood Ratio Chi-Square Test”on page 4219 for more details.

VAR
displays the variance estimate for each percentage in the crosstabulation table. See
the section“Proportions”on page 4210 for details.

VARWT
displays the variance estimate for each weighted frequency, or estimated total, in the
crosstabulation table. See the section“Totals” on page 4209 for details.

WCHISQ
requests the Wald chi-square test. See the section“Wald Chi-Square Test”on
page 4221 for more information. By default, the denominator degrees of freedom
for the Wald testF-statistic is the number of clusters minus the number of strata.
Alternatively, you can specify the denominator degrees of freedom with theDDF=
option.

WLLCHISQ
requests the Wald log-linear chi-square test. See the section“Wald Log-Linear Chi-
Square Test”on page 4223 for more information. By default, the denominator de-
grees of freedom for the Wald testF-statistic is the number of clusters minus the
number of strata. Alternatively, you can specify the denominator degrees of freedom
with theDDF= option.

WTFREQ
displays the weighted frequencies and their standard errors when you do not specify
a WEIGHT statement. PROC SURVEYFREQ displays the weighted frequencies
by default when the analysis includes a WEIGHT statement. Without a WEIGHT
statement, PROC SURVEYFREQ assigns all observations a weight of 1.
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WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This
variable must be numeric. If you do not specify a WEIGHT statement, PROC
SURVEYFREQ assigns all observations a weight of 1. Sampling weights must be
positive numbers. If an observation has a weight that is nonpositive or missing, then
the procedure omits that observation from the analysis. See the section“Missing
Values”on page 4205 for more information. If you specify more than one WEIGHT
statement, the procedure uses only the first WEIGHT statement and ignores the rest.

Details

Specifying the Sample Design

PROC SURVEYFREQ produces tables and statistics based on the sample design used
to obtain the survey data. The procedure uses the Taylor expansion method to esti-
mate sampling errors of estimators based on complex sample designs. See the section
“Statistical Computations”on page 4206 for details. This method is appropriate for
all designs where the first-stage sample is selected with replacement, or where the
first-stage sampling fraction is small, as it often is in practice.

PROC SURVEYFREQ can be used for single-stage designs or for multistage designs,
with or without stratification, and with or without unequal weighting. You provide
sample design information with theSTRATA, CLUSTER, andWEIGHT statements,
and with theRATE= or TOTAL= option in the PROC SURVEYFREQ statement.

When there are clusters, or PSUs, in the sample design, the procedure estimates vari-
ance from the variance among PSUs. For a multistage sample design, the variance
estimation method depends only on the first stage of the sample design. So, the
required input includes only first-stage cluster (PSU) and first-stage stratum identifi-
cation. You do not need to input design information about any additional stages of
sampling.

Stratification

If your sample design is stratified at the first stage of sampling, use theSTRATA
statement to name variables that form the strata. The combinations of categories of
STRATA variables define the strata in the sample, where strata are nonoverlapping
subgroups that were sampled independently. If your sample design has stratification
at multiple stages, you should identify only the first-stage strata in the STRATA state-
ment. If you do not specify a STRATA statement, PROC SURVEYFREQ assumes
there is no stratification at the first stage.

Clustering

If your sample design selects clusters at the first stage of sampling, use theCLUSTER
statement to name variables that identify the first-stage clusters, or primary sampling
units (PSUs). The combinations of categories of CLUSTER variables define the clus-
ters in the sample. If there is a STRATA statement, clusters are nested within strata.
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If your sample design has clustering at multiple stages, you should specify only the
first-stage clusters, or PSUs, in the CLUSTER statement. PROC SURVEYFREQ
assumes that each cluster defined by the CLUSTER statement variables represents
a PSU in the sample, and that each observation belongs to one PSU. If you do not
specify a CLUSTER statement, the procedure treats each observation as a PSU.

Weighting

If your sample design includes unequal weighting, use theWEIGHT statement to
name the variable that contains the sampling weights. If you do not specify a
WEIGHT statement, PROC SURVEYFREQ assigns all observations a weight of 1.
Sampling weights must be positive numbers. If an observation has a weight that is
nonpositive or missing, then the procedure omits that observation from the analysis.
See the section“Missing Values”on page 4205 for more information.

Population Totals and Sampling Rates

If your analysis needs to include a finite population correction (fpc), you can input ei-
ther the sampling rate or the population total using theRATE= option or theTOTAL=
option in the PROC SURVEYFREQ statement. (You cannot specify both of these
options in the same PROC SURVEYFREQ statement.) If you do not specify one of
these options, the procedure does not use thefpcwhen computing variance estimates.
For fairly small sampling fractions, it is appropriate to ignore this correction. Refer
to Cochran (1977) and Kish (1965).

If your design has multiple stages of selection and you are specifying the RATE=
option, you should input the first-stage sampling rate, which is the ratio of the number
of PSUs in the sample to the total number of PSUs in the study population. If you
are specifying the TOTAL= option for a multistage design, you should input the total
number of PSUs in the study population.

For a nonstratified sample design, or for a stratified sample design with the same sam-
pling rate or the same population total in all strata, you should use the RATE=value
option or the TOTAL=value option. If your sample design is stratified with dif-
ferent sampling rates or population totals in the strata, then you can use the
RATE=SAS-data-set option or the TOTAL=SAS-data-set option to name a SAS data
set that contains the stratum sampling rates or totals. This data set is called asec-
ondary data set, as opposed to theprimary data setthat you specify with the DATA=
option.

The secondary data set must contain all the stratification variables listed in the
STRATA statement and all the variables in the BY statement. Furthermore, the BY
groups must appear in the same order as in the primary data set. If there are for-
mats associated with the STRATA variables and the BY variables, then the formats
must be consistent in the primary and the secondary data sets. If you specify the
TOTAL=SAS-data-set option, the secondary data set must have a variable named

–TOTAL– that contains the stratum population totals. Alternatively, if you specify
the RATE=SAS-data-set option, the secondary data set must have a variable named

–RATE– that contains the stratum sampling rates. If the secondary data set contains
more than one observation for any one stratum, then the procedure uses the first value
of –TOTAL– or –RATE– for that stratum and ignores the rest.
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Thevalue in the RATE= option or the values of–RATE– in the secondary data set
must be nonnegative numbers. You can specifyvalue as a number between 0 and
1. Or you can specifyvalue in percentage form as a number between 1 and 100,
and PROC SURVEYFREQ will convert that number to a proportion. The procedure
treats the value 1 as 100%, and not the percentage form 1%.

If you specify the TOTAL=value option,value must not be less than the sample size.
If you provide stratum population totals in a secondary data set, these values must not
be less than the corresponding stratum sample sizes.

Domain Analysis

PROC SURVEYFREQ provides domain analysis through its multiway table capa-
bility. Domain Analysisrefers to the computation of statistics for subpopulations,
or domains, in addition to the computation of statistics for the entire study popu-
lation. Formation of these domains may be unrelated to the sample design, so the
domain sample sizes may actually be random variables. Domain analysis takes into
account this variability, using the entire sample when estimating variance for domain
estimates. This is also known as subgroup analysis, subpopulation analysis, or sub-
domain analysis. For more information on domain analysis, refer to Lohr (1999),
Cochran (1977), and Fuller et al. (1989).

To request domain analysis with PROC SURVEYFREQ, you should include the
domain variable(s) in your TABLES statement request. For example, specifying
DOMAIN * A * B in a TABLES statement produces separate two-way tables of
A by B for each level ofDOMAIN. If your domains are formed by more than one
variable, you can specifyDomainVariable–1 * DomainVariable–2 * A * B, for
example, to obtain two-way tables ofA by B for each domain formed by the different
combinations of levels forDomainVariable–1 andDomainVariable–2.

Including the domain variables in a TABLES statement request gives a different anal-
ysis from that obtained by using aBY statement, which provides completely separate
analyses of the BY groups. The BY statement can also be used to analyze the dataset
by subgroups, but it is critical to note that this willnotproduce a valid domain analy-
sis. The BY statement is only appropriate when the number of units in each subgroup
is known with certainty; when the subgroup sample size is a random variable, include
the domain variables in your TABLES statement request.

Missing Values

If an observation has a missing value or a nonpositive value for theWEIGHTvariable,
then PROC SURVEYFREQ excludes that observation from the analysis.

An observation is also excluded from the analysis if it has a missing value for any
STRATA or CLUSTER variable, unless you specify theMISSING option in the
PROC SURVEYFREQ statement. The MISSING option requests that the procedure
treat missing values as a valid category for all categorical variables, which include
strata variables, cluster variables, and classification or table variables.

Additionally, PROC SURVEYFREQ excludes an observation from a crosstabulation
table (and any associated analyses) if that observation has a missing value for any



4206 � Chapter 68. The SURVEYFREQ Procedure

of the table variables, unless you specify the MISSING option. When the procedure
excludes observations with missing values from a table, it displays the total frequency
of missing observations below that table. With the MISSING option, the procedure
treats the missing values as a valid category and includes them in calculations of
percentages and other statistics.

If all values in a stratum are excluded from the analysis of a table as missing values,
then that stratum is called anempty stratum. Empty strata are not counted in the total
number of strata for the table, which is used to determine the degrees of freedom for
confidence limits and tests. Similarly, empty clusters and missing observations are
not included in the total counts of clusters and observations used in the analysis of
the table.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS sum-
mary table that contains the number of (nonmissing) observations, strata, and clusters
that are included in the analysis of the requested table. When there are missing obser-
vations, empty strata, or empty clusters for the requested table, then these numbers in
the “Table Summary” differ from the total number of observations, strata, and clus-
ters that are present in the input data set and reported in the “Data Summary.” See
Example 68.3on page 4236 for more information on the “Table Summary.”

If you have missing values in your survey data for any reason (such as nonresponse),
this can compromise the quality of your survey results. An observation without miss-
ing values is called acomplete respondent, and an observation with missing values is
called anincomplete respondent. If the complete respondents are different from the
incomplete respondents with regard to a survey effect or outcome, then survey esti-
mates will be biased and will not accurately represent the survey population. There
are a variety of techniques in sample design and survey operations that can reduce
nonresponse. Once data collection is complete, you can use imputation to replace
missing values with acceptable values, and you can use sampling weight adjustments
to compensate for nonresponse. You should complete this data preparation and ad-
justment before you analyze your data with PROC SURVEYFREQ. Refer to Cochran
(1977), Kalton and Kaspyzyk (1986), and Brick and Kalton (1996) for more details.

Statistical Computations

The SURVEYFREQ procedure uses the Taylor series expansion method to estimate
standard errors of estimators of proportions for crosstabulation tables. For sample
survey data, the proportion estimator is a ratio estimator formed from estimators of
totals. For example, to estimate the proportion in a crosstabulation table cell, the
procedure uses the ratio of the estimator of the cell total frequency to the estima-
tor of the overall population total, where these totals are linear statistics computed
from the survey data. The Taylor series expansion method obtains a first-order lin-
ear approximation for the ratio estimator and then uses the variance estimate for this
approximation to estimate the variance of the estimate itself (Woodruff 1971, Fuller
1975).

When there are clusters, or PSUs, in the sample design, the procedure estimates vari-
ance from the variance among PSUs. When the design is stratified, the procedure
combines stratum variance estimates to compute the overall variance estimate. For a
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multistage sample design, the variance estimation method depends only on the first
stage of the sample design. So, the required input includes only first-stage cluster
(PSU) and first-stage stratum identification. You do not need to input design infor-
mation about any additional stages of sampling. This variance estimation method
assumes that the first-stage sampling fraction is small, or the first-stage sample is
drawn with replacement, as it often is in practice.

In addition to this required sample design information, you also need to specify the
sampling weights for a valid analysis, if the weights are not equal. Quite often in
complex surveys, respondents have unequal weights, which reflect unequal selection
probabilities and adjustments for nonresponse.

For more information on the analysis of sample survey data, refer to Lohr (1999),
S̈arndal, Swenson, and Wretman (1992), Lee, Forthoffer, and Lorimor (1989),
Cochran (1977), Kish (1965), and Hansen, Hurwitz, and Madow (1953).

Definitions and Notation

For a stratified clustered sample design, define the following:

h = 1, 2, . . . ,H is the stratum number, with a total ofH strata

i = 1, 2, . . . , nh is the cluster number within stratumh,

with a total ofnh sample clusters from stratumh

j = 1, 2, . . . ,mhi is the unit number within clusteri of stratumh,

with a total ofmhi sample units from clusteri of stratumh

n =
H∑

h=1

nh∑
i=1

mhi is the total number of observations in the sample

fh = first-stage sampling rate for stratumh

Whij = sampling weight of unitj in clusteri of stratumh

The sampling ratefh is the fraction of first-stage units (PSUs) selected for the sample.
You can specify the stratum sampling rates with theRATE= option. Or if you specify
population totals with theTOTAL= option, PROC SURVEYFREQ computesfh as
the ratio of stratum sample size to the stratum total, in terms of PSUs. See the section
“Population Totals and Sampling Rates”on page 4204 for details. If you do not
specify the RATE= option or the TOTAL= option, then the procedure assumes that
the stratum sampling ratesfh are negligible and does not use a finite population
correction when computing variances.

This notation is also applicable to other sample designs. For example, for a design
without stratification, you can letH = 1; for a sample design without clustering, you
can letmhi = 1 for everyh andi, replacing clusters with individual sampling units.



4208 � Chapter 68. The SURVEYFREQ Procedure

For a two-way table representing the crosstabulation of two variables, define the fol-
lowing, where there areR levels of the row variable andC levels of the column
variable:

r = 1, 2, . . . , R is the row number, with a total ofR rows

c = 1, 2, . . . , C is the column number, with a total ofC columns

Nrc = is the population total in rowr and columnc

Nr· =
C∑

c=1

Nrc is the total in rowr

N·c =
R∑

r=1

Nrc is the total in columnc

N =
R∑

r=1

C∑
c=1

Nrc is the overall total

Prc = Nrc / N is the population proportion in rowr and columnc

Pr. = Nr· / N is the proportion in rowr

P.c = N·c / N is the proportion in columnc

P r
rc = Nrc / Nr· is the row proportion for cell(r, c)

P c
rc = Nrc / N·c is the column proportion for cell(r, c)

For a specified observation (identified by stratum, cluster, and unit number within
the cluster), define the following to indicate whether or not that observation belongs
to cell (r, c), row r and columnc, of the two-way table, forr = 1, 2, . . . , R and
c = 1, 2, . . . , C:

δhij(r, c) =

{
1 if observation(hij) is in cell (r, c)

0 otherwise

Similarly, define the following functions to indicate the observation’s row classifica-
tion and the observation’s column classification.

δhij(r) =

{
1 if observation(hij) is in row r

0 otherwise

δhij(c) =

{
1 if observation(hij) is in columnc

0 otherwise
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Totals

PROC SURVEYFREQ estimates population frequency totals for the specified
crosstabulation tables, including totals for two-way table cells, rows, columns, and
overall totals. The procedure computes the estimate of the total frequency in table
cell (r, c) as the weighted frequency sum

N̂rc =
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(r, c) Whij

Similarly, PROC SURVEYFREQ computes estimates of the row totals, column to-
tals, and overall totals as

N̂r· =
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(r) Whij

N̂·c =
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(c) Whij

N̂ =
H∑

h=1

nh∑
i=1

mhi∑
j=1

Whij

The estimators of totals are linear sample statistics, and so their variances can be es-
timated directly, without the Taylor series approximation that is used for proportions.
PROC SURVEYFREQ estimates the variance of the total frequency in table cell(r, c)
as

V̂ar(N̂rc) =
H∑

h=1

V̂arh(N̂rc)

where ifnh > 1,

V̂arh(N̂rc) =
nh(1− fh)

nh − 1

nh∑
i=1

(n hi
rc − n̄ h

rc )2

n hi
rc =

mhi∑
j=1

δhij(r, c) Whij

n̄ h
rc =

nh∑
i=1

n hi
rc / nh

and ifnh = 1,

V̂arh(N̂rc) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H



4210 � Chapter 68. The SURVEYFREQ Procedure

The standard deviation of the total is computed as

Std(N̂rc) =
√

V̂ar(N̂rc)

The variances and standard deviations are computed in a similar manner for row
totals, column totals, and overall table totals.

Covariance of Totals

PROC SURVEYFREQ estimates the covariance between total frequency estimates
for table cells(r, c) and(a, b) as

Ĉov(N̂rc, N̂ab) =
H∑

h=1

(
nh(1− fh)

nh − 1

nh∑
i=1

(n hi
rc − n̄ h

rc ) (n hi
ab − n̄ h

ab )

)

The estimated covariance matrix of the table cell totalsN̂rc is anrc×rc matrixV̂(N̂),
which contains the pair-wise table cell covarianceŝCov(N̂rc, N̂ab), for r = 1, · · · , R;
c = 1, · · · , C; a = 1, · · · , R; andb = 1, · · · , C.

Proportions

PROC SURVEYFREQ computes the estimate of the proportion in table cell(r, c) as
the ratio of the estimated total for the table cell to the estimated overall total,

P̂rc = N̂rc / N̂

=
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(r, c) Whij /

H∑
h=1

nh∑
i=1

mhi∑
j=1

Whij

Using the Taylor series expansion method, PROC SURVEYFREQ estimates the vari-
ance of this proportion estimate as

V̂ar(P̂rc) =
H∑

h=1

V̂arh(P̂rc)

where ifnh > 1,

V̂arh(P̂rc) =
nh(1− fh)

nh − 1

nh∑
i=1

( e hi
rc − ē h

rc )2

e hi
rc =

mhi∑
j=1

( δhij(r, c)− P̂rc ) Whij

 / N̂

ē h
rc =

nh∑
i=1

e hi
rc / nh
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and ifnh = 1,

V̂arh(P̂rc) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

The standard error of the proportion is computed as

StdErr(P̂rc) =
√

V̂ar(P̂rc)

Similarly, the estimate of the proportion in rowr is

P̂r· = N̂rc / N̂

And its variance estimate is

V̂ar(P̂r·) =
H∑

h=1

V̂arh(P̂r·)

where ifnh > 1,

V̂arh(P̂r·) =
nh(1− fh)

nh − 1

nh∑
i=1

( e hi
r· − ē h

r· )2

e hi
r· =

mhi∑
j=1

( δhij(r)− P̂r· ) Whij

 / N̂

ē h
r· =

nh∑
i=1

e hi
r· / nh

and ifnh = 1,

V̂arh(P̂r·) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

The standard error of the proportion in rowr is computed as

StdErr(P̂r·) =
√

V̂ar(P̂r·)

Computations for the proportion in columnc are done in the same way.



4212 � Chapter 68. The SURVEYFREQ Procedure

Row and Column Proportions

PROC SURVEYFREQ computes the estimate of the row proportion for table cell
(r, c) as the ratio of the estimated total for the table cell to the estimated total for
row r,

P̂ r
rc = N̂rc / N̂r·

=
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(r, c) Whij /
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(r) Whij

Again using the Taylor series expansion method, PROC SURVEYFREQ estimates
the variance of this row proportion estimate as

V̂ar(P̂ r
rc) =

H∑
h=1

V̂arh(P̂rc)

where ifnh > 1,

V̂arh(P̂ r
rc) =

nh(1− fh)
nh − 1

nh∑
i=1

( g hi
rc − ḡ h

rc )2

g hi
rc =

mhi∑
j=1

( δhij(r, c)− P̂ r
rc δhij(r) ) Whij

 / N̂r·

ḡ h
rc =

nh∑
i=1

g hi
rc / nh

and ifnh = 1,

V̂arh(P̂ r
rc) =

{
missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

The standard error of the row proportion is computed as

StdErr(P̂ r
rc) =

√
V̂ar(P̂ r

rc)

Similarly, PROC SURVEYFREQ estimates the column proportion for table cell(r, c)
as the ratio of the estimated total for the table cell to the estimated total for columnc,

P̂ c
rc = N̂rc / N̂·c

=
H∑

h=1

nh∑
i=1

mhi∑
j=1

δhij(r, c) Whij /

H∑
h=1

nh∑
i=1

mhi∑
j=1

δhij(c) Whij
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The variance estimate for the column proportion is computed as described above for
the row proportion, but with

g hi
rc =

mhi∑
j=1

( δhij(r, c)− P̂ c
rc δhij(c) ) Whij

 / N̂·c

Confidence Limits

If you specify theCL option in the TABLES statement, PROC SURVEYFREQ com-
putes confidence limits for the proportions in the frequency and crosstabulation ta-
bles. The confidence coefficient is determined according to the value of theALPHA=
option, which by default equals 0.05 and produces 95% confidence limits.

For the proportion in table cell(r, c), the confidence limits are computed as

P̂rc ± tdf,α/2 · StdErr(P̂rc)

where P̂rc is the estimate of the proportion in table cell(r, c), StdErr(P̂rc) is the
standard error of the estimate, andtdf, α/2 is the 100(1 − α/2) percentile of the
t distribution withdf degrees of freedom calculated as described in the“Degrees
of Freedom”section on page 4214. The confidence limits for row proportions and
column proportions are computed similarly to the confidence limits for table cell
proportions.

If you specify theCLWT option in the TABLES statement, PROC SURVEYFREQ
computes confidence limits for the weighted frequencies, or totals, in the crosstabu-
lation tables.

For the total in table cell(r, c), the confidence limits are computed as

N̂rc ± tdf,α/2 · StdErr(N̂rc)

whereN̂rc is the estimate of the total frequency in table cell(r, c), StdErr(N̂rc) is
the standard error of the estimate, andtdf, α/2 is the100(1 − α/2) percentile of the
t distribution withdf degrees of freedom calculated as described in the“Degrees of
Freedom”section on page 4214. The confidence limits for row totals, column totals,
and the overall total are computed similarly to the confidence limits for table cell
totals.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS sum-
mary table that contains the number of (nonmissing) observations, strata, and clusters
that are included in the analysis of the requested table. When you request confidence
limits, this table also contains the degrees of freedomdf and the value oftdf, α/2

used to compute the confidence limits. SeeExample 68.3on page 4236 for more
information on the table summary.
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Degrees of Freedom

To compute confidence limits for proportions and totals, PROC SURVEYFREQ uses
the100(1−α/2) percentile from thet distribution withdf degrees of freedom. PROC
SURVEYFREQ calculates the degrees of freedom fort as the number of clusters
minus the number of strata. If there are no clusters, thendf equals the number of
observations minus the number of strata. If the design is not stratified, thendf equals
the number of clusters minus one. If missing values or missing weights are present in
the data, the number of strata, the number of observations, and the number of clusters
are counted based on the observations in nonempty strata. See the section“Missing
Values”on page 4205 for details.

For the WaldF statistics, PROC SURVEYFREQ also calculates the denominator de-
grees of freedom as the number of clusters minus the number of strata. Alternatively
you can specify the denominator degrees of freedom for these tests with theDDF=
option in the TABLES statement. See the section“Wald Chi-Square Test”on page
4221 and the section“Wald Log-Linear Chi-Square Test”on page 4223 for details.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS sum-
mary table that contains the number of (nonmissing) observations, strata, and clusters
that are included in the analysis of the requested table. When you request confidence
limits or chi-square tests, this table also contains the degrees of freedomdf . See
Example 68.3on page 4236 for more information on the table summary.

Coefficient of Variation

If you specify theCV option in the TABLES statement, PROC SURVEYFREQ com-
putes the coefficients of variation for the proportion estimates in the frequency and
crosstabulation tables. The coefficient of variation is the ratio of the standard error to
the estimate.

For the proportion in table cell(r, c), the coefficient of variation is computed as

CV(P̂rc) = StdErr(P̂rc) / P̂rc

whereP̂rc is the estimate of the proportion in table cell(r, c), and StdErr(P̂rc) is the
standard error of the estimate. The coefficients of variation for row proportions and
column proportions are computed similarly.

If you specify theCVWT option in the TABLES statement, PROC SURVEYFREQ
computes the coefficients of variation for the weighted frequencies, or estimated to-
tals, in the crosstabulation tables. For the total in table cell(r, c), the coefficient of
variation is computed as

CV(N̂rc) = StdErr(N̂rc) / N̂rc

whereN̂rc is the estimate of the total in table cell(r, c), and StdErr(N̂rc) is the
standard error of the estimate. The coefficients of variation for row totals, column
totals, and the overall total are computed similarly.
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Design Effect

If you specify theDEFF option in the TABLES statement, PROC SURVEYFREQ
computes design effects for the overall proportion estimates in the frequency and
crosstabulation tables. The design effect for an estimate is the ratio of the actual
variance (estimated based on the sample design) to the variance of a simple random
sample with the same number of observations. Refer to Lohr (1999) and Kish (1965).

The design effect for the proportion in table cell(r, c) is computed as

DEFF(P̂rc) = V̂ar(P̂rc) / V̂arSRS(P̂rc)

= V̂ar(P̂rc) /
{

( 1− f ) P̂rc ( 1− P̂rc ) / ( n− 1 )
}

whereP̂rc is the estimate of the proportion in table cell(r, c), V̂ar(P̂rc) is the variance
of the estimate,f is the overall sampling fraction, andn is the number of observations
in the sample.

PROC SURVEYFREQ determines the value off , the overall sampling fraction,
based on theRATE= and TOTAL= options. If you do not specify either of these
options, then PROC SURVEYFREQ assumes the value off is negligible and does
not use a finite population correction in the analysis, as described in the section
“Population Totals and Sampling Rates”on page 4204. If you specify RATE=value,
then PROC SURVEYFREQ uses this value for the overall sampling fractionf . If
you specify TOTAL=value, then PROC SURVEYFREQ computesf as the ratio of
the number of PSUs in the sample to the specified total.

If you specify stratum sampling rates with the RATE=SAS-data-setoption, then
PROC SURVEYFREQ computes stratum totals based on these stratum sampling
rates and the number of sample PSUs in each stratum. The procedure sums the
stratum totals to form the overall total, and computesf as the ratio of the number
of sample PSUs to the overall total. Alternatively, if you specify stratum totals with
the TOTAL=SAS-data-setoption, then PROC SURVEYFREQ sums these totals to
compute the overall total. The overall sampling fractionf is then computed as the
ratio of the number of sample PSUs to the overall total.

Expected Weighted Frequency

If you specify the EXPECTED option in the TABLES statement, PROC
SURVEYFREQ displays expected weighted frequencies for the table cells in
two-way tables. The expected weighted frequencies are computed under the null
hypothesis that the row and column variables are independent, as

Erc = N̂r· N̂·c / N̂

whereN̂r· is the estimated total for rowr, N̂·c is the estimated total for columnc, and
N̂ is the estimated overall total. Equivalently,

Erc = P̂r· P̂·c N̂
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These expected values are used in the design-based chi-square tests of independence,
as described in“Rao-Scott Chi-Square Test”and the section“Wald Chi-Square Test”
on page 4221.

Rao-Scott Chi-Square Test

The Rao-Scott chi-square test is a design-adjusted version of the Pearson chi-square
test, which involves differences between observed and expected frequencies. For
two-way tables, the null hypothesis for this test is no association between the row
and column variables. For one-way tables, the Rao-Scott chi-square tests the null
hypothesis of equal proportions, or you can specify null proportions for one-way
tables with theTESTP=option.

Two forms of the design correction are available for the Rao-Scott tests. One form
of the design correction uses the proportion estimates, and you request the corre-
sponding Rao-Scott chi-square test with theCHISQ option. The other form of the
design correction uses the null hypothesis proportions. You request this test, called
the Rao-Scott modified chi-square test, with theCHISQ1option.

Refer to Lohr (1999), Thomas, Singh, and Roberts (1996), and Rao and Scott (1981,
1984, 1987) for details on design-adjusted chi-square tests.

Two-Way Tables

The Rao-Scott chi-square statistic is computed from the Pearson chi-square statistic
and a design correction based on the design effects of the proportions. Under the
null hypothesis of no association between the row and column variables, this statis-
tic approximately follows a chi-square distribution with(R − 1)(C − 1) degrees of
freedom. AnF approximation is also given.

The Rao-Scott chi-square is computed as

QRS = QP / D

whereD is the design correction described in the“Design Correction for Two-Way
Tables”section on page 4217, andQP is the Pearson chi-square based on the esti-
mated totals.

QP =
∑

r

∑
c

(N̂rc − Erc)2 / Erc

whereN̂rc is the estimated total for table cell(r, c), andErc is the expected total for
cell (r, c) under the null hypothesis of no association,

Erc = N̂r· N̂·c / N̂

Under the null hypothesis of no association, the Rao-Scott chi-squareQRS approxi-
mately follows a chi-square distribution with(R− 1)(C − 1) degrees of freedom. A
better approximation may be obtained by theF statistic

F = QRS / (R− 1)(C − 1)
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which has anF distribution with(R − 1)(C − 1) and(R − 1)(C − 1)κ degrees of
freedom under the null hypothesis, whereκ equals the number of clusters minus the
number of strata, as described in the section“Degrees of Freedom”on page 4214.

Design Correction for Two-Way Tables

If you specify the CHISQ option, the design correction is computed from the esti-
mated proportions, as

D =
{∑

r

∑
c (1− P̂rc) DEFF(P̂rc)−

∑
r (1− P̂r·) DEFF(P̂r·)

−
∑

c (1− P̂·c) DEFF(P̂·c)
}

/ (R− 1)(C − 1)

where

DEFF(P̂rc) = V̂ar(P̂rc) / VarSRS(P̂rc)

= V̂ar(P̂rc) /
{

( 1− f ) P̂rc ( 1− P̂rc ) / (n− 1)
}

as described in the section“Design Effect”on page 4215.̂Prc is the estimate of the
proportion in table cell(r, c), V̂ar(P̂rc) is the variance of the estimate,f is the overall
sampling fraction, andn is the number of observations in the sample. DEFF(P̂r·), the
design effect for the estimate of the proportion in rowr, and DEFF(P̂·c), the design
effect for the estimate of the proportion in rowc, are computed similarly.

If you specify the CHISQ1 option for the Rao-Scott modified test, the design correc-
tion uses the null hypothesis cell proportions, computed as the product of the corre-
sponding estimated row and cell proportions.

D0 =
{∑

r

∑
c (1− P 0

rc) DEFF0(P̂rc)−
∑

r (1− P̂r·) DEFF(P̂r·)

−
∑

c (1− P̂·c) DEFF(P̂·c)
}

/ (R− 1)(C − 1)

where

P 0
rc = P̂r· · P̂·c

and

DEFF0(P̂rc) = V̂ar(P̂rc) / VarSRS(P 0
rc)

= V̂ar(P̂rc) /
{
( 1− f ) P 0

rc ( 1− P 0
rc ) / ( n− 1 )

}
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One-Way Tables

For one-way tables, the Rao-Scott chi-square statistic provides a design-based
goodness-of-fit test for equal proportions. Or if you specify null proportions with
theTESTP=option, PROC SURVEYFREQ computes the goodness-of-fit test for the
specified proportions. Under the null hypothesis, the Rao-Scott chi-square statistic
approximately follows a chi-square distribution with(C − 1) degrees of freedom for
a table withC levels. PROC SURVEYFREQ also computes anF statistic that may
provide a better approximation.

The Rao-Scott chi-square is computed as

QRS = QP / D

whereD is the design correction described in the section“Design Correction for One-
Way Tables”on page 4219, andQP is the Pearson chi-square based on the estimated
totals,

QP =
∑

c

(N̂c − Ec)2 / Ec

whereEc is the expected total for levelc under the null hypothesis. For the null
hypothesis of equal proportions,

Ec = N̂ / C

For specified null proportions,

Ec = N̂ · P 0
c

whereP 0
c is the null proportion for levelc.

Under the null hypothesis, the one-way Rao-Scott chi-squareQRS approximately
follows a chi-square distribution with(C − 1) degrees of freedom. A better approxi-
mation may be obtained by theF statistic

F = QRS / (C − 1)

which has anF distribution with(C−1) and(C−1)κ degrees of freedom under the
null hypothesis, whereκ equals the number of clusters minus the number of strata, as
described in the section“Degrees of Freedom”on page 4214.
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Design Correction for One-Way Tables

If you specify the CHISQ option, the design correction is computed from the esti-
mated proportions, as

D =
∑

c

(1− P̂c) DEFF(P̂c) / (C − 1)

where

DEFF(P̂c) = V̂ar(P̂c) /
{

( 1− f ) P̂c ( 1− P̂c ) / (n− 1)
}

P̂c is the proportion estimate for table levelc, V̂ar(P̂c) is the variance of the estimate,
f is the overall sampling fraction, andn is the number of observations in the sample.

If you specify the CHISQ1 option for the Rao-Scott modified test, the design correc-
tion uses the null hypothesis proportions – either equal proportions for all levels, or
the proportions you specify with the TESTP= option.

D0 =
∑

c

(1− P 0
c ) DEFF0(P̂c) / (C − 1)

where

DEFF0(P̂c) = V̂ar(P̂c) /
{
( 1− f )P 0

c ( 1− P 0
c ) / ( n− 1 )

}
and P 0

c = 1/C for equal proportions, orP 0
c takes the value specified with the

TESTP= option.

Rao-Scott Likelihood Ratio Chi-Square Test

The Rao-Scott likelihood ratio chi-square test is a design-adjusted version of the like-
lihood ratio test, which involves ratios between observed and expected frequencies
and tests the null hypothesis of no association between the row and column variables
in a two-way table. For a one-way tables the null hypothesis is equal proportions for
the table levels, or you can specify other null proportions with theTESTP=option.
Refer to Lohr (1999), Thomas, Singh, and Roberts (1996), and Rao and Scott (1981,
1984, 1987).

Two forms of the design correction are available for the Rao-Scott tests. One form of
the design correction uses the proportion estimates, and you request the correspond-
ing Rao-Scott likelihood ratio test with theLRCHISQoption. The other form of the
design correction uses the null hypothesis proportions. You request this test, called
the Rao-Scott modified likelihood ratio test, with theLRCHISQ1option.
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Two-Way Tables

The Rao-Scott likelihood ratio statistic is computed from the likelihood ratio chi-
square statistic and a design correction based on the design effects of the proportions.
Under the null hypothesis of no association, this statistic approximately follows a chi-
square distribution with(R− 1)(C − 1) degrees of freedom. AnF approximation is
also given.

The Rao-Scott likelihood ratio chi-square is computed as

G2
RS = G2 / D

whereG2 is the likelihood ratio chi-square based on the estimated totals, andD is
the design correction.

G2 = 2
∑

r

∑
c

N̂rc ln
(
N̂rc / Erc

)
whereN̂rc is the estimated total for table cell(r, c), andErc is the expected total for
cell (r, c) under the null hypothesis of no association,

Erc = N̂r· N̂·c / N̂

The Rao-Scott likelihood ratio chi-square uses the same design correctionD as
the Rao-Scott (Pearson) chi-square uses, which is described in the section“Design
Correction for Two-Way Tables”on page 4217. If you specify theLRCHISQoption,
the design correction is computed from the estimated proportions. If you specify the
LRCHISQ1option for the Rao-Scott modified test, the design correction uses the null
hypothesis cell proportions, computed as the product of the corresponding estimated
row and column proportions.

Under the null hypothesis of no association, the Rao-Scott likelihood ratio chi-square
G2

RS approximately follows a chi-square distribution with(R − 1)(C − 1) degrees
of freedom. A better approximation may be obtained by theF statistic

F = G2
RS / (R− 1)(C − 1)

which has anF distribution with(R − 1)(C − 1) and(R − 1)(C − 1)κ degrees of
freedom under the null hypothesis, whereκ equals the number of clusters minus the
number of strata, as described in the section“Degrees of Freedom”on page 4214.

One-Way Tables

For one-way tables, the Rao-Scott likelihood ratio chi-square statistic provides a
design-based goodness-of-fit test for equal proportions. Or if you specify null propor-
tions with theTESTP=option, PROC SURVEYFREQ computes the goodness-of-fit
test for the specified proportions. Under the null hypothesis, the Rao-Scott likelihood
ratio statistic approximately follows a chi-square distribution with(C − 1) degrees
of freedom for a table withC levels. AmF approximation is also given.

The Rao-Scott likelihood ratio chi-square is computed as

G2
RS = G2 / D
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whereG2 is the likelihood ratio chi-square based on the estimated totals, andD is
the design correction.

G2 = 2
∑

c

N̂c ln
(
N̂c / Ec

)
whereEc is the expected total for levelc under the null hypothesis. For the null
hypothesis of equal proportions,

Ec = N̂ / C

For specified null proportionsP 0
c ,

Ec = N̂ · P 0
c

The Rao-Scott likelihood ratio chi-square uses the same design correctionD as
the Rao-Scott (Pearson) chi-square uses, which is described in the section“Design
Correction for One-Way Tables”on page 4219. If you specify the LRCHISQ option,
the design correction is computed from the estimated proportions. If you specify the
LRCHISQ1 option for the Rao-Scott modified test, the design correction uses the null
hypothesis cell proportions.

Under the null hypothesis of no association, the Rao-Scott likelihood ratio chi-square
G2

RS approximately follows a chi-square distribution with(C − 1) degrees of free-
dom. A better approximation may be obtained by theF statistic

F = G2
RS / (C − 1)

which has anF distribution with(C−1) and(C−1)κ degrees of freedom under the
null hypothesis, whereκ equals the number of clusters minus the number of strata, as
described in the section“Degrees of Freedom”on page 4214.

Wald Chi-Square Test

PROC SURVEYFREQ provides two Wald chi-square tests for independence of the
row and column variables in two-way tables: a Wald chi-square test based on the
difference between observed and expected weighted cell frequencies, and a Wald
log-linear chi-square test based on the log odds ratio. These statistics test for inde-
pendence of the row and column variables in two-way tables, taking into account
the complex survey design. Refer to Bedrick (1983), Koch, Freeman, and Freeman
(1975), and Wald (1943) for information on Wald statistics and their applications to
categorical data analysis.

For these two tests, PROC SURVEYFREQ computes the generalized Wald chi-square
statistic, the corresponding WaldF statistic, and also an adjusted WaldF statistic for
tables larger than2 × 2. Under the null hypothesis of independence, the Wald chi-
square statistic approximately follows a chi-square distribution with(R− 1)(C − 1)
degrees of freedom for very large samples. However, it has been shown that this
test may perform poorly in terms of actual significance level and power, especially
for tables with a large number of cells or for samples with a relatively small number
of clusters. Refer to Thomas and Rao (1984 and 1985) and Lohr (1999) for more
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information. Refer to Felligi (1980) and Hidiroglou, Fuller, and Hickman (1980) for
information on the adjusted WaldF statistic. Thomas and Rao (1984) found that
the adjusted WaldF statistic provides a more stable test than the chi-square statistic,
although its power may be low when the number of sample clusters is not large. Refer
also to Korn and Graubard (1990) and Thomas, Singh, and Roberts (1996).

If you specify theWCHISQoption in the TABLES statement, PROC SURVEYFREQ
computes a Wald test for independence in the two-way table based on the differences
between the observed (weighted) cell frequencies and the expected frequencies.

Under the null hypothesis of independence of the row and column variables, the ex-
pected cell frequencies are computed as

Erc = N̂r· N̂·c / N̂

whereN̂r· is the estimated total for rowr, N̂·c is the estimated total for columnc,
andN̂ is the estimated overall total, as described in the section“Expected Weighted
Frequency”on page 4215. And the null hypothesis that the population weighted
frequencies equal the expected frequencies is

H0: Yrc = Nrc − Erc = 0

for all r = 1, . . . (R − 1) andc = 1, . . . (C − 1) This null hypothesis can be stated
equivalently in terms of cell proportions, with the expected cell proportions computed
as the products of the marginal row and column proportions.

The generalized Wald chi-square statistic is computed as

QWald = Ŷ′ (H V̂(N̂) H′)−1 Ŷ

whereŶ is the(R − 1)(C − 1) array of the differences between the observed and
expected weighted frequencies(N̂rc−Erc), and(H V̂(N̂) H′) estimates the variance
of Ŷ.

V̂(N̂) is the covariance matrix of the estimatesN̂rc, and its computation is described
in the section“Covariance of Totals”on page 4210.

H is an(R−1)(C−1) byRC matrix containing the partial derivatives of the elements
of Ŷ with respect to the elements of̂N. The elements ofH are computed as follows,
wherea denotes a row different from rowr, andb denotes a column different from
columnc.

∂Ŷrc/∂N̂rc = 1 −
(
N̂r· + N̂·c − N̂·c N̂r· / N̂

)
/ N̂

∂Ŷrc/∂N̂ac = −
(
N̂r· − N̂r· N̂·c / N̂

)
/ N̂

∂Ŷrc/∂N̂rb = −
(
N̂·c − N̂r· N̂·c / N̂

)
/ N̂

∂Ŷrc/∂Ŷab = N̂r· N̂·c / N̂ 2
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Under the null hypothesis of independence, the statisticQWald approximately follows
a chi-square distribution with(R − 1)(C − 1) degrees of freedom for very large
samples.

PROC SURVEYFREQ computes the WaldF statistic as

FWald = QWald / (R− 1)(C − 1)

Under the null hypothesis of independence,FWald approximately follows anF dis-
tribution with (R − 1)(C − 1) numerator degrees of freedom. By default, PROC
SURVEYFREQ computes the denominator degrees of freedom as the number of clus-
ters minus the number of strata, as described in the section“Degrees of Freedom”on
page 4214. Alternatively, you can specify the denominator degrees of freedom with
theDDF= option in the TABLES statement.

For tables larger than2× 2, PROC SURVEYFREQ also computes the adjusted Wald
F statistic

FAdj Wald =
s− k + 1

k s
QWald

wherek = (R−1)(C−1), ands is the number of clusters minus the number of strata.
Alternatively, you can specify the value ofs with theDDF= option in the TABLES
statement. Note that for2 × 2 tables,k = (R − 1)(C − 1) = 1, so the the adjusted
Wald F statistic equals the (unadjusted) WaldF statistic, with the same numerator
and denominator degrees of freedom.

Under the null hypothesis,FAdj Wald approximately follows anF distribution withk
numerator degrees of freedom and(s− k + 1) denominator degrees of freedom.

Wald Log-Linear Chi-Square Test

If you specify the WLLCHISQ option in the TABLES statement, PROC
SURVEYFREQ computes a Wald test for independence based on the log odds
ratios. See the section“Wald Chi-Square Test”on page 4221 for more information
on Wald tests.

For a two-way table ofR rows andC columns, the Wald log-linear test is based on
the(R− 1)(C − 1) array of

Ŷrc = logN̂rc − logN̂rC − logN̂Rc + logN̂RC

whereN̂rc is the estimated total for table cell(r, c). The null hypothesis of indepen-
dence between the row and column variables isH0:Yrc = 0 for all r = 1, . . . (R−1)
andc = 1, . . . (C − 1). This null hypothesis can be stated equivalently in terms of
cell proportions.
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The generalized Wald log-linear chi-square statistic is computed as

QWald LL = Ŷ′ V̂(Ŷ)−1 Ŷ

whereŶ is the(R− 1)(C − 1) array of theŶrc, andV̂(Ŷ) estimates the variance of
Ŷ.

V̂(Ŷ) = A D−1 V̂ (N̂) D−1 A′

whereV̂(N̂) is the covariance matrix of the estimatesN̂rc, as described in the section
“Covariance of Totals”on page 4210,D is a diagonal matrix with the estimated totals
N̂rc on the diagonal, andA is the(R−1)(C−1) by RC×RC linear contrast matrix.

Under the null hypothesis of independence, the statisticQWald LL approximately fol-
lows a chi-square distribution with(R− 1)(C− 1) degrees of freedom for very large
samples.

PROC SURVEYFREQ computes the Wald log-linearF statistic as

FWald LL = QWald LL / (R− 1)(C − 1)

Under the null hypothesis of independence,FWald LL approximately follows anF
distribution with(R − 1)(C − 1) numerator degrees of freedom. By default, PROC
SURVEYFREQ computes the denominator degrees of freedom as the number of clus-
ters minus the number of strata, as described in the section“Degrees of Freedom”on
page 4214. Alternatively, you can specify the denominator degrees of freedom with
theDDF= option in the TABLES statement.

For tables larger than2× 2, PROC SURVEYFREQ also computes the adjusted Wald
log-linearF statistic

FAdj Wald LL =
s− k + 1

k s
QWald LL

wherek = (R−1)(C−1), ands is the number of clusters minus the number of strata.
Alternatively, you can specify the value ofs with theDDF= option in the TABLES
statement. Note that for2 × 2 tables,k = (R − 1)(C − 1) = 1, so the the adjusted
Wald F statistic equals the (unadjusted) WaldF statistic, with the same numerator
and denominator degrees of freedom.

Under the null hypothesis,FAdj Wald LL approximately follows anF distribution with
k numerator degrees of freedom and(s− k + 1) denominator degrees of freedom.
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Displayed Output

Data and Sample Design Summary Table

The “Data Summary” table provides information on the input data set and the
sample design. PROC SURVEYFREQ displays this table unless you specify the
NOSUMMARY option in the PROC SURVEYFREQ statement.

The “Data Summary” table displays the total number of valid observations. To be
consideredvalid, an observation must have a nonmissing, positive WEIGHT value
if you specify aWEIGHT statement. If you do not specify theMISSING option, a
valid observation must also have nonmissing values for all STRATA and CLUSTER
variables. The number of valid observations may differ from the the number of non-
missing observations for an individual analysis variable, which the procedure displays
in the frequency or crosstabulation tables. See the section“Missing Values”on page
4205 for more information.

PROC SURVEYFREQ displays the following information in the “Data Summary”
table:

• Number of Strata, if you specify aSTRATA statement

• Number of Clusters, if you specify aCLUSTERstatement

• Number of Observations, which is the total number of valid observations

• Sum of Weights, which is the sum over all valid observations, if you specify a
WEIGHT statement

Stratum Information Table

If you specify theLIST option in theSTRATA statement, PROC SURVEYFREQ
displays a “Stratum Information” table. This table provides the following information
for each stratum.

• Stratum Index, which is a sequential stratum identification number

• STRATA variable(s), which lists the levels of STRATA variables for the stra-
tum

• Number of Observations, which is the number of valid observations in the stra-
tum

• Population Total for the stratum, if you specify theTOTAL= option

• Sampling Rate for the stratum, if you specify theTOTAL= option or the
RATE= option. If you specify the TOTAL= option, the sampling rate is based
on the number of valid observations in the stratum.

• Number of Clusters, which is the number of clusters in the stratum, if you
specify aCLUSTERstatement
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One-Way Frequency Tables

PROC SURVEYFREQ displays one-way frequency tables for all one-way table re-
quests in theTABLES statements, unless you specify theNOPRINT option in the
TABLES statement. A one-way table shows the sample frequency distribution of a
single variable, and provides estimates for its population distribution in terms of to-
tals and proportions. For each level of the variable, PROC SURVEYFREQ displays
the following information in the one-way table:

• Frequency count, giving the number of sample observations for the level

• Weighted Frequency total, estimating the total population frequency for the
level

• Standard Deviation of Weighted Frequency

• Percent, estimating the population proportion for the level

• Standard Error of Percent

The one-way table displays weighted frequencies if your analysis includes a
WEIGHT statement, or if you specify theWTFREQoption in the TABLES state-
ment.

The one-way table also displays the Frequency Missing, or the number of observa-
tions with missing values.

You can suppress the frequency counts by specifying theNOFREQoption in the
TABLES statement. Also, theNOWT option suppresses the weighted frequencies
and their standard deviations. TheNOPERCENToption suppresses the percentages
and their standard errors. TheNOSTD option suppresses the standard errors of the
percentages and the standard deviations of the weighted frequencies. TheNOTOTAL
option suppresses the total row of the one-way table.

PROC SURVEYFREQ optionally displays the following information for a one-way
table:

• Variance of Weighted Frequency, if you specify theVARWT option

• Confidence Limits for Weighted Frequency, if you specify theCLWT option

• Coefficient of Variation for Weighted Frequency, if you specify theCVWT
option

• Test Percent, if you specify theTESTP=option

• Variance of Percent, if you specify theVAR option

• Confidence Limits for Percent, if you specify theCL option

• Coefficient of Variation for Percent, if you specify theCV option

• Design Effect for Percent, if you specify theDEFFoption
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Crosstabulation Tables

PROC SURVEYFREQ displays all multiway table requests in theTABLES state-
ments, unless you specify theNOPRINToption in the TABLES statement. For two-
way to multiway crosstabulation tables, the values of the last variable in the table
request form the table columns. The values of the next-to-last variable form the rows.
Each level (or combination of levels) of the other variables form one layer. PROC
SURVEYFREQ produces a separate two-way crosstabulation table for each layer.

For each layer, the crosstabulation table displays the row and column variable names
and values (or levels). Each two-way table lists levels of the column variable within
each level of the row variable.

By default, the procedure displays all levels of the column variable within each level
of the row variables, including any column variable levels with zero frequency for
that row. For multiway tables, the procedure displays all levels of the row variable
for each layer of the table by default, including any row levels with zero frequency
for that layer. You can suppress the display of zero frequency levels by specifying the
NOSPARSEoption.

For each combination of variable levels, or table cell, the two-way table displays the
following information:

• Frequency, giving the number of observations that have the indicated values of
the two variables

• Weighted Frequency total, estimating the total population frequency for the
table cell

• Standard Deviation of Weighted Frequency

• Percent, estimating the population proportion for the table cell

• Standard Error of Percent

The two-way table displays weighted frequencies if your analysis includes a
WEIGHT statement, or if you specify theWTFREQoption in the TABLES state-
ment.

The two-way table also displays the Frequency Missing, or the number of observa-
tions with missing values.

You can suppress the frequency counts by specifying theNOFREQoption in the
TABLES statement. Also, theNOWT option suppresses the weighted frequencies
and their standard deviations. TheNOPERCENToption suppresses the percentages
and their standard errors. TheNOSTD option suppresses the standard errors of the
percentages and the standard deviations of the weighted frequencies. TheNOTOTAL
option suppresses the row totals and column totals.
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PROC SURVEYFREQ optionally displays the following information for a two-way
table:

• Expected Weighted Frequency, if you specify theEXPECTEDoption

• Variance of Weighted Frequency, if you specify theVARWT option

• Confidence Limits for Weighted Frequency, if you specify theCLWT option

• Coefficient of Variation for Weighted Frequency, if you specify theCVWT
option

• Variance of Percent, if you specify theVAR option

• Confidence Limits for Percent, if you specify theCL option

• Coefficient of Variation for Percent, if you specify theCV option

• Design Effect for Percent, if you specify theDEFFoption

• Row Percent, estimating the cell’s proportion of the population total for that
cell’s row, if you specify theROW option

• Standard Error of Row Percent, if you specify theROW option

• Variance of Row Percent, if you specify theVAR option and theROW option

• Confidence Limits for Row Percent, if you specify theCL option and theROW
option

• Coefficient of Variation for Row Percent, if you specify theCV option and the
ROW option

• Column Percent, estimating the cell’s proportion of the population total for that
cell’s column, if you specify theCOL option

• Standard Error of Column Percent, if you specify theCOL option

• Variance of Column Percent, if you specify theVAR option and theCOLoption

• Confidence Limits for Column Percent, if you specify theCL option and the
COL option

• Coefficient of Variation for Column Percent, if you specify theCV option and
theCOL option

If you specify theROWoption, theNOPERCENToption suppresses the row percent-
ages and their standard errors. TheNOSTDoption suppresses the standard errors of
the row percentages. Similarly, if you specify theCOL option, theNOPERCENT
option suppresses the column percentages and their standard errors. TheNOSTD
option suppresses the standard errors of the column percentages.
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Statistical Tests

If you specify theCHISQoption for the Rao-Scott chi-square test, theCHISQ1option
for the modified test, theLRCHISQ option for the Rao-Scott likelihood ratio chi-
square test, or theLRCHISQ1option for the modified test, PROC SURVEYFREQ
displays the following information:

• Pearson Chi-Square, if you specify theCHISQor CHISQ1option

• Likelihood Ratio Chi-Square, if you specify theLRCHISQor LRCHISQ1op-
tion

• Design Correction

• Rao-Scott Chi-Square, if you specify theCHISQor CHISQ1option

• Rao-Scott Likelihood Ratio Chi-Square, if you specify theLRCHISQ or
LRCHISQ1option

• DF, the degrees of freedom for the chi-square test

• Pr > ChiSq, thep-value for the chi-square test

• F Value

• Num DF, the numerator degrees of freedom for F

• Den DF, the denominator degrees of freedom for F

• Pr > F, thep-value for the F test

If you specify theWCHISQoption for the Wald chi-square test or theWLLCHISQ
option for the Wald log-linear chi-square test, PROC SURVEYFREQ displays the
following information:

• Wald Chi-Square, if you specify theWCHISQoption

• Wald Log-Linear Chi-Square, if you specify theWLLCHISQ option

• F Value

• Num DF, the numerator degrees of freedom for F

• Den DF, the denominator degrees of freedom for F

• Pr > F, thep-value for the F test

• Adjusted F Value, for tables larger than2× 2

• Num DF, the numerator degrees of freedom for Adjusted F

• Den DF, the denominator degrees of freedom for Adjusted F

• Pr > Adj F, thep-value for the Adjusted F test
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ODS Table Names

PROC SURVEYFREQ assigns a name to each table it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 68.3. ODS Tables Produced in PROC SURVEYFREQ

ODS Table Name Description Statement Option
ChiSq Chi-square test TABLES CHISQ
ChiSq1 Modified chi-square test TABLES CHISQ1
CrossTabs Crosstabulation table TABLES (n-way table request,n > 1)
LRChiSq Likelihood ratio test TABLES LRCHISQ
LRChiSq1 Modified likelihood ratio test TABLES LRCHISQ1
OneWay One-way frequency table PROC (with no TABLES stmt)

or TABLES (one-way table request)
StrataInfo Stratum information STRATA LIST
Summary Data summary PROC default
TableSummary Table summary (not displayed) TABLES default
WChiSq Wald chi-square test TABLES WCHISQ
WLLChiSq Wald log-linear chi-square test TABLES WLLCHISQ

Examples

Example 68.1. Two-Way Tables

This example uses theSIS–Survey data set from the section“Getting Started”on
page 4185. The data set contains results from a customer satisfaction survey for a
student information system (SIS).

The following PROC SURVEYFREQ statements request a two-way table for the vari-
ablesDepartment by Response and customize the crosstabulation table display.

proc surveyfreq data=SIS_Survey;
tables Department * Response /

cv deff nowt nostd nototal;
strata State NewUser / list;
cluster School;
weight SamplingWeight;

run;

The TABLES statement requests a two-way table ofDepartment by Response.
The CV option requests coefficients of variation for the percentage estimates. The
DEFF option requests design effects for the percentage estimates. The NOWT option
suppresses display of the weighted frequencies, and the NOSTD option suppresses
display of standard errors for the estimates. The NOTOTAL option suppresses the
row totals, column totals, and overall totals.
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The WCHISQ option requests a Wald chi-square test of association between the vari-
ablesDepartment andResponse.

The STRATA, CLUSTER, and WEIGHT statements provide sample design infor-
mation to the procedure, so that the analysis will be done according to the sample
design used for the survey. The STRATA statement names the variablesState and
NewUser, which identify the first-stage strata. The LIST option in the STRATA
statement requests a Stratum Information table. The CLUSTER statement identifies
School as the cluster or first-stage sampling unit. The WEIGHT statement names
the sampling weight variable.

Output 68.1.1displays the Data Summary and Stratum Information tables produced
by PROC SURVEYFREQ. The Stratum Information table lists the six strata in the
survey and shows the number of clusters, or schools, and the number of observations
in each stratum.

Output 68.1.1. Data Summary and Stratum Information

School Information System Survey

The SURVEYFREQ Procedure

Data Summary

Number of Strata 6
Number of Clusters 370
Number of Observations 1850
Sum of Weights 38899.6482

Stratum Information

Stratum Number of Number of
Index State NewUser Obs Clusters

--------------------------------------------------------------
1 GA Renewal Customer 315 63
2 GA New Customer 355 71
3 NC Renewal Customer 280 56
4 NC New Customer 420 84
5 SC Renewal Customer 210 42
6 SC New Customer 270 54

--------------------------------------------------------------
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Output 68.1.2displays the two-way table ofDepartment by Response. According
to the TABLES statement options specified, this two-way table includes coefficients
of variation and design effects for the percentage estimates, and it does not show the
weighted frequencies or the standard errors of the estimates.

Output 68.1.2. Two-Way Table of Department by Response

School Information System Survey

The SURVEYFREQ Procedure

Table of Department by Response

CV for Design
Department Response Frequency Percent Percent Effect

-------------------------------------------------------------------------------
Faculty Very Unsatisfied 209 13.4987 0.0865 2.1586

Unsatisfied 203 13.0710 0.0868 2.0962
Neutral 346 22.4127 0.0629 2.1157

Satisfied 254 16.2006 0.0806 2.3232
Very Satisfied 98 6.2467 0.1362 2.2842

-------------------------------------------------------------------------------
Admin/Guidance Very Unsatisfied 95 3.6690 0.1277 1.1477

Unsatisfied 123 4.6854 0.1060 1.0211
Neutral 235 9.1838 0.0700 0.9166

Satisfied 201 7.7305 0.0756 0.8848
Very Satisfied 86 3.3016 0.1252 0.9892

-------------------------------------------------------------------------------

The following PROC SURVEYFREQ statements request a two-way table of
Department by Response that includes row percentages, and also a Wald
chi-square test of association between the two table variables.

proc surveyfreq data=SIS_Survey nosummary;
tables Department * Response /

row nowt wchisq;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

Output 68.1.3displays the two-way table. The row percentages show the dis-
tribution of Response for Department = ’Faculty’ and for Department =
’Admin/Guidance’.
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Output 68.1.3. Table of Department by Response with Row Percentages

School Information System Survey

The SURVEYFREQ Procedure

Table of Department by Response

Std Err of Row Std Err of
Department Response Frequency Percent Percent Percent Row Percent

---------------------------------------------------------------------------------------------------
Faculty Very Unsatisfied 209 13.4987 1.1675 18.8979 1.6326

Unsatisfied 203 13.0710 1.1350 18.2992 1.5897
Neutral 346 22.4127 1.4106 31.3773 1.9705

Satisfied 254 16.2006 1.3061 22.6805 1.8287
Very Satisfied 98 6.2467 0.8506 8.7452 1.1918

Total 1110 71.4297 0.1468 100.000
---------------------------------------------------------------------------------------------------
Admin/Guidance Very Unsatisfied 95 3.6690 0.4684 12.8419 1.6374

Unsatisfied 123 4.6854 0.4966 16.3995 1.7446
Neutral 235 9.1838 0.6430 32.1447 2.2300

Satisfied 201 7.7305 0.5842 27.0579 2.0406
Very Satisfied 86 3.3016 0.4133 11.5560 1.4466

Total 740 28.5703 0.1468 100.000
---------------------------------------------------------------------------------------------------

Total Very Unsatisfied 304 17.1676 1.2872
Unsatisfied 326 17.7564 1.2712

Neutral 581 31.5965 1.5795
Satisfied 455 23.9311 1.4761

Very Satisfied 184 9.5483 0.9523

Total 1850 100.000
---------------------------------------------------------------------------------------------------

Output 68.1.4displays the Wald chi-square test for association betweenDepartment
andResponse. The Wald chi-square is 11.44, and the corresponding adjustedF
value is 2.84 with ap-value of .0243. This indicates a significant association between
department (faculty or admin/guidance) and satisfaction with the student information
system.

Output 68.1.4. Wald Chi-Square Test

Table of Department by Response

Wald Chi-Square Test

Chi-Square 11.4454

F Value 2.8613
Num DF 4
Den DF 364
Pr > F 0.0234

Adj F Value 2.8378
Num DF 4
Den DF 361
Pr > Adj F 0.0243

Sample Size = 1850
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Example 68.2. Multiway Tables

Continuing to use theSIS–Survey data set from the section“Getting Started”on
page 4185, this example shows how to produce multiway tables. The following
PROC SURVEYFREQ statements request a table ofDepartment by SchoolType
by Response for the student information system survey.

proc surveyfreq data=SIS_Survey;
tables Department * SchoolType * Response

SchoolType * Response;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The TABLES statement requests a multiway table withSchoolType as the row vari-
able,Response as the column variable, andDepartment as the layer variable. This
request produces a separate two-way table ofSchoolType by Response for each
level of the variableDepartment. The TABLES statement also requests a two-way
table ofSchoolType by Response, which totals the multiway table over both lev-
els of Department. As in the previous examples, the STRATA, CLUSTER, and
WEIGHT statements provide sample design information, so that the analysis will be
done according to the design used for this survey.

Output 68.2.1displays the multiway table produced by PROC SURVEYFREQ,
which includes a table ofSchoolType by Response for Department = ’Faculty’
and forDepartment = ’Admin/Guidance’.
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Output 68.2.1. Multiway Table of Department by SchoolType by Response

School Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response
Controlling for Department=Faculty

Weighted Std Dev of Std Err of
SchoolType Response Frequency Frequency Wgt Freq Percent Percent

----------------------------------------------------------------------------------------------------
Middle School Very Unsatisfied 74 1846 301.22637 6.6443 1.0838

Unsatisfied 78 1929 283.11476 6.9428 1.0201
Neutral 130 3289 407.80855 11.8369 1.4652

Satisfied 113 2795 368.85087 10.0597 1.3288
Very Satisfied 55 1378 261.63311 4.9578 0.9411

Total 450 11237 714.97120 40.4415 2.5713
----------------------------------------------------------------------------------------------------

High School Very Unsatisfied 135 3405 389.42313 12.2536 1.3987
Unsatisfied 125 3155 384.56734 11.3563 1.3809

Neutral 216 5429 489.37826 19.5404 1.7564
Satisfied 141 3507 417.54773 12.6208 1.5040

Very Satisfied 43 1052 221.59367 3.7874 0.7984

Total 660 16549 719.61536 59.5585 2.5713
----------------------------------------------------------------------------------------------------

Total Very Unsatisfied 209 5251 454.82598 18.8979 1.6326
Unsatisfied 203 5085 442.39032 18.2992 1.5897

Neutral 346 8718 550.81735 31.3773 1.9705
Satisfied 254 6302 507.01711 22.6805 1.8287

Very Satisfied 98 2430 330.97602 8.7452 1.1918

Total 1110 27786 119.25529 100.000
----------------------------------------------------------------------------------------------------

Table of SchoolType by Response
Controlling for Department=Admin/Guidance

Weighted Std Dev of Std Err of
SchoolType Response Frequency Frequency Wgt Freq Percent Percent

----------------------------------------------------------------------------------------------------
Middle School Very Unsatisfied 42 649.43427 133.06194 5.8435 1.1947

Unsatisfied 31 460.35557 100.80158 4.1422 0.9076
Neutral 104 1568 186.99946 14.1042 1.6804

Satisfied 84 1269 165.71127 11.4142 1.4896
Very Satisfied 39 574.93878 110.37243 5.1732 0.9942

Total 300 4521 287.86832 40.6774 2.5801
----------------------------------------------------------------------------------------------------

High School Very Unsatisfied 53 777.77725 136.41869 6.9983 1.2285
Unsatisfied 92 1362 175.40862 12.2573 1.5806

Neutral 131 2005 212.34804 18.0404 1.8990
Satisfied 117 1739 190.07798 15.6437 1.7118

Very Satisfied 47 709.37033 126.54394 6.3828 1.1371

Total 440 6593 288.92483 59.3226 2.5801
----------------------------------------------------------------------------------------------------

Total Very Unsatisfied 95 1427 182.28132 12.8419 1.6374
Unsatisfied 123 1823 193.43045 16.3995 1.7446

Neutral 235 3572 250.22739 32.1447 2.2300
Satisfied 201 3007 226.82311 27.0579 2.0406

Very Satisfied 86 1284 160.83434 11.5560 1.4466

Total 740 11114 60.78850 100.000
----------------------------------------------------------------------------------------------------
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Example 68.3. Output Data Sets

PROC SURVEYFREQ uses the Output Delivery System (ODS) to create output data
sets. This is a departure from older SAS procedures that provide OUTPUT statements
for similar functionality. Using ODS, you can create a SAS data set from any piece
of PROC SURVEYFREQ output. For more information on ODS, seeChapter 14,
“Using the Output Delivery System.”

When selecting tables for ODS output data set, you reference tables by their ODS
table names. Each table created by PROC SURVEYFREQ is assigned a name, and
the section“ODS Table Names”on page 4230 lists the table names.

To save the one-way table ofResponse from Figure 68.3in an output data set, use
an ODS OUTPUT statement as follows:

proc surveyfreq data=SIS_Survey;
tables Response / cl nowt;
ods output OneWay=ResponseTable;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

Output 68.3.1displays the output data setResponseTable, which contains the one-
way table ofResponse. This data set has six observations, and each of these obser-
vations corresponds to a row of the one-way table. The first five observations corre-
spond to the five levels ofResponse, as they are ordered in the display, and the last
observation corresponds to the overall total, which is the last row of the table. The
data setResponseTable includes a variable corresponding to each column of the
one-way table. For example, the variablePercent contains the percentage estimates,
and the variablesLowerCL andUpperCL contain the lower and upper confidence
limits for the percentage estimates.

Output 68.3.1. ResponseTable Output Data Set

Obs Table Response Frequency Percent StdErr LowerCL UpperCL

1 Table Response Very Unsatisfied 304 17.1676 1.2872 14.6364 19.6989
2 Table Response Unsatisfied 326 17.7564 1.2712 15.2566 20.2562
3 Table Response Neutral 581 31.5965 1.5795 28.4904 34.7026
4 Table Response Satisfied 455 23.9311 1.4761 21.0285 26.8338
5 Table Response Very Satisfied 184 9.5483 0.9523 7.6756 11.4210
6 Table Response . 1850 100.000 _ _ _

PROC SURVEYFREQ also creates a table summary that is not displayed. Some of
the information in this table is similar to that contained in the “Data Summary” table,
but the table summary describes data used to analyze the specified table, while the
data summary describes the entire input data set. Due to missing values, for example,
the number of observations (or strata or clusters) used to analyze a particular table
may differ from the number of observations (or strata or clusters) reported for the
input data set in the “Data Summary” table. See the section“Missing Values”on page
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4205 for more details. If you request confidence limits, the “Table Summary” table
also contains the degrees of freedom and thet-value used to compute the confidence
limits.

The following statements store the nondisplayed “Table Summary” table in the output
data setResponseSummary.

proc surveyfreq data=SIS_Survey;
tables Response / cl nowt;
ods output TableSummary=ResponseSummary;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

Output 68.3.2displays the output data setResponseSummary.

Output 68.3.2. ResponseSummary Output Data Set

Number Number Degrees
Number of of of of t

Obs Table Observations Strata Clusters Freedom Percentile

1 Table Response 1850 6 370 364 1.966503
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Chapter 69
The SURVEYLOGISTIC Procedure
Overview

Categorical responses arise extensively in survey research. Common examples of
responses include

• binary: e.g., attended graduate school or not

• ordinal: e.g., mild, moderate, and severe pain

• nominal: e.g., ABC, NBC, CBS, FOX TV network viewed at a certain hour

Logistic regression analysis is often used to investigate the relationship between such
discrete responses and a set of explanatory variables. See Binder (1981, 1983),
Roberts, Rao, and Kumar (1987), Skinner, Holt, and Smith (1989), Morel (1989),
and Lehtonen and Pahkinen (1995) for papers that describe logistic regression for
sample survey data.

For binary response models, the response of a sampling unit can take a specified value
or not (for example, attended graduate school or not). Supposex is a row vector of
explanatory variables andπ is the response probability to be modeled. The linear
logistic model has the form

logit(π) ≡ log
(

π

1− π

)
= α+ xβ

whereα is the intercept parameter andβ is the vector of slope parameters.

The logistic model shares a common feature with the more general class of general-
ized linear models, namely, that a functiong = g(µ) of the expected value,µ, of the
response variable is assumed to be linearly related to the explanatory variables. Since
µ implicitly depends on the stochastic behavior of the response, and since the ex-
planatory variables are assumed to be fixed, the functiong provides the link between
the random (stochastic) component and the systematic (deterministic) component of
the response variable. For this reason, Nelder and Wedderburn (1972) refer tog(·) as
a link function. One advantage of the logit function over other link functions is that
differences on the logistic scale are interpretable regardless of whether the data are
sampled prospectively or retrospectively (McCullagh and Nelder 1989, Chapter 4).
Other link functions that are widely used in practice are the probit function and the
complementary log-log function. The SURVEYLOGISTIC procedure enables you to
choose one of these link functions, resulting in fitting a broad class of binary response
models of the form

g(π) = α+ xβ
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For ordinal response models, the responseY of an individual or an experimental unit
may be restricted to one of a usually small number of ordinal values, denoted for
convenience by1, . . . , D,D + 1 (D ≥ 1). For example, the pain severity can be
classified into three response categories as 1=mild, 2=moderate, and 3=severe. The
SURVEYLOGISTIC procedure fits a common slopes cumulative model, which is a
parallel lines regression model based on the cumulative probabilities of the response
categories rather than on their individual probabilities. The cumulative model has the
form

g(Pr(Y ≤ d | x)) = αd + xβ, 1 ≤ d ≤ D

whereα1, . . . , αk arek intercept parameters andβ is the vector of slope parameters.
This model has been considered by many researchers. Aitchison and Silvey (1957)
and Ashford (1959) employ a probit scale and provide a maximum likelihood anal-
ysis; Walker and Duncan (1967) and Cox and Snell (1989) discuss the use of the
log-odds scale. For the log-odds scale, the cumulative logit model is often referred to
as theproportional oddsmodel.

For nominal response logistic models, where theD + 1 possible responses have no
natural ordering, the logit model can also be extended to ageneralized logitmodel,
which has the form

log
(

Pr(Y = i | x)
Pr(Y = D + 1 | x)

)
= αi + β′

ix, i = 1, . . . , D

where theα1, . . . , αD areD intercept parameters, and theβ1, . . . ,βD areD vectors
of parameters. These models were introduced by McFadden (1974) as thediscrete
choicemodel, and they are also known asmultinomialmodels.

The SURVEYLOGISTIC procedure fits linear logistic regression models for discrete
response survey data by the method of maximum likelihood. For statistical infer-
ences, PROC SURVEYLOGISTIC incorporates complex survey sample designs, in-
cluding designs with stratification, clustering, and unequal weighting.

The maximum likelihood estimation is carried out with either the Fisher-scoring al-
gorithm or the Newton-Raphson algorithm. You can specify starting values for the
parameter estimates. The logit link function in the ordinal logistic regression models
can be replaced by the probit function or the complementary log-log function.

Odds ratio estimates are displayed along with parameter estimates. You can also
specify the change in the explanatory variables for which odds ratio estimates are
desired. Variances of the regression parameters and odds ratios are computed using
the Taylor expansion approximation; see Binder (1983).

The SURVEYLOGISTIC procedure enables you to specify categorical variables (also
known as CLASS variables) as explanatory variables. It also enables you to specify
interaction terms in the same way as in the LOGISTIC procedure.

Like many procedures in SAS/STAT software that allow the specification of CLASS
variables, the SURVEYLOGISTIC procedure provides aCONTRAST statement
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for specifying customized hypothesis tests concerning the model parameters. The
CONTRAST statement also provides estimation of individual rows of contrasts,
which is particularly useful for obtaining odds ratio estimates for various levels of
the CLASS variables.

Getting Started

The SURVEYLOGISTIC procedure is similar to the LOGISTIC procedure and
other regression procedures in the SAS System. Please refer toChapter 42, “The
LOGISTIC Procedure,”for general information about how to perform logistic re-
gression using SAS. PROC SURVEYLOGISTIC is designed to handle sample survey
data, and thus it incorporates the sampling design information into the analysis.

The following example illustrates how to use PROC SURVEYLOGISTIC to perform
logistic regression for sample survey data.

In the customer satisfaction survey example in the“Getting Started”section on
page 4422 ofChapter 72, “The SURVEYSELECT Procedure,”an Internet service
provider conducts a customer satisfaction survey. The survey population consists of
the company’s current subscribers from four states: Alabama (AL), Florida (FL),
Georgia (GA), and South Carolina (SC). The company plans to select a sample of
customers from this population, interview the selected customers and ask their opin-
ions on customer service, and then make inferences about the entire population of
subscribers from the sample data. A stratified sample is selected using the probabil-
ity proportional to size (PPS) method. The sample design divides the customers into
strata depending on their types (‘Old’ or ‘New’) of their states (AL, FL, GA, SC).
There are eight strata in all. Within each stratum, customers are selected and inter-
viewed using the PPS with replacement method, where the size variable isUsage.
The stratified PPS sample contains 192 customers. The data are stored in the SAS
data setSampleStrata. Figure 69.1displays the first 10 observations of this data set.

Customer Satisfaction Survey
Stratified PPS Sampling
(First 10 Observations)

Customer Sampling
Obs State Type ID Rating Usage Weight

1 AL New 2178037 Unsatisfied 23.53 14.7473
2 AL New 75375074 Unsatisfied 99.11 3.5012
3 AL New 116722913 Satisfied 31.11 11.1546
4 AL New 133059995 Neutral 52.70 19.7542
5 AL New 216784622 Satisfied 8.86 39.1613
6 AL New 225046040 Neutral 8.32 41.6960
7 AL New 238463776 Satisfied 4.63 74.9483
8 AL New 255918199 Unsatisfied 10.05 34.5405
9 AL New 395767821 Extremely Unsatisfied 33.14 10.4719

10 AL New 409095328 Satisfied 10.67 32.5295

Figure 69.1. Stratified PPS Sample (First 10 Observations)

In the SAS data setSampleSRS, the variableCustomerID uniquely identifies each
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customer. The variableState contains the state of the customer’s address. The vari-
ableType equals ‘Old’ if the customer has subscribed to the service for more than one
year; otherwise, the variableType equals ‘New’. The variableUsage contains the
customer’s average monthly service usage, in hours. The variableRating contains the
customer’s responses to the survey. The sample design uses an unequal probability
sampling method, with the sampling weights stored in the variableSamplingWeight.

The following SAS statements fit a cumulative logistic model between the satisfaction
levels and the Internet usage using the stratified PPS sample.

title ’Customer Satisfaction Survey’;
proc surveylogistic data=SampleStrata;
strata state type/list;
model Rating (order=internal) = Usage;
weight SamplingWeight;
run;

The PROC statement invokes the SURVEYLOGISTIC procedure. The STRATA
statement specifies the stratification variablesState andType that are used in the
sample design. The LIST option requests a summary of the stratification. In the
MODEL statement,Rating is the response variable andUsage is the explanatory
variable. The ORDER=internal is used for the response variableRating to ask the
procedure to order the response levels using the internal numerical value (1-5) in-
stead of the formatted character value. The WEIGHT statement specifies the variable
SamplingWeight that contains the sampling weights.

The results of this analysis are shown in the following tables.

Customer Satisfaction Survey

The SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.SAMPLESTRATA
Response Variable Rating
Number of Response Levels 5
Stratum Variables State

Type
Number of Strata 8
Weight Variable SamplingWeight Sampling Weight
Model Cumulative Logit
Optimization Technique Fisher’s Scoring
Variance Adjustment Degrees of Freedom (DF)

Figure 69.2. Stratified PPS Sample, Model Information

PROC SURVEYLOGISTIC first lists the following model fitting information and
sample design information inFigure 69.2:

• The link function is the logit of the cumulative of the lower response categories.
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• The Fisher Scoring optimization technique is used to obtain the maximum like-
lihood estimates for the regression coefficients.

• The response variable isRating, which has five response levels.

• The stratification variables areState andType.

• There are eight strata in the sample.

• The weight variable isSamplingWeight.

• Thevariance adjustment methodused for the regression coefficients is the de-
fault degrees of freedom adjustment.

Customer Satisfaction Survey

Number of Observations Read 192
Number of Observations Used 192
Sum of Weights Read 13262.74
Sum of Weights Used 13262.74

Figure 69.3. Stratified PPS Sample, Number of Observations

Figure 69.3lists the number of observations in the data set and the number of ob-
servations used in the analysis. Since no missing value presents in this example,
observations in the entire data set are used in the analysis. The sums of weights are
also reported in this table.

Customer Satisfaction Survey

Response Profile

Ordered Total Total
Value Rating Frequency Weight

1 Extremely Unsatisfied 52 2067.1092
2 Unsatisfied 47 2148.7127
3 Neutral 47 3649.4869
4 Satisfied 38 2533.5379
5 Extremely Satisfied 8 2863.8888

Probabilities modeled are cumulated over the lower Ordered Values.

Figure 69.4. Stratified PPS Sample, Response Profile

The “Response Profile” table inFigure 69.4lists the five response levels, their ordered
values, and their total frequencies and total weights for each category. Due to the
ORDER=internal option for the response variableRating, the category “Extremely
Unsatisfied” has the Ordered Value 1, the category “Unsatisfied” has the Ordered
Value 2, and so on.
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Customer Satisfaction Survey

Stratum Information

Stratum
Index State Type N Obs

-------------------------------------------
1 AL New 22
2 Old 24
3 FL New 25
4 Old 22
5 GA New 25
6 Old 25
7 SC New 24
8 Old 25

-------------------------------------------

Figure 69.5. Stratified PPS Sample, Stratification Summary

Figure 69.5displays the output of the stratification summary. There are a total of
eight strata, and each stratum is defined by the customer types within each state. The
table also shows the number of customers within each stratum.

Customer Satisfaction Survey

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

3692.2558 3 <.0001

Figure 69.6. Stratified PPS Sample, Testing the Proportional Odds Assumption

Figure 69.6shows the chi-square test for testing the proportional odds assumption.
The test is highly significant, which indicates that the cumulative logit model may
not adequately fit the data.

Customer Satisfaction Survey

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 42099.954 41378.851
SC 42112.984 41395.139
-2 Log L 42091.954 41368.851

Figure 69.7. Stratified PPS Sample, Model Fitting Information
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Figure 69.7shows the iteration algorithm converged to obtain the MLE for this ex-
ample. The “Model Fit Statistics” table contains the Akaike Information Criterion
(AIC), the Schwarz Criterion (SC), and the negative of twice the log likelihood (-2
Log L) for the intercept-only model and the fitted model. AIC and SC can be used to
compare different models, and the ones with smaller values are preferred.

Customer Satisfaction Survey

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 723.1023 1 <.0001
Score 465.4939 1 <.0001
Wald 4.5212 1 0.0335

Figure 69.8. Stratified PPS Sample, Testing Global Null Hypothesis

The table “Testing Global Null Hypothesis: BETA=0” inFigure 69.8shows the like-
lihood ratio test, the efficient score test, and the Wald test for testing the significance
of the explanatory variable (Usage). All tests are significant.

Customer Satisfaction Survey

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept Extremely Unsatisfied 1 -2.0168 0.3988 25.5769 <.0001
Intercept Unsatisfied 1 -1.0527 0.3543 8.8292 0.0030
Intercept Neutral 1 0.1334 0.4189 0.1015 0.7501
Intercept Satisfied 1 1.0751 0.5794 3.4432 0.0635
Usage 1 0.0377 0.0178 4.5212 0.0335

Figure 69.9. Stratified PPS Sample, Parameter Estimates

Figure 69.9shows the parameter estimates of the logistic regression and their standard
errors.

Customer Satisfaction Survey

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Usage 1.038 1.003 1.075

Figure 69.10. Stratified PPS Sample, Odds Ratios

Figure 69.10displays the odds ratio estimate and its standard error.
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Syntax

The following statements are available in PROC SURVEYLOGISTIC:

PROC SURVEYLOGISTIC < options >;
BY variables ;
CLASS variable <(v-options)> <variable <(v-options)>... >

< / v-options >;
CLUSTER variables ;
CONTRAST ’label’ effect values <,... effect values>< /options >;
FREQ variable ;
MODEL events/trials = < effects >< / options >;
MODEL variable < (variable–options) > = < effects >< / options >;
STRATA variables < / options > ;
< label: > TEST equation1 < , . . . , < equationk >>< /option >;
UNITS independent1 = list1 < . . . independentk = listk >< /option > ;
WEIGHT variable </ option >;

The PROC SURVEYLOGISTIC and MODEL statements are required. The CLASS,
CLUSTER, STRATA, and CONTRAST statements can appear multiple times. You
should only use one MODEL statement and one WEIGHT statement. The CLASS
statement (if used) must precede the MODEL statement, and the CONTRAST state-
ment (if used) must follow the MODEL statement.

The rest of this section provides detailed syntax information for each of the preceding
statements, beginning with the PROC SURVEYLOGISTIC statement. The remain-
ing statements are covered in alphabetical order.

PROC SURVEYLOGISTIC Statement

PROC SURVEYLOGISTIC < options >;

The PROC SURVEYLOGISTIC statement invokes the SURVEYLOGISTIC proce-
dure and optionally identifies input data sets and controls the ordering of the response
levels.

ALPHA= α
sets the confidence level for confidence limits. The value of the ALPHA= option
must be between 0 and 1, and the default value is 0.05. A confidence level ofα
produces100(1 − α)% confidence limits. The default of ALPHA=0.05 produces
95% confidence limits.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. If you omit the DATA=
option, the procedure uses the most recently created SAS data set.
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INEST= SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the
model. BY-group processing is allowed in setting up the INEST= data set. See the
section“INEST= Data Set”on page 4280 for more information.

MISSING
requests that the procedure treat missing values as a valid category for all categorical
variables, which include classification variables in the model, strata variables, and
cluster variables.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

NOSORT
suppresses the internal sorting process to shorten the computation time if the data
set is presorted by the STRATA and CLUSTER variables. By default, the procedure
sorts the data by the STRATA variables if you use the STRATA statement; then the
procedure sorts the data by the CLUSTER variables within strata. If your data are al-
ready stored by the order of STRATA and CLUSTER variables, then you can specify
this option to omit this sorting process to reduce the usage of computing resources,
especially when your data set is very large. However, if you specify this NOSORT
option while your data is not presorted by STRATA and CLUSTER variables, then
any changes in these variables creates a new stratum or cluster.

RATE=value |SAS-data-set
R=value |SAS-data-set

specifies the sampling rate as a nonnegativevalue, or specifies an input data set that
contains the stratum sampling rates. The procedure uses this information to compute
a finite population correction (fpc) for variance estimation when the sample design is
without replacement. If your sample design has multiple stages, you should specify
the first-stage sampling rate, which is the ratio of the number of primary sampling
units (PSUs) selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same
sampling rate in all strata, you should specify a nonnegativevalue for the RATE=
option. If your design is stratified with different sampling rates in the strata, then you
should name a SAS data set that contains the stratification variables and the sampling
rates. See the section“Specification of Population Totals and Sampling Rates”on
page 4280 for more details.

Thevalue in the RATE= option or the values of–RATE– in the secondary data set
must be nonnegative numbers. You can specifyvalue as a number between 0 and 1.
Or you can specifyvalue in percentage form as a number between 1 and 100, and
PROC SURVEYLOGISTIC will convert that number to a proportion. The procedure
treats the value 1 as 100%.

If you do not specify theTOTAL= option or the RATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.
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TOTAL=value |SAS-data-set
N=value |SAS-data-set

specifies the total number of primary sampling units (PSUs) in the study population
as a positivevalue, or names an input data set that contains the stratum population
totals. The procedure uses this information to compute a finite population correction
for variance estimation.

For a nonstratified sample design, or for a stratified sample design with the same
population total in all strata, you should specify a positivevalue for the TOTAL=
option. If your sample design is stratified with different population totals in the strata,
then you should name a SAS data set that contains the stratification variables and the
population totals. See the section“Specification of Population Totals and Sampling
Rates”on page 4280 for more details.

If you do not specify the TOTAL= option or the RATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.

BY Statement

BY variables ;

You can specify a BY statement with PROC SURVEYLOGISTIC to obtain separate
analyses on observations in groups defined by the BY variables.

Note that using a BY statement provides completely separate analyses of the BY
groups. It does not provide a statistically valid subpopulation or domain analysis,
where the total number of units in the subpopulation is not known with certainty.

When a BY statement appears, the procedure expects the input data sets to be sorted
in the order of the BY variables. Thevariablesare one or more variables in the input
data set.

If you specify more than one BY statement, the procedure uses only the latest BY
statement and ignores any previous ones.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Use the BY statement options NOTSORTED or DESCENDING in the BY
statement. The NOTSORTED option does not mean that the data are unsorted
but rather that the data are arranged in groups (according to values of the BY
variables) and that these groups are not necessarily in alphabetical or increasing
numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CLASS Statement

CLASS variable <(v-options)> <variable <(v-options)>... >
< / v-options >;

The CLASS statement names the classification variables to be used in the analysis.
The CLASS statement must precede the MODEL statement. You can specify vari-
ousv-optionsfor each variable by enclosing them in parentheses after the variable
name. You can also specify globalv-optionsfor the CLASS statement by placing
them after a slash (/). Globalv-optionsare applied to all the variables specified in
the CLASS statement. However, individual CLASS variablev-optionsoverride the
globalv-options.

CPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable name be used
in creating names for the corresponding dummy variables. The default is32 −
min(32,max(2, f)), wheref is the formatted length of the CLASS variable.

DESCENDING
DESC

reverses the sorting order of the classification variable.

LPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable label be used in
creating labels for the corresponding dummy variables.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of classification variables. This ordering
determines which parameters in the model correspond to each level in the data, so
the ORDER= option may be useful when you use the CONTRAST statement. When
the default ORDER=FORMATTED is in effect for numeric variables for which you
have supplied no explicit format, the levels are ordered by their internal values.

The following table shows how PROC SURVEYLOGISTIC interprets values of the
ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, see the chapter
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on the SORT procedure in theSAS Procedures Guideand the discussion of BY-group
processing inSAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables.
Design matrix columns are created from CLASS variables according to the follow-
ing coding schemes. The default is PARAM=EFFECT. If PARAM=ORTHPOLY or
PARAM=POLY, and the CLASS levels are numeric, then the ORDER= option in the
CLASS statement is ignored, and the internal, unformatted values are used.

EFFECT specifies effect coding

GLM specifies less-than-full-rank, reference cell coding; this option
can only be used as a global option

ORDINAL specifies the cumulative parameterization for an ordinal CLASS
variable.

POLYNOMIAL
POLY specifies polynomial coding

REFERENCE
REF specifies reference cell coding

ORTHEFFECT orthogonalizes PARAM=EFFECT

ORTHORDINAL
ORTHOTHERM orthogonalizes PARAM=ORDINAL

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL

ORTHREF orthogonalizes PARAM=REFERENCE

The EFFECT, POLYNOMIAL, REFERENCE, ORDINAL, and their orthogonal pa-
rameterizations are full rank. The REF= option in the CLASS statement determines
the reference level for the EFFECT, REFERENCE, and their orthogonal parameteri-
zations.

Parameter names for a CLASS predictor variable are constructed by concatenating
the CLASS variable name with the CLASS levels. However, for the POLYNOMIAL
and orthogonal parameterizations, parameter names are formed by concatenating the
CLASS variable name and keywords that reflect the parameterization.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT or PARAM=REFERENCE. For
an individual (but not a global) variable REF=option, you can specify thelevel of
the variable to use as the reference level. For a global or individual variable REF=
option, you can use one of the followingkeywords. The default is REF=LAST.

FIRST designates the first ordered level as reference

LAST designates the last ordered level as reference



CONTRAST Statement � 4255

CLUSTER Statement

CLUSTER |CLUSTERS variables ;

The CLUSTER statement names variables that identify the clusters in a clustered
sample design. The combinations of categories of CLUSTER variables define the
clusters in the sample. If there is a STRATA statement, clusters are nested within
strata.

If your sample design has clustering at multiple stages, you should identify only the
first-stage clusters, or primary sampling units (PSUs), in the CLUSTER statement.
See the section“Primary Sampling Units (PSUs)”on page 4281 for more informa-
tion.

The CLUSTERvariablesare one or more variables in the DATA= input data set.
These variables can be either character or numeric. The formatted values of the
CLUSTER variables determine the CLUSTER variable levels. Thus, you can use
formats to group values into levels. Refer to the discussion of the FORMAT proce-
dure in theSAS Procedures Guideand to the discussions of the FORMAT statement
and SAS formats inSAS Language Reference: Dictionary.

You can use multiple CLUSTER statements to specify cluster variables. The proce-
dure uses all variables from all CLUSTER statements to create clusters.

CONTRAST Statement

CONTRAST ’label’ row-description<,..., row-description>< / options>;

where arow-description is: effect values <,...effect values>

The CONTRAST statement provides a mechanism for obtaining customized hypoth-
esis tests. It is similar to the CONTRAST statement in PROC LOGISTIC and PROC
GLM, depending on the coding schemes used with any classification variables in-
volved.

The CONTRAST statement enables you to specify a matrix,L, for testing the hypoth-
esisLθ = 0, whereθ is the parameter vector. You must be familiar with the details
of the model parameterization that PROC SURVEYLOGISTIC uses (for more infor-
mation, see the PARAM= option in the section“CLASS Statement”on page 4253).
Optionally, the CONTRAST statement enables you to estimate each row,l′iθ, of Lθ
and test the hypothesisl′iθ = 0. Computed statistics are based on the asymptotic
chi-square distribution of the Wald statistic.

There is no limit to the number of CONTRAST statements that you can specify, but
they must appear after the MODEL statement.

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast
specified, and it must be enclosed in quotes.
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effect identifies an effect that appears in the MODEL statement. The name
INTERCEPT can be used as an effect when one or more intercepts are in-
cluded in the model. You do not need to include all effects that are included
in the MODEL statement.

values are constants that are elements of theL matrix associated with the effect.
To correctly specify your contrast, it is crucial to know the ordering of
parameters within each effect and the variable levels associated with any
parameter. The “Class Level Information” table shows the ordering of lev-
els within variables. The E option, described later in this section, enables
you to verify the proper correspondence ofvaluesto parameters.

The rows ofL are specified in order and are separated by commas. Multiple degree-
of-freedom hypotheses can be tested by specifying multiplerow-descriptions. For
any of the full-rank parameterizations, if an effect is not specified in the CONTRAST
statement, all of its coefficients in theL matrix are set to 0. If too many values are
specified for an effect, the extra ones are ignored. If too few values are specified, the
remaining ones are set to 0.

When you use effect coding (by default or by specifying PARAM=EFFECT in the
CLASS statement), all parameters are directly estimable (involve no other param-
eters). For example, suppose an effect coded CLASS variableA has four levels.
Then there are three parameters (α1, α2, α3) representing the first three levels, and
the fourth parameter is represented by

−α1 − α2 − α3

To test the first versus the fourth level ofA, you would test

α1 = −α1 − α2 − α3

or, equivalently,

2α1 + α2 + α3 = 0

which, in the formLθ = 0, is

[
2 1 1

]  α1

α2

α3

 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1 vs. 4’ A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

α1 + α2

2
= α3
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or, equivalently,

α1 + α2 − 2α3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1&2 vs. 3’ A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example,

contrast ’1 vs. 2 ’ A 1 -1 0;
contrast ’1&2 vs. 4 ’ A 3 3 2;
contrast ’1&2 vs. 3&4’ A 2 2 0;
contrast ’Main Effect’ A 1 0 0,

A 0 1 0,
A 0 0 1;

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM
in the CLASS statement), each row is checked for estimability. If PROC
SURVEYLOGISTIC finds a contrast to be nonestimable, it displays missing
values in corresponding rows in the results. PROC SURVEYLOGISTIC handles
missing level combinations of classification variables in the same manner as
PROC LOGISTIC. Parameters corresponding to missing level combinations are not
included in the model. This convention can affect the way in which you specify the
L matrix in your CONTRAST statement. If the elements ofL are not specified for
an effect that contains a specified effect, then the elements of the specified effect are
distributed over the levels of the higher-order effect just as the LOGISTIC procedure
does for its CONTRAST and ESTIMATE statements. For example, suppose that
the model contains effects A and B and their interaction A*B. If you specify a
CONTRAST statement involving A alone, theL matrix contains nonzero terms for
both A and A*B, since A*B contains A.

The degrees of freedom is the number of linearly independent constraints implied by
the CONTRAST statement, that is, the rank ofL.

You can specify the following options after a slash (/).

ALPHA= α
sets the confidence level for confidence limits. The value of the ALPHA= option
must be between 0 and 1, and the default value is 0.05. A confidence level ofα
produces100(1 − α)% confidence limits. The default of ALPHA=0.05 produces
95% confidence limits.

E
requests that theL matrix be displayed.
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ESTIMATE=keyword
requests that each individual contrast (that is, each row,l′iβ, of Lβ) or exponentiated
contrast (el′iβ) be estimated and tested. PROC SURVEYLOGISTIC displays the point
estimate, its standard error, a Wald confidence interval, and a Wald chi-square test for
each contrast. The significance level of the confidence interval is controlled by the
ALPHA= option. You can estimate the contrast or the exponentiated contrast (el′iβ),
or both, by specifying one of the followingkeywords:

PARM specifies that the contrast itself be estimated

EXP specifies that the exponentiated contrast be estimated

BOTH specifies that both the contrast and the exponentiated contrast be
estimated

SINGULAR = number
tunes the estimability check. This option is ignored when the full-rank parameteri-
zation is used. Ifv is a vector, define ABS(v) to be the largest absolute value of the
elements ofv. For a row vectorl′ of the contrast matrixL, definec to be equal to
ABS(l) if ABS(l) is greater than 0; otherwise,c equals 1. If ABS(l′− l′T ) is greater
thanc ∗ number, thenl is declared nonestimable. TheT matrix is the Hermite form
matrixI−0 I0, whereI−0 represents a generalized inverse of the information matrixI0

of the null model. The value fornumber must be between 0 and 1; the default value
is 1E−4.

FREQ Statement

FREQ variable ;

Thevariable in the FREQ statement identifies a variable that contains the frequency
of occurrence of each observation. PROC SURVEYLOGISTIC treats each obser-
vation as if it appearsn times, wheren is the value of the FREQ variable for the
observation. If it is not an integer, the frequency value is truncated to an integer. If
the frequency value is less than 1 or missing, the observation is not used in the model
fitting. When the FREQ statement is not specified, each observation is assigned a
frequency of 1.

If you use theevents/trialssyntax in the MODEL statement, the FREQ statement is
disallowed because the event and trial variables represent the frequencies in the data
set.

MODEL Statement

MODEL events/trials= < effects >< / options >;

MODEL variable < (variable–options) >= < effects >< /options >;

The MODEL statement names the response variable and the explanatory effects,
including covariates, main effects, interactions, and nested effects; see the section
“Specification of Effects”on page 1784 ofChapter 32, “The GLM Procedure,”
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for more information. If you omit the explanatory variables, the procedure fits an
intercept-only model.Model optionscan be specified after a slash (/).

Two forms of the MODEL statement can be specified. The first form, referred to as
single-trial syntax, is applicable to binary, ordinal, and nominal response data. The
second form, referred to asevents/trialssyntax, is restricted to the case of binary
response data. Thesingle-trial syntax is used when each observation in the DATA=
data set contains information on only a single trial, for instance, a single subject
in an experiment. When each observation contains information on multiple binary-
response trials, such as the counts of the number of subjects observed and the number
responding, thenevents/trialssyntax can be used.

In the events/trialssyntax, you specify two variables that contain count data for a
binomial experiment. These two variables are separated by a slash. The value of
the first variable,events, is the number of positive responses (or events). The value
of the second variable,trials, is the number of trials. The values of botheventsand
(trials−events) must be nonnegative and the value oftrials must be positive for the
response to be valid.

In thesingle-trialsyntax, you specify one variable (on the left side of the equal sign)
as the response variable. This variable can be character or numeric.Optionsspecific
to the response variable can be specified immediately after the response variable with
a pair of parentheses around them.

For both forms of the MODEL statement, explanatoryeffectsfollow the equal sign.
Variables can be either continuous or classification variables. Classification variables
can be character or numeric, and they must be declared in the CLASS statement.
When an effect is a classification variable, the procedure enters a set of coded columns
into the design matrix instead of directly entering a single column containing the
values of the variable.

Response Variable Options

You specify the following options by enclosing them in a pair of parentheses after the
response variable.

DESCENDING | DESC
reverses the order of response categories. If both the DESCENDING andORDER=
options are specified, PROC SURVEYLOGISTIC orders the response categories ac-
cording to the ORDER= option and then reverses that order. See the“Response Level
Ordering”section on page 4269 for more detail.

EVENT=’category’ | keyword
specifies the event category for the binary response model. PROC
SURVEYLOGISTIC models the probability of the event category. The EVENT=
option has no effect when there are more than two response categories. You can
specify the value (formatted if a format is applied) of the event category in quotes or
you can specify one of the following keywords. The default is EVENT=FIRST.

FIRST designates the first ordered category as the event

LAST designates the last ordered category as the event
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One of the most common sets of response levels is {0,1}, with 1 representing the
event for which the probability is to be modeled. Consider the example whereY
takes the values 1 and 0 for event and nonevent, respectively, andExposure is the
explanatory variable. To specify the value 1 as the event category, use the model
statement

model Y(event=’1’) = Exposure;

ORDER= DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the response variable. By default,
ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is ma-
chine dependent.

When the default ORDER=FORMATTED is in effect for numeric variables for which
you have supplied no explicit format, the levels are ordered by their internal values.

The following table shows the interpretation of the ORDER= values.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

For more information on sorting order, see the chapter on the SORT procedure in the
SAS Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

REFERENCE=’category’ | keyword
REF=’category’ | keyword

specifies the reference category for the generalized logit model and the binary re-
sponse model. For the generalized logit model, each nonreference category is con-
trasted with the reference category. For the binary response model, specifying one
response category as the reference is the same as specifying the other response cate-
gory as the event category. You can specify the value (formatted if a format is applied)
of the reference category in quotes or you can specify one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered category as the reference

LAST designates the last ordered category as the reference
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Model Options

Model options can be specified after a slash (/). Table69.1summarizes the options
available in the MODEL statement.

Table 69.1. Model Statement Options

Option Description
Model Specification Options
LINK= Specifies link function
NOINT Suppresses intercept(s)
OFFSET= Specifies offset variable
Convergence Criterion Options
ABSFCONV= Specifies absolute function convergence criterion
FCONV= Specifies relative function convergence criterion
GCONV= Specifies relative gradient convergence criterion
XCONV= Specifies relative parameter convergence criterion
MAXITER= Specifies maximum number of iterations
NOCHECK Suppresses checking for infinite parameters
RIDGING= Specifies technique used to improve the log-likelihood function when its

value is worse than that of the previous step
SINGULAR= Specifies tolerance for testing singularity
TECHNIQUE= Specifies iterative algorithm for maximization

Options for Adjustment to Variance Estimation
VADJUST= Choose variance estimation adjustment method

Options for Confidence Intervals
ALPHA= Specifiesα for the100(1− α)% confidence intervals
CLPARM Computes confidence intervals for parameters
CLODDS Computes confidence intervals for odds ratios
Options for Display of Details
CORRB Displays correlation matrix
COVB Displays covariance matrix
EXPB Displays exponentiated values of estimates
ITPRINT Displays iteration history
NODUMMYPRINT Suppresses “Class Level Information” table
PARMLABEL Displays parameter labels
RSQUARE Displays generalizedR2

STB Displays standardized estimates

The following list describes these options.

ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small
change in the log-likelihood function in subsequent iterations,

|l(i) − l(i−1)| < value

wherel(i) is the value of the log-likelihood function at iterationi. See the section
“Convergence Criteria”on page 4277.
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ALPHA= α
sets the level of significanceα for 100(1 − α)% confidence intervals for regression
parameters or odds ratios. The valueα must be between 0 and 1. By default,α is
equal to the value of the ALPHA= option in the PROC SURVEYLOGISTIC state-
ment, orα = 0.05 if the option is not specified. This option has no effect unless
confidence limits for the parameters or odds ratios are requested.

CLODDS
requests confidence intervals for the odds ratios. Computation of these confidence
intervals is based on individual Wald tests. The confidence coefficient can be speci-
fied with theALPHA= option. See the“Wald Confidence Intervals for Parameters”
section on page 4288 for more information.

CLPARM
requests confidence intervals for the parameters. Computation of these confidence in-
tervals is based on the individual Wald tests. The confidence coefficient can be spec-
ified with theALPHA= option. See the“Wald Confidence Intervals for Parameters”
section on page 4288 for more information.

CORRB
displays the correlation matrix of the parameter estimates.

COVB
displays the covariance matrix of the parameter estimates.

EXPB
EXPEST

displays the exponentiated values (eθ̂i) of the parameter estimateŝθi in the “Analysis
of Maximum Likelihood Estimates” table for the logit model. These exponentiated
values are the estimated odds ratios for the parameters corresponding to the continu-
ous explanatory variables.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small
relative change in the log-likelihood function in subsequent iterations,

|l(i) − l(i−1)|
|l(i−1)|+ 1E−6

< value

where l(i) is the value of the log-likelihood at iterationi. See the section
“Convergence Criteria”on page 4277.

GCONV=value
specifies the relative gradient convergence criterion. Convergence requires that the
normalized prediction function reduction is small,

g′(i)I(i)g(i)

|l(i)|+ 1E−6
< value

wherel(i) is the value of the log-likelihood function,g(i) is the gradient vector, and
I(i) the (expected) information matrix. All of these functions are evaluated at iteration
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i. This is the default convergence criterion, and the default value is 1E−8. See the
section“Convergence Criteria”on page 4277.

ITPRINT
displays the iteration history of the maximum-likelihood model fitting. The ITPRINT
option also displays the last evaluation of the gradient vector and the final change in
the−2 Log Likelihood.

LINK=keyword
L=keyword

specifies the link function linking the response probabilities to the linear predictors.
You can specify one of the following keywords. The default is LINK=LOGIT.

CLOGLOG the complementary log-log function. PROC SURVEYLOGISTIC
fits the binary complementary log-log model for binary response
and fits the cumulative complementary log-log model when there
are more than two response categories. Aliases: CCLOGLOG,
CCLL, CUMCLOGLOG.

GLOGIT the generalized logit function. PROC SURVEYLOGISTIC fits the
generalized logit model where each nonreference category is con-
trasted with the reference category. You can use the response vari-
able optionREF=to specify the reference category.

LOGIT the cumulative logit function. PROC SURVEYLOGISTIC fits the
binary logit model when there are two response categories and fits
the cumulative logit model when there are more than two response
categories. Aliases: CLOGIT, CUMLOGIT.

PROBIT the inverse standard normal distribution function. PROC
SURVEYLOGISTIC fits the binary probit model when there are
two response categories and fits the cumulative probit model when
there are more than two response categories. Aliases: NORMIT,
CPROBIT, CUMPROBIT.

See the section“Link Functions and the Corresponding Distributions”on page 4273
for details.

MAXITER=n
specifies the maximum number of iterations to perform. By default, MAXITER=25.
If convergence is not attained inn iterations, the displayed output created by the
procedure contain results that are based on the last maximum likelihood iteration.

NOCHECK
disables the checking process to determine whether maximum likelihood estimates of
the regression parameters exist. If you are sure that the estimates are finite, this option
can reduce the execution time if the estimation takes more than eight iterations. For
more information, see the“Existence of Maximum Likelihood Estimates”section on
page 4277.
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NODUMMYPRINT
NODESIGNPRINT
NODP

suppresses the “Class Level Information” table, which shows how the design matrix
columns for the CLASS variables are coded.

NOINT
suppresses the intercept for the binary response model or the first intercept for the
ordinal response model.

OFFSET= name
names the offset variable. The regression coefficient for this variable will be fixed
at 1.

PARMLABEL
displays the labels of the parameters in the “Analysis of Maximum Likelihood
Estimates” table.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique used to improve the log-likelihood function when its value
in the current iteration is less than that in the previous iteration. If you spec-
ify the RIDGING=ABSOLUTE option, the diagonal elements of the negative
(expected) Hessian are inflated by adding the ridge value. If you specify the
RIDGING=RELATIVE option, the diagonal elements are inflated by a factor of
1 plus the ridge value. If you specify the RIDGING=NONE option, the crude
line search method of taking half a step is used instead of ridging. By default,
RIDGING=RELATIVE.

RSQUARE
RSQ

requests a generalizedR2 measure for the fitted model. For more information, see
the“Generalized Coefficient of Determination”section on page 4280.

SINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix (Newton-
Raphson algorithm) or the expected value of the Hessian matrix (Fisher-scoring al-
gorithm). The Hessian matrix is the matrix of second partial derivatives of the log
likelihood. The test requires that a pivot for sweeping this matrix be at least this
number times a norm of the matrix. Values of the SINGULAR= option must be
numeric. By default, SINGULAR=1E−12.

STB
displays the standardized estimates for the parameters for the continuous explana-
tory variables in the “Analysis of Maximum Likelihood Estimates” table. The stan-
dardized estimate ofθi is given byθ̂i/(s/si), wheresi is the total sample standard
deviation for theith explanatory variable and

s =


π/
√

3 Logistic
1 Normal
π/
√

6 Extreme-value
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For the intercept parameters and parameters associated with a CLASS variable, the
standardized estimates are set to missing.

TECHNIQUE=FISHER | NEWTON
TECH=FISHER | NEWTON

specifies the optimization technique for estimating the regression parameters.
NEWTON (or NR) is the Newton-Raphson algorithm and FISHER (or FS) is the
Fisher-scoring algorithm. Both techniques yield the same estimates, but the esti-
mated covariance matrices are slightly different except for the case when the LOGIT
link is specified for binary response data. The default is TECHNIQUE=FISHER.
See the section“Iterative Algorithms for Model-Fitting”on page 4275 for details.

VADJUST=DF | MOREL | NONE < ( Morel-options ) >
VARADJ=DF | MOREL | NONE < ( Morel-options ) >
VARADJUST=DF | MOREL | NONE < ( Morel-options ) >

specifies anadjustment to the variance estimation(on page 4286) for the regression
coefficients.

By default, PROC SURVEYLOGISTIC uses the degrees of freedom adjustment
VADJUST=DF.

You can specify the VADJUST=MOREL option for the variance adjustment proposed
by Morel (1989).

If you do not wish to use any variance adjustment, you can specify the
VADJUST=NONE option.

You can specify the followingMorel-options within parentheses after the
VADJUST=MOREL option.

ADJBOUND=φ
sets the upper bound coefficientφ in the variance adjustment. This upper bound
must be positive. By default, the procedure useφ = 0.5. See the section
“Adjustments to the Variance Estimation”on page 4286 for more details on
how this upper bound is used in the variance estimation.

DEFFBOUND=δ
sets the lower bound of the estimated design effect in the variance adjustment.
This lower bound must be positive. By default, the procedure useδ = 1. See
the section“Adjustments to the Variance Estimation”on page 4286 for more
details on how this lower bound is used in the variance estimation.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small
relative parameter change in subsequent iterations,

max
j

|δ(i)j | < value



4266 � Chapter 69. The SURVEYLOGISTIC Procedure

where

δ
(i)
j =

 θ
(i)
j − θ

(i−1)
j |θ(i−1)

j | < 0.01
θ
(i)
j −θ

(i−1)
j

θ
(i−1)
j

otherwise

andθ(i)
j is the estimate of thejth parameter at iterationi. See the section“Iterative

Algorithms for Model-Fitting”on page 4275.

STRATA Statement

STRATA |STRATUM variables < / option > ;

The STRATA statement names variables that form the strata in a stratified sample
design. The combinations of levels of STRATA variables define the strata in the
sample.

If your sample design has stratification at multiple stages, you should identify only
the first-stage strata in the STRATA statement. See the section“Specification of
Population Totals and Sampling Rates”on page 4280 for more information.

The STRATAvariablesare one or more variables in the DATA= input data set. These
variables can be either character or numeric. The formatted values of the STRATA
variables determine the levels. Thus, you can use formats to group values into levels.
See the discussion of the FORMAT procedure in theSAS Procedures Guide.

You can specify the following option in the STRATA statement after a slash (/):

LIST
displays a “Stratum Information” table, which includes values of the STRATA vari-
ables and sampling rates for each stratum. This table also provides the number of
observations and number of clusters for each stratum and analysis variable. See the
section“Displayed Output”on page 4292 for more details.

TEST Statement

< label: > TEST equation1 < , . . . , < equationk >>< /option > ;

The TEST statement tests linear hypotheses about the regression coefficients. The
Wald test is used to jointly test the null hypotheses (H0:Lθ = c) specified in a single
TEST statement. Whenc = 0 you should specify aCONTRASTstatement instead.

Eachequationspecifies a linear hypothesis (a row of theL matrix and the corre-
sponding element of thec vector); multipleequationsare separated by commas. The
label, which must be a valid SAS name, is used to identify the resulting output and
should always be included. You can submit multiple TEST statements.

The form of anequationis as follows:

term < ±term . . . > < = ±term < ±term . . . >>

whereterm is a parameter of the model, or a constant, or a constant times a param-
eter. For a binary response model, the intercept parameter is named INTERCEPT;
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for an ordinal response model, the intercept parameters are named INTERCEPT,
INTERCEPT2, INTERCEPT3, and so on. When no equal sign appears, the expres-
sion is set to 0. The following code illustrates possible uses of the TEST statement:

proc surveylogistic;
model y= a1 a2 a3 a4;
test1: test intercept + .5 * a2 = 0;
test2: test intercept + .5 * a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;

Note that the first and second TEST statements are equivalent, as are the third and
fourth TEST statements.

You can specify the following option in the TEST statement after a slash(/).

PRINT
displays intermediate calculations in the testing of the null hypothesisH0:Lθ =
c. This includesLV̂(θ̂)L′ bordered by(Lθ̂ − c) and [LV̂(θ̂)L′]−1 bordered by
[LV̂(θ̂)L′]−1(Lθ̂−c), whereθ̂ is the maximum likelihood estimator ofθ andV̂(θ̂)
is the estimated covariance matrix ofθ̂.

For more information, see the“Testing Linear Hypotheses about the Regression
Coefficients”section on page 4288.

UNITS Statement

UNITS independent1 = list1 < . . . independentk = listk >< /option > ;

The UNITS statement enables you to specify units of change for the continuous ex-
planatory variables so that customized odds ratios can be estimated. An estimate
of the corresponding odds ratio is produced for each unit of change specified for an
explanatory variable. The UNITS statement is ignored for CLASS variables. If the
CLODDS option is specified in the MODEL statement, the corresponding confidence
limits for the odds ratios are also displayed.

The termindependentis the name of an explanatory variable andlist represents a list
of units of change, separated by spaces, that are of interest for that variable. Each
unit of change in a list has one of the following forms:

• number

• SD or−SD

• number* SD

wherenumberis any nonzero number, and SD is the sample standard deviation of the
corresponding independent variable. For example,X = −2 requests an odds ratio
that represents the change in the odds when the variableX is decreased by two units.
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X = 2∗SD requests an estimate of the change in the odds whenX is increased by
two sample standard deviations.

You can specify the following option in the UNITS statement after a slash(/).

DEFAULT= list
gives a list of units of change for all explanatory variables that are not specified in
the UNITS statement. Each unit of change can be in any of the forms described
previously. If the DEFAULT= option is not specified, PROC SURVEYLOGISTIC
does not produce customized odds ratio estimates for any explanatory variable that is
not listed in the UNITS statement.

For more information, see the“Odds Ratio Estimation”section on page 4288.

WEIGHT Statement

WEIGHT variable < / option >;

The WEIGHT statement names the variable that contains the sampling weights.
This variable must be numeric. If you do not specify a WEIGHT statement, PROC
SURVEYLOGISTIC assigns all observations a weight of 1. Sampling weights must
be positive numbers. If an observation has a weight that is nonpositive or missing,
then the procedure omits that observation from the analysis. If you specify more than
one WEIGHT statement, the procedure uses only the first WEIGHT statement and
ignores the rest.

Details

Missing Values

Any observation with missing values for the response, offset, or explanatory variables
is excluded from the analysis. The estimated linear predictor, its standard error es-
timate, the fitted probabilities, and their confidence limits are not computed for any
observation with missing offset or explanatory variable values.

An observation is also excluded if it has a missing value for any STRATA
or CLUSTER variable, unless the MISSING option is used in the PROC
SURVEYLOGISTIC statement.

Missing values in your survey data (such as nonresponse) can compromise the quality
of your results. An observation without missing values is called acomplete respon-
dent, and an observation with missing values is called anincomplete respondent.

If the missing data are missing at random, then PROC SURVEYLOGISTIC produces
unbiased results when it excludes observations with missing values. However, if the
complete respondents are different from the incomplete respondents with regard to
a survey effect or outcome, then excluding nonrespondents from the analysis may
result in biased estimates that do not accurately represent the survey population.

When the missing data are not missing at random, you should use imputation to
replace missing values with acceptable values and use sampling weight adjustments
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to compensate for nonresponse before you use PROC SURVEYLOGISTIC. Refer to
Cochran (1977), Kalton and Kaspyzyk (1986), and Brick and Kalton (1996) for more
information.

Model Specification

Response Level Ordering

Response level ordering is important because, by default, PROC
SURVEYLOGISTIC models the probabilities of response levels with lower
Ordered Value. Ordered Values, displayed in the “Response Profile” table, are
assigned to response levels in ascending sorted order. That is, the lowest response
level is assigned Ordered Value 1, the next lowest is assigned Ordered Value 2, and
so on. For example, if your response variableY takes values in{1, . . . , D+ 1}, then
the functions of the response probabilities modeled with the cumulative model are

logit(Pr(Y ≤ i|x)), i = 1, . . . , D

and for the generalized logit model they are

log
(

Pr(Y = i|x)
Pr(Y = D + 1|x)

)
, i = 1, . . . , D

where the highest Ordered ValueY = D + 1 is the reference level. You can change
these default functions by specifying theEVENT=, theREF=, theDESCENDING,
or theORDER=response variable options in the MODEL statement.

For binary response data with event and nonevent categories, the procedure models
the function

logit(π) = log
(

π

1− π

)

whereπ is the probability of the response level assigned Ordered Value 1 in the
“Response Profiles” table. Since

logit(π) = −logit(1− π)

the effect of reversing the order of the two response levels is to change the signs ofα
andβ in the model logit(π) = α+ β′x.

If your event category has a higher Ordered Value than the nonevent category, the
procedure models the nonevent probability. You can use response variable options
to model the event probability. For example, suppose the binary response variableY
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takes the values 1 and 0 for event and nonevent, respectively, andExposure is the
explanatory variable. By default, the procedure assigns Ordered Value 1 to response
level Y=0, and Ordered Value 2 to response levelY=1. Therefore, the procedure
models the probability of the nonevent (Ordered Value=1) category. To model the
event probability, you can do the following:

• explicitly state which response level is to be modeled using the response vari-
able optionEVENT= in the MODEL statement,

model Y(event=’1’) = Exposure;

• specify the response variable optionDESCENDINGin the MODEL statement,

model Y(descending)=Exposure;

• specify the response variable optionREF= in the MODEL statement as the
nonevent category for the response variable. This option is most useful when
you are fitting a generalized logit model.

model Y(ref=’0’) = Exposure;

• assign a format toY such that the first formatted value (when the formatted
values are put in sorted order) corresponds to the event. For this example,Y=1
is assigned formatted value ‘event’ andY=0 is assigned formatted value ‘non-
event’. SinceORDER=FORMATTED by default, Ordered Value 1 is assigned
to response levelY=1 so the procedure models the event.

proc format;
value Disease 1=’event’ 0=’nonevent’;

run;
proc surveylogistic;

format Y Disease.;
model Y=Exposure;

run;

CLASS Variable Parameterization

Consider a model with one CLASS variableA with four levels, 1, 2, 5, and 7. Details
of the possible choices for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three dummy vari-
ables have a value of−1. For instance, if the reference level is 7
(REF=7), the design matrix columns forA are as follows.

Effect Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 −1 −1 −1
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Parameter estimates of CLASS main effects using the effect coding
scheme estimate the difference in the effect of each nonreference
level compared to the average effect over all four levels.

GLM As in PROC GLM, four columns are created to indicate group
membership. The design matrix columns forA are as follows.

GLM Coding
Design Matrix

A A1 A2 A5 A7
1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

Parameter estimates of CLASS main effects using the GLM cod-
ing scheme estimate the difference in the effects of each level com-
pared to the last level.

ORDINAL Three columns are created to indicate group membership of the
higher levels of the effect. For the first level of the effect (which
for A is 1), all three dummy variables have a value of 0. The design
matrix columns forA are as follows.

Ordinal Coding
Design Matrix

A A2 A5 A7
1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level. Parameter
estimates of CLASS main effects using the ORDINAL coding
scheme estimate the effect on the response as the ordinal factor
is set to each succeeding level. When the parameters for an ordinal
main effect have the same sign, the response effect is monotonic
across the levels.

POLYNOMIAL

POLY Three columns are created. The first represents the linear term (x),
the second represents the quadratic term (x2), and the third repre-
sents the cubic term (x3), wherex is the level value. If the CLASS
levels are not numeric, they are translated into 1, 2, 3,. . . accord-
ing to their sorting order. The design matrix columns forA are as
follows.
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Polynomial Coding
Design Matrix

A APOLY1 APOLY2 APOLY3
1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343

REFERENCE

REF Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three dummy vari-
ables have a value of 0. For instance, if the reference level is 7
(REF=7), the design matrix columns forA are as follows.

Reference Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects using the reference
coding scheme estimate the difference in the effect of each nonref-
erence level compared to the effect of the reference level.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=EFFECT. The design ma-
trix columns forA are as follows.

Orthogonal Effect Coding
Design Matrix

A AOEFF1 AOEFF2 AOEFF3
1 1.41421 −0.81650 −0.57735
2 0.00000 1.63299 −0.57735
5 0.00000 0.00000 1.73205
7 −1.41421 −0.81649 −0.57735

ORTHORDINAL

ORTHOTHERM The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=ORDINAL. The design
matrix columns forA are as follows.
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Orthogonal Ordinal Coding
Design Matrix

A AOORD1 AOORD2 AOORD3
1 −1.73205 0.00000 0.00000
2 0.57735 −1.63299 0.00000
5 0.57735 0.81650 −1.41421
7 0.57735 0.81650 1.41421

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=POLY. The design matrix
columns forA are as follows.

Orthogonal Polynomial Coding
Design Matrix

A AOPOLY1 AOPOLY2 AOPOLY5
1 −1.153 0.907 −0.921
2 −0.734 −0.540 1.473
5 0.524 −1.370 −0.921
7 1.363 1.004 0.368

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogo-
nalization to the columns for PARAM=REFERENCE. The design
matrix columns forA are as follows.

Orthogonal Reference Coding
Design Matrix

A AOREF1 AOREF2 AOREF3
1 1.73205 0.00000 0.00000
2 −0.57735 1.63299 0.00000
5 −0.57735 −0.81650 1.41421
7 −0.57735 −0.81650 −1.41421

Link Functions and the Corresponding Distributions

Four link functions are available in the SURVEYLOGISTIC procedure. The logit
function is the default. To specify a different link function, use theLINK= option in
the MODEL statement. The link functions and the corresponding distributions are as
follows:

• The logit function

g(π) = log
(

π

1− π

)
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is the inverse of the cumulative logistic distribution function, which is

F (x) =
1

1 + e−x

• The probit (or normit) function

g(π) = Φ−1(π)

is the inverse of the cumulative standard normal distribution function, which is

F (x) = Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
z2
dz

Traditionally, the probit function includes an additive constant 5, but through-
out PROC SURVEYLOGISTIC, the terms probit and normit are used inter-
changeably, defined asg(p) above.

• The complementary log-log function

g(π) = log(− log(1− π))

is the inverse of the cumulative extreme-value function (also called the
Gompertz distribution), which is

F (x) = 1− e−ex

• The generalized logit function extends the binary logit link to a vector of levels
(π1, . . . , πk+1) by contrasting each level with a fixed level

g(πi) = log
(

πi

πk+1

)
i = 1, . . . , k

The variances of the normal, logistic, and extreme-value distributions are not the
same. Their respective means and variances are

Distribution Mean Variance
Normal 0 1
Logistic 0 π2/3
Extreme-value −γ π2/6

whereγ is the Euler constant. In comparing parameter estimates using different link
functions, you need to take into account the different scalings of the corresponding
distributions and, for the complementary log-log function, a possible shift in location.
For example, if the fitted probabilities are in the neighborhood of 0.1 to 0.9, then the
parameter estimates using the logit link function should be aboutπ/

√
3 ≈ 1.8 larger

than the estimates from the probit link function.
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Model Fitting

Determining Observations for Likelihood Contributions

If you useevents/trialssyntax, each observation is split into two observations. One
has the response value 1 with a frequency equal to the frequency of the original ob-
servation (which is 1 if the FREQ statement is not used) times the value of theevents
variable. The other observation has the response value 2 and a frequency equal to
the frequency of the original observation times the value of (trials − events). These
two observations have the same explanatory variable values and the same FREQ and
WEIGHT values as the original observation.

For eithersingle-trial or events/trialssyntax, letj index all observations. In other
words, forsingle-trialsyntax,j indexes the actual observations. And, forevents/trials
syntax,j indexes the observations after splitting (as described previously). If your
data set has 30 observations and you usesingle-trial syntax,j has values from 1 to
30; if you useevents/trialssyntax,j has values from 1 to 60.

Suppose the response variable in a cumulative response model can take on the ordered
values1, . . . , k, k+1 wherek is an integer≥ 1. The likelihood for thejth observation
with ordered response valueyj and explanatory variables vector ( row vectors)xj is
given by

Lj =


F (α1 + xjβ) yj = 1
F (αi + xjβ)− F (αi−1 + xjβ) 1 < yj = i ≤ k
1− F (αk + xjβ) yj = k + 1

whereF (.) is the logistic, normal, or extreme-value distribution function,α1, . . . , αk

are ordered intercept parameters, andβ is the slope parameter vector.

For the generalized logit model, letting thek + 1st level be the reference level, the
interceptsα1, . . . , αk are unordered and the slope vectorβi varies with each logit.
The likelihood for thejth observation with ordered response valueyj and explanatory
variables vectorxj (row vectors) is given by

Lj = Pr(Y = yj |xj)

=


eαi+xjβi

1 +
∑k

i=1 e
αi+xjβi

1 ≤ yj = i ≤ k

1

1 +
∑k

i=1 e
αi+xjβi

yj = k + 1

Iterative Algorithms for Model-Fitting

Two iterative maximum likelihood algorithms are available in PROC
SURVEYLOGISTIC to obtain the maximum likelihood estimatêθ of the
model parameterθ . The default is the Fisher-scoring method, which is equivalent
to fitting by iteratively reweighted least squares. The alternative algorithm is the
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Newton-Raphson method. Both algorithms give the same parameter estimates;
The covariance matrix of̂θ is estimated in the section“Variance Estimation for
Sample Survey Data”on page 4282. For a generalized logit model, only the
Newton-Raphson technique is available. You can use theTECHNIQUE=option to
select a fitting algorithm.

Iteratively Reweighted Least-Squares Algorithm (Fisher Scoring)

LetY be the response variable which takes values1, . . . , k, k+1 (k ≥ 1). Letj index
all observations andYj be the value of response for thejth observation. Consider the
multinomial variableZj = (Z1j , . . . , Zkj)′ such that

Zij =
{

1 if Yj = i
0 otherwise

andZ(k+1)j = 1 −
∑k

i=1 Zij . With πij denoting the probability that thejth obser-
vation has response valuei, the expected value ofZj is πj = (π1j , . . . , πkj)′, and
π(k+1)j = 1−

∑k
i=1 πij . The covariance matrix ofZj is Vj , which is the covariance

matrix of a multinomial random variable for one trial with parameter vectorπj . Let
θ be the vector of regression parameters; for example,θ = (α1, . . . , αk,β

′)′ for cu-
mulative logit model. LetDj be the matrix of partial derivatives ofπj with respect
to θ. The estimating equation for the regression parameters is

∑
j

D′
jWj(Zj − πj) = 0

whereWj = wjfjV−1
j , wj andfj are the WEIGHT and FREQ values of thejth

observation.

With a starting value ofθ(0), the maximum likelihood estimate ofθ is obtained iter-
atively as

θ(i+1) = θ(i) + (
∑

j

D′
jWjDj)−1

∑
j

D′
jWj(Zj − πj)

whereDj , Wj , andπj are evaluated at theith iterationθ(i). The expression after
the plus sign is the step size. If the log-likelihood evaluated atθ(i+1) is less than that
evaluated atθ(i), thenθ(i+1) is recomputed by step-halving or ridging. The iterative
scheme continues until convergence is obtained, that is, untilθ(i+1) is sufficiently
close toθ(i). Then the maximum likelihood estimate ofθ is θ̂ = θ(i+1).

By default, starting values are zero for the slope parameters, and for the intercept
parameters, starting values are the observed cumulative logits (that is, logits of the
observed cumulative proportions of response). Alternatively, the starting values may
be specified with theINEST=option.
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Newton-Raphson Algorithm

Let

g =
∑

j

wjfj
∂lj
∂θ

H =
∑

j

−wjfj
∂2lj

∂θ2

be the gradient vector and the Hessian matrix, wherelj = logLj is the log likeli-
hood for thejth observation. With a starting value ofθ(0), the maximum likelihood
estimatêθ of θ is obtained iteratively until convergence is obtained:

θ(i+1) = θ(i) + H−1g

whereH andg are evaluated at theith iterationθ(i). If the log likelihood evaluated
atθ(i+1) is less than that evaluated atθ(i, thenθ(i+1) is recomputed by step-halving
or ridging. The iterative scheme continues until convergence is obtained, that is, until
θ(i+1) is sufficiently close toθ(i). Then the maximum likelihood estimate ofθ is
θ̂ = θ(i+1).

Convergence Criteria

Four convergence criteria are allowed, namely,ABSFCONV=, FCONV=, GCONV=,
andXCONV=. If you specify more than one convergence criterion, the optimization
is terminated as soon as one of the criteria is satisfied. If none of the criteria is
specified, the default is GCONV=1E−8.

Existence of Maximum Likelihood Estimates

The likelihood equation for a logistic regression model does not always have a finite
solution. Sometimes there is a nonunique maximum on the boundary of the parameter
space, at infinity. The existence, finiteness, and uniqueness of maximum likelihood
estimates for the logistic regression model depend on the patterns of data points in
the observation space (Albert and Anderson 1984; Santner and Duffy 1986).

Consider a binary response model. LetYj be the response of theith subject and
let xj be the vector of explanatory variables (including the constant 1 associated
with the intercept). There are three mutually exclusive and exhaustive types of data
configurations: complete separation, quasi-complete separation, and overlap.

Complete Separation There is a complete separation of data points if there
exists a vectorb that correctly allocates all observa-
tions to their response groups; that is,{

b′xj > 0 Yj = 1
b′xj < 0 Yj = 2
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This configuration gives nonunique infinite estimates.
If the iterative process of maximizing the likelihood
function is allowed to continue, the log likelihood di-
minishes to zero, and the dispersion matrix becomes
unbounded.

Quasi-Complete Separation The data are not completely separable but there is a
vectorb such that{

b′xj ≥ 0 Yj = 1
b′xj ≤ 0 Yj = 2

and equality holds for at least one subject in each
response group. This configuration also yields non-
unique infinite estimates. If the iterative process of
maximizing the likelihood function is allowed to con-
tinue, the dispersion matrix becomes unbounded and
the log likelihood diminishes to a nonzero constant.

Overlap If neither complete nor quasi-complete separation ex-
ists in the sample points, there is an overlap of sample
points. In this configuration, the maximum likelihood
estimates exist and are unique.

Complete separation and quasi-complete separation are problems typically encoun-
tered with small data sets. Although complete separation can occur with any type of
data, quasi-complete separation is not likely with truly continuous explanatory vari-
ables.

The SURVEYLOGISTIC procedure uses a simple empirical approach to recognize
the data configurations that lead to infinite parameter estimates. The basis of this ap-
proach is that any convergence method of maximizing the log likelihood must yield
a solution giving complete separation, if such a solution exists. In maximizing the
log likelihood, there is no checking for complete or quasi-complete separation if con-
vergence is attained in eight or fewer iterations. Subsequent to the eighth iteration,
the probability of the observed response is computed for each observation. If the
probability of the observed response is one for all observations, there is a complete
separation of data points and the iteration process is stopped. If the complete sep-
aration of data has not been determined and an observation is identified to have an
extremely large probability (≥0.95) of the observed response, there are two possible
situations. First, there is overlap in the data set, and the observation is an atypi-
cal observation of its own group. The iterative process, if allowed to continue, will
stop when a maximum is reached. Second, there is quasi-complete separation in the
data set, and the asymptotic dispersion matrix is unbounded. If any of the diago-
nal elements of the dispersion matrix for the standardized observations vectors (all
explanatory variables standardized to zero mean and unit variance) exceeds 5,000,
quasi-complete separation is declared and the iterative process is stopped. If either
complete separation or quasi-complete separation is detected, a warning message is
displayed in the procedure output.
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Checking for quasi-complete separation is less foolproof than checking for complete
separation. The NOCHECK option in the MODEL statement turns off the process
of checking for infinite parameter estimates. In cases of complete or quasi-complete
separation, turning off the checking process typically results in the procedure failing
to converge.

Model Fitting Statistics

Suppose the model containss explanatory effects. For thejth observation, let̂πj be
the estimated probability of the observed response. The three criteria displayed by
the SURVEYLOGISTIC procedure are calculated as follows:

• −2 Log Likelihood:

−2 Log L = −2
∑

j

wjfj log(π̂j)

wherewj andfj are the weight and frequency values of thejth observation.
For binary response models usingevents/trialssyntax, this is equivalent to

−2 Log L = −2
∑

j

wjfj{rj log(π̂j) + (nj − rj) log(1− π̂j)}

whererj is the number of events,nj is the number of trials, and̂πj is the
estimated event probability.

• Akaike Information Criterion:

AIC = −2 Log L + 2p

wherep is the number of parameters in the model. For cumulative response
models,p = k + s wherek is the total number of response levels minus one,
ands is the number of explanatory effects. For the generalized logit model,
p = k(s+ 1).

• Schwarz Criterion:

SC= −2 Log L + p log(
∑

j

fj)

wherep is as defined previously.

The−2 Log Likelihood statistic has a chi-square distribution under the null hypothe-
sis (that all the explanatory effects in the model are zero) and the procedure produces
a p-value for this statistic. The AIC and SC statistics give two different ways of ad-
justing the−2 Log Likelihood statistic for the number of terms in the model and the
number of observations used.



4280 � Chapter 69. The SURVEYLOGISTIC Procedure

Generalized Coefficient of Determination

Cox and Snell (1989, pp. 208–209) propose the following generalization of the coef-
ficient of determination to a more general linear model:

R2 = 1−
{
L(0)

L(θ̂)

} 2
n

whereL(0) is the likelihood of the intercept-only model,L(θ̂) is the likelihood of
the specified model, andn is the sample size. The quantityR2 achieves a maximum
of less than 1 for discrete models, where the maximum is given by

R2
max = 1− {L(0)}

2
n

Nagelkerke (1991) proposes the following adjusted coefficient, which can achieve a
maximum value of 1:

R̃2 =
R2

R2
max

Properties and interpretation ofR2 andR̃2 are provided in Nagelkerke (1991). In the
“Testing Global Null Hypothesis: BETA=0” table,R2 is labeled as “RSquare” and
R̃2 is labeled as “Max-rescaled RSquare.” Use theRSQUAREoption to requestR2

andR̃2.

INEST= Data Set

You can specify starting values for the iterative algorithm in the INEST= data set.

The INEST= data set contains one observation for each BY group. The INEST= data
set must contain the intercept variables (named Intercept for binary response mod-
els and Intercept, Intercept2, Intercept3, and so forth, for ordinal response models)
and all explanatory variables in the MODEL statement. If BY processing is used, the
INEST= data set should also include the BY variables, and there must be one observa-
tion for each BY group. If the INEST= data set also contains the–TYPE– variable,
only observations with–TYPE– value ’PARMS’ are used as starting values.

Survey Design Information

Specification of Population Totals and Sampling Rates

Variance estimates in survey samples involve a finite population correction (fpc) for
sampling without replacement. For small sampling fractions or sampling with re-
placement, it is appropriate to ignore this correction (Cochran 1977; Kish 1965), and
PROC SURVEYLOGISTIC does so by default. If your analysis requires anfpc, spec-
ify the sampling fraction using either the RATE= option or the TOTAL= option on
the PROC SURVEYLOGISTIC statement. If you do not specify one of these options,
the procedure does not use thefpcwhen computing variance estimates.
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If your design has multiple stages of selection and you are specifying the RATE=
option, you should input the first-stage sampling rate, which is the ratio of the number
of primary sampling units(PSUs) in the sample to the total number of PSUs in the
study population. If you are using the TOTAL= option for a multistage design, you
should specify the total number of PSUs in the study population. See the section
“Primary Sampling Units (PSUs)”on page 4281 for more details.

For a nonstratified sample design, or for a stratified sample design for which all the
strata have the same sampling rate or population total, you should specify the rate
or total as the value of the RATE=value option or the TOTAL=value option. If your
sample design is stratified with different sampling rates or population totals in the
strata, then you should use the RATE=SAS-data-set option or the TOTAL=SAS-data-
set option to name a SAS data set that contains the stratum sampling rates or totals.
This data set is called asecondary data set, as opposed to theprimary data setthat
you specify with the DATA= option.

The secondary data set must contain all the stratification variables listed in the
STRATA statement, as well as all the variables in the BY statement if any of these
statements are specified. If there are formats associated with the STRATA variables
and the BY variables, then the formats must be consistent in the primary and the sec-
ondary data sets. If you specify the TOTAL=SAS-data-set option, the secondary data
set must have a variable named–TOTAL– that contains the stratum population to-
tals. If you specify the RATE=SAS-data-set option, the secondary data set must have
a variable named–RATE– that contains the stratum sampling rates. If the secondary
data set contains more than one observation for any one stratum, then the procedure
uses the first value of–TOTAL– or –RATE– for that stratum and ignores the rest.

Thevalue in the RATE= option or the values of–RATE– in the secondary data set
must be positive numbers. You can specifyvalue as a number between 0 and 1; or you
can specifyvalue in percentage form as a number between 1 and 100, in which case
PROC SURVEYLOGISTIC will convert that number to a proportion. The procedure
treats the value 1 as 100%, and not the percentage form 1%.

If you specify the TOTAL=value option, thisvalue must not be less than the sample
size. If you provide stratum population totals in a secondary data set, these values
must not be less than the corresponding stratum sample sizes.

Primary Sampling Units (PSUs)

When you have clusters, orprimary sampling units(PSUs), in your sample de-
sign, the procedure estimates the variance based on the variation among PSUs. Use
the CLUSTER statement to identify the first-stage clusters in your design. PROC
SURVEYLOGISTIC assumes that each cluster represents a PSU in the sample and
that each observation is an element of a PSU. If you do not specify a CLUSTER
statement, the procedure treats each observation as a PSU.
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Variance Estimation for Sample Survey Data

Due to the variability of characteristics among items in the population, researchers
apply scientific sample designs in the sample selection process to reduce the risk of
a distorted view of the population, and they make inferences about the population
based on the information from the sample survey data. In order to make statistically
valid inferences for the population, they must incorporate the sample design in the
data analysis.

The SURVEYLOGISTIC procedure fits linear logistic regression models for discrete
response survey data using the maximum likelihood method. In the variance estima-
tion, the procedure incorporates complex survey sample designs, including designs
with stratification, clustering, and unequal weighting.

The procedure uses the Taylor expansion method to estimate sampling errors of esti-
mators based on complex sample designs. This method obtains a linear approxima-
tion for the estimator and then uses the variance estimate for this approximation to
estimate the variance of the estimate itself. See Binder (1981, 1983), Roberts, Rao,
and Kumar (1987), Skinner, Holt, and Smith (1989), Morel (1989), and Lehtonen and
Pahkinen (1995) for papers that describe logistic regression for sample survey data.
When there are clusters, or primary sampling units (PSUs), in the sample design, the
procedure estimates variance from the variation among PSUs. When the design is
stratified, the procedure pools stratum variance estimates to compute the overall vari-
ance estimate. Fort tests of the estimates, the degrees of freedom equals the number
of clusters minus the number of strata in the sample design. Statistical analyses, such
as hypothesis tests and confident limits, will depend on these variance estimates.

Notation

Let Y be the response variable with categories1, 2, . . . , D,D + 1. Thep covariates
are denoted by ap-dimension row vectorx.

For a stratified clustered sample design, each observation is represented by a row
vector,

(whij ,y′hij , yhij(D+1),xhij)

where

• h = 1, 2, . . . ,H is the stratum number with a total ofH strata

• i = 1, 2, . . . , nh is the cluster number within stratumh, with a total ofnh

clusters

• j = 1, 2, . . . ,mhi is the unit number within clusteri of stratumh, with a total
of mhi units

• whij denotes the sampling weight

• yhij is aD-dimensional column vector whose elements are indicator variables
for the firstD categories for variableY . If the response of thejth member of
theith cluster in stratumh falls in categoryd, thedth row of the vector is one,
and the remaining elements of the vector are zero, whered = 1, 2, . . . , D
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• yhij(D+1) is the indicator variable for the(D + 1) category of variableY

• xhij denotes thek-dimensional row vector of explanatory variables for thejth
member of theith cluster in stratumh. If there is an intercept, thenxhij1 ≡ 1.

• ñ =
∑H

h=1 nh is the total number of clusters in the entire sample

• n =
∑H

h=1

∑nh
i=1mhi is the total sample size

The following notations are also used in the following sections:

• fh denotes the sampling rate for stratumh

• πhij is the expected vector of the response variable

πhij = E(yhij |xhij)
= (πhij1, πhij2, . . . , πhijD)′

πhij(D+1) = E(yhij(D+1)|xhij)

Note thatπhij(D+1) = 1− 1′πhij where1 is aD-dimensional column vector whose
elements are1.

Likelihood Function

Let f(·) be a link function such that

π = f(x,θ)

whereθ is ap-dimensional column vector for regression coefficients. The pseudo log
likelihood is

l(θ) =
H∑

h=1

nh∑
i=1

mhi∑
j=1

whij

(
(log(πhij))′yhij + log(πhij(D+1))yhij(D+1)

)

Denote the maximum likelihood estimator asθ̂, which is a solution to the estimating
equations:

H∑
h=1

nh∑
i=1

mhi∑
j=1

whijD′
hij

(
diag(πhij)− πhijπ

′
hij

)−1 (yhij − πhij) = 0

whereDhij is the matrix of partial derivatives of the link functionf with respect to
θ.

To obtain the maximum likelihood estimator̂θ, the procedure uses iterations with a
starting valueθ(0) for θ. See the section“Iterative Algorithms for Model-Fitting”on
page 4275 for detail.
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Generalized Logistic Model

Formulation of the generalized logit models for nominal response variables can be
found in Agresti (1990). Without loss of generality, let the last category,D+1, be the
reference category for the response variableY . The link function for the generalized
logistic model is defined as

πhijd =
exhijβd

1 +
∑D

r=1 e
xhijβr

and the model parameters are:

βd = (βd1, βd2, . . . , βdk)′

θ = (β′
1,β

′
2, . . . ,β

′
D)′

for d = 1, 2, . . . , D.

Cumulative Logit Model

Details of the cumulative logit model (or proportional odds model) can be found in
McCullagh and Nelder (1989). Denote the cumulative sum of the expected propor-
tions for the firstd categories of variableY by

Fhijd =
d∑

r=1

πhijr

for d = 1, 2, . . . , D. Then the link function for the proportional odds model is

log
(

Fhijd

1− Fhijd

)
= αd + xhijβ

with the model parameters:

β = (β1, β2, . . . , βk)′

α = (α1, α2, . . . , αD)′, α1 < α2 < · · · < αD

θ = (α′,β′)′

Complementary log-log Model

Use the notations in the previous section, the link function for the complementary
log-log is

log(− log(1− Fhijd)) = αd + xhijβ

with the model parameters:

β = (β1, β2, . . . , βk)′

α = (α1, α2, . . . , αD)′, α1 < α2 < · · · < αD

θ = (α′,β′)′
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Probit Model

Another commonly used model for ordinal responses is the probit model with the link
function

Fhijd = Φ(αd + xhijβ)

where

Φ(z0) =
1√
2π

∫ z0

−∞
e−

1
2
z2
dz

is the cumulative distribution function of the standard normal distribution. The model
parameters are:

β = (β1, β2, . . . , βk)′

α = (α1, α2, . . . , αD)′, α1 < α2 < · · · < αD

θ = (α′,β′)′

Estimated Variances

Using Taylor approximation, the estimated covariance matrix ofθ̂ is

V̂ (θ̂) = Q̂−1ĜQ̂−1

where

Q̂ =
H∑

h=1

nh∑
i=1

mhi∑
j=1

whijD̂hij

(
diag(π̂hij)− π̂hijπ̂hij

′)−1 D̂′
hij

Ĝ =
n− 1
n− p

H∑
h=1

nh(1− fh)
nh − 1

nh∑
i=1

(ehi· − ēh··)(ehi· − ēh··)′

ehi· =
mhi∑
j=1

whijD̂hij

(
diag(π̂hij)− π̂hijπ̂hij

′)−1 (yhij − π̂hij)

ēh·· =
1
nh

nh∑
i=1

ehi·

If you use the Newton-Raphson algorithm by using theTECHNIQUE=NEWTON
option in the MODEL statement, the matrix̂Q is replaced by the negative (expected)
Hessian matrix,

The matrices of partial derivativeŝDhij and the response probabilitiesπ̂hij are eval-
uated at̂θ.
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Adjustments to the Variance Estimation

The factor(n − 1)/(n − p) in the computation of the matrix̂G should reduce the
small sample bias associated with using the estimated function to calculate deviations
( Morel 1989; Hidiroglou, Fuller, and Hickman 1980). For simple random sampling,
this factor contributes to the degrees of freedom correction applied to the residual
mean square for ordinary least squares in whichp parameter are estimated. By de-
fault, the procedure will use this adjustment in variance estimation. It is equivalent
to specify theVADJUST=DF optionin the MODEL statement. If you do not wish to
use this multiplier in the variance estimation, you can specify theVADJUST=NONE
optionin the MODEL statement to suppress this factor.

In addition, you can specify theVADJUST=MOREL optionto compute a further
adjustment to the variance estimator for the regression coefficientsθ̂, introduced by
Morel (1989):

V̂ (θ̂) = Q̂−1ĜQ̂−1 + κλQ̂−1

where for given nonnegative constantsδ andφ,

κ = max
(
δ, p−1tr

(
Q̂−1Ĝ

) )
λ = min

(
φ,

p

ñ− p

)

The adjustmentκλQ̂−1 will

• reduce the small sample bias reflected in inflated Type 1 error rates

• guarantee a positive definite estimated covariance matrix provided thatQ̂−1

exists

• be close to zero when the sample size becomes large

In this adjustment,κ is an estimate of the design effect, which has been
bounded below by the positive constantδ. You can use DEFFBOUND=δ in the
VADJUST=MOREL optionin the MODEL statement to specify this lower bound;
by default, the procedure usesδ = 1. The factorλ converges to zero when the sample
size becomes large, andλ has an upper boundφ. You can use ADJBOUND=φ in the
VADJUST=MOREL optionin the MODEL statement to specify this upper bound;
by default, the procedure usesφ = 0.5.
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Hypothesis Testing and Estimation

Score Statistics and Tests

To understand the general form of the score statistics, letg(θ) be the vector of first
partial derivatives of the log likelihood with respect to the parameter vectorθ, and let
g(θ) be the matrix of second partial derivatives of the log likelihood with respect to
θ. That is,g(θ) is the gradient vector, andH(θ) is the Hessian matrix. LetI(θ) be
either−H(θ) or the expected value of−H(θ). Consider a null hypothesisH0. Let
θ̂0 be the MLE ofθ underH0. The chi-square score statistic for testingH0 is defined
by

g′(θ̂0)I−1(θ̂0)g(θ̂0)

and it has an asymptoticχ2 distribution withr degrees of freedom underH0, where
r is the number of restrictions imposed onθ byH0.

Testing the Parallel Lines Assumption

For an ordinal response, PROC SURVEYLOGISTIC performs a test of the paral-
lel lines assumption. In the displayed output, this test is labeled “Score Test for
the Equal Slopes Assumption” when theLINK= option is NORMIT or CLOGLOG.
When LINK=LOGIT, the test is labeled as “Score Test for the Proportional Odds
Assumption” in the output. This section describes the methods used to calculate the
test.

For this test the number of response levels,D + 1, is assumed to be strictly greater
than 2. LetY be the response variable taking values1, . . . , D,D + 1. Suppose there
arek explanatory variables. Consider the general cumulative model without making
the parallel lines assumption

g(Pr(Y ≤ d | x)) = (1,x)θd, 1 ≤ d ≤ D

whereg(·) is the link function, andθd = (αd, βd1, . . . , βdk)′ is a vector of unknown
parameters consisting of an interceptαd andk slope parametersβk1, . . . , βkd. The
parameter vector for this general cumulative model is

θ = (θ′1, . . . ,θ
′
D)′

Under the null hypothesis of parallelismH0:β1i = β2i = · · · = βDi, 1 ≤ i ≤ k,
there is a single common slope parameter for each of thes explanatory variables. Let
β1, . . . , βk be the common slope parameters. Letα̂1, . . . , α̂D andβ̂1, . . . , β̂D be the
MLEs of the intercept parameters and the common slope parameters. Then, under
H0, the MLE ofθ is

θ̂0 = (θ̂
′
1, . . . , θ̂

′
D)′ with θ̂d = (α̂d, β̂1, . . . , β̂k)′ 1 ≤ d ≤ D
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and the chi-squared score statisticg′(θ̂0)I−1(θ̂0)g(θ̂0) has an asymptotic chi-square
distribution withk(D−1) degrees of freedom. This tests the parallel lines assumption
by testing the equality of separate slope parameters simultaneously for all explanatory
variables.

Wald Confidence Intervals for Parameters

Wald confidence intervals are sometimes called the normal confidence intervals. They
are based on the asymptotic normality of the parameter estimators. The100(1−α)%
Wald confidence interval forθj is given by

θ̂j ± z1−α/2σ̂j

wherezp is the100pth percentile of the standard normal distribution,θ̂j is the max-
imum likelihood estimate ofθj , and σ̂j is the standard error estimate ofθ̂j in the
section“Variance Estimation for Sample Survey Data”on page 4282.

Testing Linear Hypotheses about the Regression Coefficients

Linear hypotheses forθ are expressed in matrix form as

H0:Lθ = c

whereL is a matrix of coefficients for the linear hypotheses, andc is a vector of
constants. The vector of regression coefficientsθ includes slope parameters as well
as intercept parameters. The Wald chi-square statistic for testingH0 is computed as

χ2
W = (Lθ̂ − c)′[LV̂(θ̂)L′]−1(Lθ̂ − c)

whereV̂(θ̂) is the estimated covariance matrix in the section“Variance Estimation
for Sample Survey Data”on page 4282. UnderH0, χ2

W has an asymptotic chi-square
distribution withr degrees of freedom, wherer is the rank ofL.

Odds Ratio Estimation

Consider a dichotomous response variable with outcomesevent and nonevent.
Consider a dichotomous risk factor variable X that takes the value 1 if the risk factor
is present and 0 if the risk factor is absent. According to the logistic model, the log
odds function,g(X), is given by

g(X) ≡ log
(

Pr(event| X)
Pr(nonevent| X)

)
= β0 + β1X

The odds ratioψ is defined as the ratio of the odds for those with the risk factor
(X = 1) to the odds for those without the risk factor (X = 0). The log of the odds
ratio is given by

log(ψ) ≡ log(ψ(X = 1, X = 0)) = g(X = 1)− g(X = 0) = β1
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The parameter,β1, associated with X represents the change in the log odds from
X = 0 toX = 1. So, the odds ratio is obtained by simply exponentiating the value
of the parameter associated with the risk factor. The odds ratio indicates how the odds
of eventchange as you changeX from 0 to 1. For instance,ψ = 2 means that the
odds of an event whenX = 1 are twice the odds of an event whenX = 0.

Suppose the values of the dichotomous risk factor are coded as constantsa and b
instead of 0 and 1. The odds whenX = a becomeexp(β0 +aβ1), and the odds when
X = b becomeexp(β0 + bβ1). The odds ratio corresponding to an increase inX
from a to b is

ψ = exp[(b− a)β1] = [exp(β1)]b−a ≡ [exp(β1)]c

Note that for anya and b such thatc = b − a = 1, ψ = exp(β1). So the odds
ratio can be interpreted as the change in the odds for any increase of one unit in the
corresponding risk factor. However, the change in odds for some amount other than
one unit is often of greater interest. For example, a change of one pound in body
weight may be too small to be considered important, while a change of 10 pounds
may be more meaningful. The odds ratio for a change inX from a to b is estimated
by raising the odds ratio estimate for a unit change inX to the power ofc = b− a as
shown previously.

For a polytomous risk factor, the computation of odds ratios depends on how the risk
factor is parameterized. For illustration, suppose thatRace is a risk factor with four
categories: White, Black, Hispanic, and Other.

For the effect parameterization scheme (PARAM=EFFECT) with White as the refer-
ence group, the design variables forRace are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White −1 −1 −1

The log odds for Black is

g(Black) = β0 + β1(X1 = 1) + β2(X2 = 0) + β3(X3 = 0)
= β0 + β1

The log odds for White is

g(White) = β0 + β1(X1 = −1) + β2(X2 = −1) + β3(X3 = −1))
= β0 − β1 − β2 − β3
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Therefore, the log odds ratio of Black versus White becomes

log(ψ(Black,White)) = g(Black)− g(White)
= 2β1 + β2 + β3

For the reference cell parameterization scheme (PARAM=REF) with White as the
reference cell, the design variables for race are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White 0 0 0

The log odds ratio of Black versus White is given by

log(ψ(Black,White))
= g(Black)− g(White)
= (β0 + β1(X1 = 1) + β2(X2 = 0)) + β3(X3 = 0))−

(β0 + β1(X1 = 0) + β2(X2 = 0) + β3(X3 = 0))
= β1

For the GLM parameterization scheme (PARAM=GLM), the design variables are as
follows.

Design Variables
Race X1 X2 X3 X4

Black 1 0 0 0
Hispanic 0 1 0 0

Other 0 0 1 0
White 0 0 0 1

The log odds ratio of Black versus White is

log(ψ(Black,White))
= g(Black)− g(White)
= (β0 + β1(X1 = 1) + β2(X2 = 0) + β3(X3 = 0) + β4(X4 = 0))−

(β0 + β1(X1 = 0) + β2(X2 = 0) + β3(X3 = 0) + β4(X4 = 1))
= β1 − β4
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Consider the hypothetical example of heart disease among race in Hosmer and
Lemeshow (2000, p. 51). The entries in the following contingency table represent
counts.

Race
Disease Status White Black Hispanic Other

Present 5 20 15 10
Absent 20 10 10 10

The computation of odds ratio of Black versus White for various parameterization
schemes is tabulated in the following table.

Odds Ratio of Heart Disease Comparing Black to White
Parameter Estimates

PARAM β̂1 β̂2 β̂3 β̂4 Odds Ratio Estimation
EFFECT 0.7651 0.4774 0.0719 exp(2× 0.7651 + 0.4774 + 0.0719) = 8
REF 2.0794 1.7917 1.3863 exp(2.0794) = 8
GLM 2.0794 1.7917 1.3863 0.0000exp(2.0794) = 8

Since the log odds ratio (log(ψ)) is a linear function of the parameters, the Wald
confidence interval forlog(ψ) can be derived from the parameter estimates and the
estimated covariance matrix. Confidence intervals for the odds ratios are obtained
by exponentiating the corresponding confidence intervals for the log odd ratios. In
the displayed output of PROC SURVEYLOGISTIC, the “Odds Ratio Estimates” ta-
ble contains the odds ratio estimates and the corresponding 95% Wald confidence
intervals computed using the covariance matrix in the section“Variance Estimation
for Sample Survey Data”on page 4282. For continuous explanatory variables, these
odds ratios correspond to a unit increase in the risk factors.

To customize odds ratios for specific units of change for a continuous risk factor, you
can use theUNITS statement to specify a list of relevant units for each explanatory
variable in the model. Estimates of these customized odds ratios are given in a sepa-
rate table. Let(Lj , Uj) be a confidence interval forlog(ψ). The corresponding lower
and upper confidence limits for the customized odds ratioexp(cβj) are exp(cLj)
andexp(cUj), respectively (forc > 0), or exp(cUj) andexp(cLj), respectively (for
c < 0). You use theCLODDS= option to request the confidence intervals for the
odds ratios.

For a generalized logit model, odds ratios are computed similarly, exceptD odds
ratios are computed for each effect, corresponding to theD logits in the model.



4292 � Chapter 69. The SURVEYLOGISTIC Procedure

Rank Correlation of Observed Responses and Predicted Probabilities

The predicted mean score of an observation is the sum of the Ordered Values (shown
in the Response Profile table) minus one, weighted by the corresponding predicted
probabilities for that observation; that is, the predicted means score=

∑D+1
d=1 (d −

1)π̂d, whereD+1 is the number of response levels andπ̂d is the predicted probability
of thedth (ordered) response.

A pair of observations with different observed responses is said to beconcordantif
the observation with the lower ordered response value has a lower predicted mean
score than the observation with the higher ordered response value. If the observation
with the lower ordered response value has a higher predicted mean score than the
observation with the higher ordered response value, then the pair isdiscordant. If the
pair is neither concordant nor discordant, it is atie. Enumeration of the total numbers
of concordant and discordant pairs is carried out by categorizing the predicted mean
score into intervals of lengthD/500 and accumulating the corresponding frequencies
of observations.

LetN be the sum of observation frequencies in the data. Suppose there is a total oft
pairs with different responses,nc of them are concordant,nd of them are discordant,
andt−nc−nd of them are tied. PROC SURVEYLOGISTIC computes the following
four indices of rank correlation for assessing the predictive ability of a model:

c = (nc + 0.5(t− nc − nd))/t
Somers’D = (nc − nd)/t
Goodman-Kruskal Gamma= (nc − nd)/(nc + nd)
Kendall’s Tau-a = (nc − nd)/(0.5N(N − 1))

Note thatc also gives an estimate of the area under the receiver operating character-
istic (ROC) curve when the response is binary (Hanley and McNeil 1982).

For binary responses, the predicted mean score is equal to the predicted probability
for Ordered Value 2. As such, the preceding definition of concordance is consistent
with the definition used in previous releases for the binary response model.

Output

Displayed Output

The displayed output of the SURVEYLOGISTIC procedure includes the following:

• name of the input Data Set

• name and label of the Response Variable if thesingle-trialsyntax is used

• number of Response Levels

• name of the Events Variable if theevents/trialssyntax is used

• name of the Trials Variable if theevents/trialssyntax is used

• Number of Observations read from the input data set
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• Number of Observations used in the analysis

• name of the Frequency Variable if the FREQ statement is specified

• Sum of Frequencies of all the observations read from the input data set

• Sum of Frequencies of all the observations used in the analysis

• name of the Weight Variable if the WEIGHT statement is specified

• Sum of Weights of all the observations read from the input data set

• Sum of Weights of all the observations used in the analysis

• name of the Offset Variable if the OFFSET= option is specified

• name(s) of the stratification variable(s) if the STRATA statement is specified

• total number of strata if the STRATA statement is specified

• name(s) of the cluster variable(s) if the CLUSTER statement is specified

• total number of clusters if the CLUSTER statement is specified

• Sum of Weights of all the observations used in the analysis

• Link Function

• variance adjustment method

• parameters used in the VADJUST=MOREL option if this option is specified

• “Response Profile” table, which gives, for each response level, the ordered
value (an integer between one and the number of response levels, inclusive);
the value of the response variable if thesingle-trialsyntax is used or the values
“EVENT” and “NO EVENT” if the events/trialssyntax is used; the count or
frequency; and the sum of weights if the WEIGHT statement is specified

• “Class Level Information” table, which gives the level and the design variables
for each CLASS explanatory variable

• “Maximum Likelihood Iterative Phase” table, which gives the iteration number,
the step size (in the scale of 1.0, .5, .25, and so on) or the ridge value,−2
log likelihood, and parameter estimates for each iteration. Also displayed are
the last evaluation of the gradient vector and the last change in the−2 log
likelihood. You need to use the ITPRINT option in the MODEL statement to
obtain this table

• score test result for testing the parallel lines assumption, if an ordinal response
model is fitted. If LINK=CLOGLOG or LINK=PROBIT, this test is labeled
“Score Test for the Parallel Slopes Assumption.” The proportion odds assump-
tion is a special case of the parallel lines assumption when LINK=LOGIT. In
this case, the test is labeled “Score Test for the Proportional Odds Assumption”

• “Model Fit Statistics” and “Testing Global Null Hypothesis: BETA=0” tables,
which give the various criteria (−2 Log L, AIC, SC) based on the likelihood
for fitting a model with intercepts only and for fitting a model with intercepts
and explanatory variables. If you specify the NOINT option, these statistics
are calculated without considering the intercept parameters. The third column
of the table gives the chi-square statistics andp-values for the−2 Log L statis-
tic and for the Score statistic. These test the joint effect of the explanatory
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variables included in the model. The Score criterion is always missing for the
models identified by the first two columns of the table. Note also that the first
two rows of the Chi-Square column are always missing, since tests cannot be
performed for AIC and SC

• generalizedR2 measures for the fitted model if you specify the RSQUARE
option in the MODEL statement

• “Type III Analysis of Effects” table if the model contains an effect involving a
CLASS variable. This table gives the Wald Chi-square statistic, the degrees of
freedom, and thep-value for each effect in the model

• “Analysis of Maximum Likelihood Estimates” table, which includes

− maximum likelihood estimate of the parameter

− estimated standard error of the parameter estimate, computed as the
square root of the corresponding diagonal element of the estimated co-
variance matrix

− Wald chi-square statistic, computed by squaring the ratio of the parameter
estimate divided by its standard error estimate

− p-value of the Wald chi-square statistic with respect to a chi-square dis-
tribution with one degree of freedom

− standardized estimate for the slope parameter, given byβ̂i/(s/si), where
si is the total sample standard deviation for theith explanatory variable
and

s =


π/
√

3 Logistic
1 Normal
π/
√

6 Extreme-value

You need to specify the STB option in the MODEL statement to obtain
these estimates. Standardized estimates of the intercept parameters are
set to missing.

− value of (eβ̂i) for each slope parameterβi if you specify the EXPB option
in the MODEL statement. For continuous variables, this is equivalent to
the estimated odds ratio for a 1 unit change.

− label of the variable (if space permits) if you specify the PARMLABEL
option in the MODEL statement. Due to constraints on the line size,
the variable label may be suppressed in order to display the table in one
panel. Use the SAS system option LINESIZE= to specify a larger line
size to accommodate variable labels. A shorter line size can break the
table into two panels allowing labels to be displayed.

• “Odds Ratio Estimates” table, which contains the odds ratio estimates and the
corresponding 95% Wald confidence intervals. For continuous explanatory
variables, these odds ratios correspond to a unit increase in the risk factors.

• measures of association between predicted probabilities and observed re-
sponses, which include a breakdown of the number of pairs with different
responses, and four rank correlation indexes: Somers’D, Goodman-Kruskal
Gamma, and Kendall’s Tau-a, andc
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• confidence intervals for all the parameters if you use the CLPARM option in
the MODEL statement

• confidence intervals for all the odds ratios if you use the CLODDS option in
the MODEL statement

• “Analysis of Effects not in the Model” table, which gives the score chi-square
statistic for testing the significance of each variable not in the model after ad-
justing for the variables already in the model, and thep-value of the chi-square
statistic with respect to a chi-square distribution with one degree of freedom.
You specify the DETAILS option in the MODEL statement to obtain this table.

• estimated covariance matrix of the parameter estimates if you use the COVB
option in the MODEL statement

• estimated correlation matrix of the parameter estimates if you use the CORRB
option in the MODEL statement

• “Linear Hypothesis Testing” table, which gives the result of the Wald test for
each TEST statement (if specified)

ODS Table Names

PROC SURVEYLOGISTIC assigns a name to each table it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 69.2. ODS Tables Produced in PROC SURVEYLOGISTIC

ODS Table Name Description Statement Option
ClassLevelInfo CLASS variable levels and

design variables
MODEL default (with CLASS

vars)
CLOdds Wald’s confidence limits for

odds ratios
MODEL CLODDS

CLparmWald Wald’s confidence limits for
parameters

MODEL CLPARM

ContrastCoeff L matrix from CONTRAST CONTRAST E
ContrastEstimate Estimates from CONTRAST CONTRAST ESTIMATE=
ContrastTest Wald test for CONTRAST CONTRAST default
ConvergenceStatus Convergence status MODEL default
CorrB Estimated correlation matrix

of parameter estimators
MODEL CORRB

CovB Estimated covariance matrix
of parameter estimators

MODEL COVB

CumulativeModelTest Test of the cumulative model
assumption

MODEL (ordinal response)

DesignSummary Design summary STRATA | CLUSTER default
FitStatistics Model fit statistics MODEL default
GlobalTests Test for global null

hypothesis
MODEL default

IterHistory Iteration history MODEL ITPRINT
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Table 69.2. (continued)

ODS Table Name Description Statement Option
LastGradient Last evaluation of gradient MODEL ITPRINT
LogLikeChange Final change in the log

likelihood
MODEL ITPRINT

ModelInfo Model information PROC default
NObs Number of observations PROC default
OddsRatios Odds ratios MODEL default
ParameterEstimates Maximum likelihood

estimates of model
parameters

MODEL default

RSquare R-square MODEL RSQUARE
ResponseProfile Response profile PROC default
SimpleStatistics Summary statistics for

explanatory variables
PROC SIMPLE

StrataInfo Stratum information STRATA LIST
TestPrint1 L [cov(b)]L ’ andLb -c TEST PRINT
TestPrint2 Ginv(L [cov(b)]L ’) and

Ginv(L [cov(b)]L ’)(Lb -c)
TEST PRINT

TestStmts Linear hypotheses testing
results

TEST default

TypeIII Type III tests of effects MODEL default
(with CLASS variables)

By referring to the names of such tables, you can use the ODS OUTPUT statement
to place one or more of these tables in output data sets.

Examples

Example 69.1. Logistic Regression with Different Link
Functions for Stratified Cluster Sampling

A market research firm conducts a survey among undergraduate students at a certain
university to evaluate three new Web designs for a commercial Web site targeting
undergraduate students at the university.

The sample design is a stratified sample where strata are students’ classes. Within
each class, 300 students are randomly selected using simple random sampling without
replacement. The total number of students in each class in the fall semester of 2001
is shown in the following table:

Class Enrollment
1 - Freshman 3,734
2 - Sophomore 3,565
3 - Junior 3,903
4 - Senior 4,196
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This total enrollment information is saved in the SAS data setEnrollment using the
following SAS statements:

proc format ;
value Class 1=’Freshman’ 2=’Sophomore’

3=’Junior’ 4=’Senior’;
run;
data Enrollment;

format Class Class.;
input Class _TOTAL_;

datalines;
1 3734
2 3565
3 3903
4 4196
;

In the data setEnrollment, the variable–TOTAL– contains the enrollment figures
for all classes. They are also the population size for each stratum in this example.

Each student selected in the sample evaluates one randomly selected Web design
using the following scale:

1 dislike very much
2 dislike
3 neutral
4 like
5 like very much

The survey results are collected and shown in the following table, with the three
different Web designs coded as A, B, and C.

Evaluation of New Web Designs
Rating Counts

Strata Design 1 2 3 4 5

Freshman A 10 34 35 16 15
B 5 6 24 30 25
C 11 14 20 34 21

Sophomore A 19 12 26 18 25
B 10 18 32 23 26
C 15 22 34 9 20

Junior A 8 21 23 26 22
B 1 4 15 33 47
C 16 19 30 23 12

Senior A 11 14 24 33 18
B 8 15 25 30 22
C 2 34 30 18 16
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The survey results are stored in a SAS data setWebSurvey using the following SAS
statements.

proc format ;
value Design 1=’A’ 2=’B’ 3=’C’;
value Rating 1=’dislike very much’

2=’dislike’
3=’neutral’
4=’like’
5=’like very much’;

run;
data WebSurvey;

format Class Class. Design Design. Rating Rating. ;
do Class=1 to 4;

do Design=1 to 3;
do Rating=1 to 5;

input Count @@;
output;

end;
end;

end;
datalines;
10 34 35 16 15 8 21 23 26 22 5 10 24 30 21

1 14 25 23 37 11 14 20 34 21 16 19 30 23 12
19 12 26 18 25 11 14 24 33 18 10 18 32 23 17

8 15 35 30 12 15 22 34 9 20 2 34 30 18 16
;
data WebSurvey; set WebSurvey;

if Class=1 then Weight=3734/300;
if Class=2 then Weight=3565/300;
if Class=3 then Weight=3903/300;
if Class=4 then Weight=4196/300;

The data setWebSurvey contains the variablesClass, Design, Rating, Count,
andWeight. The variableclass is the stratum variable, with four strata: freshman,
sophomore, junior, and senior. The variableDesign specifies the three new Web
designs: A, B, and C. The variableRating contains students’ evaluations for the new
Web designs. The variablecounts gives the frequency with which each Web design
received each rating within each stratum. The variableweight contains the sampling
weights, which are the reciprocals of selection probabilities in this example.
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Output 69.1.1. Web Design Survey Sample (First 20 Observation)

Obs Class Design Rating Count Weight

1 Freshman A dislike very much 10 12.4467
2 Freshman A dislike 34 12.4467
3 Freshman A neutral 35 12.4467
4 Freshman A like 16 12.4467
5 Freshman A like very much 15 12.4467
6 Freshman B dislike very much 8 12.4467
7 Freshman B dislike 21 12.4467
8 Freshman B neutral 23 12.4467
9 Freshman B like 26 12.4467

10 Freshman B like very much 22 12.4467
11 Freshman C dislike very much 5 12.4467
12 Freshman C dislike 10 12.4467
13 Freshman C neutral 24 12.4467
14 Freshman C like 30 12.4467
15 Freshman C like very much 21 12.4467
16 Sophomore A dislike very much 1 11.8833
17 Sophomore A dislike 14 11.8833
18 Sophomore A neutral 25 11.8833
19 Sophomore A like 23 11.8833
20 Sophomore A like very much 37 11.8833

Output 69.1.1shows the first 20 observations of the data set.

The following SAS statements perform the logistic regression.

proc surveylogistic data=WebSurvey total=Enrollment;
stratum Class;
freq Count;
class Design;
model Rating (order=internal) = design ;
weight Weight;

run;

The PROC statement invokes PROC SURVEYLOGISTIC. The TOTAL= option
specifies the data setEnrollment, which contains the population totals in the strata.
The population totals are used to calculate the finite population correction factor in
the variance estimates. The response variableRating is in the ordinal scale. A cu-
mulative logit model is used to investigate the responses to the Web designs. In the
MODEL statement,rating is the response variable, andDesign is the effect in the
regression model. The ORDER=INTERNAL option is used for the response variable
Rating to sort the ordinal response levels ofRating by its internal (numerical) val-
ues rather than by the formatted values (e.g., “like very much”). Because the sample
design involves stratified simple random sampling, the STRATA statement is used
to specify the stratification variableClass. The WEIGHT statement specifies the
variableWeight for sampling weights.
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Output 69.1.2. Web Design Survey, Model Information

The SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.WEBSURVEY
Response Variable Rating
Number of Response Levels 5
Frequency Variable Count
Stratum Variable Class
Number of Strata 4
Weight Variable Weight
Model Cumulative Logit
Optimization Technique Fisher’s Scoring
Variance Adjustment Degrees of Freedom (DF)
Finite Population Correction Used

Response Profile

Ordered Total Total
Value Rating Frequency Weight

1 dislike very much 116 1489.0733
2 dislike 227 2933.0433
3 neutral 338 4363.3767
4 like 283 3606.8067
5 like very much 236 3005.7000

Probabilities modeled are cumulated over the lower Ordered Values.

The sample and analysis summary is shown inOutput 69.1.2. There are five response
levels for theRating with ‘dislike very much’ as the lowest ordered value. The
regression model is modeling lower cumulative probabilities using logit as the link
function. Because the TOTAL= option is used, the finite population correction is
included in the variance estimation. The sampling weight is also used in the analysis.

Output 69.1.3. Web Design Survey, Testing the Proportional Odds Assumption

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

98.1957 6 <.0001

In Output 69.1.3, the score chi-square for testing the proportional odds assumption is
98.1957, which is highly significant. This indicates that the cumulative logit model
may not adequately fit the data.

An alternative model is to use the generalized logit model with the LINK=GLOGIT
option as shown in the following SAS statements:

proc surveylogistic data=WebSurvey total=Enrollment;
stratum Class;
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freq Count;
class Design;
model Rating (ref=’neutral’) = Design /link=glogit;
weight Weight;

run;

The REF=’neutral’ option is used for the response variableRating to indicate that all
other response levels are referenced to the level ‘neutral.’ The option LINK=GLOGIT
option requests the procedure to fit a generalized logit model.

Output 69.1.4. Web Design Survey, Model Information

The SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.WEBSURVEY
Response Variable Rating
Number of Response Levels 5
Frequency Variable Count
Stratum Variable Class
Number of Strata 4
Weight Variable Weight
Model Generalized Logit
Optimization Technique Fisher’s Scoring
Variance Adjustment Degrees of Freedom (DF)
Finite Population Correction Used

Response Profile

Ordered Total Total
Value Rating Frequency Weight

1 dislike 227 2933.0433
2 dislike very much 116 1489.0733
3 like 283 3606.8067
4 like very much 236 3005.7000
5 neutral 338 4363.3767

Logits modeled use Rating=’neutral’ as the reference category.

The summary of the analysis is shown inOutput 69.1.4, which indicates that the
generalized logit model is used in the analysis.

Output 69.1.5. Web Design Survey, Class Level Information

Class Level Information

Design
Class Value Variables

Design A 1 0
B 0 1
C -1 -1
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Output 69.1.5shows the parameterization for the main effectDesign.

Output 69.1.6. Web Design Survey, Parameter and Odds Ratio Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter Rating DF Estimate Error Chi-Square Pr > ChiSq

Intercept dislike 1 -0.3964 0.0832 22.7100 <.0001
Intercept dislike very much 1 -1.0826 0.1045 107.3889 <.0001
Intercept like 1 -0.1892 0.0780 5.8888 0.0152
Intercept like very much 1 -0.3767 0.0824 20.9223 <.0001
Design A dislike 1 -0.0942 0.1166 0.6518 0.4195
Design A dislike very much 1 -0.0647 0.1469 0.1940 0.6596
Design A like 1 -0.1370 0.1104 1.5400 0.2146
Design A like very much 1 0.0446 0.1130 0.1555 0.6933
Design B dislike 1 0.0391 0.1201 0.1057 0.7451
Design B dislike very much 1 0.2721 0.1448 3.5294 0.0603
Design B like 1 0.1669 0.1102 2.2954 0.1298
Design B like very much 1 0.1420 0.1174 1.4641 0.2263

Odds Ratio Estimates

Point 95% Wald
Effect Rating Estimate Confidence Limits

Design A vs C dislike 0.861 0.583 1.272
Design A vs C dislike very much 1.153 0.692 1.923
Design A vs C like 0.899 0.618 1.306
Design A vs C like very much 1.260 0.851 1.865
Design B vs C dislike 0.984 0.659 1.471
Design B vs C dislike very much 1.615 0.975 2.675
Design B vs C like 1.218 0.838 1.768
Design B vs C like very much 1.389 0.925 2.086

The parameter and odds ratio estimates are are shown inOutput 69.1.6. For each
odds ratio estimate, its 95% confidence limits shown in the table contain the value
1.0. Therefore, no conclusion can be made based on this survey about which Web
design is preferred.

Example 69.2. The Household Component of the Medical
Expenditure Panel Survey (MEPS)

The Household Component of the Medical Expenditure Panel Survey (MEPS-HC)
is designed to produce national and regional estimates of the health care use, ex-
penditures, sources of payment, and insurance coverage of the U.S. civilian non-
institutionalized population (MEPS Fact Sheet, 2001). The sample design of the
survey includes stratification, clustering, multiple stages of selection, and dispropor-
tionate sampling. Furthermore, the MEPS sampling weights reflect adjustments for
survey nonresponse and adjustments to population control totals from the Current
Population Survey (Computing Standard Errors for MEPS Estimates, 2003).

In this example, the 1999 full-year consolidated data file HC-038 (PUF Data
Files, 2002) from the MEPS is used to investigate the relationship between med-
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ical insurance coverage and the demographic variables. The data can be down-
loaded directly from the Agency for Healthcare Research and Quality (AHRQ) Web
site (http://www.meps.ahrq.gov/Puf/PufDetail.asp?ID=93) in either ASCII format or
SAS transport format. The Web site includes a detailed description of the data as well
as the SAS program code used to access and to format it.

For this example, the SAS transport format data file for HC-038 is downloaded to
’C:H38.ssp’ on a Windows-based PC. The instructions on the Web site lead to the
following SAS statements for creating a SAS data set namedMEPS, which contains
only the sample design variables and other variables necessary for this analysis.

proc format;
value racex

-9 = ’NOT ASCERTAINED’
-8 = ’DK’
-7 = ’REFUSED’
-1 = ’INAPPLICABLE’
1 = ’AMERICAN INDIAN’
2 = ’ALEUT, ESKIMO’
3 = ’ASIAN OR PACIFIC ISLANDER’
4 = ’BLACK’
5 = ’WHITE’
91 = ’OTHER’
;

value sex
-9 = ’NOT ASCERTAINED’
-8 = ’DK’
-7 = ’REFUSED’
-1 = ’INAPPLICABLE’
1 = ’MALE’
2 = ’FEMALE’
;

value povcat9h
1 = ’NEGATIVE OR POOR’
2 = ’NEAR POOR’
3 = ’LOW INCOME’
4 = ’MIDDLE INCOME’
5 = ’HIGH INCOME’
;

value inscov9f
1 = ’ANY PRIVATE’
2 = ’PUBLIC ONLY’
3 = ’UNINSURED’
;

run;

libname puflib ’C:’;
filename in1 ’C:H38.ssp’;
proc xcopy in=in1 out=puflib import;
run;

data meps; set puflib.H38;
label racex= sex= inscov99= povcat99=

varstr99= varpsu99= perwt99f= totexp99=;
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format racex racex. sex sex.
povcat99 povcat9h. inscov99 inscov9f.;

keep inscov99 sex racex povcat99 varstr99
varpsu99 perwt99f totexp99;

run;

There are a total of 24,618 observations in this SAS data set. Each observation
corresponds to a person in the survey. The stratification variable isVARSTR99,
which identifies the 143 strata in the sample. The variableVARPSU99 identi-
fies the 460 PSUs in the sample. The sampling weights are stored in the variable
PERWT99F. The response variable is the health insurance coverage indicator vari-
able,INSCOV99, which has three values:

1 the person had any private insurance coverage any time during 1999
2 the person had only public insurance coverage during 1999
3 the person was uninsured during all of 1999

The demographic variables include gender (SEX), race (RACEX), and family in-
come level as a percent of the poverty line (POVCAT99). The variableRACEX has
five categories:

1 American Indian
2 Aleut, Eskimo
3 Asian or Pacific Islander
4 Black
5 White

The variablePOVCAT99 is constructed by dividing family income by the applicable
poverty line (based on family size and composition), with the resulting percentages
grouped into five categories:

1 negative or poor (less than 100%)
2 near poor (100% to less than 125%)
3 low income (125% to less than 200%)
4 middle income (200% to less than 400%)
5 high income (greater than or equal to 400%)

The data set also contains the total health care expenditure in 1999,TOTEXP99,
which is used as a covariate in the analysis.
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Output 69.2.1. 1999 Full-year MEPS (First 30 Observations)

P I T P V V
O N O E A A
V S T R R R

R C C E W S P
A A O X T T S

O S C T V P 9 R U
b E E 9 9 9 9 9 9
s X X 9 9 9 F 9 9

1 MALE WHITE MIDDLE INCOME PUBLIC ONLY 2735 14137.86 131 2
2 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 6687 17050.99 131 2
3 MALE WHITE MIDDLE INCOME ANY PRIVATE 60 35737.55 131 2
4 MALE WHITE MIDDLE INCOME ANY PRIVATE 60 35862.67 131 2
5 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 786 19407.11 131 2
6 MALE WHITE MIDDLE INCOME ANY PRIVATE 345 18499.83 131 2
7 MALE WHITE MIDDLE INCOME ANY PRIVATE 680 18499.83 131 2
8 MALE WHITE MIDDLE INCOME ANY PRIVATE 3226 22394.53 136 1
9 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 2852 27008.96 136 1

10 MALE WHITE MIDDLE INCOME ANY PRIVATE 112 25108.71 136 1
11 MALE WHITE MIDDLE INCOME ANY PRIVATE 3179 17569.81 136 1
12 MALE WHITE MIDDLE INCOME ANY PRIVATE 168 21478.06 136 1
13 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 1066 21415.68 136 1
14 MALE WHITE NEGATIVE OR POOR PUBLIC ONLY 0 12254.66 125 1
15 MALE WHITE NEGATIVE OR POOR ANY PRIVATE 0 17699.75 125 1
16 FEMALE WHITE NEGATIVE OR POOR UNINSURED 0 18083.15 125 1
17 MALE BLACK NEGATIVE OR POOR PUBLIC ONLY 230 6537.97 78 10
18 MALE WHITE LOW INCOME UNINSURED 408 8951.36 95 2
19 FEMALE WHITE LOW INCOME UNINSURED 0 11833.00 95 2
20 MALE WHITE LOW INCOME UNINSURED 40 12754.07 95 2
21 FEMALE WHITE LOW INCOME UNINSURED 51 14698.57 95 2
22 MALE WHITE LOW INCOME UNINSURED 0 3890.20 92 19
23 FEMALE WHITE LOW INCOME UNINSURED 610 5882.29 92 19
24 MALE WHITE LOW INCOME PUBLIC ONLY 24 8610.47 92 19
25 FEMALE BLACK MIDDLE INCOME UNINSURED 1758 0.00 64 1
26 MALE BLACK MIDDLE INCOME PUBLIC ONLY 551 7049.70 64 1
27 MALE BLACK MIDDLE INCOME ANY PRIVATE 65 34067.03 64 1
28 FEMALE BLACK NEGATIVE OR POOR PUBLIC ONLY 0 9313.84 73 12
29 FEMALE BLACK NEGATIVE OR POOR PUBLIC ONLY 10 14697.03 73 12
30 MALE BLACK NEGATIVE OR POOR PUBLIC ONLY 0 4574.73 73 12

Output 69.2.1displays the first 30 observations of this data set.

The following SAS statements fit a generalized logit model for the 1999 full-year
consolidated MEPS data.

proc surveylogistic data=meps;
stratum VARSTR99;
cluster VARPSU99;
weight PERWT99F;
class SEX RACEX POVCAT99;
model INSCOV99 = TOTEXP99 SEX RACEX POVCAT99 / link=glogit;

run;

The STRATUM statement specifies the stratification variableVARSTR99. The
CLUSTER statement specifies the PSU variableVARPSU99. The WEIGHT state-
ment specifies the sample weight variablePERWT99F. The demographic variables
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SEX, RACEX, andPOVCAT99 are listed in the CLASS statement to indicate that
they are categorical independent variables in the MODEL statement. In the MODEL
statement, the response variable isINSCOV99, and the independent variables are
TOTEXP99 along with the selected demographic variables. The LINK= option re-
quests the procedure to fit the generalized logit model because the response variable
INSCOV99 has nominal responses.

The results of this analysis are shown in the following tables.

Output 69.2.2. MEPS, Model Information

The SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.MEPS
Response Variable INSCOV99
Number of Response Levels 3
Stratum Variable VARSTR99
Number of Strata 143
Cluster Variable VARPSU99
Number of Clusters 460
Weight Variable PERWT99F
Model Generalized Logit
Optimization Technique Fisher’s Scoring
Variance Adjustment Degrees of Freedom (DF)

PROC SURVEYLOGISTIC lists the model fitting information and sample design
information inOutput 69.2.2:

Output 69.2.3. MEPS, Number of Observations

Number of Observations Read 24618
Number of Observations Used 23565
Sum of Weights Read 2.7641E8
Sum of Weights Used 2.7641E8

Output 69.2.3displays the number of observations and the total of sampling weights
both in the data set and used in the analysis. Only the observations with positive
person-level weight are used in the analysis. Therefore, 1,053 observations with zero
person-level weights were deleted.
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Output 69.2.4. MEPS, Response Profile

Response Profile

Ordered Total Total
Value INSCOV99 Frequency Weight

1 ANY PRIVATE 16130 204403997
2 PUBLIC ONLY 4241 41809572
3 UNINSURED 3194 30197198

Logits modeled use INSCOV99=’UNINSURED’ as the reference category.

Output 69.2.4lists the three insurance coverage levels for the response variable
INSCOV99. The “UNINSURED” category is used as the reference category in the
model.

Output 69.2.5. MEPS, Classification Levels

Class Level Information

Class Value Design Variables

SEX FEMALE 1
MALE -1

RACEX ALEUT, ESKIMO 1 0 0 0
AMERICAN INDIAN 0 1 0 0
ASIAN OR PACIFIC ISLANDER 0 0 1 0
BLACK 0 0 0 1
WHITE -1 -1 -1 -1

POVCAT99 HIGH INCOME 1 0 0 0
LOW INCOME 0 1 0 0
MIDDLE INCOME 0 0 1 0
NEAR POOR 0 0 0 1
NEGATIVE OR POOR -1 -1 -1 -1

Output 69.2.5shows the parameterization in the regression model for each categorical
independent variable.
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Output 69.2.6. MEPS, Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter INSCOV99 DF Estimate Error Chi-Square

Intercept ANY PRIVATE 1 2.7703 0.1892 214.3326
Intercept PUBLIC ONLY 1 1.9216 0.1547 154.2029
TOTEXP99 ANY PRIVATE 1 0.000215 0.000071 9.1900
TOTEXP99 PUBLIC ONLY 1 0.000241 0.000072 11.1515
SEX FEMALE ANY PRIVATE 1 0.1208 0.0248 23.7174
SEX FEMALE PUBLIC ONLY 1 0.1741 0.0308 31.9573
RACEX ALEUT, ESKIMO ANY PRIVATE 1 7.1457 0.6981 104.7599
RACEX ALEUT, ESKIMO PUBLIC ONLY 1 7.6303 0.5018 231.2565
RACEX AMERICAN INDIAN ANY PRIVATE 1 -2.0904 0.2606 64.3323
RACEX AMERICAN INDIAN PUBLIC ONLY 1 -1.8992 0.2897 42.9775
RACEX ASIAN OR PACIFIC ISLANDER ANY PRIVATE 1 -1.8055 0.2308 61.1936
RACEX ASIAN OR PACIFIC ISLANDER PUBLIC ONLY 1 -1.9914 0.2288 75.7282
RACEX BLACK ANY PRIVATE 1 -1.7517 0.1983 78.0413
RACEX BLACK PUBLIC ONLY 1 -1.7038 0.1693 101.3199
POVCAT99 HIGH INCOME ANY PRIVATE 1 1.4560 0.0685 452.1841
POVCAT99 HIGH INCOME PUBLIC ONLY 1 -0.6092 0.0903 45.5393
POVCAT99 LOW INCOME ANY PRIVATE 1 -0.3066 0.0666 21.1762
POVCAT99 LOW INCOME PUBLIC ONLY 1 -0.0239 0.0754 0.1007
POVCAT99 MIDDLE INCOME ANY PRIVATE 1 0.6467 0.0587 121.1736
POVCAT99 MIDDLE INCOME PUBLIC ONLY 1 -0.3496 0.0807 18.7732
POVCAT99 NEAR POOR ANY PRIVATE 1 -0.8015 0.1076 55.4443
POVCAT99 NEAR POOR PUBLIC ONLY 1 0.2985 0.0952 9.8308

Analysis of Maximum Likelihood Estimates

Parameter INSCOV99 Pr > ChiSq

Intercept ANY PRIVATE <.0001
Intercept PUBLIC ONLY <.0001
TOTEXP99 ANY PRIVATE 0.0024
TOTEXP99 PUBLIC ONLY 0.0008
SEX FEMALE ANY PRIVATE <.0001
SEX FEMALE PUBLIC ONLY <.0001
RACEX ALEUT, ESKIMO ANY PRIVATE <.0001
RACEX ALEUT, ESKIMO PUBLIC ONLY <.0001
RACEX AMERICAN INDIAN ANY PRIVATE <.0001
RACEX AMERICAN INDIAN PUBLIC ONLY <.0001
RACEX ASIAN OR PACIFIC ISLANDER ANY PRIVATE <.0001
RACEX ASIAN OR PACIFIC ISLANDER PUBLIC ONLY <.0001
RACEX BLACK ANY PRIVATE <.0001
RACEX BLACK PUBLIC ONLY <.0001
POVCAT99 HIGH INCOME ANY PRIVATE <.0001
POVCAT99 HIGH INCOME PUBLIC ONLY <.0001
POVCAT99 LOW INCOME ANY PRIVATE <.0001
POVCAT99 LOW INCOME PUBLIC ONLY 0.7510
POVCAT99 MIDDLE INCOME ANY PRIVATE <.0001
POVCAT99 MIDDLE INCOME PUBLIC ONLY <.0001
POVCAT99 NEAR POOR ANY PRIVATE <.0001
POVCAT99 NEAR POOR PUBLIC ONLY 0.0017

Output 69.2.6displays the parameter estimates and their standard errors.
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Output 69.2.7. MEPS, Odds Ratios

Odds Ratio Estimates

Effect INSCOV99

TOTEXP99 ANY PRIVATE
TOTEXP99 PUBLIC ONLY
SEX FEMALE vs MALE ANY PRIVATE
SEX FEMALE vs MALE PUBLIC ONLY
RACEX ALEUT, ESKIMO vs WHITE ANY PRIVATE
RACEX ALEUT, ESKIMO vs WHITE PUBLIC ONLY
RACEX AMERICAN INDIAN vs WHITE ANY PRIVATE
RACEX AMERICAN INDIAN vs WHITE PUBLIC ONLY
RACEX ASIAN OR PACIFIC ISLANDER vs WHITE ANY PRIVATE
RACEX ASIAN OR PACIFIC ISLANDER vs WHITE PUBLIC ONLY
RACEX BLACK vs WHITE ANY PRIVATE
RACEX BLACK vs WHITE PUBLIC ONLY
POVCAT99 HIGH INCOME vs NEGATIVE OR POOR ANY PRIVATE
POVCAT99 HIGH INCOME vs NEGATIVE OR POOR PUBLIC ONLY
POVCAT99 LOW INCOME vs NEGATIVE OR POOR ANY PRIVATE
POVCAT99 LOW INCOME vs NEGATIVE OR POOR PUBLIC ONLY
POVCAT99 MIDDLE INCOME vs NEGATIVE OR POOR ANY PRIVATE
POVCAT99 MIDDLE INCOME vs NEGATIVE OR POOR PUBLIC ONLY
POVCAT99 NEAR POOR vs NEGATIVE OR POOR ANY PRIVATE
POVCAT99 NEAR POOR vs NEGATIVE OR POOR PUBLIC ONLY

Odds Ratio Estimates

Point 95% Wald
Estimate Confidence Limits

1.000 1.000 1.000
1.000 1.000 1.000
1.273 1.155 1.403
1.417 1.255 1.598

>999.999 >999.999 >999.999
>999.999 >999.999 >999.999

0.553 0.340 0.901
1.146 0.603 2.179
0.735 0.500 1.082
1.045 0.656 1.665
0.776 0.639 0.943
1.394 1.132 1.717

11.595 9.301 14.455
0.274 0.213 0.353
1.990 1.607 2.464
0.492 0.395 0.614
5.162 4.200 6.343
0.356 0.280 0.451
1.213 0.903 1.630
0.680 0.527 0.877

Output 69.2.7displays the odds ratio estimates and their standard errors.

For example, after adjusting for the effects of sex, race, and total health care expen-
ditures, a person with high income is estimated to be 11.595 times more likely than a
poor person to choose private health care insurance over no insurance, but only 0.274
times as likely to choose public health insurance over no insurance.
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Chapter 70
The SURVEYMEANS Procedure
Overview

The SURVEYMEANS procedure produces estimates of survey population means and
totals from sample survey data. The procedure also produces variance estimates, con-
fidence limits, and other descriptive statistics. When computing these estimates, the
procedure takes into account the sample design used to select the survey sample. The
sample design can be a complex survey sample design with stratification, clustering,
and unequal weighting.

PROC SURVEYMEANS uses the Taylor expansion method to estimate sampling er-
rors of estimators based on complex sample designs. This method obtains a linear
approximation for the estimator and then uses the variance estimate for this approx-
imation to estimate the variance of the estimate itself (Woodruff 1971, Fuller 1975).
When there are clusters, or primary sampling units (PSUs), in the sample design,
the procedure estimates variance from the variation among PSUs. When the design
is stratified, the procedure pools stratum variance estimates to compute the overall
variance estimate.

PROC SURVEYMEANS uses the Output Delivery System (ODS) to place results
in output data sets. This is a departure from older SAS procedures that provide
OUTPUT statements for similar functionality.

Getting Started

This section demonstrates how you can use the SURVEYMEANS procedure to pro-
duce descriptive statistics from sample survey data. For a complete description of
PROC SURVEYMEANS, please refer to the“Syntax” section on page 4322. The
“Examples”section on page 4350 provides more complicated examples to illustrate
the applications of PROC SURVEYMEANS.

Simple Random Sampling

This example illustrates how you can use PROC SURVEYMEANS to estimate pop-
ulation means and proportions from sample survey data. The study population is a
junior high school with a total of 4,000 students in grades 7, 8, and 9. Researchers
want to know how much these students spend weekly for ice cream, on average, and
what percentage of students spend at least $10 weekly for ice cream.

To answer these questions, 40 students were selected from the entire student popu-
lation using simple random sampling (SRS). Selection by simple random sampling
means that all students have an equal chance of being selected, and no student can be
selected more than once. Each student selected for the sample was asked how much
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he spends for ice cream per week, on average. The SAS data set namedIceCream
saves the responses of the 40 students:

data IceCream;
input Grade Spending @@;
if (Spending < 10) then Group=’less’;

else Group=’more’;
datalines;

7 7 7 7 8 12 9 10 7 1 7 10 7 3 8 20 8 19 7 2
7 2 9 15 8 16 7 6 7 6 7 6 9 15 8 17 8 14 9 8
9 8 9 7 7 3 7 12 7 4 9 14 8 18 9 9 7 2 7 1
7 4 7 11 9 8 8 10 8 13 7 2 9 6 9 11 7 2 7 9
;

The variableGrade contains a student’s grade. The variableSpending contains a
student’s response on how much he spends per week for ice cream, in dollars. The
variableGroup is created to indicate whether a student spends at least $10 weekly
for ice cream:Group=’more’ if a student spends at least $10, orGroup=’less’ if a
student spends less than $10.

You can use PROC SURVEYMEANS to produce estimates for the entire student
population, based on this random sample of 40 students:

title1 ’Analysis of Ice Cream Spending’;
title2 ’Simple Random Sample Design’;
proc surveymeans data=IceCream total=4000;

var Spending Group;
run;

The PROC SURVEYMEANS statement invokes the procedure. The TOTAL=4000
option specifies the total number of students in the study population, or school. The
procedure uses this total to adjust variance estimates for the effects of sampling from
a finite population. The VAR statement names the variables to analyze,Spending
andGroup.

Figure 70.1displays the results from this analysis. There are a total of 40 obser-
vations used in the analysis. The “Class Level Information” table lists the two
levels of the variableGroup. This variable is a character variable, and so PROC
SURVEYMEANS provides a categorical analysis for it, estimating the relative fre-
quency or proportion for each level. If you want a categorical analysis for a numeric
variable, you can name that variable in the CLASS statement.
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Analysis of Ice Cream Spending
Simple Random Sample Design

The SURVEYMEANS Procedure

Data Summary

Number of Observations 40

Class Level Information

Class
Variable Levels Values

Group 2 less more

Statistics

Std Error Lower 95%
Variable Level N Mean of Mean CL for Mean
---------------------------------------------------------------------------------
Spending 40 8.750000 0.845139 7.040545
Group less 23 0.575000 0.078761 0.415690

more 17 0.425000 0.078761 0.265690
---------------------------------------------------------------------------------

Statistics

Upper 95%
Variable Level CL for Mean
---------------------------------
Spending 10.459455
Group less 0.734310

more 0.584310
---------------------------------

Figure 70.1. Analysis of Ice Cream Spending, Simple Random Sample Design

The “Statistics” table displays the estimates for each analysis variable. By default,
PROC SURVEYMEANS displays the number of observations, the estimate of the
mean, its standard error, and 95% confidence limits for the mean. You can ob-
tain other statistics by specifying the corresponding statistic-keywords in the PROC
SURVEYMEANS statement.

The estimate of the average weekly ice cream expense is $8.75 for students in this
school. The standard error of this estimate if $0.85, and the 95% confidence interval
for weekly ice cream expense is from $7.04 to $10.46.

The analysis variableGroup is a character variable, and so PROC SURVEYMEANS
analyzes it as categorical, estimating the relative frequency or proportion for each
level or category. These estimates are displayed in the Mean column of the
“Statistics” table. It is estimated that 57.5% of all students spend less than $10 weekly
on ice cream, while 42.5% of the students spend at least $10 weekly. The standard
error of each estimate is 7.9%.
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Stratified Sampling

Suppose that the sample of students described in the previous section was actually
selected using stratified random sampling. In stratified sampling, the study population
is divided into nonoverlapping strata, and samples are selected from each stratum
independently.

The list of students in this junior high school was stratified by grade, yielding three
strata: grades 7, 8, and 9. A simple random sample of students was selected from
each grade.Table 70.1shows the total number of students in each grade.

Table 70.1. Number of Students by Grade
Grade Number of Students

7 1,824
8 1,025
9 1,151

Total 4,000

To analyze this stratified sample, you need to provide the population totals for each
stratum to PROC SURVEYMEANS. The SAS data set namedStudentTotals con-
tains the information fromTable 70.1:

data StudentTotals;
input Grade _total_; datalines;

7 1824
8 1025
9 1151
;

The variableGrade is the stratum identification variable, and the variable–TOTAL–
contains the total number of students for each stratum. PROC SURVEYMEANS
requires you to use the variable name–TOTAL– for the stratum population totals.

The procedure uses the stratum population totals to adjust variance estimates for the
effects of sampling from a finite population. If you do not provide population totals
or sampling rates, then the procedure assumes that the proportion of the population
in the sample is very small, and the computation does not involve a finite population
correction.

In a stratified sample design, when the sampling rates in the strata are unequal, you
need to use sampling weights to reflect this information in order to produce an unbi-
ased mean estimator. In this example, the appropriate sampling weights are recipro-
cals of the probabilities of selection. You can use the following data step to create the
sampling weights:

data IceCream;
set IceCream;
if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
Weight=1/Prob;
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If you use PROC SURVEYSELECT to select your sample, PROC SURVEYSELECT
creates these sampling weights for you.

The following SAS statements perform the stratified analysis of the survey data:

title1 ’Analysis of Ice Cream Spending’;
title2 ’Stratified Simple Random Sample Design’;
proc surveymeans data=IceCream total=StudentTotals;

stratum Grade / list;
var Spending Group;
weight Weight;

run;

The PROC SURVEYMEANS statement invokes the procedure. The DATA= option
names the SAS data setIceCream as the input data set to be analyzed. The TOTAL=
option names the data setStudentTotals as the input data set containing the stratum
population totals. Comparing this to the analysis in the“Simple Random Sampling”
section on page 4315, notice that the TOTAL=StudentTotals option is used here
instead of the TOTAL=4000 option. In this stratified sample design, the population
totals are different for different strata, and so you need to provide them to PROC
SURVEYMEANS in a SAS data set.

The STRATA statement identifies the stratification variableGrade. The LIST option
in the STRATA statement requests that the procedure display stratum information.
The WEIGHT statement tells the procedure that the variableWeight contains the
sampling weights.

Analysis of Ice Cream Spending
Stratified Simple Random Sample Design

The SURVEYMEANS Procedure

Data Summary

Number of Strata 3
Number of Observations 40
Sum of Weights 4000

Class Level Information

Class
Variable Levels Values

Group 2 less more

Figure 70.2. Data Summary

Figure 70.2displays information on the input data set. There are three strata in the
design, and 40 observations in the sample. The categorical variableGroup has two
levels, ‘less’ and ‘more’.
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Analysis of Ice Cream Spending
Stratified Simple Random Sample Design

The SURVEYMEANS Procedure

Stratum Information

Stratum Population Sampling
Index Grade Total Rate N Obs Variable Level N

----------------------------------------------------------------------------
1 7 1824 1.10% 20 Spending 20

Group less 17
more 3

2 8 1025 0.88% 9 Spending 9
Group less 0

more 9
3 9 1151 0.96% 11 Spending 11

Group less 6
more 5

----------------------------------------------------------------------------

Figure 70.3. Stratum Information

Figure 70.3displays information for each stratum. The table displays a Stratum Index
and the values of the STRATA variable. The Stratum Index identifies each stratum
by a sequentially assigned number. For each stratum, the table gives the population
total (total number of students), the sampling rate, and the sample size. The stratum
sampling rate is the ratio of the number of students in the sample to the number of
students in the population for that stratum. The table also lists each analysis variable
and the number of stratum observations for that variable. For categorical variables,
the table lists each level and the number of sample observations in that level.

Analysis of Ice Cream Spending
Stratified Simple Random Sample Design

The SURVEYMEANS Procedure

Statistics

Std Error Lower 95%
Variable Level N Mean of Mean CL for Mean
---------------------------------------------------------------------------------
Spending 40 9.141298 0.531799 8.063771
Group less 23 0.544555 0.058424 0.426177

more 17 0.455445 0.058424 0.337068
---------------------------------------------------------------------------------

Statistics

Upper 95%
Variable Level CL for Mean
---------------------------------
Spending 10.218825
Group less 0.662932

more 0.573823
---------------------------------

Figure 70.4. Analysis of Ice Cream Spending, Stratified SRS Design
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Figure 70.4shows that

• the estimate of average weekly ice cream expense is $9.14 for students in this
school, with a standard error of $0.53, and a 95% confidence interval from
$8.06 to $10.22.

• an estimate of 54.5% of all students spend less than $10 weekly on ice cream,
and 45.5% spend more, with a standard error of 5.8%.

Output Data Set

PROC SURVEYMEANS uses the Output Delivery System (ODS) to create output
data sets. This is a departure from older SAS procedures that provide OUTPUT
statements for similar functionality. For more information on ODS, seeChapter 14,
“Using the Output Delivery System.”

For example, to save the “Statistics” table shown inFigure 70.4in the previous sec-
tion in an output data set, you use the ODS OUTPUT statement as follows:

title1 ’Analysis of Ice Cream Spending’;
title2 ’Stratified Simple Random Sample Design’;
proc surveymeans data=IceCream total=StudentTotals;

stratum Grade / list;
var Spending Group;
weight Weight;
ods output Statistics=MyStat;

run;

The statement

ods output Statistics=MyStat;

requests that the “Statistics” table that appears inFigure 70.4be placed in a SAS data
set namedMyStat.

The PRINT procedure displays observations of the data setMyStat:

proc print data=MyStat;
run;

Figure 70.5displays the data setMyStat.
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Analysis of Ice Cream Spending
Stratified Simple Random Sample Design
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1 Spending 40 9.141298 0.531799 8.063771 10.218825
2 Group less 23 0.544555 0.058424 0.426177 0.662932
3 Group more 17 0.455445 0.058424 0.337068 0.573823

Figure 70.5. The Data Set MyStat

The section“ODS Table Names”on page 4349 gives the complete list of the tables
produced by PROC SURVEYMEANS.

Syntax

The following statements are available in PROC SURVEYMEANS.

PROC SURVEYMEANS < options > < statistic-keywords > ;
BY variables ;
CLASS variables ;
CLUSTER variables ;
DOMAIN variables < variable∗variable

variable∗variable∗variable . . . > ;
RATIO < ’label’ > variables / variables ;
STRATA variables < / option > ;
VAR variables ;
WEIGHT variable ;

The PROC SURVEYMEANS statement invokes the procedure. It optionally names
the input data sets and specifies statistics for the procedure to compute. The PROC
SURVEYMEANS statement is required.

The VAR statement identifies the variables to be analyzed. The CLASS statement
identifies those numeric variables that are to be analyzed as categorical variables.
The STRATA statement lists the variables that form the strata in a stratified sample
design. The CLUSTER statement specifies cluster identification variables in a clus-
tered sample design. The DOMAIN statement lists the variables that define domains
for subpopulation analysis. The RATIO statement requests ratio analysis for means
or proportions of analysis variables. The WEIGHT statement names the sampling
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weight variable. You can use a BY statement with PROC SURVEYMEANS to ob-
tain separate analyses for groups defined by the BY variables.

All statements can appear multiple times except the PROC SURVEYMEANS state-
ment and the WEIGHT statement, which can appear only once.

The rest of this section gives detailed syntax information for the BY, CLASS,
CLUSTER, DOMAIN, RATIO, STRATA, VAR, and WEIGHT statements in alpha-
betical order after the description of the PROC SURVEYMEANS statement.

PROC SURVEYMEANS Statement

PROC SURVEYMEANS < options > < statistic-keywords > ;

The PROC SURVEYMEANS statement invokes the procedure. In this statement,
you identify the data set to be analyzed and specify sample design information. The
DATA= option names the input data set to be analyzed. If your analysis includes
a finite population correction factor, you can input either the sampling rate or the
population total using the RATE= or TOTAL= option. If your design is stratified,
with different sampling rates or totals for different strata, then you can input these
stratum rates or totals in a SAS data set containing the stratification variables.

In the PROC SURVEYMEANS statement, you also can usestatistic-keywordsto
specify statistics for the procedure to compute. Available statistics include the pop-
ulation mean and population total, together with their variance estimates and confi-
dence limits. You can also request data set summary information and sample design
information.

You can specify the following options in the PROC SURVEYMEANS statement:

ALPHA= α
sets the confidence level for confidence limits. The value of the ALPHA= option
must be between 0 and 1, and the default value is 0.05. A confidence level ofα
produces100(1 − α)% confidence limits. The default of ALPHA=0.05 produces
95% confidence limits.

DATA=SAS-data-set
specifies the SAS data set to be analyzed by PROC SURVEYMEANS. If you omit
the DATA= option, the procedure uses the most recently created SAS data set.

MISSING
requests that the procedure treat missing values as a valid category for all categor-
ical variables, which include categorical analysis variables, strata variables, cluster
variables, and domain variables.

ORDER=DATA | FORMATTED | INTERNAL
specifies the order in which the values of the categorical variables are to be reported.
The following shows how PROC SURVEYMEANS interprets values of the ORDER=
option:

DATA orders values according to their order in the input data set.
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FORMATTED orders values by their formatted values. This order is operating
environment dependent. By default, the order is ascending.

INTERNAL orders values by their unformatted values, which yields the same
order that the SORT procedure does. This order is operating envi-
ronment dependent.

By default, ORDER=FORMATTED.

The ORDER= option applies to all the categorical variables. When the default
ORDER=FORMATTED is in effect for numeric variables for which you have sup-
plied no explicit format, the levels are ordered by their internal values.

RATE=value |SAS-data-set
R=value |SAS-data-set

specifies the sampling rate as a nonnegativevalue, or names an input data set that
contains the stratum sampling rates. The procedure uses this information to compute
a finite population correction for variance estimation. If your sample design has mul-
tiple stages, you should specify thefirst-stage sampling rate, which is the ratio of the
number of PSUs selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same
sampling rate in all strata, you should specify a nonnegativevalue for the RATE=
option. If your design is stratified with different sampling rates in the strata, then you
should name a SAS data set that contains the stratification variables and the sampling
rates. See the section“Specification of Population Totals and Sampling Rates”on
page 4334 for more details.

The sampling ratevalue must be a nonnegative number. You can specifyvalue as a
number between 0 and 1. Or you can specifyvalue in percentage form as a num-
ber between 1 and 100, and PROC SURVEYMEANS will convert that number to a
proportion. The procedure treats the value 1 as 100%, and not the percentage form
1%.

If you do not specify theTOTAL= option or the RATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.

STACKING
requests the procedure to produce the output data sets using a stacking table structure,
which was the default in releases prior to Version 9. The new default is to produce a
rectangular table structure in the output data sets.

The STACKING option affects the following tables:

• Domain

• Ratio

• Statistics

• StrataInfo
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When you use the ODS statement to create SAS data sets for these tables in the out-
put, the data set structure can be either stacking or rectangular. A rectangular structure
creates one observation for each analysis variable in the data set. However, if you use
the STACKING option in Version 9, the procedure creates only one observation in
the output data set for all analysis variables. The following example shows these two
structures in output data sets.

data new;
input sex$ x;
datalines;

M 12
F 5
M 13
F 23
F 11
;

proc surveymeans data=new mean;
ods output statistics=rectangle;
run;

proc print data=rectangle;
run;

proc surveymeans data=new mean stacking;
ods output statistics=stacking;
run;

proc print data=stacking;
run;

Figure 70.6shows the rectangular structure of the output data set for the statistics
table.

rectangle structure in the output data set

Var Var
OBS Name Level Mean StdErr

1 x 12.800000 2.905168
2 sex F 0.600000 0.244949
3 sex M 0.400000 0.244949

Figure 70.6. Rectangular Structure in the Output Data Set

Figure 70.7shows the stacking structure of the output data set for the statistics table.
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stacking structure in the output data set

OBS x x_Mean x_StdErr sex_F sex_F_Mean

1 x 12.800000 2.905168 sex=F 0.600000

OBS sex_F_StdErr sex_M sex_M_Mean sex_M_StdErr

1 0.244949 sex=M 0.400000 0.244949

Figure 70.7. Stacking Structure in the Output Data Set

TOTAL=value |SAS-data-set
N=value |SAS-data-set

specifies the total number of primary sampling units (PSUs) in the study population
as a positivevalue, or names an input data set that contains the stratum population
totals. The procedure uses this information to compute a finite population correction
for variance estimation.

For a nonstratified sample design, or for a stratified sample design with the same
population total in all strata, you should specify a positivevalue for the TOTAL=
option. If your sample design is stratified with different population totals in the strata,
then you should name a SAS data set that contains the stratification variables and the
population totals. See the section“Specification of Population Totals and Sampling
Rates”on page 4334 for more details.

If you do not specify the TOTAL= option or the RATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.

statistic-keywords
specifies the statistics for the procedure to compute. If you do not specify
any statistic-keywords, PROC SURVEYMEANS computes the NOBS, MEAN,
STDERR, and CLM statistics by default.

The statistics produced depend on the type of the analysis variable. If you name
a numeric variable in the CLASS statement, then the procedure analyzes that vari-
able as a categorical variable. The procedure always analyzes character variables as
categorical. See the section“CLASS Statement”on page 4329 for more information.

PROC SURVEYMEANS computes MIN, MAX, and RANGE for numeric variables
but not for categorical variables. For numeric variables, the keyword MEAN pro-
duces the mean, but for categorical variables it produces the proportion in each cate-
gory or level. Also for categorical variables, the keyword NOBS produces the number
of observations for each variable level, and the keyword NMISS produces the num-
ber of missing observations for each level. If you request the keyword NCLUSTER
for a categorical variable, PROC SURVEYMEANS displays for each level the num-
ber of clusters with observations in that level. PROC SURVEYMEANS computes
SUMWGT in the same way for both categorical and numeric variables, as the sum of
the weights over all nonmissing observations.
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PROC SURVEYMEANS performs univariate analysis, analyzing each variable sep-
arately. Thus the number of nonmissing and missing observations may not be the
same for all analysis variables. See the section“Missing Values”on page 4333 for
more information.

If you use the keyword RATIO without the keyword MEAN, the keyword MEAN is
implied.

Other available statistics computed for a ratio are N, NCLU, SUMWGT, RATIO,
STDERR, DF, T, PROBT, and CLM, as listed below. If no statistics are requested,
the procedure will compute the ratio and its standard error by default for a RATIO
statement.

The valid statistic-keywords are as follows:

ALL all statistics listed

CLM 100(1− α)% two-sided confidence limits for the MEAN, whereα
is determined by theALPHA= optiondescribed on page 4323, and
the default isα = 0.05

CLSUM 100(1 − α)% two-sided confidence limits for the SUM, whereα
is determined by theALPHA= optiondescribed on page 4323, and
the default isα = 0.05

CV coefficient of variation for MEAN

CVSUM coefficient of variation for SUM

DF degrees of freedom for thet test

LCLM 100(1 − α)% one-sided lower confidence limit of the MEAN,
whereα is determined by theALPHA= option described on page
4323, and the default isα = 0.05

LCLMSUM 100(1−α)% one-sided lower confidence limit of the SUM, where
α is determined by theALPHA= option described on page 4323,
and the default isα = 0.05

MAX maximum value

MEAN mean for a numeric variable, or the proportion in each category for
a categorical variable

MIN minimum value

NCLUSTER number of clusters

NMISS number of missing observations

NOBS number of nonmissing observations

RANGE range, MAX−MIN

RATIO ratio of means or proportions

STD standard deviation of the SUM. When you request SUM, the pro-
cedure computes STD by default.

STDERR standard error of the MEAN or RATIO. When you request MEAN
or RATIO, the procedure computes STDERR by default.



4328 � Chapter 70. The SURVEYMEANS Procedure

SUM weighted sum,
∑

wiyi, or estimated population total when the ap-
propriate sampling weights are used

SUMWGT sum of the weights,
∑

wi

T t-value and its correspondingp-value with DF degrees of freedom
for

H0 : θ = 0

whereθ is the population mean or the population ratio

UCLM 100(1 − α)% one-sided upper confidence limit of the MEAN,
whereα is determined by theALPHA= option described on page
4323, and the default isα = 0.05

UCLMSUM 100(1−α)% one-sided upper confidence limit of the SUM, where
α is determined by theALPHA= option described on page 4323,
and the default isα = 0.05

VAR variance of the MEAN or RATIO

VARSUM variance of the SUM

See the section“Statistical Computations”on page 4336 for details on how PROC
SURVEYMEANS computes these statistics.

BY Statement

BY variables ;

You can specify a BY statement with PROC SURVEYMEANS to obtain separate
analyses on observations in groups defined by the BY variables.

Note that using a BY statement provides completely separate analyses of the BY
groups. It does not provide a statistically valid subpopulation or domain analysis,
where the total number of units in the subpopulation is not known with certainty. You
should use the DOMAIN statement to obtain domain analysis.

When a BY statement appears, the procedure expects the input data sets to be sorted
in order of the BY variables. Thevariablesare one or more variables in the input
data set.

If you specify more than one BY statement, the procedure uses only the latest BY
statement and ignores any previous ones.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Use the BY statement options NOTSORTED or DESCENDING in the BY
statement. The NOTSORTED option does not mean that the data are unsorted
but rather that the data are arranged in groups (according to values of the BY
variables) and that these groups are not necessarily in alphabetical or increasing
numeric order.
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• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS |CLASSES variables ;

The CLASS statement names variables to be analyzed as categorical variables. For
categorical variables, PROC SURVEYMEANS estimates the proportion in each cate-
gory or level, instead of the overall mean. PROC SURVEYMEANS always analyzes
character variables as categorical. If you want categorical analysis for a numeric
variable, you must include that variable in the CLASS statement.

The CLASSvariablesare one or more variables in the DATA= input data set. These
variables can be either character or numeric. The formatted values of the CLASS
variables determine the categorical variable levels. Thus, you can use formats to
group values into levels. Refer to the discussion of the FORMAT procedure in the
SAS Procedures Guideand to the discussions of the FORMAT statement and SAS
formats inSAS Language Reference: Dictionary.

You can use multiple CLASS statements to specify categorical variables.

When you specify class variables, you may use the SAS system option SUMSIZE=
to limit (or to specify) the amount of memory that is available for data analysis. Refer
to the chapter on SAS System options inSAS Language Reference: Dictionaryfor a
description of the SUMSIZE= option.

CLUSTER Statement

CLUSTER |CLUSTERS variables ;

The CLUSTER statement names variables that identify the clusters in a clustered
sample design. The combinations of categories of CLUSTER variables define the
clusters in the sample. If there is a STRATA statement, clusters are nested within
strata.

If your sample design has clustering at multiple stages, you should identify only the
first-stage clusters, or primary sampling units (PSUs), in the CLUSTER statement.
See the section“Primary Sampling Units (PSUs)”on page 4335 for more informa-
tion.

The CLUSTERvariablesare one or more variables in the DATA= input data set.
These variables can be either character or numeric. The formatted values of the
CLUSTER variables determine the CLUSTER variable levels. Thus, you can use
formats to group values into levels. Refer to the discussion of the FORMAT proce-
dure in theSAS Procedures Guideand to the discussions of the FORMAT statement
and SAS formats inSAS Language Reference: Dictionary.
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You can use multiple CLUSTER statements to specify cluster variables. The proce-
dure uses variables from all CLUSTER statements to create clusters.

DOMAIN Statement

DOMAIN |SUBGROUP variables < variable∗variable
variable∗variable∗variable . . . > ;

The DOMAIN statement requests analysis for subpopulations, or domains, in addi-
tion to analysis for the entire study population. The DOMAIN statement names the
variables that identify domains, which are called domain variables.

It is common practice to compute statistics for domains. The formation of these
domains may be unrelated to the sample design. Therefore, the sample sizes for
the domains are random variables. In order to incorporate this variability into the
variance estimation, you should use a DOMAIN statement.

Note that a DOMAIN statement is different from a BY statement. In a BY statement,
you treat the sample sizes as fixed in each subpopulation, and you perform analysis
within each BY group independently. See the section“Domain Statistics”on page
4342 for more details.

A domain variable can be either character or numeric. However, the procedure
treats domain variables as categorical variables. If a variable appears by itself in a
DOMAIN statement, each level of this variable determines a domain in the study
population. If two or more variables are joined by asterisks (*), then every possible
combination of levels of the variables determines a domain. The procedure performs
a descriptive analysis within each domain defined by the domain variables.

The formatted values of the domain variables determine the categorical variable lev-
els. Thus, you can use formats to group values into levels. Refer to the discussion of
the FORMAT procedure in theSAS Procedures Guideand to the discussions of the
FORMAT statement and SAS formats inSAS Language Reference: Dictionary.

RATIO Statement

RATIO < ’label’ > variables / variables ;

The RATIO statement requests ratio analysis for means or proportions of analysis
variables. A ratio statement names the variables whose means will be used as nu-
merators or denominators in a ratio. Variables appearing before the slash (/), called
numerator variables, are used for numerators. Variables appearing after the slash (/),
calleddenominator variables, are used for denominators. Thesevariablescan be any
number of analysis variables, either continuous or categorical, in the input data set.

You can optionally specify a label for each RATIO statement to identify the ratios in
the output. Labels must be enclosed in single quotes.

If a RATIO statement does not have any numerator variable or denominator variable
specified, the RATIO statement will be ignored.

A numerator or denominator variable must be an analysis variable. That is, if there is
a VAR statement, then a numerator or denominator variable must appear in the VAR



RATIO Statement � 4331

statement. If there is no VAR statement, a numerator or denominator variable must be
on the default analysis variable list (see the section“VAR Statement”on page 4332).
If a numerator or denominator variable is not an analysis variable, it is ignored.

The computation of ratios depends on whether the numerator and denominator vari-
ables are continuous or categorical.

For continuous variables, ratios are calculated with the mean of the variables. For
example, for continuous variablesX, Y, Z, andT, the following RATIO statement
requests the procedure to analyze the ratiosx̄/z̄, x̄/t̄, ȳ/z̄, andȳ/t̄:

ratio x y / z t;

If a continuous variable appears as both a numerator and a denominator variable, the
ratio of this variable itself is ignored.

For categorical variables, ratios are calculated with the proportions for the cat-
egories of a categorical variable. For example, if categorical variableGender
has values “Male” and “Female,” with proportionspm = Pr(Gender=“Male”) and
pf = Pr(Gender=“Female”), andY is a continuous variable, then the following
RATIO statement requests the procedure to analyze the ratiospm/pf , pf/pm, ȳ/pm,
andȳ/pf :

ratio Gender y / Gender;

If a categorical variable appears as both a numerator and a denominator variable, then
the ratios of the proportions for all categories are computed, except the ratio of each
category with itself.

You may have more than one RATIO statement. Each RATIO statement produces ra-
tios independently using its own numerator and denominator variables. Each RATIO
statement also produces its own ratio analysis table.

Available statistics for a ratio are

• N, number of observations used to compute the ratio

• NCLU, number of clusters

• SUMWGT, sum of weights

• RATIO, ratio

• STDERR, standard error of ratio

• VAR, variance of ratio

• T, t-value of ratio

• PROBT,p-value oft

• DF, degrees of freedom oft

• CLM, two-sided confidence limits of ratio

• UCLM, one-sided upper confidence limit of ratio
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• LCLM, one-sided lower confidence limit of ratio

The procedure will calculate these statistics based on thestatistic-keywordsdescribed
on page 4326 which you specified in the PROC statement. If a statistic-keyword is
not appropriate for RATIO statement, that statistic-keyword is ignored. If no valid
statistics are requested for a RATIO statement, the procedure will compute the ratio
and its standard error by default.

Note that ratios within a domain are currently not available.

When calculating the means or proportions for the numerator and denominator vari-
ables in a ratio, an observation is excluded if it has a missing value in either the con-
tinuous numerator variable or the denominator variable. An observation with missing
values is also excluded for the categorical numerator or denominator variables, unless
the MISSING option is used.

STRATA Statement

STRATA |STRATUM variables < / option > ;

The STRATA statement names variables that form the strata in a stratified sample
design. The combinations of categories of STRATA variables define the strata in the
sample.

If your sample design has stratification at multiple stages, you should identify only
the first-stage strata in the STRATA statement. See the section“Specification of
Population Totals and Sampling Rates”on page 4334 for more information.

The STRATAvariablesare one or more variables in the DATA= input data set. These
variables can be either character or numeric. The formatted values of the STRATA
variables determine the levels. Thus, you can use formats to group values into levels.
See the discussion of the FORMAT procedure in theSAS Procedures Guide.

You can specify the following option in the STRATA statement after a slash (/):

LIST
displays a “Stratum Information” table, which includes values of the STRATA vari-
ables and sampling rates for each stratum. This table also provides the number of
observations and number of clusters for each stratum and analysis variable. See the
section“Displayed Output”on page 4345 for more details.

VAR Statement

VAR variables ;

The VAR statement names the variables to be analyzed.

If you want a categorical analysis for a numeric variable, you must also name that
variable in the CLASS statement. For categorical variables, PROC SURVEYMEANS
estimates the proportion in each category or level, instead of the overall mean.
Character variables are always analyzed as categorical variables. See the section
“CLASS Statement”on page 4329 for more information.
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If you do not specify a VAR statement, then PROC SURVEYMEANS analyzes all
variables in the DATA= input data set, except those named in the BY, CLUSTER,
STRATA, and WEIGHT statements.

WEIGHT Statement
WEIGHT |WGT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This
variable must be numeric. If you do not specify a WEIGHT statement, PROC
SURVEYMEANS assigns all observations a weight of 1. Sampling weights must
be positive numbers. If an observation has a weight that is nonpositive or missing,
then the procedure omits that observation from the analysis. If you specify more than
one WEIGHT statement, the procedure uses only the first WEIGHT statement and
ignores the rest.

Details

Missing Values
When computing statistics for an analysis variable, PROC SURVEYMEANS omits
observations with missing values for that variable. The procedure bases statistics
for each variable only on observations that have nonmissing values for that vari-
able. If you specify theMISSING optiondescribed on page 4323 in the PROC
SURVEYMEANS statement, the procedure treats missing values of a categorical
variable as a valid category.

An observation is also excluded if it has a missing value for any STRATA or
CLUSTER variable, unless the MISSING option is used.

If an observation has a missing value or a nonpositive value for the WEIGHT variable,
then PROC SURVEYMEANS excludes that observation from the analysis.

The procedure performs univariate analysis and analyzes each VAR variable sep-
arately. Thus, the number of missing observations may be different for different
variables. You can specify the keyword NMISS in the PROC SURVEYMEANS
statement to display the number of missing values for each analysis variable in the
“Statistics” table.

If you have missing values in your survey data for any reason (such as nonresponse),
this can compromise the quality of your survey results. An observation without miss-
ing values is called a complete respondent, and an observation with missing values
is called an incomplete respondent. If the complete respondents are different from
the incomplete respondents with regard to a survey effect or outcome, then the sur-
vey estimates will be biased and will not accurately represent the survey population.
A variety of techniques in sample design and survey operations can reduce nonre-
sponse. Once data collection is complete, you can use imputation to replace miss-
ing values with acceptable values, and you can use sampling weight adjustments to
compensate for nonresponse. You should complete this data preparation and adjust-
ment before you analyze your data with PROC SURVEYMEANS. Refer to Cochran
(1977), Kalton and Kaspyzyk (1986), and Brick and Kalton (1996) for more details.
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PROC SURVEYMEANS assumes that missing data are missing at random, because
the patterns of missing data are unknown. Therefore, PROC SURVEYMEANS ex-
cludes those observations with missing values.

If there is evidence indicating that the missing data are not at random, for example, if
complete respondents are different from incomplete respondents for your study, you
can use the DOMAIN statement to compute the descriptive statistics among complete
respondents from your survey data without imputation on incomplete respondents.
SeeExample 70.4on page 4358.

If missing values result in empty strata in the sample, then they will have an impact
on the statistical computation, which uses the total number of strata. If all the obser-
vations in a stratum have missing weights or missing values for the current analysis
variable, this stratum is anempty stratum. For example,

data new;
input stratum y z w;
datalines;

1 . 13 40
1 2 9 .
1 . 5 25
2 5 10 20
2 8 60 15
;
proc surveymeans df mean nobs nmiss;

strata stratum;
var y z;
weight w;

run;

You analyze variableY and Z, with weight variableW and stratum variable
STRATUM. For variableY, all observations have missing values or missing weights
in STRATUM=1, therefore, the analysis for variable Y uses only observations
in STRATUM=2. Thus, for variableY, STRATUM=1 is an empty stratum and
STRATUM=2 is a non-empty stratum. Note, however, thatSTRATUM=1 is a non-
empty stratum for variableZ.

If your sample design contains stratification, PROC SURVEYMEANS analyzes only
the data in non-empty strata. Therefore, the total number of strata for an analysis
variable means the total number ofnon-emptystrata. In this example, the total number
of strata forY andZ is one and two, respectively.

Survey Data Analysis

Specification of Population Totals and Sampling Rates

If your analysis should include a finite population correction (fpc), you can in-
put either the sampling rate or the population total using the RATE= option or the
TOTAL= option. (You cannot specify both of these options in the same PROC
SURVEYMEANS statement.) If you do not specify one of these options, the pro-
cedure does not use thefpc when computing variance estimates. For fairly small
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sampling fractions, it is appropriate to ignore this correction. Refer to Cochran (1977)
and Kish (1965).

If your design has multiple stages of selection and you are specifying the RATE=
option, you should input the first-stage sampling rate, which is the ratio of the number
of PSUs in the sample to the total number of PSUs in the study population. If you
are specifying the TOTAL= option for a multistage design, you should input the total
number of PSUs in the study population. See the section“Primary Sampling Units
(PSUs)”on page 4335 for more details. For a nonstratified sample design, or for
a stratified sample design with the same sampling rate or the same population total
in all strata, you should use the RATE=value option or the TOTAL=value option.
If your sample design is stratified with different sampling rates or population totals
in the strata, then you can use the RATE=SAS-data-set option or the TOTAL=SAS-
data-set option to name a SAS data set that contains the stratum sampling rates or
totals. This data set is called asecondary data set, as opposed to theprimary data set
that you specify with the DATA= option.

The secondary data set must contain all the stratification variables listed in the
STRATA statement and all the variables in the BY statement. If there are for-
mats associated with the STRATA variables and the BY variables, then the for-
mats must be consistent in the primary and the secondary data sets. If you spec-
ify the TOTAL=SAS-data-set option, the secondary data set must have a variable
named–TOTAL– that contains the stratum population totals. Or if you specify
the RATE=SAS-data-set option, the secondary data set must have a variable named

–RATE– that contains the stratum sampling rates. If the secondary data set contains
more than one observation for any one stratum, then the procedure uses the first value
of –TOTAL– or –RATE– for that stratum and ignores the rest.

Thevalue in the RATE= option or the values of–RATE– in the secondary data set
must be nonnegative numbers. You can specifyvalue as a number between 0 and 1.
Or you can specifyvalue in percentage form as a number between 1 and 100, and
PROC SURVEYMEANS will convert that number to a proportion. The procedure
treats the value 1 as 100%, and not the percentage form 1%.

If you specify the TOTAL=value option,value must not be less than the sample size.
If you provide stratum population totals in a secondary data set, these values must not
be less than the corresponding stratum sample sizes.

Primary Sampling Units (PSUs)

When you have clusters, or primary sampling units (PSUs), in your sample design,
the procedure estimates variance from the variation among PSUs. See the section
“Variance and Standard Error of the Mean”on page 4338 and the section“Variance
and Standard Deviation of the Total”on page 4341. You can use the CLUSTER
statement to identify the first stage clusters in your design. PROC SURVEYMEANS
assumes that each cluster represents a PSU in the sample and that each observation
is an element of a PSU. If you do not specify a CLUSTER statement, the procedure
treats each observation as a PSU.
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Domain Analysis

It is common practice to compute statistics for subpopulations, or domains, in ad-
dition to computing statistics for the entire study population. Analysis for domains
using the entire sample is calleddomain analysis(subgroup analysis, subpopulation
analysis, subdomain analysis). The formation of these subpopulations of interest may
be unrelated to the sample design. Therefore, the sample sizes for the subpopulations
may actually be random variables.

In order to incorporate this variability into the variance estimation, you should use a
DOMAIN statement. Note that using a BY statement provides completely separate
analyses of the BY groups. It does not provide a statistically valid subpopulation or
domain analysis, where the total number of units in the subpopulation is not known
with certainty. For more detailed information about domain analysis, refer to Kish
(1965).

Statistical Computations

The SURVEYMEANS procedure uses the Taylor expansion method to estimate sam-
pling errors of estimators based on complex sample designs. This method obtains
a linear approximation for the estimator and then uses the variance estimate for this
approximation to estimate the variance of the estimate itself (Woodruff 1971, Fuller
1975). When there are clusters, or PSUs, in the sample design, the procedure esti-
mates variance from the variation among PSUs. When the design is stratified, the
procedure pools stratum variance estimates to compute the overall variance estimate.
For t tests of the estimates, the degrees of freedom equals the number of clusters
minus the number of strata in the sample design.

For a multistage sample design, the variance estimation method depends only on the
first stage of the sample design. So, the required input includes only first-stage cluster
(PSU) and first-stage stratum identification. You do not need to input design infor-
mation about any additional stages of sampling. This variance estimation method
assumes that the first-stage sampling fraction is small, or the first-stage sample is
drawn with replacement, as it often is in practice.

Quite often in complex surveys, respondents have unequal weights, which reflect
unequal selection probabilities and adjustments for nonresponse. In such surveys, the
appropriate sampling weights must be used to obtain valid estimates for the study
population.

For more information on the analysis of sample survey data, refer to Lee, Forthoffer,
and Lorimor (1989), Cochran (1977), Kish (1965), and Hansen, Hurwitz, and Madow
(1953).

Definition and Notation

For a stratified clustered sample design, together with the sampling weights, the sam-
ple can be represented by ann × (P + 1) matrix

(w,Y) = (whij ,yhij)

=
(
whij , y

(1)
hij , y

(2)
hij , . . . , y

(P )
hij

)
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where

• h = 1, 2, . . . ,H is the stratum number, with a total ofH strata

• i = 1, 2, . . . , nh is the cluster number within stratumh, with a total ofnh

clusters

• j = 1, 2, . . . ,mhi is the unit number within clusteri of stratumh, with a total
of mhi units

• p = 1, 2, . . . , P is the analysis variable number, with a total ofP variables

• n =
∑H

h=1

∑nh
i=1 mhi is the total number of observations in the sample

• whij denotes the sampling weight for observationj in clusteri of stratumh

• yhij =
(
y

(1
hij), y

(2)
hij , . . . , y

(P )
hij

)
are the observed values of the analysis vari-

ables for observationj in clusteri of stratumh, including both the values of
numerical variables and the values of indicator variables for levels of categori-
cal variables.

For a categorical variableC, let l denote the number of levels ofC, and denote the
level values asc1, c2, . . . , cl. Then there arel indicator variables associated with
these levels. That is, for levelC = ck (k = 1, 2, . . . , l), a y(q) (q ∈ {1, 2, . . . , P})
contains the values of the indicator variable for the categoryC = ck, with the value
of observationj in clusteri of stratumh:

y
(q)
hij = I{C=ck}(h, i, j) =

{
1 if Chij = ck

0 otherwise

Therefore, the total number of analysis variables,P , is the total number of numerical
variables plus the total number of levels of all categorical variables.

Also, fh denotes the sampling rate for stratumh. You can use the TOTAL= option
or the RATE= option to input population totals or sampling rates. See the section
“Specification of Population Totals and Sampling Rates”on page 4334 for details.
If you input stratum totals, PROC SURVEYMEANS computesfh as the ratio of
the stratum sample size to the stratum total. If you input stratum sampling rates,
PROC SURVEYMEANS uses these values directly forfh. If you do not specify the
TOTAL= option or the RATE= option, then the procedure assumes that the stratum
sampling ratesfh are negligible, and a finite population correction is not used when
computing variances.

This notation is also applicable to other sample designs. For example, for a sample
design without stratification, you can letH = 1; for a sample design without clusters,
you can letmhi = 1 for everyh andi.

Mean

When you specify the keyword MEAN, the procedure computes the estimate of
the mean (mean per element) from the survey data. Also, the procedure computes
the mean by default if you do not specify anystatistic-keywords in the PROC
SURVEYMEANS statement.
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PROC SURVEYMEANS computes the estimate of the mean as

̂̄Y =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

whij yhij

 / w···

where

w··· =
H∑

h=1

nh∑
i=1

mhi∑
j=1

whij

is the sum of the weights over all observations in the sample.

Variance and Standard Error of the Mean

When you specify the keyword STDERR, the procedure computes the standard error
of the mean. Also, the procedure computes the standard error by default if you specify
the keyword MEAN, or if you do not specify anystatistic-keywordsin the PROC
SURVEYMEANS statement. The keyword VAR requests the variance of the mean.

PROC SURVEYMEANS uses the Taylor series expansion theory to estimate the vari-

ance of the mean̂̄Y . The procedure computes the estimated variance as

V̂ ( ̂̄Y ) =
H∑

h=1

V̂h( ̂̄Y )

where ifnh > 1,

V̂h( ̂̄Y ) =
nh(1− fh)

nh − 1

nh∑
i=1

(ehi· − ēh··)2

ehi· =

mhi∑
j=1

whij (yhij − ̂̄Y )

 / w···

ēh·· =

(
nh∑
i=1

ehi·

)
/ nh

and ifnh = 1,

V̂h( ̂̄Y ) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

The standard error of the mean is the square root of the estimated variance.

StdErr( ̂̄Y ) =
√

V̂ ( ̂̄Y )
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Ratio

When you use a RATIO statement, the procedure produces statistics requested by the
statistics-keywords in the PROC SURVEYMEANS statement.

Suppose that you want to calculate the ratio of variableY over variableX. Let xhij

be the value of variableX for thejth member in clusteri in thehth stratum.

The ratio ofY overX is

R̂ =

∑H
h=1

∑nh
i=1

∑mhi
j=1 whij yhij∑H

h=1

∑nh
i=1

∑mhi
j=1 whij xhij

PROC SURVEYMEANS uses the Taylor series expansion method to estimate the
variance of the ratiôR as

V̂ (R̂) =
H∑

h=1

V̂h(R̂)

where ifnh > 1,

V̂h(R̂) =
nh(1− fh)

nh − 1

nh∑
i=1

(ghi· − ḡh··)2

ghi· =

∑mhi
j=1 whij (yhij − xhijR̂)∑H

h=1

∑nh
i=1

∑mhi
j=1 whij xhij

ḡh·· =

(
nh∑
i=1

ghi·

)
/ nh

and ifnh = 1,

V̂h(R̂) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

The standard error of the ratio is the square root of the estimated variance.

StdErr(R̂) =
√

V̂ (R̂)

t Test for the Mean

If you specify the keyword T, PROC SURVEYMEANS computes thet-value for
testing that the population mean equals zero,H0 : Ȳ = 0. The test statistic equals

t( ̂̄Y ) = ̂̄Y / StdErr( ̂̄Y )

The two-sidedp-value for this test is

Prob( |T | > |t( ̂̄Y )| )
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whereT is a random variable with thet distribution withdf degrees of freedom.

PROC SURVEYMEANS calculates the degrees of freedom for thet test as the num-
ber of clusters minus the number of strata. If there are no clusters, thendf equals
the number of observations minus the number of strata. If the design is not stratified,
thendf equals the number of clusters minus one. The procedure displaysdf for the t
test if you specify the keyword DF in the PROC SURVEYMEANS statement.

If missing values or missing weights are present in your data, the number of strata,
the number of observations, and the number of clusters are counted based on the
observations in non-empty strata. See the section“Missing Values”on page 4333
for details. For degrees of freedom in domain analysis, see the section“Domain
Statistics”on page 4342.

Confidence Limits for the Mean
If you specify the keyword CLM, the procedure computes two-sided confidence lim-
its for the mean. Also, the procedure includes the confidence limits by default if you
do not specify anystatistic-keywordsin the PROC SURVEYMEANS statement.

The confidence coefficient is determined by the value of the ALPHA= option, which
by default equals 0.05 and produces 95% confidence limits. The confidence limits
are computed as

̂̄Y ± StdErr( ̂̄Y ) · tdf, α/2

where ̂̄Y is the estimate of the mean, StdErr( ̂̄Y ) is the standard error of the mean,
andtdf, α/2 is the100(1 − α/2) percentile of thet distribution withdf calculated as
described in the section“ t Test for the Mean”on page 4339.

If you specify the keyword UCLM, the procedure computes the one-sided upper
100(1− α) confidence limit for the mean:

̂̄Y + StdErr( ̂̄Y ) · tdf, α

If you specify the keyword LCLM, the procedure computes the one-sided lower
100(1− α) confidence limit for the mean:

̂̄Y − StdErr( ̂̄Y ) · tdf, α

Coefficient of Variation
If you specify the keyword CV, PROC SURVEYMEANS computes the coefficient of
variation, which is the ratio of the standard error of the mean to the estimated mean.

cv(Ȳ ) = StdErr( ̂̄Y ) / ̂̄Y
If you specify the keyword CVSUM, PROC SURVEYMEANS computes the coeffi-
cient of variation for the estimated total, which is the ratio of the standard deviation
of the sum to the estimated total.

cv(Y ) = Std(Ŷ ) / Ŷ
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Proportions

If you specify the keyword MEAN for a categorical variable, PROC
SURVEYMEANS estimates the proportion, or relative frequency, for each
level of the categorical variable. If you do not specify anystatistic-keywords in
the PROC SURVEYMEANS statement, the procedure estimates the proportions for
levels of the categorical variables, together with their standard errors and confidence
limits.

The procedure estimates the proportion in levelck for variableC as

p̂ =

∑H
h=1

∑nh
i=1

∑mhi
j=1 whij y

(q)
hij∑H

h=1

∑nh
i=1

∑mhi
j=1 whij

wherey
(q)
hij is the value of the indicator function for levelC = ck, defined in the sec-

tion “Definition and Notation”on page 4336, andy(q)
hij equals1 if the observed value

of variableC equalsck, andy
(q)
hij equals0 otherwise. Since the proportion estimator is

actually an estimator of the mean for an indicator variable, the procedure computes its
variance and standard error according to the method outlined in the section“Variance
and Standard Error of the Mean”on page 4338. Similarly, the procedure computes
confidence limits for proportions as described in the section“Confidence Limits for
the Mean”on page 4340.

Total

If you specify the keyword SUM, the procedure computes the estimate of the popu-
lation total from the survey data. The estimate of the total is the weighted sum over
the sample.

Ŷ =
H∑

h=1

nh∑
i=1

mhi∑
j=1

whij yhij

For a categorical variable level,̂Y estimates its total frequency in the population.

Variance and Standard Deviation of the Total

When you specify the keyword STD or the keyword SUM, the procedure estimates
the standard deviation of the total. The keyword VARSUM requests the variance of
the total.

PROC SURVEYMEANS estimates the variance of the total as

V̂ (Ŷ ) =
H∑

h=1

V̂h(Ŷ )

where ifnh > 1,

V̂h(Ŷ ) =
nh(1− fh)

nh − 1

nh∑
i=1

(yhi· − ȳh··)2
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yhi· =
mhi∑
j=1

whij yhij

ȳh·· =

(
nh∑
i=1

yhi·

)
/ nh

and ifnh = 1,

V̂h(Ŷ ) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

The standard deviation of the total equals

Std(Ŷ ) =
√

V̂ (Ŷ )

Confidence Limits of a Total

If you specify the keyword CLSUM, the procedure computes confidence limits for the
total. The confidence coefficient is determined by the value of the ALPHA= option,
which by default equals 0.05 and produces 95% confidence limits. The confidence
limits are computed as

Ŷ ± Std(Ŷ ) · tdf, α/2

whereŶ is the estimate of the total, Std(Ŷ ) is the estimated standard deviation, and
tdf, α/2 is the100(1 − α/2) percentile of thet distribution withdf calculated as de-
scribed in the section“ t Test for the Mean”on page 4339.

If you specify the keyword UCLSUM, the procedure computes the one-sided upper
100(1− α) confidence limit for the sum:

Ŷ + Std(Ŷ ) · tdf, α

If you specify the keyword LCLSUM, the procedure computes the one-sided lower
100(1− α) confidence limit for the sum:

Ŷ − Std(Ŷ ) · tdf, α

Domain Statistics

When you use a DOMAIN statement to request a domain analysis, the procedure
computes the requested statistics for each domain.

For a domainD, let ID be the corresponding indicator variable:

ID(h, i, j) =
{

1 if observation(h, i, j) belongs toD
0 otherwise
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Let

zhij = yhijID(h, i, j) =
{

yhij if observation(h, i, j) belongs toD
0 otherwise

The requested statistics for variabley in domainD are computed based on the values
of z.

Domain MeanThe estimated mean ofy in the domainD is

̂̄YD =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

vhij zhij

 / v···

where

vhij = whijID(h, i, j) =
{

whij if observation(h, i, j) belongs toD
0 otherwise

v··· =
H∑

h=1

nh∑
i=1

mhi∑
j=1

vhij

The variance of̂̄YD is estimated by

V̂ (̂̄YD) =
H∑

h=1

V̂h(̂̄YD)

where ifnh > 1,

V̂h(̂̄YD) =
nh(1− fh)

nh − 1

nh∑
i=1

(rhi· − r̄h··)2

rhi· =

mhi∑
j=1

vhij (zhij − ̂̄YD)

 / v···

r̄h·· =

(
nh∑
i=1

rhi·

)
/ nh

and ifnh = 1,

V̂h(̂̄YD) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

Domain Total The estimated total in domainD is

ŶD =
H∑

h=1

nh∑
i=1

mhi∑
j=1

vhij zhij
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and its estimated variance is

V̂ (ŶD) =
H∑

h=1

V̂h(ŶD)

where ifnh > 1,

V̂h(ŶD) =
nh(1− fh)

nh − 1

nh∑
i=1

(zhi· − z̄h··)2

zhi· =
mhi∑
j=1

vhij zhij

z̄h·· =

(
nh∑
i=1

zhi·

)
/ nh

and ifnh = 1,

V̂h(ŶD) =
{

missing ifnh′ = 1 for h′ = 1, 2, . . . ,H
0 if nh′ > 1 for some1 < h′ < H

Degrees of FreedomFor domain analysis, PROC SURVEYMEANS computes the
degrees of freedom fort tests as the number of clusters in the non-empty strata minus
the number of non-empty strata. When the sample design has no clusters, the degrees
of freedom equals the number of observations in non-empty strata minus the number
of non-empty strata. As discussed in the section“Missing Values”on page 4333,
missing values and missing weights can result in empty strata. In domain analysis,
an empty stratum can also occur when the stratum contains no observations in the
specified domain. If no observations in a whole stratum belong to a domain, then this
stratum is called an empty stratum for that domain.

For example,
data new;

input str clu y w d;
datalines;

1 1 . 40 9
1 2 2 . 9
1 3 . 25 9
2 4 5 20 9
2 5 8 15 9
3 6 5 30 7
3 7 9 89 7
3 8 6 23 7
;
proc surveymeans df nobs nclu nmiss;

strata str;
cluster clu;
var y;
weight w;
domain d;

run;
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Table 70.2. Calculations of df for Y
Domain D=7 Domain D=9

Non Empty Strata STR=3 STR=2
Clusters Used in the Analysis CLU=6, CLU=7, andCLU=8 CLU=4 andCLU=5
df 3− 1 = 2 2 − 1 = 1

Although there are three strata in the data set,STR=1 is an empty stratum for vari-
ableY because of missing values and missing weights. In addition, no observations
in stratumSTR=3 belong to domainD=9. Therefore,STR=3 becomes an empty
stratum as well for variableY in domainD=9. As a result, the total number of non-
empty strata for domainD=9 is one. The non-empty stratum for domainD=9 and
variableY is stratumSTR=2. The total number of clusters for domainD=9 is two,
which belong to stratumSTR=2. Thus, for variableY in domainD=9, the degrees
of freedom for thet tests of the domain mean isdf = 2 − 1 = 1. Similarly, for
domainD=7, strataSTR=1 andSTR=2 are both empty strata, so the total number
of strata is one (STR=3), and the total number of clusters is three (CLU=6, CLU=7,
andCLU=8). Table 70.2illustrates how domains affect the total number of clusters
and total number of strata in thedf calculation.Figure 70.8shows thedf computed
by the procedure.

The SURVEYMEANS Procedure

Domain Analysis: d

d Variable N N Miss Clusters DF
------------------------------------------------------------------------------

7 y 3 0 3 6
9 y 2 2 2 4

------------------------------------------------------------------------------

Figure 70.8. Degrees of Freedoms in Domain Analysis

Output

Output Data Sets

Output data sets from PROC SURVEYMEANS are produced using ODS (Output
Delivery System). ODS encompasses more than just the production of output data
sets. For example, you can use ODS to manipulate the format of your output, the
headers and titles of the tables, and the order of the columns in a table. For a
more detailed description on using ODS, seeChapter 14, “Using the Output Delivery
System.”

Displayed Output

By default PROC SURVEYMEANS displays a “Data Summary” table and a
“Statistics” table. If you specify CLASS variables, or if you specify any char-
acter variables in the VAR statement, then the procedure displays a “Class Level
Information” table. If you specify the LIST option in the STRATA statement, then the
procedure displays a “Stratum Information” table. If you have a DOMAIN statement,
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the procedure displays a “Domain Analysis” table. If you have a RATIO statement,
the procedure displays a “Ratio Analysis” table.

Data and Sample Design Summary

The “Data Summary” table provides information on the input data set and the sample
design. This table displays the total number of valid observations, where an ob-
servation is consideredvalid if it has nonmissing values for all procedure variables
other than the analysis variables; that is, for all specified STRATA, CLUSTER, and
WEIGHT variables. This number may differ from the number of nonmissing ob-
servations for an individual analysis variable, which the procedure displays in the
“Statistics” table. See the section“Missing Values”on page 4333 for more informa-
tion.

PROC SURVEYMEANS displays the following information in the “Data Summary”
table:

• Number of Strata, if you specify a STRATA statement

• Number of Clusters, if you specify a CLUSTER statement

• Number of Observations, which is the total number of valid observations

• Sum of Weights, which is the sum over all valid observations, if you specify a
WEIGHT statement

Class Level Information

If you use a CLASS statement to name classification variables for categorical
analysis, or if you list any character variables in the VAR statement, then PROC
SURVEYMEANS displays a “Class Level Information” table. This table contains
the following information for each classification variable:

• Class Variable, which lists each CLASS variable name

• Levels, which is the number of values or levels of the classification variable

• Values, which lists the values of the classification variable. The values are
separated by a white space character; therefore, to avoid confusion, you should
not include a white space character within a classification variable value.

Stratum Information

If you specify the LIST option in the STRATA statement, PROC SURVEYMEANS
displays a “Stratum Information” table. This table displays the number of valid ob-
servations in each stratum, as well as the number of nonmissing stratum observations
for each analysis variable. The “Stratum Information” table provides the following
for each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variable(s), which lists the levels of STRATA variables for the stra-
tum
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• Population Total, if you specify the TOTAL= option

• Sampling Rate, if you specify the TOTAL= option or the RATE= option. If
you specify the TOTAL= option, the sampling rate is based on the number of
valid observations in the stratum.

• N Obs, which is the number of valid observations

• Variable, which lists each analysis variable name

• Levels, which identifies each level for categorical variables

• N, which is the number of nonmissing observations for the analysis variable

• Clusters, which is the number of clusters, if you specify a CLUSTER statement

Statistics

The “Statistics” table displays all of the statistics that you request withstatistic-
keywordsdescribed on page 4326 in the PROC SURVEYMEANS statement. If you
do not specify any statistic-keywords, then by default this table displays the follow-
ing information for each analysis variable: the sample size, the mean, the standard
error of the mean, and the confidence limits for the mean. The “Statistics” table may
contain the following information for each analysis variable, depending on which
statistic-keywords you request:

• Variable name

• Level, which identifies each level for categorical variables

• N, which is the number of nonmissing observations

• N Miss, which is the number of missing observations

• Minimum

• Maximum

• Range

• Number of Clusters

• Sum of Weights

• DF, which is the degrees of freedom for thet test

• Mean

• Std Error of Mean, which is the standard error of the mean

• Var of Mean, which is the variance of the mean

• t Value, for testingH0 : population MEAN= 0

• Pr> | t |, which is the two-sidedp-value for thet test

• 100(1−α)% CL for Mean, which are two-sided confidence limits for the mean

• 100(1−α)% Upper CL for Mean, which are one-sided upper confidence limits
for the mean

• 100(1−α)% Lower CL for Mean, which are one-sided lower confidence limits
for the mean
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• Coeff of Variation, which is the coefficients of variation for the mean and the
sum

• Sum

• Std Dev, which is the standard deviation of the sum

• Var of Sum, which is the variance of the sum

• 100(1− α)% CL for Sum, which are two-sided confidence limits for the sum

• 100(1− α)% Upper CL for Sum, which are one-sided upper confidence limits
for the sum

• 100(1−α)% Lower CL for Sum, which are one-sided lower confidence limits
for the Sum

Domain Analysis

If you use a DOMAIN statement, the procedure displays statistics in each domain in
a “Domain Analysis” table. A “Domain Analysis” table contains all the columns in
the “Statistics” table, plus columns of domain variable values.

Note that depending on how you define the domains with domain variables, the pro-
cedure may produce more than one “Domain Analysis” table. For example, in the
following DOMAIN statement

domain A B*C*D A*C C;

you use four definitions to define domains:

• A: all the levels ofA

• C: all the levels ofC

• A*C: all the interactive levels ofA andC

• B*C*D: all the interactive levels ofB, C, andD

The procedure displays four “Domain Analysis” tables, one for each domain defi-
nition. However, if you use ODS output statement to create an output data set for
domain analysis, the output data set contains a variableDomain whose values are
these domain definitions.

Ratio Analysis

The “Ratio Analysis” table displays all of the statistics that you request withstatistic-
keywords in the PROC statementdescribed on page 4326. If you do not specify any
statistic-keywords, then by default this table displays the ratio and its standard error.
The “Ratio Analysis” table may contain the following information for each ratio,
depending on which statistic-keywords you request:

• Numerator, which identifies the numerator variable of the ratio

• Denominator, which identifies the denominator variable of the ratio
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• N, which is the number of observations used in the ratio analysis

• number of Clusters

• Sum of Weights

• DF, which is the degrees of freedom for thet test

• Ratio

• Std Error of Ratio, which is the standard error of the ratio

• Var of Ratio, which is the variance of the ratio

• t Value, for testingH0 : population RATIO= 0

• Pr> | t |, which is the two-sidedp-value for thet test

• 100(1−α)% CL for Ratio, which are two-sided confidence limits for the Ratio

• Upper100(1−α)% CL for Ratio, which are one-sided upper confidence limits
for the Ratio

• Lower100(1−α)% CL for Ratio, which are one-sided lower confidence limits
for the Ratio

When you use the ODS output statement to create an output data set, if you use labels
for your RATIO statement, these labels are saved in a variableRatio Statement in
the output data set.

ODS Table Names

PROC SURVEYMEANS assigns a name to each table it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 70.3. ODS Tables Produced in PROC SURVEYMEANS

ODS Table Name Description Statement Option
ClassVarInfo Class level information CLASS default
Domain Statistics in domains DOMAIN default
Ratio Statistics for ratios RATIO default
Statistics Statistics PROC default
StrataInfo Stratum information STRATA LIST
Summary Data summary PROC default

For example, the following statements create an output data set namedMyStrata,
which contains the “StrataInfo” table, and an output data set namedMyStat, which
contains the “Statistics” table for the ice cream study discussed in the section
“Stratified Sampling”on page 4318:

title1 ’Analysis of Ice Cream Spending’;
title2 ’Stratified Simple Random Sample Design’;
proc surveymeans data=IceCream total=StudentTotals;

strata Grade / list;
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var Spending Group;
weight Weight;
ods output StrataInfo = MyStrata

Statistics = MyStat;
run;

Examples

The“Getting Started”section on page 4315 contains examples of analyzing data from
simple random sampling and stratified simple random sample designs. This section
provides more examples that illustrate how to use PROC SURVEYMEANS.

Example 70.1. Stratified Cluster Sample Design

Consider the example in the section“Stratified Sampling”on page 4318. The study
population is a junior high school with a total of 4,000 students in grades 7, 8, and 9.
Researchers want to know how much these students spend weekly for ice cream, on
the average, and what percentage of students spend at least $10 weekly for ice cream.

The example in the section“Stratified Sampling”on page 4318 assumes that the
sample of students was selected using a stratified simple random sample design. This
example shows analysis based on a more complex sample design.

Suppose that every student belongs to a study group and that study groups are formed
within each grade level. Each study group contains between two and four students.
Table 70.4shows the total number of study groups for each grade.

Table 70.4. Study Groups and Students by Grade
Grade Number of Study Groups Number of Students

7 608 1,824
8 252 1,025
9 403 1,151

Total 617 4,000

It is quicker and more convenient to collect data from students in the same study
group than to collect data from students individually. Therefore, this study uses a
stratified clustered sample design. The primary sampling units, or clusters, are study
groups. The list of all study groups in the school is stratified by grade level. From
each grade level, a sample of study groups is randomly selected, and all students in
each selected study group are interviewed. The sample consists of eight study groups
from the 7th grade, three groups from the 8th grade, and five groups from the 9th
grade.

The SAS data set namedIceCreamStudy saves the responses of the selected stu-
dents:

data IceCreamStudy;
input Grade StudyGroup Spending @@;
if (Spending < 10) then Group=’less’;

else Group=’more’;
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datalines;
7 34 7 7 34 7 7 412 4 9 27 14
7 34 2 9 230 15 9 27 15 7 501 2
9 230 8 9 230 7 7 501 3 8 59 20
7 403 4 7 403 11 8 59 13 8 59 17
8 143 12 8 143 16 8 59 18 9 235 9
8 143 10 9 312 8 9 235 6 9 235 11
9 312 10 7 321 6 8 156 19 8 156 14
7 321 3 7 321 12 7 489 2 7 489 9
7 78 1 7 78 10 7 489 2 7 156 1
7 78 6 7 412 6 7 156 2 9 301 8
;

In the data setIceCreamStudy, the variableGrade contain a student’s grade. The
variableStudyGroup identifies a student’s study group. It is possible for students
from different grades to have the same study group number because study groups are
sequentially numbered within each grade. The variableSpending contains a stu-
dent’s response to how much he spends per week for ice cream, in dollars. The vari-
ableGROUP indicates whether a student spends at least $10 weekly for ice cream.
It is not necessary to store the data in order of grade and study group.

The SAS data setStudyGroup is created to provide PROC SURVEYMEANS with
the sample design information shown inTable 70.4:

data StudyGroups;
input Grade _total_; datalines;

7 608
8 252
9 403
;

The variableGrade identifies the strata, and the variable–TOTAL– contains the total
number of study groups in each stratum. As discussed in the section“Specification
of Population Totals and Sampling Rates”on page 4334, the population totals stored
in the variable–TOTAL– should be expressed in terms of the primary sampling units
(PSUs), which are study groups in this example. Therefore, the variable–TOTAL–
contains the total number of study groups for each grade, rather than the total number
of students.

In order to obtain unbiased estimates, you create sampling weights using the follow-
ing SAS statements:

data IceCreamStudy;
set IceCreamStudy;
if Grade=7 then Prob=8/608;
if Grade=8 then Prob=3/252;
if Grade=9 then Prob=5/403;
Weight=1/Prob;

The sampling weights are the reciprocals of the probabilities of selections. The
variableWeight contains the sampling weights. Because the sampling design is
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clustered, and all students from each selected cluster are interviewed, the sampling
weights equal the inverse of the cluster (or study group) selection probabilities.

The following SAS statements perform the analysis for this sample design:

title1 ’Analysis of Ice Cream Spending’;
title2 ’Stratified Clustered Sample Design’;
proc surveymeans data=IceCreamStudy total=StudyGroups;

strata Grade / list;
cluster StudyGroup;
var Spending Group;
weight Weight;

run;

Output 70.1.1. Data Summary and Class Information

Analysis of Ice Cream Spending
Stratified Clustered Sample Design

The SURVEYMEANS Procedure

Data Summary

Number of Strata 3
Number of Clusters 16
Number of Observations 40
Sum of Weights 3162.6

Class Level Information

Class
Variable Levels Values

Group 2 less more

Output 70.1.1provides information on the sample design and the input data set. There
are 3 strata in the sample design, and the sample contains 16 clusters and 40 observa-
tions. The variableGroup has two levels, ‘less’ and ‘more’.
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Output 70.1.2. Stratum Information

Analysis of Ice Cream Spending
Stratified Clustered Sample Design

The SURVEYMEANS Procedure

Stratum Information

Stratum Population Sampling
Index Grade Total Rate N Obs Variable Level N

----------------------------------------------------------------------------
1 7 608 1.32% 20 Spending 20

Group less 17
more 3

2 8 252 1.19% 9 Spending 9
Group less 0

more 9
3 9 403 1.24% 11 Spending 11

Group less 6
more 5

----------------------------------------------------------------------------

Stratum Information

Stratum Population Sampling
Index Grade Total Rate N Obs Variable Level Clusters

----------------------------------------------------------------------------
1 7 608 1.32% 20 Spending 8

Group less 8
more 3

2 8 252 1.19% 9 Spending 3
Group less 0

more 3
3 9 403 1.24% 11 Spending 5

Group less 4
more 4

----------------------------------------------------------------------------

Output 70.1.2displays information for each stratum. Since the primary sampling
units in this design are study groups, the population totals shown inOutput 70.1.2are
the total numbers of study groups for each stratum or grade. This differs fromFigure
70.3on page 4320, which provides the population totals in terms of students since
students were the primary sampling units for that design.Output 70.1.2also displays
the number of clusters for each stratum and analysis variable.
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Output 70.1.3. Statistics

Analysis of Ice Cream Spending
Stratified Clustered Sample Design

The SURVEYMEANS Procedure

Statistics

Std Error Lower 95%
Variable Level N Mean of Mean CL for Mean
---------------------------------------------------------------------------------
Spending 40 8.923860 0.650859 7.517764
Group less 23 0.561437 0.056368 0.439661

more 17 0.438563 0.056368 0.316787
---------------------------------------------------------------------------------

Statistics

Upper 95%
Variable Level CL for Mean
---------------------------------
Spending 10.329957
Group less 0.683213

more 0.560339
---------------------------------

Output 70.1.3displays the estimates of the average weekly ice cream expense and the
percentage of students spending at least $10 weekly for ice cream.

Example 70.2. Domain Analysis

Suppose that you are studying profiles of the 800 top-performing companies to pro-
vide information on their impact on the economy. You are also interested in the
company profiles within each market type. A sample of 66 companies is selected
with unequal probability across market types. However, market type is not included
in the sample design. Thus, the number of companies within each market type is a
random variable in your sample. To obtain statistics within each market type, you
should use domain analysis. The data of the 66 companies are saved in the following
data set:

data Company;
length Type $14;
input Type$ Asset Sale Value Profit Employee Weight;
datalines;

Other 2764.0 1828.0 1850.3 144.0 18.7 9.6
Energy 13246.2 4633.5 4387.7 462.9 24.3 42.6
Finance 3597.7 377.8 93.0 14.0 1.1 12.2
Transportation 6646.1 6414.2 2377.5 348.2 47.1 21.8
HiTech 1068.4 1689.8 1430.2 72.9 4.6 4.3
Manufacturing 1125.0 1719.4 1057.5 98.1 20.4 4.5
Other 1459.0 1241.4 452.7 24.5 20.1 5.5
Finance 2672.3 262.5 296.2 23.1 2.2 9.3
Finance 311.0 566.2 932.0 52.8 2.7 1.9
Energy 1148.6 1014.6 485.1 60.6 4.0 4.5
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Finance 5327.0 572.4 372.9 25.2 4.2 17.7
Energy 1602.7 678.4 653.0 75.6 2.8 6.0
Energy 5808.8 1288.4 2007.0 318.8 5.9 19.2
Medical 268.8 204.4 820.9 45.6 3.7 1.8
Transportation 5222.6 2627.8 1910.0 245.6 22.8 17.4
Other 872.7 1419.4 939.3 69.7 12.2 3.7
Retail 4461.7 8946.8 4662.7 289.0 132.1 15.0
HiTech 6719.2 6942.0 8240.2 381.3 85.8 22.1
Retail 833.4 1538.8 1090.3 64.9 15.4 3.5
Finance 415.9 167.3 1126.8 56.8 0.7 2.2
HiTech 442.4 1139.9 1039.9 57.6 22.7 2.3
Other 801.5 1157.0 664.2 56.9 15.5 3.4
Finance 4954.8 468.8 366.4 41.7 3.0 16.5
Finance 2661.9 257.9 181.1 21.2 2.1 9.3
Finance 5345.8 530.1 337.4 36.4 4.3 17.8
Energy 3334.3 1644.7 1407.8 157.6 6.4 11.4
Manufacturing 1826.6 2671.7 483.2 71.3 25.3 6.7
Retail 618.8 2354.7 767.7 58.6 19.0 2.9
Retail 1529.1 6534.0 826.3 58.3 65.8 5.7
Manufacturing 4458.4 4824.5 3132.1 28.9 67.0 15.0
HiTech 5831.7 6611.1 9464.7 459.6 86.7 19.3
Medical 6468.3 4199.2 3170.4 270.1 59.5 21.3
Energy 1720.7 473.1 811.1 86.6 1.6 6.3
Energy 1679.7 1379.9 721.1 91.8 4.5 6.2
Retail 4018.2 16823.4 2038.3 178.1 162.0 13.6
Other 227.1 575.8 1083.8 62.6 1.9 1.6
Finance 3872.8 362.0 209.3 27.6 2.4 13.1
Retail 3359.3 4844.7 2651.4 224.1 75.6 11.5
Energy 1295.6 356.9 180.8 162.3 0.6 5.0
Energy 1658.0 626.6 688.0 126.0 3.5 6.1
Finance 12156.7 1345.5 680.7 106.6 9.4 39.2
HiTech 3982.6 4196.0 3946.8 313.9 64.3 13.5
Finance 8760.7 886.4 1006.9 90.0 7.5 28.5
Manufacturing 2362.2 3153.3 1080.0 137.0 25.2 8.4
Transportation 2499.9 3419.0 992.6 47.2 25.3 8.8
Energy 1430.4 1610.0 664.3 77.7 3.5 5.4
Energy 13666.5 15465.4 2736.7 411.4 26.6 43.9
Manufacturing 4069.3 4174.7 2907.6 289.2 38.2 13.7
Energy 2924.7 711.9 1067.8 146.7 3.4 10.1
Transportation 1262.1 1716.0 364.3 71.2 14.5 4.9
Medical 684.4 672.9 287.4 61.8 6.0 3.1
Energy 3069.3 1719.0 1439.0 196.4 4.9 10.6
Medical 246.5 318.8 924.1 43.8 3.1 1.7
Finance 11562.2 1128.5 580.4 64.2 6.7 37.3
Finance 9316.0 1059.4 816.5 95.9 8.0 30.2
Retail 1094.3 3848.0 563.3 29.4 44.7 4.4
Retail 1102.1 4878.3 932.4 65.2 47.3 4.4
HiTech 466.4 675.8 845.7 64.5 5.2 2.4
Manufacturing 10839.4 5468.7 1895.4 232.8 47.8 35.0
Manufacturing 733.5 2135.3 96.6 10.9 2.7 3.2
Manufacturing 10354.2 14477.4 5607.2 321.9 188.5 33.5
Energy 1902.1 2697.9 329.3 34.2 2.2 6.9
Other 2245.2 2132.2 2230.4 198.9 8.0 8.0
Transportation 949.4 1248.3 298.9 35.4 10.4 3.9
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Retail 2834.4 2884.6 458.2 41.2 49.8 9.8
Retail 2621.1 6173.8 1992.7 183.7 115.1 9.2
;

For each company in your sample,

• the variableType identifies the type of market for the company.

• the variableAsset contains the company’s assets in millions of dollars.

• the variableSale contains sales in millions of dollars.

• the variableValue contains the market value of the company in millions of
dollars.

• the variableProfit contains the profit in millions of dollars.

• the variableEmployee stores the number of employees in thousands.

• the variableWeight contains the sampling weight.

The following SAS statements use PROC SURVEYMEANS to perform the domain
analysis, estimating means and other statistics for the overall population and also for
the subpopulations (or domain) defined by market type. The DOMAIN statement
specifiesType as the domain variable:

title1 ’Top Companies Profile Study’;
proc surveymeans data=Company total=800 mean sum;

var Asset Sale Value Profit Employee;
weight Weight;
domain Type;

run;

Output 70.2.1. Company Profile Study

Top Companies Profile Study

The SURVEYMEANS Procedure

Data Summary

Number of Observations 66
Sum of Weights 799.8

Statistics

Std Error
Variable Mean of Mean Sum Std Dev
------------------------------------------------------------------------
Asset 6523.488510 720.557075 5217486 1073829
Sale 4215.995799 839.132506 3371953 847885
Value 2145.935121 342.531720 1716319 359609
Profit 188.788210 25.057876 150993 30144
Employee 36.874869 7.787857 29493 7148.003298
------------------------------------------------------------------------
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Output 70.2.1shows that there are 66 observations in the sample. The sum of the
sampling weights equals 799.8, which is close to the total number of companies in
the study population.

The “Statistics” table inOutput 70.2.1displays the estimates of the mean and total
for all analysis variables for the entire 800 companies, whileOutput 70.2.2shows the
mean and total estimates for each company type.

Output 70.2.2. Domain Analysis for Company Profile Study

Top Companies Profile Study

The SURVEYMEANS Procedure

Domain Analysis: Type

Std Error
Type Variable Mean of Mean Sum Std Dev
--------------------------------------------------------------------------------
Energy Asset 7868.302932 1941.699163 1449341 785962

Sale 5419.679099 2416.214417 998305 673373
Value 2249.297177 520.295162 414321 213580
Profit 289.564658 52.512141 53338 25927
Employee 14.151194 3.974697 2606.650000 1481.777769

Finance Asset 7890.190264 1057.185336 1855773 704506
Sale 829.210502 115.762531 195030 74436
Value 565.068197 76.964547 132904 48156
Profit 63.716837 10.099341 14986 5801.108513
Employee 5.806293 0.811555 1365.640000 519.658410

HiTech Asset 5031.959781 732.436967 321542 183302
Sale 5464.292019 731.296997 349168 196013
Value 6707.828482 1194.160584 428630 249154
Profit 346.407042 42.299004 22135 12223
Employee 70.766980 8.683595 4522.010000 2524.778281

Manufacturing Asset 7403.004250 1454.921083 888361 492577
Sale 7207.638833 2112.444703 864917 501679
Value 2986.442750 799.121544 358373 196979
Profit 211.933583 39.993255 25432 13322
Employee 83.314333 31.089019 9997.720000 6294.309490

Medical Asset 5046.570609 1218.444638 140799 131942
Sale 3313.219713 758.216303 92439 85655
Value 2561.614695 530.802245 71469 64663
Profit 218.682796 44.051447 6101.250000 5509.560969
Employee 46.518996 11.135955 1297.880000 1213.651734

Other Asset 1850.250000 338.128984 58838 31375
Sale 1620.784906 168.686773 51541 24593
Value 1432.820755 297.869828 45564 24204
Profit 115.089937 27.970560 3659.860000 2018.201371
Employee 14.306604 2.313733 454.950000 216.327710

Retail Asset 2939.845750 393.692369 235188 94605
Sale 7395.453500 1746.187580 591636 263263
Value 2103.863125 529.756409 168309 78304
Profit 157.171875 31.734253 12574 5478.281027
Employee 93.624000 15.726743 7489.920000 3093.832061

Transportation Asset 4712.047359 888.954411 267644 163516
Sale 4030.233275 1015.555708 228917 142669
Value 1703.330282 313.841326 96749 58947
Profit 224.762324 56.168925 12767 8287.585418
Employee 30.946303 6.786270 1757.750000 1066.586615

--------------------------------------------------------------------------------
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Example 70.3. Ratio Analysis

Suppose you are interested in the profit per employee and the sale per employee
among the 800 top-performing companies in the data in the previous example. The
following SAS statements illustrate how you can use PROC SURVEYMEANS to
estimate these ratios:

title1 ’Ratio Analysis in Top Companies Profile Study’;
proc surveymeans data=Company total=800 ratio;

var Profit Sale Employee;
weight Weight;
ratio Profit Sale / Employee;

run;

The RATIO statement requests the ratio of the profit and the sale to the number of
employees.

Output 70.3.1. Estimate Ratios

Ratio Analysis in Top Companies Profile Study

The SURVEYMEANS Procedure

Ratio Analysis

Numerator Denominator Ratio Std Err
--------------------------------------------------
Sale Employee 114.332497 20.502742
Profit Employee 5.119698 1.058939
--------------------------------------------------

Output 70.3.1shows the estimated ratios and their standard errors. Because the profit
and the sale figures are in millions of dollars, and the employee numbers in thousands,
the profit per employee is estimated as $5,120 with a standard error of $1,059, and
the sale per employee is $114,333 with a standard error of $20,503.

Example 70.4. Analyzing Survey Data with Missing Values

As described in the section“Missing Values”on page 4333, the SURVEYMEANS
procedure excludes an observation from the analysis if it has a missing value for the
analysis variable or a nonpositive value for the WEIGHT variable.

However, if there is evidence indicating that the nonrespondents are different from
the respondents for your study, you can use the DOMAIN statement to compute de-
scriptive statistics among respondents from your survey data without imputation for
nonrespondents. Note that although the variance estimation for respondents takes
into account the assumption that the study population consists of distinct groups of
respondents and nonrespondents, the degrees of freedom will not adjust for the non-
respondents because they are deleted from the computation. As a result, there are
fewer degrees of freedom and wider confidence limits in comparison to counting



Example 70.4. Analyzing Survey Data with Missing Values � 4359

those nonrespondents for degrees of freedom. When the sample size and the number
of respondents are large, the difference maybe ignored.

Consider the ice cream example in the section“Stratified Sampling”on page 4318.
Suppose that some of the students failed to provide the amounts spent on ice cream,
as shown in the following data setIceCream:

data IceCream;
input Grade Spending @@; datalines;

7 7 7 7 8 . 9 10 7 . 7 10 7 3 8 20 8 19 7 2
7 . 9 15 8 16 7 6 7 6 7 6 9 15 8 17 8 14 9 .
9 8 9 7 7 3 7 12 7 4 9 14 8 18 9 9 7 2 7 1
7 4 7 11 9 8 8 . 8 13 7 . 9 . 9 11 7 2 7 9
;
data StudentTotals;

input Grade _total_; datalines;
7 1824
8 1025
9 1151
;

Considering the possibility that those students who didn’t respond spend differently
than those students who did respond, you can create an indicator variable to identify
the respondents and non-respondents with the following SAS DATA step statements:

data IceCream;
set IceCream;
if Spending=. then Indicator=’Nonrespondent’;
else do;

Indicator=’Respondent’;
if (Spending < 10) then Group=’less’;

else Group=’more’;
end;

if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
Weight=1/Prob;

The variableIndicator identifies a student in the data set as either a respondent or a
nonrespondent. The variableGroup specifies whether a student spent more than $10
among the respondents.

The following SAS statements produce the desired analysis:

title1 ’Analysis of Ice Cream Spending’;
proc surveymeans data=IceCream total=StudentTotals mean sum;

strata Grade / list;
var Spending Group;
weight Weight;
domain Indicator;

run;
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Output 70.4.1. Analysis of Incomplete Ice Cream Data Excluding Observations
with Missing Values

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

Data Summary

Number of Strata 3
Number of Observations 40
Sum of Weights 4000

Statistics

Std Error
Variable Level Mean of Mean Sum Std Dev
---------------------------------------------------------------------------------
Spending 9.770542 0.541381 32139 1780.792065
Group less 0.515404 0.067092 1695.345455 220.690305

more 0.484596 0.067092 1594.004040 220.690305
---------------------------------------------------------------------------------

Output 70.4.2shows the mean and total estimates excluding those students who failed
to provide the spending amount on ice cream.

Output 70.4.2. Analysis of Incomplete Ice Cream Data Treating Respondents as a
Domain

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

Domain Analysis: Indicator

Std Error
Indicator Variable Level Mean of Mean Sum
----------------------------------------------------------------------------------
Nonrespondent Spending . . .

Group less . . .
more . . .

Respondent Spending 9.770542 0.652347 32139
Group less 0.515404 0.067092 1695.345455

more 0.484596 0.067092 1594.004040
----------------------------------------------------------------------------------

Domain Analysis: Indicator

Indicator Variable Level Std Dev
--------------------------------------------------
Nonrespondent Spending .

Group less .
more .

Respondent Spending 3515.126876
Group less 220.690305

more 220.690305
--------------------------------------------------
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Output 70.4.1shows the mean and total estimates treating respondents as a domain
in the student population. Compared to the estimates inOutput 70.4.1, the point
estimates are the same, but the variance estimations are slightly higher.
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Chapter 71
The SURVEYREG Procedure
Overview

The SURVEYREG procedure performs regression analysis for sample survey data.
This procedure can handle complex survey sample designs, including designs with
stratification, clustering, and unequal weighting. The procedure fits linear models for
survey data and computes regression coefficients and their variance-covariance ma-
trix. The procedure also provides significance tests for the model effects and for any
specified estimable linear functions of the model parameters. Using the regression
model, the procedure can compute predicted values for the sample survey data.

PROC SURVEYREG computes the regression coefficient estimators by generalized
least-squares estimation using element-wise regression. The procedure assumes that
the regression coefficients are the same across strata and primary sampling units
(PSUs). To estimate the variance-covariance matrix for the regression coefficients,
PROC SURVEYREG uses the Taylor expansion theory for estimating sampling er-
rors of estimators based on complex sample designs (Woodruff 1971; Fuller 1975;
S̈arndal, Swenson, and Wretman 1992, Chapter 5 and Chapter 13). This method ob-
tains a linear approximation for the estimator and then uses the variance estimator for
this approximation to estimate the variance of the estimator itself.

PROC SURVEYREG uses the ODS (Output Delivery System) to place results in out-
put data sets. This is a departure from older SAS procedures that provide OUTPUT
statements for similar functionality.

Getting Started

This section demonstrates how you can use PROC SURVEYREG to perform a re-
gression analysis for sample survey data. For a complete description of the usage
of PROC SURVEYREG, see the section“Syntax” on page 4373. The“Examples”
section on page 4395 provides more detailed examples that illustrate the applications
of PROC SURVEYREG.

Simple Random Sampling

Suppose that, in a junior high school, there are a total of 4,000 students in grades 7,
8, and 9. You want to know how household income and the number of children in a
household affect students’ average weekly spending for ice cream.

In order to answer this question, you draw a sample using simple random sampling
from the student population in the junior high school. You randomly select 40 stu-
dents and ask them their average weekly expenditure for ice cream, their household
income, and the number of children in their household. The answers from the 40
students are saved as a SAS data set:
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data IceCream;
input Grade Spending Income Kids @@;
datalines;

7 7 39 2 7 7 38 1 8 12 47 1
9 10 47 4 7 1 34 4 7 10 43 2
7 3 44 4 8 20 60 3 8 19 57 4
7 2 35 2 7 2 36 1 9 15 51 1
8 16 53 1 7 6 37 4 7 6 41 2
7 6 39 2 9 15 50 4 8 17 57 3
8 14 46 2 9 8 41 2 9 8 41 1
9 7 47 3 7 3 39 3 7 12 50 2
7 4 43 4 9 14 46 3 8 18 58 4
9 9 44 3 7 2 37 1 7 1 37 2
7 4 44 2 7 11 42 2 9 8 41 2
8 10 42 2 8 13 46 1 7 2 40 3
9 6 45 1 9 11 45 4 7 2 36 1
7 9 46 1
;

In the data setIceCream, the variableGrade indicates a student’s grade. The vari-
ableSpending contains the dollar amount of each student’s average weekly spending
for ice cream. The variableIncome specifies the household income, in thousands of
dollars. The variableKids indicates how many children are in a student’s family.

The following PROC SURVEYREG statements request a regression analysis:

title1 ’Ice Cream Spending Analysis’;
title2 ’Simple Random Sample Design’;
proc surveyreg data=IceCream total=4000;

class Kids;
model Spending = Income Kids / solution anova;

run;

The PROC SURVEYREG statement invokes the procedure. The TOTAL=4000 op-
tion specifies the total in the population from which the sample is drawn. The CLASS
statement requests that the procedure use the variableKids as a classification variable
in the analysis. The MODEL statement describes the linear model that you want to
fit, with Spending as the dependent variable andIncome andKids as the indepen-
dent variables. The SOLUTION option in the MODEL statement requests that the
procedure output the regression coefficient estimates. The ANOVA option requests
that the procedure output the ANOVA table.
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Ice Cream Spending Analysis
Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Data Summary

Number of Observations 40
Mean of Spending 8.75000
Sum of Spending 350.00000

Fit Statistics

R-square 0.8132
Root MSE 2.4506
Denominator DF 39

Class Level Information

Class
Variable Levels Values

Kids 4 1 2 3 4

Figure 71.1. Summary of Data

Figure 71.1displays the summary of the data, the summary of the fit, and the levels
of the classification variableKids. The “Fit Statistics” table displays the denominator
degrees of freedom, which are used inF tests andt tests in the regression analysis.

Ice Cream Spending Analysis
Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 4 119.15 <.0001
Intercept 1 153.32 <.0001
Income 1 324.45 <.0001
Kids 3 0.92 0.4385

NOTE: The denominator degrees of freedom for the F tests is 39.

Figure 71.2. Testing Effects in the Regression

Figure 71.2displays the ANOVA table for the regression and the tests for model
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effects. The effectIncome is significant in the linear regression model, while the
effectKids is not significant at the 5% level.

Ice Cream Spending Analysis
Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -26.084677 2.46720403 -10.57 <.0001
Income 0.775330 0.04304415 18.01 <.0001
Kids 1 0.897655 1.12352876 0.80 0.4292
Kids 2 1.494032 1.24705263 1.20 0.2381
Kids 3 -0.513181 1.33454891 -0.38 0.7027
Kids 4 0.000000 0.00000000 . .

NOTE: The denominator degrees of freedom for the t tests is 39.
Matrix X’X is singular and a generalized inverse was used to solve the
normal equations. Estimates are not unique.

Figure 71.3. Regression Coefficients

The regression coefficient estimates and their standard errors and associatedt tests
are displayed inFigure 71.3.

Stratified Sampling

Suppose that the previous student sample is actually drawn using a stratified sample
design. The strata are grades in the junior high school: 7, 8, and 9. Within strata,
simple random samples are selected.Table 71.1provides the number of students in
each grade.

Table 71.1. Students in Grades
Grade Number of Students

7 1,824
8 1,025
9 1,151

Total 4,000

In order to analyze this sample using PROC SURVEYREG, you need to in-
put the stratification information by creating a SAS data set with the informa-
tion in Table 71.1. The following SAS statements create such a data set called
StudentTotals:

data StudentTotals;
input Grade _TOTAL_;
datalines;

7 1824
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8 1025
9 1151
;

The variableGrade is the stratification variable, and the variable–TOTAL– con-
tains the total numbers of students in each stratum in the survey population. PROC
SURVEYREG requires you to use the keyword–TOTAL– as the name of the variable
that contains the population total information.

In a stratified sample design, when the sampling rates in the strata are unequal, you
need to use sampling weights to reflect this information. For this example, the appro-
priate sampling weights are the reciprocals of the probabilities of selection. You can
use the following data step to create the sampling weights:

data IceCream;
set IceCream;
if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
Weight=1/Prob;

If you use PROC SURVEYSELECT to select your sample, PROC SURVEYSELECT
creates these sampling weights for you.

The following statements demonstrate how you can fit a linear model while incorpo-
rating the sample design information (stratification):

title1 ’Ice Cream Spending Analysis’;
title2 ’Stratified Simple Random Sample Design’;
proc surveyreg data=IceCream total=StudentTotals;

strata Grade /list;
class Kids;
model Spending = Income Kids / solution anova;
weight Weight;

run;

Comparing these statements to those in the section“Simple Random Sampling”on
page 4365, you can see how the TOTAL=StudentTotals option replaces the previous
TOTAL=4000 option.

The STRATA statement specifies the stratification variableGrade. The LIST option
in the STRATA statement requests that the stratification information be included in
the output. The WEIGHT statement specifies the weight variable.
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Ice Cream Spending Analysis
Stratified Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Data Summary

Number of Observations 40
Sum of Weights 4000.0
Weighted Mean of Spending 9.14130
Weighted Sum of Spending 36565.2

Design Summary

Number of Strata 3

Fit Statistics

R-square 0.8219
Root MSE 2.4185
Denominator DF 37

Figure 71.4. Summary of the Regression
Figure 71.4summarizes the data information, the sample design information, and
the fit information. Note that, due to the stratification, the denominator degrees of
freedom forF tests andt tests is 37, which is different from the analysis inFigure
71.1.

Ice Cream Spending Analysis
Stratified Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Stratum Information

Stratum Population Sampling
Index Grade N Obs Total Rate

1 7 20 1824 1.10%
2 8 9 1025 0.88%
3 9 11 1151 0.96%

Class Level Information

Class
Variable Levels Values

Kids 4 1 2 3 4

Figure 71.5. Stratification and Classification Information
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For each stratum,Figure 71.5displays the value of identifying variables, the number
of observations (sample size), the total population size, and the calculated sampling
rate or fraction.

Ice Cream Spending Analysis
Stratified Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 4 124.85 <.0001
Intercept 1 150.95 <.0001
Income 1 326.89 <.0001
Kids 3 0.99 0.4081

NOTE: The denominator degrees of freedom for the F tests is 37.

Figure 71.6. Testing Effects

Figure 71.6displays the ANOVA table for the regression and tests for the significance
of model effects under the stratified sample design. TheIncome effect is strongly
significant, while theKids effect is not significant at the 5% level.

Ice Cream Spending Analysis
Stratified Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -26.086882 2.44108058 -10.69 <.0001
Income 0.776699 0.04295904 18.08 <.0001
Kids 1 0.888631 1.07000634 0.83 0.4116
Kids 2 1.545726 1.20815863 1.28 0.2087
Kids 3 -0.526817 1.32748011 -0.40 0.6938
Kids 4 0.000000 0.00000000 . .

NOTE: The denominator degrees of freedom for the t tests is 37.
Matrix X’WX is singular and a generalized inverse was used to solve the
normal equations. Estimates are not unique.

Figure 71.7. Regression Coefficients

The regression coefficient estimates for the stratified sample, along with their stan-
dard errors and associatedt tests, are displayed inFigure 71.7.
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You can request other statistics and tests using PROC SURVEYREG. You can also
analyze data from a more complex sample design. The remainder of this chapter
provides more detailed information.

Output Data Set
PROC SURVEYREG uses the Output Delivery System (ODS) to create output data
sets. This is a departure from older SAS procedures that provide OUTPUT statements
for similar functionality. For more information on ODS, seeChapter 14, “Using the
Output Delivery System.”

For example, to save the “ParameterEstimates” table (Figure 71.7) in the previous
section in an output data set, you use the ODS OUTPUT statement as follows:

title1 ’Ice Cream Spending Analysis’;
title2 ’Stratified Simple Random Sample Design’;
proc surveyreg data=IceCream total=StudentTotals;

strata Grade /list;
class Kids;
model Spending = Income Kids / solution;
weight Weight;
ods output ParameterEstimates = MyParmEst;
run;

The statement

ods output ParameterEstimates = MyParmEst;

requests that the “ParameterEstimates” table that appears inFigure 71.7be placed in
a SAS data set namedMyParmEst.

The PRINT procedure displays observations of the data setMyParmEst:

proc print data=MyParmEst;
run;

Figure 71.8displays the observations in the data setMyParmEst.

Ice Cream Spending Analysis
Stratified Simple Random Sample Design

OBS Parameter Estimate StdErr DenDF tValue Probt

1 Intercept -26.086882 2.44108058 37 -10.69 <.0001
2 Income 0.776699 0.04295904 37 18.08 <.0001
3 Kids 1 0.888631 1.07000634 37 0.83 0.4116
4 Kids 2 1.545726 1.20815863 37 1.28 0.2087
5 Kids 3 -0.526817 1.32748011 37 -0.40 0.6938
6 Kids 4 0.000000 0.00000000 37 . .

Figure 71.8. The Data Set MyParmEst



PROC SURVEYREG Statement � 4373

The section“ODS Table Names”on page 4394 gives the complete list of the tables
produced by PROC SURVEYREG.

Syntax

The following statements are available in PROC SURVEYREG:

PROC SURVEYREG < options > ;
BY variables ;
CLASS variables ;
CLUSTER variables ;
CONTRAST ’label’ effect values

< . . . effect values > < / options > ;
ESTIMATE ’label’ effect values

< . . . effect values > < / options > ;
MODEL dependent = < effects > < / options > ;
STRATA variables < / options > ;
WEIGHT variable ;

The PROC SURVEYREG and MODEL statements are required. If your model con-
tains classification effects, you must list the classification variables in a CLASS state-
ment, and the CLASS statement must precede the MODEL statement. If you use a
CONTRAST statement or an ESTIMATE statement, the MODEL statement must
precede the CONTRAST or ESTIMATE statement.

The CLASS, CLUSTER, STRATA, CONTRAST, and ESTIMATE statements can
appear multiple times. You should only use one MODEL statement and one
WEIGHT statement.

PROC SURVEYREG Statement

PROC SURVEYREG < options >;

The PROC SURVEYREG statement invokes the procedure. You can specify the
following options in the PROC SURVEYREG statement:

ALPHA= α
sets the confidence level for confidence limits. The value of the ALPHA= option
must be between 0 and 1, and the default value is 0.05. A confidence level ofα
produces100(1 − α)% confidence limits. The default of ALPHA=0.05 produces
95% confidence limits.

DATA=SAS-data-set
specifies the SAS data set to be analyzed by PROC SURVEYREG. If you omit the
DATA= option, the procedure uses the most recently created SAS data set.
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RATE=value |SAS-data-set
R=value |SAS-data-set

specifies the sampling rate as a non-negativevalue, or specifies an input data set
that contains the stratum sampling rates. The procedure uses this information to
compute a finite population correction for variance estimation. If your sample design
has multiple stages, you should specify thefirst-stage sampling rate, which is the
ratio of the number of PSUs selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same
sampling rate in all strata, you should specify a non-negativevalue for the RATE=
option. If your design is stratified with different sampling rates in the strata, then you
should name a SAS data set that contains the stratification variables and the sampling
rates. See the sectionSpecification of Population Totals and Sampling Rateson page
4382 for more details.

Thevalue in the RATE= option or the values of–RATE– in the secondary data set
must be non-negative numbers. You can specifyvalue as a number between 0 and
1. Or you can specifyvalue in percentage form as a number between 1 and 100, and
PROC SURVEYREG will convert that number to a proportion. The procedure treats
the value 1 as 100%, and not the percentage form 1%.

If you do not specify theTOTAL= option or the RATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.

TOTAL=value |SAS-data-set
N=value |SAS-data-set

specifies the total number of primary sampling units in the study population as a
positivevalue, or specifies an input data set that contains the stratum population totals.
The procedure uses this information to compute a finite population correction for
variance estimation.

For a nonstratified sample design, or for a stratified sample design with the same
population total in all strata, you should specify a positivevalue for the TOTAL=
option. If your sample design is stratified with different population totals in the strata,
then you should name a SAS data set that contains the stratification variables and the
population totals. See the sectionSpecification of Population Totals and Sampling
Rateson page 4382 for more details.

If you do not specify the TOTAL= option or theRATE= option, then the variance
estimation does not include a finite population correction. You cannot specify both
the TOTAL= option and the RATE= option.

TRUNCATE
specifies that class levels should be determined using no more than the first 16 char-
acters of the formatted values of the CLASS, STRATA, and CLUSTER variables.
When formatted values are longer than 16 characters, you can use this option in order
to revert to the levels as determined in releases previous to Version 9.
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BY Statement

BY variables ;

You can specify a BY statement with PROC SURVEYREG to obtain separate analy-
ses on observations in groups defined by the BY variables.

Note that using a BY statement provides completely separate analyses of the BY
groups. It does not provide a statistically valid subpopulation or domain analysis,
where the total number of units in the subpopulation is not known with certainty. For
more information on subpopulation analysis for sample survey data, refer to Cochran
(1977).

When a BY statement appears, the procedure expects the input data sets to be sorted in
order of the BY variables. If you specify more than one BY statement, the procedure
uses only the latest BY statement and ignores any previous ones.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the SURVEYREG procedure. The NOTSORTED option does
not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS |CLASSES variables ;

The CLASS statement specifies the classification variables to be used in the
model. Typical class variables are TREATMENT, GENDER, RACE, GROUP, and
REPLICATION. If you specify the CLASS statement, it must appear before the
MODEL statement.

Classification variables can be either character or numeric. Class levels are deter-
mined from the formatted values of the CLASS variables. Thus, you can use formats
to group values into levels. Refer to the discussion of the FORMAT procedure in
the SAS Procedures Guideand to the discussions of the FORMAT statement and
SAS formats inSAS Language Reference: Concepts. By default, class levels are de-
termined from the entire formatted values of the CLASS variables. Note that this
represents a slight change from previous releases in the way in which class levels
are determined. In releases prior to Version 9, class levels were determined using no
more than the first 16 characters of the formatted values. If you wish to revert to this
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previous behavior you can use theTRUNCATE option in the PROC SURVEYREG
statement.

You can use multiple CLASS statements to specify classification variables.

CLUSTER Statement

CLUSTER |CLUSTERS variables ;

The CLUSTER statement specifies variables that identify clusters in a clustered sam-
ple design. The combinations of categories of CLUSTER variables define the clusters
in the sample. If there is a STRATA statement, clusters are nested within strata.

If your sample design has clustering at multiple stages, you should identify only the
first-stage clusters, or primary sampling units (PSUs), in the CLUSTER statement.

The CLUSTERvariablesare one or more variables in the DATA= input data set.
These variables can be either character or numeric. The formatted values of the
CLUSTER variables determine the CLUSTER variable levels. Thus, you can use
formats to group values into levels. Refer to the discussion of the FORMAT proce-
dure in theSAS Procedures Guideand to the discussions of the FORMAT statement
and SAS formats inSAS Language Reference: Dictionary. By default, clusters are
determined from the entire formatted values of the CLUSTER variables. Note that
this represents a slight change from previous releases in the way in which clusters
are determined. In releases prior to Version 9, clusters were determined using no
more than the first 16 characters of the formatted values. If you wish to revert to this
previous behavior you can use theTRUNCATE option in the PROC SURVEYREG
statement.

You can use multiple CLUSTER statements to specify cluster variables. The proce-
dure uses variables from all CLUSTER statements to create clusters.

CONTRAST Statement

CONTRAST ’label’ effect values < / options > ;

CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement provides custom hypothesis tests for linear combinations
of the regression parametersH0:Lβ = 0, whereL is the vector or matrix you specify
andβ is the vector of regression parameters. Thus, to use this feature, you must be
familiar with the details of the model parameterization used by PROC SURVEYREG.
For information on the parameterization, see the section“Parameterization of PROC
GLM Models” on page 1787 inChapter 32, “The GLM Procedure.”

Each term in the MODEL statement, called aneffect, is a variable or a combination
of variables. You can specify an effect with a variable name or a special notation
using variable names and operators. For more details on how to specify an effect,
see the section“Specification of Effects”on page 1784 inChapter 32, “The GLM
Procedure.”

For each CONTRAST statement, PROC SURVEYREG computes Wald’sF test. The
procedure displays this value with the degrees of freedom, and identifies it with the
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contrast label. The numerator degrees of freedom for Wald’sF test equals rank(L).
The denominator degrees of freedom equals the number of clusters (or the num-
ber of observations if there is no CLUSTER statement) minus the number of strata.
Alternatively, you can use the DF= option in the MODEL statement to specify the
denominator degrees of freedom.

You can specify any number of CONTRAST statements, but they must appear after
the MODEL statement.

In the CONTRAST statement,

label identifies the contrast in the output. A label is required for
every contrast specified. Labels must be enclosed in single
quotes.

effect identifies an effect that appears in the MODEL statement. You
can use the INTERCEPT keyword as an effect when an inter-
cept is fitted in the model. You do not need to include all
effects that are in the MODEL statement.

values are constants that are elements ofL associated with the effect.

You can specify the following options in the CONTRAST statement after a slash (/):

E
displays the entire coefficientL vector or matrix.

NOFILL
requests no filling in higher-order effects. When you specify only certain portions
of L, by default PROC SURVEYREG constructs the remaining elements from the
context. (For more information, see the section“Specification of ESTIMATE
Expressions”on page 1801 inChapter 32, “The GLM Procedure.”)

When you specify the NOFILL option, PROC SURVEYREG does not construct
the remaining portions and treats the vector or matrixL as it is defined in the
CONTRAST statement.

SINGULAR=value
specifies the sensitivity for checking estimability. Ifv is a vector, define ABS(v)
to be the largest absolute value of the elements ofv. SayH is the (X′X)−X′X
matrix, and C is ABS(L) except for elements ofL that equal 0, and then
C is 1. If ABS(L− LH) > C·value, then L is declared nonestimable. The
SINGULAR=value must be between 0 and 1, and the default is10−4.

As stated previously, the CONTRAST statement enables you to perform hypothesis
testsH0:Lβ = 0.

If the L matrix contains more than one contrast, then you can separate the rows of the
L matrix with commas. For example, for the model

proc surveyreg;
class A B;
model Y=A B;

run;
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with A at 5 levels andB at 2 levels, the parameter vector is

(µ α1 α2 α3 α4 α5 β1 β2)

To test the hypothesis that the pooledA linear andA quadratic effect is zero, you can
use the followingL matrix:

L =
[

0 −2 −1 0 1 2 0 0
0 2 −1 −2 −1 2 0 0

]
The corresponding CONTRAST statement is

contrast ’A Linear & Quadratic’
a -2 -1 0 1 2,
a 2 -1 -2 -1 2;

ESTIMATE Statement

ESTIMATE ’label’ effect values < / options > ;

ESTIMATE ’label’ effect values < . . . effect values > < / options > ;

You can use an ESTIMATE statement to estimate a linear function of the regression
parameters by multiplying a row vectorL by the parameter estimate vectorβ̂.

Each term in the MODEL statement, called aneffect, is a variable or a combination
of variables. You can specify an effect with a variable name or with a special notation
using variable names and operators. For more details on how to specify an effect,
see the section“Specification of Effects”on page 1784 inChapter 32, “The GLM
Procedure.”

PROC SURVEYREG checks the linear function for estimability. (See the
SINGULAR= optiondescribed on page 4379).

The procedure displays the estimateLβ̂ along with its standard error andt test. If
you specify the CLPARM option in the MODEL statement, PROC SURVEYREG
also displays confidence limits for the linear function. By default, the degrees of
freedom for thet test equals the number of clusters (or the number of observations if
there is no CLUSTER statement) minus the number of strata. Alternatively, you can
specify the degrees of freedom with the DF= option in the MODEL statement.

You can specify any number of ESTIMATE statements, but they must appear after
the MODEL statement.

In the ESTIMATE statement,

label identifies the linear functionL in the output. A label is required for every
function specified. Labels must be enclosed in single quotes.

effect identifies an effect that appears in the MODEL statement. You can use the
INTERCEPT keyword as an effect when an intercept is fitted in the model.
You do not need to include all effects that are in the MODEL statement.
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values values are constants that are elements of the vectorL associated with the
effect. For example, the following code forms an estimate that is the differ-
ence between the parameters estimated for the first and second levels of the
CLASS variableA.

estimate ’A1 vs A2’ A 1 -1;

You can specify the following options in the ESTIMATE statement after a slash (/):

DIVISOR=value
specifies a value by which to divide all coefficients so that fractional coefficients can
be entered as integers. For example, you can use

estimate ’1/3(A1+A2) - 2/3A3’ a 1 1 -2 / divisor=3;

instead of

estimate ’1/3(A1+A2) - 2/3A3’ a 0.33333 0.33333 -0.66667;

E
displays the entire coefficient vectorL.

NOFILL
requests no filling in higher-order effects. When you specify only certain portions
of the vectorL, by default PROC SURVEYREG constructs the remaining elements
from the context. (See the section“Specification of ESTIMATE Expressions”on
page 1801 inChapter 32, “The GLM Procedure.”) When you specify the NOFILL
option, PROC SURVEYREG does not construct the remaining portions and treats the
vectorL as it is defined in the ESTIMATE statement.

SINGULAR=value
specifies the sensitivity for checking estimability. Ifv is a vector, define ABS(v)
to be the largest absolute value of the elements ofv. SayH is the (X′X)−X′X
matrix, andC is ABS(L) except for elements ofL that equal 0, and thenC is 1.
If ABS(L− LH) > C×value, thenL is declared nonestimable. The SINGULAR=
valuemust be between 0 and 1, and the default is10−4.

MODEL Statement

MODEL dependent = < effects >< / options >;

The MODEL statement specifies the dependent (response) variable and the indepen-
dent (regressor) variables or effects. Each term in a MODEL statement, called an
effect, is a variable or a combination of variables. You can specify an effect with a
variable name or with special notation using variable names and operators. For more
information on how to specify an effect, see the section“Specification of Effects”
on page 1784 inChapter 32, “The GLM Procedure.”The dependent variable must
be numeric. Only one MODEL statement is allowed for each PROC SURVEYREG
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statement. If you specify more than one MODEL statement, the procedure uses the
first model and ignores the rest.

You can specify the following options in the MODEL statement after a slash (/):

ADJRSQ
requests the procedure to compute the adjusted multiple R-square.

ANOVA
requests the ANOVA table to be produced in the output. By default, the ANOVA
table will not be printed in the output.

CLPARM
requests confidence limits for the parameter estimates. The SURVEYREG procedure
determines the confidence coefficient using theALPHA= option, which by default
equals 0.05 and produces 95% confidence bounds. The CLPARM option also re-
quests confidence limits for all the estimable linear functions of regression parameters
in the ESTIMATE statements.

Note that when there is a CLASS statement, you need to use theSOLUTION op-
tion with the CLPARM option to obtain the parameter estimates and their confidence
limits.

COVB
displays the estimated covariance matrix of the estimated regression estimates.

DEFF
displays design effects for the regression coefficient estimates.

DF=value
specifies the denominator degrees of freedom for theF tests and the degrees of free-
dom for thet tests. The default is the number of clusters (or the number of obser-
vations if there is no CLUSTER statement) minus the number of actual strata. The
number of actual strata equals the number of strata in the data before collapsing mi-
nus the number of strata collapsed plus 1. See the section“Stratum Collapse”on page
4388 for details on “collapsing of strata.”

I
INVERSE

displays the inverse or the generalized inverse of theX′X matrix. When there is
a WEIGHT variable, the procedure displays the inverse or the generalized inverse
of theX′WX matrix, whereW is the diagonal matrix constructed from WEIGHT
variable values.

NOINT
omits the intercept from the model.

SOLUTION
displays a solution to the normal equations, which are the parameter estimates. The
SOLUTION option is useful only when you use a CLASS statement. If you do not
specify a CLASS statement, PROC SURVEYREG displays parameter estimates by
default. But if you specify a CLASS statement, PROC SURVEYREG does not dis-
play parameter estimates unless you also specify the SOLUTION option.
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VADJUST=DF | NONE
VARADJ=DF | NONE
VARADJUST=DF | NONE

specifies if the you want to use degrees of freedom adjustment(n−1)/(n−p) in the
computation of the matrixG for thevariance estimationon page 4385. If you do not
specify the VADJUST= option, by default, PROC SURVEYREG uses the degrees
of freedom adjustment, that is equivalent to the VARADJ=DF option. If you do not
wish to use this variance adjustment, you can specify the VADJUST=NONE option.

X
XPX

displays theX′X matrix, or theX′WX matrix when there is a WEIGHT variable,
whereW is the diagonal matrix constructed from WEIGHT variable values. The X
option also displays the crossproducts vectorX′y, or X′Wy.

STRATA Statement

STRATA |STRATUM variables < / options > ;

The STRATA statement specifies variables that form the strata in a stratified sample
design. The combinations of categories of STRATA variables define the strata in the
sample.

If your sample design has stratification at multiple stages, you should identify only
the first-stage strata in the STRATA statement. See the section“Specification of
Population Totals and Sampling Rates”on page 4382 for more information.

The STRATAvariablesare one or more variables in the DATA= input data set. These
variables can be either character or numeric. By default, strata are determined from
the entire formatted values of the STRATA variables. Note that this represents a slight
change from previous releases in the way in which strata are determined. In releases
prior to Version 9, strata were determined using no more than the first 16 characters
of the formatted values. If you wish to revert to this previous behavior you can use
theTRUNCATEoption in the PROC SURVEYREG statement.

Thus, you can use formats to group values into levels. Refer to the discussion of the
FORMAT procedure in theSAS Procedures Guide.

You can use multiple STRATA statements to specify stratum variables.

You can specify the following options in the STRATA statement after a slash (/):

LIST
displays a “Stratum Information” table, which includes values of the STRATA vari-
ables, and the number of observations, number of clusters, population total, and sam-
pling rate for each stratum. This table also displays stratum collapse information.

NOCOLLAPSE
prevents the procedure from collapsing, or combining, strata that have only one sam-
pling unit. By default, the procedurecollapsesstrata that contain only one sampling
unit. See the section“Stratum Collapse”on page 4388 for details.
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WEIGHT Statement

WEIGHT |WGT variable ;

The WEIGHT statement specifies the variable that contains the sampling weights.
This variable must be numeric. If you do not specify a WEIGHT statement, PROC
SURVEYREG assigns all observations a weight of 1. Sampling weights must be
positive numbers. If an observation has a weight that is nonpositive or missing, then
the procedure omits that observation from the analysis. If you specify more than
one WEIGHT statement, the procedure uses only the first WEIGHT statement and
ignores the rest.

Details

Missing Values

If an observation has a missing value or a nonpositive value for the WEIGHT variable,
then PROC SURVEYREG excludes that observation from the analysis. An observa-
tion is also excluded if it has a missing value for any STRATA variable, CLUSTER
variable, dependent variable, or any variable used in the independent effects. The
analysis includes all observations in the data set that have nonmissing values for all
these design and analysis variables.

If you have missing values in your survey data for any reason (such as nonresponse),
this can compromise the quality of your survey results. If the respondents are different
from the nonrespondents with regard to a survey effect or outcome, then survey esti-
mates will be biased and will not accurately represent the survey population. There
are a variety of techniques in sample design and survey operations that can reduce
nonresponse. Once data collection is complete, you can use imputation to replace
missing values with acceptable values, and you can use sampling weight adjustments
to compensate for nonresponse. You should complete this data preparation and ad-
justment before you analyze your data with PROC SURVEYREG. Refer to Cochran
(1977) for more details.

Survey Design Information

Specification of Population Totals and Sampling Rates

If your analysis should include a finite population correction (fpc), you can input ei-
ther the sampling rate or the population total using the RATE= option or the TOTAL=
option. You cannot specify both of these options in the same PROC SURVEYREG
statement. If you do not specify one of these options, the procedure does not use
the fpc when computing variance estimates. For fairly small sampling fractions, it is
appropriate to ignore this correction. Refer to Cochran (1977) and Kish (1965).

If your design has multiple stages of selection and you are specifying the RATE=
option, you should input the first-stage sampling rate, which is the ratio of the number
of PSUs in the sample to the total number of PSUs in the study population. If you
are specifying the TOTAL= option for a multistage design, you should input the total
number of PSUs in the study population.
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For a nonstratified sample design, or for a stratified sample design with the same sam-
pling rate or the same population total in all strata, you should use the RATE=value
option or the TOTAL=value option. If your sample design is stratified with dif-
ferent sampling rates or population totals in the strata, then you can use the
RATE=SAS-data-setoption or the TOTAL=SAS-data-setoption to name a SAS data
set that contains the stratum sampling rates or totals. This data set is called asec-
ondary data set, as opposed to theprimary data setthat you specify with the DATA=
option.

The secondary data set must contain all the stratification variables listed in the
STRATA statement and all the variables in the BY statement. If there are for-
mats associated with the STRATA variables and the BY variables, then the for-
mats must be consistent in the primary and the secondary data sets. If you spec-
ify the TOTAL=SAS-data-setoption, the secondary data set must have a variable
named–TOTAL– that contains the stratum population totals. Or if you specify
the RATE=SAS-data-setoption, the secondary data set must have a variable named

–RATE– that contains the stratum sampling rates.

The secondary data set must contain all BY and STRATA groups that occur in the
primary data set. If the secondary data set contains more than one observation for
any one stratum, then the procedure uses the first value of–TOTAL– or –RATE– for
that stratum and ignores the rest.

Thevalue in the RATE= option, or the values of–RATE– in the secondary data set,
must be non-negative numbers. You can specify a sampling rate as a number between
0 and 1. Or you can specify a sampling rate in percentage form as a number between
1 and 100, and PROC SURVEYREG will convert that number to a proportion. The
procedure treats the value 1 as 100%, and not the percentage form 1%.

If you specify the TOTAL=valueoption,valuemust not be less than the sample size.
If you provide stratum population totals in a secondary data set, these values must not
be less than the corresponding stratum sample sizes.

Primary Sampling Units (PSUs)

When you have clusters, or primary sampling units (PSUs), in your sample design,
the procedure estimates variance from the variation among PSUs. For more informa-
tion, see the section“Variance Estimation”on page 4385. You can use the CLUSTER
statement to identify the first stage clusters in your design. PROC SURVEYREG as-
sumes that each cluster represents a PSU in the sample and that each observation is
an element of a PSU. If you do not specify a CLUSTER statement, the procedure
treats each observation as a PSU.
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Computational Details

Notation

For a stratified clustered sample design, observations are represented by ann×(p+2)
matrix

(w,y,X) = (whij , yhij ,xhij)

where

• w denotes the sampling weight vector

• y denotes the dependent variable

• X denotes the design matrix. (When an effect contains only classification vari-
ables, the columns ofX corresponding to this effect contain only 0s and 1s; no
reparameterization is made.)

• h = 1, 2, . . . ,H is the stratum number with a total ofH strata

• i = 1, 2, . . . , nh is the cluster number within stratumh, with a total ofnh

clusters

• j = 1, 2, . . . ,mhi is the unit number within clusteri of stratumh, with a total
of mhi units

• p is the total number of parameters (including an intercept if the INTERCEPT
effect is included in the MODEL statement)

• n =
∑H

h=1

∑nh
i=1 mhi is the total number of observations in the sample

Also, fh denotes the sampling rate for stratumh. You can use the TOTAL= option
or the RATE= option to input population totals or sampling rates. See the section
“Specification of Population Totals and Sampling Rates”on page 4382 for details.
If you input stratum totals, PROC SURVEYREG computesfh as the ratio of the
stratum sample size to the stratum total. If you input stratum sampling rates, PROC
SURVEYREG uses these values directly forfh. If you do not specify the TOTAL=
option or the RATE= option, then the procedure assumes that the stratum sampling
ratesfh are negligible, and a finite population correction is not used when computing
variances.

Regression Coefficients

PROC SURVEYREG solves the normal equationsX′WXβ = X′Wy using a modi-
fied sweep routine that produces a generalized (g2) inverse(X′WX)− and a solution
(Pringle and Raynor 1971)

β̂ = (X′WX)−X′Wy

whereW is the diagonal matrix constructed from WEIGHT variable values.

For models with class variables, there are more design matrix columns than there are
degrees of freedom (DF) for the effect. Thus, there are linear dependencies among the
columns. In this case, the parameters are not estimable; there is an infinite number of
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least-squares solutions. PROC SURVEYREG uses a generalized (g2) inverse to ob-
tain values for the estimates. The solution values are not displayed unless you specify
the SOLUTION option in the MODEL statement. The solution has the characteristic
that estimates are 0 whenever the design column for that parameter is a linear combi-
nation of previous columns. (Strictly termed, the solution values should not be called
estimates.) With this full parameterization, hypothesis tests are constructed to test
linear functions of the parameters that are estimable.

Variance Estimation

PROC SURVEYREG uses the Taylor series expansion theory to estimate the
covariance-variance matrix of the estimated regression coefficients (Fuller 1975). Let

r = y −Xβ̂

where the(h, i, j)th element isrhij . Compute1× p row vectors

ehij = whijrhijxhij

ehi· =
mhi∑
j=1

ehij

ēh·· =
1
nh

nh∑
i=1

ehi·

and calculate thep× p matrix

G =
n− 1
n− p

H∑
h=1

nh(1− fh)
nh − 1

nh∑
i=1

(ehi· − ēh··)′(ehi· − ēh··)

PROC SURVEYREG computes the covariance matrix ofβ as

V̂ = (X′WX)−G(X′WX)−

The factor(n − 1)/(n − p) in the computation of the matrix̂G should reduce the
small sample bias associated with using the estimated function to calculate deviations
(Hidiroglouet al. (1980)). For simple random sampling, this factor contributes to the
degrees of freedom correction applied to the residual mean square for ordinary least
squares in whichp parameter are estimated. By default, the procedure will use this
adjustment in the variance estimation. It is equivalent to specify theVADJUST=DF
option in the MODEL statement. If you do not wish to use this multiplier in the
variance estimation, you can specify theVADJUST=NONE optionin the MODEL
statement to suppress this factor.

Degrees of Freedom

PROC SURVEYREG produces tests for the significance of model effects, regression
parameters, estimable functions specified in theESTIMATE statement, and contrasts
specified in theCONTRASTstatement. It computes all these tests taking into account
the sample design. The degrees of freedom for these tests differ from the degrees of
freedom for the ANOVA table, which does not consider the sample design.
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Denominator Degrees of Freedom

The denominator DF refers to the denominator degrees of freedom forF tests and
to the degrees of freedom fort tests in the analysis. By default, the denominator
DF equals the number of clusters minus the actual number of strata. If there are
no clusters, the denominator DF equals the number of observations minus the actual
number of strata. Theactual number of strataequals

• one, if there is no STRATA statement

• the number of strata in the sample, if there is a STRATA statement but the
procedure does not collapse any strata

• the number of strata in the sample after collapsing, if there is a STRATA state-
ment and the procedure collapses strata that have only one sampling unit

Alternatively, you can specify the denominator DF using theDF= optionon page
4380 in the MODEL statement.

Numerator Degrees of Freedom

The numerator DF refers to the numerator degrees of freedom for the WaldF statistic
associated with an effect or with a contrast. The procedure computes the WaldF
statistic for an effect as a Type III test; that is, the test has the following properties:

• The hypothesis for an effect does not involve parameters of other effects except
for containing effects (which it must involve to be estimable).

• The hypotheses to be tested are invariant to the ordering of effects in the model.

See the section“Testing Effects”on page 4386 for more information. The numerator
DF for the WaldF statistic for a contrast is the rank of theL matrix that defines the
contrast.

Testing Effects

For each effect in the model, PROC SURVEYREG computes anL matrix such that
every element ofLβ is estimable; theL matrix has the maximum possible rank as-
sociated with the effect. To test the effect, the procedure uses the WaldF statistic for
the hypothesisH0:Lβ = 0. The WaldF statistic equals

FWald =
(Lβ̂)′(L′V̂L)−1(Lβ̂)

rank(L)

with numerator degrees of freedom equal torank(L) and denominator degrees of
freedom equal to the number of clusters minus the number of strata (unless you have
specified the denominator degrees of freedom with the DF= option in the MODEL
statement; see the section“Denominator Degrees of Freedom”on page 4386). It is
possible that theL matrix cannot be constructed for an effect, in which case that
effect is not testable. For more information on how the matrixL is constructed, see
the discussion inChapter 11, “The Four Types of Estimable Functions.”
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Analysis of Variance (ANOVA)

PROC SURVEYREG produces an analysis of variance table for the model specified
in the MODEL statement. This table is identical to the one produced by the GLM
procedure for the model. PROC SURVEYREG computes ANOVA table entries using
the sampling weights, but not the sample design information on stratification and
clustering.

The degrees of freedom (DF) displayed in the ANOVA table are the same as those
in the ANOVA table produced by PROC GLM. The Total DF is the total degrees of
freedom used to obtain the regression coefficient estimates. The Total DF equals the
total number of observations minus 1 if the model includes an intercept. If the model
does not include an intercept, the Total DF equals the total number of observations.
The Model DF equals the degrees of freedom for the effects in the MODEL statement,
not including the intercept. The Error DF equals the total DF minus the model DF.

Multiple R-square

PROC SURVEYREG computes a multiple R-square for the weighted regression as

R2 = 1− SSerror

SStotal

whereSSerror is the error sum of squares in the ANOVA table

SSerror = r′Wr

andSStotal is the total sum of squares

SStotal =


y′Wy if no intercept

y′Wy −

 H∑
h=1

nh∑
i=1

mhi∑
j=1

whijyhij

2

/ w··· otherwise

wherew··· is the sum of the sampling weights over all observations.

Adjusted R-square

If you specify the option ADJRSQ in the MODEL statement, PROC SURVEYREG
computes an multiple R-square adjusted as the weighted regression as

ADJRSQ=


1− n(1−R2)

n− p
if no intercept

1− (n− 1)(1−R2)
n− p

otherwise

whereR2 is the multiple R-square.
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Root Mean Square Errors

PROC SURVEYREG computes the square root of mean square errors as

√
MSE =

√
n SSerror / (n− p) w···

wherew··· is the sum of the sampling weights over all observations.

Design Effect

If you specify the DEFF option in the MODEL statement, PROC SURVEYREG cal-
culates the design effects for the regression coefficients. The design effect of an esti-
mate is the ratio of the actual variance to the variance computed under the assumption
of simple random sampling.

DEFF =
Variance under the Sample Design

Variance under Simple Random Sampling

Refer to Kish (1965, p. 258). PROC SURVEYREG computes the numerator as de-
scribed in the section“Variance Estimation”on page 4385. And the denominator is
computed under the assumption that the sample design is simple random sampling,
with no stratification and no clustering.

To compute the variance under the assumption of simple random sampling, PROC
SURVEYREG calculates the sampling rate as follows. If you specify both sampling
weights and sampling rates (or population totals) for the analysis, then the sampling
rate under simple random sampling is calculated as

f SRS= n / w···

wheren is the sample size andw··· (the sum of the weights over all observations)
estimates the population size. If the sum of the weights is less than the sample size,
fSRS is set to zero. If you specify sampling rates for the analysis but not sampling
weights, then PROC SURVEYREG computes the sampling rate under simple random
sampling as the average of the stratum sampling rates.

f SRS=
1
H

H∑
h=1

fh

If you do not specify sampling rates (or population totals) for the analysis, then the
sampling rate under simple random sampling is assumed to be zero.

f SRS= 0

Stratum Collapse

If there is only one sampling unit in a stratum, then PROC SURVEYREG cannot es-
timate the variance for this stratum. To estimate stratum variances, by default the pro-
cedure collapses, or combines, those strata that contain only one sampling unit. If you
specify theNOCOLLAPSEoption in the STRATA statement, PROC SURVEYREG
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does not collapse strata and uses a variance estimate of 0 for any stratum that contains
only one sampling unit.

If you do not specify the NOCOLLAPSE option, PROC SURVEYREG collapses
strata according to the following rules. If there are multiple strata that each contain
only one sampling unit, then the procedure collapses, or combines, all these strata
into a new pooled stratum. If there is only one stratum with a single sampling unit,
then PROC SURVEYREG collapses that stratum with the preceding stratum, where
strata are ordered by the STRATA variable values. If the stratum with one sampling
unit is the first stratum, then the procedure combines it with the following stratum.

If you specify stratum sampling rates using the RATE=SAS-data-setoption, PROC
SURVEYREG computes the sampling rate for the new pooled stratum as the
weighted average of the sampling rates for the collapsed strata. See the section
“Computational Details”on page 4384 for details. If the specified sampling rate
equals 0 for any of the collapsed strata, then the pooled stratum is assigned a sam-
pling rate of 0. If you specify stratum totals using the TOTAL=SAS-data-setoption,
PROC SURVEYREG combines the totals for the collapsed strata to compute the
sampling rate for the new pooled stratum.

Sampling Rate of the Pooled Stratum from Collapse

Assuming that PROC SURVEYREG collapses single-unit stratah1, h2, . . . , hc into
the pooled stratum, the procedure calculates the sampling rate for the pooled stratum
as

fPooled Stratum=


0 if any of fhl

= 0 wherel = 1, 2, . . . , c(
c∑

l=1

nhl
f−1

hl

)−1 c∑
l=1

nhl
otherwise

Contrasts

You can use the CONTRAST statement to perform custom hypothesis tests. If the
hypothesis is testable in the univariate case, the WaldF statistic forH0 : Lβ = 0 is
computed as

FWald =
(LFullβ̂)′(LFull

′V̂LFull)−1(LFullβ̂)
rank(L)

whereL is the contrast vector or matrix you specify,β is the vector of regression
parameters,̂β = (X′WX)−X′WY, V̂ is the estimated covariance matrix ofβ̂,
rank(L) is the rank ofL , andLFull is a matrix such that

• LFull has the same number of columns asL

• LFull has full row rank

• the rank ofLFull equals the rank of theL matrix

• all rows ofLFull are estimable functions

• the WaldF statistic computed using theLFull matrix is equivalent to the Wald
F statistic computed using theL matrix with any row deleted that is a linear
combination of previous rows
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If L is a full-rank matrix, and all rows ofL are estimable functions, thenLFull is the
same asL . It is possible thatLFull matrix cannot be constructed for contrasts in a
CONTRAST statement, in which case the contrasts are not testable.

Output

Displayed Output

The SURVEYREG procedure produces the following output.

Data Summary

By default, PROC SURVEYREG displays the following information in the “Data
Summary” table:

• Number of Observations, which is the total number of observations used in the
analysis, excluding observations with missing values

• Sum of Weights, if you specify a WEIGHT statement

• Mean of the dependent variable in the MODEL statement, or Weighted Mean
if you specify a WEIGHT statement

• Sum of the dependent variable in the MODEL statement, or Weighted Sum if
you specify a WEIGHT statement

Design Summary

When you specify a CLUSTER statement or a STRATA statement, the procedure
displays a “Design Summary” table, which provides the following sample design
information:

• Number of Strata, if you specify a STRATA statement

• Number of Strata Collapsed, if the procedure collapses strata

• Number of Clusters, if you specify a CLUSTER statement

• Overall Sampling Rate used to calculate the design effect, if you specify the
DEFF option in the MODEL statement

Fit Statistics

By default, PROC SURVEYREG displays the following regression statistics in the
“Fit Statistics” table:

• R-square for the regression

• Root MSE, which is the square root of the mean square error

• Denominator DF, which is the denominator degrees of freedom for theF tests
and also the degrees of freedom for thet tests produced by the procedure



Displayed Output � 4391

Stratum Information

When you specify the LIST option in the STRATA statement, PROC SURVEYREG
displays a “Stratum Information” table, which provides the following information for
each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variable(s), which lists the levels of STRATA variables for the stra-
tum

• Population Total, if you specify the TOTAL= option

• Sampling Rate, if you specify the TOTAL= option or the RATE= option. If
you specify the TOTAL= option, the sampling rate is based on the number of
nonmissing observations in the stratum.

• N Obs, which is the number of observations

• number of Clusters, if you specify a CLUSTER statement

• Collapsed, which has the value ‘Yes’ if the stratum is collapsed with another
stratum before analysis

If PROC SURVEYREG collapses strata, the “Stratum Information” table also dis-
plays stratum information for the new, collapsed stratum. The new stratum has a
Stratum Index of 0 and is labeled ‘Pooled’.

Class Level Information

If you use a CLASS statement to name classification variables, PROC SURVEYREG
displays a “Class Level Information” table. This table contains the following infor-
mation for each classification variable:

• Class Variable, which lists each CLASS variable name

• Levels, which is the number of values or levels of the classification variable

• Values, which lists the values of the classification variable. The values are
separated by a white space character; therefore, to avoid confusion, you should
not include a white space character within a classification variable value.

X′X Matrix

If you specify the XPX option in the MODEL statement, PROC SURVEYREG dis-
plays theX′X matrix, or theX′WX matrix when there is a WEIGHT variable. This
option also displays the crossproducts vectorX′y or X′Wy, wherey is the response
vector (dependent variable).

Inverse Matrix of X′X

If you specify the INV option in the MODEL statement, PROC SURVEYREG dis-
plays the inverse or the generalized inverse of theX′X matrix. When there is a
WEIGHT variable, the procedure displays the inverse or the generalized inverse of
theX′WX matrix.
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ANOVA for Dependent Variable

If you specify the ANOVA option in the model statement, PROC SURVEYREG dis-
plays an analysis of variance table for the dependent variable. This table is identical
to the ANOVA table displayed by the GLM procedure.

Tests of Model Effects

By default, PROC SURVEYREG displays a “Tests of Model Effects” table, which
provides Wald’sF test for each effect in the model. The table contains the following
information for each effect:

• Effect, which is the effect name

• Num DF, which is the numerator degrees of freedom for Wald’sF test

• F Value, which is Wald’sF statistic

• Pr > F, which is the significance probability corresponding to the F Value

A footnote displays the denominator degrees of freedom, which is the same for all
effects.

Estimated Regression Coefficients

PROC SURVEYREG displays the “Estimated Regression Coefficients” table by de-
fault when there is no CLASS statement. Also, the procedure displays this table
when you specify a CLASS statement and also specify the SOLUTIONS option in
the MODEL statement. This table contains the following information for each re-
gression parameter:

• Parameter, which identifies the effect or regressor variable

• Estimate, which is the estimate of the regression coefficient

• Standard Error, which is the standard error of the estimate

• t Value, which is thet statistic for testingH0: Parameter= 0

• Pr > | t |, which is the two-sided significance probability corresponding to the t
Value

Covariance of Estimated Regression Coefficients

When you specify the COVB option in the MODEL statement, PROC SURVEYREG
displays the “Covariance of Estimated Regression Coefficients” matrix.

Coefficients of Contrast

When you specify the E option in a CONTRAST statement, PROC SURVEYREG
displays a “Coefficients of Contrast” table for the contrast. You can use this table to
check the coefficients you specified in the CONTRAST statement. Also, this table
gives a note for a nonestimable contrast.
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Analysis of Contrasts

If you specify a CONTRAST statement, PROC SURVEYREG produces an “Analysis
of Contrasts” table, which displays Wald’sF test for the contrast. If you use more than
one CONTRAST statement, the procedure displays all results in the same table. The
“Analysis of Contrasts” table contains the following information for each contrast:

• Contrast, which is the label of the contrast

• Num DF, which is the numerator degrees of freedom for Wald’sF test

• F Value, which is Wald’sF statistic for testingH0: Contrast= 0

• Pr > F, which is the significance probability corresponding to the F Value

Coefficients of Estimate

When you specify the E option in an ESTIMATE statement, PROC SURVEYREG
displays a “Coefficients of Estimate” table for the linear function of the regression
parameters in the ESTIMATE statement. You can use this table to check the coeffi-
cients you specified in the ESTIMATE statement. Also, this table gives a note for a
nonestimable function.

Analysis of Estimable Functions

If you specify an ESTIMATE statement, PROC SURVEYREG checks the function
for estimability. If the function is estimable, PROC SURVEYREG produces an
“Analysis of Estimable Functions” table, which displays the estimate and the cor-
respondingt test. If you use more than one ESTIMATE statement, the procedure
displays all results in the same table. The table contains the following information
for each estimable function:

• Parameter, which is the label of the function

• Estimate, which is the estimate of the estimable liner function

• Standard Error, which is the standard error of the estimate

• t Value, which is thet statistic for testingH0: Estimable Function= 0

• Pr > | t |, which is the two-sided significance probability corresponding to the t
Value

Output Data Sets

Output data sets from PROC SURVEYREG are produced using ODS (Output
Delivery System). ODS encompasses more than just the production of output data
sets. For example, you can use ODS to manipulate the format of your output, the
headers and titles of the tables, the order of the columns in a table. For a more detailed
description on using ODS, seeChapter 14, “Using the Output Delivery System.”
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ODS Table Names

PROC SURVEYREG assigns a name to each table it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 71.2. ODS Tables Produced in PROC SURVEYREG

ODS Table Name Description Statement Option
ANOVA ANOVA for dependent variable MODEL ANOVA

ClassVarInfo Class level information CLASS default

ContrastCoef Coefficients of contrast CONTRAST E

Contrasts Analysis of contrasts CONTRAST default

CovB Covariance of estimated
regression coefficients

MODEL COVB

DataSummary Data summary MODEL default

DesignSummary Design summary STRATA | CLUSTER default

Effects Tests of model effects MODEL

EstimateCoef Coefficients of estimate ESTIMATE E

Estimates Analysis of estimable functions ESTIMATE default

FitStatistics Fit Statistics MODEL default

InvXPX Inverse matrix ofX′X MODEL INV

ParameterEstimates Estimated regression
coefficients

MODEL default

StrataInfo Stratum information STRATA LIST

XPX X′X matrix MODEL XPX

By referring to the names of such tables, you can use the ODS OUTPUT statement
to place one or more of these tables in output data sets.

For example, the following statements create an output data set namedMyStrata,
which contains the “StrataInfo” table, an output data set namedMyParmEst, which
contains the “ParameterEstimates” table, and an output data set namedCov, which
contains the “CovB” table for the ice cream study discussed in the section“Stratified
Sampling”on page 4368:

title1 ’Ice Cream Spending Analysis’;
title2 ’Stratified Simple Random Sample Design’;
proc surveyreg data=IceCream total=StudentTotals;

strata Grade /list;
class Kids;
model Spending = Income Kids / solution covb;
weight Weight;
ods output StrataInfo = MyStrata

ParameterEstimates = MyParmEst
CovB = Cov;

run;
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Note that the option CovB is specified in the MODEL statement in order to produce
the covariance matrix table.

Examples

Example 71.1. Simple Random Sampling
This example investigates the relationship between the labor force participation rate
(LFPR) of women in 1968 and 1972 in large cities in the United States. A simple
random sample of 19 cities is drawn from a total of 200 cities. For each selected city,
the LFPRs are recorded and saved in a SAS data set namedLabor. The LFPR in
1972 is contained in the variableLFPR1972, and the LFPR in 1968 is identified by
the variableLFPR1968:

data Labor;
input City $ 1-16 LFPR1972 LFPR1968;
datalines;

New York .45 .42
Los Angeles .50 .50
Chicago .52 .52
Philadelphia .45 .45
Detroit .46 .43
San Francisco .55 .55
Boston .60 .45
Pittsburgh .49 .34
St. Louis .35 .45
Connecticut .55 .54
Washington D.C. .52 .42
Cincinnati .53 .51
Baltimore .57 .49
Newark .53 .54
Minn/St. Paul .59 .50
Buffalo .64 .58
Houston .50 .49
Patterson .57 .56
Dallas .64 .63
;

Assume that the LFPRs in 1968 and 1972 have a linear relationship, as shown in the
following model:

LFPR1972 = β0 + β1 ∗ LFPR1968 + error

You can use PROC SURVEYREG to obtain the estimated regression coefficients and
estimated standard errors of the regression coefficients. The following statements
perform the regression analysis:

title ’Study of Labor Force Participation Rates of Women’;
proc surveyreg data=Labor total=200;

model LFPR1972 = LFPR1968;
run;
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Here, the TOTAL=200 option specifies the finite population total from which the
simple random sample of 19 cities is drawn. You can specify the same information
by using the sampling rate option RATE=0.095 (19/200=.095).

Output 71.1.1. Summary of Regression Using Simple Random Sampling

Study of Labor Force Participation Rates of Women

The SURVEYREG Procedure

Regression Analysis for Dependent Variable LFPR1972

Data Summary

Number of Observations 19
Mean of LFPR1972 0.52684
Sum of LFPR1972 10.01000

Fit Statistics

R-square 0.3970
Root MSE 0.05657
Denominator DF 18

Output 71.1.1summarizes the data information, the fit information.

Output 71.1.2. Regression Coefficient Estimates

Study of Labor Force Participation Rates of Women

The SURVEYREG Procedure

Regression Analysis for Dependent Variable LFPR1972

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 13.84 0.0016
Intercept 1 4.63 0.0452
LFPR1968 1 13.84 0.0016

NOTE: The denominator degrees of freedom for the F tests is 18.

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 0.20331056 0.09444296 2.15 0.0452
LFPR1968 0.65604048 0.17635810 3.72 0.0016

NOTE: The denominator degrees of freedom for the t tests is 18.
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Output 71.1.2presents the significance tests for the model effects and estimated re-
gression coefficients. TheF tests andt tests for the effects in the model are also
presented in these tables.

From the regression performed by PROC SURVEYREG, you obtain a positive esti-
mated slope for the linear relationship between the LFPR in 1968 and the LFPR in
1972. The regression coefficients are all significant at the 5% level. EffectsIntercept
andLFPR1968 are significant in the model at the 5% level. In this example, theF
test for the overall model without intercept is the same as the effectLFPR1968.

Example 71.2. Simple Random Cluster Sampling

This example illustrates the use of regression analysis in a simple random cluster
sample design. The data are from Särndal, Swenson, and Wretman (1992, p. 652).

A total of 284 Swedish municipalities are grouped into 50 clusters of neighboring
municipalities. Five clusters with a total of 32 municipalities are randomly selected.
The results from the regression analysis in which clusters are used in the sample
design are compared to the results of a regression analysis that ignores the clusters.
The linear relationship between the population in 1975 and in 1985 is investigated.

The 32 selected municipalities in the sample are saved in the data setMunicipalities:

data Municipalities;
input Municipality Cluster Population85 Population75;
datalines;
205 37 5 5
206 37 11 11
207 37 13 13
208 37 8 8
209 37 17 19

6 2 16 15
7 2 70 62
8 2 66 54
9 2 12 12

10 2 60 50
94 17 7 7
95 17 16 16
96 17 13 11
97 17 12 11
98 17 70 67
99 17 20 20

100 17 31 28
101 17 49 48
276 50 6 7
277 50 9 10
278 50 24 26
279 50 10 9
280 50 67 64
281 50 39 35
282 50 29 27
283 50 10 9
284 50 27 31
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52 10 7 6
53 10 9 8
54 10 28 27
55 10 12 11
56 10 107 108

;

The variableMunicipality identifies the municipalities in the sample; the variable
Cluster indicates the cluster to which a municipality belongs; and the variables
Population85 andPopulation75 contain the municipality populations in 1985 and
in 1975 (in thousands), respectively. A regression analysis is performed by PROC
SURVEYREG with a CLUSTER statement:

title1 ’Regression Analysis for Swedish Municipalities’;
title2 ’Cluster Simple Random Sampling’;
proc surveyreg data=Municipalities total=50;

cluster Cluster;
model Population85=Population75;

run;

The TOTAL=50 option specifies the total number of clusters in the sampling frame.

Output 71.2.1. Regression Analysis for Simple Random Cluster Sampling

Regression Analysis for Swedish Municipalities
Cluster Simple Random Sampling

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Data Summary

Number of Observations 32
Mean of Population85 27.50000
Sum of Population85 880.00000

Design Summary

Number of Clusters 5

Fit Statistics

R-square 0.9860
Root MSE 3.0488
Denominator DF 4

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -0.0191292 0.89204053 -0.02 0.9839
Population75 1.0546253 0.05167565 20.41 <.0001

NOTE: The denominator degrees of freedom for the t tests is 4.
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Output 71.2.1displays the data summary, design summary, fit statistics, and regres-
sion coefficient estimates. Since the sample design includes clusters, the procedure
displays the total number of clusters in the sample in the “Design Summary” table.
In the “Estimated Regression Coefficients” table, the estimated slope for the linear
relationship is 1.05, which is significant at the 5% level; but the intercept is not sig-
nificant. This suggests that a regression line crossing the original can be established
between populations in 1975 and in 1985.

The CLUSTER statement is necessary in PROC SURVEYREG in order to incorpo-
rate the sample design. If you do not specify a CLUSTER statement in the regression
analysis, the standard deviation of the regression coefficients will be incorrectly esti-
mated:

title1 ’Regression Analysis for Swedish Municipalities’;
title2 ’Simple Random Sampling’;
proc surveyreg data=Municipalities total=284;

model Population85=Population75;
run;

The analysis ignores the clusters in the sample, assuming that the sample design is a
simple random sampling. Therefore, the TOTAL= option specifies the total number
of municipalities, which is 284.

Output 71.2.2. Regression Analysis for Simple Random Sampling

Regression Analysis for Swedish Municipalities
Simple Random Sampling

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Data Summary

Number of Observations 32
Mean of Population85 27.50000
Sum of Population85 880.00000

Fit Statistics

R-square 0.9860
Root MSE 3.0488
Denominator DF 31

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -0.0191292 0.67417606 -0.03 0.9775
Population75 1.0546253 0.03668414 28.75 <.0001

NOTE: The denominator degrees of freedom for the t tests is 31.
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Output 71.2.2displays the regression results ignoring the clusters. Compared to the
results inOutput 71.2.1on page 4398, the regression coefficient estimates are the
same. However, without using clusters, the regression coefficients have a smaller
variance estimate inOutput 71.2.2. Using clusters in the analysis, the estimated re-
gression coeffiecient for effectPopulation75 is 1.05, with the estimated standard
error 0.05, as displayed inOutput 71.2.1; without using the clusters, the estimate is
1.05, but with the estimated standard error 0.04, as displayed inOutput 71.2.2. To
estimated the variance of the regression coefficients correctly, you should include the
clustering information in the regression analysis.

Example 71.3. Regression Estimator for Simple Random
Sample

Using auxiliary information, you can construct the regression estimators to provide
more accurate estimates of the population characteristics that are of interest. With
ESTIMATE statements in PROC SURVEYREG, you can specify a regression es-
timator as a linear function of the regression parameters to estimate the population
total. This example illustrates this application, using the data in the previous example.

In this sample, a linear model between the Swedish populations in 1975 and in 1985
is established:

Population85 = α + β ∗ Population75 + error

Assuming that the total population in 1975 is known to be 8200 (in thousands), you
can use the ESTIMATE statement to predict the 1985 total population using the fol-
lowing statements:

title1 ’Regression Analysis for Swedish Municipalities’;
title2 ’Estimate Total Population’;
proc surveyreg data=Municipalities total=50;

cluster Cluster;
model Population85=Population75;
estimate ’1985 population’ Intercept 284 Population75 8200;

run;

Since each observation in the sample is a municipality, and there is a total of 284 mu-
nicipalities in Sweden, the coefficient forIntercept (α) in the ESTIMATE statement
is 284, and the coefficient forPopulation75 (β) is the total population in 1975 (8.2
million).
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Output 71.3.1. Use the Regression Estimator to Estimate the Population Total

Regression Analysis for Swedish Municipalities
Estimate Total Population

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Analysis of Estimable Functions

Standard
Parameter Estimate Error t Value Pr > |t|

1985 population 8642.49485 258.558613 33.43 <.0001

NOTE: The denominator degrees of freedom for the t tests is 4.

Output 71.3.1displays the regression results and the estimation of the total popula-
tion. Using the linear model, you can predict the total population in 1985 to be 8.64
million, with a standard error of 0.26 million.

Example 71.4. Stratified Sampling
This example illustrates using the SURVEYREG procedure to perform a regression
in a stratified sample design. Consider a population of 235 farms producing corn
in Nebraska and Iowa. You are interested in the relationship between corn yield
(CornYield) and the total farm size (FarmArea).

Each state is divided into several regions, and each region is used as a stratum. Within
each stratum, a simple random sample with replacement is drawn. A total of 19 farms
is selected using a stratified simple random sample. The sample size and population
size within each stratum are displayed inTable 71.3.

Table 71.3. Number of Farms in Each Stratum
Number of Farms

Stratum State Region Population Sample
1 Iowa 1 100 3
2 2 50 5
3 3 15 3
4 Nebraska 1 30 6
5 2 40 2

Total 235 19

Three models for the data are considered:

• Model I — Common intercept and slope:

Corn Yield= α + β ∗ Farm Area

• Model II — Common intercept, different slope:

Corn Yield=
{

α + βIowa ∗ Farm Area if the farm is in Iowa
α + βNebraska∗ Farm Area if the farm is in Nebraska



4402 � Chapter 71. The SURVEYREG Procedure

• Model III — Different intercept and different slope:

Corn Yield=
{

αIowa + βIowa ∗ Farm Area if the farm is in Iowa
αNebraska+ βNebraska∗ Farm Area if the farm is in Nebraska

Data from the stratified sample are saved in the SAS data setFarms. In the data set
Farms, the variableWeight represents the sampling weight. In this example, the
sampling weights are reciprocal of selection probabilities:

data Farms;
input State $ Region FarmArea CornYield Weight;
datalines;

Iowa 1 100 54 33.333
Iowa 1 83 25 33.333
Iowa 1 25 10 33.333
Iowa 2 120 83 10.000
Iowa 2 50 35 10.000
Iowa 2 110 65 10.000
Iowa 2 60 35 10.000
Iowa 2 45 20 10.000
Iowa 3 23 5 5.000
Iowa 3 10 8 5.000
Iowa 3 350 125 5.000
Nebraska 1 130 20 5.000
Nebraska 1 245 25 5.000
Nebraska 1 150 33 5.000
Nebraska 1 263 50 5.000
Nebraska 1 320 47 5.000
Nebraska 1 204 25 5.000
Nebraska 2 80 11 20.000
Nebraska 2 48 8 20.000
;

The information on population size in each stratum is saved in the SAS data set
StratumTotals:

data StratumTotals;
input State $ Region _TOTAL_;
datalines;

Iowa 1 100
Iowa 2 50
Iowa 3 15
Nebraska 1 30
Nebraska 2 40
;

Using the sample data from the data setFarms and the control information data from
the data setStratumTotals, you can fit Model I using PROC SURVEYREG with the
following statements:
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title1 ’Analysis of Farm Area and Corn Yield’;
title2 ’Model I: Same Intercept and Slope’;
proc surveyreg data=Farms total=StratumTotals;

strata State Region / list;
model CornYield = FarmArea;
weight Weight;

run;

Output 71.4.1. Data Summary and Stratum Information Fitting Model I

Analysis of Farm Area and Corn Yield
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Data Summary

Number of Observations 19
Sum of Weights 234.99900
Weighted Mean of CornYield 31.56029
Weighted Sum of CornYield 7416.6

Design Summary

Number of Strata 5

Fit Statistics

R-square 0.3882
Root MSE 20.6422
Denominator DF 14

Stratum Information

Stratum Population Sampling
Index State Region N Obs Total Rate

1 Iowa 1 3 100 3.00%
2 2 5 50 10.0%
3 3 3 15 20.0%
4 Nebraska 1 6 30 20.0%
5 2 2 40 5.00%

Output 71.4.1displays the data summary and stratification information fitting Model
I. The sampling rates are automatically computed by the procedure based on the
sample sizes and the population totals in strata.
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Output 71.4.2. Estimated Regression Coefficients and the Estimated Covariance
Matrix

Analysis of Farm Area and Corn Yield
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 21.74 0.0004
Intercept 1 4.93 0.0433
FarmArea 1 21.74 0.0004

NOTE: The denominator degrees of freedom for the F tests is 14.

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 11.8162978 5.31981027 2.22 0.0433
FarmArea 0.2126576 0.04560949 4.66 0.0004

NOTE: The denominator degrees of freedom for the t tests is 14.

Output 71.4.2displays tests of model effects and the estimated regression coeffi-
cients.

Alternatively, you can assume that the linear relationship between corn yield
(CornYield) and farm area (FarmArea) is different among the states (Model
II). In order to analyze the data using this model, you create auxiliary variables
FarmAreaNE andFarmAreaIA to represent farm area in different states:

FarmAreaNE =
{

0 if the farm is in Iowa
FarmArea if the farm is in Nebraska

FarmAreaIA =
{

FarmArea if the farm is in Iowa
0 if the farm is in Nebraska

The following statements create these variables in a new data set called
FarmsByState and use PROC SURVEYREG to fit Model II:

title1 ’Analysis of Farm Area and Corn Yield’;
title2 ’Model II: Same Intercept, Different Slopes’;
data FarmsByState; set Farms;

if State=’Iowa’ then do;
FarmAreaIA=FarmArea ; FarmAreaNE=0; end;

else do;
FarmAreaIA=0 ; FarmAreaNE=FarmArea; end;

run;
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The following statements perform the regression using the new data set
FarmsByState. The analysis uses the auxilary variablesFarmAreaIA and
FarmAreaNE as the regressors:

proc SURVEYREG data=FarmsByState total=StratumTotals;
strata State Region;
model CornYield = FarmAreaIA FarmAreaNE;
weight Weight;

run;

Output 71.4.3. Regression Results from Fitting Model II

Analysis of Farm Area and Corn Yield
Model II: Same Intercept, Different Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Data Summary

Number of Observations 19
Sum of Weights 234.99900
Weighted Mean of CornYield 31.56029
Weighted Sum of CornYield 7416.6

Design Summary

Number of Strata 5

Fit Statistics

R-square 0.8158
Root MSE 11.6759
Denominator DF 14

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 4.04234816 3.80934848 1.06 0.3066
FarmAreaIA 0.41696069 0.05971129 6.98 <.0001
FarmAreaNE 0.12851012 0.02495495 5.15 0.0001

NOTE: The denominator degrees of freedom for the t tests is 14.

Output 71.4.3displays the data summary, design information, fit statistics, and pa-
rameter estimates. The estimated slope parameters for each state are quite different
from the estimated slope in Model I. The results from the regression show that Model
II fits these data better than Model I.

For Model III, different intercepts are used for the linear relationship in two states.
The following statements illustrate the use of the NOINT option in the MODEL state-
ment associated with the CLASS statement to fit Model III:
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title2 ’Model III: Different Intercepts and Slopes’;
proc SURVEYREG data=FarmsByState total=StratumTotals;

strata State Region;
class State;
model CornYield = State FarmAreaIA FarmAreaNE / noint covb solution;
weight Weight;

run;

The model statement includes the classification effectState as a regressor. Therefore,
the parameter estimates for effectState will presents the intercepts in two states.

Output 71.4.4. Regression Results for Fitting Model III

Analysis of Farm Area and Corn Yield
Model III: Different Intercepts and Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Data Summary

Number of Observations 19
Sum of Weights 234.99900
Weighted Mean of CornYield 31.56029
Weighted Sum of CornYield 7416.6

Design Summary

Number of Strata 5

Fit Statistics

R-square 0.9300
Root MSE 11.9810
Denominator DF 14

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

State Iowa 5.27797099 5.27170400 1.00 0.3337
State Nebraska 0.65275201 1.70031616 0.38 0.7068
FarmAreaIA 0.40680971 0.06458426 6.30 <.0001
FarmAreaNE 0.14630563 0.01997085 7.33 <.0001

NOTE: The denominator degrees of freedom for the t tests is 14.

Covariance of Estimated Regression Coefficients

State
State Iowa Nebraska FarmAreaIA FarmAreaNE

State Iowa 27.790863033 0 -0.205517205 0
State Nebraska 0 2.8910750385 0 -0.027354011
FarmAreaIA -0.205517205 0 0.0041711265 0
FarmAreaNE 0 -0.027354011 0 0.0003988349
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Output 71.4.4displays the regression results for fitting Model III, including the data
summary, parameter estimates, and covariance matrix of the regression coefficients.
The estimated covariance matrix shows a lack of correlation between the regression
coefficients from different states. This suggests that Model III might be the best
choice for building a model for farm area and corn yield in these two states.

However, some statistics remain the same under different regression models, for ex-
ample, Weighted Mean of CornYield. These estimators do not rely on the particular
model you use.

Example 71.5. Regression Estimator for Stratified Sample

This example uses the corn yield data from the previous example to illustrate how to
construct a regression estimator for a stratified sample design.

Similar to Example 71.3on page 4400, by incorporating auxilary information into
a regression estimator, the procedure can produce more accurate estimates of the
population characteristics that are of interest. In this example, the sample design is a
stratified sample design. The auxilary information is the total farm areas in regions
of each state, as displayed inTable 71.4. You want to estimate the total corn yield
using this information under the three linear models given inExample 71.4.

Table 71.4. Information for Each Stratum
Number of Farms in

Stratum State Region Population Sample Total Farm Area
1 Iowa 1 100 3
2 2 50 5 13,200
3 3 15 3
4 Nebraska 1 30 6 8,750
5 2 40 2

Total 235 19 21,950

The regression estimator to estimate the total corn yield under Model I can be ob-
tained by using PROC SURVEYREG with an ESTIMATE statement:

title1 ’Estimate Corn Yield from Farm Size’;
title2 ’Model I: Same Intercept and Slope’;
proc surveyreg data=Farms total=StratumTotals;

strata State Region / list;
class State Region;
model CornYield = FarmArea State*Region /solution;
weight Weight;
estimate ’Estimate of CornYield under Model I’

INTERCEPT 235 FarmArea 21950
State*Region 100 50 15 30 40 /e;

run;

To apply the contraint in each stratum that the weighted total number of farms equals
to the total number of farms in the stratum, you can include the strata as an effect in
the MODEL statement, effectState*Region. Thus, the CLASS statement must list
the STRATA variables,State andRegion, as classification variables. The following
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ESTIMATE statement specifies the regression estimator, which is a linear function of
the regression parameters:

estimate ’Estimate of CornYield under Model I’
INTERCEPT 235 FarmArea 21950
State*Region 100 50 15 30 40 /e;

This linear function contains the total for each explanatory variable in the model.
Because the sampling units are farms in this example, the coefficient forIntercept
in the ESTIMATE statement is the total number of farms (235); the coefficient for
FarmArea is the total farm area listed inTable 71.4(21950); and the coefficients
for effectState*Region are the total number of farms in each strata (as displayed in
Table 71.4).

Output 71.5.1. Regression Estimator for the Total of CornYield under Model I

Estimate Corn Yield from Farm Size
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Analysis of Estimable Functions

Standard
Parameter Estimate Error t Value Pr > |t|

Estimate of CornYield under Model I 7463.52329 926.841541 8.05 <.0001

NOTE: The denominator degrees of freedom for the t tests is 14.

Output 71.5.1displays the results of the ESTIMATE statement. The regression esti-
mator for the total ofCornYield in Iowa and Nebraska is 7464 under Model I, with
a standard error of 927.

Under Model II, a regression estimator for totals can be obtained using the following
statements:

title1 ’Estimate Corn Yield from Farm Size’;
title2 ’Model II: Same Intercept, Different Slopes’;
proc surveyreg data=FarmsByState total=StratumTotals;

strata State Region;
class State Region;
model CornYield = FarmAreaIA FarmAreaNE

state*region /solution;
weight Weight;
estimate ’Total of CornYield under Model II’

INTERCEPT 235 FarmAreaIA 13200 FarmAreaNE 8750
State*Region 100 50 15 30 40 /e;

run;
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In this model, you also need to include strata as a fixed effect in the MODEL state-
ment. Other regressors are the auxiliary variablesFarmAreaIA andFarmAreaNE
(defined inExample 71.4). In the following ESTIMATE statement, the coefficient
for Intercept is still the total number of farms; and the coefficients forFarmAreaIA
andFarmAreaNE are the total farm area in Iowa and Nebraska, respectively, as dis-
played inTable 71.4. The total number of farms in each strata are the coefficients for
the strata effect:

estimate ’Total of CornYield under Model II’
INTERCEPT 235 FarmAreaIA 13200 FarmAreaNE 8750
State*Region 100 50 15 30 40 /e;

Output 71.5.2. Regression Estimator for the Total of CornYield under Model II

Estimate Corn Yield from Farm Size
Model II: Same Intercept, Different Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Analysis of Estimable Functions

Standard
Parameter Estimate Error t Value Pr > |t|

Total of CornYield under Model II 7580.48657 859.180439 8.82 <.0001

NOTE: The denominator degrees of freedom for the t tests is 14.

Output 71.5.2displays that the results of the regression estimator for the total of corn
yield in two states under Model II is 7580 with a standard error of 859. The regression
estimator under Model II has a slightly smaller standard error than under Model I.

Finally, you can apply Model III to the data and estimate the total corn yield. Under
Model III, you can also obtain the regression estimators for the total corn yield for
each state. Three ESTIMATE statements are used in the following statements to
create the three regression estimators:

title1 ’Estimate Corn Yield from Farm Size’;
title2 ’Model III: Different Intercepts and Slopes’;
proc SURVEYREG data=FarmsByState total=StratumTotals;

strata State Region;
class State Region;
model CornYield = state FarmAreaIA FarmAreaNE

State*Region /noint solution;
weight Weight;
estimate ’Total CornYield in Iowa under Model III’

State 165 0 FarmAreaIA 13200 FarmAreaNE 0
State*region 100 50 15 0 0 /e;

estimate ’Total CornYield in Nebraska under Model III’
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State 0 70 FarmAreaIA 0 FarmAreaNE 8750
State*Region 0 0 0 30 40 /e;

estimate ’Total CornYield in both states under Model III’
State 165 70 FarmAreaIA 13200 FarmAreaNE 8750
State*Region 100 50 15 30 40 /e;

run;

The fixed effectState is added to the MODEL statement to obtain different intercepts
in different states, using the NOINT option. Among the ESTIMATE statements, the
coefficients for explanatory variables are different depending on which regression
estimator is estimated. For example, in the ESTIMATE statement

estimate ’Total CornYield in Iowa under Model III’
State 165 0 FarmAreaIA 13200 FarmAreaNE 0
State*region 100 50 15 0 0 /e;

the coefficients for the effectState are 165 and 0, respectively. This indicates that
the total number of farms in Iowa is 165 and the total number of farms in Nebraska
is 0, because the estimation is the total corn yield in Iowa only. Similarly, the total
numbers of farms in three regions in Iowa are used for the coefficients of the strata
effectState*Region, as displayed inTable 71.4.

Output 71.5.3. Regression Estimator for the Total of CornYield under Model III

Estimate Corn Yield from Farm Size
Model III: Different Intercepts and Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Analysis of Estimable Functions

Standard
Parameter Estimate Error t Value

Total CornYield in Iowa under Model III 6246.10697 851.272372 7.34
Total CornYield in Nebraska under Model III 1334.37961 116.302948 11.47
Total CornYield in both states under Model III 7580.48657 859.180439 8.82

Analysis of Estimable Functions

Parameter Pr > |t|

Total CornYield in Iowa under Model III <.0001
Total CornYield in Nebraska under Model III <.0001
Total CornYield in both states under Model III <.0001

NOTE: The denominator degrees of freedom for the t tests is 14.

Output 71.5.3displays the results from the three regression estimators using Model
III. Since the estimations are independent in each state, the total corn yield from both
states is equal to the sum of the estimated total of corn yield in Iowa and Nebraska,
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6246 + 1334 = 7580. This regression estimator is the same as the one under Model
II. The variance of regression estimator of the total corn yield in both states is the sum
of variances of regression estimators for total corn yield in each state. Therefore, it
is not necessary to use Model III to obtain the regression estimator for the total corn
yield unless you need to estimate the total corn yield for each individual state.

Example 71.6. Stratum Collapse

In a stratified sample, it is possible that some strata will have only one sampling
unit. When this happens, PROC SURVEYREG collapses the strata that contain a
single sampling unit into a pooled stratum. For more detailed information on stratum
collapse, see the section“Stratum Collapse”on page 4388.

Suppose that you have the following data:

data Sample;
input Stratum X Y W;
datalines;

10 0 0 5
10 1 1 5
11 1 1 10
11 1 2 10
12 3 3 16
33 4 4 45
14 6 7 50
12 3 4 16
;

The variableStratum is again the stratification variable, the variableX is the inde-
pendent variable, and the variableY is the dependent variable. You want to regress
Y on X. In the data setSample, bothStratum=33 andStratum=14 contain one ob-
servation. By default, PROC SURVEYREG collapses these strata into one pooled
stratum in the regression analysis.

To input the finite population correction information, you create the SAS data set
StratumTotals:

data StratumTotals;
input Stratum _TOTAL_;
datalines;

10 10
11 20
12 32
33 40
33 45
14 50
15 .
66 70
;
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The variableStratum is the stratification variable, and the variable–TOTAL– con-
tains the stratum totals. The data setStratumTotals contains more strata than the
data setSample. Also in the data setStratumTotals, more than one observation
contains the stratum totals forStratum=33:

33 40
33 45

PROC SURVEYREG allows this type of input. The procedure simply ignores strata
that are not present in the data setSample; for the multiple entries of a stratum, the
procedure uses the first observation. In this example,Stratum=33 has the stratum
total–TOTAL–=40.

The following SAS statements perform the regression analysis:

title1 ’Stratified Sample with Single Sampling Unit in Strata’;
title2 ’With Stratum Collapse’;
proc SURVEYREG data=Sample total=StratumTotals;

strata Stratum/list;
model Y=X;
weight W;

run;

Output 71.6.1. Summary of Data and Regression

Stratified Sample with Single Sampling Unit in Strata
With Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Data Summary

Number of Observations 8
Sum of Weights 157.00000
Weighted Mean of Y 4.31210
Weighted Sum of Y 677.00000

Design Summary

Number of Strata 5
Number of Strata Collapsed 2

Fit Statistics

R-square 0.9564
Root MSE 0.5111
Denominator DF 4

Output 71.6.1displays that there are a total of five strata in the input data set, and
two strata are collapsed into a pooled stratum. The denominator degrees of freedom
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is 4, due to the collapse (see the section“Denominator Degrees of Freedom”on page
4386).

Output 71.6.2. Stratification Information

Stratified Sample with Single Sampling Unit in Strata
With Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Stratum Information

Stratum Population Sampling
Index Collapsed Stratum N Obs Total Rate

1 10 2 10 20.0%
2 11 2 20 10.0%
3 12 2 32 6.25%
4 Yes 14 1 50 2.00%
5 Yes 33 1 40 2.50%

0 Pooled 2 90 2.22%

NOTE: Strata with only one observation are collapsed into the stratum with
Stratum Index "0".

Output 71.6.2displays the stratification information, including stratum collapse.
Under the column Collapsed, the fourth stratum (Stratum=14) and the fifth
(Stratum=33) are marked as ‘Yes’, which indicates that these two strata are col-
lapsed into the pooled stratum (Stratum Index=0). The sampling rate for the pooled
stratum is 2% (see the section“Sampling Rate of the Pooled Stratum from Collapse”
on page 4389).
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Output 71.6.3. Parameter Estimates and Effect Tests

Stratified Sample with Single Sampling Unit in Strata
With Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 173.01 0.0002
Intercept 1 0.00 0.9961
X 1 173.01 0.0002

NOTE: The denominator degrees of freedom for the F tests is 4.

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 0.00179469 0.34306373 0.01 0.9961
X 1.12598708 0.08560466 13.15 0.0002

NOTE: The denominator degrees of freedom for the t tests is 4.

Output 71.6.3displays the parameter estimates and the tests of the significance of the
model effects.

Alternatively, if you prefer not to collapse strata with a single sampling unit, you can
specify the NOCOLLAPSE option in the STRATA statement:

title1 ’Stratified Sample with Single Sampling Unit in Strata’;
title2 ’Without Stratum Collapse’;
proc SURVEYREG data=Sample total=StratumTotals;

strata Stratum/list nocollapse;
model Y = X;
weight W;
run;



Example 71.6. Stratum Collapse � 4415

Output 71.6.4. Summary of Data and Regression

Stratified Sample with Single Sampling Unit in Strata
Without Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Data Summary

Number of Observations 8
Sum of Weights 157.00000
Weighted Mean of Y 4.31210
Weighted Sum of Y 677.00000

Design Summary

Number of Strata 5

Fit Statistics

R-square 0.9564
Root MSE 0.5111
Denominator DF 3

Output 71.6.4does not contain the stratum collapse information displayed inOutput
71.6.1, and the denominator degrees of freedom is 3 instead of 4.

Output 71.6.5. Stratification Information

Stratified Sample with Single Sampling Unit in Strata
Without Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Stratum Information

Stratum Population Sampling
Index Stratum N Obs Total Rate

1 10 2 10 20.0%
2 11 2 20 10.0%
3 12 2 32 6.25%
4 14 1 50 2.00%
5 33 1 40 2.50%

In Output 71.6.5, although the fourth stratum and the fifth stratum contain only one
observation, no stratum collapse occurs.
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Output 71.6.6. Parameter Estimates and Effect Tests

Stratified Sample with Single Sampling Unit in Strata
Without Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 347.27 0.0003
Intercept 1 0.00 0.9962
X 1 347.27 0.0003

NOTE: The denominator degrees of freedom for the F tests is 3.

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 0.00179469 0.34302581 0.01 0.9962
X 1.12598708 0.06042241 18.64 0.0003

NOTE: The denominator degrees of freedom for the t tests is 3.

As a result of not collapsing strata, the standard error estimates of the parameters are
different from those inOutput 71.6.3, as are the tests of the significance of model
effects are.
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Chapter 72
The SURVEYSELECT Procedure
Overview

The SURVEYSELECT procedure provides a variety of methods for selecting
probability-based random samples. The procedure can select a simple random sample
or can sample according to a complex multistage sample design that includes stratifi-
cation, clustering, and unequal probabilities of selection. With probability sampling,
each unit in the survey population has a known, positive probability of selection.
This property of probability sampling avoids selection bias and enables you to use
statistical theory to make valid inferences from the sample to the survey population.

To select a sample with PROC SURVEYSELECT, you input a SAS data set that con-
tains the sampling frame or list of units from which the sample is to be selected. You
also specify the selection method, the desired sample size or sampling rate, and other
selection parameters. The SURVEYSELECT procedure selects the sample, produc-
ing an output data set that contains the selected units, their selection probabilities, and
sampling weights. When you are selecting a sample in multiple stages, you invoke
the procedure separately for each stage of selection, inputting the frame and selection
parameters for each current stage.

The SURVEYSELECT procedure provides methods for both equal probability sam-
pling and probability proportional to size (PPS) sampling. In equal probability sam-
pling, each unit in the sampling frame, or in a stratum, has the same probability of
being selected for the sample. In PPS sampling, a unit’s selection probability is pro-
portional to its size measure. For details on probability sampling methods, refer to
Lohr (1999), Kish (1965, 1987), Kalton (1983), and Cochran (1977).

The SURVEYSELECT procedure provides the following equal probability sampling
methods:

• simple random sampling

• unrestricted random sampling (with replacement)

• systematic random sampling

• sequential random sampling

This procedure also provides the following probability proportional to size (PPS)
methods:

• PPS sampling without replacement

• PPS sampling with replacement

• PPS systematic sampling

• PPS algorithms for selecting two units per stratum

• sequential PPS sampling with minimum replacement
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The procedure uses fast, efficient algorithms for these sample selection methods.
Thus, it performs well even for large input data sets or sampling frames, which may
occur in practice for large-scale sample surveys.

The SURVEYSELECT procedure can perform stratified sampling, selecting samples
independently within the specified strata, or nonoverlapping subgroups of the survey
population. Stratification controls the distribution of the sample size in the strata. It is
widely used in practice toward meeting a variety of survey objectives. For example,
with stratification you can ensure adequate sample sizes for subgroups of interest,
including small subgroups, or you can use stratification toward improving the preci-
sion of the overall estimates. When you are using a systematic or sequential selection
method, the SURVEYSELECT procedure also can sort by control variables within
strata for the additional control of implicit stratification.

The SURVEYSELECT procedure provides replicated sampling, where the total sam-
ple is composed of a set of replicates, each selected in the same way. You can use
replicated sampling to study variable nonsampling errors, such as variability in the
results obtained by different interviewers. You can also use replication to compute
standard errors for the combined sample estimates.

Getting Started

In this example, an Internet service provider conducts a customer satisfaction survey.
The survey population consists of the company’s current subscribers. The company
plans to select a sample of customers from this population, interview the selected
customers, and then make inferences about the entire survey population from the
sample data.

The SAS data setCustomers contains the sampling frame, which is the list of units
in the survey population. The sample of customers will be selected from this sam-
pling frame. The data setCustomers is constructed from the company’s customer
database. It contains one observation for each customer, with a total of 13,471 obser-
vations.Figure 72.1displays the first 10 observations of the data setCustomers.

Internet Service Provider Customers
(First 10 Observations)

Obs CustomerID State Type Usage

1 416-87-4322 AL New 839
2 288-13-9763 GA Old 224
3 339-00-8654 GA Old 2451
4 118-98-0542 GA New 349
5 421-67-0342 FL New 562
6 623-18-9201 SC New 68
7 324-55-0324 FL Old 137
8 832-90-2397 AL Old 1563
9 586-45-0178 GA New 615

10 801-24-5317 SC New 728

Figure 72.1. Customers Data Set (First 10 Observations)
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In the SAS data setCustomers, the variableCustomerID uniquely identifies each
customer. The variableState contains the state of the customer’s address. The
company has customers in the following four states: Georgia (GA), Alabama (AL),
Florida (FL), and South Carolina (SC). The variableType equals ‘Old’ if the cus-
tomer has subscribed to the service for more than one year; otherwise, the variable
Type equals ‘New’. The variableUsage contains the customer’s average monthly
service usage, in minutes.

The following sections illustrate the use of PROC SURVEYSELECT for probability
sampling with three different designs for the customer satisfaction survey. All three
designs are one stage, with customers as the sampling units. The first design is simple
random sampling without stratification. In the second design, customers are stratified
by state and type, and the sample is selected by simple random sampling within strata.
In the third design, customers are sorted within strata by usage, and the sample is
selected by systematic random sampling within strata.

Simple Random Sampling

The following PROC SURVEYSELECT statements select a probability sample of
customers from theCustomers data set using simple random sampling:

title ’Customer Satisfaction Survey’;
proc surveyselect data=Customers

method=srs n=100
out=SampleSRS;

run;

The PROC SURVEYSELECT statement invokes the procedure. The DATA= option
names the SAS data setCustomers as the input data set from which to select the
sample. The METHOD=SRS option specifies simple random sampling as the sample
selection method. In simple random sampling, each unit has an equal probability
of selection, and sampling is without replacement. Without-replacement sampling
means that a unit cannot be selected more than once. The N=100 option specifies a
sample size of 100 customers. The OUT= option stores the sample in the SAS data
set namedSampleSRS.

Figure 72.2displays the output from PROC SURVEYSELECT, which summarizes
the sample selection. A sample of 100 customers is selected from the data set
Customers by simple random sampling. With simple random sampling and no strat-
ification in the sample design, the selection probability is the same for all units in the
sample. In this sample, the selection probability for each customer equals 0.007423,
which is the sample size (100) divided by the population size (13,471). The sam-
pling weight equals 134.71 for each customer in the sample, where the weight is
the inverse of the selection probability. If you specify the STATS option, PROC
SURVEYSELECT includes the selection probabilities and sampling weights in the
output data set. (This information is always included in the output data set for more
complex designs.)
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The random number seed is 39647. PROC SURVEYSELECT uses this number as the
initial seed for random number generation. Since the SEED= option is not specified
in the PROC SURVEYSELECT statement, the seed value is obtained using the time
of day from the computer’s clock. You can specify SEED=39647 to reproduce this
sample.

Customer Satisfaction Survey

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set CUSTOMERS
Random Number Seed 39647
Sample Size 100
Selection Probability 0.007423
Sampling Weight 134.71
Output Data Set SAMPLESRS

Figure 72.2. Sample Selection Summary

The sample of 100 customers is stored in the SAS data setSampleSRS. PROC
SURVEYSELECT does not display this output data set. The following PROC PRINT
statements display the first 20 observations ofSampleSRS:

title1 ’Customer Satisfaction Survey’;
title2 ’Sample of 100 Customers, Selected by SRS’;
title3 ’(First 20 Observations)’;
proc print data=SampleSRS(obs=20);
run;

Figure 72.3displays the first 20 observations of the output data setSampleSRS,
which contains the sample of customers. This data set includes all the variables from
the DATA= input data setCustomers. If you do not want to include all variables,
you can use the ID statement to specify which variables to copy from the input data
set to the output (sample) data set.
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Customer Satisfaction Survey
Sample of 100 Customers, Selected by SRS

(First 20 Observations)

Obs CustomerID State Type Usage

1 036-89-0212 FL New 74
2 045-53-3676 AL New 411
3 050-99-2380 GA Old 167
4 066-93-5368 AL Old 1232
5 082-99-9234 FL New 90
6 097-17-4766 FL Old 131
7 110-73-1051 FL Old 102
8 111-91-6424 GA New 247
9 127-39-4594 GA New 61

10 162-50-3866 FL New 100
11 162-56-1370 FL New 224
12 167-21-6808 SC New 60
13 168-02-5189 AL Old 7553
14 174-07-8711 FL New 284
15 187-03-7510 SC New 21
16 190-78-5019 GA New 185
17 200-75-0054 GA New 224
18 201-14-1003 GA Old 3437
19 207-15-7701 GA Old 24
20 211-14-1373 AL Old 88

Figure 72.3. Customer Sample (First 20 Observations)

Stratified Sampling

In this section, stratification is added to the sample design for the customer satisfac-
tion survey. The sampling frame, or list of all customers, is stratified byState and
Type. This divides the sampling frame into nonoverlapping subgroups formed from
the values of theState andType variables. Samples are then selected independently
within the strata.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA
variables. The following PROC SORT statements sort theCustomers data set by the
stratification variablesState andType:

proc sort data=Customers;
by State Type;

run;

The following PROC FREQ statements display the crosstabulation of theCustomers
data set byState andType:

proc freq data=Customers;
tables State*Type;

run;



4426 � Chapter 72. The SURVEYSELECT Procedure

The FREQ Procedure

Table of State by Type

State Type

Frequency|
Percent |
Row Pct |
Col Pct |New |Old | Total
---------+--------+--------+
AL | 1238 | 706 | 1944

| 9.19 | 5.24 | 14.43
| 63.68 | 36.32 |
| 14.43 | 14.43 |

---------+--------+--------+
FL | 2170 | 1370 | 3540

| 16.11 | 10.17 | 26.28
| 61.30 | 38.70 |
| 25.29 | 28.01 |

---------+--------+--------+
GA | 3488 | 1940 | 5428

| 25.89 | 14.40 | 40.29
| 64.26 | 35.74 |
| 40.65 | 39.66 |

---------+--------+--------+
SC | 1684 | 875 | 2559

| 12.50 | 6.50 | 19.00
| 65.81 | 34.19 |
| 19.63 | 17.89 |

---------+--------+--------+
Total 8580 4891 13471

63.69 36.31 100.00

Figure 72.4. Stratification of Customers by State and Type

Figure 72.4presents the table ofState by Type for the 13,471 customers. There are
four states and two levels ofType, forming a total of eight strata.

The following PROC SURVEYSELECT statements select a probability sample of
customers from theCustomers data set according to the stratified sample design:

title1 ’Customer Satisfaction Survey’;
title2 ’Stratified Sampling’;
proc surveyselect data=Customers

method=srs n=15
seed=1953 out=SampleStrata;

strata State Type;
run;

The STRATA statement names the stratification variablesState andType. In the
PROC SURVEYSELECT statement, the METHOD=SRS option specifies simple
random sampling. The N=15 option specifies a sample size of 15 customers for each
stratum. If you want to specify different sample sizes for different strata, you can
use the N=SAS-data-setoption to name a secondary data set that contains the stratum
sample sizes. The SEED=1953 option specifies ’1953’ as the initial seed for random
number generation.
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Customer Satisfaction Survey
Stratified Sampling

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling
Strata Variables State

Type

Input Data Set CUSTOMERS
Random Number Seed 1953
Stratum Sample Size 15
Number of Strata 8
Total Sample Size 120
Output Data Set SAMPLESTRATA

Figure 72.5. Sample Selection Summary

Figure 72.5displays the output from PROC SURVEYSELECT, which summarizes
the sample selection. A total of 120 customers are selected.

The following PROC PRINT statements display the first 30 observations of the output
data setSampleStrata:

title1 ’Customer Satisfaction Survey’;
title2 ’Sample Selected by Stratified Design’;
title3 ’(First 30 Observations)’;
proc print data=SampleStrata(obs=30);
run;

Figure 72.6displays the first 30 observations of the output data setSampleStrata,
which contains the sample of 120 customers, 15 customers from each of the eight
strata. The variableSelectionProb contains the selection probability for each cus-
tomer in the sample. Since customers are selected with equal probability within strata
in this design, the selection probability equals the stratum sample size (15) divided by
the stratum population size. The selection probabilities differ from stratum to stratum
since the population sizes differ. The selection probability for each customer in the
first stratum (State=‘AL’ and Type=‘New’) is 0.012116, and the selection probabil-
ity is 0.021246 for customers in the second stratum. The variableSamplingWeight
contains the sampling weights, which are computed as inverse selection probabilities.
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Customer Satisfaction Survey
Sample Selected by Stratified Design

(First 30 Observations)

Selection Sampling
Obs State Type CustomerID Usage Prob Weight

1 AL New 002-26-1498 1189 0.012116 82.5333
2 AL New 070-86-8494 106 0.012116 82.5333
3 AL New 121-28-6895 76 0.012116 82.5333
4 AL New 131-79-7630 265 0.012116 82.5333
5 AL New 211-88-4991 108 0.012116 82.5333
6 AL New 222-81-3742 83 0.012116 82.5333
7 AL New 238-46-3776 278 0.012116 82.5333
8 AL New 370-01-0671 123 0.012116 82.5333
9 AL New 407-07-5479 1580 0.012116 82.5333

10 AL New 550-90-3188 177 0.012116 82.5333
11 AL New 582-40-9610 46 0.012116 82.5333
12 AL New 672-59-9114 66 0.012116 82.5333
13 AL New 848-60-3119 28 0.012116 82.5333
14 AL New 886-83-4909 170 0.012116 82.5333
15 AL New 993-31-7677 64 0.012116 82.5333
16 AL Old 124-60-0495 80 0.021246 47.0667
17 AL Old 128-54-9590 56 0.021246 47.0667
18 AL Old 204-05-4017 17 0.021246 47.0667
19 AL Old 210-68-8704 4363 0.021246 47.0667
20 AL Old 239-75-4343 430 0.021246 47.0667
21 AL Old 317-70-6496 452 0.021246 47.0667
22 AL Old 365-37-1340 21 0.021246 47.0667
23 AL Old 399-78-7900 108 0.021246 47.0667
24 AL Old 404-90-6273 824 0.021246 47.0667
25 AL Old 421-04-8548 1332 0.021246 47.0667
26 AL Old 604-48-0587 16 0.021246 47.0667
27 AL Old 774-04-0162 318 0.021246 47.0667
28 AL Old 849-66-4156 79 0.021246 47.0667
29 AL Old 937-69-9106 182 0.021246 47.0667
30 AL Old 985-09-8691 24 0.021246 47.0667

Figure 72.6. Customer Sample (First 30 Observations)

Stratified Sampling with Control Sorting
The next sample design for the customer satisfaction survey uses stratification by
State. The sampling frame is also sorted byType andUsage before sample se-
lection, to provide additional control over the distribution of the sample. Customers
are then selected by systematic random sampling within strata. Selection by sys-
tematic sampling, together with control sorting, spreads the sample uniformly over
the range of type and usage values within each stratum or state. The following
PROC SURVEYSELECT statements select a probability sample of customers from
theCustomers data set using this design:

title1 ’Customer Satisfaction Survey’;
title2 ’Stratified Sampling with Control Sorting’;
proc surveyselect data=Customers

method=sys rate=.02
seed=1234 out=SampleControl;

strata State;
control Type Usage;

run;
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The STRATA statement names the stratification variableState. The CONTROL
statement names the control variablesType and Usage. In the PROC
SURVEYSELECT statement, the METHOD=SYS option requests systematic
random sampling. The RATE=.02 option specifies a sampling rate of 2% for each
stratum. The SEED=1234 option specifies the initial seed for random number
generation.

Figure 72.7displays the output from PROC SURVEYSELECT, which summarizes
the sample selection. A sample of 271 customers is selected, using systematic ran-
dom sampling within strata determined byState. The sampling frameCustomers
is sorted by control variablesType andUsage within strata. The type of sorting is
serpentine, which is used by default since SORT=NEST is not specified. See the sec-
tion “Sorting by CONTROL Variables”on page 4445 for a description of serpentine
sorting. The sorted data set replaces the input data set. (To store the sorted input data
in another data set, leaving the input data set unsorted, use the OUTSORT= option.)
The output data setSampleControl contains the sample of customers.

Customer Satisfaction Survey
Stratified Sampling with Control Sorting

The SURVEYSELECT Procedure

Selection Method Systematic Random Sampling
Strata Variable State
Control Variables Type

Usage
Control Sorting Serpentine

Input Data Set CUSTOMERS
Random Number Seed 1234
Stratum Sampling Rate 0.02
Number of Strata 4
Total Sample Size 271
Output Data Set SAMPLECONTROL

Figure 72.7. Sample Selection Summary
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Syntax

The following statements are available in PROC SURVEYSELECT:

PROC SURVEYSELECT options ;
STRATA variables ;
CONTROL variables ;
SIZE variable ;
ID variables ;

The PROC SURVEYSELECT statement invokes the procedure and optionally identi-
fies input and output data sets. It also specifies the selection method, the sample size,
and other sample design parameters. The SURVEYSELECT statement is required.

The SIZE statement identifies the variable that contains the size measures. It is re-
quired for any selection method that is probability proportional to size (PPS).

The remaining statements are optional. The STRATA statement identifies a variable
or set of variables that stratify the input data set. When you specify a STRATA
statement, PROC SURVEYSELECT selects samples independently from the strata
formed by the STRATA variables. The CONTROL statement identifies variables for
ordering units within strata. It can be used for systematic and sequential sampling
methods. The ID statement identifies variables to copy from the input data set to the
output data set of selected units.

The rest of this section gives detailed syntax information for the CONTROL, ID,
SIZE, and STRATA statements in alphabetical order after the description of the
PROC SURVEYSELECT statement.

PROC SURVEYSELECT Statement

PROC SURVEYSELECT options ;

The PROC SURVEYSELECT statement invokes the procedure and optionally iden-
tifies input and output data sets. If you do not name a DATA= input data set, the
procedure selects the sample from the most recently created SAS data set. If you do
not name an OUT= output data set to contain the sample of selected units, the proce-
dure still creates an output data set and names it according to the DATAn convention.

The PROC SURVEYSELECT statement also specifies the sample selection method,
the sample size, and other sample design parameters. If you do not specify a selection
method, PROC SURVEYSELECT uses simple random sampling (METHOD=SRS)
if there is no SIZE statement. If you specify a SIZE statement but do not specify
a selection method, PROC SURVEYSELECT uses probability proportional to size
selection without replacement (METHOD=PPS). You must specify the sample size
or sampling rate unless you request a method that selects two units from each stratum
(METHOD=PPS–BREWER or METHOD=PPS–MURTHY).

You can use the SAMPSIZE=n option to specify the sample size, or you can use the
SAMPSIZE=SAS-data-setoption to name a secondary input data set that contains
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stratum sample sizes. You can also specify stratum sampling rates, minimum size
measures, maximum size measures, and certainty size measures in the secondary
input data set. See the descriptions of the SAMPSIZE=, SAMPRATE=, MINSIZE=,
MAXSIZE=, and CERTSIZE= options. You can name only one secondary input data
set in each invocation of the procedure.

The following table lists the options available with the PROC SURVEYSELECT
statement. Descriptions follow in alphabetical order.

Table 72.1. PROC SURVEYSELECT Statement Options
Task Options
Specify the input data set DATA=

Specify output data sets OUT=
OUTSORT=

Suppress displayed output NOPRINT
Specify selection method METHOD=

Specify sample size SAMPSIZE=
SELECTALL

Specify sampling rate SAMPRATE=
NMIN=
NMAX=

Specify number of replicates REP=

Adjust size measures MINSIZE=
MAXSIZE=

Specify certainty size measures CERTSIZE=
Specify sorting type SORT=
Specify random number seed SEED=

Control OUT= contents JTPROBS
OUTALL
OUTHITS
OUTSEED
OUTSIZE
STATS

You can specify the following options in the PROC SURVEYSELECT statement:

CERTSIZE
requests automatic selection of those units with size measures greater than or equal
to the stratum certainty size measure. You provide sampling unit size measures
in the DATA= input data set variable named in theSIZE statement. And you
provide the stratum certainty size measures in the secondary input data set vari-
able –CERTSIZE– . Use the CERTSIZE option when you have already named
the secondary input data set in another option, such asSAMPSIZE=SAS-data-set,
SAMPRATE=SAS-data-set, MAXSIZE=SAS-data-set, or MINSIZE=SAS-data-set.
You can name only one secondary input data set in each invocation of the procedure.
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If any unit’s size measure is greater than or equal to the certainty size measure for its
stratum, then PROC SURVEYSELECT selects this unit with certainty. Each certainty
size measure must be a positive number. The CERTSIZE option is available for
METHOD=PPSandMETHOD=PPS–SAMPFORD.

If you want to specify a single certainty size measure in the PROC SURVEYSELECT
statement, use theCERTSIZE=certainoption.

CERTSIZE=certain
specifies the certainty size measure. PROC SURVEYSELECT selects with certainty
any unit with size measure greater than or equal to the valuecertain, which must
be a positive number. You provide size measures in the DATA= input data set vari-
able named in theSIZE statement. This option is available forMETHOD=PPSand
METHOD=PPS–SAMPFORD.

If you request a stratified sample design with aSTRATA statement and specify the
CERTSIZE= option, PROC SURVEYSELECT uses the certainty sizecertain for
all strata. If you do not want to use the same certainty size for all strata, use the
CERTSIZE=SAS-data-setoption to specify a certainty size for each stratum.

CERTSIZE=SAS-data-set
names a SAS data set that contains the certainty size measures for the strata. PROC
SURVEYSELECT selects with certainty any unit with size measure greater than or
equal to the certainty size measure for its stratum. You provide sampling unit size
measures in the DATA= input data set variable named in theSIZE statement. And
you provide the stratum certainty size measures in the CERTSIZE= input data set
variable–CERTSIZE– . Each certainty size measure must be a positive number.
This option is available forMETHOD=PPSandMETHOD=PPS–SAMPFORD.

The CERTSIZE= input data set should contain all the STRATA variables, with the
same type and length as in the DATA= data set. The STRATA groups should ap-
pear in the same order in the CERTSIZE= data set as in the DATA= data set. The
CERTSIZE= data set must include a variable named–CERTSIZE– that contains
the certainty size measure for each stratum.

CERTSIZE=P=p
specifies the certainty proportion. PROC SURVEYSELECT selects with certainty
any unit with size measure greater than or equal to the proportionp of the total size
for all units in the stratum. The procedure repeats this process with the remaining
units until no more certainty units are selected. You provide size measures in the
DATA= input data set variable named in theSIZEstatement. This option is available
for METHOD=PPSandMETHOD=PPS–SAMPFORD.

The certainty proportion must be a positive number. You can specifyp as a number
between 0 and 1. Or you can specifyp in percentage form as a number between 1
and 100, and PROC SURVEYSELECT converts that number to a proportion. The
procedure treats the value 1 as 100%, and not the percentage form 1%.

If you request a stratified sample design with aSTRATA statement and specify the
CERTSIZE=P= option, PROC SURVEYSELECT uses the same certainty proportion
p for all strata.
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DATA=SAS-data-set
names the SAS data set from which PROC SURVEYSELECT selects the sample. If
you omit the DATA= option, the procedure uses the most recently created SAS data
set. In sampling terminology, the input data set is thesampling frame, or list of units
from which the sample is selected.

JTPROBS
includes joint probabilities of selection in the OUT= output data set. This option
is available for the following probability proportional to size selection meth-
ods: METHOD=PPS, METHOD=PPS–SAMPFORD, and METHOD=PPS–WR.
By default, PROC SURVEYSELECT outputs joint selection probabilities for
METHOD=PPS–BREWERandMETHOD=PPS–MURTHY, which select two units
per stratum.

For details on computation of joint selection probabilities for a particular sampling
method, see the method description in the section“Sample Selection Methods”on
page 4446. For more information on the contents of the output data set, see the
section“Output Data Set”on page 4456.

MAXSIZE
requests that sampling unit size measures be adjusted according to the stratum max-
imum size measures in the secondary input data set. You provide sampling unit size
measures in the DATA= input data set variable named in theSIZE statement. And
you provide the stratum maximum size measures in the secondary input data set
variable–MAXSIZE– . Use the MAXSIZE option when you have already named
the secondary input data set in another option, such asSAMPSIZE=SAS-data-set,
SAMPRATE=SAS-data-set, MINSIZE=SAS-data-set, or CERTSIZE=SAS-data-set.
You can name only one secondary input data set in each invocation of the procedure.

If any size measure exceeds the maximum size measure for its stratum, then PROC
SURVEYSELECT adjusts this size measure downward to equal the maximum size
measure. Each maximum size measure must be a positive number. The MAXSIZE
option is available whenever you specify a SIZE statement for probability propor-
tional to size selection and aSTRATA statement for stratification.

If you want to specify a single maximum size value in the PROC SURVEYSELECT
statement, use theMAXSIZE=maxoption.

MAXSIZE=max
specifies the maximum size measure allowed. If any size measure exceeds the value
max, then PROC SURVEYSELECT adjusts this size measure to equalmax, which
must be a positive number. You provide size measures in the DATA= input data set
variable named in theSIZEstatement. This option is available whenever you specify
a SIZE statement for selection with probability proportional to size.

If you request a stratified sample design with aSTRATA statement and specify the
MAXSIZE= option, PROC SURVEYSELECT uses the maximum sizemax for all
strata. If you do not want to use the same maximum size for all strata, use the
MAXSIZE=SAS-data-setoption to specify a maximum size for each stratum.
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MAXSIZE=SAS-data-set
names a SAS data set that contains the maximum size measures allowed for the strata.
If any size measure exceeds the maximum size measure for its stratum, then PROC
SURVEYSELECT adjusts this size measure downward to equal the maximum size
measure. You provide sampling unit size measures in the DATA= input data set vari-
able named in theSIZEstatement. And you provide the stratum maximum size mea-
sures in the MAXSIZE= input data set variable–MAXSIZE– . Each maximum size
measure must be a positive number. This option is available whenever you specify
a SIZE statement for probability proportional to size selection and aSTRATA state-
ment for stratified selection.

The MAXSIZE= input data set should contain all the STRATA variables, with the
same type and length as in the DATA= data set. The STRATA groups should appear in
the same order in the MAXSIZE= data set as in the DATA= data set. The MAXSIZE=
data set must include a variable named–MAXSIZE– that contains the maximum size
measure for each stratum.

METHOD=name
M=name

specifies the method for sample selection. If you do not specify the METHOD=
option, by default, PROC SURVEYSELECT uses simple random sampling
(METHOD=SRS) if there is noSIZE statement. If you specify a SIZE statement,
the default selection method is probability proportional to size without replacement
(METHOD=PPS). Valid values fornameare as follows:

PPS requests selection with probability proportional to size and
without replacement. See the section“PPS Sampling with-
out Replacement”on page 4449 for details. If you specify
METHOD=PPS, you must name the size measure variable in the
SIZE statement.

PPS–BREWER | BREWER requests selection according to Brewer’s method.
Brewer’s method selects two units from each stratum with
probability proportional to size and without replacement. See
the section“Brewer’s PPS Method”on page 4453 for details.
If you specify METHOD=PPS–BREWER, you must name the
size measure variable in the SIZE statement. You do not need
to specify the sample size with the SAMPSIZE= option, since
Brewer’s method selects two units from each stratum.

PPS–MURTHY | MURTHY requests selection according to Murthy’s method.
Murthy’s method selects two units from each stratum with
probability proportional to size and without replacement. See
the section“Murthy’s PPS Method”on page 4454 for details.
If you specify METHOD=PPS–MURTHY, you must name the
size measure variable in the SIZE statement. You do not need
to specify the sample size with the SAMPSIZE= option, since
Murthy’s method selects two units from each stratum.
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PPS–SAMPFORD | SAMPFORDrequests selection according to Sampford’s
method. Sampford’s method selects units with probability
proportional to size and without replacement. See the section
“Sampford’s PPS Method”on page 4455 for details. If you specify
METHOD=PPS–SAMPFORD, you must name the size measure
variable in the SIZE statement.

PPS–SEQ | CHROMY requests sequential selection with probability proportional to
size and with minimum replacement. This method is also known as
Chromy’s method. See the section“PPS Sequential Sampling”on
page 4452 for details. If you specify METHOD=PPS–SEQ, you
must name the size measure variable in the SIZE statement.

PPS–SYS requests systematic selection with probability proportional to size.
See the section“PPS Systematic Sampling”on page 4451 for de-
tails on this method. If you specify METHOD=PPS–SYS, you
must name the size measure variable in the SIZE statement.

PPS–WR requests selection with probability proportional to size and with
replacement. See the section“PPS Sampling with Replacement”
on page 4451 for details on this method. If you specify
METHOD=PPS–WR, you must name the size measure variable in
the SIZE statement.

SEQ requests sequential selection according to Chromy’s method. If
you specify METHOD=SEQ and do not specify a size measure
variable with the SIZE statement, PROC SURVEYSELECT
uses sequential zoned selection with equal probability and
without replacement. See the section“Sequential Random
Sampling”on page 4448 for details on this method. If you specify
METHOD=SEQ and also name a size measure variable in the SIZE
statement, PROC SURVEYSELECT uses METHOD=PPS–SEQ,
which is sequential selection with probability proportional to size
and with minimum replacement. See the section“PPS Sequential
Sampling”on page 4452 for details on this method.

SRS requests simple random sampling, which is selection with equal
probability and without replacement. See the section“Simple
Random Sampling”on page 4447 for details. This method is the
default if you do not specify the METHOD= option and also do not
specify a SIZE statement.

SYS requests systematic random sampling. If you specify
METHOD=SYS and do not specify a size measure variable
with the SIZE statement, PROC SURVEYSELECT uses system-
atic selection with equal probability. See the section“Systematic
Random Sampling”on page 4448 for details on this method.
If you specify METHOD=SYS and also name a size measure
variable in the SIZE statement, PROC SURVEYSELECT uses
METHOD=PPS–SYS, which is systematic selection with prob-
ability proportional to size. See the section“PPS Systematic
Sampling”on page 4451 for details.
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URS requests unrestricted random sampling, which is selection
with equal probability and with replacement. See the section
“Unrestricted Random Sampling”on page 4447 for details.

MINSIZE
requests that sampling unit size measures be adjusted according to the stratum min-
imum size measures in the secondary input data set. You provide sampling unit
size measures in the DATA= input data set variable named in theSIZE statement.
And you provide the stratum minimum size measures in the secondary input data
set variable–MINSIZE– . Use the MINSIZE option when you have already named
the secondary input data set in another option, such asSAMPSIZE=SAS-data-set,
SAMPRATE=SAS-data-set, MAXSIZE=SAS-data-set, or CERTSIZE=SAS-data-set.
You can name only one secondary input data set in each invocation of the procedure.

If any size measure is less than the minimum size measure for its stratum, then PROC
SURVEYSELECT adjusts this size measure upward to equal the minimum size mea-
sure. Each minimum size measure must be a positive number. The MINSIZE option
is available whenever you specify a SIZE statement for probability proportional to
size selection and aSTRATA statement for stratification.

If you want to specify a single minimum size value in the PROC SURVEYSELECT
statement, use theMINSIZE=minoption.

MINSIZE=min
specifies the minimum size measure allowed. If any size measure is less than the
valuemin, then PROC SURVEYSELECT adjusts this size measure upward to equal
min, which must be a positive number. You provide size measures in the DATA= input
data set variable named in theSIZEstatement. This option is available whenever you
specify a SIZE statement for selection with probability proportional to size.

If you request a stratified sample design with aSTRATA statement and specify the
MINSIZE= option, PROC SURVEYSELECT uses the minimum sizemin for all
strata. If you do not want to use the same minimum size for all strata, use the
MINSIZE=SAS-data-setoption to specify a minimum size for each stratum.

MINSIZE=SAS-data-set
names a SAS data set that contains the minimum size measures allowed for the strata.
If any size measure is less than the minimum size measure for its stratum, then PROC
SURVEYSELECT adjusts this size measure upward to equal the minimum size mea-
sure. You provide sampling unit size measures in the DATA= input data set variable
named in theSIZE statement. And you provide the stratum minimum size measures
in the MINSIZE= input data set variable–MINSIZE– . Each minimum size measure
must be a positive number. This option is available whenever you specify a SIZE
statement for probability proportional to size selection and aSTRATA statement for
stratified selection.

The MINSIZE= input data set should contain all the STRATA variables, with the
same type and length as in the DATA= data set. The STRATA groups should appear in
the same order in the MINSIZE= data set as in the DATA= data set. The MINSIZE=
data set must include a variable named–MINSIZE– that contains the minimum size
measure for each stratum.



PROC SURVEYSELECT Statement � 4437

NMAX=n
specifies the maximum stratum sample sizen for the SAMPRATE= option. When
you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the de-
sired stratum sample size from the specified sampling rate and the total number of
units in the stratum. If this sample size is greater than the value NMAX=n, then
PROC SURVEYSELECT selects the maximum ofn units.

The maximum sample sizen must be a positive integer. The NMAX= option is
available only with the SAMPRATE= option, which may be used with equal prob-
ability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and
METHOD=SEQ).

NMIN=n
specifies the minimum stratum sample sizen for the SAMPRATE= option. When
you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the de-
sired stratum sample size from the specified sampling rate and the total number of
units in the stratum. If this sample size is less than the value NMIN=n, then PROC
SURVEYSELECT selects the minimum ofn units.

The minimum sample sizen must be a positive integer. The NMIN= option is
available only with the SAMPRATE= option, which may be used with equal prob-
ability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and
METHOD=SEQ).

NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you
want only to create an output data set. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, seeChapter 14, “Using the
Output Delivery System.”

OUT=SAS-data-set
names the output data set that contains the sample. If you omit the OUT= option,
the data set is named DATAn, wheren is the smallest integer that makes the name
unique.

The output data set contains the units selected for the sample, as well as design infor-
mation and selection statistics, depending on the selection method and output options
you specify. See the descriptions for the optionsJTPROBS, OUTHITS, OUTSEED,
OUTSIZE, andSTATS. For information on the contents of the output data set, see the
section“Output Data Set”on page 4456.

By default, the output data set contains only those units selected for the sample.
To include all observations from the input data set in the output data set, use the
OUTALL option.

OUTALL
includes all observations from the input data set in the output data set. By default,
the output data set includes only those observations selected for the sample. When
you specify the OUTALL option, the output data set includes all observations from
DATA= and also contains a variable to indicate each observation’s selection status.
The variableSelected equals 1 for an observation selected for the sample, and equals
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0 for an observation not selected. For information on the contents of the output data
set, see the section“Output Data Set”on page 4456.

The OUTALL option is available only for equal probability selection methods
(METHOD=SRS, METHOD=URS, METHOD=SYS, andMETHOD=SEQ).

OUTHITS
includes a separate observation in the output data set for each selection when the same
unit is selected more than once. By default, the output data set contains only one ob-
servation for each selected unit, even if it is selected more than once, and the variable
NumberHits contains the number of hits or selections for that unit. The OUTHITS
option is available for selection methods that select with replacement or with min-
imum replacement (METHOD=URS, METHOD=PPS–WR, METHOD=PPS–SYS,
andMETHOD=PPS–SEQ).

OUTSEED
includes the initial seed for each stratum in the output data set. The variable
InitialSeed contains the stratum initial seed. See the section“Sample Selection
Methods”on page 4446 for information on initial seeds and random number gen-
eration in PROC SURVEYSELECT.

To reproduce the same sample for any stratum in a subsequent execution of
PROC SURVEYSELECT, you can specify the same stratum initial seed with the
SEED=SAS-data-set option, along with the same sample selection parameters.

OUTSIZE
includes additional design and sampling frame parameters in the output data set. If
you specify the OUTSIZE option, PROC SURVEYSELECT includes the sample size
or sampling rate in the output data set. When you request the OUTSIZE option and
also specify theSIZE statement, the procedure outputs the size measure total for the
sampling frame. If you do not specify the SIZE statement, the procedure outputs the
total number of sampling units in the frame. Also, PROC SURVEYSELECT includes
the minimum size measure if you specify theMINSIZE= option, the maximum size
measure if you specify theMAXSIZE= option, and the certainty size measure if you
specify theCERTSIZE=option.

If you have a stratified design, the output data set includes the stratum-level values of
these parameters. Otherwise, the output data set includes the overall population-level
values.

For information on the contents of the output data set, see the section“Output Data
Set”on page 4456.

OUTSORT=SAS-data-set
names an output data set that contains the sorted input data set. This option is
available when you specify aCONTROL statement for systematic or sequential
selection methods (METHOD=SYS, METHOD=PPS–SYS, METHOD=SEQ, and
METHOD=PPS–SEQ). PROC SURVEYSELECT sorts the input data set by the
CONTROL variables within strata before selecting the sample.

If you specify CONTROL variables but do not name an output data set with the
OUTSORT= option, then the sorted data set replaces the input data set.
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REP=nrep
specifies the number of sample replicates. If you specify the REP= option, PROC
SURVEYSELECT selectsnrep independent samples, each with the same specified
sample size or sampling rate and the same sample design.

You can use replicated sampling to provide a simple method of variance estimation
for any form of statistic, as well as to evaluate variable nonsampling errors such as
interviewer differences. Refer to Lohr (1999), Kish (1965, 1987), and Kalton (1983)
for information on replicated sampling.

SAMPRATE= r
RATE=r

specifies the sampling rate, which is the proportion of units selected for the sam-
ple. The sampling rater must be a positive number. You can specifyr as a number
between 0 and 1. Or you can specifyr in percentage form as a number between 1
and 100, and PROC SURVEYSELECT converts that number to a proportion. The
procedure treats the value 1 as 100%, and not the percentage form 1%.

The SAMPRATE= option is available only for equal probability selection meth-
ods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ).
For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses
the inverse of the sampling rater as the interval. See the section“Systematic
Random Sampling”on page 4448 for details. For other selection methods, PROC
SURVEYSELECT converts the sampling rater to the sample size before selection,
multiplying the rate by the number of units in the stratum or frame and rounding up
to the nearest integer.

If you request a stratified sample design with aSTRATA statement and specify the
SAMPRATE=r option, PROC SURVEYSELECT uses the sampling rater for each
stratum. If you do not want to use the same sampling rate for each stratum, use the
SAMPRATE=(values) option or theSAMPRATE=SAS-data-setoption to specify a
sampling rate for each stratum.

SAMPRATE=(values)
RATE=(values)

specifies sampling rates for the strata. You can separatevalueswith blanks or com-
mas. The number of SAMPRATE= values must equal the number of strata in the
input data set.

List the stratum sampling rate values in the order in which the strata appear in
the input data set. If you use the SAMPRATE=(values) option, the input data set
must be sorted by the STRATA variables in ascending order. You cannot use the
DESCENDING or NOTSORTED options in the STRATA statement.

Each stratum sampling rate value must be a positive number. You can specify each
value as a number between 0 and 1. Or you can specify a value in percentage form as
a number between 1 and 100, and PROC SURVEYSELECT converts that number to
a proportion. The procedure treats the value 1 as 100%, and not the percentage form
1%.
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The SAMPRATE= option is available only for equal probability selection meth-
ods (METHOD=SRS, METHOD=URS, METHOD=SYS, andMETHOD=SEQ). For
systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the
inverse of the stratum sampling rate as the interval for the stratum. See the section
“Systematic Random Sampling”on page 4448 for details on systematic sampling.
For other selection methods, PROC SURVEYSELECT converts the stratum sampling
rate to a stratum sample size before selection, multiplying the rate by the number of
units in the stratum and rounding up to the nearest integer.

SAMPRATE=SAS-data-set
RATE=SAS-data-set

names a SAS data set that contains sampling rates for the strata. This input data
set should contain all the STRATA variables, with the same type and length as in
the DATA= data set. The STRATA groups should appear in the same order in the
SAMPSIZE= data set as in the DATA= data set. The SAMPRATE= data set should
have a variable–RATE– that contains the sampling rate for each stratum.

Each sampling rate value must be a positive number. You can specify each value
as a number between 0 and 1. Or you can specify a value in percentage form as a
number between 1 and 100, and PROC SURVEYSELECT converts that number to a
proportion. The procedure treats the value 1 as 100%, and not the percentage form
1%.

The SAMPRATE= option is available only for equal probability selection meth-
ods (METHOD=SRS, METHOD=URS, METHOD=SYS, andMETHOD=SEQ). For
systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the
inverse of the stratum sampling rate as the interval for the stratum. See the sec-
tion “Systematic Random Sampling”on page 4448 for details. For other selection
methods, PROC SURVEYSELECT converts the stratum sampling rate to the stra-
tum sample size before selection, multiplying the rate by the number of units in the
stratum and rounding up to the nearest integer.

SAMPSIZE=n
N=n

specifies the sample size, which is the number of units selected for the sample. The
sample sizen must be a positive integer. For methods that select without replacement,
the sample sizen must not exceed the number of units in the input data set.

If you request a stratified sample design with aSTRATA statement and specify the
SAMPSIZE=n option, PROC SURVEYSELECT selectsn units from each stratum.
For methods that select without replacement, the sample sizen must not exceed the
number of units in any stratum. If you do not want to select the same number of units
from each stratum, use theSAMPSIZE=(values) option or theSAMPSIZE=SAS-
data-setoption to specify different sample sizes for the strata.

For without-replacement selection methods, by default, PROC SURVEYSELECT
does not allow you to specify a stratum sample size that is greater than the total
number of units in the stratum. However, you can change this default by specifying
theSELECTALL option. With the SELECTALL option, PROC SURVEYSELECT
selects all stratum units whenever the stratum sample size exceeds the number of
units in the stratum.
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SAMPSIZE=(values)
N=(values)

specifies sample sizes for the strata. You can separatevalueswith blanks or commas.
The number of SAMPSIZE= values must equal the number of strata in the input data
set.

List the stratum sample size values in the order in which the strata appear in the input
data set. If you use the SAMPSIZE=(values) option, the input data set must be sorted
by the STRATA variables in ascending order. You cannot use the DESCENDING or
NOTSORTED options in the STRATA statement.

Each stratum sample size value must be a positive integer. For without-replacement
selection methods, by default, PROC SURVEYSELECT does not allow you to spec-
ify a stratum sample size that is greater than the total number of units in the stratum.
However, you can change this default by specifying theSELECTALL option. With
the SELECTALL option, PROC SURVEYSELECT selects all stratum units when-
ever the stratum sample size exceeds the number of units in the stratum.

SAMPSIZE=SAS-data-set
N=SAS-data-set

names a SAS data set that contains the sample sizes for the strata. This input data
set should contain all the STRATA variables, with the same type and length as in
the DATA= data set. The STRATA groups should appear in the same order in the
SAMPSIZE= data set as in the DATA= data set. The SAMPSIZE= data set should
have a variable–NSIZE– that contains the sample size for each stratum.

Each stratum sample size value must be a positive integer. For without-replacement
selection methods, by default, PROC SURVEYSELECT does not allow you to spec-
ify a stratum sample size that is greater than the total number of units in the stratum.
However, you can change this default by specifying theSELECTALL option. With
the SELECTALL option, PROC SURVEYSELECT selects all stratum units when-
ever the stratum sample size exceeds the number of units in the stratum.

SEED=number
specifies the initial seed for random number generation. The value of the SEED=
option must be an integer. If you do not specify the SEED= option, or if the
SEED= value is negative or zero, PROC SURVEYSELECT uses the time of day from
the computer’s clock to obtain the initial seed. See the section“Sample Selection
Methods”on page 4446 for more information.

Whether or not you specify the SEED= option, PROC SURVEYSELECT displays
the value of the initial seed in the “Sample Selection Summary” table. If you need to
reproduce the same sample in a subsequent execution of PROC SURVEYSELECT,
you can specify this same seed value with the SEED= option, along with the same
sample selection parameters, and PROC SURVEYSELECT will reproduce the sam-
ple.

If you request a stratified sample design with aSTRATA statement, you can use the
SEED=SAS-data-setoption to specify an initial seed for each stratum. Otherwise,
PROC SURVEYSELECT generates random numbers continuously across strata from
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the random number stream initialized by the SEED= value, as described in the section
“Sample Selection Methods”on page 4446.

To include the stratum initial seeds in the output data set, use theOUTSEEDoption.

SEED=SAS-data-set
names a SAS data set that contains initial seeds for the strata. This input data
set should contain all the STRATA variables, with the same type and length as in
the DATA= data set. The STRATA groups should appear in the same order in the
SAMPSIZE= data set as in the DATA= data set. The SEED= data set should have a
variable–SEED– that contains the initial seed for each stratum.

Each stratum initial seed value should be an integer. If the initial seed value for the
first stratum is not a positive integer, PROC SURVEYSELECT uses the time of day
from the computer’s clock to obtain the initial seed. If the initial seed value for a
subsequent stratum is not a positive integer, PROC SURVEYSELECT continues to
use the random number stream already initialized by the seed for the previous stratum.
See the section“Sample Selection Methods”on page 4446 for more information.

To include the stratum initial seeds in the output data set, specify theOUTSEED
option.

If you specified initial seeds by strata with the SEED=SAS-data-set option, you can
reproduce the same sample in a subsequent execution of PROC SURVEYSELECT
by specifying these same stratum initial seeds, along with the same sample selection
parameters. If you need to reproduce the same sample for only a subset of the strata,
you can use the same initial seeds for those strata in the subset.

SELECTALL
requests that PROC SURVEYSELECT select all stratum units whenever the stratum
sample size exceeds the total number of units in the stratum, for without-replacement
selection methods. By default, PROC SURVEYSELECT does not allow you to spec-
ify a stratum sample size that is greater than the total number of units in the stratum,
for methods that select without replacement.

The SELECTALL option is available for without-replacement selection meth-
ods, which include METHOD=SRS, METHOD=SYS, METHOD=SEQ,
METHOD=PPS, and METHOD=PPS–SAMPFORD. The SELECTALL option is
not available for with-replacement selection methods, with-minimum-replacement
methods, or for those PPS methods that select two units per stratum.

SORT=NEST | SERP
specifies the type of sorting by CONTROL variables. The option SORT=NEST re-
quests nested sorting, and SORT=SERP requests hierarchic serpentine sorting. The
default is SORT=SERP. See the section“Sorting by CONTROL Variables”on page
4445 for descriptions of serpentine and nested sorting. Where there is only one
CONTROL variable, the two types of sorting are equivalent.

This option is available when you specify aCONTROL statement for system-
atic or sequential selection methods (METHOD=SYS, METHOD=PPS–SYS,
METHOD=SEQ, and METHOD=PPS–SEQ). When you specify a CONTROL
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statement, PROC SURVEYSELECT sorts the input data set by the CONTROL
variables within strata before selecting the sample.

With sorting by CONTROL variables, you can also use theOUTSORT=option to
name an output data set that contains the sorted input data set. Otherwise, if you do
not specify the OUTSORT= option, then the sorted data set replaces the input data
set.

STATS
includes selection probabilities and sampling weights in the OUT= output data set
for equal probability selection methods when you do not specify a STRATA state-
ment. This option is available for the following equal probability selection methods:
METHOD=SRS, METHOD=URS, METHOD=SYS, andMETHOD=SEQ. For PPS
selection methods and stratified designs, the output data set contains selection proba-
bilities and sampling weights by default. For more information on the contents of the
output data set, see the section“Output Data Set”on page 4456.

CONTROL Statement

CONTROL variables ;

The CONTROL statement names variables for sorting the input data set. The
CONTROL variables can be character or numeric.

PROC SURVEYSELECT sorts the input data set by the CONTROL variables
before selecting the sample. If you also specify aSTRATA statement, PROC
SURVEYSELECT sorts by CONTROL variables within strata. Control sort-
ing is available for systematic and sequential selection methods (METHOD=SYS,
METHOD=PPS–SYS, METHOD=SEQ, andMETHOD=PPS–SEQ).

By default, PROC SURVEYSELECT uses hierarchic serpentine sorting by the
CONTROL variables. If you specify the SORT=NEST option, the procedure uses
nested sorting. See the description for theSORT=option. For more information on
serpentine and nested sorting, see the section“Sorting by CONTROL Variables”on
page 4445.

You can use theOUTSORT=option to name an output data set that contains the
sorted input data set. If you do not specify the OUTSORT= option when you use the
CONTROL statement, then the sorted data set replaces the input data set.

ID Statement

ID variables ;

The ID statement names variables from the DATA= input data set to be included
in the OUT= data set of selected units. If there is no ID statement, PROC
SURVEYSELECT includes all variables from the DATA= data set in the OUT= data
set. The ID variables can be character or numeric.
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SIZE Statement
SIZE variable ;

The SIZE statement names one and only one size measure variable, which contains
the size measures to be used when sampling with probability proportional to size. The
SIZE variable must be numeric. When the value of an observation’s SIZE variable
is missing or nonpositive, that observation has no chance of being selected for the
sample.

The SIZE statement is required for all PPS selection methods, which include
METHOD=PPS, METHOD=PPS–BREWER, METHOD=PPS–MURTHY,
METHOD=PPS–SAMPFORD, METHOD=PPS–SEQ, METHOD=PPS–SYS,
and METHOD=PPS–WR. For details on how size measures are used, see the
descriptions of PPS methods in the section“Sample Selection Methods”on page
4446.

Note that a unit’s size measure, specified in the SIZE statement and used for PPS
selection, is not the same as the sample size. The sample size is the number of units
selected for the sample, and you can specify this with theSAMPSIZE=option.

STRATA Statement
STRATA variables ;

You can specify a STRATA statement with PROC SURVEYSELECT to partition
the input data set into nonoverlapping groups defined by the STRATA variables.
PROC SURVEYSELECT then selects independent samples from these strata, ac-
cording to the selection method and design parameters specified in the PROC
SURVEYSELECT statement. For information on the use of stratification in sample
design, refer to Lohr (1999), Kalton (1983), Kish (1965, 1987), and Cochran (1977).

Thevariablesare one or more variables in the input data set. The STRATA variables
function much like BY variables, and PROC SURVEYSELECT expects the input
data set to be sorted in order of the STRATA variables.

If you specify aCONTROL statement, or if you specifyMETHOD=PPS, the input
data set must be sorted in ascending order of the STRATA variables. This means you
cannot use the STRATA option NOTSORTED or DESCENDING when you specify
a CONTROL statement or METHOD=PPS.

If your input data set is not sorted by the STRATA variables in ascending order, use
one of the following alternatives:

• Sort the data using the SORT procedure with the STRATA variables in a BY
statement.

• Specify the option NOTSORTED or DESCENDING in the STRATA statement
for the SURVEYSELECT procedure (when you do not specify a CONTROL
statement or METHOD=PPS). The NOTSORTED option does not mean that
the data are unsorted but rather that the data are arranged in groups (according
to values of the STRATA variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the STRATA variables using the DATASETS procedure.
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For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

Details

Missing Values

If an observation has a missing or nonpositive value for theSIZE variable, PROC
SURVEYSELECT excludes that observation from the sample selection. The proce-
dure writes a note to the log giving the number of observations omitted due to missing
or nonpositive size measures.

PROC SURVEYSELECT treats missingSTRATA variable values like any other
STRATA variable value. The missing values form a separate stratum.

If a value of–NSIZE– is missing in theSAMPSIZE=input data set, then PROC
SURVEYSELECT writes an error message to the log and does not select a sample
from that stratum. The procedure treats missing values of–NRATE– , –MINSIZE– ,

–MAXSIZE– , and–CERTSIZE– similarly.

Sorting by CONTROL Variables

If you specify aCONTROL statement, PROC SURVEYSELECT sorts the input
data set by the CONTROL variables before selecting the sample. If you also spec-
ify a STRATA statement, the procedure sorts by CONTROL variables within strata.
Sorting by CONTROL variables is available for systematic and sequential selection
methods, which includeMETHOD=SYS, METHOD=PPS–SYS, METHOD=SEQ,
andMETHOD=PPS–SEQ. Sorting provides additional control over the distribution
of the sample, giving some benefits of proportionate stratification.

By default, the sorted data set replaces the input data set. Or you can use the
OUTSORT=option to name an output data set that contains the sorted input data
set.

PROC SURVEYSELECT provides two types of sorting: nested sorting and hierar-
chic serpentine sorting. If you specify theSORT=NESToption, then the procedure
sorts by the CONTROL variables according to nested sorting. If you do not specify
the SORT=NEST option, the procedure uses serpentine sorting by default. These two
types of sorting are equivalent when there is only one CONTROL variable.

If you request nested sorting, PROC SURVEYSELECT sorts observations in the
same order as PROC SORT does for an ascending sort by the CONTROL vari-
ables. Refer to the chapter on the SORT procedure in theSAS Procedures Guide.
PROC SURVEYSELECT sorts within strata if you also specify a STRATA state-
ment. The procedure first arranges the input observations in ascending order of the
first CONTROL variable. Then within each level of the first control variable, the
procedure arranges the observations in ascending order of the second CONTROL
variable. This continues for all CONTROL variables specified.
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In hierarchic serpentine sorting, PROC SURVEYSELECT sorts by the first
CONTROL variable in ascending order. Then within the first level of the first
CONTROL variable, the procedure sorts by the second CONTROL variable in
ascending order. Within the second level of the first CONTROL variable, the
procedure sorts by the second CONTROL variable in descending order. Sorting
by the second CONTROL variable continues to alternate between ascending and
descending sorting throughout all levels of the first CONTROL variable. If there
is a third CONTROL variable, the procedure sorts by that variable within levels
formed from the first two CONTROL variables, again alternating between ascending
and descending sorting. This continues for all CONTROL variables specified.
This sorting algorithm minimizes the change from one observation to the next with
respect to the CONTROL variable values, thus making nearby observations more
similar. For more information on serpentine sorting, refer to Chromy (1979) and
Williams and Chromy (1980).

Sample Selection Methods

PROC SURVEYSELECT provides a variety of methods for selecting probability-
based random samples. With probability sampling, each unit in the survey population
has a known, positive probability of selection. This property of probability sampling
avoids selection bias and enables you to use statistical theory to make valid inferences
from the sample to the survey population. Refer to Lohr (1999), Kish (1965, 1987),
Kalton (1983), and Cochran (1977) for more information on probability sampling.

In equal probability sampling, each unit in the sampling frame, or in a stratum, has
the same probability of being selected for the sample. PROC SURVEYSELECT
provides the following methods that select units with equal probability: simple ran-
dom sampling, unrestricted random sampling, systematic random sampling, and se-
quential random sampling. In simple random sampling, units are selectedwithout
replacement, which means that a unit cannot be selected more than once. Both sys-
tematic and sequential equal probability sampling are also without replacement. In
unrestricted random sampling, units are selectedwith replacement, which means that
a unit can be selected more than once. In with-replacement sampling, thenumber of
hits refers to the number of times a unit is selected.

In probability proportional to size (PPS) sampling, a unit’s selection probability is
proportional to its size measure. PROC SURVEYSELECT provides the following
methods that select units with probability proportional to size (PPS): PPS sampling
without replacement, PPS sampling with replacement, PPS systematic sampling, PPS
sequential sampling, Brewer’s method, Murthy’s method, and Sampford’s method.
PPS sampling is often used in cluster sampling, where you select clusters (or groups
of sampling units) of varying size in the first stage of selection. For example, clusters
may be schools, hospitals, or geographical areas, and the final sampling units may
be students, patients, or citizens. Cluster sampling can provide efficiencies in frame
construction and other survey operations. Refer to Lohr (1999), Kalton (1983), Kish
(1965), and the other references cited in the following sections for more information.

All the probability sampling methods provided by PROC SURVEYSELECT use ran-
dom numbers in their selection algorithms, as described in the following sections
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and in the references cited. PROC SURVEYSELECT uses a uniform random num-
ber function to generate streams of pseudo-random numbers from an initial starting
point, orseed. You can use theSEED=option to specify the initial seed. If you do not
specify the SEED= option, PROC SURVEYSELECT uses the time of day from the
computer’s clock to obtain the initial seed. PROC SURVEYSELECT generates uni-
form random numbers according to the method of Fishman and Moore (1982), using a
prime modulus multiplicative generator with modulus231 and multiplier397204094.
PROC SURVEYSELECT uses the same uniform random number generator as the
RANUNI function. For more information on the RANUNI function, see theSAS
Language Reference: Dictionary

The following sections give detailed descriptions of the sample selection methods
available in PROC SURVEYSELECT. In these sections,nh denotes the sample size
(the number of units in the sample) for stratumh, andNh denotes the population
size (number of units in the population) for stratumh, for h = 1, 2, . . . ,H. When
the sample design is not stratified,n denotes the sample size, andN denotes the
population size. For PPS sampling,Mhi represents the size measure for uniti in
stratumh, Mh· is the total of all size measures for the population of stratumh, and
Zhi = Mhi/Mh is the relative size of uniti in stratumh.

Simple Random Sampling

The method of simple random sampling (METHOD=SRS) selects units with equal
probability and without replacement. Each possible sample ofn different units out of
N has the same probability of being selected. The selection probability for each indi-
vidual unit equalsn/N . When you request stratified sampling with aSTRATA state-
ment, PROC SURVEYSELECT selects samples independently within strata. The
selection probability for a unit in stratumh equalsnh/Nh for stratified simple ran-
dom sampling.

By default, PROC SURVEYSELECT uses Floyd’s ordered hash table algorithm for
simple random sampling. This algorithm is fast, efficient, and appropriate for large
data sets. Refer to Bentley and Floyd (1987) and Bentley and Knuth (1986).

If there is not enough memory available for Floyd’s algorithm, PROC
SURVEYSELECT switches to the sequential algorithm of Fann, Muller, and
Rezucha (1962), which requires less memory but may require more time to select
the sample. When SURVEYSELECT uses the alternative sequential algorithm, it
writes a note to the log. To request the sequential algorithm, even if enough memory
is available for Floyd’s algorithm, you can specify METHOD=SRS2 in the PROC
SURVEYSELECT statement.

Unrestricted Random Sampling

The method of unrestricted random sampling (METHOD=URS) selects units with
equal probability and with replacement. Because units are selected with replace-
ment, a unit can be selected for the sample more than once. The expected number of
selections or hits for each unit equalsn/N when sampling without stratification. For
stratified sampling, the expected number of hits for a unit in stratumh equalsnh/Nh.
Note that the expected number of hits exceeds one when the sample sizen is greater
than the population sizeN .
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For unrestricted random sampling, by default, the output data set contains one ob-
servation for each distinct unit selected for the sample, together with a variable
NumberHits that gives the number of times the observation was selected. But if
you specify theOUTHITS option, then the output data set contains a separate ob-
servation for each selection, so that a unit selected three times, e.g., is represented
by three observations in the output data set. For information on the contents of the
output data set, see the section“Output Data Set”on page 4456.

Systematic Random Sampling

The method of systematic random sampling (METHOD=SYS) selects units at a fixed
interval throughout the sampling frame or stratum after a random start. If you specify
the sample size (or the stratum sample sizes) with theSAMPSIZE=option, PROC
SURVEYSELECT uses a fractional interval to provide exactly the specified sample
size. The interval equalsN/n, or Nh/nh for stratified sampling. The selection prob-
ability for each unit equalsn/N , or nh/Nh for stratified sampling. If you specify the
sampling rate (or the stratum sampling rates) with theSAMPRATE=option, PROC
SURVEYSELECT uses the inverse of the rate as the interval for systematic selection.
The selection probability for each unit equals the specified rate.

Systematic random sampling controls the distribution of the sample by spreading it
throughout the sampling frame or stratum at equal intervals, thus providing implicit
stratification. You can use theCONTROLstatement to order the input data set by the
CONTROL variables before sample selection. If you also use aSTRATA statement,
PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you
do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic
selection to the observations in the order in which they appear in the input data set.

Sequential Random Sampling

If you specify the optionMETHOD=SEQand do not include aSIZE statement,
PROC SURVEYSELECT uses the equal probability version of Chromy’s method for
sequential random sampling. This method selects units sequentially with equal prob-
ability and without replacement. Refer to Chromy (1979) and Williams and Chromy
(1980). See the section“PPS Sequential Sampling”on page 4452 for a description
of Chromy’s PPS selection method.

Sequential random sampling controls the distribution of the sample by spreading it
throughout the sampling frame or stratum, thus providing implicit stratification ac-
cording to the order of units in the frame or stratum. You can use theCONTROL
statement to sort the input data set by the CONTROL variables before sample selec-
tion. If you also use aSTRATA statement, PROC SURVEYSELECT sorts by the
CONTROL variables within strata. By default, the procedure uses hierarchic serpen-
tine ordering for sorting. If you specify theSORT=NESToption, the procedure uses
nested sorting. See the section“Sorting by CONTROL Variables”on page 4445 for
descriptions of serpentine and nested sorting. If you do not specify a CONTROL
statement, PROC SURVEYSELECT applies sequential selection to the observations
in the order in which they appear in the input data set.

Following Chromy’s method of sequential selection, PROC SURVEYSELECT ran-
domly chooses a starting unit from the entire stratum (or frame, if the design is not
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stratified). Using this unit as the first one, the procedure treats the stratum units as a
closed loop. This is done so that all pairwise (joint) selection probabilities are pos-
itive and an unbiased variance estimator can be obtained. The procedure numbers
units sequentially from the random start to the end of the stratum and then continues
from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, PROC SURVEYSELECT accu-
mulates the expected number of selections or hits, where the expected number of
selectionsEShi equalsnh/Nh for all unitsi in stratumh. The procedure computes

Ihi = Int (
i∑

j=1

EShj) = Int (i nh/Nh)

Fhi = Frac (
i∑

j=1

EShj) = Frac (i nh/Nh)

whereInt denotes the integer part of the number, andFrac denotes the fractional part.

Considering each unit sequentially, Chromy’s method determines whether uniti is
selected by comparing the total number of selections for the firsti− 1 units,

Th(i−1) =
i−1∑
j=1

Shj

with the value ofIh(i−1) .

If Th(i−1) = Ih(i−1) , Chromy’s method determines whether or not uniti is selected
as follows. If Fhi = 0 or Fh(i−1) > Fhi , then uniti is selected with certainty.
Otherwise, uniti is selected with probability

(Fhi − Fh(i−1)) / (1− Fh(i−1))

If Th(i−1) = Ih(i−1) + 1 , Chromy’s method determines whether or not uniti is
selected as follows. IfFhi = 0 or Fhi > Fh(i−1) , then the unit is not selected.
Otherwise, uniti is selected with probability

Fhi / Fh(i−1)

PPS Sampling without Replacement

If you specify the optionMETHOD=PPS, PROC SURVEYSELECT selects units
with probability proportional to size and without replacement. The selection proba-
bility for unit i in stratumh equalsnhZhi . The procedure uses the Hanurav-Vijayan
algorithm for PPS selection without replacement. Hanurav (1967) introduced this al-
gorithm for the selection of two units per stratum, and Vijayan (1968) generalized it
for the selection of more than two units. The algorithm enables computation of joint
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selection probabilities and provides joint selection probability values that usually en-
sure nonnegativity and stability of the Sen-Yates-Grundy variance estimator. Refer to
Fox (1989), Golmant (1990), and Watts (1991) for details.

Notation in the remainder of this section drops the stratum subscripth for simplicity,
but selection is still done independently within strata if you specify a stratified design.
For a stratified design,n now denotes the sample size for the current stratum,N
denotes the stratum population size, andMi denotes the size measure for uniti in
the stratum. If the design is not stratified, this notation applies to the entire sampling
frame.

According to the Hanurav-Vijayan algorithm, PROC SURVEYSELECT first orders
units within the stratum in ascending order by size measure, so thatM1 ≤ M2 ≤
. . . ≤ MN . Then the procedure selects the PPS sample ofn observations as follows:

1. The procedure randomly chooses one of the integers1, 2, . . . , n with probabil-
ity θ1, θ2, . . . , θn, where

θi = n (ZN−n+i+1 − ZN−n+i) (T + i ZN−n+1) / T

Zj = Mj/M , T =
∑N−n

j=1 Zj , and, by definition,ZN+1 = 1/n to ensure
that

∑n
i=1 θi = 1 .

2. If i is the integer selected in step 1, the procedure includes the last(n− i) units
of the stratum in the sample, where the units are ordered by size measure as de-
scribed previously. The procedure then selects the remainingi units according
to steps 3 through 6 below.

3. The procedure defines new normed size measures for the remaining(N−n+i)
stratum units that were not selected in steps 1 and 2:

Z∗
j = Zj / (T + i ZN−n+1) for j = 1, . . . , N − n + 1

Z∗
j = ZN−n+1 / (T + i ZN−n+1) for j = N − n + 2, . . . , N − n + i

4. The procedure selects the next unit from the first(N − n + 1) stratum units
with probability proportional toaj(1), where

a1(1) = i Z∗
1

aj(1) = i Z∗
j

∏j−1
k=1[1− (i− 1) Pk] for j = 2, . . . , N − n + 1

andPk = Mk/(Mk+1 + Mk+2 + · · ·+ MN−n+i) .

5. If stratum unitj1 is the unit selected in step 4, then the procedure selects the
next unit from unitsj1 + 1 throughN − n + 2 with probability proportional to
aj(2, j1), where

aj1+1(2, j1) = (i− 1) Z∗
j1+1

aj(2, j1) = (i− 1) Z∗
j

j−1∏
k=j1+1

[1− (i− 2) Pk] for j = j1 + 2, . . . , N − n + 2

6. The procedure repeats step 5 until alln sample units are selected.
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If you request theJTPROBSoption, PROC SURVEYSELECT computes the joint se-
lection probabilities for all pairs of selected units in each stratum. The joint selection
probability for unitsi andj in the stratum equals

P(ij) =
n∑

r=1

θrK
(r)
ij

where

K
(r)
ij = 1 N − n + r < i ≤ N − 1

= r ZN−n+1 / (T + r ZN−n+1) N − n < i ≤ N − n + r, j > N − n + r

= r Zi / (T + r ZN−n+1) 1 ≤ i ≤ N − n, j > N − n + r

= π
(r)
ij j ≤ N − n + r

and

π
(r)
ij =

r(r − 1)
2

Pi Zj

i−1∏
k=1

(1− Pk)

wherePk = Mk/(Mk+1 + Mk+2 + · · ·+ MN−n+r) .

PPS Sampling with Replacement

If you specify the optionMETHOD=PPS–WR, PROC SURVEYSELECT selects
units with probability proportional to size and with replacement. The procedure
makesnh independent random selections from the stratum ofNh units, selecting
with probabilityZhi = Mhi/Mh· . Because units are selected with replacement, a
unit can be selected for the sample more than once. The expected number of selec-
tions or hits for uniti in stratumh equalsnhZhi . If you request theJTPROBSoption,
PROC SURVEYSELECT computes the joint expected number of hits for all pairs of
selected units in each stratum. The joint expected number of hits for unitsi andj in
stratumh equals

Ph(ij) = nh(nh − 1) Zhi Zhj for j 6= i

= nh(nh − 1) Zhi Zhi / 2 for j = i

PPS Systematic Sampling

If you specify the optionMETHOD=PPS–SYS, PROC SURVEYSELECT se-
lects units by systematic random sampling with probability proportional to size.
Systematic sampling selects units at a fixed interval throughout the stratum or sam-
pling frame after a random start. PROC SURVEYSELECT uses a fractional interval
to provide exactly the specified sample size. The interval equalsMh·/nh for stratified
sampling andM/n for sampling without stratification. Depending on the sample size
and the values of the size measures, it may be possible for a unit to be selected more
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than once. The expected number of selections or hits for uniti in stratumh equals
nhMhi/Mh· = nhZhi . Refer to Cochran (1977, pp. 265–266) and Madow (1949).

Systematic random sampling controls the distribution of the sample by spreading it
throughout the sampling frame or stratum at equal intervals, thus providing implicit
stratification. You can use theCONTROLstatement to order the input data set by the
CONTROL variables before sample selection. If you also use aSTRATA statement,
PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you
do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic
selection to the observations in the order in which they appear in the input data set.

PPS Sequential Sampling

If you specify the optionMETHOD=PPS–SEQ, PROC SURVEYSELECT uses
Chromy’s method of sequential random sampling. Refer to Chromy (1979) and
Williams and Chromy (1980). Chromy’s method selects units sequentially with prob-
ability proportional to size and with minimum replacement. Selectionwith minimum
replacementmeans that the actual number of hits for a unit can equal the integer part
of the expected number of hits for that unit, or the next largest integer. This can
be compared to selectionwithout replacement, where each unit can be selected only
once, so the number of hits can equal 0 or one. The other alternative is selectionwith
replacement, where there is no restriction on the number of hits for each unit, so the
number of hits can equal0, 1, · · · , nh, wherenh is the stratum sample size.

Sequential random sampling controls the distribution of the sample by spreading it
throughout the sampling frame or stratum, thus providing implicit stratification ac-
cording to the order of units in the frame or stratum. You can use theCONTROL
statement to sort the input data set by the CONTROL variables before sample se-
lection. If you also use aSTRATA statement, PROC SURVEYSELECT sorts by
the CONTROL variables within strata. By default, the procedure uses hierarchic
serpentine ordering to sort the sampling frame by the CONTROL variables within
strata. If you specify theSORT=NESToption, the procedure uses nested sorting.
See the section“Sorting by CONTROL Variables”on page 4445 for descriptions of
serpentine and nested sorting. If you do not specify a CONTROL statement, PROC
SURVEYSELECT applies sequential selection to the observations in the order in
which they appear in the input data set.

According to Chromy’s method of sequential selection, PROC SURVEYSELECT
first chooses a starting unit randomly from the entire stratum, with probability pro-
portional to size. The procedure uses this unit as the first one and treats the stratum
observations as a closed loop. This is done so that all pairwise (joint) expected num-
ber of hits are positive and an unbiased variance estimator can be obtained. The
procedure numbers observations sequentially from the random start to the end of the
stratum and then continues from the beginning of the stratum until all units are num-
bered.

Beginning with the randomly chosen starting unit, Chromy’s method partitions the
ordered stratum sampling frame intonh zones of equal size. There is one selection
from each zone and a total ofnh selections or hits, although fewer thannh distinct
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units may be selected. Beginning with the random start, the procedure accumulates
the expected number of hits and computes

EShi = nhZhi

Ihi = Int (
i∑

j=1

EShj)

Fhi = Frac (
i∑

j=1

EShj)

whereEShi represents the expected number of hits for uniti in stratumh; Int denotes
the integer part of the number; andFrac denotes the fractional part.

Considering each unit sequentially, Chromy’s method determines the actual number
of hits for uniti by comparing the total number of hits for the firsti− 1 units,

Th(i−1) =
i−1∑
j=1

Shj

with the value ofIh(i−1) .

If Th(i−1) = Ih(i−1) , Chromy’s method determines the total number of hits for the
first i units as follows. IfFhi = 0 or Fh(i−1) > Fhi , thenThi = Ihi. Otherwise,
Thi = Ihi + 1 with probability

(Fhi − Fh(i−1)) / (1− Fh(i−1))

And the number of hits for uniti equalsThi − Th(i−1).

If Th(i−1) = Ih(i−1) + 1 , Chromy’s method determines the total number of hits for
the first i units as follows. IfFhi = 0, thenThi = Ihi. If Fhi > Fh(i−1) , then
Thi = Ihi + 1. Otherwise,Thi = Ihi + 1 with probability

Fhi / Fh(i−1)

Brewer’s PPS Method

Brewer’s method (METHOD=PPS–BREWER) selects two units from each stratum,
with probability proportional to size and without replacement. The selection proba-
bility for unit i in stratumh equals2Mhi/Mh· = 2Zhi .
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Brewer’s algorithm first selects a unit with probability

Zhi (1− Zhi)
Dh (1− 2Zhi)

where

Dh =
Nh∑
i=1

Zhi (1− Zhi)
1− 2Zhi

Then a second unit is selected from the remaining units with probability

Zhj

1− Zhi

where uniti is the first unit selected. The joint selection probability for unitsi andj
in stratumh equals

Ph(ij) =
2 Zhi Zhj

Dh

(
1− Zhi − Zhj

(1− 2Zhi) (1− 2Zhj)

)
Brewer’s method requires that the relative sizeZhi be less than 0.5 for all units.
Refer to Cochran (1977, pp. 261–263) and Brewer (1963). Brewer’s method yields
the same selection probabilities and joint selection probabilities as Durbin’s method.
Refer to Cochran (1977) and Durbin (1967).

Murthy’s PPS Method

Murthy’s method (METHOD=PPS–MURTHY) selects two units from each stratum,
with probability proportional to size and without replacement. The selection proba-
bility for unit i in stratumh equals

Phi = Zhi [1 + K − (Zhi/(1− Zhi)]

whereZhi = Mhi/Mh· and

K =
N∑

j=1

[Zhj/(1− Zhj)]

Murthy’s algorithm first selects a unit with probabilityZhi . Then a second unit is
selected from the remaining units with probabilityZhj/(1−Zhi), where uniti is the
first unit selected. The joint selection probability for unitsi andj in stratumh equals

Ph(ij) = Zhi Zhj
2− Zhi − Zhj

(1− Zhi) (1− Zhj)

Refer to Cochran (1977, pp. 263–265) and Murthy (1957).
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Sampford’s PPS Method

Sampford’s method (METHOD=PPS–SAMPFORD) is an extension of Brewer’s
method that selects more than two units from each stratum, with probability propor-
tional to size and without replacement. The selection probability for uniti in stratum
h equals

Phi = nh
Mhi

Mh·
= nh Zhi

Sampford’s method first selects a unit from stratumh with probability Zhi . Then
subsequent units are selected with probability proportional to

Zhi

1− nh Zhi

and with replacement. If the same unit appears more than once in the sample of size
nh, then Sampford’s algorithm rejects that sample and selects a new sample. The
sample is accepted if it containsnh distinct units.

The joint selection probability for unitsi andj in stratumh equals

Ph(ij) = Kh λi λj

nh∑
t=2

[
t− nh (Phi + Phj) Lnh−t(ij)

]
/ nt−2

h

where

λi =
Zhi

1− nh Zhi

Lm =
∑
S(m)

λi1λi2 · · ·λim

whereS(m) denotes all possible samples of sizem, for m = 1, 2, . . . , Nh . The sum
Lm(ij) is defined similarly toLm but sums over all possible samples of sizem that
do not include unitsi andj, and

Kh =

(
nh∑
t=1

t Lnh−t / nt
h

)−1

Sampford’s method requires that the relative sizeZhi be less than1/nh for all units.
Refer to Cochran (1977, pp. 262–263) and Sampford (1967).
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Output Data Set

PROC SURVEYSELECT creates a SAS data set that contains the sample of selected
units. You can specify the name of this output data set with theOUT= option in the
PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is
named DATAn, wheren is the smallest integer that makes the name unique.

By default, the output data set contains one observation for each unit selected for
the sample. But if you specify theOUTALL option, the output data set includes all
observations from the input data set. With OUTALL, the output data set also contains
a variable to indicate each observation’s selection status. The variableSelected
equals 1 for an observation selected for the sample, and equals 0 for an observation
not selected. The OUTALL option is available only for equal probability selection
methods.

If you specify theOUTHITS option for methods that may select the same unit more
than once (that is, methods that select with replacement or with minimum replace-
ment), the output data set contains a separate observation for each selection. If you do
not specify the OUTHITS option, the output data set contains only one observation
for each selected unit, even if the unit is selected more than once, and the variable
NumberHits contains the number of hits or selections for that unit.

The output data set contains design information and selection statistics, depending on
the selection method and output options you specify. The output data set can include
the following variables:

• Selected, which indicates whether or not the observation is selected for the
sample. This variable is included if you specify theOUTALL option. It equals
1 for an observation selected for the sample, and it equals 0 for an observation
not selected.

• STRATA variables, which you specify in theSTRATA statement

• Replicate, which is the sample replicate number. This variable is included
when you request replicated sampling with theREP=option.

• ID variables, which you name in theID statement

• CONTROL variables, which you specify in theCONTROLstatement

• Zone, which is the selection zone. This variable is included for
METHOD=PPS–SEQ.

• SIZE variable, which you specify in theSIZEstatement

• AdjustedSize, which is the adjusted size measure. This variable is included
if you request adjusted sizes with theMINSIZE= option or theMAXSIZE=
option.

• Certain, which indicates certainty selection. This variable is included if you
specify theCERTSIZE=option. It equals 1 for units included with certainty
because their size measures exceed the certainty size measure. Otherwise, it
equals 0.
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• NumberHits, which is the number of hits or selections. This variable is
included for selection methods that are with replacement or with minimum
replacement (METHOD=URS, METHOD=PPS–WR, METHOD=PPS–SYS,
andMETHOD=PPS–SEQ).

The output data set includes the following variables if you request a PPS selection
method or if you specify theSTATSoption for other methods:

• ExpectedHits, which is the expected number of hits or selections. This
variable is included for selection methods that are with replacement or
with minimum replacement, and so may select the same unit more than
once (METHOD=URS, METHOD=PPS–WR, METHOD=PPS–SYS, and
METHOD=PPS–SEQ).

• SelectionProb, which is the probability of selection. This variable is included
for selection methods that are without replacement.

• SamplingWeight, which is the sampling weight. This variable equals the in-
verse ofExpectedHits or SelectionProb.

For METHOD=PPS–BREWERandMETHOD=PPS–MURTHY, which select two
units from each stratum with probability proportional to size, the output data set con-
tains the following variable:

• JtSelectionProb, which is the joint probability of selection for the two units
selected from the stratum

If you request theJTPROBSoption to compute joint probabilities of selection for
METHOD=PPSor METHOD=PPS–SAMPFORD, then the output data set contains
the following variables:

• Unit, which is an identification variable that numbers the selected units sequen-
tially within each stratum

• JtProb–1, JtProb–2, JtProb–3, . . . , where the variableJtProb–1 contains
the joint probability of selection for the current unit and unit 1. Similarly,
JtProb–2 contains the joint probability of selection for the current unit and
unit 2, and so on.

If you request theJTPROBSoption for METHOD=PPS–WR, then the output data
set contains the following variables:

• Unit, which is an identification variable that numbers the selected units sequen-
tially within each stratum

• JtHits–1, JtHits–2, JtHits–3, . . . , where the variableJtHits–1 contains the
joint expected number of hits for the current unit and unit 1. Similarly,
JtHits–2 contains the joint expected number of hits for the current unit and
unit 2, and so on.
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If you request theOUTSIZEoption, the output data set contains the following vari-
ables. If you specify aSTRATA statement, the output data set includes stratum-level
values of these variables. Otherwise, the output data set contains population-level
values of these variables.

• MinimumSize, which is the minimum size measure specified with the
MINSIZE= option. This variable is included if you request the MINSIZE=
option.

• MaximumSize, which is the maximum size measure specified with the
MAXSIZE= option. This variable is included if you request the MAXSIZE=
option.

• CertaintySize, which is the certainty size measure specified with the
CERTSIZE=option. This variable is included if you request the CERTSIZE=
option.

• Total, which is the total number of sampling units in the stratum. This variable
is included if there is noSIZEstatement.

• TotalSize, which is the total of size measures in the stratum. This variable is
included if there is aSIZEstatement.

• TotalAdjSize, which is the total of adjusted size measures in the stratum. This
variable is included if there is aSIZE statement and if you request adjusted
sizes with theMAXSIZE= option or theMINSIZE= option.

• SamplingRate, which is the sampling rate. This variable is included if you
specify theSAMPRATE=option.

• SampleSize, which is the sample size. This variable is included if you spec-
ify the SAMPSIZE=option, or if you specifyMETHOD=PPS–BREWERor
METHOD=PPS–MURTHY, which select two units from each stratum.

If you request theOUTSEEDoption, the output data set contains the following vari-
able:

• InitialSeed, which is the initial seed for the stratum.

Displayed Output

By default, PROC SURVEYSELECT displays two tables that summarize the sample
selection. You can suppress display of these tables by using theNOPRINToption.

PROC SURVEYSELECT creates an output data set that contains the units selected
for the sample. The procedure does not display this output data set. Use PROC
PRINT, PROC REPORT, or any other SAS reporting tool to display the output data
set.
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PROC SURVEYSELECT displays the following information in the “Sample
Selection Method” table:

• Selection Method

• Size Measure variable, if you specify aSIZEstatement

• Minimum Size Measure, if you specify theMINSIZE= option

• Maximum Size Measure, if you specify theMAXSIZE= option

• Certainty Size Measure, if you specify theCERTSIZE=option

• Strata Variables, if you specify aSTRATA statement

• Control Variables, if you specify aCONTROLstatement

• type of Control Sorting, Serpentine or Nested, if you specify aCONTROL
statement

PROC SURVEYSELECT displays the following information in the “Sample
Selection Summary” table:

• Input Data Set name

• Sorted Data Set name, if you specify theOUTSORT=option

• Random Number Seed

• Sample Size or Stratum Sample Size, if you specify theSAMPSIZE=n option

• Sample Size Data Set, if you specify theSAMPSIZE=SAS-data-setoption

• Sampling Rate or Stratum Sampling Rate, if you specify theSAMPRATE=r
option

• Sampling Rate Data Set, if you specify theSAMPRATE=SAS-data-setoption

• Minimum Sample Size or Stratum Minimum Sample Size, if you specify the
NMIN= option with theSAMPRATE=option

• Maximum Sample Size or Stratum Maximum Sample Size, if you specify the
NMAX= option with theSAMPRATE=option

• Selection Probability, if you specifyMETHOD=SRS, METHOD=SYS, or
METHOD=SEQand do not specify aSTRATA statement

• Expected Number of Hits, if you specifyMETHOD=URSand do not specify
aSTRATA statement

• Sampling Weight for equal probability selection methods (METHOD=SRS,
METHOD=URS, METHOD=SYS, METHOD=SEQ) if you do not specify a
STRATA statement

• Number of Strata, if you specify aSTRATA statement

• Number of Replicates, if you specify theREP=option

• Total Sample Size, if you specify aSTRATA statement or theREP=option

• Output Data Set name
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ODS Table Names

PROC SURVEYSELECT assigns a name to each table it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 72.2. ODS Tables Produced in PROC SURVEYSELECT

ODS Table Name Description Statement Option
Method Sample selection method PROC default
Summary Sample selection summary PROC default

Examples

Example 72.1. Replicated Sampling

This example uses theCustomers data set from the section“Getting Started”on
page 4422. The data setCustomers contains an Internet service provider’s current
subscribers, and the service provider wants to select a sample from this population
for a customer satisfaction survey.

This example illustrates replicated sampling, which selects multiple samples from the
survey population according to the same design. You can use replicated sampling to
provide a simple method of variance estimation, or to evaluate variable nonsampling
errors such as interviewer differences. Refer to Lohr (1999), Kish (1965, 1987), and
Kalton (1983) for information on replicated sampling.

This design includes four replicates, each with a sample size of 50 customers. The
sampling frame is stratified byState and sorted byType andUsage within strata.
Customers are selected by sequential random sampling with equal probability within
strata. The following PROC SURVEYSELECT statements select a probability sam-
ple of customers from theCustomers data set using this design.

title1 ’Customer Satisfaction Survey’;
title2 ’Replicated Sampling’;
proc surveyselect data=Customers

method=seq n=(8 12 20 10)
rep=4
seed=40070 out=SampleRep;

strata State;
control Type Usage;

run;

The STRATA statement names the stratification variableState. The CONTROL
statement names the control variablesType and Usage. In the PROC
SURVEYSELECT statement, the METHOD=SEQ option requests sequential
random sampling. The REP=4 option specifies four replicates of this sample. The
N=(8 12 20 10) option specifies the stratum sample sizes for each replicate. The
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N= option lists the stratum sample sizes in the same order as the strata appear in
the Customers data set, which has been sorted byState. The sample size of
eight customers corresponds to the first stratum,State = ‘AL’. The sample size 12
corresponds to the next stratum,State = ‘FL’, and so on. The SEED=40070 option
specifies ’40070’ as the initial seed for random number generation.

Output 72.1.1displays the output from PROC SURVEYSELECT, which summarizes
the sample selection. A total of 200 customers is selected in four replicates. PROC
SURVEYSELECT selects each replicate using sequential random sampling within
strata determined byState. The sampling frameCustomers is sorted by control
variablesType andUsage within strata, according to hierarchic serpentine sorting.
The output data setSampleRep contains the sample.

Output 72.1.1. Sample Selection Summary

Customer Satisfaction Survey
Replicated Sampling

The SURVEYSELECT Procedure

Selection Method Sequential Random Sampling
With Equal Probability

Strata Variable State
Control Variables Type

Usage
Control Sorting Serpentine

Input Data Set CUSTOMERS
Random Number Seed 40070
Number of Strata 4
Number of Replicates 4
Total Sample Size 200
Output Data Set SAMPLEREP

The following PROC PRINT statements display the selected customers for the first
stratum,State = ‘AL’, from the output data setSampleRep.

title1 ’Customer Satisfaction Survey’;
title2 ’Sample Selected by Replicated Design’;
title3 ’(First Stratum)’;
proc print data=SampleRep;

where State = ’AL’;
run;
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Output 72.1.2. Customer Sample (First Stratum)

Customer Satisfaction Survey
Sample Selected by Replicated Design

(First Stratum)

Selection Sampling
Obs State Replicate CustomerID Type Usage Prob Weight

1 AL 1 882-37-7496 New 572 .004115226 243
2 AL 1 581-32-5534 New 863 .004115226 243
3 AL 1 980-29-2898 Old 571 .004115226 243
4 AL 1 172-56-4743 Old 128 .004115226 243
5 AL 1 998-55-5227 Old 35 .004115226 243
6 AL 1 625-44-3396 New 60 .004115226 243
7 AL 1 627-48-2509 New 114 .004115226 243
8 AL 1 257-66-6558 New 172 .004115226 243
9 AL 2 622-83-1680 New 22 .004115226 243

10 AL 2 343-57-1186 New 53 .004115226 243
11 AL 2 976-05-3796 New 110 .004115226 243
12 AL 2 859-74-0652 New 303 .004115226 243
13 AL 2 476-48-1066 New 839 .004115226 243
14 AL 2 109-27-8914 Old 2102 .004115226 243
15 AL 2 743-25-0298 Old 376 .004115226 243
16 AL 2 722-08-2215 Old 105 .004115226 243
17 AL 3 668-57-7696 New 200 .004115226 243
18 AL 3 300-72-0129 New 471 .004115226 243
19 AL 3 073-60-0765 New 656 .004115226 243
20 AL 3 526-87-0258 Old 672 .004115226 243
21 AL 3 726-61-0387 Old 150 .004115226 243
22 AL 3 632-29-9020 Old 51 .004115226 243
23 AL 3 417-17-8378 New 56 .004115226 243
24 AL 3 091-26-2366 New 93 .004115226 243
25 AL 4 336-04-1288 New 419 .004115226 243
26 AL 4 827-04-7407 New 650 .004115226 243
27 AL 4 317-70-6496 Old 452 .004115226 243
28 AL 4 002-38-4582 Old 206 .004115226 243
29 AL 4 181-83-3990 Old 33 .004115226 243
30 AL 4 675-34-7393 New 47 .004115226 243
31 AL 4 228-07-6671 New 65 .004115226 243
32 AL 4 298-46-2434 New 161 .004115226 243

Output 72.1.2displays the 32 sample customers of the first stratum (State = ‘AL’)
from the output data setSampleRep, which includes the entire sample of 200
customers. The variableSelectionProb contains the selection probability, and
SamplingWeight contains the sampling weight. Since customers are selected with
equal probability within strata in this design, all customers in the same stratum have
the same selection probability. These selection probabilities and sampling weights
apply to a single replicate, and the variableReplicate contains the sample replicate
number.
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Example 72.2. PPS Selection of Two Units Per Stratum

A state health agency plans to conduct a state-wide survey of a variety of different
hospital services. The agency plans to select a probability sample of individual dis-
charge records within hospitals using a two-stage sample design. First stage units are
hospitals, and second stage units are patient discharges during the study time period.
Hospitals are stratified first according to geographic region and then by rural/urban
type and size of hospital. Two hospitals are selected from each stratum with proba-
bility proportional to size. This example describes hospital selection for this survey
using PROC SURVEYSELECT.

The data setHospitalFrame contains all hospitals in the first geographical region of
this state.

data HospitalFrame;
input Hospital$ Type$ SizeMeasure @@;
if (SizeMeasure < 20) then Size=’Small ’;

else if (SizeMeasure < 50) then Size=’Medium’;
else Size=’Large ’;

datalines;
034 Rural 0.870 107 Rural 1.316
079 Rural 2.127 223 Rural 3.960
236 Rural 5.279 165 Rural 5.893
086 Rural 0.501 141 Rural 11.528
042 Urban 3.104 124 Urban 4.033
006 Urban 4.249 261 Urban 4.376
195 Urban 5.024 190 Urban 10.373
038 Urban 17.125 083 Urban 40.382
259 Urban 44.942 129 Urban 46.702
133 Urban 46.992 218 Urban 48.231
026 Urban 61.460 058 Urban 65.931
119 Urban 66.352
;

In the SAS data setHospitalFrame, the variableHospital identifies the hospital.
The variableType equals ‘Urban’ if the hospital is located in an urbanized area,
and ‘Rural’ otherwise. The variableSizeMeasure contains the hospital’s size mea-
sure, which is constructed from past data on service utilization for the hospital to-
gether with the desired sampling rates for each service. This size measure reflects
the amount of relevant survey information expected from the hospital. Refer to
Drummond et al. (1982) for details on this type of size measure. The variableSize
equals ‘Small’, ‘Medium’, or ‘Large’, depending on the value of the hospital’s size
measure.

The following PROC PRINT statements display the data setHospital Frame.

title1 ’Hospital Utilization Survey’;
title2 ’Sampling Frame, Region 1’;
proc print data=HospitalFrame;
run;
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Output 72.2.1. Sampling Frame

Hospital Utilization Survey
Sampling Frame, Region 1

Size
Obs Hospital Type Measure Size

1 034 Rural 0.870 Small
2 107 Rural 1.316 Small
3 079 Rural 2.127 Small
4 223 Rural 3.960 Small
5 236 Rural 5.279 Small
6 165 Rural 5.893 Small
7 086 Rural 0.501 Small
8 141 Rural 11.528 Small
9 042 Urban 3.104 Small

10 124 Urban 4.033 Small
11 006 Urban 4.249 Small
12 261 Urban 4.376 Small
13 195 Urban 5.024 Small
14 190 Urban 10.373 Small
15 038 Urban 17.125 Small
16 083 Urban 40.382 Medium
17 259 Urban 44.942 Medium
18 129 Urban 46.702 Medium
19 133 Urban 46.992 Medium
20 218 Urban 48.231 Medium
21 026 Urban 61.460 Large
22 058 Urban 65.931 Large
23 119 Urban 66.352 Large

The following PROC SURVEYSELECT statements select a probability sample of
hospitals from theHospitalFrame data set, using a stratified design with PPS selec-
tion of two units from each stratum.

title1 ’Hospital Utilization Survey’;
proc surveyselect data=HospitalFrame

method=pps_brewer
seed=48702 out=SampleHospitals;

size SizeMeasure;
strata Type Size notsorted;

run;

The STRATA statement names the stratification variablesType and Size. The
NOTSORTED option specifies that observations with the same STRATA variable
values are grouped together but are not necessarily sorted in alphabetical or increas-
ing numerical order. In theHospitalFrame data set,Size = ‘Small’ precedesSize =
‘Medium’.

In the PROC SURVEYSELECT statement, the METHOD=PPS–BREWER option
requests sample selection by Brewer’s method, which selects two units per stratum
with probability proportional to size. The SEED=48702 option specifies ’48702’ as
the initial seed for random number generation. The SIZE statement specifies the size
measure variable. It is not necessary to specify the sample size with the N= option,
since Brewer’s method always selects two units from each stratum.
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Output 72.2.2displays the output from PROC SURVEYSELECT. A total of 8 hos-
pitals were selected from the 4 strata. The data setSampleHospitals contains the
selected hospitals.

Output 72.2.2. Sample Selection Summary

Hospital Utilization Survey

The SURVEYSELECT Procedure

Selection Method Brewer’s PPS Method
Size Measure SizeMeasure
Strata Variables Type

Size

Input Data Set HOSPITALFRAME
Random Number Seed 48702
Stratum Sample Size 2
Number of Strata 4
Total Sample Size 8
Output Data Set SAMPLEHOSPITALS

The following PROC PRINT statements display the sample hospitals.

title1 ’Hospital Utilization Survey’;
title2 ’Sample Selected by Stratified PPS Design’;
proc print data=SampleHospitals;
run;

Output 72.2.3. Sample Hospitals

Hospital Utilization Survey
Sample Selected by Stratified PPS Design

Jt
Size Selection Sampling Selection

Obs Type Size Hospital Measure Prob Weight Prob

1 Rural Small 079 2.127 0.13516 7.39868 0.01851
2 Rural Small 236 5.279 0.33545 2.98106 0.01851
3 Urban Small 006 4.249 0.17600 5.68181 0.01454
4 Urban Small 195 5.024 0.20810 4.80533 0.01454
5 Urban Medium 133 46.992 0.41357 2.41795 0.11305
6 Urban Medium 218 48.231 0.42448 2.35584 0.11305
7 Urban Large 026 61.460 0.63445 1.57617 0.31505
8 Urban Large 058 65.931 0.68060 1.46929 0.31505

The variableSelectionProb contains the selection probability for each hospital in the
sample. The variableJtSelectionProb contains the joint probability of selection for
the two sample hospitals in the same stratum. The variableSamplingWeight con-
tains the sampling weight component for this first stage of the design. The final-stage
weight components, which correspond to patient record selection within hospitals,
can be multiplied by the hospital weight components to obtain the overall sampling
weights.
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Example 72.3. PPS (Dollar-Unit) Sampling
A small company wants to audit employee travel expenses in an effort to improve the
expense reporting procedure and possibly reduce expenses. The company does not
have resources to examine all expense reports and wants to use statistical sampling to
objectively select expense reports for audit.

The data setTravelExpense contains the dollar amount of all employee travel ex-
pense transactions during the past month.

data TravelExpense;
input ID$ Amount @@;
if (Amount < 500) then Level=’1_Low ’;

else if (Amount > 1500) then Level=’3_High’;
else Level=’2_Avg ’;

datalines;
110 237.18 002 567.89 234 118.50
743 74.38 411 1287.23 782 258.10
216 325.36 174 218.38 568 1670.80
302 134.71 285 2020.70 314 47.80
139 1183.45 775 330.54 425 780.10
506 895.80 239 620.10 011 420.18
672 979.66 142 810.25 738 670.85
192 314.58 243 87.50 263 1893.40
496 753.30 332 540.65 486 2580.35
614 230.56 654 185.60 308 688.43
784 505.14 017 205.48 162 650.42
289 1348.34 691 30.50 545 2214.80
517 940.35 382 217.85 024 142.90
478 806.90 107 560.72
;

In the SAS data setTravelExpense, the variableID identifies the travel expense
report. The variableAmount contains the dollar amount of the reported expense.
The variableLevel equals ‘1–Low’, ‘2–Avg’, or ‘3–High’, depending on the value
of Amount.

In the sample design for this audit, expense reports are stratified byLevel. This
ensures that each of these expense levels is included in the sample and also permits
a disproportionate allocation of the sample, selecting proportionately more of the
expense reports from the higher levels. Within strata, the sample of expense reports
is selected with probability proportional to the amount of the expense, thus giving
a greater chance of selection to larger expenses. In auditing terms, this is known as
monetary-unit sampling. Refer to Wilburn (1984).

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA
variables. The following PROC SORT statements sort theTravelExpense data set
by the stratification variableLevel.

proc sort data=TravelExpense;
by Level;

run;
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The following PROC PRINT statements display the sampling frame data set
TravelExpense, which contains 41 observations.

title1 ’Travel Expense Audit’;
proc print data=TravelExpense;
run;

Output 72.3.1. Sampling Frame

Travel Expense Audit

Obs ID Amount Level

1 110 237.18 1_Low
2 002 567.89 2_Avg
3 234 118.50 1_Low
4 743 74.38 1_Low
5 411 1287.23 2_Avg
6 782 258.10 1_Low
7 216 325.36 1_Low
8 174 218.38 1_Low
9 568 1670.80 3_High

10 302 134.71 1_Low
11 285 2020.70 3_High
12 314 47.80 1_Low
13 139 1183.45 2_Avg
14 775 330.54 1_Low
15 425 780.10 2_Avg
16 506 895.80 2_Avg
17 239 620.10 2_Avg
18 011 420.18 1_Low
19 672 979.66 2_Avg
20 142 810.25 2_Avg
21 738 670.85 2_Avg
22 192 314.58 1_Low
23 243 87.50 1_Low
24 263 1893.40 3_High
25 496 753.30 2_Avg
26 332 540.65 2_Avg
27 486 2580.35 3_High
28 614 230.56 1_Low
29 654 185.60 1_Low
30 308 688.43 2_Avg
31 784 505.14 2_Avg
32 017 205.48 1_Low
33 162 650.42 2_Avg
34 289 1348.34 2_Avg
35 691 30.50 1_Low
36 545 2214.80 3_High
37 517 940.35 2_Avg
38 382 217.85 1_Low
39 024 142.90 1_Low
40 478 806.90 2_Avg
41 107 560.72 2_Avg
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The following PROC SURVEYSELECT statements select a probability sample of
expense reports from theTravelExpense data set using the stratified design with
PPS selection within strata.

title1 ’Travel Expense Audit’;
proc surveyselect data=TravelExpense

method=pps n=(6 10 4)
seed=47279 out=AuditSample;

size Amount;
strata Level;

run;

The STRATA statement names the stratification variableLevel. The SIZE state-
ment specifies the size measure variableAmount. In the PROC SURVEYSELECT
statement, the METHOD=PPS option requests sample selection with probability pro-
portional to size and without replacement. The N=(6 10 4) option specifies the stra-
tum sample sizes, listing the sample sizes in the same order that the strata appear in
theTravelExpense data set. The sample size of 6 corresponds to the first stratum,
Level = ‘1–Low’, the sample size of 10 corresponds to the second stratum,Level =
‘2–Avg’, and 4 corresponds to the last stratum,Level = ‘3–High’. The SEED=47279
option specifies ’47279’ as the initial seed for random number generation.

Output 72.3.2displays the output from PROC SURVEYSELECT. A total of 20 ex-
pense reports is selected for audit. The data setAuditSample contains the sample of
travel expense reports.

Output 72.3.2. Sample Selection Summary

Travel Expense Audit

The SURVEYSELECT Procedure

Selection Method PPS, Without Replacement
Size Measure Amount
Strata Variable Level

Input Data Set TRAVELEXPENSE
Random Number Seed 47279
Number of Strata 3
Total Sample Size 20
Output Data Set AUDITSAMPLE

The following PROC PRINT statements display the audit sample, which is shown in
Output 72.3.3.

title1 ’Travel Expense Audit’;
title2 ’Sample Selected by Stratified PPS Design’;
proc print data=AuditSample;
run;
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Output 72.3.3. Audit Sample

Travel Expense Audit
Sample Selected by Stratified PPS Design

Selection Sampling
Obs Level ID Amount Prob Weight

1 1_Low 654 185.60 0.31105 3.21489
2 1_Low 017 205.48 0.34437 2.90385
3 1_Low 382 217.85 0.36510 2.73896
4 1_Low 614 230.56 0.38640 2.58797
5 1_Low 782 258.10 0.43256 2.31183
6 1_Low 775 330.54 0.55396 1.80518
7 2_Avg 784 505.14 0.34623 2.88823
8 2_Avg 332 540.65 0.37057 2.69853
9 2_Avg 002 567.89 0.38924 2.56909

10 2_Avg 239 620.10 0.42503 2.35278
11 2_Avg 738 670.85 0.45981 2.17479
12 2_Avg 496 753.30 0.51633 1.93676
13 2_Avg 425 780.10 0.53470 1.87022
14 2_Avg 478 806.90 0.55307 1.80810
15 2_Avg 672 979.66 0.67148 1.48925
16 2_Avg 139 1183.45 0.81116 1.23280
17 3_High 568 1670.80 0.64385 1.55316
18 3_High 263 1893.40 0.72963 1.37056
19 3_High 285 2020.70 0.77869 1.28421
20 3_High 486 2580.35 0.99435 1.00568
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The TPHREG Procedure

(Experimental)

Overview

The TPHREG procedure, experimental in this release, includes most of the function-
ality of the PHREG procedure (seeChapter 54, “The PHREG Procedure”) with the
additional benefits of the CLASS statement. The CLASS statement enables you to
specify categorical variables (also known as factors or CLASS variables) to be used
in the analysis. Model effects, including covariates, main effects (CLASS variables),
crossed effects (interactions), and nested effects, can be specified in the same way as
in the GLM procedure. The CLASS statement supports the less-than-full-rank pa-
rameterization as in the GLM procedure as well as various full-rank parameterization
methods such as reference coding, effect coding, and orthogonal polynomial coding.
For some of the full-rank coding schemes, you can designate a specific value (cate-
gory or level) of the CLASS variable as the reference level. The CLASS statement
also enables you to specify the ordering of the categories of CLASS variables, to
reverse the ordering of the categories, and to treat categories with missing values as
valid categories.

With the TPHREG procedure, you can control how to move model effects in and
out of a model with various model-building strategies such as forward selection,
backward elimination, or stepwise selection. When there are no interaction terms,
a main effect can enter or leave a model in a single step based on thep-value of
the score or Wald statistic, respectively. When there are crossed or nested effects,
the selection process also depends on whether you want to preserve model hierarchy.
The HIERARCHY= option in the MODEL statement enables you to specify whether
model hierarchy is to be preserved, how model hierarchy is applied, and whether a
single effect or multiple effects can be moved in a single step.

The TPHREG procedure also enables you to specify CONTRAST statements for test-
ing customized hypotheses concerning the regression parameters. Each CONTRAST
statement also provides estimation of individual rows of contrasts, which is particu-
larly useful in comparing the hazards between the categories of a CLASS variable.
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Syntax

The PROC TPHREG statement invokes the TPHREG procedure. All the other state-
ments in the PHREG procedure (with the exception of the experimental ASSESS
statement) are available in the TPHREG procedure. The MODEL statement in the
TPHREG procedure enables you to specify explanatory effects, not just individual
continuous variables, and has additional options specifically for having CLASS vari-
ables. In addition, you can specify the CLASS statement and the CONTRAST state-
ment as follows:

CLASS variable <(options)> <variable <(options)>... >
< / options >;

CONTRAST ’label’ effect values <,... effect values>< /options >;

The PROC TPHREG statement and the MODEL statement are required. The CLASS
statement (if used) must precede the MODEL statement, and CONTRAST state-
ments (if used) must follow the MODEL statement. The CLASS statement specifies
the categorical variables to be used as explanatory variables. Variables specified in
the CLASS statement have to exist in the input data. You cannot use programming
statements to modify their values. The CONTRAST statement tests customized hy-
potheses concerning the regression parameters and estimates the parameters for the
corresponding rows of contrasts.

PROC TPHREG Statement

PROC TPHREG < options > ;

All PROC PHREG statement options can be used in the PROC TPHREG statement.
In addition, you can specify the following option:

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

MODEL Statement

MODEL time < *censor ( list ) > = effects < /options > ;

MODEL (t1, t2) < *censor(list) > = effects < /options > ;

The specifications of the time variables, the censoring indicator, and censored values
are same as those in the PHREG procedure. The modeleffects, which follow the
equal sign, include continuous or CLASS variables as the main effects. Categorical
variables, which can be character or numeric, must be declared in the CLASS state-
ment. Crossed and nested effects can be specified in the same fashion as in the GLM
procedure (see the section“Specification of Effects”on page 1784 ofChapter 32,
“The GLM Procedure,”for more information).
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Any MODEL statement options in the PHREG procedure can be used in the
TPHREG procedure. To accommodate the broader specification of model effects, the
variable-selection options INCLUDE=, START=, and STOP= have been modified.

INCLUDE=n
includes the firstn effects in the MODEL statement in every model. By default,
INCLUDE=0. The INCLUDE= option has no effect when SELECTION=NONE.

START=n
begins the FORWARD, BACKWARD, or STEPWISE selection process with the first
n effects listed in the MODEL statement. The value ofn ranges from 0 tos, where
s is the total number of effects in the MODEL statement. The default value ofn is
s for the BACKWARD method and 0 for the FORWARD and STEPWISE methods.
Note that START=n specifies only that the firstn effects appear in the first model,
while INCLUDE=n requires that the firstn effects be included in every model. For
the SCORE method, START=n specifies that the smallest models containn effects,
wheren ranges from 1 tos; the default value is 1. The START= option has no effect
when SELECTION=NONE.

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method)
number of effects to be included in the final model. The effect selection process
is stopped whenn effects are found. The value ofn ranges from 0 tos, wheres
is the total number of effects in the MODEL statement. The default value ofn is
s for the FORWARD method and 0 for the BACKWARD method. For the SCORE
method, STOP=n specifies that the smallest models containn effects, wheren ranges
from 1 to s; the default value ofn is s. The STOP= option has no effect when
SELECTION=NONE or STEPWISE.

Two new options are added to the MODEL statement in the TPHREG procedure.

HIERARCHY=keyword
HIER=keyword

specifies whether and how the model hierarchy requirement is applied and whether a
single effect or multiple effects are allowed to enter or leave the model in one step.
You can specify that only CLASS variable effects, or both CLASS and continuous
variable effects, be subject to the hierarchy requirement. The HIERARCHY= option
is ignored unless you also specify the FORWARD, BACKWARD, or STEPWISE
selection method.

Model hierarchy refers to the requirement that, for any term to be in the model, all
effects contained in the term must be present in the model. For example, in order
for the interaction A*B to enter the model, the main effects A and B must be in the
model. Likewise, neither effect A nor B can leave the model while the interaction
A*B is in the model.
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The keywords you can specify in the HIERARCHY= option are described as follows:

NONE

Model hierarchy is not maintained. Any single effect can enter or
leave the model at any given step of the selection process.

SINGLE

Only one effect can enter or leave the model at one time, subject to
the model hierarchy requirement. For example, suppose that you
specify the main effects A and B and the interaction of A*B in the
model. In the first step of the selection process, either A or B can
enter the model. In the second step, the other main effect can enter
the model. The interaction effect can enter the model only when
both main effects have already been entered. Also, before A or B
can be removed from the model, the A*B interaction must first be
removed. All effects (CLASS and continuous variables) are subject
to the hierarchy requirement.

SINGLECLASS

This is the same as HIERARCHY=SINGLE except that only
CLASS effects are subject to the hierarchy requirement.

MULTIPLE

More than one effect can enter or leave the model at one time, sub-
ject to the model hierarchy requirement. In a forward selection
step, a single main effect can enter the model, or an interaction can
enter the model together with all the effects that are contained in
the interaction. In a backward elimination step, an interaction it-
self, or the interaction together with all the effects that the interac-
tion contains, can be removed. All effects (CLASS and continuous
variable) are subject to the hierarchy requirement.

MULTIPLECLASS

This is the same as HIERARCHY=MULTIPLE except that only
CLASS effects are subject to the hierarchy requirement.

The default value is HIERARCHY=SINGLE, which means that model hierarchy is
to be maintained for all effects (that is, both CLASS and continuous variable effects)
and that only a single effect can enter or leave the model at each step.

NODUMMYPRINT
NODESIGNPRINT
NODP

suppresses the “Class Level Information” table, which shows how the design matrix
columns for the CLASS variables are coded.
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CLASS Statement

CLASS variable <(options)> <variable <(options)>... >
< / options >;

The CLASS statement names the categorical variables to be used in the analysis. The
CLASS statement must precede the MODEL statement. You can specify variousop-
tionsfor each variable by enclosing them in parentheses after the variable name. You
can also specify globaloptionsfor the CLASS statement by placing them after a slash
(/). Globaloptionsare applied to all the variables specified in the CLASS statement.
If you specify more than one CLASS statement, the globaloptionsspecified on any
one CLASS statement apply to all CLASS statements. However, individual CLASS
variableoptionsoverride the globaloptions.

CPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable name be used
in creating names for the corresponding dummy variables. The default is32 −
min(32,max(2, f)), wheref is the formatted length of the CLASS variable.

DESCENDING
DESC

reverses the sorting order of the categorical variable.

LPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable label be used in
creating labels for the corresponding dummy variables.

MISSING
allows missing value (for example,‘.’ for a numeric variable and blanks for a character
variable) as a valid value for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the categories of cateogrical variables. This ordering
determines which parameters in the model correspond to each level in the data, so
the ORDER= option may be useful when you use the CONTRAST statement. When
the default ORDER=FORMATTED is in effect for numeric variables for which you
have supplied no explicit format, the levels are ordered by their internal values. The
following table shows how PROC TPHREG interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric variables
with no explicit format, which are sorted by their unfor-
matted (internal) value

FREQ descending frequency count; levels with the most obser-
vations come first in the order

INTERNAL unformatted value
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By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, see the chapter
on the SORT procedure in theSAS Procedures Guideand the discussion of BY-group
processing inSAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the categorical variable or variables.
Design matrix columns are created from CLASS variables according to the fol-
lowing coding schemes. The default is PARAM=REF. If PARAM=ORTHPOLY or
PARAM=POLY, and the CLASS levels are numeric, then theORDER=option in the
CLASS statement is ignored, and the internal, unformatted values are used. See the
“CLASS Variable Parameterization”section on page 4482 for further details.

EFFECT specifies effect coding

GLM specifies less-than-full-rank, reference-cell coding; this option
can only be used as a global option

ORDINAL specifies the cumulative parameterization for an ordinal CLASS
variable.

POLYNOMIAL
POLY specifies polynomial coding

REFERENCE
REF specifies reference cell coding

ORTHEFFECT orthogonalizes PARAM=EFFECT

ORTHORDINAL orthogonalizes PARAM=ORDINAL

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL

ORTHREF orthogonalizes PARAM=REFERENCE

The EFFECT, POLYNOMIAL, REFERENCE, ORDINAL, and their orthogonal pa-
rameterizations are full rank parameterization. TheREF=option in the CLASS state-
ment determines the reference level for the EFFECT, REFERENCE, and their or-
thogonal parameterizations.

Parameter names for a CLASS predictor variable are constructed by concatenating
the CLASS variable name with the CLASS levels. However, for the POLYNOMIAL
and orthogonal parameterizations, parameter names are formed by concatenating the
CLASS variable name and keywords that reflect the parameterization.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT or PARAM=REF. For an indi-
vidual variable, you can specify a specificlevelof the variable in the REF= option.
For a global or individual variable REF=option, you can use one of the following
keywords. The default is REF=LAST.

FIRST designates the first ordered level as reference

LAST designates the last ordered level as reference
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TRUNCATE
specifies that class levels should be determined using no more than the first 16 char-
acters of the formatted values of CLASS variables. This is a global option, not an
individual CLASS variable option.

CONTRAST Statement

CONTRAST ’label’ row-description <,... row-description>< /options> ;

where arow-description is: effect values <,...effect values>

The CONTRAST statement provides a mechanism for obtaining customized hypoth-
esis tests. It is similar to the CONTRAST statement in PROC GLM and PROC
CATMOD, depending on the coding schemes used with any categorical variables
involved.

The CONTRAST statement enables you to specify a matrix,L, for testing the hy-
pothesisLβ = 0. You must be familiar with the details of the model parameteriza-
tion that PROC TPHREG uses (for more information, see the PARAM= option in
the “CLASS Statement”section on page 4477). Optionally, the CONTRAST state-
ment enables you to estimate each row,l′iβ, of Lβ and test the hypothesisl′iβ = 0.
Computed statistics are based on the asymptotic chi-square distribution of the Wald
statistic.

There is no limit to the number of CONTRAST statements that you can specify, but
they must appear after the MODEL statement.

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast
specified, and it must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. You do not need
to include all effects that are included in the MODEL statement.

values are constants that are elements of theL matrix associated with the effect.
To correctly specify your contrast, it is crucial to know the ordering of
parameters within each effect and the variable levels associated with any
parameter. The “Class Level Information” table shows the ordering of lev-
els within variables. The E option, described later in this section, enables
you to verify the proper correspondence ofvaluesto parameters.

The rows ofL are specified in order and are separated by commas. Multiple degree-
of-freedom hypotheses can be tested by specifying multiplerow-descriptions. For
any of the full-rank parameterizations, if an effect is not specified in the CONTRAST
statement, all of its coefficients in theL matrix are set to 0. If too many values are
specified for an effect, the extra ones are ignored. If too few values are specified, the
remaining ones are set to 0.
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When you use effect coding (by specifying PARAM=EFFECT in the CLASS state-
ment), all parameters are directly estimable (involve no other parameters). For exam-
ple, suppose an effect coded CLASS variableA has four levels. Then there are three
parameters (α1, α2, α3) representing the first three levels, and the fourth parameter is
represented by

−α1 − α2 − α3

To test the first versus the fourth level ofA, you would test

α1 = −α1 − α2 − α3

or, equivalently,

2α1 + α2 + α3 = 0

which, in the formLβ = 0, is

[
2 1 1

]  α1

α2

α3

 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1 vs. 4’ A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

α1 + α2

2
= α3

or, equivalently,

α1 + α2 − 2α3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1&2 vs. 3’ A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example,

contrast ’1 vs. 2 ’ A 1 -1 0;
contrast ’1&2 vs. 4 ’ A 3 3 2;
contrast ’1&2 vs. 3&4’ A 2 2 0;
contrast ’Main Effect’ A 1 0 0,

A 0 1 0,
A 0 0 1;



CONTRAST Statement � 4481

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM
in the CLASS statement), each row is checked for estimability. If PROC TPHREG
finds a contrast to be nonestimable, it displays missing values in corresponding rows
in the results. PROC TPHREG handles missing level combinations of categorical
variables in the same manner as PROC GLM. Parameters corresponding to missing
level combinations are not included in the model. This convention can affect the way
in which you specify theL matrix in your CONTRAST statement. If the elements of
L are not specified for an effect that contains a specified effect, then the elements of
the specified effect are distributed over the levels of the higher-order effect just as the
GLM procedure does for its CONTRAST and ESTIMATE statements. For example,
suppose that the model contains effects A and B and their interaction A*B. If you
specify a CONTRAST statement involving A alone, theL matrix contains nonzero
terms for both A and A*B, since A*B contains A.

The degrees of freedom is the number of linearly independent constraints implied by
the CONTRAST statement, that is, the rank ofL.

You can specify the following options after a slash (/).

ALPHA= p
specifies the level of significancep for the100(1− p)% confidence interval for each
contrast when the ESTIMATE option is specified. The valuep must be between 0 and
1. By default,p is equal to the value of the ALPHA= option in the PROC TPHREG
statement, or 0.05 if that option is not specified.

E
requests that theL matrix be displayed.

ESTIMATE=keyword
requests that each individual contrast (that is, each row,l′iβ, of Lβ) or exponentiated
contrast (el′iβ) be estimated and tested. PROC TPHREG displays the point estimate,
its standard error, a Wald confidence interval, and a Wald chi-square test for each con-
trast. The significance level of the confidence interval is controlled by the ALPHA=
option. You can estimate the contrast or the exponentiated contrast (el′iβ), or both, by
specifying one of the followingkeywords:

PARM specifies that the contrast itself be estimated

EXP specifies that the exponentiated contrast be estimated

BOTH specifies that both the contrast and the exponentiated contrast be
estimated

SINGULAR = number
tunes the estimability check. This option is ignored when the full-rank parameteri-
zation is used. Ifv is a vector, define ABS(v) to be the largest absolute value of the
elements ofv. For a row vectorl′ of the contrast matrixL, definec to be equal to
ABS(l) if ABS(l) is greater than 0; otherwise,c equals 1. If ABS(l′− l′T ) is greater
thanc ∗ number, thenl is declared nonestimable. TheT matrix is the Hermite form
matrixI−0 I0, whereI−0 represents a generalized inverse of the information matrixI0
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of the null model. The value fornumber must be between 0 and 1; the default value
is 1E−4.

Details

CLASS Variable Parameterization

Consider a model with one CLASS variableA with four levels, 1, 2, 5, and 7. Details
of the possible choices for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three dummy vari-
ables have a value of−1. For instance, if the reference level is 7
(REF=7), the design matrix columns forA are as follows.

Effect Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 −1 −1 −1

Parameter estimates of CLASS main effects using the effect coding
scheme estimate the difference in the effect of each nonreference
level compared to the average effect over all four levels.

GLM As in PROC GLM, four columns are created to indicate group
membership. The design matrix columns forA are as follows.

GLM Coding
Design Matrix

A A1 A2 A5 A7
1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

Parameter estimates of CLASS main effects using the GLM cod-
ing scheme estimate the difference in the effects of each level com-
pared to the last level.
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ORDINAL Three columns are created to indicate group membership of the
higher levels of the effect. For the first level of the effect (which
for A is 1), all three dummy variables have a value of 0. The design
matrix columns forA are as follows.

Ordinal Coding
Design Matrix

A A2 A5 A7
1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level. Parameter
estimates of CLASS main effects using the ORDINAL coding
scheme estimate the effect on the response as the ordinal factor
is set to each succeeding level. When the parameters for an ordinal
main effect have the same sign, the response effect is monotonic
across the levels.

POLYNOMIAL

POLY Three columns are created. The first represents the linear term (x),
the second represents the quadratic term (x2), and the third repre-
sents the cubic term (x3), wherex is the level value. If the CLASS
levels are not numeric, they are translated into 1, 2, 3,. . . accord-
ing to their sorting order. The design matrix columns forA are as
follows.

Polynomial Coding
Design Matrix

A APOLY1 APOLY2 APOLY3
1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343
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REFERENCE

REF Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three dummy vari-
ables have a value of 0. For instance, if the reference level is 7
(REF=7), the design matrix columns forA are as follows.

Reference Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects using the reference
coding scheme estimate the difference in the effect of each nonref-
erence level compared to the effect of the reference level.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=EFFECT. The design ma-
trix columns forA are as follows.

Orthogonal Effect Coding
Design Matrix

A AOEFF1 AOEFF2 AOEFF3
1 1.41421 −0.81650 −0.57735
2 0.00000 1.63299 −0.57735
5 0.00000 0.00000 1.73205
7 −1.41421 −0.81649 −0.57735

ORTHORDINAL The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=ORDINAL. The design
matrix columns forA are as follows.

Orthogonal Ordinal Coding
Design Matrix

A AOORD1 AOORD2 AOORD3
1 −1.73205 0.00000 0.00000
2 0.57735 −1.63299 0.00000
5 0.57735 0.81650 −1.41421
7 0.57735 0.81650 1.41421



Miscellaneous Changes from PROC PHREG � 4485

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=POLY. The design matrix
columns forA are as follows.

Orthogonal Polynomial Coding
Design Matrix

A AOPOLY1 AOPOLY2 AOPOLY5
1 −1.153 0.907 −0.921
2 −0.734 −0.540 1.473
5 0.524 −1.370 −0.921
7 1.363 1.004 0.368

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogo-
nalization to the columns for PARAM=REFERENCE. The design
matrix columns forA are as follows.

Orthogonal Reference Coding
Design Matrix

A AOREF1 AOREF2 AOREF3
1 1.73205 0.00000 0.00000
2 −0.57735 1.63299 0.00000
5 −0.57735 −0.81650 1.41421
7 −0.57735 −0.81650 −1.41421

Miscellaneous Changes from PROC PHREG

The default method of computing the survivor function estimate is METHOD=CH
which is based on the empirical cumulative hazard function estimate rather than the
product-limit estimate (METHOD=PL) as in PROC PHREG. This applies to both the
OUTPUT and BASELINE statements.

The OUT= data set in the OUTPUT statement contains the entire input data set along
with statistics you request using thekeyword=nameoptions. Observations in the
OUT= data set follow the same order as the input data set. The ORDER=SORTED
option in the OUTPUT statement of PROC PHREG (see the“OUTPUT Statement”
section (page 3233) inChapter 54, “The PHREG Procedure,”) is no longer available.

The BASELINE statement in PROC PHREG enables you to to predict the cumulative
mean function (CMF) and the cumulative hazard function (CUMHAZ) for recurrent
events models. However, such features are not yet available in the BASELINE state-
ment of PROC TPHREG.
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Displayed Output

If you use the NOPRINT option in the PROC TPHREG statement, the procedure does
not display any output. Otherwise, the displayed output of the TPHREG procedure
includes the following:

• the “Model Information” table, which contains

− the two-level name of the input data set

− the name and label of the failure-time variable

− if you specify the censoring variable,

- the name and label of the censoring variable
- the values that the censoring variable assumes to indicate censored

times

− if you use the OFFSET= option in the MODEL statement, the name and
label of the offset variable

− if you specify the FREQ statement, the name and label of the frequency
variable

− if you specify the WEIGHT statement, the name and label of the weight
variable

− the method of handling ties in the failure time

• the “Class Level Information” table, which shows the levels and the corre-
sponding design variables for each CLASS explanatory variable

• the “Summary of the Number of Event and Censored Values” table, which
gives, for each stratum, the breakdown of the number of events and censored
values. This table is not produced if the NOSUMMARY option is specified.

• if you specify the SIMPLE option in the PROC TPHREG statement, the
“Descriptive Statistics for Continuous Explanatory Variables” table for con-
tinuous explanatory variables, and the “Frequency Distribution of CLASS
Variables” table. The “Descriptive Statistics for Continuous Explanatory
Variables” table contains the mean, standard deviation, maximum and min-
imum of each continuous variable specified in the MODEL statement. If
the WEIGHT statement is specified, the “Frequency Distribution of Class
Variables” table also contains the weight distributions of the CLASS variables.

• if you specify the ITPRINT option in the MODEL statement, the “Iteration
History” table, which displays the iteration number, step size, log likelihood,
and parameter estimates at each iteration The last evaluation of the gradient
vector is also displayed.

• the “Model Fit Statistics” table, which gives the values of−2 log likelihood
for fitting a model with no explanatory variable and for fitting a model with all
the explanatory variables. The AIC and SBC are also given in this table.

• the “Testing Global Null Hypothesis: BETA=0” table, which displays results
of the likelihood ratio test, the score test, and the Wald test
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• if the model contains an effect involving a CLASS variable, the “Type 3 Tests”
table, which gives the Wald chi-square statistic, the degrees of freedom, and
thep-value for each effect in the model

• the “Analysis of Maximum Likelihood Estimates” table, which contains the
following:

− the maximum likelihood estimate of the parameter
− the estimated standard error of the parameter estimate, computed as the

square root of the corresponding diagonal element of the estimated co-
variance matrix

− if you specify the COVS option in the PROC statement, the ratio of the
robust standard error estimate to the model-based standard error estimate

− the Wald Chi-Square statistic, computed as the square of the parameter
estimate divided by its standard error estimate

− the degrees of freedom of the Wald chi-square statistic. It has a value of
1 unless the corresponding parameter is redundant or infinite, in which
case the value is 0.

− the p-value of the Wald chi-square statistic with respect to a chi-square
distribution with one degree of freedom

− the hazards ratio estimate computed by exponentiating the parameter es-
timate

− if you specified the RISKLIMITS option in the MODEL statement, the
confidence limits for the hazards ratio

• if you specify SELECTION=SCORE in the MODEL statement, the
“Regression Models Selected by Score Criterion” table, which gives the
number of explanatory variables in each model, the score chi-square statistic,
and the names of the variables included in the model

• if you use the FORWARD or STEPWISE selection method and specify the
DETAILS option in the MODEL statement, the “Effects to Enter” table, which
gives the score chi-square statistic for testing the significance of each candidate
effect for entry (after adjusting for the effects already in the model), the degrees
of freedom of the score chi-square statistic, and the correspondingp-value.
This table is produced before an effect is selected for entry.

• if you use the BACKWARD or STEPWISE selection method and specify the
DETAILS option in the MODEL statement, the “Effects to Remove” table,
which gives the Wald chi-square statistic for testing the significance of each
candidate effect for removal, the degrees of freedom of the Wald chi-square,
and the correspondingp-value. This table is produced before an effect is se-
lected for removal.

• if you use the BACKWARD, FORWARD, or STEPWISE selection method, a
table summarizing the model-building process, which gives the step number,
the effect entered or removed at each step, the chi-square statistic, and the
correspondingp-value on which the selection is based

• if you use the COVB option in the MODEL statement, the estimated covariance
matrix of the parameter estimates
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• if you use the CORRB option in the MODEL statement, the estimated correla-
tion matrix of the parameter estimates

• if you specify a CONTRAST statement, the “Contrast Test Results” table,
which gives the result of the Wald test for each CONTRAST specified. If you
specify the E option in the CONTRAST statement, then the contrast matrix is
displayed. If you specify the ESTIMATE= option in the CONTRAST state-
ment, the “Contrast Rows Estimation and Testing Results” table is produced,
which includes the point estimate and confidence interval for each row of the
contrast matrix, and the corresponding Wald test as well.

• if you specify a TEST statement,

− the “Linear Coefficients” table, which gives the coefficients and constants
of the linear hypothesis (if the E option is specified)

− the printing of the intermediate calculations of the Wald test (if the option
PRINT is specified)

− the “Test Results” table, which gives the Wald chi-square statistic, the
degrees of freedom, and thep-value

− the “Average Effect” table, which gives the weighted average of the pa-
rameter estimates for the variables in the TEST statement, the estimated
standard error, the z-score, and thep-value (if the AVERAGE option is
specified)

ODS Table Names

PROC TPHREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

Table 73.1. ODS Tables Produced in PROC TPHREG

ODS Table Name Description Statement Option
BestSubsets Best subset selection MODEL SELECTION=SCORE
CensoredSummary Summary of event and censored

observations
MODEL default

ClassLevelFreq Frequency breakdown of CLASS
variables

PROC SIMPLE (with CLASS vars)

ClassLevelInfo CLASS variable levels and de-
sign variables

MODEL default (with CLASS vars)

ClassWgt Weight breakdown of CLASS
variables

WEIGHT SIMPLE (with CLASS vars)

ContrastCoeff L matrix for contrasts CONTRAST E
ContrastEstimate Individual contrast estimates CONTRAST ESTIMATE=
ContrastTest Wald test for contrasts CONTRAST default
ConvergenceStatus Convergence status MODEL default
CorrB Estimated correlation matrix of

parameter estimators
MODEL CORRB

CovB Estimated covariance matrix of
parameter estimators

MODEL COVB
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Table 73.1. (continued)

ODS Table Name Description Statement Option
EffectsToEnter Eligible effects for entry to

model
MODEL SELECTION=F/S

EffectsToRemove Eligible effects for removal from
model

MODEL SELECTION=B/S

FitStatistics Model fit statistics MODEL default
GlobalScore Global chi-square test MODEL NOFIT
GlobalTests Tests of the global null

hypothesis
MODEL default

IterHistory Iteration history MODEL ITPRINT
LastGradient Last evaluation of gradient MODEL ITPRINT
ModelBuildingSummary Summary of model building MODEL SELECTION=B/F/S
ModelInfo Model information PROC default
NObs Number of observations default
ParameterEstimates Maximum likelihood estimates

of model parameters
MODEL default

ResidualChiSq Residual chi-square MODEL SELECTION=F/B
SimpleStatistics Summary statistics for continu-

ous explanatory variables
PROC SIMPLE

TestAverage Average Effect for test TEST AVERAGE
TestCoeff coefficients for linear hypotheses TEST E
TestPrint1 L [cov(b)]L ’ andLb -c TEST PRINT
TestPrint2 Ginv(L [cov(b)]L ’) and

Ginv(L [cov(b)]L ’)(Lb -c)
TEST PRINT

TestStmts Linear Hypotheses Test Results TEST default
Type3 Type 3 tests of effects MODEL default (with CLASS vars)

Example

Example 73.1. Analysis of the VA Lung Cancer Data

This example uses the Veteran’s Administration lung cancer data presented in
Appendix 1 ofKalbfleisch and Prentice(1980). In this trial, males with advanced
inoperable lung cancer were randomized to a standard therapy and a test chemother-
apy. The primary end point for the therapy comparison was time to death in days,
represented by the variableTime. Negative values ofTime are censored values. The
data include information on a number of explanatory variables:Therapy (type of
therapy: standard or test),Cell (type of tumor cell: adeno, large, small, or squa-
mous),Prior (prior therapy: 0=no, 10=yes),Age (age in years),Duration (months
from diagnosis to randomization), andKps (Karnofsky performance scale). A cen-
soring indicator variableCensor is created from the data, with value 1 indicating a
censored time and value 0 an event time.
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proc format;
value yesno 0=’no’ 10=’yes’;
run;

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label Time=’time to death in days’

Kps=’Karnofsky performance scale’
Duration=’months from diagnosis to randomization’
Age=’age in years’
Prior=’prior therapy’
Cell=’cell type’
Therapy=’type of treatment’;

format Prior yesno.;
M=Column;
input Check $ @@;
if M>Column then M=1;
if Check=’s’|Check=’t’ then do;

input @M Therapy $ Cell $;
delete;
end;

else do;
input @M Time Kps Duration Age Prior @@;
censor=(Time<0);
Time=abs(Time);
end;

datalines;
standard squamous

72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10
118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small

30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0

27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0
392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0

95 80 4 34 0
standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0

30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10
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test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0

8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0
140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0

45 40 3 69 0 80 40 4 63 0
test large

52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

PROC TPHREG is invoked to fit the Cox proportional hazards model to these data.
VariablesPrior, Cell, andTherapy, which are categorical variables, are declared
in the CLASS statement. By default, PROC TPHREG parameterizes the CLASS
variables using the reference coding with the last category as the reference category.
However, you can explicitly specify the reference category of your choice. Here,
Prior=no is chosen as the reference category for prior therapy,Cell=large is chosen
as the reference category for type of tumor cell, andTherapy=standard is chosen
as the reference category for the type of therapy. Both the continuous explanatory
variables (Kps, Duration, andAge) and the CLASS explanatory variables (Prior,
Cell, andTherapy) are specified in the MODEL statement. Knowing how theCell
variable is parameterized, the hazards ratios of all pairs of cell-type groups can be
estimated using the ESTIMATE=EXP option in a CONTRAST statement.

proc tphreg data=VALung;
class Prior(ref=’no’) Cell(ref=’large’) Therapy(ref=’standard’);
model Time*censor(1) = Kps Duration Age Prior Cell Therapy;
contrast ’Pairwise’ cell 1 0 0, /* adeno vs large */

cell 0 1 0, /* small vs large */
cell 0 0 1, /* squamous vs large */
cell 1 -1 0, /* adeno vs small */
cell 1 0 -1, /* adeno vs squamous */
cell 0 1 -1 /* small vs squamous */
/ estimate=exp;

run;

The output of PROC TPHREG is very similar to that of PROC PHREG, with addi-
tional tables for displaying the parameterization of the CLASS variables, the multipa-
rameter tests for the model effects, and the analysis results of the specified contrasts.
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Output 73.1.1. Reference Coding of CLASS Variables

The TPHREG Procedure

Class Level Information

Class Value Design Variables

Prior no 0
yes 1

Cell adeno 1 0 0
large 0 0 0
small 0 1 0
squamous 0 0 1

Therapy standard 0
test 1

Coding of the CLASS variables is displayed inOutput 73.1.1. There is one dummy
variable forPrior and one forTherapy, since both variables are binary. The dummy
variable has a value of 0 for the reference category (Prior=no, Therapy=standard).
The CLASS variableCell has four categories and are represented by three dummy
variables. Note that the reference category,Cell=large, has a value of 0 for all three
dummy variables.

Output 73.1.2. Wald Tests for Individual Model Effects

Type 3 Tests

Wald
Effect DF Chi-Square Pr > ChiSq

Kps 1 35.1124 <.0001
Duration 1 0.0001 0.9920
Age 1 0.8443 0.3582
Prior 1 0.0971 0.7554
Cell 3 17.9164 0.0005
Therapy 1 1.9579 0.1617

The test results of individual model effects are shown inOutput 73.1.2. There is a
strong prognostic effect of the Karnofsky performance status on patient survival (p <
0.0001), and the survival times in the various cell-type groups differ significantly
(p = 0.0005). However, there is a lack of evidence that the test chemotherapy differs
from the standard therapy (p = 0.1617) after accounting for the prognostic effects of
other variables.
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Output 73.1.3. Inference about the Regression Parameters

Analysis of Maximum Likelihood Estimates

Parameter Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Kps 1 -0.03262 0.00551 35.1124 <.0001
Duration 1 -0.0000916 0.00913 0.0001 0.9920
Age 1 -0.00855 0.00930 0.8443 0.3582
Prior yes 1 0.07232 0.23213 0.0971 0.7554
Cell adeno 1 0.78867 0.30267 6.7899 0.0092
Cell small 1 0.45686 0.26627 2.9438 0.0862
Cell squamous 1 -0.39963 0.28266 1.9988 0.1574
Therapy test 1 0.28994 0.20721 1.9579 0.1617

Analysis of Maximum Likelihood Estimates

Hazard
Parameter Ratio Variable Label

Kps 0.968 Karnofsky performance scale
Duration 1.000 months from diagnosis to randomization
Age 0.991 age in years
Prior yes 1.075 prior therapy yes
Cell adeno 2.200 cell type adeno
Cell small 1.579 cell type small
Cell squamous 0.671 cell type squamous
Therapy test 1.336 type of treatment test

In the Cox proportional hazards model, the effects of the covariates are to act mul-
tiplicatively on the hazard of the survival time, and therefore it is a little easier to
interpret the corresponding hazards ratios than the regression parameters. For a pa-
rameter that corresponds to an continous variable, the hazard ratio is the ratio of
hazard rates for a increase of one unit of the variable. FromOutput 73.1.3, the hazard
ratio estimate forKps is 0.968, meaning that an increase of 10 units in Karnofsky
performance scale will shrink the hazard rate by1 − (0.968)10=28%. For a CLASS
variable parameter, the hazard ratio is the ratio of the hazard rates between the given
category and the reference category. The hazard rate ofCell=adeno is 220% that of
Cell=large, the hazard rate ofCell=small is 158% that ofCell=large, and the hazard
rate ofCell=squamous is only 67% that ofCell=large.

Output 73.1.4. Overall Test for All Paired Cell-type Groups

Contrast Test Results

Wald
Contrast DF Chi-Square Pr > ChiSq

Pairwise 3 17.9164 0.0005

Although there are six pairwise comparisons for the four types of tumor cells in
the CONTRAST statement, the overall test has only 3 degrees of freedom (Output
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73.1.4). In fact this is the very same testing of no prognostics effect between the
cell-type groups as shown inOutput 73.1.2.

Output 73.1.5. Hazards Ratios for All Paired Cell-type Groups

Contrast Rows Estimation and Testing Results

Standard
Contrast Type Row Estimate Error Alpha Confidence Limits

Pairwise EXP 1 2.2005 0.6660 0.05 1.2159 3.9824
Pairwise EXP 2 1.5791 0.4205 0.05 0.9370 2.6611
Pairwise EXP 3 0.6706 0.1895 0.05 0.3853 1.1669
Pairwise EXP 4 1.3935 0.3840 0.05 0.8119 2.3916
Pairwise EXP 5 3.2815 0.9870 0.05 1.8200 5.9167
Pairwise EXP 6 2.3549 0.6480 0.05 1.3732 4.0384

Contrast Rows Estimation and Testing Results

Wald
Contrast Type Row Chi-Square Pr > ChiSq

Pairwise EXP 1 6.7899 0.0092
Pairwise EXP 2 2.9438 0.0862
Pairwise EXP 3 1.9988 0.1574
Pairwise EXP 4 1.4497 0.2286
Pairwise EXP 5 15.6101 <.0001
Pairwise EXP 6 9.6866 0.0019

Output 73.1.5is generated by the ESTIMATE=EXP option in the CONTRAST state-
ment. Values of the Estimate column are the estimated hazard ratios: 2.200 for
‘adeno’ vs ‘large’, 1.579 for ‘small’ versus ‘large’, 0.671 for ‘squamous’ versus
‘large’, 1.394 for ‘adeno’ versus ’small’, 3.282 for ‘adeno’ versus ‘squamous’, and
2.355 for ‘small’ versus ‘squamous’. Note that the first three hazard ratio estimates
are already given in the parameter estimate table (Output 73.1.3), and therefore there
is no need to specify those first three rows in the CONTRAST statement.

References
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Chapter 74
The TPSPLINE Procedure
Overview

The TPSPLINE procedure uses the penalized least squares method to fit a nonpara-
metric regression model. It computes thin-plate smoothing splines to approximate
smooth multivariate functions observed with noise. The TPSPLINE procedure al-
lows great flexibility in the possible form of the regression surface. In particular,
PROC TPSPLINE makes no assumptions of a parametric form for the model. The
generalized cross validation (GCV) function may be used to select the amount of
smoothing.

The TPSPLINE procedure complements the methods provided by the standard SAS
regression procedures such as the GLM, REG and NLIN procedures. These proce-
dures can handle most situations in which you specify the regression model and the
model is known up to a fixed number of parameters. However, when you have no
prior knowledge about the model, or when you know that the data cannot be repre-
sented by a model with a fixed number of parameters, you can use the TPSPLINE
procedure to model the data.

The TPSPLINE procedure uses the penalized least squares method to fit the data with
a flexible model in which the number of effective parameters can be as large as the
number of unique design points. Hence, as the sample size increases, the model space
increases as well, enabling the thin-plate smoothing spline to fit more complicated
situations.

The main features of the TPSPLINE procedure are as follows:

• provides penalized least squares estimates

• supports the use of multidimensional data

• supports multiple SCORE statements

• fits both semiparametric models and nonparametric models

• provides options for handling large data sets

• supports multiple dependent variables

• enables you to choose a particular model by specifying the model degrees of
freedom or smoothing parameter

The Penalized Least Squares Estimate

Penalized least squares estimates provide a way to balance fitting the data closely and
avoiding excessive roughness or rapid variation. A penalized least squares estimate
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is a surface that minimizes the penalized least squares over the class of all surfaces
satisfying sufficient regularity conditions.

Definexi as ad-dimensional covariate vector,zi as ap-dimensional covariate vector,
andyi as the observation associated with(xi, zi). Assuming that the relation between
zi andyi is linear but the relation betweenxi andyi is unknown, you can fit the data
using a semiparametric model as follows:

yi = f(xi) + ziβ + εi

wheref is an unknown function that is assumed to be reasonably smooth,εi, i =
1, · · · , n are independent, zero-mean random errors, andβ is a p-dimensional un-
known parametric vector.

This model consists of two parts. Theziβ is the parametric part of the model, and
thezi are the regression variables. Thef(xi) is the nonparametric part of the model,
and thexi are the smoothing variables.

The ordinary least squares method estimatesf(xi) andβ by minimizing the quantity:

1
n

n∑
i=1

(yi − f(xi)− ziβ)2

However, the functional space off(x) is so large that you can always find a function
f that interpolates the data points. In order to obtain an estimate that fits the data well
and has some degree of smoothness, you can use the penalized least squares method.

The penalized least squares function is defined as

Sλ(f) =
1
n

n∑
i=1

(yi − f(xi)− ziβ)2 + λJ2(f)

whereJ2(f) is the penalty on the roughness off and is defined, in most cases, as the
integral of the square of the second derivative off .

The first term measures the goodness of fit and the second term measures the smooth-
ness associated withf . Theλ term is the smoothing parameter, which governs the
tradeoff between smoothness and goodness of fit. Whenλ is large, it more heavily
penalizes rougher fits. Conversely, a small value ofλ puts more emphasis on the
goodness of fit.

The estimatefλ is selected from a reproducing kernel Hilbert space, and it can be
represented as a linear combination of a sequence of basis functions. Hence, the final
estimates off can be written as

fλ(xi) = θ0 +
d∑

j=1

θjxij +
n∑

j=1

δjBj(xi)
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whereBj is the basis function, which depends on where the dataxj is located, and
θj andδj are the coefficients that need to be estimated.

For a fixedλ, the coefficients(θ, δ, β) can be estimated by solving ann× n system.

The smoothing parameter can be chosen by minimizing the generalized cross valida-
tion (GCV) function.

If you write

ŷ = A(λ)y

thenA(λ) is referred to as thehat or smoothingmatrix, and the GCV functionV (λ)
is defined as

V (λ) =
(1/n)||(I−A(λ))y||2

[(1/n)tr(I−A(λ))]2

PROC TPSPLINE with Large Data Sets

The calculation of the penalized least squares estimate is computationally intensive.
The amount of memory and CPU time needed for the analysis depend on the number
of unique design points, which corresponds to the number of unknown parameters to
be estimated.

You can specify the D=valueoption in the MODEL statement to reduce the number
of unknown parameters. The option groups design points by the specified range (see
theD= optionon page 4509).

PROC TPSPLINE selects one design point from the group and treats all observations
in the group as replicates of that design point. Calculation of the thin-plate smoothing
spline estimates are based on the reprocessed data. The way to choose the design
point from a group depends on the order of the data. Therefore, different orders of
input data may result in different estimates.

This option, by combining several design points into one, reduces the number of
unique design points, thereby approximating the original data. The D= value you
specify determines the width of the range used to group the data.

Getting Started

The following example demonstrates how you can use the TPSPLINE procedure to
fit a semiparametric model.

Suppose thaty is a continuous variable andx1 andx2 are two explanatory variables
of interest. To fit a smoothing spline model, you can use a MODEL statement similar
to that used in many regression procedures in the SAS System.

proc tpspline;
model y = (x1 x2);

run;
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The TPSPLINE procedure can fit semiparametric models; the parentheses in the pre-
ceding MODEL statement separates the smoothing variables from the regression vari-
ables. The following statements illustrates this syntax.

proc tpspline;
model y = x3 (x1 x2);

run;

This model assumes a linear relation withx3 and an unknown functional relation
with x1 andx2.

If you want to fit several responses using the same explanatory variables, you can
save computation time by using the multiple responses feature in the MODEL state-
ment. For example, ify1 andy2 are two response variables, the following MODEL
statement can be used to fit two models. Separate analyses are then performed for
each response variable.

proc tpspline;
model y1 y2 = (x1 x2);

run;

The following example illustrates the use of PROC TPSPLINE. The data are from
Bates, Lindstrom, Wahba, and Yandell (1987).

data Measure;
input x1 x2 y @@;
datalines;
-1.0 -1.0 15.54483570 -1.0 -1.0 15.76312613

-.5 -1.0 18.67397826 -.5 -1.0 18.49722167
.0 -1.0 19.66086310 .0 -1.0 19.80231311
.5 -1.0 18.59838649 .5 -1.0 18.51904737

1.0 -1.0 15.86842815 1.0 -1.0 16.03913832
-1.0 -.5 10.92383867 -1.0 -.5 11.14066546

-.5 -.5 14.81392847 -.5 -.5 14.82830425
.0 -.5 16.56449698 .0 -.5 16.44307297
.5 -.5 14.90792284 .5 -.5 15.05653924

1.0 -.5 10.91956264 1.0 -.5 10.94227538
-1.0 .0 9.61492010 -1.0 .0 9.64648093

-.5 .0 14.03133439 -.5 .0 14.03122345
.0 .0 15.77400253 .0 .0 16.00412514
.5 .0 13.99627680 .5 .0 14.02826553

1.0 .0 9.55700164 1.0 .0 9.58467047
-1.0 .5 11.20625177 -1.0 .5 11.08651907

-.5 .5 14.83723493 -.5 .5 14.99369172
.0 .5 16.55494349 .0 .5 16.51294369
.5 .5 14.98448603 .5 .5 14.71816070

1.0 .5 11.14575565 1.0 .5 11.17168689
-1.0 1.0 15.82595514 -1.0 1.0 15.96022497

-.5 1.0 18.64014953 -.5 1.0 18.56095997
.0 1.0 19.54375504 .0 1.0 19.80902641
.5 1.0 18.56884576 .5 1.0 18.61010439

1.0 1.0 15.86586951 1.0 1.0 15.90136745
;
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The data setMeasure contains three variablesx1, x2, andy. Suppose that you want
to fit a surface by using the variablesx1 andx2 to model the responsey. The variables
x1 andx2 are spaced evenly on a[−1× 1]× [−1× 1] square, and the responsey is
generated by adding a random error to a functionf(x1, x2). The raw data are plotted
using the G3D procedure. In order to plot those replicates, the data are jittered a little
bit.

data Measure1;
set Measure;

run;

proc sort data=Measure1;
by x2 x1;

run;

data measure1;
set measure1; by x1;
if last.x1 then x1=x1+0.00001;

run;

proc g3d data=Measure1;
scatter x2*x1=y /size=.5

zmin=9 zmax=21
zticknum=4;

title "Raw Data";
run;

Figure 74.1displays the raw data.

Figure 74.1. Plot of Data Set MEASURE
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The following statements invoke the TPSPLINE procedure, using theMeasure data
set as input. In the MODEL statement, thex1 andx2 variables are listed as smoothing
variables. TheLOGNLAMBDA= option returns a list of GCV values withlog10(nλ)
ranging from−4 to −2. The OUTPUT statement creates the data setestimate to
contain the predicted values and the 95% upper and lower confidence limits.

proc tpspline data=Measure;
model y=(x1 x2) /lognlambda=(-4 to -2 by 0.1);
output out=estimate pred uclm lclm;

run;

proc print data=estimate;
run;

The results of this analysis are displayed in the following figures.Figure 74.2shows
that the data setMeasure contains 50 observations with 25 unique design points.
The GCV values are listed along with thelog10 of nλ. The value oflog10(nλ) that
minimizes the GCV function is around−3.5. The final thin-plate smoothing spline
estimate is based on LOGNLAMBDA =−3.4762. The residual sum of squares is
0.246110, and the degrees of freedom is 24.593203. The standard deviation, defined
as RSS/(Tr(I-A)), is 0.098421. The predictions and 95% confidence limits are dis-
played inFigure 74.3.

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 3

Figure 74.2. Output from PROC TPSPLINE
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The TPSPLINE Procedure
Dependent Variable: y

GCV Function

log10(n*Lambda) GCV

-4.000000 0.019215
-3.900000 0.019183
-3.800000 0.019148
-3.700000 0.019113
-3.600000 0.019082
-3.500000 0.019064*
-3.400000 0.019074
-3.300000 0.019135
-3.200000 0.019286
-3.100000 0.019584
-3.000000 0.020117
-2.900000 0.021015
-2.800000 0.022462
-2.700000 0.024718
-2.600000 0.028132
-2.500000 0.033165
-2.400000 0.040411
-2.300000 0.050614
-2.200000 0.064699
-2.100000 0.083813
-2.000000 0.109387

Note: * indicates minimum GCV value.

Summary Statistics
of Final Estimation

log10(n*Lambda) -3.4762
Smoothing Penalty 2558.1432
Residual SS 0.2461
Tr(I-A) 25.4068
Model DF 24.5932
Standard Deviation 0.0984
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Estimates from Proc TPSPLINE

Obs x1 x2 y P_y LCLM_y UCLM_y

1 -1.0 -1.0 15.5448 15.6474 15.5115 15.7832
2 -1.0 -1.0 15.7631 15.6474 15.5115 15.7832
3 -0.5 -1.0 18.6740 18.5783 18.4430 18.7136
4 -0.5 -1.0 18.4972 18.5783 18.4430 18.7136
5 0.0 -1.0 19.6609 19.7270 19.5917 19.8622
6 0.0 -1.0 19.8023 19.7270 19.5917 19.8622
7 0.5 -1.0 18.5984 18.5552 18.4199 18.6905
8 0.5 -1.0 18.5190 18.5552 18.4199 18.6905
9 1.0 -1.0 15.8684 15.9436 15.8077 16.0794

10 1.0 -1.0 16.0391 15.9436 15.8077 16.0794
11 -1.0 -0.5 10.9238 11.0467 10.9114 11.1820
12 -1.0 -0.5 11.1407 11.0467 10.9114 11.1820
13 -0.5 -0.5 14.8139 14.8246 14.6896 14.9597
14 -0.5 -0.5 14.8283 14.8246 14.6896 14.9597
15 0.0 -0.5 16.5645 16.5102 16.3752 16.6452
16 0.0 -0.5 16.4431 16.5102 16.3752 16.6452
17 0.5 -0.5 14.9079 14.9812 14.8461 15.1162
18 0.5 -0.5 15.0565 14.9812 14.8461 15.1162
19 1.0 -0.5 10.9196 10.9497 10.8144 11.0850
20 1.0 -0.5 10.9423 10.9497 10.8144 11.0850
21 -1.0 0.0 9.6149 9.6372 9.5019 9.7724
22 -1.0 0.0 9.6465 9.6372 9.5019 9.7724
23 -0.5 0.0 14.0313 14.0188 13.8838 14.1538
24 -0.5 0.0 14.0312 14.0188 13.8838 14.1538
25 0.0 0.0 15.7740 15.8822 15.7472 16.0171
26 0.0 0.0 16.0041 15.8822 15.7472 16.0171
27 0.5 0.0 13.9963 14.0006 13.8656 14.1356
28 0.5 0.0 14.0283 14.0006 13.8656 14.1356
29 1.0 0.0 9.5570 9.5769 9.4417 9.7122
30 1.0 0.0 9.5847 9.5769 9.4417 9.7122
31 -1.0 0.5 11.2063 11.1614 11.0261 11.2967
32 -1.0 0.5 11.0865 11.1614 11.0261 11.2967
33 -0.5 0.5 14.8372 14.9182 14.7831 15.0532
34 -0.5 0.5 14.9937 14.9182 14.7831 15.0532
35 0.0 0.5 16.5549 16.5386 16.4036 16.6736
36 0.0 0.5 16.5129 16.5386 16.4036 16.6736
37 0.5 0.5 14.9845 14.8549 14.7199 14.9900
38 0.5 0.5 14.7182 14.8549 14.7199 14.9900
39 1.0 0.5 11.1458 11.1727 11.0374 11.3080
40 1.0 0.5 11.1717 11.1727 11.0374 11.3080
41 -1.0 1.0 15.8260 15.8851 15.7493 16.0210
42 -1.0 1.0 15.9602 15.8851 15.7493 16.0210
43 -0.5 1.0 18.6401 18.5946 18.4593 18.7299
44 -0.5 1.0 18.5610 18.5946 18.4593 18.7299
45 0.0 1.0 19.5438 19.6729 19.5376 19.8081
46 0.0 1.0 19.8090 19.6729 19.5376 19.8081
47 0.5 1.0 18.5688 18.5832 18.4478 18.7185
48 0.5 1.0 18.6101 18.5832 18.4478 18.7185
49 1.0 1.0 15.8659 15.8761 15.7402 16.0120
50 1.0 1.0 15.9014 15.8761 15.7402 16.0120

Figure 74.3. Data Set ESTIMATE

The fitted surface is plotted with PROC G3D as follows.

proc g3d data=estimate;
plot x2*x1=p_y/grid

zmin=9 zmax=21 zticknum=4;
title ’Plot of Fitted Surface’;
run;
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The resulting plot is displayed inFigure 74.4.

Figure 74.4. Plot of TPSPLINE Fit of Data Set Measure

Because the data in data setMeasure are very sparse, the fitted surface is not smooth.
To produce a smoother surface, the following statements generate the data setPred
in order to obtain a finer grid. The SCORE statement evaluates the fitted surface at
those new design points.

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1;
output;

end;
end;

run;

proc tpspline data=measure;
model y=(x1 x2)/lognlambda=(-4 to -2 by 0.1);
score data=pred out=predy;

run;

proc g3d data=predy;
plot x2*x1=p_y/grid

zmin=9 zmax=21 zticknum=4;
title ’Plot of Fitted Surface on a Fine Grid’;
run;

The surface plot based on the finer grid is displayed inFigure 74.5. The plot shows
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that a parametric model with quadratic terms ofx1 andx2 provides a reasonable fit
to the data.

Figure 74.5. Plot of TPSPLINE fit

Syntax

PROC TPSPLINE < option > ;
MODEL dependents = < variables > (variables) < /options > ;
SCORE data=SAS-data-set out=SAS-data-set ;
OUTPUT < out=SAS-data-set > keyword < · · · keyword > ;
BY variables ;
FREQ variable ;
ID variables ;

The syntax in PROC TPSPLINE is similar to that of other regression procedures in
the SAS System. The PROC TPSPLINE and MODEL statements are required. The
SCORE statement can appear multiple times; all other statements appear only once.

The syntax for PROC TPSPLINE is described in the following sections in alphabeti-
cal order after the description of the PROC TPSPLINE statement.
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PROC TPSPLINE Statement

PROC TPSPLINE < option > ;

The PROC TPSPLINE statement invokes the procedure. You can specify the follow-
ing option.

DATA=SAS-data-set
specifies the SAS data set to be read by PROC TPSPLINE. The default value is the
most recently created data set.

BY Statement

BY variables ;

You can specify a BY statement with PROC TPSPLINE to obtain separate analysis on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the TPSPLINE procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If one variable in your input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
TPSPLINE treats the data as if each observation appearsn times, wheren is the value
of the FREQ variable for the observation. If the value of the FREQ variable is less
than one, the observation is not used in the analysis. Only the integer portion of the
value is used.
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ID Statement

ID variables ;

The variables in the ID statement are copied from the input data set to the OUT= data
set. If you omit the ID statement, only the variables used in the MODEL statement
and requested statistics are included in the output data set.

MODEL Statement

MODEL dependents = < regression variables > (smoothing variables) <
/options > ;

The MODEL statement specifies the dependent variables, the independent regres-
sion variables, which are listed with no parentheses, and the independent smoothing
variables, which are listed inside parentheses.

The regression variables are optional. At least one smoothing variable is required,
and it must be listed after the regression variables. No variables can be listed in both
the regression variable list and the smoothing variable list.

If you specify more than one dependent variable, PROC TPSPLINE calculates a thin-
plate smoothing spline estimate for each dependent variable, using the regression
variables and smoothing variables specified on the right-hand side.

If you specify regression variables, PROC TPSPLINE fits a semiparametric model
using the regression variables as the linear part of the model.

You can specify the following options in the MODEL statement.

ALPHA= number
specifies the significance levelα of the confidence limits on the final thin-plate
smoothing spline estimate when you request confidence limits to be included in the
output data set. Specifynumberas a value between 0 and 1. The default value is
0.05. See the“OUTPUT Statement”section on page 4510 for more information on
the OUTPUT statement.

DF=number
specifies the degrees of freedom of the thin-plate smoothing spline estimate, defined
as

df = trace(A(λ))

whereA(λ) is the hat matrix. Specifynumberas a value between zero and the
number of unique design points.
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DISTANCE=number
D=number

defines a range such that if two data points(xi, zi) and(xj, zj) satisfy

maxk|xik − xjk| ≤ D/2

then these data points are treated as replicates, wherexi are the smoothing variables
andzi are the regression variables.

You can use the DISTANCE= option to reduce the number of unique design points
by treating nearby data as replicates. This can be useful when you have a large data
set. The default value is 0.

LAMBDA0= number
specifies the smoothing parameter,λ0, to be used in the thin-plate smoothing spline
estimate. By default, PROC TPSPLINE uses theλ parameter that minimizes the
GCV function for the final fit. The LAMBDA0= value must be positive.

LAMBDA= list-of-values
specifies a set of values for theλ parameter. PROC TPSPLINE returns a GCV value
for eachλ point that you specify. You can use the LAMBDA= option to study the
GCV function curve for a set of values forλ. All values listed in the LAMBDA=
option must be positive.

LOGNLAMBDA0= number
LOGNL0=number

specifies the smoothing parameterλ0 on thelog10(nλ) scale. If you specify both
the LOGNL0= and LAMBDA0= options, only the value provided by the LOGNL0=
option is used. By default, PROC TPSPLINE uses theλ parameter that minimizes
the GCV function for the estimate.

LOGNLAMBDA= list-of-values
LOGNL= list-of-values

specifies a set of values for theλ parameter on thelog10(nλ) scale. PROC
TPSPLINE returns a GCV value for eachλ point that you specify. You can use
the LOGNLAMBDA= option to study the GCV function curve for a set ofλ values.
If you specify both the LOGNL= and LAMBDA= options, only the list of values
provided by LOGNL= option is used.

In some cases, the LOGNL= option may be prefered over the LAMBDA= option.
Because the LAMBDA= value must be positive, a small change in that value can
result in a major change in theGCV value. If you instead specifyλ on thelog10

scale, the allowable range is enlarged to include negative values. Thus, theGCV
function is less sensitive to changes inLOGNLAMBDA.

M=number
specifies the order of the derivative in the penalty term. The M= value must be a
positive integer. The default value is themax(2, INT (d/2) + 1), whered is the
number of smoothing variables.
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SCORE Statement

SCORE DATA=SAS-data-set OUT=SAS-data-set ;

The SCORE statement calculates predicted values for a new data set. If you have
multiple data sets to predict, you can specify multiple SCORE statements. You must
use a SCORE statement for each data set.

The following keywords must be specified in the SCORE statement.

DATA=SAS-data-set
specifies the input SAS data set containing the smoothing variablesx and regression
variablesz. The predicted response (y) value is computed for each(x, z) pair. The
data set must include all independent variables specified in the MODEL statement.

OUT=SAS-data-set
specifies the name of the SAS data set to contain the predictions.

OUTPUT Statement

OUTPUT OUT=SAS-data-set < keyword · · · keyword > ;

The OUTPUT statement creates a new SAS data set containing diagnostic measures
calculated after fitting the model.

You can request a variety of diagnostic measures that are calculated for each observa-
tion in the data set. The new data set contains the variables specified in the MODEL
statement in addition to the requested variables. If nokeywordis present, the data set
contains only the predicted values.

Details on the specifications in the OUTPUT statement are as follows.

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. This spec-
ification is required.

keyword
specifies the statistics to include in the output data set. The names of the new variables
that contain the statistics are formed by using a prefix of one or more characters
that identify the statistic, followed by an underscore (–), followed by the dependent
variable name.

For example, suppose that you have two dependent variables, sayy1 andy2, and
you specify the keywords PRED, ADIAG, and UCLM. The output SAS data set will
contain the following variables:
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• P–y1 andP–y2

• ADIAG–y1 andADIAG–y2

• UCLM–y1 andUCLM–y2

The keywords and the statistics they represent are as follows:

RESID | R residual values, calculated as
ACTUAL - PREDICTED

PRED predicted values

STD standard error of the mean predicted value

UCLM upper limit of the confidence interval for the expected value of the
dependent variables. By default, PROC TPSPLINE computes 95%
confidence limits.

LCLM lower limit of the confidence interval for the expected value of the
dependent variables. By default, PROC TPSPLINE computes 95%
confidence limits.

ADIAG diagonal element of the hat matrix associated with the observation

COEF coefficients arranged in the order of(θ0, θ1, · · · , θd, δ1, · · · δnUnique)
wherenUniqueis the number of unique data points. This option
can only be used when there is only one dependent variable in the
model.

Details

Computational Formulas

The theoretical foundations for the thin-plate smoothing spline are described in
Duchon (1976, 1977) and Meinguet (1979). Further results and applications are given
in Wahba and Wendelberger (1980), Hutchinson and Bischof (1983), and Seaman and
Hutchinson (1985).

Suppose thatHm is a space of functions whose partial derivatives of total orderm
are inL2(Ed) whereEd is the domain ofx.

Now, consider the data model

yi = f(x1(i), . . . , xd(i)) + εi, i = 1, . . . , n

wheref ∈ Hm.

Using the notation from the section“The Penalized Least Squares Estimate”on page
4497, for a fixedλ, estimatef by minimizing the penalized least squares function

1
n

n∑
i=1

(yi − f(xi)− ziβ)2 + λJm(f)
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There are several ways to defineJm(f). For the thin-plate smoothing spline, withx
of dimensiond, defineJm(f) as

Jm(f) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

∑ m!
α1! · · ·αd!

[
∂mf

∂x1
α1 ···∂xd

αd

]2
dx1 · · · dxd

where
∑

i αi = m.

Whend = 2 andm = 2, Jm(f) is as follows:

J2(f) =
∫ ∞

−∞

∫ ∞

−∞
(
[

∂2f
∂x1

2

]2
+ 2

[
∂2f

∂x1∂x2

]2
+

[
∂2f
∂x2

2

]2
)dx1dx2

In general,m andd must satisfy the condition that2m − d > 0. For the sake of
simplicity, the formulas and equations that follow assumem = 2. Refer to Wahba
(1990) and Bates et al. (1987) for more details.

Duchon (1976) showed thatfλ can be represented as

fλ(xi) = θ0 +
d∑

j=1

θjxij +
n∑

j=1

δjE2(xi − xj)

whereE2(s) = 1
23π

||s||2 ln(||s||).

If you defineK = (K)ij = E2(xi − xj) andT = (T)ij = (xij), the goal is to find
coefficientsβ, θ, andδ that minimize

Sλ(β, θ, δ) =
1
n
||y −Tθ −Kδ − Zβ||2 + λδTKδ

A unique solution is guaranteed if the matrixT is of full rank andδTKδ ≥ 0.

If α =
(

θ
β

)
andX = (T : Z), the expression forSλ becomes

1
n
||y −Xα−Kδ||2 + λδTKδ

The coefficientsα andδ can be obtained by solving

(K + nλIn)δ + Xα = y
XTδ = 0

To computeα andδ, let the QR decomposition ofX be

X = (Q1 : Q2)
(

R
0

)
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where(Q1 : Q2) is an orthogonal matrix andR is upper triangular, withXTQ2 = 0
(Dongarra et al. 1979).

SinceXTδ = 0, δ must be in the column space ofQ2. Therefore,δ can be expressed
asδ = Q2γ for a vectorγ. Substitutingδ = Q2γ into the preceding equation and
multiplying through byQT

2 gives

QT
2 (K + nλIn)Q2γ = QT

2 y

or

δ = Q2γ = Q2[QT
2 (K + nλIn)Q2]−1QT

2 y

The coefficientα can be obtained by solving

Rα = QT
1 [y − (K + nλIn)δ]

The influence matrixA(λ) is defined as

ŷ = A(λ)y

and has the form

A(λ) = I− nλQ2[QT
2 (K + nλIn)Q2]−1QT

2

Similar to the regression case, and if you consider the trace ofA(λ) as the degrees
of freedom for the information signal and the trace of(In −A(λ)) as the degrees of
freedom for the noise component, the estimateσ2 can be represented as

σ̂2 =
RSS(λ)

Trace(In −A(λ))

whereRSS(λ) is the residual sum of squares. Theoretical properties of these es-
timates have not yet been published. However, good numerical results in simula-
tion studies have been described by several authors. For more information, refer
to O’Sullivan and Wong (1987), Nychka (1986a, 1986b, and 1988), and Hall and
Titterington (1987).

Confidence Intervals

Viewing the spline model as a Bayesian model, Wahba (1983) proposed Bayesian
confidence intervals for smoothing spline estimates as follows:

f̂λ(xi)± zα/2

√
σ̂2aii(λ)
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whereaii(λ) is the ith diagonal element of theA(λ) matrix andzα/2 is theα/2
point of the normal distribution. The confidence intervals are interpreted as intervals
“across the function” as opposed to point-wise intervals.

Suppose that you fit a spline estimate to experimental data that consists of a true
function f and a random error term,εi. In repeated experiments, it is likely that
about100(1 − α)% of the confidence intervals cover the corresponding true values,
although some values are covered every time and other values are not covered by the
confidence intervals most of the time. This effect is more pronounced when the true
surface or surface has small regions of particularly rapid change.

Smoothing Parameter

The quantityλ is called the smoothing parameter, which controls the balance between
the goodness of fit and the smoothness of the final estimate.

A largeλ heavily penalizes themth derivative of the function, thus forcingf (m) close
to 0. A smallλ places less of a penalty on rapid change inf (m)(x), resulting in an
estimate that tends to interpolate the data points.

The smoothing parameter greatly affects the analysis, and it should be selected with
care. One method is to perform several analyses with different values forλ and
compare the resulting final estimates.

A more objective way to select the smoothing parameterλ is to use the “leave-out-
one” cross validation function, which is an approximation of the predicted mean
squares error. A generalized version of the leave-out-one cross validation func-
tion is proposed by Wahba (1990) and is easy to calculate. This Generalized Cross
Validation (GCV) function(V (λ)) is defined as

V (λ) =
(1/n)||(I−A(λ))y||2

[(1/n)tr(I−A(λ))]2

The justification for using the GCV function to selectλ relies on asymptotic theory.
Thus, you cannot expect good results for very small sample sizes or when there is not
enough information in the data to separate the information signal from the noise com-
ponent. Simulation studies suggest that for independent and identically distributed
Gaussian noise, you can obtain reliable estimates ofλ for n greater than 25 or 30.
Note that, even for large values ofn (sayn ≥ 50), in extreme Monte Carlo simu-
lations there may be a small percentage of unwarranted extreme estimates in which
λ̂ = 0 or λ̂ = ∞ (Wahba 1983). Generally, ifσ2 is known to within an order of
magnitude, the occasional extreme case can be readily identified. Asn gets larger,
the effect becomes weaker.

The GCV function is fairly robust against nonhomogeneity of variances and non-
Gaussian errors (Villalobos and Wahba 1987). Andrews (1988) has provided favor-
able theoretical results when variances are unequal. However, this selection method
is likely to give unsatisfactory results when the errors are highly correlated.

The GCV value may be suspect whenλ is extremely small because computed val-
ues may become indistinguishable from zero. In practice, calculations withλ = 0
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or λ near 0 can cause numerical instabilities resulting in an unsatisfactory solution.
Simulation studies have shown that aλ with log10(nλ) > −8 is small enough that
the final estimate based on thisλ almost interpolates the data points. A GCV value
based on aλ ≤ 10−8 may not be accurate.

ODS Tables Produced by PROC TPSPLINE

PROC TPSPLINE assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 74.1. ODS Tables Produced by PROC TPSPLINE

ODS Table Name Description Statement Option
DataSummary Data summary PROC default
FitSummary Fit parameters and

fit summary
PROC default

FitStatistics Model fit statistics PROC default
GCVFunction GCV table MODEL LOGNLAMBDA, LAMBDA

By referring to the names of such tables, you can use the ODS OUTPUT statement
to place one or more of these tables in output data sets.

For example, the following statements create an output data set namedFitStats con-
taining the FitStatistics table, an output data set namedDataInfo containing the
DataSummary table, an output data set namedModelInfo containing the FitSummary
and an output data set namedGCVFunc containing the GCVFunction.

proc tpspline data=Melanoma;
model Incidences=Year /LOGNLAMBDA=(-4 to 0 by 0.2);
ods output FitStatistics = FitStats

DataSummary = DataInfo
FitSummary = ModelInfo
GCVFunction = GCVFunc;

run;

Examples

Example 74.1. Partial Spline Model Fit

The following example analyzes the data setMeasure that was introduced in the
“Getting Started”section on page 4499. That analysis determined that the final es-
timated surface can be represented by a quadratic function for one or both of the
independent variables. This example illustrates how you can use PROC TPSPLINE
to fit a partial spline model. The data setMeasure is fit using the following model:

f(x1, x2) = 1 + x1 + x2
1 + h(x2)
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The model has a parametric component (associated with thex1 variable) and a non-
parametric component (associated with thex2 variable). The following statements fit
a partial spline model.

data Measure;
set Measure;
x1sq = x1*x1;

run;

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1;
x1sq = x1*x1;
output;

end;
end;

run;

proc tpspline data= measure;
model y = x1 x1sq (x2);
score data = pred

out = predy;
run;

Output 74.1.1displays the results from these statements.

Output 74.1.1. Output from PROC TPSPLINE
The TPSPLINE Procedure

Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 5

Summary of Final Model

Number of Regression Variables 2
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 4

Summary Statistics
of Final Estimation

log10(n*Lambda) -2.2374
Smoothing Penalty 205.3461
Residual SS 8.5821
Tr(I-A) 43.1534
Model DF 6.8466
Standard Deviation 0.4460
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As displayed inOutput 74.1.1, there are five unique design points for the smoothing
variablex2 and two regression variables in the model(x1,x1sq). The dimension of
the null space (polynomial space) is 4. The standard deviation of the estimate is much
larger than the one based on the model with bothx1 andx2 as smoothing variables
(0.445954 compared to 0.098421). One of the many possible explanations may be
that the number of unique design points of the smoothing variable is too small to
warrant an accurate estimate forh(x2).

The following statements produce a surface plot for the partial spline model:

title ’Plot of Fitted Surface on a Fine Grid’;

proc g3d data=predy;
plot x2*x1=p_y/grid

zmin=9
zmax=21
zticknum=4;

run;

The surface displayed inOutput 74.1.2is similar to the one estimated by using the
full nonparametric model (displayed inFigure 74.5).

Output 74.1.2. Plot of TPSPLINE Fit from the Partial Spline Model
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Example 74.2. Spline Model With Higher-Order Penalty

The following example continues the analysis of the data setMeasure to illustrate
how you can use PROC TPSPLINE to fit a spline model with a higher-order penalty
term. Spline models with high-order penalty terms move low-order polynomial terms
into the null space. Hence, there is no penalty for these terms, and they can vary
without constraint.

As shown in the previous analyses, the final model for the data setMeasure must
include quadratic terms for both x1 and x2. This example fits the following model:

f(x1, x2) = θ0 + θ1x1 + θ2x
2
1 + θ3x2 + θ4x

2
2 + θ5x1 ∗ x2 + g(x1, x2)

The model includes quadratic terms for both variables, although it differs from the
usual linear model. The nonparametric termg(x1, x2) explains the variation of the
data unaccounted for by a simple quadratic surface.

To modify the order of the derivative in the penalty term, specify the M= option. The
following statements specify the option M=3 in order to include the quadratic terms
in the null space:

data measure;
set measure;
x1sq = x1*x1;
x2sq = x2*x2;
x1x2 = x1*x2;

;

proc tpspline data= measure;
model y = (x1 x2) / m=3;
score data = pred

out = predy;
run;

The output resulting from these statements is displayed inOutput 74.2.1.
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Output 74.2.1. Output from PROC TPSPLINE with M=3
The TPSPLINE Procedure

Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 3
Dimension of Polynomial Space 6

Summary Statistics
of Final Estimation

log10(n*Lambda) -3.7831
Smoothing Penalty 2092.4495
Residual SS 0.2731
Tr(I-A) 29.1716
Model DF 20.8284
Standard Deviation 0.0968

The model contains six terms in the null space. CompareOutput 74.2.1with Figure
74.2: theLOGNLAMBDA value and the smoothing penalty differ significantly. Note
that, in general, these terms are not directly comparable for different models. The
final estimate based on this model is close to the estimate based on the model using
the default, M=2.

In the following statements, the REG procedure fits a quadratic surface model to the
data setMeasure.

proc reg data= measure;
model y = x1 x1sq x2 x2sq x1x2;

run;

The results are displayed inOutput 74.2.2.
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Output 74.2.2. Quadratic Surface Model: The REG Procedure
The REG Procedure

Model: MODEL1
Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 443.20502 88.64100 436.33 <.0001
Error 44 8.93874 0.20315
Corrected Total 49 452.14376

Root MSE 0.45073 R-Square 0.9802
Dependent Mean 15.08548 Adj R-Sq 0.9780
Coeff Var 2.98781

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 14.90834 0.12519 119.09 <.0001
x1 1 0.01292 0.09015 0.14 0.8867
x1sq 1 -4.85194 0.15237 -31.84 <.0001
x2 1 0.02618 0.09015 0.29 0.7729
x2sq 1 5.20624 0.15237 34.17 <.0001
x1x2 1 -0.04814 0.12748 -0.38 0.7076

The REG procedure produces slightly different results. To fit a similar model with
PROC TPSPLINE, you can use a MODEL statement specifying the degrees of free-
dom with the DF= option. You can also use a large value for theLOGNLAMBDA0=
option to force a parametric model fit.

Because there is one degree of freedom for each of the following terms,Intercept,
x1, x2, x1sq, x2sq, andx1x2, the DF=6 option is used.

proc tpspline data=measure;
model y=(x1 x2) /m=3 df=6 lognlambda=(-4 to 1 by 0.2);
score data = pred

out = predy;
run;

The results are displayed inOutput 74.2.3. PROC TPSPLINE displays the list of
GCV values for comparison.
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Output 74.2.3. Output from PROC TPSPLINE Using M=3 and DF=6
The TPSPLINE Procedure

Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 3
Dimension of Polynomial Space 6

GCV Function

log10(n*Lambda) GCV

-4.000000 0.016330
-3.800000 0.016051*
-3.600000 0.016363
-3.400000 0.017770
-3.200000 0.021071
-3.000000 0.027496
-2.800000 0.038707
-2.600000 0.056292
-2.400000 0.080613
-2.200000 0.109714
-2.000000 0.139642
-1.800000 0.166338
-1.600000 0.187437
-1.400000 0.202625
-1.200000 0.212871
-1.000000 0.219512
-0.800000 0.223727
-0.600000 0.226377
-0.400000 0.228041
-0.200000 0.229085

0 0.229740
0.200000 0.230153
0.400000 0.230413
0.600000 0.230576
0.800000 0.230680
1.000000 0.230745

Note: * indicates minimum GCV value.
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The TPSPLINE Procedure
Dependent Variable: y

Summary Statistics
of Final Estimation

log10(n*Lambda) 2.3830
Smoothing Penalty 0.0000
Residual SS 8.9384
Tr(I-A) 43.9997
Model DF 6.0003
Standard Deviation 0.4507

The final estimate is based on 6.000330 degrees of freedom because there are already
6 degrees of freedom in the null space and the search range for lambda is not large
enough (in this case, setting DF=6 is equivalent to setting lambda =∞).

The standard deviation and RSS (Output 74.2.3) are close to the sum of squares for
the error term and the root MSE from the the linear regression model (Output 74.2.2),
respectively.

For this model, the optimalLOGNLAMBDA is around−3.8, which produces a
standard deviation estimate of 0.096765 (seeOutput 74.2.1) and aGCV value of
0.016051, while the model specifying DF=6 results in aLOGNLAMBDA larger than
1 and a GCV value larger than 0.23074. The nonparametric model, based on the
GCV, should provide better prediction, but the linear regression model can be more
easily interpreted.

Example 74.3. Multiple Minima of the GCV Function

The following data represent the deposition of sulfate (SO4) at 179 sites in 48 con-
tiguous states of the United States in 1990. Each observation records the latitude and
longitude of the site as well as theSO4 deposition at the site measured in gram per
square meter (g/m2).

You can use PROC TPSPLINE to fit a surface that reflects the general trend and that
reveals underlying features of the data.

data so4;
input latitude longitude so4 @@;
datalines;
32.45833 87.24222 1.403 34.28778 85.96889 2.103
33.07139 109.86472 0.299 36.07167 112.15500 0.304
31.95056 112.80000 0.263 33.60500 92.09722 1.950
34.17944 93.09861 2.168 36.08389 92.58694 1.578

.

.

.
162 additional observations

.

.

.
45.82278 91.87444 0.984 41.34028 106.19083 0.335
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42.73389 108.85000 0.236 42.49472 108.82917 0.313
42.92889 109.78667 0.182 43.22278 109.99111 0.161
43.87333 104.19222 0.306 44.91722 110.42028 0.210
45.07611 72.67556 2.646
;

data pred;
do latitude = 25 to 47 by 1;

do longitude = 68 to 124 by 1;
output;

end;
end;

run;

The preceding statements create the SAS data setso4 and the data setpred in order
to make predictions on a regular grid. The following statements fit a surface forSO4

deposition. The ODS OUTPUT statement creates a data set calledGCV to contain
the GCV values forLOGNLAMBDA in the range from−6 to 1.

proc tpspline data=so4;
ods output GCVFunction=gcv;
model so4 = (latitude longitude) /lognlambda=(-6 to 1 by 0.1);
score data=pred out=prediction1;

run;

Partial output from these statements is displayed inOutput 74.3.1.

Output 74.3.1. Partial Output from PROC TPSPLINE for Data Set SO4
The TPSPLINE Procedure

Dependent Variable: so4

Summary of Input Data Set

Number of Non-Missing Observations 179
Number of Missing Observations 0
Unique Smoothing Design Points 179

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 3

Summary Statistics
of Final Estimation

log10(n*Lambda) 0.2770
Smoothing Penalty 2.4588
Residual SS 12.4450
Tr(I-A) 140.2750
Model DF 38.7250
Standard Deviation 0.2979
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The following statements produceOutput 74.3.2:

symbol1 interpol=join value=none;
title "GCV Function";

proc gplot data=gcv;
plot gcv*lognlambda/frame cframe=ligr

vaxis=axis1 haxis=axis2;
run;

Output 74.3.2displays the plot of the GCV function versusnlambda in log10 scale.
The GCV function has two minima. PROC TPSPLINE locates the minimum at
0.277005. The figure also displays a local minimum located around−2.56. Note
that the TPSPLINE procedure may not always find the global minimum, although it
did in this case.

Output 74.3.2. GCV Function of SO4 Data Set

The following analysis specifies the optionLOGNLAMBDA0=−2.56. The output is
displayed inOutput 74.3.3.

proc tpspline data=so4;
model so4 = (latitude longitude) /lognlambda0=-2.56;
score data=pred out=prediction2;

run;



Example 74.3. Multiple Minima of the GCV Function � 4525

Output 74.3.3. Output from PROC TPSPLINE for Data Set SO4 with
LOGNLAMBDA=−2.56

The TPSPLINE Procedure
Dependent Variable: so4

Summary of Input Data Set

Number of Non-Missing Observations 179
Number of Missing Observations 0
Unique Smoothing Design Points 179

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 3

Summary Statistics
of Final Estimation

log10(n*Lambda) -2.5600
Smoothing Penalty 177.2144
Residual SS 0.0438
Tr(I-A) 7.2086
Model DF 171.7914
Standard Deviation 0.0779

The smoothing penalty is much larger inOutput 74.3.3than that displayed inOutput
74.3.1. The estimate inOutput 74.3.1uses a large lambda value and, therefore, the
surface is smoother than the estimate usingLOGNLAMBDA=−2.56 (Output 74.3.3).

The estimate based onLOGNLAMBDA=−2.56 has a larger value for the degrees of
freedom, and it has a much smaller standard deviation.

However, a smaller standard deviation in nonparametric regression does not neces-
sarily mean that the estimate is good: a smallλ value always produces an estimate
closer to the data and, therefore, a smaller standard deviation.

The following statements produce two contour plots of the estimates using the
GCONTOUR procedure. In the final step, the plots are placed into a single graphic
with the GREPLAY procedure.
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title "TPSPLINE fit with lognlambda=0.277";
proc gcontour data=prediction1 gout=grafcat;

plot latitude*longitude = P_so4/
name="tpscon1" legend=legend1
vaxis=axis1 haxis=axis2 cframe=ligr hreverse;

run;

title "TPSPLINE fit with lognlambda=-2.56";
proc gcontour data=prediction2 gout=grafcat;

plot latitude*longitude = P_so4/
name="tpscon2" legend=legend1
vaxis=axis1 haxis=axis2 cframe=ligr hreverse;

run;

title;
proc greplay igout=grafcat tc=sashelp.templt template=v2 nofs;

treplay 1:tpscon1 2:tpscon2;
quit;

Compare the two estimates by examining the contour plots of both estimates (Output
74.3.4).

Output 74.3.4. Contour Plot of TPSPLINE Estimates with Different Lambdas

As the contour plots show, the estimate withLOGNLAMBDA=0.277 may repre-
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sent the underlying trend, while the estimate with theLOGNLAMBDA=-2.56 is very
rough and may be modeling the noise component.

Example 74.4. Large Data Set Application

The following example illustrates how you can use the D= option to decrease the
computation time needed by the TPSPLINE procedure. Note that, while the D= op-
tion can be helpful in decreasing computation time for large data sets, it may produce
unexpected results when used with small data sets.

The following statements generate the data setlarge:

data large;
do x=-5 to 5 by 0.02;

y=5*sin(3*x)+1*rannor(57391);
output;

end;
run;

The data setlarge contains 501 observations with one independent variablex and one
dependent variabley. The following statements invoke PROC TPSPLINE to produce
a thin-plate smoothing spline estimate and the associated 99% confidence interval.
The output statistics are saved in the data setfit1.

proc tpspline data=large;
model y =(x) /lambda=(-5 to -1 by 0.2) alpha=0.01;
output out=fit1 pred lclm uclm;

run;

The results from this MODEL statement are displayed inOutput 74.4.1.
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Output 74.4.1. Output from PROC TPSPLINE without the D= Option
The TPSPLINE Procedure

Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 501
Number of Missing Observations 0
Unique Smoothing Design Points 501

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

GCV Function

log10(n*Lambda) GCV

-5.000000 1.258653
-4.800000 1.228743
-4.600000 1.205835
-4.400000 1.188371
-4.200000 1.174644
-4.000000 1.163102
-3.800000 1.152627
-3.600000 1.142590
-3.400000 1.132700
-3.200000 1.122789
-3.000000 1.112755
-2.800000 1.102642
-2.600000 1.092769
-2.400000 1.083779
-2.200000 1.076636
-2.000000 1.072763*
-1.800000 1.074636
-1.600000 1.087152
-1.400000 1.120339
-1.200000 1.194023
-1.000000 1.344213

Note: * indicates minimum GCV value.

The TPSPLINE Procedure
Dependent Variable: y

Summary Statistics
of Final Estimation

log10(n*Lambda) -1.9483
Smoothing Penalty 9953.7063
Residual SS 475.0984
Tr(I-A) 471.0861
Model DF 29.9139
Standard Deviation 1.0042

The following statements specify an identical model, but with the additional speci-
fication of the D= option. The estimates are obtained by treating nearby points as



Example 74.4. Large Data Set Application � 4529

replicates.

proc tpspline data=large;
model y =(x) /lambda=(-5 to -1 by 0.2) d=0.05 alpha=0.01;
output out=fit2 pred lclm uclm;

run;

The output is displayed inOutput 74.4.2.

Output 74.4.2. Output from PROC TPSPLINE with the D= Option
The TPSPLINE Procedure

Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 501
Number of Missing Observations 0
Unique Smoothing Design Points 251

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

GCV Function

log10(n*Lambda) GCV

-5.000000 1.306536
-4.800000 1.261692
-4.600000 1.226881
-4.400000 1.200060
-4.200000 1.179284
-4.000000 1.162776
-3.800000 1.149072
-3.600000 1.137120
-3.400000 1.126220
-3.200000 1.115884
-3.000000 1.105766
-2.800000 1.095730
-2.600000 1.085972
-2.400000 1.077066
-2.200000 1.069954
-2.000000 1.066076*
-1.800000 1.067929
-1.600000 1.080419
-1.400000 1.113564
-1.200000 1.187172
-1.000000 1.337252

Note: * indicates minimum GCV value.
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The TPSPLINE Procedure
Dependent Variable: y

Summary Statistics
of Final Estimation

log10(n*Lambda) -1.9477
Smoothing Penalty 9943.5615
Residual SS 472.1424
Tr(I-A) 471.0901
Model DF 29.9099
Standard Deviation 1.0011

The difference between the two estimates is minimal. However, the CPU time for the
second MODEL statement is only about 1/8 of the CPU time used in the first model
fit.

The following statements produce a plot for comparison of the two estimates:

data fit2;
set fit2;
P1_y = P_y;
LCLM1_y = LCLM_y;
UCLM1_y = UCLM_y;
drop P_y LCLM_y UCLM_y;

proc sort data=fit1;
by x y;

proc sort data=fit2;
by x y;

data comp;
merge fit1 fit2;

by x y;
label p1_y ="Yhat1" p_y="Yhat0"

lclm_y ="Lower CL"
uclm_y ="Upper CL";

symbol1 i=join v=none ;
symbol2 i=join v=none ;
symbol3 i=join v=none color=cyan;
symbol4 i=join v=none color=cyan;

title ’Comparison of Two Estimates’;
title2 ’with and without the D= Option’;

proc gplot data=comp;
plot P_y*x=1

P1_y*x=2
LCLM_y*x=4
UCLM_y*x=4/overlay legend=legend1

vaxis=axis1 haxis=axis2
frame cframe=ligr;

run;
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The estimates fromfit1 andfit2 are displayed inOutput 74.4.3with the 99% confi-
dence interval from thefit1 output data set.

Output 74.4.3. Comparison of Two Fits with and without the D= Option

Example 74.5. Computing a Bootstrap Confidence Interval

The following example illustrates how you can construct a bootstrap confidence in-
terval by using the multiple responses feature in PROC TPSPLINE.

Numerous epidemiological observations have indicated that exposure to solar ra-
diation is an important factor in the etiology of melanoma. The following data
present age-adjusted melanoma incidences for 37 years from the Connecticut Tumor
Registry (Houghton, Flannery, and Viola 1980). The data are analyzed by Ramsay
and Silverman (1997).
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data melanoma;
input year incidences @@;
datalines;
1936 0.9 1937 0.8 1938 0.8 1939 1.3
1940 1.4 1941 1.2 1942 1.7 1943 1.8
1944 1.6 1945 1.5 1946 1.5 1947 2.0
1948 2.5 1949 2.7 1950 2.9 1951 2.5
1952 3.1 1953 2.4 1954 2.2 1955 2.9
1956 2.5 1957 2.6 1958 3.2 1959 3.8
1960 4.2 1961 3.9 1962 3.7 1963 3.3
1964 3.7 1965 3.9 1966 4.1 1967 3.8
1968 4.7 1969 4.4 1970 4.8 1971 4.8
1972 4.8
;

run;

The variableincidences records the number of melanoma cases per 100,000 people
for the years 1936 to 1972. The following model fits the data and requests a 90%
Bayesian confidence interval along with the estimate.

proc tpspline data=melanoma;
model incidences = (year) /alpha = 0.1;
output out = result pred uclm lclm;

run;

The output is displayed inOutput 74.5.1

Output 74.5.1. Output from PROC TPSPLINE for the Melanoma Data Set
The TPSPLINE Procedure

Dependent Variable: incidences

Summary of Input Data Set

Number of Non-Missing Observations 37
Number of Missing Observations 0
Unique Smoothing Design Points 37

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

Summary Statistics
of Final Estimation

log10(n*Lambda) -0.0607
Smoothing Penalty 0.5171
Residual SS 1.2243
Tr(I-A) 22.5852
Model DF 14.4148
Standard Deviation 0.2328
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The following statements produce a plot of the estimated curve:

symbol1 h=1pct ;
symbol2 i=join v=none;
symbol3 i=join v=none;
symbol4 i=join v=none c=cyan;

legend1 frame cframe=ligr cborder=black
label=none position=center;

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;

title1 ’Age-adjusted Melanoma Incidences for 37 years’;

proc gplot data=result;
plot incidences*year=1

p_incidences*year=2
lclm_incidences*year=3
uclm_incidences*year=4 /overlay legend=legend1

vaxis=axis1 haxis=axis2
frame cframe=ligr;

run;

The estimated curve is displayed with 90% confidence interval bands inOutput
74.5.2. The number of melanoma incidences exhibits a periodic pattern and increases
over the years. The periodic pattern is related to sunspot activity and the accompany-
ing fluctuations in solar radiation.
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Output 74.5.2. TPSPLINE Estimate and 90% Confidence Interval of Melanoma
Data

Wang and Wahba (1995) compared several bootstrap confidence intervals to Bayesian
confidence intervals for smoothing splines. Both bootstrap and Bayesian confidence
intervals are across-the-curve intervals, not point-wise intervals. They concluded that
bootstrap confidence intervals work as well as Bayesian intervals concerning average
coverage probability. Additionally, bootstrap confidence intervals appear to be better
for small sample sizes. Based on their simulation, the “percentile-t interval” bootstrap
interval performs better than the other types of bootstrap intervals.

Suppose that̂fλ̂ andσ̂ are the estimates off andσ from the data. Assume that̂fλ̂ is
the “true”f , and generate the bootstrap sample as follows:

y∗i = f̂λ̂(xi) + ε∗i , i = 1, · · · , n

whereε∗ = (ε∗1, · · · , ε∗n)T ≈ N(0, σ̂In×n). Denotef∗
λ̂
(xi) as the random variable

of the bootstrap estimate atxi. Repeat this processK times, so that at each pointxi,
you haveK bootstrap estimateŝfλ̂(xi) or K realizations off∗

λ̂
(xi). For each fixed

xi, consider the following statisticD∗
i , which is similar to a Student’st statistic:

D∗
i = (f∗

λ̂
(xi)− f̂λ̂(xi))/σ̂i

∗
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whereσ̂i
∗ is the estimate of̂σ based on theith bootstrap sample.

Supposeχα/2 andχ1−α/2 are the lower and upperα/2 points of the empirical distri-
bution ofD∗

i . The(1− α)100% bootstrap confidence interval is defined as

(f̂λ̂(xi)− χ1−α/2σ̂, f̂λ̂(xi)− χα/2σ̂)

Bootstrap confidence intervals are easy to interpret and can be used with any distri-
bution. However, because they requireK model fits, their construction is computa-
tionally intensive.

The multiple dependent variables feature in PROC TPSPLINE enables you to fit mul-
tiple models with the same independent variables. The procedure calculates the ma-
trix decomposition part of the calculations only once regardless of the number of
dependent variables in the model. These calculations are responsible for most of the
computing time used by the TPSPLINE procedure. This feature is particularly useful
when you need to generate a bootstrap confidence interval.

To construct a bootstrap confidence interval, perform the following tasks:

• Fit the data using PROC TPSPLINE and obtain estimatesf̂λ̂(xi) andσ̂.

• GenerateK bootstrap samples based onf̂λ̂(xi) andσ̂.

• Fit theK bootstrap samples with the TPSPLINE procedure to obtain estimates
of f̂∗

λ̂
(xi) andσ̂∗i .

• ComputeD∗
i and the valuesχα/2 andχ1−α/2.

The following statements illustrate this process:

proc tpspline data=melanoma;
model incidences = (year) /alpha = 0.05;
output out = result pred uclm lclm;

run;

The output from the initial PROC TPSPLINE analysis is displayed inOutput 74.5.3.
The data setresult contains the predicted values and confidence limits from the anal-
ysis.
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Output 74.5.3. Output from PROC TPSPLINE for the Melanoma Data Set
The TPSPLINE Procedure

Dependent Variable: incidences

Summary of Input Data Set

Number of Non-Missing Observations 37
Number of Missing Observations 0
Unique Smoothing Design Points 37

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

Summary Statistics
of Final Estimation

log10(n*Lambda) -0.0607
Smoothing Penalty 0.5171
Residual SS 1.2243
Tr(I-A) 22.5852
Model DF 14.4148
Standard Deviation 0.2328

The following statements illustrate how you can obtain a bootstrap confidence inter-
val for theMelanoma data. The following statements create the data setbootstrap.
The observations are created with information from the preceding PROC TPSPLINE
execution; as displayed inOutput 74.5.3, σ̂ = 0.232823. The values off̂λ̂(xi) are
stored in the data setresult in the variableP–incidence.

data bootstrap;
set result;
array y{1070} y1-y1070;
do i=1 to 1070;

y{i} = p_incidences + 0.232823*rannor(123456789);
end;
keep y1-y1070 p_incidences year;

run;

ods listing close;

proc tpspline data=bootstrap;
ods output FitStatistics=FitResult;
id p_incidences;
model y1-y1070 = (year);
output out=result2;

run;
ods listing;

The DATA step generates 1,070 bootstrap samples based on the previous estimate
from PROC TPSPLINE. For this data set, some of the bootstrap samples result inλs
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(selected by theGCV function) that cause problematic behavior. Thus, an additional
70 bootstrap samples are generated.

The ODS listing destination is closed before PROC TPSPLINE is invoked. The
model fits all they1–y1070 variables as dependent variables, and the models are
fit for all bootstrap samples simultaneously. The output data setresult2 contains the
variablesyear, y1–y1070, p–y1–p–y1070, andP–incidences.

The ODS OUTPUT statement writes the FitStatistics table to the data setFitResult.
The data setFitResult contains the two variables. They areParameter andValue.
TheFitResult data set is used in subsequent calculations forD∗

i .

In the data setFitResult, there are 63 estimates with a standard deviation of zero,
suggesting that the estimates provide perfect fits of the data and are caused byλ̂s that
are approximately equal to zero. For small sample sizes, there is a positive probability
that theλ chosen by theGCV function will be zero (refer to Wang and Wahba 1995).

In the following steps, these cases are removed from the bootstrap samples as “bad”
samples: they represent failure of theGCV function.

The following SAS statements manipulate the data setFitResult, retaining the stan-
dard deviations for all bootstrap samples and mergingFitResult with the data set
result2, which contains the estimates for bootstrap samples. In the final data set
boot, theD∗

i statistics are calculated.

data FitResult; set FitResult;
if Parameter="Standard Deviation";
keep Value;

run;

proc transpose data=FitResult out=sd prefix=sd;

data result2;
if _N_ = 1 then set sd;
set result2;

data boot;
set result2;
array y{1070} p_y1-p_y1070;
array sd{1070} sd1-sd1070;
do i=1 to 1070;

if sd{i} > 0 then do;
d = (y{i} - P_incidences)/sd{i};
obs = _N_;
output;

end;
end;
keep d obs P_incidences year;

run;

The following SAS statements retain the first 1000 bootstrap samples and calculate
the valuesχα/2 andχ1−α/2 with α = 0.1.



4538 � Chapter 74. The TPSPLINE Procedure

proc sort data=boot;
by obs;

run;

data boot;
set boot;

by obs;
retain n;

if first.obs then n=1;
else n=n+1;

if n > 1000 then delete;
run;

proc sort data=boot;
by obs d;

run;

data chi1 chi2 ;
set boot;
if (_N_ = (obs-1)*1000+50) then output chi1;
if (_N_ = (obs-1)*1000+950) then output chi2;

run;

proc sort data=result;
by year;

run;

proc sort data=chi1;
by year;

run;

proc sort data=chi2;
by year;

run;

data result;
merge result

chi1(rename=(d=chi05))
chi2(rename=(d=chi95));

keep year incidences P_incidences lower upper
LCLM_incidences UCLM_incidences;

lower = -chi95*0.232823 + P_incidences;
upper = -chi05*0.232823 + P_incidences;

label lower="Lower 90% CL (Bootstrap)"
upper="Upper 90% CL (Bootstrap)"
lclm_incidences="Lower 90% CL (Bayesian)"
uclm_incidences="Upper 90% CL (Bayesian)";

run;

The data setresult contains the variablesyear, incidences, the TPSPLINE estimate
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P–incidences, and the 90% Bayesian and 90% bootstrap confidence intervals.

The following statements produceOutput 74.5.4:

symbol1 v=dot h=1pct ;
symbol2 i=join v=none l=1;
symbol3 i=join v=none l=33;
symbol4 i=join v=none l=33;
symbol5 i=join v=none l=43 c=green;
symbol6 i=join v=none l=43 c=green;

title1 ’Age-adjusted Melanoma Incidences for 37 years’;
proc gplot data=result;

plot incidences * year=1
p_incidences * year=2

lclm_incidences * year=3
uclm_incidences * year=3

lower * year=4
upper * year=4

/overlay legend=legend1
vaxis=axis1 haxis=axis2
frame cframe=ligr;

run;

Output 74.5.4displays the plot of the variableincidences, the predicted values, and
the Bayesian and bootstrap confidence intervals.

The plot shows that the bootstrap confidence interval is similar to the Bayesian con-
fidence interval. However, the Bayesian confidence interval is symmetric around the
estimates, while the bootstrap confidence interval is not.
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Output 74.5.4. Comparison of Bayesian and Bootstrap Confidence Interval for
Melanoma Data
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Chapter 75
The TRANSREG Procedure
Overview

The TRANSREG (transformation regression) procedure fits linear models, optionally
with spline and other nonlinear transformations, and it can be used to code experi-
mental designs prior to their use in other analyses.

The TRANSREG procedure fits many types of linear models, including

• ordinary regression and ANOVA

• metric and nonmetric conjoint analysis (Green and Wind 1975; de Leeuw,
Young, and Takane 1976)

• metric and nonmetric vector and ideal point preference mapping (Carroll 1972)

• simple, multiple, and multivariate regression with variable transformations
(Young, de Leeuw, and Takane 1976; Winsberg and Ramsay 1980; Breiman
and Friedman 1985)

• redundancy analysis (Stewart and Love 1968) with variable transformations
(Israels 1984)

• canonical correlation analysis with variable transformations (van der Burg and
de Leeuw 1983)

• response surface regression (Meyers 1976; Khuri and Cornell 1987) with vari-
able transformations

• linear models with Box-Cox (1964) transformations of the dependent variables

The data set can contain variables measured on nominal, ordinal, interval, and ratio
scales (Siegel 1956). Any mix of these variable types is allowed for the dependent
and independent variables. The TRANSREG procedure can transform

• nominal variables by scoring the categories to minimize squared error (Fisher
1938), or they can be expanded into dummy variables

• ordinal variables by monotonically scoring the ordered categories so that order
is weakly preserved (adjacent categories can be merged) and squared error is
minimized. Ties can be optimally untied or left tied (Kruskal 1964). Ordinal
variables can also be transformed to ranks.

• interval and ratio scale of measurement variables linearly or nonlinearly with
spline (de Boor 1978; van Rijckevorsel 1982) or monotone spline (Winsberg
and Ramsay 1980) transformations. In addition, smooth, logarithmic, exponen-
tial, power, logit, and inverse trigonometric sine transformations are available.
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Transformations produced by the PROC TRANSREG multiple regression algorithm,
requesting spline transformations, are often similar to transformations produced by
the ACE smooth regression method of Breiman and Friedman (1985). However,
ACE does not explicitly optimize a loss function (de Leeuw 1986), while PROC
TRANSREG always explicitly optimizes a squared-error loss function.

PROC TRANSREG extends the ordinary general linear model by providing optimal
variable transformations that are iteratively derived using the method of alternating
least squares (Young 1981). PROC TRANSREG iterates until convergence, alternat-
ing

• finding least-squares estimates of the parameters of the model given the current
scoring of the data (that is, the current vectors)

• finding least-squares estimates of the scoring parameters given the current set
of model parameters

For more background on alternating least-squares optimal scaling methods and
transformation regression methods, refer to Young, de Leeuw, and Takane (1976),
Winsberg and Ramsay (1980), Young (1981), Gifi (1990), Schiffman, Reynolds, and
Young (1981), van der Burg and de Leeuw (1983), Israels (1984), Breiman and
Friedman (1985), and Hastie and Tibshirani (1986). (These are just a few of the
many relevant sources.)

Getting Started

This section provides several examples that illustrate features of the TRANSREG
procedure.

Main-Effects ANOVA

This example shows how to use the TRANSREG procedure to code and fit a main-
effects ANOVA model. The input data set contains the dependent variablesY, factors
X1 andX2, and 11 observations. The following statements perform a main-effects
ANOVA:

title ’Introductory Main-Effects ANOVA Example’;

data A;
input Y X1 $ X2 $;
datalines;

8 a a
7 a a
4 a b
3 a b
5 b a
4 b a
2 b b
1 b b
8 c a
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7 c a
5 c b
2 c b
;

*---Fit a Main-Effects ANOVA model with 1, 0, -1 coding. ---;
proc transreg ss2;

model identity(Y) = class(X1 X2 / effects);
output coefficients replace;

run;

*---Print TRANSREG output data set---;
proc print label;

format Intercept -- X2a 5.2;
run;



4548 � Chapter 75. The TRANSREG Procedure

Introductory Main-Effects ANOVA Example

The TRANSREG Procedure

Dependent Variable Identity(Y)

Class Level Information

Class Levels Values

X1 3 a b c

X2 2 a b

Number of Observations Read 12
Number of Observations Used 12

TRANSREG Univariate Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.88144 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 57.00000 19.00000 19.83 0.0005
Error 8 7.66667 0.95833
Corrected Total 11 64.66667

Root MSE 0.97895 R-Square 0.8814
Dependent Mean 4.66667 Adj R-Sq 0.8370
Coeff Var 20.97739

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 4.6666667 261.333 261.333 272.70 <.0001 Intercept
Class.X1a 1 0.8333333 4.167 4.167 4.35 0.0705 X1 a
Class.X1b 1 -1.6666667 16.667 16.667 17.39 0.0031 X1 b
Class.X2a 1 1.8333333 40.333 40.333 42.09 0.0002 X2 a

Figure 75.1. ANOVA Example Output from PROC TRANSREG

The iteration history inFigure 75.1shows that the final R-Square of 0.88144 is
reached on the first iteration.
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This is followed by ANOVA, fit statistics, and regression tables. PROC TRANSREG
uses an effects (also called deviations from means or 0, 1, -1) coding in this example.
For more information on using PROC TRANSREG for ANOVA and other codings,
see the“ANOVA Codings” section on page 4662.

The TRANSREG procedure produces the data set displayed inFigure 75.2.

Introductory Main-Effects ANOVA Example

Obs _TYPE_ _NAME_ Y Intercept X1 a X1 b X2 a X1 X2

1 SCORE ROW1 8 1.00 1.00 0.00 1.00 a a
2 SCORE ROW2 7 1.00 1.00 0.00 1.00 a a
3 SCORE ROW3 4 1.00 1.00 0.00 -1.00 a b
4 SCORE ROW4 3 1.00 1.00 0.00 -1.00 a b
5 SCORE ROW5 5 1.00 0.00 1.00 1.00 b a
6 SCORE ROW6 4 1.00 0.00 1.00 1.00 b a
7 SCORE ROW7 2 1.00 0.00 1.00 -1.00 b b
8 SCORE ROW8 1 1.00 0.00 1.00 -1.00 b b
9 SCORE ROW9 8 1.00 -1.00 -1.00 1.00 c a

10 SCORE ROW10 7 1.00 -1.00 -1.00 1.00 c a
11 SCORE ROW11 5 1.00 -1.00 -1.00 -1.00 c b
12 SCORE ROW12 2 1.00 -1.00 -1.00 -1.00 c b
13 M COEFFI Y . 4.67 0.83 -1.67 1.83
14 MEAN Y . . 5.50 3.00 6.50

Figure 75.2. Output Data Set from PROC TRANSREG

The output data set has three kinds of observations, identified by values of–TYPE– .

• When–TYPE–=’SCORE’, the observation contains information on the de-
pendent and independent variables as follows:

– Y is the original dependent variable.

– X1 andX2 are the independent classification variables, and theIntercept
throughX2 a columns contain the main effects design matrix that PROC
TRANSREG creates. The variable names areIntercept, X1a, X1b, and
X2a. Their labels are shown in the listing.

• When–TYPE–=’M COEFFI’, the observation contains coefficients of the fi-
nal linear model.

• When–TYPE–=’MEAN’, the observation contains the marginal means.

The observations with–TYPE–=’SCORE’ form the score partition of the data set,
and the observations with–TYPE–=’M COEFFI’ and–TYPE–=’MEAN’ form the
coefficient partition of the data set.
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Detecting Nonlinear Relationships

The TRANSREG procedure can detect nonlinear relationships among variables. For
example, suppose 400 observations are generated from the following function

t =
x

4
+ sin(x)

and data are created as follows

y = t + ε

whereε is random normal error.

The following statements find a cubic spline transformation ofX with four knots.
For information on using splines and knots, see the“Smoothing Splines”section on
page 4596, the“Solving Standard Least-Squares Problems”section on page 4628,
Example 75.1, andExample 75.4.

The following statements produceFigure 75.3throughFigure 75.4:

title ’Curve Fitting Example’;

*---Create An Artificial Nonlinear Scatter Plot---;
data Curve;

Pi=constant(’pi’);
Pi4=4*Pi;
Increment=Pi4/400;
do X=Increment to Pi4 by Increment;

T=X/4 + sin(X);
Y=T + normal(7);
output;
end;

run;

*---Request a Spline Transformation of X---;
proc transreg data=Curve dummy;

model identity(Y)=spline(X / nknots=4);
output predicted;
id T;

run;

*---Plot the Results---;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot;
title;
axis1 minor=none label=(angle=90 rotate=0);
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axis2 minor=none;
plot T*X=2 / &opts name=’tregin1’;
plot Y*X=1 / &opts name=’tregin2’;
plot Y*X=1 T*X=2 PY*X=3 / &opts name=’tregin3’ overlay ;
symbol1 color=blue v=star i=none;

symbol2 color=yellow v=none i=join line=1;
symbol3 color=red v=none i=join line=2;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregin1 2:tregin3 3:tregin2;

run; quit;

PROC TRANSREG increases the squared multiple correlation from the original
value of 0.19945 to 0.47062. The plot ofT by X shows the original function, the
plot of Y by X shows the error-perturbed data, and the third plot shows the data, the
true function as a solid curve, and the regression function as the dashed curve. The
regression function closely approximates the true function.

Curve Fitting Example

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.74855 1.29047 0.19945
1 0.00000 0.00000 0.47062 0.27117 Converged

Algorithm converged.

Figure 75.3. Curve Fitting Example Output
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Figure 75.4. Plots for the Curve Fitting Example
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Syntax

The following statements are available in PROC TRANSREG.

PROC TRANSREG < DATA=SAS-data-set >
< OUTTEST=SAS-data-set >< a-options >< o-options > ;

MODEL < transform(dependents < / t-options >)
< transform(dependents < / t-options >)...> = >
transform(independents < / t-options >)
< transform(independents < / t-options >)...>< / a-options > ;

OUTPUT < OUT=SAS-data-set >< o-options > ;
ID variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

To use the TRANSREG procedure, you need the PROC TRANSREG and MODEL
statements. To produce an OUT= output data set, the OUTPUT statement is re-
quired. PROC TRANSREG enables you to specify the same options in more than
one statement. All of the MODEL statementa-options(algorithm options) and all of
the OUTPUT statemento-options(output options) can also be specified in the PROC
TRANSREG statement. You can abbreviate alla-options, o-options, andt-options
(transformation options) to their first three letters. This is a special feature of the
TRANSREG procedure and is not generally true of other SAS/STAT procedures. See
Table 75.1on page 4554.

The rest of this section provides detailed syntax information for each of the preced-
ing statements, beginning with the PROC TRANSREG statement. The remaining
statements are described in alphabetical order.

PROC TRANSREG Statement

PROC TRANSREG < DATA=SAS-data-set >
< OUTTEST=SAS-data-set >< a-options

>< o-options > ;

The PROC TRANSREG statement starts the TRANSREG procedure. Optionally,
this statement identifies an input and an OUTTEST= data set, specifies the algorithm
and other computational details, requests displayed output, and controls the contents
of the OUT= data set (which is created with the OUTPUT statement). The DATA=
and OUTTEST= options can appear only in the PROC TRANSREG statement.

The following table summarizes options available in the PROC TRANSREG state-
ment. Alla-optionsando-optionsare described in the sections on either the MODEL
or OUTPUT statement, in which these options can also be specified.
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Table 75.1. Options Available in the TRANSREG Procedure

Task Option Statement
Identify input data set
specifies input SAS data set DATA= PROC

Output data set with test statistics
specifies output test statistics data set OUTTEST= PROC

Input data set
specifies input observation type TYPE= MODEL
restarts iterations REITERATE MODEL

Specify method and control iterations
specifies minimum criterion change CCONVERGE= MODEL
specifies minimum data change CONVERGE= MODEL
specifies canonical dummy-variable initialization DUMMY MODEL
specifies maximum number of iterations MAXITER= MODEL
specifies iterative algorithm METHOD= MODEL
specifies number of canonical variables NCAN= MODEL
specifies singularity criterion SINGULAR= MODEL

Control missing data handling
METHOD=MORALS fists each model individually INDIVIDUAL MODEL
includes monotone special missing values MONOTONE= MODEL
excludes observations with missing values NOMISS MODEL
unties special missing values UNTIE= MODEL

Control intercept and CLASS variables
CLASS dummy variable name prefix CPREFIX= MODEL
CLASS dummy variable label prefix LPREFIX= MODEL
no intercept or centering NOINT MODEL
order of class variable levels ORDER= MODEL
controls output of reference levels REFERENCE= MODEL
CLASS dummy variable label separators SEPARATORS= MODEL

Control displayed output
confidence limits alpha ALPHA= MODEL
displays parameter estimate confidence limits CL MODEL
displays model specification details DETAIL MODEL
displays iteration histories HISTORY MODEL
suppresses displayed output NOPRINT MODEL
suppresses the iteration histories SHORT MODEL
displays regression results SS2 MODEL
displays ANOVA table TEST MODEL
displays conjoint part-worth utilities UTILITIES MODEL

Control standardization
fits additive model ADDITIVE MODEL
do not zero constant variables NOZEROCONSTANT MODEL
specifies transformation standardization TSTANDARD= MODEL

Predicted values, residuals, scores
outputs canonical scores CANONICAL OUTPUT
outputs individual confidence limits CLI OUTPUT
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Table 75.1. (continued)

Task Option Statement
outputs mean confidence limits CLM OUTPUT
specifies design matrix coding DESIGN= OUTPUT
outputs leverage LEVERAGE OUTPUT
does not restore missing values NORESTOREMISSING OUTPUT
suppresses output of scores NOSCORES OUTPUT
outputs predicted values PREDICTED OUTPUT
outputs redundancy variables REDUNDANCY= OUTPUT
outputs residuals RESIDUALS OUTPUT

Output data set replacement
replaces dependent variables DREPLACE OUTPUT
replaces independent variables IREPLACE OUTPUT
replaces all variables REPLACE OUTPUT

Output data set coefficients
outputs coefficients COEFFICIENTS OUTPUT
outputs ideal point coordinates COORDINATES OUTPUT
outputs marginal means MEANS OUTPUT
outputs redundancy analysis coefficients MREDUNDANCY OUTPUT

Output data set variable name prefixes
dependent variable approximations ADPREFIX= OUTPUT
independent variable approximations AIPREFIX= OUTPUT
canonical dependent variables CDPREFIX= OUTPUT
conservative individual lower CL CILPREFIX= OUTPUT
canonical independent variables CIPREFIX= OUTPUT
conservative-individual-upper CL CIUPREFIX= OUTPUT
conservative-mean-lower CL CMLPREFIX= OUTPUT
conservative-mean-upper CL CMUPREFIX= OUTPUT
METHOD=MORALS untransformed dependent DEPENDENT= OUTPUT
liberal-individual-lower CL LILPREFIX= OUTPUT
liberal-individual-upper CL LIUPREFIX= OUTPUT
liberal-mean-lower CL LMLPREFIX= OUTPUT
liberal-mean-upper CL LMUPREFIX= OUTPUT
residuals RDPREFIX= OUTPUT
predicted values PPREFIX= OUTPUT
redundancy variables RPREFIX= OUTPUT
transformed dependents TDPREFIX= OUTPUT
transformed independents TIPREFIX= OUTPUT

Output data set macros
creates macro variables MACRO OUTPUT

Output data set details
dependent and independent approximations APPROXIMATIONS OUTPUT
canonical correlation coefficients CCC OUTPUT
canonical elliptical point coordinate CEC OUTPUT
canonical point coordinates CPC OUTPUT
canonical quadratic point coordinates CQC OUTPUT
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Table 75.1. (continued)

Task Option Statement
approximations to transformed dependents DAPPROXIMATIONS OUTPUT
approximations to transformed independents IAPPROXIMATIONS OUTPUT
elliptical point coordinates MEC OUTPUT
point coordinates MPC OUTPUT
quadratic point coordinates MQC OUTPUT
multiple regression coefficients MRC OUTPUT

DATA=SAS-data-set
specifies the SAS data set to be analyzed. If you do not specify the DATA= option,
PROC TRANSREG uses the most recently created SAS data set. The data set must
be an ordinary SAS data set; it cannot be a special TYPE= data set.

OUTTEST=SAS-data-set
specifies an output data set to contain hypothesis tests results. When you specify
the OUTTEST= option, the data set contains ANOVA results. When you specify the
SS2a-option, regression tables are also output. When you specify the UTILITIES
o-option, conjoint analysis part-worth utilities are also output. For more information
on the OUTTEST= data set, see the“OUTTEST= Output Data Set”section on page
4626.

BY Statement

BY variables ;

You can specify a BY statement with PROC TRANSREG to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the TRANSREG procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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FREQ Statement

FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
TRANSREG then treats the data set as if each observation appearedn times, where
n is the value of the FREQ variable for the observation. Noninteger values of the
FREQ variable are truncated to the largest integer less than the FREQ value. The
observation is used in the analysis only if the value of the FREQ statement variable
is greater than or equal to 1.

ID Statement

ID variables ;

The ID statement includes additional character or numeric variables in the OUT=
data set. The variables must be contained in the input data set.

MODEL Statement

MODEL < transform(dependents < / t-options >)
< transform(dependents < / t-options >)...> = >
transform(independents < / t-options >)
< transform(independents < / t-options >)...>< / a-options > ;

The MODEL statement specifies the dependent and independent variables (depen-
dentsandindependents, respectively) and specifies the transformation (transform) to
apply to each variable. Only one MODEL statement can appear in the TRANSREG
procedure. Thet-optionsare transformation options, and thea-optionsare the al-
gorithm options. Thet-optionsprovide details for the transformation; these depend
on the transformchosen. Thet-optionsare listed after a slash in the parentheses
that enclose the variable list (eitherdependentsor independents). Thea-optionscon-
trol the algorithm used, details of iteration, details of how the intercept and dummy
variables are generated, and displayed output details. Thea-optionsare listed after
the entire model specification (thedependents, independents, transformations, and
t-options) and after a slash. You can also specify the algorithm options in the PROC
TRANSREG statement. When you specify the DESIGNo-option, dependentsand
an equal sign are not required. The operators “*”, “|”, and “@” from the GLM pro-
cedure are available for interactions with the CLASS expansion and the IDENTITY
transformation.

Class(a * b ...
c | d ...
e | f ... @ n)

Identity(a * b ...
c | d ...
e | f ... @ n)
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In addition, transformations and spline expansions can be crossed with classification
variables:

transform (var) * class(group)
transform (var) | class(group)

See the“Types of Effects” section on page 1784 inChapter 32, “The GLM
Procedure,” for a description of the @, *, and | operators and see the“Model
Statement Usage”section on page 4592 for information on how to use these oper-
ators in PROC TRANSREG. Note that nesting is not allowed in PROC TRANSREG.

The next three sections discuss the transformations available (transforms) (see the
“Families of Transformations”section on page 4558), the transformation options (t-
options) (see the“Transformation Options (t-options)”section on page 4564), and
the algorithm options (a-options) (see the“Algorithm Options (a-options)”section
on page 4573).

Families of Transformations

In the MODEL statement,transformspecifies a transformation in one of four fami-
lies.

Variable expansions preprocess the specified variables, replacing them with
more variables.

Nonoptimal transformationspreprocess the specified variables, replacing each one
with a single new nonoptimal, nonlinear transforma-
tion.

Optimal transformations replace the specified variables with new, iteratively de-
rived optimal transformation variables that fit the spec-
ified model better than the original variable (except
for contrived cases where the transformation fits the
model exactly as well as the original variable).

Other transformations are the IDENTITY and SSPLINE transformations.
These do not fit into the preceding categories.

The following table summarizes the transformations in each family.



MODEL Statement � 4559

Members
Family of Family
Variable expansions
B-spline basis BSPLINE
set of dummy variables CLASS
elliptical response surface EPOINT
circular response surface POINT
piecewise polynomial basis PSPLINE
quadratic response surface QPOINT

Nonoptimal transformations
inverse trigonometric sine ARSIN
Box-Cox BOXCOX
exponential EXP
logarithm LOG
logit LOGIT
raises variables to specified power POWER
transforms to ranks RANK
noniterative smoothing spline SMOOTH

Optimal transformations
linear LINEAR
monotonic, ties preserved MONOTONE
monotonic B-spline MSPLINE
optimal scoring OPSCORE
B-spline SPLINE
monotonic, ties not preserved UNTIE

Other transformations
identity, no transformation IDENTITY
iterative smoothing spline SSPLINE

You can use any transformation with either dependent or independent variables (ex-
cept the SMOOTH transformation, which can be used only with independent vari-
ables, and BOXCOX, which can be used only with dependent variables). However,
the variable expansions are usually more appropriate for independent variables.

Thetransformis followed by a variable (or list of variables) enclosed in parentheses.
Optionally, depending on thetransform, the parentheses can also containt-options,
which follow the variables and a slash. For example,

model log(y)=class(x);

finds a LOG transformation ofY and performs a CLASS expansion ofX.

model identity(y) = spline(x1 x2 / nknots=3);
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The preceding statement finds SPLINE transformations ofX1 and X2. The
NKNOTS= t-optionused with the SPLINE transformation specifies three knots. The
IDENTITY(Y) transformation specifies thatY is not to be transformed.

The rest of this section provides syntax details for members of the four families
of transformations. Thet-optionsare discussed in the“Transformation Options (t-
options)”section on page 4564.

Variable Expansions

The TRANSREG procedure performs variable expansions before iteration begins.
Variable expansions expand the original variables into a typically larger set of new
variables. The original variables are those that are listed in parentheses aftertrans-
form, and they are sometimes referred to by the name of thetransform. For exam-
ple, in CLASS(X1 X2), X1 andX2 are sometimes referred to as CLASS expansion
variables or simply CLASS variables, and the expanded variables are referred to as
dummy variables. Similarly, in POINT(Dim1 Dim2), Dim1 andDim2 are sometimes
referred to as POINT variables.

The resulting variables are not transformed by the iterative algorithms after the ini-
tial preprocessing. Observations with missing values for these types of variables are
excluded from the analysis.

The POINT, EPOINT, and QPOINT variable expansions are used in preference map-
ping analyses (also called PREFMAP, external unfolding, ideal point regression)
(Carroll 1972) and for response surface regressions. These three expansions cre-
ate circular, elliptical, and quadratic response or preference surfaces (see the“Point
Models” section on page 4605 andExample 75.5). The CLASS variable expansion
is used for main effects ANOVA.

The following list provides syntax and details for the variable expansiontransforms.

BSPLINE
BSP

expands each variable to a B-spline basis. You can specify the DEGREE=,
KNOTS=, NKNOTS=, and EVENLYt-optionswith the BSPLINE expansion. When
DEGREE=n (3 by default) withk knots (0 by default),n + k + 1 variables are
created. In addition, the original variable appears in the OUT= data set before the
ID variables. For example, BSPLINE(X) expandsX into X–0 X–1 X–2 X–3 and
outputsX as well. TheX–: variables contain the B-spline (which are the same basis
vectors that the SPLINE and MSPLINE transformations use internally). The columns
of the BSPLINE expansion sum to a column of ones, so an implicit intercept model
is fit when the BSPLINE expansion is specified. If you specify the BSPLINE ex-
pansion for more than one variable, the model is less than full rank. See the section
“SPLINE, BSPLINE, and PSPLINE Comparisons”on page 4614. Variables follow-
ing BSPLINE must be numeric, and they are typically continuous.

CLASS
CLA

expands the variables to a set of dummy variables. For example, CLASS(X1 X2) is
used for a simple main-effects model, CLASS(X1 | X2) fits a main-effects and inter-
actions model, and CLASS(X1|X2|X3|X4@2 X1*X2*X3) creates all main effects,
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all two-way interactions, and one three-way interaction. See the“Model Statement
Usage”section on page 4592 for information on how to use the operators @, *, and |
in PROC TRANSREG. To determine class membership, PROC TRANSREG uses the
values of the formatted variables. Variables following CLASS can be either character
or numeric; numeric variables should be discrete.

EPOINT
EPO

expands the variables for an elliptical response surface regression or for an elliptical
ideal point regression. Specify the COORDINATESo-option to output PREFMAP
ideal elliptical point model coordinates to the OUT= data set. Each axis of the el-
lipse (or ellipsoid) is oriented in the same direction as one of the variables. The
EPOINT expansion creates a new variable for each original variable. The value of
each new variable is the square of each observed value for the corresponding paren-
thesized variable. The regression analysis then uses both sets of variables (original
and squared). Variables following EPOINT must be numeric, and they are typically
continuous.

POINT
POI

expands the variables for a circular response surface regression or for a circular ideal
point regression. Specify the COORDINATESo-option to output PREFMAP ideal
point model coordinates to the OUT= data set. The POINT expansion creates a new
variable having a value for each observation that is the sums of squares of all the
POINT variables. This new variable is added to the set of variables and is used in
the regression analysis. For more on ideal point regression, refer to Carroll (1972).
Variables following POINT must be numeric, and they are typically continuous.

PSPLINE
PSP

expands each variable to a piecewise polynomial basis. You can specify the
DEGREE=, KNOTS=, NKNOTS=, and EVENLYt-optionswith PSPLINE. When
DEGREE=n (3 by default) withk knots (0 by default),n+k variables are created. In
addition, the original variable appears in the OUT= data set before the ID variables.
For example, PSPLINE(X / NKNOTS=1) expandsX into X–1 X–2 X–3 X–4 and
outputsX as well. Unlike BSPLINE, an intercept is not implicit in the columns of
PSPLINE. Refer to Smith (1979) for a good introduction to piecewise polynomial
splines. Also see the section“SPLINE, BSPLINE, and PSPLINE Comparisons”on
page 4614. Variables following PSPLINE must be numeric, and they are typically
continuous.

QPOINT
QPO

expands the variables for a quadratic response surface regression or for a quadratic
ideal point regression. Specify the COORDINATESo-option to output PREFMAP
quadratic ideal point model coordinates to the OUT= data set. Form QPOINT vari-
ables,m(m+1)/2 new variables are created containing the squares and crossproducts
of the original variables. The regression analysis uses both sets (original and crossed).
Variables following QPOINT must be numeric, and they are typically continuous.
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Nonoptimal Transformations

Like variable expansions, nonoptimal transformations are computed before the iter-
ative algorithm begins. Nonoptimal transformations create a single new transformed
variable that replaces the original variable. The new variable is not transformed by
the subsequent iterative algorithms (except for a possible linear transformation with
missing value estimation).

The following list provides syntax and details for nonoptimal variable transforma-
tions.

ARSIN
ARS

finds an inverse trigonometric sine transformation. Variables following ARSIN must
be numeric, in the interval(−1.0 ≤ X ≤ 1.0), and they are typically continuous.

BOXCOX
BOX

finds a Box-Cox transformation of the specified variables (see the“Box-Cox
Transformations”section on page 4595 andExample 75.6). The BOXCOX trans-
formation can be used only with dependent variables. The ALPHA=, CLL=,
CONVENIENT, GEOMETRICMEAN, LAMBDA=, and PARAMETER=t-options
can be used with the BOXCOX transformation. Variables following BOXCOX must
be numeric, and they are typically continuous.

EXP
exponentiates variables (the variableX is transformed toaX ). To specify the value
of a, use the PARAMETER=t-option. By default,a is the mathematical constant
e = 2.718 . . .. Variables following EXP must be numeric, and they are typically
continuous.

LOG
transforms variables to logarithms (the variableX is transformed tologa(X)). To
specify the base of the logarithm, use the PARAMETER=t-option. The default is a
natural logarithm with basee = 2.718 . . .. Variables following LOG must be numeric
and positive, and they are typically continuous.

LOGIT
finds a logit transformation on the variables. The logit ofX is log(X/(1−X)). Unlike
other transformations, LOGIT does not have a three-letter abbreviation. Variables
following LOGIT must be numeric, in the interval(0.0 < X < 1.0), and they are
typically continuous.

POWER
POW

raises variables to a specified power (the variableX is transformed toXa). You must
specify the power parametera by specifying the PARAMETER=t-option following
the variables:

power(variable / parameter=number)
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You can use POWER for squaring variables (PARAMETER=2), reciprocal trans-
formations (PARAMETER=−1), square roots (PARAMETER=0.5), and so on.
Variables following POWER must be numeric, and they are typically continuous.

RANK
RAN

transforms variables to ranks. Ranks are averaged within ties. The smallest input
value is assigned the smallest rank. Variables following RANK must be numeric.

SMOOTH
SMO

is a noniterative smoothing spline transformation. You can specify the smoothing pa-
rameter with either the SM= or the PARAMETER=t-option. The default smoothing
parameter is SM=0. Variables following SMOOTH must be numeric, and they are
typically continuous. The SMOOTH transformation can be used only with indepen-
dent variables. For more information, see the“Smoothing Splines”section on page
4596.

Optimal Transformations

Optimal transformations are iteratively derived. Missing values for these types of
variables can be optimally estimated (see the“Missing Values”section on page 4599).

The following list provides syntax and details for optimal transformations.

LINEAR
LIN

finds an optimal linear transformation of each variable. For variables with no missing
values, the transformed variable is the same as the original variable. For variables
with missing values, the transformed nonmissing values have a different scale and
origin than the original values. Variables following LINEAR must be numeric.

MONOTONE
MON

finds a monotonic transformation of each variable, with the restriction that ties are
preserved. The Kruskal (1964) secondary least-squares monotonic transformation is
used. This transformation weakly preserves order and category membership (ties).
Variables following MONOTONE must be numeric, and they are typically discrete.

MSPLINE
MSP

finds a monotonically increasing B-spline transformation with monotonic coefficients
(de Boor 1978; de Leeuw 1986) of each variable. You can specify the DEGREE=,
KNOTS=, NKNOTS=, and EVENLYt-optionswith MSPLINE. By default, PROC
TRANSREG uses a quadratic spline. Variables following MSPLINE must be nu-
meric, and they are typically continuous.

OPSCORE
OPS

finds an optimal scoring of each variable. The OPSCORE transformation assigns
scores to each class (level) of the variable. Fisher’s (1938) optimal scoring method
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is used. Variables following OPSCORE can be either character or numeric; numeric
variables should be discrete.

SPLINE
SPL

finds a B-spline transformation (de Boor 1978) of each variable. By default,
PROC TRANSREG uses a cubic polynomial transformation. You can specify the
DEGREE=, KNOTS=, NKNOTS=, and EVENLYt-optionswith SPLINE. Variables
following SPLINE must be numeric, and they are typically continuous.

UNTIE
UNT

finds a monotonic transformation of each variable without the restriction that ties
are preserved. The TRANSREG procedure uses the Kruskal (1964) primary least-
squares monotonic transformation method. This transformation weakly preserves or-
der but not category membership (it may untie some previously tied values). Variables
following UNTIE must be numeric, and they are typically discrete.

Other Transformations

IDENTITY
IDE

specifies variables that are not changed by the iterations. Typically, the IDENTITY
transformation is used with a simple variable list, such as IDENTITY(X1-X5).
However, you can also specify interaction terms. For example, IDENTITY(X1 |
X2) createsX1, X2, and the productX1*X2; and IDENTITY(X1 | X2 | X3) creates
X1, X2, X1*X2, X3, X1*X3, X2*X3, andX1*X2*X3. See the“Model Statement
Usage”section on page 4592 for information on how to use the operators @, *, and |
in PROC TRANSREG.

The IDENTITY transformation is used for variables when no transformation and
no missing data estimation are desired. However, the REFLECTt-option, the
ADDITIVE a-option, and the TSTANDARD=Z, and TSTANDARD=CENTER op-
tions can linearly transform all variables, including IDENTITY variables, after
the iterations. Observations with missing values in IDENTITY variables are ex-
cluded from the analysis, and no optimal scores are computed for missing values
in IDENTITY variables. Variables following IDENTITY must be numeric.

SSPLINE
SSP

finds an iterative smoothing spline transformation of each variable. The SSPLINE
transformation does not generally minimize squared error. You can specify the
smoothing parameter with either the SM=t-option or the PARAMETER=t-option.
The default smoothing parameter is SM=0. Variables following SSPLINE must be
numeric, and they are typically continuous.

Transformation Options (t-options)

If you use a nonoptimal, optimal, or other transformation, you can uset-options,
which specify additional details of the transformation. Thet-optionsare specified
within the parentheses that enclose variables and are listed after a slash. You can use
t-optionswith both dependent and independent variables. For example,
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proc transreg;
model identity(y)=spline(x / nknots=3);
output;

run;

The preceding statements find an optimal variable transformation (SPLINE) of
the independent variable, and they use at-option to specify the number of knots
(NKNOTS=). The following is a more complex example:

proc transreg;
model mspline(y / nknots=3)=class(x1 x2 / effects);
output;

run;

These statements find a monotone spline transformation (MSPLINE with three knots)
of the dependent variable and perform a CLASS expansion with effects coding of the
independents.

The following sections discuss thet-optionsavailable for nonoptimal, optimal, and
other transformations.

The following table summarizes thet-options.

Table 75.2. t-options Available in the MODEL Statement

Task Option
Nonoptimal transformation t-options
uses original mean and variance ORIGINAL

Parameter t-options
specifies miscellaneous parameters PARAMETER=
specifies smoothing parameter SM=

Spline t-options
specifies the degree of the spline DEGREE=
spaces the knots evenly EVENLY
exterior knots EXKNOTS=
specifies the interior knots or break points KNOTS=
createsn knots NKNOTS=

CLASS Variable t-options
CLASS dummy variable name prefix CPREFIX=
requests a deviations-from-means coding DEVIATIONS
requests a deviations-from-means coding EFFECTS
CLASS dummy variable label prefix LPREFIX=
order of class variable levels ORDER=
CLASS dummy variable label separators SEPARATORS=
controls reference levels ZERO=

BOXCOX t-options
confidence interval alpha ALPHA=
convenient lambda list CLL=
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Table 75.2. (continued)

Task Option
use a convenient lambda CONVENIENT
scale the transformation using geometric mean GEOMETRICMEAN
power parameter list LAMBDA=

Other t-options
operations occur after the expansion AFTER
centers before the analysis begins CENTER
renames variables NAME=
reflects the variable around the mean REFLECT
specifies transformation standardization TSTANDARD=
standardizes before the analysis begins Z

Nonoptimal Transformation t-options

ORIGINAL
ORI

matches the variable’s final mean and variance to the mean and variance of the origi-
nal variable. By default, the mean and variance are based on the transformed values.
The ORIGINAL t-option is available for all of the nonoptimal transformations.

Parameter t-options

PARAMETER=number
PAR=number

specifies the transformation parameter. The PARAMETER=t-option is available for
the BOXCOX, EXP, LOG, POWER, SMOOTH, and SSPLINE transformations. For
BOXCOX, the parameter is the value to add to each value of the BOXCOX variable
before a Box-Cox transformation. For EXP, the parameter is the value to be expo-
nentiated; for LOG, the parameter is the base value; and for POWER, the parameter
is the power. For SMOOTH and SSPLINE, the parameter is the raw smoothing pa-
rameter. (You can specify a SAS/GRAPH-style smoothing parameter with the SM=
t-option.) The default for the PARAMETER=t-optionfor the BOXCOX transforma-
tion is 0 and for the LOG and EXP transformations ise = 2.718 . . .. The default
parameter for SMOOTH and SSPLINE is computed from SM=0. For the POWER
transformation, you must specify the PARAMETER=t-option; there is no default.

SM=n
specifies a SAS/GRAPH-style smoothing parameter in the range 0 to 100. You can
specify the SM=t-option only with the SMOOTH and SSPLINE transformations.
The smoothness of the function increases as the value of the smoothing parameter
increases. By default, SM=0.

Spline t-options

The followingt-optionsare available with the SPLINE and MSPLINE optimal trans-
formations and the PSPLINE and BSPLINE expansions.
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DEGREE=n
DEG=n

specifies the degree of the spline transformation. The degree must be a nonnegative
integer. The defaults are DEGREE=3 for SPLINE, PSPLINE, and BSPLINE vari-
ables and DEGREE=2 for MSPLINE variables.

The polynomial degree should be a small integer, usually 0, 1, 2, or 3. Larger values
are rarely useful. If you have any doubt as to what degree to specify, use the default.

EVENLY
EVE

is used with the NKNOTS=t-option to space the knots evenly. The differences be-
tween adjacent knots are constant.

If you specify NKNOTS=k, k knots are created at

minimum+ i((maximum−minimum)/(k + 1))

for i = 1, . . . , k. For example, if you specify

spline(X / knots=2 evenly)

and the variableX has a minimum of 4 and a maximum of 10, then the two interior
knots are 6 and 8. Without the EVENLYt-option, the NKNOTS=t-option places
knots at percentiles, so the knots are not evenly spaced.

EXKNOTS=number-list | n TO m BY p
EXK=number-list | n TO m BY p

specifies exterior knots for SPLINE and MSPLINE transformations and BSPLINE
expansions. Usually, this option is not needed; PROC TRANSREG automatically
picks suitable exterior knots. The only time you need to use this option is when you
want to ensure that the exact same basis is used for different splines, for example
when applying coefficients from one spline transformation to a variable in a different
data set (see “Scoring Spline Variables” at the end ofExample 75.1).

Specify one or two values. If the minimum EXKNOTS= value is less than the mini-
mum data value, it is used as the exterior knot. If the maximum EXKNOTS= value is
greater than the maximum data value, it is used as the exterior knot. Otherwise these
values are ignored. When EXKNOTS= is specified with the CENTER or Zt-options,
the knots apply to the original variable, not to the centered or standardized variable.

The B-spline transformations and expansions use a knot list consisting of exterior
knots (values just smaller than the minimum), the specified (interior) knots, and exte-
rior knots (values just larger than the minimum). You can use the DETAILS option to
see all of these knots. Using different external knots gives different but equivalent B-
spline bases. You can specify exterior knots on either the KNOTS= or EXKNOTS=
t-options, however for the BSPLINE expansion, the KNOTS=t-optioncreates extra
all-zero basis columns, whereas the EXKNOTS=t-option will give you the correct
basis.
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KNOTS=number-list | n TO m BY p
KNO=number-list | n TO m BY p

specifies the interior knots or break points. By default, there are no knots. The first
time you specify a value in the knot list, it indicates a discontinuity in thenth (from
DEGREE=n) derivative of the transformation function at the value of the knot. The
second mention of a value indicates a discontinuity in the(n− 1)th derivative of the
transformation function at the value of the knot. Knots can be repeated any number
of times for decreasing smoothness at the break points, but the values in the knot list
can never decrease.

You cannot use the KNOTS=t-optionwith the NKNOTS=t-option. You should keep
the number of knots small (see the section“Specifying the Number of Knots”on page
4613).

NKNOTS=n
NKN=n

createsn knots, the first at the100/(n + 1) percentile, the second at the200/(n + 1)
percentile, and so on. Knots are always placed at data values; there is no interpola-
tion. For example, if NKNOTS=3, knots are placed at the twenty-fifth percentile, the
median, and the seventy-fifth percentile. By default, NKNOTS=0. The NKNOTS=
t-optionmust be≥ 0.

You cannot use the NKNOTS=t-optionwith the KNOTS=t-option.

You should keep the number of knots small (see the section“Specifying the Number
of Knots” on page 4613).

CLASS Variable t-options

CPREFIX=n | number-list
CPR=n | number-list

specifies the number of first characters of a CLASS expansion variable’s name to
use in constructing names for dummy variables. When CPREFIX= is specified
as ana-option (see the description of theCPREFIX= a-option on page 4575) or
an o-option, it specifies the default for all CLASS variables. When you specify
CPREFIX= as at-option, it overrides the default only for selected variables. A dif-
ferent CPREFIX= value can be specified for each CLASS variable by specifying the
CPREFIX=number-listt-option, like the ZERO=formatted-value-listt-option.

DEVIATIONS
DEV
EFFECTS
EFF

requests a deviations-from-means coding of CLASS variables. The coded design
matrix has values of 0, 1, and−1 for reference levels. This coding is referred to as
“deviations-from-means,” “effects,” “center-point,” or “full-rank” coding.

LPREFIX=n | number-list
LPR=n | number-list

specifies the number of first characters of a CLASS expansion variable’s label (or
name if no label is specified) to use in constructing labels for dummy variables. When
LPREFIX= is specified as ana-option(see the description of theLPREFIX=a-option
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on page 4576) or ano-option, it specifies the default for all CLASS variables. When
you specify LPREFIX= as at-option, it overrides the default only for selected vari-
ables. A different LPREFIX= value can be specified for each CLASS variable by
specifying the LPREFIX=number-listt-option, like the ZERO=formatted-value-list
t-option.

ORDER=DATA | FREQ | FORMATTED | INTERNAL
ORD=DAT | FRE | FOR | INT

specifies the order in which the CLASS variable levels are to be reported. The default
is ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER= is specified as ana-option
(see the description of theORDER=a-option on page 4578) or as ano-option, it
specifies the default ordering for all CLASS variables. When you specify ORDER=
as at-option, it overrides the default ordering only for selected variables. You can
specify a different ORDER= value for each CLASS specification.

SEPARATORS=’ string-1 ’<’string-2 ’ >
SEP=’string-1 ’<’string-2 ’ >

specifies separators for creating CLASS expansion variable labels. By de-
fault, SEPARATORS=’ ’ ’ * ’ (“blank” and “blank asterisk blank”).
When SEPARATORS= is specified as ana-option (see the description of the
SEPARATORS=a-option on page 4579) or ano-option, it specifies the default
separators for all CLASS variables. When you specify SEPARATORS= as a
t-option, it overrides the default only for selected variables. You can specify a
different SEPARATORS= value for each CLASS specification.

ZERO=FIRST | LAST | NONE | SUM
ZER=FIR | LAS | NON | SUM
ZERO=’formatted-value ’ <’formatted-value ’ ...>

is used with CLASS variables. The default is ZERO=LAST.

The specification CLASS(variable / ZERO=FIRST) sets to missing the dummy vari-
able for the first of the sorted categories, implying a zero coefficient for that category.

The specification CLASS(variable / ZERO=LAST) sets to missing the dummy vari-
able for the last of the sorted categories, implying a zero coefficient for that category.

The specification CLASS(variable / ZERO=’formatted-value’) sets to missing the
dummy variable for the category with a formatted value that matches ’formatted-
value’, implying a zero coefficient for that category. With ZERO=formatted-value-
list, the first formatted value applies to the first variable in the specification, the sec-
ond formatted value applies to the next variable that was not previously mentioned
and so on. For example, CLASS(A A*B B B*C C / ZERO=’x’ ’y’ ’z’) specifies that
the reference level forA is ’x’, for B is ’y’, and for C is ’z’. With ZERO=’formatted-
value’, the procedure first looks for exact matches between the formatted values and
the specified value. If none are found, leading blanks are stripped from both and the
values are compared again. If zero or two or more matches are found, warnings are
issued.

The specifications ZERO=FIRST, ZERO=LAST, and ZERO=’formatted-value’ are
used for reference cell models. TheIntercept parameter estimate is the marginal
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mean for the reference cell, and the other marginal means are obtained by adding the
intercept to the dummy variable coefficients.

The specification CLASS(variable / ZERO=NONE) sets to missing none of the
dummy variables. The columns of the expansion sum to a column of ones, so an im-
plicit intercept model is fit. If you specify ZERO=NONE for more than one variable,
the model is less than full rank. In the model MODEL IDENTITY(Y) = CLASS(X /
ZERO=NONE), the coefficients are cell means.

The specification CLASS(variable / ZERO=SUM) sets to missing none of the dummy
variables, and the coefficients for the dummy variables created from the variable sum
to 0. This creates a less-than-full-rank model, but the coefficients are uniquely deter-
mined due to the sum-to-zero constraint.

In the presence of iterative transformations, hypothesis tests for ZERO=NONE and
ZERO=SUM levels are not exact; they are liberal because a model with an explicit
intercept is fit inside the iterations. There is no provision for adjusting the transfor-
mations while setting to 0 a parameter that is redundant given the explicit intercept
and the other parameters.

Box-Cox t-options

The following t-optionsare available only with the BOXCOX transformation of the
dependent variable (see the“Box-Cox Transformations”section on page 4595 and
Example 75.6).

ALPHA= p
ALP=p

specifies the Box-Cox alpha for the confidence interval for the power parameter. By
default, ALPHA=0.05.

CLL=number-list
specifies the Box-Cox convenient lambda list. When the confidence interval for the
power parameter includes one of the values in this list, PROC TRANSREG reports it
and can optionally use the convenient power parameter instead of the more optimal
power parameter. The default is CLL=1.0 0.0 0.5 -1.0 -0.5 2.0 -2.0 3.0 -3.0. By
default, a linear transformation is preferred over log, square root, inverse, inverse
square root, quadratic, inverse quadratic, cubic, and inverse cubic. If you specify the
CONVENIENT t-option, then PROC TRANSREG uses the first convenient power
parameter in the list that is in the confidence interval. For example, if the optimal
power parameter is 0.25 and 0.0 is in the confidence interval but not 1.0, then the
convenient power parameter is 0.0.

CONVENIENT
CON

specifies that a power parameter from the CLL=t-optionlist is to be used for the final
transformation instead of the LAMBDA=t-option value if a CLL= value is in the
confidence interval. See the CLL=t-optionfor more information on its usage.
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GEOMETRICMEAN
GEO

divides the Box-Cox transformation bẏyλ−1 whereẏ is the geometric mean of the
variable to be transformed. This form of the Box-Cox transformation essentially
converts the transformation back to original units and hence allows direct comparison
of the residual sums of squares for models with different power parameters.

LAMBDA= number-list
LAM=number-list

specifies a list of Box-Cox power parameters. The default is LAMBDA=-3 TO 3 BY
0.25. PROC TRANSREG tries each power parameter in the list and picks the best
one. However, when the CONVENIENTt-optionvalue is in the confidence interval.
See the CLL=t-optionfor more information on its usage.

Other t-options

AFTER
AFT

requests that certain operations occur after the expansion. Thist-option affects the
NKNOTS= t-optionwhen the SPLINE or MSPLINE transformation is crossed with
a CLASS specification. For example, if the original spline variable (1 2 3 4 5 6 7 8
9) is expanded into the three variables (1 2 3 0 0 0 0 0 0), (0 0 0 4 5 6 0 0 0), and (0
0 0 0 0 0 7 8 9), then, by default, NKNOTS=1 would use the overall median of 5 as
the knot for all three variables. When you specify the AFTERt-option, the knots for
the three variables are 2, 5, and 8. Note that the structural zeros are ignored when the
internal knot list is created, but they are not ignored for the external knots.

You can also specify the AFTERt-optionwith the RANK and SMOOTH transforma-
tions. The following specifications compute ranks and smooth within groups, after
crossing, ignoring the structural zeros.

class(x / zero=none) | rank(z / after)
class(x / zero=none) | smooth(z / after)

CENTER
CEN

centers the variables before the analysis begins (in contrast to the
TSTANDARD=CENTER option which centers after the analysis ends). The
CENTERt-optioncan be used instead of running PROC STANDARD before PROC
TRANSREG (see the“Centering” section on page 4675). When the KNOTS=
t-option is specified with CENTER, the knots apply to the original variable, not to
the centered variable. PROC TRANSREG will center the knots.

NAME=(variable-list)
NAM=(variable-list)

renames variables as they are used in the MODEL statement. Thist-optionallows a
variable to be used more than once.

For example, ifX is a character variable, then the following step stores both the orig-
inal character variableX and a numeric variableXC that contains category numbers
in the OUT= data set.



4572 � Chapter 75. The TRANSREG Procedure

proc transreg data=a;
model identity(y) = opscore(x / name=(xc));
output;
id x;

run;

With the CLASS and IDENTITY transformations, which allow interaction effects,
the first name applies to the first variable in the specification, the second name ap-
plies to the next variable that was not previously mentioned, and so on. For example,
IDENTITY(A A*B B B*C C / NAME=(G H I)) specifies that the new name forA is
G, for B is H, and forC is I. The same assignment is used for the (not useful) spec-
ification IDENTITY(A A B B C C / NAME=(G H I)). For all transformsother than
CLASS and IDENTITY (all those in which interactions are not supported), repeated
variables are not handled specially. For example, SPLINE(A A B B C C / NAME=(A
G B H C I)) creates six variables, a copy ofA namedA, another copy ofA namedG,
a copy ofB namedB, another copy ofB namedH, a copy ofC namedC, and another
copy ofC namedI.

REFLECT
REF

reflects the transformation

y = −(y − ȳ) + ȳ

after the iterations are completed and before the final standardization and results cal-
culations. Thist-option is particularly useful with the dependent variable in a con-
joint analysis. When the dependent variable consists of ranks with the most preferred
combination assigned 1.0, the REFLECTt-option reflects the transformation so that
positive utilities mean high preference. (SeeExample 75.2.)

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables for the hypothesis tests
and in the OUT= data set (see the“Centering” section on page 4675). By default,
TSTANDARD=ORIGINAL. When TSTANDARD= is specified as ana-option(see
the description of theTSTANDARD=a-optionon page 4580) or ano-option, it deter-
mines the default standardization for all variables. When you specify TSTANDARD=
as at-option, it overrides the default standardization only for selected variables. You
can specify a different TSTANDARD= value for each transformation. For example,
to perform a redundancy analysis with standardized dependent variables, specify

model identity(y1-y4 / tstandard=z) = identity(x1-x10);

Z
centers and standardizes the variables to variance one before the analysis begins (in
contrast to the TSTANDARD=Z option, which standardizes after the analysis ends).
The Z t-option can be used instead of running PROC STANDARD before PROC
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TRANSREG (see the“Centering” section on page 4675). When the KNOTS=t-
option is specified with Z, the knots apply to the original variable, not to the centered
variable. PROC TRANSREG will standardize the knots.

Algorithm Options (a-options)

This section discusses the options that can appear in the PROC TRANSREG or
MODEL statements asa-options. They are listed after the entire model specifica-
tion and after a slash.

For example,

proc transreg;
model spline(y / nknots=3)=log(x1 x2 / parameter=2)

/ nomiss maxiter=50;
output;

run;

In the preceding statements, NOMISS and MAXITER= area-options. (SPLINE and
LOG aretransforms, and NKNOTS= and PARAMETER= aret-options.) The state-
ments find a spline transformation with 3 knots onY and a base 2 logarithmic transfor-
mation onX1 andX2. The NOMISSa-optionexcludes all observations with missing
values, and the MAXITER=a-optionspecifies the maximum number of iterations.

Table 75.3. Options Available in the PROC TRANSREG or MODEL Statements

Task Option
Input data set
specifies input observation type TYPE=
restarts iterations REITERATE

Specify method and control iterations
specifies minimum criterion change CCONVERGE=
specifies minimum data change CONVERGE=
specifies canonical dummy-variable initialization DUMMY
specifies maximum number of iterations MAXITER=
specifies iterative algorithm METHOD=
specifies number of canonical variables NCAN=
specifies singularity criterion SINGULAR=

Control missing data handling
METHOD=MORALS fists each model individually INDIVIDUAL
includes monotone special missing values MONOTONE=
excludes observations with missing values NOMISS
unties special missing values UNTIE=

Control intercept and CLASS variables
CLASS dummy variable name prefix CPREFIX=
CLASS dummy variable label prefix LPREFIX=
no intercept or centering NOINT
order of class variable levels ORDER=
controls output of reference levels REFERENCE=
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Table 75.3. (continued)

Task Option
CLASS dummy variable label separators SEPARATORS=

Control displayed output
confidence limits alpha ALPHA=
displays parameter estimate confidence limits CL
displays model specification details DETAIL
displays iteration histories HISTORY
suppresses displayed output NOPRINT
suppresses the iteration histories SHORT
displays regression results SS2
displays ANOVA table TEST
displays conjoint part-worth utilities UTILITIES

Control standardization
fits additive model ADDITIVE
do not zero constant variables NOZEROCONSTANT
specifies transformation standardization TSTANDARD=

The following list provides details on thesea-options.

ADDITIVE
ADD

creates an additive model by multiplying the values of each independent variable
(after the TSTANDARD= standardization) by that variable’s corresponding multi-
ple regression coefficient. This process scales the independent variables so that the
predicted-values variable for the final dependent variable is simply the sum of the
final independent variables. An additive model is a univariate multiple regression
model. As a result, the ADDITIVEa-option is not valid if METHOD=CANALS,
or if METHOD=REDUNDANCY or METHOD=UNIVARIATE with more than one
dependent variable.

ALPHA= number
ALP=number

specifies the level of significance for all of the confidence limits. By default,
ALPHA=0.05.

CCONVERGE=n
CCO=n

specifies the minimum change in the criterion being optimized (squared multiple cor-
relation for METHOD=MORALS and METHOD=UNIVARIATE, average squared
multiple correlation for METHOD=REDUNDANCY, average squared canonical cor-
relation for METHOD=CANALS) that is required to continue iterating. By default,
CCONVERGE=0.0.
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CL
requests confidence limits on the parameter estimates in the displayed output.

CONVERGE=n
CON=n

specifies the minimum average absolute change in standardized variable scores that
is required to continue iterating. By default, CONVERGE=0.00001. Average change
is computed over only those variables that can be transformed by the iterations;
that is, all LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, and
SSPLINE variables and nonoptimal transformation variables with missing values.

CPREFIX=n
CPR=n

specifies the number of first characters of a CLASS expansion variable’s name to use
in constructing names for dummy variables. Dummy variable names are constructed
from the firstn characters of the CLASS expansion variable’s name and the first32−
n characters of the formatted CLASS expansion variable’s value. For example, if the
variableClassVariable has values 1, 2, and 3, then, by default, the dummy variables
are namedClassVariable1, ClassVariable2, andClassVariable3. However, with
CPREFIX=5, the dummy variables are namedClass1, Class2, andClass3. When
CPREFIX=0, dummy variable names are created entirely from the CLASS expansion
variable’s formatted values. Valid values range from -1 to 31, where -1 indicates
the default calculation and 0 to 31 are the number of prefix characters to use. The
default, -1, sets n to 32 - min(32, max(2,fl)), wherefl is the format length. When
CPREFIX= is specified as ana-optionor ano-option, it specifies the default for all
CLASS variables. When you specify CPREFIX= as at-option, it overrides the default
only for selected variables.

DETAIL
DET

reports on details of the model specification. For example, it reports the knots and
coefficients for splines, reference levels for CLASS variables, Box-Cox results, and
so on.

DUMMY
DUM

provides a canonical dummy variable initialization. When there are no monotonicity
constraints and there is only one canonical variable in each set, PROC TRANSREG
(with the DUMMY a-option) can usually find the optimal solution in only one itera-
tion. The initialization iteration is number 0, which is slower and uses more memory
than other iterations. However, when there are no monotonicity constraints, when
there is only one canonical variable in each set, and when there is enough available
memory, specifying the DUMMYa-optioncan greatly decrease the amount of time
required to find the optimal transformations. Furthermore, by solving for the transfor-
mations directly instead of iteratively, PROC TRANSREG avoids certain nonoptimal
solutions.
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HISTORY
HIS

displays the iteration histories even when the NOPRINTa-optionis specified.

INDIVIDUAL
IND

fits each model for each dependent variable individually. This means, for example,
that when INDIVIDUAL is specified, missing values in one dependent variable will
not cause that observation to be deleted for the other models with the other dependent
variables. In contrast, by default, missing values in any variable in any model can
cause the observation to be deleted for all models. The INDIVIDUAL option can
only be specified with METHOD=MORALS.

This option also affects the order of the output. By default, the number of obser-
vations table is printed once at the beginning of the output. With INDIVIDUAL, a
number of observations table appears for each model.

LPREFIX=n
LPR=n

specifies the number of first characters of a CLASS expansion variable’s label (or
name if no label is specified) to use in constructing labels for dummy variables.
Dummy variable labels are constructed from the firstn characters of the CLASS
expansion variable’s name and the first127 − n characters of the formatted CLASS
expansion variable’s value. Valid values range from -1 to 127. Values of 0 to 127
specify the number of name or label characters to use. The default is -1, which spec-
ifies that PROC TRANSREG should pick a value depending on the length of the
prefix and the formatted class value. When LPREFIX= is specified as ana-option
or ano-option, it determines the default for all CLASS variables. When you specify
LPREFIX= as at-option, it overrides the default only for selected variables.

MAXITER=n
MAX=n

specifies the maximum number of iterations (see the“Controlling the Number of
Iterations”section on page 4601). By default, MAXITER=30. A specification of
MAXITER=0 is allowed to save time when no transformations are requested.

METHOD=CANALS | MORALS | REDUNDANCY | UNIVARIATE
MET=CAN | MOR | RED | UNI

specifies the iterative algorithm. By default, METHOD=UNIVARIATE, unless you
specify options that cannot be handled by the UNIVARIATE algorithm. Specifically,
the default is METHOD=MORALS for the following situations:

• if you specify LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE,
MSPLINE, or SSPLINE transformations for the independent variables

• if you specify the ADDITIVEa-optionwith more than one dependent variable

• if you specify the IAPPROXIMATIONSo-option
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CANALS specifies canonical correlation with alternating least squares. This
jointly transforms all dependent and independent variables to max-
imize the average of the firstn squared canonical correlations,
wheren is the value of the NCAN=a-option.

MORALS specifies multiple optimal regression with alternating least squares.
This transforms each dependent variable, along with the set of in-
dependent variables, to maximize the squared multiple correlation.

REDUNDANCY jointly transforms all dependent and independent variables to
maximize the average of the squared multiple correlations (see the
“Redundancy Analysis”section on page 4606).

UNIVARIATE transforms each dependent variable to maximize the squared mul-
tiple correlation, while the independent variables are not trans-
formed.

MONOTONE=two-letters
MON=two-letters

specifies the first and last special missing value in the list of those special missing val-
ues to be estimated using within-variable order and category constraints. By default,
there are no order constraints on missing value estimates. Thetwo-lettersvalue must
consist of two letters in alphabetical order. For example, MONOTONE=DF means
that the estimate of .D must be less than or equal to the estimate of .E, which must be
less than or equal to the estimate of .F; no order constraints are placed on estimates
of .–, .A through .C, and .G through .Z. For details, see the“Missing Values”section
on page 4599.

NCAN=n
NCA=n

specifies the number of canonical variables to use in the METHOD=CANALS algo-
rithm. By default, NCAN=1. The value of the NCAN=a-optionmust be≥ 1.

When canonical coefficients and coordinates are included in the OUT= data set, the
NCAN= a-optionalso controls the number of rows of the canonical coefficient ma-
trices in the data set. If you specify an NCAN= value larger than the minimum of
the number of dependent variables and the number of independent variables, PROC
TRANSREG displays a warning and sets the NCAN=a-optionto the maximum al-
lowable value.

NOINT
NOI

omits the intercept from the OUT= data set and suppresses centering of data. The
NOINT a-option is not allowed with iterative transformations since there is no pro-
vision for optimal scaling without an intercept. The NOINTa-optionis allowed only
when there is no implicit intercept and when all of the data in a BY group absolutely
will not change during the iterations.
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NOMISS
NOM

excludes all observations with missing values from the analysis, but does not ex-
clude them from the OUT= data set. If you omit the NOMISSa-option, PROC
TRANSREG simultaneously computes the optimal transformations of the nonmiss-
ing values and estimates the missing values that minimize squared error. For details,
see the“Missing Values”section on page 4599.

Casewise deletion of observations with missing values occurs when the NOMISS
a-option is specified, when there are missing values in expansions, when there are
missing values in METHOD=UNIVARIATE independent variables, when there are
weights less than or equal to 0, or when there are frequencies less than 1. Excluded
observations are output with a blank value for the–TYPE– variable, and they have
a weight of 0. They do not contribute to the analysis but are scored and transformed
assupplementaryor passive observations.

See the“Passive Observations”section on page 4605 for more information on ex-
cluded observations.

NOPRINT
NOP

suppresses the display of all output unless you specify the HISTORYa-option. The
NOPRINTa-optionwithout the HISTORYa-optiontemporarily disables the Output
Delivery System (ODS). For more information, seeChapter 14, “Using the Output
Delivery System.”

NOZEROCONSTANT
NOZERO
NOZ

specifies that constant variables are expected and should not be zeroed. By default,
constant variables are zeroed. This option is useful when PROC TRANSREG is used
to code experimental designs for discrete choice models (see the“Discrete Choice
Experiments: DESIGN, NORESTORE, NOZERO”section on page 4660). When
these designs are very large, it may be more efficient to use the DESIGN=n option.
It may be that attributes are constant within a block ofn observations, so you need to
specify the NOZEROCONSTANT option to get the correct results. You can specify
this option in the PROC TRANSREG, MODEL, and OUTPUT statements.

ORDER=DATA | FREQ | FORMATTED | INTERNAL
ORD=DAT | FRE | FOR | INT

specifies the order in which the CLASS variable levels are to be reported. The default
is ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER= is specified as ana-option
or ano-option, it determines the default ordering for all CLASS variables. When
you specify ORDER= as at-option, it overrides the default ordering only for selected
variables.

DATA sorts by order of appearance in the input data set.

FORMATTED sorts by formatted value.
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FREQ sorts by descending frequency count; levels with the most observa-
tions appear first.

INTERNAL sorts by unformatted value.

REFERENCE=NONE | MISSING | ZERO
REF=NON | MIS | ZER

specifies how reference levels of CLASS variables are to be treated. The options
are REFERENCE=NONE, the default, in which reference levels are suppressed;
REFERENCE=MISSING, in which reference levels are displayed and output with
missing values; and REFERENCE=ZERO, in which reference levels are displayed
and output with zeros. The REFERENCE= option can be specified in the PROC
TRANSREG, MODEL, or OUTPUT statement, and it can be independently speci-
fied for the OUT= data set and the displayed output. When you specify it in only one
statement, it sets the option for both the displayed output and the OUT= data set.

REITERATE
REI

enables the TRANSREG procedure to use previous transformations as starting points.
The REITERATEa-option affects only variables that are iteratively transformed
(specified as LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, and
SSPLINE). For iterative transformations, the REITERATEa-optionrequests a search
in the input data set for a variable that consists of the value of the TDPREFIX= or
TIPREFIX= o-option followed by the original variable name. If such a variable is
found, it is used to provide the initial values for the first iteration. The final trans-
formation is a member of the transformation family defined by the original variable,
not the transformation family defined by the initialization variable. See the section
“Using the REITERATE Algorithm Option”on page 4602.

SEPARATORS=’ string-1 ’<’string-2 ’ >
SEP=’string-1 ’<’string-2 ’ >

specifies separators for creating CLASS expansion variable labels. By default,
SEPARATORS=’ ’ ’ * ’ (“blank” and “blank asterisk blank”). The first value is
used to separate variable names and values in interactions. The second value is used
to separate interaction components. For example, the label for the dummy variable
for theA=1 andB=2 cell is, by default, ’A 1 * B 2’. If SEPARATORS=’=’ ’x’ is spec-
ified, then the label is ’A=1xB=2’. When SEPARATORS= is specified as ana-option
or ano-option, it determines the default separators for all CLASS variables. When
you specify SEPARATORS= as at-option, it overrides the default only for selected
variables.

SHORT
SHO

suppresses the iteration histories.

SINGULAR=n
SIN=n

specifies the largest value within rounding error of zero. By default,
SINGULAR=1E−12. The TRANSREG procedure uses the value of the
SINGULAR= a-option for checking 1 − R2 when constructing full-rank ma-
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trices of predictor variables, checking denominators before dividing, and so on.
PROC TRANSREG computes the regression coefficients by sweeping with rational
pivoting.

SS2
produces a regression table based on Type II sums of squares. Tests of the contri-
bution of each transformation to the overall model are displayed and output to the
OUTTEST= data set when you specify the OUTTEST= option. When you specify
the SS2a-option, the TESTa-optionis implied. See the section“Hypothesis Tests”
on page 4615. You can suppress the variable labels in the regression tables by speci-
fying the NOLABEL option in the OPTIONS statement.

TEST
TES

generates an ANOVA table. PROC TRANSREG tests the null hypothesis that the
vector of scoring coefficients for all of the transformations is zero. See the section
“Hypothesis Tests”on page 4615.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables for the hypothesis
tests and in the OUT= data set. By default, TSTANDARD=ORIGINAL. When
TSTANDARD= is specified as ana-optionor ano-option, it determines the default
standardization for all variables. When you specify TSTANDARD= as at-option, it
overrides the default standardization only for selected variables.

CENTER centers the output variables to mean zero, but the variances are the
same as the variances of the input variables.

NOMISS sets the means and variances of the transformed variables in the OUT=
data set, computed over all output values that correspond to nonmiss-
ing values in the input data set, to the means and variances com-
puted from the nonmissing observations of the original variables. The
TSTANDARD=NOMISS specification is useful with missing data.
When a variable is linearly transformed, the final variable contains the
original nonmissing values and the missing value estimates. In other
words, the nonmissing values are unchanged. If your data have no

missing values, TSTANDARD=NOMISS and TSTANDARD=ORIGINAL
produce the same results.

ORIGINAL sets the means and variances of the transformed variables to the means
and variances of the original variables. This is the default.

Z standardizes the variables to mean zero, variance one.

The final standardization is affected by other options. If you also specify the
ADDITIVE a-option, the TSTANDARD= option specifies an intermediate step in
computing the final means and variances. The final independent variables, along
with their means and standard deviations, are scaled by the regression coefficients,
creating an additive model with all coefficients equal to one.
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For nonoptimal variable transformations, the means and variances of the original vari-
ables are actually the means and variances of the nonlinearly transformed variables,
unless you specify the ORIGINAL nonoptimalt-option in the MODEL statement.
For example, if a variableX with no missing values is specified as LOG, then, by
default, the final transformation ofX is simply LOG(X), not LOG(X) standardized to
the mean ofX and variance ofX.

TYPE=’text ’|name
TYP=’text ’|name

specifies the valid value for the–TYPE– variable in the input data set. If
PROC TRANSREG finds an input–TYPE– variable, it uses only observations
with a –TYPE– value that matches the TYPE= value. This enables a PROC
TRANSREG OUT= data set containing coefficients to be used as input to PROC
TRANSREG without requiring a WHERE statement to exclude the coefficients. If
a –TYPE– variable is not in the data set, all observations are used. The default is
TYPE=’SCORE’, so if you do not specify the TYPE=a-option, only observations
with –TYPE–=’SCORE’ are used. Do not confuse this option with the data set
TYPE= option. The DATA= data set must be an ordinary SAS data set.

PROC TRANSREG displays a note when it reads observations with blank values of

–TYPE– , but it does not automatically exclude those observations. Data sets created
by the TRANSREG and PRINQUAL procedures have blank–TYPE– values for
those observations that were excluded from the analysis due to nonpositive weights,
nonpositive frequencies, or missing data. When these observations are read again,
they are excluded for the same reason that they were excluded from their original
analysis, not because their–TYPE– value is blank.

UNTIE=two-letters
UNT=two-letters

specifies the first and last special missing value in the list of those special missing
values that are to be estimated with within-variable order constraints but no category
constraints. Thetwo-lettersvalue must consist of two letters in alphabetical order.
By default, there are category constraints but no order constraints on special missing
value estimates. For details, see the“Missing Values”section on page 4599 and the
“Optimal Scaling”section on page 4609.

UTILITIES
UTI

produces a table of the part-worth utilities from a conjoint analysis. Utilities, their
standard errors, and the relative importance of each factor are displayed and output to
the OUTTEST= data set when you specify the OUTTEST= option. When you spec-
ify the UTILITIES a-option, the TESTa-optionis implied. Refer to SAS Technical
Report R-109,Conjoint Analysis Examples, for more information on conjoint analy-
sis.
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OUTPUT Statement

OUTPUT OUT=SAS-data-set < o-options > ;

The OUTPUT statement creates a new SAS data set that contains coefficients,
marginal means, and information on original and transformed variables. The infor-
mation on original and transformed variables composes the score partition of the data
set; observations have–TYPE–=’SCORE’. The coefficients and marginal means
compose the coefficient partition of the data set; observations have–TYPE–=’M
COEFFI’ or–TYPE–=’MEAN’. Other values of–TYPE– are possible; for details,
see “–TYPE– and–NAME– Variables” later in this chapter. For details on data set
structure, see the“Output Data Set”section on page 4617.

To specify the data set, use the OUT= specification.

OUT=SAS-data-set
specifies the output data set for the data, transformed data, predicted values, residuals,
scores, coefficients, and so on. When you use an OUTPUT statement but do not use
the OUT= specification, PROC TRANSREG creates a data set and uses theDATAn
convention. If you want to create a permanent SAS data set, you must specify a
two-level name (refer to “SAS Files” inSAS Language Reference: Conceptsand
“Introduction to DATA Step Processing” in theSAS Procedures Guidefor details).

To control the contents of the data set and variable names, use one or more of the
o-options. You can also specify these options in the PROC TRANSREG statement.

Output Options (o-options)

The following table provides a summary of options in the OUTPUT statement. These
options include the OUT= option and all of theo-options.

Table 75.4. Options Available in the OUTPUT Statement

Task Option
Identify output data set
output data set OUT=

Predicted values, residuals, scores
outputs canonical scores CANONICAL
outputs individual confidence limits CLI
outputs mean confidence limits CLM
specifies design matrix coding DESIGN=
outputs leverage LEVERAGE
does not restore missings NORESTOREMISSING
suppresses output of scores NOSCORES
outputs predicted values PREDICTED
outputs redundancy variables REDUNDANCY=
outputs residuals RESIDUALS

Output data set replacement
replaces dependent variables DREPLACE
replaces independent variables IREPLACE
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Table 75.4. (continued)

Task Option
replaces all variables REPLACE

Output data set coefficients
outputs coefficients COEFFICIENTS
outputs ideal point coordinates COORDINATES
outputs marginal means MEANS
outputs redundancy analysis coefficients MREDUNDANCY

Output data set variable name prefixes
dependent variable approximations ADPREFIX=
independent variable approximations AIPREFIX=
canonical dependent variables CDPREFIX=
conservative individual lower CL CILPREFIX=
canonical independent variables CIPREFIX=
conservative-individual-upper CL CIUPREFIX=
conservative-mean-lower CL CMLPREFIX=
conservative-mean-upper CL CMUPREFIX=
METHOD=MORALS untransformed dependent DEPENDENT=
liberal-individual-lower CL LILPREFIX=
liberal-individual-upper CL LIUPREFIX=
liberal-mean-lower CL LMLPREFIX=
liberal-mean-upper CL LMUPREFIX=
residuals RDPREFIX=
predicted values PPREFIX=
redundancy variables RPREFIX=
transformed dependents TDPREFIX=
transformed independents TIPREFIX=

Output data set macros
creates macro variables MACRO

Control CLASS variables
controls output of reference levels REFERENCE=

Output data set details
dependent and independent approximations APPROXIMATIONS
canonical correlation coefficients CCC
canonical elliptical point coordinate CEC
canonical point coordinates CPC
canonical quadratic point coordinates CQC
approximations to transformed dependents DAPPROXIMATIONS
approximations to transformed independents IAPPROXIMATIONS
elliptical point coordinates MEC
point coordinates MPC
quadratic point coordinates MQC
multiple regression coefficients MRC
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For the coefficients partition, the COEFFICIENTS, COORDINATES, and MEANS
o-optionsprovide the coefficients that are appropriate for your model. For more
explicit control of the coefficient partition, use the options that control details and
prefixes.

The following list provides details on these options.

ADPREFIX=name
ADP=name

specifies a prefix for naming the dependent variable predicted values. The default
is ADPREFIX=P when you specify the PREDICTEDo-option; otherwise, it is
ADPREFIX=A. Specifying the ADPREFIX=o-optionalso implies the PREDICTED
o-option, and the ADPREFIX=o-optionis the same as the PPREFIX=o-option.

AIPREFIX=name
AIP=name

specifies a prefix for naming the independent variable approximations. The
default is AIPREFIX=A. Specifying the AIPREFIX=o-option also implies the
IAPPROXIMATIONSo-option.

APPROXIMATIONS
APPROX
APP

is equivalent to specifying both the DAPPROXIMATIONS and the
IAPPROXIMATIONS o-options. If METHOD=UNIVARIATE, then the
APPROXIMATIONSo-optionimplies only the DAPPROXIMATIONSo-option.

CANONICAL
CAN

outputs canonical variables to the OUT= data set. When METHOD=CANALS, the
CANONICAL o-option is implied. The CDPREFIX=o-option specifies a prefix
for naming the dependent canonical variables (defaultCand), and the CIPREFIX=
o-optionspecifies a prefix for naming the independent canonical variables (default
Cani).

CCC
outputs canonical correlation coefficients to the OUT= data set.

CDPREFIX=name
CDP=name

provides a prefix for naming the canonical dependent variables. The default
is CDPREFIX=Cand. Specifying the CDPREFIX=o-option also implies the
CANONICAL o-option.

CEC
outputs canonical elliptical point model coordinates to the OUT= data set.

CILPREFIX=name
CIL=name

specifies a prefix for naming the conservative-individual-lower confidence limits. The
default prefix isCIL. Specifying the CILPREFIX=o-optionalso implies the CLIo-
option.
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CIPREFIX=name
CIP=name

provides a prefix for naming the canonical independent variables. The default
is CIPREFIX=Cani. Specifying the CIPREFIX=o-option also implies the
CANONICAL o-option.

CIUPREFIX=name
CIU=name

specifies a prefix for naming the conservative-individual-upper confidence limits. The
default prefix isCIU. Specifying the CIUPREFIX=o-optionalso implies the CLIo-
option.

CLI
outputs individual confidence limits to the OUT= data set. The names of the confi-
dence limits variables are constructed from the original dependent variable names and
the prefixes specified in the followingo-options: LILPREFIX= (defaultLIL for lib-
eral individual lower), CILPREFIX= (defaultCIL for conservative individual lower),
LIUPREFIX= (defaultLIU for liberal individual upper), and CIUPREFIX= (default
CIU for conservative individual upper). When there are no monotonicity constraints,
the liberal and conservative limits are the same.

CLM
outputs mean confidence limits to the OUT= data set. The names of the confi-
dence limits variables are constructed from the original dependent variable names
and the prefixes specified in the followingo-options: LMLPREFIX= (defaultLML
for liberal mean lower), CMLPREFIX= (defaultCML for conservative mean lower),
LMUPREFIX= (defaultLMU for liberal mean upper), and CMUPREFIX= (default
CMU for conservative mean upper). When there are no monotonicity constraints, the
liberal and conservative limits are the same.

CMLPREFIX=name
CML=name

specifies a prefix for naming the conservative-mean-lower confidence limits. The
default prefix isCML. Specifying the CMLPREFIX=o-optionalso implies the CLM
o-option.

CMUPREFIX=name
CMU=name

specifies a prefix for naming the conservative-mean-upper confidence limits. The
default prefix isCMU. Specifying the CMUPREFIX=o-optionalso implies the CLM
o-option.

COEFFICIENTS
COE

outputs either multiple regression coefficients or raw canonical coefficients to the
OUT= data set. If you specify METHOD=CANALS (in the MODEL or PROC
TRANSREG statement), then the COEFFICIENTSo-option outputs the firstn
canonical variables, wheren is the value of the NCAN=a-option (specified in
the MODEL or PROC TRANSREG statement). Otherwise, the COEFFICIENTS
o-option includes multiple regression coefficients in the OUT= data set. In ad-
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dition, when you specify the CLASS expansion for any independent variable, the
COEFFICIENTSo-optionalso outputs marginal means.

COORDINATES
COO

outputs either ideal point or vector model coordinates for preference mapping to the
OUT= data set. When METHOD=CANALS, these coordinates are computed from
canonical coefficients; otherwise, the coordinates are computed from multiple regres-
sion coefficients. For details, see the“Point Models”section on page 4605.

CPC
outputs canonical point model coordinates to the OUT= data set.

CQC
outputs canonical quadratic point model coordinates to the OUT= data set.

DAPPROXIMATIONS
DAP

outputs the approximations of the transformed dependent variables to the OUT=
data set. These are the target values for the optimal transformations. With
METHOD=UNIVARIATE and METHOD=MORALS, the dependent variable ap-
proximations are the ordinary predicted values from the linear model. The names
of the approximation variables are constructed from the ADPREFIX=o-option(de-
fault A) and the original dependent variable names. For ordinary predicted values, use
the PREDICTEDo-optioninstead of the DAPPROXIMATIONSo-option, since the
PREDICTEDo-optionuses a more relevant prefix (“P” instead of “A”) and a more
relevant variable label suffix (“Predicted Values” instead of “Approximations”).

DESIGN<=n>
DES<=n>

specifies that your primary goal is design matrix coding, not analysis. Specifying
the DESIGNo-optionmakes the procedure run faster. The DESIGNo-optionsets
the default method to UNIVARIATE and the default MAXITER= value to zero. It
suppresses computing the regression coefficients, unless they are needed for some
other option. Furthermore, when the DESIGNo-option is specified, the MODEL
statement is not required to have an equal sign. When no MODEL statement equal
sign is specified, all variables are considered independent variables, all options that
require dependent variables are ignored, and the IREPLACEo-optionis implied.

You can use DESIGN=n for coding very large data sets, wheren is the number of
observations to code at one time. For example, to code a data set with a large number
of observations, you can specify DESIGN=100 or DESIGN=1000 to process the data
set in blocks of 100 or 1000 observations. If you specify the DESIGNo-option
rather than DESIGN=n, PROC TRANSREG tries to process all observations at once,
which will not work with very large data sets. Specify the NOZEROCONSTANTa-
optionwith DESIGN=n to ensure that constant variables within blocks are not zeroed.
See the section“Using the DESIGN Output Option”on page 4654 and the section
“Discrete Choice Experiments: DESIGN, NORESTORE, NOZERO”on page 4660.
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DEPENDENT=name
DEP=name

specifies the untransformed dependent variable for OUT= data sets with
METHOD=MORALS when there is more than one dependent variable. The
default is DEPENDENT=–DEPEND– .

DREPLACE
DRE

replaces the original dependent variables with the transformed dependent variables
in the OUT= data set. The names of the transformed variables in the OUT= data set
correspond to the names of the original dependent variables in the input data set. By
default, both the original dependent variables and transformed dependent variables
(with names constructed from the TDPREFIX= (defaultT) o-optionand the original
dependent variable names) are included in the OUT= data set.

IAPPROXIMATIONS
IAP

outputs the approximations of the transformed independent variables to the OUT=
data set. These are the target values for the optimal transformations. The names of
the approximation variables are constructed from the AIPREFIX=o-option(default
A) and the original independent variable names. Specifying the AIPREFIX=o-option
also implies the IAPPROXIMATIONSo-option. The IAPPROXIMATIONSo-option
is not valid when METHOD=UNIVARIATE.

IREPLACE
IRE

replaces the original independent variables with the transformed independent vari-
ables in the OUT= data set. The names of the transformed variables in the OUT=
data set correspond to the names of the original independent variables in the input
data set. By default, both the original independent variables and transformed inde-
pendent variables (with names constructed from the TIPREFIX=o-option(defaultT)
and the original independent variable names) are included in the OUT= data set.

LEVERAGE<=name>
LEV<=name>

creates a variable with the specified name in the OUT= data set that contains
leverages. Specifying the LEVERAGEo-option is equivalent to specifying
LEVERAGE=Leverage.

LILPREFIX=name
LIL=name

specifies a prefix for naming the liberal-individual-lower confidence limits. The de-
fault prefix is LIL. Specifying the LILPREFIX=o-option also implies the CLIo-
option.

LIUPREFIX=name
LIU=name

specifies a prefix for naming the liberal-individual-upper confidence limits. The de-
fault prefix isLIU. Specifying the LIUPREFIX=o-optionalso implies the CLIo-
option.
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LMLPREFIX=name
LML=name

specifies a prefix for naming the liberal-mean-lower confidence limits. The de-
fault prefix isLML. Specifying the LMLPREFIX=o-optionalso implies the CLM
o-option.

LMUPREFIX=name
LMU=name

specifies a prefix for naming the liberal-mean-upper confidence limits. The default
prefix is LMU. Specifying the LMUPREFIX=o-option also implies the CLMo-
option.

MACRO(keyword=name...)
MAC(keyword=name...)

creates macro variables. Most of the options available within the MACROo-option
are rarely needed. By default, the TRANSREG procedure creates a macro variable
named–TRGIND with a complete list of independent variables created by the proce-
dure. When the TRANSREG procedure is being used for design matrix creation prior
to running a procedure without a CLASS statement, this macro provides a convenient
way to use the results from PROC TRANSREG. For example, a PROC LOGISTIC
step that uses a design matrix coded by PROC TRANSREG could use the following
MODEL statement:

model y=&_trgind;

The TRANSREG procedure, also by default, creates a macro variable named

–TRGINDN, which contains the number of variables in the–TRGIND list. This
macro variable could be used in an ARRAY statement as follows:

array indvars[&_trgindn] &_trgind;

See the section“Using the DESIGN Output Option”on page 4654 and the section
“Discrete Choice Experiments: DESIGN, NORESTORE, NOZERO”on page 4660
for examples of using the default macro variables.

The availablekeywordsare as follows.

DN=name specifies the name of a macro variable that contains the num-
ber of dependent variables. By default, a macro variable named

–TRGDEPN is created. This is the number of variables in the
DL= list and the number of macro variables created by the DV=
and DE= specifications.

IN=name specifies the name of a macro variable that contains the number
of independent variables. By default, a macro variable named

–TRGINDN is created. This is the number of variables in the IL=
list and the number of macro variables created by the IV= and IE=
specifications.
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DL=name specifies the name of a macro variable that contains the list of
the dependent variables. By default, a macro variable named

–TRGDEP is created. These are the variable names of the fi-
nal transformed variables in the OUT= data set. For example, if
there are three dependent variables,Y1–Y3, then–TRGDEP con-
tains, by default,TY1 TY2 TY3 (or Y1 Y2 Y3 if you specify the
REPLACEo-option).

IL=name specifies the name of a macro variable that contains the list of
the independent variables. By default, a macro variable named

–TRGIND is created. These are the variable names of the fi-
nal transformed variables in the OUT= data set. For example,
if there are three independent variables,X1–X3, then–TRGIND
contains, by default,TX1 TX2 TX3 (or X1 X2 X3 if you specify
the REPLACEo-option).

DV=prefix specifies a prefix for creating a list of macro variables, each
of which contains one dependent variable name. For example,
if there are three dependent variables,Y1–Y3, and you specify
MACRO(DV=DEP), then three macro variables,DEP1, DEP2,
andDEP3, are created, containingTY1, TY2, andTY3, respec-
tively (or Y1, Y2, andY3 if you specify the REPLACEo-option).
By default, no list is created.

IV=prefix specifies a prefix for creating a list of macro variables, each of
which contains one independent variable name. For example, if
there are three independent variables,X1–X3, and you specify
MACRO(IV=IND), then three macro variables,IND1, IND2, and
IND3, are created, containingTX1, TX2, andTX3, respectively
(or X1, X2, andX3 if you specify the REPLACEo-option). By
default, no list is created.

DE=prefix specifies a prefix for creating a list of macro variables, each of
which contains one dependent variable effect. This list shows the
origin of each model term. Each effect consists of two or more
parts, and each part consists of a value in 32 columns followed
by a blank. For example, if you specify MACRO(DE=D), then a
macro variable D1 is created for IDENTITY(Y). The D1 macro
variable is shown next, wrapped onto two lines.

4 TY
IDENTITY Y

The first part is the number of parts (4), the second part is the trans-
formed variable name, the third part is the transformation, and the
last part is the input variable name. By default, no list is created.

IE=prefix specifies a prefix for creating a list of macro variables, each of
which contains one independent variable effect. This list shows
the origin of each model term. Each effect consists of two or more
parts, and each part consists of a value in 32 columns followed by
a blank. For example, if you specify MACRO(IE=I), then three
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macro variables,I1, I2, and I3, are created for CLASS(X1 | X2)
when bothX1 andX2 have values of 1 and 2. These macro vari-
ables are shown next, but with extra white space removed.

5 Tx11 CLASS x1 1
5 Tx21 CLASS x2 1
8 Tx11x21 CLASS x1 1 CLASS x2 1

For CLASS variables, the formatted level appears after the variable
name. The first two effects are the main effects, and the last is the
interaction term. By default, no list is created.

MEANS
MEA

outputs marginal means for CLASS variable expansions to the OUT= data set.

MEC
outputs multiple regression elliptical point model coordinates to the OUT= data set.

MPC
outputs multiple regression point model coordinates to the OUT= data set.

MQC
outputs multiple regression quadratic point model coordinates to the OUT= data set.

MRC
outputs multiple regression coefficients to the OUT= data set.

MREDUNDANCY
MRE

outputs multiple redundancy analysis coefficients to the OUT= data set.

NORESTOREMISSING
NORESTORE
NOR

specifies that missing values should not be restored when the OUT= data set is
created. By default, the coded CLASS variable contains a row of missing values
for observations in which the CLASS variable is missing. When you specify the
NORESTOREMISSINGo-option, these observations contain a row of zeros instead.
This is useful when the TRANSREG procedure is used to code experimental designs
for discrete choice models and there is a constant alternative indicated by a missing
value.

NOSCORES
NOS

excludes original variables, transformed variables, predicted values, residuals, and
scores from the OUT= data set. You can use the NOSCORESo-optionwith various
other options to create an OUT= data set that contains only a coefficient partition (for
example, a data set consisting entirely of coefficients and coordinates).
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PREDICTED
PRE
P

outputs predicted values, which for METHOD=UNIVARIATE and
METHOD=MORALS are the ordinary predicted values from the linear model, to
the OUT= data set. The names of the predicted values’ variables are constructed
from the PPREFIX=o-option(defaultP) and the original dependent variable names.
Specifying the PPREFIX=o-optionalso implies the PREDICTEDo-option.

PPREFIX=name
PDPREFIX=name
PDP=name

specifies a prefix for naming the dependent variable predicted values. The de-
fault is PPREFIX=P when you specify the PREDICTEDo-option; otherwise, it is
PPREFIX=A. Specifying the PPREFIX=o-optionalso implies the PREDICTEDo-
option, and the PPREFIX=o-optionis the same as the ADPREFIX=o-option.

RDPREFIX=name
RDP=name

specifies a prefix for naming the residual (dependent) variables to the OUT= data set.
The default is RDPREFIX=R. Specifying the RDPREFIX=o-optionalso implies the
RESIDUALSo-option.

REDUNDANCY<=STANDARDIZE | UNSTANDARDIZE >
RED<=STA | UNS>

outputs redundancy variables to the OUT= data set, either standardized or un-
standardized. Specifying the REDUNDANCYo-option is the same as specifying
REDUNDANCY=STANDARDIZE. The results of the REDUNDANCYo-option
depends on the TSTANDARD= option. You must specify TSTANDARD=Z
to get results based on standardized data. The TSTANDARD= option con-
trols how the data that go into the redundancy analysis are scaled, and
REDUNDANCY=STANDARDIZE|UNSTANDARDIZE controls how the re-
dundancy variables are scaled. The REDUNDANCYo-option is implied by
METHOD=REDUNDANCY. The RPREFIX=o-option specifies a prefix (default
Red) for naming the redundancy variables.

REFERENCE=NONE | MISSING | ZERO
REF=NON | MIS | ZER

specifies how reference levels of CLASS variables are to be treated. The options
are REFERENCE=NONE, the default, in which reference levels are suppressed;
REFERENCE=MISSING, in which reference levels are displayed and output with
missing values; and REFERENCE=ZERO, in which reference levels are displayed
and output with zeros. The REFERENCE= option can be specified in the PROC
TRANSREG, MODEL, or OUTPUT statement, and it can be independently speci-
fied for the OUT= data set and the displayed output. When you specify it in only one
statement, it sets the option for both the displayed output and the OUT= data set.
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REPLACE
REP

is equivalent to specifying both the DREPLACE and the IREPLACEo-options.

RESIDUALS
RES
R

outputs the differences between the transformed dependent variables and their pre-
dicted values. The names of the residual variables are constructed from the
RDPREFIX=o-option(defaultR) and the original dependent variable names.

RPREFIX=name
RPR=name

provides a prefix for naming the redundancy variables. The default is
RPREFIX=Red. Specifying the RPREFIX= o-option also implies the
REDUNDANCY o-option.

TDPREFIX=name
TDP=name

specifies a prefix for naming the transformed dependent variables. By default,
TDPREFIX=T. The TDPREFIX= o-option is ignored when you specify the
DREPLACEo-option.

TIPREFIX=name
TIP=name

specifies a prefix for naming the transformed independent variables. By de-
fault, TIPREFIX=T. The TIPREFIX=o-option is ignored when you specify the
IREPLACEo-option.

WEIGHT Statement

WEIGHT variable ;

When you use a WEIGHT statement, a weighted residual sum of squares is mini-
mized. The WEIGHT statement has no effect on degrees of freedom or number of
observations, but the weights affect most other calculations. The observation is used
in the analysis only if the value of the WEIGHT statement variable is greater than 0.

Details

Model Statement Usage

MODEL < transform(dependents< / t-options>)
< transform(dependents< / t-options>)...> = >
transform(independents< / t-options>)
< transform(independents< / t-options>)...>< / a-options> ;

Here are some examples of model statements:

• linear regression
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model identity(y) = identity(x);

• a linear model with a nonlinear regression function

model identity(y) = spline(x / nknots=5);

• multiple regression

model identity(y) = identity(x1-x5);

• multiple regression with nonlinear transformations

model spline(y / nknots=3) = spline(x1-x5 / nknots=3);

• multiple regression with nonlinear but monotone transformations

model mspline(y / nknots=3) = mspline(x1-x5 / nknots=3);

• multivariate multiple regression

model identity(y1-y4) = identity(x1-x5);

• canonical correlation

model identity(y1-y4) = identity(x1-x5) / method=canals;

• redundancy analysis

model identity(y1-y4) = identity(x1-x5) / method=redundancy;

• preference mapping, vector model (Carroll 1972)

model identity(Attrib1-Attrib3) = identity(Dim1-Dim2);

• preference mapping, ideal point model (Carroll 1972)

model identity(Attrib1-Attrib3) = point(Dim1-Dim2);

• preference mapping, ideal point model, elliptical (Carroll 1972)

model identity(Attrib1-Attrib3) = epoint(Dim1-Dim2);

• preference mapping, ideal point model, quadratic (Carroll 1972)

model identity(Attrib1-Attrib3) = qpoint(Dim1-Dim2);

• metric conjoint analysis

model identity(Subj1-Subj50) = class(a b c d e f / zero=sum);

• nonmetric conjoint analysis

model monotone(Subj1-Subj50) = class(a b c d e f / zero=sum);



4594 � Chapter 75. The TRANSREG Procedure

• main effects, two-way interaction

model identity(y) = class(a|b);

• less-than-full-rank model—main effects and two-way interaction are con-
strained to sum to zero

model identity(y) = class(a|b / zero=sum);

• main effects and all two-way interactions

model identity(y) = class(a|b|c@2);

• main effects and all two- and three-way interactions

model identity(y) = class(a|b|c);

• main effects and just B*C two-way interaction

model identity(y) = class(a b c b*c);

• seven main effects, three two-way interactions

model identity(y) = class(a b c d e f g a*b a*c a*d);

• deviations-from-means (effects or(1, 0,−1)) coding, with an A reference level
of ’1’ and a B reference level of ’2’

model identity(y) = class(a|b / deviations zero=’1’ ’2’);

• cell-means coding (implicit intercept)

model identity(y) = class(a*b / zero=none);

• reference cell model

model identity(y) = class(a|b / zero=’1’ ’1’);

• reference line with change in line parameters

model identity(y) = class(a) | identity(x);

• reference curve with change in curve parameters

model identity(y) = class(a) | spline(x);

• separate curves and intercepts

model identity(y) = class(a / zero=none) | spline(x);

• quantitative effects with interaction

model identity(y) = identity(x1 | x2);

• separate quantitative effects with interaction within each cell

model identity(y) = class(a * b / zero=none) | identity(x1 | x2);
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Box-Cox Transformations

The Box-Cox (1964) transformation has the form

(yλ − 1)/λ λ 6= 0
log(y) λ = 0

This family of transformations of the positive dependent variabley is controlled by
the parameterλ. Transformations linearly related to square root, inverse, quadratic,
cubic, and so on are all special cases. The limit asλ approaches 0 is the log trans-
formation. More generally, Box-Cox transformations of the following form can be
fit:

((y + c)λ − 1)/(λg) λ 6= 0
log(y + c)/g λ = 0

By default, c = 0. The parameterc can be used to rescaley so that it is strictly
positive. By default,g = 1. Alternatively,g can beẏλ−1 whereẏ is the geometric
mean ofy.

The BOXCOX transformation in PROC TRANSREG can be used to perform a Box-
Cox transformation of the dependent variable. You can specify a list of power pa-
rameters using the LAMBDA= transformation option. By default, LAMBDA=-3
TO 3 BY 0.25. The procedure chooses the optimal power parameter using a max-
imum likelihood criterion (Draper and Smith 1981, pp. 225-226). You can specify
the PARAMETER=c transformation option when you want to shift the values ofy,
usually to avoid negatives. To divide bẏyλ−1, specify the GEOMETRICMEAN
transformation option.

Here are some examples of usage of the LAMBDA= option:

model BoxCox(y / lambda=0) = identity(x1-x5);
model BoxCox(y / lambda=-2 to 2 by 0.1) = identity(x1-x5);
model BoxCox(y) = identity(x1-x5);

In the first example

model BoxCox(y / lambda=0) = identity(x1-x5);

LAMBDA=0 specifies a Box-Cox transformation with a power parameter of 0. Since
a single value of 0 was specified for LAMBDA=, there is no difference between the
following models:

model BoxCox(y / lambda=0) = identity(x1-x5);
model log(y) = identity(x1-x5);

In the second example
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model BoxCox(y / lambda=-2 to 2 by 0.1) = identity(x1-x5);

there is a list of power parameters specified. This tells PROC TRANSREG to find
a Box-Cox transformation before the usual iterations begin. PROC TRANSREG
tries each power parameter in the list and picks the best transformation. A maxi-
mum likelihood approach (Draper and Smith 1981, pp. 225-226) is used. Note that
this is quite different from TRANSREG’s usual approach of iteratively finding opti-
mal transformations. It is analogous to SMOOTH, RANK, and the other nonoptimal
transformations that are performed before the iterations begin.

In the third example

model BoxCox(y) = identity(x1-x5);

the default list of -3 TO 3 BY 0.25 is used.

The procedure prints the optimal power parameter, a confidence interval on the power
parameter (using the ALPHA= transformation option), a “convenient” power param-
eter (selected from the CLL= option list), and the log likelihood for each power pa-
rameter tried (seeExample 75.6).

Smoothing Splines

You can use PROC TRANSREG to output to a SAS data set the same smoothing
splines that the GPLOT procedure creates. The SMOOTH transformation is a nonit-
erative transformation for smoothing splines. The smoothing parameter can be spec-
ified with either the SM= or the PARAMETER=o-option. The independent variable
transformation (Tx in this case) contains the results. The GPLOT requesty*x=2 with
I=SM50 creates the same curve asTx*x.

title ’Smoothing Splines’;

data x;
do x = 1 to 100 by 2;

do rep = 1 to 3;
y = log(x) + sin(x / 10) + normal(7);
output;
end;

end;
run;

proc transreg;
model identity(y) = smooth(x / sm=50);
output;

run;

%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
proc gplot;

axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
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plot y*x=1 y*x=2 tx*x=3 / &opts overlay;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=none i=sm50;
symbol3 color=cyan v=dot i=none;

run; quit;

Figure 75.5. Smoothing Spline Example 1

When you cross a SMOOTH variable with a CLASS variable, specify ZERO=NONE
with the CLASS expansion and the AFTERt-optionwith the SMOOTH transforma-
tion so that separate functions are found within each group.

title2 ’Two Groups’;

data x;
do x = 1 to 100;

group = 1;
do rep = 1 to 3;

y = log(x) + sin(x / 10) + normal(7);
output;
end;

group = 2;
do rep = 1 to 3;

y = -log(x) + cos(x / 10) + normal(7);
output;
end;

end;
run;
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proc transreg;
model identity(y) = class(group / zero=none) |

smooth(x / after sm=50);
output out=curves;

run;

data curves2;
set curves;
if group1 = 0 then tgroup1x = .;
if group2 = 0 then tgroup2x = .;

run;

%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
proc gplot;

axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot y*x=1 tgroup1x*x=2 tgroup2x*x=2 / &opts overlay;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=none i=join;

run; quit;

Figure 75.6. Smoothing Spline Example 2

The SMOOTH transformation is valid only with independent variables; typically, it is
used in models with a single independent and a single dependent variable. When there
are multiple independent variables designated as SMOOTH, the TRANSREG proce-
dure tries to smooth theith independent variable using theith dependent variable as a
target. When there are more independent variables than dependent variables, the last
dependent variable is reused as often as is necessary. For example, for the model
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model identity(y1-y3) = smooth(x1-x5);

smoothing is based on the pairs (y1, x1), (y2, x2), (y3, x3), (y3, x4), and (y3, x5).

The SMOOTH transformation is a noniterative transformation; smoothing occurs
once per variable before the iterations begin. In contrast, SSPLINE provides an iter-
ative smoothing spline transformation. It does not generally minimize squared error;
hence, divergence is possible with SSPLINE.

Missing Values

PROC TRANSREG can estimate missing values, with or without category or
monotonicity constraints, so that the regression model fit is optimized. Several
approaches to missing data handling are provided. All observations with miss-
ing values in IDENTITY, CLASS, POINT, EPOINT, QPOINT, SMOOTH,
PSPLINE, and BSPLINE variables are excluded from the analysis. When
METHOD=UNIVARIATE (specified in the PROC TRANSREG or MODEL
statement), observations with missing values in any of the independent variables are
excluded from the analysis. When you specify the NOMISSa-option, observations
with missing values in the other analysis variables are excluded. Otherwise, missing
data are estimated, using variable means as initial estimates.

You can specify the LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE,
MSPLINE, SSPLINE, LOG, LOGIT, POWER, ARSIN, BOXCOX, RANK, and
EXP transformations in any combination with nonmissing values, ordinary missing
values, and special missing values, as long as the nonmissing values in each variable
have positive variance. No category or order restrictions are placed on the estimates
of ordinary missing values. You can force missing value estimates within a variable
to be identical by using special missing values (refer to “DATA Step Processing” in
SAS Language Reference: Concepts). You can specify up to 27 categories of missing
values, in which within-category estimates must be the same, by coding the missing
values using .– and .A through .Z.

You can also specify an ordering of some missing value estimates. You can use the
MONOTONE=a-optionin the PROC TRANSREG or MODEL statement to indicate
a range of special missing values (a subset of the list from .A to .Z) with estimates
that must be weakly ordered within each variable in which they appear. For example,
if MONOTONE=AI, the nine classes, .A, .B,. . ., .I, are monotonically scored and
optimally scaled just as MONOTONE transformation values are scored. In this case,
category but not order restrictions are placed on the missing values .– and .J through
.Z. You can also use the UNTIE=a-option(in the PROC TRANSREG or MODEL
statement) to indicate a range of special missing values with estimates that must be
weakly ordered within each variable in which they appear but can be untied.

The missing value estimation facilities allow for partitioned or mixed-type variables.
For example, a variable can be considered part nominal and part ordinal. Nominal
classes of otherwise ordinal variables are coded with special missing values. This
feature can be useful with survey research. The class “unfamiliar with the product”
in the variable “Rate your preference for ’Brand X’ on a 1 to 9 scale, or if you are
unfamiliar with the product, check ’unfamiliar with the product’” is an example. You
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can code “unfamiliar with the product” as a special missing value, such as .A. The 1s
to 9s can be monotonically transformed, while no monotonic restrictions are placed
on the quantification of the “unfamiliar with the product” class.

A variable specified for a LINEAR transformation, with special missing values and
ordered categorical missing values, can be part interval, part ordinal, and part nom-
inal. A variable specified for a MONOTONE transformation can have two indepen-
dent ordinal parts. A variable specified for an UNTIE transformation can have an

ordered categorical part and an ordered part without category restrictions. Many other
mixes are possible.

Missing Values, UNTIE, and Hypothesis Tests

The TRANSREG procedure has the ability to estimate missing data and monoton-
ically transform variables while untying tied values. Estimates of ordinary missing
values (.) may all be different. Analyses with UNTIE transformations, the UNTIE=
a-option, and ordinary missing data estimation are all prone to degeneracy problems.
Consider the following example. A perfect fit is found by collapsing all observations
except the one with two missing values into a single value inY andX1.

data x;
input y x1 x2 @@;
datalines;

1 3 7 8 3 9 1 8 6 . . 9 3 3 9
8 5 1 6 7 3 2 7 2 1 8 2 . 9 1
;

proc transreg dummy;
model linear(y) = linear(x1 x2);
output;

run;

proc print;
run;

Obs _TYPE_ _NAME_ y Ty Intercept x1 x2 TIntercept Tx1 Tx2

1 SCORE ROW1 1 2.7680 1 3 7 1 5.1233 7
2 SCORE ROW2 8 2.7680 1 3 9 1 5.1233 9
3 SCORE ROW3 1 2.7680 1 8 6 1 5.1233 6
4 SCORE ROW4 . 12.5878 1 . 9 1 12.7791 9
5 SCORE ROW5 3 2.7680 1 3 9 1 5.1233 9
6 SCORE ROW6 8 2.7680 1 5 1 1 5.1233 1
7 SCORE ROW7 6 2.7680 1 7 3 1 5.1233 3
8 SCORE ROW8 2 2.7680 1 7 2 1 5.1233 2
9 SCORE ROW9 1 2.7680 1 8 2 1 5.1233 2

10 SCORE ROW10 . 2.7680 1 9 1 1 5.1233 1

Figure 75.7. Missing Values Example
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Generally, the use of ordinary missing data estimation, the UNTIE transformation,
and the UNTIE=a-optionshould be avoided, particularly with hypothesis tests. With
these options, parameters are estimated based on only a single observation, and they
can exert tremendous influence over the results. Each of these parameters has one
model degree of freedom associated with it, so small or zero error degrees of freedom
can also be a problem.

Controlling the Number of Iterations

Severala-optionsin the PROC TRANSREG or MODEL statement control the num-
ber of iterations performed. Iteration terminates when any one of the following con-
ditions is satisfied:

• The number of iterations equals the value of the MAXITER=a-option.

• The average absolute change in variable scores from one iteration to the next
is less than the value of the CONVERGE=a-option.

• The criterion change is less than the value of the CCONVERGE=a-option.

You can specify negative values for either convergence option if you wish to define
convergence only in terms of the other option. The criterion change can become
negative when the data have converged so that it is numerically impossible, within
machine precision, to increase the criterion. Usually, a negative criterion change is
the result of very small amounts of rounding error since the algorithms are (usually)
convergent. However, there are other cases where a negative criterion change is a
sign of divergence, which is not necessarily an error. When you specify an SSPLINE
transformation or the REITERATE or DUMMYa-option, divergence may be per-
fectly normal.

When there are no monotonicity constraints and there is only one canonical vari-
able in each set, PROC TRANSREG (with the DUMMYa-option) can usually
find the optimal solution in only one iteration. (There are no monotonicity con-
straints when the MONOTONE, MSPLINE, or UNTIE transformations and the
UNTIE= and MONOTONE=a-optionsare not specified. There is only one canon-
ical variable in each set when METHOD=MORALS or METHOD=UNIVARIATE,
or when METHOD=REDUNDANCY with only one dependent variable, or when
METHOD=CANALS and NCAN=1.)

The initialization iteration is number 0. When there are no monotonicity constraints
and there is only one canonical variable in each set, the next iteration shows no change
and iteration stops. At least two iterations (0 and 1) are performed with the DUMMY
a-optioneven if nothing changes in iteration 0. The MONOTONE, MSPLINE, and
UNTIE variables are not transformed by the dummy variable initialization. Note that
divergence with the DUMMYa-option, particularly in the second iteration, is not an
error. The initialization iteration is slower and uses more memory than other itera-
tions. However, for many models, specifying the DUMMYa-optioncan greatly de-
crease the amount of time required to find the optimal transformations. Furthermore,
by solving for the transformations directly instead of iteratively, PROC TRANSREG
avoids certain nonoptimal solutions.
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You can increase the number of iterations to ensure convergence by increasing the
value of the MAXITER=a-optionand decreasing the value of the CONVERGE=
a-option. Since the average absolute change in standardized variable scores seldom
decreases below 1E−11, you should not specify a value for the CONVERGE=a-
option less than 1E−8 or 1E−10. Most of the data changes occur during the first
few iterations, but the data can still change after 50 or even 100 iterations. You
can try different combinations of values for the CONVERGE= and MAXITER=a-
optionsto ensure convergence without extreme overiteration. If the data do not con-
verge with the default specifications, try CONVERGE=1E−8 and MAXITER=50,
or CONVERGE=1E−10 and MAXITER=200. Note that you can specify the
REITERATEa-optionto start iterating where the previous analysis stopped.

Using the REITERATE Algorithm Option

You can use the REITERATEa-optionto perform additional iterations when PROC
TRANSREG stops before the data have adequately converged. For example, suppose
that you execute the following code:

proc transreg data=a;
model mspline(y) = mspline(x1-x5);
output out=b coefficients;

run;

If the transformations do not converge in the default 30 iterations, you can perform
more iterations without repeating the first 30 iterations.

proc transreg data=b reiterate;
model mspline(y) = mspline(x1-x5);
output out=b coefficients;

run;

Note that a WHERE statement is not necessary to exclude the coefficient observa-
tions. They are automatically excluded because their–TYPE– value is not SCORE.

You can also use the REITERATEa-optionto specify starting values other than the
original values for the transformations. Providing alternate starting points may avoid
local optima. Here are two examples.

proc transreg data=a;
model rank(y) = rank(x1-x5);
output out=b;

run;

proc transreg data=b reiterate;
/* Use ranks as the starting point. */
model mspline(y) = mspline(x1-x5);
output out=c coefficients;

run;
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data b;
set a;
array tx[6] ty tx1-tx5;
do j = 1 to 6;

tx[j] = normal(7);
end;

run;

proc transreg data=b reiterate;
/* Use a random starting point. */
model mspline(y) = mspline(x1-x5);
output out=c coefficients;

run;

Note that divergence with the REITERATEa-option, particularly in the second it-
eration, is not an error since the initial transformation is not required to be a valid
member of the transformation family. When you specify the REITERATEa-option,
the iteration does not terminate when the criterion change is negative during the first
10 iterations.

Avoiding Constant Transformations

There are times when the optimal scaling produces a constant transformed variable.
This can happen with the MONOTONE, UNTIE, and MSPLINE transformations
when the target is negatively correlated with the original input variable. It can hap-
pen with all transformations when the target is uncorrelated with the original input
variable. When this happens, the procedure modifies the target to avoid a constant
transformation. This strategy avoids certain nonoptimal solutions.

If the transformation is monotonic and a constant transformed variable results, the
procedure multiplies the target by−1 and tries the optimal scaling again. If the trans-
formation is not monotonic or if the multiplication by−1 did not help, the procedure
tries using a random target. If the transformation is still constant, the previous non-
constant transformation is retained. When a constant transformation is avoided by
any strategy, a message is displayed: “A constant transformation was avoided for
name.”

With extreme collinearity, small amounts of rounding error might interact with the
instability of the coefficients to produce target vectors that are not positively corre-
lated with the original scaling. If a regression coefficient for a variable is zero, the
formula for the target for that variable contains a zero divide. In a multiple regression
model, after many iterations, one independent variable can be scaled the same way as
the current scaling of the dependent variable, so the other independent variables have
coefficients of zero. When the constant transformation warning appears, you should
interpret your results with extreme caution, and recheck your model.
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Constant Variables

Constant and almost constant variables are zeroed and ignored. As long as the depen-
dent variable is not constant, PROC TRANSREG produces an iteration history table
for all models, not just models in which the variables can change. When constant
variables are expected and should not be zeroed, specify the NOZEROCONSTANT
option.

Character OPSCORE Variables

Character OPSCORE variables are replaced by a numeric variable containing cate-
gory numbers before the iterations, and the character values are discarded. Only the
first eight characters are considered when determining category membership. If you
want the original character variable in the output data set, give it a different name
in the OPSCORE specification (OPSCORE(x / name=(x2)) and name the original
variable on the ID statement (IDx;).

Convergence and Degeneracies

When you specify the SSPLINE transformation, divergence is normal. The rest of
this section assumes that you did not specify SSPLINE. For all the methods available
in PROC TRANSREG, the algorithms are convergent, both in terms of the criterion
being optimized and the parameters being estimated. The value of the criterion being
maximized (squared multiple correlation, average squared multiple correlation, or
average squared canonical correlation) can, theoretically, never decrease from one
iteration to the next. The values of the parameters being solved for (the scores and
weights of the transformed variables) become stable after sufficient iteration.

In practice, the criterion being maximized can decrease with overiteration. When
the statistic has very nearly reached its maximum, further iterations might report a
decrease in the criterion in the last few decimal places. This is a normal result of
very small amounts of rounding error. By default, iteration terminates when this
occurs because, by default, CCONVERGE=0.0. Specifying CCONVERGE=−1, an
impossible change, turns off this check for convergence.

Even though the algorithms are convergent, they might not converge to a global op-
timum. Also, under extreme circumstances, the solution might degenerate. Because
two points always form a straight line, the algorithms sometimes try to reach this
degenerate optimum. This sometimes occurs when one observation is an ordinal out-
lier (when one observation has the extreme rank on all variables). The algorithm can
reach an optimal solution that ties all other categories producing two points. Similar
results can occur when there are many missing values. More generally, whenever
there are very few constraints on the scoring of one or more points, degeneracies can
be a problem. In a well-behaved analysis, the maximum data change, average data
change, and criterion change all decrease at a rapid rate with each iteration. When
the rate of change increases for several iterations, the solution might be degenerating.
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Implicit and Explicit Intercepts

Depending on several options, the model intercept is nonzero, zero, or implicit,
or there is no intercept. Ordinarily, the model contains an explicit nonzero in-
tercept, and theIntercept variable in the OUT= data set contains ones. When
TSTANDARD=CENTER or TSTANDARD=Z is specified, the model contains
an explicit, zero intercept and theIntercept variable contains zeros. When
METHOD=CANALS, the model is fit with centered variables and theIntercept vari-
able is set to missing.

If you specify CLASS with ZERO=NONE or BSPLINE for one or more independent
variables, and TSTANDARD=NOMISS or TSTANDARD=ORIGINAL (the default),
an implicit intercept model is fit. The intercept is implicit in a set of the independent
variables since there exists a set of independent variables the sum of which is a col-
umn of ones. All statistics are mean corrected. The implicit intercept is not an option;
it is implied by the model.

With METHOD=CANALS, theIntercept variable contains thecanonical intercept
for canonical coefficients observations:β̂0 = y′α̂− x′β̂ whereYα̂ ≈ Xβ̂.

Passive Observations

Observations may be excluded from the analysis for several reasons; these include
zero weight; zero frequency; missing values in variables designated IDENTITY,
CLASS, POINT, EPOINT, QPOINT, SMOOTH, PSPLINE, or BSPLINE; and miss-
ing values with the NOMISSa-optionspecified. These observations are passive in
that they do not contribute to determining transformations,R2, sums of squares, de-
grees of freedom, and so on. However, some information can be computed for them.
For example, if no independent variable values are missing, predicted values and re-
dundancy variable values can both be computed. Residuals can be computed for ob-
servations with a nonmissing dependent and nonmissing predicted value. Canonical
variables for dependent variables can be computed when no dependent variables are
missing; canonical variables for independent variables can be computed when no in-
dependent variables are missing, and so on. Passive observations in the OUT= data
set have a blank value for–TYPE– .

Point Models

The expanded set of independent variables generated from the POINT, EPOINT, and
QPOINT expansions can be used to perform ideal point regressions (Carroll 1972)
and compute ideal point coordinates for plotting in a biplot (Gabriel 1981). The
three types of ideal point coordinates can all be described as transformed coefficients.
Assume thatm independent variables are specified in one of the three point expan-
sions. Letb′ be a1 × m row vector of coefficients for these variables and one of
the dependent variables. LetR be a matrix created from the coefficients of the extra
variables. When coordinates are requested with the MPC, MEC, or MQCo-options,
b′ andR are created from multiple regression coefficients. When coordinates are re-
quested with the CPC, CEC, or CQCo-options, b′ andR are created from canonical
coefficients.
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If you specify the POINT expansion in the MODEL statement,R is anm×m iden-
tity matrix times the coefficient for the sums of squares (–ISSQ–) variable. If you
specify the EPOINT expansion,R is anm×m diagonal matrix of coefficients from
the squared variables. If you specify the QPOINT expansion,R is anm×m symmet-
ric matrix of coefficients from the squared variables on the diagonal and crossproduct
variables off the diagonal. The MPC, MEC, MQC, CPC, CEC, and CQC ideal point
coordinates are defined as−0.5b′R−1. WhenR is singular, the ideal point coordi-
nates are infinitely far away and are set to missing, so you should try a simpler version
of the model. The version that is simpler than the POINT model is the vector model
where no extra variables are created. In the vector model, designate all independent
variables as IDENTITY. Then draw vectors from the origin to the COEFFICIENTS
points.

Typically, when you request ideal point coordinates, the MODEL statement should
consist of a single transformation for the dependent variables (usually IDENTITY,
MONOTONE, or MSPLINE) and a single expansion for the independent variables
(one of POINT, EPOINT, or QPOINT).

Redundancy Analysis

Redundancy analysis (Stewart and Love 1968) is a principal component anal-
ysis of multivariate regression predicted values. These first steps show the
redundancy analysis results produced by PROC TRANSREG. The specification
TSTANDARD=Z standardizes all variables to mean zero and variance one.
METHOD=REDUNDANCY specifies redundancy analysis and outputs the redun-
dancy variables to the OUT= data set. The MREDUNDANCYo-optionoutputs two
sets of redundancy analysis coefficients to the OUT= data set.

title ’Redundancy Analysis’;

data x;
input y1-y3 x1-x4;
datalines;

6 8 8 15 18 26 27
1 12 16 18 9 20 8
5 6 15 20 17 29 31
6 9 15 14 10 16 22
7 5 12 14 6 13 9
3 6 7 2 14 26 22
3 5 9 13 18 10 22
6 3 11 3 15 22 29
6 3 7 10 20 21 27
7 5 9 8 10 12 18

;

proc transreg data=x tstandard=z method=redundancy;
model identity(y1-y3) = identity(x1-x4);
output out=red mredundancy replace;

run;

proc print data=red(drop=Intercept);
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format _numeric_ 4.1;
run;

Redundancy Analysis

Obs _TYPE_ _NAME_ y1 y2 y3 x1 x2 x3 x4 Red1 Red2 Red3

1 SCORE ROW1 0.5 0.6 -0.8 0.6 0.9 1.0 0.7 0.2 -0.5 -0.9
2 SCORE ROW2 -2.0 2.1 1.5 1.1 -1.0 0.1 -1.7 1.6 -1.5 0.4
3 SCORE ROW3 0.0 -0.1 1.2 1.4 0.7 1.5 1.2 1.0 0.8 -1.3
4 SCORE ROW4 0.5 1.0 1.2 0.4 -0.8 -0.5 0.1 0.5 1.7 0.1
5 SCORE ROW5 1.0 -0.4 0.3 0.4 -1.6 -1.0 -1.6 1.0 0.1 0.9
6 SCORE ROW6 -1.0 -0.1 -1.1 -1.6 0.1 1.0 0.1 -0.8 -0.9 1.4
7 SCORE ROW7 -1.0 -0.4 -0.6 0.2 0.9 -1.5 0.1 -1.0 -0.4 -1.3
8 SCORE ROW8 0.5 -1.2 0.0 -1.5 0.3 0.4 1.0 -1.2 0.8 0.7
9 SCORE ROW9 0.5 -1.2 -1.1 -0.3 1.3 0.2 0.7 -1.0 -0.9 -0.8

10 SCORE ROW10 1.0 -0.4 -0.6 -0.6 -0.8 -1.1 -0.4 -0.4 0.8 0.7
11 M REDUND Red1 . . . 0.7 -0.6 0.4 -0.1 . . .
12 M REDUND Red2 . . . 0.3 -1.5 -0.6 1.9 . . .
13 M REDUND Red3 . . . -0.7 -0.7 0.3 -0.3 . . .
14 R REDUND x1 . . . . . . . 0.8 -0.0 -0.6
15 R REDUND x2 . . . . . . . -0.6 -0.2 -0.7
16 R REDUND x3 . . . . . . . 0.1 -0.2 -0.1
17 R REDUND x4 . . . . . . . -0.5 0.3 -0.5

Figure 75.8. Redundancy Analysis Example

The–TYPE–=’SCORE’ observations of theRed1–Red3 variables contain the re-
dundancy variables. The nonmissing “M REDUND” values are coefficients for pre-
dicting the redundancy variables from the independent variables. The nonmissing “R
REDUND” values are coefficients for predicting the independent variables from the
redundancy variables.

These following steps show how to generate the same results manually. The data
set is standardized, predicted values are computed, and principal components of the
predicted values are computed. The following statements produce the redundancy
variables, shown inFigure 75.9:

proc standard data=x out=std m=0 s=1;
title2 ’Manually Generate Redundancy Variables’;

run;

proc reg noprint data=std;
model y1-y3 = x1-x4;
output out=p p=ay1-ay3;

run; quit;

proc princomp data=p cov noprint std out=p;
var ay1-ay3;

run;

proc print data=p(keep=Prin:);
format _numeric_ 4.1;

run;
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Redundancy Analysis
Manually Generate Redundancy Variables

Obs Prin1 Prin2 Prin3

1 0.2 -0.5 -0.9
2 1.6 -1.5 0.4
3 1.0 0.8 -1.3
4 0.5 1.7 0.1
5 1.0 0.1 0.9
6 -0.8 -0.9 1.4
7 -1.0 -0.4 -1.3
8 -1.2 0.8 0.7
9 -1.0 -0.9 -0.8

10 -0.4 0.8 0.7

Figure 75.9. Redundancy Analysis Example

The following statements produce the coefficients for predicting the redundancy vari-
ables from the independent variables, shown inFigure 75.10:

proc reg data=p outest=redcoef noprint;
title2 ’Manually Create Redundancy Coefficients’;
model Prin1-Prin3 = x1-x4;

run; quit;

proc print data=redcoef(keep=x1-x4);
format _numeric_ 4.1;

run;

Redundancy Analysis
Manually Create Redundancy Coefficients

Obs x1 x2 x3 x4

1 0.7 -0.6 0.4 -0.1
2 0.3 -1.5 -0.6 1.9
3 -0.7 -0.7 0.3 -0.3

Figure 75.10. Redundancy Analysis Example

The following statements produce the coefficients for predicting the independent vari-
ables from the redundancy variables, shown inFigure 75.11:

proc reg data=p outest=redcoef2 noprint;
title2 ’Manually Create Other Coefficients’;
model x1-x4 = prin1-prin3;

run; quit;

proc print data=redcoef2(keep=Prin1-Prin3);
format _numeric_ 4.1;

run;
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Redundancy Analysis
Manually Create Other Coefficients

Obs Prin1 Prin2 Prin3

1 0.8 -0.0 -0.6
2 -0.6 -0.2 -0.7
3 0.1 -0.2 -0.1
4 -0.5 0.3 -0.5

Figure 75.11. Redundancy Analysis Example

Optimal Scaling

An alternating least-squares optimal scaling algorithm can be divided into two major
stages. The first stage estimates the parameters of the linear model. These param-
eters are used to create the predicted values or target for each variable that can be
transformed. Each target minimizes squared error (as explained in the discussion of
the algorithms inSAS Technical Report R-108. The definition of the target depends
on many factors, such as whether a variable is independent or dependent, which al-
gorithm is used (for example, regression, redundancy, CANALS, principal compo-
nents), and so on. The definition of the target is independent of the transformation
family you specify for the variable. However, the target values for a variable typically
do not fit the prescribed transformation family for the variable. They might not have
the right category structure; they might not have the right order; they might not be a
linear combination of the columns of a B-spline basis; and so on.

The second major stage is optimal scaling. Optimal scaling can be defined as a pos-
sibly constrained, least-squares regression problem. When you specify an optimal
transformation, or when missing data are estimated for any variable, the full represen-
tation of the variable is not simply a vector; it is a matrix with more than one column.
The optimal scaling phase finds the vector that is a linear combination of the columns
of this matrix, that is closest to the target (in terms of minimum squared error), among
those that do not violate any of the constraints imposed by the transformation family.
Optimal scaling methods are independent of the data analysis method that generated
the target. In all cases, optimal scaling can be accomplished by creating a design
matrix based on the original scaling of the variable and the transformation family
specified for that variable. The optimally scaled variable is a linear combination of
the columns of the design matrix. The coefficients of the linear combination are found
using (possibly constrained) least squares. Many optimal scaling problems are solved
without actually constructing design and projection matrices. The following two sec-
tions describe the algorithms used by PROC TRANSREG for optimal scaling. The
first section discusses optimal scaling for OPSCORE, MONOTONE, UNTIE, and
LINEAR transformations, including how missing values are handled. The second
section addresses SPLINE and MSPLINE transformations.
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OPSCORE, MONOTONE, UNTIE, and LINEAR
Transformations

Two vectors of information are needed to produce the optimally scaled variable: the
initial variable scaling vectorx and the target vectory. For convenience, both vectors
are first sorted on the values of the initial scaling vector. If you request an UNTIE
transformation, the target vector is sorted within ties in the initial scaling vector. The
normal SAS System collating sequence for missing and nonmissing values is used.
Sorting simply allows constraints to be specified in terms of relations among adjoin-
ing coefficients. The sorting process partitionsx andy into missing and nonmissing
parts(x′

mx′
n)′, and(y′

my′
n)′.

Next, PROC TRANSREG determines category membership. Every ordinary miss-
ing value (.) forms a separate category. (Three ordinary missing values form three
categories.) Every special missing value within the range specified in the UNTIE=
a-optionforms a separate category. (If UNTIE= BC and there are three .B and two .C
missing values, five categories are formed from them.) For all other special missing
values, a separate category is formed for each different value. (If there are four .A
missing values, one category is formed from them.)

Each distinct nonmissing value forms a separate category for OPSCORE and
MONOTONE transformations (1 1 1 2 2 3 form three categories). Each nonmiss-
ing datum forms a separate category for all other transformations (1 1 1 2 2 3 form
six categories). Once category membership is determined, category means are com-
puted. Here is an example:

x: (. . .A .A .B 1 1 1 2 2 3 3 3 4)’

y: (5 6 2 4 2 1 2 3 4 6 4 5 6 7)’

OPSCORE and
MONOTONE means: (5 6 3 2 2 5 5 7)’

other means: (5 6 3 2 1 2 3 4 6 4 5 6 7)’

The category means are the coefficients of a category indicator design matrix. The
category means are the Fisher (1938) optimal scores. For MONOTONE and UNTIE
transformations, order constraints are imposed on the category means for the non-
missing partition by merging categories that are out of order. The algorithm checks
upward until an order violation is found, then averages downward until the order vi-
olation is averaged away. (The average ofx̄1 computed fromn1 observations and̄x2

computed fromn2 observations is(n1x̄1 + n2x̄2)/(n1 + n2).) The MONOTONE
algorithm (Kruskal 1964, secondary approach to ties) for this example with means
for the nonmissing values(2 5 5 7)′ would do the following checks:2 < 5:OK,
5 = 5:OK, 5 < 7:OK. The means are in the proper order, so no work is needed.

The UNTIE transformation (Kruskal 1964, primary approach to ties) uses the same
algorithm on the means of the nonmissing values(1 2 3 4 6 4 5 6 7)′ but with different
results for this example:1 < 2:OK, 2 < 3:OK, 3 < 4:OK, 4 < 6:OK, 6 > 4:average
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6 and 4 and replace 6 and 4 by the average. The new means of the nonmissing values
are(1 2 3 4 5 5 5 6 7)′. The check resumes:4 < 5:OK, 5 = 5:OK, 5 = 5:OK,
5 < 6:OK, 6 < 7:OK. If some of the special missing values are ordered, the upward
checking, downward averaging method is applied to them also, independently of the
other missing and nonmissing partitions. Once the means conform to any required
category or order constraints, an optimally scaled vector is produced from the means.
The following example results from a MONOTONE transformation.

x: (. . .A .A .B 1 1 1 2 2 3 3 3 4) ′

y: (5 6 2 4 2 1 2 3 4 6 4 5 6 7) ′

result: (5 6 3 3 2 2 2 2 5 5 5 5 5 7) ′

The upward checking, downward averaging algorithm is equivalent to creating a cat-
egory indicator design matrix, solving for least-squares coefficients with order con-
straints, then computing the linear combination of design matrix columns.

For the optimal transformation LINEAR and for nonoptimal transformations, missing
values are handled as just described. The nonmissing target values are regressed onto
the matrix defined by the nonmissing initial scaling values and an intercept. In this
example, the target vectoryn = (1 2 3 4 6 4 5 6 7)′ is regressed onto the design
matrix[

1 1 1 1 1 1 1 1 1
1 1 1 2 2 3 3 3 4

]′
Although only a linear transformation is performed, the effect of a linear regression
optimal scaling is not eliminated by the later standardization step (unless the variable
has no missing values). In the presence of missing values, the linear regression is
necessary to minimize squared error.

SPLINE and MSPLINE Transformations

The missing portions of variables subjected to SPLINE or MSPLINE transformations
are handled the same way as for OPSCORE, MONOTONE, UNTIE, and LINEAR
transformations (see the previous section). The nonmissing partition is handled by
first creating a B-spline basis of the specified degree with the specified knots for the
nonmissing partition of the initial scaling vector and then regressing the target onto
the basis. The optimally scaled vector is a linear combination of the B-spline basis
vectors using least-squares regression coefficients. An algorithm for generating the
B-spline basis is given in de Boor (1978, pp. 134–135). B-splines are both a computa-
tionally accurate and efficient way of constructing a basis for piecewise polynomials;
however, they are not the most natural method of describing splines.

Consider an initial scaling vectorx = (1 2 3 4 5 6 7 8 9)′ and a degree three spline
with interior knots at 3.5 and 6.5. The B-spline basis for the transformation is the
left matrix in Table 75.5, and the natural piecewise polynomial spline basis is the
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right matrix. The two matrices span the same column space. The natural basis has
an intercept, a linear term, a quadratic term, a cubic term, and two more terms since
there are two interior knots. These terms are generated (for knotk andx elementx)
by the formula(x − k)3 × I(x>k). The indicator variableI(x>k) evaluates to 1.0 if
x is greater thank and to 0.0 otherwise. If knotk had been repeated, there would
be a(x − k)2 × I(x>k) term also. Notice that the fifth column makes no contri-
bution to the curve before 3.5, makes zero contribution at 3.5 (the transformation
is continuous), and makes an increasing contribution beyond 3.5. The same pattern
of results holds for the last term with knot 6.5. The coefficient of the fifth column
represents the change in the cubic portion of the curve after 3.5. The coefficient of
the sixth column represents the change in the cubic portion of the curve after 6.5.

Table 75.5. Spline Bases

Piecewise
B-Spline Basis Polynomial Splines

1.000 0.000 0.000 0.000 0 0
0.216 0.608 0.167 0.009 0 0
0.008 0.458 0.461 0.073 0 0
0 0.172 0.585 0.241 0.001 0
0 0.037 0.463 0.463 0.037 0
0 0.001 0.241 0.585 0.172 0
0 0 0.073 0.461 0.458 0.008
0 0 0.009 0.167 0.608 0.216
0 0 0.000 0.000 0.000 1.000





1 1 1 1 0 0
1 2 4 8 0 0
1 3 9 27 0 0
1 4 16 64 0.125 0
1 5 25 125 3.375 0
1 6 36 216 15.625 0
1 7 49 343 42.875 0.125
1 8 64 512 91.125 3.375
1 9 81 729 166.375 15.625


The numbers in the B-spline basis do not have a simple interpretation like the num-
bers in the natural piecewise polynomial basis. The B-spline basis has a diagonally
banded structure. The band shifts one column to the right after every knot. The num-
ber of entries in each row that may potentially be nonzero is one greater than the de-
gree. The elements within a row always sum to one. The B-spline basis is accurate be-
cause of the smallness of the numbers and the lack of extreme collinearity inherent in
the natural polynomials. B-splines are efficient because PROC TRANSREG can take
advantage of the sparseness of the B-spline basis when it accumulates crossproducts.
The number of required multiplications and additions to accumulate the crossproduct
matrix does not increase with the number of knots but does increase with the degree
of the spline, so it is much more computationally efficient to increase the number of
knots than to increase the degree of the polynomial.

MSPLINE transformations are handled like SPLINE transformations except that con-
straints are placed on the coefficients to ensure monotonicity. When the coefficients
of the B-spline basis are monotonically increasing, the transformation is monotoni-
cally increasing. When the polynomial degree is two or less, monotone coefficient
splines, integrated splines (Winsberg and Ramsay 1980), and the general class of all
monotone splines are equivalent.



Specifying the Number of Knots � 4613

Specifying the Number of Knots

Keep the number of knots small (usually less than ten, although you can specify
more). A degree three spline with nine knots, one at each decile, can closely follow
a large variety of curves. Each spline transformation of degreep with q knots fits a
model withp + q parameters. The total number of parameters should be much less
than the number of observations. Usually in regression analyses, it is recommended
that there be at least five or ten observations for each parameter in order to get stable
results. For example, when spline transformations of degree three with nine knots are
requested for six variables, the number of observations in the data set should be at
least five or ten times 72 (since6 × (3 + 9) is the total number of parameters). The
overall model can also have a parameter for the intercept and one or more parameters
for each nonspline variable in the model.

Increasing the number of knots gives the spline more freedom to bend and follow the
data. Increasing the degree also gives the spline more freedom, but to a lesser extent.
Specifying a large number of knots is much better than increasing the degree beyond
three.

When you specify NKNOTS=q for a variable withn observations, then each of the
q + 1 segments of the spline containsn/(q + 1) observations on the average. When
you specify KNOTS=number-list, make sure that there is a reasonable number of
observations in each interval.

The following statements find a cubic polynomial transformation ofX and no trans-
formation ofY:

proc transreg;
model identity(Y)=spline(X);
output;

run;

The following statements find a cubic spline transformation curve forX that consists
of the weighted sum of a single constant, a single straight line, a quadratic curve for
the portion of the variable less than 3.0, a different quadratic curve for the portion
greater than 3.0 (since the 3.0 knot is repeated), and a different cubic curve for each
of the intervals: (minimum to 1.5), (1.5 to 2.4), (2.4 to 3.0), (3.0 to 4.0), and (4.0
to maximum). The transformation is continuous everywhere, its first derivative is
continuous everywhere, its second derivative is continuous everywhere except at 3.0,
and its third derivative is continuous everywhere except at 1.5, 2.4, 3.0, and 4.0.

proc transreg;
model identity(Y)=spline(X / knots=1.5 2.4 3.0 3.0 4.0);
output;

run;

The following statements find a quadratic spline transformation that consists of a
polynomialX–t = b0+b1X+b2X2 for the range (X < 3.0) and a completely different
polynomialX–t = b3 + b4X + b5X2 for the range (X > 3.0). The two curves are not
required to be continuous at 3.0.
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proc transreg;
model identity(y)=spline(x / knots=3 3 3 degree=2);
output;

run;

The following statements categorizeY into 10 intervals and find a step-function trans-
formation. One aspect of this transformation family is unlike all other optimal trans-
formation families. The initial scaling of the data does not fit the restrictions imposed
by the transformation family. This is because the initial variable can be continuous,
but a discrete step function transformation is sought. Zero degree spline variables are
categorized before the first iteration.

proc transreg;
model identity(Y)=spline(X / degree=0 nknots=9);
output;

run;

The following statements find a continuous, piecewise linear transformation ofX:

proc transreg;
model identity(Y)=spline(X / degree=1 nknots=8);
output;

run;

SPLINE, BSPLINE, and PSPLINE Comparisons

SPLINE is a transformation. It takes a variable as input and produces a transformed
variable as output. Internally, with SPLINE, a B-spline basis is used to find the
transformation, which is a linear combination of the columns of the B-spline basis.
However, with SPLINE, the basis is not made available in any output.

BSPLINE is an expansion. It takes a variable as input and produces more than one
variable as output. The output variables comprise the B-spline basis that is used
internally by SPLINE.

PSPLINE is an expansion. It takes a variable as input and produces more than one
variable as output. The difference between PSPLINE and BSPLINE is that PSPLINE
produces a piecewise polynomial, whereas BSPLINE produces a B-spline. A matrix
consisting of a piecewise polynomial basis and an intercept spans the same space
as the B-spline matrix, but the basis vectors are quite different. The numbers in the
piecewise polynomials can get quite large; the numbers in the B-spline basis range
between 0 and 1. There are many more zeros in the B-spline basis.

Interchanging SPLINE, BSPLINE, and PSPLINE should have no effect on the fit of
the overall model except for the fact that PSPLINE is much more prone to numerical
problems. Similarly, interchanging a CLASS expansion and an OPSCORE transfor-
mation should have no effect on the fit of the overall model.
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Hypothesis Tests

The TRANSREG procedure has a set of options for testing hypotheses in models with
a single dependent variable. The TESTa-optionproduces an ANOVA table. It tests
the null hypothesis that the vector of coefficients for all of the transformations is zero.
The SS2a-optionproduces a regression table with Type II tests of the contribution of
each transformation to the overall model. In some cases, exact tests are provided; in
other cases, the tests are approximate, liberal, or conservative.

For two reasons it is typically not appropriate to test hypotheses by using the output
from PROC TRANSREG as input to other procedures such as the REG procedure.
First, PROC REG has no way of determining how many degrees of freedom were
used for each transformation. Second, the Type II sums of squares for the tests of
the individual regression coefficients are not correct for the transformation regression
model since PROC REG, as it evaluates the effect of each variable, cannot change the
transformations of the other variables. PROC TRANSREG uses the correct degrees
of freedom and sums of squares.

In an ordinary univariate linear model, there is one parameter for each independent
variable, including the intercept. In the transformation regression model, many of
the “variables” are used internally in the bases for the transformations. Each basis
column has one parameter orscoringcoefficient, and each linearly independent col-
umn has one model degree of freedom associated with it. Coefficients applied to
transformed variables,model coefficients, do not enter into the degrees of freedom
calculations. They are by-products of the standardizations and can be absorbed into
the transformations by specifying the ADDITIVEa-option. The wordparameteris
reserved for model and scoring coefficients that have a degree of freedom associated
with them.

For expansions, there is one model parameter for each variable created by the ex-
pansion (except for all missing CLASS columns and expansions that have an implicit
intercept). Each IDENTITY variable has one model parameter. If there arem POINT
variables, they expand tom + 1 variables and, hence, havem + 1 model parameters.
Form EPOINT variables, there are2m model parameters. Form QPOINT variables,
there arem(m + 3)/2 model parameters. If a variable withm categories is desig-
nated CLASS, there arem − 1 parameters. For BSPLINE and PSPLINE variables
of DEGREE=n with NKNOTS=k, there aren + k parameters. Note that one of the
n + k + 1 BSPLINE columns and one of them CLASS(variable / ZERO=NONE)
columns are not counted due to the implicit intercept.

There are scoring parameters for missing values in nonexcluded observations. Each
ordinary missing value (.) has one scoring parameter. Each different special miss-
ing value (.– and .A through .Z) within each variable has one scoring parameter.
Missing values specified in the UNTIE= and MONOTONE= options follow the rules
for UNTIE and MONOTONE transformations, which are described later in this chap-
ter.

For all nonoptimal transformations (LOG, LOGIT, ARSIN, POWER, EXP, RANK,
BOXCOX), there is one parameter per variable in addition to any missing value scor-
ing parameters.
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For SPLINE, OPSCORE, and LINEAR transformations, the number of scoring pa-
rameters is the number of basis columns that are used internally to find the trans-
formations minus 1 for the intercept. The number of scoring parameters for SPLINE
variables is the same as the number of model parameters for BSPLINE and PSPLINE
variables. If DEGREE=n and NKNOTS=k, there aren + k scoring parameters. The
number of scoring parameters for OPSCORE, SMOOTH, and SSPLINE variables
is the same as the number of model parameters for CLASS variables. If there are
m categories, there arem − 1 scoring parameters. There is one parameter for each
LINEAR variable. For SPLINE, OPSCORE, LINEAR, MONOTONE, UNTIE, and
MSPLINE transformations, missing value scoring parameters are computed as de-
scribed previously with the nonoptimal transformations.

The number of scoring parameters for MONOTONE, UNTIE, and MSPLINE trans-
formations is less precise than for SPLINE, OPSCORE, and LINEAR transforma-
tions. One way of handling a MONOTONE transformation is to treat it as if it were
the same as an OPSCORE transformation. If there arem categories, there arem− 1
potential scoring parameters. However, there are typically fewer thanm − 1 unique
parameter estimates since some of thosem − 1 scoring parameter estimates may be
tied during the optimal scaling to impose the order constraints. Imposing ties on the
scoring parameter estimates is equivalent to fitting a model with fewer parameters. So
there are two available scoring parameter counts:m − 1 and a smaller number that
is determined during the analysis. Usingm− 1 as the model degrees of freedom for
MONOTONE variables (treating OPSCORE and MONOTONE transformations the
same way) isconservative, since the MONOTONE scoring parameter estimates are
more restricted than the OPSCORE scoring parameter estimates. Using the smaller
count (the number of scoring parameter estimates that are different minus 1 for the
intercept) in the model degrees of freedom isliberal, since the data and the model
together are being used to determine the number of parameters. PROC TRANSREG
reports tests using both liberal and conservative degrees of freedom to provide lower
and upper bounds on the “true”p-values.

For the UNTIE transformation, the conservative scoring parameter count is the num-
ber of distinct observations, whereas the liberal scoring parameter count is the num-
ber of scoring parameter estimates that are different minus 1 for the intercept. Hence,
when you specify UNTIE, conservative tests have zero error degrees of freedom un-
less there are replicated observations.

For MSPLINE variables of DEGREE=n and NKNOTS=k, the conservative scoring
parameter count isn+k, whereas the liberal parameter count is the number of scoring
parameter estimates that are different, minus 1 for the intercept. A liberal degrees of
freedom of 1 does not necessarily imply a linear transformation. It just implies that
n plusk minus the number of ties imposed equals 1. An example of a one degree-of-
freedom nonlinear transformation is a two-piece linear transformation in which the
slope of one piece is 0.

The number of scoring parameters is determined during each iteration. After the
last iteration, enough information is available for the TESTa-option to produce an
ANOVA table that reports the overall fit of the model. If you specify the SS2a-
option, further iterations are necessary to test the contribution of each transformation
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to the overall model.

The liberal tests do not compensate for over-parameterization. For example, request-
ing a spline transformation withk knots when a linear transformation will suffice
results in “liberal” tests that are actually conservative because too many degrees of
freedom are being used for the transformations. Use as few knots as possible to avoid
this problem.

In ordinary multiple regression, anF test of the null hypothesis that the coefficient for
variablexj is zero can be constructed by comparing two linear models. One model
is the full model with all parameters, and the other is a reduced model that has all
parameters except the parameter for variablexj . The difference between the model
sum of squares for the full model and the model sum of squares for the reduced
model is the Type II sum of squares for the test of the null hypothesis that the coef-
ficient for variablexj is 0. The numerator of theF test has one degree of freedom.
The mean square error for the full model is the denominator of theF test of variable
xj . Note that the estimates of the coefficients for the two models are not usually the
same. When variablexj is removed, the coefficients for the other variables change to
compensate for the removal ofxj . In a transformation regression model, the transfor-
mations of the other variables must be allowed to change and the numerator degrees
of freedom are not always ones. It is not correct to simply let the model coefficients
for the transformed variables change and apply the new model coefficients to the old
transformations computed with the old scoring parameter estimates. In a transforma-
tion regression model, further iteration is needed to test each transformation because
all the scoring parameter estimates for other variables must be allowed to change to
test the effect of variablexj . This can be quite time consuming for a large model if
the DUMMY a-optioncannot be used to solve directly for the transformations.

Output Data Set

The OUT= output data set can contain a great deal of information; however, in most
cases, the output data set contains a small portion of the entire range of available
information and is organized for direct input into the %PLOTIT macro or graphical
or analysis procedures. For information on the %PLOTIT macro, seeAppendix B,
“Using the %PLOTIT Macro.”

Output Data Set Examples

The next section provides a complete list of the contents of the OUT= data set.
However, before presenting complete details, this section provides three brief ex-
amples, illustrating some typical output data sets.

The first example shows the output data set from a two-way ANOVA model. The
following statements produceFigure 75.12:

title ’ANOVA Output Data Set Example’;

data ReferenceCell;
input Y X1 $ X2 $;
datalines;



4618 � Chapter 75. The TRANSREG Procedure

11 a a
12 a a
10 a a

4 a b
5 a b
3 a b
5 b a
6 b a
4 b a
2 b b
3 b b
1 b b

;

*---Fit Reference Cell Two-Way ANOVA Model---;
proc transreg data=ReferenceCell;

model identity(Y) = class(X1 | X2);
output coefficients replace predicted residuals;

run;

*---Print the Results---;
proc print;
run;

proc contents position;
ods select position;

run;
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ANOVA Output Data Set Example

X1a
Obs _TYPE_ _NAME_ Y PY RY Intercept X1a X2a X2a X1 X2

1 SCORE ROW1 11 11 0 1 1.0 1 1 a a
2 SCORE ROW2 12 11 1 1 1.0 1 1 a a
3 SCORE ROW3 10 11 -1 1 1.0 1 1 a a
4 SCORE ROW4 4 4 0 1 1.0 0 0 a b
5 SCORE ROW5 5 4 1 1 1.0 0 0 a b
6 SCORE ROW6 3 4 -1 1 1.0 0 0 a b
7 SCORE ROW7 5 5 0 1 0.0 1 0 b a
8 SCORE ROW8 6 5 1 1 0.0 1 0 b a
9 SCORE ROW9 4 5 -1 1 0.0 1 0 b a

10 SCORE ROW10 2 2 0 1 0.0 0 0 b b
11 SCORE ROW11 3 2 1 1 0.0 0 0 b b
12 SCORE ROW12 1 2 -1 1 0.0 0 0 b b
13 M COEFFI Y . . . 2 2.0 3 4
14 MEAN Y . . . . 7.5 8 11

ANOVA Output Data Set Example

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _TYPE_ Char 8
2 _NAME_ Char 32
3 Y Num 8
4 PY Num 8 Y Predicted Values
5 RY Num 8 Y Residuals
6 Intercept Num 8 Intercept
7 X1a Num 8 X1 a
8 X2a Num 8 X2 a
9 X1aX2a Num 8 X1 a * X2 a

10 X1 Char 8
11 X2 Char 8

Figure 75.12. ANOVA Example Output Data Set Contents

The–TYPE– variable indicates observation type: score, multiple regression coeffi-
cient (parameter estimates), and marginal means. The–NAME– variable contains
the default observation labels, “ROW1”, “ROW2”, and so on, and contains the de-
pendent variable name (Y) for the remaining observations. If you specify an ID state-
ment,–NAME– contains the values of the first ID variable for score observations.
TheY variable is the dependent variable,PY contains the predicted values,RY con-
tains the residuals, and the variablesIntercept throughX1aX2a contain the design
matrix. TheX1 andX2 variables are the original CLASS variables.

The next example shows the contents of the output data set from fitting a curve
through a scatter plot.

title ’Output Data Set for Curve Fitting Example’;

data A;
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do X = 1 to 100;
Y = log(x) + sin(x / 10) + normal(7);
output;
end;

run;

proc transreg;
model identity(Y) = spline(X / nknots=9);
output predicted out=B;

run;

proc contents position;
ods select position;

run;

These statements produceFigure 75.13.

Output Data Set for Curve Fitting Example

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _TYPE_ Char 8
2 _NAME_ Char 32
3 Y Num 8
4 TY Num 8 Y Transformation
5 PY Num 8 Y Predicted Values
6 Intercept Num 8 Intercept
7 X Num 8
8 TIntercept Num 8 Intercept Transformation
9 TX Num 8 X Transformation

Figure 75.13. Predicted Values Example Output Data Set Contents

The OUT= data set contains–TYPE– and–NAME– variables. Since no coefficients
or coordinates are requested, all observations are–TYPE–=’SCORE’. TheY vari-
able is the original dependent variable,TY is the transformed dependent variable,PY
contains the predicted values,X is the original independent variable, andTX is the
transformed independent variable. The data set also contains anIntercept and trans-
formed interceptTIntercept variable. (In this case, the transformed intercept is the
same as the intercept. However, if you specify the TSTANDARD= and ADDITIVE
options, these are not always the same.)
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The next example shows the results from specifying METHOD=MORALS when
there is more than one dependent variable.

title ’METHOD=MORALS Output Data Set Example’;

data x;
input Y1 Y2 X1 $ X2 $;
datalines;

11 1 a a
10 4 b a

5 2 a b
5 9 b b
4 3 c c
3 6 b a
1 8 a b

;

*---Fit Reference Cell Two-Way ANOVA Model---;
proc transreg data=x noprint dummy;

model spline(Y1 Y2) = opscore(X1 X2 / name=(N1 N2));
output coefficients predicted residuals;
id x1 x2;

run;

*---Print the Results---;
proc print;
run;

proc contents position;
ods select position;

run;

These statements produceFigure 75.14.
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METHOD=MORALS Output Data Set Example

Obs _DEPVAR_ _TYPE_ _NAME_ _DEPEND_ T_DEPEND_ P_DEPEND_ R_DEPEND_

1 Spline(Y1) SCORE a 11 13.1600 11.1554 2.00464
2 Spline(Y1) SCORE b 10 6.1931 6.8835 -0.69041
3 Spline(Y1) SCORE a 5 2.4467 4.7140 -2.26724
4 Spline(Y1) SCORE b 5 2.4467 0.4421 2.00464
5 Spline(Y1) SCORE c 4 4.2076 4.2076 0.00000
6 Spline(Y1) SCORE b 3 5.5693 6.8835 -1.31422
7 Spline(Y1) SCORE a 1 4.9766 4.7140 0.26261
8 Spline(Y1) M COEFFI Y1 . . . .
9 Spline(Y2) SCORE a 1 -0.5303 -0.5199 -0.01043

10 Spline(Y2) SCORE b 4 5.5487 4.5689 0.97988
11 Spline(Y2) SCORE a 2 3.8940 4.5575 -0.66347
12 Spline(Y2) SCORE b 9 9.6358 9.6462 -0.01043
13 Spline(Y2) SCORE c 3 5.6210 5.6210 0.00000
14 Spline(Y2) SCORE b 6 3.5994 4.5689 -0.96945
15 Spline(Y2) SCORE a 8 5.2314 4.5575 0.67390
16 Spline(Y2) M COEFFI Y2 . . . .

Obs Intercept N1 N2 TIntercept TN1 TN2 X1 X2

1 1 0 0 1.0000 0.06711 -0.09384 a a
2 1 1 0 1.0000 1.51978 -0.09384 b a
3 1 0 1 1.0000 0.06711 1.32038 a b
4 1 1 1 1.0000 1.51978 1.32038 b b
5 1 2 2 1.0000 0.23932 1.32038 c c
6 1 1 0 1.0000 1.51978 -0.09384 b a
7 1 0 1 1.0000 0.06711 1.32038 a b
8 . . . 10.9253 -2.94071 -4.55475 Y1 Y1
9 1 0 0 1.0000 0.03739 -0.09384 a a

10 1 1 0 1.0000 1.51395 -0.09384 b a
11 1 0 1 1.0000 0.03739 1.32038 a b
12 1 1 1 1.0000 1.51395 1.32038 b b
13 1 2 2 1.0000 0.34598 1.32038 c c
14 1 1 0 1.0000 1.51395 -0.09384 b a
15 1 0 1 1.0000 0.03739 1.32038 a b
16 . . . -0.3119 3.44636 3.59024 Y2 Y2

Figure 75.14. METHOD=MORALS Rolled Output Data Set
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The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _DEPVAR_ Char 42 Dependent Variable Transformation(Name)
2 _TYPE_ Char 8
3 _NAME_ Char 32
4 _DEPEND_ Num 8 Dependent Variable
5 T_DEPEND_ Num 8 Dependent Variable Transformation
6 P_DEPEND_ Num 8 Dependent Variable Predicted Values
7 R_DEPEND_ Num 8 Dependent Variable Residuals
8 Intercept Num 8 Intercept
9 N1 Num 8

10 N2 Num 8
11 TIntercept Num 8 Intercept Transformation
12 TN1 Num 8 N1 Transformation
13 TN2 Num 8 N2 Transformation
14 X1 Char 8
15 X2 Char 8

Figure 75.14. (continued)

If you specify METHOD=MORALS with multiple dependent variables, PROC
TRANSREG performs separate univariate analyses and stacks the results in the
OUT= data set. For this example, the results of the first analysis are in the partition
designated by–DEPVAR–=’Spline(Y1)’ and the results of the first analysis are in
the partition designated by–DEPVAR–=’Spline(Y2)’, which are the transformation
and dependent variable names. Each partition has–TYPE–=’SCORE’ observations
for the variables and a–TYPE–=’M COEFFI’ observation for the coefficients. In
this example, an ID variable is specified, so the–NAME– variable contains the for-
matted values of the first ID variable. Since both dependent variables have to go into
the same column, the dependent variable is given a new name,–DEPEND– . The de-
pendent variable transformation is namedT–DEPEND– , the predicted values vari-
able is namedP–DEPEND– , and the residuals variable is namedR–DEPEND– .

The independent variables are character OPSCORE variables. By default, PROC
TRANSREG replaces character OPSCORE variables with category numbers and dis-
cards the original character variables. To avoid this, the input variables are renamed
from X1 andX2 to N1 andN2 and the originalX1 andX2 are added to the data set as
ID variables. TheN1 andN2 variables contain the initial values for the OPSCORE
transformations, and theTN1 andTN2 variables contain optimal scores. The data
set also contains anIntercept and transformed interceptTIntercept variable. The
regression coefficients are in the transformation columns, which also contain the vari-
ables to which they apply.

Output Data Set Contents

This section presents the various matrices that can result from PROC TRANSREG
processing and that appear in the OUT= data set. The exact contents of an OUT=
data set depends on many options.
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Table 75.6. PROC TRANSREG OUT= Data Set Contents

–TYPE– Contents Options, Default Prefix
SCORE dependent variables DREPLACE not specified
SCORE independent variables IREPLACE not specified
SCORE transformed dependent variables default, TDPREFIX=T
SCORE transformed independent variables default, TIPREFIX=T
SCORE predicted values PREDICTED, PPREFIX=P
SCORE residuals RESIDUALS, RDPREFIX=R
SCORE leverage LEVERAGE, LEVERAGE=Leverage
SCORE lower individual confidence limits CLI, LILPREFIX=LIL,

CILPREFIX=CIL
SCORE upper individual confidence limits CLI, LIUPREFIX=LIU,

CIUPREFIX=CIU
SCORE lower mean confidence limits CLM, LMLPREFIX=LML,

CMLPREFIX=CML
SCORE upper mean confidence limits CLM, LMUPREFIX=LMU,

CMUPREFIX=CMU
SCORE dependent canonical variables CANONICAL, CDPREFIX=Cand
SCORE independent canonical variables CANONICAL, CIPREFIX=Cani
SCORE redundancy variables REDUNDANCY, RPREFIX=Red
SCORE ID, CLASS, BSPLINE variables ID, CLASS, BSPLINE,
SCORE independent variables approximations IAPPROXIMATIONS, IAPREFIX=A

M COEFFI multiple regression coefficients COEFFICIENTS, MRC
C COEFFI canonical coefficients COEFFICIENTS, CCC
MEAN marginal means COEFFICIENTS, MEANS
M REDUND multiple redundancy coefficients MREDUNDANCY
R REDUND multiple redundancy coefficients MREDUNDANCY
M POINT point coordinates COORDINATES or MPC, POINT
M EPOINT elliptical point coordinates COORDINATES or MEC, EPOINT
M QPOINT quadratic point coordinates COORDINATES or MQC, QPOINT
C POINT canonical point coordinates COORDINATES or CPC, POINT
C EPOINT canonical elliptical point coordinates COORDINATES or CEC, EPOINT
C QPOINT canonical quadratic point coordinates COORDINATES or CQC, QPOINT

The independent and dependent variables are created from the original input data.
Several potential differences exist between these variables and the actual input data.
An intercept variable can be added, new variables can be added for POINT, EPOINT,
QPOINT, CLASS, IDENTITY, PSPLINE, and BSPLINE variables, and category
numbers are substituted for character OPSCORE variables. These matrices are not
always what is input to the first iteration. After the expanded data set is stored for in-
clusion in the output data set, several things happen to the data before they are input
to the first iteration: column means are substituted for missing values; zero degree
SPLINE and MSPLINE variables are transformed so that the iterative algorithms get
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step function data as input, which conform to the zero degree transformation family
restrictions; and the nonoptimal transformations are performed.

Details for the UNIVARIATE Method

When you specify METHOD=UNIVARIATE (in the MODEL or PROC TRANSREG
statement), PROC TRANSREG can perform several analyses, one for each depen-
dent variable. While each dependent variable can be transformed, their indepen-
dent variables are not transformed. The OUT= data set optionally contains all of
the–TYPE–=’SCORE’ observations, optionally followed by coefficients or coordi-
nates.

Details for the MORALS Method

When you specify METHOD=MORALS (in the MODEL or PROC TRANSREG
statement), successive analyses are performed, one for each dependent variable. Each
analysis transforms one dependent variable and the entire set of the independent vari-
ables. All information for the first dependent variable (scores then, optionally, coef-
ficients) appear first. Then all information for the second dependent variable (scores
then, optionally, coefficients) appear next. This arrangement is repeated for all de-
pendent variables.

Details for the CANALS and REDUNDANCY Methods

For METHOD=CANALS and METHOD=REDUNDANCY (specified in either the
MODEL or PROC TRANSREG statement), one analysis is performed that simul-
taneously transforms all dependent and independent variables. The OUT= data set
optionally contains all of the–TYPE–=’SCORE’ observations, optionally followed
by coefficients or coordinates.

Variable Names

As shown in the preceding examples, some variables in the output data set directly
correspond to input variables and some are created. All original optimal and nonop-
timal transformation variable names are unchanged.

The names of the POINT, QPOINT, and EPOINT expansion variables are also left
unchanged, but new variables are created. When independent POINT variables are
present, the sum-of-squares variable–ISSQ– is added to the output data set. For
each EPOINT and QPOINT variable, a new squared variable is created by append-
ing “–2”. For example,Dim1 andDim2 are expanded intoDim1, Dim2, Dim1–2,
andDim2–2. In addition, for each pair of QPOINT variables, a new crossproduct
variable is created by combining the two names, for example,Dim1Dim2.

The names of the CLASS variables are constructed from original variable names and
levels. Lengths are controlled by the CPREFIX=a-option. For example, whenX1
andX2 both have values of ’a’ and ’b’, CLASS(X1 | X2 / ZERO=NONE) createsX1
main effect variable namesX1a X1b, X2 main effect variable namesX2a X2b, and
interaction variable namesX1aX2a X1aX2b X1bX2a X1bX2b.

PROC TRANSREG then uses these variable names when creating the transformed,
predicted, and residual variable names by affixing the relevant prefix and possibly
dropping extra characters.
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METHOD=MORALS Variable Names

When you specify METHOD=MORALS and only one dependent variable is present,
the output data set is structured exactly as if METHOD=REDUNDANCY (see the
section“Details for the CANALS and REDUNDANCY Methods”on page 4625).
When more than one dependent variable is present, the dependent variables are out-
put in the variable–DEPEND– , transformed dependent variables are output in the
variableT–DEPEND– , predicted values are output in the variableP–DEPEND– ,
and residuals are output in the variableR–DEPEND– . You can partition the data
set into BY groups, one per dependent variable, by referring to the character variable

–DEPVAR– , which contains the original dependent variable names and transforma-
tions.

Duplicate Variable Names

When the same name is generated from multiple variables in the OUT= data set, new
names are created by appending ’2’, ’3’, or ’4’, and so on, until a unique name is cre-
ated. For 32-character names, the last character is replaced with a numeric suffix until
a unique name is created. For example, if there are two output variables that otherwise
would be namedX, thenX andX2 are created instead. If there are two output vari-
ables that otherwise would be namedThisIsAThirtyTwoCharacterVarName, then
ThisIsAThirtyTwoCharacterVarName andThisIsAThirtyTwoCharacterVarNam2
are created instead.

OUTTEST= Output Data Set

The OUTTEST= data set contains hypothesis test results. The OUTTEST= data set
always contains ANOVA results. When you specify the SS2a-option, regression
tables are also output. When you specify the UTILITIESa-option, conjoint analy-
sis part-worth utilities are also output. The OUTTEST= data set has the following
variables:

–DEPVAR– is a 42-character variable that contains the dependent variable
transformation and name.

–TYPE– is an 8-character variable that contains the table type. The first
character is “U” for univariate or “M” for multivariate. The second
character is blank. The third character is “A” for ANOVA, “2”
for Type II sum of squares, or “U” for UTILITIES. The fourth
character is blank. The fifth character is “L” for liberal tests, “C”
for conservative tests, or “U” for the usual tests.

Title is an 80-character variable that contains the table title.

Variable is a 42-character variable that contains the independent variable
transformations and names for regression tables and blanks for
ANOVA tables.

Coefficient contains the multiple regression coefficients for regression tables
and underscore special missing values for ANOVA tables.

Statistic is a 24-character variable that contains the names for statistics in
other variables, such asValue.
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Value contains multivariate test statistics and all other information that
does not fit in one of the other columns including R-Square,
Dependent Mean, Adj R-Sq, and Coeff Var. WheneverValue is
not

an underscore special missing value,Statistic describes the con-
tents ofValue.

NumDF contains numerator degrees of freedom forF tests.

DenDF contains denominator degrees of freedom forF tests.

SSq contains sums of squares.

MeanSquare contains mean squares.

F containsF statistics.

NumericP contains thep-value for theF statistic, stored in a numeric variable.

P is a 9-character variable that contains the formattedp-value for the
F statistic, including the appropriate∼, <=, >=, or blank symbols.

LowerLimit contains lower confidence limits on the parameter estimates.

UpperLimit contains upper confidence limits on the parameter estimates.

StdError contains standard errors. For SS2 and UTILITIES tables, standard
errors are output for each coefficient with one degree of freedom.

Importance contains the relative importance of each factor for UTILITIES ta-
bles.

Label is a 256-character variable that contains variable labels.

There are several possible tables in the OUTTEST= data set corresponding to com-
binations of univariate and multivariate tests; ANOVA and regression results; and
liberal, conservative, and the usual tests. Each table is composed of only a subset
of the variables. Numeric variables contain underscore special missing values when
they are not a column in a table. Ordinary missing values (.) appear in variables that
are part of a table when a nonmissing value cannot be produced. For example, theF
is missing for a test with zero degrees of freedom.

Computational Resources

This section provides information on the computational resources required to use
PROC TRANSREG.

Let

n = number of observations

q = number of expanded independent variables

r = number of expanded dependent variables

k = maximum spline degree

p = maximum number of knots
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• More than56(q + r) plus the maximum of the data matrix size, the optimal
scaling work space, and the covariance matrix size bytes of array space are
required. The data matrix size is8n(q + r) bytes. The optimal scaling work
space requires less than8(6n+(p+k +2)(p+k +11)) bytes. The covariance
matrix size is4(q + r)(q + r + 1) bytes.

• PROC TRANSREG tries to store the original and transformed data in memory.
If there is not enough memory, a utility data set is used, potentially resulting in
a large increase in execution time. The amount of memory for the preceding
data formulas is an underestimate of the amount of memory needed to handle
most problems. These formulas give the absolute minimum amount of memory
required. If a utility data set is used, and if memory can be used with perfect
efficiency, then roughly the amount of memory stated previously is needed. In
reality, most problems require at least two or three times the minimum.

• PROC TRANSREG sorts the data once. The sort time is roughly proportional
to (q + r)n3/2.

• One regression analysis per iteration is required to compute model parameters
(or two canonical correlation analyses per iteration for METHOD=CANALS).
The time required for accumulating the crossproducts matrix is roughly propor-
tional ton(q + r)2. The time required to compute the regression coefficients is
roughly proportional toq3.

• Each optimal scaling is a multiple regression problem, although some trans-
formations are handled with faster special-case algorithms. The number of
regressors for the optimal scaling problems depends on the original values of
the variable and the type of transformation. For each monotone spline transfor-
mation, an unknown number of multiple regressions is required to find a set of
coefficients that satisfies the constraints. The B-spline basis is generated twice
for each SPLINE and MSPLINE transformation for each iteration. The time
required to generate the B-spline basis is roughly proportional tonk2.

Solving Standard Least-Squares Problems

This section illustrates how to solve some ordinary least-squares problems and gener-
alizations of those problems by formulating them as transformation regression prob-
lems. One problem involves finding linear and nonlinear regression functions in a
scatter plot. The next problem involves simultaneously fitting two lines or curves
through a scatter plot. The last problem involves finding the overall fit of a multi-way
main-effects and interactions analysis-of-variance model.

Nonlinear Regression Functions

This example uses PROC TRANSREG in simple regression to find the optimal re-
gression line, a nonlinear but monotone regression function, and a nonlinear non-
monotone regression function. A regression line can be found by specifying

proc transreg;
model identity(y) = identity(x);
output predicted;

run;
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A monotone regression function (in this case, a monotonically decreasing regression
function, since the correlation coefficient is negative) can be found by requesting an
MSPLINE transformation of the independent variable, as follows.

proc transreg;
model identity(y) = mspline(x / nknots=9);
output predicted;

run;

The monotonicity restriction can be relaxed by requesting a SPLINE transformation
of the independent variable, as shown next.

proc transreg;
model identity(y) = spline(x / nknots=9);
output predicted;

run;

In this example, it is not useful to plot the transformationTX, sinceTX is just an
intermediate result used in finding a regression function through the originalX andY
scatter plot.

The following statements provide a specific example of using the TRANSREG pro-
cedure for fitting nonlinear regression functions. These statements produceFigure
75.15throughFigure 75.18.

title ’Linear and Nonlinear Regression Functions’;
*---Generate an Artificial Nonlinear Scatter Plot---;
*---SAS/IML Software is Required for this Example---;
proc iml;

N = 500;
X = (1:N)‘;
X = X/(N/200);
Y = -((X/50)-1.5)##2 + sin(X/8) + sqrt(X)/5 + 2*log(X) + cos(X);
X = X - X[:,];
X = -X / sqrt(X[##,]/(n-1));
Y = Y - Y[:,];
Y = Y / sqrt(Y[##,]/(n-1));
all = Y || X;
create outset from all;
append from all;
quit;

data A;
set outset(rename=(col1=Y col2=X));
if Y<-2 then Y=-2 + ranuni(7654321)/2;
X1=X; X2=X; X3=X; X4=X;

run;

*---Predicted Values for the Linear Regression Line---;
proc transreg data=A;
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title2 ’A Linear Regression Line’;
model identity(Y)=identity(X);
output out=A pprefix=L;
id X1-X4;

run;

*---Predicted Values for the Monotone Regression Function---;
proc transreg data=A;

title2 ’A Monotone Regression Function’;
model identity(Y)=mspline(X / nknots=9);
output out=A pprefix=M;
id X1-X4 LY;

run;

*---Predicted Values for the Nonmonotone Regression Function---;
proc transreg data=A;

title2 ’A Nonmonotone Regression Function’;
model identity(Y)=spline(X / nknots=9);
output out=A predicted;
id X1-X4 LY MY;

run;

*---Plot the Results---;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=A;
title;
axis1 minor=none label=(angle=90 rotate=0)

order=(-2 to 2 by 2);
axis2 minor=none order=(-2 to 2 by 2);
plot Y*X1=1 / &opts name=’tregnl1’;
plot Y*X2=1 LY*X2=2 / overlay &opts name=’tregnl2’;
plot Y*X3=1 MY*X3=2 / overlay &opts name=’tregnl3’;
plot Y*X4=1 PY*X4=2 / overlay &opts name=’tregnl4’;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=none i=join;
label X1 = ’Nonlinear Scatter Plot’

X2 = ’Linear Regression, r**2 = 0.14580’
X3 = ’Monotone Function, r**2 = 0.60576’
X4 = ’Nonlinear Function, r**2 = 0.89634’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregnl1 2:tregnl3 3:tregnl2 4:tregnl4;

run; quit;
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Linear and Nonlinear Regression Functions
A Linear Regression Line

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.14580 Converged

Algorithm converged.

Figure 75.15. A Linear Regression Line

Linear and Nonlinear Regression Functions
A Monotone Regression Function

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.62131 1.34209 0.14580
2 0.00000 0.00000 0.60576 0.45995 Converged

Algorithm converged.

Figure 75.16. A Monotone Regression Function

Linear and Nonlinear Regression Functions
A Nonmonotone Regression Function

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.83948 2.78984 0.14580
2 0.00000 0.00000 0.89634 0.75054 Converged

Algorithm converged.

Figure 75.17. A Nonmonotone Regression Function
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Figure 75.18. Linear, Monotone, and Nonmonotone Regression Functions

The squared correlation is only 0.15 for the linear regression, showing that a simple
linear regression model is not appropriate for these data. By relaxing the constraints
placed on the regression line, the proportion of variance accounted for increases from
0.15 (linear) to 0.61 (monotone) to 0.90 (nonmonotone). Relaxing the linearity con-
straint allows the regression function to bend and more closely follow the right por-
tion of the scatter plot. Relaxing the monotonicity constraint allows the regression
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function to follow the periodic portion of the left side of the plot more closely. The
nonlinear MSPLINE transformation is a quadratic spline with knots at the deciles.
The nonlinear nonmonotonic SPLINE transformation is a cubic spline with knots at
the deciles.

Different knots and different degrees would produce slightly different results.
The two nonlinear regression functions could be closely approximated by simpler
piecewise linear regression functions. The monotone function could be approximated
by a two-piece line with a single knot at the elbow. The nonmonotone function could
be approximated by a six-piece function with knots at the five elbows.

With this type of problem (one dependent variable with no missing values that is not
transformed and one independent variable that is nonlinearly transformed), PROC
TRANSREG always iterates exactly twice (although only one iteration is necessary).
The first iteration reports theR2 for the linear regression line and finds the optimal
transformation ofX. Since the data change in the first iteration, a second iteration is
performed, which reports theR2 for the final nonlinear regression function, and zero
data change. The predicted values, which are a linear function of the optimal trans-
formation ofX, contain they-coordinates for the nonlinear regression function. The
variance of the predicted values divided by the variance ofY is theR2 for the fit of
the nonlinear regression function. WhenX is monotonically transformed, the trans-
formation ofX is always monotonically increasing, but the predicted values increase
if the correlation is positive and decrease for negative correlations.

Simultaneously Fitting Two Regression Functions

One application of ordinary multiple regression is fitting two or more regression lines
through a single scatter plot. With PROC TRANSREG, this application can easily
be generalized to fit separate or parallel curves. To illustrate, consider a data set
with two groups. The data set has a continuous independent variableX, a continuous
dependent variableY, and a group membership variableG that has the value 1 for one
group and 2 for the other group. The following code shows how PROC TRANSREG
can be used to fit two lines, curves, and monotone curves simultaneously through a
scatter plot. You can use this code with an appropriate number-list for the KNOTS=
t-option.

proc transreg data=A dummy;
title ’Parallel Lines, Separate Intercepts’;
model identity(Y)=class(G) identity(X);
output predicted;

run;

proc transreg data=A;
title ’Parallel Monotone Curves, Separate Intercepts’;
model identity(Y)=class(G) mspline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A dummy;
title ’Parallel Curves, Separate Intercepts’;
model identity(Y)=class(G) spline(X / knots=-1.5 to 2.5 by 0.5);
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output predicted;
run;

proc transreg data=A;
title ’Separate Slopes, Same Intercept’;
model identity(Y)=class(G / zero=none) * identity(X);
output predicted;

run;

proc transreg data=A;
title ’Separate Monotone Curves, Same Intercept’;
model identity(Y) = class(G / zero=none) *

mspline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A dummy;
title ’Separate Curves, Same Intercept’;
model identity(Y) = class(G / zero=none) *

spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A;
title ’Separate Slopes, Separate Intercepts’;
model identity(Y) = class(G / zero=none) | identity(X);
output predicted;

run;

proc transreg data=A;
title ’Separate Monotone Curves, Separate Intercepts’;
model identity(Y) = class(G / zero=none) |

mspline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A dummy;
title ’Separate Curves, Separate Intercepts’;
model identity(Y) = class(G / zero=none) |

spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

Since the variablesX1 and X2 both have a large partition of zeros, the KNOTS=
t-option is specified instead of the NKNOTS=t-option. The following example gen-
erates an artificial data set with two curves. In the interest of space, only the preceding
separate curves, separate intercepts example is run.
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title ’Separate Curves, Separate Intercepts’;

data A;
do X = -2 to 3 by 0.025;

G = 1;
Y = 8*(X*X + 2*cos(X*6)) + 15*normal(7654321);
output;
G = 2;
Y = 4*(-X*X + 4*sin(X*4)) - 40 + 15*normal(7654321);
output;
end;

run;

proc transreg data=A dummy;
model identity(Y) = class(G / zero=none) |

spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc gplot;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=dot i=none;
plot Y*X=1 PY*X=2 /overlay frame cframe=ligr haxis=axis1

vaxis=axis2 href=0 vref=0;
run; quit;

The previous statements produceFigure 75.19throughFigure 75.20.

Separate Curves, Separate Intercepts

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.42724 4.48710 0.71020
1 0.00000 0.00000 0.86604 0.15584 Converged

Algorithm converged.

Figure 75.19. Fitting Models: Separate Curves, Separate Intercepts
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Figure 75.20. Plot for the Separate Curves, Separate Intercepts Example

Unbalanced ANOVA without Dummy Variables

This example illustrates that an analysis of variance model can be formulated as a
simple regression model with optimal scoring. The purpose of the example is to
explain one aspect of how PROC TRANSREG works, not to propose an alternative
way of performing an analysis of variance.

Finding the overall fit of a large, unbalanced analysis of variance model can be
handled as an optimal scoring problem without creating large, sparse design matri-
ces. For example, consider an unbalanced full main-effects and interactions ANOVA
model with six factors. Assume that a SAS data set is created with factor level indi-
cator variablesC1 throughC6 and dependent variableY. If each factor level consists
of nonblank single characters, you can create a cell indicator in a DATA step with the
statement

x=compress(c1||c2||c3||c4||c5||c6);

The following statements optimally scoreX (using the OPSCORE transformation)
and do not transformY. The finalR2 reported is theR2 for the full analysis of vari-
ance model.

proc transreg;
model identity(y)=opscore(x);
output;

run;
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TheR2 displayed by the preceding statements is the same as theR2 that would be
reported by both of the following PROC GLM runs.

proc glm;
class x;
model y=x;

run;

proc glm;
class c1-c6;
model y=c1|c2|c3|c4|c5|c6;

run;

PROC TRANSREG optimally scores the classes ofX, within the space of a single
variable with values linearly related to the cell means, so the full ANOVA problem is
reduced to a simple regression problem with an optimal independent variable. PROC
TRANSREG requires only one iteration to find the optimal scoring ofX but, by
default, performs a second iteration, which reports no data changes.

Hypothesis Tests for Simple Univariate Models

If the dependent variable has one parameter (IDENTITY, LINEAR with no missing
values, and so on) and if there are no monotonicity constraints, PROC TRANSREG
fits univariate models, which can also be fit with a DATA step and PROC REG. This
is illustrated with an artificial data set.

data htex;
do i = 0.5 to 10 by 0.5;

x1 = log(i);
x2 = sqrt(i) + sin(i);
x3 = 0.05 * i * i + cos(i);
y = x1 - x2 + x3 + 3 * normal(7);
x1 = x1 + normal(7);
x2 = x2 + normal(7);
x3 = x3 + normal(7);
output;

end;
run;

Both PROC TRANSREG and PROC REG are run to fit the same polynomial re-
gression model. The ANOVA and regression tables from PROC TRANSREG are
displayed inFigure 75.21. The ANOVA and regression tables from PROC REG are
displayed inFigure 75.22. The SHORTa-optionis specified to suppress the iteration
history.

proc transreg data=htex ss2 short;
title ’Fit a Polynomial Regression Model with PROC TRANSREG’;
model identity(y) = spline(x1);

run;
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Fit a Polynomial Regression Model with PROC TRANSREG

The TRANSREG Procedure

Dependent Variable Identity(y)

Number of Observations Read 20
Number of Observations Used 20

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 5.8365 1.94550 0.14 0.9329
Error 16 218.3073 13.64421
Corrected Total 19 224.1438

Root MSE 3.69381 R-Square 0.0260
Dependent Mean 0.85490 Adj R-Sq -0.1566
Coeff Var 432.07258

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F

Intercept 1 1.4612767 18.8971 18.8971 1.38 0.2565
Spline(x1) 3 -0.3924013 5.8365 1.9455 0.14 0.9329

Figure 75.21. ANOVA and Regression Output from PROC TRANSREG

data htex2;
set htex;
x1_1 = x1;
x1_2 = x1 * x1;
x1_3 = x1 * x1 * x1;

run;

proc reg;
title ’Fit a Polynomial Regression Model with PROC REG’;
model y = x1_1 - x1_3;

run;
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Fit a Polynomial Regression Model with PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: y

Number of Observations Read 20
Number of Observations Used 20

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 5.83651 1.94550 0.14 0.9329
Error 16 218.30729 13.64421
Corrected Total 19 224.14380

Root MSE 3.69381 R-Square 0.0260
Dependent Mean 0.85490 Adj R-Sq -0.1566
Coeff Var 432.07258

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.22083 1.47163 0.83 0.4190
x1_1 1 0.79743 1.75129 0.46 0.6550
x1_2 1 -0.49381 1.50449 -0.33 0.7470
x1_3 1 0.04422 0.32956 0.13 0.8949

Figure 75.22. ANOVA and Regression Output from PROC REG

The PROC TRANSREG regression table differs in several important ways from the
parameter estimate table produced by PROC REG. The REG procedure displays stan-
dard errors andts. PROC TRANSREG displays Type II sums of squares, mean
squares, andFs. The difference is because the numerator degrees of freedom are
not always 1, sot-tests are not uniformly appropriate. When the degrees of freedom
for variablexj is 1, the following relationships hold between the standard errors(sβj

)
and the Type II sums of squares (SSj):

sβj
= (β̂2

j /Fj)1/2

and

SSj = β̂2
j ×MSE/s2

βj

PROC TRANSREG does not provide tests of the individual terms that go into the
transformation. (However it could if BSPLINE or PSPLINE had been specified in-
stead of SPLINE.) The test of SPLINE(X1) is the same as the test of the overall
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model. The intercepts are different due to the different numbers of variables and their
standardizations.

In the next example, bothX1 andX2 are transformed in the first PROC TRANSREG
step, and PROC TRANSREG is used instead of a DATA step to create the polynomi-
als for PROC REG. Both PROC TRANSREG and PROC REG fit the same polyno-
mial regression model. The output from PROC TRANSREG and PROC REG is in
Figure 75.23.

proc transreg data=htex ss2 dummy;
title ’Two-Variable Polynomial Regression’;
model identity(y) = spline(x1 x2);

run;

proc transreg noprint data=htex maxiter=0;
/* Use PROC TRANSREG to prepare input to PROC REG */
model identity(y) = pspline(x1 x2);
output out=htex2;

run;

proc reg;
model y = x1_1-x1_3 x2_1-x2_3;
test x1_1, x1_2, x1_3;
test x2_1, x2_2, x2_3;

run;
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Two-Variable Polynomial Regression

The TRANSREG Procedure

Dependent Variable Identity(y)

Number of Observations Read 20
Number of Observations Used 20

TRANSREG MORALS Algorithm Iteration History for Identity(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.69502 4.73421 0.08252
1 0.00000 0.00000 0.17287 0.09035 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding Spline(x1)
TRANSREG MORALS Algorithm Iteration History for Identity(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.03575 0.32390 0.15097
1 0.00000 0.00000 0.15249 0.00152 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding Spline(x2)
TRANSREG MORALS Algorithm Iteration History for Identity(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.45381 1.43736 0.00717
1 0.00000 0.00000 0.02604 0.01886 Converged

Algorithm converged.

Figure 75.23. Two-Variable Polynomial Regression Output from PROC
TRANSREG
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Two-Variable Polynomial Regression

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 38.7478 6.45796 0.45 0.8306
Error 13 185.3960 14.26123
Corrected Total 19 224.1438

Root MSE 3.77640 R-Square 0.1729
Dependent Mean 0.85490 Adj R-Sq -0.2089
Coeff Var 441.73431

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F

Intercept 1 3.5437125 35.2282 35.2282 2.47 0.1400
Spline(x1) 3 0.3644562 4.5682 1.5227 0.11 0.9546
Spline(x2) 3 -1.3551738 32.9112 10.9704 0.77 0.5315

Figure 75.23. (continued)
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Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 38.74775 6.45796 0.45 0.8306
Error 13 185.39605 14.26123
Corrected Total 19 224.14380

Root MSE 3.77640 R-Square 0.1729
Dependent Mean 0.85490 Adj R-Sq -0.2089
Coeff Var 441.73431

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 10.77824 7.55244 1.43 0.1771
x1_1 x1 1 1 0.40112 1.81024 0.22 0.8281
x1_2 x1 2 1 0.25652 1.66023 0.15 0.8796
x1_3 x1 3 1 -0.11639 0.36775 -0.32 0.7567
x2_1 x2 1 1 -14.07054 12.50521 -1.13 0.2809
x2_2 x2 2 1 5.95610 5.97952 1.00 0.3374
x2_3 x2 3 1 -0.80608 0.87291 -0.92 0.3726

Figure 75.23. (continued)
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Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Test 1 Results for Dependent Variable y

Mean
Source DF Square F Value Pr > F

Numerator 3 1.52272 0.11 0.9546
Denominator 13 14.26123

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Test 2 Results for Dependent Variable y

Mean
Source DF Square F Value Pr > F

Numerator 3 10.97042 0.77 0.5315
Denominator 13 14.26123

Figure 75.23. (continued)

There are three iteration histories: one for the overall model and two for the two
independent variables. The first PROC TRANSREG iteration history shows theR2

of 0.17287 for the fit of the overall model. The second is for

model identity(y) = spline(x2);

which excludes SPLINE(X1). The third is for

model identity(y) = spline(x1);

which excludes SPLINE(X2). The difference between the first and secondR2 times
the total sum of squares is the model sum of squares for SPLINE(X1)

(0.17287− 0.15249)× 224.143800 = 4.568165

The difference between the first and thirdR2 times the total sum of squares is the
model sum of squares for SPLINE(X2)

(0.17287− 0.02604)× 224.143800 = 32.911247

The TEST statement in PROC REG tests the null hypothesis that the vector of pa-
rameters forX1–1 X1–2 X1–3 is zero. This is the same test as the SPLINE(X1)



Solving Standard Least-Squares Problems � 4645

test used by PROC TRANSREG. Similarly, the PROC REG test that the vector of
parameters forX2–1 X2–2 X2–3 is zero is the same as the PROC TRANSREG
SPLINE(X2) test. So for models with no monotonicity constraints and no dependent
variable transformations, PROC TRANSREG provides little more than a different
packaging of standard least-squares methodology.

Hypothesis Tests with Monotonicity Constraints

Now consider a model with monotonicity constraints. This model has no counterpart
in PROC REG.

proc transreg data=htex ss2 short;
title ’Monotone Splines’;
model identity(y) = mspline(x1-x3 / nknots=3);

run;

The SHORTa-optionis specified to suppress the iteration histories. Two ANOVA ta-
bles are displayed—one using liberal degrees of freedom and one using conservative
degrees of freedom. All sums of squares and theR2s are the same for both tables.
What differs are the degrees of freedom and statistics that are computed using degrees
of freedom. The liberal test has 8 model degrees of freedom and 11 error degrees of
freedom, whereas the conservative test has 15 model degrees of freedom and only
4 error degrees of freedom. The “true”p-value is between 0.8462 and 0.9997, so
clearly you would fail to reject the null hypothesis. Unfortunately, results are not
always this clear. SeeFigure 75.24.
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Monotone Splines

The TRANSREG Procedure

Dependent Variable Identity(y)

Number of Observations Read 20
Number of Observations Used 20

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on Liberal Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 8 58.0534 7.25667 0.48 >= 0.8462
Error 11 166.0904 15.09913
Corrected Total 19 224.1438

Root MSE 3.88576 R-Square 0.2590
Dependent Mean 0.85490 Adj R-Sq -0.2799
Coeff Var 454.52581

Univariate ANOVA Table Based on Conservative Degrees of Freedom

Sum of Mean Conservative
Source DF Squares Square F Value p

Model 15 58.0534 3.87022 0.09 <= 0.9997
Error 4 166.0904 41.52261
Corrected Total 19 224.1438

Root MSE 6.44380 R-Square 0.2590
Dependent Mean 0.85490 Adj R-Sq -2.5197
Coeff Var 753.74578

Figure 75.24. Monotone Spline Transformations
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Monotone Splines

The TRANSREG Procedure

Univariate Regression Table Based on Liberal Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Liberal p

Intercept 1 4.8687676 54.7372 54.7372 3.63 >= 0.0834
Mspline(x1) 2 -0.6886834 12.1943 6.0972 0.40 >= 0.6773
Mspline(x2) 3 -1.8237319 46.3155 15.4385 1.02 >= 0.4199
Mspline(x3) 3 0.8646155 24.6840 8.2280 0.54 >= 0.6616

Univariate Regression Table Based on Conservative Degrees of Freedom

Type II
Sum of Mean Conservative

Variable DF Coefficient Squares Square F Value p

Intercept 1 4.8687676 54.7372 54.7372 1.32 <= 0.3149
Mspline(x1) 5 -0.6886834 12.1943 2.4389 0.06 <= 0.9959
Mspline(x2) 5 -1.8237319 46.3155 9.2631 0.22 <= 0.9344
Mspline(x3) 5 0.8646155 24.6840 4.9368 0.12 <= 0.9809

Figure 75.24. (continued)

Hypothesis Tests with Dependent Variable Transformations

PROC TRANSREG can also provide approximate tests of hypotheses when the de-
pendent variable is transformed, but the output is more complicated. When a depen-
dent variable has more than one degree of freedom, the problem becomes multivari-
ate. Hypothesis tests are performed in the context of a multivariate linear model with
the number of dependent variables equal to the number of scoring parameters for the
dependent variable transformation. The transformation regression model with a de-
pendent variable transformation differs from the usual multivariate linear model in
two important ways. First, the usual assumption of multivariate normality is always
violated. This fact is simply ignored. This is one reason that all hypothesis tests in the
presence of a dependent variable transformation should be considered approximate at
best. Multivariate normality is assumed even though it is known that the assumption
is violated.

The second difference concerns the usual multivariate test statistics: Pillai’s Trace,
Wilks’ Lambda, Hotelling-Lawley Trace, and Roy’s Greatest Root. The first three
statistics are defined in terms of all the squared canonical correlations. Here, there is
only one linear combination (the transformation) and, hence, only one squared canon-
ical correlation of interest, which is equal to theR2. It may seem that Roy’s Greatest
Root, which uses only the largest squared canonical correlation, is the only statistic
of interest. Unfortunately, Roy’s Greatest Root is very liberal and provides only a
lower bound on thep-value. Approximate upper bounds are provided by adjusting
the other three statistics for the one linear combination case. The Wilks’ Lambda,
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Pillai’s Trace, and Hotelling-Lawley Trace statistics are a conservative adjustment of
the usual statistics.

These statistics are normally defined in terms of the squared canonical correlations,
which are the eigenvalues of the matrixH(H + E)−1, whereH is the hypothesis
sum-of-squares matrix andE is the error sum-of-squares matrix. Here theR2 is
used for the first eigenvalue, and all other eigenvalues are set to 0 since only one
linear combination is used. Degrees of freedom are computed assuming that all linear
combinations contribute to the Lambda and Trace statistics, so theF tests for those
statistics are conservative. Thep-values for the liberal and conservative statistics
provide approximate lower and upper bounds onp. In practice, the adjusted Pillai’s
Trace is very conservative—perhaps too conservative to be useful. Wilks’ Lambda is
less conservative, and the Hotelling-Lawley Trace seems to be the least conservative.
The conservative statistics and the liberal Roy’s Greatest Root provide a bound on the
truep-value. Unfortunately, they sometimes report a bound of 0.0001 and 1.0000.

Here is an example with a dependent variable transformation.

proc transreg data=htex ss2 dummy short;
title ’Transform Dependent and Independent Variables’;
model spline(y) = spline(x1-x3);

run;

The univariate results match Roy’s Greatest Root results. Clearly, the proper action
is to fail to reject the null hypothesis. However, as stated previously, results are not
always this clear. SeeFigure 75.25.
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Transform Dependent and Independent Variables

The TRANSREG Procedure

Dependent Variable Spline(y)

Number of Observations Read 20
Number of Observations Used 20

Spline(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Spline(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 9 110.8822 12.32025 1.09 >= 0.4452
Error 10 113.2616 11.32616
Corrected Total 19 224.1438

The above statistics are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal.

Root MSE 3.36544 R-Square 0.4947
Dependent Mean 0.85490 Adj R-Sq 0.0399
Coeff Var 393.66234

Adjusted Multivariate ANOVA Table Based on the Usual Degrees of Freedom

Dependent Variable Scoring Parameters=3 S=3 M=2.5 N=3

Statistic Value F Value Num DF Den DF p

Wilks’ Lambda 0.505308 0.23 27 24.006 <= 0.9998
Pillai’s Trace 0.494692 0.22 27 30 <= 0.9999
Hotelling-Lawley Trace 0.978992 0.26 27 11.589 <= 0.9980
Roy’s Greatest Root 0.978992 1.09 9 10 >= 0.4452

The Wilks’ Lambda, Pillai’s Trace, and Hotelling-Lawley Trace statistics are a
conservative adjustment of the normal statistics. Roy’s Greatest Root is
liberal. These statistics are normally defined in terms of the squared
canonical correlations which are the eigenvalues of the matrix H*inv(H+E).
Here the R-Square is used for the first eigenvalue and all other eigenvalues
are set to zero since only one linear combination is used. Degrees of freedom
are computed assuming all linear combinations contribute to the Lambda and
Trace statistics, so the F tests for those statistics are conservative. The p
values for the liberal and conservative statistics provide approximate lower
and upper bounds on p. A liberal test statistic with conservative degrees of
freedom and a conservative test statistic with liberal degrees of freedom yield
at best an approximate p value, which is indicated by a "~" before the p value.

Figure 75.25. Transform Dependent and Independent Variables
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Transform Dependent and Independent Variables

The TRANSREG Procedure

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Liberal p

Intercept 1 6.9089087 117.452 117.452 10.37 >= 0.0092
Spline(x1) 3 -1.0832321 32.493 10.831 0.96 >= 0.4504
Spline(x2) 3 -2.1539191 45.251 15.084 1.33 >= 0.3184
Spline(x3) 3 0.4779207 10.139 3.380 0.30 >= 0.8259

The above statistics are not adjusted for the fact that the dependent variable
was transformed and so are generally liberal.

Adjusted Multivariate Regression Table Based on the Usual Degrees of Freedom

Variable Coefficient Statistic Value F Value Num DF Den DF p

Intercept 6.9089087 Wilks’ Lambda 0.49092 2.77 3 8 0.1112
Pillai’s Trace 0.50908 2.77 3 8 0.1112
Hotelling-Lawley 1.036993 2.77 3 8 0.1112
Trace
Roy’s Greatest 1.036993 2.77 3 8 0.1112
Root

Spline(x1) -1.0832321 Wilks’ Lambda 0.777072 0.24 9 19.621 <= 0.9840
Pillai’s Trace 0.222928 0.27 9 30 <= 0.9787
Hotelling-Lawley 0.286883 0.24 9 9.8113 <= 0.9784
Trace
Roy’s Greatest 0.286883 0.96 3 10 >= 0.4504
Root

Spline(x2) -2.1539191 Wilks’ Lambda 0.714529 0.32 9 19.621 <= 0.9572
Pillai’s Trace 0.285471 0.35 9 30 <= 0.9494
Hotelling-Lawley 0.399524 0.33 9 9.8113 <= 0.9424
Trace
Roy’s Greatest 0.399524 1.33 3 10 >= 0.3184
Root

Spline(x3) 0.4779207 Wilks’ Lambda 0.917838 0.08 9 19.621 <= 0.9998
Pillai’s Trace 0.082162 0.09 9 30 <= 0.9996
Hotelling-Lawley 0.089517 0.07 9 9.8113 <= 0.9997
Trace
Roy’s Greatest 0.089517 0.30 3 10 >= 0.8259
Root

These statistics are adjusted in the same way as the multivariate statistics
above.

Figure 75.25. (continued)

Hypothesis Tests with One-Way ANOVA

One-way ANOVA models are fit with either an explicit or implicit intercept. In im-
plicit intercept models, the ANOVA table of PROC TRANSREG is the correct table
for a model with an intercept, and the regression table is the correct table for a model
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that does not have a separate explicit intercept. The PROC TRANSREG implicit in-
tercept ANOVA table matches the PROC REG table when the NOINTa-option is
not specified, and the PROC TRANSREG implicit intercept regression table matches
the PROC REG table when the NOINTa-option is specified. The following code
illustrates this relationship. SeeFigure 75.26throughFigure 75.27for the results.

data oneway;
input y x $;
datalines;

0 a
1 a
2 a
7 b
8 b
9 b
3 c
4 c
5 c
;

proc transreg ss2 data=oneway short;
title ’Implicit Intercept Model’;
model identity(y) = class(x / zero=none);
output out=oneway2;

run;

proc reg data=oneway2;
model y = xa xb xc; /* Implicit Intercept ANOVA */
model y = xa xb xc / noint; /* Implicit Intercept Regression */

run;
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Implicit Intercept Model

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

x 3 a b c

Number of Observations Read 9
Number of Observations Used 9
Implicit Intercept Model

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 74.00000 37.00000 37.00 0.0004
Error 6 6.00000 1.00000
Corrected Total 8 80.00000

Root MSE 1.00000 R-Square 0.9250
Dependent Mean 4.33333 Adj R-Sq 0.9000
Coeff Var 23.07692

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Class.xa 1 1.00000000 3.000 3.000 3.00 0.1340 x a
Class.xb 1 8.00000000 192.000 192.000 192.00 <.0001 x b
Class.xc 1 4.00000000 48.000 48.000 48.00 0.0004 x c

Figure 75.26. Implicit Intercept Model (TRANSREG Procedure)
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Implicit Intercept Model

The REG Procedure
Model: MODEL1

Dependent Variable: y

Number of Observations Read 9
Number of Observations Used 9

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 74.00000 37.00000 37.00 0.0004
Error 6 6.00000 1.00000
Corrected Total 8 80.00000

Root MSE 1.00000 R-Square 0.9250
Dependent Mean 4.33333 Adj R-Sq 0.9000
Coeff Var 23.07692

NOTE: Model is not full rank. Least-squares solutions for the parameters are
not unique. Some statistics will be misleading. A reported DF of 0 or B
means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a
linear combination of other variables as shown.

xc = Intercept - xa - xb

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept B 4.00000 0.57735 6.93 0.0004
xa x a B -3.00000 0.81650 -3.67 0.0104
xb x b B 4.00000 0.81650 4.90 0.0027
xc x c 0 0 . . .

Figure 75.27. Implicit Intercept Model (REG Procedure)



4654 � Chapter 75. The TRANSREG Procedure

Implicit Intercept Model

The REG Procedure
Model: MODEL2

Dependent Variable: y

Number of Observations Read 9
Number of Observations Used 9

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 243.00000 81.00000 81.00 <.0001
Error 6 6.00000 1.00000
Uncorrected Total 9 249.00000

Root MSE 1.00000 R-Square 0.9759
Dependent Mean 4.33333 Adj R-Sq 0.9639
Coeff Var 23.07692

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

xa x a 1 1.00000 0.57735 1.73 0.1340
xb x b 1 8.00000 0.57735 13.86 <.0001
xc x c 1 4.00000 0.57735 6.93 0.0004

Figure 75.27. (continued)

Using the DESIGN Output Option

This example uses PROC TRANSREG and the DESIGNo-optionto prepare an in-
put data set with classification variables for the LOGISTIC procedure. The DESIGN
o-optionspecifies that the goal is design matrix creation, not analysis. When you
specify DESIGN, dependent variables are not required. The DEVIATIONS (or
EFFECTS)t-option requests a deviations-from-means(1, 0,−1) coding of the clas-
sification variables, which is the same coding the CATMOD procedure uses. See
Figure 75.28. PROC TRANSREG automatically creates a macro variable&–trgind
that contains the list of independent variables created. This macro is used in the
PROC LOGISTIC MODEL statement. SeeFigure 75.29. For comparison, the same
analysis is also performed with PROC CATMOD. SeeFigure 75.30.

title ’Using PROC TRANSREG to Create a Design Matrix’;

data a;
do y = 1, 2;

do a = 1 to 4;
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do b = 1 to 3;
w = ceil(uniform(1) * 10 + 10);
output;

end;
end;

end;
run;

proc transreg data=a design;
model class(a b / deviations);
id y w;
output;

run;

proc print;
title2 ’PROC TRANSREG Output Data Set’;

run;

proc logistic;
title2 ’PROC LOGISTIC with Classification Variables’;
freq w;
model y = &_trgind;

run;

proc catmod data=a;
title2 ’PROC CATMOD Should Produce the Same Results’;
model y = a b;
weight w;

run;
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Using PROC TRANSREG to Create a Design Matrix
PROC TRANSREG Output Data Set

Obs _TYPE_ _NAME_ Intercept a1 a2 a3 b1 b2 a b y w

1 SCORE 1 1 1 0 0 1 0 1 1 1 12
2 SCORE 1 1 1 0 0 0 1 1 2 1 20
3 SCORE 1 1 1 0 0 -1 -1 1 3 1 14
4 SCORE 1 1 0 1 0 1 0 2 1 1 13
5 SCORE 1 1 0 1 0 0 1 2 2 1 20
6 SCORE 1 1 0 1 0 -1 -1 2 3 1 20
7 SCORE 1 1 0 0 1 1 0 3 1 1 16
8 SCORE 1 1 0 0 1 0 1 3 2 1 16
9 SCORE 1 1 0 0 1 -1 -1 3 3 1 11

10 SCORE 1 1 -1 -1 -1 1 0 4 1 1 11
11 SCORE 1 1 -1 -1 -1 0 1 4 2 1 19
12 SCORE 1 1 -1 -1 -1 -1 -1 4 3 1 16
13 SCORE 2 1 1 0 0 1 0 1 1 2 19
14 SCORE 2 1 1 0 0 0 1 1 2 2 11
15 SCORE 2 1 1 0 0 -1 -1 1 3 2 20
16 SCORE 2 1 0 1 0 1 0 2 1 2 13
17 SCORE 2 1 0 1 0 0 1 2 2 2 13
18 SCORE 2 1 0 1 0 -1 -1 2 3 2 17
19 SCORE 2 1 0 0 1 1 0 3 1 2 20
20 SCORE 2 1 0 0 1 0 1 3 2 2 13
21 SCORE 2 1 0 0 1 -1 -1 3 3 2 17
22 SCORE 2 1 -1 -1 -1 1 0 4 1 2 15
23 SCORE 2 1 -1 -1 -1 0 1 4 2 2 16
24 SCORE 2 1 -1 -1 -1 -1 -1 4 3 2 13

Figure 75.28. The PROC TRANSREG Design Matrix
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Using PROC TRANSREG to Create a Design Matrix
PROC LOGISTIC with Classification Variables

The LOGISTIC Procedure

Model Information

Data Set WORK.DATA8
Response Variable y
Number of Response Levels 2
Frequency Variable w
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 24
Number of Observations Used 24
Sum of Frequencies Read 375
Sum of Frequencies Used 375

Response Profile

Ordered Total
Value y Frequency

1 1 188
2 2 187

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 521.858 524.378
SC 525.785 547.939
-2 Log L 519.858 512.378

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.4799 5 0.1873
Score 7.4312 5 0.1905
Wald 7.3356 5 0.1969

Figure 75.29. PROC LOGISTIC Output
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Using PROC TRANSREG to Create a Design Matrix
PROC LOGISTIC with Classification Variables

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.00040 0.1044 0.0000 0.9969
a1 1 -0.0802 0.1791 0.2007 0.6542
a2 1 0.2001 0.1800 1.2363 0.2662
a3 1 -0.1350 0.1819 0.5514 0.4578
b1 1 -0.2392 0.1500 2.5436 0.1107
b2 1 0.3433 0.1474 5.4223 0.0199

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

a1 0.923 0.650 1.311
a2 1.222 0.858 1.738
a3 0.874 0.612 1.248
b1 0.787 0.587 1.056
b2 1.410 1.056 1.882

Association of Predicted Probabilities and Observed Responses

Percent Concordant 54.0 Somers’ D 0.163
Percent Discordant 37.8 Gamma 0.177
Percent Tied 8.2 Tau-a 0.082
Pairs 35156 c 0.581

Figure 75.29. (continued)
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Using PROC TRANSREG to Create a Design Matrix
PROC CATMOD Should Produce the Same Results

The CATMOD Procedure

Data Summary

Response y Response Levels 2
Weight Variable w Populations 12
Data Set A Total Frequency 375
Frequency Missing 0 Observations 24

Population Profiles

Sample a b Sample Size
-------------------------------

1 1 1 31
2 1 2 31
3 1 3 34
4 2 1 26
5 2 2 33
6 2 3 37
7 3 1 36
8 3 2 29
9 3 3 28

10 4 1 26
11 4 2 35
12 4 3 29

Response Profiles

Response y
-------------

1 1
2 2

Figure 75.30. PROC CATMOD Output
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Using PROC TRANSREG to Create a Design Matrix
PROC CATMOD Should Produce the Same Results

The CATMOD Procedure

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 0.00 0.9969
a 3 1.50 0.6823
b 2 5.64 0.0597

Likelihood Ratio 6 2.81 0.8329

Analysis of Maximum Likelihood Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------
Intercept -0.00040 0.1044 0.00 0.9969
a 1 -0.0802 0.1791 0.20 0.6542

2 0.2001 0.1800 1.24 0.2662
3 -0.1350 0.1819 0.55 0.4578

b 1 -0.2392 0.1500 2.54 0.1107
2 0.3434 0.1474 5.42 0.0199

Figure 75.30. (continued)

Discrete Choice Experiments: DESIGN, NORESTORE,
NOZERO

A discrete choice experiment is constructed consisting of four product brands,
each available at three different prices, $1.49, $1.99, $2.49. In addition, each
choice set contains a constant “other” alternative available at $1.49. In the fifth
choice set, price is constant. PROC TRANSREG is used to code the designand
the PHREG procedure fits the multinomial logit choice model (not shown). See
http://www.sas.com/service/techsup/tnote/tnote–stat.html for more information on
discrete choice modeling and the multinomial logit model. Look for the latest
“Multinomial Logit, Discrete Choice Modeling” report.

title ’Choice Model Coding’;

data design;
array p[4];
input p1-p4 @@;
set = _n_;
do brand = 1 to 4;

price = p[brand];
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output;
end;
brand = .; price = 1.49; output; /* constant alternative */
keep set brand price;
datalines;

1.49 1.99 1.49 1.99 1.99 1.99 2.49 1.49 1.99 1.49 1.99 1.49
1.99 1.49 2.49 1.99 1.49 1.49 1.49 1.49 2.49 1.49 1.99 2.49
1.49 1.49 2.49 2.49 2.49 2.49 1.49 1.49 1.49 2.49 2.49 1.99
2.49 2.49 2.49 1.49 1.99 2.49 1.49 2.49 2.49 1.99 2.49 2.49
2.49 1.49 1.49 1.99 1.49 1.99 1.99 1.49 2.49 1.99 1.99 1.99
1.99 1.99 1.49 2.49 1.99 2.49 1.99 1.99 1.49 2.49 1.99 2.49
;

proc transreg data=design design norestoremissing nozeroconstant;
model class(brand / zero=none) identity(price);
output out=coded;
by set;

run;

proc print data=coded(firstobs=21 obs=25);
var set brand &_trgind;

run;

In the interest of space, only the fifth choice set is displayed inFigure 75.31.

Choice Model Coding

Obs set brand brand1 brand2 brand3 brand4 price

21 5 1 1 0 0 0 1.49
22 5 2 0 1 0 0 1.49
23 5 3 0 0 1 0 1.49
24 5 4 0 0 0 1 1.49
25 5 . 0 0 0 0 1.49

Figure 75.31. The Fifth Choice Set

For the constant alternative (BRAND = .), the brand coding is a row of zeros due to
the NORESTOREMISSINGo-option, and PRICE is a constant $1.49 (instead of 0)
due to the NOZEROCONSTANTa-option.

The data set was coded by choice set (BYset;). This is a small problem, but with
very large problems, it may be necessary to restrict the number of observations that
are coded at one time so that the procedure uses less time and memory. Coding by
choice set is one option. When coding is performed after the data are merged in,
coding by subject and choice set combinations is another option. Alternatively, you
can specify DESIGN=n, wheren is the number of observations to code at one time.
For example, you can specify DESIGN=100 or DESIGN=1000 to process the data
set in blocks of 100 or 1000 observations. Specify the NOZEROCONSTANT option
to ensure that constant variables within blocks are not zeroed. When you specify
DESIGN=n, or perform coding after the data are merged in, specify the dependent
variable and any other variables needed for analysis as ID variables.
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ANOVA Codings

This set of examples illustrates several different ways to code the same two-way
ANOVA model. Figure 75.32displays the input data set.

title ’Two-way ANOVA Models’;

data x;
input a b @@;
do i = 1 to 2; input y @@; output; end;
drop i;
datalines;

1 1 16 14 1 2 15 13
2 1 1 9 2 2 12 20
3 1 14 8 3 2 18 20
;

proc print label;
run;

Two-way ANOVA Models

Obs a b y

1 1 1 16
2 1 1 14
3 1 2 15
4 1 2 13
5 2 1 1
6 2 1 9
7 2 2 12
8 2 2 20
9 3 1 14

10 3 1 8
11 3 2 18
12 3 2 20

Figure 75.32. Input Data Set

The following statements fit a cell-means model. SeeFigure 75.33andFigure 75.34.

proc transreg data=x ss2 short;
title2 ’Cell-Means Model’;
model identity(y) = class(a * b / zero=none);
output replace;

run;

proc print label;
run;



ANOVA Codings � 4663

Two-way ANOVA Models
Cell-Means Model

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12
Number of Observations Used 12
Implicit Intercept Model

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Class.a1b1 1 15.0000000 450.000 450.000 30.68 0.0015 a 1 * b 1
Class.a1b2 1 14.0000000 392.000 392.000 26.73 0.0021 a 1 * b 2
Class.a2b1 1 5.0000000 50.000 50.000 3.41 0.1144 a 2 * b 1
Class.a2b2 1 16.0000000 512.000 512.000 34.91 0.0010 a 2 * b 2
Class.a3b1 1 11.0000000 242.000 242.000 16.50 0.0066 a 3 * b 1
Class.a3b2 1 19.0000000 722.000 722.000 49.23 0.0004 a 3 * b 2

Figure 75.33. Cell-Means Model

The parameter estimates are

µ̂11 = y11 = 15
µ̂12 = y12 = 14
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µ̂21 = y21 = 5
µ̂22 = y22 = 16
µ̂31 = y31 = 11
µ̂32 = y32 = 19

Two-way ANOVA Models
Cell-Means Model

a 1 * a 1 * a 2 * a 2 * a 3 * a 3 *
Obs _TYPE_ _NAME_ y Intercept b 1 b 2 b 1 b 2 b 1 b 2 a b

1 SCORE ROW1 16 . 1 0 0 0 0 0 1 1
2 SCORE ROW2 14 . 1 0 0 0 0 0 1 1
3 SCORE ROW3 15 . 0 1 0 0 0 0 1 2
4 SCORE ROW4 13 . 0 1 0 0 0 0 1 2
5 SCORE ROW5 1 . 0 0 1 0 0 0 2 1
6 SCORE ROW6 9 . 0 0 1 0 0 0 2 1
7 SCORE ROW7 12 . 0 0 0 1 0 0 2 2
8 SCORE ROW8 20 . 0 0 0 1 0 0 2 2
9 SCORE ROW9 14 . 0 0 0 0 1 0 3 1

10 SCORE ROW10 8 . 0 0 0 0 1 0 3 1
11 SCORE ROW11 18 . 0 0 0 0 0 1 3 2
12 SCORE ROW12 20 . 0 0 0 0 0 1 3 2

Figure 75.34. Cell-Means Model, Design Matrix

The following statements fit a reference cell model. The default reference level is the
last cell (3,2). SeeFigure 75.35andFigure 75.36.

proc transreg data=x ss2 short;
title2 ’Reference Cell Model, (3,2) Reference Cell’;
model identity(y) = class(a | b);
output replace;

run;

proc print label;
run;



ANOVA Codings � 4665

Two-way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12
Number of Observations Used 12

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 19.0000000 722.000 722.000 49.23 0.0004 Intercept
Class.a1 1 -5.0000000 25.000 25.000 1.70 0.2395 a 1
Class.a2 1 -3.0000000 9.000 9.000 0.61 0.4632 a 2
Class.b1 1 -8.0000000 64.000 64.000 4.36 0.0817 b 1
Class.a1b1 1 9.0000000 40.500 40.500 2.76 0.1476 a 1 * b 1
Class.a2b1 1 -3.0000000 4.500 4.500 0.31 0.5997 a 2 * b 1

Figure 75.35. Reference Cell Model, (3, 2) Reference Cell

The parameter estimates are

µ̂32 = y32 = 19
α̂1 = y12 − y32 = 14− 19 = −5
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α̂2 = y22 − y32 = 16− 19 = −3

β̂1 = y31 − y32 = 11− 19 = −8

γ̂11 = y11 − (µ̂32 + α̂1 + β̂1) = 15− (19 +−5 +−8) = 9

γ̂21 = y21 − (µ̂32 + α̂2 + β̂1) = 5− (19 +−3 +−8) = −3

The structural zeros are

α3 ≡ β2 ≡ γ12 ≡ γ22 ≡ γ31 ≡ γ32 ≡ 0

Two-way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

a 1 * a 2 *
Obs _TYPE_ _NAME_ y Intercept a 1 a 2 b 1 b 1 b 1 a b

1 SCORE ROW1 16 1 1 0 1 1 0 1 1
2 SCORE ROW2 14 1 1 0 1 1 0 1 1
3 SCORE ROW3 15 1 1 0 0 0 0 1 2
4 SCORE ROW4 13 1 1 0 0 0 0 1 2
5 SCORE ROW5 1 1 0 1 1 0 1 2 1
6 SCORE ROW6 9 1 0 1 1 0 1 2 1
7 SCORE ROW7 12 1 0 1 0 0 0 2 2
8 SCORE ROW8 20 1 0 1 0 0 0 2 2
9 SCORE ROW9 14 1 0 0 1 0 0 3 1

10 SCORE ROW10 8 1 0 0 1 0 0 3 1
11 SCORE ROW11 18 1 0 0 0 0 0 3 2
12 SCORE ROW12 20 1 0 0 0 0 0 3 2

Figure 75.36. Reference Cell Model, (3, 2) Reference Cell, Design Matrix

The following statements fit a reference cell model, but this time the reference level
is the first cell (1,1). SeeFigure 75.37throughFigure 75.38.

proc transreg data=x ss2 short;
title2 ’Reference Cell Model, (1,1) Reference Cell’;
model identity(y) = class(a | b / zero=first);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12
Number of Observations Used 12

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 15.000000 450.000 450.000 30.68 0.0015 Intercept
Class.a2 1 -10.000000 100.000 100.000 6.82 0.0401 a 2
Class.a3 1 -4.000000 16.000 16.000 1.09 0.3365 a 3
Class.b2 1 -1.000000 1.000 1.000 0.07 0.8027 b 2
Class.a2b2 1 12.000000 72.000 72.000 4.91 0.0686 a 2 * b 2
Class.a3b2 1 9.000000 40.500 40.500 2.76 0.1476 a 3 * b 2

Figure 75.37. Reference Cell Model, (1, 1) Reference Cell

The parameter estimates are

µ̂11 = y11 = 15
α̂2 = y21 − y11 = 5− 15 = −10
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α̂3 = y31 − y11 = 11− 15 = −4

β̂2 = y12 − y11 = 14− 15 = −1

γ̂22 = y22 − (µ̂11 + α̂2 + β̂2) = 16− (15 +−10 +−1) = 12

γ̂32 = y32 − (µ̂11 + α̂3 + β̂2) = 19− (15 +−4 +−1) = 9

The structural zeros are

α1 ≡ β1 ≡ γ11 ≡ γ12 ≡ γ21 ≡ γ31 ≡ 0

Two-way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

a 2 * a 3 *
Obs _TYPE_ _NAME_ y Intercept a 2 a 3 b 2 b 2 b 2 a b

1 SCORE ROW1 16 1 0 0 0 0 0 1 1
2 SCORE ROW2 14 1 0 0 0 0 0 1 1
3 SCORE ROW3 15 1 0 0 1 0 0 1 2
4 SCORE ROW4 13 1 0 0 1 0 0 1 2
5 SCORE ROW5 1 1 1 0 0 0 0 2 1
6 SCORE ROW6 9 1 1 0 0 0 0 2 1
7 SCORE ROW7 12 1 1 0 1 1 0 2 2
8 SCORE ROW8 20 1 1 0 1 1 0 2 2
9 SCORE ROW9 14 1 0 1 0 0 0 3 1

10 SCORE ROW10 8 1 0 1 0 0 0 3 1
11 SCORE ROW11 18 1 0 1 1 0 1 3 2
12 SCORE ROW12 20 1 0 1 1 0 1 3 2

Figure 75.38. Reference Cell Model, (1, 1) Reference Cell, Design Matrix

The following statements fit a deviations-from-means model. The default reference
level is the last cell (3,2). This coding is also called effects coding. SeeFigure 75.39
andFigure 75.40.

proc transreg data=x ss2 short;
title2 ’Deviations From Means, (3,2) Reference Cell’;
model identity(y) = class(a | b / deviations);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Deviations From Means, (3,2) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12
Number of Observations Used 12

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept
Class.a1 1 1.1666667 8.17 8.17 0.56 0.4837 a 1
Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2
Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1
Class.a1b1 1 3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 1
Class.a2b1 1 -2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 1

Figure 75.39. Deviations-From-Means Model, (3, 2) Reference Cell

The parameter estimates are

µ̂ = y = 13.33333
α̂1 = (y11 + y12)/2− y = (15 + 14)/2− 13.33333 = 1.16667
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α̂2 = (y21 + y22)/2− y = (5 + 16)/2− 13.33333 = −2.83333

β̂1 = (y11 + y21 + y31)/3− y = (15 + 5 + 11)/3− 13.33333 = −3

γ̂11 = y11 − (y + α̂1 + β̂1) = 15− (13.33333 + 1.16667 +−3) = 3.5

γ̂21 = y21 − (y + α̂2 + β̂1) = 5− (13.33333 +−2.83333 +−3) = −2.5

The structural zeros are

α3 ≡ β2 ≡ γ12 ≡ γ22 ≡ γ31 ≡ γ32 ≡ 0

Two-way ANOVA Models
Deviations From Means, (3,2) Reference Cell

a 1 * a 2 *
Obs _TYPE_ _NAME_ y Intercept a 1 a 2 b 1 b 1 b 1 a b

1 SCORE ROW1 16 1 1 0 1 1 0 1 1
2 SCORE ROW2 14 1 1 0 1 1 0 1 1
3 SCORE ROW3 15 1 1 0 -1 -1 0 1 2
4 SCORE ROW4 13 1 1 0 -1 -1 0 1 2
5 SCORE ROW5 1 1 0 1 1 0 1 2 1
6 SCORE ROW6 9 1 0 1 1 0 1 2 1
7 SCORE ROW7 12 1 0 1 -1 0 -1 2 2
8 SCORE ROW8 20 1 0 1 -1 0 -1 2 2
9 SCORE ROW9 14 1 -1 -1 1 -1 -1 3 1

10 SCORE ROW10 8 1 -1 -1 1 -1 -1 3 1
11 SCORE ROW11 18 1 -1 -1 -1 1 1 3 2
12 SCORE ROW12 20 1 -1 -1 -1 1 1 3 2

Figure 75.40. Deviations-From-Means Model, (3, 2) Reference Cell, Design Matrix

The following statements fit a deviations-from-means model, but this time the refer-
ence level is the first cell (1,1). This coding is also called effects coding. SeeFigure
75.41throughFigure 75.42.

proc transreg data=x ss2 short;
title2 ’Deviations From Means, (1,1) Reference Cell’;
model identity(y) = class(a | b / deviations zero=first);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Deviations From Means, (1,1) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12
Number of Observations Used 12

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept
Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2
Class.a3 1 1.6666667 16.67 16.67 1.14 0.3274 a 3
Class.b2 1 3.0000000 108.00 108.00 7.36 0.0349 b 2
Class.a2b2 1 2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 2
Class.a3b2 1 1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 2

Figure 75.41. Deviations-From-Means Model, (1, 1) Reference Cell

The parameter estimates are

µ̂ = y = 13.33333
α̂2 = (y21 + y22)/2− y = (5 + 16)/2− 13.33333 = −2.8333
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α̂3 = (y31 + y32)/2− y = (11 + 19)/2− 13.33333 = 1.66667

β̂2 = (y12 + y22 + y32)/3− y = (14 + 16 + 19)/3− 13.33333 = 3

γ̂22 = y22 − (y + α̂2 + β̂2) = 16− (13.33333 +−2.8333 + 3) = 2.5

γ̂32 = y32 − (y + α̂3 + β̂2) = 19− (13.33333 + 1.66667 + 3) = 1

The structural zeros are

α1 ≡ β1 ≡ γ11 ≡ γ12 ≡ γ21 ≡ γ31 ≡ 0

Two-way ANOVA Models
Deviations From Means, (1,1) Reference Cell

a 2 * a 3 *
Obs _TYPE_ _NAME_ y Intercept a 2 a 3 b 2 b 2 b 2 a b

1 SCORE ROW1 16 1 -1 -1 -1 1 1 1 1
2 SCORE ROW2 14 1 -1 -1 -1 1 1 1 1
3 SCORE ROW3 15 1 -1 -1 1 -1 -1 1 2
4 SCORE ROW4 13 1 -1 -1 1 -1 -1 1 2
5 SCORE ROW5 1 1 1 0 -1 -1 0 2 1
6 SCORE ROW6 9 1 1 0 -1 -1 0 2 1
7 SCORE ROW7 12 1 1 0 1 1 0 2 2
8 SCORE ROW8 20 1 1 0 1 1 0 2 2
9 SCORE ROW9 14 1 0 1 -1 0 -1 3 1

10 SCORE ROW10 8 1 0 1 -1 0 -1 3 1
11 SCORE ROW11 18 1 0 1 1 0 1 3 2
12 SCORE ROW12 20 1 0 1 1 0 1 3 2

Figure 75.42. Deviations-From-Means Model, (1, 1) Reference Cell, Design Matrix

The following statements fit a less-than-full-rank model. The parameter estimates are
constrained to sum to zero within each effect. SeeFigure 75.43andFigure 75.44.

proc transreg data=x ss2 short;
title2 ’Less Than Full Rank Model’;
model identity(y) = class(a | b / zero=sum);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Less Than Full Rank Model

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12
Number of Observations Used 12

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept
Class.a1 1 1.1666667 8.17 8.17 0.56 0.4837 a 1
Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2
Class.a3 1 1.6666667 16.67 16.67 1.14 0.3274 a 3
Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1
Class.b2 1 3.0000000 108.00 108.00 7.36 0.0349 b 2
Class.a1b1 1 3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 1
Class.a1b2 1 -3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 2
Class.a2b1 1 -2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 1
Class.a2b2 1 2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 2
Class.a3b1 1 -1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 1
Class.a3b2 1 1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 2

The sum of the regression table DF’s, minus one for the intercept, will be
greater than the model df when there are ZERO=SUM constraints.

Figure 75.43. Less-Than-Full-Rank Model
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The parameter estimates are

µ̂ = y = 13.33333
α̂1 = (y11 + y12)/2− y = (15 + 14)/2− 13.33333 = 1.16667
α̂2 = (y21 + y22)/2− y = (5 + 16)/2− 13.33333 = −2.8333
α̂3 = (y31 + y32)/2− y = (11 + 19)/2− 13.33333 = 1.66667

β̂1 = (y11 + y21 + y31)/3− y = (15 + 5 + 11)/3− 13.33333 = −3

β̂2 = (y12 + y22 + y32)/3− y = (14 + 16 + 19)/3− 13.33333 = 3

γ̂11 = y11 − (y + α̂1 + β̂1) = 15− (13.33333 + 1.16667 +−3) = 3.5

γ̂12 = y12 − (y + α̂1 + β̂2) = 14− (13.33333 + 1.16667 + 3) = −3.5

γ̂21 = y21 − (y + α̂2 + β̂1) = 5− (13.33333 +−2.83333 +−3) = −2.5

γ̂22 = y22 − (y + α̂2 + β̂2) = 16− (13.33333 +−2.8333 + 3) = 2.5

γ̂31 = y31 − (y + α̂3 + β̂1) = 11− (13.33333 + 1.66667 +−3) = −1

γ̂32 = y32 − (y + α̂3 + β̂2) = 19− (13.33333 + 1.66667 + 3) = 1

The constraints are

α1 + α2 + α3 ≡ β1 + β2 ≡ 0

γ11 + γ12 ≡ γ21 + γ22 ≡ γ31 + γ32 ≡ γ11 + γ21 + γ31 ≡ γ12 + γ22 + γ32 ≡ 0
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Two-way ANOVA Models
Less Than Full Rank Model

Obs _TYPE_ _NAME_ y Intercept a 1 a 2 a 3 b 1

1 SCORE ROW1 16 1 1 0 0 1
2 SCORE ROW2 14 1 1 0 0 1
3 SCORE ROW3 15 1 1 0 0 0
4 SCORE ROW4 13 1 1 0 0 0
5 SCORE ROW5 1 1 0 1 0 1
6 SCORE ROW6 9 1 0 1 0 1
7 SCORE ROW7 12 1 0 1 0 0
8 SCORE ROW8 20 1 0 1 0 0
9 SCORE ROW9 14 1 0 0 1 1

10 SCORE ROW10 8 1 0 0 1 1
11 SCORE ROW11 18 1 0 0 1 0
12 SCORE ROW12 20 1 0 0 1 0

a 1 * a 1 * a 2 * a 2 * a 3 * a 3 *
Obs b 2 b 1 b 2 b 1 b 2 b 1 b 2 a b

1 0 1 0 0 0 0 0 1 1
2 0 1 0 0 0 0 0 1 1
3 1 0 1 0 0 0 0 1 2
4 1 0 1 0 0 0 0 1 2
5 0 0 0 1 0 0 0 2 1
6 0 0 0 1 0 0 0 2 1
7 1 0 0 0 1 0 0 2 2
8 1 0 0 0 1 0 0 2 2
9 0 0 0 0 0 1 0 3 1

10 0 0 0 0 0 1 0 3 1
11 1 0 0 0 0 0 1 3 2
12 1 0 0 0 0 0 1 3 2

Figure 75.44. Less-Than-Full-Rank Model, Design Matrix

Centering

You can use transformation options to center and standardize the variables in several
ways. For example, this MODEL statement creates three independent variables,x,
x2, andx3.

model identity(y) = pspline(x);

The variables are not centered.

When the CENTERt-option is specified, the three independent variables arex − x̄,
(x− x̄)2, and(x− x̄)3.

model identity(y) = pspline(x / center);

Since operations such as squaring occur after the centering, the resulting variables
will not always be centered. The CENTERt-option is particularly useful with poly-
nomials since centering before squaring and cubing can help reduce collinearity and
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numerical problems. For example, if one of your variables is year, with values all
greater than 1900. Squaring and cubing without centering first will create variables
that are all essentially perfectly correlated.

When the TSTANDARD=CENTERt-option is specified, the three independent vari-
ables arex− x̄, x2 − x2, andx3 − x3.

model identity(y) = pspline(x / tstandard=center);

In this case, the variables are squared and cubed and then centered.

Displayed Output

The display options control the amount of displayed output. The displayed output
can contain

• an iteration history and convergence status table, by default

• an ANOVA table when the TEST, SS2, or UTILITIESa-optionis specified

• a regression table when the SS2a-optionis specified

• conjoint analysis part-worth utilities when the UTILITIESa-optionis specified

• model details when the DETAILa-optionis specified

• a multivariate ANOVA table when the dependent variable is transformed and
the TEST or SS2a-optionis specified

• a multivariate regression table when the dependent variable is transformed and
it is specified

• liberal and conservative ANOVA, multivariate ANOVA, regression, and multi-
variate regression tables when there are MONOTONE, UNTIE, or MSPLINE
transformations and the TEST or SS2a-optionis specified

ODS Table Names

PROC TRANSREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

For more information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 75.7. ODS Tables Produced in PROC TRANSREG

ODS Table Name Description Statement Option
NObs ANOVA MODEL/PROC TEST/SS2
ClassLevels ANOVA MODEL/PROC TEST/SS2
ANOVA ANOVA MODEL/PROC TEST/SS2
LiberalANOVA ANOVA, *1 MODEL/PROC TEST/SS2
ConservANOVA ANOVA, *1 MODEL/PROC TEST/SS2
FitStatistics Fit statistics like R-square MODEL/PROC TEST/SS2
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Table 75.7. (continued)

ODS Table Name Description Statement Option
LiberalFitStatistics Fit statistics, *1 MODEL/PROC TEST/SS2
ConservFitStatistics Fit statistics, *1 MODEL/PROC TEST/SS2
MVANOVA Multivariate ANOVA, *2 MODEL/PROC TEST/SS2
LiberalMVANOVA Multivariate ANOVA, *1, *2 MODEL/PROC TEST/SS2
ConservMVANOVA Multivariate ANOVA, *1, *2 MODEL/PROC TEST/SS2
Coef Regression results MODEL/PROC SS2
LiberalCoef Regression results, *1 MODEL/PROC SS2
ConservCoef Regression results, *1 MODEL/PROC SS2
MVCoef Multivariate regression results,

*2
MODEL/PROC SS2

LiberalMVCoef Multivariate regression results,
*1, *2

MODEL/PROC SS2

ConservMVCoef Multivariate regression results,
*1, *2

MODEL/PROC SS2

Utilities Conjoint Analysis Utilities MODEL/PROC UTILITY
LiberalUtilities Conjoint Analysis Utilities, *1 MODEL/PROC UTILITY
ConservUtilities Conjoint Analysis Utilities, *1 MODEL/PROC UTILITY
BoxCox Box-Cox Transformation Results MODEL BOXCOX
Equation Linear Dependency Equation less-than-full-rank model
Details Model Details MODEL/PROC DETAIL
Univariate Univariate Iteration History MODEL/PROC METHOD=UNIVARIATE
MORALS MORALS Iteration History MODEL/PROC METHOD=MORALS
CANALS CANALS Iteration History MODEL/PROC METHOD=CANALS
Redundancy Redundancy Iteration History MODEL/PROC METHOD=REDUNDANCY
TestIterations Hypothesis Test Iterations

Iteration History
MODEL/PROC SS2

ConvergenceStatus Convergence Status default
Footnotes Iteration History Footnotes default
SplineCoef Spline coefficients MODEL SPLINE/MSPLINE

*1. Liberal and conservative test tables are produced when a MONOTONE, UNTIE, or MSPLINE,

transformation is requested.

*2. Multivariate tables are produced when the dependent variable is iteratively transformed.
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Examples

Example 75.1. Using Splines and Knots

This example illustrates some properties of splines.Splinesare curves, which are usu-
ally required to be continuous and smooth. Splines are usually defined as piecewise
polynomials of degreen with function values and firstn − 1 derivatives that agree
at the points where they join. The abscissa values of the join points are calledknots.
The term “spline” is also used for polynomials (splines with no knots) and piecewise
polynomials with more than one discontinuous derivative. Splines with no knots
are generally smoother than splines with knots, which are generally smoother than
splines with multiple discontinuous derivatives. Splines with few knots are gener-
ally smoother than splines with many knots; however, increasing the number of knots
usually increases the fit of the spline function to the data. Knots give the curve free-
dom to bend to more closely follow the data. Refer to Smith (1979) for an excellent
introduction to splines.

In this example, an artificial data set is created with a variableY that is a discontin-
uous function ofX. See the first plot inOutput 75.1.7. Notice that the function has
four unconnected parts, each of which is a curve. Notice too that there is an overall
quadratic trend, that is, ignoring the shapes of the individual curves, at first theY
values tend to decrease asX increases, thenY values tend to increase.

The first PROC TRANSREG analysis fits a linear regression model. The predicted
values ofY given X are output and plotted to form the linear regression line. The
R2 for the linear regression is 0.10061, and it can be seen from the second plot in
Output 75.1.7that the linear regression model is not appropriate for these data. The
following statements create the data set and perform the first PROC TRANSREG
analysis. These statements produceOutput 75.1.1.

title ’An Illustration of Splines and Knots’;

* Create in Y a discontinuous function of X.
*
* Store copies of X in V1-V7 for use in PROC GPLOT.
* These variables are only necessary so that each
* plot can have its own x-axis label while putting
* four plots on a page.;

data A;
array V[7] V1-V7;
X=-0.000001;
do I=0 to 199;

if mod(I,50)=0 then do;
C=((X/2)-5)**2;
if I=150 then C=C+5;
Y=C;
end;

X=X+0.1;
Y=Y-sin(X-C);
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do J=1 to 7;
V[J]=X;
end;

output;
end;

run;

* Each of the PROC TRANSREG steps fits a
* different spline model to the data set created
* previously. The TRANSREG steps build up a data set with
* various regression functions. All of the functions
* are then plotted with the final PROC GPLOT step.
*
* The OUTPUT statements add new predicted values
* variables to the data set, while the ID statements
* save all of the previously created variables that
* are needed for the plots.;

proc transreg data=A;
model identity(Y) = identity(X);
title2 ’A Linear Regression Function’;
output out=A pprefix=Linear;
id V1-V7;

run;

Output 75.1.1. Fitting a Linear Regression Model with PROC TRANSREG

An Illustration of Splines and Knots
A Linear Regression Function

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.10061 Converged

Algorithm converged.

The second PROC TRANSREG analysis finds a degree two spline transformation
with no knots, which is a quadratic polynomial. The spline is a weighted sum of a
single constant, a single straight line, and a single quadratic curve. TheR2 increases
from 0.10061, which is the linear fit value from before, to 0.40720. It can be seen
from the third plot inOutput 75.1.7that the quadratic regression function does not
fit any of the individual curves well, but it does follow the overall trend in the data.
Since the overall trend is quadratic, a degree three spline with no knots (not shown)
increasesR2 by only a small amount. The following statements perform the quadratic
analysis and produceOutput 75.1.2.

proc transreg data=A;
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model identity(Y)=spline(X / degree=2);
title2 ’A Quadratic Polynomial Regression Function’;
output out=A pprefix=Quad;
id V1-V7 LinearY;

run;

Output 75.1.2. Fitting a Quadratic Polynomial

An Illustration of Splines and Knots
A Quadratic Polynomial Regression Function

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.82127 2.77121 0.10061
2 0.00000 0.00000 0.40720 0.30659 Converged

Algorithm converged.

The next step uses the default degree of three, for a piecewise cubic polynomial, and
requests knots at the known break points,X=5, 10, and 15. This requests a spline that
is continuous, has continuous first and second derivatives, and has a third derivative
that is discontinuous at 5, 10, and 15. The spline is a weighted sum of a single
constant, a single straight line, a single quadratic curve, a cubic curve for the portion
of X less than 5, a different cubic curve for the portion ofX between 5 and 10, a
different cubic curve for the portion ofX between 10 and 15, and another cubic curve
for the portion ofX greater than 15. The newR2 is 0.61730, and it can be seen from
the fourth plot (inOutput 75.1.7) that the spline is less smooth than the quadratic
polynomial and it follows the data more closely than the quadratic polynomial. The
following statements perform this analysis and produceOutput 75.1.3:

proc transreg data=A;
model identity(Y) = spline(X / knots=5 10 15);
title2 ’A Cubic Spline Regression Function’;
title3 ’The Third Derivative is Discontinuous at X=5, 10, 15’;
output out=A pprefix=Cub1;
id V1-V7 LinearY QuadY;

run;



Example 75.1. Using Splines and Knots � 4681

Output 75.1.3. Fitting a Piecewise Cubic Polynomial

An Illustration of Splines and Knots
A Cubic Spline Regression Function

The Third Derivative is Discontinuous at X=5, 10, 15

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.85367 3.88449 0.10061
2 0.00000 0.00000 0.61730 0.51670 Converged

Algorithm converged.

The same model could be fit with a DATA step and PROC REG, as follows. (The
output from the following code is not displayed.)

data B; /* A is the data set used for transreg */
set a(keep=X Y);
X1=X; /* X */
X2=X**2; /* X squared */
X3=X**3; /* X cubed */
X4=(X> 5)*((X-5)**3); /* change in X**3 after 5 */
X5=(X>10)*((X-10)**3); /* change in X**3 after 10 */
X6=(X>15)*((X-15)**3); /* change in X**3 after 15 */

run;

proc reg;
model Y=X1-X6;

run;

In the next step each knot is repeated three times, so the first, second, and third
derivatives are discontinuous atX=5, 10, and 15, but the spline is required to be
continuous at the knots. The spline is a weighted sum of the following.

• a single constant

• a line for the portion ofX less than 5

• a quadratic curve for the portion ofX less than 5

• a cubic curve for the portion ofX less than 5

• a different line for the portion ofX between 5 and 10

• a different quadratic curve for the portion ofX between 5 and 10

• a different cubic curve for the portion ofX between 5 and 10

• a different line for the portion ofX between 10 and 15

• a different quadratic curve for the portion ofX between 10 and 15

• a different cubic curve for the portion ofX between 10 and 15
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• another line for the portion ofX greater than 15

• another quadratic curve for the portion ofX greater than 15

• and another cubic curve for the portion ofX greater than 15

The spline is continuous since there is not a separate constant in the formula for
the spline for each knot. Now theR2 is 0.95542, and the spline closely follows the
data, except at the knots. The following statements perform this analysis and produce
Output 75.1.4:

proc transreg data=A;
model identity(y) = spline(x / knots=5 5 5 10 10 10 15 15 15);
title3 ’First - Third Derivatives Discontinuous at X=5, 10, 15’;
output out=A pprefix=Cub3;
id V1-V7 LinearY QuadY Cub1Y;

run;

Output 75.1.4. Piecewise Polynomial with Discontinuous Derivatives

An Illustration of Splines and Knots
A Cubic Spline Regression Function

First - Third Derivatives Discontinuous at X=5, 10, 15

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.92492 3.50038 0.10061
2 0.00000 0.00000 0.95542 0.85481 Converged

Algorithm converged.

The same model could be fit with a DATA step and PROC REG, as follows. (The
output from the following code is not displayed.)

data B;
set a(keep=X Y);
X1=X; /* X */
X2=X**2; /* X squared */
X3=X**3; /* X cubed */
X4=(X>5) * (X- 5); /* change in X after 5 */
X5=(X>10) * (X-10); /* change in X after 10 */
X6=(X>15) * (X-15); /* change in X after 15 */
X7=(X>5) * ((X-5)**2); /* change in X**2 after 5 */
X8=(X>10) * ((X-10)**2); /* change in X**2 after 10 */
X9=(X>15) * ((X-15)**2); /* change in X**2 after 15 */
X10=(X>5) * ((X-5)**3); /* change in X**3 after 5 */
X11=(X>10) * ((X-10)**3); /* change in X**3 after 10 */
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X12=(X>15) * ((X-15)**3); /* change in X**3 after 15 */
run;

proc reg;
model Y=X1-X12;

run;

When the knots are repeated four times in the next step, the spline function is discon-
tinuous at the knots and follows the data even more closely, with anR2 of 0.99254. In
this step, each separate curve is approximated by a cubic polynomial (with no knots
within the separate polynomials). The following statements perform this analysis and
produceOutput 75.1.5:

proc transreg data=A;
model identity(Y) = spline(X / knots=5 5 5 5 10 10 10 10 15 15 15 15);
title3 ’Discontinuous Function and Derivatives’;
output out=A pprefix=Cub4;
id V1-V7 LinearY QuadY Cub1Y Cub3Y;

run;

Output 75.1.5. Discontinuous Function and Derivatives

An Illustration of Splines and Knots
A Cubic Spline Regression Function

Discontinuous Function and Derivatives

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.90271 3.29184 0.10061
2 0.00000 0.00000 0.99254 0.89193 Converged

Algorithm converged.

To solve this problem with a DATA step and PROC REG, you would need to create
all of the variables in the preceding DATA step (the B data set for the piecewise
polynomial with discontinuous third derivatives), plus the following three variables.

X13=(X > 5); /* intercept change after 5 */
X14=(X > 10); /* intercept change after 10 */
X15=(X > 15); /* intercept change after 15 */

The last two steps use the NKNOTS=t-optionto specify the number of knots but not
their location. NKNOTS=4 places knots at the quintiles while NKNOTS=9 places
knots at the deciles. The spline and its first two derivatives are continuous. The
R2 values are 0.74450 and 0.95256. Even though the knots are placed in the wrong
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places, the spline can closely follow the data with NKNOTS=9. The following state-
ments produceOutput 75.1.6.

proc transreg data=A;
model identity(Y) = spline(X / nknots=4);
title3 ’Four Knots’;
output out=A pprefix=Cub4k;
id V1-V7 LinearY QuadY Cub1Y Cub3Y Cub4Y;

run;

proc transreg data=A;
model identity(Y) = spline(X / nknots=9);
title3 ’Nine Knots’;
output out=A pprefix=Cub9k;
id V1-V7 LinearY QuadY Cub1Y Cub3Y Cub4Y Cub4kY;

run;

Output 75.1.6. Specifying Number of Knots instead of Knot Location

An Illustration of Splines and Knots
A Cubic Spline Regression Function

Four Knots

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.90305 4.46027 0.10061
2 0.00000 0.00000 0.74450 0.64389 Converged

Algorithm converged.

Output 75.1.6. (continued)

An Illustration of Splines and Knots
A Cubic Spline Regression Function

Nine Knots

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.94832 3.03488 0.10061
2 0.00000 0.00000 0.95256 0.85196 Converged

Algorithm converged.
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The following statements produce plots that show the data and fit at each step of the
analysis. These statements produceOutput 75.1.7.

goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=A;
title;
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot Y*X=1 / &opts name=’tregdis1’;
plot Y*V1=1 linearY*X=2 /overlay &opts name=’tregdis2’;
plot Y*V2=1 quadY *X=2 /overlay &opts name=’tregdis3’;
plot Y*V3=1 cub1Y *X=2 /overlay &opts name=’tregdis4’;
plot Y*V4=1 cub3Y *X=2 /overlay &opts name=’tregdis5’;
plot Y*V5=1 cub4Y *X=2 /overlay &opts name=’tregdis6’;
plot Y*V6=1 cub4kY *X=2 /overlay &opts name=’tregdis7’;
plot Y*V7=1 cub9kY *X=2 /overlay &opts name=’tregdis8’;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=dot i=none;
label V1 = ’Linear Regression’

V2 = ’Quadratic Regression Function’
V3 = ’1 Discontinuous Derivative’
V4 = ’3 Discontinuous Derivatives’
V5 = ’Discontinuous Function’
V6 = ’4 Knots’
V7 = ’9 Knots’
Y = ’Y’ LinearY = ’Y’ QuadY = ’Y’ Cub1Y = ’Y’
Cub3Y = ’Y’ Cub4Y = ’Y’ Cub4kY = ’Y’ Cub9kY = ’Y’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregdis1 2:tregdis3 3:tregdis2 4:tregdis4;
treplay 1:tregdis5 2:tregdis7 3:tregdis6 4:tregdis8;

run; quit;
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Output 75.1.7. Plots Summarizing Analysis for Spline Example
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Output 75.1.7. (continued)
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These next steps show how to find optimal spline transformations of variables in one
data set and apply the same transformations to variables in another data set. These
steps produce two artificial data sets, in which the variableY is a linear function of
nonlinear transformations of the variablesX, W, andZ.

title2 ’Scoring Spline Variables’;

data x;
do i = 1 to 5000;

w = normal(7);
x = normal(7);
z = normal(7);
y = w * w + log(5 + x) + sin(z) + normal(7);
output;
end;

run;

data z;
do i = 1 to 5000;

w = normal(1);
x = normal(1);
z = normal(1);
y = w * w + log(5 + x) + sin(z) + normal(1);
output;
end;

run;

First, you run PROC TRANSREG asking for spline transformations of the three inde-
pendent variables. You must use the EXKNOTS=t-option, because you need to use
the same knots, both interior and exterior, with both data sets. By default the exterior
knots will be different if the minima and maxima are different in the two data sets,
so you will get the wrong results if you do not specify the EXKNOTS=t-optionwith
values less than the minima and greater than the maxima of the twoY variables.

ods output splinecoef=c;
proc transreg data=x dum det ss2;

model ide(y) = spl(w x z / knots=-1.5 to 1.5 by 0.5 exknots=-5 5);
output out=d;

run;

The nonprinting “SplineCoef” table is output to a SAS data set. This data set contains
the coefficients used to get the spline transformations and can be used to transform
variables in other data sets. These coefficients are also in the details table. However,
in the “SplineCoef” table they are in a form directly suitable for use with PROC
SCORE.

This next step reads a different input data set and generates an output data set with
the B-spline basis for each of the variables. Note that the same interior and exterior
knots are used in both the previous and the next steps.
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proc transreg data=z design;
model bspl(w x z / knots=-1.5 to 1.5 by 0.5 exknots=-5 5);
output out=b;

run;

These next three steps score the B-spline bases created in the previous step using the
coefficients generated in the first PROC TRANSREG step. PROC SCORE is run
once for each SPLINE variable.

proc score data=b score=c out=o1(rename=(spline=bw w=nw));
var w:;

run;

proc score data=b score=c out=o2(rename=(spline=bx x=nx));
var x:;

run;

proc score data=b score=c out=o3(rename=(spline=bz z=nz));
var z:;

run;

The next steps merge the three transformations with the original data and plot
the results. The plots inOutput 75.1.8show that in fact the two transforma-
tions for each variable, original and scored, are the same function. Furthermore,
PROC TRANSREG found the functional forms that were used to generate the data:
quadratic forW, log for X, and sine forZ.

goptions goutmode=replace nodisplay;
data all;

merge d(keep=w x z tw tx tz) o1(keep=nw bw)
o2(keep=nx bx) o3(keep=nz bz);

run;

proc gplot data=all;
title3 ’Exterior Knots Specified - Curves are the Same’;
symbol1 color=blue v=none i=smooths;
symbol2 color=red v=none i=smooths;
plot tw * w = 1 bw * nw = 2 / overlay name=’tregspl1’;
plot tx * x = 1 bx * nx = 2 / overlay name=’tregspl2’;
plot tz * z = 1 bz * nz = 2 / overlay name=’tregspl3’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregspl1 2:tregspl3 3:tregspl2;

run; quit;
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Output 75.1.8. Scoring Spline Variables Example

Example 75.2. Nonmetric Conjoint Analysis of Tire Data

This example uses PROC TRANSREG to perform a nonmetric conjoint analysis of
tire preference data. Conjoint analysis decomposes rank ordered evaluation judg-
ments of products or services into components based on qualitative product attributes.
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For each level of each attribute of interest, a numerical “part-worth utility” value is
computed. The sum of the part-worth utilities for each product is an estimate of the
utility for that product. The goal is to compute part-worth utilities such that the prod-
uct utilities are as similar as possible to the original rank ordering. (This example is
a greatly simplified introductory example.)

The stimuli for the experiment are 18 hypothetical tires. The stimuli represent dif-
ferent brands (Goodstone, Pirogi, Machismo),∗ prices ($69.99, $74.99, $79.99), ex-
pected tread life (50,000, 60,000, 70,000), and road hazard insurance plans (Yes, No).
There are3 × 3 × 3 × 2 = 54 possible combinations. From these, 18 combinations
are selected that form an efficient experimental design for a main effects model. The
combinations are then ranked from 1 (most preferred) to 18 (least preferred). In this
simple example, there is one set of rankings. A real conjoint study would have many
more.

First, the FORMAT procedure is used to specify the meanings of the factor lev-
els, which are entered as numbers in the DATA step along with the ranks. PROC
TRANSREG is used to perform the conjoint analysis. A maximum of 50 iterations
is requested. The specification Monotone(Rank / Reflect) in the MODEL statement
requests that the dependent variableRank should be monotonically transformed and
reflected so that positive utilities mean high preference. The variablesBrand, Price,
Life, andHazard are designated as CLASS variables, and the part-worth utilities
are constrained by ZERO=SUM to sum to zero within each factor. The UTILITIES
a-optiondisplays the conjoint analysis results.

TheImportance column of the Utilities Table shows that price is the most important
attribute in determining preference (57%), followed by expected tread life (18%),
brand (15%), and road hazard insurance (10%). Looking at the Utilities Table for
the maximum part-worth utility within each attribute, you see from the results that
the most preferred combination is Pirogi brand tires, at $69.99, with a 70,000 mile
expected tread life, and road hazard insurance. This product is not actually in the data
set. The sum of the part-worth utilities for this combination is

20.64 = 9.50 + 1.90 + 5.87 + 2.41 + 0.96

The following statements produceOutput 75.2.1:

title ’Nonmetric Conjoint Analysis of Ranks’;

proc format;
value BrandF

1 = ’Goodstone’
2 = ’Pirogi ’
3 = ’Machismo ’;

value PriceF
1 = ’$69.99’
2 = ’$74.99’
3 = ’$79.99’;

∗In real conjoint experiments, real brand names are used.
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value LifeF
1 = ’50,000’
2 = ’60,000’
3 = ’70,000’;

value HazardF
1 = ’Yes’
2 = ’No ’;

run;

data Tires;
input Brand Price Life Hazard Rank;
format Brand BrandF9. Price PriceF9. Life LifeF6. Hazard HazardF3.;
datalines;

1 1 2 1 3
1 1 3 2 2
1 2 1 2 14
1 2 2 2 10
1 3 1 1 17
1 3 3 1 12
2 1 1 2 7
2 1 3 2 1
2 2 1 1 8
2 2 3 1 5
2 3 2 1 13
2 3 2 2 16
3 1 1 1 6
3 1 2 1 4
3 2 2 2 15
3 2 3 1 9
3 3 1 2 18
3 3 3 2 11
;

proc transreg maxiter=50 utilities short;
ods select ConvergenceStatus FitStatistics Utilities;
model monotone(Rank / reflect) =

class(Brand Price Life Hazard / zero=sum);
output ireplace predicted;

run;

proc print label;
var Rank TRank PRank Brand Price Life Hazard;
label PRank = ’Predicted Ranks’;

run;
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Output 75.2.1. Simple Conjoint Analysis

Nonmetric Conjoint Analysis of Ranks

The TRANSREG Procedure

Monotone(Rank)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Monotone(Rank)

Root MSE 0.49759 R-Square 0.9949
Dependent Mean 9.50000 Adj R-Sq 0.9913
Coeff Var 5.23783

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 9.5000 0.11728 Intercept

Brand Goodstone -1.1718 0.16586 15.463 Class.BrandGoodstone
Brand Pirogi 1.8980 0.16586 Class.BrandPirogi
Brand Machismo -0.7262 0.16586 Class.BrandMachismo

Price $69.99 5.8732 0.16586 56.517 Class.Price_69_99
Price $74.99 -0.5261 0.16586 Class.Price_74_99
Price $79.99 -5.3471 0.16586 Class.Price_79_99

Life 50,000 -1.2350 0.16586 18.361 Class.Life50_000
Life 60,000 -1.1751 0.16586 Class.Life60_000
Life 70,000 2.4101 0.16586 Class.Life70_000

Hazard Yes 0.9588 0.11728 9.659 Class.HazardYes
Hazard No -0.9588 0.11728 Class.HazardNo

The standard errors are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal (too small).
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Output 75.2.1. (continued)

Nonmetric Conjoint Analysis of Ranks

Rank Predicted
Obs Rank Transformation Ranks Brand Price Life Hazard

1 3 14.4462 13.9851 Goodstone $69.99 60,000 Yes
2 2 15.6844 15.6527 Goodstone $69.99 70,000 No
3 14 5.7229 5.6083 Goodstone $74.99 50,000 No
4 10 5.7229 5.6682 Goodstone $74.99 60,000 No
5 17 2.6699 2.7049 Goodstone $79.99 50,000 Yes
6 12 5.7229 6.3500 Goodstone $79.99 70,000 Yes
7 7 14.4462 15.0774 Pirogi $69.99 50,000 No
8 1 18.7699 18.7225 Pirogi $69.99 70,000 No
9 8 11.1143 10.5957 Pirogi $74.99 50,000 Yes

10 5 14.4462 14.2408 Pirogi $74.99 70,000 Yes
11 13 5.7229 5.8346 Pirogi $79.99 60,000 Yes
12 16 3.8884 3.9170 Pirogi $79.99 60,000 No
13 6 14.4462 14.3708 Machismo $69.99 50,000 Yes
14 4 14.4462 14.4307 Machismo $69.99 60,000 Yes
15 15 5.7229 6.1139 Machismo $74.99 60,000 No
16 9 11.1143 11.6166 Machismo $74.99 70,000 Yes
17 18 1.1905 1.2330 Machismo $79.99 50,000 No
18 11 5.7229 4.8780 Machismo $79.99 70,000 No

Example 75.3. Metric Conjoint Analysis of Tire Data

This example, which is more detailed than the previous one, uses PROC TRANSREG
to perform a metric conjoint analysis of tire preference data. Conjoint analysis can
be used to decompose preference ratings of products or services into components
based on qualitative product attributes. For each level of each attribute of interest, a
numerical “part-worth utility” value is computed. The sum of the part-worth utilities
for each product is an estimate of the utility for that product. The goal is to compute
part-worth utilities such that the product utilities are as similar as possible to the orig-
inal ratings. Metric conjoint analysis, as shown in this example, fits an ordinary linear
model directly to data assumed to be measured on an interval scale. Nonmetric con-
joint analysis, as shown inExample 75.2, finds an optimal monotonic transformation
of original data before fitting an ordinary linear model to the transformed data.

This example has three parts. In the first part, an experimental design is created. In
the second part, a DATA step creates descriptions of the stimuli for the experiment.
The third part of the example performs the conjoint analyses.

The stimuli for the experiment are 18 hypothetical tires. The stimuli represent dif-
ferent brands (Goodstone, Pirogi, Machismo),∗ prices ($69.99, $74.99, $79.99), ex-
pected tread life (50,000, 60,000, 70,000), and road hazard insurance plans (Yes, No).

For a conjoint study such as this, you need to create an experimental design with 3
three-level factors, 1 two-level factor, and 18 combinations orruns. The easiest way
to get this design is with the %MktEx autocall macro. The %MktEx macro requires

∗In real conjoint experiments, real brand names would be used
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you to specify the number of levels of each of the four factors, followed by N=18,
the number of runs. Specifying a random number seed, while not strictly necessary,
helps ensure that the design is reproducible. The %MktLab macro assigns the actual
factor names instead of the default names X1, X2, and so on, and it assigns formats to
the factor levels. The %MktEval macro helps you evaluate the design. It shows how
correlated or independent the factors are, how often each factor level appears in the
design, how often each pair occurs for every factor pair, and how often each product
profile or run occurs in the design. See Kuhfeld (2003) for more information on these
tools and their use in conjoint and choice modeling.

title ’Tire Study, Experimental Design’;

proc format;
value BrandF

1 = ’Goodstone’
2 = ’Pirogi ’
3 = ’Machismo ’;

value PriceF
1 = ’$69.99’
2 = ’$74.99’
3 = ’$79.99’;

value LifeF
1 = ’50,000’
2 = ’60,000’
3 = ’70,000’;

value HazardF
1 = ’Yes’
2 = ’No ’;(persist

run;

%mktex(3 3 3 2, n=18, seed=448)
%mktlab(vars=Brand Price Life Hazard, out=sasuser.TireDesign,

statements=format Brand BrandF9. Price PriceF9.
Life LifeF6. Hazard HazardF3.)

%mkteval;

proc print data=sasuser.TireDesign;
run;

The %MktEx macro output displayed inOutput 75.3.1shows you that the design is
100% efficient, which means it is orthogonal and balanced. The %MktEval macro
output displayed inOutput 75.3.2shows you that all of the factors are uncorrelated or
orthogonal, the design is balanced (each level occurs once), and every pair of factor
levels occurs equally often (again showing that the design is orthogonal). Then-way
frequencies show that each product profile occurs once (there are no duplicates). The
design is shown inOutput 75.3.3. The design is automatically randomized (the pro-
files were sorted into a random order and the original levels are randomly reassigned).
Orthogonality, balance, randomization, and other design concepts are discussed in
detail in Kuhfeld (2003).
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Output 75.3.1. Tire Study, Design Efficiency

Tire Study, Experimental Design

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 100.0000 100.0000 Tab
1 End 100.0000

Tire Study, Experimental Design

The OPTEX Procedure

Class Level Information

Class Levels -Values-

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 2 1 2

Tire Study, Experimental Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.6667
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Output 75.3.2. Tire Study, Design Evaluation

Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316

Brand Price Life Hazard

Brand 1 0 0 0
Price 0 1 0 0
Life 0 0 1 0
Hazard 0 0 0 1

Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316

Frequencies

Brand 6 6 6
Price 6 6 6
Life 6 6 6
Hazard 9 9
Brand Price 2 2 2 2 2 2 2 2 2
Brand Life 2 2 2 2 2 2 2 2 2
Brand Hazard 3 3 3 3 3 3
Price Life 2 2 2 2 2 2 2 2 2
Price Hazard 3 3 3 3 3 3
Life Hazard 3 3 3 3 3 3
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Output 75.3.3. Tire Study, Design

Obs Brand Price Life Hazard

1 Pirogi $79.99 50,000 No
2 Machismo $79.99 70,000 No
3 Machismo $74.99 50,000 Yes
4 Machismo $74.99 50,000 No
5 Goodstone $74.99 70,000 Yes
6 Pirogi $69.99 70,000 Yes
7 Goodstone $69.99 50,000 Yes
8 Machismo $69.99 60,000 Yes
9 Pirogi $74.99 60,000 Yes

10 Pirogi $74.99 60,000 No
11 Goodstone $79.99 60,000 No
12 Goodstone $69.99 50,000 No
13 Pirogi $79.99 50,000 Yes
14 Goodstone $74.99 70,000 No
15 Machismo $69.99 60,000 No
16 Machismo $79.99 70,000 Yes
17 Pirogi $69.99 70,000 No
18 Goodstone $79.99 60,000 Yes

Next, the questionnaires are printed, and subjects are given the questionnaires and are
asked to rate the tires.

The following statements produceOutput 75.3.4. This output is abbreviated; the
statements produce stimuli for all combinations.
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data _null_;
title;
set sasuser.TireDesign;
file print;
if mod(_n_,4) eq 1 then do;

put _page_;
put +55 ’Subject ________’;
end;

length hazardstring $ 7.;
if put(hazard, hazardf3.) = ’Yes’

then hazardstring = ’with’;
else hazardstring = ’without’;

s = 3 + (_n_ >= 10);
put // _n_ +(-1) ’) For your next tire purchase, ’

’how likely are you to buy this product?’
// +s Brand ’brand tires at ’ Price +(-1) ’,’
/ +s ’with a ’ Life ’tread life guarantee, ’
/ +s ’and ’ hazardstring ’road hazard insurance.’
// +s ’Definitely Would Definitely Would’
/ +s ’Not Purchase Purchase’
// +s ’1 2 3 4 5 6 7 8 9 ’;

run;
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Output 75.3.4. Conjoint Analysis, Stimuli Descriptions

Subject ________

1) For your next tire purchase, how likely are you to buy this product?

Pirogi brand tires at $79.99,
with a 50,000 tread life guarantee,
and without road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

2) For your next tire purchase, how likely are you to buy this product?

Machismo brand tires at $79.99,
with a 70,000 tread life guarantee,
and without road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

3) For your next tire purchase, how likely are you to buy this product?

Machismo brand tires at $74.99,
with a 50,000 tread life guarantee,
and with road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

4) For your next tire purchase, how likely are you to buy this product?

Machismo brand tires at $74.99,
with a 50,000 tread life guarantee,
and without road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

The third part of the example performs the conjoint analyses. The DATA step reads
the data. Only the ratings are entered, one row per subject. Real conjoint studies have
many more subjects than five. The TRANSPOSE procedure transposes this (5× 18)
data set into an (18 × 5) data set that can be merged with the factor level data set
sasuser.TireDesign. The next DATA step does the merge. The PRINT procedure
displays the input data set.

PROC TRANSREG fits the five individual conjoint models, one for each subject.
The UTILITIESa-optiondisplays the conjoint analysis results. The SHORTa-option
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suppresses the iteration histories, OUTTEST=Utils creates an output data set with all
of the conjoint results, and the SEPARATORS= option requests that the labels con-
structed for each category contain two blanks between the variable name and the level
value. The ODS select statement is used to limit the displayed output. The MODEL
statement specifies IDENTITY for the ratings, which specifies a metric conjoint anal-
ysis —the ratings are not transformed. The variablesBrand, Price, Life, andHazard
are designated as CLASS variables, and the part-worth utilities are constrained to sum
to zero within each factor.

The following statements produceOutput 75.3.5:

title ’Tire Study, Data Entry, Preprocessing’;

data Results;
input (c1-c18) (1.);
datalines;

233279766526376493
124467885349168274
262189456534275794
184396375364187754
133379775526267493
;

*---Create an Object by Subject Data Matrix---;
proc transpose data=Results out=Results(drop=_name_) prefix=Subj;
run;

*---Merge the Factor Levels With the Data Matrix---;
data Both;

merge sasuser.TireDesign Results;
run;

*---Print Input Data Set---;
proc print;

title2 ’Data Set for Conjoint Analysis’;
run;

*---Fit Each Subject Individually---;
proc transreg data=Both utilities short outtest=Utils separators=’ ’;

ods select TestsNote FitStatistics Utilities;
title2 ’Individual Conjoint Analyses’;
model identity(Subj1-Subj5) =

class(Brand Price Life Hazard / zero=sum);
run;

The output contains two tables per subject, one with overall fit statistics and one with
the conjoint analysis results.
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Output 75.3.5. Conjoint Analysis

Tire Study, Data Entry, Preprocessing
Data Set for Conjoint Analysis

Obs Brand Price Life Hazard Subj1 Subj2 Subj3 Subj4 Subj5

1 Pirogi $79.99 50,000 No 2 1 2 1 1
2 Machismo $79.99 70,000 No 3 2 6 8 3
3 Machismo $74.99 50,000 Yes 3 4 2 4 3
4 Machismo $74.99 50,000 No 2 4 1 3 3
5 Goodstone $74.99 70,000 Yes 7 6 8 9 7
6 Pirogi $69.99 70,000 Yes 9 7 9 6 9
7 Goodstone $69.99 50,000 Yes 7 8 4 3 7
8 Machismo $69.99 60,000 Yes 6 8 5 7 7
9 Pirogi $74.99 60,000 Yes 6 5 6 5 5

10 Pirogi $74.99 60,000 No 5 3 5 3 5
11 Goodstone $79.99 60,000 No 2 4 3 6 2
12 Goodstone $69.99 50,000 No 6 9 4 4 6
13 Pirogi $79.99 50,000 Yes 3 1 2 1 2
14 Goodstone $74.99 70,000 No 7 6 7 8 6
15 Machismo $69.99 60,000 No 6 8 5 7 7
16 Machismo $79.99 70,000 Yes 4 2 7 7 4
17 Pirogi $69.99 70,000 No 9 7 9 5 9
18 Goodstone $79.99 60,000 Yes 3 4 4 4 3
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Output 75.3.5. (continued)

Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj1)

Root MSE 0.44721 R-Square 0.9783
Dependent Mean 5.00000 Adj R-Sq 0.9630
Coeff Var 8.94427

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 5.0000 0.10541 Intercept

Brand Goodstone 0.3333 0.14907 17.857 Class.BrandGoodstone
Brand Pirogi 0.6667 0.14907 Class.BrandPirogi
Brand Machismo -1.0000 0.14907 Class.BrandMachismo

Price $69.99 2.1667 0.14907 46.429 Class.Price_69_99
Price $74.99 0.0000 0.14907 Class.Price_74_99
Price $79.99 -2.1667 0.14907 Class.Price_79_99

Life 50,000 -1.1667 0.14907 28.571 Class.Life50_000
Life 60,000 -0.3333 0.14907 Class.Life60_000
Life 70,000 1.5000 0.14907 Class.Life70_000

Hazard Yes 0.3333 0.10541 7.143 Class.HazardYes
Hazard No -0.3333 0.10541 Class.HazardNo
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Output 75.3.5. (continued)

Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj2)

Root MSE 0.50553 R-Square 0.9770
Dependent Mean 4.94444 Adj R-Sq 0.9608
Coeff Var 10.22410

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 4.9444 0.11915 Intercept

Brand Goodstone 1.2222 0.16851 25.161 Class.BrandGoodstone
Brand Pirogi -0.9444 0.16851 Class.BrandPirogi
Brand Machismo -0.2778 0.16851 Class.BrandMachismo

Price $69.99 2.8889 0.16851 63.871 Class.Price_69_99
Price $74.99 -0.2778 0.16851 Class.Price_74_99
Price $79.99 -2.6111 0.16851 Class.Price_79_99

Life 50,000 -0.4444 0.16851 9.677 Class.Life50_000
Life 60,000 0.3889 0.16851 Class.Life60_000
Life 70,000 0.0556 0.16851 Class.Life70_000

Hazard Yes 0.0556 0.11915 1.290 Class.HazardYes
Hazard No -0.0556 0.11915 Class.HazardNo
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Output 75.3.5. (continued)

Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj3)

Root MSE 0.50553 R-Square 0.9747
Dependent Mean 4.94444 Adj R-Sq 0.9570
Coeff Var 10.22410

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 4.9444 0.11915 Intercept

Brand Goodstone 0.0556 0.16851 13.125 Class.BrandGoodstone
Brand Pirogi 0.5556 0.16851 Class.BrandPirogi
Brand Machismo -0.6111 0.16851 Class.BrandMachismo

Price $69.99 1.0556 0.16851 22.500 Class.Price_69_99
Price $74.99 -0.1111 0.16851 Class.Price_74_99
Price $79.99 -0.9444 0.16851 Class.Price_79_99

Life 50,000 -2.4444 0.16851 58.125 Class.Life50_000
Life 60,000 -0.2778 0.16851 Class.Life60_000
Life 70,000 2.7222 0.16851 Class.Life70_000

Hazard Yes 0.2778 0.11915 6.250 Class.HazardYes
Hazard No -0.2778 0.11915 Class.HazardNo
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Output 75.3.5. (continued)

Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj4)

Root MSE 0.92496 R-Square 0.9099
Dependent Mean 5.05556 Adj R-Sq 0.8468
Coeff Var 18.29596

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 5.0556 0.21802 Intercept

Brand Goodstone 0.6111 0.30832 31.469 Class.BrandGoodstone
Brand Pirogi -1.5556 0.30832 Class.BrandPirogi
Brand Machismo 0.9444 0.30832 Class.BrandMachismo

Price $69.99 0.2778 0.30832 10.490 Class.Price_69_99
Price $74.99 0.2778 0.30832 Class.Price_74_99
Price $79.99 -0.5556 0.30832 Class.Price_79_99

Life 50,000 -2.3889 0.30832 56.643 Class.Life50_000
Life 60,000 0.2778 0.30832 Class.Life60_000
Life 70,000 2.1111 0.30832 Class.Life70_000

Hazard Yes 0.0556 0.21802 1.399 Class.HazardYes
Hazard No -0.0556 0.21802 Class.HazardNo
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Output 75.3.5. (continued)

Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj5)

Root MSE 0.34960 R-Square 0.9879
Dependent Mean 4.94444 Adj R-Sq 0.9794
Coeff Var 7.07062

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 4.9444 0.08240 Intercept

Brand Goodstone 0.2222 0.11653 7.500 Class.BrandGoodstone
Brand Pirogi 0.2222 0.11653 Class.BrandPirogi
Brand Machismo -0.4444 0.11653 Class.BrandMachismo

Price $69.99 2.5556 0.11653 56.250 Class.Price_69_99
Price $74.99 -0.1111 0.11653 Class.Price_74_99
Price $79.99 -2.4444 0.11653 Class.Price_79_99

Life 50,000 -1.2778 0.11653 30.000 Class.Life50_000
Life 60,000 -0.1111 0.11653 Class.Life60_000
Life 70,000 1.3889 0.11653 Class.Life70_000

Hazard Yes 0.2778 0.08240 6.250 Class.HazardYes
Hazard No -0.2778 0.08240 Class.HazardNo

These following statements summarize the results. Three tables are displayed: all
of the importance values, the average importance, and the part-worth utilities. The
first DATA step selects the importance information from theUtils data set. The final
assignment statement stores just the variable name from the label relying on the fact
that the separator is two blanks. PROC TRANSPOSE creates the data set of impor-
tances, one row per subject, and PROC PRINT displays the results. The MEANS
procedure displays the average importance of each attribute across the subjects. The
next DATA step selects the part-worth utilities information from theUtils data set.
PROC TRANSPOSE creates the data set of utilities, one row per subject, and PROC
PRINT displays the results.
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*---Gather the Importance Values---;
data Importance;

set Utils(keep=_depvar_ Importance Label);
if n(Importance);
label = substr(label, 1, index(label, ’ ’));

run;

proc transpose out=Importance2(drop=_:);
by _depvar_;
id Label;

run;

proc print;
title2 ’Importance Values’;

run;

proc means;
title2 ’Average Importance’;

run;

*---Gather the Part-Worth Utilites---;
data Utilities;

set Utils(keep=_depvar_ Coefficient Label);
if n(Coefficient);

run;

proc transpose out=Utilities2(drop=_:);
by _depvar_;
id Label;
idlabel Label;

run;

proc print label;
title2 ’Utilities’;

run;

Output 75.3.6. Summary of Conjoint Analysis Results

Tire Study, Data Entry, Preprocessing
Importance Values

Obs Brand Price Life Hazard

1 17.8571 46.4286 28.5714 7.14286
2 25.1613 63.8710 9.6774 1.29032
3 13.1250 22.5000 58.1250 6.25000
4 31.4685 10.4895 56.6434 1.39860
5 7.5000 56.2500 30.0000 6.25000
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Output 75.3.6. (continued)

Tire Study, Data Entry, Preprocessing
Average Importance

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum
-----------------------------------------------------------------------------
Brand 5 19.0223929 9.5065111 7.5000000 31.4685315
Price 5 39.9078099 22.6510962 10.4895105 63.8709677
Life 5 36.6034409 20.6028215 9.6774194 58.1250000
Hazard 5 4.4663562 2.8733577 1.2903226 7.1428571
-----------------------------------------------------------------------------

Output 75.3.6. (continued)

Tire Study, Data Entry, Preprocessing
Utilities

Brand Brand Brand Price Price
Obs Intercept Goodstone Pirogi Machismo $69.99 $74.99

1 5.00000 0.33333 0.66667 -1.00000 2.16667 0.00000
2 4.94444 1.22222 -0.94444 -0.27778 2.88889 -0.27778
3 4.94444 0.05556 0.55556 -0.61111 1.05556 -0.11111
4 5.05556 0.61111 -1.55556 0.94444 0.27778 0.27778
5 4.94444 0.22222 0.22222 -0.44444 2.55556 -0.11111

Price Life Life Life Hazard Hazard
Obs $79.99 50,000 60,000 70,000 Yes No

1 -2.16667 -1.16667 -0.33333 1.50000 0.33333 -0.33333
2 -2.61111 -0.44444 0.38889 0.05556 0.05556 -0.05556
3 -0.94444 -2.44444 -0.27778 2.72222 0.27778 -0.27778
4 -0.55556 -2.38889 0.27778 2.11111 0.05556 -0.05556
5 -2.44444 -1.27778 -0.11111 1.38889 0.27778 -0.27778

Based on the importance values, price is the most important attribute for some of the
respondents, but expected tread life is most important for others. On the average,
price is most important followed closely by expected tread life. Brand and road haz-
ard insurance are less important. Both Goodstone and Pirogi are the most preferred
brands by some of the respondents. All respondents preferred a lower price over a
higher price, a longer tread life, and road hazard insurance.

Example 75.4. Transformation Regression of Exhaust
Emissions Data

In this example, the MORALS algorithm is applied to data from an experiment in
which nitrogen oxide emissions from a single cylinder engine are measured for var-
ious combinations of fuel, compression ratio, and equivalence ratio. The data are
provided by Brinkman (1981).
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The equivalence ratio and nitrogen oxide variables are continuous and numeric, so
spline transformations of these variables are requested. Each spline is degree three
with nine knots (one at each decile) in order to allow PROC TRANSREG a great deal
of freedom in finding transformations. The compression ratio variable has only five
discrete values, so an optimal scoring is requested. The character variableFuel is
nominal, so it is designated as a classification variable. No monotonicity constraints
are placed on any of the transformations. Observations with missing values are ex-
cluded with the NOMISSa-option.

The squared multiple correlation for the initial model is less than 0.25. PROC
TRANSREG increases theR2 to over 0.95 by transforming the variables. The trans-
formation plots show how each variable is transformed. The transformation of com-
pression ratio (TCpRatio) is nearly linear. The transformation of equivalence ratio
(TEqRatio) is nearly parabolic. It can be seen from this plot that the optimal trans-
formation of equivalence ratio is nearly uncorrelated with the original scoring. This
suggests that the large increase inR2 is due to this transformation. The transforma-
tion of nitrogen oxide (TNOx) is something like a log transformation.

These results suggest the parametric model

log(NOX) = b0 + b1 × EqRatio + b2 × EqRatio2 + b3 × CpRatio

+
∑

j

bjclassj(Fuel) + error.

You can perform this analysis with PROC TRANSREG using the following MODEL
statement:

model log(NOx)= psp(EqRatio / deg=2) identity(CpRatio)
class(Fuel / zero=first);

The LOG transformation computes the natural log. The PSPLINE expansion expands
EqRatio into a linear term,EqRatio, and a squared term,EqRatio2. A linear trans-
formation ofCpRatio and a dummy variable expansion ofFuel is requested with the
first level as the reference level. These should provide a good parametric operational-
ization of the optimal transformations. The final model has anR2 of 0.91 (smaller
than before since the model uses fewer degrees of freedom, but still quite good).

The following statements produceOutput 75.4.1throughOutput 75.4.2:

title ’Gasoline Example’;

data Gas;
input Fuel :$8. CpRatio EqRatio NOx @@;
label Fuel = ’Fuel’

CpRatio = ’Compression Ratio (CR)’
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EqRatio = ’Equivalence Ratio (PHI)’
NOx = ’Nitrogen Oxide (NOx)’;

datalines;
Ethanol 12.0 0.907 3.741 Ethanol 12.0 0.761 2.295
Ethanol 12.0 1.108 1.498 Ethanol 12.0 1.016 2.881
Ethanol 12.0 1.189 0.760 Ethanol 9.0 1.001 3.120
Ethanol 9.0 1.231 0.638 Ethanol 9.0 1.123 1.170
Ethanol 12.0 1.042 2.358 Ethanol 12.0 1.215 0.606
Ethanol 12.0 0.930 3.669 Ethanol 12.0 1.152 1.000
Ethanol 15.0 1.138 0.981 Ethanol 18.0 0.601 1.192
Ethanol 7.5 0.696 0.926 Ethanol 12.0 0.686 1.590
Ethanol 12.0 1.072 1.806 Ethanol 15.0 1.074 1.962
Ethanol 15.0 0.934 4.028 Ethanol 9.0 0.808 3.148
Ethanol 9.0 1.071 1.836 Ethanol 7.5 1.009 2.845
Ethanol 7.5 1.142 1.013 Ethanol 18.0 1.229 0.414
Ethanol 18.0 1.175 0.812 Ethanol 15.0 0.568 0.374
Ethanol 15.0 0.977 3.623 Ethanol 7.5 0.767 1.869
Ethanol 7.5 1.006 2.836 Ethanol 9.0 0.893 3.567
Ethanol 15.0 1.152 0.866 Ethanol 15.0 0.693 1.369
Ethanol 15.0 1.232 0.542 Ethanol 15.0 1.036 2.739
Ethanol 15.0 1.125 1.200 Ethanol 9.0 1.081 1.719
Ethanol 9.0 0.868 3.423 Ethanol 7.5 0.762 1.634
Ethanol 7.5 1.144 1.021 Ethanol 7.5 1.045 2.157
Ethanol 18.0 0.797 3.361 Ethanol 18.0 1.115 1.390
Ethanol 18.0 1.070 1.947 Ethanol 18.0 1.219 0.962
Ethanol 9.0 0.637 0.571 Ethanol 9.0 0.733 2.219
Ethanol 9.0 0.715 1.419 Ethanol 9.0 0.872 3.519
Ethanol 7.5 0.765 1.732 Ethanol 7.5 0.878 3.206
Ethanol 7.5 0.811 2.471 Ethanol 15.0 0.676 1.777
Ethanol 18.0 1.045 2.571 Ethanol 18.0 0.968 3.952
Ethanol 15.0 0.846 3.931 Ethanol 15.0 0.684 1.587
Ethanol 7.5 0.729 1.397 Ethanol 7.5 0.911 3.536
Ethanol 7.5 0.808 2.202 Ethanol 7.5 1.168 0.756
Indolene 7.5 0.831 4.818 Indolene 7.5 1.045 2.849
Indolene 7.5 1.021 3.275 Indolene 7.5 0.970 4.691
Indolene 7.5 0.825 4.255 Indolene 7.5 0.891 5.064
Indolene 7.5 0.710 2.118 Indolene 7.5 0.801 4.602
Indolene 7.5 1.074 2.286 Indolene 7.5 1.148 0.970
Indolene 7.5 1.000 3.965 Indolene 7.5 0.928 5.344
Indolene 7.5 0.767 3.834 Ethanol 7.5 0.749 1.620
Ethanol 7.5 0.892 3.656 Ethanol 7.5 1.002 2.964
82rongas 7.5 0.873 6.021 82rongas 7.5 0.987 4.467
82rongas 7.5 1.030 3.046 82rongas 7.5 1.101 1.596
82rongas 7.5 1.173 0.835 82rongas 7.5 0.931 5.498
82rongas 7.5 0.822 5.470 82rongas 7.5 0.749 4.084
82rongas 7.5 0.625 0.716 94%Eth 7.5 0.818 2.382
94%Eth 7.5 1.128 1.004 94%Eth 7.5 1.191 0.623
94%Eth 7.5 1.132 1.030 94%Eth 7.5 0.993 2.593
94%Eth 7.5 0.866 2.699 94%Eth 7.5 0.910 3.177
94%Eth 12.0 1.139 1.151 94%Eth 12.0 1.267 0.474
94%Eth 12.0 1.017 2.814 94%Eth 12.0 0.954 3.308
94%Eth 12.0 0.861 3.031 94%Eth 12.0 1.034 2.537
94%Eth 12.0 0.781 2.403 94%Eth 12.0 1.058 2.412
94%Eth 12.0 0.884 2.452 94%Eth 12.0 0.766 1.857
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94%Eth 7.5 1.193 0.657 94%Eth 7.5 0.885 2.969
94%Eth 7.5 0.915 2.670 Ethanol 18.0 0.812 3.760
Ethanol 18.0 1.230 0.672 Ethanol 18.0 0.804 3.677
Ethanol 18.0 0.712 . Ethanol 12.0 0.813 3.517
Ethanol 12.0 1.002 3.290 Ethanol 9.0 0.696 1.139
Ethanol 9.0 1.199 0.727 Ethanol 9.0 1.030 2.581
Ethanol 15.0 0.602 0.923 Ethanol 15.0 0.694 1.527
Ethanol 15.0 0.816 3.388 Ethanol 15.0 0.896 .
Ethanol 15.0 1.037 2.085 Ethanol 15.0 1.181 0.966
Ethanol 7.5 0.899 3.488 Ethanol 7.5 1.227 0.754
Indolene 7.5 0.701 1.990 Indolene 7.5 0.807 5.199
Indolene 7.5 0.902 5.283 Indolene 7.5 0.997 3.752
Indolene 7.5 1.224 0.537 Indolene 7.5 1.089 1.640
Ethanol 9.0 1.180 0.797 Ethanol 7.5 0.795 2.064
Ethanol 18.0 0.990 3.732 Ethanol 18.0 1.201 0.586
Methanol 7.5 0.975 2.941 Methanol 7.5 1.089 1.467
Methanol 7.5 1.150 0.934 Methanol 7.5 1.212 0.722
Methanol 7.5 0.859 2.397 Methanol 7.5 0.751 1.461
Methanol 7.5 0.720 1.235 Methanol 7.5 1.090 1.347
Methanol 7.5 0.616 0.344 Gasohol 7.5 0.712 2.209
Gasohol 7.5 0.771 4.497 Gasohol 7.5 0.959 4.958
Gasohol 7.5 1.042 2.723 Gasohol 7.5 1.125 1.244
Gasohol 7.5 1.097 1.562 Gasohol 7.5 0.984 4.468
Gasohol 7.5 0.928 5.307 Gasohol 7.5 0.889 5.425
Gasohol 7.5 0.827 5.330 Gasohol 7.5 0.674 1.448
Gasohol 7.5 1.031 3.164 Methanol 7.5 0.871 3.113
Methanol 7.5 1.026 2.551 Methanol 7.5 0.598 0.204
Indolene 7.5 0.973 5.055 Indolene 7.5 0.980 4.937
Indolene 7.5 0.665 1.561 Ethanol 7.5 0.629 0.561
Ethanol 9.0 0.608 0.563 Ethanol 12.0 0.584 0.678
Ethanol 15.0 0.562 0.370 Ethanol 18.0 0.535 0.530
94%Eth 7.5 0.674 0.900 Gasohol 7.5 0.645 1.207
Ethanol 18.0 0.655 1.900 94%Eth 7.5 1.022 2.787
94%Eth 7.5 0.790 2.645 94%Eth 7.5 0.720 1.475
94%Eth 7.5 1.075 2.147
;

*---Fit the Nonparametric Model---;
proc transreg data=Gas dummy test nomiss;

model spline(NOx / nknots=9)=spline(EqRatio / nknots=9)
opscore(CpRatio) class(Fuel / zero=first);

title2 ’Iteratively Estimate NOx, CPRATIO and EQRATIO’;
output out=Results;

run;

*---Plot the Results---;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=Results;
title;
axis1 minor=none label=(angle=90 rotate=0);
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axis2 minor=none;
symbol1 color=blue v=dot i=none;
plot TCpRatio*CpRatio / &opts name=’tregex1’;
plot TEqRatio*EqRatio / &opts name=’tregex2’;
plot TNOx*NOx / &opts name=’tregex3’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregex1 2:tregex3 3:tregex2;

run; quit;

*-Fit the Parametric Model Suggested by the Nonparametric Analysis-;
proc transreg data=Gas dummy ss2 short nomiss;

title ’Gasoline Example’;
title2 ’Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +’;
title3 ’b3*CpRatio + Sum b(j)*Fuel(j) + Error’;
model log(NOx)= pspline(EqRatio / deg=2) identity(CpRatio)

class(Fuel / zero=first);
output out=Results2;

run;
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Output 75.4.1. Transformation Regression Example: The Nonparametric Model

Gasoline Example
Iteratively Estimate NOx, CPRATIO and EQRATIO

The TRANSREG Procedure

Dependent Variable Spline(NOx)
Nitrogen Oxide (NOx)

Class Level Information

Class Levels Values

Fuel 6 82rongas 94%Eth Ethanol Gasohol Indolene Methanol

Number of Observations Read 171
Number of Observations Used 169

TRANSREG MORALS Algorithm Iteration History for Spline(NOx)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.48074 3.86778 0.24597
1 0.00000 0.00000 0.95865 0.71267 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Spline(NOx)
Nitrogen Oxide (NOx)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 21 326.0946 15.52831 162.27 >= <.0001
Error 147 14.0674 0.09570
Corrected Total 168 340.1619

The above statistics are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal.

Root MSE 0.30935 R-Square 0.9586
Dependent Mean 2.34593 Adj R-Sq 0.9527
Coeff Var 13.18661
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Output 75.4.1. (continued)

Gasoline Example
Iteratively Estimate NOx, CPRATIO and EQRATIO

The TRANSREG Procedure

Adjusted Multivariate ANOVA Table Based on the Usual Degrees of Freedom

Dependent Variable Scoring Parameters=12 S=12 M=4 N=67

Statistic Value F Value Num DF Den DF p

Wilks’ Lambda 0.041355 2.05 252 1455 <= <.0001
Pillai’s Trace 0.958645 0.61 252 1764 <= 1.0000
Hotelling-Lawley Trace 23.18089 12.35 252 945.01 <= <.0001
Roy’s Greatest Root 23.18089 162.27 21 147 >= <.0001

The Wilks’ Lambda, Pillai’s Trace, and Hotelling-Lawley Trace statistics are a
conservative adjustment of the normal statistics. Roy’s Greatest Root is
liberal. These statistics are normally defined in terms of the squared
canonical correlations which are the eigenvalues of the matrix H*inv(H+E).
Here the R-Square is used for the first eigenvalue and all other eigenvalues
are set to zero since only one linear combination is used. Degrees of freedom
are computed assuming all linear combinations contribute to the Lambda and
Trace statistics, so the F tests for those statistics are conservative. The p
values for the liberal and conservative statistics provide approximate lower
and upper bounds on p. A liberal test statistic with conservative degrees of
freedom and a conservative test statistic with liberal degrees of freedom yield
at best an approximate p value, which is indicated by a "~" before the p value.
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Output 75.4.2. Plots of Compression Ratio, Equivalence Ratio, and Nitrogen
Oxide
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Output 75.4.3. Transformation Regression Example: The Parametric Model

Gasoline Example
Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +

b3*CpRatio + Sum b(j)*Fuel(j) + Error

The TRANSREG Procedure

Dependent Variable Log(NOx)
Nitrogen Oxide (NOx)

Class Level Information

Class Levels Values

Fuel 6 82rongas 94%Eth Ethanol Gasohol Indolene Methanol

Number of Observations Read 171
Number of Observations Used 169

Log(NOx)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Log(NOx)
Nitrogen Oxide (NOx)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 8 79.33838 9.917298 213.09 <.0001
Error 160 7.44659 0.046541
Corrected Total 168 86.78498

Root MSE 0.21573 R-Square 0.9142
Dependent Mean 0.63130 Adj R-Sq 0.9099
Coeff Var 34.17294

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 -14.586532 49.9469 49.9469 1073.18 <.0001 Intercept
Pspline.EqRatio_1 1 35.102914 62.7478 62.7478 1348.22 <.0001 Equivalence

Ratio (PHI) 1
Pspline.EqRatio_2 1 -19.386468 64.6430 64.6430 1388.94 <.0001 Equivalence

Ratio (PHI) 2
Identity(CpRatio) 1 0.032058 1.4445 1.4445 31.04 <.0001 Compression

Ratio (CR)
Class.Fuel94_Eth 1 -0.449583 1.3158 1.3158 28.27 <.0001 Fuel 94%Eth
Class.FuelEthanol 1 -0.414242 1.2560 1.2560 26.99 <.0001 Fuel Ethanol
Class.FuelGasohol 1 -0.016719 0.0015 0.0015 0.03 0.8584 Fuel Gasohol
Class.FuelIndolene 1 0.001572 0.0000 0.0000 0.00 0.9853 Fuel Indolene
Class.FuelMethanol 1 -0.580133 1.7219 1.7219 37.00 <.0001 Fuel Methanol
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Example 75.5. Preference Mapping of Cars Data

This example uses PROC TRANSREG to perform a preference mapping
(PREFMAP) analysis (Carroll 1972) of car preference data after a PROC
PRINQUAL principal component analysis. The PREFMAP analysis is a response
surface regression that locates ideal points for each dependent variable in a space
defined by the independent variables.

The data are ratings obtained from 25 judges of their preference for each of 17 au-
tomobiles. The ratings were made on a zero (very weak preference) to nine (very
strong preference) scale. These judgments were made in 1980 about that year’s prod-
ucts. There are two character variables that indicate the manufacturer and model of
the automobile. The data set also contains three ratings: miles per gallon (MPG),
projected reliability (Reliability), and quality of the ride (Ride). These ratings are
on a one (bad) to five (good) scale. PROC PRINQUAL creates an OUT= data set
containing standardized principal component scores (Prin1 andPrin2), along with
the ID variables MODEL,MPG, Reliability, andRide.

The first PROC TRANSREG step fits univariate regression models forMPG and
Reliability. All variables are designated IDENTITY. A vector drawn in the plot of
Prin1 andPrin2 from the origin to the point defined by an attribute’s regression co-
efficients approximately shows how the cars differ on that attribute. Refer to Carroll
(1972) for more information. ThePrin1 andPrin2 columns of theTResult1 OUT=
data set contain the car coordinates (–Type–=’SCORE’ observations) and endpoints
of theMPG andReliability vectors (–Type–=’M COEFFI’ observations).

The second PROC TRANSREG step fits a univariate regression model withRide
designated IDENTIY, andPrin1 andPrin2 designated POINT. The POINT expan-
sion creates an additional independent variable–ISSQ– , which contains the sum
of Prin1 squared andPrin2 squared. The OUT= data setTResult2 contains no

–Type–=’SCORE’ observations, only ideal point (–Type–=’M POINT’) coordi-
nates forRide. The coordinates of both the vectors and the ideal points are output by
specifying COORDINATES in the OUTPUT statement in PROC TRANSREG.

A vector model is used forMPG andReliability because perfectly efficient and reli-
able cars do not exist in the data set. The ideal points forMPG andReliability are
far removed from the plot of the cars. It is more likely that an ideal point for quality
of the ride is in the plot, so an ideal point model is used for the ride variable. Refer
to Carroll (1972) and Schiffman, Reynolds, and Young (1981) for discussions of the
vector model and point models (including the EPOINT and QPOINT versions of the
point model that are not used in this example).

The final DATA step combines the two output data sets and creates a data set suitable
for the %PLOTIT macro. (For information on the %PLOTIT macro, seeAppendix
B, “Using the %PLOTIT Macro.”) The plot contains one point per car and one point
for each of the three ratings. The %PLOTIT macro options specify the input data
set, how to handle anti-ideal points (described later), and where to draw horizontal
and vertical reference lines. The DATATYPE= option specifies that the input data set
contains results of a PREFMAP vector model and a PREFMAP ideal point model.
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This instructs the macro to draw vectors to–Type–=’M COEFFI’ observations and
circles around–Type–=’M POINT’ observations.

An unreliable to reliable direction extends from the left and slightly below the origin
to the right and slightly above the origin. The Japanese and European Cars are rated,
on the average, as more reliable. A lowMPG to goodMPG direction extends from
the top left of the plot to the bottom right. The smaller cars, on the average, get better
gas mileage. The ideal point forRide is in the top, just right of the center of the plot.
Cars near theRide ideal point tend to have a better ride than cars far away. It can
be seen from the iteration history tables that none of these ratings perfectly fits the
model, so all of the interpretations are approximate.

The Ride point is a “negative-negative” ideal point. The point models assume that
small ratings mean the object (car) is similar to the rating name and large ratings
imply dissimilarity to the rating name. Because the opposite scoring is used, the
interpretation of theRide point must be reversed to a negative ideal point (bad ride).
However, the coefficient for the–ISSQ– variable is negative, so the interpretation
is reversed again, back to the original interpretation. Anti-ideal points are taken care
of in the %PLOTIT macro. Specify ANTIIDEA=1 when large values are positive or
ideal and ANTIIDEA=-1 when small values are positive or ideal.

The following statements produceOutput 75.5.1throughOutput 75.5.2:

title ’Preference Ratings for Automobiles Manufactured in 1980’;
data CarPreferences;

input Make $ 1-10 Model $ 12-22 @25 (Judge1-Judge25) (1.)
MPG Reliability Ride;

datalines;
Cadillac Eldorado 8007990491240508971093809 3 2 4
Chevrolet Chevette 0051200423451043003515698 5 3 2
Chevrolet Citation 4053305814161643544747795 4 1 5
Chevrolet Malibu 6027400723121345545668658 3 3 4
Ford Fairmont 2024006715021443530648655 3 3 4
Ford Mustang 5007197705021101850657555 3 2 2
Ford Pinto 0021000303030201500514078 4 1 1
Honda Accord 5956897609699952998975078 5 5 3
Honda Civic 4836709507488852567765075 5 5 3
Lincoln Continental 7008990592230409962091909 2 4 5
Plymouth Gran Fury 7006000434101107333458708 2 1 5
Plymouth Horizon 3005005635461302444675655 4 3 3
Plymouth Volare 4005003614021602754476555 2 1 3
Pontiac Firebird 0107895613201206958265907 1 1 5
Volkswagen Dasher 4858696508877795377895000 5 3 4
Volkswagen Rabbit 4858509709695795487885000 5 4 3
Volvo DL 9989998909999987989919000 4 5 5
;

*---Compute Coordinates for a 2-Dimensional Scatter Plot of Cars---;
proc prinqual data=CarPreferences out=PResults(drop=Judge1-Judge25)

n=2 replace standard scores;
id Model MPG Reliability Ride;
transform identity(Judge1-Judge25);
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title2 ’Multidimensional Preference (MDPREF) Analysis’;
run;

*---Compute Endpoints for MPG and Reliability Vectors---;
proc transreg data=PResults;

Model identity(MPG Reliability)=identity(Prin1 Prin2);
output tstandard=center coordinates replace out=TResult1;
id Model;
title2 ’Preference Mapping (PREFMAP) Analysis’;

run;

*---Compute Ride Ideal Point Coordinates---;
proc transreg data=PResults;

Model identity(Ride)=point(Prin1 Prin2);
output tstandard=center coordinates replace noscores out=TResult2;
id Model;

run;

proc print; run;

*---Combine Data Sets and Plot the Results---;
data plot;

title3 ’Plot of Automobiles and Ratings’;
set Tresult1 Tresult2;

run;

%plotit(data=plot, datatype=vector ideal, antiidea=1, href=0, vref=0);

Output 75.5.1. Preference Ratings Example Output

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration Average Maximum Proportion Criterion
Number Change Change of Variance Change Note

----------------------------------------------------------------------------
1 0.00000 0.00000 0.66946 Converged

Algorithm converged.
WARNING: The number of observations is less than or equal to the number of

variables.
WARNING: Multiple optimal solutions may exist.
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Output 75.5.1. (continued)

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(MPG)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.57197 Converged

Algorithm converged.

Output 75.5.1. (continued)

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Reliability)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.50859 Converged

Algorithm converged.

Output 75.5.1. (continued)

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Ride)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.37797 Converged

Algorithm converged.
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Output 75.5.1. (continued)

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

Obs _TYPE_ _NAME_ Ride Intercept Prin1 Prin2 _ISSQ_ Model

1 M POINT Ride . . 0.49461 2.46539 -0.17448 Ride

Output 75.5.2. Preference Ratings for Automobiles Manufactured in 1980

Example 75.6. Box Cox

This example illustrates finding a Box-Cox transformation (see the“Box-Cox
Transformations”section on page 4595) of some artificial data. Data were gener-
ated from the model

y = ex+ε

whereε ∼ N(0, 1). The transformed data can be fit with a linear model

log(y) = x + ε
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These statements produceOutput 75.6.1.

title ’Basic Box-Cox Example’;

data x;
do x = 1 to 8 by 0.025;

y = exp(x + normal(7));
output;
end;

run;

proc transreg data=x ss2 details;
title2 ’Defaults’;
model boxcox(y) = identity(x);
run;

Output 75.6.1. Basic Box-Cox Example, Default Output

Basic Box-Cox Example 88
Defaults

The TRANSREG Procedure

Transformation Information
for BoxCox(y)

Lambda R-Square Log Like

-3.00 0.03 -4601.01
-2.75 0.04 -4266.08
-2.50 0.04 -3934.11
-2.25 0.05 -3605.75
-2.00 0.06 -3281.88
-1.75 0.07 -2963.74
-1.50 0.10 -2653.14
-1.25 0.14 -2352.72
-1.00 0.21 -2066.32
-0.75 0.34 -1799.25
-0.50 0.52 -1558.55
-0.25 0.71 -1360.28

0.00 + 0.79 -1275.31 <
0.25 0.70 -1382.62
0.50 0.51 -1589.03
0.75 0.34 -1834.53
1.00 0.22 -2105.88
1.25 0.15 -2397.35
1.50 0.11 -2704.64
1.75 0.08 -3024.24
2.00 0.06 -3353.38
2.25 0.05 -3689.91
2.50 0.04 -4032.18
2.75 0.03 -4378.97
3.00 0.03 -4729.37

< - Best Lambda
* - Confidence Interval
+ - Convenient Lambda
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PROC TRANSREG correctly selects the log transformationλ = 0, with a narrow
confidence interval. The maximum of the log likelihood function is flagged with the
less-than sign (<), and the convenient power parameter ofλ = 0 in the confidence
interval is flagged by the plus sign (+). The rest of the output is shown next inOutput
75.6.2.
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Output 75.6.2. Basic Box-Cox Example, Default Output

Basic Box-Cox Example 89
Defaults

The TRANSREG Procedure

Dependent Variable BoxCox(y)

Number of Observations Read 281
Number of Observations Used 281

TRANSREG Univariate Algorithm Iteration History for BoxCox(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.79064 Converged

Algorithm converged.

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(y) Lambda Used 0
Lambda 0
Log Likelihood -1275.3
Conv. Lambda 0
Conv. Lambda LL -1275.3
CI Limit -1277.2
Alpha 0.05

Ind 1 Identity(x) DF 1

The TRANSREG Procedure Hypothesis Tests for BoxCox(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 1 1145.884 1145.884 1053.66 >= <.0001
Error 279 303.421 1.088
Corrected Total 280 1449.305

The above statistics are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal.

Root MSE 1.04285 R-Square 0.7906
Dependent Mean 4.49653 Adj R-Sq 0.7899
Coeff Var 23.19225 Lambda 0.0000

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Liberal p

Intercept 1 0.01551366 0.01 0.01 0.01 >= 0.9185
Identity(x) 1 0.99578183 1145.88 1145.88 1053.66 >= <.0001

The above statistics are not adjusted for the fact that the dependent variable
was transformed and so are generally liberal.
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This next example uses several options. The LAMBDA= option specifies power pa-
rameters sparsely from -2 to -0.5 and 0.5 to 2 just to get the general shape of the log
likelihood function in that region. Between -0.5 and 0.5, more power parameters are
tried. The CONVENIENT option is specified so that if a power parameter likeλ = 1
or λ = 0 is found in the confidence interval, it will be used instead of the optimal
power parameter. PARAMETER=2 is specified to add 2 to eachy before performing
the transformations. ALPHA=0.00001 specifies a wide confidence interval.

These statements produceOutput 75.6.3.

proc transreg data=x ss2 details;
title2 ’Several Options Demonstrated’;
model boxcox(y / lambda=-2 -1 -0.5 to 0.5 by 0.05 1 2

convenient
parameter=2
alpha=0.00001)

= identity(x);
run;
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Output 75.6.3. Basic Box-Cox Example, Several Options Demonstrated

Basic Box-Cox Example 90
Several Options Demonstrated

The TRANSREG Procedure

Transformation Information
for BoxCox(y)

Lambda R-Square Log Like

-2.000 0.22 -2583.73
-1.000 0.45 -1779.35
-0.500 0.67 -1439.82
-0.450 0.70 -1410.51
-0.400 0.72 -1382.74
-0.350 0.74 -1356.92
-0.300 0.76 -1333.59
-0.250 0.77 -1313.42
-0.200 0.79 -1297.21
-0.150 0.79 -1285.83 *
-0.100 0.80 -1280.09 <
-0.050 0.80 -1280.63 *

0.000 + 0.79 -1287.71 *
0.050 0.78 -1301.19
0.100 0.76 -1320.56
0.150 0.74 -1345.09
0.200 0.72 -1373.99
0.250 0.69 -1406.51
0.300 0.65 -1442.02
0.350 0.62 -1480.02
0.400 0.58 -1520.13
0.450 0.54 -1562.05
0.500 0.50 -1605.57
1.000 0.22 -2105.88
2.000 0.06 -3320.36

< - Best Lambda
* - Confidence Interval
+ - Convenient Lambda

The results show that the optimal power parameter is -0.1 but 0 is in the confidence
interval, hence a log transformation is chosen. The rest of the output is shown next in
Output 75.6.4.
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Output 75.6.4. Basic Box-Cox Example, Several Options Demonstrated

Basic Box-Cox Example 91
Several Options Demonstrated

The TRANSREG Procedure

Dependent Variable BoxCox(y)

Number of Observations Read 281
Number of Observations Used 281

TRANSREG Univariate Algorithm Iteration History for BoxCox(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.79238 Converged

Algorithm converged.

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(y) Lambda Used 0
Lambda -0.1
Log Likelihood -1280.1
Conv. Lambda 0
Conv. Lambda LL -1287.7
CI Limit -1289.9
Alpha 0.00001
Parameter 2
Options Convenient Lambda Used

Ind 1 Identity(x) DF 1
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Output 75.6.4. (continued)

Basic Box-Cox Example 92
Several Options Demonstrated

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for BoxCox(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 1 999.438 999.4381 1064.82 >= <.0001
Error 279 261.868 0.9386
Corrected Total 280 1261.306

The above statistics are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal.

Root MSE 0.96881 R-Square 0.7924
Dependent Mean 4.61429 Adj R-Sq 0.7916
Coeff Var 20.99591 Lambda 0.0000

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Liberal p

Intercept 1 0.42939328 8.746 8.746 9.32 >= 0.0025
Identity(x) 1 0.92997620 999.438 999.438 1064.82 >= <.0001

The above statistics are not adjusted for the fact that the dependent variable
was transformed and so are generally liberal.

The next part of this example shows how to make graphical displays of the Box-Cox
transformation results. Plots include the log likelihood function with the confidence
interval, root mean squared error as a function of the power parameter,R2 as a func-
tion of the power parameter, the Box-Cox transformation of the variabley, the orig-
inal scatter plot based on the untransformed data, and the new scatter plot based on
the transformed data. Also, a condensed version of the log likelihood table with the
confidence interval is printed. Here are the data.
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title h=1 ’Box-Cox Graphical Displays’;

data x;
input y x @@;
datalines;

10.0 3.0 72.6 8.3 59.7 8.1 20.1 4.8 90.1 9.8 1.1 0.9
78.2 8.5 87.4 9.0 9.5 3.4 0.1 1.4 0.1 1.1 42.5 5.1
57.0 7.5 9.9 1.9 0.5 1.0 121.1 9.9 37.5 5.9 49.5 6.7

8.3 1.8 0.6 1.8 53.0 6.7 112.8 10.0 40.7 6.4 5.1 2.4
73.3 9.5 122.4 9.9 87.2 9.4 121.2 9.9 23.1 4.3 7.1 3.5
12.4 3.3 5.6 2.7 113.0 9.6 110.5 10.0 3.1 1.5 52.4 7.9
80.4 8.1 0.6 1.6 115.1 9.1 15.9 3.1 56.5 7.3 85.4 9.8
32.5 5.8 43.0 6.2 0.1 0.8 21.8 5.2 15.2 3.5 5.2 3.0

0.2 0.8 73.5 8.2 4.9 3.2 0.2 0.3 69.0 9.2 3.6 3.5
0.2 0.9 101.3 9.9 10.0 3.7 16.9 3.0 11.2 5.0 0.2 0.4

80.8 9.4 24.9 5.7 113.5 9.7 6.2 2.1 12.5 3.2 4.8 1.8
80.1 8.3 26.4 4.8 13.4 3.8 99.8 9.7 44.1 6.2 15.3 3.8

2.2 1.5 10.3 2.7 13.8 4.7 38.6 4.5 79.1 9.8 33.6 5.8
9.1 4.5 89.3 9.1 5.5 2.6 20.0 4.8 2.9 2.9 82.9 8.4
7.0 3.5 14.5 2.9 16.0 3.7 29.3 6.1 48.9 6.3 1.6 1.9

34.7 6.2 33.5 6.5 26.0 5.6 12.7 3.1 0.1 0.3 15.4 4.2
2.6 1.8 58.6 7.9 81.2 8.1 37.2 6.9
;

The TRANSREG procedure is run to find the Box-Cox transformation. The lambda
list is -2 TO 2 BY 0.01, which produces 401 lambdas. This many power parameters
makes a nice graphical display with plenty of detail around the confidence interval.
However, 401 values is a lot to print, so for this reason, the usual Box-Cox transfor-
mation information table is excluded from the printed output. Instead, it is output to a
SAS data set using ODS so a sample of it can be printed. Just the confidence interval
and the rows corresponding to power parameters that are multiples of 0.5 are printed.
Null labels are provided for the columns that need to be printed without headers. The
details table is also output to a SAS data set using ODS, since it contains information
that will be incorporated into some of the plots. These statements produceOutput
75.6.5.

* Fit Box-Cox model, output results to output data sets;
ods output boxcox=b details=d;
ods exclude boxcox;
proc transreg details data=x;

model boxcox(y / convenient lambda=-2 to 2 by 0.01) = identity(x);
output out=trans;
run;

proc print noobs label data=b(drop=rmse);
title2 ’Confidence Interval’;
where ci ne ’ ’ or abs(lambda - round(lambda, 0.5)) < 1e-6;
label convenient = ’00’x ci = ’00’x;
run;
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Output 75.6.5. Box-Cox Graphical Displays

Box-Cox Graphical Displays 93

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for BoxCox(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.95396 Converged

Algorithm converged.

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(y) Lambda Used 0.5
Lambda 0.46
Log Likelihood -167.0
Conv. Lambda 0.5
Conv. Lambda LL -168.3
CI Limit -169.0
Alpha 0.05
Options Convenient Lambda Used

Ind 1 Identity(x) DF 1

Output 75.6.5. (continued)

Box-Cox Graphical Displays 94
Confidence Interval

Dependent Lambda R-Square Log Like

BoxCox(y) -2.00 0.14 -1030.56
BoxCox(y) -1.50 0.17 -810.50
BoxCox(y) -1.00 0.22 -602.53
BoxCox(y) -0.50 0.39 -415.56
BoxCox(y) 0.00 0.78 -257.92
BoxCox(y) 0.41 0.95 -168.40 *
BoxCox(y) 0.42 0.95 -167.86 *
BoxCox(y) 0.43 0.95 -167.46 *
BoxCox(y) 0.44 0.95 -167.19 *
BoxCox(y) 0.45 0.95 -167.05 *
BoxCox(y) 0.46 0.95 -167.04 <
BoxCox(y) 0.47 0.95 -167.16 *
BoxCox(y) 0.48 0.95 -167.41 *
BoxCox(y) 0.49 0.95 -167.79 *
BoxCox(y) 0.50 + 0.95 -168.28 *
BoxCox(y) 0.51 0.95 -168.89 *
BoxCox(y) 1.00 0.89 -253.09
BoxCox(y) 1.50 0.79 -345.35
BoxCox(y) 2.00 0.70 -435.01
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These next steps extract information from the Box-Cox transformation and details
tables and store the information in macro variables. The confidence interval limit
from the details table provides a vertical axis reference line for the log likelihood plot.
The convenient power parameter (’Lambda Used’) is extracted from the footnote.
The confidence interval is extracted from the confidence interval observations of the
Box-Cox transformation table and will be used in the footnote and for horizontal axis
reference lines in the log likelihood plot.

* Store values for reference lines;
data _null_;

set d;
if description = ’CI Limit’

then call symput(’vref’, formattedvalue);
if description = ’Lambda Used’

then call symput(’lambda’, formattedvalue);
run;

data _null_;
set b end=eof;
where ci ne ’ ’;
if _n_ = 1

then call symput(’href1’, compress(put(lambda, best12.)));
if ci = ’<’

then call symput(’href2’, compress(put(lambda, best12.)));
if eof

then call symput(’href3’, compress(put(lambda, best12.)));
run;

These steps plot the log likelihood, root mean square error andR2. The input data set
is the Box-Cox transformation table, which was output using ODS. These statements
produceOutput 75.6.6.

* Plot log likelihood, confidence interval;
axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot data=b;

title2 ’Log Likelihood’;
plot loglike * lambda / vref=&vref href=&href1 &href2 &href3

vaxis=axis1 haxis=axis2 frame cframe=ligr;
footnote "Confidence Interval: &href1 - &href2 - &href3, "

"Lambda = &lambda";
symbol v=none i=spline c=blue;
run;

footnote;
title2 ’RMSE’;
plot rmse * lambda / vaxis=axis1 haxis=axis2 frame cframe=ligr;
run;

title2 ’R-Square’;
plot rsquare * lambda / vaxis=axis1 haxis=axis2 frame cframe=ligr;
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axis1 order=(0 to 1 by 0.1) label=(angle=90 rotate=0) minor=none;
run; quit;

Output 75.6.6. Box-Cox Graphical Displays



Example 75.6. Box Cox � 4733

Output 75.6.6. (continued)
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Output 75.6.6. (continued)

The optimal power parameter is 0.46, but since 0.5 is in the confidence interval, and
since the CONVENIENT option was specified, the procedure chooses a square root
transformation.

The next steps plot the transformation ofY, the original scatter plot based on the
untransformed data, and the new scatter plot based on the transformed data. The
results are shown inOutput 75.6.7. The input data set is the ordinary output data set
from PROC TRANSREG. The transformation of the variableY by default isTy.

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;
proc gplot data=trans;

title2 ’Transformation’;
symbol i=splines v=star c=blue;
plot ty * y / vaxis=axis1 haxis=axis2 frame cframe=ligr;
run;

title2 ’Original Scatter Plot’;
symbol i=none v=star c=blue;
plot y * x / vaxis=axis1 haxis=axis2 frame cframe=ligr;
run;

title2 ’Transformed Scatter Plot’;
symbol i=none v=star c=blue;
plot ty * x / vaxis=axis1 haxis=axis2 frame cframe=ligr;
run; quit;
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Output 75.6.7. Box-Cox Graphical Displays
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Output 75.6.7. (continued)
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Output 75.6.7. (continued)

The square root transformation makes the scatter plot essentially linear.
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Chapter 76
The TREE Procedure
Overview

The TREE procedure produces a tree diagram, also known as adendrogramor
phenogram, using a data set created by the CLUSTER or VARCLUS procedure. The
CLUSTER and VARCLUS procedures create output data sets that contain the results
of hierarchical clustering as a tree structure. The TREE procedure uses the output
data set to produce a diagram of the tree structure in the style of Johnson(1967), with
the root at the top. Alternatively, the diagram can be oriented horizontally, with the
root at the left. Any numeric variable in the output data set can be used to specify the
heights of the clusters. PROC TREE can also create an output data set containing a
variable to indicate the disjoint clusters at a specified level in the tree.

Tree diagrams are discussed in the context of cluster analysis by Duran and Odell
(1974), Hartigan (1975), and Everitt (1980). Knuth (1973) provides a general treat-
ment of tree diagrams in computer programming.

The literature on tree diagrams contains a mixture of botanical and genealogical ter-
minology. The objects that are clustered areleaves. The cluster containing all objects
is theroot. A cluster containing at least two objects but not all of them is abranch.
The general term for leaves, branches, and roots isnode. If a cluster A is the union
of clusters B and C, then A is theparentof B and C, and B and C arechildrenof A.
A leaf is thus a node with no children, and a root is a node with no parent. If every
cluster has at most two children, the tree diagram is abinary tree. The CLUSTER
procedure always produces binary trees. The VARCLUS procedure can produce tree
diagrams with clusters that have many children.

Getting Started

The TREE procedure creates tree diagrams from a SAS data set containing the tree
structure. You can create this type of data set with the CLUSTER or VARCLUS
procedure.

In the following example, the VARCLUS procedure is used to divide a set of variables
into hierarchical clusters and to create the SAS data set containing the tree structure.
The TREE procedure then generates the tree diagrams.

The following data, from Hand, et al. (1994), represent the amount of protein con-
sumed from nine food groups for each of 25 European countries. The nine food
groups are red meat (RedMeat), white meat (WhiteMeat), eggs (Eggs), milk (Milk),
fish (Fish), cereal (Cereal), starch (Starch), nuts (Nuts), and fruits and vegetables
(FruVeg).

The following SAS statements create the data setProtein:
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data Protein;
input Country $15. RedMeat WhiteMeat Eggs Milk

Fish Cereal Starch Nuts FruVeg;
datalines;

Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czechoslovakia 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 4.7 7.5 19.5 3.7 1.4 2.0
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugoslavia 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2
;
run;

The data setProtein contains the character variableCountry and the nine numeric
variables representing the food groups. The$15. in the INPUT statement specifies
that the variableCountry is a character variable with a length of 15.

The following statements cluster the variables in the data setProtein. The
OUTTREE= option creates an output SAS data set namedTree to contain the tree
structure. The CENTROID option specifies the centroid clustering method, and the
MAXCLUSTERS= option specifies that the largest number of clusters desired is four.
The NOPRINT option suppresses the display of the output. The VAR statement spec-
ifies that all numeric variables (RedMeat—FruVeg) are used by the procedure.

proc varclus data=Protein outtree=Tree
centroid maxclusters=4 noprint;

var RedMeat--FruVeg;
run;

The output data setTree, created by the OUTTREE= option in the previous state-
ments, contains the following variables:
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–NAME– the name of the cluster

–PARENT– the parent of the cluster

–NCL– the number of clusters

–VAREXP– the amount of variance explained by the cluster

–PROPOR– the proportion of variance explained by the clusters at the current
level of the tree diagram

–MINPRO– the minimum proportion of variance explained by a cluster

–MAXEIGEN– the maximum second eigenvalue of a cluster

The following statements produce a tree diagram of the clusters created by PROC
VARCLUS:

proc tree data=tree ;
proc tree data=tree lineprinter;

PROC TREE is invoked twice. In the first invocation, the tree diagram is presented
using the default high resolution graphical output. In the second invocation, the
LINEPRINTER option specifies line printer output.

Figure 76.1displays the default high resolution graphics version of the tree diagram.

Figure 76.1. High Resolution Tree Diagram from PROC TREE
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Figure 76.2displays the same information asFigure 76.1, using line printer output.
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Figure 76.2. Line Printer Graphics Version of the Tree Diagram

In both figures, the name of the cluster is displayed on the horizontal axis and the
number of clusters is displayed on the vertical or height axis.

As you look up from the bottom of the figures, clusters are progressively joined un-
til a single, all-encompassing cluster is formed at the top (or root) of the diagram.
Clusters exist at each level of the diagram. For example, at the level where the dia-
gram indicates three clusters, the clusters are as follows:

• Cluster 1:RedMeat WhiteMeat Eggs Milk

• Cluster 2:Fish Starch

• Cluster 3:Cereal Nuts FruVeg
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As you proceed up the diagram one level, the number of clusters is two. The clusters
are

• Cluster 1:RedMeat WhiteMeat Eggs Milk Fish Starch

• Cluster 2:Cereal Nuts FruVeg

The following statements illustrate how you can specify the numeric variable defining
the height of each node (cluster) in the tree. First, the AXIS1 statement is defined.
The ORDER= option specifies the data values in the order in which they are to appear
on the axis.

Next, the TREE procedure is invoked. The HORIZONTAL option orients the tree
diagram horizontally. The HAXIS option specifies that the AXIS1 statement be used
to customize the appearance of the horizontal axis. The HEIGHT statement speci-
fies the variable–PROPOR– (the proportion of variance explained) as the height
variable.

axis1 order=(0 to 1 by 0.2);
proc tree data=Tree horizontal haxis=axis1;

height _PROPOR_;
run;

Figure 76.3. Horizontal Tree Diagram Using –PROPOR– as the HEIGHT
Variable

Figure 76.3displays the tree diagram oriented horizontally, using the variable

–PROPOR– as the height variable. As you look from left to right in the diagram,
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objects and clusters are progressively joined until a single, all-encompassing cluster
is formed at the right (or root) of the diagram.

Clusters exist at each level of the diagram, represented by horizontal line segments.
Each vertical line segment represents a point where leaves and branches are connected
into progressively larger clusters.

For example, three clusters are formed at the left-most point along the axis where
three horizontal line segments exist. At that point, where a vertical line segment
connects theCereal-Nuts andFruVeg clusters, the proportion of variance explained
is about 0.6 (–PROPOR– = 0.6). At the next clustering level the variablesFish and
Starch are clustered with variablesRedMeat throughMilk, resulting in a total of
two clusters. The proportion of variance explained is about 0.45 at that point.

Syntax

The TREE procedure is invoked by the following statements:

PROC TREE < options > ;
NAME variables ;
HEIGHT variable ;
PARENT variables ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;

If the input data set has been created by CLUSTER or VARCLUS, the only statement
required is the PROC TREE statement. The BY, COPY, FREQ, HEIGHT, ID, NAME,
and PARENT statements are described after the PROC TREE statement.

PROC TREE Statement

PROC TREE < options > ;

The PROC TREE statement starts the TREE procedure.

The options that can appear in the PROC TREE statement are summarized in the
following table.

Table 76.1. PROC TREE Statement Options

Task Options Effect
Specify data sets DATA= specifies the input data set

DOCK= does not count small clusters in OUT= data
set

LEVEL= defines disjoint cluster in OUT= data set
NCLUSTERS= specifies the number of clusters in OUT= data

set
OUT= specifies the output data set
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Table 76.1. (continued)

Task Options Effect
ROOT= displays the root of a subtree

Specify cluster heights HEIGHT= specifies the variable for the height axis
DISSIMILAR specifies that large values are far apart
SIMILAR specifies that small values are close together

Display horizontal trees HORIZONTAL specifies that the height axis is horizontal

Control sort order DESCENDING reverses SORT order
SORT sorts children by HEIGHT variable

Control displayed output LIST displays all nodes in the tree
NOPRINT suppresses display of the tree

LINEPRINTER displays tree using line printer style graphics
High resolution graphics INC= specifies the increment between tick values

MAXHEIGHT= specifies the maximum value on axis
MINHEIGHT= specifies the minimum value on axis
NTICK= specifies the number of tick intervals
CFRAME= specifies the color of the frame
DESCRIPTION= specifies the catalog description
GOUT= specifies the catalog name
HAXIS= customizes horizontal axis
HORDISPLAY= displays a horizontal tree with leaves on the

right
HPAGES= specifies the number of pages to expand tree

horizontally
LINES= specifies the line color and thickness, dots at

the nodes
NAME= specifies the name of graph in the catalog
VAXIS= customizes vertical axis
VPAGES= specifies the number of pages to expand tree

vertically

Line printer graphics INC= specifies the increment between tick values
MAXHEIGHT= specifies the maximum value on axis
MINHEIGHT= specifies the minimum value on axis
NTICK= specifies the number of tick intervals
PAGES= specifies the number of pages
POS= specifies the number of column positions
SPACES= specifies the number of spaces between ob-

jects
TICKPOS= specifies the number of column positions be-

tween ticks
FILLCHAR= specifies the fill character between unjoined

leaves
JOINCHAR= specifies the character to display between

joined leaves
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Table 76.1. (continued)

Task Options Effect
LEAFCHAR= specifies the character to represent clusters

with no children
TREECHAR= specifies the character to represent clusters

with children

CFRAME=color
specifies a color for the frame, which is the rectangle bounded by the axes.

DATA=SAS-data-set
specifies the input data set defining the tree. If you omit the DATA= option, the most
recently created SAS data set is used.

DESCENDING
DES

reverses the sorting order for the SORT option.

DESCRIPTION=entry-description
specifies a description for the graph in the GOUT= catalog. The default is “Proc Tree
Graph Output.”

DISSIMILAR
DIS

implies that the values of the HEIGHT variable are dissimilarities; that is, a large
height value means that the clusters are very dissimilar or far apart.

If neither the SIMILAR nor the DISSIMILAR option is specified, PROC TREE at-
tempts to infer from the data whether the height values are similarities or dissimilar-
ities. If PROC TREE cannot tell this from the data, it issues an error message and
does not display a tree diagram.

DOCK=n
causes observations in the OUT= data set assigned to output clusters with a fre-
quency ofn or less to be given missing values for the output variablesCLUSTER
andCLUSNAME. If the NCLUSTERS= option is also specified, DOCK= also pre-
vents clusters with a frequency ofn or less from being counted toward the number of
clusters requested by the NCLUSTERS= option. By default, DOCK=0.

FILLCHAR= ’c’
FC=’c’

specifies the character to display between leaves that are not joined into a cluster.
The character should be enclosed in single quotes. The default is a blank. The
LINEPRINTER option must also be specified.

GOUT=<libref.>member-name
specifies the catalog in which the generated graph is stored. The default is
WORK.GSEG.
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HAXIS=AXISn
specifies the AXISn statement used to customize the appearance of the horizontal
axis.

HEIGHT=name
H=name

specifies certain conventional variables to be used for the height axis of the tree dia-
gram. For many situations, the only option you need is the HEIGHT= option. Valid
values fornameand their meanings are as follows:

HEIGHT | H specifies the–HEIGHT– variable.

LENGTH | L defines the height of each node as its path length from the root. This
can also be interpreted as the number of ancestors of the node.

MODE | M specifies the–MODE– variable.

NCL | N specifies the–NCL– (number of clusters) variable.

RSQ| R specifies the–RSQ– variable.

See also the“HEIGHT Statement”section on page 4755, which can specify any
variable in the input data set to be used for the height axis. In rare cases, you may
need to specify either the DISSIMILAR option or the SIMILAR option.

HORDISPLAY=RIGHT
specifies that the graph is to be oriented horizontally, with the leaf nodes on the right
side, when the HORIZONTAL option is also specified. By default, the leaf nodes are
on the left side.

HORIZONTAL
HOR

orients the tree diagram with the height axis horizontal and the root at the left. The
leaf nodes are on the side specified in the HORDISPLAY= option. If you do not
specify the HORIZONTAL option, the height axis is vertical, with the root at the top.
When the tree takes up more than one page and is viewed on a screen, horizontal
orientation can make the tree diagram considerably easier to read.

HPAGES=n1
specifies that the original graph is to be enlarged to covern1 pages. If you also specify
the VPAGES=n2 option, the original graph is enlarged to covern1 × n2 graphs.
For example, if HPAGES=2 and VPAGES=3, then the original graph is generated
followed by2 × 3 = 6 more graphs. In these six graphs, the original is enlarged by
a factor of 2 in the horizontal direction and by a factor of 3 in the vertical direction.
The graphs are generated in left-to-right and top-to-bottom order.

INC=n
specifies the increment between tick values on the height axis. If the HEIGHT vari-
able is–NCL– , the default is usually 1, although a different value can be specified
for consistency with other options. For any other HEIGHT variable, the default is
some power of 10 times 1, 2, 2.5, or 5.
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JOINCHAR= ’c’
JC=’c’

specifies the character to display between leaves that are joined into a cluster. The
character should be enclosed in single quotes. The default isX. The LINEPRINTER
option must also be specified.

LEAFCHAR= ’c’
LC=’c’

specifies a character to represent clusters having no children. The character should be
enclosed in single quotes. The default is a period. The LINEPRINTER option must
also be specified.

LEVEL=n
specifies the level of the tree defining disjoint clusters for the OUT= data set. The
LEVEL= option also causes only clusters between the root and a height ofn to be
displayed. The clusters in the output data set are those that exist at a height ofn on the
tree diagram. For example, if the HEIGHT variable is–NCL– (number of clusters)
and LEVEL=5 is specified, then the OUT= data set contains five disjoint clusters. If
the HEIGHT variable is–RSQ– (R2) and LEVEL=0.9 is specified, then the OUT=
data set contains the smallest number of clusters that yields anR2 of at least 0.9.

LINEPRINTER
specifies that the generated report is to be displayed using line printer graphics.

LINES=(<COLOR=color><WIDTH=n><DOTS>)
enables you to specify both the color and the thickness of the lines. In addition, a dot
can be drawn at each leaf node. Note that if the frame and the lines are specified to
be the same color, PROC TREE selects a different color for the lines.

LIST
lists all the nodes in the tree, displaying the height, parent, and children of each node.

MAXHEIGHT=n
MAXH=n

specifies the maximum value displayed on the height axis.

MINHEIGHT=n
MINH=n

specifies the minimum value displayed on the height axis.

NAME=name
specifies the entry name for the generated graph in the GOUT= catalog. Note that
each time another graph is generated with the same name, the name is modified by
appending a number to make it unique.

NCLUSTERS=n
NCL=n
N=n

specifies the number of clusters desired in the OUT= data set. The number of clusters
obtained may not equal the number specified if (1) there are fewer thann leaves in
the tree, (2) there are more thann unconnected trees in the data set, (3) a multi-way
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tree does not contain a level with the specified number of clusters, or (4) the DOCK=
option eliminates too many clusters.

The NCLUSTERS= option uses the–NCL– variable to determine the order in which
the clusters are formed. If there is no–NCL– variable, the height variable (as deter-
mined by the HEIGHT statement or HEIGHT= option) is used instead.

NTICK=n
specifies the number of tick intervals on the height axis. The default depends on the
values of other options.

NOPRINT
suppresses the display of the tree. Specify the NOPRINT option if you want only
to create an OUT= data set. Note that this option temporarily disables the Output
Delivery System (ODS). For more information, seeChapter 14, “Using the Output
Delivery System.”

OUT=SAS-data-set
creates an output data set that contains one observation for each object in the tree or
subtree being processed and variables calledCLUSTER andCLUSNAME showing
cluster membership at any specified level in the tree. If you specify the OUT= option,
you must also specify either the NCLUSTERS= or LEVEL= option in order to define
the output partition level. If you want to create a permanent SAS data set, you must
specify a two-level name (refer to “SAS Data Files” inSAS Language Reference:
Concepts).

PAGES=n
specifies the number of pages over which the tree diagram (from root to leaves) is to
extend. The default is 1. The LINEPRINTER option must also be specified.

POS=n
specifies the number of column positions on the height axis. The default depends on
the value of the PAGES= option, the orientation of the tree diagram, and the values
specified by the PAGESIZE= and LINESIZE= options. The LINEPRINTER option
must also be specified.

ROOT=’name’
specifies the value of the NAME variable for the root of a subtree to be displayed if
you do not want to display the entire tree. If you also specify the OUT= option, the
output data set contains only objects belonging to the subtree specified by the ROOT=
option.

SIMILAR
SIM

implies that the values of the HEIGHT variable are similarities; that is, a large height
value means that the clusters are very similar or close together.

If neither the SIMILAR nor the DISSIMILAR option is specified, PROC TREE at-
tempts to infer from the data whether the height values are similarities or dissimilar-
ities. If PROC TREE cannot tell this from the data, it issues an error message and
does not display a tree diagram.
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SORT
sorts the children of each node by the HEIGHT variable, in the order of cluster for-
mation. See theDESCENDING optionon page 4750.

SPACES=s
S=s

specifies the number of spaces between objects on the output. The default depends
on the number of objects, the orientation of the tree diagram, and the values specified
by the PAGESIZE= and LINESIZE= options. The LINEPRINTER option must also
be specified.

TICKPOS=n
specifies the number of column positions per tick interval on the height axis. The
default value is usually between 5 and 10, although a different value can be specified
for consistency with other options.

TREECHAR=’c’
TC=’c’

specifies a character to represent clusters with children. The character should be
enclosed in single quotes. The default isX. The LINEPRINTER option must also be
specified.

VAXIS=AXISn
specifies that the AXISn statement be used to customize the appearance of the vertical
axis.

VPAGES=n2
specifies that the original graph is to be enlarged to covern2 pages. If you also
specify the HPAGES=n1 option, the original graph is enlarged to covern1×n2 pages.
For example, if HPAGES=2 and VPAGES=3, then the original graph is generated
followed by2 × 3 = 6 more graphs. In these six graphs, the original is enlarged by
a factor of 2 in the horizontal direction and by a factor of 3 in the vertical direction.
The graphs are generated in left-to-right and top-to-bottom order.

BY Statement

BY variables ;

You can specify a BY statement with PROC TREE to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the TREE procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.
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• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

COPY Statement

COPY variables ;

The COPY statement specifies one or more character or numeric variables to be
copied to the OUT= data set.

FREQ Statement

FREQ variables ;

The FREQ statement specifies one numeric variable that tells how many clustering
observations belong to the cluster. If the FREQ statement is omitted, PROC TREE
looks for a variable called–FREQ– to specify the number of observations per clus-
ter. If neither the FREQ statement nor the–FREQ– variable is present, each leaf is
assumed to represent one clustering observation, and the frequency for each internal
node is found by summing the frequencies of its children.

HEIGHT Statement

HEIGHT variable ;

The HEIGHT statement specifies the name of a numeric variable to define the height
of each node (cluster) in the tree. The height variable can also be specified by
the HEIGHT= option in the PROC TREE statement. If both the HEIGHT state-
ment and the HEIGHT= option are omitted, PROC TREE looks for a variable called

–HEIGHT– . If the data set does not contain–HEIGHT– , PROC TREE looks for
a variable called–NCL– . If –NCL– is not found either, the height of each node is
defined to be its path length from the root.

ID Statement

ID variables ;

The ID variable is used to identify the objects (leaves) in the tree on the output. The
ID variable can be a character or numeric variable of any length. If the ID statement
is omitted, the variable in the NAME statement is used instead. If both the ID and
NAME statements are omitted, PROC TREE looks for a variable called–NAME– .
If the –NAME– variable is not found in the data set, PROC TREE issues an error
message and stops. The ID variable is copied to the OUT= data set.
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NAME Statement

NAME variables ;

The NAME statement specifies a character or numeric variable identifying the node
represented by each observation. The NAME variable and the PARENT variable
jointly define the tree structure. If the NAME statement is omitted, PROC TREE
looks for a variable called–NAME– . If the –NAME– variable is not found in the
data set, PROC TREE issues an error message and stops.

PARENT Statement

PARENT variables ;

The PARENT statement specifies a character or numeric variable identifying the node
in the tree that is the parent of each observation. The PARENT variable must have the
same formatted length as the NAME variable. If the PARENT statement is omitted,
PROC TREE looks for a variable called–PARENT– . If the –PARENT– variable is
not found in the data set, PROC TREE issues an error message and stops.

Details

Missing Values

An observation with a missing value for the NAME variable is omitted from process-
ing. If the PARENT variable has a missing value but the NAME variable is present,
the observation is treated as the root of a tree. A data set can contain several roots
and, hence, several trees.

Missing values of the HEIGHT variable are set to upper or lower bounds determined
from the nonmissing values under the assumption that the heights are monotonic with
respect to the tree structure.

Missing values of the FREQ variable are inferred from nonmissing values where
possible; otherwise, they are treated as zero.

Output Data Set

The OUT= data set contains one observation for each leaf in the tree or subtree being
processed. The variables are as follows:

• the BY variables, if any

• the ID variable, or the NAME variable if the ID statement is not used

• the COPY variables

• a numeric variableCLUSTER taking values from 1 toc, wherec is the number
of disjoint clusters. The cluster to which the first observation belongs is given
the number 1, the cluster to which the next observation belongs that does not
belong to cluster 1 is given the number 2, and so on.
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• a character variableCLUSNAME giving the value of the NAME variable of
the cluster to which the observation belongs

The CLUSTER andCLUSNAME variables are missing if the corresponding leaf
has a nonpositive frequency.

Displayed Output

The displayed output from the TREE procedure includes the following:

• the names of the objects in the tree

• the height axis

• the tree diagram. A high-resolution graphics tree diagram is produced on
the graphics device. The leaves are displayed at the bottom of the graph.
Horizontal lines connect the leaves into branches, while the topmost horizontal
line indicates the root.

If the LINEPRINTER option is specified, the root (the cluster containing
all the objects) is indicated by a solid line of the character specified by the
TREECHAR= option (the default character is ‘X’). At each level of the tree,
clusters are shown by unbroken lines of the TREECHAR= symbol with the
FILLCHAR= symbol (the default is a blank) separating the clusters. The
LEAFCHAR= symbol (the default character is a period) represents single-
member clusters.

By default, the tree diagram is oriented with the height axis vertical and the object
names at the top of the diagram. If the HORIZONTAL option is specified, then the
height axis is horizontal and the object names are on the left.

ODS Table Names

PROC TREE assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 76.2. ODS Tables Produced in PROC TREE

ODS Table Name Description Statement Option
Tree Line-printer plot of the tree PROC LINEPRINTER
TreeListing Line-printer listing of all nodes

in the tree
PROC LIST
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Examples

Example 76.1. Mammals’ Teeth

The following data give the numbers of different kinds of teeth for a variety of mam-
mals. The mammals are clustered by average linkage using the CLUSTER procedure
(Output 76.1.1). The PROC TREE statement uses the average-linkage distance as the
height axis, which is the default, and creates a horizontal high-resolution graphics
tree (Output 76.1.2).

data teeth;
title ’Mammals’’ Teeth’;
input mammal $ 1-16 @21 (v1-v8) (1.);
label V1=’Right Top Incisors’

V2=’Right Bottom Incisors’
V3=’Right Top Canines’
V4=’Right Bottom Canines’
V5=’Right Top Premolars’
V6=’Right Bottom Premolars’
V7=’Right Top Molars’
V8=’Right Bottom Molars’;

datalines;
Brown Bat 23113333
Mole 32103333
Silver Hair Bat 23112333
Pigmy Bat 23112233
House Bat 23111233
Red Bat 13112233
Pika 21002233
Rabbit 21003233
Beaver 11002133
Groundhog 11002133
Gray Squirrel 11001133
House Mouse 11000033
Porcupine 11001133
Wolf 33114423
Bear 33114423
Raccoon 33114432
Marten 33114412
Weasel 33113312
Wolverine 33114412
Badger 33113312
River Otter 33114312
Sea Otter 32113312
Jaguar 33113211
Cougar 33113211
Fur Seal 32114411
Sea Lion 32114411
Grey Seal 32113322
Elephant Seal 21114411
Reindeer 04103333
Elk 04103333
Deer 04003333
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Moose 04003333
;
options pagesize=60 linesize=110;

proc cluster method=average std pseudo noeigen outtree=tree;
id mammal;
var v1-v8;

run;

proc tree graphics horizontal;
run;

Output 76.1.1displays the information on how the clusters are joined. For example,
the cluster history shows that the observations Wolf and Bear form cluster 29, which
is merged with Raccoon to form cluster 11.

Output 76.1.1. Output from PROC CLUSTER
Mammals’ Teeth

The CLUSTER Procedure
Average Linkage Cluster Analysis

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1
Root-Mean-Square Distance Between Observations = 4

Cluster History
Norm T

RMS i
NCL ----------Clusters Joined---------- FREQ PSF PST2 Dist e

31 Beaver Groundhog 2 . . 0 T
30 Gray Squirrel Porcupine 2 . . 0 T
29 Wolf Bear 2 . . 0 T
28 Marten Wolverine 2 . . 0 T
27 Weasel Badger 2 . . 0 T
26 Jaguar Cougar 2 . . 0 T
25 Fur Seal Sea Lion 2 . . 0 T
24 Reindeer Elk 2 . . 0 T
23 Deer Moose 2 . . 0
22 Pigmy Bat Red Bat 2 281 . 0.2289
21 CL28 River Otter 3 139 . 0.2292
20 CL31 CL30 4 83.2 . 0.2357 T
19 Brown Bat Silver Hair Bat 2 76.7 . 0.2357 T
18 Pika Rabbit 2 73.2 . 0.2357
17 CL27 Sea Otter 3 67.4 . 0.2462
16 CL22 House Bat 3 62.9 1.7 0.2859
15 CL21 CL17 6 47.4 6.8 0.3328
14 CL25 Elephant Seal 3 45.0 . 0.3362
13 CL19 CL16 5 40.8 3.5 0.3672
12 CL15 Grey Seal 7 38.9 2.8 0.4078
11 CL29 Raccoon 3 38.0 . 0.423
10 CL18 CL20 6 34.5 10.3 0.4339

9 CL12 CL26 9 30.0 7.3 0.5071
8 CL24 CL23 4 28.7 . 0.5473
7 CL9 CL14 12 25.7 7.0 0.5668
6 CL10 House Mouse 7 28.3 4.1 0.5792
5 CL11 CL7 15 26.8 6.9 0.6621
4 CL13 Mole 6 31.9 7.2 0.7156
3 CL4 CL8 10 31.0 12.7 0.8799
2 CL3 CL6 17 27.8 16.1 1.0316
1 CL2 CL5 32 . 27.8 1.1938



4760 � Chapter 76. The TREE Procedure

Output 76.1.2. PROC TREE High-Resolution Graphics

As you look from left-to-right in the diagram inOutput 76.1.2, objects and clusters
are progressively joined until a single, all-encompassing cluster is formed at the right
(or root) of the diagram. Clusters exist at each level of the diagram, and every vertical
line connects leaves and branches into progressively larger clusters. For example, the
five bats form a cluster at the 0.6 level, while the next cluster consists only of the
mole. The observations Reindeer, Elk, Deer, and Moose form the next cluster at
the 0.6 level, the mammals Pika through House Mouse are in the fourth cluster, The
observations Wolf, Bear, and Raccoon form the fifth cluster, while the last cluster
contains the observations Marten through Elephant Seal.

The following statements create the same tree with line printer graphics in a vertical
orientation; the tree is displayed inOutput 76.1.3.

proc tree lineprinter;
run;
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Output 76.1.3. PROC TREE with the LINEPRINTER Option
Average Linkage Cluster Analysis

Name of Observation or Cluster

S
i
l G E
v r l
e a H R e
r y o i p

B P H G P u W v S G h
r H i o R r S o s o e e r F S a
o a g R u e o q r e R l r a e u e n
w i m e s i R B u u c a M v W B y J C r a t
n r y d e n M a e n i u M c a e O e a O a o

M d D o P b a d r p o W B c r r t a d t S g u S L S
B B B B B o e E e o i b v h r i u o e o t i t s g t e u g e i e
a a a a a l e l e s k i e o e n s l a o e n e e e e a a a a o a
t t t t t e r k r e a t r g l e e f r n n e r l r r l r r l n l

A 1.5 +
v |
e |
r |
a |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
g |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
e 1 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

|XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
D |XXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
i |XXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
s |XXXXXXXXX . XXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
t |XXXXXXXXX . XXXXXXX XXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
a 0.5 +XXXXXXXXX . XXX XXX XXXXXXXXXXX . XXXXX XXXXXXXXXXXXXXXXX XXXXX
n |XXXXXXXXX . XXX XXX XXXXXXXXXXX . XXXXX XXXXXXXXXXXXX XXX XXXXX
c |XXXXXXXXX . XXX XXX XXX XXXXXXX . XXX . XXXXXXXXXXX . XXX XXXXX
e |XXX XXXXX . XXX XXX XXX XXXXXXX . XXX . XXXXX XXXXX . XXX XXX .

|. . . . . . XXX XXX . . XXX XXX . XXX . XXX . XXX . . XXX XXX .
B |. . . . . . XXX XXX . . XXX XXX . XXX . XXX . XXX . . XXX XXX .
e 0 +. . . . . . XXX XXX . . XXX XXX . XXX . XXX . XXX . . XXX XXX .
t
w

As you look up from the bottom of the diagram, objects and clusters are progressively
joined until a single, all-encompassing cluster is formed at the top (or root) of the
diagram. Clusters exist at each level of the diagram. For example, the unbroken line
of Xs at the left-most side of the 0.6 level indicates that the five bats have formed
a cluster. The next cluster is represented by a period because it contains only one
mammal, Mole. Reindeer, Elk, Deer, and Moose form the next cluster, indicated by
Xs again. The mammals Pika through House Mouse are in the fourth cluster. The
observations Wolf, Bear, and Raccoon form the fifth cluster, while the last cluster
contains the observations Marten through Elephant Seal.

The next statement sorts the clusters at each branch in order of formation and uses
the number of clusters as the height axis. The resulting tree is displayed inOutput
76.1.4.

proc tree sort height=n horizontal;
run;
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Output 76.1.4. PROC TREE with SORT and HEIGHT= Options

Because the CLUSTER procedure always produces binary trees, the number of inter-
nal (root and branch) nodes in the tree is one less than the number of leaves. Therefore
31 clusters are formed from the 32 mammals in the input data set. These are repre-
sented by the 31 vertical line segments in the tree diagram, each at a different value
along the horizontal axis.

As you examine the tree from left to right, the first vertical line segment is where
Beaver and Groundhog are clustered and the number of clusters is 31. The next
cluster is formed from Gray Squirrel and Porcupine. The third contains Wolf and
Bear. Note how the tree graphically displays the clustering order information that
was presented in tabular form by the CLUSTER procedure inOutput 76.1.1.

The same clusters as inOutput 76.1.2andOutput 76.1.3can be seen at the six-cluster
level of the tree diagram inOutput 76.1.4, although the SORT and HEIGHT= options
make them appear in a different order.

The following statements create these six clusters and display them inOutput 76.1.5.
The PROC TREE statement produces no output but creates an output data set indi-
cating the cluster to which each observation belongs at the six-cluster level in the
tree.



Example 76.1. Mammals’ Teeth � 4763

proc tree noprint out=part nclusters=6;
id mammal;
copy v1-v8;

proc sort;
by cluster;

proc print label uniform;
id mammal;
var v1-v8;
format v1-v8 1.;
by cluster;

run;

Output 76.1.5. PROC TREE OUT= Data Set
---------------------------------- CLUSTER=1 -----------------------------------

Right Right Right Right
Top Bottom Top Bottom

mammal Incisors Incisors Canines Canines

Beaver 1 1 0 0
Groundhog 1 1 0 0
Gray Squirrel 1 1 0 0
Porcupine 1 1 0 0
Pika 2 1 0 0
Rabbit 2 1 0 0
House Mouse 1 1 0 0

Right Right Right
Right Top Bottom Top Bottom

mammal Premolars Premolars Molars Molars

Beaver 2 1 3 3
Groundhog 2 1 3 3
Gray Squirrel 1 1 3 3
Porcupine 1 1 3 3
Pika 2 2 3 3
Rabbit 3 2 3 3
House Mouse 0 0 3 3

---------------------------------- CLUSTER=2 -----------------------------------

Right Right Right Right
Top Bottom Top Bottom

mammal Incisors Incisors Canines Canines

Wolf 3 3 1 1
Bear 3 3 1 1
Raccoon 3 3 1 1

Right Right Right
Right Top Bottom Top Bottom

mammal Premolars Premolars Molars Molars

Wolf 4 4 2 3
Bear 4 4 2 3
Raccoon 4 4 3 2
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---------------------------------- CLUSTER=3 -----------------------------------

Right Right Right Right
Top Bottom Top Bottom

mammal Incisors Incisors Canines Canines

Marten 3 3 1 1
Wolverine 3 3 1 1
Weasel 3 3 1 1
Badger 3 3 1 1
Jaguar 3 3 1 1
Cougar 3 3 1 1
Fur Seal 3 2 1 1
Sea Lion 3 2 1 1
River Otter 3 3 1 1
Sea Otter 3 2 1 1
Elephant Seal 2 1 1 1
Grey Seal 3 2 1 1

Right Right Right
Right Top Bottom Top Bottom

mammal Premolars Premolars Molars Molars

Marten 4 4 1 2
Wolverine 4 4 1 2
Weasel 3 3 1 2
Badger 3 3 1 2
Jaguar 3 2 1 1
Cougar 3 2 1 1
Fur Seal 4 4 1 1
Sea Lion 4 4 1 1
River Otter 4 3 1 2
Sea Otter 3 3 1 2
Elephant Seal 4 4 1 1
Grey Seal 3 3 2 2
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---------------------------------- CLUSTER=4 -----------------------------------

Right Right Right Right
Top Bottom Top Bottom

mammal Incisors Incisors Canines Canines

Reindeer 0 4 1 0
Elk 0 4 1 0
Deer 0 4 0 0
Moose 0 4 0 0

Right Right Right
Right Top Bottom Top Bottom

mammal Premolars Premolars Molars Molars

Reindeer 3 3 3 3
Elk 3 3 3 3
Deer 3 3 3 3
Moose 3 3 3 3

---------------------------------- CLUSTER=5 -----------------------------------

Right Right Right Right
Top Bottom Top Bottom

mammal Incisors Incisors Canines Canines

Pigmy Bat 2 3 1 1
Red Bat 1 3 1 1
Brown Bat 2 3 1 1
Silver Hair Bat 2 3 1 1
House Bat 2 3 1 1

Right Right Right
Right Top Bottom Top Bottom

mammal Premolars Premolars Molars Molars

Pigmy Bat 2 2 3 3
Red Bat 2 2 3 3
Brown Bat 3 3 3 3
Silver Hair Bat 2 3 3 3
House Bat 1 2 3 3

---------------------------------- CLUSTER=6 -----------------------------------

Right Right Right Right
Top Bottom Top Bottom

mammal Incisors Incisors Canines Canines

Mole 3 2 1 0

Right Right Right
Right Top Bottom Top Bottom

mammal Premolars Premolars Molars Molars

Mole 3 3 3 3
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Example 76.2. Iris Data

Fisher’s (1936) iris data gives sepal and petal dimensions for three different species
of iris. The data are clustered bykth-nearest-neighbor density linkage using the
CLUSTER procedure with K=8. Observations are identified by species (Setosa,
Versicolor or Virginica) in the tree diagram, which is oriented with the height axis
horizontal. The following statements produceOutput 76.2.1andOutput 76.2.2.

proc format;
value specname

1=’Setosa ’
2=’Versicolor’
3=’Virginica ’;

run;

data iris;
title ’Fisher (1936) Iris Data’;
input SepalLength SepalWidth PetalLength PetalWidth

Species @@;
format Species specname.;
label SepalLength=’Sepal Length in mm.’

SepalWidth =’Sepal Width in mm.’
PetalLength=’Petal Length in mm.’
PetalWidth =’Petal Width in mm.’;

symbol = put(species, specname10.);
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
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56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1
;
proc cluster data=iris method=twostage print=10

outtree=tree k=8 noeigen;
var SepalLength SepalWidth PetalLength PetalWidth;
copy Species;
id Species;

run;

options pagesize=60 linesize=110;

proc tree data=tree horizontal lineprinter pages=1 maxh=10;
id species;

run;

The PAGES=1 option specifies that the tree diagram extends over one page from tree
to root. Since the HORIZONTAL option is also specified, the horizontal extent of
the diagram is one page. The number of vertical pages required for the diagram is
dictated by the number of leaves in the tree.

The MAXH=10 limits the values displayed on the height axis to a maximum of 10.
This prunes the tree diagram so that only the portion from the leaves to level 10 is
displayed. You can see this pruning effect inOutput 76.2.2.

Output 76.2.1. Clustering of Fisher’s Iris Data
Fisher (1936) Iris Data

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

K = 8
Root-Mean-Square Total-Sample Standard Deviation = 10.69224

Cluster History
Normalized Maximum Density T

Fusion in Each Cluster i
NCL ----Clusters Joined----- FREQ Density Lesser Greater e

10 CL11 Versicolor 48 0.2879 0.1479 8.3678
9 CL13 Virginica 46 0.2802 0.2005 3.5156
8 CL10 Virginica 49 0.2699 0.1372 8.3678
7 CL8 Versicolor 50 0.2586 0.1372 8.3678
6 CL9 Virginica 47 0.1412 0.0832 3.5156
5 CL6 Virginica 48 0.107 0.0605 3.5156
4 CL5 Virginica 49 0.0969 0.0541 3.5156
3 CL4 Virginica 50 0.0715 0.0370 3.5156
2 CL3 CL7 100 2.6277 3.5156 8.3678

3 modal clusters have been formed.
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Output 76.2.2. Horizontal Tree for Fisher’s Iris Data
Two-Stage Density Linkage Clustering

Cluster Fusion Density

0 1 2 3 4 5 6 7 8 9 10
+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+

S Virginica XX.........................................................................................
p XX
e Virginica XX.........................................................................................
c XX
i Virginica XXXX.......................................................................................
e XXXX
s Virginica XXXX.......................................................................................

XXXX
Virginica XXXXXX.....................................................................................

XXXXXX
Versicolor XXXXXXX....................................................................................

XXXXXXX
Virginica XXXXXXXX...................................................................................

XXXXXXXX
Virginica XXXXXXXXX..................................................................................

XXXXXXXXX
Virginica XXXXXXXXXXXXXXX............................................................................

XXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXX...........................................................................

XXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXX.........................................................................

XXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXX.......................................................................

XXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXX......................................................................

XXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXX.....................................................................

XXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXX.....................................................................

XXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXX.....................................................................

XXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXX....................................................................

XXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXX....................................................................

XXXXXXXXXXXXXXXXXXXXXXX
Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXX................................................................

XXXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXX................................................................

XXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................

XXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................

XXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXXX...............................................................

XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................................

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................................

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................................

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............................................................

XXXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXXX................................................................

XXXXXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................

XXXXXXXXXXXXXXXXXXXXXXX
Virginica XXXXXXXXXXXXXXXXXXXXXXX....................................................................

XXXXXXXXXXXXXXXXXXXXXX
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Versicolor XXXXXXXXXXXXXXXXXXXXXX.....................................................................
XXXXXXXXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXXXXXXXX.....................................................................
XXXXXXXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXXXXXXX......................................................................
XXXXXXXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXXXXXXX......................................................................
XXXXXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXXXXX........................................................................
XXXXXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXXXXX........................................................................
XXXXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXXXX.........................................................................
XXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXX...........................................................................
XXXXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXXXX...........................................................................
XXXXXXXXXXX

Virginica XXXXXXXXXXX................................................................................
XXXXXXXXXXX

Virginica XXXXXXXXXXX................................................................................
XXXXXXXXX

Virginica XXXXXXXXX..................................................................................
XXXXXXXX

Virginica XXXXXXXX...................................................................................
XXXXXX

Virginica XXXXXX.....................................................................................
XXXXXX

Virginica XXXXXX.....................................................................................
XXXXXX

Virginica XXXXXX.....................................................................................
XXXXXX

Virginica XXXXXX.....................................................................................
XXXXX

Virginica XXXXX......................................................................................
XX

Virginica XX.........................................................................................
XX

Virginica XX.........................................................................................
X

Virginica XXX........................................................................................
XXX

Versicolor XXXX.......................................................................................
XXXX

Versicolor XXXXXXXXXXX................................................................................
XXXXXXXXXXX

Versicolor XXXXXXXXXXXXX..............................................................................
XXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXX............................................................................
XXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXX...........................................................................
XXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXX..........................................................................
XXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXX.........................................................................
XXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXX.......................................................................
XXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXX.....................................................................
XXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXX..................................................................
XXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXX..................................................................
XXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXX..................................................................
XXXXXXXXXXXXXXXXXXXXXXXXX
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Virginica XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................
XXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.............................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...........................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.........................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.....................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.....................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.....................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.........................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..........................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............................................................
XXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................
XXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................
XXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...........................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX........................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX......................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX......................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX........................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...........................................................
XXXXXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXXXXX....................................................................
XXXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXXX.......................................................................
XXXXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXXXX........................................................................
XXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXX..........................................................................
XXXXXXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXXXXXX..........................................................................
XXXXXXXXXXXXXX

Virginica XXXXXXXXXXXXXX.............................................................................
XXXXXXXXXXXXX

Versicolor XXXXXXXXXXXXX..............................................................................
XXXXXXXXXX
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Versicolor XXXXXXXXXX.................................................................................
XXXX

Versicolor XXXX.......................................................................................
XXXX

Versicolor XXXX.......................................................................................
XXX

Versicolor XXX........................................................................................

Setosa XXXXXXXXXXXXXXXX...........................................................................
XXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXX.................................................................
XXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...........................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..........................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..........................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX............................................
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX........................................................
XXXXXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXXXXX.....................................................................
XXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXX........................................................................
XXXXXXXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXXXXXXX........................................................................
XXXXXXXXXXXXXX

Setosa XXXXXXXXXXXXXX.............................................................................
XXXXXXXXX

Setosa XXXXXXXXX..................................................................................
XXXXX

Setosa XXXXX......................................................................................
XXXX

Setosa XXXX.......................................................................................
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Chapter 77
The TTEST Procedure
Overview

The TTEST procedure performst tests for one sample, two samples, and paired ob-
servations. The one-samplet test compares the mean of the sample to a given number.
The two-samplet test compares the mean of the first sample minus the mean of the
second sample to a given number. The paired observationst test compares the mean
of the differences in the observations to a given number.

For one-sample tests, PROC TTEST computes the sample mean of the variable and
compares it with a given number. Paired comparisons use the one sample process
on the differences between the observations. Paired comparisons can be made be-
tween many pairs of variables with one call to PROC TTEST. For group comparisons,
PROC TTEST computes sample means for each of two groups of observations and
tests the hypothesis that the population means differ by a given amount. This latter
analysis can be considered a special case of a one-way analysis of variance with two
levels of classification.

The underlying assumption of thet test in all three cases is that the observations are
random samples drawn from normally distributed populations. This assumption can
be checked using the UNIVARIATE procedure; if the normality assumptions for thet
test are not satisfied, you should analyze your data using the NPAR1WAY procedure.
The two populations of a group comparison must also be independent. If they are not
independent, you should question the validity of a paired comparison.

PROC TTEST computes the group comparisont statistic based on the assumption
that the variances of the two groups are equal. It also computes an approximate
t based on the assumption that the variances are unequal (the Behrens-Fisher prob-
lem). The degrees of freedom and probability level are given for each; Satterthwaite’s
(1946) approximation is used to compute the degrees of freedom associated with the
approximatet. In addition, you can request the Cochran and Cox (1950) approxima-
tion of the probability level for the approximatet. The folded form of theF statistic
is computed to test for equality of the two variances (Steel and Torrie 1980).

FREQ and WEIGHT statements are available. Data can be input in the form of ob-
servations or summary statistics. Summary statistics and their confidence intervals,
and differences of means are output. For two-sample tests, the pooled-variance and a
test for equality of variances are also produced.
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Getting Started

One-Sample t Test

A one-samplet test can be used to compare a sample mean to a given value. This
example, taken from Huntsberger and Billingsley (1989, p. 290), tests whether the
mean length of a certain type of court case is 80 days using 20 randomly chosen
cases. The data are read by the following DATA step:

title ’One-Sample t Test’;
data time;

input time @@;
datalines;

43 90 84 87 116 95 86 99 93 92
121 71 66 98 79 102 60 112 105 98
;
run;

The only variable in the data set,time, is assumed to be normally distributed. The
trailing at signs (@@) indicate that there is more than one observation on a line. The
following code invokes PROC TTEST for a one-samplet test:

proc ttest h0=80 alpha=0.1;
var time;

run;

The VAR statement indicates that thetime variable is being studied, while the H0=
option specifies that the mean of thetime variable should be compared to the value
80 rather than the default null hypothesis of 0. This ALPHA= option requests 10%
confidence intervals rather than the default 5% confidence intervals. The output is
displayed inFigure 77.1.

One-Sample t Test

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL Upper CL
Variable N Mean Mean Mean Std Dev Std Dev Std Dev Std Err Minimum Maximum

time 20 82.447 89.85 97.253 15.2 19.146 26.237 4.2811 43 121

T-Tests

Variable DF t Value Pr > |t|

time 19 2.30 0.0329

Figure 77.1. One-Sample t Test Results

Summary statistics appear at the top of the output. The sample size (N), the mean and
its confidence bounds (Lower CL Mean and Upper CL Mean), the standard deviation
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and its confidence bounds (Lower CL Std Dev and Upper CL Std Dev), and the
standard error are displayed with the minimum and maximum values of thetime
variable. The test statistic, the degrees of freedom, and thep-value for thet test are
displayed next; at the 10%α-level, this test indicates that the mean length of the court
cases are significantly different from 80 days(t = 2.30, p = 0.0329).

Comparing Group Means

If you want to compare values obtained from two different groups, and if the groups
are independent of each other and the data are normally distributed in each group,
then a groupt test can be used. Examples of such group comparisons include

• test scores for two third-grade classes, where one of the classes receives tutor-
ing

• fuel efficiency readings of two automobile nameplates, where each nameplate
uses the same fuel

• sunburn scores for two sunblock lotions, each applied to a different group of
people

• political attitude scores of males and females

In the following example, the golf scores for males and females in a physical educa-
tion class are compared. The sample sizes from each population are equal, but this is
not required for further analysis. The data are read by the following statements:

title ’Comparing Group Means’;
data scores;

input Gender $ Score @@;
datalines;

f 75 f 76 f 80 f 77 f 80 f 77 f 73
m 82 m 80 m 85 m 85 m 78 m 87 m 82
;
run;

The dollar sign ($) followingGender in the INPUT statement indicates thatGender
is a character variable. The trailing at signs (@@) enable the procedure to read more
than one observation per line.

You can use a groupt test to determine if the mean golf score for the men in the class
differs significantly from the mean score for the women. If you also suspect that the
distributions of the golf scores of males and females have unequal variances, then
submitting the following statements invokes PROC TTEST with options to deal with
the unequal variance case.

proc ttest cochran ci=equal umpu;
class Gender;
var Score;

run;
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The CLASS statement contains the variable that distinguishes the groups being com-
pared, and the VAR statement specifies the response variable to be used in calcula-
tions. The COCHRAN option producesp-values for the unequal variance situation
using the Cochran and Cox(1950) approximation. Equal tailed and uniformly most
powerful unbiased (UMPU) confidence intervals forσ are requested by the CI= op-
tion. Output from these statements is displayed inFigure 77.2throughFigure 77.4.

Comparing Group Means

The TTEST Procedure

Statistics

UMPU
Lower CL Upper CL Lower CL Lower CL

Variable Gender N Mean Mean Mean Std Dev Std Dev Std Dev

Score f 7 74.504 76.857 79.211 1.6399 1.5634 2.5448
Score m 7 79.804 82.714 85.625 2.028 1.9335 3.1472
Score Diff (1-2) -9.19 -5.857 -2.524 2.0522 2.0019 2.8619

Statistics

UMPU
Upper CL Upper CL

Variable Gender Std Dev Std Dev Std Err Minimum Maximum

Score f 5.2219 5.6039 0.9619 73 80
Score m 6.4579 6.9303 1.1895 78 87
Score Diff (1-2) 4.5727 4.7242 1.5298

Figure 77.2. Simple Statistics

Simple statistics for the two populations being compared, as well as for the difference
of the means between the populations, are displayed inFigure 77.2. The Variable col-
umn denotes the response variable, while the Class column indicates the population
corresponding to the statistics in that row. The sample size (N) for each population,
the sample means (Mean), and lower and upper confidence bounds for the means
(Lower CL Mean and Upper CL Mean) are displayed next. The standard deviations
(Std Dev) are displayed as well, with equal tailed confidence bounds in the Lower
CL Std Dev and Upper CL Std Dev columns and UMPU confidence bounds in the
UMPU Upper CL Std Dev and UMPU Lower CL Std Dev columns. In addition, stan-
dard error of the mean and the minimum and maximum data values are displayed.

T-Tests

Variable Method Variances DF t Value Pr > |t|

Score Pooled Equal 12 -3.83 0.0024
Score Satterthwaite Unequal 11.5 -3.83 0.0026
Score Cochran Unequal 6 -3.83 0.0087

Figure 77.3. t Tests



Syntax � 4779

The test statistics, associated degrees of freedom, andp-values are displayed inFigure
77.3. The Method column denotes whicht test is being used for that row, and the
Variances column indicates what assumption about variances is being made. The
pooled test assumes that the two populations have equal variances and uses degrees
of freedomn1+n2−2, wheren1 andn2 are the sample sizes for the two populations.
The remaining two tests do not assume that the populations have equal variances. The
Satterthwaite test uses the Satterthwaite approximation for degrees of freedom, while
the Cochran test uses the Cochran and Cox approximation for thep-value.

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

Score Folded F 6 6 1.53 0.6189

Figure 77.4. Tests of Equality of Variances

Examine the output inFigure 77.4to determine whicht test is appropriate. The
“Equality of Variances” test results show that the assumption of equal variances is
reasonable for these data (the Folded F statisticF ′ = 1.53, with p = 0.6189). If the
assumption of normality is also reasonable, the appropriate test is the usual pooledt
test, which shows that the average golf scores for men and women are significantly
different(t = −3.83, p = 0.0024). If the assumption of equality of variances is not
reasonable, then either the Satterthwaite or the Cochran test should be used.

The assumption of normality can be checked using PROC UNIVARIATE; if the as-
sumption of normality is not reasonable, you should analyze the data with the non-
parametric Wilcoxon Rank Sum test using PROC NPAR1WAY.

Syntax

The following statements are available in PROC TTEST.

PROC TTEST < options > ;
CLASS variable ;
PAIRED variables ;
BY variables ;
VAR variables ;
FREQ variable ;
WEIGHT variable ;

No statement can be used more than once. There is no restriction on the order of the
statements after the PROC statement.
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PROC TTEST Statement

PROC TTEST < options > ;

The following options can appear in the PROC TTEST statement.

ALPHA= p
specifies that confidence intervals are to be100(1− p)% confidence intervals, where
0 < p < 1. By default, PROC TTEST uses ALPHA=0.05. Ifp is 0 or less, or 1 or
more, an error message is printed.

CI=EQUAL
CI=UMPU
CI=NONE

specifies whether a confidence interval is displayed forσ and, if so, what kind. The
CI=EQUAL option specifies an equal tailed confidence interval, and it is the default.
The CI=UMPU option specifies an interval based on the uniformly most powerful
unbiased test ofH0:σ = σ0. The CI=NONE option requests that no confidence
interval be displayed forσ. The values EQUAL and UMPU together request that
both types of confidence intervals be displayed. If the value NONE is specified with
one or both of the values EQUAL and UMPU, NONE takes precedence. For more
information, see the“Confidence Interval Estimation”section on page 4785.

COCHRAN
requests the Cochran and Cox (1950) approximation of the probability level of the
approximatet statistic for the unequal variances situation.

DATA=SAS-data-set
names the SAS data set for the procedure to use. By default, PROC TTEST uses the
most recently created SAS data set. The input data set can contain summary statistics
of the observations instead of the observations themselves. The number, mean, and
standard deviation of the observations are required for each BY group (one sample
and paired differences) or for each class within each BY group (two samples). For
more information on the DATA= option, see the“Input Data Set of Statistics”section
on page 4783.

H0=m
requests tests againstm instead of 0 in all three situations (one-sample, two-sample,
and paired observationt tests). By default, PROC TTEST uses H0=0.

BY Statement

BY variables ;

You can specify a BY statement with PROC TTEST to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.
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• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the TTEST procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
theSAS Procedures Guide.

CLASS Statement

CLASS variable ;

A CLASS statement giving the name of the classification (or grouping) variable must
accompany the PROC TTEST statement in the two independent sample cases. It
should be omitted for the one sample or paired comparison situations. If it is used
without the VAR statement, all numeric variables in the input data set (except those
appearing in the CLASS, BY, FREQ, or WEIGHT statement) are included in the
analysis.

The class variable must have two, and only two, levels. PROC TTEST divides the
observations into the two groups for thet test using the levels of this variable. You
can use either a numeric or a character variable in the CLASS statement.

Class levels are determined from the formatted values of the CLASS variable.
Thus, you can use formats to define group levels. Refer to the discussions of
the FORMAT procedure, the FORMAT statement, formats, and informats inSAS
Language Reference: Dictionary.

FREQ Statement

FREQ variable ;

Thevariable in the FREQ statement identifies a variable that contains the frequency
of occurrence of each observation. PROC TTEST treats each observation as if it
appearsn times, wheren is the value of the FREQ variable for the observation. If
the value is not an integer, only the integer portion is used. If the frequency value
is less than 1 or is missing, the observation is not used in the analysis. When the
FREQ statement is not specified, each observation is assigned a frequency of 1. The
FREQ statement cannot be used if the DATA= data set contains statistics instead of
the original observations.
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PAIRED Statement

PAIRED PairLists ;

The PairLists in the PAIRED statement identifies the variables to be compared in
paired comparisons. You can use one or morePairLists. Variables or lists of variables
are separated by an asterisk (*) or a colon (:). The asterisk requests comparisons
between each variable on the left with each variable on the right. The colon requests
comparisons between the first variable on the left and the first on the right, the second
on the left and the second on the right, and so forth. The number of variables on the
left must equal the number on the right when the colon is used. The differences are
calculated by taking the variable on the left minus the variable on the right for both
the asterisk and colon. A pair formed by a variable with itself is ignored. Use the
PAIRED statement only for paired comparisons. The CLASS and VAR statements
cannot be used with the PAIRED statement.

Examples of the use of the asterisk and the colon are shown in the following table.

These PAIRED statements... yield these comparisons
PAIRED A*B; A-B

PAIRED A*B C*D; A-B and C-D

PAIRED (A B)*(C D); A-C, A-D, B-C, and B-D

PAIRED (A B)*(C B); A-C, A-B, and B-C

PAIRED (A1-A2)*(B1-B2); A1-B1, A1-B2, A2-B1, and A2-B2

PAIRED (A1-A2):(B1-B2); A1-B1 and A2-B2

VAR Statement

VAR variables ;

The VAR statement names the variables to be used in the analyses. One-sample
comparisons are conducted when the VAR statement is used without the CLASS
statement, while group comparisons are conducted when the VAR statement is used
with a CLASS statement. If the VAR statement is omitted, all numeric variables in
the input data set (except a numeric variable appearing in the BY, CLASS, FREQ, or
WEIGHT statement) are included in the analysis. The VAR statement can be used
with one- and two-samplet tests and cannot be used with the PAIRED statement.
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WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement weights each observation in the input data set by the value
of the WEIGHT variable. The values of the WEIGHT variable can be nonintegral,
and they are not truncated. Observations with negative, zero, or missing values for the
WEIGHT variable are not used in the analyses. Each observation is assigned a weight
of 1 when the WEIGHT statement is not used. The WEIGHT statement cannot be
used with an input data set of summary statistics.

Details

Input Data Set of Statistics

PROC TTEST accepts data containing either observation values or summary statis-
tics. It assumes that the DATA= data set contains statistics if it contains a charac-
ter variable with name–TYPE– or –STAT– . The TTEST procedure expects this
character variable to contain the names of statistics. If both–TYPE– and–STAT–
variables exist and are of type character, PROC TTEST expects–TYPE– to contain
the names of statistics including ‘N’, ‘MEAN’, and ‘STD’ for each BY group (or
for each class within each BY group for two-samplet tests). If no ‘N’, ‘MEAN’, or
‘STD’ statistics exist, an error message is printed.

FREQ, WEIGHT, and PAIRED statements cannot be used with input data sets of
statistics. BY, CLASS, and VAR statements are the same regardless of data set type.
For paired comparisons, see the–DIF– values for the–TYPE–=T observations in
output produced by the OUTSTATS= option in the PROC COMPARE statement (re-
fer to theSAS Procedures Guide).

Missing Values

An observation is omitted from the calculations if it has a missing value for either
the CLASS variable, a PAIRED variable, or the variable to be tested. If more than
one variable is listed in the VAR statement, a missing value in one variable does not
eliminate the observation from the analysis of other nonmissing variables.

Computational Methods

The t Statistic

The form of thet statistic used varies with the type of test being performed.

• To compare an individual mean with a sample of sizen to a valuem, use

t =
x̄−m

s/
√

n

wherex̄ is the sample mean of the observations ands2 is the sample variance
of the observations.



4784 � Chapter 77. The TTEST Procedure

• To comparen paired differences to a valuem, use

t =
d̄−m

sd/
√

n

where d̄ is the sample mean of the paired differences ands2
d is the sample

variance of the paired differences.

• To compare means from two independent samples withn1 andn2 observations
to a valuem, use

t =
(x̄1 − x̄2)−m

s

√
1
n1

+
1
n2

wheres2 is the pooled variance

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

ands2
1 ands2

2 are the sample variances of the two groups. The use of thist
statistic depends on the assumption thatσ2

1 = σ2
2, whereσ2

1 andσ2
2 are the

population variances of the two groups.

The Folded Form F Statistic

The folded form of theF statistic,F ′, tests the hypothesis that the variances are
equal, where

F ′ =
max(s2

1, s
2
2)

min(s2
1, s

2
2)

A test of F ′ is a two-tailedF test because you do not specify which variance you
expect to be larger. Thep-value gives the probability of a greaterF value under the
null hypothesis thatσ2

1 = σ2
2.

The Approximate t Statistic

Under the assumption of unequal variances, the approximatet statistic is computed
as

t′ =
x̄1 − x̄2√
w1 + w2

where

w1 =
s2
1

n1
, w2 =

s2
2

n2
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The Cochran and Cox Approximation

The Cochran and Cox (1950) approximation of the probability level of the approxi-
matet statistic is the value ofp such that

t′ =
w1t1 + w2t2

w1 + w2

wheret1 andt2 are the critical values of thet distribution corresponding to a signifi-
cance level ofp and sample sizes ofn1 andn2, respectively. The number of degrees
of freedom is undefined whenn1 6= n2. In general, the Cochran and Cox test tends
to be conservative (Lee and Gurland 1975).

Satterthwaite’s Approximation

The formula for Satterthwaite’s (1946) approximation for the degrees of freedom for
the approximatet statistic is:

df =
(w1 + w2)2(
w2

1

n1 − 1
+

w2
2

n2 − 1

)
Refer to Steel and Torrie (1980) or Freund, Littell, and Spector (1986) for more in-
formation.

Confidence Interval Estimation

The form of the confidence interval varies with the statistic for which it is computed.
In the following confidence intervals involving means,t1−α

2
,n−1 is the100(1− α

2 )%
quantile of thet distribution withn− 1 degrees of freedom. The confidence interval
for

• an individual mean from a sample of sizen compared to a valuem is given by

(x̄−m)± t1−α
2

,n−1
s√
n

wherex̄ is the sample mean of the observations ands2 is the sample variance
of the observations

• paired differences with a sample of sizen differences compared to a valuem
is given by

(d̄−m)± t1−α
2

,n−1
sd√
n

whered̄ ands2
d are the sample mean and sample variance of the paired differ-

ences, respectively



4786 � Chapter 77. The TTEST Procedure

• the difference of two means from independent samples withn1 andn2 obser-
vations compared to a valuem is given by

((x̄1 − x̄2)−m)± t1−α
2

,n1+n2−2s

√
1
n1

+
1
n2

wheres2 is the pooled variance

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

and wheres2
1 ands2

2 are the sample variances of the two groups. The use of
this confidence interval depends on the assumption thatσ2

1 = σ2
2, whereσ2

1 and
σ2

2 are the population variances of the two groups.

The distribution of the estimated standard deviation of a mean is not symmetric, so
alternative methods of estimating confidence intervals are possible. PROC TTEST
computes two estimates. For both methods, the data are assumed to have a normal
distribution with meanµ and varianceσ2, both unknown. The methods are as follows:

• The default method, an equal-tails confidence interval, puts an equal amount
of area (α2 ) in each tail of the chi-square distribution. An equal tails test of
H0:σ = σ0 has acceptance region{

χ2
α
2

,n−1 ≤
(n− 1)S2

σ2
0

≤ χ2
1−α

2
,n−1

}
which can be algebraically manipulated to give the following100(1 − α)%
confidence interval forσ2:(

(n− 1)S2

χ2
1−α

2
,n−1

,
(n− 1)S2

χ2
α
2

,n−1

)

In order to obtain a confidence interval forσ, the square root of each side is
taken, leading to the following100(1− α)% confidence interval:(√

(n− 1)S2

χ2
1−α

2
,n−1

,

√
(n− 1)S2

χ2
α
2

,n−1

)

• The second method yields a confidence interval derived from the uniformly
most powerful unbiased test ofH0:σ = σ0 (Lehmann 1986). This test has
acceptance region{

c1 ≤
(n− 1)S2

σ2
0

≤ c2

}
where the critical valuesc1 andc2 satisfy∫ c2

c1

fn(y)dy = 1− α
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and ∫ c2

c1

yfn(y)dy = n(1− α)

wherefn(y) is the chi-squared distribution withn degrees of freedom. This
acceptance region can be algebraically manipulated to arrive at

P

{
(n− 1)S2

c2
≤ σ2 ≤ (n− 1)S2

c1

}
= 1− α

wherec1 andc2 solve the preceding two integrals. To find the area in each
tail of the chi-square distribution to which these two critical values correspond,
solvec1 = χ2

1−α2,n−1 andc2 = χ2
α1,n−1 for α1 andα2; the resultingα1 and

α2 sum toα. Hence, a100(1− α)% confidence interval forσ2 is given by(
(n− 1)S2

χ2
1−α2,n−1

,
(n− 1)S2

χ2
α1,n−1

)

In order to obtain a100(1 − α)% confidence interval forσ, the square root is
taken of both terms, yielding(√

(n− 1)S2

χ2
1−α2,n−1

,

√
(n− 1)S2

χ2
α1,n−1

)

Displayed Output

For each variable in the analysis, the TTEST procedure displays the following sum-
mary statistics for each group:

• the name of the dependent variable

• the levels of the classification variable

• N, the number of nonmissing values

• Lower CL Mean, the lower confidence bound for the mean

• the Mean or average

• Upper CL Mean, the upper confidence bound for the mean

• Lower CL Std Dev, the lower confidence bound for the standard deviation

• Std Dev, the standard deviation

• Upper CL Std Dev, the upper confidence bound for the standard deviation

• Std Err, the standard error of the mean

• the Minimum value, if the line size allows

• the Maximum value, if the line size allows

• upper and lower UMPU confidence bounds for the standard deviation, dis-
played if the CI=UMPU option is specified in the PROC TTEST statement
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Next, the results of severalt tests are given. For one-sample and paired observations
t tests, the TTEST procedure displays

• t Value, thet statistic for testing the null hypothesis that the mean of the group
is zero

• DF, the degrees of freedom

• Pr > |t|, the probability of a greater absolute value oft under the null hypothesis.
This is the two-tailed significance probability.

To compute the one-tailed significance probability, first determine whether large val-
ues oft are significant or small values are. Letp denote the significance probability
for the two-tailed test. If large values oft are significant, then the one-tailed proba-
bility is p/2 if t ≥ 0, and is1− p/2 if t < 0. If small values oft are significant, then
the one-tailed probability is1− p/2 if t ≥ 0, and isp/2 if t < 0.

For two-samplet tests, the TTEST procedure displays all the items in the following
list. You need to decide whether equal or unequal variances are appropriate for your
data.

• Under the assumption of unequal variances, the TTEST procedure displays
results using Satterthwaite’s method. If the COCHRAN option is specified, the
results for the Cochran and Cox approximation are also displayed.

− t Value, an approximatet statistic for testing the null hypothesis that the
means of the two groups are equal

− DF, the approximate degrees of freedom

− Pr > |t|, the probability of a greater absolute value oft under the null
hypothesis. This is the two-tailed significance probability. The one-tailed
probability is computed the same way as in a one-samplet test.

• Under the assumption of equal variances, the TTEST procedure displays results
obtained by pooling the group variances.

− t Value, thet statistic for testing the null hypothesis that the means of the
two groups are equal

− DF, the degrees of freedom

− Pr > |t|, the probability of a greater absolute value oft under the null
hypothesis. This is the two-tailed significance probability. The one-tailed
probability is computed the same way as in a one-samplet test.

• PROC TTEST then gives the results of the test of equality of variances:

− theF ′ (folded) statistic (see the“The Folded Form F Statistic”section on
page 4784)

− Num DF and Den DF, the numerator and denominator degrees of freedom
in each group

− Pr > F, the probability of a greaterF ′ value. This is the two-tailed signif-
icance probability.
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ODS Table Names

PROC TTEST assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 77.1. ODS Tables Produced in PROC TTEST

ODS Table Name Description Statement
Equality Tests for equality of variance CLASS statement
Statistics Univariate summary statistics by default
TTests t-tests by default

Examples

Example 77.1. Comparing Group Means Using Input Data Set
of Summary Statistics

The following example, taken from Huntsberger and Billingsley (1989), compares
two grazing methods using 32 steer. Half of the steer are allowed to graze continu-
ously while the other half are subjected to controlled grazing time. The researchers
want to know if these two grazing methods impact weight gain differently. The data
are read by the following DATA step.

title ’Group Comparison Using Input Data Set of Summary Statistics’;
data graze;

length GrazeType $ 10;
input GrazeType $ WtGain @@;
datalines;

controlled 45 controlled 62
controlled 96 controlled 128
controlled 120 controlled 99
controlled 28 controlled 50
controlled 109 controlled 115
controlled 39 controlled 96
controlled 87 controlled 100
controlled 76 controlled 80
continuous 94 continuous 12
continuous 26 continuous 89
continuous 88 continuous 96
continuous 85 continuous 130
continuous 75 continuous 54
continuous 112 continuous 69
continuous 104 continuous 95
continuous 53 continuous 21
;
run;

The variableGrazeType denotes the grazing method: ‘controlled’ is controlled graz-
ing and ‘continuous’ is continuous grazing. The dollar sign ($) followingGrazeType
makes it a character variable, and the trailing at signs (@@) tell the procedure that
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there is more than one observation per line. The MEANS procedure is invoked to
create a data set of summary statistics with the following statements:

proc sort;
by GrazeType;

proc means data=graze noprint;
var WtGain;
by GrazeType;
output out=newgraze;

run;

The NOPRINT option eliminates all output from the MEANS procedure. The VAR
statement tells PROC MEANS to compute summary statistics for theWtGain vari-
able, and the BY statement requests a separate set of summary statistics for each level
of GrazeType. The OUTPUT OUT= statement tells PROC MEANS to put the sum-
mary statistics into a data set callednewgraze so that it may be used in subsequent
procedures. This new data set is displayed inOutput 77.1.1by using PROC PRINT
as follows:

proc print data=newgraze;
run;

The–STAT– variable contains the names of the statistics, and theGrazeType vari-
able indicates which group the statistic is from.

Output 77.1.1. Output Data Set of Summary Statistics

Group Comparison Using Input Data Set of Summary Statistics

Obs GrazeType _TYPE_ _FREQ_ _STAT_ WtGain

1 continuous 0 16 N 16.000
2 continuous 0 16 MIN 12.000
3 continuous 0 16 MAX 130.000
4 continuous 0 16 MEAN 75.188
5 continuous 0 16 STD 33.812
6 controlled 0 16 N 16.000
7 controlled 0 16 MIN 28.000
8 controlled 0 16 MAX 128.000
9 controlled 0 16 MEAN 83.125

10 controlled 0 16 STD 30.535

The following code invokes PROC TTEST using thenewgraze data set, as denoted
by the DATA= option.

proc ttest data=newgraze;
class GrazeType;
var WtGain;

run;
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The CLASS statement contains the variable that distinguishes between the groups
being compared, in this caseGrazeType. The summary statistics and confidence
intervals are displayed first, as shown inOutput 77.1.2.

Output 77.1.2. Summary Statistics

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL
Variable GrazeType N Mean Mean Mean Std Dev Std Dev

WtGain continuous 16 57.171 75.188 93.204 . 33.812
WtGain controlled 16 66.854 83.125 99.396 . 30.535
WtGain Diff (1-2) -31.2 -7.938 15.323 25.743 32.215

Statistics

Upper CL
Variable GrazeType Std Dev Std Err Minimum Maximum

WtGain continuous . 8.4529 12 130
WtGain controlled . 7.6337 28 128
WtGain Diff (1-2) 43.061 11.39

In Output 77.1.2, the Variable column states the variable used in computations and
the Class column specifies the group for which the statistics are computed. For each
class, the sample size, mean, standard deviation and standard error, and maximum
and minimum values are displayed. The confidence bounds for the mean are also
displayed; however, since summary statistics are used as input, the confidence bounds
for the standard deviation of the groups are not calculated.

Output 77.1.3. t Tests

T-Tests

Variable Method Variances DF t Value Pr > |t|

WtGain Pooled Equal 30 -0.70 0.4912
WtGain Satterthwaite Unequal 29.7 -0.70 0.4913

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

WtGain Folded F 15 15 1.23 0.6981

Output 77.1.3shows the results of tests for equal group means and equal variances.
A group test statistic for the equality of means is reported for equal and unequal
variances. Before deciding which test is appropriate, you should look at the test for
equality of variances; this test does not indicate a significant difference in the two
variances(F ′ = 1.23, p = 0.6981), so the pooledt statistic should be used. Based
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on the pooled statistic, the two grazing methods are not significantly different(t =
0.70, p = 0.4912). Note that this test assumes that the observations in both data sets
are normally distributed; this assumption can be checked in PROC UNIVARIATE
using the raw data.

Example 77.2. One-Sample Comparison Using the FREQ
Statement

This example examines children’s reading skills. The data consist of Degree of
Reading Power (DRP) test scores from 44 third-grade children and are taken from
Moore (1995, p. 337). Their scores are given in the following DATA step.

title ’One-Mean Comparison Using FREQ Statement’;
data read;

input score count @@;
datalines;

40 2 47 2 52 2 26 1 19 2
25 2 35 4 39 1 26 1 48 1
14 2 22 1 42 1 34 2 33 2
18 1 15 1 29 1 41 2 44 1
51 1 43 1 27 2 46 2 28 1
49 1 31 1 28 1 54 1 45 1
;
run;

The following statements invoke the TTEST procedure to test if the mean test score
is equal to 30. Thecount variable contains the frequency of occurrence of each test
score; this is specified in the FREQ statement.

proc ttest data=read h0=30;
var score;
freq count;

run;

The output, shown inOutput 77.2.1, contains the results.

Output 77.2.1. TTEST Results

One-Mean Comparison Using FREQ Statement

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL Upper CL
Variable N Mean Mean Mean Std Dev Std Dev Std Dev Std Err Minimum Maximum

score 44 31.449 34.864 38.278 9.2788 11.23 14.229 1.693 14 54

T-Tests

Variable DF t Value Pr > |t|

score 43 2.87 0.0063
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The SAS log states that 30 observations and two variables have been read. However,
the sample size given in the TTEST output is N=44. This is due to specifying the
count variable in the FREQ statement. The test is significant(t = 2.87, p = 0.0063)
at the 5% level, thus you can conclude that the mean test score is different from 30.

Example 77.3. Paired Comparisons

When it is not feasible to assume that two groups of data are independent, and a
natural pairing of the data exists, it is advantageous to use an analysis that takes the
correlation into account. Utilizing this correlation results in higher power to detect
existing differences between the means. The differences between paired observations
are assumed to be normally distributed. Some examples of this natural pairing are

• pre- and post-test scores for a student receiving tutoring

• fuel efficiency readings of two fuel types observed on the same automobile

• sunburn scores for two sunblock lotions, one applied to the individual’s right
arm, one to the left arm

• political attitude scores of husbands and wives

In this example, taken fromSUGI Supplemental Library User’s Guide, Version 5
Edition, a stimulus is being examined to determine its effect on systolic blood pres-
sure. Twelve men participate in the study. Their systolic blood pressure is measured
both before and after the stimulus is applied. The following statements input the data:

title ’Paired Comparison’;
data pressure;

input SBPbefore SBPafter @@;
datalines;

120 128 124 131 130 131 118 127
140 132 128 125 140 141 135 137
126 118 130 132 126 129 127 135
;
run;

The variablesSBPbefore andSBPafter denote the systolic blood pressure before
and after the stimulus, respectively.

The statements to perform the test follow.

proc ttest;
paired SBPbefore*SBPafter;

run;

The PAIRED statement is used to test whether the mean change in systolic blood
pressure is significantly different from zero. The output is displayed inOutput 77.3.1.
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Output 77.3.1. TTEST Results

Paired Comparison

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL Upper CL
Difference N Mean Mean Mean Std Dev Std Dev Std Dev Std Err Minimum Maximum

SBPbefore - SBPafter 12 -5.536 -1.833 1.8698 4.1288 5.8284 9.8958 1.6825 -9 8

T-Tests

Difference DF t Value Pr > |t|

SBPbefore - SBPafter 11 -1.09 0.2992

The variablesSBPbefore andSBPafter are the paired variables with a sample size
of 12. The summary statistics of the difference are displayed (mean, standard de-
viation, and standard error) along with their confidence limits. The minimum and
maximum differences are also displayed. Thet test is not significant(t = −1.09,
p = 0.2992), indicating that the stimuli did not significantly affect systolic blood
pressure.

Note that this test of hypothesis assumes that the differences are normally distributed.
This assumption can be investigated using PROC UNIVARIATE with the NORMAL
option. If the assumption is not satisfied, PROC NPAR1WAY should be used.
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Chapter 78
The VARCLUS Procedure
Overview

The VARCLUS procedure divides a set of numeric variables into disjoint or hierar-
chical clusters. Associated with each cluster is a linear combination of the variables
in the cluster. This linear combination can be either the first principal component (the
default) or the centroid component (if you specify the CENTROID option). The first
principal component is a weighted average of the variables that explains as much vari-
ance as possible. SeeChapter 58, “The PRINCOMP Procedure,”for further details.
Centroid components are unweighted averages of either the standardized variables
(the default) or the raw variables (if you specify the COVARIANCE option). PROC
VARCLUS tries to maximize the variance that is explained by the cluster compo-
nents, summed over all the clusters.

The cluster components are oblique, not orthogonal, even when the cluster compo-
nents are first principal components. In an ordinary principal component analysis, all
components are computed from the same variables, and the first principal component
is orthogonal to the second principal component and to each other principal compo-
nent. In PROC VARCLUS, each cluster component is computed from a different set
of variables than all the other cluster components. The first principal component of
one cluster may be correlated with the first principal component of another cluster.
Hence, PROC VARCLUS is a type of oblique component analysis.

As in principal component analysis, either the correlation or the covariance matrix
can be analyzed. If correlations are used, all variables are treated as equally impor-
tant. If covariances are used, variables with larger variances have more importance in
the analysis.

PROC VARCLUS creates an output data set that can be used with the SCORE proce-
dure to compute component scores for each cluster. A second output data set can be
used by the TREE procedure to draw a tree diagram of hierarchical clusters.

The VARCLUS procedure can be used as a variable-reduction method. A large set
of variables can often be replaced by the set of cluster components with little loss
of information. A given number of cluster components does not generally explain
as much variance as the same number of principal components on the full set of
variables, but the cluster components are usually easier to interpret than the principal
components, even if the latter are rotated.

For example, an educational test might contain fifty items. PROC VARCLUS can
be used to divide the items into, say, five clusters. Each cluster can then be treated
as a subtest, with the subtest scores given by the cluster components. If the cluster
components are centroid components of the covariance matrix, each subtest score is
simply the sum of the item scores for that cluster.
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The VARCLUS algorithm is both divisive and iterative. By default, PROC
VARCLUS begins with all variables in a single cluster. It then repeats the follow-
ing steps:

1. A cluster is chosen for splitting. Depending on the options specified, the se-
lected cluster has either the smallest percentage of variation explained by its
cluster component (using the PROPORTION= option) or the largest eigenvalue
associated with the second principal component (using the MAXEIGEN= op-
tion).

2. The chosen cluster is split into two clusters by finding the first two principal
components, performing an orthoblique rotation (raw quartimax rotation on
the eigenvectors; Harris and Kaiser, 1964), and assigning each variable to the
rotated component with which it has the higher squared correlation.

3. Variables are iteratively reassigned to clusters to try to maximize the variance
accounted for by the cluster components. You can require the reassignment
algorithms to maintain a hierarchical structure for the clusters.

The procedure stops splitting when either:

• the maximum number of clusters as specified by the MAXCLUSTERS= option
is reached, or

• each cluster satisfies the stopping criteria specified by the PROPORTION=
(percentage of variation explained) and/or the MAXEIGEN= (second eigen-
value) options.

By default, VARCLUS stops splitting when each cluster has only one eigenvalue
greater than one, thus satisfying the most popular criterion for determining the suffi-
ciency of a single underlying dimension.

The iterative reassignment of variables to clusters proceeds in two phases. The first is
a nearest component sorting (NCS) phase, similar in principle to the nearest centroid
sorting algorithms described by Anderberg (1973). In each iteration, the cluster com-
ponents are computed, and each variable is assigned to the component with which it
has the highest squared correlation. The second phase involves a search algorithm in
which each variable is tested to see if assigning it to a different cluster increases the
amount of variance explained. If a variable is reassigned during the search phase, the
components of the two clusters involved are recomputed before the next variable is
tested. The NCS phase is much faster than the search phase but is more likely to be
trapped by a local optimum.

If principal components are used, the NCS phase is an alternating least-squares
method and converges rapidly. The search phase can be very time consuming for a
large number of variables. But if the default initialization method is used, the search
phase is rarely able to substantially improve the results of the NCS phase, so the
search takes few iterations. If random initialization is used, the NCS phase may be
trapped by a local optimum from which the search phase can escape.
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If centroid components are used, the NCS phase is not an alternating least-squares
method and may not increase the amount of variance explained; therefore, it is lim-
ited, by default, to one iteration.

You can have VARCLUS do the clustering hierarchically by restricting the reassign-
ment of variables such that the clusters maintain a tree structure. In this case, when a
cluster is split, a variable in one of the two resulting clusters can be reassigned to the
other cluster resulting from the split but not to a cluster that is not part of the original
cluster (the one that is split).

Getting Started

This example demonstrates how you can use the VARCLUS procedure to create hi-
erarchical, unidimensional clusters of variables.

The following data, from Hand, et al. (1994), represent amounts of protein con-
sumed from nine food groups for each of 25 European countries. The nine food
groups are red meat (RedMeat), white meat (WhiteMeat), eggs (Eggs), milk (Milk),
fish (Fish), cereal (Cereal), starch (Starch), nuts (Nuts), and fruits and vegetables
(FruitVeg).

Suppose you want to simplify interpretation of the data by reducing the number of
variables to a smaller set of variable cluster components. You can use the VARCLUS
procedure for this type of variable reduction.

The following DATA step creates the SAS data setProtein:

data Protein;
input Country $18. RedMeat WhiteMeat Eggs Milk

Fish Cereal Starch Nuts FruitVeg;
datalines;

Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czechoslovakia 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 4.7 7.5 19.5 3.7 1.4 2.0
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
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UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugoslavia 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2
;

The data setProtein contains the character variableCountry and the nine numeric
variables representing the food groups. The$18. in the INPUT statement specifies
that the variableCountry is a character variable with a length of 18.

The following statements create the variable clusters.

proc varclus data=Protein outtree=tree centroid maxclusters=4;
var RedMeat--FruitVeg;

run;

The DATA= option specifies the SAS data setProtein as input. The OUTTREE=
option creates the output SAS data setTree to contain the tree structure informa-
tion. When you specify this option, you are implicitly requiring the clusters to be
hierarchical rather than disjoint.

The CENTROID option specifies the centroid method of clustering. This means that
the calculated cluster components are the unweighted averages of the standardized
variables. The MAXCLUSTERS=4 option specifies that no more than four clusters
be computed.

The VAR statement lists the numeric variables (RedMeat–FruitVeg) to be used in
the analysis.

The results of this analysis are displayed in the following figures.

Although PROC VARCLUS displays output for each step in the clustering process,
the following figures display only the final analysis for four clusters.Figure 78.1
displays the final cluster summary.

Oblique Centroid Component Cluster Analysis

Cluster Summary for 4 Clusters

Cluster Variation Proportion
Cluster Members Variation Explained Explained
----------------------------------------------------------

1 4 4 2.173024 0.5433
2 2 2 1.650997 0.8255
3 2 2 1.403853 0.7019
4 1 1 1 1.0000

Total variation explained = 6.227874 Proportion = 0.6920

Figure 78.1. Final Cluster Summary from the VARCLUS Procedure

For each cluster,Figure 78.1displays the number of variables in the cluster, the clus-
ter variation, the total explained variation, and the proportion of the total variance
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explained by the variables in the cluster. The variance explained by the variables in
a cluster is similar to the variance explained by a factor in common factor analysis,
but it includes contributions only from the variables in the cluster rather than from all
variables.

The line labeled “Total variation explained” inFigure 78.1gives the sum of the ex-
plained variation over all clusters. The final “Proportion” represents the total ex-
plained variation divided by the sum of cluster variation. This value, 0.6920, indi-
cates that about 69% of the total variation in the data can be accounted for by the four
cluster components.

Figure 78.2shows how the variables are clustered. The first cluster represents ani-
mal protein (RedMeat, WhiteMeat, Eggs, andMilk), the second cluster contains
the variablesCereal andNuts, the third cluster is composed of the variablesFish
andStarch, and the last cluster contains the single variable representing fruits and
vegetables (FruitVeg).

Oblique Centroid Component Cluster Analysis

R-squared with
4 Clusters ------------------

Own Next 1-R**2
Cluster Variable Cluster Closest Ratio
-------------------------------------------------------
Cluster 1 RedMeat 0.4375 0.1518 0.6631

WhiteMeat 0.6302 0.3331 0.5545
Eggs 0.7024 0.4902 0.5837
Milk 0.4288 0.2721 0.7847

-------------------------------------------------------
Cluster 2 Cereal 0.8255 0.3983 0.2900

Nuts 0.8255 0.5901 0.4257
-------------------------------------------------------
Cluster 3 Fish 0.7019 0.1365 0.3452

Starch 0.7019 0.3075 0.4304
-------------------------------------------------------
Cluster 4 FruitVeg 1.0000 0.0578 0.0000

Figure 78.2. R-square Values from the VARCLUS Procedure

Figure 78.2also displays theR2 value of each variable with its own cluster and the
R2 value with its nearest cluster. TheR2 value for a variable with the nearest cluster
should be low if the clusters are well separated. The last column displays the ratio of
(1−R2

own)/(1−R2
nearest) for each variable. Small values of this ratio indicate good

clustering.

Figure 78.3displays the cluster structure and the intercluster correlations. The struc-
ture table displays the correlation of each variable with each cluster component. The
table of intercorrelations contains the correlations between the cluster components.



4804 � Chapter 78. The VARCLUS Procedure

Oblique Centroid Component Cluster Analysis

Cluster Structure

Cluster 1 2 3 4
-----------------------------------------------------------------
RedMeat 0.66145 -0.38959 0.06450 -0.34109
WhiteMeat 0.79385 -0.57715 0.04760 -0.06132
Eggs 0.83811 -0.70012 0.30902 -0.04552
Milk 0.65483 -0.52163 0.16805 -0.26096
Fish -0.08108 -0.36947 0.83781 0.26614
Cereal -0.58070 0.90857 -0.63111 0.04655
Starch 0.41593 -0.55448 0.83781 0.08441
Nuts -0.76817 0.90857 -0.37089 0.37497
FruitVeg -0.24045 0.23197 0.20920 1.00000

Inter-Cluster Correlations

Cluster 1 2 3 4

1 1.00000 -0.74230 0.19984 -0.24045
2 -0.74230 1.00000 -0.55141 0.23197
3 0.19984 -0.55141 1.00000 0.20920
4 -0.24045 0.23197 0.20920 1.00000

Figure 78.3. Cluster Correlations and Intercorrelations

PROC VARCLUS next displays the summary table of statistics for the cluster history
(Figure 78.4). The first three columns give the number of clusters, the total variation
explained by clusters, and the proportion of variation explained by clusters.

As displayed inFigure 78.4, when the number of allowable clusters is two, the total
variation explained is 3.9607, and the cumulative proportion of variation explained by
two clusters is 0.4401. When the number of clusters increases to three, the proportion
of explained variance increases to 0.5880. When four clusters are computed, the
explained variation is 0.6920.

Oblique Centroid Component Cluster Analysis

Total Proportion Minimum Minimum Maximum
Number Variation of Variation Proportion R-squared 1-R**2 Ratio

of Explained Explained Explained for a for a
Clusters by Clusters by Clusters by a Cluster Variable Variable
-------------------------------------------------------------------------------

1 0.732343 0.0814 0.0814 0.0875
2 3.960717 0.4401 0.3743 0.1007 1.0213
3 5.291887 0.5880 0.5433 0.3928 0.7978
4 6.227874 0.6920 0.5433 0.4288 0.7847

Figure 78.4. Final Cluster Summary Table from the VARCLUS Procedure

Figure 78.4also displays the minimum proportion of variance explained by a cluster,
the minimumR2 for a variable, and the maximum (1 − R2) ratio for a variable. The
last quantity is the ratio of the value1 − R2 for a variable’s own cluster to the value
1 − R2 for its nearest cluster.
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The following statements produce a tree diagram of the cluster structure created by
PROC VARCLUS. The AXIS1 statement suppresses the label for the vertical axis,
which would otherwise be “Name of Variable or Cluster”.

axis1 label=none;
proc tree data=tree horizontal vaxis=axis1;
height _propor_;
run;

Next, the TREE procedure is invoked using the SAS data setTREE, created
by the OUTTREE= option in the preceding PROC VARCLUS statement. The
HORIZONTAL option orients the tree diagram horizontally. The VAXIS option as-
sociates the vertical axis with the the AXIS1 statement. The HEIGHT statement
specifies the use of the variable–PROPOR– (the proportion of variance explained)
as the height variable.

Figure 78.5shows how the clusters are created. The ordered variable names are
displayed on the vertical axis. The horizontal axis displays the proportion of variance
explained at each clustering level.

Figure 78.5. Horizontal Tree Diagram from PROC TREE

As you look from left to right in the diagram, objects and clusters are progressively
joined until a single, all-encompassing cluster is formed at the right (or root) of the
diagram. Clusters exist at each level of the diagram, and every vertical line connects
leaves and branches into progressively larger clusters.

For example, when the variables are formed into three clusters, one cluster contains
the variablesRedMeat, WhiteMeat, Eggs, andMilk; the second cluster contains the
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variablesFish andStarch; the third cluster contains the variablesCereal, Nuts, and
FruitVeg. The proportion of variance explained at that level is 0.5880 (fromFigure
78.4). At the next stage of clustering, the third cluster is split as the variableFruitVeg
forms the fourth cluster; the proportion of variance explained is 0.6920.

Syntax

The following statements are available in PROC VARCLUS.

PROC VARCLUS < options > ;
VAR variables ;
SEED variables ;
PARTIAL variables ;
WEIGHT variables ;
FREQ variables ;
BY variables ;

Usually you need only the VAR statement in addition to the PROC VARCLUS state-
ment. The following sections give detailed syntax information for each of the state-
ments, beginning with the PROC VARCLUS statement. The remaining statements
are listed in alphabetical order.

PROC VARCLUS Statement

PROC VARCLUS < options >;

The PROC VARCLUS statement starts the VARCLUS procedure. By default,
VARCLUS clusters the numeric variables in the most recently created SAS data set,
starting with one cluster and splitting clusters until all clusters have at most one eigen-
value greater than one.

VARCLUS chooses a cluster to split based on two options: MAXEIGEN=, and
PROPORTION=.

1. If you specifyeitheror bothof these two options, thenonly the specified op-
tions affect the choice of the cluster to split.

2. If you specifyneitherof these options, the criterion for choice of cluster to split
depends on the CENTROID option:

(a) If you specify CENTROID, VARCLUS splits the cluster with the smallest
percentage of variation explained by its cluster component, as if you had
specified the PROPORTION= option.

(b) If you do not specify CENTROID, VARCLUS splits the cluster with the
largest eigenvalue associated with the second principal component, as if
you had specified the MAXEIGEN= option.

The final number of clusters is controlled by three options: MAXCLUSTERS=,
MAXEIGEN=, and PROPORTION=.



PROC VARCLUS Statement � 4807

1. If you specifyany of these three options, thenonly the options you specify
affect the final number of clusters.

2. If you specifynoneof these options, VARCLUS continues to split clusters until
the default splitting criterion is satisfied. The default splitting criterion depends
on the CENTROID option:

(a) If you specify CENTROID, the default splitting criterion is
PROPORTION=0.75.

(b) If you do not specify CENTROID, splitting is based on the MAXEIGEN=
criterion, with a default depending on the COVARIANCE option:

i. for analyzing a correlation matrix (no COVARIANCE option), the
defaut value for MAXEIGEN= is one.

ii. for analyzing a covariance matrix (using the COVARIANCE option),
the default value for MAXEIGEN= is the average variance of the
variables being clustered.

VARCLUS continues to split clusters until any of the following conditions holds:

• the number of cluster equals the value specified for MAXCLUSTERS=.

• no cluster qualifies for splitting according to the MAXEIGEN= or
PROPORTION= criteria.

• a cluster was chosen for splitting, but after iteratively reassigning variables to
clusters, one of the cluster has no members.
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Table 78.1summarizes some of the options available in the PROC VARCLUS state-
ment.

Table 78.1. Options Available in the PROC VARCLUS Statement

Task Options
Specify data sets DATA=

OUTSTAT=
OUTTREE=

Determine the number of clusters MAXCLUSTERS=
MINCLUSTERS=
MAXEIGEN=
PROPORTION=

Specify cluster formation CENTROID
COVARIANCE
HIERARCHY
INITIAL=
MAXITER=
MAXSEARCH=
MULTIPLEGROUP
RANDOM=

Control output CORR
NOPRINT
SHORT
SIMPLE
SUMMARY
TRACE

Omit intercept NOINT

Specify divisor for variances VARDEF=

The following list gives details on these options. The list is in alphabetical order.

CENTROID
uses centroid components rather than principal components. You should specify cen-
troid components if you want the cluster components to be unweighted averages of
the standardized variables (the default) or the unstandardized variables (if you spec-
ify the COVARIANCE option). It is possible to obtain locally optimal clusterings in
which a variable is not assigned to the cluster component with which it has the high-
est squared correlation. You cannot specify both the CENTROID and MAXEIGEN=
options.

CORR
C

displays the correlation matrix.
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COVARIANCE
COV

analyzes the covariance matrix instead of the correlation matrix. The COVARIANCE
option causes variables with a large variance to have more effect on the cluster com-
ponents than variables with a small variance.

DATA=SAS-data-set
specifies the input data set to be analyzed. The data set can be an ordinary SAS data
set or TYPE=CORR, UCORR, COV, UCOV, FACTOR, or SSCP. If you do not spec-
ify the DATA= option, the most recently created SAS data set is used. SeeAppendix
A, “Special SAS Data Sets,”for more information on types of SAS data sets.

HIERARCHY
HI

requires the clusters at different levels to maintain a hierarchical structure. To draw a
tree diagram, use the OUTTREE= option and the TREE procedure.

INITIAL=GROUP
INITIAL=INPUT
INITIAL=RANDOM
INITIAL=SEED

specifies the method for initializing the clusters. If the INITIAL= option is omitted
and the MINCLUSTERS= option is greater than 1, the initial cluster components are
obtained by extracting the required number of principal components and perform-
ing an orthoblique rotation (raw quartimax rotation on the eigenvectors; Harris and
Kaiser, 1964). The following list describes the values for the INITIAL= option:

GROUP obtains the cluster membership of each variable from an observa-
tion in the DATA= data set where the–TYPE– variable has a value
of “GROUP”. In this observation, the variables to be clustered
must each have an integer value ranging from one to the number
of clusters. You can use this option only if the DATA= data set
is a TYPE=CORR, UCORR, COV, UCOV, or FACTOR data set.
You can use a data set created either by a previous run of PROC
VARCLUS or in a DATA step.

INPUT obtains scoring coefficients for the cluster components from obser-
vations in the DATA= data set where the–TYPE– variable has a
value of “SCORE”. You can use this option only if the DATA=
data set is a TYPE=CORR, UCORR, COV, UCOV, or FACTOR
data set, You can use scoring coefficients from the FACTOR pro-
cedure or a previous run of PROC VARCLUS, or you can enter
other coefficients in a DATA step.

RANDOM assigns variables randomly to clusters.

SEED initializes each cluster component to be one of the variables named
in the SEED statement. Each variable listed in the SEED statement
becomes the sole member of a cluster, and the other variables are
initially unassigned. If you do not specify the SEED statement, the
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first MINCLUSTERS= variables in the VAR statement are used as
seeds.

MAXCLUSTERS=n
MAXC=n

specifies the largest number of clusters desired. The default value is the number of
variables. VARCLUS stops splitting clusters after the number of clusters reaches the
value of the MAXCLUSTERS= option, regardless of what other splitting options are
specified.

MAXEIGEN=n
specifies that when choosing a cluster to split, VARCLUS should choose the cluster
with the largest second eigenvalue, provided that its second eigenvalue is greater
than the MAXEIGEN= value. The MAXEIGEN= option cannot be used with the
CENTROID or MULTIPLEGROUP options.

If you do not specify MAXEIGEN=, then:

• If you specify PROPORTION=, CENTROID, or MULTIPLEGROUP, cluster
splitting does not depend on the second eigenvalue.

• Otherwise, if you specify MAXCLUSTERS=, the default value for
MAXEIGEN= is zero.

• Otherwise, the default value for MAXEIGEN= is either 1.0 if the correlation
matrix is analyzed, or the average variance if the COVARIANCE option is
specified.

If you specify both MAXEIGEN= and MAXCLUSTERS=, the number of clusters
will never exceed the value of the MAXCLUSTERS= option.

If you specify both MAXEIGEN= and PROPORTION=, VARCLUS first looks for a
cluster to split based on the MAXEIGEN= criterion. If no cluster meets that criterion,
VARCLUS then looks for a cluster to split based on the PROPORTION= criterion.

MAXITER=n
specifies the maximum number of iterations during the NCS phase. The default value
is 1 if you specify the CENTROID option; the default is 10 otherwise.

MAXSEARCH=n
specifies the maximum number of iterations during the search phase. The default is
1000 divide by the number of variables.

MINCLUSTERS=n
MINC=n

specifies the smallest number of clusters desired. The default value is 2 for
INITIAL=RANDOM or INITIAL=SEED; otherwise, VARCLUS begins with one
cluster and tries to split it in accordance with the PROPORTION= or MAXEIGEN=
options.
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MULTIPLEGROUP
MG

performs a multiple group component analysis (Harman 1976). You spec-
ify which variables belong to which clusters. No clusters are split, and no
variables are reassigned to a different cluster. The input data set must be
TYPE=CORR, UCORR, COV, UCOV, FACTOR or SSCP and must contain an
observation with–TYPE–=“GROUP” defining the variable groups. Specifying the
MULTIPLEGROUP option is equivalent to specifying all of the following options:
INITIAL=GROUP, MINC=1, MAXITER=0, MAXSEARCH=0, PROPORTION=0,
and MAXEIGEN=large number.

NOINT
requests that no intercept be used; covariances or correlations are not corrected for the
mean. If you specify the NOINT option, the OUTSTAT= data set is TYPE=UCORR.

NOPRINT
suppresses displayed output. Note that this option temporarily disables the Output
Delivery System (ODS). For more information, seeChapter 14, “Using the Output
Delivery System.”

OUTSTAT=SAS-data-set
creates an output data set to contain statistics including means, standard deviations,
correlations, cluster scoring coefficients, and the cluster structure. If you want to cre-
ate a permanent SAS data set, you must specify a two-level name. The OUTSTAT=
data set is TYPE=UCORR if the NOINT option is specified. For more information
on permanent SAS data sets, refer to “SAS Files” and “DATA Step Concepts” in
SAS Language Reference: Concepts. For information on types of SAS data sets, see
Appendix A, “Special SAS Data Sets,”.

OUTTREE=SAS-data-set
creates an output data set to contain information on the tree structure that can be used
by the TREE procedure to display a tree diagram. The OUTTREE= option implies
the HIERARCHY option. SeeExample 78.1for use of the OUTTREE= option. If
you want to create a permanent SAS data set, you must specify a two-level name. For
more information on permanent SAS data sets, refer to “SAS Files” and “DATA Step
Concepts” inSAS Language Reference: Concepts.

PROPORTION=n
PERCENT=n

specifies that when choosing a cluster to split, VARCLUS should choose the cluster
with the smallest proportion of variation explained, provided that its proportion of
variation explained is less than the PROPORTION= value. Values greater than 1.0
are considered to be percentages, so PROPORTION=0.75 and PERCENT=75 are
equivalent.

However, if you specify both MAXEIGEN= and PROPORTION=, VARCLUS first
looks for a cluster to split based on the MAXEIGEN= criterion. If no clus-
ter meets that criterion, VARCLUS then looks for a cluster to split based on the
PROPORTION= criterion.



4812 � Chapter 78. The VARCLUS Procedure

If you do not specify PROPORTION= then:

• If you specify MAXEIGEN=, cluster splitting does not depend on the propor-
tion of variation explained.

• Otherwise, if you specify CENTROID and MAXCLUSTERS=, the default
value for PROPORTION= is one.

• Otherwise, if you specify CENTROID, without MAXCLUSTERS=, the de-
fault value is PROPORTION=0.75 or PERCENT=75.

• Otherwise, cluster splitting does not depend on the proportion of variation ex-
plained.

If you specify both PROPORTION= and MAXCLUSTERS=, the number of clusters
will never exceed the value of the MAXCLUSTERS= option.

RANDOM=n
specifies a positive integer as a starting value for use with REPLACE=RANDOM. If
you do not specify the RANDOM= option, the time of day is used to initialize the
pseudo-random number sequence.

SHORT
suppresses display of the cluster structure, scoring coefficient, and intercluster corre-
lation matrices.

SIMPLE
S

displays means and standard deviations.

SUMMARY
suppresses all default displayed output except the final summary table.

TRACE
lists the cluster to which each variable is assigned during the iterations.

VARDEF=DF
VARDEF=N
VARDEF=WDF
VARDEF=WEIGHT | WGT

specifies the divisor to be used in the calculation of variances and covariances. The
default value is VARDEF=DF. The values and associated divisors are displayed in
the following table.

Value Divisor Formula
DF degrees of freedom n − i
N number of observations n
WDF sum of weights minus one (

∑
j wj) − 1

WEIGHT | WGT sum of weights
∑

j wj

In the preceding table,i = 0 if the NOINT option is specified, andi = 1 otherwise.
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BY Statement

BY variables ;

You can specify a BY statement with PROC VARCLUS to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the VARCLUS procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If a variable in your data set represents the frequency of occurrence for the other
values in the observation, include the variable’s name in a FREQ statement. The
procedure then treats the data set as if each observation appearsn times, wheren is
the value of the FREQ variable for the observation. If the value of the FREQ variable
is less than 1, the observation is not used in the analysis. Only the integer portion of
the value is used. The total number of observations is considered equal to the sum of
the FREQ variable.

PARTIAL Statement

PARTIAL variable ;

If you want to base the clustering on partial correlations, list the variables to be par-
tialled out in the PARTIAL statement.
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SEED Statement

SEED variables ;

The SEED statement specifies variables to be used as seeds to initialize the clusters.
It is not necessary to use INITIAL=SEED if the SEED statement is present, but if any
other INITIAL= option is specified, the SEED statement is ignored.

VAR Statement

VAR variables ;

The VAR statement specifies the variables to be clustered. If you do not specify
the VAR statement and do not specify TYPE=SSCP, all numeric variables not listed
in other statements (except the SEED statement) are processed. The default VAR
variable list does not include the variableINTERCEPT if the DATA= data set is
TYPE=SSCP. If the variableINTERCEPT is explicitly specified in the VAR state-
ment with a TYPE=SSCP data set, the NOINT option is enabled.

WEIGHT Statement

WEIGHT variables ;

If you want to specify relative weights for each observation in the input data set,
place the weights in a variable in the data set and specify the name in a WEIGHT
statement. This is often done when the variance associated with each observation is
different and the values of the weight variable are proportional to the reciprocals of
the variances. The WEIGHT variable can take nonintegral values. An observation is
used in the analysis only if the value of the WEIGHT variable is greater than zero.

Details

Missing Values

Observations containing missing values are omitted from the analysis.
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Using PROC VARCLUS

Default options for PROC VARCLUS often provide satisfactory results. If you want
to change the final number of clusters, use the MAXCLUSTERS=, MAXEIGEN=, or
PROPORTION= options. The MAXEIGEN= and PROPORTION= options usually
produce similar results but occasionally cause different clusters to be selected for
splitting. The MAXEIGEN= option tends to choose clusters with a large number of
variables, while the PROPORTION= option is more likely to select a cluster with a
small number of variables.

Execution time

PROC VARCLUS usually requires more computer time than principal factor analysis,
but it can be faster than some of the iterative factoring methods. If you have more than
30 variables, you may want to reduce execution time by one or more of the following
methods:

• Specify the MINCLUSTERS= and MAXCLUSTERS= options if you know
how many clusters you want.

• Specify the HIERARCHY option.

• Specify the SEED statement if you have some prior knowledge of what clusters
to expect.

If computer time is not a limiting factor, you may want to try one of the following
methods to obtain a better solution:

• If the clustering algorithm has not converged, specify larger values for
MAXITER= and MAXSEARCH=.

• Try several factoring and rotation methods with PROC FACTOR to use as input
to PROC VARCLUS.

• Run PROC VARCLUS several times, specifying INITIAL=RANDOM.
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Output Data Sets

OUTSTAT= Data Set

The OUTSTAT= data set is TYPE=CORR, and it can be used as input to the SCORE
procedure or a subsequent run of PROC VARCLUS. The variables it contains are

• BY variables

• –NCL– , a numeric variable giving the number of clusters

• –TYPE– , a character variable indicating the type of statistic the observation
contains

• –NAME– , a character variable containing a variable name or a cluster name,
which is of the formCLUSn wheren is the number of the cluster

• the variables that are clustered

The values of the–TYPE– variable are listed in the following table.

Table 78.2. –TYPE– Value and Statistic

–TYPE– Contents
MEAN means
STD standard deviations
USTD uncorrected standard deviations, produced when the NOINT

option is specified
N number of observations
CORR correlations
UCORR uncorrected correlation matrix, produced when the NOINT

option is specified
MEMBERS number of members in each cluster
VAREXP variance explained by each cluster
PROPOR proportion of variance explained by each cluster
GROUP number of the cluster to which each variable belongs
RSQUARED squared multiple correlation of each variable with its cluster

component
SCORE standardized scoring coefficients
USCORE scoring coefficients to be applied without subtracting the mean

from the raw variables, produced when the NOINT option is
specified

STRUCTUR cluster structure
CCORR correlations between cluster components

The observations with–TYPE–=“MEAN”, “STD”, “N”, and “CORR” have miss-
ing values for the–NCL– variable. All other values of the–TYPE– variable are
repeated for each cluster solution, with different solutions distinguished by the value
of the –NCL– variable. If you want to specify the OUTSTAT= data set with the
SCORE procedure, you can use a DATA step to select observations with the–NCL–
variable missing or equal to the desired number of clusters.
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data Coef2;
set Coef;
if _ncl_ = . or _ncl_ = 3;
drop _ncl_;

run;

proc score data=NewScore score=Coef2; run;

PROC SCORE standardizes the new data by subtracting the original variable means
that are stored in the–TYPE–=’MEAN’ observations, and dividing by the orig-
inal variable standard deviations from the–TYPE–=’STD’ observations. Then
PROC SCORE multiplies the standardized variables by the coefficients from the

–TYPE–=’SCORE’ observations to get the cluster scores.

OUTTREE= Data Set

The OUTTREE= data set contains one observation for each variable clustered plus
one observation for each cluster of two or more variables, that is, one observation for
each node of the cluster tree. The total number of output observations is betweenn
and2n − 1, wheren is the number of variables clustered.

The variables in the OUTTREE= data set are

• BY variables, if any

• –NAME– , a character variable giving the name of the node. If the node is a
cluster, the name isCLUSn wheren is the number of the cluster. If the node
is a single variable, the variable name is used.

• –PARENT– , a character variable giving the value of–NAME– of the parent
of the node. If the node is the root of the tree,–PARENT– is blank.

• –LABEL– , a character variable giving the label of the node. If the node is a
cluster, the label isCLUSn wheren is the number of the cluster. If the node is
a single variable, the variable label is used.

• –NCL– , the number of clusters.

• –VAREXP– , the total variance explained by the clusters at the current level of
the tree.

• –PROPOR– , the total proportion of variance explained by the clusters at the
current level of the tree.

• –MINPRO– , the minimum proportion of variance explained by a cluster com-
ponent.

• –MAXEIG– , the maximum second eigenvalue of a cluster.



4818 � Chapter 78. The VARCLUS Procedure

Computational Resources

Let

n = number of observations

v = number of variables

c = number of clusters

It is assumed that, at each stage of clustering, the clusters all contain the same number
of variables.

Time

The time required for PROC VARCLUS to analyze a given data set varies greatly
depending on the number of clusters requested, the number of iterations in both the
alternating least-squares and search phases, and whether centroid or principal com-
ponents are used.

The time required to compute the correlation matrix is roughly proportional tonv2.

Default cluster initialization requires time roughly proportional tov3. Any other
method of initialization requires time roughly proportional tocv2.

In the alternating least-squares phase, each iteration requires time roughly propor-
tional tocv2 if centroid components are used or(

c + 5
v

c2

)
v2

if principal components are used.

In the search phase, each iteration requires time roughly proportional tov3/c if
centroid components are used orv4/c2 if principal components are used. The
HIERARCHY option speeds up each iteration after the first split by as much asc/2.

Memory

The amount of memory, in bytes, needed by PROC VARCLUS is approximately

v2 + 2vc + 20v + 15c

Interpreting VARCLUS Procedure Output

Because PROC VARCLUS is a type of oblique component analysis, its output is simi-
lar to the output from the FACTOR procedure for oblique rotations. The scoring coef-
ficients have the same meaning in both PROC VARCLUS and PROC FACTOR; they
are coefficients applied to the standardized variables to compute component scores.
The cluster structure is analogous to the factor structure containing the correlations
between each variable and each cluster component. A cluster pattern is not displayed
because it would be the same as the cluster structure, except that zeros would appear
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in the same places in which zeros appear in the scoring coefficients. The intercluster
correlations are analogous to interfactor correlations; they are the correlations among
cluster components.

PROC VARCLUS also displays a cluster summary and a cluster listing. The cluster
summary gives the number of variables in each cluster and the variation explained
by the cluster component. The latter is similar to the variation explained by a factor
but includes contributions from only the variables in that cluster rather than from all
variables, as in PROC FACTOR. The proportion of variance explained is obtained by
dividing the variance explained by the total variance of variables in the cluster. If the
cluster contains two or more variables and the CENTROID option is not used, the
second largest eigenvalue of the cluster is also displayed.

The cluster listing gives the variables in each cluster. Two squared correlations are
calculated for each cluster. The column labeled “Own Cluster” gives the squared
correlation of the variable with its own cluster component. This value should be
higher than the squared correlation with any other cluster unless an iteration limit
has been exceeded or the CENTROID option has been used. The larger the squared
correlation is, the better. The column labeled “Next Closest” contains the next highest
squared correlation of the variable with a cluster component. This value is low if the
clusters are well separated. The column headed “1–R**2 Ratio” gives the ratio of one
minus the “Own Cluster”R2 to one minus the “Next Closest”R2. A small “1–R**2
Ratio” indicates a good clustering.

Displayed Output

The following items are displayed for each cluster solution unless the NOPRINT or
SUMMARY option is specified. The CLUSTER SUMMARY table includes

• the Cluster number

• Members, the number of members in the cluster

• Cluster Variation of the variables in the cluster

• Variation Explained by the cluster component. This statistic is based only on
the variables in the cluster rather than on all variables.

• Proportion Explained, the result of dividing the variation explained by the clus-
ter variation

• Second Eigenvalue, the second largest eigenvalue of the cluster. This is dis-
played if the cluster contains more than one variable and the CENTROID op-
tion is not specified

PROC VARCLUS also displays

• Total variation explained, the sum across clusters of the variation explained by
each cluster

• Proportion, the total explained variation divided by the total variation of all the
variables
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The cluster listing includes

• Variable, the variables in each cluster

• R-squared with Own Cluster, the squared correlation of the variable with its
own cluster component; and R-squared with Next Closest, the next highest
squared correlation of the variable with a cluster component. Own Cluster
values should be higher than theR2 with any other cluster unless an iteration
limit is exceeded or you specify the CENTROID option. Next Closest should
be a low value if the clusters are well separated.

• 1−R**2 Ratio, the ratio of one minus the value in the Own Cluster column to
one minus the value in the Next Closest column. The occurrence of low ratios
indicates well-separated clusters.

If the SHORT option is not specified, PROC VARCLUS also displays

• Standardized Scoring Coefficients, standardized regression coefficients for pre-
dicting cluster components from variables

• Cluster Structure, the correlations between each variable and each cluster com-
ponent

• Inter-Cluster Correlations, the correlations between the cluster components

If the analysis includes partitions for two or more numbers of clusters, a final sum-
mary table is displayed. Each row of the table corresponds to one partition. The
columns include

• Number of Clusters

• Total Variation Explained by Clusters

• Proportion of Variation Explained by Clusters

• Minimum Proportion (of variation) Explained by a Cluster

• Maximum Second Eigenvalue in a Cluster

• Minimum R-squared for a Variable

• Maximum 1−R**2 Ratio for a Variable

ODS Table Names

PROC VARCLUS assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 78.3. ODS Tables Produced in PROC VARCLUS

ODS Table Name Description Option
ClusterQuality Cluster quality default
ClusterStructure Cluster structure default
ClusterSummary Cluster Summary default
ConvergenceStatus Convergence status default
Corr Correlations CORR
DataOptSummary Data and options summary table default
InterClusterCorr Inter-cluster correlations default
IterHistory Iteration history TRACE
RSquare Cluster Rsq default
SimpleStatistics Simple statistics SIMPLE
StdScoreCoef Standardized scoring coefficients default

Example

Example 78.1. Correlations among Physical Variables

The following data are correlations among eight physical variables as given by
Harman (1976). The first PROC VARCLUS run clusters on the basis of principal
components, the second run clusters on the basis of centroid components. The third
analysis is hierarchical, and the TREE procedure is used to display a tree diagram.
The results of the analyses follow.

data phys8(type=corr);
title ’Eight Physical Measurements on 305 School Girls’;
title2 ’Harman: Modern Factor Analysis, 3rd Ed, p22’;
label height=’Height’ arm_span=’Arm Span’

forearm=’Length of Forearm’
low_leg=’Length of Lower Leg’
weight=’Weight’ bit_diam=’Bitrochanteric Diameter’
girth=’Chest Girth’ width=’Chest Width’;

input _name_ $ 1-8
(height arm_span forearm low_leg weight bit_diam

girth width)(7.);
_type_=’corr’;
datalines;

height 1.0 .846 .805 .859 .473 .398 .301 .382
arm_span.846 1.0 .881 .826 .376 .326 .277 .415
forearm .805 .881 1.0 .801 .380 .319 .237 .345
low_leg .859 .826 .801 1.0 .436 .329 .327 .365
weight .473 .376 .380 .436 1.0 .762 .730 .629
bit_diam.398 .326 .319 .329 .762 1.0 .583 .577
girth .301 .277 .237 .327 .730 .583 1.0 .539
width .382 .415 .345 .365 .629 .577 .539 1.0
;

proc varclus data=phys8;
run;
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The PROC VARCLUS statement invokes the procedure. By default,
PROC VARCLUS clusters on the basis of principal components.

Output 78.1.1. Principal Cluster Components: Cluster Summary
Eight Physical Measurements on 305 School Girls

Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Principal Component Cluster Analysis

Cluster Summary for 1 Cluster

Cluster Variation Proportion Second
Cluster Members Variation Explained Explained Eigenvalue
------------------------------------------------------------------------

1 8 8 4.67288 0.5841 1.7710

Total variation explained = 4.67288 Proportion = 0.5841

Cluster 1 will be split.

Cluster Summary for 2 Clusters

Cluster Variation Proportion Second
Cluster Members Variation Explained Explained Eigenvalue
------------------------------------------------------------------------

1 4 4 3.509218 0.8773 0.2361
2 4 4 2.917284 0.7293 0.4764

Total variation explained = 6.426502 Proportion = 0.8033

R-squared with
2 Clusters -----------------

Own Next 1-R**2 Variable
Cluster Variable Cluster Closest Ratio Label
----------------------------------------------------------------------------
Cluster 1 height 0.8777 0.2088 0.1545 Height

arm_span 0.9002 0.1658 0.1196 Arm Span
forearm 0.8661 0.1413 0.1560 Length of Forearm
low_leg 0.8652 0.1829 0.1650 Length of Lower Leg

----------------------------------------------------------------------------
Cluster 2 weight 0.8477 0.1974 0.1898 Weight

bit_diam 0.7386 0.1341 0.3019 Bitrochanteric Diameter
girth 0.6981 0.0929 0.3328 Chest Girth
width 0.6329 0.1619 0.4380 Chest Width

No cluster meets the criterion for splitting.

As displayed inOutput 78.1.1, the cluster component (by default, the first principal
component) explains 58.41% of the total variation in the 8 variables.

The cluster is split because the second eigenvalue is greater than 1 (the default value
of the MAXEIGEN option).

The two resulting cluster components explain 80.33% of the variation in the original
variables. The cluster summary table shows that the variablesheight, arm–span,
forearm, andlow–leg have been assigned to the first cluster; and that the variables
weight, bit–diam, girth, andwidth have been assigned to the second cluster.
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Output 78.1.2. Standard Scoring Coefficients and Cluster Structure Table
Oblique Principal Component Cluster Analysis

Standardized Scoring Coefficients

Cluster 1 2
-----------------------------------------------------------------
height Height 0.266977 0.000000
arm_span Arm Span 0.270377 0.000000
forearm Length of Forearm 0.265194 0.000000
low_leg Length of Lower Leg 0.265057 0.000000
weight Weight 0.000000 0.315597
bit_diam Bitrochanteric Diameter 0.000000 0.294591
girth Chest Girth 0.000000 0.286407
width Chest Width 0.000000 0.272710

Cluster Structure

Cluster 1 2
-----------------------------------------------------------------
height Height 0.936881 0.456908
arm_span Arm Span 0.948813 0.407210
forearm Length of Forearm 0.930624 0.375865
low_leg Length of Lower Leg 0.930142 0.427715
weight Weight 0.444281 0.920686
bit_diam Bitrochanteric Diameter 0.366201 0.859404
girth Chest Girth 0.304779 0.835529
width Chest Width 0.402430 0.795572

The standardized scoring coefficients inOutput 78.1.2show that each cluster com-
ponent has similar scores for each of its associated variables. This suggests that the
principal cluster component solution should be similar to the centroid cluster compo-
nent solution, which follows in the next PROC VARCLUS run.

The cluster structure table displays high correlations between the variables and their
own cluster component. The correlations between the variables and the opposite
cluster component are all moderate.

Output 78.1.3. Inter-Cluster Correlations
Oblique Principal Component Cluster Analysis

Inter-Cluster Correlations

Cluster 1 2

1 1.00000 0.44513
2 0.44513 1.00000

The intercluster correlation table shows that the cluster components are moderately
correlated withρ = 0.44513.

In the following statements, the CENTROID option in the PROC VARCLUS state-
ment specifies that cluster centroids be used as the basis for clustering.

proc varclus data=phys8 centroid;
run;
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Output 78.1.4. Centroid Cluster Components: Cluster Summary
Oblique Centroid Component Cluster Analysis

Cluster Summary for 1 Cluster

Cluster Variation Proportion
Cluster Members Variation Explained Explained
----------------------------------------------------------

1 8 8 4.631 0.5789

Total variation explained = 4.631 Proportion = 0.5789

Cluster Summary for 2 Clusters

Cluster Variation Proportion
Cluster Members Variation Explained Explained
----------------------------------------------------------

1 4 4 3.509 0.8773
2 4 4 2.91 0.7275

Total variation explained = 6.419 Proportion = 0.8024

R-squared with
2 Clusters ------------------

Own Next 1-R**2 Variable
Cluster Variable Cluster Closest Ratio Label
---------------------------------------------------------------------------------
Cluster 1 height 0.8778 0.2075 0.1543 Height

arm_span 0.8994 0.1669 0.1208 Arm Span
forearm 0.8663 0.1410 0.1557 Length of Forearm
low_leg 0.8658 0.1824 0.1641 Length of Lower Leg

---------------------------------------------------------------------------------
Cluster 2 weight 0.8368 0.1975 0.2033 Weight

bit_diam 0.7335 0.1341 0.3078 Bitrochanteric Diameter
girth 0.6988 0.0929 0.3321 Chest Girth
width 0.6473 0.1618 0.4207 Chest Width

The first cluster component, which, in the centroid method, is an unweighted sum of
the standardized variables, explains 57.89% of the variation in the data. This value
is near the maximum possible variance explained, 58.41%, which is attained by the
first principal component (Output 78.1.1).

The centroid clustering algorithm splits the variables into the same two clusters cre-
ated in the principal component method. Recall that this outcome was suggested
by the similar standardized scoring coefficients in the principal cluster component
solution.

The default behavior in the centroid method is to split any cluster with less than 75%
of the total cluster variance explained by the centroid component. In the next step,
the second cluster, with a component that explains only 72.75% of the total variation
of the cluster, is split.

In the R-squared table for two clusters, thewidth variable has a weaker relation to its
cluster than any other variable; in the three cluster solution this variable is in a cluster
of its own.
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Output 78.1.5. Standardized Scoring Coefficients
Oblique Centroid Component Cluster Analysis

Standardized Scoring Coefficients

Cluster 1 2
-----------------------------------------------------------------
height Height 0.266918 0.000000
arm_span Arm Span 0.266918 0.000000
forearm Length of Forearm 0.266918 0.000000
low_leg Length of Lower Leg 0.266918 0.000000
weight Weight 0.000000 0.293105
bit_diam Bitrochanteric Diameter 0.000000 0.293105
girth Chest Girth 0.000000 0.293105
width Chest Width 0.000000 0.293105

Each cluster component (Output 78.1.5) is an unweighted average of the cluster’s
standardized variables. Thus, the coefficients for each of the cluster’s associated
variables are identical in the centroid cluster component solution.

Output 78.1.6. Cluster Summary for Three Clusters
Oblique Centroid Component Cluster Analysis

Cluster Summary for 3 Clusters

Cluster Variation Proportion
Cluster Members Variation Explained Explained
----------------------------------------------------------

1 4 4 3.509 0.8773
2 3 3 2.383333 0.7944
3 1 1 1 1.0000

Total variation explained = 6.892333 Proportion = 0.8615

R-squared with
3 Clusters ------------------

Own Next 1-R**2 Variable
Cluster Variable Cluster Closest Ratio Label
---------------------------------------------------------------------------------
Cluster 1 height 0.8778 0.1921 0.1513 Height

arm_span 0.8994 0.1722 0.1215 Arm Span
forearm 0.8663 0.1225 0.1524 Length of Forearm
low_leg 0.8658 0.1668 0.1611 Length of Lower Leg

---------------------------------------------------------------------------------
Cluster 2 weight 0.8685 0.3956 0.2175 Weight

bit_diam 0.7691 0.3329 0.3461 Bitrochanteric Diameter
girth 0.7482 0.2905 0.3548 Chest Girth

---------------------------------------------------------------------------------
Cluster 3 width 1.0000 0.4259 0.0000 Chest Width

The centroid method stops at the three cluster solution. As displayed inOutput 78.1.6
andOutput 78.1.7, the three centroid components account for 86.15% of the variabil-
ity in the eight variables, and all cluster components account for at least 79.44% of
the total variation in the corresponding cluster. Additionally, the smallest squared
correlation between the variables and their own cluster component is 0.7482.
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Output 78.1.7. Cluster Quality Table
Oblique Centroid Component Cluster Analysis

Total Proportion Minimum Minimum Maximum
Number Variation of Variation Proportion R-squared 1-R**2 Ratio

of Explained Explained Explained for a for a
Clusters by Clusters by Clusters by a Cluster Variable Variable
------------------------------------------------------------------------------------

1 4.631000 0.5789 0.5789 0.4306
2 6.419000 0.8024 0.7275 0.6473 0.4207
3 6.892333 0.8615 0.7944 0.7482 0.3548

Note that, if the proportion option were set to a value between 0.5789 (the proportion
of variance explained in the 1-cluster solution) and 0.7275 (the minimum proportion
of variance explained in the 2-cluster solution), PROC VARCLUS would stop at a
two cluster solution, and the centroid solution would find the same clusters as the
principal components solution.

In the following statements, the MAXC= option computes all clustering solutions,
from one to eight clusters. The SUMMARY option suppresses all output except the
final cluster quality table, and the OUTTREE= option saves the results of the analysis
to an output data set and forces the clusters to be hierarchical. The TREE procedure
is invoked to produce a graphical display of the clusters.

proc varclus data=phys8 maxc=8 summary outtree=tree;
run;

goptions ftext=swiss;
axis2 label=(justify=left);
axis1 order=(0.5 to 1.0 by 0.1);
proc tree horizontal vaxis=axis2 haxis=axis1 lines=(width=2);

height _propor_;
id _label_;

run;

Output 78.1.8. Hierarchical Clusters and the SUMMARY Option
Oblique Principal Component Cluster Analysis

Total Proportion Minimum Maximum Minimum Maximum
Number Variation of Variation Proportion Second R-squared 1-R**2 Ratio

of Explained Explained Explained Eigenvalue for a for a
Clusters by Clusters by Clusters by a Cluster in a Cluster Variable Variable
----------------------------------------------------------------------------------------

1 4.672880 0.5841 0.5841 1.770983 0.3810
2 6.426502 0.8033 0.7293 0.476418 0.6329 0.4380
3 6.895347 0.8619 0.7954 0.418369 0.7421 0.3634
4 7.271218 0.9089 0.8773 0.238000 0.8652 0.2548
5 7.509218 0.9387 0.8773 0.236135 0.8652 0.1665
6 7.740000 0.9675 0.9295 0.141000 0.9295 0.2560
7 7.881000 0.9851 0.9405 0.119000 0.9405 0.2093
8 8.000000 1.0000 1.0000 0.000000 1.0000 0.0000

The principal component method first separates the variables into the same two clus-
ters that were created in the first PROC VARCLUS run. Note that, in creating the
third cluster, the principal component method identifies the variablewidth. This is
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the same variable that is put into its own cluster in the preceding centroid method
example.

Output 78.1.9. TREE Diagram from PROC TREE

The tree diagram inOutput 78.1.9displays the cluster hierarchy. It is clear from
the diagram that there are two, or possibly three, clusters present. However, the
MAXC=8 option forces PROC VARCLUS to split the clusters until each variable is
in its own cluster.
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Chapter 79
The VARCOMP Procedure
Overview

The VARCOMP procedure handles general linear models that have random effects.
Random effects are classification effects with levels that are assumed to be randomly
selected from an infinite population of possible levels. PROC VARCOMP estimates
the contribution of each of the random effects to the variance of the dependent vari-
able.

A single MODEL statement specifies the dependent variables and the effects: main
effects, interactions, and nested effects. The effects must be composed of class vari-
ables; no continuous variables are allowed on the right side of the equal sign.

You can specify certain effects as fixed (nonrandom) by putting them first in the
MODEL statement and indicating the number of fixed effects with the FIXED= op-
tion. An intercept is always fitted and assumed fixed. Except for the effects specified
as fixed, all other effects are assumed to be random, and their contribution to the
model can be thought of as an observation from a distribution that is normally and
independently distributed.

The dependent variables are grouped based on the similarity of their missing values.
Each group of dependent variables is then analyzed separately. The columns of the
design matrixX are formed in the same order in which the effects are specified in the
MODEL statement. No reparameterization is done. Thus, the columns ofX contain
only 0s and 1s.

You can specify four methods of estimation in the PROC VARCOMP statement using
the METHOD= option. They are TYPE1 (based on computation of Type I sum of
squares for each effect), MIVQUE0, Maximum Likelihood (METHOD=ML), and
Restricted Maximum Likelihood (METHOD=REML).
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Getting Started

Analyzing the Cure Rate of Rubber

This example, using data from Hicks (1973), concerns an experiment to determine
the sources of variability in cure rates of rubber. The goal of the experiment was to
find out if the different laboratories contributed more to the variance of cure rates
than did the different batches of raw materials. This information would be useful in
trying to control the cure rate of the final product because it would provide insights
into the sources of the variability in cure rates. The rubber used was cured at three
temperatures, which were taken to be fixed. Three laboratories were chosen at ran-
dom, and three different batches of raw material were tested at each combination of
temperature and laboratory. The following statements read the data into the SAS data
setCure.

title ’Analyzing the Cure Rate of Rubber’;
data Cure;

input Lab Temp Batch $ Cure @@;
datalines;

1 145 A 18.6 1 145 A 17.0 1 145 A 18.7 1 145 A 18.7
1 145 B 14.5 1 145 B 15.8 1 145 B 16.5 1 145 B 17.6
1 145 C 21.1 1 145 C 20.8 1 145 C 21.8 1 145 C 21.0
1 155 A 9.5 1 155 A 9.4 1 155 A 9.5 1 155 A 10.0
1 155 B 7.8 1 155 B 8.3 1 155 B 8.9 1 155 B 9.1
1 155 C 11.2 1 155 C 10.0 1 155 C 11.5 1 155 C 11.1
1 165 A 5.4 1 165 A 5.3 1 165 A 5.7 1 165 A 5.3
1 165 B 5.2 1 165 B 4.9 1 165 B 4.3 1 165 B 5.2
1 165 C 6.3 1 165 C 6.4 1 165 C 5.8 1 165 C 5.6
2 145 A 20.0 2 145 A 20.1 2 145 A 19.4 2 145 A 20.0
2 145 B 18.4 2 145 B 18.1 2 145 B 16.5 2 145 B 16.7
2 145 C 22.5 2 145 C 22.7 2 145 C 21.5 2 145 C 21.3
2 155 A 11.4 2 155 A 11.5 2 155 A 11.4 2 155 A 11.5
2 155 B 10.8 2 155 B 11.1 2 155 B 9.5 2 155 B 9.7
2 155 C 13.3 2 155 C 14.0 2 155 C 12.0 2 155 C 11.5
2 165 A 6.8 2 165 A 6.9 2 165 A 6.0 2 165 A 5.7
2 165 B 6.0 2 165 B 6.1 2 165 B 5.0 2 165 B 5.2
2 165 C 7.7 2 165 C 8.0 2 165 C 6.6 2 165 C 6.3
3 145 A 19.7 3 145 A 18.3 3 145 A 16.8 3 145 A 17.1
3 145 B 16.3 3 145 B 16.7 3 145 B 14.4 3 145 B 15.2
3 145 C 22.7 3 145 C 21.9 3 145 C 19.3 3 145 C 19.3
3 155 A 9.3 3 155 A 10.2 3 155 A 9.8 3 155 A 9.5
3 155 B 9.1 3 155 B 9.2 3 155 B 8.0 3 155 B 9.0
3 155 C 11.3 3 155 C 11.0 3 155 C 10.9 3 155 C 11.4
3 165 A 6.7 3 165 A 6.0 3 165 A 5.0 3 165 A 4.8
3 165 B 5.7 3 165 B 5.5 3 165 B 4.6 3 165 B 5.4
3 165 C 6.6 3 165 C 6.5 3 165 C 5.9 3 165 C 5.8
;

The variablesLab, Temp, andBatch contain levels of laboratory, temperature, and
batch, respectively. TheCure variable contains the response values.
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The following SAS statements perform a restricted maximum-likelihood variance
component analysis.

proc varcomp method=reml;
class Temp Lab Batch;
model Cure=Temp|Lab Batch(Lab Temp) / fixed=1;

run;

The FIXED=1 option indicates that the first factor,Temp, is fixed. The effect specifi-
cationTemp|Lab is equivalent to putting the three termsTemp, Lab, andTemp*Lab
in the model.Batch(Lab Temp) is equivalent to puttingBatch(Temp*Lab) in the
MODEL statement. The results of this analysis are displayed inFigure 79.1through
Figure 79.4.

Analyzing the Cure Rate of Rubber

Variance Components Estimation Procedure

Class Level Information

Class Levels Values

Temp 3 145 155 165

Lab 3 1 2 3

Batch 3 A B C

Number of Observations Read 108
Number of Observations Used 108

Dependent Variable: Cure

Figure 79.1. Class Level Information

Figure 79.1provides information about the variables used in the analysis and the
number of observations and specifies the dependent variable.

Analyzing the Cure Rate of Rubber

Variance Components Estimation Procedure

REML Iterations

Var(Batch(Temp*
Iteration Objective Var(Lab) Var(Temp*Lab) Lab)) Var(Error)

0 13.4500060254 0.5094464340 0 2.4004888633 0.5787185225
1 13.0898262160 0.3194348317 0 2.0869636935 0.6016005334
2 13.0893125570 0.3176048001 0 2.0738906134 0.6026217204
3 13.0893125555 0.3176017115 0 2.0738685461 0.6026234568

Convergence criteria met.

Figure 79.2. Iteration History
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The “REML Iterations” table, shown inFigure 79.2, displays the iteration history,
which includes the value of the objective function associated with REML and the
values of the variance components at each iteration.

Analyzing the Cure Rate of Rubber

Variance Components Estimation Procedure

REML Estimates

Variance Component Estimate

Var(Lab) 0.31760
Var(Temp*Lab) 0
Var(Batch(Temp*Lab)) 2.07387
Var(Error) 0.60262

Figure 79.3. REML Estimates

Figure 79.3displays the REML estimates of the variance components.

Analyzing the Cure Rate of Rubber

Variance Components Estimation Procedure

Asymptotic Covariance Matrix of Estimates

Var(Lab) Var(Temp*Lab) Var(Batch(Temp*Lab)) Var(Error)

Var(Lab) 0.32452 0 -0.04998 1.0259E-12
Var(Temp*Lab) 0 0 0 0
Var(Batch(Temp*Lab)) -0.04998 0 0.45042 -0.0022417
Var(Error) 1.0259E-12 0 -0.0022417 0.0089668

Figure 79.4. Covariance Matrix for REML Estimates

The “Asymptotic Covariance Matrix of Estimates” table inFigure 79.4displays the
asymptotic covariance matrix of the REML estimates.

The results of the analysis show that the variance attributable to
Batch(Temp*Lab) (with a variance component of 2.0739) is considerably
larger than the variance attributable toLab (0.3176). Therefore, attempts to reduce
the variability of cure rates should concentrate on improving the homogeneity
of the batches of raw material used rather than standardizing the practices or
equipment within the laboratories. Also, note that since theBatch(Temp*Lab)
variance is considerably larger than the experimental error (Var(Error)=0.6026), the
Batch(Temp*Lab) variability plays an important part in the overall variability of
the cure rates.
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Syntax

The following statements are available in PROC VARCOMP.

PROC VARCOMP < options > ;
CLASS variables ;
MODEL dependent = < effects > < / options > ;
BY variables ;

Only one MODEL statement is allowed. The BY, CLASS, and MODEL statements
are described after the PROC VARCOMP statement.

PROC VARCOMP Statement

PROC VARCOMP < options >;

This statement invokes the VARCOMP procedure. You can specify the following
options in the PROC VARCOMP statement.

DATA=SAS-data-set
specifies the input SAS data set to use. If this option is omitted, the most recently
created SAS data set is used.

EPSILON=number
specifies the convergence value of the objective function for METHOD=ML or
METHOD=REML. By default, EPSILON=1E−8.

MAXITER=number
specifies the maximum number of iterations for METHOD=ML or
METHOD=REML. By default, MAXITER=50.

METHOD=TYPE1 | MIVQUE0 | ML | REML
specifies which of the four methods (TYPE1, MIVQUE0, ML, or REML) you
want to use. By default, METHOD= MIVQUE0. For more information see the
“Computational Methods”section on page 4838.

BY Statement

BY variables ;

You can specify a BY statement with PROC VARCOMP to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables. Thevariablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives.
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• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the VARCOMP procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, see the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, see the
discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement specifies the classification variables to be used in the analysis.
All effects in the MODEL statement must be composed of effects that appear in the
CLASS statement. Class variables can be either numeric or character; if they are
character, only the first 16 characters are used.

Numeric class variables are not restricted to integers since a variable’s format deter-
mines the levels. For more information, see the discussion of the FORMAT statement
in SAS Language Reference: Dictionary.

MODEL Statement

MODEL dependent = < effects > < / option > ;

The MODEL statement gives the dependent variables and independent effects. If you
specify more than one dependent variable, a separate analysis is performed for each
one. The independent effects are limited to main effects, interactions, and nested
effects; no continuous effects are allowed. All independent effects must be com-
posed of effects that appear in the CLASS statement.Effects are specified in the
VARCOMP procedure in the same way as described for the ANOVA procedure. Only
one MODEL statement is allowed.

Only one option is available in the MODEL statement.

FIXED=n
tells the VARCOMP procedure that the firstn effects in the MODEL statement are
fixed effects. The remaining effects are assumed to be random. By default, PROC
VARCOMP assumes that all effects are random in the model. Keep in mind that
if you use bar notation and, for example, specify Y=A|B / FIXED=2, then A*B is
considered a random effect.
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Details

Missing Values

If an observation has a missing value for any variable used in the independent effects,
then the analyses of all dependent variables omit this observation. An observation
is deleted from the analysis of a given dependent variable if the observation’s value
for that dependent variable is missing. Note that a missing value in one dependent
variable does not eliminate an observation from the analysis of the other dependent
variables.

During processing, PROC VARCOMP groups the dependent variables on their miss-
ing values across observations so that sums of squares and cross products can be
computed in the most efficient manner.

Fixed and Random Effects

Central to the idea of variance components models is the idea of fixed and random
effects. Each effect in a variance components model must be classified as either a
fixed or a random effect. Fixed effects arise when the levels of an effect constitute
the entire population about which you are interested. For example, if a plant scientist
is comparing the yields of three varieties of soybeans, thenVariety would be a fixed
effect, providing that the scientist was concerned about making inferences on only
these three varieties of soybeans. Similarly, if an industrial experiment focused on
the effectiveness of two brands of a machine,Machine would be a fixed effect only
if the experimenter’s interest did not go beyond the two machine brands.

On the other hand, an effect is classified as a random effect when you want to make
inferences on an entire population, and the levels in your experiment represent only a
sample from that population. Psychologists comparing test results between different
groups of subjects would considerSubject as a random effect. Depending on the
psychologists’ particular interest, theGroup effect might be either fixed or random.
For example, if the groups are based on the sex of the subject, thenSex would be
a fixed effect. But if the psychologists are interested in the variability in test scores
due to different teachers, then they might choose a random sample of teachers as
being representative of the total population of teachers, andTeacher would be a
random effect. Note that, in the soybean example presented earlier, if the scientists
are interested in making inferences on the entire population of soybean varieties and
randomly choose three varieties for testing, thenVariety would be a random effect.

If all the effects in a model (except for the intercept) are considered random effects,
then the model is called arandom effects model; likewise, a model with only fixed
effects is called afixed-effects model. The more common case, where some factors
are fixed and others are random, is called amixed model. In PROC VARCOMP, by
default, effects are assumed to be random. You specify which effects are fixed by
using the FIXED= option in the MODEL statement. In general, if an interaction or
nested effect contains any effect that is random, then the interaction or nested effect
should be considered as a random effect as well.
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In the linear model, each level of a fixed effect contributes a fixed amount to the ex-
pected value of the dependent variable. What makes a random effect different is that
each level of a random effect contributes an amount that is viewed as a sample from a
population of normally distributed variables, each with mean 0, and an unknown vari-
ance, much like the usual random error term that is a part of all linear models. The
estimate of the variance associated with the random effect is known as thevariance
componentbecause it is measuring the part of the overall variance contributed by that
effect. Thus, PROC VARCOMP estimates the variance of the random variables that
are associated with the random effects in your model, and the variance components
tell you how much each of the random factors contributes to the overall variability in
the dependent variable.

Negative Variance Component Estimates

The variance components estimated by PROC VARCOMP should theoretically be
nonnegative because they are assumed to represent the variance of a random vari-
able. Nevertheless, when you are using METHOD=MIVQUE0 (the default) or
METHOD=TYPE1, some estimates of variance components may become negative.
(Due to the nature of the algorithms used for METHOD=ML and METHOD=REML,
negative estimates are constrained to zero.) These negative estimates may arise for a
variety of reasons:

• The variability in your data may be large enough to produce a negative esti-
mate, even though the true value of the variance component is positive.

• Your data may contain outliers. Refer to Hocking (1983) for a graphical tech-
nique for detecting outliers in variance components models using the SAS
System.

• A different model for interpreting your data may be appropriate. Under some
statistical models for variance components analysis, negative estimates are an
indication that observations in your data are negatively correlated. Refer to
Hocking (1984) for further information about these models.

Assuming that you are satisfied that the model PROC VARCOMP is using is appro-
priate for your data, it is common practice to treat negative variance components as
if they are zero.

Computational Methods

Four methods of estimation can be specified in the PROC VARCOMP statement using
the METHOD= option. They are described in the following sections.

The Type I Method

This method (METHOD=TYPE1) computes the Type I sum of squares for each ef-
fect, equates each mean square involving only random effects to its expected value,
and solves the resulting system of equations (Gaylor, Lucas, and Anderson 1970).
TheX′X | X′Y matrix is computed and adjusted in segments whenever memory is
not sufficient to hold the entire matrix.
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The MIVQUE0 Method

Based on the technique suggested by Hartley, Rao, and LaMotte (1978), the
MIVQUE0 method (METHOD=MIVQUE0) produces unbiased estimates that are in-
variant with respect to the fixed effects of the model and that are locally best quadratic
unbiased estimates given that the true ratio of each component to the residual error
component is zero. The technique is similar to TYPE1 except that the random effects
are adjusted only for the fixed effects. This affords a considerable timing advan-
tage over the TYPE1 method; thus, MIVQUE0 is the default method used in PROC
VARCOMP. TheX′X|X′Y matrix is computed and adjusted in segments whenever
memory is not sufficient to hold the entire matrix. Each element(i, j) of the form

SSQ(X′
iMXj)

is computed, where

M = I−X0(X′
0X0)−X′

0

and whereX0 is part of the design matrix for the fixed effects,Xi is part of the
design matrix for one of the random effects, and SSQ is an operator that takes the
sum of squares of the elements. For more information refer to Rao (1971, 1972) and
Goodnight (1978).

The Maximum Likelihood Method

The Maximum Likelihood method (METHOD=ML) computes maximum-likelihood
estimates of the variance components; refer to Searle, Casella, and McCulloch
(1992). The computing algorithm makes use of the W-transformation developed by
Hemmerle and Hartley (1973). The procedure uses a Newton-Raphson algorithm,
iterating until the log-likelihood objective function converges.

The objective function for METHOD=ML isln(|V|) + r′V−1r, where

V = σ2
0I +

nr∑
i=1

σ2
i XiX′

i

and whereσ2
0 is the residual variance,nr is the number of random effects in the

model,σ2
i represents the variance components,Xi is part of the design matrix for

one of the random effects, and

r = y −X0(X′
0V

−1X0)−X′
0V

−1y

is the vector of residuals.
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The Restricted Maximum Likelihood Method

The Restricted Maximum Likelihood Method (METHOD=REML) is similar to the
maximum likelihood method, but it first separates the likelihood into two parts:
one that contains the fixed effects and one that does not (Patterson and Thompson
1971). The procedure uses a Newton-Raphson algorithm, iterating until convergence
is reached for the log-likelihood objective function of the portion of the likelihood
that does not contain the fixed effects. Using notation from earlier methods, the ob-
jective function for METHOD=REML isln(|V|)+r′V−1r+ln(|X′

0V
−1X0|). Refer

to Searle, Casella, and McCulloch (1992) for additional details.

Displayed Output

PROC VARCOMP displays the following items:

• Class Level Information for verifying the levels in your data

• Number of observations read from the data set and number of observations
used in the analysis

• for METHOD=TYPE1, an analysis-of-variance table with Source, DF, Type I
Sum of Squares, Type I Mean Square, and Expected Mean Square, and a table
of Type I variance component estimates

• for METHOD=MIVQUE0, the SSQ Matrix containing sums of squares of par-
titions of theX′X crossproducts matrix adjusted for the fixed effects

• for METHOD=ML and METHOD=REML, the iteration history, including the
objective function, as well as variance component estimates

• for METHOD=ML and METHOD=REML, the estimated Asymptotic
Covariance Matrix of the variance components

• a table of variance component estimates

ODS Table Names

PROC VARCOMP assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”
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Table 79.1. ODS Tables Produced in PROC VARCOMP

ODS Table Name Description Statement
ANOVA Type 1 analysis of variance METHOD=TYPE1
AsyCov Asymptotic covariance matrix of

estimates
METHOD=ML or REML

ClassLevels Class level information default
ConvergenceStatus Convergence status METHOD=ML or REML
DepVar Dependent variable METHOD=TYPE1, REML, or ML
DependentInfo Dependent variable info (multi-

ple variables)
Estimates Variance component estimates default
IterHistory Iteration history METHOD=ML or REML
NObs Number of observations default
SSCP Sum of squares matrix METHOD=MIVQUE0

In situations where multiple dependent variables are analyzed that differ in their miss-
ing value pattern, separate names for ANOVAn, AsyCovn, Estimatesn, IterHistoryn,
and SSCPn tables are no longer required. The results are combined into a single
output data set. For METHOD=TYPE1, ML, or REML, variableDependent in the
output data set identifies the dependent variable. For METHOD=MIVQUE0, a vari-
able is added to the output data set for each dependent variable.

Relationship to PROC MIXED

The MIXED procedure effectively performs the same analyses as PROC VARCOMP
and many others, including Type I, Type II, and Type III tests of fixed effects, confi-
dence limits, customized contrasts, and least-squares means. Furthermore, continu-
ous variables are permitted as both fixed and random effects in PROC MIXED, and
numerous other covariance structures besides variance components are available.

To translate PROC VARCOMP code into PROC MIXED code, move all random
effects to the RANDOM statement in PROC MIXED. For example, the syntax for
the example in the“Getting Started”section on page 4832 is as follows:

proc mixed;
class Temp Lab Batch;
model Cure = Temp;
random Lab Temp*Lab Batch(Lab Temp);

run;

REML is the default estimation method in PROC MIXED, and you can specify other
methods using the METHOD= option.
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Example

Example 79.1. Using the Four Estimation Methods
In this example,a andb are classification variables andy is the dependent variable.
a is declared fixed, andb anda*b are random. Note that this design is unbalanced
because the cell sizes are not all the same. PROC VARCOMP is invoked four times,
once for each of the estimation methods. The data are from Hemmerle and Hartley
(1973). The following statements produceOutput 79.1.1.

data a;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246 1 2 178 1 2 179
2 1 208 2 1 178 2 1 187 2 2 146 2 2 145 2 2 141
3 1 186 3 1 183 3 2 142 3 2 125 3 2 136
;

proc varcomp method=type1;
class a b;
model y=a|b / fixed=1;

run;

proc varcomp method=mivque0;
class a b;
model y=a|b / fixed=1;

run;

proc varcomp method=ml;
class a b;
model y=a|b / fixed=1;

run;

proc varcomp method=reml;
class a b;
model y=a|b / fixed=1;

run;

Output 79.1.1. VARCOMP Procedure: Method=TYPE1
Variance Components Estimation Procedure

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 16
Number of Observations Used 16

Dependent Variable: y
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The “Class Level Information” table displays the levels of each variable specified
in the CLASS statement. You can check this table to make sure the data are input
correctly.

Variance Components Estimation Procedure

Type 1 Analysis of Variance

Sum of
Source DF Squares Mean Square Expected Mean Square

a 2 11736 5868.218750 Var(Error) + 2.725 Var(a*b) + 0.1 Var(b) + Q(a)
b 1 11448 11448 Var(Error) + 2.6308 Var(a*b) + 7.8 Var(b)
a*b 2 299.041026 149.520513 Var(Error) + 2.5846 Var(a*b)
Error 10 786.333333 78.633333 Var(Error)
Corrected Total 15 24270 . .

The Type I analysis of variance consists of sequentially partitioning the total sum of
squares. The mean square is the sum of squares divided by the degrees of freedom,
and the expected mean square is the expected value of the mean square under the
mixed model. The “Q” notation in the expected mean squares refers to a quadratic
form in parameters of the parenthesized effect.

Variance Components Estimation Procedure

Type 1 Estimates

Variance Component Estimate

Var(b) 1448.4
Var(a*b) 27.42659
Var(Error) 78.63333

The Type I estimates of the variance components result from solving the linear system
of equations established by equating the observed mean squares to their expected
values.

Output 79.1.2. VARCOMP Procedure: Method=MIVQUE0
Variance Components Estimation Procedure

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 16
Number of Observations Used 16

The “Class Level Information” is the same as before.
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Variance Components Estimation Procedure

MIVQUE(0) SSQ Matrix

Source b a*b Error y

b 60.84000 20.52000 7.80000 89295.4
a*b 20.52000 20.52000 7.80000 30181.3
Error 7.80000 7.80000 13.00000 12533.5

The MIVQUE0 sums-of-squares matrix is displayed in the previous table.

Variance Components Estimation Procedure

MIVQUE(0) Estimates

Variance Component y

Var(b) 1466.1
Var(a*b) -35.49170
Var(Error) 105.73660

The MIVQUE0 estimates result from solving the equations established by the
MIVQUE0 SSQ matrix. Note that the estimate of the variance component for the
interaction effect, Var(a*b), is negative for this example.

Output 79.1.3. VARCOMP Procedure: Method=ML
Variance Components Estimation Procedure

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 16
Number of Observations Used 16

Dependent Variable: y

The “Class Level Information” is the same as before.
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Variance Components Estimation Procedure

Maximum Likelihood Iterations

Iteration Objective Var(b) Var(a*b) Var(Error)

0 78.3850371200 1031.49070 0 74.3909717935
1 78.2637043807 732.3606453636 0 77.4011688154
2 78.2635471161 723.6867470850 0 77.5301774839
3 78.2635471152 723.6658365289 0 77.5304926877

Convergence criteria met.

The Newton-Raphson algorithm used by PROC VARCOMP requires three iterations
to converge to the maximum likelihood estimates.

Variance Components Estimation Procedure

Maximum Likelihood
Estimates

Variance
Component Estimate

Var(b) 723.66584
Var(a*b) 0
Var(Error) 77.53049

The ML estimate of Var(a*b) is zero for this example, and the other two estimates are
smaller than their Type I and MIVQUE0 counterparts.

Variance Components Estimation Procedure

Asymptotic Covariance Matrix of Estimates

Var(b) Var(a*b) Var(Error)

Var(b) 537826.1 0 -107.33905
Var(a*b) 0 0 0
Var(Error) -107.33905 0 858.71104

One benefit of using likelihood-based methods is that an approximate covariance
matrix is available from the matrix of second derivatives evaluated at the ML solution.
This covariance matrix is valid asymptotically and can be unreliable in small samples.

Here the variance component estimates for B and the Error are negatively correlated
and the elements for Var(a*b) are set to zero because the estimate equals zero. Also,
the very large variance for Var(b) indicates a lot of uncertainty about the estimate for
Var(b), and one contributing explanation is that B has only two levels in this data set.
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Output 79.1.4. VARCOMP Procedure: Method=REML
Variance Components Estimation Procedure

Class Level Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 16
Number of Observations Used 16

Dependent Variable: y

The “Class Level Information” is the same as before.

Variance Components Estimation Procedure

REML Iterations

Iteration Objective Var(b) Var(a*b) Var(Error)

0 63.4134144942 1269.52701 0 91.5581191305
1 63.0446869787 1601.84199 32.7632417174 76.9355562461
2 63.0311530508 1468.82932 27.2258186561 78.7548276319
3 63.0311265148 1464.33646 26.9564053003 78.8431476502
4 63.0311265127 1464.36727 26.9588525177 78.8423898761

Convergence criteria met.

The REML optimization requires four iterations to converge.

Variance Components Estimation Procedure

REML Estimates

Variance
Component Estimate

Var(b) 1464.4
Var(a*b) 26.95885
Var(Error) 78.84239

The REML estimates are all larger than the corresponding ML estimates (adjusting
for potential downward bias) and are fairly similar to the Type I estimates.
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Variance Components Estimation Procedure

Asymptotic Covariance Matrix of Estimates

Var(b) Var(a*b) Var(Error)

Var(b) 4401703.8 1.29359 -273.39651
Var(a*b) 1.29359 3559.1 -502.85157
Var(Error) -273.39651 -502.85157 1249.7

The Error variance component estimate is negatively correlated with the other two
variance component estimates, and the estimated variances are all larger than their
ML counterparts.
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Chapter 80
The VARIOGRAM Procedure
Overview

The VARIOGRAM procedure computes sample or empirical measures of spatial con-
tinuity for two-dimensional spatial data. These continuity measures are the regular
semivariogram, a robust version of the semivariogram, and the covariance. The con-
tinuity measures are written to an output data set, allowing plotting or parameter
estimation for theoretical semivariogram or covariance models. Both isotropic and
anisotropic measures are available.

The VARIOGRAM procedure produces two additional output data sets that are use-
ful in the analysis of pairwise distances in the original data. The OUTPAIR= data set
contains one observation for each pair of points. The coordinates, distance, angle, and
values of the analysis variables are written to this data set. The OUTDISTANCE=
data set contains histogram information on the count of pairs within distance inter-
vals, which is useful for determining unit lag distances.

Introduction to Spatial Prediction

Spatial prediction, in general, is any prediction method that incorporates spatial de-
pendence. A simple and popular spatial prediction method is ordinary kriging.

Ordinary kriging requires a model of the spatial continuity, or dependence. This is
typically in the form of a covariance or semivariogram.

Spatial prediction, then, involves two steps. First, you model the covariance or semi-
variogram of the spatial process. This involves choosing both a mathematical form
and the values of the associated parameters. Second, you use this dependence model
in solving the kriging system at a specified set of spatial points, resulting in predicted
values and associated standard errors.

SAS/STAT software has two procedures corresponding to these steps for spatial pre-
diction of two-dimensional data. The VARIOGRAM procedure is used in the first
step. By computing a sample estimate of the variogram or covariance, you can choose
a theoretical model based on graphical or other means.
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Getting Started

In activities such as reservoir estimation in mining, petroleum exploration, and envi-
ronmental modeling of air and water pollution, it often happens that data on one or
more quantities are available at given spatial locations, and the goal is to predict the
measured quantities at unsampled locations. Often, these unsampled locations are on
a regular grid, and the predictions are used to produce surface plots or contour maps.

A popular method of spatial prediction is ordinary kriging, which produces both pre-
dicted values and associated standard errors. Ordinary kriging requires the complete
specification (the form and parameter values) of the spatial dependence of the spatial
process in terms of a covariance or semivariogram model.

Typically the semivariogram model is not known in advance and must be estimated,
either visually or by some estimation method.

PROC VARIOGRAM computes the sample semivariogram, from which you can find
a suitable theoretical semivariogram by visual methods.

The following example goes through a typical problem to show how you can compute
a sample variogram and determine an appropriate theoretical model.

Preliminary Spatial Data Analysis

The simulated data consist of coal seam thickness measurements (in feet) taken over
an approximately square area. The coordinates are offsets from a point in the south-
west corner of the measurement area, with the north and east distances in units of
thousands of feet.

First, the data are input.

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
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78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

It is instructive to see the locations of the measured points in the area where you
want to perform spatial prediction. It is desirable to have these locations scattered
evenly around the prediction area. If this is not the case, the prediction error might be
unacceptably large where measurements are sparse. The following GPLOT procedure
is useful in determining potential problems:

proc gplot data=thick;
title ’Scatter Plot of Measurement Locations’;
plot north*east / frame cframe=ligr haxis=axis1

vaxis=axis2;
symbol1 v=dot color=blue;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
label east = ’East’

north = ’North’
;

run;
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Figure 80.1. Scatter Plot of Measurement Locations

As Figure 80.1indicates, while the locations are not ideally spread around the pre-
diction area, there are not any large areas lacking measurements. You now can look
at a surface plot of the measured variable, the thickness of coal seam, using the G3D
procedure. This is a crucial step. Any obvious surface trend has to be removed be-
fore you compute and estimate the model of spatial dependence (the semivariogram
model).

proc g3d data=thick;
title ’Surface Plot of Coal Seam Thickness’;
scatter east*north=thick / xticknum=5 yticknum=5

grid zmin=20 zmax=65;
label east = ’East’

north = ’North’
thick = ’Thickness’

;
run;
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Figure 80.2. Surface Plot of Coal Seam Thickness

Figure 80.2shows the small-scale variation typical of spatial data, but there does not
appear to be any surface trend. Hence, you can work with the original thickness data
rather than residuals from a trend surface fit.
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Preliminary Variogram Analysis

Recall that the goal of this example is spatial prediction. In particular, you would
like to produce a contour map or surface plot on a regular grid of predicted values
based on ordinary kriging. Ordinary kriging requires the complete specification of
the spatial covariance or semivariogram.

You can use PROC VARIOGRAM, along with a DATA step and PROC GPLOT, to
estimate visually a reasonable semivariogram model (both the form and associated
parameters) for the thickness data.

Before proceeding with this estimation, consider the formula for the empirical or
experimental semivariogramγz(h). Denote the coal seam thickness process by
{Z(r), r ∈ D ⊂ R2}. You have measurements(Z(ri), i = 1, . . . , 75). The standard
formula forγz(h) (isotropic case) is

2γz(h) =
1

| N(h) |
∑
N(h)

(Z(ri)− Z(rj))2

whereN(h) is given by

N(h) = {i, j :| ri − rj |= h}

and| N(h) | is the number of such pairs(i, j).

For actual data, it is unlikely that any pair(i, j) would exactly satisfy| ri − rj |= h,
so typically a range of pairwise distances,| ri − rj |∈ [h − δh, h + δh), is used to
group pairs(ri, rj) for a single term in the expression forγz(h). Using this range,
N(h) is modified by

N(h, δh) = {i, j :| ri − rj |∈ [h− δh, h + δh)}

PROC VARIOGRAM performs this grouping with two required options for vari-
ogram computation: the LAGDISTANCE= and MAXLAGS= options.

The meaning of the required LAGDISTANCE= option is as follows. Classify all pairs
of points into intervals according to their pairwise distance. The width of the distance
interval is the LAGDISTANCE= value. The meaning of the required MAXLAGS=
option is simply the number of intervals.

The problem is that a surface plot of the original data, or the scatter plot of the
measurement locations, is not very helpful in determining the distribution of these
pairwise distances; it is not clear what values to give to the LAGDISTANCE= and
MAXLAGS= options.

You use PROC VARIOGRAM with the OUTDISTANCE= option to produce a mod-
ified histogram of the pairwise distances in order to find reasonable values for the
LAGDISTANCE= and MAXLAGS= options. In the following analysis, you use the
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NOVARIOGRAM option in the COMPUTE statement and the OUTDISTANCE=
option in the PROC VARIOGRAM statement. You need the NOVARIOGRAM
option to keep an error message from being issued due to the absence of the
LAGDISTANCE= and MAXLAGS= options.

The DATA step after the PROC VARIOGRAM statement computes the midpoint of
each distance interval. This midpoint is then used in the GCHART procedure. Since
the number of distance intervals is not specified by using the NHCLASSES= option
in the COMPUTE statement, the default of 10 is used.

proc variogram data=thick outdistance=outd;
compute novariogram;
coordinates xc=east yc=north;
var thick;

run;

title ’OUTDISTANCE= Data Set Showing Distance Intervals’;
proc print data=outd;
run;

data outd; set outd;
mdpt=round((lb+ub)/2,.1);
label mdpt = ’Midpoint of Interval’;

run;

axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
title ’Distribution of Pairwise Distances’;
proc gchart data=outd;

vbar mdpt / type=sum sumvar=count discrete frame
cframe=ligr gaxis=axis1 raxis=axis2 nolegend;

run;

OUTDISTANCE= Data Set Showing Distance Intervals

Obs VARNAME LAG LB UB COUNT PER

1 thick 0 0.000 6.969 45 0.01622
2 thick 1 6.969 20.907 263 0.09477
3 thick 2 20.907 34.845 383 0.13802
4 thick 3 34.845 48.783 436 0.15712
5 thick 4 48.783 62.720 495 0.17838
6 thick 5 62.720 76.658 525 0.18919
7 thick 6 76.658 90.596 412 0.14847
8 thick 7 90.596 104.534 179 0.06450
9 thick 8 104.534 118.472 35 0.01261

10 thick 9 118.472 132.410 2 0.00072
11 thick 10 132.410 146.348 0 0.00000

Figure 80.3. OUTDISTANCE= Data Set Showing Distance Intervals
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Figure 80.4. Distribution of Pairwise Distances

For plotting and estimations purposes, it is desirable to have as many points as pos-
sible for the plot ofγz(h) againsth. This corresponds to having as many distance
intervals as possible, that is, having a small value for the LAGDISTANCE= option.

However, a rule of thumb used in computing sample semivariograms is to use at
least 30 point pairs in computing a single value of the empirical or experimental
semivariogram.

If the LAGDISTANCE= value is set too small, there may be too few points in one
or more of the intervals. On the other hand, if the LAGDISTANCE= value is set
to a large value, the number of point pairs in the distance intervals may be much
greater than that needed for estimation precision, thereby “wasting” point pairs at the
expense of variogram points.

Hence, there is a tradeoff between the number of distance intervals and the number
of point pairs within each interval.

As discussed in the section“OUTDIST=SAS-data-set ” on page 4878 the first few
distance intervals, corresponding to lag0 and lag1, are typically the limiting inter-
vals. This is particularly true for lag0 since it is half the width of the remaining
intervals. For the default of NHCLASSES=10, the lag 0 class contains 45 points,
which is reasonably close to 30, but the lag 1 class contains 263 points.
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If you rerun PROC VARIOGRAM with NHCLASSES=20, these numbers become 8
and 83 for lags 0 and 1, respectively. Because of the asymmetrical nature of lag 0,
you are willing to violate the rule of thumb for the 0th lag. You will, however, have
sufficient numbers in lag 1 and above.

proc variogram data=thick outdistance=outd;
compute nhc=20 novariogram;
coordinates xc=east yc=north;
var thick;

run;

title ’OUTDISTANCE= Data Set Showing Distance Intervals’;
proc print data=outd;
run;

data outd; set outd;
mdpt=round((lb+ub)/2,.1);
label mdpt = ’Midpoint of Interval’;

run;

axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
title ’Distribution of Pairwise Distances’;
proc gchart data=outd;

vbar mdpt / type=sum sumvar=count discrete frame
cframe=ligr gaxis=axis1 raxis=axis2 nolegend;

run;

OUTDISTANCE= Data Set Showing Distance Intervals

Obs VARNAME LAG LB UB COUNT PER

1 thick 0 0.000 3.484 8 0.00288
2 thick 1 3.484 10.453 83 0.02991
3 thick 2 10.453 17.422 143 0.05153
4 thick 3 17.422 24.391 167 0.06018
5 thick 4 24.391 31.360 198 0.07135
6 thick 5 31.360 38.329 197 0.07099
7 thick 6 38.329 45.298 203 0.07315
8 thick 7 45.298 52.267 235 0.08468
9 thick 8 52.267 59.236 234 0.08432

10 thick 9 59.236 66.205 284 0.10234
11 thick 10 66.205 73.174 264 0.09514
12 thick 11 73.174 80.143 236 0.08505
13 thick 12 80.143 87.112 221 0.07964
14 thick 13 87.112 94.081 165 0.05946
15 thick 14 94.081 101.050 75 0.02703
16 thick 15 101.050 108.018 41 0.01477
17 thick 16 108.018 114.987 15 0.00541
18 thick 17 114.987 121.956 5 0.00180
19 thick 18 121.956 128.925 1 0.00036
20 thick 19 128.925 135.894 0 0.00000
21 thick 20 135.894 142.863 0 0.00000

Figure 80.5. OUTDISTANCE= Data Set Showing Distance Intervals
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Figure 80.6. Distribution of Pairwise Distances

The length of the lag 1 class(3.484, 10.453) is 6.969. You round off and use
LAGDISTANCE=7.0 in the COMPUTE statement.

The use of the MAXLAGS= option is more difficult. FromFigure 80.5, note that up
to a pairwise distance of 101, you have a sufficient number of pairs. With your choice
of LAGDISTANCE=7.0, this yields a maximum number of lags101

7 ≈ 14.

The problem with using the maximum lag value is that it includes pairs of points
so far apart that they are likely to be independent. Using pairs of points that are
independent adds nothing to the empirical semivariogram plot; they are essentially
added noise.

If there is an estimate of correlation length, perhaps from a prior geologic study of a
similar site, you can specify the MAXLAGS= value so that the maximum pairwise
distance does not exceed two or three correlation lengths. If there is no estimate
of correlation length, you can use the following rule of thumb: use1

2 to 3
4 of the

“diameter” of the region containing the data. A MAXLAGS= value of 10 is within
this range.

You now rerun PROC VARIOGRAM with these values.
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Sample Variogram Computation and Plots

Using the values of LAGDISTANCE=7.0 and MAXLAGS=10 computed previously,
rerun PROC VARIOGRAM without the NOVARIOGRAM option. Also, request
a robust version of the semivariogram; then, plot both results against the pairwise
distance of each class.

proc variogram data=thick outv=outv;
compute lagd=7 maxlag=10 robust;
coordinates xc=east yc=north;
var thick;

run;

title ’OUTVAR= Data Set Showing Sample Variogram Results’;
proc print data=outv label;

var lag count distance variog rvario;
run;

data outv2; set outv;
vari=variog; type = ’regular’; output;
vari=rvario; type = ’robust’; output;

run;

title ’Standard and Robust Semivariogram for Coal Seam
Thickness Data’;

proc gplot data=outv2;
plot vari*distance=type / frame cframe=ligr vaxis=axis2

haxis=axis1;
symbol1 i=join l=1 c=blue /* v=star */;
symbol2 i=join l=1 c=yellow /* v=square */;
axis1 minor=none

label=(c=black ’Lag Distance’) /* offset=(3,3) */;
axis2 order=(0 to 9 by 1) minor=none

label=(angle=90 rotate=0 c=black ’Variogram’)
/* offset=(3,3) */;

run;
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OUTVAR= Data Set Showing Sample Variogram Results

Lag Class
Value (in Number of Average Lag

LAGDIST= Pairs in Distance Robust
Obs units) Class for Class Variogram Variogram

1 -1 75 . . .
2 0 8 2.5045 0.02937 0.01694
3 1 85 7.3625 0.38047 0.19807
4 2 142 14.1547 1.15158 0.98029
5 3 169 21.0913 2.79719 3.01412
6 4 199 27.9691 4.68769 4.86998
7 5 199 35.1591 6.16018 6.15639
8 6 205 42.2547 7.58912 8.05072
9 7 232 48.7775 7.12506 7.07155

10 8 244 56.1824 7.04832 7.62851
11 9 285 62.9121 6.66298 8.02993
12 10 262 69.8925 6.18775 7.92206

Figure 80.7. OUTVAR= Data Set Showing Sample Variogram Results

Figure 80.8. Standard and Robust Semivariogram for Coal Seam Thickness Data
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Figure 80.8shows first a slow, then a rapid rise from the origin, suggesting a Gaussian
type form:

γz(h) = c0

[
1− exp

(
−h2

a2
0

)]
See the section“Theoretical and Computational Details of the Semivariogram”on
page 4872 for graphs of the standard semivariogram forms.

By experimentation, you find that a scale ofc0 = 7.5 and a range ofa0 = 30 fits
reasonably well for both the robust and standard semivariogram

The following statements plot the sample and theoretical variograms:

data outv3; set outv;
c0=7.5; a0=30;
vari = c0*(1-exp(-distance*distance/(a0*a0)));
type = ’Gaussian’; output;
vari = variog; type = ’regular’; output;
vari = rvario; type = ’robust’; output;

run;

title ’Theoretical and Sample Semivariogram for Coal Seam
Thickness Data’;

proc gplot data=outv3;
plot vari*distance=type / frame cframe=ligr vaxis=axis2

haxis=axis1;
symbol1 i=join l=1 c=blue /* v=star */;
symbol2 i=join l=1 c=yellow /* v=square */;
symbol3 i=join l=1 c=cyan /* v=diamond */;
axis1 minor=none

label=(c=black ’Lag Distance’) /* offset=(3,3) */;
axis2 order=(0 to 9 by 1) minor=none

label=(angle=90 rotate=0 c=black ’Variogram’)
/* offset=(3,3) */;

run;
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Figure 80.9. Theoretical and Sample Semivariogram for Coal Seam Thickness
Data

Figure 80.9shows that the choice of a semivariogram model is adequate. You can use
this Gaussian form and these particular parameters in PROC KRIGE2D to produce a
contour plot of the kriging estimates and the associated standard errors.

Syntax

The following statements are available in PROC VARIOGRAM.

PROC VARIOGRAM options ;
COMPUTE computation-options ;
COORDINATES coordinate-variables ;
DIRECTIONS directions-list ;
VAR analysis-variables-list ;

The COMPUTE and COORDINATES statements are required.

The following table outlines the options available in PROC VARIOGRAM classified
by function.
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Table 80.1. Options Available in the VARIOGRAM Procedure

Task Statement Option
Data Set Options
specify input data set PROC VARIOGRAM DATA=
write spatial continuity measures PROC VARIOGRAM OUTVAR=
write distance histogram information PROC VARIOGRAM OUTDISTANCE=
write pairwise point information PROC VARIOGRAM OUTPAIR=

Declaring the Role of Variables
specify the analysis variables VAR
specify the x, y coordinates in the DATA= data
set

COORDINATES XCOORD= YCOORD=

Controlling Continuity Measure Computations
specify the basic lag distance COMPUTE LAGDISTANCE=
specify the tolerance around the lag distance COMPUTE LAGDISTANCE=
specify the maximum number of lags in compu-
tations

COMPUTE MAXLAGS=

specify the number of angle classes COMPUTE NDIRECTIONS=
specify the angle tolerances for angle classes COMPUTE ANGLETOL=
specify the bandwidths for angle classes COMPUTE BANDWIDTH=
compute robust semivariogram COMPUTE ROBUST
suppress computation of all continuity mea-
sures

COMPUTE NOVARIOGRAM

Controlling Distance Histogram Data Set
specify the distance histogram data set PROC VARIOGRAM OUTDISTANCE=
specify the number of histogram classes COMPUTE NHCLASSES=

Controlling Pairwise Information Data Set
specify the pairwise data set PROC VARIOGRAM OUTPAIR=
specify the maximum distance for the pairwise
data set

COMPUTE OUTPDISTANCE=

PROC VARIOGRAM Statement

PROC VARIOGRAM options ;

You can specify the following options in the PROC VARIOGRAM statement.

DATA=SAS-data-set
specifies a SAS data set containing thex andy coordinate variables and the VAR
statement variables.

OUTDISTANCE=SAS-data-set
OUTDIST=SAS-data-set
OUTD=SAS-data-set

specifies a SAS data set in which to store summary distance information. This
data set contains a count of all pairs of data points within a given distance inter-
val. The number of distance intervals is controlled by the NHCLASSES= option in
the COMPUTE statement. The OUTDISTANCE= data set is useful for plotting mod-
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ified histograms of the count data for determining appropriate lag distances. See the
section“OUTDIST=SAS-data-set ” on page 4878 for details.

OUTPAIR=SAS-data-set
OUTP=SAS-data-set

specifies a SAS data set in which to store distance and angle information for each
pair of points in the DATA= data set. This option should be used with caution
when the DATA= data set is large. Ifn denotes the number of observations in the
DATA= data set, the OUTPAIR= data set containsn(n−1)

2 observations unless you
restrict it with the OUTPDISTANCE= option in the COMPUTE statement. The
OUTPDISTANCE= option in the COMPUTE statement excludes pairs of points
when the distance between the pairs exceeds the OUTPDISTANCE= value. See the
section“OUTPAIR=SAS-data-set ” on page 4881 for details.

OUTVAR=SAS-data-set
OUTVR=SAS-data-set

specifies a SAS data set in which to store the continuity measures. See the section
“OUTVAR=SAS-data-set ” on page 4877 for details.

COMPUTE Statement
COMPUTE computation-options ;

The COMPUTE statement provides a number of options that control the computation
of the semivariogram, the robust semivariogram, and the covariance.

ANGLETOLERANCE= angle tolerance
ANGLETOL= angle tolerance
ATOL=angle tolerance

specifies the tolerance, in degrees, around the angles determined by the
NDIRECTIONS= specification. The default is180o

2×nd
, where nd is the

NDIRECTIONS= specification.

See the section“Theoretical and Computational Details of the Semivariogram”on
page 4872 for more detailed information.

BANDWIDTH=bandwidth distance
BANDW=bandwidth distance

specifies the bandwidth, or perpendicular distance cutoff for determining the angle
class for a given pair of points. The distance classes define a series of cylindrically
shaped areas, while the angle classes radially cut these cylindrically shaped areas.
For a given angle class(θ1 − δθ1, θ1 + δθ1), as you proceed out radially, the area en-
compassed by this angle class becomes larger. The BANDWIDTH= option restricts
this area by excluding all points with a perpendicular distance from the lineθ = θ1

that is greater than the BANDWIDTH= value.

If you do not specify the BANDWIDTH= option, no restriction occurs. SeeFigure
80.15on page 4876 for more detailed information.
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DEPSILON=distance value
DEPS=distance value

specifies the distance value for declaring that two distinct points are zero dis-
tance apart. Such pairs, if they occur, cause numeric problems. If you specify
DEPSILON=ε, then pairs of pointsP1 andP2 for which the distance between them
| P1P2 |< ε are excluded from the continuity measure calculations. The default
value of the DEPSILON= option is 100 times machine epsilon; this product is ap-
proximately 1E-10 on most computers.

LAGDISTANCE= distance unit
LAGDIST=distance unit
LAGD=distance unit

specifies the basic distance unit defining the lags. For example, a specification of
LAGDISTANCE=x results in lag distance classes that are multiples ofx. For a given
pair of pointsP1 andP2, the distance between them, denoted| P1P2 |, is calculated.
If | P1P2 |= x, then this pair is in the first lag class. If| P1P2 |= 2x, then this pair is
in the second lag class, and so on.

For irregularly spaced data, the pairwise distances are unlikely to fall exactly on mul-
tiples of the LAGDISTANCE= value. A distance tolerance ofδx is used to accom-
modate a spread of distances around multiples ofx (the LAGTOLERANCE= option
specifies the distance tolerance). For example, if| P1P2 | is within x±δx, you would
place this pair in the first lag class; if| P1P2 | is within 2x ± δx, you would place
this pair in the second lag class, and so on.

You can determine the candidate values for the LAGDISTANCE= option by plotting
or displaying the OUTDISTANCE= data set.

A LAGDISTANCE= value is required unless you specify the NOVARIOGRAM op-
tion.

See the section“Theoretical and Computational Details of the Semivariogram”on
page 4872 for more details.

LAGTOLERANCE= tolerance number
LAGTOL= tolerance number
LAGT= tolerance number

specifies the tolerance around the LAGDISTANCE= value for grouping distance pairs
into lag classes. See the preceding description of the LAGDISTANCE= option
for information on the use of the LAGTOLERANCE= option, and see the section
“Theoretical and Computational Details of the Semivariogram”on page 4872 for
more details.

If you do not specify the LAGTOLERANCE= option, a default value of(1/2) times
the LAGDISTANCE= value is used.

MAXLAGS= number of lags
MAXLAG= number of lags
MAXL=number of lags

specifies the maximum number of lag classes used in constructing the continuity
measures. This option excludes any pair of pointsP1 andP2 for which the distance



4868 � Chapter 80. The VARIOGRAM Procedure

between them,| P1P2 |, exceeds the MAXLAGS= value times the LAGDISTANCE=
value.

You can determine candidate values for the MAXLAGS= option by plotting or dis-
playing the OUTDISTANCE= data set.

A MAXLAGS= value is required unless you specify the NOVARIOGRAM option.

NDIRECTIONS=number of directions
NDIR=number of directions
ND=number of directions

specifies the number of angle classes to use in computing the continuity measures.
This option is useful when there is potential anisotropy in the spatial continuity mea-
sures. Anisotropy occurs when the spatial continuity or dependence between a pair of
points depends on the orientation or angle between the pair. Isotropy is the absence
of this effect: the spatial continuity or dependence between a pair of points depends
only on the distance between the points, not the angle.

The angle classes formed from the NDIRECTIONS= option start from N–S and pro-
ceed clockwise. For example, NDIRECTIONS=3 produces three angle classes. In
terms of compass points, these classes are centered at0o (or its reciprocal180o), 60o

(or its reciprocal240o), and120o (or its reciprocal300o). For irregularly spaced data,
the angles between pairs are unlikely to fall exactly in these directions, so an angle
tolerance ofδθ is used (the ANGLETOLERANCE= option specifies the angle tol-
erance). If NDIRECTIONS=nd, the base angle isθ = 180o

nd
, and the angle classes

are

(kθ − δθ, kθ + δθ) k = 0, . . . , nd − 1

If you do not specify the NDIRECTIONS= option, no angles are formed, and the
spatial continuity measures are assumed to be isotropic.

The NDIRECTIONS= option is useful for exploring possible anisotropy. The
DIRECTIONS statement, described in the“DIRECTIONS Statement”section on
page 4870, provides greater control over the angle classes. See the section
“Theoretical and Computational Details of the Semivariogram”on page 4872 for
more detailed information.

NHCLASSES=number of histogram classes
NHCLASS=number of histogram classes
NHC=number of histogram classes

specifies the number of distance or histogram classes to write to the
OUTDISTANCE= data set. The actual number of classes is one more than
the NHCLASSES= value since a special lag 0 class is also computed. See the
OUTDISTANCE= optionon page 4865 and the section“OUTDIST=SAS-data-set ”
on page 4878 for details.

The default value of the NHCLASSES= option is 10. This option is ignored if you
do not specify an OUTDISTANCE= data set.
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NOVARIOGRAM
prevents the computation of the continuity measures. This option is useful for pre-
liminary analysis when you require only the OUTDISTANCE= or OUTPAIR= data
sets.

OUTPDISTANCE=distance limit
OUTPDIST=distance limit
OUTPD=distance limit

specifies the cutoff distance for writing observations to the OUTPAIR= data set. If
you specify OUTPDISTANCE=dmax, the distance| P1P2 | between each pair of
points P1 and P2 is checked againstdmax. If | P1P2 |> dmax, the observation
for this pair is not written to the OUTPAIR= data set. If you do not specify the
OUTPDISTANCE= option, all distinct pairs are written. This option is ignored if
you do not specify an OUTPAIR= data set.

ROBUST
requests that a robust version of the semivariogram be calculated in addition to the
regular semivariogram and covariance.

COORDINATES Statement

COORDINATES coordinate-variables ;

The following two options give the names of the variables in the DATA= data set
containing the values of thex andy coordinates of the data.

Only one COORDINATES statement is allowed, and it is applied to all the analysis
variables. In other words, it is assumed that all the VAR variables have the samex
andy coordinates.

XCOORD= (variable-name)
XC= (variable-name)

gives the name of the variable containing thex coordinate of the data in the DATA=
data set.

YCOORD= (variable-name)
YC= (variable-name)

gives the name of the variable containing they coordinate of the data in the DATA=
data set.
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DIRECTIONS Statement

DIRECTIONS directions-list ;

You use the DIRECTIONS statement to define angle classes. You can specify angle
classes as a list of angles, separated by commas, with optional angle tolerances and
bandwidths within parentheses following the angle. You must specify at least one
angle.

If you do not specify the optional angle tolerance, the default value of45o is used. If
you do not specify the optional bandwidth, no bandwidth is checked. If you specify
a bandwidth, you must also specify an angle tolerance.

For example, suppose you want to compute three separate semivariograms at angles
θ1 = 0o, θ2 = 60o, and θ3 = 120o, with corresponding angle toleranceδθ1 =
22.5o, δθ2 = 12.5o, andδθ3 = 22.5o, with bandwidths 50 and 40 distance units on
the first two angle classes and no bandwidth check on the last angle class.

The appropriate DIRECTIONS statement is

directions 0.0(22.5,50), 60.0(12.5,40),120(22.5);

VAR Statement

VAR analysis-variables-list ;

Use the VAR statement to specify the analysis variables. You can specify only nu-
meric variables. If you do not specify a VAR statement, all numeric variables in the
DATA= data set that are not in the COORDINATES statement are used.

Details

Theoretical Semivariogram Models

The VARIOGRAM procedure computes the sample, or experimental semivariogram.
Prediction of the spatial process at unsampled locations by techniques such as ordi-
nary kriging requires a theoretical semivariogram or covariance.

It is necessary, then, to decide on a theoretical variogram based on the sample var-
iogram. While there are methods of fitting semivariogram models, such as least
squares, maximum likelihood, and robust methods (Cressie 1993, section 2.6), these
techniques are not appropriate for data sets resulting in a small number of variogram
points. Instead, a visual fit of the variogram points to a few standard models is often
satisfactory. Even when there are sufficient variogram points, a visual check against
a fitted theoretical model is appropriate (Hohn 1988, p. 25ff).
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In some cases, a plot of the experimental semivariogram suggests that a single the-
oretical model is inadequate. Nested models, anisotropic models, and the nugget
effect increase the scope of theoretical models available. All of these concepts are
discussed in this section. The specification of the final theoretical model is provided
by the syntax of PROC KRIGE2D.

Note the general flow of investigation. After a suitable choice is made of the
LAGDIST= and MAXLAGS= options and, possibly, the NDIR= option (or a
DIRECTIONS statement), the experimental semivariogram is computed. Potential
theoretical models, possibly incorporating nesting, anisotropy, and the nugget effect,
are computed by a DATA step, then they are plotted against the experimental semi-
variogram and evaluated. A suitable theoretical model is thus found visually, and
the specification of the model is used in PROC KRIGE2D. This flow is illustrated in
Figure 80.10; also see the“Getting Started”section on page 4852 for an illustration
in a simple case.

Pairwise Distance Distribution

PROC VARIOGRAM using

NHCLASS=, NOVAR options

Sufficient number of

pairs in each lag class ?

Determine LAGDIST= and

MAXLAG= values

Use PROC VARIOGRAM to

compute and plot sample variogram

Use DATA step to plot sample Select candidate variogram forms
and parametersand theoretical variograms

no

yes

Figure 80.10. Flowchart for Variogram Selection
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Theoretical and Computational Details of the Semivariogram

The basic starting point in computing the semivariogram is the enumeration of pairs
of points for the spatial data.Figure 80.11shows a spatial domain in which a set
of measurements are made at the indicated locations. Two pointsP1 andP2, with
coordinates(x1, y1), (x2, y2), are selected for illustration. A vector, or directed line
segment, is drawn between these points. This pair is then categorized first by orien-
tation of this directed line segment and then by its length. That is, the pairP1P2 is
placed into an angle and distance class.

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
oo

P 1

p
2

Figure 80.11. Selection of Points P1 and P2 in Spatial Domain

Angle Classification

Suppose you specify NDIR=3 in the COMPUTE statement in PROC VARIOGRAM.
This results in three angle classes defined by midpoint angles between0o and180o:
0o ± δθ, 60o ± δθ, and120o ± δθ, whereδθ is the angle tolerance. If you do not
specify an angle tolerance using the ATOL= option in the COMPUTE statement, the
following default value is used.

δθ =
180o

2×NDIR
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For three classes,δθ = 30o. When the example directed line segmentP1P2 is
superimposed on the coordinate system showing the angle classes, its angle, mea-
sured clockwise from north, is approximately45o. In particular, it falls within
[60o − δθ, 60o + δθ) = [30o, 90o), the second angle class. SeeFigure 80.12.

δθ

δθ

30
ο

60
ο

210

240

ο

ο

Ν   0ο

E   90
o

S   180 o

W   270
o

Figure 80.12. Selected Pair P1P2 Falls within the Second Angle Class

Note that if the designated pointsP1 andP2 are labeled in the opposite order, the
orientation is in a reciprocal direction, that is, approximately225o for the point pair
instead of approximately45o. This does not affect angle class selection; the angle
classes[60o − δθ, 60o + δθ) and[240o − δθ, 240o + δθ) are the same.

If you specify an angle tolerance less than the default, for example,ATOL = 15o,
some point pairs might be excluded. For example, the selected point pairP1P2 in
Figure 80.12, while closest to the60o axis, might lie outside[60 − δθ, 60 + δθ) =
[45o, 75o). In this case, the point pairP1P2 would be excluded from the variogram
computation.

On the other hand, you can specify an angle tolerancegreaterthan the default. This
can result in a point pair being counted in more than one angle class. This has a
smoothing effect on the variogram and is useful when there is a small amount of data
available.

An alternative way to specify angle classes and angle tolerances is with the
DIRECTIONS statement. The DIRECTIONS statement is useful when angle classes
are not equally spaced. When you specify the DIRECTIONS statement, you should
also specify the angle tolerance. The default value of the angle tolerance is45o
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when a DIRECTIONS statement is used instead of the NDIRECTIONS= option in
the COMPUTE statement. This may not be appropriate for a particular set of angle
classes. See the“DIRECTIONS Statement”section on page 4870 for more details on
the DIRECTIONS statement.

Distance Classification

Next, the distance class for the point pairP1P2 is determined. The directed line
segmentP1P2 is superimposed on the coordinate system showing the distance or lag
classes. These classes are determined by the LAGD= specification in the COMPUTE
statement. Denoting the length of the line segment by| P1P2 | and the LAGD value
by ∆, the lag classL is determined by

L(P1P2) =
⌊
| P1P2 | +.5

∆

⌋

wherebxc denotes the largest integer≤ x.

When the directed line segmentP1P2 is superimposed on the coordinate system
showing the distance classes, it is seen to fall in the first lag class; seeFigure 80.13
for an illustration for∆ = 1.

lag 0

lag 1

N - 0
o

E - 90
o

lag 2

0 1 2

lag distance

lag tolerance

Figure 80.13. Selected Pair P1P2 Falls within the First Lag Class

Because pairwise distances are positive, lag class zero is smaller than lag classes
1, · · · ,MAXLAG− 1. For example, if you specify LAGD=1.0 and MAXLAG=10,
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and you do not specify a LAGTOL= value in the COMPUTE statement in PROC
VARIOGRAM, the ten lag classes generated by the preceding equation are

[0, .5), [.5, 1.5), [1.5, 2.5), · · · , [8.5, 9.5)

This is because the default lag tolerance is one-half the LAGD= value, resulting in no
gaps between the distance class intervals. This is shown inFigure 80.14.

o

1 2 3

h

lag 0 lag 1 lag 2 lag 3

Figure 80.14. Lag Distance Axis Showing Lag Classes

On the other hand, if you do specify a distance tolerance with the DTOL= option
in the COMPUTE statement, a further check is performed to see if the point pair
falls within this tolerance of the nearest lag. In the preceding example, if you spec-
ify LAGD=1.0 and MAXLAG=10 (as before) and also specify LAGTOL=0.25, the
intervals become

[0, 0.25), [0.75, 1.25), [1.75, 2.25), · · · , [8.75, 9.25)

Note that this specification results in gaps in the lag classes; a point pairP1P2 might
fall, for example, in the interval

| P1P2 |∈ [1.25, 1.75)

and hence be excluded from the semivariogram calculation. The maximum
LAGTOL= value allowed is half the LAGD= value; no overlap of the distance classes
is allowed.

Bandwidth Restriction

Because the areal segments generated from the angle and distance classes increase
in area as the lag distance increases, it is sometimes desirable to restrict this area
(Duetsch and Journel 1992, p. 45). If you specify the BANDW= option in the
COMPUTE statement, the lateral, or perpendicular, distance from the axis defining
the angle classes is fixed.

For example, suppose two pointsP3, P4 are picked from the domain inFigure 80.11
and are superimposed on the grid defining distance and angle classes, as shown in
Figure 80.15.
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Figure 80.15. Selected Pair P3P4 Falls Outside Bandwidth Limit

The endpoint of vectorP3P4 falls within the angle class around60o and the5th lag
class; however, it falls outside the restricted area defined by the bandwidth. Hence, it
is excluded from the semivariogram calculation.

Finally, a pairPiPj that falls in a lag class larger than the value of the MAXLAG=
option is excluded from the semivariogram calculation.

From this description, it is clear that the number of pairs within each angle/distance
class is strongly affected by the angle and lag tolerances. Since it is desirable to have
the maximum number of point pairs within each class, the angle tolerance and the
distance tolerance should usually be the default values.

Semivariogram Computation

With the classification of a point pairPiPj into an angle/distance class, as shown in
the preceding section, the semivariogram computation proceeds as follows.

Denote all pairsPiPj belonging to angle class[θk− δθk, θk + δθk) and distance class
L = L(PiPj) by N(θk, L). For example, in the preceding illustration,P1P2 belongs
to N(60o, 1).

Let | N(θk, L) | denote thenumberof such pairs. LetVi, Vj be the measured values at
pointsPi, Pj . The component of the standard (or method of moments) semivariogram
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corresponding to angle/distance classN(θk, L) is given by

2γ(hk) =
1

| N(θk, L) |
∑

PiPj∈N(θk,L)

(Vi − Vj)2

wherehk is the average distance in classN(θk, L); that is,

hk =
1

| N(θk, L) |
∑

PiPj∈N(θk,L)

| PiPj |

The robust version of the semivariogram, as suggested by Cressie (1993), is given by

2γ̄(hk) =
Ψ4(hk)

0.457 + 0.494/N(θk, L)

where

Ψ(hk) =
1

N(θk, L)

∑
PiPj∈N(θk,L)

(Vi − Vj)
1
2

This robust version of the semivariogram is computed when you specify the ROBUST
option in the COMPUTE statement in PROC VARIOGRAM.

PROC VARIOGRAM computes and writes to the OUTVAR= data set the quantities
hk, θk, L,N(θk, L), γ(h), andγ̄(h).

Output Data Sets

The VARIOGRAM procedure produces three data sets: the OUTVAR=SAS-data-set,
the OUTPAIR=SAS-data-set, and the OUTDIST=SAS-data-set. These data sets are
described in the following sections.

OUTVAR=SAS-data-set

The OUTVAR= data set contains the standard and robust versions of the sample semi-
variogram, the covariance, and other information at each lag class.

The details of the computation of the variogram, the robust variogram, and the co-
variance is described in the section“Theoretical and Computational Details of the
Semivariogram”on page 4872.

The OUTVAR= data set contains the following variables:

• ANGLE, which is the angle class value (clockwise from N–S)

• ATOL, which is the angle tolerance for the lag/angle class

• AVERAGE, which is the average variable value for the lag/angle class
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• BANDW, which is the band width for the lag/angle class

• COUNT, which is the number of pairs in the lag/angle class

• COVAR, which is the covariance value for the lag/angle class

• DISTANCE, which is the average lag distance for the lag/angle class

• LAG, which is lag class value (in LAGDISTANCE= units)

• RVARIO, which is the sample robust variogram value for the lag/angle class

• VARIOG, which is the sample variogram value for the lag/angle class

• VARNAME, which is the name of the current VAR= variable

The bandwidth variable,BANDW, is not included in the data set if no bandwidth
specification is given in the COMPUTE statement or in a DIRECTIONS statement.

OUTDIST=SAS-data-set

The OUTDIST= data set contains counts for a modified histogram showing the dis-
tribution of pairwise distances. The purpose of this data set is to enable you to make
choices for the value of the LAGDISTANCE= option in the COMPUTE statement in
subsequent runs of PROC VARIOGRAM.

For plotting and estimation purposes, it is desirable to have as many points as possible
for a variogram plot. However, a rule of thumb used in computing sample semivari-
ograms is to use at least 30 points in each interval whenever possible. Hence, there is
a lower limit to the value of the LAGDISTANCE= option.

Since the distribution of pairwise distances is seldom known in advance, the infor-
mation contained in the OUTDIST= data set enables you to choose, in an iterative
fashion, a value for the LAGDISTANCE= parameter. The value you choose is a
compromise between the number of pairs making up each variogram point and the
number of variogram points.

In some cases, the pattern of measured points may result in some lag or distance
classes having a small number of pairs, while the remaining classes have a large
number of pairs. By adjusting the value of the LAGDISTANCE= option to honor the
rule of thumb (at least 30 pairs), you are “wasting” pairs in the other distance classes.

One strategy for solving this problem is to use less than 30 pairs for these distance
classes. Then, either delete the corresponding variogram points or use them and
accept the increased uncertainty. Unfortunately, the deficient distance classes are
usually those close to the origin (h = 0). This is the crucial portion of the experi-
mental variogram curve for determining the form of the theoretical variogram and for
detecting the presence of a nugget effect.

Another alternative is to force distance classes to contain approximately the same
number of pairs. This results in distance classes of unequal widths.

While PROC VARIOGRAM does not produce such distance classes directly, the
OUTPAIR= data set, described in the section“OUTPAIR=SAS-data-set ” on page
4881, contains information on all distinct pairs of points. You can use this data set,
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along with the RANK procedure, to produce experimental variogram-based equal
numbers of pairs in each distance class.

To request an OUTDIST= data set, you specify the OUTDIST= data set in the PROC
VARIOGRAM statement and the NOVARIOGRAM option in the COMPUTE state-
ment. The NOVARIOGRAM option prevents any variogram or covariance computa-
tion from being performed.

Computation of the Distribution Distance Classes

The simplest way of determining the distribution of pairwise distances is to determine
the maximum distancehmax between pairs and divide this distance by some number
N of intervals to produce distance classes of lengthδ = hmax

N . The distance between
each pair of pointsP1, P2, denoted| P1P2 |, is computed, and the pairP1P2 is
counted in thekth distance class if| P1P2 |∈ [(k − 1)δ, kδ) for k = 1, · · · , N .

The actual computation is a slight variation of this. A bound, rather than the ac-
tual maximum distance, is computed. This bound is the length of the diagonal of a
bounding rectangle for the data points. This bounding rectangle is found by using the
maximum and minimumx andy coordinates,xmax, xmin, ymax, ymin, and forming
the rectangle determined by the points

(xmax, ymax), (xmax, ymin), (xmin, ymin), (xmin, ymax)

SeeFigure 80.16for an illustration of the bounding rectangle.
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Figure 80.16. Bounding Rectangle to Determine Maximum Pairwise Distance

The pairwise distance bound, denoted byhb, is given by

h2
b = (xmax − xmin)2 + (ymax − ymin)2
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Usinghb, the interval(0, hb] is divided intoN +1 subintervals, whereN is the value
of the NHCLASSES= option specified in the COMPUTE statement, orN = 10
if the NHCLASSES= option is not specified. The basic distance unit ish0 = hb

N ;
the distance intervals are centered onh0, 2h0, · · · , Nh0, with a distance tolerance of
±h0

2 . The extra subinterval is(0, h0/2), corresponding to the 0th lag. It is half the
length of the remaining subintervals, and it often contains the smallest number of
pairs.

This method of partitioning the interval(0, hb] is identical to what is done when you
actually compute the sample variogram.

The lag classes corresponding toh0=1 are shown inFigure 80.17.

o

1 2 3

h

lag 0 lag 1 lag 2 lag 3

Figure 80.17. Lag Classes Corresponding to h0 = 1

By increasing or decreasing the value of the NHCLASSES= option, you can adjust
the lag or distance class with the smallest count so that this count is around 30 or
some other value that you judge appropriate.

Once you determine an appropriate value for the NHCLASSES= option, you can
use the width of the lag classes as a candidate value for the LAGDIST= option in the
COMPUTE statement. The width of the lag classes is determined by the upper bound
(UB) and lower bound (LB) variables.

For example, read the observation from the OUTDIST= data set corresponding to lag
1 and compute the quantity UB-LB. Use this value for the LAGDIST= option in the
COMPUTE statement.

Note: Do not use the 0th lag class; it is half the length of the other intervals. Use lag
1 instead.

Variables in the OUTDIST= data set

The following variables are written to the OUTDIST= data set:

• COUNT, which is the number of pairs falling into this lag class

• LAG, which is the lag class value

• LB, which is the lower bound of the lag class interval

• UB, which is the upper bound of the lag class interval

• PER, which is the percent of all pairs falling in this lag class

• VARNAME, which is the name of the current VAR= variable
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OUTPAIR=SAS-data-set

The OUTPAIR= data set contains one observation for each distinct pair of points
P1, P2 in the original data set, unless you specify the OUTPDISTANCE= option in
the COMPUTE statement.

If you specify OUTPDISTANCE=Dmax in the COMPUTE statement, all pairsP1, P2

in the original data set that satisfy the relation| P1P2 |≤ Dmax are written to the
OUTPAIR= data set.

Note that the OUTPAIR= data set can be very large even for a moderately sized
DATA= data set. For example, if the DATA= data set has NOBS=500, the
OUTPAIR= data set has NOBS(NOBS− 1)/2 =124,750 if no OUTPDISTANCE=
restriction is given in the COMPUTE statement.

The OUTPAIR= data set contains information on the distance and orientation for
each point pair, and you can use it for specialized continuity measure calculations.

The OUTPAIR= data set contains the following variables:

• AC, which is the angle class value

• COS, which is the cosine of the angle between pairs

• DC, which is the distance (lag) class

• DISTANCE, which is the distance between pairs

• V1, which is the variable value for the first point in the pair

• V2, which is the variable value for the second point in the pair

• VARNAME, which is the variable name for the current VAR variable

• X1, which is thex coordinate of the first point in the pair

• X2, which is thex coordinate of the second point in the pair

• Y1, which is they coordinate of the first point in the pair

• Y2, which is they coordinate of the second point in the pair

Computational Resources

The computations of the VARIOGRAM procedure are basically binning: for each
pair of observations in the input data set, a distance and angle class is determined and
recorded. LetNd denote the number of distance classes,Na denote the number of an-
gle classes, andNv denote the number of VAR variables. The memory requirements
for these operations are proportional toNd ×Na ×Nv. This is typically small.

The CPU time required for the computations is proportional to the number of pairs
of observations, or toN2 × Nv, whereN is the number of observations in the input
data set.
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Example

Example 80.1. A Box Plot of the Square Root Difference Cloud

The Gaussian form chosen for the variogram in the“Getting Started”section on page
4852 is based on the consideration of the plots of the sample variogram. For the coal
thickness data, the Gaussian form appears to be a reasonable choice.

It can often happen, however, that a plot of the sample variogram shows so much
scatter that no particular form is evident. The cause of this scatter can be one or more
outliers in the pairwise differences of the measured quantities.

A method of identifying potential outliers is discussed in Cressie (1993, section
2.2.2). This example illustrates how to use the OUTPAIR= data set from PROC
VARIOGRAM to produce a square root difference cloud, which is useful in detect-
ing outliers.

For the spatial processZ(s), s ∈ R2, the square root difference cloud for a particular
directione is given by

| Z(si + he)− Z(si) |
1
2

for a given lag distanceh. In the actual computation, all pairs of pointsP1, P2 within
a distance tolerance aroundh and an angle tolerance around the directione are used.
This generates a number of point pairs for each lag classh. The spread of these values
gives an indication of outliers.

Following the example in the“Getting Started”section on page 4852, this example
uses a basic lag distance of7 units, with a distance tolerance of3.5, and a direction
of N–S, with a30o angle tolerance.

First, input the data, then use PROC VARIOGRAM to produce an OUTPAIR= data
set. Then use a DATA step to subset this data by choosing pairs within30o of N–S.
In addition, compute lag class and square root difference variables. Next, summarize
the results using the MEANS procedure and present them in a box plot using the
SHEWHART procedure. The box plot facilitates the detection of outliers.

You can conclude from this example that there does not appear to be any outliers in
the N–S direction for the coal seam thickness data.

title ’Square Root Difference Cloud Example’;
data thick;

input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
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24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

proc variogram data=thick outp=outp;
coordinates xc=east yc=north;
var thick;
compute novar;
run;

data sqroot;
set outp;

/*- Include only points +/- 30 degrees of N-S -------*/
where abs(cos) < .5;

/*- Unit lag of 7, distance tolerance of 3.5 -------*/
lag_class=int(distance/7 + .5000001);
sqr_diff=sqrt(abs(v1-v2));

run;

proc sort data=sqroot;
by lag_class;

run;

proc means data=sqroot noprint n mean std;
var sqr_diff;
by lag_class;
output out=msqrt n=n mean=mean std=std;

run;

title2 ’Summary of Results’;
proc print data=msqrt;

id lag_class;
var n mean std;

run;
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title ’Box Plot of the Square Root Difference Cloud’;
proc shewhart data=sqroot;

boxchart sqr_diff*lag_class / cframe=ligr haxis=axis1
vaxis=axis2;

symbol1 v=dot c=blue height=3.5pct;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);

run;

Output 80.1.1. Summary of Results
Square Root Difference Cloud Example

Summary of Results

lag_
class n mean std

0 5 0.47300 0.14263
1 31 0.77338 0.41467
2 55 1.13908 0.47604
3 58 1.51768 0.51989
4 63 1.67858 0.60494
5 61 1.66014 0.70687
6 75 1.77999 0.64590
7 85 1.69703 0.75362
8 84 1.74687 0.68785
9 115 1.70635 0.57173

10 82 1.48100 0.48105
11 85 1.19877 0.47121
12 68 0.89765 0.42510
13 38 0.84223 0.44249
14 7 1.05653 0.42548
15 3 1.35076 0.11472
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Output 80.1.2. Box Plot of the Square Root Difference Cloud
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Introduction to Special SAS Data Sets

All SAS/STAT procedures create SAS data sets. Any table generated by a procedure
can be saved to a data set by using the Output Delivery System (ODS), and many
procedures also have syntax to enable you to save other statistics to data sets. Some
of these data sets are organized according to certain conventions that allow them to
be read by a SAS/STAT procedure for further analysis. Such specially organized data
sets are recognized by the TYPE= attribute of the data set.

For example, the CORR procedure (refer to theSAS Procedures Guide) can cre-
ate a data set with the attribute TYPE=CORR containing a correlation matrix. This
TYPE=CORR data set can be read by the REG or FACTOR procedure, among others.
If the original data set is large, using a special SAS data set in this way can save a
great deal of computer time by avoiding the recomputation of the correlation matrix
in each of several analyses.

As another example, the REG procedure can create a TYPE=EST data set containing
estimated regression coefficients. If you need to make predictions for new observa-
tions, you can have the SCORE procedure read both the TYPE=EST data set and a
data set containing the new observations. PROC SCORE can then compute predicted
values or residuals without repeating the entire regression analysis. SeeChapter 64,
“The SCORE Procedure,”for an example.

A special SAS data set may contain different kinds of statistics. A special vari-
able called–TYPE– is used to distinguish the various statistics. For example,
in a TYPE=CORR data set, an observation in which–TYPE–=’MEAN’ con-
tains the means of the variables in the analysis, and an observation in which

–TYPE–=’STD’ contains the standard deviations. Correlations appear in obser-
vations with–TYPE–=’CORR’. Another special variable,–NAME– , is needed to
identify the row of the correlation matrix. Thus, the correlation between variables
X andY would be given by the value of the variableX in the observation for which

–TYPE–=’CORR’ and–NAME–=’Y’, or by the value of the variableY in the ob-
servation for which–TYPE–=’CORR’ and–NAME–=’X’.

You can create special SAS data steps directly in a DATA step by specifying the
TYPE= option in parentheses after the data set name in the DATA statement. See
Example A.2on page 4896 for an example.

The special data sets created by SAS/STAT procedures can generally be used directly
by other procedures without modification. However, if you create an output data set
with PROC CORR and use the NOCORR option to omit the correlation matrix from
the OUT= data set, you need to set the TYPE= option either in parentheses following
the OUT= data set name in the PROC CORR statement or in parentheses following
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the DATA= option in any other procedure that recognizes the special TYPE= attribute.
In either case, the TYPE= option should be set to COV, CSSCP, or SSCP according
to what type of matrix is stored in the data set and what data set types are accepted
as input by the other procedures you plan to use. If you do not follow these steps
and you use the TYPE=CORR data set with no correlation matrix as input to another
procedure, the procedure may issue an error message indicating that the correlation
matrix is missing from the data set.

If you use a DATA step with a SET statement to modify a special SAS data set, you
must specify the TYPE= option in the DATA statement. The TYPE= attribute of the
data set in the SET statement isnot automatically copied to the data set being created.

You can determine the TYPE= attribute of a data set by using the CONTENTS pro-
cedure (seeExample A.1on page 4895 and refer to theSAS Procedures Guidefor
details).

Table A.1summarizes the TYPE= data sets that can be used as input to SAS/STAT
procedures and the TYPE= data sets that are created by SAS/STAT procedures. The
essential parts of the statements each procedure uses to create its output data set or
data sets are shown.

Formulas useful for illustrating differences between corrected and uncorrected matri-
ces in some special SAS data sets are shown in the“Definitional Formulas”section
on page 4902.

Table A.1. SAS/STAT Procedures and Types of Data Sets

Procedure
Input Data Sets
TYPE= as shown∗

Output Data Sets
(TYPE=null or as
shown) Created by Statement and Specification

ACECLUS INITIAL= INPUT=
data set may be
of type:
ACE, CORR,
COV, SSCP,
UCORR, UCOV

ACE PROC ACECLUS OUTSTAT=
PROC ACECLUS OUT=

ANOVA PROC ANOVA OUTSTAT=

CALIS CORR, COV,
FACTOR, RAM,
SSCP,
UCORR, UCOV,
WEIGHT

CORR
COV
EST
UCORR
UCOV
RAM
WEIGHT

PROC CALIS OUTSTAT=
PROC CALIS COV OUTSTAT=
PROC CALIS OUTEST=
PROC CALIS NOINT OUTSTAT=
PROC CALIS NOINT COV OUTSTAT=
PROC CALIS OUTRAM=
PROC CALIS OUTWGT=

CANCORR CORR, COV,
FACTOR, SSCP,
UCORR, UCOV

CORR
UCORR

PROC CANCORR OUTSTAT=
PROC CANCORR NOINT OUTSTAT=
PROC CANCORR OUT=

CANDISC CORR, COV,
SSCP, CSSCP

CORR PROC CANDISC OUTSTAT=
PROC CANDISC OUT=

CATMOD EST EST RESPONSE / OUTEST=
RESPONSE /OUT=

CLUSTER DISTANCE TREE PROC CLUSTER OUTTREE=
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Table A.1. (continued)

Procedure
Input Data Sets
TYPE= as shown∗

Output Data Sets
(TYPE=null or as
shown) Created by Statement and Specification

CORRESP PROC CORRESP OUTC=
PROC CORRESP OUTF=

DISCRIM CORR, COV,
SSCP, CSSCP,
LINEAR, QUAD,
MIXED

LINEAR
QUAD
MIXED
CORR

PROC DISCRIM POOL=YES OUTSTAT=
PROC DISCRIM POOL=NO OUTSTAT=
PROC DISCRIM POOL=TEST OUTSTAT=
PROC DISCRIM METHOD=NPAR OUTSTAT=
PROC DISCRIM OUT=
PROC DISCRIM OUTCROSS=
PROC DISCRIM OUTD=
PROC DISCRIM TESTOUT=
PROC DISCRIM TESTOUTD=

DISTANCE DISTANCE PROC DISTANCE OUT=
PROC DISTANCE OUTSDZ=

FACTOR ACE, CORR,
COV, FACTOR,
SSCP, UCORR,
UCOV

FACTOR PROC FACTOR OUTSTAT=
PROC FACTOR OUT=

FASTCLUS PROC FASTCLUS OUT=
PROC FASTCLUS OUTSEED=
PROC FASTCLUS OUTSTAT=
PROC FASTCLUS MEAN=

FREQ TABLES OUT=
OUTPUT OUT=

GENMOD OUTPUT OUT=

GLM PROC GLM OUTSTAT=
LSMEANS / OUT=
OUTPUT OUT=

GLMMOD PROC GLMMOD OUTDESIGN=
PROC GLMMOD OUTPARM=

INBREED PROC INBREED OUTCOV=

KRIGE2D PROC KRIGE2D OUTEST=
PROC KRIGE2D OUTNBHD=

LATTICE

LIFEREG EST PROC LIFEREG OUTEST=
OUTPUT OUT=

LIFETEST PROC LIFETEST OUTSURV=
PROC LIFETEST OUTTEST=

LOGISTIC EST PROC LOGISTIC OUTEST=
OUTPUT OUT=
MODEL / OUTROC=



4892 � Appendix A. Special SAS Data Sets

Table A.1. (continued)

Procedure
Input Data Sets
TYPE= as shown∗

Output Data Sets
(TYPE=null or as
shown) Created by Statement and Specification

MDS PROC MDS OUT=
PROC MDS OUTFIT=
PROC MDS OUTRES=

MIXED MODEL OUTPRED=
MODEL OUTPREDM=
PRIOR OUT=
PRIOR OUTG=
PRIOR OUTGT=

MODECLUS DISTANCE PROC MODECLUS OUT=
PROC MODECLUS OUTCLUS=
PROC MODECLUS OUTSUM=

MULTTEST PROC MULTTEST OUT=
PROC MULTTEST OUTPERM=
PROC MULTTEST OUTSAMP=

NESTED

NLIN EST PROC NLIN OUTEST=
OUTPUT OUT=

NPAR1WAY OUTPUT OUT=

ORTHOREG EST PROC ORTHOREG OUTEST=

PHREG EST PROC PHREG OUTEST=
BASELINE OUT=
OUTPUT OUT=

PLAN OUTPUT OUT=

PLS OUTPUT OUT=

PRINCOMP ACE, CORR,
COV, EST,
FACTOR, SSCP,
UCORR, UCOV

CORR
COV
UCORR
UCOV

PROC PRINCOMP OUTSTAT=
PROC PRINCOMP COV OUTSTAT=
PROC PRINCOMP NOINT OUTSTAT=
PROC PRINCOMP NOINT COV OUTSTAT=
PROC PRINCOMP OUT=

PRINQUAL PROC PRINQUAL OUT=

PROBIT EST PROC PROBIT OUTEST=
OUTPUT OUT=

REG CORR, COV,
SSCP, UCORR,
UCOV

EST
SSCP

PROC REG OUTEST=
PROC REG OUTSSCP=
OUTPUT OUT=

RSREG PROC RSREG OUT=
RIDGE OUTR=

SCORE SCORE= data set
can be of any type

PROC SCORE OUT=

SIM2D PROC SIM2D OUTSIM=
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Table A.1. (continued)

Procedure
Input Data Sets
TYPE= as shown∗

Output Data Sets
(TYPE=null or as
shown) Created by Statement and Specification

SURVEYSELECT PROC SURVEYSELECT OUT=
PROC SURVEYSELECT OUTSORT=

STDIZE PROC STDIZE OUT=
PROC STDIZE OUTSTAT=

STEPDISC CORR, COV,
SSCP, CSSCP

TRANSREG PROC TRANSREG OUTTEST=
OUTPUT OUT=

TREE TREE PROC TREE OUT=

TTEST

VARCLUS CORR, COV,
FACTOR, SSCP,
UCORR, UCOV

CORR
UCORR
TREE

PROC VARCLUS OUTSTAT=
PROC VARCLUS NOINT OUTSTAT=
PROC VARCLUS OUTTREE=

VARCOMP

VARIOGRAM PROC VARIOGRAM OUTDISTANCE=
PROC VARIOGRAM OUTPAIR=
PROC VARIOGRAM OUTVAR=

∗If no TYPE= is shown, the procedure does not recognize any special data set types except possibly
to issue an error message for inappropriate values of TYPE=.

Special SAS Data Sets

TYPE=CORR Data Sets

A TYPE=CORR data set usually contains a correlation matrix and possibly other
statistics including means, standard deviations, and the number of observations in the
original SAS data set from which the correlation matrix was computed.

Using PROC CORR with an output data set option (OUTP=, OUTS=, OUTK=,
OUTH=, or OUT=) produces a TYPE=CORR data set. (For a complete description of
the CORR procedure, refer to theSAS Procedures Guide). The CALIS, CANCORR,
CANDISC, DISCRIM, PRINCOMP, and VARCLUS procedures can also create a
TYPE=CORR data set with additional statistics.

A TYPE=CORR data set containing a correlation matrix can be used as input for the
ACECLUS, CALIS, CANCORR, CANDISC, DISCRIM, FACTOR, PRINCOMP,
REG, SCORE, STEPDISC, and VARCLUS procedures.
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The variables in a TYPE=CORR data set are

• the BY variable or variables, if a BY statement is used with the procedure

• –TYPE– , a character variable of length eight with values identifying the type
of statistic in each observation, such as ’MEAN’, ’STD’, ’N’, and ’CORR’

• –NAME– , a character variable with values identifying the variable with which
a given row of the correlation matrix is associated

• other variables that were analyzed by the CORR procedure or other procedures

The usual values of the–TYPE– variable are as follows.

–TYPE– Contents
MEAN mean of each variable analyzed

STD standard deviation of each variable

N number of observations used in the analysis. PROC CORR records
the number of nonmissing values for each variable unless the
NOMISS option is used. If the NOMISS option is specified, or if
the CALIS, CANCORR, CANDISC, PRINCOMP, or VARCLUS
procedure is used to create the data set, observations with one or
more missing values are omitted from the analysis, so this value
is the same for each variable and provides the number of observa-
tions with no missing values. If a FREQ statement is used with the
procedure that creates the data set, the number of observations is
the sum of the relevant values of the variable in the FREQ state-
ment. Procedures that read a TYPE=CORR data set use the small-
est value in the observation with–TYPE–=’N’ as the number of
observations in the analysis.

SUMWGT sum of the observation weights if a WEIGHT statement is used
with the procedure that creates the data set. The values are deter-
mined analogously to those of the–TYPE–=’N’ observation.

CORR correlations with the variable named by the–NAME– variable

There may be additional observations in a TYPE=CORR data set depending on the
particular procedure and options used.

If you create a TYPE=CORR data set yourself, the data set need not contain the
observations with–TYPE–=’MEAN’, ’STD’, ’N’, or ’SUMWGT’, unless you in-
tend to use one of the discriminant procedures. Procedures assume that all of the
means are 0.0 and that the standard deviations are 1.0 if this information is not in the
TYPE=CORR data set. If–TYPE–=’N’ does not appear, most procedures assume
that the number of observations is 10,000; significance tests and other statistics that
depend on the number of observations are, of course, meaningless. In the CALIS
and CANCORR procedures, you can use the EDF= option instead of including a

–TYPE–=’N’ observation.
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A correlation matrix is symmetric; that is, the correlation betweenX andY is the
same as the correlation betweenY and X. The CALIS, CANCORR, CANDISC,
CORR, DISCRIM, PRINCOMP, and VARCLUS procedures output the entire cor-
relation matrix. If you create the data set yourself, you need to include only one of
the two occurrences of the correlation between two variables; the other may be given
a missing value.

If you create a TYPE=CORR data set yourself, the–TYPE– and–NAME– vari-
ables are not necessary except for use with the discriminant procedures and PROC
SCORE. If there is no–TYPE– variable, then all observations are assumed to con-
tain correlations. If there is no–NAME– variable, the first observation is assumed to
correspond to the first variable in the analysis, the second observation to the second
variable, and so on. However, if you omit the–NAME– variable, you will not be able
to analyze arbitrary subsets of the variables or list the variables in a VAR or MODEL
statement in a different order.

Example A.1: A TYPE=CORR Data Set Produced by PROC CORR

SeeOutput A.1.1for an example of a TYPE=CORR data set produced by the fol-
lowing SAS statements.Output A.1.2displays partial output from the CONTENTS
procedure, which indicates that the “Data Set Type” is ’CORR’.

title ’Five Socioeconomic Variables’;
data SocEcon;

title2 ’Harman (1976), Modern Factor Analysis, 3rd ed’;
input pop school employ services house;
datalines;

5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 11.4 4000 100 13000
;
proc corr noprint out=corrcorr;
run;

proc print data=corrcorr;
run;

proc contents data=corrcorr;
run;
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Output A.1.1. A TYPE=CORR Data Set Produced by PROC CORR

Five Socioeconomic Variables
Harman (1976), Modern Factor Analysis, 3rd ed

Obs _TYPE_ _NAME_ pop school employ services house

1 MEAN 6241.67 11.4417 2333.33 120.833 17000.00
2 STD 3439.99 1.7865 1241.21 114.928 6367.53
3 N 12.00 12.0000 12.00 12.000 12.00
4 CORR pop 1.00 0.0098 0.97 0.439 0.02
5 CORR school 0.01 1.0000 0.15 0.691 0.86
6 CORR employ 0.97 0.1543 1.00 0.515 0.12
7 CORR services 0.44 0.6914 0.51 1.000 0.78
8 CORR house 0.02 0.8631 0.12 0.778 1.00

Output A.1.2. Contents of a TYPE=CORR Data Set

The CONTENTS Procedure

Data Set Name WORK.CORRCORR Observations 8
Member Type DATA Variables 7
Engine V8 Indexes 0
Created 13:56 Wednesday, July 25, 2001 Observation Length 56
Last Modified 13:56 Wednesday, July 25, 2001 Deleted Observations 0
Protection Compressed NO
Data Set Type CORR Sorted NO
Label Pearson Correlation Matrix

Example A.2: Creating a TYPE=CORR Data Set in a DATA Step

This example creates a TYPE=CORR data set by reading a correlation matrix in a
DATA step.Output A.2.2shows the resulting data set.

title ’Five Socioeconomic Variables’;
data datacorr(type=corr);

infile cards missover;
type_=’corr’;
input _name_ $ pop school employ services house;
datalines;

POP 1.00000
SCHOOL 0.00975 1.00000
EMPLOY 0.97245 0.15428 1.00000
SERVICES 0.43887 0.69141 0.51472 1.00000
HOUSE 0.02241 0.86307 0.12193 0.77765 1.00000
;
run;

proc print data=datacorr;
run;
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Output A.2.2. A TYPE=CORR Data Set Created by a DATA Step

Five Socioeconomic Variables

Obs type_ _name_ pop school employ services house

1 corr POP 1.00000 . . . .
2 corr SCHOOL 0.00975 1.00000 . . .
3 corr EMPLOY 0.97245 0.15428 1.00000 . .
4 corr SERVICES 0.43887 0.69141 0.51472 1.00000 .
5 corr HOUSE 0.02241 0.86307 0.12193 0.77765 1

TYPE=UCORR Data Sets

A TYPE=UCORR data set is almost identical to a TYPE=CORR data set, except
that the correlations are uncorrected for the mean. The corresponding value of the

–TYPE– variable is ’UCORR’ instead of ’CORR’. Uncorrected standard deviations
are in observations with–TYPE–=’USTD’.

A TYPE=UCORR data set can be used as input for every SAS/STAT procedure that
uses a TYPE=CORR data set, except for the CANDISC, DISCRIM, and STEPDISC
procedures. TYPE=UCORR data sets can be created by the CALIS, CANCORR,
PRINCOMP, and VARCLUS procedures.

TYPE=COV Data Sets

A TYPE=COV data set is similar to a TYPE=CORR data set except that it
has –TYPE–=’COV’ observations containing covariances instead of or in addi-
tion to –TYPE–=’CORR’ observations containing correlations. The CALIS and
PRINCOMP procedures create a TYPE=COV data set if the COV option is used.
You can also create a TYPE=COV data set by using PROC CORR with the COV
and NOCORR options and specifying the data set option TYPE=COV in parentheses
following the name of the output data set. You can use only the OUTP= or OUT=
options to create a TYPE=COV data set with PROC CORR.

Another way to create a TYPE=COV data set is to read a covariance matrix in a data
set, in the same manner as shown inExample A.2on page 4896 for a TYPE=CORR
data set.

TYPE=COV data sets are used by the same procedures that use TYPE=CORR data
sets.
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TYPE=UCOV Data Sets

A TYPE=UCOV data set is similar to a TYPE=COV data set, except that the covari-
ances are uncorrected for the mean. Also, the corresponding value of the–TYPE–
variable is ’UCOV’ instead of ’COV’.

A TYPE=UCOV data set can be used as input for every SAS/STAT procedure that
uses a TYPE=COV data set, except for the CANDISC, DISCRIM, and STEPDISC
procedures. TYPE=UCOV data sets can be created by the CALIS and PRINCOMP
procedures.

TYPE=SSCP Data Sets

A TYPE=SSCP data set contains an uncorrected sum of squares and crossprod-
ucts (SSCP) matrix. TYPE=SSCP data sets are produced by PROC REG when the
OUTSSCP= option is specified in the PROC REG statement. You can also create a
TYPE=SSCP data set by using PROC CORR with the SSCP option and specifying
the data set option TYPE=SSCP in parentheses following the name of the OUTP= or
OUT= data set. You can also create TYPE=SSCP data sets in a DATA step; in this
case, TYPE=SSCP must be specified as a data set option.

The variables in a TYPE=SSCP data set include those found in a TYPE=CORR data
set. In addition, there is a variable calledIntercept that contains crossproducts for
the intercept (sums of the variables). The SSCP matrix is stored in observations
with –TYPE–=’SSCP’, including a row with–NAME–=’Intercept’. PROC REG
also outputs an observation with–TYPE–=’N’. PROC CORR includes observations
with –TYPE–=’MEAN’ and –TYPE–=’STD’ as well.

TYPE=SSCP data sets are used by the same procedures that use TYPE=CORR data
sets.

Example A.3: A TYPE=SSCP Data Set Produced by PROC REG

Output A.3.1shows a TYPE=SSCP data set produced by PROC REG from the
SocEcon data set created inExample A.1on page 4895.

proc reg data=SocEcon outsscp=regsscp;
model house=pop school employ services / noprint;

run;

proc print data=regsscp;
run;
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Output A.3.1. A TYPE=SSCP Data Set Produced by PROC REG

Obs _TYPE_ _NAME_ Intercept pop school employ services house

1 SSCP Intercept 12.0 74900 137.30 28000 1450 204000
2 SSCP pop 74900.0 597670000 857640.00 220440000 10959000 1278700000
3 SSCP school 137.3 857640 1606.05 324130 18152 2442100
4 SSCP employ 28000.0 220440000 324130.00 82280000 4191000 486600000
5 SSCP services 1450.0 10959000 18152.00 4191000 320500 30910000
6 SSCP house 204000.0 1278700000 2442100.00 486600000 30910000 3914000000
7 N 12.0 12 12.00 12 12 12

TYPE=CSSCP Data Sets

A TYPE=CSSCP data set contains a corrected sum of squares and crossproducts
(CSSCP) matrix. TYPE=CSSCP data sets are created by using the CORR procedure
with the CSSCP option and specifying the data set option TYPE=CSSCP in paren-
theses following the name of the OUTP= or OUT= data set. You can also create
TYPE=CSSCP data sets in a DATA step; in this case, TYPE=CSSCP must be speci-
fied as a data set option.

The variables in a TYPE=CSSCP data set are the same as those found in a
TYPE=SSCP data set, except that there is not a variable calledIntercept or a row
with –NAME–=’Intercept’.

TYPE=CSSCP data sets are read by only the CANDISC, DISCRIM, and STEPDISC
procedures.

TYPE=EST Data Sets

A TYPE=EST data set contains parameter estimates. The CALIS, CATMOD,
LIFEREG, LOGISTIC, NLIN, ORTHOREG, PHREG, PROBIT, and REG proce-
dures create TYPE=EST data sets when the OUTEST= option is specified. A
TYPE=EST data set produced by PROC LIFEREG, PROC ORTHOREG, or PROC
REG can be used with PROC SCORE to compute residuals or predicted values.

The variables in a TYPE=EST data set include

• the BY variables, if a BY statement is used

• –TYPE– , a character variable of length eight, that indicates the type of esti-
mate. The values depend on which procedure created the data set. Usually a
value of ’PARM’ or ’PARMS’ indicates estimated regression coefficients, and
a value of ’COV’ or ’COVB’ indicates estimated covariances of the parame-
ter estimates. Some procedures, such as PROC NLIN, have other values of

–TYPE– for special purposes.

• –NAME– , a character variable that contains the values of the names of the
rows of the covariance matrix when the procedure outputs the covariance ma-
trix of the parameter estimates.

• variables that contain the parameter estimates, usually the same variables that
appear in the VAR statement or in any MODEL statement. SeeChapter
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19, “The CALIS Procedure,”Chapter 22, “The CATMOD Procedure,”and
Chapter 50, “The NLIN Procedure,”for details on the variable names used in
output data sets created by those procedures.

Other variables can be included depending on the particular procedure and options
used.

Example A.4: A TYPE=EST Data Set Produced by PROC REG

Output A.4.1shows the TYPE=EST data set produced by the following statements:

proc reg data=SocEcon outest=regest covout;
full: model house=pop school employ services / noprint;
empser: model house=employ services / noprint;

run;

proc print data=regest;
run;

Output A.4.1. A TYPE=EST Data Set Produced by PROC REG

Obs _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept

1 full PARMS house 3122.03 -8074.21
2 full COV Intercept house 3122.03 109408014.44
3 full COV pop house 3122.03 -9157.04
4 full COV school house 3122.03 -9784744.54
5 full COV employ house 3122.03 20612.49
6 full COV services house 3122.03 102764.89
7 empser PARMS house 3789.96 15021.71
8 empser COV Intercept house 3789.96 5824096.19
9 empser COV employ house 3789.96 -1915.99

10 empser COV services house 3789.96 -1294.94

Obs pop school employ services house

1 0.65 2140.10 -2.92 27.81 -1
2 -9157.04 -9784744.54 20612.49 102764.89 .
3 2.32 852.86 -6.20 -5.20 .
4 852.86 907886.36 -2042.24 -9608.59 .
5 -6.20 -2042.24 17.44 6.50 .
6 -5.20 -9608.59 6.50 202.56 .
7 . . -1.94 53.88 -1
8 . . -1915.99 -1294.94 .
9 . . 1.15 -6.41 .

10 . . -6.41 134.49 .

TYPE=ACE Data Sets
A TYPE=ACE data set is created by the ACECLUS procedure, and it contains the
approximate within-cluster covariance estimate, as well as eigenvalues and eigen-
vectors from a canonical analysis, among other statistics. It can be used as input
to the ACECLUS procedure to initialize another execution of PROC ACECLUS. It
can also be used to compute canonical variable scores with the SCORE procedure
and as input to the FACTOR procedure, specifying METHOD=SCORE, to rotate the
canonical variables. SeeChapter 16, “The ACECLUS Procedure,”for details.
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TYPE=DISTANCE Data Sets

You can create a TYPE=DISTANCE data set containing distance or dissimilarity
measures using the DISTANCE procedure. The proximity measures are stored as a
lower triangular matrix or a square matrix in the OUT= data set (depending on the
SHAPE= option). SeeChapter 26, “The DISTANCE Procedure,”for details. You
can also create a TYPE=DISTANCE data set in a DATA step by reading or computing
a lower triangular or symmetric matrix of dissimilarity values, such as a chart of
mileage between cities. The number of observations must be equal to the number of
variables used in the analysis. This type of data set is used as input by the CLUSTER
and MODECLUS procedures. PROC CLUSTER ignores the upper triangular portion
of a TYPE=DISTANCE data set and assumes that all main diagonal values are zero,
even if they are missing. PROC MODECLUS uses the entire distance matrix and does
not require the matrix to be symmetric. SeeChapter 23, “The CLUSTER Procedure,”
andChapter 47, “The MODECLUS Procedure,”for examples and details.

TYPE=FACTOR Data Sets

A TYPE=FACTOR data set is created by PROC FACTOR when the OUTSTAT=
option is specified. The CALIS, CANCORR, FACTOR, PRINCOMP, SCORE, and
VARCLUS procedures can use TYPE=FACTOR data sets as input. The variables are
the same as in a TYPE=CORR data set. The statistics include means, standard devi-
ations, sample size, correlations, eigenvalues, eigenvectors, factor patterns, residual
correlations, scoring coefficients, and others depending on the options specified. See
Chapter 27, “The FACTOR Procedure,”for details.

When the NOINT option is used with the OUTSTAT= option in PROC FACTOR, the
value of the–TYPE– variable is set to ’USCORE’ instead of ’SCORE’ to indicate
that the scoring coefficients have not been corrected for the mean. If this data set
is used with the SCORE procedure, the value of the–TYPE– variable tells PROC
SCORE whether or not to subtract the mean from the scoring coefficients.

TYPE=RAM Data Sets

The CALIS procedure creates and accepts as input a TYPE=RAM data set. This
data set contains the model specification and the computed parameter estimates. A
TYPE=RAM data set is intended to be reused as an input data set to specify good
initial values in subsequent analyses by PROC CALIS. SeeChapter 19, “The CALIS
Procedure,”for details.

TYPE=WEIGHT Data Sets

The CALIS procedure creates and accepts as input a TYPE=WEIGHT data set. This
data set contains the weight matrix used in generalized, weighted, or diagonally
weighted least-squares estimation. SeeChapter 19, “The CALIS Procedure,”for
details.
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TYPE=LINEAR Data Sets

A TYPE=LINEAR data set contains the coefficients of a linear function of the vari-
ables in observations with–TYPE–=’LINEAR’.

The DISCRIM procedure stores linear discriminant function coefficients in a
TYPE=LINEAR data set when you specify METHOD=NORMAL (the default
method), POOL=YES, and an OUTSTAT= data set; the data set can be used in a
subsequent invocation of PROC DISCRIM to classify additional observations. Many
other statistics can be included depending on the options used. SeeChapter 25, “The
DISCRIM Procedure,”for details.

TYPE=QUAD Data Sets

A TYPE=QUAD data set contains the coefficients of a quadratic function of the vari-
ables in observations with–TYPE–=’QUAD’.

The DISCRIM procedure stores quadratic discriminant function coefficients in
a TYPE=QUAD data set when you specify METHOD=NORMAL (the default
method), POOL=NO, and an OUTSTAT= data set; the data set can be used in a
subsequent invocation of PROC DISCRIM to classify additional observations. Many
other statistics can be included depending on the options used. SeeChapter 25, “The
DISCRIM Procedure,”for details.

TYPE=MIXED Data Sets

A TYPE=MIXED data set contains coefficients of either a linear or a quadratic func-
tion, or both if there are BY groups.

The DISCRIM procedure produces a TYPE=MIXED data set when you specify
METHOD=NORMAL (the default method), POOL=TEST, and an OUTSTAT= data
set. SeeChapter 25, “The DISCRIM Procedure,”for details.

Definitional Formulas

This section contrasts corrected and uncorrected SSCP, COV, and CORR matrices by
showing how these matrices can be computed.

In the following formulas, assume that the data consist of two variables,X andY,
with n observations.

SSCP =

 n
∑

X
∑

Y∑
X

∑
X2

∑
XY∑

Y
∑

XY
∑

Y 2
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[ ∑
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]
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COV =
CSSCP
n− 1

=
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(X − X̄)(Y − Ȳ )
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(Y − Ȳ )2∑
(X − X̄)(Y − Ȳ )√∑
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Appendix B
Using the %PLOTIT Macro

Overview

You can use the PLOT procedure to create low-resolution printer plots of labeled
points. Alternatively, you can use the %PLOTIT macro to create high-resolution
graphical scatter plots of labeled points.

The %PLOTIT macro is designed to make it easy to display raw data, regres-
sion results, and results from the CORRESP, MDS, PRINCOMP, PRINQUAL, and
TRANSREG procedures. You can use this macro to position labels, draw curves,
vectors, and circles, and shade to show density or a third variable. You can also use
the %PLOTIT macro to control the colors, sizes, fonts, and general appearance of the
plots and to create contour plots for discriminant analysis.

The %PLOTIT macro is a part of the SAS autocall library. If your site has installed
the autocall libraries supplied by SAS Institute and uses the standard configuration of
SAS software supplied by the Institute, you need only to ensure that the SAS system
option MAUTOSOURCE is in effect to begin using the autocall macros.

For more information about autocall libraries, refer toSAS Macro Language:
Reference, First Edition, 1997. The %PLOTIT macro can also be found at SAS
Institute’s Web site [http://www.sas.com]. Refer to “Experimental Design and
Choice Modeling Macros” and “Graphical Scatter Plots of Labeled Points” at
[http://support.sas.com/techsup/tnote/tnote–stat.html#market].

%PLOTIT Macro Options Used in This Book

Most of the examples in this book that invoke the %PLOTIT macro are created with a
specific set of options. The graphics are generated by using a special macro variable
calledplotitop.

The code you see in the examples creates the color graphics that appear in the online
(CD) version of the manual. A slightly different set of options and statements are
used to create the black-and-white graphics that appear in the printed version of the
book.

To create the online (color) version of the graphic output, theplotitop variable is
defined as follows.
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%let plotitop = gopts = gsfmode = replace
gaccess = gsasfile device = gif
hsize = 5.63 vsize = 3.5
cback = white,
cframe = ligr,
color = black,
colors = red blue white,
options = noclip expand, post=myplot.gif;

To create the black-and-white version of the graphic output, which appears in the
printed version of the manual, theplotitop variable is defined as follows:

%let plotitop = gopts = gsfmode = replace
gaccess = gsasfile device = pslepsf
hsize = 5.63 vsize = 3.5
cback = white,
color = black,
colors = black,
options = noclip border expand, post=myplot.ps;

For information on graphics options used in other examples, seeChapter 1,
“Introduction.”
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one-way tests (NPAR1WAY), 3165
one-way, variance-weighted, 445, 1769
power and sample size (GLMPOWER), 1930,

1951, 1956
power and sample size (POWER), 3438, 3442,

3443, 3513, 3536
quadratic response surfaces, 4045
repeated measures (CATMOD), 873
repeated measures (GLM), 1825, 1877, 1886
SURVEYREG procedure, 4387
three-way design (GLM), 1864
unbalanced (GLM), 1735, 1804, 1856
within-subject factors, repeated measurements,

449
analysis statements

POWER procedure, 3420
Analysis style

ODS styles, 333
analyst’s model

MI procedure, 2563
analyzing data in groups, 3076

ACECLUS procedure, 394
CANCORR procedure, 763
FACTOR procedure, 1320
FASTCLUS procedure, 1395
MDS procedure, 2485
MODECLUS procedure, 2857, 2874
PRINCOMP procedure, 3607
SCORE procedure, 4073
STDIZE procedure, 4134
TREE procedure, 4754
VARCLUS procedure, 4813

Andersen-Gill model
PHREG procedure, 3216, 3243, 3253

angle classes

VARIOGRAM procedure, 4866, 4868, 4870,
4872, 4873

angle tolerance
VARIOGRAM procedure, 4866, 4868, 4870,

4872, 4873
anisotropic

models (KRIGE2D), 2053–2056
models (VARIOGRAM), 4871
nugget effect (KRIGE2D), 2056

annotate
global data set (REG), 3816
local data set (REG), 3844

annotating
cdf plots, 3718
ipp plots, 3729
lpred plots, 3737
pplot plots, 2102
predicted probability plots, 3750

ANOVA
codings (TRANSREG), 4662
SURVEYREG procedure, 4380, 4387, 4392
table (TRANSREG), 4580, 4615, 4650

ANOVA (row mean scores) statistic, 1502
ANOVA procedure

absorption of effects, 434
alpha level, 441
at sign (@) operator, 452
balanced data, 423
bar (|) operator, 452
Bartlett’s test, 443
block diagonal matrices, 423
Brown and Forsythe’s test, 443
canonical analysis, 438
characteristic roots and vectors, 437
compared to other procedures, 1734
complete block design, 428
computational methods, 456
confidence intervals, 442
contrasts, 448
dependent variable, 423
disk space, 433
effect specification, 451
factor name, 446, 447
homogeneity of variance tests, 443
hypothesis tests, 450
independent variable, 423
interactive use, 454
interactivity and missing values, 455
introductory example, 424
level values, 447
Levene’s test for homogeneity of variance, 443
means, 440
memory requirements, 434, 456
missing values, 433, 455
model specification, 451
multiple comparison procedures, 440
multiple comparisons, 441–445
multivariate analysis of variance, 433, 436
O’Brien’s test, 443
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ODS graph names, 460
ODS table names, 458
orthonormalizing transformation matrix, 438
output data sets, 434, 455
pooling, automatic, 454
repeated measures, 446
sphericity tests, 449
SSCP matrix for multivariate tests, 437
transformations, 447, 448
transformations for MANOVA, 437
unbalanced data, caution, 423
Welch’s ANOVA, 445
WHERE statement, 454

Ansari-Bradley scores
NPAR1WAY procedure, 3168

ante-dependence structure
MIXED procedure, 2721

apparent error rate, 1163
approximate

covariance, options (CALIS), 621
standard errors (CALIS), 576, 587, 648, 686

approximate Bayesian bootstrap
MI procedure, 2543

approximate covariance estimation
clustering, 387

arbitrary missing pattern
MI procedure, 2539

arcsine-square root transform
LIFETEST procedure, 2205

arcsine-square root transformation
LIFETEST procedure, 2169, 2177

arrays
NLMIXED procedure, 3074

association tests
LIFETEST procedure, 2150, 2156, 2200

association, measures of
FREQ procedure, 1474

asterisk (*) operator
TRANSREG procedure, 4558

asymmetric
data (MDS), 2484

asymmetric binary variable
DISTANCE procedure, 1250

asymmetric lambda, 1474, 1482
asymptotic covariance

CALIS procedure, 575, 645
MIXED procedure, 2674

asymptotic variances
CALIS procedure, 647

asymptotically distribution free estimation
CALIS procedure, 574, 646

at sign (@) operator
ANOVA procedure, 452
CATMOD procedure, 866
GLM procedure, 1786
MIXED procedure, 2745, 2819
TRANSREG procedure, 4558

autocorrelation
REG procedure, 3915

autocorrelation function plot
MI procedure, 2557

autoregressive structure
example (MIXED), 2788
MIXED procedure, 2721

average linkage
CLUSTER procedure, 966, 976

average relative increase in variance
MIANALYZE procedure, 2627

average variance of means
LATTICE procedure, 2074

axes labels, modifying
examples, ODS Graphics, 368

B
B-spline basis

TRANSREG procedure, 4560, 4614
backward elimination

LOGISTIC procedure, 2317, 2340
PHREG procedure, 3229, 3264
REG procedure, 3800, 3874

badness of fit
MDS procedure, 2479, 2482, 2483, 2489, 2490

balanced data
ANOVA procedure, 423
example, complete block, 1847

balanced design, 2985
balanced square lattice

LATTICE procedure, 2069
banded Toeplitz structure

MIXED procedure, 2721
bandwidth

optimal (DISCRIM), 1162
selection (KDE), 2008
VARIOGRAM procedure, 4866, 4870, 4875

bar (|) operator
ANOVA procedure, 452
CATMOD procedure, 865
GENMOD procedure, 1660
GLM procedure, 1786
MIXED procedure, 2743, 2745, 2819
TRANSREG procedure, 4558

Bartlett’s test
ANOVA procedure, 443
GLM procedure, 1767, 1819

Base SAS software, 21
baseline survivor function (PHREG)

confidence level, 3225
confidence limits, 3225, 3263
estimation method, 3226
standard error, 3225, 3263

Bayes estimation
NLMIXED procedure, 3084

Bayes’ theorem
DISCRIM procedure, 1157
LOGISTIC procedure, 2314, 2353
MI procedure, 2547

Bayesian analysis
MIXED procedure, 2708
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Bayesian confidence intervals
splines, 4513

Bayesian inference
MI procedure, 2547

Behrens-Fisher problem, 4775
Bernoulli distribution

NLMIXED procedure, 3077
best subset selection

LOGISTIC procedure, 2308, 2317, 2341
PHREG procedure, 3229, 3265, 3279

between-cluster SSCP matrix
ACECLUS procedure, 387

between-imputation covariance matrix
MIANALYZE procedure, 2626

between-imputation variance
MI procedure, 2561
MIANALYZE procedure, 2624

between-subject factors
repeated measures, 1777, 1828

Bhapkar’s test, 932
bimodality coefficient

CLUSTER procedure, 972, 984
bin-sort algorithm, 1389
binary distribution

NLMIXED procedure, 3077
Binary Lance and Williams nonmetric coefficient

DISTANCE procedure, 1276
binning

KDE procedure, 2004
binomial distribution

GENMOD procedure, 1652
NLMIXED procedure, 3077

binomial proportion test, 1484
examples, 1532
power and sample size (POWER), 3429, 3432,

3504–3506, 3541
bioequivalence,

equivalence tests
power and sample size (POWER), 3510, 3511,

3520, 3521, 3530, 3531, 3549
biological assay data, 3705, 3761
biplot

PRINQUAL procedure, 3678
biquartimax method, 1291, 1317, 1318
biquartimin method, 1291, 1318
bivariate density estimation

DISCRIM procedure, 1200
bivariate histogram

KDE procedure, 2011
biweight kernel (DISCRIM), 1160
block diagonal matrices

ANOVA procedure, 423
BLUE

MIXED procedure, 2740
BLUP

MIXED procedure, 2740
Bonferronit test, 441, 1765, 1809
Bonferroni adjustment

GLM procedure, 1754

MIXED procedure, 2688
MULTTEST procedure, 2939, 2956

bootstrap
MI procedure, 2527

bootstrap adjustment
MULTTEST procedure, 2938, 2939, 2957, 2968

boundary constraints, 3075
MIXED procedure, 2707, 2708, 2773

bounds
NLMIXED procedure, 3075

Bowker’s test of symmetry, 1493, 1494
Box Cox Example

TRANSREG procedure, 4721
Box Cox transformations

TRANSREG procedure, 4595
box plot, defined, 483
Box plots

MIXED procedure, 2762
box plots

plots, ODS Graphics, 355
reading group summary statistics, 522
saving group summary statistics, 518, 519

box plots, clipping boxes, 497, 498
examples, 532, 533

box plots, labeling
angles for, 503
points, 492

Box’s epsilon, 1829
box-and-whisker plots

schematic, 539
side-by-side, 483
skeletal, 538
statistics represented, 485, 517
styles of, 522

BOXPLOT procedure
continuous group variables, 524
missing values, 524
percentile computation, 523

branch and bound algorithm
LOGISTIC procedure, 2341
PHREG procedure, 3265, 3279

Bray and Curtis coefficient
DISTANCE procedure, 1276

Breslow method
likelihood (PHREG), 3228, 3240

Breslow test,
See Wilcoxon test for homogeneity

Breslow-Day test, 1508
Brewer’s method

SURVEYSELECT procedure, 4453
Brown and Forsythe’s test

ANOVA procedure, 443
GLM procedure, 1767, 1819

Brown-Mood test
NPAR1WAY procedure, 3167

Broyden-Fletcher-Goldfarb-Shanno update, 3073
Burt table

CORRESP procedure, 1076
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C
calibration data set

DISCRIM procedure, 1139, 1167
CALIS procedure

approximate covariance, 621
approximate standard errors, 576, 587, 648, 686
asymptotic covariance, 575, 645
asymptotic variances, 647
asymptotically distribution free estimation, 574,

646
chi-square indices, 653
chi-square, adjusted, 655
chi-square, displaying, 684, 685
chi-square, reweighted, 655
coefficient of determination, 585
compared to MIXED procedure, 2665
computation method, Hessian matrix, 589
computation method, Lagrange multipliers, 589
computation method, standard errors, 589
computational problems, 678, 680, 681
computational problems, identification, 669,

680, 724, 726, 732, 741
constrained estimation, 565
constraints, 565, 609, 610, 675, 676
constraints, program statements, 565, 628, 630,

675
COSAN model, 552, 591
degrees of freedom, 573, 576, 590, 676
determination index, 657
displayed output options, 583, 621
disturbances, prefix, 601
EQS program, 555
estimation criteria, 646
estimation methods, 549, 574, 644–647
exogenous variables, 662
factor analysis model, 554, 606, 608
factor analysis model, COSAN statement, 593
factor analysis model, LINEQS statement, 602
factor analysis model, RAM statement, 598
factor loadings, 641
FACTOR procedure, 567, 572, 606, 679
factor rotation, 607
factor scores, 641, 643, 687
fit function, 644
goodness of fit, 644, 649, 652, 684
gradient, 634, 664, 665
Hessian matrix, 621, 622, 634, 647, 665
initial values, 550, 590, 595, 597, 602, 661
input data set, 630
kappa, 659
kurtosis, 549, 584, 588, 658, 660
latent variables, 549, 601, 625
likelihood ratio test, 653, 674
LINEQS model, 553, 601
LISREL model, 554
manifest variables, 549
matrix inversion, 647
matrix names, default, 608
matrix properties, COSAN model, 592

MODEL procedure, 679
modification indices, 576, 584, 649, 673, 674,

687
optimization, 550, 577–581, 622, 664–666, 671,

672
optimization history, 668
optimization, initial values, 661, 666
optimization, memory problems, 666
optimization, termination criteria, 611, 615–620
output data sets, 634
output table names, 688
predicted model matrix, 643, 644, 663, 680, 683
prefix name, 594, 598, 602, 603
PRINCOMP procedure, 567
program statements, 628, 630
program statements, differentiation, 589
RAM model, 553, 596
reciprocal causation, 585
REG procedure, 679
residuals, 650
residuals, prefix, 601
SCORE procedure, 571, 586, 643
significance level, 588
simplicity functions, 607
singularity criterion, 590
singularity criterion, covariance matrix, 588,

590, 591
skewness, 658
squared multiple correlation, 657, 686
step length, 581
structural equation, 552, 585, 625, 658
SYSLIN procedure, 679
SYSNLIN procedure, 679
t value, 649, 686
test indices, constraints, 584
variable selection, 662
Wald test, probability limit, 590

CANALS method
TRANSREG procedure, 4576

Canberra metric coefficient
DISTANCE procedure, 1272

CANCORR procedure
analyzing data in groups, 763
canonical coefficients, 751
canonical redundancy analysis, 751, 761
computational resources, 768
correction for means, 760
correlation, 760
eigenvalues, 765
eigenvalues and eigenvectors, 754, 769
examples, 753, 773
formulas, 765
input data set, 760
missing values, 765
OUT= data sets, 761, 766
output data sets, 761, 766
output table names, 771
OUTSTAT= data sets, 766
partial correlation, 761, 762, 764
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principal components, relation to, 765
regression coefficients, 759
semipartial correlation, 762
singularity checking, 762
squared multiple correlation, 762
squared partial correlation, 762
squared semipartial correlation, 762
statistical methods used, 752
statistics computed, 751
suppressing output, 761
weighted product-moment correlation coeffi-

cients, 764
CANDISC procedure

computational details, 794
computational resources, 799
input data set, 795
introductory example, 785
Mahalanobis distance, 804
MANOVA, 786
memory requirements, 799
missing values, 794
multivariate analysis of variance, 786
ODS table names, 802
output data sets, 791, 796, 797
%PLOTIT macro, 785, 808
time requirements, 799

canonical analysis
ANOVA procedure, 438
GLM procedure, 1760
repeated measurements, 448
response surfaces, 4046

canonical coefficients, 783
canonical component, 783
canonical correlation

CANCORR procedure, 751
definition, 752
hypothesis tests, 751
TRANSREG procedure, 4584, 4593

canonical discriminant analysis, 783, 1139
canonical factor solution, 1297
canonical redundancy analysis

CANCORR procedure, 751, 761
canonical variables, 783

ANOVA procedure, 438
TRANSREG procedure, 4584

canonical weights, 752, 783
cascaded density estimates

MODECLUS procedure, 2873
case weight

PHREG procedure, 3239
case-control studies

odds ratio, 1488, 1503, 1504
PHREG procedure, 3217, 3228, 3280

casewise deletion
PRINQUAL procedure, 3655

categorical data analysis,
See CATMOD procedure

categorical variable, 72
categorical variables,

See classification variables
CATMOD

parameterization, 845
CATMOD procedure

analysis of variance, 815
at sign (@) operator, 866
AVERAGED models, 881
bar (|) operator, 865
cautions, 869, 870, 887
cell count data, 861
classification variables, 864
compared to other procedures, 815, 869, 870,

1792
computational method, 891–894
continuous variables, 864
continuous variables, caution, 869, 870
contrast examples, 919
contrasts, comparing with GLM, 833
convergence criterion, 842
design matrix, 847, 848
design matrix, REPEATED statement, 882
effect specification, 864
effective sample sizes, 887
estimation methods, 817

–F– specification, 840, 862
hypothesis tests, 888
input data sets, 813, 860
interactive use, 818, 828
introductory example, 818
iterative proportional fitting, 843
linear models, 814
log-linear models, 814, 870, 916, 919, 1616
logistic analysis, 815, 868, 933
logistic regression, 814, 869, 911
maximum likelihood estimation, 817
maximum likelihood estimation formulas, 895
memory requirements, 897
missing values, 860
MODEL statement, examples, 840
ordering of parameters, 880
ordering of populations, 863
ordering of responses, 863
ordinal model, 869
output data sets, 854, 866, 867
parameterization, comparing with GLM, 833
positional requirements for statements, 828
quasi-independence model, 919
regression, 815
repeated measures, 815, 850, 873, 925, 930, 933,

937
repeated measures, MODEL statements, 875
REPEATED statement, examples, 873
response functions, 836, 840, 852, 854–856,

859, 862, 901, 906, 944

–RESPONSE– keyword, 836, 839, 840, 842,
850, 864, 870, 873, 881, 882, 884, 888, 898

–RESPONSE–= option, 837, 851
restrictions on parameters, 859
sample survey analysis, 816
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sampling zeros and log-linear analyses, 871
sensitivity, 941
singular covariance matrix, 887
specificity, 941
time requirements, 897
types of analysis, 814, 864
underlying model, 816
weighted least squares, 817, 846
zeros, structural and sampling, 888, 919, 924

CDF,
See cumulative distribution function

cdf plots
annotating, 3718
axes, color, 3718
font, specifying, 3719
options summarized by function, 3716, 3734
reference lines, options, 3719–3722
threshold lines, options, 3721

cdfplot
PROBIT procedure, 3715

ceiling sample size
GLMPOWER procedure, 1947
POWER procedure, 3419, 3496

cell count data, 1464
CATMOD procedure, 861
example (FREQ), 1527

cell of a contingency table, 72
cell-means coding

TRANSREG procedure, 4569, 4594, 4662
censored

data (LIFEREG), 2083
LIFETEST procedure, 2186
observations (PHREG), 3283
survival times (PHREG), 3215, 3281, 3283
values (PHREG), 3218, 3272

censoring, 2083
LIFEREG procedure, 2094
variable (PHREG), 3218, 3228, 3235, 3283

center-point coding
TRANSREG procedure, 4568, 4668, 4670

centering
TRANSREG procedure, 4571

centroid component, 4800
definition, 4799

centroid method
CLUSTER procedure, 966, 976

chaining, reducing when clustering, 972
character OPSCORE variables

PRINQUAL procedure, 3673
TRANSREG procedure, 4604

characteristic roots and vectors
ANOVA procedure, 437
GLM procedure, 1759

Chebychev distance coefficient
DISTANCE procedure, 1272

chi-square
adjusted (CALIS), 655
displaying (CALIS), 684, 685
indices (CALIS), 653

reweighted (CALIS), 655
chi-square test

SURVEYFREQ procedure, 4216
chi-square tests

examples (FREQ), 1530, 1535, 1538
FREQ procedure, 1469, 1470
power and sample size (POWER), 3429, 3432,

3457, 3462, 3505, 3506, 3524, 3541
chi-squared coefficient

DISTANCE procedure, 1273
choice experiments

TRANSREG procedure, 4660
Chromy’s method

SURVEYSELECT procedure, 4448, 4452
Cicchetti-Allison weights, 1497
Cityblock distance coefficient

DISTANCE procedure, 1272
class level

MIXED procedure, 2678
SURVEYMEANS procedure, 4346

classification criterion
DISCRIM procedure, 1139
error rate estimation (DISCRIM), 1163

classification level
SURVEYREG procedure, 4391

classification table
LOGISTIC procedure, 2314, 2352, 2353, 2422

classification variable
SURVEYMEANS procedure, 4329, 4337, 4341

classification variables, 72
ANOVA procedure, 423, 451
CATMOD procedure, 864
GENMOD procedure, 1660
GLM procedure, 1784
GLMPOWER procedure, 1937, 1938
MIXED procedure, 2681
sort order of levels (GENMOD), 1625
SURVEYREG procedure, 4375
TRANSREG procedure, 4560, 4569
VARCOMP procedure, 4836

closing all destinations
examples, ODS Graphics, 360

cluster
centers, 1380, 1392
definition (MODECLUS), 2878
deletion, 1390
elliptical, 387
final, 1380
initial, 1380, 1381
mean, 1392
median, 1389, 1392
midrange, 1392
minimum distance separating, 1381
plotting (MODECLUS), 2878
seeds, 1380
SURVEYFREQ procedure, 4195
SURVEYLOGISTIC procedure, 4255
SURVEYMEANS procedure, 4329
SURVEYREG procedure, 4376
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cluster analysis
disjoint, 1379
large data sets, 1379
robust, 1379, 1392
tree diagrams, 4743

cluster analysis (STDIZE)
standardizing, 4143

CLUSTER procedure,
See also TREE procedure
algorithms, 986
association measure, 957
average linkage, 957
categorical data, 957
centroid method, 957
clustering methods, 957, 975
complete linkage, 957
computational resources, 986
density linkage, 957, 966
Euclidean distances, 957
F statistics, 972, 984
FASTCLUS procedure, compared, 957
flexible-beta method, 957, 967, 968, 981
hierarchical clusters, 957
input data sets, 969
interval scale, 988
kth-nearest-neighbor method, 957
maximum likelihood, 957, 967
McQuitty’s similarity analysis , 957
median method, 957
memory requirements, 986
missing values, 987
non-Euclidean distances, 957
output data sets, 971, 990
output table names, 994
pseudoF andt statistics, 972
ratio scale, 988
single linkage, 957
size, shape, and correlation, 988
test statistics, 968, 972, 973
ties, 987
time requirements, 986
TREE procedure, compared, 957
two-stage density linkage, 957
types of data sets, 957
using macros for many analyses, 1013
Ward’s minimum-variance method, 957
Wong’s hybrid method, 957

cluster sampling, 164
clustering, 957,

See also CLUSTER procedure
approximate covariance estimation, 387
average linkage, 966, 976
centroid method, 966, 976
complete linkage method, 966, 977
density linkage methods, 966, 967, 969, 970,

972, 977, 980, 982
disjoint clusters of variables, 4799
Gower’s method, 967, 981
hierarchical clusters of variables, 4799

maximum-likelihood method, 971, 980, 981
McQuitty’s similarity analysis, 967, 981
median method, 967, 981
methods affected by frequencies, 974
outliers in, 958, 972
penalty coefficient, 971
single linkage, 967, 982
smoothing parameters, 979
standardizing variables, 972
SURVEYFREQ procedure, 4203
transforming variables, 958
two-stage density linkage, 967
variables, 4799
Ward’s method, 967, 983
weighted average linkage, 967, 981

clustering and computing distance matrix
Correlation coefficients, example, 1283
Jaccard coefficients, example, 1278

clustering and scaling
DISTANCE procedure, example, 1253
MODECLUS procedure, 2856, 2857, 2874
STDIZE procedure, example, 4143

clustering criterion
FASTCLUS procedure, 1379, 1391, 1392

clustering methods
ACECLUS procedure, 405
FASTCLUS procedure, 1380, 1381
MODECLUS procedure, 2856, 2874

CMF,
See cumulative mean function
PHREG procedure, 3224

Cochran and Coxt approximation, 4775, 4780, 4785
Cochran’sQ test, 1493, 1499, 1548
Cochran-Armitage test for trend, 1490, 1543

continuity correction (MULTTEST), 2949
MULTTEST procedure, 2946, 2948, 2964
permutation distribution (MULTTEST), 2949
two-tailed test (MULTTEST), 2951

Cochran-Mantel-Haenszel statistics (FREQ), 1447,
1500,

See also chi-square tests
ANOVA (row mean scores) statistic, 1502
correlation statistic, 1501
examples, 1540
general association statistic, 1502

coefficient
alpha (FACTOR), 1337
of contrast (SURVEYREG), 4392
of determination (CALIS), 585
of estimate (SURVEYREG), 4393
of relationship (INBREED), 1977
of variation (SURVEYMEANS), 4340
redundancy (TRANSREG), 4590

coefficient of variation
SURVEYFREQ procedure, 4214

cohort studies, 1540
relative risk, 1489, 1507

collinearity
REG procedure, 3895
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column proportions
SURVEYFREQ procedure, 4212

combinations
generating with PLAN procedure, 3358

combining inferences
MI procedure, 2561
MIANALYZE procedure, 2624

common factor
defined for factor analysis, 1292

common factor analysis
common factor rotation, 1294
compared with principal component analysis,

1293
Harris component analysis, 1293
image component analysis, 1293
interpreting, 1293
salience of loadings, 1294

comparing
groups (GLM), 1804
means (TTEST), 4775, 4789
variances (TTEST), 4775, 4784, 4789

comparisonwise error rate (GLM), 1809
complementary log-log model

SURVEYLOGISTIC procedure, 4284
complete block design

example (ANOVA), 428
example (GLM), 1847

complete linkage
CLUSTER procedure, 966, 977

complete separation
LOGISTIC procedure, 2339
SURVEYLOGISTIC procedure, 4277

completely randomized design
examples, 461

components
PLS procedure, 3367

compound symmetry structure
example (MIXED), 2733, 2789, 2794
MIXED procedure, 2721

computational details
Hessian matrix (CALIS), 589
KDE procedure, 2002
Lagrange multipliers (CALIS), 589
LIFEREG procedure, 2108
maximum likelihood method (VARCOMP),

4839
MIVQUE0 method (VARCOMP), 4839
MIXED procedure, 2772
restricted maximum likelihood method

(VARCOMP), 4840
SIM2D procedure, 4109
standard errors (CALIS), 589
SURVEYLOGISTIC procedure, 4282
SURVEYREG procedure, 4384
Type I method (VARCOMP), 4838
VARCOMP procedure, 4838, 4842

computational problems
CALIS procedure, 678
convergence (CALIS), 678

convergence (FASTCLUS), 1390
convergence (MIXED), 2774
identification (CALIS), 669, 680, 724, 726, 732,

741
negative eigenvalues (CALIS), 681
negative R-square (CALIS), 681
NLMIXED procedure, 3098
overflow (CALIS), 678
singular predicted model (CALIS), 680
time (CALIS), 681

computational resources
ACECLUS procedure, 410
CANCORR procedure, 768
CLUSTER procedure, 986
FACTOR procedure, 1335
FASTCLUS procedure, 1402
LIFEREG procedure, 2123
MODECLUS procedure, 2882
MULTTEST procedure, 2960
NLMIXED procedure, 3103
PRINCOMP procedure, 3611
ROBUSTREG procedure, 4012
VARCLUS procedure, 4818

concordant observations, 1474
conditional and unconditional simulation

SIM2D procedure, 4091
conditional data

MDS procedure, 2477
conditional distributions of multivariate normal ran-

dom variables
SIM2D procedure, 4108

conditional logistic regression
LOGISTIC procedure, 2365
PHREG procedure, 3217, 3283

Conditional residuals
MIXED procedure, 2764

confidence bands
LIFETEST procedure, 2169, 2176, 2205

Confidence intervals
LIFEREG procedure, 2115

confidence intervals
confidence coefficient (GENMOD), 1637
fitted values of the mean (GENMOD), 1641,

1669
individual observation (RSREG), 4042, 4043
means (ANOVA), 442
means (RSREG), 4042, 4043
means, power and sample size (POWER), 3432,

3438, 3448, 3456, 3463, 3473, 3512, 3522,
3532, 3563

model confidence interval (NLIN), 3029
pairwise differences (ANOVA), 442
parameter confidence interval (NLIN), 3028
profile likelihood (GENMOD), 1640, 1666
profile likelihood (LOGISTIC), 2314, 2315,

2345
TTEST procedure, 4780
Wald (GENMOD), 1643, 1667
Wald (LOGISTIC), 2319, 2346
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Wald (SURVEYLOGISTIC), 4288
confidence intervals, FACTOR procedure, 1327
confidence level

baseline survivor function (PHREG), 3225
SURVEYMEANS procedure, 4323
SURVEYREG procedure, 4373

confidence limits
asymptotic (FREQ), 1475
baseline survivor function (PHREG), 3225, 3263
exact (FREQ), 1443
LIFETEST procedure, 2174, 2183, 2184, 2205
LOGISTIC procedure, 2350
MIXED procedure, 2674
SURVEYFREQ procedure, 4213
SURVEYMEANS procedure, 4340, 4342
SURVEYREG procedure, 4380
TRANSREG procedure, 4575, 4584, 4585,

4587, 4588
confidence limits, FACTOR procedure, 1327
configuration

MDS procedure, 2471
conjoint analysis

TRANSREG procedure, 4581, 4593, 4690, 4694
conjugate

descent (NLMIXED), 3074
gradient (NLMIXED), 3072
gradient algorithm (CALIS), 577, 579–581, 665

connectedness method,
See single linkage

constant transformations
avoiding (PRINQUAL), 3673
avoiding (TRANSREG), 4603

constant variables
PRINQUAL procedure, 3673
TRANSREG procedure, 4578, 4604

constrained estimation
CALIS procedure, 565

constraints
boundary (CALIS), 565, 609, 675
boundary (MIXED), 2707, 2708
linear (CALIS), 565, 609, 676
modification indices (CALIS), 584
nonlinear (CALIS), 565, 610
ordered (CALIS), 675
program statements (CALIS), 565, 628, 630, 675
test indices (CALIS), 584

containment method
MIXED procedure, 2693

contingency coefficient, 1469, 1474
contingency tables, 72, 1431, 1450, 4196

CATMOD procedure, 816
continuity-adjusted chi-square, 1469, 1471
continuous variables, 451, 1784

GENMOD procedure, 1660
continuous-by-class effects

MIXED procedure, 2746
model parameterization (GLM), 1790
specifying (GLM), 1785

continuous-nesting-class effects

MIXED procedure, 2745
model parameterization (GLM), 1789
specifying (GLM), 1785

%CONTOUR macro
DISCRIM procedure, 1201

contour plots
plots, ODS Graphics, 324, 360

contrasts, 3076
comparing CATMOD and GLM, 833
GENMOD procedure, 1633
GLM procedure, 1749
MIXED procedure, 2681, 2685
power and sample size (GLMPOWER), 1934,

1937, 1950, 1951, 1956
power and sample size (POWER), 3438, 3439,

3442, 3513, 3536
repeated measurements (ANOVA), 447, 448
repeated measures (GLM), 1779
specifying (CATMOD), 831
SURVEYREG procedure, 4376, 4389

control
comparing treatments to (GLM), 1807, 1812

control charts, 23
control sorting

SURVEYSELECT procedure, 4443, 4445
converge in EM algorithm

MI procedure, 2522
convergence criterion

ACECLUS procedure, 404
CATMOD procedure, 842
GENMOD procedure, 1637, 1647
MDS procedure, 2478, 2480, 2481
MIXED procedure, 2674, 2675, 2749, 2775
profile likelihood (LOGISTIC), 2314

convergence in EM algorithm
MI procedure, 2527

convergence in MCMC
MI procedure, 2555, 2566

convergence problems
MIXED procedure, 2774
NLMIXED procedure, 3099

convolution
distribution (MULTTEST), 2950
KDE procedure, 2005

Cook’sD influence statistic, 1774, 4042
Cook’s D

MIXED procedure, 2768
Cook’s D for covariance parameters

MIXED procedure, 2768
Cook’s D plots

plots, ODS Graphics, 353
CORR procedure, 21
correction for means

CANCORR procedure, 760
correlated data

GEE (GENMOD), 1611, 1672
correlated proportions,

See McNemar’s test
correlation
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CANCORR procedure, 760
estimates (MIXED), 2713, 2716, 2720, 2791
length (VARIOGRAM), 4860
matrix (GENMOD), 1638, 1656
matrix (REG), 3817
matrix, estimated (CATMOD), 842
principal components, 3610, 3612
range (KRIGE2D), 2034

correlation coefficients
power and sample size (POWER), 3426, 3502,

3503
Correlation dissimilarity coefficient

DISTANCE procedure, 1271
Correlation similarity coefficient

DISTANCE procedure, 1271
correlation statistic, 1501
CORRESP procedure, 1069

adjusted inertias, 1102
algorithm, 1097
analyse des correspondances, 1069
appropriate scoring, 1069
Best variables, 1104
binary design matrix, 1083
Burt table, 1076, 1084
coding, 1085
COLUMN= option, use, 1099
computational resources, 1096
correspondence analysis, 1069
doubling, 1085
dual scaling, 1069
fuzzy coding, 1085, 1087
geometry of distance between points, 1100,

1112, 1118
homogeneity analysis, 1069
inertia, definition, 1070
input tables and variables, 1072, 1082, 1083
matrix decompositions, 1079, 1100
matrix formulas for statistics, 1103
memory requirements, 1097
missing values, 1077, 1088, 1092
multiple correspondence analysis (MCA), 1076,

1101, 1123
ODS graph names, 1109
optimal scaling, 1069
optimal scoring, 1069
OUTC= data set, 1094
OUTF= data set, 1095
output data sets, 1094
output table names, 1108
partial contributions to inertia table, 1103
%PLOTIT macro, 1070, 1118, 1128
PROFILE= option, use, 1099
quantification method, 1069
reciprocal averaging, 1069
ROW= option, use, 1099
scalogram analysis, 1069
supplementary rows and columns, 1080, 1102
syntax, abbreviations, 1073
TABLES statement, use, 1072, 1081, 1088

time requirements, 1097
VAR statement, use, 1072, 1081, 1091

correspondence analysis
CORRESP procedure, 1069

COSAN model
CALIS procedure, 552, 591
specification, 560
structural model example (CALIS), 561

Cosine coefficient
DISTANCE procedure, 1272

counting process
PHREG procedure, 3241

covariance
LATTICE procedure, 2075
parameter estimates (MIXED), 2674, 2676
parameter estimates, ratio (MIXED), 2680
parameters (MIXED), 2661
principal components, 3610, 3612
regression coefficients (SURVEYREG), 4392
SURVEYFREQ procedure, 4210

covariance coefficients,
See INBREED procedure

covariance matrix
for parameter estimates (CATMOD), 842
for response functions (CATMOD), 842
GENMOD procedure, 1638, 1656
NLMIXED procedure, 3101, 3106
PHREG procedure, 3222, 3233, 3245
REG procedure, 3817
singular (CATMOD), 887
symmetric and positive definite (SIM2D), 4107

covariance parameter estimates
MIXED procedure, 2750

Covariance similarity coefficient
DISTANCE procedure, 1271

covariance structure analysis model,
See COSAN model

covariance structures
examples (MIXED), 2723, 2782
MIXED procedure, 2664, 2721

covariates
GLMPOWER procedure, 1938–1941, 1951,

1956
MIXED procedure, 2743
model parameterization (GLM), 1787

covarimin method, 1291, 1318
coverage displays

FACTOR procedure, 1328
COVRATIO

MIXED procedure, 2770
COVRATIO for covariance parameters

MIXED procedure, 2770
COVRATIO statistic, 3899
COVTRACE

MIXED procedure, 2770
COVTRACE for covariance parameters

MIXED procedure, 2770
Cox regression analysis

PHREG procedure, 3219
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semiparametric model (PHREG), 3215
Cramer’sV statistic, 1469, 1474
Cramer-von Mises test

NPAR1WAY procedure, 3170
Crawford-Ferguson family, 1291
Crawford-Ferguson method, 1317, 1318
Crime Rates Data, example

PRINCOMP procedure, 3619
cross validated density estimates

MODECLUS procedure, 2872
cross validation

DISCRIM procedure, 1163
PLS procedure, 3368, 3374, 3384

crossed effects
design matrix (CATMOD), 877
GENMOD procedure, 1660
MIXED procedure, 2744
model parameterization (GLM), 1788
specifying (ANOVA), 451, 452
specifying (CATMOD), 864
specifying (GLM), 1784

crossover designs
power and sample size (POWER), 3549

crossproducts matrix
REG procedure, 3917

crosstabulation (SURVEYFREQ)
tables, 4227

crosstabulation tables, 1431, 1450, 4196
SURVEYFREQ procedure, 4227

cubic clustering criterion, 970, 973
CLUSTER procedure, 968

cumulative baseline hazard function
PHREG procedure, 3257

cumulative distribution function, 2114, 3705
LIFETEST procedure, 2149

cumulative logit model
SURVEYLOGISTIC procedure, 4284

cumulative logits,
See also response functions
examples, (CATMOD), 869
specifying in CATMOD procedure, 853
using (CATMOD), 868

cumulative martingale residuals
PHREG procedure, 3223, 3266, 3271

cumulative mean function,
See mean function

cumulative residuals, 1718, 1725
custom scoring coefficients, example

SCORE procedure, 4086
customizing

ODS graphs, 363, 369, 371, 373, 379
ODS styles, 345, 374, 376, 378

Czekanowski/Sorensen similarity coefficient
DISTANCE procedure, 1276

D
DATA step, 21
Davidon-Fletcher-Powell update, 3073
decomposition of the SSCP matrix

ACECLUS procedure, 387
Default style

ODS styles, 333, 346
degrees of freedom

CALIS procedure, 573, 576, 590, 676
FACTOR procedure, 1320
MI procedure, 2561
MIANALYZE procedure, 2625, 2627
models with class variables (GLM), 1791
NLMIXED procedure, 3062
SURVEYFREQ procedure, 4214
SURVEYMEANS procedure, 4340, 4344
SURVEYREG procedure, 4385
TRANSREG procedure, 4615

delete variables (REG), 3820
deleting observations

REG procedure, 3903
dendritic method,

See single linkage
dendrogram, 4743
density estimation

DISCRIM procedure, 1180, 1200
MODECLUS procedure, 2870

density function,
See probability density function

density linkage
CLUSTER procedure, 966, 967, 969, 970, 972,

977, 980, 982
dependent effect, definition, 451
descriptive statistics,

See also UNIVARIATE procedure
LOGISTIC procedure, 2294
PHREG procedure, 3223
SURVEYMEANS procedure, 4347

design effect
SURVEYFREQ procedure, 4215
SURVEYREG procedure, 4388

design matrix
formulas (CATMOD), 894
generation in CATMOD procedure, 876
GENMOD procedure, 1661
GLMMOD procedure, 1909, 1917, 1918
linear dependence in (GENMOD), 1661
TRANSREG procedure, 4586

design of experiments,
See experimental design

design points, TPSPLINE procedure, 4499, 4517
design summary

SURVEYREG procedure, 4390
design-adjusted chi-square test

SURVEYFREQ procedure, 4216
determination index

CALIS procedure, 657
deviance

definition (GENMOD), 1615
GENMOD procedure, 1637
LOGISTIC procedure, 2308, 2316, 2354
PROBIT procedure, 3745, 3760
scaled (GENMOD), 1656
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deviance residuals
GENMOD procedure, 1670
LOGISTIC procedure, 2360
PHREG procedure, 3234, 3258, 3302

deviations-from-means coding
TRANSREG procedure, 4568, 4594, 4654,

4668, 4670
DFBETA statistics

PHREG procedure, 3234, 3260
DFBETAS statistic (REG), 3900
DFBETAS statistics

LOGISTIC procedure, 2360
DFFITS

MIXED procedure, 2768
DFFITS statistic

GLM procedure, 1774
REG procedure, 3899

diagnostic statistics
REG procedure, 3896, 3897

diagnostics panels
plots, ODS Graphics, 322, 379

diameter method,
See complete linkage

Dice coefficient
DISTANCE procedure, 1276

difference between means
confidence intervals, 442

dimension coefficients
MDS procedure, 2471, 2472, 2477, 2482, 2483,

2488, 2489
dimensions

MIXED procedure, 2678
direct effects

design matrix (CATMOD), 879
specifying (CATMOD), 865

direct product structure
MIXED procedure, 2721

discordant observations, 1474
discrete logistic model

likelihood (PHREG), 3241
PHREG procedure, 3216, 3228, 3283

discrete variables,
See classification variables

DISCRIM procedure
background, 1156
Bayes’ theorem, 1157
bivariate density estimation, 1200
calibration data set, 1139, 1167
classification criterion, 1139
computational resources, 1173
%CONTOUR macro, 1201
cross validation, 1163
density estimate, 1157, 1160, 1161, 1180, 1200
error rate estimation, 1163, 1165
input data sets, 1168, 1169
introductory example, 1140
kernel density estimates, 1191, 1212
memory requirements, 1174
missing values, 1156

nonparametric methods, 1158
ODS table names, 1178
optimal bandwidth, selection, 1162
output data sets, 1170, 1171
parametric methods, 1157
%PLOT macro, 1182
%PLOTIT macro, 1200
posterior probability, 1158, 1160, 1180, 1200
posterior probability error rate, 1163, 1165
quasi-inverse, 1164
resubstitution, 1163
squared distance, 1157, 1158
test set classification, 1163
time requirements, 1174
training data set, 1139
univariate density estimation, 1180

discriminant analysis, 1139
canonical, 783, 1139
error rate estimation, 1140
misclassification probabilities, 1140
nonparametric methods, 1158
parametric methods, 1157
stepwise selection, 4157

discriminant function method
MI procedure, 2544

discriminant functions, 784
disjoint clustering, 1379–1381
dispersion parameter

estimation (GENMOD), 1614, 1657, 1665, 1666
GENMOD procedure, 1658
LOGISTIC procedure, 2354
PROBIT procedure, 3760
weights (GENMOD), 1650

displayed output
SURVEYSELECT procedure, 4458

dissimilarity data
MDS procedure, 2471, 2478, 2484

distance
between clusters (FASTCLUS), 1398
classification (VARIOGRAM), 4874
data (FASTCLUS), 1379
data (MDS), 2471
Euclidean (FASTCLUS), 1380

distance data
MDS procedure, 2478, 2484

DISTANCE data sets
CLUSTER procedure, 969

distance measures available in DISTANCE procedure,
See proximity measures

DISTANCE procedure
absent-absent match, asymmetric binary vari-

able, 1250
absent-absent match, example, 1278
absolute level of measurement, definition, 1250
affine transformation, 1250
asymmetric binary variable, 1250
available levels of measurement, 1263
available options for the option list, 1264
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Binary Lance and Williams nonmetric coeffi-
cient, 1276

Bray and Curtis coefficient, 1276
Canberra metric coefficient, 1272
Chebychev distance coefficient, 1272
chi-squared coefficient, 1273
Cityblock distance coefficient, 1272
computing distances with weights, 1267
Correlation dissimilarity coefficient, 1271
Correlation similarity coefficient, 1271
Cosine coefficient, 1272
Covariance similarity coefficient, 1271
Czekanowski/Sorensen similarity coefficient,

1276
Dice coefficient, 1276
Dot Product coefficient, 1273
Euclidean distance coefficient, 1271
examples, 1251, 1278, 1283
extension of binary variable, 1251
formatted values, 1277
formulas for proximity measures, 1270
frequencies, 1268
functional summary, 1255
fuzz factor, 1257
Generalized Euclidean distance coefficient, 1272
Gower’s dissimilarity coefficient, 1271
Gower’s similarity coefficient, 1270
Hamann coefficient, 1274
Hamming distance coefficient, 1274
identity transformation, 1250
initial estimates for A-estimates, 1257
interval level of measurement, 1250
Jaccard dissimilarity coefficient, 1276
Jaccard similarity coefficient, 1276
Kulcynski 1 coefficient, 1276
Lance-Williams nonmetric coefficient, 1272
levels of measurement, 1249
linear transformation, 1250
log-interval level of measurement, 1250
many-to-one transformation, 1249
Minkowski L(p) distance coefficient, 1272
missing values, 1261, 1262, 1267, 1276
monotone increasing transformation, 1249
nominal level of measurement, 1249
nominal variable, 1251
normalization, 1261, 1263
one-to-one transformation, 1249
ordinal level of measurement, 1249
output data sets, 1261, 1277
Overlap dissimilarity coefficient, 1273
Overlap similarity coefficient, 1273
phi-squared coefficient, 1273
Power distance coefficient, 1272
power transformation, 1250
ratio level of measurement, 1250
Roger and Tanimoto coefficient, 1274
Russell and Rao similarity coefficient, 1276
scaling variables, 1251
Shape distance coefficient, 1271

Similarity Ratio coefficient, 1272
Simple Matching coefficient, 1274
Simple Matching dissimilarity coefficient, 1274
Size distance coefficient, 1271
Sokal and Sneath 1 coefficient, 1274
Sokal and Sneath 3 coefficient, 1275
Squared Correlation dissimilarity coefficient,

1272
Squared Correlation similarity coefficient, 1272
Squared Euclidean distance coefficient, 1271
standardization methods, 1265
standardization with frequencies, 1268
standardization with weights, 1269
standardization, default methods, 1251, 1265
standardization, example, 1253
standardization, mandatory, 1251
strictly increasing transformation, 1249
summary of options, 1255
symmetric binary variable, 1250
transforming ordinal variables to interval, 1250
transforming ordinal variables to iterval, 1261
weights, 1267, 1269

distance tolerance
VARIOGRAM procedure, 4867

distributions
Gompertz, 3705
logistic, 3705
normal, 3705

DOCUMENT destination, 361
examples, ODS Graphics, 361
ODS Graphics, 326, 335

DOCUMENT procedure, 361
document paths, 362
examples, ODS Graphics, 361

Documents window, 361
dollar-unit sampling

SURVEYSELECT procedure, 4466
domain analysis

SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336, 4348

domain mean
SURVEYMEANS procedure, 4343

domain statistics
SURVEYMEANS procedure, 4342

domain total
SURVEYMEANS procedure, 4343

DOT product (SCORE), 4065
Dot Product coefficient

DISTANCE procedure, 1273
double arcsine test

MULTTEST procedure, 2951
double dogleg

algorithm (CALIS), 578, 579, 581, 665
method (NLMIXED), 3073

dual scaling
CORRESP procedure, 1069

dummy variables
TRANSREG procedure, 4560, 4569, 4586

dummy variables example
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TRANSREG procedure, 4654
Duncan’s multiple range test, 442, 1766, 1814
Duncan-Waller test, 445, 1769, 1815

error seriousness ratio, 443, 1768
multiple comparison (ANOVA), 464

Dunnett’s adjustment
GLM procedure, 1754
MIXED procedure, 2688

Dunnett’s test, 1766, 1767, 1812
one-tailed lower, 442, 1766
one-tailed upper, 442
two-tailed, 442

E
EBLUP

MIXED procedure, 2703
EDF tests

NPAR1WAY procedure, 3168
effect

coding (TRANSREG), 4549, 4568, 4654, 4668,
4670

definition, 451, 864, 1784
name length (MIXED), 2678
specification (ANOVA), 451
specification (CATMOD), 864
specification (GENMOD), 1659
specification (GLM), 1784
testing (SURVEYREG), 4386, 4392

EFFECT Parameterization
SURVEYLOGISTIC procedure, 4270

effect size
power and sample size (POWER), 3485

effective sample size
LIFETEST procedure, 2172, 2173

Efron method
likelihood (PHREG), 3228, 3241

eigenvalues and eigenvectors
ACECLUS procedure, 398, 399, 406, 410–412
CANCORR procedure, 754, 769
PRINCOMP procedure, 3595, 3610–3612
RSREG procedure, 4050

Einot and Gabriel’s multiple range test
ANOVA procedure, 444
examples (GLM), 1851
GLM procedure, 1768, 1815

Ekblom-Newton algorithm
FASTCLUS procedure, 1392

elementary linkage analysis,
See single linkage

EM algorithm
MI procedure, 2536, 2566

empirical Bayes estimation
NLMIXED procedure, 3084

empirical best linear unbiased prediction
MIXED procedure, 2703

empirical distribution function
tests (NPAR1WAY), 3168

empirical sandwich estimator
MIXED procedure, 2676

empty stratum
SURVEYMEANS procedure, 4334, 4344

Epanechnikov kernel (DISCRIM), 1160
EQS program

CALIS procedure, 555
equal precision bands

LIFETEST procedure, 2169, 2178, 2205
equality

of means (TTEST), 4775, 4789
of variances (TTEST), 4775, 4784, 4789

equamax method, 1291, 1317, 1318
equivalence tests

power and sample size (POWER), 3432, 3438,
3448, 3456, 3463, 3472, 3510, 3511, 3520,
3521, 3530, 3531, 3549

error rate estimation
DISCRIM procedure, 1163, 1165
discriminant analysis, 1140

error seriousness ratio
Waller-Duncan test, 443, 1768

error sum of squares clustering method,
See Ward’s method

estimability
GLM procedure, 1750
MIXED procedure, 2682

estimability checking
GENMOD procedure, 1632
LOGISTIC procedure, 2300
SURVEYLOGISTIC procedure, 4258
TPHREG procedure, 4481

estimable functions
checking (GLM), 1750
displaying (GLM), 1771
example (GLM), 1792
general form of, 1793
GLM procedure, 1751, 1752, 1758, 1773, 1792–

1794, 1796, 1797, 1803
MIXED procedure, 2702
printing (GLM), 1771
SURVEYREG procedure, 4378, 4393

estimated population marginal means,
See least-squares means

estimation
dispersion parameter (GENMOD), 1614
maximum likelihood (GENMOD), 1655
mixed model (MIXED), 2737
regression parameters (GENMOD), 1614

estimation criteria
CALIS procedure, 646

estimation methods
CALIS procedure, 549, 574, 644–647
MIXED procedure, 2677

Euclidean distance coefficient
DISTANCE procedure, 1271

Euclidean distances, 969, 971, 1158, 1380
clustering, 957
MDS procedure, 2472, 2477, 2488

Euclidean length
STDIZE procedure, 4138
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event times
PHREG procedure, 3215, 3218

events/trials format for response
GENMOD procedure, 1636, 1653

exact logistic regression
LOGISTIC procedure, 2300, 2369

exact method
likelihood (PHREG), 3228, 3240

exact tests
computational algorithms (FREQ), 1509
computational algorithms (NPAR1WAY), 3172
computational resources (FREQ), 1511
computational resources (NPAR1WAY), 3173
confidence limits, 1443
examples (NPAR1WAY), 3190, 3191
FREQ procedure, 1508, 1543
MONTE Carlo estimates (NPAR1WAY), 3174
network algorithm (FREQ), 1509
NPAR1WAY procedure, 3171
p-value, definitions, 1510, 3172
permutation test (MULTTEST), 2949

examples, ODS Graphics, 352
axes labels, modifying, 368
closing all destinations, 360
customizing ODS graphs, 363, 369, 371, 373,

379
customizing styles, 374, 376, 378
DOCUMENT destination, 361
DOCUMENT procedure, 361
editing templates, 365
excluding graphs, 352
graph axes, swapping, 371
graph fonts, modifying, 374, 379
graph names, 352, 361
graph sizes, modifying, 378
graph titles, modifying, 368
grid lines, modifying, 373
HTML output, 321, 324, 330, 352
HTML output, with tool tips, 354
Journal style, 358
LaTeX output, 358
line colors, modifying, 369
line patterns, modifying, 369
line thickness, modifying, 376
marker symbols, modifying, 369
multiple destinations, 360
PDF output, 360
presentations, 356
referring to graphs, 330
relative paths, 359
replaying output, 361, 363, 369
RTF output, 356, 360
saving templates, 368
selecting graphs, 330, 352, 361
style attributes, modifying, 374, 376, 378
style elements, modifying, 374, 376, 378
TEMPLATE procedure, 363, 369, 371, 373, 379
tick marks, modifying, 373
trace record, 330, 352, 363

excluded observations
PRINQUAL procedure, 3657, 3674
TRANSREG procedure, 4605

excluding graphs
examples, ODS Graphics, 352
ODS Graphics, 330

exemplary data set
power and sample size (GLMPOWER), 1929,

1930, 1936, 1938, 1946, 1952
exogenous variables

CALIS procedure, 662
path diagram (CALIS), 664

expected mean squares
computing, types (GLM), 1835
random effects, 1833

expected trend
MULTTEST procedure, 2951

expected weighted frequency
SURVEYFREQ procedure, 4215

experimental design, 23, 1901,
See also PLAN procedure
aliasing structure (GLM), 1897

experimentwise error rate (GLM), 1809
explicit intercept

TRANSREG procedure, 4605
exploratory data analysis, 22
exponential distribution

GENMOD procedure, 1704
exponential semivariogram model

KRIGE2D procedure, 2048, 2049
External studentization, 2763
external unfolding

MDS procedure, 2471
extreme value distribution

PROBIT procedure, 3757

F
F statistics

CLUSTER procedure, 972, 984
GENMOD procedure, 1668

factor
defined for factor analysis, 1292

factor analysis
compared to component analysis, 1291, 1292

factor analysis model
CALIS procedure, 554, 606, 608
COSAN statement (CALIS), 593
identification (CALIS), 606
LINEQS statement (CALIS), 602
MATRIX statement (CALIS), 595
path diagram (CALIS), 599, 600
RAM statement (CALIS), 598
specification (CALIS), 560
structural model example (CALIS), 564

factor analytic structures
MIXED procedure, 2721

factor loadings
CALIS procedure, 641

factor parsimax method, 1291, 1317, 1318
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FACTOR procedure
CALIS procedure, 567, 572, 606
computational resources, 1335
coverage displays, 1328
degrees of freedom, 1320
Heywood cases, 1333
number of factors extracted, 1312
OUT= data sets, 1316
output data sets, 1297, 1316
simplicity functions, 1294, 1316, 1329
time requirements, 1331
variances, 1320

Factor rotation
with FACTOR procedure, 1298

factor rotation methods, 1291
factor scores

CALIS procedure, 641, 643, 687
displaying (CALIS), 687

factor scoring coefficients
FACTOR procedure, 4065
SCORE procedure, 4065, 4076

factor structure, 1298
factors

PLAN procedure, 3339, 3340, 3348
PLS procedure, 3367

failure time
LIFEREG procedure, 2083

false discovery rate
adjustment (MULTTEST), 2959

false discovery rate (MULTTEST)
p-value adjustments, 2959

false negative, false positive rate
LOGISTIC procedure, 2314, 2353, 2422

fast Fourier transform
KDE procedure, 2007
MULTTEST procedure, 2950

FASTCLUS procedure
algorithm for updating cluster seeds, 1392
bin-sort algorithm, 1389
cluster deletion, 1390
clustering criterion, 1379, 1391, 1392
clustering methods, 1380, 1381
compared to other procedures, 1403
computational problems, convergence, 1390
computational resources, 1402
controlling iterations, 1393
convergence criterion, 1390
distance, 1379, 1380, 1398
DRIFT option, 1380
Ekblom-Newton algorithm, 1392
homotopy parameter, 1390
imputation of missing values, 1391
incompatibilities, 1397
iteratively reweighted least-squares, 1391
Lp clustering, 1379, 1391
MEAN= data sets, 1394
memory requirements, 1402
Merle-Spath algorithm, 1392
missing values, 1380, 1381, 1391, 1393, 1397

Newton algorithm, 1392
OUT= data sets, 1398
outliers, 1379
output data sets, 1393, 1394, 1398
output table names, 1407
OUTSTAT= data set, 1394, 1400
random number generator, 1394
scale estimates, 1390, 1392, 1397, 1399, 1400
seed replacement, 1381, 1394
weighted cluster means, 1395

fiducial limits, 3712, 3713, 3759
finite differencing

NLMIXED procedure, 3064, 3091
finite population correction (fpc)

SURVEYLOGISTIC procedure, 4280
SURVEYMEANS procedure, 4334

finite population correction factor, 165
first canonical variable, 783
first-order method

NLMIXED procedure, 3085
first-stage sampling unit, 165
Fisher combination

adjustment (MULTTEST), 2959
Fisher combination (MULTTEST)

p-value adjustments, 2959
Fisher exact test

MULTTEST procedure, 2944, 2946, 2954, 2975
Fisher information matrix

example (MIXED), 2796
MIXED procedure, 2750

Fisher’s exact test
FREQ procedure, 1469, 1472, 1473
power and sample size (POWER), 3457, 3463,

3525
Fisher’s LSD test, 445, 1769
Fisher’s scoring method

GENMOD procedure, 1642, 1656
LOGISTIC procedure, 2317, 2318, 2336
MIXED procedure, 2674, 2680, 2774
SURVEYLOGISTIC procedure, 4264, 4265,

4276
Fisher’sz test for correlation

power and sample size (POWER), 3426, 3429,
3502, 3556

fit plots
plots, ODS Graphics, 322, 354

fit statistics
SURVEYREG procedure, 4390

fixed effects
MIXED procedure, 2663
sum-to-zero assumptions, 1835
VARCOMP procedure, 4831, 4837

fixed-effects model
VARCOMP procedure, 4837

fixed-effects parameters
MIXED procedure, 2661, 2732

fixed-radius kernels
MODECLUS procedure, 2870

Fleiss-Cohen weights, 1497
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Fleming-HarringtonGρ test for homogeneity
LIFETEST procedure, 2150, 2168

flexible-beta method
CLUSTER procedure, 957, 967, 968, 981

floating point errors
NLMIXED procedure, 3098

folded formF statistic, 4775, 4784
formatted values

DISTANCE procedure, 1277
formulas

CANCORR procedure, 765
forward selection

LOGISTIC procedure, 2317, 2340
PHREG procedure, 3229, 3264
REG procedure, 3800, 3873

Forward-Dolittle transformation, 1794
fraction of missing information

MI procedure, 2562
MIANALYZE procedure, 2625

fractional frequencies
PHREG procedure, 3227

fractional sample size
GLMPOWER procedure, 1947
POWER procedure, 3419, 3496

Frailty model example
NLMIXED procedure, 3128

Freeman-Halton test, 1473
Freeman-Tukey test

MULTTEST procedure, 2946, 2951, 2968
FREQ procedure

alpha level, 1445, 1453
binomial proportion, 1484, 1532
Bowker’s test of symmetry, 1493
Breslow-Day test, 1508
cell count data, 1464, 1527
chi-square tests, 1469–1471, 1530, 1535
Cochran’sQ test, 1493
Cochran-Mantel-Haenszel statistics, 1540
computation time, limiting, 1445
computational methods, 1509
computational resources, 1511, 1513
contingency coefficient, 1469
contingency table, 1535
continuity-adjusted chi-square, 1469, 1471
correlation statistic, 1501
Cramer’sV statistic, 1469
default tables, 1450
displayed output, 1517
exactp-values, 1510
EXACT statement, used with TABLES, 1446
exact tests, 1443, 1508, 1543
Fisher’s exact test, 1469
Friedman’s chi-square statistic, 1546
gamma statistic, 1474
general association statistic, 1502
grouping variables, 1465
input data sets, 1441, 1464
kappa coefficient, 1497, 1498
Kendall’s tau-b statistic, 1474

lambda asymmetric, 1474
lambda symmetric, 1474
likelihood-ratio chi-square test, 1469
Mantel-Haenszel chi-square test, 1469
McNemar’s test, 1493
measures of association, 1474
missing values, 1466
Monte Carlo estimation, 1443, 1445, 1512
multiway tables, 1518, 1520, 1521
network algorithm, 1509
odds ratio, 1488, 1503, 1504
ODS table names, 1524
one-way frequency tables, 1469, 1470, 1517,

1518, 1530
order of variables, 1442
output data sets, 1446, 1514–1516, 1527, 1538
output variable prefixes, 1516
OUTPUT, used with TABLES or EXACT, 1449
overall kappa coefficient, 1493
Pearson chi-square test, 1469, 1471
Pearson correlation coefficient, 1474
phi coefficient, 1469
polychoric correlation coefficient, 1474
relative risk, 1489, 1503, 1507
row mean scores statistic, 1502
scores, 1468
simple kappa coefficient, 1493
Somers’D statistics, 1474
Spearman rank correlation coefficient, 1474
statistical computations, 1468
stratified table, 1540
Stuart’s tau-c statistic, 1474
two-way frequency tables, 1470, 1471, 1535
uncertainty coefficients, 1474
weighted kappa coefficient, 1493

FREQ statement
and RMSSTD statement (CLUSTER), 974

frequency tables, 1431, 1450, 4196
generating (CATMOD), 842, 845
input to CATMOD procedure, 861
one-way (FREQ), 1469, 1470, 1517, 1518, 1530
one-way (SURVEYFREQ), 4226
two-way (FREQ), 1470, 1471, 1535

frequency variable
LOGISTIC procedure, 2304
PRINQUAL procedure, 3658
programming statements (PHREG), 3235
SURVEYLOGISTIC procedure, 4258
TRANSREG procedure, 4557
value (PHREG), 3227

Friedman’s chi-square statistic, 1546
full sibs mating

INBREED procedure, 1981
full-rank coding

TRANSREG procedure, 4568
furthest neighbor clustering,

See complete linkage
fuzzy coding

CORRESP procedure, 1087
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G
G matrix

MIXED procedure, 2663, 2713, 2732, 2733,
2816

G-G epsilon, 1829
G2 inverse

NLIN procedure, 3025
Gabriel’s multiple-comparison procedure

ANOVA procedure, 443
GLM procedure, 1767, 1811

GAM procedure
comparing PROC GAM with PROC LOESS,

1596
Estimates from PROC GAM, 1579
generalized additive model with binary data,

1582
graphics, 1581
ODS graph names, 1581
ODS table names, 1580
Poisson regression analysis of component relia-

bility, 1589
gamma distribution, 2083, 2097, 2111

GENMOD procedure, 1652
NLMIXED procedure, 3077

gamma statistic, 1474, 1476
Gaussian assumption

SIM2D procedure, 4091
Gaussian distribution

NLMIXED procedure, 3077
Gaussian random field

SIM2D procedure, 4091
Gaussian semivariogram model

KRIGE2D procedure, 2047, 2048
GCV function, TPSPLINE procedure, 4497, 4499,

4514, 4522
nonhomogeneous variance, 4514

GEE,
See Generalized Estimating Equations

Gehan test,
See Wilcoxon test for homogeneity
power and sample size (POWER), 3473, 3482,

3533
general association statistic, 1502
general distribution

NLMIXED procedure, 3078
general linear structure

MIXED procedure, 2721
generalized Crawford-Ferguson family, 1291
generalized Crawford-Ferguson method, 1317, 1318
generalized cross validation function (GCV), 4497,

4522
generalized cyclic incomplete block design

generating with PLAN procedure, 3357
Generalized Estimating Equations (GEE), 1621, 1646,

1672, 1708, 1713
Generalized Euclidean distance coefficient

DISTANCE procedure, 1272
generalized inverse, 2740

MIXED procedure, 2684

NLIN procedure, 3025
NLMIXED procedure, 3065

generalized least squares,
See weighted least-squares estimation

generalized linear model
GENMOD procedure, 1612, 1613
theory (GENMOD), 1650

generalized logistic model
SURVEYLOGISTIC procedure, 4284

generalized logits,
See also response functions
examples (CATMOD), 869
formulas (CATMOD), 893
specifying in CATMOD procedure, 853
using (CATMOD), 868

generation (INBREED)
nonoverlapping, 1967, 1970, 1971
number, 1974
overlapping, 1967, 1969
variable, 1974

GENMOD procedure
adjusted residuals, 1670
aliasing, 1620
bar (|) operator, 1660
binomial distribution, 1652
built-in link function, 1614
built-in probability distribution, 1614
classification variables, 1660
confidence intervals, 1637
confidence limits, 1636
continuous variables, 1660
contrasts, 1633
convergence criterion, 1637, 1647
correlated data, 1611, 1672
correlation matrix, 1638, 1656
correlations, least-squares means, 1636
covariance matrix, 1638, 1656
covariances, least-squares means, 1636
crossed effects, 1660
design matrix, 1661
deviance, 1637
deviance definition, 1615
deviance residuals, 1670
dispersion parameter, 1658
dispersion parameter estimation, 1614, 1665,

1666
dispersion parameter weights, 1650
effect specification, 1659
estimability, 1635
estimability checking, 1632
events/trials format for response, 1636, 1653
expected information matrix, 1656
exponential distribution, 1704
F statistics, 1668
Fisher’s scoring method, 1642, 1656
gamma distribution, 1652
GEE, 1611, 1621, 1646, 1672, 1708, 1711, 1713
Generalized Estimating Equations (GEE), 1611
generalized linear model, 1612, 1613
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goodness of fit, 1656
gradient, 1655
Hessian matrix, 1655
information matrix, 1642
initial values, 1638, 1647
intercept, 1615, 1617, 1640
inverse Gaussian distribution, 1652
L matrices, 1635
Lagrange multiplier statistics, 1668
life data, 1701
likelihood residuals, 1670
linear model, 1612
linear predictor, 1611, 1612, 1618, 1661, 1689
link function, 1611, 1612, 1653
log-likelihood functions, 1654
log-linear models, 1616
logistic regression, 1697
main effects, 1660
maximum likelihood estimation, 1655

–MEAN– automatic variable, 1645
Model checking, 1718
model checking, 1725
multinomial distribution, 1653
multinomial models, 1671
negative binomial distribution, 1652
nested effects, 1660
Newton-Raphson algorithm, 1655
normal distribution, 1651
observed information matrix, 1656
offset, 1640, 1689
offset variable, 1617
ordinal data, 1704
output ODS graphics table names, 1695
output table names, 1693
overdispersion, 1659
Pearson residuals, 1670
Pearson’s chi-square, 1637, 1656, 1657
Poisson distribution, 1652
Poisson regression, 1616
polynomial effects, 1660
profile likelihood confidence intervals, 1640,

1666
programming statements, 1645
quasi-likelihood, 1659
raw residuals, 1669
regression parameters estimation, 1614
regressor effects, 1660
repeated measures, 1611, 1672
residuals, 1641, 1669, 1670

–RESP– automatic variable, 1645
scale parameter, 1653
scaled deviance, 1656
score statistics, 1668
singular contrast matrix, 1632
subpopulation, 1637
suppressing output, 1627
Type 1 analysis, 1615, 1665
Type 3 analysis, 1615, 1665
user-defined link function, 1634

variance function, 1614
Wald confidence intervals, 1643, 1667
working correlation matrix, 1647, 1648, 1672

–XBETA– automatic variable, 1645
Gentleman-Givens computational method, 3197
geometric anisotropy

KRIGE2D procedure, 2053–2055
getting started

ODS Graphics, 321
GLM Parameterization

SURVEYLOGISTIC procedure, 4271
GLM procedure

absorption of effects, 1747, 1799
aliasing structure, 1771, 1897
alpha level, 1755, 1765, 1771, 1775
at sign (@) operator, 1786
bar (|) operator, 1786
Bartlett’s test, 1767, 1819
Bonferroni adjustment, 1754
Brown and Forsythe’s test, 1767, 1819
canonical analysis, 1760
characteristic roots and vectors, 1759
compared to other procedures, 1734, 1776, 1833,

1885, 1901, 2664, 2985, 3197, 4033
comparing groups, 1804
computational method, 1840
computational resources, 1837
contrasts, 1749, 1779
covariate values for least-squares means, 1755
disk space, 1746
Dunnett’s adjustment, 1754
effect specification, 1784
error effect, 1759
estimability, 1750–1752, 1758, 1773, 1793,

1803
estimable functions, 1792
ESTIMATE specification, 1801
homogeneity of variance tests, 1767, 1818
Hsu’s adjustment, 1754
hypothesis tests, 1781, 1792
interactive use, 1787
interactivity and BY statement, 1748
interactivity and missing values, 1787, 1837
introductory example, 1735
least-squares means (LS-means), 1753
Levene’s test for homogeneity of variance, 1767,

1819
means, 1763
means versus least-squares means, 1804
memory requirements, reduction of, 1747
missing values, 1745, 1759, 1822, 1837
model specification, 1784
multiple comparisons, least-squares means,

1754, 1757, 1806, 1808
multiple comparisons, means, 1765–1769, 1806,

1808
multiple comparisons, procedures, 1763
multivariate analysis of variance, 1745, 1759,

1823
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nonstandard weights for least-squares means,
1756

O’Brien’s test, 1767
observed margins for least-squares means, 1756
ODS graph names, 1847
ODS table names, 1844
output data sets, 1773, 1840–1842
parameterization, 1787
positional requirements for statements, 1743
predicted population margins, 1753
Q effects, 1834
random effects, 1776, 1833
regression, quadratic, 1738
relation to GLMMOD procedure, 1909
repeated measures, 1777, 1825
Sidak’s adjustment, 1754
simple effects, 1758
simulation-based adjustment, 1754
singularity checking, 1750, 1752, 1758, 1772
sphericity tests, 1780, 1829
SSCP matrix for multivariate tests, 1759
statistical assumptions, 1783
summary of features, 1733
tests, hypothesis, 1749
transformations for MANOVA, 1759
transformations for repeated measures, 1779
Tukey’s adjustment, 1754
types of least-squares means comparisons, 1757
unbalanced analysis of variance, 1735, 1804,

1856
unbalanced design, 1735, 1804, 1833, 1856,

1882
weighted analysis, 1782
weighted means, 1820
Welch’s ANOVA, 1769
WHERE statement, 1787

GLMMOD alternative
TRANSREG procedure, 4586, 4654

GLMMOD procedure
design matrix, 1909, 1917, 1918
input data sets, 1914
introductory example, 1909
missing values, 1917, 1918
ODS table names, 1918
output data sets, 1915, 1917, 1918
relation to GLM procedure, 1909
screening experiments, 1923

GLMPOWER procedure
actual power, 1946, 1947, 1953
alpha level, 1939
analysis of variance, 1930, 1951, 1956
ceiling sample size, 1947
compared to other procedures, 1930, 3412
computational methods, 1949
contrasts, 1934, 1937, 1950, 1951, 1956
covariates, class and continuous, 1938–1941,

1951, 1956
displayed output, 1947

exemplary data set, 1929, 1930, 1936, 1938,
1946, 1952

fractional sample size, 1947
introductory example, 1930
nominal power, 1946, 1947, 1953
number-lists, 1945
ODS table names, 1948
plots, 1930, 1936, 1942
positional requirements for statements, 1936
sample size adjustment, 1946
summary of statements, 1936
value lists, 1945

global influence
LD statistic (PHREG), 3234, 3260
LMAX statistic (PHREG), 3234, 3261

global kriging
KRIGE2D procedure, 2034

global null hypothesis
PHREG procedure, 3218, 3246, 3269
score test (PHREG), 3229, 3274
TPHREG procedure, 4486

Gompertz distribution, 3705
goodness of fit

GENMOD procedure, 1656
Gower’s dissimilarity coefficient

DISTANCE procedure, 1271
Gower’s method,

See also median method
CLUSTER procedure, 967, 981

Gower’s similarity coefficient
DISTANCE procedure, 1270

gradient
CALIS procedure, 634, 664, 665
GENMOD procedure, 1655
LOGISTIC procedure, 2343
MIXED procedure, 2675, 2749
SURVEYLOGISTIC procedure, 4287

Graeco-Latin square
generating with PLAN procedure, 3345

graph axes, swapping
examples, ODS Graphics, 371

graph fonts, modifying
examples, ODS Graphics, 374, 379

graph names
examples, ODS Graphics, 352, 361
ODS Graphics, 330

graph sizes, modifying
examples, ODS Graphics, 378

graph template definitions
ODS Graphics, 338, 342, 365
Q-Q plots, 366

graph template language
ODS Graphics, 338, 342
TEMPLATE procedure, 342

graph titles, modifying
examples, ODS Graphics, 368

graphics,
See plots
examples (REG), 3948
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high-resolution plots (REG), 3840
keywords (REG), 3841
options (REG), 3843
saving output (MI), 2526

graphics catalog, specifying
LIFEREG procedure, 2090
PROBIT procedure, 3712

graphics image files
base file names, 335
file names, 335
file types, 334, 336, 350
index counter, 335
ODS Graphics, 334
PostScript, 337, 358

graphs,
See plots

Greenhouse-Geisser epsilon, 1829
grid lines, modifying

examples, ODS Graphics, 373
grid search

example (MIXED), 2796
group average clustering,

See average linkage
grouped-name-lists

POWER procedure, 3490
grouped-number-lists

POWER procedure, 3490
growth curve analysis

example (CATMOD), 933
example (MIXED), 2733

GSK models, 817
GT2 multiple-comparison method, 444, 1769, 1811

H
H-F epsilon, 1829
half-fraction design, analysis, 1895
half-width, confidence intervals, 3488
Hall-Wellner bands

LIFETEST procedure, 2169, 2177, 2205
Hamann coefficient

DISTANCE procedure, 1274
Hamming distance coefficient

DISTANCE procedure, 1274
Hannan-Quinn information criterion

MIXED procedure, 2676
Harris component analysis, 1291, 1293, 1311
Harris-Kaiser method, 1291, 1318
hat matrix, 3899

LOGISTIC procedure, 2359
hazard function

baseline (PHREG), 3215, 3216
cumulative (PHREG), 3262
definition (PHREG), 3240
discrete (PHREG), 3228, 3240
LIFETEST procedure, 2149, 2214
PHREG procedure, 3215
rate (PHREG), 3284
ratio (PHREG), 3218, 3220

hazards ratio

confidence interval (PHREG), 3233
confidence limits (PHREG), 3233, 3247, 3269
confidence limits (TPHREG), 4487
estimate (PHREG), 3247, 3269, 3284
estimate (TPHREG), 4487
PHREG procedure, 3218

Hertzsprung-Russell Plot, example
MODECLUS procedure, 2923

Hessian matrix
CALIS procedure, 589, 621, 622, 634, 647, 665
GENMOD procedure, 1655
LOGISTIC procedure, 2317, 2343
MIXED procedure, 2674, 2675, 2680, 2707,

2749, 2750, 2774, 2775, 2786, 2796
NLMIXED procedure, 3066
SURVEYLOGISTIC procedure, 4264, 4287

Hessian scaling
NLMIXED procedure, 3093

heterogeneity
example (MIXED), 2792
MIXED procedure, 2714, 2717

heterogeneous
AR(1) structure (MIXED), 2721
compound-symmetry structure (MIXED), 2721
covariance structures (MIXED), 2730
Toeplitz structure (MIXED), 2721

heteroscedasticity
testing (REG), 3910

Heywood cases
FACTOR procedure, 1333

hierarchical clustering, 967, 980, 4801
hierarchical design

generating with PLAN procedure, 3353
hierarchical model

example (MIXED), 2810
hierarchy

LOGISTIC procedure, 2310
TPHREG procedure, 4475

histograms
plots, ODS Graphics, 358

Hochberg
adjustment (MULTTEST), 2959

Hochberg (MULTTEST)
p-value adjustments, 2959

Hochberg’s GT2 multiple-comparison method, 444,
1769, 1811

Hommel
adjustment (MULTTEST), 2959

Hommel (MULTTEST)
p-value adjustments, 2959

homogeneity analysis
CORRESP procedure, 1069

homogeneity of variance tests, 443, 1767, 1818
Bartlett’s test (ANOVA), 443
Bartlett’s test (GLM), 1767, 1819
Brown and Forsythe’s test (ANOVA), 443
Brown and Forsythe’s test (GLM), 1767, 1819
DISCRIM procedure, 1150
examples, 1893
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Levene’s test (ANOVA), 443
Levene’s test (GLM), 1767, 1819
O’Brien’s test (ANOVA), 443
O’Brien’s test (GLM), 1767
Welch’s ANOVA, 1819

homogeneity tests
LIFETEST procedure, 2149, 2154, 2178, 2200

homotopy parameter
FASTCLUS procedure, 1390

honestly significant difference test, 445, 1769, 1811,
1812

Hosmer-Lemeshow test
LOGISTIC procedure, 2312, 2356
test statistic (LOGISTIC), 2357

Hotelling-Lawley trace, 437, 1759, 1828
Hotelling-Lawley-McKeon statistic

MIXED procedure, 2717
Hotelling-Lawley-Pillai-Samson statistic

MIXED procedure, 2718
Howe’s solution, 1297
HSD test, 445, 1769, 1811, 1812
Hsu’s adjustment

GLM procedure, 1754
MIXED procedure, 2688

HTML destination
ODS Graphics, 326, 335

HTML output
examples, ODS Graphics, 321, 324, 330, 352
ODS Graphics, 326, 334, 336

HTML output, with tool tips
examples, ODS Graphics, 354

Huynh-Feldt
epsilon (GLM), 1829
structure (GLM), 1829
structure (MIXED), 2721

HYBRID option
and FREQ statement (CLUSTER), 974
and other options (CLUSTER), 970, 972
PROC CLUSTER statement, 978

hypergeometric
distribution (MULTTEST), 2954
variance (MULTTEST), 2949

hypothesis tests
comparing adjusted means (GLM), 1758
contrasts (CATMOD), 831
contrasts (GLM), 1749
contrasts, examples (GLM), 1850, 1865, 1875
custom tests (ANOVA), 450
customized (GLM), 1781
exact (FREQ), 1443
for intercept (ANOVA), 446
for intercept (GLM), 1771
GLM procedure, 1792
incorrect hypothesis (CATMOD), 888
lack of fit (RSREG), 4046
MANOVA (GLM), 1824
mixed model (MIXED), 2742, 2751
multivariate (REG), 3910
nested design (NESTED), 2990

parametric, comparing means (TTEST), 4775,
4789

parametric, comparing variances (TTEST),
4775, 4789

random effects (GLM), 1777, 1833
REG procedure, 3832, 3858
repeated measures (GLM), 1827
TRANSREG procedure, 4615
Type I sum of squares (GLM), 1794
Type II sum of squares (GLM), 1796
Type III sum of squares (GLM), 1797
Type IV sum of squares (GLM), 1797

I
id variables

TRANSREG procedure, 4557
ideal point model

TRANSREG procedure, 4593
ideal points

TRANSREG procedure, 4717
identification variables, 3077
identity transformation

PRINQUAL procedure, 3663
TRANSREG procedure, 4564

ill-conditioned data
ORTHOREG procedure, 3197

image component analysis, 1291, 1293, 1311
image files,

see graphics image files
implicit intercept

TRANSREG procedure, 4605
imputation methods

MI procedure, 2539
imputation model

MI procedure, 2565
imputation of missing values

FASTCLUS procedure, 1391
imputer’s model

MI procedure, 2563
INBREED procedure

coancestry, computing, 1978
coefficient of relationship, computing, 1977
covariance coefficients, 1967, 1969, 1971, 1973,

1975, 1977
covariance coefficients matrix, output, 1973
first parent, 1975
full sibs mating, 1981
generation number, 1974
generation variable, 1974
generation, nonoverlapping, 1967, 1970, 1971
generation, overlapping, 1967, 1969
inbreeding coefficients, 1967, 1969, 1973, 1975,

1978
inbreeding coefficients matrix, output, 1973
individuals, outputting coefficients, 1973
individuals, specifying, 1971, 1975
initial covariance value, 1976
initial covariance value, assigning, 1973
initial covariance value, specifying, 1969
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kinship coefficient, 1977
last generation’s coefficients, output, 1973
mating, offspring and parent, 1981
mating, self, 1980
matings, output, 1975
monoecious population analysis, example, 1985
offspring, 1973, 1980
ordering observations, 1968
OUTCOV= data set, 1974, 1982
output table names, 1984
panels, 1982, 1989
pedigree analysis, 1967, 1968
pedigree analysis, example, 1987, 1989
population, monoecious, 1985
population, multiparous, 1973, 1977
population, nonoverlapping, 1974
population, overlapping, 1968, 1969, 1979
progeny, 1976, 1978, 1980, 1988
second parent, 1975
selective matings, output, 1975
specifying gender, 1971
theoretical correlation, 1977
unknown or missing parents, 1982
variables, unaddressed, 1976

incomplete block design
generating with PLAN procedure, 3354, 3357

incomplete principal components
REG procedure, 3818, 3828

independent variable
defined (ANOVA), 423

individual difference models
MDS procedure, 2471

INDSCAL model
MDS procedure, 2471, 2477

inertia, definition
CORRESP procedure, 1070

INEST= data sets
LIFEREG procedure, 2121
ROBUSTREG procedure, 4011

inference
mixed model (MIXED), 2741
space, mixed model (MIXED), 2681, 2682,

2685, 2781
infinite likelihood

MIXED procedure, 2717, 2773, 2775
infinite parameter estimates

LOGISTIC procedure, 2313, 2338
SURVEYLOGISTIC procedure, 4263, 4277

Influence diagnostics details
MIXED procedure, 2765

influence diagnostics, details
MIXED procedure, 2763

Influence plots
MIXED procedure, 2760

influence statistics
REG procedure, 3898

information criteria
MIXED procedure, 2676

information matrix, 3756

expected (GENMOD), 1656
LIFEREG procedure, 2083, 2084, 2108
observed (GENMOD), 1656

initial covariance value
assigning (INBREED), 1973
INBREED procedure, 1976
specifying (INBREED), 1969

initial estimates
ACECLUS procedure, 404
LIFEREG procedure, 2108

initial seed
SURVEYSELECT procedure, 4441

initial seeds
FASTCLUS procedure, 1380, 1381, 1394

initial values
CALIS procedure, 550, 588, 590, 595, 597, 602,

661
GENMOD procedure, 1638, 1647
LOGISTIC procedure, 2376
MDS procedure, 2480–2484, 2491
MIXED procedure, 2706
SURVEYLOGISTIC procedure, 4280

initialization
random (PRINQUAL), 3673
TRANSREG procedure, 4602

input data set
MI procedure, 2519, 2526, 2558

input data sets
MIANALYZE procedure, 2620

inset
LIFEREG procedure, 2092
PROBIT procedure, 3723

insets
background color, 513, 515
background color of header, 513, 515
drop shadow color, 513
frame color, 513, 516
header text color, 513, 516
header text, specifying, 514, 516
positioning, details, 526–529
positioning, options, 513, 514, 516
suppressing frame, 514, 516
text color, 513, 516

instantaneous failure rate
PHREG procedure, 3240

integral approximations
NLMIXED procedure, 3070, 3084

intensity model,
See Andersen-Gill model

interaction effects
MIXED procedure, 2744
model parameterization (GLM), 1788
quantitative (TRANSREG), 4594
specifying (ANOVA), 451, 452
specifying (CATMOD), 864
specifying (GLM), 1784
TRANSREG procedure, 4558, 4594

intercept
GENMOD procedure, 1615, 1617, 1640
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hypothesis tests for (ANOVA), 446
hypothesis tests for (GLM), 1771
MIXED procedure, 2743
model parameterization (GLM), 1787
no intercept (TRANSREG), 4577

Internal studentization, 2763
interpretation

factor rotation, 1293
interpreting factors, elements to consider, 1294
interpreting output

VARCLUS procedure, 4818
interval determination

LIFETEST procedure, 2174
interval level of measurement

DISTANCE procedure, 1250
interval variable, 72
intraclass correlation coefficient

MIXED procedure, 2791
inverse confidence limits

PROBIT procedure, 3712, 3761
inverse Gaussian distribution

GENMOD procedure, 1652
inverse matrix ofX′X

SURVEYREG procedure, 4391
IPC analysis

REG procedure, 3818, 3828, 3916
ipp plots

annotating, 3729
axes, color, 3729
font, specifying, 3729
options summarized by function, 3726
reference lines, options, 3729–3733
threshold lines, options, 3732

ippplot
PROBIT procedure, 3725

iterated factor analysis, 1291
iteration history

NLMIXED procedure, 3067, 3104
iterations

history (MIXED), 2749
history (PHREG), 3233, 3269
history (TPHREG), 4486
PRINQUAL procedure, 3667
restarting (PRINQUAL), 3656, 3673
restarting (TRANSREG), 4602

iterative proportional fitting
estimation (CATMOD), 843
formulas (CATMOD), 896

J
Jaccard dissimilarity coefficient

DISTANCE procedure, 1276
Jaccard similarity coefficient

DISTANCE procedure, 1276
joint selection probabilities

SURVEYSELECT procedure, 4433
Jonckheere-Terpstra test, 1491
Journal style

examples, ODS Graphics, 358

ODS styles, 332, 333, 346

K
k-means clustering, 1379, 1380
k-sample tests,

See homogeneity tests
k-th-nearest neighbor,

See also single linkage
See also density linkage
estimation (CLUSTER), 970, 972, 977

K= option
and other options (CLUSTER), 969, 972

Kaplan-Meier estimate,
See product-limit estimate

kappa coefficient, 1495, 1496
tests, 1498
weights, 1497

KDE procedure
bandwidth selection, 2008
binning, 2004
bivariate histogram, 2011
computational details, 2002
convolution, 2005
examples, 2012
fast Fourier transform, 2007
ODS graph names, 2010
options, 1996
output table names, 2009

Kendall’s tau-b statistic, 1474, 1477
Kenward-Roger method

MIXED procedure, 2695
kernel density estimates

DISCRIM procedure, 1158, 1159, 1191, 1212
KDE procedure, 1993

keyword-lists
POWER procedure, 3490

Klotz scores
NPAR1WAY procedure, 3168

knots
PRINQUAL procedure, 3665, 3666
TRANSREG procedure, 4567, 4568, 4571,

4613, 4678
Kolmogorov-Smirnov test

NPAR1WAY procedure, 3169
KRIGE2D procedure

anisotropic models, 2053–2056
best linear unbiased prediction (BLUP), 2060
correlation range, 2034
discontinuity, 2051
effective range, 2047–2049
examples, 2062
exponential semivariogram model, 2048, 2049
Gaussian semivariogram model, 2047, 2048
geometric anisotropy, 2053–2055
global kriging, 2034
input data set, 2038
kriging with trend, 2058
local kriging, 2033, 2034
nested models, 2050, 2051
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nugget effect, 2044, 2051, 2052
ordinary kriging, 2033, 2056–2060
OUTEST= data sets, 2060
OUTNBHD= data set, 2060, 2061
output data sets, 2039, 2060, 2061
power semivariogram model, 2049
rangeε, 2047
sill, 2047
spatial continuity, 2033
spatial covariance, 2034
spatial data, 2056
spatial random fields, 2057
spherical semivariogram model, 2046, 2047
visual fit of the variogram, 2045
zonal anisotropy, 2055

kriging
ordinary kriging (KRIGE2D), 2058
ordinary kriging (VARIOGRAM), 4851
with trend (KRIGE2D), 2058

kriging, ordinary
VARIOGRAM procedure, 4852

Kronecker product structure
MIXED procedure, 2721

Kruskal-Wallis test
NPAR1WAY procedure, 3166

Kuiper test
NPAR1WAY procedure, 3171

Kulcynski 1 coefficient
DISTANCE procedure, 1276

kurtosis
CALIS procedure, 549, 584, 588, 658, 660
displayed in CLUSTER procedure, 972

L
L matrices

MIXED procedure, 2681, 2687, 2742
label collision avoidance, 351

ODS Graphics, 351
lack of fit tests, 3712, 3759

RSREG procedure, 4046
lag functionality

NLMIXED procedure, 3081
Lagrange multiplier

covariance matrix, 3030
NLMIXED procedure, 3093
statistics (GENMOD), 1668
test statistics (LIFEREG), 2110
test, modification indices (CALIS), 584, 673,

674
lambda asymmetric, 1474, 1482
lambda symmetric, 1474, 1483
Lance-Williams flexible-beta method,

See flexible-beta method
Lance-Williams nonmetric coefficient

DISTANCE procedure, 1272
latent variables

CALIS procedure, 549, 601, 625
PLS procedure, 3367

latent vectors

PLS procedure, 3367
LATEX destination

ODS Graphics, 326, 335
LaTeX output

examples, ODS Graphics, 358
ODS Graphics, 334, 337

Latin square design
ANOVA procedure, 472
generating with PLAN procedure, 3356

lattice design
balanced square lattice (LATTICE), 2069
efficiency (LATTICE), 2071, 2075, 2078
partially balanced square lattice (LATTICE),

2069, 2076
rectangular lattice (LATTICE), 2069

lattice layouts
ODS Graphics, 381

LATTICE procedure
adjusted treatment means, 2075
ANOVA table, 2074
Block variable, 2069, 2072, 2073
compared to MIXED procedure, 2665
covariance, 2075
Group variable, 2069, 2072, 2073
lattice design efficiency, 2071, 2075
least significant differences, 2075
missing values, 2074
ODS table names, 2075
Rep variable, 2069, 2072, 2073
response variable, 2072
Treatmnt variable, 2069, 2072, 2073
variance of means, 2074

layout area
ODS Graphics, 342

LD statistic
PHREG procedure, 3234, 3260

leader algorithm, 1380
least significant differences

LATTICE procedure, 2075
least-significant-difference test, 445, 1769
least-squares estimation

LIFEREG procedure, 2108
least-squares means

Bonferroni adjustment (GLM), 1754
Bonferroni adjustment (MIXED), 2688
BYLEVEL processing (MIXED), 2689
coefficient adjustment, 1822
compared to means (GLM), 1804
comparison types (GLM), 1757
comparison types (MIXED), 2690
construction of, 1820
covariate values (GLM), 1755
covariate values (MIXED), 2688
Dunnett’s adjustment (GLM), 1754
Dunnett’s adjustment (MIXED), 2688
examples (GLM), 1859, 1866
examples (MIXED), 2796, 2819
GLM procedure, 1753
Hsu’s adjustment (GLM), 1754
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Hsu’s adjustment (MIXED), 2688
mixed model (MIXED), 2687
multiple comparisons adjustment (GLM), 1754,

1757
multiple comparisons adjustment (MIXED),

2687
nonstandard weights (GLM), 1756
nonstandard weights (MIXED), 2690
observed margins (GLM), 1756
observed margins (MIXED), 2690
Sidak’s adjustment (GLM), 1754
Sidak’s adjustment (MIXED), 2688
simple effects (GLM), 1758, 1817
simple effects (MIXED), 2691
simulation-based adjustment (GLM), 1754
simulation-based adjustment (MIXED), 2688
Tukey’s adjustment (GLM), 1754
Tukey’s adjustment (MIXED), 2688

Lee-Wei-Amato model
PHREG procedure, 3251, 3314

left truncation time
PHREG procedure, 3229, 3263

less-than-full-rank model
TRANSREG procedure, 4569, 4672

level of measurement
MDS procedure, 2472, 2481

levels of measurement
DISTANCE procedure, 1249

levels, of class variable, 1784
Levenberg-Marquardt algorithm

CALIS procedure, 578, 581, 665
Levene’s test for homogeneity of variance

ANOVA procedure, 443
GLM procedure, 1767, 1819, 1893

Leverage
MIXED Procedure, 2767

leverage, 1774
TRANSREG procedure, 4587

life data
GENMOD procedure, 1701

life-table estimate
LIFETEST procedure, 2149, 2186, 2211

lifereg analysis
insets, 2092

LIFEREG procedure, 2083
accelerated failure time models, 2083
censoring, 2094
computational details, 2108
computational resources, 2123
Confidence intervals, 2115
failure time, 2083
INEST= data sets, 2121
information matrix, 2083, 2084, 2108
initial estimates, 2108
inset, 2092
Lagrange multiplier test statistics, 2110
least-squares estimation, 2108
log-likelihood function, 2084, 2108
log-likelihood ratio tests, 2084

main effects, 2108
maximum likelihood estimates, 2083
missing values, 2108
Newton-Raphson algorithm, 2083
OUTEST= data sets, 2121
output table names, 2124
predicted values, 2114
supported distributions, 2111
survival function, 2083, 2111
Tobit model, 2085, 2129
XDATA= data sets, 2122

LIFETEST procedure
arcsine-square root transform, 2205
arcsine-square root transformation, 2169, 2177
association tests, 2150, 2156, 2180, 2191, 2200
censored, 2186
computational formulas, 2171
confidence bands, 2169, 2176
confidence limits, 2174, 2183, 2184
cumulative distribution function, 2149
effective sample size, 2172, 2173
equal precision bands, 2178, 2205
Fleming-HarringtonGρ test for homogeneity,

2150, 2168
Hall-Wellner bands, 2177, 2205
hazard function, 2149, 2214
homogeneity tests, 2149, 2154, 2178, 2200
interval determination, 2174
life-table estimate, 2149, 2172, 2186, 2209,

2211
likelihood ratio test for homogeneity, 2150, 2179
lineprinter plots, 2159
log-log transformation, 2170, 2177
log-rank test for association, 2150, 2180
log-rank test for homogeneity, 2150, 2168, 2178
logarithmic transformation, 2170, 2177
logit transformation, 2170, 2177
median residual time, 2186
missing stratum values, 2166, 2167
missing values, 2171
modified Peto-Peto test for homogeneity, 2150,

2168
ODS graph names, 2191
ODS table names, 2188
output data sets, 2183
partial listing, 2165
Peto-Peto test for homogeneity, 2150, 2168
probability density function, 2149, 2214
product-limit estimate, 2149, 2171, 2185, 2191
stratified tests, 2150, 2155, 2156, 2158, 2167,

2180, 2187
survival distribution function, 2149, 2171
Tarone-Ware test for homogeneity, 2150, 2168
traditional high-resolution graphics, 2159
trend tests, 2150, 2168, 2179, 2187
Wilcoxon test for association, 2150, 2180
Wilcoxon test for homogeneity, 2150, 2168,

2178
likelihood displacement
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PHREG procedure, 3234, 3260
Likelihood distance

MIXED procedure, 2770
likelihood function, 3756
likelihood ratio chi-square test, 3756, 3759
likelihood ratio test, 2780

Bartlett’s modification, 1150
CALIS procedure, 653, 674
example (MIXED), 2794
mixed model (MIXED), 2741, 2743
MIXED procedure, 2751
PHREG procedure, 3246, 3269
TPHREG procedure, 4486

likelihood ratio test for homogeneity
LIFETEST procedure, 2150

likelihood residuals
GENMOD procedure, 1670

likelihood-ratio chi-square test, 1469
power and sample size (POWER), 3457, 3463,

3525
likelihood-ratio test

chi-square (FREQ), 1471
line colors, modifying

examples, ODS Graphics, 369
line patterns, modifying

examples, ODS Graphics, 369
line printer plots

REG procedure, 3848, 3882
line thickness, modifying

examples, ODS Graphics, 376
line-search methods

NLMIXED procedure, 3066, 3067, 3096
linear discriminant function, 1139
linear equations model,

See LINEQS model
linear hypotheses

PHREG procedure, 3217, 3238, 3247
linear model

GENMOD procedure, 1612, 1613
linear models

CATMOD procedure, 814
compared with log-linear models, 817

linear predictor
GENMOD procedure, 1611, 1612, 1618, 1661,

1689
PHREG procedure, 3225, 3233, 3235, 3302,

3303
linear rank tests,

See association tests
linear regression

TRANSREG procedure, 4592
linear structural relationship model,

See LISREL model
linear structure

MIXED procedure, 2721
linear transformation

PRINQUAL procedure, 3662
TRANSREG procedure, 4563, 4610

LINEQS model

CALIS procedure, 553, 601
specification, 560
structural model example (CALIS), 558, 562

link function
built-in (GENMOD), 1614, 1639
GENMOD procedure, 1611, 1612, 1653
LOGISTIC procedure, 2281, 2312, 2334, 2344
SURVEYLOGISTIC procedure, 4243, 4263,

4273
user-defined (GENMOD), 1634

LISREL model
CALIS procedure, 554
structural model example (CALIS), 559

LMAX statistic
PHREG procedure, 3260

local influence
DFBETA statistics (PHREG), 3234, 3260
score residuals (PHREG), 3234, 3259
weighted score residuals (PHREG), 3260

local kriging
KRIGE2D procedure, 2034

LOESS procedure
approximate degrees of freedom, 2246
automatic smoothing parameter selection, 2243
data scaling, 2239
direct fitting method, 2240
graphics, 2250
introductory example, 2220
iterative reweighting, 2242
kd trees and blending, 2241
local polynomials, 2242
local weighting, 2242
missing values, 2238
ODS graph names, 2250
output data sets, 2238
output table names, 2248
scoring data sets, 2248
statistical inference, 2243

log likelihood
output data sets (LOGISTIC), 2294

log odds
LOGISTIC procedure, 2347
SURVEYLOGISTIC procedure, 4289

log-interval level of measurement
DISTANCE procedure, 1250

log-likelihood
functions (GENMOD), 1654

log-likelihood function
LIFEREG procedure, 2084, 2108
PROBIT procedure, 3756

log-likelihood ratio tests
LIFEREG procedure, 2084

log-linear models
CATMOD procedure, 814, 870, 1616
compared with linear models, 817
design matrix (CATMOD), 884
examples (CATMOD), 916, 919
GENMOD procedure, 1616
multiple populations (CATMOD), 872
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one population (CATMOD), 871
log-linear variance model

MIXED procedure, 2718
log-log transformation

LIFETEST procedure, 2170, 2177
log-rank test

PHREG procedure, 3219
log-rank test for association

LIFETEST procedure, 2150
log-rank test for homogeneity

LIFETEST procedure, 2150, 2168, 2178
power and sample size (POWER), 3473, 3481,

3533, 3561
logarithmic transformation

LIFETEST procedure, 2170, 2177
logistic analysis

CATMOD procedure, 815, 868
caution (CATMOD), 870
examples (CATMOD), 933
ordinal data, 815

logistic distribution, 2083, 2097, 2111, 3705
PROBIT procedure, 3757

LOGISTIC procedure
Akaike’s information criterion, 2341
Bayes’ theorem, 2314
best subset selection, 2308
branch and bound algorithm, 2341
classification table, 2314, 2352, 2353, 2422
conditional logistic regression, 2365
confidence intervals, 2314, 2315, 2319, 2345,

2346
confidence limits, 2350
convergence criterion, 2308
customized odds ratio, 2328
descriptive statistics, 2294
deviance, 2308, 2316, 2354
DFBETAS diagnostic, 2360
dispersion parameter, 2354
displayed output, 2381
estimability checking, 2300
exact logistic regression, 2300, 2369
existence of MLEs, 2338
Fisher’s scoring method, 2317, 2318, 2336
goodness of fit, 2308, 2316
gradient, 2343
hat matrix, 2359
Hessian matrix, 2317, 2343
hierarchy, 2310
Hosmer-Lemeshow test, 2312, 2356, 2357
infinite parameter estimates, 2313
initial values, 2376
introductory example, 2284
link function, 2281, 2312, 2334, 2344
log odds, 2347
maximum likelihood algorithms, 2336
missing values, 2329
model fitting criteria, 2341
model hierarchy, 2283, 2310
model selection, 2306, 2317, 2340

multiple classifications, 2315
Newton-Raphson algorithm, 2317, 2318, 2336,

2338
odds ratio confidence limits, 2308, 2315
odds ratio estimation, 2347
ODS graph names, 2390
ODS table names, 2386
output data sets, 2294, 2374, 2376, 2377
output ROC data sets, 2378
overdispersion, 2316, 2354, 2355
Pearson’s chi-square, 2308, 2316, 2354
predicted probabilities, 2350
prior event probability, 2314, 2353, 2422
profile likelihood convergence criterion, 2314
rank correlation, 2350
regression diagnostics, 2359
residuals, 2360
response level ordering, 2305, 2329, 2330
reverse response level ordering, 2290
ROC curve, 2314, 2357
Schwarz criterion, 2341
score statistics, 2343
selection methods, 2306, 2317, 2340
singular contrast matrix, 2300
subpopulation, 2308, 2316, 2355
testing linear hypotheses, 2327, 2358
Williams’ method, 2355

logistic regression, 3705,
See also LOGISTIC procedure
See also SURVEYLOGISTIC procedure
CATMOD procedure, 814, 869
examples (CATMOD), 911
GENMOD procedure, 1613, 1697

logistic regression method
MI procedure, 2546

logit transformation
LIFETEST procedure, 2170, 2177

logits,
See adjacent-category logits
See also cumulative logits
See also generalized logits

loglogistic distribution, 2083, 2097, 2111
lognormal data

power and sample size (POWER), 3434, 3437,
3438, 3450, 3455, 3456, 3465, 3472, 3509,
3511, 3519, 3521, 3529, 3531, 3552

lognormal distribution, 2083, 2097, 2111
long run times

NLMIXED procedure, 3098
Longley data set, 3197
Lp clustering

FASTCLUS procedure, 1379
Lp clustering

FASTCLUS procedure, 1391
lpred plots

annotating, 3737
axes, color, 3737
font, specifying, 3737
reference lines, options, 3737–3739, 3741



4938 � Subject Index

threshold lines, options, 3740
lpredplot

PROBIT procedure, 3733
LR statistics

MI procedure, 2555
LS-means,

See least-squares means
lsd (least significant differences)

LATTICE procedure, 2075
LSD test, 1769

M
MAC method

PRINQUAL procedure, 3643, 3669
macros

TRANSREG procedure, 4588
Mahalanobis distance, 791, 1158

CANDISC procedure, 804
main effects

design matrix (CATMOD), 877
GENMOD procedure, 1660
LIFEREG procedure, 2108
MIXED procedure, 2744
model parameterization (GLM), 1788
specifying (ANOVA), 451, 452
specifying (CATMOD), 864
specifying (GLM), 1784
TRANSREG procedure, 4558, 4594

Mallows’ Cp selection
REG procedure, 3875

manifest variables
CALIS procedure, 549

Mann-Whitney-Wilcoxon test
NPAR1WAY procedure, 3166

MANOVA,
See multivariate analysis of variance
CANDISC procedure, 786

Mantel-Haenszel chi-square test, 1469, 1472
Mantel-Haenszel test

log-rank test (PHREG), 3219
MAR

MI procedure, 2537, 2564
marginal probabilities,

See also response functions
specifying in CATMOD procedure, 853

Marginal residuals
MIXED procedure, 2764

marker symbols, modifying
examples, ODS Graphics, 369

martingale residuals
PHREG procedure, 3234, 3258, 3302

matched comparisons,
See paired comparisons

Matern covariance structure
MIXED procedure, 2721

mating
offspring and parent (INBREED), 1981
self (INBREED), 1980

matrix

decompositions (CORRESP), 1079, 1100
factor, defined for factor analysis (FACTOR),

1292
inversion (CALIS), 647
multiplication (SCORE), 4065
names, default (CALIS), 608
notation, theory (MIXED), 2731
properties, COSAN model (CALIS), 592

matrix properties
COSAN model (CALIS), 592

MATRIX statement (CALIS)
factor analysis model, 595

maximum average correlation method
PRINQUAL procedure, 3643, 3669

maximum likelihood
algorithms (LOGISTIC), 2336
algorithms (SURVEYLOGISTIC), 4275
estimates (LIFEREG), 2083
estimates (LOGISTIC), 2338
estimates (SURVEYLOGISTIC), 4277
estimation (CATMOD), 817, 843, 895
estimation (GENMOD), 1655
hierarchical clustering (CLUSTER), 967, 971,

980, 981
NLMIXED procedure, 3048

maximum likelihood estimation
mixed model (MIXED), 2738

maximum likelihood factor analysis, 1291, 1311
with FACTOR procedure, 1297, 1298

maximum method,
See complete linkage

maximum total variance method
PRINQUAL procedure, 3643

MCAR
MI procedure, 2537

MCF
PHREG procedure, 3225

MCMC method
MI procedure, 2547

MCMC monotone-data imputation
MI procedure, 2565

McNemar’s test, 1493, 1494
power and sample size (POWER), 3443, 3447,

3448, 3516, 3517
McQuitty’s similarity analysis

CLUSTER procedure, 967
MDFFITS

MIXED procedure, 2768
MDFFITS for covariance parameters

MIXED procedure, 2769
MDPREF analysis

PRINQUAL procedure, 3678
MDS procedure

alternating least squares, 2476
analyzing data in groups, 2485
asymmetric data, 2484
badness of fit, 2479, 2482, 2483, 2489, 2490
conditional data, 2477
configuration, 2471, 2482, 2483, 2489
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convergence criterion, 2478, 2480, 2481
coordinates, 2482, 2483, 2488, 2489
data weights, 2487
dimension coefficients, 2471, 2472, 2477, 2482,

2483, 2488, 2489
dissimilarity data, 2471, 2478, 2484
distance data, 2471, 2478, 2484
Euclidean distances, 2472, 2477, 2488
external unfolding, 2471
individual difference models, 2471
INDSCAL model, 2471, 2477
initial values, 2480–2484, 2491
measurement level, 2472, 2481
metric multidimensional scaling, 2471
missing values, 2492
multidimensional scaling, 2471
nonmetric multidimensional scaling, 2471, 2472
normalization of the estimates, 2492
optimal transformations, 2472, 2481
output table names, 2497
partitions, 2477, 2488
plot of configuration, 2504, 2505
plot of dimension coefficients, 2504, 2506
plot of linear fit, 2503
%PLOTIT macro, 2474
plots, 2474
proximity data, 2471, 2478, 2484
residuals, 2483, 2487, 2488, 2491, 2503
similarity data, 2471, 2478, 2484
stress formula, 2479, 2480, 2489
subject weights, 2471, 2477
three-way multidimensional scaling, 2471
ties, 2485
transformations, 2472, 2481, 2482, 2484, 2487–

2489
transformed data, 2491
transformed distances, 2491
unfolding, 2471
weighted Euclidean distance, 2472, 2477, 2488
weighted Euclidean model, 2471, 2477
weighted least squares, 2487

mean function
PHREG procedure, 3224, 3226, 3244, 3245,

3253, 3255
mean per element

SURVEYMEANS procedure, 4337
mean separation tests,

See multiple comparison procedures
mean survival time

time limit (LIFETEST), 2164
MEAN= data sets

FASTCLUS procedure, 1393, 1394
means

ANOVA procedure, 440
compared to least-squares means (GLM), 1804
displayed in CLUSTER procedure, 972
GLM procedure, 1763
power and sample size (POWER), 3432, 3448,

3463, 3471, 3526

SURVEYMEANS procedure, 4337
weighted (GLM), 1820

MEANS procedure, 21
means, difference between

independent samples, 4775, 4789
paired observations, 4775

measurement level
MDS procedure, 2472, 2481

measures of agreement, 1493
median

cluster, 1389, 1392
method (CLUSTER), 967, 981

median residual time
LIFETEST procedure, 2186

median scores
NPAR1WAY procedure, 3167

Medical Expenditure Panel Survey (MEPS)
SURVEYLOGISTIC procedure, 4302

Mehta and Patel, network algorithm, 1509, 3172
memory requirements

ACECLUS procedure, 410
CLUSTER procedure, 986
FACTOR procedure, 1335
FASTCLUS procedure, 1402
MIXED procedure, 2775
reduction of (ANOVA), 434
reduction of (GLM), 1747
VARCLUS procedure, 4818

memory usage
SIM2D procedure, 4110

Merle-Spath algorithm
FASTCLUS procedure, 1392

METHOD= specification
PROC CLUSTER statement, 966

methods of estimation
VARCOMP procedure, 4831, 4842

metric multidimensional scaling
MDS procedure, 2471

MGV method
PRINQUAL procedure, 3643

MI procedure
adjusted degrees of freedom, 2562
analyst’s model, 2563
approximate Bayesian bootstrap, 2543
arbitrary missing pattern, 2539
autocorrelation function plot, 2557
Bayes’ theorem, 2547
Bayesian inference, 2547
between-imputation variance, 2561
bootstrap, 2527
combining inferences, 2561
converge in EM algorithm, 2522
convergence in EM algorithm, 2527
convergence in MCMC, 2555, 2566
degrees of freedom, 2561
discriminant function method, 2544
EM algorithm, 2536, 2566
fraction of missing information, 2562
imputation methods, 2539
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imputation model, 2565
imputer’s model, 2563
input data set, 2519, 2526, 2558
introductory example, 2513
logistic regression method, 2546
LR statistics, 2555
MAR, 2537, 2564
MCAR, 2537
MCMC method, 2547
MCMC monotone-data imputation, 2565
missing at random, 2537, 2564
monotone missing pattern, 2538
multiple imputation efficiency, 2562
multivariate normality assumption, 2565
number of imputations, 2565
ODS graph names, 2567
ODS table names, 2566
output data sets, 2520, 2528, 2559
output parameter estimates, 2528
parameter simulation, 2564
predictive mean matching method, 2542
producing monotone missingness, 2552
propensity score method, 2543, 2565
random number generators, 2520
regression method, 2541, 2565
relative efficiency, 2562
relative increase in variance, 2562
saving graphics output, 2526
singularity, 2521
Summary of Issues in Multiple Imputation, 2564
suppressing output, 2520
syntax, 2517
time-series plot, 2556
total variance, 2561
transformation, 2533
within-imputation variance, 2561
worst linear function of parameters, 2556

MI procedure, EM statement
output data sets, 2523

MIANALYZE procedure
adjusted degrees of freedom, 2625
average relative increase in variance, 2627
between-imputation covariance matrix, 2626
between-imputation variance, 2624
combining inferences, 2624
degrees of freedom, 2625, 2627
fraction of missing information, 2625
input data sets, 2620
introductory example, 2610
multiple imputation efficiency, 2626
multivariate inferences, 2626
ODS table names, 2631
relative efficiency, 2626
relative increase in variance, 2625
syntax, 2613
testing linear hypotheses, 2618, 2628
total covariance matrix, 2627
total variance, 2625
within-imputation covariance matrix, 2626

within-imputation variance, 2624
minimum generalized variance method

PRINQUAL procedure, 3643
Minkowski metric

STDIZE procedure, 4138
Minkowski L(p) distance coefficient

DISTANCE procedure, 1272
misclassification probabilities

discriminant analysis, 1140
missing at random

MI procedure, 2537, 2564
missing level combinations

MIXED procedure, 2748
missing stratum values

LIFETEST procedure, 2166, 2167
missing values

ACECLUS procedure, 409
and interactivity (GLM), 1787
CANCORR procedure, 765
character (PRINQUAL), 3662
CLUSTER procedure, 987
DISTANCE procedure, 1261, 1262, 1267, 1276
FASTCLUS procedure, 1380, 1381, 1391, 1393,

1397
LIFEREG procedure, 2108
LIFETEST procedure, 2171
LOGISTIC procedure, 2329
MDS procedure, 2492
MODECLUS procedure, 2883
MULTTEST procedure, 2960
NPAR1WAY procedure, 3162
PHREG procedure, 3228, 3236, 3286
PRINCOMP procedure, 3608
PRINQUAL procedure, 3655, 3667, 3674
PROBIT procedure, 3755
SCORE procedure, 4074
STDIZE procedure, 4131, 4133
strata variables (PHREG), 3237
SURVEYFREQ procedure, 4205
SURVEYLOGISTIC procedure, 4251, 4268
SURVEYMEANS procedure, 4323, 4333, 4358
SURVEYREG procedure, 4382
SURVEYSELECT procedure, 4445
TRANSREG procedure, 4578, 4599, 4600, 4605
TREE procedure, 4756
VARCOMP procedure, 4837

mixed model
unbalanced (GLM), 1882
VARCOMP procedure, 4837

mixed model (MIXED),
See also MIXED procedure
estimation, 2737
formulation, 2732
hypothesis tests, 2742, 2751
inference, 2741
inference space, 2681, 2682, 2685, 2781
least-squares means, 2687
likelihood ratio test, 2741, 2743
linear model, 2661
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maximum likelihood estimation, 2738
notation, 2663
objective function, 2749
parameterization, 2743
predicted values, 2687
restricted maximum likelihood, 2779
theory, 2731
Wald test, 2741, 2786

mixed model equations
example (MIXED), 2796
MIXED procedure, 2678, 2739

MIXED Procedure
Leverage, 2767
PRESS Residual, 2766
PRESS Statistic, 2766

MIXED procedure,
See also mixed model
2D geometric anisotropic structure, 2721
Akaike’s information criterion, 2676, 2740,

2750
Akaike’s information criterion (finite sample

corrected version) , 2676, 2750
ante-dependence structure, 2721
ARIMA procedure, compared, 2665
ARMA structure, 2721
assumptions, 2661
asymptotic covariance, 2674
at sign (@) operator, 2745, 2819
AUTOREG procedure, compared, 2665
autoregressive structure, 2721, 2788
banded Toeplitz structure, 2721
bar (|) operator, 2743, 2745, 2819
basic features, 2662
Bayesian analysis, 2708
between-within method, 2693
BLUE, 2740
BLUP, 2740, 2809
Bonferroni adjustment, 2688
boundary constraints, 2707, 2708, 2773
Box plots, 2762
BYLEVEL processing of LSMEANS, 2689
CALIS procedure, compared, 2665
Cholesky root, 2704, 2764, 2772
class level, 2678
classification variables, 2681
compound symmetry structure, 2721, 2733,

2789, 2794
computational details, 2772
computational order, 2773
Conditional residuals, 2764
confidence interval, 2686, 2713
confidence limits, 2674, 2685, 2689, 2692, 2713
containment method, 2693
continuous effects, 2714, 2715, 2717, 2721
continuous-by-class effects, 2746
continuous-nesting-class effects, 2745
contrasted SAS procedures, 1735, 1833, 1885,

2664, 2665, 2985
contrasts, 2681, 2685

convergence criterion, 2674, 2675, 2749, 2775
convergence problems, 2774
Cook’s D, 2768
Cook’s D for covariance parameters, 2768
correlation estimates, 2713, 2716, 2720, 2791
correlations of least-squares means, 2689
covariance parameter estimates, 2674, 2676,

2750
covariance parameter estimates, ratio, 2680
covariance parameters, 2661
covariance structures, 2664, 2721, 2723, 2782
covariances of least-squares means, 2689
covariate values for LSMEANS, 2688
covariates, 2743
COVRATIO, 2770
COVRATIO for covariance parameters, 2770
COVTRACE, 2770
COVTRACE for covariance parameters, 2770
CPU requirements, 2776
crossed effects, 2744
degrees of freedom, 2682, 2684–2687, 2690,

2693, 2705, 2742, 2747, 2751, 2774, 2809
DFFITS, 2768
dimensions, 2677, 2678
direct product structure, 2721
Dunnett’s adjustment, 2688
EBLUPs, 2715, 2740, 2801, 2817
effect name length, 2678
empirical best linear unbiased prediction, 2703
empirical sandwich estimator, 2676
estimability, 2682–2684, 2686, 2687, 2691,

2704, 2705, 2742, 2748
estimable functions, 2702
estimation methods, 2677
factor analytic structures, 2721
Fisher information matrix, 2750, 2796
Fisher’s scoring method, 2674, 2680, 2774
fitting information, 2750, 2751
fixed effects, 2663
fixed-effects parameters, 2661, 2705, 2732
fixed-effects variance matrix, 2705
function evaluations, 2677
G matrix, 2712
general linear structure, 2721
generalized inverse, 2684, 2740
gradient, 2675, 2749
grid search, 2706, 2796
growth curve analysis, 2733
Hannan-Quinn information criterion, 2676
Hessian matrix, 2674, 2675, 2680, 2707, 2749,

2750, 2774, 2775, 2786, 2796
heterogeneity, 2714, 2717, 2792
heterogeneous AR(1) structure, 2721
heterogeneous compound-symmetry structure,

2721
heterogeneous covariance structures, 2730
heterogeneous Toeplitz structure, 2721
hierarchical model, 2810
Hotelling-Lawley-McKeon statistic, 2717
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Hotelling-Lawley-Pillai-Sampson statistic, 2718
Hsu’s adjustment, 2688
Huynh-Feldt structure, 2721
infinite likelihood, 2717, 2773, 2775
Influence diagnostics details, 2765
Influence plots, 2760
information criteria, 2676
initial values, 2706
input data sets, 2676
interaction effects, 2744
intercept, 2743
intercept effect, 2703, 2713
intraclass correlation coefficient, 2791
introductory example, 2665
iterations, 2677, 2749
Kenward-Roger method, 2695
Kronecker product structure, 2721
L matrices, 2681, 2687, 2742
LATTICE procedure, compared, 2665
least-square means, 2796
least-squares means, 2690, 2819
Likelihood distance, 2770
likelihood ratio test, 2751
linear structure, 2721
log-linear variance model, 2718
main effects, 2744
MAKE statement in Version 6, 2757
Marginal residuals, 2764
Matern covariance structure, 2721
matrix notation, 2731
MDFFITS, 2768
MDFFITS for covariance parameters, 2769
memory requirements, 2775
missing level combinations, 2748
mixed linear model, 2661
mixed model, 2732
mixed model equations, 2678, 2739, 2796
mixed model theory, 2731
model information, 2678
model selection, 2740
multilevel model, 2810
multiple comparisons of least-squares means,

2687, 2690
multiple tables, 2754
multivariate tests, 2717
nested effects, 2745
nested error structure, 2814
NESTED procedure, compared, 2665
Newton-Raphson algorithm, 2738
non-full-rank parameterization, 2664, 2718,

2747
nonstandard weights for LSMEANS, 2690
nugget effect, 2718
Oblique projector, 2767
observed margins for LSMEANS, 2690
ODS graph names, 2762
ODS Graphics, 2757
ODS table names, 2752
ordering of effects, 2679, 2746

over-parameterization, 2744
parameter constraints, 2707, 2773
parameterization, 2743
Pearson Residual, 2704
pharmaceutical stability, example, 2810
Plots of leave-one-out-estimates, 2760
plotting the likelihood, 2801
polynomial effects, 2743
power-of-the-mean model, 2718
predicted means, 2704
predicted value confidence intervals, 2692
predicted values, 2703, 2796
prior density, 2709
profiling residual variance, 2679, 2708, 2718,

2738, 2772
R matrix, 2716, 2720
random coefficients, 2788, 2810
random effects, 2663, 2712
random-effects parameter, 2715
random-effects parameters, 2662, 2732
regression effects, 2743
rejection sampling, 2711
repeated measures, 2662, 2716, 2782
Residual diagnostics details, 2763
residual method, 2694
Residual plots, 2758
residual variance tolerance, 2705
restricted maximum likelihood (REML), 2662
ridging, 2680, 2738
sandwich estimator, 2676
Satterthwaite method, 2694
Scaled Residual, 2705
Scaled residuals, 2764
Schwarz’s Bayesian information criterion, 2676,

2740, 2750
scoring, 2674, 2680, 2774
Sidak’s adjustment, 2688
simple effects, 2691
simulation-based adjustment, 2688
singularities, 2775
spatial anisotropic exponential structure, 2721
spatial covariance structures, 2722, 2723, 2730,

2774
split-plot design, 2734, 2777
standard linear model, 2663
statement positions, 2672
Studentized Residual, 2704
Studentized residuals, 2768
subject effect, 2683, 2715, 2721, 2776, 2782
summary of commands, 2672
sweep operator, 2768, 2772
table names, 2752
test components, 2702
Toeplitz structure, 2721, 2819
TSCSREG procedure, compared, 2665
Tukey’s adjustment, 2688
Type 1 estimation, 2677
Type 2 estimation, 2677
Type 3 estimation, 2677
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Type I testing, 2696
Type II testing, 2696
Type III testing, 2696, 2751
unstructuredR matrix, 2720
unstructured correlations, 2721
unstructured covariance matrix, 2721
VARCOMP procedure, example, 2795
variance components, 2662, 2721
variance ratios, 2707, 2714
Wald test, 2750, 2751
weighted LSMEANS, 2690
weighting, 2730
zero design columns, 2696
zero variance component estimates, 2774

MIXED procedure, MODEL statement
Influence diagnostics, 2700

ML factor analysis
and computer time, 1297
and confidence intervals, 1294, 1297, 1327
and multivariate normal distribution, 1297
and standard errors, 1297

modal clusters
density estimation (CLUSTER), 970

modal region, definition, 2878
MODECLUS procedure

analyzing data in groups, 2857, 2874
cascaded density estimates, 2873
clustering methods, 2856, 2874
clusters, definition, 2878
clusters, plotting, 2878
compared with other procedures, 2856
cross validated density estimates, 2872
density estimation, 2870
example using GPLOT procedure, 2916, 2923
example using TRACE option, 2927
example using TRANSPOSE procedure, 2912
fixed-radius kernels, 2870
functional summary, 2862
Hertzsprung-Russell Plot, example, 2923
JOIN option, discussion, 2880
modal region, 2878
neighborhood distribution function (NDF), defi-

nition, 2878
nonparametric clustering methods, 2855
output data sets, 2883
p-value computation, 2877
plotting samples from univariate distributions,

2889
population clusters, risks of estimating, 2877
saddle test, definition, 2879
scaling variables, 2856
significance tests, 2916
standardizing, 2856
summary of options, 2862
variable-radius kernels, 2870

model
fit summary (REG), 3896
fitting criteria (LOGISTIC), 2341
fitting criteria (SURVEYLOGISTIC), 4279

hierarchy (LOGISTIC), 2283, 2310
hierarchy (TPHREG), 4473, 4475
information (MIXED), 2678
parameterization (GLM), 1787
specification (ANOVA), 451
specification (GLM), 1784
specification (NLMIXED, 3077

model assessment, 1718, 1725
PHREG procedure, 3223, 3265, 3271, 3318

model checking, 1718, 1725
model selection

entry (PHREG), 3230
examples (REG), 3924
LOGISTIC procedure, 2306, 2317, 2340
MIXED procedure, 2740
PHREG procedure, 3216, 3229, 3264
REG procedure, 3800, 3873, 3876, 3877
removal (PHREG), 3230

modification indices
CALIS procedure, 576, 649, 673
constraints (CALIS), 584
displaying (CALIS), 687
Lagrange multiplier test (CALIS), 584, 673, 674
Wald test (CALIS), 584, 674

modified Peto-Peto test for homogeneity
LIFETEST procedure, 2150, 2168

modified ridit scores, 1469
monoecious population analysis

example (INBREED), 1985
monotone

regression function (TRANSREG), 4629
transformations (TRANSREG), 4593

monotone missing pattern
MI procedure, 2538

monotonic
transformation (PRINQUAL), 3662, 3663
transformation (TRANSREG), 4563, 4564,

4610
transformation, B-spline (PRINQUAL), 3662
transformation, B-spline (TRANSREG), 4563,

4611
Monte Carlo estimation

FREQ procedure, 1443, 1445, 1512
NPAR1WAY procedure, 3174

Mood scores
NPAR1WAY procedure, 3168

MORALS method
TRANSREG procedure, 4576

mortality test
MULTTEST procedure, 2952, 2972

MSE
SURVEYREG procedure, 4388

MTV method
PRINQUAL procedure, 3643

multicollinearity
REG procedure, 3895

multidimensional preference analysis
PRINQUAL procedure, 3678, 3688

multidimensional scaling
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MDS procedure, 2471
metric (MDS), 2471
nonmetric (MDS), 2471, 2472
three-way (MDS), 2471

multilevel model
example (MIXED), 2810

multilevel response, 3759
multinomial

distribution (GENMOD), 1653
models (GENMOD), 1671

multiple classifications
cutpoints (LOGISTIC), 2315

multiple comparison procedures, 1806,
See also multiple comparisons of means
See also multiple comparisons of least-squares

means
GLM procedure, 1763
multiple-stage tests, 1814
pairwise (GLM), 1807
recommendations, 1816
with a control (GLM), 1807, 1812

multiple comparisons adjustment (MIXED)
least-squares means, 2687

multiple comparisons of least-squares means,
See also multiple comparison procedures
GLM procedure, 1754, 1757, 1808
interpretation, 1816
MIXED procedure, 2687, 2690

multiple comparisons of means,
See also multiple comparison procedures
ANOVA procedure, 440
Bonferronit test, 441, 1765
Duncan’s multiple range test, 442, 1766
Dunnett’s test, 442, 1766, 1767
error mean square, 443, 1767
examples, 1847
Fisher’s LSD test, 445, 1769
Gabriel’s procedure, 443, 1767
GLM procedure, 1806, 1808
GT2 method, 444, 1769
interpretation, 1816
Ryan-Einot-Gabriel-Welsch test, 444, 1768
Scheffé’s procedure, 444, 1769
Sidak’s adjustment, 444, 1769
SMM, 444, 1769
Student-Newman-Keuls test, 444, 1769
Tukey’s studentized range test, 445, 1769
Waller-Duncan method, 443
Waller-Duncan test, 445, 1769

multiple correspondence analysis (MCA)
CORRESP procedure, 1076, 1101, 1123

multiple destinations
examples, ODS Graphics, 360

multiple imputation efficiency
MI procedure, 2562
MIANALYZE procedure, 2626

multiple imputations analysis, 2511, 2609
multiple R-square

SURVEYREG procedure, 4387

multiple redundancy coefficients
TRANSREG procedure, 4590

multiple regression
TRANSREG procedure, 4593

multiple tables
MIXED procedure, 2754

multiple-stage tests, 1814,
See multiple comparison procedures

multiplicative hazards model,
See Andersen-Gill model

multistage sampling, 165
multivariate analysis of variance, 433, 436

CANDISC procedure, 786
examples (GLM), 1868
GLM procedure, 1745, 1759, 1823
hypothesis tests (GLM), 1824
partial correlations, 1824

multivariate general linear hypothesis, 1824
multivariate inferences

MIANALYZE procedure, 2626
multivariate multiple regression

TRANSREG procedure, 4593
multivariate normality assumption

MI procedure, 2565
multivariate tests

MIXED procedure, 2717
REG procedure, 3910
repeated measures, 1828

multiway tables
SURVEYFREQ procedure, 4227

MULTTEST procedure
adjustedp-value, 2935, 2956
Bonferroni adjustment, 2939, 2956
bootstrap adjustment, 2938, 2939, 2957
Cochran-Armitage test, 2946, 2948, 2951, 2964
computational resources, 2960
convolution distribution, 2950
displayed output, 2963
double arcsine test, 2951
expected trend, 2951
false discovery rate adjustment, 2959
fast Fourier transform, 2950
Fisher combination adjustment, 2959
Fisher exact test, 2944, 2946, 2954
Freeman-Tukey test, 2946, 2951, 2968
Hochberg adjustment, 2959
Hommel adjustment, 2959
introductory example, 2936
linear trend test, 2949
missing values, 2960
ODS table names, 2963
output data sets, 2961
p-value adjustments, 2935, 2956
permutation adjustment, 2942, 2957, 2975
Peto test, 2946, 2952, 2972
resampled data sets, 2962
Sidak’s adjustment, 2942, 2956
statistical tests, 2948
stepdown methods, 2957
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strata weights, 2951
t test, 2946, 2955, 2968

Murthy’s method
SURVEYSELECT procedure, 4454

N
name-lists

POWER procedure, 3490
natural response rate, 3705, 3707, 3711, 3713
nearest centroid sorting, 1380
nearest neighbor method,

See also single linkage
DISCRIM procedure, 1158, 1161

negative binomial distribution
GENMOD procedure, 1652
NLMIXED procedure, 3078

negative variance components
VARCOMP procedure, 4838

neighborhood distribution function (NDF), definition
MODECLUS procedure, 2878

Nelder-Mead simplex, 3073
nested design, 2985

error terms, 2991
generating with PLAN procedure, 3353
hypothesis tests (NESTED), 2990

nested effects
design matrix (CATMOD), 878
GENMOD procedure, 1660
MIXED procedure, 2745
model parameterization (GLM), 1789
specifying (ANOVA), 451, 453
specifying (CATMOD), 864
specifying (GLM), 1785

nested error structure
MIXED procedure, 2814

nested models
KRIGE2D procedure, 2050, 2051
VARIOGRAM procedure, 4871

NESTED procedure
analysis of covariation, 2990
compared to other procedures, 1735, 2665, 2985
computational method, 2991
input data sets, 2988
introductory example, 2986
missing values, 2990
ODS table names, 2994
random effects, 2990
unbalanced design, 2990

nested-by-value effects
specifying (CATMOD), 865

network algorithm, 1509, 3172
Newman-Keuls’ multiple range test, 444, 1769, 1814
Newton algorithm

FASTCLUS procedure, 1392
Newton-Raphson algorithm

CALIS procedure, 578, 580, 581, 665
GENMOD procedure, 1655
iteration (PHREG), 3222
LIFEREG procedure, 2083

LOGISTIC procedure, 2317, 2318, 2336, 2338
method (PHREG), 3245
MIXED procedure, 2738
NLMIXED procedure, 3073
PROBIT procedure, 3756
SURVEYLOGISTIC procedure, 4264, 4265,

4277
NLIN procedure

analytic derivatives, 3011, 3017
automatic derivatives, 3017
close-to-linear, 3019
confidence interval, 3013, 3014, 3028, 3029
convergence, 3022
convergence criterion, 3006
cross-referencing variables, 3010
debugging execution, 3008
derivatives, 3011, 3017
displayed output, 3006
G2 inverse, 3025
G4 inverse, 3008
Gauss iterative method, 3008
Gauss-Newton method, 3024, 3027
generalized inverse, 3025
gradient method, 3024, 3025
Hessian, 3026, 3030
Hougaard’s measure, 3008, 3019
imposing bounds, 3010
incompatibilities, 3031, 3032
initial values, 3015
iteratively reweighted least squares example,

3038
Lagrange multiplier, 3010
Lagrange multipliers, covariance matrix, 3030
Marquardt iterative method, 3008, 3024, 3027
maximum iterations, 3008
maximum subiterations, 3008
mean square error specification, 3009
missing values, 3020
model confidence interval, 3029
model.variable syntax, 3012
Newton iterative method, 3008, 3024, 3026
object convergence measure, 3003
output table names, 3033
parameter confidence interval, 3028
parameter covariance matrix, 3029
PPC convergence measure, 3003
predicted values, output, 3014
R convergence measure, 3003
residual values, output, 3014
retaining variables, 3011, 3016
RPC convergence measure, 3003
segmented model example, 3034
singularity criterion, 3009
skewness, 3004, 3008, 3019
SMETHOD=GOLDEN step size search, 3028
special variables, 3020
standard error, 3014
steepest descent method, 3024, 3025
step size search, 3028
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troubleshooting, 3022
tuning display of iteration computation, 3009
weighted regression, 3021

NLMIXED procedure
Accelerated failure time model, 3128
active set methods, 3093
adaptive Gaussian quadrature, 3084
additional estimates, 3076, 3106
alpha level, 3061
arrays, 3074
assumptions, 3083
Bernoulli distribution, 3077
binary distribution, 3077
binomial distribution, 3077
bounds, 3075
compared with other SAS procedures and

macros, 3048
computational problems, 3098
computational resources, 3103
contrasts, 3076
convergence criteria, 3060, 3065, 3087
convergence problems, 3099
covariance matrix, 3061, 3101, 3106
degrees of freedom, 3062
empirical Bayes estimation, 3084
empirical Bayes options, 3062
finite differencing, 3064, 3091
first-order method, 3085
fit statistics, 3106
floating point errors, 3098
Frailty model example, 3128
functional convergence criteria, 3063
gamma distribution, 3077
Gaussian distribution, 3077
general distribution, 3078
generalized inverse, 3065
growth curve example, 3049
Hessian matrix, 3066
Hessian scaling, 3065, 3093
integral approximations, 3070, 3084
iteration history, 3067, 3104
lag functionality, 3081
Lagrange multiplier, 3093
line-search methods, 3066, 3067, 3096
logistic-normal example, 3053
long run times, 3098
maximum likelihood, 3048
negative binomial distribution, 3078
normal distribution, 3077, 3080
notation, 3083
ODS table names, 3107
optimization techniques, 3072, 3086
options summary, 3058
overflows, 3098
parameter estimates, 3106
parameter rescaling, 3098
parameter specification, 3078
pharmakokinetics example, 3107
Poisson distribution, 3078

Poisson-normal example, 3124
precision, 3101
prediction, 3079, 3102
probit-normal-binomial example, 3114
probit-normal-ordinal example, 3118
programming statements, 3081
projected gradient, 3093
projected Hessian, 3093
quadrature options, 3071
random effects, 3079
references, 3138
replicate subjects, 3080
singularity tolerances, 3072
sorting of input data set, 3062, 3079
stationary point, 3100
step length options, 3096
syntax summary, 3057
termination criteria, 3060, 3087
update methods, 3073

nominal level of measurement
DISTANCE procedure, 1249

nominal power
GLMPOWER procedure, 1946, 1947, 1953
POWER procedure, 3419, 3494, 3496

nominal variable
DISTANCE procedure, 1251

nominal variables, 72,
See also classification variables

non-full-rank models
REG procedure, 3893

non-full-rank parameterization
MIXED procedure, 2664, 2718, 2747

noninferiority
power and sample size (POWER), 3552

nonlinear
mixed models (NLMIXED), 3047
regression functions (TRANSREG), 4593, 4628
transformations (TRANSREG), 4593

nonmetric multidimensional scaling
MDS procedure, 2471, 2472

nonoptimal transformations
PRINQUAL procedure, 3661
TRANSREG procedure, 4562

nonparametric clustering methods
MODECLUS procedure, 2855

nonparametric discriminant analysis, 1158
nonparametric regression

TPSPLINE procedure, 4497
nonparametric tests

NPAR1WAY procedure, 3145
normal distribution, 2083, 2097, 2111, 3705

GENMOD procedure, 1651
NLMIXED procedure, 3077, 3080
PROBIT procedure, 3757

normal kernel (DISCRIM), 1159
normalization of the estimates

MDS procedure, 2492
NOSQUARE option

algorithms used (CLUSTER), 986
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NPAR1WAY procedure
alpha level, 3160
Ansari-Bradley scores, 3168
Brown-Mood test, 3167
compared to other procedures, 1735
computational methods, 3172
computational resources, 3173
Cramer-von Mises test, 3170
EDF tests, 3168
exactp-values, 3172
exact tests, 3171
introductory example, 3145
Klotz scores, 3168
Kolmogorov-Smirnov test, 3169
Kruskal-Wallis test, 3166
Kuiper test, 3171
Mann-Whitney-Wilcoxon test, 3166
median scores, 3167
missing values, 3162
Monte Carlo estimation, 3174
Mood scores, 3168
network algorithm, 3172
ODS table names, 3184
one-way ANOVA tests, 3165
output data set, 3161, 3175, 3176
permutation test, 3157, 3166
Pitman’s test, 3157, 3166
rank tests, 3163
Savage scores, 3167
scores, 3166
Siegel-Tukey scores, 3167
statistical computations, 3163
summary of commands, 3155
tied values, 3163
Van der Waerden scores, 3167
Wilcoxon scores, 3166

nugget effect
KRIGE2D procedure, 2044, 2051, 2052
MIXED procedure, 2718
VARIOGRAM procedure, 4871

null hypothesis, 3488
number of imputations

MI procedure, 2565
number-lists

GLMPOWER procedure, 1945
POWER procedure, 3490

O
O’Brien’s test for homogeneity of variance

ANOVA procedure, 443
GLM procedure, 1767

objective function
mixed model (MIXED), 2749

oblimin method, 1291, 1318
oblique component analysis, 4799
Oblique projector

MIXED procedure, 2767
oblique transformation, 1294, 1298
odds ratio

adjusted, 1503
Breslow-Day test, 1508
case-control studies, 1488, 1503, 1504
confidence limits (LOGISTIC), 2308, 2315
confidence limits (SURVEYLOGISTIC), 4262
customized (LOGISTIC), 2328
customized (SURVEYLOGISTIC), 4267
estimation (LOGISTIC), 2347
estimation (SURVEYLOGISTIC), 4288
logit estimate, 1504
Mantel-Haenszel estimate, 1503
power and sample size (POWER), 3457, 3462,

3523, 3524
ODS

and templates, 274
compatibility with Version 6, 280
creating an output data set, 292
default behavior, 273
exclusion list, 276
interactive procedures, 277
NOPRINT option interaction, 279
ODS Graphics, 319
output formats, 273
output table names, 274
path names, 275
run-group processing, 277
selection list, 276, 289
Statistical Graphics Using ODS, 319
suppressing displayed output, 279
TEMPLATE procedure, 303, 309
templates, 278
trace record, 275
with Results window, 277
with SAS Explorer, 277

ODS destinations
ODS Graphics, 334

ODS examples
concatenating data sets, 299
creating an output data set, 294, 297
excluding output, 291
GLMMOD procedure, 1924
HTML output, 281, 282
links in HTML output, 308, 311
modifying templates, 307
ODS and the GCHART procedure, 312
ORTHOREG procedure, 3206
output table names, 284, 295
PLS procedure, 3394, 3396, 3405
run-group processing, 299
selecting output, 287

ODS graph names
ANOVA procedure, 460
CORRESP procedure, 1109
GAM procedure, 1581
GLM procedure, 1847
KDE procedure, 2010
LIFETEST procedure, 2191
LOESS procedure, 2250
LOGISTIC procedure, 2390
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MI procedure, 2567
MIXED procedure, 2762
PHREG procedure, 3271
PRINCOMP procedure, 3613
PRINQUAL procedure, 3677
REG procedure, 3923
ROBUSTREG procedure, 4014

ODS graph templates
displaying templates, 339
editing templates, 340
graph definitions, 338, 342, 365
graph template language, 338, 342
locating templates, 339
reverting to default templates, 341, 369
saving templates, 340
style definitions, 338, 344
table definitions, 338
template definitions, 338
using customized templates, 341

ODS Graphics, 319
DOCUMENT destination, 326, 335
examples, 352
excluding graphs, 330
getting started, 321
graph names, 330
graph template definitions, 338, 342, 365
graph template language, 338, 342
graphics image files, 334
graphics image files, names, 335
graphics image files, PostScript, 337
graphics image files, types, 334, 336, 350
HTML destination, 326, 335
HTML output, 326, 334, 336
index counter, 335
introductory examples, 321, 324
label collision avoidance, 351
LATEX destination, 326, 335
LaTeX output, 334, 337
lattice layouts, 381
layout area, 342
MIXED procedure, 2757
ODS destinations, 334
overlaid layouts, 368, 373, 381
PCL destination, 326, 335
PDF destination, 326, 335
PDF output, 338
plot options, 324
PostScript output, 338
PS destination, 326, 335
referring to graphs, 330
requesting graphs, 321, 324
reseting index counter, 335
RTF destination, 326, 335
RTF output, 326, 338
saving graphics image files, 336
selecting graphs, 330
supported operating environments, 348
supported procedures, 348
viewing graphs, 327

ODS output
destinations, 274, 276, 298
objects, 273

ODS output files, 326
ODS path, 340, 341, 346
ODS Statistical Graphics,

see ODS Graphics
ODS styles, 332

Analysis style, 333
attributes, 344
customizing, 345, 374, 376, 378
Default style, 333, 346
definitions, 344
elements, 344
Journal style, 332, 333, 346
Rtf style, 346
specifying, 332
specifying a default, 346
Statistical style, 333

ODS table names
SURVEYLOGISTIC procedure, 4295
SURVEYREG procedure, 4394
SURVEYSELECT procedure, 4460

offset
GENMOD procedure, 1640, 1689

offset variable
GENMOD procedure, 1617
PHREG procedure, 3229

offspring
INBREED procedure, 1973, 1980

one-samplet-test, 4775
power and sample size (POWER), 3412, 3432,

3437, 3508–3510
one-way ANOVA

power and sample size (POWER), 3438, 3442,
3443, 3513, 3536

one-way ANOVA tests
NPAR1WAY procedure, 3165

online documentation, 21
operations research, 23
optimal

scaling (TRANSREG), 4609
scoring (PRINQUAL), 3662
scoring (TRANSREG), 4563, 4610
transformations (MDS), 2472, 2481
transformations (PRINQUAL), 3662
transformations (TRANSREG), 4563

optimization
CALIS procedure, 550, 577, 622, 664
conjugate gradient (CALIS), 577, 579–581, 665
double dogleg (CALIS), 578, 579, 581, 665
history (CALIS), 668
initial values (CALIS), 661, 666
Levenberg-Marquardt (CALIS), 578, 581, 665
line search (CALIS), 580, 671
memory problems (CALIS), 666
Newton-Raphson (CALIS), 578, 580, 581, 665
nonlinear constraints (CALIS), 666
quasi-Newton (CALIS), 578–581, 665, 666
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step length (CALIS), 672
techniques (NLMIXED), 3072, 3086
termination criteria (CALIS), 611, 615–620
trust region (CALIS), 578, 581, 665
update method (CALIS), 579

order of variables
SURVEYFREQ procedure, 4193

order statistics,
See RANK procedure

ordering observations
INBREED procedure, 1968

ordinal level of measurement
DISTANCE procedure, 1249

ordinal model
CATMOD procedure, 869
GENMOD procedure, 1704

ORDINAL Parameterization
SURVEYLOGISTIC procedure, 4271

ordinal variable, 72
ordinal variables

transformed to interval (RANKSCORE= ), 1261
ordinary kriging

KRIGE2D procedure, 2033, 2056–2060
ORTHEFFECT Parameterization

SURVEYLOGISTIC procedure, 4272
orthoblique rotation, 4800
orthogonal polynomial contrasts, 448
orthogonal transformation, 1294, 1298
orthomax method, 1291, 1317
orthonormalizing transformation matrix

ANOVA procedure, 438
GLM procedure, 1761

ORTHORDINAL Parameterization
SURVEYLOGISTIC procedure, 4272

ORTHOREG procedure
compared to other procedures, 3197
input data sets, 3201
introductory example, 3197
missing values, 3203
ODS table names, 3204
output data sets, 3202, 3203

ORTHOTHERM Parameterization
SURVEYLOGISTIC procedure, 4272

ORTHPOLY Parameterization
SURVEYLOGISTIC procedure, 4273

ORTHREF Parameterization
SURVEYLOGISTIC procedure, 4273

OUT= data sets
ACECLUS procedure, 409
CANCORR procedure, 761, 766
FACTOR procedure, 1316, 1325
FASTCLUS procedure, 1398
PRINCOMP procedure, 3609
SCORE procedure, 4075
TREE procedure, 4756

OUTDIST= data set
VARIOGRAM procedure, 4851, 4865, 4878,

4880
OUTEST= data sets

KRIGE2D procedure, 2060
LIFEREG procedure, 2121
ROBUSTREG procedure, 4011

outliers
FASTCLUS procedure, 1379
MODECLUS procedure, 2872

OUTNBHD= data set
KRIGE2D procedure, 2060, 2061

OUTPAIR= data set
VARIOGRAM procedure, 4851, 4866, 4881

output data set
SCORE procedure, 4072, 4075
SURVEYMEANS procedure, 4321, 4345

output data sets
ACECLUS procedure, 409
CALIS procedure, 634
CANCORR procedure, 761, 766
CLUSTER procedure, 971
FACTOR procedure, 1297, 1316, 1325
FASTCLUS procedure, 1393, 1394, 1398
KRIGE2D procedure, 2039, 2060, 2061
LIFETEST procedure, 2183
LOGISTIC procedure, 2374, 2376, 2377
MI procedure, 2520, 2528, 2559
MI procedure, EM statement, 2523
MODECLUS procedure, 2883
MULTTEST procedure, 2961, 2962
OUTCOV= data set (INBREED), 1974, 1982
PRINQUAL procedure, 3669
SIM2D procedure, 4099, 4110
SURVEYSELECT procedure, 4456
TREE procedure, 4756
VARCLUS procedure, 4811, 4816

output ODS graphics table names
GENMOD procedure, 1695
PHREG procedure, 3271

output parameter estimates
MI procedure, 2528

output ROC data sets
LOGISTIC procedure, 2378

output table names
ACECLUS procedure, 412
CALIS procedure, 688
CANCORR procedure, 771
CLUSTER procedure, 994
FASTCLUS procedure, 1407
GENMOD procedure, 1693
INBREED procedure, 1984
KDE procedure, 2009
LIFEREG procedure, 2124
MDS procedure, 2497
MODECLUS procedure, 2888
PRINCOMP procedure, 3613
PRINQUAL procedure, 3677
PROBIT procedure, 3765
ROBUSTREG procedure, 4012
SURVEYFREQ procedure, 4230
SURVEYLOGISTIC procedure, 4295
SURVEYMEANS procedure, 4349
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SURVEYREG procedure, 4394
SURVEYSELECT procedure, 4460
TREE procedure, 4757
VARCLUS procedure, 4820

OUTQ= data set, 3071
OUTSIM= data set

SIM2D procedure, 4110
OUTSTAT= data sets

CANCORR procedure, 766
FACTOR procedure, 1325

OUTVAR= data set
VARIOGRAM procedure, 4866, 4877

over-parameterization
MIXED procedure, 2744

overall kappa coefficient, 1493, 1498
overdispersion

GENMOD procedure, 1659
LOGISTIC procedure, 2316, 2354, 2355
PROBIT procedure, 3745

overflows
NLMIXED procedure, 3098

overlaid layouts
ODS Graphics, 368, 373, 381

Overlap dissimilarity coefficient
DISTANCE procedure, 1273

overlap of data points
LOGISTIC procedure, 2339
SURVEYLOGISTIC procedure, 4278

Overlap similarity coefficient
DISTANCE procedure, 1273

P
P-P plots

REG procedure, 3917, 3953
p-value adjustments

Bonferroni (MULTTEST), 2939, 2956
bootstrap (MULTTEST), 2938, 2939, 2957,

2968
false discovery rate (MULTTEST), 2959
Fisher combination (MULTTEST), 2959
Hochberg (MULTTEST), 2959
Hommel (MULTTEST), 2959
MULTTEST procedure, 2935, 2956
permutation (MULTTEST), 2942, 2957, 2975
Sidak (MULTTEST), 2942, 2956, 2972

p-value computation
MODECLUS procedure, 2877

painting line-printer plots
REG procedure, 3889

paired comparisons, 4775, 4793
paired proportions,

See McNemar’s test
pairedt test, 4782

power and sample size (POWER), 3448, 3455,
3518, 3519

paired-differencet test, 4775,
pairedt test

pairwise comparisons
GLM procedure, 1807

panels
INBREED procedure, 1982, 1989

parameter constraints
MIXED procedure, 2707, 2773

parameter estimates
covariance matrix (CATMOD), 842
example (REG), 3877
NLMIXED procedure, 3106
PHREG procedure, 3220, 3222, 3223, 3269
REG procedure, 3919
TPHREG procedure, 4486, 4487

parameter rescaling
NLMIXED procedure, 3098

parameter simulation
MI procedure, 2564

parameter specification
NLMIXED procedure, 3078

Parameterization
SURVEYLOGISTIC procedure, 4270

parameterization
CATMOD, 845
mixed model (MIXED), 2743
MIXED procedure, 2743
of models (GLM), 1787

parametric discriminant analysis, 1157
Pareto charts, 23
parsimax method, 1291, 1317, 1318
partial canonical correlation, 752
partial correlation

CANCORR procedure, 761, 762, 764
principal components, 3612

partial correlations
multivariate analysis of variance, 1824
power and sample size (POWER), 3426, 3429,

3502, 3503, 3556
partial least squares, 3367, 3380
partial likelihood

PHREG procedure, 3215, 3216, 3240, 3241,
3243

partial listing
product-limit estimate (LIFETEST), 2165

partial regression leverage plots
REG procedure, 3901

partially balanced square lattice
LATTICE procedure, 2069

partitions
MDS procedure, 2477, 2488

passive observations
PRINQUAL procedure, 3674
TRANSREG procedure, 4605

path diagram (CALIS)
exogenous variables, 664
factor analysis model, 599, 600
structural model example, 555, 600

PCL destination
ODS Graphics, 326, 335

PDF,
See probability density function

PDF destination
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ODS Graphics, 326, 335
PDF output

examples, ODS Graphics, 360
ODS Graphics, 338

Pearson chi-square test, 1469, 1471, 3712, 3759
power and sample size (POWER), 3457, 3462,

3524
Pearson correlation coefficient, 1474, 1479
Pearson correlation statistics

power and sample size (POWER), 3426, 3502,
3503, 3556

Pearson Residual
MIXED procedure, 2704

Pearson residuals
GENMOD procedure, 1670
LOGISTIC procedure, 2360

Pearson’s chi-square
GENMOD procedure, 1637, 1656, 1657
LOGISTIC procedure, 2308, 2316, 2354
PROBIT procedure, 3742, 3745, 3760

pedigree analysis
example (INBREED), 1987, 1989
INBREED procedure, 1967, 1968

penalized least squares, TPSPLINE procedure, 4497,
4498, 4518

permutation
adjustment (MULTTEST), 2942, 2957
generating with PLAN procedure, 3358

permutation (MULTTEST)
p-value adjustments, 2942, 2957, 2975

permutation test
NPAR1WAY procedure, 3157, 3166

Peto test
MULTTEST procedure, 2946, 2952, 2972

Peto-Peto test for homogeneity
LIFETEST procedure, 2150, 2168

Peto-Peto-Prentice,
See Peto-Peto test for homogeneity

pharmaceutical stability
example (MIXED), 2810

pharmakokinetics example
NLMIXED procedure, 3107

phenogram, 4743
phi coefficient, 1469, 1474
phi-squared coefficient

DISTANCE procedure, 1273
PHREG procedure

Andersen-Gill model, 3216, 3243, 3253
baseline hazard function, 3216
BASELINE statistics, 3224, 3225
branch and bound algorithm, 3265, 3279
Breslow likelihood, 3228
case weight, 3239
case-control studies, 3217, 3228, 3280
conditional logistic regression, 3217, 3283
continuous time scale, 3216, 3228, 3284
counting process, 3241
covariance matrix, 3222, 3233, 3245
Cox regression analysis, 3215, 3219

cumulative baseline hazard function, 3257
cumulative martingale residuals, 3223, 3266,

3271
DATA step statements, 3220, 3221, 3236, 3288
descriptive statistics, 3223
DFBETA statistics, 3234
discrete logistic model, 3216, 3228, 3283
disk space, 3222
displayed output, 3268
Efron likelihood, 3228
event times, 3215, 3218
exact likelihood, 3228
fractional frequencies, 3227
global influence, 3234, 3260
global null hypothesis, 3218, 3246, 3269
hazard function, 3215, 3240
hazards ratio, 3218, 3247
hazards ratio confidence interval, 3233
iteration history, 3233, 3269
Lee-Wei-Amato model, 3251, 3314
left truncation time, 3229, 3263
likelihood displacement, 3234, 3260
likelihood ratio test, 3246, 3269
linear hypotheses, 3217, 3238, 3247
linear predictor, 3225, 3233, 3235, 3302, 3303
local influence, 3234, 3260
log-rank test, 3219
Mantel-Haenszel test, 3219
mean function, 3224, 3226, 3244, 3245, 3253,

3255
missing values, 3228, 3236, 3286
missing values as strata, 3237
model assessment, 3223, 3265, 3271, 3318
model selection, 3216, 3229, 3230, 3264
ODS graph names, 3271
ODS table names, 3270
offset variable, 3229
output ODS graphics table names, 3271
OUTPUT statistics, 3234, 3235
parameter estimates, 3220, 3222, 3223, 3269
partial likelihood, 3215, 3216, 3240, 3241, 3243
Prentice-Williams-Peterson model, 3255
programming statements, 3220–3222, 3235,

3236, 3288
proportional hazards model, 3215, 3220, 3228
rate function, 3243, 3253
rate/mean model, 3243, 3253
recurrent events, 3216, 3224–3226, 3243
residual chi-square, 3231
residuals, 3234, 3235, 3257–3260, 3302
response variable, 3218, 3283
risk set, 3220, 3240, 3241, 3288
risk weights, 3229
score test, 3229, 3231, 3246, 3269, 3274, 3276
selection methods, 3216, 3229, 3264
singularity criterion, 3232
standard error, 3233, 3235, 3269
standard error ratio, 3269
standardized score process, 3267, 3271
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step halving, 3245
strata variables, 3237
stratified analysis, 3216, 3237
survival distribution function, 3239
survival times, 3215, 3281, 3283
survivor function, 3215, 3225, 3235, 3239, 3240,

3261, 3299
ties, 3216, 3219, 3228, 3241, 3268
time-dependent covariates, 3216, 3220, 3222,

3224, 3233, 3236
Wald test, 3238, 3246, 3247, 3269, 3284
Wei-Lin-Weissfeld model, 3248

piecewise polynomial splines
TRANSREG procedure, 4561, 4614

Pillai’s trace, 437, 1759, 1828
Pitman’s test

NPAR1WAY procedure, 3157, 3166
PLAN procedure

combinations, 3358
compared to other procedures, 3335
factor, selecting levels for, 3339, 3340
generalized cyclic incomplete block design,

3357
hierarchical design, 3353
incomplete block design, 3354, 3357
input data sets, 3339, 3343
introductory example, 3336
Latin square design, 3356
nested design, 3353
ODS table names, 3352
output data sets, 3339, 3343, 3346, 3347
permutations, 3358
random number generators, 3339
randomizing designs, 3347, 3351
specifying factor structures, 3348
split-plot design, 3352
treatments, specifying, 3345
using interactively, 3346

%PLOT macro
DISCRIM procedure, 1182

plot options
ODS Graphics, 324

%PLOTIT macro, 808
CORRESP procedure, 1070, 1118, 1128
DISCRIM procedure, 1200
MDS procedure, 2474
PRINCOMP procedure, 3615, 3617, 3625
PRINQUAL procedure, 3678, 3687
TRANSREG procedure, 4617, 4717, 4718

plots
examples (REG), 3948
high-resolution (REG), 3840
keywords (REG), 3841
likelihood (MIXED), 2801
line printer (REG), 3848, 3882
MDS procedure, 2474
of configuration (MDS), 2504, 2505
of dimension coefficients (MDS), 2504, 2506
of linear fit (MDS), 2503

options (REG), 3843, 3844
power and sample size (GLMPOWER), 1930,

1936, 1942
power and sample size (POWER), 3412, 3420,

3421, 3483, 3566
plots, ODS Graphics

box plots, 355
contour plots, 324, 360
Cook’s D plots, 353
diagnostics panels, 322, 379
fit plots, 322, 354
histograms, 358
Q-Q plots, 361, 363, 368, 370, 372, 373, 375,

377–379
residual plots, 322
scatter plots, 343, 351
surface plots, 324, 360

plotting samples from univariate distributions
MODECLUS procedure, 2889

PLS procedure
algorithms, 3375
centering, 3386
compared to other procedures, 3367
components, 3367
computation method, 3375
cross validation, 3368, 3384
cross validation method, 3374
examples, 3388
factors, 3367
factors, selecting the number of, 3370
introductory example, 3368
latent variables, 3367
latent vectors, 3367
missing values, 3376
ODS table names, 3388
outlier detection, 3398
output data sets, 3379
output keywords, 3379
partial least squares regression, 3367, 3380
predicting new observations, 3373
principal components regression, 3367, 3381
reduced rank regression, 3367, 3381
scaling, 3386
SIMPLS method, 3380
test set validation, 3384, 3400

point models
TRANSREG procedure, 4605

Poisson distribution
GENMOD procedure, 1652
NLMIXED procedure, 3078

Poisson regression
GENMOD procedure, 1613, 1616

Poisson-normal example
NLMIXED procedure, 3124

POLY Parameterization
SURVEYLOGISTIC procedure, 4271

polychoric correlation coefficient, 1460, 1474, 1482
polynomial effects

GENMOD procedure, 1660
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MIXED procedure, 2743
model parameterization (GLM), 1787
specifying (GLM), 1784

polynomial model
GLMMOD procedure, 1909

POLYNOMIAL Parameterization
SURVEYLOGISTIC procedure, 4271

polynomial regression
REG procedure, 3804

polynomial-spline basis
TRANSREG procedure, 4561, 4614

pooled stratum
SURVEYREG procedure, 4389

pooled within-cluster covariance matrix
definition, 388

population
profile (CATMOD), 820
total (SURVEYLOGISTIC), 4252, 4280
total (SURVEYMEANS), 4326, 4334
total (SURVEYREG), 4374, 4382

population (INBREED)
monoecious, 1985
multiparous, 1973, 1977
nonoverlapping, 1974
overlapping, 1968, 1969, 1979

population clusters
risks of estimating (MODECLUS), 2877

population profile, 73
population total

SURVEYFREQ procedure, 4194, 4204
posterior probability

DISCRIM procedure, 1200
error rate estimation (DISCRIM), 1165

PostScript
graphics image files, 358

PostScript output
ODS Graphics, 338

power
overview of power concepts (POWER), 3488
See GLMPOWER procedure, 1929
See POWER procedure, 3411

power curves,
See plots

Power distance coefficient
DISTANCE procedure, 1272

POWER procedure
AB/BA crossover designs, 3549
actual alpha, 3496
actual power, 3419, 3494, 3496
actual prob(width), 3496
analysis of variance, 3438, 3442, 3443, 3513,

3536
analysis statements, 3420
binomial proportion tests, 3429, 3432, 3504–

3506, 3541
bioequivalence, 3510, 3511, 3520, 3521, 3530,

3531, 3549
ceiling sample size, 3419, 3496
compared to other procedures, 1930, 3412

computational methods, 3498
computational resources, 3498
confidence intervals for means, 3432, 3438,

3448, 3456, 3463, 3473, 3512, 3522, 3532,
3563

contrasts, analysis of variance, 3438, 3439,
3442, 3513, 3536

correlated proportions, 3443, 3447, 3448, 3516,
3517

correlation, 3426, 3502, 3503, 3556
crossover designs, 3549
displayed output, 3496
effect size, 3485
equivalence tests, 3432, 3438, 3448, 3456, 3463,

3472, 3510, 3511, 3520, 3521, 3530, 3531,
3549

Fisher’s exact test, 3457, 3463, 3525
Fisher’sz test for correlation, 3426, 3429, 3502,

3556
fractional sample size, 3419, 3496
Gehan test, 3473, 3482, 3533
grouped-name-lists, 3490
grouped-number-lists, 3490
introductory example, 3412
keyword-lists, 3490
likelihood-ratio chi-square test, 3457, 3463,

3525
log-rank test for comparing survival curves,

3473, 3481, 3533, 3561
lognormal data, 3434, 3437, 3438, 3450, 3455,

3456, 3465, 3472, 3509, 3511, 3519, 3521,
3529, 3531, 3552

McNemar’s test, 3443, 3447, 3448, 3516, 3517
name-lists, 3490
nominal power, 3419, 3494, 3496
noninferiority, 3552
notation for formulas, 3498
number-lists, 3490
odds ratio, 3457, 3462, 3523, 3524
ODS table names, 3497
one-samplet test, 3412, 3432, 3437, 3508, 3509
one-way ANOVA, 3438, 3442, 3443, 3513, 3536
overview of power concepts, 3488
paired proportions, 3443, 3447, 3448, 3516,

3517
pairedt test, 3448, 3455, 3518, 3519
partial correlation, 3426, 3429, 3502, 3503, 3556
Pearson chi-square test, 3457, 3462, 3524
Pearson correlation, 3426, 3429, 3502, 3503,

3556
plots, 3412, 3420, 3421, 3483, 3566
regression, 3421, 3425, 3500, 3556
relative risk, 3457, 3462, 3523, 3524
sample size adjustment, 3494
summary of analyses, 3488
summary of statements, 3420
survival analysis, 3473, 3481, 3533
t test for correlation, 3426, 3429, 3503
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t tests, 3432, 3437, 3448, 3455, 3463, 3471,
3508, 3509, 3518, 3526, 3529, 3566

Tarone-Ware test, 3473, 3483, 3533
two-samplet test, 3415, 3463, 3471, 3472, 3526,

3527, 3529, 3566
value lists, 3490
z test, 3429, 3432, 3505, 3506

power semivariogram model
KRIGE2D procedure, 2049

power-of-the-mean model
MIXED procedure, 2718

PPC convergence measure, 3030
pplot plots

annotating, 2102
axes, color, 2102
font, specifying, 2103
reference lines, options, 2103–2105, 2107

PPS, 161
PPS sampling

SURVEYSELECT procedure, 4463
PPS sampling, with replacement

SURVEYSELECT procedure, 4451
PPS sampling, without replacement

SURVEYSELECT procedure, 4449
PPS sequential sampling

SURVEYSELECT procedure, 4452
PPS systematic sampling

SURVEYSELECT procedure, 4451
precision

NLMIXED procedure, 3101
precision, confidence intervals, 3488
predicted means

MIXED procedure, 2704
predicted model matrix

CALIS procedure, 643, 644, 663
displaying (CALIS), 683
singular (CALIS), 680

predicted population margins
GLM procedure, 1753

predicted probabilities
LOGISTIC procedure, 2350

predicted probability plots
annotating, 3750
axes, color, 3750
font, specifying, 3750
options summarized by function, 3748
reference lines, options, 3750–3752, 3754
threshold lines, options, 3753

predicted residual sum of squares
RSREG procedure, 4042

predicted value confidence intervals
MIXED procedure, 2692

predicted values
example (MIXED), 2796
LIFEREG procedure, 2114
mixed model (MIXED), 2687
MIXED procedure, 2703
NLIN procedure, 3014
REG procedure, 3876, 3879

response functions (CATMOD), 845
prediction

example (REG), 3924
NLMIXED procedure, 3079, 3102

predictive mean matching method
MI procedure, 2542

predpplot
PROBIT procedure, 3746

preference mapping
TRANSREG procedure, 4593, 4717

preference models
TRANSREG procedure, 4586

prefix name
LINEQS statement (CALIS), 602
MATRIX statement (CALIS), 594
RAM statement (CALIS), 598
STD statement (CALIS), 603

preliminary clusters
definition (CLUSTER), 978
using in CLUSTER procedure, 969

Prentice-Williams-Peterson model
PHREG procedure, 3255

presentations
examples, ODS Graphics, 356

PRESS residual
MIXED Procedure, 2766

PRESS statistic, 1774
MIXED Procedure, 2766
RSREG procedure, 4042

prevalence test
MULTTEST procedure, 2952, 2972

primary sampling unit (PSUs), 165
primary sampling units (PSUs)

SURVEYLOGISTIC procedure, 4281
SURVEYMEANS procedure, 4335
SURVEYREG procedure, 4383

principal component analysis, 1291
compared with common factor analysis, 1293
PRINQUAL procedure, 3668
with FACTOR procedure, 1295

principal components,
See also PRINCOMP procedure
definition, 3595
interpreting eigenvalues, 3621
partialling out variables, 3608
properties of, 3595, 3596
regression (PLS), 3367, 3381
rotating, 3611
using weights, 3608

principal factor analysis
with FACTOR procedure, 1296

PRINCOMP procedure
CALIS procedure, 567
computational resources, 3611
correction for means, 3605
Crime Rates Data, example, 3619
DATA= data set, 3609
eigenvalues and eigenvectors, 3595, 3610–3612
examples, 3614, 3626
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input data set, 3605
ODS graph names, 3613
output data sets, 3605, 3609–3611
output table names, 3613
OUTSTAT= data set, 3609
%PLOTIT macro, 3615, 3617, 3625
replace missing values, example, 3626
SCORE procedure, 3611
suppressing output, 3605
weights, 3608

PRINQUAL procedure
biplot, 3678
casewise deletion, 3655
character OPSCORE variables, 3673
constant transformations, avoiding, 3673
constant variables, 3673
excluded observations, 3657, 3674
frequency variable, 3658
identity transformation, 3663
iterations, 3656, 3667, 3673
knots, 3665, 3666
linear transformation, 3662
MAC method, 3643, 3669
maximum average correlation method, 3643,

3669
maximum total variance method, 3643
MDPREF analysis, 3678
MGV method, 3643
minimum generalized variance method, 3643
missing character values, 3662
missing values, 3655, 3667, 3674
monotonic B-spline transformation, 3662
monotonic transformation, 3662, 3663
MTV method, 3643
multidimensional preference analysis, 3678,

3688
nonoptimal transformations, 3661
ODS graph names, 3677
optimal scoring, 3662
optimal transformations, 3662
output data sets, 3669
output table names, 3677
passive observations, 3674
%PLOTIT macro, 3678, 3687
principal component analysis, 3668
random initializations, 3673
reflecting the transformation, 3666
renaming variables, 3666
reusing variables, 3666
smoothing spline transformation, 3663
spline t-options, 3665
spline transformation, 3662
standardization, 3672
transformation options, 3663
variable names, 3672
weight variable, 3667

prior density
MIXED procedure, 2709

prior event probability

LOGISTIC procedure, 2314, 2353, 2422
probability density function

LIFETEST procedure, 2149, 2214
probability distribution

built-in (GENMOD), 1614, 1638
exponential family (GENMOD), 1650
user-defined (GENMOD), 1633

probability sampling,
see also SURVEYSELECT procedure

probit analysis
insets, 3724

probit equation, 3705, 3759
probit model

SURVEYLOGISTIC procedure, 4285
PROBIT procedure

Abbot’s formula, 3755
binary response data, 3705, 3706, 3759
cdfplot, 3715
deviance, 3745, 3760
deviance statistic, 3759
dispersion parameter, 3760
extreme value distribution , 3757
goodness-of-fit, 3743, 3745
goodness-of-fit tests, 3712, 3743, 3759
inset, 3723
inverse confidence limits, 3761
ippplot, 3725
log-likelihood function, 3756
logistic distribution, 3757
lpredplot, 3733
maximum-likelihood estimates, 3705
missing values, 3755
models, 3759
multilevel response data, 3705, 3706, 3759
natural response rate, 3706
Newton-Raphson algorithm, 3756
normal distribution, 3757
output table names, 3765
overdispersion, 3745
Pearson chi-square, 3759
Pearson’s chi-square, 3742, 3745, 3760
predpplot, 3746
subpopulation, 3742, 3745, 3761
threshold response rate, 3706
tolerance distribution, 3761

probit-normal-binomial example
NLMIXED procedure, 3114

probit-normal-ordinal example
NLMIXED procedure, 3118

Procrustean method, 1291
Procrustes rotation, 1318
producing monotone missingness

MI procedure, 2552
product-limit estimate

LIFETEST procedure, 2149, 2171, 2185
profile likelihood confidence intervals

GENMOD procedure, 1666
profile, population and response, 72, 73

CATMOD procedure, 820
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profiling residual variance
MIXED procedure, 2772

progeny
INBREED procedure, 1976, 1978, 1980, 1988

programming statements
constraints (CALIS), 565, 628, 630, 675
differentiation (CALIS), 589
GENMOD procedure, 1645
NLMIXED procedure, 3081
PHREG procedure, 3220, 3222, 3235, 3236

projected gradient
NLMIXED procedure, 3093

projected Hessian
NLMIXED procedure, 3093

promax method, 1291, 1318
propensity score method

MI procedure, 2543, 2565
proportion estimation

SURVEYMEANS procedure, 4341
proportional hazards model

assumption (PHREG), 3220
distribution (LIFEREG), 2111
PHREG procedure, 3215, 3228

proportional odds model
SURVEYLOGISTIC procedure, 4284

proportional rates/means model,
See rate/mean model

proportions
SURVEYFREQ procedure, 4210

prospective power, 1929, 3411
prospective study, 1540
proximity data

MDS procedure, 2471, 2478, 2484
proximity measures

available methods for computing (DISTANCE),
1257

formulas(DISTANCE), 1270
PS destination

ODS Graphics, 326, 335
pseudoF andt statistics

CLUSTER procedure, 972

Q
Q-Q plots

graph template definitions, 366
plots, ODS Graphics, 361, 363, 368, 370, 372,

373, 375, 377–379
REG procedure, 3917, 3953

quadratic discriminant function, 1139
quadratic forms for fixed effects

displaying (GLM), 1777
quadratic regression, 1738
quadrature options

NLMIXED procedure, 3071
qualitative variables, 72,

See classification variables
REG procedure, 3943

quantal response data, 3705
quantification method

CORRESP procedure, 1069
quantile computation

STDIZE procedure, 4119, 4139
quartimax method, 1291, 1317, 1318
quartimin method, 1291, 1319
quasi-complete separation

LOGISTIC procedure, 2339
SURVEYLOGISTIC procedure, 4278

quasi-independence model, 919
quasi-inverse, 1164
quasi-likelihood

GENMOD procedure, 1659
quasi-Newton, 3073
quasi-Newton algorithm

CALIS procedure, 578–581, 665, 666

R
R convergence measure, 3030
R matrix

MIXED procedure, 2663, 2732, 2733
R-notation, 1794
R-square statistic

CLUSTER procedure, 972
LOGISTIC procedure, 2315, 2342
SURVEYLOGISTIC procedure, 4264, 4280

R2 improvement
REG procedure, 3874, 3875

R2 selection
REG procedure, 3875

R= option
and other options (CLUSTER), 969, 970, 972

radius of sphere of support, 972
RAM model

CALIS procedure, 553, 596
specification, 560
structural model example (CALIS), 557, 563

random coefficients
example (MIXED), 2788, 2810

random effects
expected mean squares, 1833
GLM procedure, 1776, 1833
MIXED procedure, 2663, 2712
NESTED procedure, 2990
NLMIXED procedure, 3079
VARCOMP procedure, 4831, 4837

random effects model,
See also nested design
VARCOMP procedure, 4837

random initializations
TRANSREG procedure, 4602

random number generators
MI procedure, 2520
PLAN procedure, 3339

random sampling,
see also SURVEYSELECT procedure

random-effects parameters
MIXED procedure, 2662, 2732

randomization of designs
using PLAN procedure, 3351
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randomized complete block design
example, 1847

rangeε
KRIGE2D procedure, 2047

rank correlation
LOGISTIC procedure, 2350
SURVEYLOGISTIC procedure, 4292

rank order typal analysis,
See complete linkage

RANK procedure, 21
order statistics, 21

rank scores, 1469
rank tests

NPAR1WAY procedure, 3163
Rao-Scott chi-square test

SURVEYFREQ procedure, 4216
Rao-Scott likelihood ratio test

SURVEYFREQ procedure, 4219
rate function

PHREG procedure, 3243, 3253
rate/mean model

PHREG procedure, 3243, 3253
ratio

SURVEYMEANS procedure, 4330, 4339
ratio analysis

SURVEYMEANS procedure, 4330, 4339, 4348
ratio level of measurement

DISTANCE procedure, 1250
raw residuals

GENMOD procedure, 1669
receiver operating characteristic

LOGISTIC procedure, 2378
reciprocal averaging

CORRESP procedure, 1069
reciprocal causation

CALIS procedure, 585
rectangular lattice

LATTICE procedure, 2069
rectangular table

SURVEYMEANS procedure, 4324
recurrent events

PHREG procedure, 3216, 3224–3226, 3243
reduced rank regression, 3367

PLS procedure, 3381
reduction notation, 1794
redundancy analysis

CANCORR procedure, 752
standardized variables (TRANSREG), 4591
TRANSREG procedure, 4576, 4590, 4593, 4606

REF Parameterization
SURVEYLOGISTIC procedure, 4272

reference level
TRANSREG procedure, 4569

REFERENCE Parameterization
SURVEYLOGISTIC procedure, 4272

reference structure, 1298
reference-cell coding

TRANSREG procedure, 4569, 4594, 4664, 4666
references, 1288

referring to graphs
examples, ODS Graphics, 330
ODS Graphics, 330

refitting models
REG procedure, 3905

reflecting the transformation
PRINQUAL procedure, 3666
TRANSREG procedure, 4572

REG procedure
adding variables, 3819
adjusted R2 selection, 3875
alpha level, 3816
annotations, 3816, 3844
ANOVA table, 3918
autocorrelation, 3915
backward elimination, 3800, 3874
collinearity, 3895
compared to other procedures, 1735, 3197
computational methods, 3917
correlation matrix, 3817
covariance matrix, 3817
crossproducts matrix, 3917
delete variables, 3820
deleting observations, 3903
diagnostic statistics, 3896, 3897
dictionary of options, 3844
forward selection, 3800, 3873
graphics, 3923
graphics examples, 3948
graphics keywords and options, 3841, 3843
graphics plots, high-resolution, 3840
heteroscedasticity, testing, 3910
hypothesis tests, 3832, 3858
incomplete principal components, 3818, 3828
influence statistics, 3898
input data sets, 3860
interactive analysis, 3812, 3869
introductory example, 3800
IPC analysis, 3818, 3828, 3916
line printer plots, 3848, 3882
Mallows’ Cp selection, 3875
missing values, 3859
model fit summary statistics, 3896
model selection, 3800, 3873, 3876, 3877, 3924
multicollinearity, 3895
multivariate tests, 3910
new regressors, 3860
non-full-rank models, 3893
ODS graph names, 3923
ODS table names, 3920
output data sets, 3863, 3868
P-P plots, 3917, 3953
painting line-printer plots, 3889
parameter estimates, 3877, 3919
partial regression leverage plots, 3901
plot keywords and options, 3841, 3843, 3844
plots, high-resolution, 3840
polynomial regression, 3804
predicted values, 3876, 3879, 3924
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Q-Q plots, 3917, 3953
qualitative variables, 3943
R2 improvement, 3874, 3875
R2 selection, 3875
refitting models, 3905
residual values, 3879
restoring weights, 3906
reweighting observations, 3903
ridge regression, 3818, 3829, 3848, 3916, 3956
singularities, 3917
stepwise selection, 3800, 3874
summary statistics, 3896
sweep algorithm, 3917
time series data, 3915
variance inflation factors (VIF), 3818, 3958

regression
analysis (REG), 3799
CATMOD procedure, 815
examples (GLM), 1853
ill-conditioned data, 3197
MODEL statements (GLM), 1785
nonparametric, 4497
ORTHOREG procedure, 3197
partial least squares (PROC PLS), 3367, 3380
power and sample size (POWER), 3421, 3425,

3500, 3556
principal components (PROC PLS), 3367, 3381
quadratic (GLM), 1738
reduced rank (PROC PLS), 3367, 3381
semiparametric models, 4497, 4500
smoothing splines, 4497

regression coefficients
CANCORR procedure, 759
covariance (SURVEYREG), 4392
SURVEYREG procedure, 4384, 4392
using with SCORE procedure, 4066

regression diagnostics
LOGISTIC procedure, 2359

regression effects
MIXED procedure, 2743
model parameterization (GLM), 1787
specifying (GLM), 1784

regression estimator
SURVEYREG procedure, 4400, 4407

regression method
MI procedure, 2541, 2565

regression parameter estimates, example
SCORE procedure, 4081

regression table
TRANSREG procedure, 4580

regressor effects
GENMOD procedure, 1660

rejection sampling
MIXED procedure, 2711

relative efficiency
MI procedure, 2562
MIANALYZE procedure, 2626

relative increase in variance
MI procedure, 2562

MIANALYZE procedure, 2625
relative paths, 337

examples, ODS Graphics, 359
relative risk, 1503

cohort studies, 1489
logit estimate, 1507
Mantel-Haenszel estimate, 1507
power and sample size (POWER), 3457, 3462,

3523, 3524
REML,

See restricted maximum likelihood
renaming and reusing variables

PRINQUAL procedure, 3666
repeated measures

ANOVA procedure, 446
CATMOD procedure, 815, 850, 873
contrasts (GLM), 1779
data organization (GLM), 1825
doubly-multivariate design, 1886
examples (CATMOD), 925, 930, 933, 937
examples (GLM), 1781, 1877
GEE (GENMOD), 1611, 1672
GLM procedure, 1777, 1825
hypothesis tests (GLM), 1827, 1830
MIXED procedure, 2662, 2716, 2782
more than one factor (ANOVA), 446, 449
more than one factor (GLM), 1830
multiple populations (CATMOD, 875
one population (CATMOD), 873
RESPONSE statement (CATMOD), 873
specifying factors (CATMOD), 851
transformations, 1830–1832

replaying output
examples, ODS Graphics, 361, 363, 369

replicate subjects
NLMIXED procedure, 3080

replicated sampling
SURVEYSELECT procedure, 4438, 4460

requesting graphs
ODS Graphics, 321, 324

resampled data sets
MULTTEST procedure, 2962

reseting index counter
ODS Graphics, 335

residual chi-square
PHREG procedure, 3231

residual maximum likelihood (REML)
MIXED procedure, 2738, 2779

Residual plots
MIXED procedure, 2758

residual plots
plots, ODS Graphics, 322

residuals
and partial correlation (PRINCOMP), 3609
CALIS procedure, 650
deviance (PHREG), 3234, 3258, 3302
GENMOD procedure, 1641, 1669, 1670
LOGISTIC procedure, 2360
martingale (PHREG), 3234, 3258, 3302
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MDS procedure, 2483, 2487, 2488, 2491, 2503
NLIN procedure, 3014
partial correlation (PRINCOMP), 3608
prefix (CALIS), 601
prefix (TRANSREG), 4591
REG procedure, 3879
Schoenfeld (PHREG), 3234, 3258
score (PHREG), 3234, 3259
weighted Schoenfeld (PHREG), 3235, 3259
weighted score (PHREG), 3260

residuals, details
MIXED procedure, 2763

response functions (CATMOD)
covariance matrix, 842
formulas, 892
identifying with FACTORS statement, 836
predicted values, 845
related to design matrix, 877, 879
variance formulas, 892

response level ordering
LOGISTIC procedure, 2290, 2305, 2329, 2330
SURVEYLOGISTIC procedure, 4259, 4269,

4270
response profile, 73

CATMOD procedure, 820
response surfaces, 4033

canonical analysis, interpreting, 4046
covariates, 4050
experiments, 4045
plotting, 4048
ridge analysis, 4047

response variable, 451, 1784
PHREG procedure, 3218, 3235, 3283
sort order of levels (GENMOD), 1626

restoring weights
REG procedure, 3906

restricted maximum likelihood
MIXED procedure, 2662, 2738, 2779

restrictions
of parameters (CATMOD), 859

resubstitution
DISCRIM procedure, 1163

reticular action model,
See RAM model

retrospective power, 1929, 3411
reverse response level ordering

LOGISTIC procedure, 2290, 2305, 2329, 2330
SURVEYLOGISTIC procedure, 4259, 4269,

4270
reweighting observations

REG procedure, 3903
ridge analysis

RSREG procedure, 4047
ridge regression

REG procedure, 3818, 3829, 3848, 3916, 3956
ridging

MIXED procedure, 2680, 2738
ridit scores, 1469
risk set

PHREG procedure, 3220, 3240, 3241, 3288
risk weights

PHREG procedure, 3229
risks and risk differences, 1486
RMSSTD statement

and FREQ statement (CLUSTER), 974
robust

cluster analysis, 1379, 1392
estimators (STDIZE), 4138

ROBUSTREG procedure, 3971
computational resources, 4012
INEST= data sets, 4011
ODS graph names, 4014
OUTEST= data sets, 4011
output table names, 4012
syntax, 3982

ROC curve
LOGISTIC procedure, 2314, 2357

Roger and Tanimoto coefficient
DISTANCE procedure, 1274

Root MSE
SURVEYREG procedure, 4388

rotating principal components, 3611
row mean scores statistic, 1502
row proportions

SURVEYFREQ procedure, 4212
Roy’s maximum root, 437, 1759, 1828
RPC convergence measure, 3030
RSREG procedure

coding variables, 4047, 4052
compared to other procedures, 1735, 4033
computational methods, 4050
confidence intervals, 4042, 4043
Cook’sD influence statistic, 4042
covariates, 4034
eigenvalues, 4050
eigenvectors, 4050
factor variables, 4034
input data sets, 4040, 4041
introductory example, 4034
missing values, 4048
ODS table names, 4054
output data sets, 4040, 4044, 4051, 4052
PRESS statistic, 4042
response variables, 4034
ridge analysis, 4047

RTF destination
ODS Graphics, 326, 335

RTF output
examples, ODS Graphics, 356, 360
ODS Graphics, 326, 338

Rtf style
ODS styles, 346

Russell and Rao similarity coefficient
DISTANCE procedure, 1276

Ryan’s multiple range test, 444, 1768, 1815
examples, 1851

S



4960 � Subject Index

S convergence measure, 3030
saddle test, definition

MODECLUS procedure, 2879
salience of loadings, FACTOR procedure, 1294, 1327
Sampford’s method

SURVEYSELECT procedure, 4455
sample design

SURVEYFREQ procedure, 4203
sample selection methods

SURVEYSELECT procedure, 4446
sample size

CATMOD procedure, 887
overview of power concepts (POWER), 3488
See GLMPOWER procedure, 1929
See POWER procedure, 3411
SURVEYSELECT procedure, 4440

sample size adjustment
GLMPOWER procedure, 1946
POWER procedure, 3494

sample survey analysis, ordinal data, 816
sampling fraction, 165
sampling frame, 164
sampling rate, 165

SURVEYFREQ procedure, 4194, 4204
SURVEYLOGISTIC procedure, 4251, 4280
SURVEYMEANS procedure, 4324, 4334
SURVEYREG procedure, 4374, 4382
SURVEYSELECT procedure, 4439

sampling unit, 164
sampling weight, 165
sampling zeros

and log-linear analyses (CATMOD), 871
and structural zeros (CATMOD), 888

sandwich estimator
MIXED procedure, 2676

SAS Companion, 327, 336, 348
SAS current folder, 327
SAS data set

DATA step, 21
summarizing, 21, 22

SAS Registry, 327, 346
SAS Registry Editor, 346
SAS Results Viewer, 327, 336
SAS/ETS software, 22
SAS/GRAPH software, 22
SAS/IML software, 22
SAS/INSIGHT software, 22
SAS/OR software, 23
SAS/QC software, 23
Satterthwaite method

MIXED procedure, 2694
Satterthwaitet test

power and sample size (POWER), 3463, 3472,
3527

Satterthwaite’s approximation, 4775, 4785
testing random effects, 1835

Savage scores
NPAR1WAY procedure, 3167

saving graphics image files

ODS Graphics, 336
saving templates

examples, ODS Graphics, 368
sawtooth power function, 3541
scale estimates

FASTCLUS procedure, 1390, 1392, 1397, 1399,
1400

scale parameter
GENMOD procedure, 1653

Scaled Residual
MIXED procedure, 2705

Scaled residuals
MIXED procedure, 2764

scaling variables
DISTANCE procedure, 1251
MODECLUS procedure, 2856
STDIZE procedure, 4143

scalogram analysis
CORRESP procedure, 1069

scatter plots
plots, ODS Graphics, 343, 351

Scheffé’s multiple-comparison procedure, 1810
Scheffé’s multiple-comparison procedure, 444
Scheffé’s multiple-comparison procedure, 1769
Schoenfeld residuals

PHREG procedure, 3234, 3258
Schwarz criterion

LOGISTIC procedure, 2341
SURVEYLOGISTIC procedure, 4279

Schwarz’s Bayesian information criterion
example (MIXED), 2780, 2794, 2823
MIXED procedure, 2676, 2740, 2750

SCORE procedure
CALIS procedure, 571, 586, 643
computational resources, 4075
examples, 4067, 4075
input data set, 4072
OUT= data sets, 4075
output data set, 4072, 4075
PRINCOMP procedure, 3611
regression parameter estimates from REG proce-

dure, 4074
scoring coefficients, 4065

score residuals
PHREG procedure, 3234, 3259

score statistics
GENMOD procedure, 1668
LOGISTIC procedure, 2343
SURVEYLOGISTIC procedure, 4287

score test
PHREG procedure, 3229, 3231, 3246, 3269,

3274, 3276
TPHREG procedure, 4486

score variables
interpretation (SCORE), 4074

scores
NPAR1WAY procedure, 3166

scoring
MIXED procedure, 2674, 2680, 2774
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scoring coefficients (SCORE), 4065
scree plot, 1336
screening design, analysis, 1895
screening experiments

GLMMOD procedure, 1923
SDF,

See survival distribution function
selecting graphs

examples, ODS Graphics, 330, 352, 361
ODS Graphics, 330

selection methods,
See model selection

semiparametric model
PHREG procedure, 3215

semipartial correlation
CANCORR procedure, 762
formula (CLUSTER), 984

semivariogram
computation (VARIOGRAM), 4876, 4877
empirical (or experimental) (VARIOGRAM),

4856, 4858
robust (VARIOGRAM), 4861, 4869, 4877

sensitivity
CATMOD procedure, 941

sequential random sampling
SURVEYSELECT procedure, 4448

serpentine sorting
SURVEYSELECT procedure, 4445

Shape distance coefficient
DISTANCE procedure, 1271

Shewhart control charts, 23
Sidak (MULTTEST)

p-value adjustments, 2942, 2956, 2972
Sidak’st test, 1769, 1810
Sidak’s adjustment

GLM procedure, 1754
MIXED procedure, 2688
MULTTEST procedure, 2942, 2956, 2972

Sidak’s inequality, 444
Siegel-Tukey scores

NPAR1WAY procedure, 3167
significance level

CALIS procedure, 588
entry (PHREG), 3230
hazards ratio confidence interval (PHREG),

3233
removal (PHREG), 3230, 3277

significance tests
MODECLUS procedure, 2876, 2916

sill
KRIGE2D procedure, 2047

SIM2D procedure
Cholesky root, 4107
computational details, 4109
conditional and unconditional simulation, 4091
conditional distributions of multivariate normal

random variables, 4108
examples, 4092, 4111
Gaussian assumption, 4091

Gaussian random field, 4091
LU decomposition, 4106
memory usage, 4110
output data sets, 4099, 4110
OUTSIM= data set, 4110
quadratic form, 4108
simulation of spatial random fields, 4106–4109

similarity data
MDS procedure, 2471, 2478, 2484

Similarity Ratio coefficient
DISTANCE procedure, 1272

simple cluster-seeking algorithm, 1381
simple effects

GLM procedure, 1758, 1817
MIXED procedure, 2691

simple kappa coefficient, 1493, 1495
Simple Matching coefficient

DISTANCE procedure, 1274
Simple Matching dissimilarity coefficient

DISTANCE procedure, 1274
simple random cluster sampling

SURVEYREG procedure, 4397
simple random sampling

SURVEYMEANS procedure, 4315
SURVEYREG procedure, 4365, 4395
SURVEYSELECT procedure, 4423, 4447

simplicity functions
CALIS procedure, 607
FACTOR procedure, 1294, 1316, 1329

SIMPLS method
PLS procedure, 3380

simulation of spatial random fields
SIM2D procedure, 4106–4109

simulation-based adjustment
GLM procedure, 1754
MIXED procedure, 2688

single linkage
CLUSTER procedure, 967, 982

singularities
MIXED procedure, 2775
REG procedure, 3917

singularity
MI procedure, 2521

singularity checking
CANCORR procedure, 762
GLM procedure, 1750, 1752, 1758, 1772

singularity criterion
CALIS procedure, 590
contrast matrix (GENMOD), 1632
contrast matrix (LOGISTIC), 2300
contrast matrix (SURVEYLOGISTIC), 4258
contrast matrix (TPHREG), 4481
covariance matrix (CALIS), 588, 590, 591
information matrix (GENMOD), 1642
PHREG procedure, 3232
TRANSREG procedure, 4579

singularity level
SURVEYREG procedure, 4377, 4379

singularity tolerances
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NLMIXED procedure, 3072
Size distance coefficient

DISTANCE procedure, 1271
skewness

CALIS procedure, 658
displayed in CLUSTER procedure, 972

SMM multiple-comparison method, 444, 1769, 1811
smoothing parameter

cluster analysis, 979
MODECLUS procedure, 2864, 2871
optimal (DISCRIM), 1162

smoothing parameter, default
MODECLUS procedure, 2872

smoothing spline transformation
PRINQUAL procedure, 3663
TRANSREG procedure, 4564, 4596

Sokal and Sneath 1 coefficient
DISTANCE procedure, 1274

Sokal and Sneath 3 coefficient
DISTANCE procedure, 1275

Somers’D statistics, 1474, 1478
spacing

STDIZE procedure, 4139
spatial anisotropic exponential structure

MIXED procedure, 2721
spatial covariance structures

examples (MIXED), 2723
MIXED procedure, 2722, 2730, 2774

spatial prediction
VARIOGRAM procedure, 4851, 4852

Spearman rank correlation coefficient, 1474, 1480
specificity

CATMOD procedure, 941
spherical semivariogram model

KRIGE2D procedure, 2046, 2047
sphericity tests, 449, 1780, 1881
spline t-options

PRINQUAL procedure, 3665
TRANSREG procedure, 4566

spline transformation
PRINQUAL procedure, 3662
TRANSREG procedure, 4564, 4611

splines
Bayesian confidence intervals, 4513
goodness of fit, 4514
regression model, 4497, 4513, 4518
thin-plate smoothing, 4497
TPSPLINE procedure, 4497
TRANSREG procedure, 4560, 4561, 4614,

4637, 4678, 4709
split-plot design

ANOVA procedure, 451, 470, 472, 475
generating with PLAN procedure, 3352
MIXED procedure, 2734, 2777

square root difference cloud
VARIOGRAM procedure, 4882

Squared Correlation dissimilarity coefficient
DISTANCE procedure, 1272

Squared Correlation similarity coefficient

DISTANCE procedure, 1272
Squared Euclidean distance coefficient

DISTANCE procedure, 1271
squared multiple correlation

CALIS procedure, 657, 686
CANCORR procedure, 762

squared partial correlation
CANCORR procedure, 762

squared semipartial correlation
CANCORR procedure, 762
formula (CLUSTER), 984

SSCP matrix
displaying, for multivariate tests, 438, 439
for multivariate tests, 437
for multivariate tests (GLM), 1759, 1761

stacking table
SURVEYMEANS procedure, 4324

standard deviation
CLUSTER procedure, 972
SURVEYMEANS procedure, 4341

standard error
PHREG procedure, 3225, 3233, 3235, 3269
SURVEYMEANS procedure, 4338
TPHREG procedure, 4487

standard error of ratio
SURVEYMEANS procedure, 4339

standard error ratio
PHREG procedure, 3269
TPHREG procedure, 4487

standard linear model
MIXED procedure, 2663

STANDARD procedure, 21
standardized values, 21

standardization
comparisons between DISTANCE and STDIZE

procedures, 1251
standardized score process

PHREG procedure, 3267, 3271
standardizing

cluster analysis (STDIZE), 4143
CLUSTER procedure, 972
MODECLUS procedure, 2856
raw data (SCORE), 4066
redundancy variables (TRANSREG), 4591
TRANSREG procedure, 4572
values (STANDARD), 21
values (STDIZE), 4119

star (*) operator
TRANSREG procedure, 4558

stationary point
NLMIXED procedure, 3100

statistic-keywords
SURVEYMEANS procedure, 4326

statistical
assumptions (GLM), 1783
quality control, 23
tests (MULTTEST), 2948

statistical computation
SURVEYMEANS procedure, 4336
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statistical computations
SURVEYFREQ procedure, 4206

Statistical Graphics Using ODS,
see ODS Graphics

Statistical style
ODS styles, 333

STD option (MODECLUS), 2856
STD= option (DISTANCE), 1265
STDIZE procedure

AGK estimate, 4139
analyzing data in groups, 4134
Andrew’s wave estimate, 4139
breakdown point and efficiency, 4138
comparisons of quantile computation,

PCTLMTD option, 4139
computational methods, PCTLDEF option, 4140
Euclidean length, 4138
examples, 4119, 4143
final output value, 4119
formulas for statistics, 4138
fuzz factor, 4130
Huber’s estimate, 4139
initial estimates for A estimates, 4131
input data set (METHOD=IN()), 4137
methods resistant to clustering, 4138
methods resistant to outliers, 4124, 4138
Minkowski metric, 4138
missing values, 4131, 4133, 4141
normalization, 4131, 4133
one-pass quantile computations, 4139
OUT= data set, 4130, 4141
output data sets, 4132, 4141
output table names, 4142
OUTSTAT= data set, 4141
quantile computation, 4119, 4139
robust estimators, 4138
spacing, 4139
standardization methods, 4119, 4136
standardization with weights, 4135
Tukey’s biweight estimate, 4127, 4139
tuning constant, 4127, 4137
unstandardization, 4133
weights, 4135

step halving
PHREG procedure, 3245

step length
CALIS procedure, 581

step length options
NLMIXED procedure, 3096

STEPDISC procedure
average squared canonical correlation, 4173
computational resources, 4171
input data sets, 4170
introductory example, 4158
memory requirements, 4171
methods, 4157
missing values, 4170
ODS table names, 4174
Pillai’s trace, 4173

stepwise selection, 4159
time requirements, 4171
tolerance, 4173
Wilks’ lambda, 4173

stepdown methods
GLM procedure, 1814
MULTTEST procedure, 2957, 2972

stepwise discriminant analysis, 4157
stepwise selection

LOGISTIC procedure, 2317, 2341, 2391
PHREG procedure, 3229, 3265, 3272
REG procedure, 3800, 3874
STEPDISC procedure, 4159

stored data algorithm, 986
stored distance algorithms, 986
strata

SURVEYFREQ procedure, 4196
SURVEYLOGISTIC procedure, 4266
SURVEYMEANS procedure, 4332
SURVEYREG procedure, 4381

strata variables
PHREG procedure, 3237
programming statements (PHREG), 3235

strata weights
MULTTEST procedure, 2951

stratification
SURVEYFREQ procedure, 4196, 4203
SURVEYLOGISTIC procedure, 4266
SURVEYMEANS procedure, 4332, 4346
SURVEYREG procedure, 4381, 4391

stratified analysis
FREQ procedure, 1431, 1450
PHREG procedure, 3216, 3237

stratified cluster sample
SURVEYMEANS procedure, 4350

stratified sampling, 164
SURVEYMEANS procedure, 4318
SURVEYREG procedure, 4368, 4401
SURVEYSELECT procedure, 4425, 4444

stratified table
example, 1540

stratified tests
LIFETEST procedure, 2150, 2155, 2156, 2158,

2167, 2180, 2187
stratum collapse

SURVEYREG procedure, 4388, 4411
stress formula

MDS procedure, 2479, 2480, 2489
strip-split-plot design

ANOVA procedure, 475
structural equation (CALIS)

definition, 585, 625, 658
dependent variables, 625
models, 552

structural model example (CALIS), 555
COSAN model, 561
factor analysis model, 564
LINEQS model, 558, 562
LISREL model, 559
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path diagram, 555, 600
RAM model, 557, 563

Stuart’s tau-c statistic, 1474, 1478
Student’s multiple range test, 444, 1769, 1814
Studentized maximum modulus

pairwise comparisons, 444, 1769, 1811
Studentized Residual

MIXED procedure, 2704
studentized residual, 1774, 3899
Studentized residuals

external, 2768
internal, 2768
MIXED procedure, 2768

style attributes, modifying
examples, ODS Graphics, 374, 376, 378

style elements, modifying
examples, ODS Graphics, 374, 376, 378

subdomain analysis
SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336

subgroup analysis
SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336

subject effect
MIXED procedure, 2683, 2715, 2721, 2776,

2782
subject weights

MDS procedure, 2471, 2477
subpopulation

GENMOD procedure, 1637
LOGISTIC procedure, 2308, 2316, 2355
PROBIT procedure, 3742, 3745, 3761

subpopulation analysis
SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336

sum-to-zero assumptions, 1835
summary of commands

MIXED procedure, 2672
summary statistics

REG procedure, 3896
sums of squares

GLM procedure, 1772, 1773
Type II (GLM), 1773
Type II (TRANSREG), 4580

supported operating environments
ODS Graphics, 348

supported procedures
ODS Graphics, 348

suppressing output
CANCORR procedure, 761
GENMOD procedure, 1627
MI procedure, 2520

surface plots
plots, ODS Graphics, 324, 360

surface trend
VARIOGRAM procedure, 4854

survey data analysis, 161
survey sampling, 161,

see also SURVEYFREQ procedure

see also SURVEYMEANS procedure
see also SURVEYREG procedure
see also SURVEYSELECT procedure
cluster sampling, 164
data analysis, 4185
descriptive statistics, 4315
finite population correction factor, 165
first-stage sampling unit, 165
fpc, 165
multistage sampling, 165
population, 164
population total, 165
PPS, 161
primary sampling units (PSUs), 165
regression analysis, 4365
sample selection, 4421
sampling fraction, 165
sampling frame, 164
sampling rate, 165
sampling unit, 164
sampling weight, 165
stratified sampling, 164
survey weight, 165
SURVEYMEANS procedure, 167
SURVEYREG procedure, 167
SURVEYSELECT procedure, 167
variance estimation, 166

survey weight, 165
SURVEYFREQ procedure, 159, 4185

alpha level, 4199
chi-square test, 4216
cluster, 4195
clustering, 4203
coefficient of variation, 4214
column proportions, 4212
confidence limits, 4213
covariance, 4210
crosstabulation tables, 4227
data summary table, 4225
default tables, 4197
degrees of freedom, 4214
design effect, 4215
design-adjusted chi-square test, 4216
displayed output, 4225
domain analysis, 4205
expected weighted frequency, 4215
introductory example, 4185
missing values, 4205
multiway tables, 4227
ODS table names, 4230
one-way frequency tables, 4226
order of variables, 4193
output table names, 4230
population total, 4194, 4204
proportions, 4210
Rao-Scott chi-square test, 4216
Rao-Scott likelihood ratio test, 4219
row proportions, 4212
sample design, 4203
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sampling rate, 4194, 4204
statistical computations, 4206
statistical test tables, 4229
strata, 4196
stratification, 4196, 4203
stratum information table, 4225
subdomain analysis, 4205
subgroup analysis, 4205
subpopulation analysis, 4205
Taylor series method, 4206
totals, 4209
unequal weighting, 4204
Wald chi-square test, 4221
Wald log-linear chi-square test, 4223

SURVEYLOGISTIC procedure, 159
Akaike’s information criterion, 4279
cluster, 4255
computational details, 4282
confidence intervals, 4288
convergence criterion, 4261–4263
customized odds ratio, 4267
displayed output, 4292
EFFECT Parameterization, 4270
estimability checking, 4258
existence of MLEs, 4277
first-stage sampling rate, 4251
Fisher’s scoring method, 4264, 4265, 4276
GLM Parameterization, 4271
gradient, 4287
Hessian matrix, 4264, 4287
infinite parameter estimates, 4263
initial values, 4280
link function, 4243, 4263, 4273
log odds, 4289
maximum likelihood algorithms, 4275
Medical Expenditure Panel Survey (MEPS),

4302
missing values, 4251, 4268
model fitting criteria, 4279
Newton-Raphson algorithm, 4264, 4265, 4277
odds ratio confidence limits, 4262
odds ratio estimation, 4288
ORDINAL Parameterization, 4271
ORTHEFFECT Parameterization, 4272
ORTHORDINAL Parameterization, 4272
ORTHOTHERM Parameterization, 4272
ORTHPOLY Parameterization, 4273
ORTHREF Parameterization, 4273
output table names, 4295
Parameterization, 4270
POLY Parameterization, 4271
POLYNOMIAL Parameterization, 4271
population total, 4252, 4280
primary sampling units (PSUs), 4281
rank correlation, 4292
REF Parameterization, 4272
REFERENCE Parameterization, 4272
response level ordering, 4270
reverse response level ordering, 4259, 4269

sampling rate, 4251, 4280
Schwarz criterion, 4279
score statistics, 4287
singular contrast matrix, 4258
strata, 4266
stratification, 4266
testing linear hypotheses, 4266, 4288
Variance Estimation, 4282

SURVEYMEANS procedure, 159, 4315
categorical variable, 4329, 4337, 4341
class level, 4346
cluster, 4329
coefficient of variation, 4340
confidence level, 4323
confidence limits, 4340, 4342
data summary, 4346
degrees of freedom, 4340, 4344
denominator variable, 4330
descriptive statistics, 4347
domain analysis, 4336, 4348
domain mean, 4343
domain statistics, 4342
domain total, 4343
domain variable, 4330
empty stratum, 4334, 4344
estimated frequency, 4341
estimated total, 4341
first-stage sampling rate, 4324
indicator variable, 4337
mean per element, 4337
means, 4337
missing values, 4323, 4333, 4358
numerator variable, 4330
ODS table names, 4349
output data set, 4321, 4345
output table names, 4349
population total, 4326, 4334
primary sampling units (PSUs), 4335
proportion estimation, 4341
ratio, 4330, 4339
ratio analysis, 4330, 4339, 4348
rectangular table, 4324
sampling rate, 4324, 4334
simple random sampling, 4315
stacking table, 4324
standard deviation of the total, 4341
standard error of ratio, 4339
standard error of the mean, 4338
statistic-keywords, 4326
statistical computation, 4336
strata, 4332
stratification, 4332, 4346
stratified cluster sample, 4350
stratified sampling, 4318
subdomain analysis, 4336
subgroup analysis, 4336
subpopulation analysis, 4336
t test, 4339
valid observation, 4346
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variance of the mean, 4338
variance of the total, 4341

SURVEYREG procedure, 159, 4365
ADJRSQ, 4380
Adjusted R-square, 4387
analysis of contrasts, 4393
analysis of variance, 4387
ANOVA, 4380, 4387, 4392
classification level, 4391
classification variables, 4375
cluster, 4376
coefficients of contrast, 4392
coefficients of estimate, 4393
computational details, 4384
confidence level, 4373
confidence limits, 4380
contrasts, 4376, 4389
data summary, 4390
degrees of freedom, 4385
design effect, 4388
design summary, 4390
effect testing, 4386, 4392
estimable functions, 4378, 4393
first-stage sampling rate, 4374
inverse matrix ofX′X, 4391
missing values, 4382
MSE, 4388
multiple R-square, 4387
output data set, 4372, 4393
output table names, 4394
pooled stratum, 4389
population total, 4374, 4382
primary sampling units (PSUs), 4383
regression coefficients, 4384, 4392
regression estimator, 4400, 4407
Root MSE, 4388
sampling rate, 4374, 4382
simple random cluster sampling, 4397
simple random sampling, 4365, 4395
singularity level, 4377, 4379
strata, 4381
stratification, 4381, 4391
stratified sampling, 4368, 4401
stratum collapse, 4388, 4411
variance estimation, 4385
Wald test, 4386, 4389
X′X matrix, 4391

SURVEYSELECT procedure, 167, 4421
Brewer’s method, 4453
certainty size measure, 4432
Chromy’s method, 4448, 4452
control sorting, 4443, 4445
displayed output, 4458
dollar-unit sampling, 4466
initial seed, 4441
introductory example, 4422
joint selection probabilities, 4433
maximum size measure, 4433
minimum size measure, 4436

missing values, 4445
Murthy’s method, 4454
output data sets, 4456
output table names, 4460
PPS sampling, 4463
PPS sampling, with replacement, 4451
PPS sampling, without replacement, 4449
PPS sequential sampling, 4452
PPS systematic sampling, 4451
replicated sampling, 4438, 4460
Sampford’s method, 4455
sample selection methods, 4446
sample size, 4440
sampling rate, 4439
sequential random sampling, 4448
serpentine sorting, 4445
simple random sampling, 4423, 4447
stratified sampling, 4425, 4444
systematic random sampling, 4448
unrestricted random sampling, 4447

survival analysis
power and sample size (POWER), 3473, 3481,

3533
survival distribution function

LIFETEST procedure, 2149, 2171, 2184
PHREG procedure, 3239

survival function
LIFEREG procedure, 2083, 2111

survival models, parametric, 2083
survival times

PHREG procedure, 3215, 3281, 3283
survivor function,

See survival distribution function
definition (PHREG), 3239
estimates (LOGISTIC), 2460
estimates (PHREG), 3225, 3235, 3261, 3299
PHREG procedure, 3215, 3235, 3240

sweep algorithm
REG procedure, 3917

symmetric and positive definite (SIM2D)
covariance matrix, 4107

symmetric binary variable
DISTANCE procedure, 1250

syntax
ROBUSTREG procedure, 3982

systematic random sampling
SURVEYSELECT procedure, 4448

T
t statistic

approximate, 4784
for equality of means, 4783

t test
MULTTEST procedure, 2946, 2955, 2968
power and sample size (POWER), 3432, 3437,

3448, 3455, 3463, 3471, 3508, 3509, 3518,
3526

SURVEYMEANS procedure, 4339
t test for correlation
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power and sample size (POWER), 3426, 3429,
3503

t value
CALIS procedure, 649
displaying (CALIS), 686

t-square statistic
CLUSTER procedure, 972, 984

table names
MIXED procedure, 2752

table scores, 1469
tables

crosstabulation (SURVEYFREQ), 4227
frequency and crosstabulation (FREQ), 1431,

1450
frequency and crosstabulation

(SURVEYFREQ), 4196
multiway, 1518, 1520, 1521
one-way frequency, 1517, 1518
one-way frequency (SURVEYFREQ), 4226
one-way, tests, 1469, 1470
two-way, tests, 1470, 1471

TABLES statement, use
CORRESP procedure, 1072

TABULATE procedure, 22
Tarone’s adjustment

Breslow-Day test, 1508
Tarone-Ware test for homogeneity

LIFETEST procedure, 2150, 2168
power and sample size (POWER), 3473, 3483,

3533
Taylor series method

SURVEYFREQ procedure, 4206
Template Editor window, 340, 365
TEMPLATE procedure

examples, ODS Graphics, 363, 369, 371, 373,
379

graph template language, 342
template stores, 338

Sashelp.Tmplmst, 338, 341, 345, 346, 365
Sasuser.Templat, 340, 341, 346
user-defined, 341, 342

templates
displaying contents of template, 278
in SASUSER library, 278
modifying, 278, 303, 309
style templates, 279
table templates, 279
TEMPLATE procedure, 278

Templates window, 339, 340, 345, 365
termination criteria (CALIS),

See optimization
test components

MIXED procedure, 2702
test indices

constraints (CALIS), 584
test set classification

DISCRIM procedure, 1163
test set validation

PLS procedure, 3384

testing linear hypotheses
LOGISTIC procedure, 2327, 2358
MIANALYZE procedure, 2618, 2628
SURVEYLOGISTIC procedure, 4266, 4288

tests, hypothesis
examples (GLM), 1850
GLM procedure, 1749

tetrachoric correlation coefficient, 1460, 1482
theoretical correlation

INBREED procedure, 1977
thin-plate smoothing splines, 4497

bootstrap, 4531, 4535
large data sets, 4527
theoretical foundation, 4511

three-way multidimensional scaling
MDS procedure, 2471

threshold response rate, 3705
tick marks, modifying

examples, ODS Graphics, 373
ties

checking for in CLUSTER procedure, 971
MDS procedure, 2485
PHREG procedure, 3216, 3219, 3228, 3241,

3268
TPHREG procedure, 4486

time requirements
ACECLUS procedure, 411
CLUSTER procedure, 986
FACTOR procedure, 1331, 1335
VARCLUS procedure, 4815, 4818

time series data
REG procedure, 3915

time-dependent covariates
PHREG procedure, 3216, 3220, 3222, 3224,

3233, 3236
time-series plot

MI procedure, 2556
Tobit model

LIFEREG procedure, 2085, 2129
Toeplitz structure

example (MIXED), 2819
MIXED procedure, 2721

total covariance matrix
MIANALYZE procedure, 2627

total variance
MI procedure, 2561
MIANALYZE procedure, 2625

totals
SURVEYFREQ procedure, 4209

TPHREG procedure
displayed output, 4486
estimability checking, 4481
global null hypothesis, 4486
hierarchy, 4475
iteration history, 4486
likelihood ratio test, 4486
miscellaneous changes from PROC PHREG,

4485
model hierarchy, 4473, 4475
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ODS table names, 4488
parameter estimates, 4486, 4487
score test, 4486
singular contrast matrix, 4481
standard error, 4487
standard error ratio, 4487
ties, 4486
Wald test, 4486

TPSPLINE procedure
bootstrap, 4531, 4535
computational formulas, 4511
large data sets, 4527
nonhomogeneous variance, 4514
ODS table names, 4515
partial spline model, 4515
smoothing parameter, 4514
smoothing penalty, 4525

trace record
examples, ODS Graphics, 330, 352, 363

trace W method,
See Ward’s method

traditional high-resolution graphics
LIFETEST procedure, 2159

traditional high-resolution graphics (LIFETEST),
2159

catalog, 2161
description, 2160
global annotate, 2160
local annotate, 2162

training data set
DISCRIM procedure, 1139

transformation
MI procedure, 2533

transformation matrix
orthonormalizing, 438, 1761

transformation options
PRINQUAL procedure, 3663
TRANSREG procedure, 4564

transformation standardization
TRANSREG procedure, 4572

transformations
affine(DISTANCE), 1250
ANOVA procedure, 448
cluster analysis, 958
for multivariate ANOVA, 437, 1759
identity(DISTANCE), 1250
linear(DISTANCE), 1250
many-to-one(DISTANCE), 1249
MDS procedure, 2472, 2481, 2482, 2484, 2487–

2489
monotone increasing(DISTANCE), 1249
oblique, 1294, 1298
one-to-one(DISTANCE), 1249
orthogonal, 1294, 1298
power(DISTANCE), 1250
repeated measures, 1830–1832
strictly increasing(DISTANCE), 1249

transformations for repeated measures
GLM procedure, 1779

transformed data
MDS procedure, 2491

transformed distances
MDS procedure, 2491

transforming ordinal variables to interval
DISTANCE procedure, 1250

TRANSREG procedure
additive models, 4574
algorithms, 4576
alpha level, 4574
ANOVA, 4650
ANOVA codings, 4662
ANOVA table, 4580, 4615
ANOVA table in OUTTEST= data set, 4626
asterisk (*) operator, 4558
at sign (@) operator, 4558
B-spline basis, 4560, 4614
bar (|) operator, 4558
Box Cox Example, 4721
Box Cox transformations, 4595
Box-Cox alpha, 4570
Box-Cox convenient lambda, 4570
Box-Cox convenient lambda list, 4570
Box-Cox geometric mean, 4571
Box-Cox lambda, 4571
Box-Cox parameter, 4566
CANALS method, 4576
canonical correlation, 4584, 4593
canonical variables, 4584
casewise deletion, 4578
cell-means coding, 4569, 4594, 4662
center-point coding, 4568, 4668, 4670
centering, 4675
character OPSCORE variables, 4604
choice experiments, 4660
CLASS variables, prefix, 4575
classification variables, 4560, 4569
coefficients, redundancy, 4590
confidence limits, 4575
confidence limits, individual, 4585
confidence limits, mean, 4585
confidence limits, prefix, 4584, 4585, 4587,

4588
conjoint analysis, 4581, 4593, 4690, 4694
constant transformations, avoiding, 4603
constant variables, 4578, 4604
degrees of freedom, 4615
dependent variable list, 4588
dependent variable name, 4587
design matrix, 4586
details of model, 4575
deviations-from-means coding, 4568, 4594,

4654, 4668, 4670
displaying iteration histories, 4576
dummy variables, 4560, 4569, 4586
dummy variables example, 4654
duplicate variable names, 4626
effect coding, 4549, 4568, 4654, 4668, 4670
excluded observations, 4605
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excluding nonscore observations, 4581
expansions, 4560
explicit intercept, 4605
frequency variable, 4557
full-rank coding, 4568
GLMMOD alternative, 4586, 4654
history, iteration, 4576
hypothesis tests, 4580, 4615
id variables, 4557
ideal point model, 4593
ideal points, 4717
identity transformation, 4564
implicit intercept, 4605
independent variable list, 4588
individaul model fitting, 4576
initialization, 4575
interaction effects, 4558, 4594
interactions, quantitative, 4594
intercept, 4605
intercept, none, 4577
iterations, 4601
iterations, maximum number of, 4576
iterations, restarting, 4579, 4602
knots, 4567, 4568, 4613, 4678
less-than-full-rank model, 4569, 4594, 4672
leverage, 4587
limiting displayed output, 4579
linear regression, 4592
linear transformation, 4563, 4610
macros, 4588
main effects, 4558, 4594
maximum redundancy analysis, 4576
METHOD=MORALS rolled output data set,

4622
METHOD=MORALS variable names, 4626
metric conjoint analysis, 4694
missing value restoration option, 4590
missing values, 4576, 4578, 4599, 4600, 4605
monotone regression function, 4629
monotone transformations, 4593
monotonic B-spline transformation, 4563, 4611
monotonic transformation, ties not preserved,

4564, 4610
monotonic transformation, ties preserved, 4563,

4610
MORALS dependent variable name, 4587
MORALS method, 4576
multiple redundancy coefficients, 4590
multiple regression, 4593
multivariate multiple regression, 4593
names of variables, 4571
nonlinear regression functions, 4593, 4628
nonlinear transformations, 4593
nonmetric conjoint analysis, 4690
nonoptimal transformations, 4562
optimal scaling, 4609
optimal scoring, 4563, 4610
optimal transformations, 4563
order of CLASS levels, 4569, 4578

OUT= data set, 4582, 4623
output table names, 4676
OUTTEST= data set, 4556
part-worth utilities, 4691
passive observations, 4605
piecewise polynomial splines, 4561, 4614
%PLOTIT macro, 4617, 4717, 4718
point models, 4605
polynomial-spline basis, 4561, 4614
predicted values, 4591
preference mapping, 4593, 4717
preference models, 4586
prefix, canonical variables, 4584, 4585
prefix, redundancy variables, 4592
prefix, residuals, 4591
redundancy analysis, 4576, 4590, 4592, 4593,

4606
redundancy analysis, standardization, 4591
reference level, 4569, 4579, 4591
reference-cell coding, 4569, 4594, 4664, 4666
regression table, 4580
regression table in OUTTEST= data set, 4626
reiteration, 4579, 4602
renaming and reusing variables, 4571
residuals, 4592
residuals, prefix, 4591
separate regression functions, 4633
short output, 4579
singularity criterion, 4579
smoothing spline transformation, 4564
smoothing splines, 4596
spline t-options, 4566
spline transformation, 4564, 4611
splines, 4560, 4561, 4614, 4637, 4678, 4709
standardization, redundancy variables, 4591
standardization, transformation, 4572, 4580
star (*) operator, 4558
transformation options, 4564
transformation standardization, 4572, 4580
Type II sums of squares, 4580
types of observations, 4581
utilities, 4581, 4691, 4694
utilities in OUTTEST= data set, 4626
variable list macros, 4588
variable names, 4625
vector preference models, 4586
weight variable, 4592

–TYPE– , 4623
treatments in a design

specifying in PLAN procedure, 3345
tree diagram

binary tree, 4743
branch, 4743
children, 4743
definitions, 4743
leaves, 4743
node, 4743
parent, 4743
root, 4743
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tree diagrams
cluster analysis, 4743

TREE procedure, 4743
missing values, 4756
OUT= data sets, 4756
output data sets, 4756
output table names, 4757

trend test, 1490, 1543
trend tests

LIFETEST procedure, 2150, 2168, 2179, 2187
TRIM= option

and other options (CLUSTER), 969, 970, 972
triweight kernel (DISCRIM), 1160
trust region (TR), 3073
trust region algorithm

CALIS procedure, 578, 581, 665
TTEST procedure

alpha level, 4780
Cochran and Coxt approximation, 4775, 4780,

4785
compared to other procedures, 1735
computational method, 4783
confidence intervals, 4780
input data set, 4783
introductory example, 4776
missing values, 4783
ODS table names, 4789
paired comparisons, 4775, 4793
pairedt test, 4782
paired-differencet test, 4775
Satterthwaite’s approximation, 4775, 4785
uniformly most powerful unbiased test, 4786

Tucker and Lewis’s Reliability Coefficient, 1337
Tukey’s adjustment

GLM procedure, 1754
MIXED procedure, 2688

Tukey’s studentized range test, 445, 1769, 1811, 1812
Tukey-Kramer test, 445, 1769, 1811, 1812
2D geometric anisotropic structure

MIXED procedure, 2721
two-samplet-test, 4775, 4789

power and sample size (POWER), 3415, 3463,
3471, 3472, 3526, 3527, 3529, 3566

two-stage density linkage
CLUSTER procedure, 967, 982

Type 1 analysis
GENMOD procedure, 1615, 1665

Type 1 error, 3488
Type 1 error rate

repeated multiple comparisons, 1808
Type 1 estimation

MIXED procedure, 2677
Type 2 error, 3488
Type 2 estimation

MIXED procedure, 2677
Type 3 analysis

GENMOD procedure, 1615, 1665
Type 3 estimation

MIXED procedure, 2677

Type H covariance structure, 1829
Type I sum of squares

computing in GLM, 1835
displaying (GLM), 1772
estimable functions for, 1771
estimable functions for (GLM), 1794
examples, 1858

Type I testing
MIXED procedure, 2696

Type II sum of squares
computing in GLM, 1835
displaying (GLM), 1773
estimable functions for, 1771
estimable functions for (GLM), 1796
examples, 1858

Type II sums of squares
TRANSREG procedure, 4580

Type II testing
MIXED procedure, 2696

Type III sum of squares
displaying (GLM), 1773
estimable functions for, 1771
estimable functions for (GLM), 1797
examples, 1858

Type III testing
MIXED procedure, 2696, 2751

Type IV sum of squares
computing in GLM, 1835
displaying (GLM), 1773
estimable functions for, 1771
estimable functions for (GLM), 1797
examples, 1858

TYPE= data sets
FACTOR procedure, 1325

U
ultra-Heywood cases, FACTOR procedure, 1333
ultrametric, definition, 985
unbalanced data

caution (ANOVA), 423
unbalanced design

GLM procedure, 1735, 1804, 1833, 1856, 1882
NESTED procedure, 2990

uncertainty coefficients, 1474, 1483, 1484
unequal weighting

SURVEYFREQ procedure, 4204
unfolding

MDS procedure, 2471
uniform kernel (DISCRIM), 1159
uniform-kernel estimation

CLUSTER procedure, 972, 978
uniformly most powerful unbiased test

TTEST procedure, 4786
unique factor

defined for factor analysis, 1292
univariate distributions, example

MODECLUS procedure, 2889
UNIVARIATE procedure, 22
univariate tests
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repeated measures, 1828, 1829
unknown or missing parents

INBREED procedure, 1982
unrestricted random sampling

SURVEYSELECT procedure, 4447
unsquared Euclidean distances, 969, 971
unstructured correlations

MIXED procedure, 2721
unstructured covariance matrix

MIXED procedure, 2721
unweighted least-squares factor analysis, 1291
unweighted pair-group clustering,

See average linkage
See centroid method

update methods
NLMIXED procedure, 3073

UPGMA,
See average linkage

UPGMC,
See centroid method

utilities
TRANSREG procedure, 4691, 4694

V
V matrix

MIXED procedure, 2716
valid observation

SURVEYMEANS procedure, 4346
value lists

GLMPOWER procedure, 1945
POWER procedure, 3490

Van der Waerden scores
NPAR1WAY procedure, 3167

VAR statement, use
CORRESP procedure, 1072

VARCLUS procedure,
See also TREE procedure
alternating least-squares, 4800
analyzing data in groups, 4813
centroid component, 4802, 4808
cluster components, 4799
cluster splitting, 4800, 4806, 4810, 4811
cluster, definition, 4799
computational resources, 4818
controlling number of clusters, 4810
eigenvalues, 4800, 4810
how to choose options, 4815
initializing clusters, 4809
interpreting output, 4818
iterative reassignment, 4800
MAXCLUSTERS= option, using, 4815
MAXEIGEN= option, using, 4815
memory requirements, 4818
missing values, 4814
multiple group component analysis, 4811
nearest component sorting phase, 4800
number of clusters, 4800, 4806, 4810, 4811
orthoblique rotation, 4800, 4809
output data sets, 4811, 4816

output table names, 4820
OUTSTAT= data set, 4811, 4816
OUTTREE= data set, 4817
PROPORTION= option, using, 4815
search phase, 4800
splitting criteria, 4800, 4806, 4810, 4811
stopping criteria, 4806
time requirements, 4815, 4818
TYPE=CORR data set, 4816

VARCOMP procedure
classification variables, 4836
compared to MIXED procedure, 2664, 2665
compared to other procedures, 1735
computational details, 4838
dependent variables, 4831, 4836
example (MIXED), 2795
fixed effects, 4831, 4837
fixed-effects model, 4837
introductory example, 4832
methods of estimation, 4831, 4842
missing values, 4837
mixed model, 4837
negative variance components, 4838
ODS table names, 4840
random effects, 4831, 4837
random-effects model, 4837
relationship to PROC MIXED, 4841
variability, 4832
variance component, 4838

variability
VARCOMP procedure, 4832

variable (PHREG)
censoring, 3218

variable importance for projection, 3396
variable list macros

TRANSREG procedure, 4588
variable selection

CALIS procedure, 662
discriminant analysis, 4157

variable-radius kernels
MODECLUS procedure, 2870

variable-reduction method, 4799
variables,

See also classification variables
frequency (PRINQUAL), 3658
renaming (PRINQUAL), 3666
reusing (PRINQUAL), 3666
weight (PRINQUAL), 3667

variables, unaddressed
INBREED procedure, 1976

variance component
VARCOMP procedure, 4838

variance components, 2985
MIXED procedure, 2662, 2721

Variance Estimation
SURVEYLOGISTIC procedure, 4282

variance estimation, 166
SURVEYREG procedure, 4385

variance function
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GENMOD procedure, 1614
variance inflation factors (VIF)

REG procedure, 3818, 3958
variance of means

LATTICE procedure, 2074
variance of the mean

SURVEYMEANS procedure, 4338
variance of the total

SURVEYMEANS procedure, 4341
variance ratios

MIXED procedure, 2707, 2714
variances

FACTOR procedure, 1320
ratio of, 4775, 4784, 4789

variances, test for equal, 1150
varimax method, 1291, 1317, 1318
VARIOGRAM procedure

angle classes, 4866, 4868, 4870, 4872, 4873
angle tolerance, 4866, 4868, 4870, 4872, 4873
anisotropic models, 4871
bandwidth, 4866, 4870, 4875
continuity measures, 4851
contour map, 4856
correlation length, 4860
cutoff distance, 4869
DATA= data set, 4865
distance classification, 4874
distance interval, 4856
empirical (or experimental) semivariogram,

4858
examples, 4852, 4882
histogram of pairwise distances, 4856
input data set, 4865
intervals, number of, 4856
kriging, ordinary, 4852
nested models, 4871
nugget effect, 4871
ordinary kriging, 4851
OUTDIST= data set, 4851, 4865, 4878, 4880
OUTPAIR= data set, 4851, 4866, 4881
output data sets, 4851, 4865, 4866, 4877–4881
OUTVAR= data set, 4866, 4877
pairwise distances, 4851, 4856, 4867
predicted values, 4852
semivariogram computation, 4876, 4877
semivariogram robust, 4877
semivariogram, empirical, 4856
semivariogram, robust, 4861, 4869, 4877
spatial continuity, 4851
spatial prediction, 4851, 4852
square root difference cloud, 4882
standard errors, 4852
surface plot, 4856
surface trend, 4854

vector preference models
TRANSREG procedure, 4586

viewing graphs
ODS Graphics, 327

VIF,

See variance inflation factors
VIP, 3396
visual fit of the variogram

KRIGE2D procedure, 2045

W
Wald chi-square test

SURVEYFREQ procedure, 4221
Wald log-linear chi-square test

SURVEYFREQ procedure, 4223
Wald test

mixed model (MIXED), 2741, 2786
MIXED procedure, 2750, 2751
modification indices (CALIS), 584, 674
PHREG procedure, 3238, 3246, 3247, 3269,

3284
probability limit (CALIS), 590
PROBIT procedure, 3756
SURVEYREG procedure, 4386, 4389
TPHREG procedure, 4486

Waller-Duncan test, 445, 1769, 1815
error seriousness ratio, 443, 1768
examples, 1851
multiple comparison (ANOVA), 464

Wampler data set, 3208
Ward’s minimum-variance method

CLUSTER procedure, 967, 983
Wei-Lin-Weissfeld model

PHREG procedure, 3248
Weibull distribution, 2083, 2097, 2111
weight variable

PRINQUAL procedure, 3667
weighted average linkage

CLUSTER procedure, 967, 981
weighted Euclidean distance

MDS procedure, 2472, 2477, 2488
weighted Euclidean model

MDS procedure, 2471, 2477
weighted kappa coefficient, 1493, 1496
weighted least squares

CATMOD procedure, 817, 846
formulas (CATMOD), 894
MDS procedure, 2487
normal equations (GLM), 1783

weighted means
GLM procedure, 1820

weighted pair-group methods,
See McQuitty’s similarity analysis
See median method

weighted product-moment correlation coefficients
CANCORR procedure, 764

weighted Schoenfeld residuals
PHREG procedure, 3235, 3259

weighted score residuals
PHREG procedure, 3260

weighted-group method,
See centroid method

weighting
MIXED procedure, 2730
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weighting variables
FACTOR procedure, 1333

Welcht test
power and sample size (POWER), 3463, 3472,

3527
Welch’s ANOVA, 445, 1769

homogeneity of variance tests, 1819
using homogeneity of variance tests, 1893

Welsch’s multiple range test, 444, 1768, 1815
examples, 1851

WHERE statement
GLM procedure, 1787

width, confidence intervals, 3488
Wilcoxon scores

NPAR1WAY procedure, 3166
Wilcoxon test for association

LIFETEST procedure, 2150
Wilcoxon test for homogeneity

LIFETEST procedure, 2150, 2168, 2178
Wilks’ criterion, 437, 1759
Wilks’ lambda, 1828
Williams’ method

overdispersion (LOGISTIC), 2355
windowing environment, 327, 338
within-cluster SSCP matrix

ACECLUS procedure, 387
within-imputation covariance matrix

MIANALYZE procedure, 2626
within-imputation variance

MI procedure, 2561
MIANALYZE procedure, 2624

within-subject factors
repeated measures, 1777, 1828

Wong’s hybrid method
CLUSTER procedure, 969, 978

working correlation matrix
GENMOD procedure, 1647, 1648, 1672

worst linear function of parameters
MI procedure, 2556

WPGMA,
See McQuitty’s similarity analysis

WPGMC,
See median method

X
XDATA= data sets

LIFEREG procedure, 2122

Y
Yule’s Q statistic, 1476

Z
z scores

TRANSREG procedure, 4572
z test

power and sample size (POWER), 3429, 3432,
3505, 3506

zero variance component estimates
MIXED procedure, 2774

zeros, structural and random
FREQ procedure, 1499

zeros, structural and sampling
CATMOD procedure, 888
examples (CATMOD), 919, 924

zonal anisotropy
KRIGE2D procedure, 2055
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Syntax Index

A
AB option

EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3156

AB/BA crossover designs
power and sample size (POWER), 3549

ABSCONV= option
NLOPTIONS statement (CALIS), 615
PROC NLMIXED statement, 3060

ABSENT= option
PROC DISTANCE statement, 1256
VAR statement, 1266

ABSFCONV option
MODEL statement (LOGISTIC), 2308
MODEL statement (SURVEYLOGISTIC), 4261

ABSFCONV= option
NLOPTIONS statement (CALIS), 617
PROC NLMIXED statement, 3060

ABSFTOL= option
NLOPTIONS statement (CALIS), 617

ABSGCONV= option
NLOPTIONS statement (CALIS), 617, 620
PROC NLMIXED statement, 3060

ABSGTOL= option
NLOPTIONS statement (CALIS), 617, 620

absolute level of measurement, definition
DISTANCE procedure, 1250

ABSOLUTE option
PROC ACECLUS statement, 404
PROC MIXED statement, 2674, 2749

ABSORB statement
ANOVA procedure, 434
GLM procedure, 1747

absorption of effects
ANOVA procedure, 434
GLM procedure, 1747, 1799

ABSXCONV= option
NLOPTIONS statement (CALIS), 617
PROC NLMIXED statement, 3060

ABSXTOL= option
NLOPTIONS statement (CALIS), 617

Accelerated failure time model
NLMIXED procedure, 3128

accelerated failure time models
LIFEREG procedure, 2083

ACCRUALTIME= option

TWOSAMPLESURVIVAL statement
(POWER), 3474

ACECLUS procedure
analyzing data in groups, 394, 412
between-cluster SSCP matrix, 387
clustering methods, 405
compared with other procedures, 391
computational resources, 410
controlling iterations, 389
decomposition of the SSCP matrix, 387
eigenvalues and eigenvectors, 398, 399, 406,

410–412
initial estimates, 389, 404
memory requirements, 410
missing values, 409
output data sets, 409
output table names, 412
syntax, 402
time requirements, 411
within-cluster SSCP matrix, 387

ACECLUS procedure, BY statement, 407
ACECLUS procedure, FREQ statement, 408
ACECLUS procedure, PROC ACECLUS statement,

402
ABSOLUTE option, 404
CONVERGE= option, 404
DATA= option, 404
INITIAL= option, 404
MAXITER= option, 405
METHOD= option, 405
METRIC= option, 405
MPAIRS= option, 405
N= option, 405
NOPRINT option, 405
OUT= option, 406
OUTSTAT= option, 406
P= option, 406
PERCENT= option, 406
PP option, 406
PREFIX= option, 406
PROPORTION= option, 406
QQ option, 406
SHORT option, 407
SINGULAR= option, 407
T= option, 407
THRESHOLD= option, 407

ACECLUS procedure, VAR statement, 408
ACECLUS procedure, WEIGHT statement, 408
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ACFPLOT option
MCMC statement (MI), 2524, 2567

ACOV option
MODEL statement (REG), 3823

active set methods
NLMIXED procedure, 3093

ACTUAL option
MODEL statement (RSREG), 4041

actual power
GLMPOWER procedure, 1946, 1947, 1953
POWER procedure, 3419, 3494, 3496

acturial estimate,
See life-table estimate

adaptive Gaussian quadrature
NLMIXED procedure, 3084

ADD statement, REG procedure, 3819
ADD= option

PROC DISTANCE statement, 1256
PROC STDIZE statement, 4130

ADDCELL= option
MODEL statement (CATMOD), 841

additive models
TRANSREG procedure, 4574

ADDITIVE option
MODEL statement (TRANSREG), 4574

adjacent-category logits,
See also response functions
specifying in CATMOD procedure, 852
using (CATMOD), 868

adjacent-level contrasts, 448
ADJBOUND= option

MODEL statement (SURVEYLOGISTIC), 4265
ADJRSQ

SURVEYREG procedure, 4380
ADJRSQ option

MODEL statement (REG), 3824
MODEL statement (SURVEYREG), 4380

ADJUST= option
LSMEANS statement (GLM), 1754
LSMEANS statement (MIXED), 2687

adjusted degrees of freedom
MI procedure, 2562
MIANALYZE procedure, 2625

adjusted means
See least-squares means, 1753

adjusted odds ratio, 1503
adjustedp-value

MULTTEST procedure, 2935, 2956
adjusted R2 selection (REG), 3875
Adjusted R-square

SURVEYREG procedure, 4387
adjusted residuals

GENMOD procedure, 1670
adjusted treatment means

LATTICE procedure, 2075
ADPREFIX= option

OUTPUT statement (TRANSREG), 4584
after expansion knots

TRANSREG procedure, 4571

AFTER option
MODEL statement (TRANSREG), 4571

agglomerative hierarchical clustering analysis, 957
AGGREGATE= option

MODEL statement (GENMOD), 1637
MODEL statement (LOGISTIC), 2308
MODEL statement (PROBIT), 3742

aggregates of residuals, 1718, 1725
AGK estimate

STDIZE procedure, 4139
AGREE option

EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1447
TABLES statement (FREQ), 1453
TEST statement (FREQ), 1463

agreement, measures of, 1493
AIC option

MODEL statement (REG), 3824
PLOT statement (REG), 3844

AIPREFIX option
OUTPUT statement (TRANSREG), 4584

AJCHI option
OUTPUT statement (FREQ), 1447

Akaike’s information criterion
example (MIXED), 2780, 2794, 2823
LOGISTIC procedure, 2341
MIXED procedure, 2676, 2740, 2750
SURVEYLOGISTIC procedure, 4279

Akaike’s information criterion (finite sample corrected
version)

MIXED procedure, 2676, 2750
ALG= option

PRIOR statement (MIXED), 2710
ALGORITHM= option

PROC PLS statement, 3375
aliasing

GENMOD procedure, 1620
ALIASING option

MODEL statement (GLM), 1771, 1897
aliasing structure

GLM procedure, 1771
aliasing structure (GLM), 1897

–ALL – effect
MANOVA statement (ANOVA), 437
MANOVA statement, H= option (GLM), 1759

ALL option
MODEL statement (LOESS), 2232
MODEL statement (REG), 3824
NLOPTIONS statement (CALIS), 621
OUTPUT statement (FREQ), 1447
PROC CALIS statement, 584
PROC CANCORR statement, 759
PROC CANDISC statement, 790
PROC CORRESP statement, 1074
PROC DISCRIM statement, 1147
PROC FACTOR statement, 1309
PROC MODECLUS statement, 2865
PROC REG statement, 3816
PROC STEPDISC statement, 4166
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TABLES statement (FREQ), 1453
ALLLABEL= option

BOXPLOT procedure, 492
ALLOBS option

PAINT statement (REG), 3837
REWEIGHT statement (REG), 3856

ALOGIT function
RESPONSE statement (CATMOD), 852

alpha factor analysis, 1291, 1311
alpha level

ANOVA procedure, 441
FREQ procedure, 1445, 1453
GLM procedure, 1755, 1765, 1771, 1775
GLMPOWER procedure, 1939
NPAR1WAY procedure, 3160
POWER procedure, 3488
REG procedure, 3816
SURVEYFREQ procedure, 4199
TRANSREG procedure, 4574
TTEST procedure, 4780

ALPHA= option
BASELINE statement (PHREG), 3225
CONTRAST statement (CATMOD), 832
CONTRAST statement (LOGISTIC), 2300
CONTRAST statement (SURVEYLOGISTIC),

4257
CONTRAST statement (TPHREG), 4481
ESTIMATE statement (GENMOD), 1634
ESTIMATE statement (MIXED), 2685
ESTIMATE statement (NLMIXED), 3077
EXACT statement (FREQ), 1445
EXACT statement (LOGISTIC), 2301
EXACT statement (NPAR1WAY), 3160
LSMEANS statement (GENMOD), 1635
LSMEANS statement (GLM), 1755
LSMEANS statement (MIXED), 2688
MEANS statement (ANOVA), 441
MEANS statement (GLM), 1765
MODEL statement (CATMOD), 842
MODEL statement (GAM), 1567
MODEL statement (GENMOD), 1637
MODEL statement (GLM), 1771
MODEL statement (LIFEREG), 2096
MODEL statement (LOESS), 2232
MODEL statement (LOGISTIC), 2308
MODEL statement (PHREG), 3233
MODEL statement (REG), 3824
MODEL statement (ROBUSTREG), 3989
MODEL statement (SURVEYLOGISTIC), 4262
MODEL statement (TPSPLINE), 4508
MODEL statement (TRANSREG), 4570, 4574
MULTREG statement (POWER), 3422
ONECORR statement (POWER), 3427
ONESAMPLEFREQ statement (POWER), 3430
ONESAMPLEMEANS statement (POWER),

3434
ONEWAYANOVA statement (POWER), 3439
OUTPUT statement (GLM), 1775
OUTPUT statement (LOGISTIC), 2322

PAIREDFREQ statement (POWER), 3444
PAIREDMEANS statement (POWER), 3449
POWER statement (GLMPOWER), 1939
PREDICT statement (NLMIXED), 3079
PROC FACTOR statement, 1309
PROC GLM statement, 1745
PROC LIFETEST statement, 2160
PROC LOGISTIC statement, 2290
PROC MI statement, 2519
PROC MIANALYZE statement, 2614
PROC MIXED statement, 2674
PROC NLMIXED statement, 3061
PROC REG statement, 3816
PROC SURVEYLOGISTIC statement, 4250
PROC SURVEYMEANS statement, 4323
PROC SURVEYREG statement, 4373
PROC TTEST statement, 4780
RANDOM statement (MIXED), 2713
RANDOM statement (NLMIXED), 3080
SCORE statement (LOGISTIC), 2324
SURVIVAL statement (LIFETEST), 2168, 2191
TABLES statement (FREQ), 1453
TABLES statement (SURVEYFREQ), 4199
TWOSAMPLEFREQ statement (POWER),

3458
TWOSAMPLEMEANS statement (POWER),

3465
TWOSAMPLESURVIVAL statement

(POWER), 3475
ALPHAECV= option

PROC CALIS statement, 588
ALPHAINIT= option

REPEATED statement (GENMOD), 1646
ALPHAP= option

MODEL statement (MIXED), 2692
ALPHAQT= option

PROC LIFETEST statement, 2160
ALPHARMS= option

PROC CALIS statement, 588
ALR algorithm

GENMOD procedure, 1711
ALTERNATE= option

PROC MDS statement, 2476
alternating least squares

MDS procedure, 2476
Alternating Logistic Regressions (ALR)

GENMOD procedure, 1711
alternative hypothesis, 3488
AM option

PROC MODECLUS statement, 2865
analysis of contrasts

SURVEYREG procedure, 4393
analysis of covariance

examples (GLM), 1860
MODEL statements (GLM), 1785
power and sample size (GLMPOWER), 1956

analysis of covariation (NESTED), 2990
analysis of variance,

See also ANOVA procedure
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See also TTEST procedure
categorical data, 813
CATMOD procedure, 815
mixed models (GLM), 1882
MODEL statements (GLM), 1785
multivariate (ANOVA), 436
multivariate (CANDISC), 786
multivariate (GLM), 1759, 1823, 1824, 1868
nested design, 2985
one-way layout, example, 424
one-way tests (NPAR1WAY), 3165
one-way, variance-weighted, 445, 1769
power and sample size (GLMPOWER), 1930,

1951, 1956
power and sample size (POWER), 3438, 3442,

3443, 3513, 3536
quadratic response surfaces, 4045
repeated measures (CATMOD), 873
repeated measures (GLM), 1825, 1877, 1886
SURVEYREG procedure, 4387
three-way design (GLM), 1864
unbalanced (GLM), 1735, 1804, 1856
within-subject factors, repeated measurements,

449
analysis statements

POWER procedure, 3420
Analysis style

ODS styles, 333
analyst’s model

MI procedure, 2563
analyzing data in groups, 3076

ACECLUS procedure, 394
CANCORR procedure, 763
FACTOR procedure, 1320
FASTCLUS procedure, 1395
MDS procedure, 2485
MODECLUS procedure, 2857, 2874
PRINCOMP procedure, 3607
SCORE procedure, 4073
STDIZE procedure, 4134
TREE procedure, 4754
VARCLUS procedure, 4813

Andersen-Gill model
PHREG procedure, 3216, 3243, 3253

angle classes
VARIOGRAM procedure, 4866, 4868, 4870,

4872, 4873
angle tolerance

VARIOGRAM procedure, 4866, 4868, 4870,
4872, 4873

ANGLE= option
MODEL statement (KRIGE2D), 2042
SIMULATE statement (SIM2D), 4102

ANGLETOLERANCE= option
COMPUTE statement (VARIOGRAM), 4866

anisotropic
models (KRIGE2D), 2053–2056
models (VARIOGRAM), 4871
nugget effect (KRIGE2D), 2056

annotate
global data set (REG), 3816
local data set (REG), 3844

ANNOTATE= option
PLOT statement (BOXPLOT), 492
PLOT statement (REG), 3844
PROC BOXPLOT statement, 487
PROC LIFETEST statement, 2160
PROC REG statement, 3816

annotating
cdf plots, 3718
ipp plots, 3729
lpred plots, 3737
pplot plots, 2102
predicted probability plots, 3750

ANOVA
codings (TRANSREG), 4662
SURVEYREG procedure, 4380, 4387, 4392
table (TRANSREG), 4580, 4615, 4650

ANOVA (row mean scores) statistic, 1502
ANOVA option

MODEL statement (SURVEYREG), 4380
PROC CANDISC statement, 790
PROC DISCRIM statement, 1147
PROC NPAR1WAY statement, 3156

ANOVA procedure
absorption of effects, 434
alpha level, 441
at sign (@) operator, 452
balanced data, 423
bar (|) operator, 452
Bartlett’s test, 443
block diagonal matrices, 423
Brown and Forsythe’s test, 443
canonical analysis, 438
characteristic roots and vectors, 437
compared to other procedures, 1734
complete block design, 428
computational methods, 456
confidence intervals, 442
contrasts, 448
dependent variable, 423
disk space, 433
effect specification, 451
factor name, 446, 447
homogeneity of variance tests, 443
hypothesis tests, 450
independent variable, 423
interactive use, 454
interactivity and missing values, 455
introductory example, 424
level values, 447
Levene’s test for homogeneity of variance, 443
means, 440
memory requirements, 434, 456
missing values, 433, 455
model specification, 451
multiple comparison procedures, 440
multiple comparisons, 441–445
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multivariate analysis of variance, 433, 436
O’Brien’s test, 443
ODS graph names, 460
ODS table names, 458
orthonormalizing transformation matrix, 438
output data sets, 434, 455
pooling, automatic, 454
repeated measures, 446
sphericity tests, 449
SSCP matrix for multivariate tests, 437
syntax, 432
transformations, 447, 448
transformations for MANOVA, 437
unbalanced data, caution, 423
Welch’s ANOVA, 445
WHERE statement, 454

ANOVA procedure, ABSORB statement, 434
ANOVA procedure, BY statement, 435
ANOVA procedure, CLASS statement, 435

TRUNCATE option, 436
ANOVA procedure, FREQ statement, 436
ANOVA procedure, MANOVA statement, 436

–ALL – effect, 437
CANONICAL option, 438
E= option, 437
H= option, 437
INTERCEPT effect, 437
M= option, 437
MNAMES= option, 438
MSTAT= option, 438
ORTH option, 438
PREFIX= option, 438
PRINTE option, 438
PRINTH option, 439
SUMMARY option, 439

ANOVA procedure, MEANS statement, 440
ALPHA= option, 441
BON option, 441
CLDIFF option, 442
CLM option, 442
DUNCAN option, 442
DUNNETT option, 442
DUNNETTL option, 442
DUNNETTU option, 442
E= option, 443
GABRIEL option, 443
HOVTEST option, 443
KRATIO= option, 443
LINES option, 444
LSD option, 444, 445
NOSORT option, 444
REGWQ option, 444
SCHEFFE option, 444
SIDAK option, 444
SMM option, 444
SNK option, 444
TUKEY option, 445
WALLER option, 445
WELCH option, 445

ANOVA procedure, MODEL statement, 445
INTERCEPT option, 446
NOUNI option, 446

ANOVA procedure, PROC ANOVA statement, 432
DATA= option, 433
MANOVA option, 433
MULTIPASS option, 433
NAMELEN= option, 433
NOPRINT option, 433
ORDER= option, 433
OUTSTAT= option, 434

ANOVA procedure, REPEATED statement, 446
CANONICAL option, 448
CONTRAST keyword, 448
E= effects, 450
factor specification, 447
H= effects, 450
HELMERT keyword, 448
IDENTITY keyword, 448
MEAN keyword, 448
MSTAT= option, 448
NOM option, 449
NOU option, 449
POLYNOMIAL keyword, 448
PRINTE option, 449
PRINTH option, 449
PRINTM option, 449
PRINTRV option, 449
PROFILE keyword, 448
SUMMARY option, 449

ANOVA procedure, TEST statement, 450
Ansari-Bradley scores

NPAR1WAY procedure, 3168
ante-dependence structure

MIXED procedure, 2721
ANTIALIAS= option

ODS GRAPHICS statement, 349
AOV option

PROC NESTED statement, 2988
apparent error rate, 1163
approximate

covariance, options (CALIS), 621
standard errors (CALIS), 576, 587, 648, 686

approximate Bayesian bootstrap
MI procedure, 2543

approximate covariance estimation
clustering, 387

APPROXIMATIONS option
OUTPUT statement (TRANSREG), 4584
PROC PRINQUAL statement, 3653

APREFIX= option
PROC PRINQUAL statement, 3652

arbitrary missing pattern
MI procedure, 2539

arcsine-square root transform
LIFETEST procedure, 2205

arcsine-square root transformation
LIFETEST procedure, 2169, 2177

ARRAY statement
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NLMIXED procedure, 3074
arrays

NLMIXED procedure, 3074
ARSIN transformation

MODEL statement (TRANSREG), 4562
TRANSFORM statement (PRINQUAL), 3661

ASINGULAR= option
NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 588
PROC NLMIXED statement, 3061

ASSESS statement
GENMOD procedure, 1627
PHREG procedure, 3223

association tests
LIFETEST procedure, 2150, 2156, 2200

association, measures of
FREQ procedure, 1474

asterisk (*) operator
TRANSREG procedure, 4558

ASYCORR option
PROC MIXED statement, 2674

ASYCOV option
PROC MIXED statement, 2674, 2796

ASYCOV= option
PROC CALIS statement, 575

asymmetric
data (MDS), 2484

asymmetric binary variable
DISTANCE procedure, 1250

asymmetric lambda, 1474, 1482
asymptotic covariance

CALIS procedure, 575, 645
MIXED procedure, 2674

asymptotic variances
CALIS procedure, 647

asymptotically distribution free estimation
CALIS procedure, 574, 646

AT MEANS option
LSMEANS statement (MIXED), 2688

AT option
LSMEANS statement (GLM), 1755, 1822
LSMEANS statement (MIXED), 2688, 2689

at sign (@) operator
ANOVA procedure, 452
CATMOD procedure, 866
GLM procedure, 1786
MIXED procedure, 2745, 2819
TRANSREG procedure, 4558

AUGMENT option
PROC CALIS statement, 572

autocorrelation
REG procedure, 3915

autocorrelation function plot
MI procedure, 2557

autoregressive structure
example (MIXED), 2788
MIXED procedure, 2721

average linkage
CLUSTER procedure, 966, 976

AVERAGE option
PROC INBREED statement, 1973
TEST statement (PHREG), 3238

average relative increase in variance
MIANALYZE procedure, 2627

average variance of means
LATTICE procedure, 2074

AVERAGED option
MODEL statement (CATMOD), 842

axes labels, modifying
examples, ODS Graphics, 368

B
B option

MODEL statement (REG), 3824
PROC CANCORR statement, 759

B-spline basis
TRANSREG procedure, 4560, 4614

backward elimination
LOGISTIC procedure, 2317, 2340
PHREG procedure, 3229, 3264
REG procedure, 3800, 3874

badness of fit
MDS procedure, 2479, 2482, 2483, 2489, 2490

balanced data
ANOVA procedure, 423
example, complete block, 1847

balanced design, 2985
balanced square lattice

LATTICE procedure, 2069
banded Toeplitz structure

MIXED procedure, 2721
BANDMAX= option

SURVIVAL statement (LIFETEST), 2169, 2191
BANDMAXTIME= option

SURVIVAL statement (LIFETEST), 2169
BANDMIN= option

SURVIVAL statement (LIFETEST), 2169, 2191
BANDMINTIME= option

SURVIVAL statement (LIFETEST), 2169
bandwidth

optimal (DISCRIM), 1162
selection (KDE), 2008
VARIOGRAM procedure, 4866, 4870, 4875

BANDWIDTH= option
COMPUTE statement (VARIOGRAM), 4866

bar (|) operator
ANOVA procedure, 452
CATMOD procedure, 865
GENMOD procedure, 1660
GLM procedure, 1786
MIXED procedure, 2743, 2745, 2819
TRANSREG procedure, 4558

Bartlett’s test
ANOVA procedure, 443
GLM procedure, 1767, 1819

Base SAS software, 21
BASELINE statement

PHREG procedure, 3224
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baseline survivor function (PHREG)
confidence level, 3225
confidence limits, 3225, 3263
estimation method, 3226
standard error, 3225, 3263

Bayes estimation
NLMIXED procedure, 3084

Bayes’ theorem
DISCRIM procedure, 1157
LOGISTIC procedure, 2314, 2353
MI procedure, 2547

Bayesian analysis
MIXED procedure, 2708

Bayesian confidence intervals
splines, 4513

Bayesian inference
MI procedure, 2547

BCORR option
PROC CANDISC statement, 790
PROC DISCRIM statement, 1147
PROC STEPDISC statement, 4166

BCOV option
PROC CANDISC statement, 790
PROC DISCRIM statement, 1147
PROC MIANALYZE statement, 2614
PROC STEPDISC statement, 4166
TEST statement (MIANALYZE), 2619

BDATA= option
PRIOR statement (MIXED), 2710

BDCHI option
OUTPUT statement (FREQ), 1447

BDT option
TABLES statement (FREQ), 1453

Behrens-Fisher problem, 4775
BENZECRI option

PROC CORRESP statement, 1074
Bernoulli distribution

NLMIXED procedure, 3077
best subset selection

LOGISTIC procedure, 2308, 2317, 2341
PHREG procedure, 3229, 3265, 3279

BEST= option
MODEL statement (LOGISTIC), 2308
MODEL statement (PHREG), 3229
MODEL statement (REG), 3824
PARMS statement (NLMIXED), 3078
PROC NLIN statement, 3006

BETA= option
PROC CLUSTER statement, 968

between-cluster SSCP matrix
ACECLUS procedure, 387

between-imputation covariance matrix
MIANALYZE procedure, 2626

between-imputation variance
MI procedure, 2561
MIANALYZE procedure, 2624

between-subject factors
repeated measures, 1777, 1828

Bhapkar’s test, 932

BIASKUR option
PROC CALIS statement, 588

BIASTEST option
PROC ROBUSTREG statement, 3987

BIC option
MODEL statement (REG), 3824
PLOT statement (REG), 3844

bimodality coefficient
CLUSTER procedure, 972, 984

bin-sort algorithm, 1389
binary distribution

NLMIXED procedure, 3077
Binary Lance and Williams nonmetric coefficient

DISTANCE procedure, 1276
BINARY option

PROC CORRESP statement, 1074
binning

KDE procedure, 2004
binomial distribution

GENMOD procedure, 1652
NLMIXED procedure, 3077

BINOMIAL option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1447
TABLES statement (FREQ), 1453, 1532
TEST statement (MULTTEST), 2947

binomial proportion test, 1484
examples, 1532
power and sample size (POWER), 3429, 3432,

3504–3506, 3541
BINOMIALC option

TABLES statement (FREQ), 1454
BINS= option

PROC FASTCLUS statement, 1389
bioequivalence,

equivalence tests
power and sample size (POWER), 3510, 3511,

3520, 3521, 3530, 3531, 3549
biological assay data, 3705, 3761
biplot

PRINQUAL procedure, 3678
biquartimax method, 1291, 1317, 1318
biquartimin method, 1291, 1318
BIVAR statement

KDE procedure, 1997
bivariate density estimation

DISCRIM procedure, 1200
bivariate histogram

KDE procedure, 2011
BIVSTATS option

BIVAR statement, 1998
biweight kernel (DISCRIM), 1160
block diagonal matrices

ANOVA procedure, 423
BLOCKLABELPOS= option

PLOT statement (BOXPLOT), 493
BLOCKLABTYPE= option

PLOT statement (BOXPLOT), 493
BLOCKPOS= option
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PLOT statement (BOXPLOT), 493
BLOCKREP option

PLOT statement (BOXPLOT), 493
BLUE

MIXED procedure, 2740
BLUP

MIXED procedure, 2740
BON option

MEANS statement (ANOVA), 441
MEANS statement (GLM), 1765

Bonferronit test, 441, 1765, 1809
Bonferroni adjustment

GLM procedure, 1754
MIXED procedure, 2688
MULTTEST procedure, 2939, 2956

BONFERRONI option
PROC MULTTEST statement, 2939, 2956

bootstrap
MI procedure, 2527

bootstrap adjustment
MULTTEST procedure, 2938, 2939, 2957, 2968

BOOTSTRAP option
MCMC statement (MI), 2527
PROC MULTTEST statement, 2937, 2939,

2957, 2968
boundary constraints, 3075

MIXED procedure, 2707, 2708, 2773
BOUNDARY option

PROC MODECLUS statement, 2865
bounds

NLMIXED procedure, 3075
BOUNDS statement

CALIS procedure, 609
NLIN procedure, 3010
NLMIXED procedure, 3075

Bowker’s test of symmetry, 1493, 1494
Box Cox Example

TRANSREG procedure, 4721
Box Cox transformations

TRANSREG procedure, 4595
box plot, defined, 483
Box plots

MIXED procedure, 2762
box plots

plots, ODS Graphics, 355
reading group summary statistics, 522
saving group summary statistics, 518, 519

box plots, clipping boxes, 497, 498
examples, 532, 533

box plots, labeling
angles for, 503
points, 492

Box’s epsilon, 1829
box-and-whisker plots

schematic, 539
side-by-side, 483
skeletal, 538
statistics represented, 485, 517
styles of, 522

BOX= option
PROC BOXPLOT statement, 487

BOXCONNECT= option
PLOT statement (BOXPLOT), 493

BOXCOX transformation
TRANSFORM statement (MI), 2533

BOXPLOT procedure
continuous group variables, 524
missing values, 524
percentile computation, 523
syntax, 487

BOXPLOT procedure, BY statement, 516
BOXPLOT procedure, ID statement, 517
BOXPLOT procedure, INSET statement, 511

CFILL= option, 513
CFILLH= option, 513
CFRAME= option, 513
CHEADER= option, 513
CSHADOW= option, 513
CTEXT= option, 513
DATA option, 513
FONT= option, 513
FORMAT= option, 513
HEADER= option, 514
HEIGHT= option, 514
NOFRAME option, 514
POSITION= option, 514, 526–528
REFPOINT= option, 514

BOXPLOT procedure, INSETGROUP statement, 514
CFILL= option, 515
CFILLH= option, 515
CFRAME= option, 516
CHEADER= option, 516
CTEXT= option, 516
FONT= option, 516
FORMAT= option, 516
HEADER= option, 516
HEIGHT= option, 516
NOFRAME option, 516
POSITION= option, 516

BOXPLOT procedure, PLOT statement, 488
ALLLABEL= option, 492
ANNOTATE= option, 492
BLOCKLABELPOS= option, 493
BLOCKLABTYPE= option, 493
BLOCKPOS= option, 493
BLOCKREP option, 493
BOX= data set, 520
BOXCONNECT= option, 493
BOXSTYLE= option, 493, 538
BOXWIDTH= option, 495
BOXWIDTHSCALE= option, 495, 543
BWSLEGEND option, 495
CAXIS= option, 495
CBLOCKLAB= option, 495
CBLOCKVAR= option, 495
CBOXES= option, 496
CBOXFILL= option, 496
CCLIP= option, 496
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CCONNECT= option, 497
CCOVERLAY= option, 497
CFRAME= option, 497
CGRID= option, 497
CHREF= option, 497
CLABEL= option, 497
CLIPFACTOR= option, 497, 533
CLIPLEGEND= option, 497
CLIPLEGPOS= option, 497
CLIPSUBCHAR= option, 498
CLIPSYMBOL= option, 498
CLIPSYMBOLHT= option, 498
CONTINUOUS option, 498
COVERLAY= option, 498
COVERLAYCLIP= option, 498
CTEXT= option, 498
CVREF= option, 499
DATA= data set, 519
DESCRIPTION= option, 499
ENDGRID option, 499
FONT= option, 499
GRID= option, 499
HAXIS= option, 499
HEIGHT= option, 500
HISTORY= data set, 521, 522
HMINOR= option, 500
HOFFSET= option, 500
HREF= option, 500
HREFLABELS= option, 501
HREFLABPOS= option, 501
HTML= option, 501
IDCOLOR= option, 501
IDCTEXT= option, 502
IDFONT= option, 502
IDHEIGHT= option, 502
IDSYMBOL= option, 502
INTERVAL= option, 502
LABELANGLE= option, 503
LBOXES= option, 503
LENDGRID= option, 503
LGRID= option, 504
LHREF= option, 504
LOVERLAY= option, 504
LVREF= option, 504
MAXPANELS= option, 504
MISSBREAK option, 504
NAME= option, 504
NLEGEND option, 505
NOBYREF option, 505
NOCHART option, 505
NOFRAME option, 505
NOHLABEL option, 505
NOOVERLAYLEGEND option, 505
NOSERIFS option, 505
NOTCHES option, 505, 542
NOTICKREP option, 506
NOVANGLE option, 506
NPANELPOS= option, 506
OUTBOX= data set, 518

OUTBOX= option, 506
OUTHISTORY= data set, 519
OUTHISTORY= option, 507
OVERLAY= option, 507
OVERLAYCLIPSYM= option, 507
OVERLAYCLIPSYMHT= option, 507
OVERLAYHTML= option, 507
OVERLAYID= option, 507
OVERLAYLEGLAB= option, 507
OVERLAYSYM= option, 507
OVERLAYSYMHT= option, 508
PAGENUM= option, 508
PAGENUMPOS= option, 508
PCTLDEF= option, 508
REPEAT option, 508
SKIPHLABELS= option, 509
SYMBOLLEGEND= option, 509
SYMBOLORDER= option, 509
TOTPANELS= option, 509
TURNHLABELS option, 509
VAXIS= option, 509
VFORMAT= option, 510
VMINOR= option, 510
VOFFSET= option, 510
VREF= option, 510
VREFLABELS= option, 510
VREFLABPOS= option, 511
VZERO option, 511
WAXIS= option, 511
WGRID= option, 511
WOVERLAY= option, 511

BOXPLOT procedure, plot statement
OUTHIGHHTML= option, 507
OUTLOWHTML= option, 507

BOXPLOT procedure, plot statements
INTSTART= option, 503

BOXPLOT procedure, PROC BOXPLOT statement,
487

ANNOTATE= option, 487
BOX= option, 487
DATA= option, 487
GOUT= option, 487

BOXSTYLE= option
PLOT statement (BOXPLOT), 493

BOXWIDTH= option
PLOT statement (BOXPLOT), 495

BOXWIDTHSCALE= option
PLOT statement (BOXPLOT), 495

branch and bound algorithm
LOGISTIC procedure, 2341
PHREG procedure, 3265, 3279

Bray and Curtis coefficient
DISTANCE procedure, 1276

Breslow method
likelihood (PHREG), 3228, 3240

Breslow test,
See Wilcoxon test for homogeneity

Breslow-Day test, 1508
Brewer’s method
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SURVEYSELECT procedure, 4453
Brown and Forsythe’s test

ANOVA procedure, 443
GLM procedure, 1767, 1819

Brown-Mood test
NPAR1WAY procedure, 3167

Broyden-Fletcher-Goldfarb-Shanno update, 3073
BSPLINE transformation

MODEL statement (TRANSREG), 4560
BSSCP option

PROC CANDISC statement, 791
PROC DISCRIM statement, 1147
PROC STEPDISC statement, 4166

BUCKET= option
MODEL statement (LOESS), 2232

Burt table
CORRESP procedure, 1076

BWM= option
BIVAR statement, 1998
UNIVAR statement, 1999

BWSLEGEND option
PLOT statement (BOXPLOT), 495

BY statement
ANOVA procedure, 435
BOXPLOT procedure, 516
CALIS procedure, 626
CANDISC procedure, 793
CATMOD procedure, 830
CORRESP procedure, 1080
DISCRIM procedure, 1153
FACTOR procedure, 1320
FREQ procedure, 1443
GAM procedure, 1564
GENMOD procedure, 1628
GLM procedure, 1747
GLMMOD procedure, 1915
INBREED procedure, 1974
KDE procedure, 2001
LATTICE procedure, 2072
LIFEREG procedure, 2091
LIFETEST procedure, 2165
LOESS procedure, 2230
LOGISTIC procedure, 2294
MDS procedure, 2485
MI procedure, 2521
MIANALYZE procedure, 2616
MIXED procedure, 2680
MODECLUS procedure, 2869
MULTTEST procedure, 2943
NESTED procedure, 2988
NLIN procedure, 3011
NLMIXED procedure, 3076
NPAR1WAY procedure, 3158
ORTHOREG procedure, 3202
PHREG procedure, 3226
PLS procedure, 3377
PRINCOMP procedure, 3607
PRINQUAL procedure, 3658
REG procedure, 3819

ROBUSTREG procedure, 3988
RSREG procedure, 4040
STEPDISC procedure, 4168
SURVEYFREQ procedure, 4195
SURVEYLOGISTIC procedure, 4252
SURVEYMEANS procedure, 4328
SURVEYREG procedure, 4375
TPSPLINE procedure, 4507
TRANSREG procedure, 4556
TREE procedure, 4754
TTEST procedure, 4780
VARCLUS procedure, 4813
VARCOMP procedure, 4835

BYLEVEL option
LSMEANS statement (GLM), 1756, 1823
LSMEANS statement (MIXED), 2689, 2691

BYOUT option
MODEL statement (RSREG), 4041

C
C option

PROC CANCORR statement, 760
C= option

OUTPUT statement (LOGISTIC), 2321
TRANSFORM statement (MI), 2534

CA option
TEST statement (MULTTEST), 2948, 2964

calibration data set
DISCRIM procedure, 1139, 1167

CALIS procedure, 566
approximate covariance, 621
approximate standard errors, 576, 587, 648, 686
asymptotic covariance, 575, 645
asymptotic variances, 647
asymptotically distribution free estimation, 574,

646
chi-square indices, 653
chi-square, adjusted, 655
chi-square, displaying, 684, 685
chi-square, reweighted, 655
coefficient of determination, 585
compared to MIXED procedure, 2665
computation method, Hessian matrix, 589
computation method, Lagrange multipliers, 589
computation method, standard errors, 589
computational problems, 678, 680, 681
computational problems, identification, 669,

680, 724, 726, 732, 741
constrained estimation, 565
constraints, 565, 609, 610, 675, 676
constraints, program statements, 565, 628, 630,

675
COSAN model, 552, 591
degrees of freedom, 573, 576, 590, 676
determination index, 657
displayed output options, 583, 621
disturbances, prefix, 601
EQS program, 555
estimation criteria, 646
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estimation methods, 549, 574, 644–647
exogenous variables, 662
factor analysis model, 554, 606, 608
factor analysis model, COSAN statement, 593
factor analysis model, LINEQS statement, 602
factor analysis model, RAM statement, 598
factor loadings, 641
FACTOR procedure, 567, 572, 606, 679
factor rotation, 607
factor scores, 641, 643, 687
fit function, 644
goodness of fit, 644, 649, 652, 684
gradient, 634, 664, 665
Hessian matrix, 621, 622, 634, 647, 665
initial values, 550, 590, 595, 597, 602, 661
input data set, 630
kappa, 659
kurtosis, 549, 584, 588, 658, 660
latent variables, 549, 601, 625
likelihood ratio test, 653, 674
LINEQS model, 553, 601
LISREL model, 554
manifest variables, 549
matrix inversion, 647
matrix names, default, 608
matrix properties, COSAN model, 592
MODEL procedure, 679
modification indices, 576, 584, 649, 673, 674,

687
optimization, 550, 577–581, 622, 664–666, 671,

672
optimization history, 668
optimization, initial values, 661, 666
optimization, memory problems, 666
optimization, termination criteria, 611, 615–620
output data sets, 634
output table names, 688
predicted model matrix, 643, 644, 663, 680, 683
prefix name, 594, 598, 602, 603
PRINCOMP procedure, 567
program statements, 628, 630
program statements, differentiation, 589
RAM model, 553, 596
reciprocal causation, 585
REG procedure, 679
residuals, 650
residuals, prefix, 601
SCORE procedure, 571, 586, 643
significance level, 588
simplicity functions, 607
singularity criterion, 590
singularity criterion, covariance matrix, 588,

590, 591
skewness, 658
squared multiple correlation, 657, 686
step length, 581
structural equation, 552, 585, 625, 658
syntax, 566
SYSLIN procedure, 679

SYSNLIN procedure, 679
t value, 649, 686
test indices, constraints, 584
variable selection, 662
Wald test, probability limit, 590

CALIS procedure, BOUNDS statement, 609
CALIS procedure, BY statement, 626
CALIS procedure, COSAN statement, 591
CALIS procedure, COV statement, 604
CALIS procedure, FACTOR statement, 606

COMPONENT option, 607
HEYWOOD option, 607
N= option, 607
NORM option, 607
RCONVERGE= option, 607
RITER= option, 607
ROTATE= option, 607

CALIS procedure, FREQ statement, 627
CALIS procedure, LINCON statement, 609
CALIS procedure, LINEQS statement, 601
CALIS procedure, MATRIX statement, 593
CALIS procedure, NLINCON statement, 610
CALIS procedure, NLOPTIONS statement, 611

ABSCONV= option, 615
ABSFCONV= option, 617
ABSFTOL= option, 617
ABSGCONV= option, 617, 620
ABSGTOL= option, 617, 620
ABSXCONV= option, 617
ABSXTOL= option, 617
ALL option, 621
ASINGULAR= option, 614
CFACTOR= option, 621
COVSING= option, 614
DAMPSTEP= option, 622
FCONV2= option, 618, 620
FCONV= option, 614, 617
FDIGITS= option, 618
FSIZE= option, 618
FTOL2= option, 618, 620
FTOL= option, 614, 617
G4= option, 613
GCONV2= option, 619
GCONV= option, 614, 618, 620
GTOL2= option, 619
GTOL= option, 614, 618, 620
HESCAL= option, 622
INSTEP= option, 614
LCDEACT= option, 623
LCEPSILON= option, 623
LCSINGULAR= option, 623
LINESEARCH= option, 614
LSPRECISION= option, 614
MAXFUNC= option, 614, 616
MAXITER= option, 614, 616
MAXTIME= option, 616
MINITER= option, 616
MSINGULAR= option, 614
NOEIGNUM option, 623
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NOHLF option, 621
OMETHOD= option, 613
PALL option, 621
PCRPJAC option, 621
PHESSIAN option, 621
PHISTORY option, 621
PINIT option, 621
PJTJ option, 621
PNLCJAC option, 621
PRINT option, 622
RADIUS= option, 614
RESTART= option, 623
SALPHA= option, 614
SINGULAR= option, 614
TECHNIQUE= option, 613
UPDATE= option, 613
VERSION= option, 624
VSINGULAR= option, 615
XCONV= option, 619
XSIZE= option, 619
XTOL= option, 619

CALIS procedure, PARAMETERS statement, 624
CALIS procedure, PARTIAL statement, 627
CALIS procedure, PROC CALIS statement, 568

ALL option, 584
ALPHAECV= option, 588
ALPHARMS= option, 588
ASINGULAR= option, 588
ASYCOV= option, 575
AUGMENT option, 572
BIASKUR option, 588
CORR option, 584
COVARIANCE option, 572
COVSING= option, 588
DATA= option, 570
DEMPHAS= option, 588
DFE= option, 572
DFR= option, 572
DFREDUCE= option, 576
EDF= option, 572
ESTDATA= option, 570
FCONV= option, 580
FDCODE option, 589
FTOL= option, 580
G4= option, 576
GCONV= option, 580
GTOL= option, 580
HESSALG= option, 589
INEST= option, 570
INRAM= option, 570
INSTEP= option, 581
INVAR= option, 570
INWGT= option, 570
KURTOSIS option, 584
LINESEARCH= option, 580
LSPRECISION= option, 581
MAXFUNC= option, 582
MAXITER= option, 582
METHOD= option, 574

MODIFICATION option, 584
MSINGULAR= option, 590
NOADJDF option, 590
NOBS= option, 572
NODIAG option, 576
NOINT option, 573
NOMOD option, 584
NOPRINT option, 584
NOSTDERR option, 587
OM= option, 577
OMETHOD= option, 577
OUTEST= option, 570
OUTJAC option, 571
OUTRAM= option, 571
OUTSTAT= option, 571
OUTVAR= option, 570
OUTWGT= option, 571
PALL option, 584
PCORR option, 584
PCOVES option, 585
PDETERM option, 585
PESTIM option, 585
PINITIAL option, 585
PJACPAT option, 586
PLATCOV option, 586
PREDET option, 586
PRIMAT option, 586
PRINT option, 586
PRIVEC option, 586
PSHORT option, 587
PSUMMARY option, 587
PWEIGHT option, 587
RADIUS= option, 583
RANDOM= option, 590
RDF= option, 572
RESIDUAL= option, 587
RIDGE= option, 573
SALPHA= option, 583
SHORT option, 587
SIMPLE option, 587
SINGULAR= option, 590
SLMW= option, 590
SMETHOD= option, 580
SPRECISION= option, 581, 583
START= option, 590
STDERR option, 587
SUMMARY option, 587
TECHNIQUE= option, 577
TOTEFF option, 587
UCORR option, 573
UCOV option, 573
UPDATE= option, 579
VARDEF= option, 573
VSINGULAR= option, 591
WPENALTY= option, 576
WRIDGE= option, 577

CALIS procedure, RAM statement, 596
CALIS procedure, STD statement, 603
CALIS procedure, STRUCTEQ statement, 625
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CALIS procedure, VAR statement, 627
CALIS procedure, VARNAMES statement, 625
CALIS procedure, WEIGHT statement, 627
CAN option

PROC DISCRIM statement, 1147
CANALS method

TRANSREG procedure, 4576
Canberra metric coefficient

DISTANCE procedure, 1272
CANCORR procedure

analyzing data in groups, 763
canonical coefficients, 751
canonical redundancy analysis, 751, 761
computational resources, 768
correction for means, 760
correlation, 760
eigenvalues, 765
eigenvalues and eigenvectors, 754, 769
examples, 753, 773
formulas, 765
input data set, 760
missing values, 765
OUT= data sets, 761, 766
output data sets, 761, 766
output table names, 771
OUTSTAT= data sets, 766
partial correlation, 761, 762, 764
principal components, relation to, 765
regression coefficients, 759
semipartial correlation, 762
singularity checking, 762
squared multiple correlation, 762
squared partial correlation, 762
squared semipartial correlation, 762
statistical methods used, 752
statistics computed, 751
suppressing output, 761
syntax, 757
weighted product-moment correlation coeffi-

cients, 764
CANCORR procedure, BY statement, 763
CANCORR procedure, FREQ statement, 764
CANCORR procedure, PARTIAL statement, 764
CANCORR procedure, PROC CANCORR statement,

757
ALL option, 759
B option, 759
C option, 760
CLB option, 760
CORR option, 760
CORRB option, 760
DATA= option, 760
EDF= option, 760
INT option, 760
NCAN= option, 760
NOINT option, 760
NOPRINT option, 761
OUT= option, 761
OUTSTAT= option, 761

PCORR option, 761
PROBT option, 761
RDF= option, 761
RED option, 761
REDUNDANCY option, 761
S option, 761
SEB option, 761
SHORT option, 761
SIMPLE option, 761
SING= option, 762
SINGULAR= option, 762
SMC option, 762
SPCORR option, 762
SQPCORR option, 762
SQSPCORR option, 762
STB option, 762
T option, 762
VDEP option, 762
VN= option, 762
VNAME= option, 762
VP= option, 762
VPREFIX= option, 762
VREG option, 763
WDEP option, 763
WN= option, 763
WNAME= option, 763
WP= option, 763
WPREFIX= option, 763
WREG option, 762

CANCORR procedure, VAR statement, 764
CANCORR procedure, WEIGHT statement, 764
CANCORR procedure, WITH statement, 764
CANDISC procedure

computational details, 794
computational resources, 799
input data set, 795
introductory example, 785
Mahalanobis distance, 804
MANOVA, 786
memory requirements, 799
missing values, 794
multivariate analysis of variance, 786
ODS table names, 802
output data sets, 791, 796, 797
%PLOTIT macro, 785, 808
syntax, 789
time requirements, 799

CANDISC procedure, BY statement, 793
CANDISC procedure, CLASS statement, 793
CANDISC procedure, FREQ statement, 793
CANDISC procedure, PROC CANDISC statement,

789
ALL option, 790
ANOVA option, 790
BCORR option, 790
BCOV option, 790
BSSCP option, 791
DATA= option, 791
DISTANCE option, 791
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NCAN= option, 791
NOPRINT option, 791
OUT= option, 791
OUTSTAT= option, 791
PCORR option, 791
PCOV option, 791
PREFIX= option, 792
PSSCP option, 792
SHORT option, 792
SIMPLE option, 792
SINGULAR= option, 792
STDMEAN option, 792
TCORR option, 792
TCOV option, 792
TSSCP option, 792
WCORR option, 792
WCOV option, 792
WSSCP option, 793

CANDISC procedure, VAR statement, 794
CANDISC procedure, WEIGHT statement, 794
canonical analysis

ANOVA procedure, 438
GLM procedure, 1760
repeated measurements, 448
response surfaces, 4046

canonical coefficients, 783
canonical component, 783
canonical correlation

CANCORR procedure, 751
definition, 752
hypothesis tests, 751
TRANSREG procedure, 4584, 4593

canonical discriminant analysis, 783, 1139
canonical factor solution, 1297
CANONICAL option

MANOVA statement (ANOVA), 438
MANOVA statement (GLM), 1760
OUTPUT statement (TRANSREG), 4584
PROC DISCRIM statement, 1147
REPEATED statement (ANOVA), 448
REPEATED statement (GLM), 1780

canonical redundancy analysis
CANCORR procedure, 751, 761

canonical variables, 783
ANOVA procedure, 438
TRANSREG procedure, 4584

canonical weights, 752, 783
CANPREFIX= option

PROC DISCRIM statement, 1147
CANPRINT option

MTEST statement (REG), 3833
CASCADE= option

PROC MODECLUS statement, 2865
cascaded density estimates

MODECLUS procedure, 2873
case weight

PHREG procedure, 3239
case-control studies

odds ratio, 1488, 1503, 1504

PHREG procedure, 3217, 3228, 3280
casewise deletion

PRINQUAL procedure, 3655
categorical data analysis,

See CATMOD procedure
categorical variable, 72
categorical variables,

See classification variables
CATMOD

parameterization, 845
CATMOD procedure

analysis of variance, 815
at sign (@) operator, 866
AVERAGED models, 881
bar (|) operator, 865
cautions, 869, 870, 887
cell count data, 861
classification variables, 864
compared to other procedures, 815, 869, 870,

1792
computational method, 891–894
continuous variables, 864
continuous variables, caution, 869, 870
contrast examples, 919
contrasts, comparing with GLM, 833
convergence criterion, 842
design matrix, 847, 848
design matrix, REPEATED statement, 882
effect specification, 864
effective sample sizes, 887
estimation methods, 817

–F– specification, 840, 862
hypothesis tests, 888
input data sets, 813, 860
interactive use, 818, 828
introductory example, 818
iterative proportional fitting, 843
linear models, 814
log-linear models, 814, 870, 916, 919, 1616
logistic analysis, 815, 868, 933
logistic regression, 814, 869, 911
maximum likelihood estimation, 817
maximum likelihood estimation formulas, 895
memory requirements, 897
missing values, 860
MODEL statement, examples, 840
ordering of parameters, 880
ordering of populations, 863
ordering of responses, 863
ordinal model, 869
output data sets, 854, 866, 867
parameterization, comparing with GLM, 833
positional requirements for statements, 828
quasi-independence model, 919
regression, 815
repeated measures, 815, 850, 873, 925, 930, 933,

937
repeated measures, MODEL statements, 875
REPEATED statement, examples, 873
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response functions, 836, 840, 852, 854–856,
859, 862, 901, 906, 944

–RESPONSE– keyword, 836, 839, 840, 842,
850, 864, 870, 873, 881, 882, 884, 888, 898

–RESPONSE–= option, 837, 851
restrictions on parameters, 859
sample survey analysis, 816
sampling zeros and log-linear analyses, 871
sensitivity, 941
singular covariance matrix, 887
specificity, 941
syntax, 827
time requirements, 897
types of analysis, 814, 864
underlying model, 816
weighted least squares, 817, 846
zeros, structural and sampling, 888, 919, 924

CATMOD procedure, BY statement, 830
CATMOD procedure, CONTRAST statement, 831

ALPHA= option, 832
ESTIMATE= option, 832

CATMOD procedure, DIRECT statement, 835
CATMOD procedure, FACTORS statement, 836

PROFILE= option, 837

–RESPONSE–= option, 837
TITLE= option, 837

CATMOD procedure, LOGLIN statement, 839
TITLE= option, 839

CATMOD procedure, MODEL statement, 840
ADDCELL= option, 841
ALPHA= option, 842
AVERAGED option, 842
CLPARM option, 842
CORRB option, 842
COV option, 842
COVB option, 842
DESIGN option, 842
EPSILON= option, 842
FREQ option, 842
GLS option, 846
ITPRINT option, 842
MAXITER= option, 842
MISS= option, 844
MISSING= option, 844
ML option, 843
NODESIGN option, 845
NOINT option, 845
NOITER option, 845
NOPARM option, 845
NOPREDVAR option, 845
NOPRINT option, 845
NOPROFILE option, 845
NORESPONSE option, 845
ONEWAY option, 845
PARAM= option, 845
PRED= option, 845
PREDICT option, 845
PROB option, 846
PROFILE option, 846

–RESPONSE– keyword, 836, 839, 840, 842,
850, 864, 870, 873, 881, 882, 884, 888, 898

TITLE= option, 846
WLS option, 846
XPX option, 846
ZERO= option, 846
ZEROES= option, 846
ZEROS= option, 846

CATMOD procedure, POPULATION statement, 848
CATMOD procedure, PROC CATMOD statement,

829
DATA=option, 829
NAMELEN= option, 829
NOPRINT option, 829
ORDER= option, 829

CATMOD procedure, REPEATED statement, 850
PROFILE= option, 851

–RESPONSE–= option, 851
TITLE= option, 852

CATMOD procedure, RESPONSE statement, 852
ALOGIT function, 852
CLOGIT function, 853
JOINT function, 853
LOGIT function, 853
MARGINAL function, 853
MEAN function, 853
OUT= option, 854
OUTEST= option, 854
READ function, 853
TITLE= option, 854

CATMOD procedure, RESTRICT statement, 859
CATMOD procedure, WEIGHT statement, 860
CAXIS= option

PLOT statement (BOXPLOT), 495
PLOT statement (REG), 3844

CBAR= option
OUTPUT statement (LOGISTIC), 2321

CBLOCKLAB= option
PLOT statement (BOXPLOT), 495

CBLOCKVAR= option
PLOT statement (BOXPLOT), 495

CBOXES= option
PLOT statement (BOXPLOT), 496

CBOXFILL= option
PLOT statement (BOXPLOT), 496

CCC option
OUTPUT statement (TRANSREG), 4584
PROC CLUSTER statement, 968

CCLIP= option
PLOT statement (BOXPLOT), 496

CCONF= option
MCMC statement (MI), 2525

CCONNECT= option
MCMC statement (MI), 2529
PLOT statement (BOXPLOT), 497

CCONVERGE= option
MODEL statement (TRANSREG), 4574
PROC PRINQUAL statement, 3653

CCOVERLAY= option



4990 � Syntax Index

PLOT statement (BOXPLOT), 497
CDF,

See cumulative distribution function
CDF keyword

OUTPUT statement (LIFEREG), 2100
cdf plots

annotating, 3718
axes, color, 3718
font, specifying, 3719
options summarized by function, 3716, 3734
reference lines, options, 3719–3722
threshold lines, options, 3721

cdfplot
PROBIT procedure, 3715

CDFPLOT statement,
See PROBIT procedure, CDFPLOT statement
options summarized by function, 3716
PROBIT procedure, 3715

CDPREFIX= option
OUTPUT statement (TRANSREG), 4584

CEC option
OUTPUT statement (TRANSREG), 4584

ceiling sample size
GLMPOWER procedure, 1947
POWER procedure, 3419, 3496

cell count data, 1464
CATMOD procedure, 861
example (FREQ), 1527

cell of a contingency table, 72
cell-means coding

TRANSREG procedure, 4569, 4594, 4662
CELLCHI2 option

PROC CORRESP statement, 1074
TABLES statement (FREQ), 1454

CENSCALE option
PROC PLS statement, 3374

censored
data (LIFEREG), 2083
LIFETEST procedure, 2186
observations (PHREG), 3283
survival times (PHREG), 3215, 3281, 3283
values (PHREG), 3218, 3272

CENSORED keyword
OUTPUT statement (LIFEREG), 2100

CENSOREDSYMBOL= option
PROC LIFETEST statement, 2160

censoring, 2083
LIFEREG procedure, 2094
variable (PHREG), 3218, 3228, 3235, 3283

CENTER option
MODEL statement (TRANSREG), 4571
PROC MULTTEST statement, 2939

center-point coding
TRANSREG procedure, 4568, 4668, 4670

CENTER= option
RIDGE statement (RSREG), 4043

centering
TRANSREG procedure, 4571

centroid component, 4800

definition, 4799
centroid method

CLUSTER procedure, 966, 976
CENTROID option

PROC VARCLUS statement, 4808
CERTSIZE= option

PROC SURVEYSELECT statement, 4432
CFACTOR= option

NLOPTIONS statement (CALIS), 621
PROC NLMIXED statement, 3061

CFRAME= option
MCMC statement (MI), 2525, 2529
PLOT statement (BOXPLOT), 497
PLOT statement (REG), 3844
PROC TREE statement, 4750

CGRID= option
BOXPLOT procedure, 497

CHAIN= option
MCMC statement (MI), 2526

chaining, reducing when clustering, 972
CHANGE= option

PROC PRINQUAL statement, 3653
character OPSCORE variables

PRINQUAL procedure, 3673
TRANSREG procedure, 4604

characteristic roots and vectors
ANOVA procedure, 437
GLM procedure, 1759

Chebychev distance coefficient
DISTANCE procedure, 1272

chi-square
adjusted (CALIS), 655
displaying (CALIS), 684, 685
indices (CALIS), 653
reweighted (CALIS), 655

chi-square test
SURVEYFREQ procedure, 4216

chi-square tests
examples (FREQ), 1530, 1535, 1538
FREQ procedure, 1469, 1470
power and sample size (POWER), 3429, 3432,

3457, 3462, 3505, 3506, 3524, 3541
chi-squared coefficient

DISTANCE procedure, 1273
CHIF option

PROC ROBUSTREG statement, 3986, 3987
CHISQ option

CONTRAST statement (MIXED), 2684
EXACT statement (FREQ), 1444, 1535
MODEL statement (MIXED), 2692
OUTPUT statement (FREQ), 1447
TABLES statement (FREQ), 1454, 1470, 1535
TABLES statement (SURVEYFREQ), 4199

CHISQ1 option
TABLES statement (SURVEYFREQ), 4199

CHOCKING= option
PLOT statement (REG), 3845

choice experiments
TRANSREG procedure, 4660
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CHREF= option
PLOT statement (BOXPLOT), 497
PLOT statement (REG), 3845

Chromy’s method
SURVEYSELECT procedure, 4448, 4452

CI= option
ONESAMPLEMEANS statement (POWER),

3434
PAIREDMEANS statement (POWER), 3449
PROC TTEST statement, 4780
TWOSAMPLEMEANS statement (POWER),

3465
Cicchetti-Allison weights, 1497
CICONV= option

MODEL statement (GENMOD), 1637
CILPREFIX= option

OUTPUT statement (TRANSREG), 4584
CIPREFIX= option

OUTPUT statement (TRANSREG), 4585
Cityblock distance coefficient

DISTANCE procedure, 1272
CIUPREFIX= option

OUTPUT statement (TRANSREG), 4585
CK= option

PROC MODECLUS statement, 2865
CL option

ESTIMATE statement (MIXED), 2685
LSMEANS statement (GENMOD), 1636
LSMEANS statement (GLM), 1756
LSMEANS statement (MIXED), 2689
MODEL statement (GENMOD), 1637
MODEL statement (LOGISTIC), 2319
MODEL statement (MIXED), 2692
MODEL statement (TRANSREG), 4575
RANDOM statement (MIXED), 2713
TABLES statement (FREQ), 1455
TABLES statement (SURVEYFREQ), 4199

CL= option
PROC MIXED statement, 2674

CLABEL= option
BOXPLOT procedure, 497

class level
MIXED procedure, 2678
SURVEYMEANS procedure, 4346

CLASS statement
ANOVA procedure, 435
CANDISC procedure, 793
DISCRIM procedure, 1154
GAM procedure, 1565
GENMOD procedure, 1629
GLM procedure, 1748
GLMMOD procedure, 1916
GLMPOWER procedure, 1937
INBREED procedure, 1974
LIFEREG procedure, 2092
LOGISTIC procedure, 2295
MI procedure, 2522
MIANALYZE procedure, 2617
MIXED procedure, 2681, 2748

MULTTEST procedure, 2943
NESTED procedure, 2989
ORTHOREG procedure, 3202
PLS procedure, 3378
ROBUSTREG procedure, 3989
STEPDISC procedure, 4169
SURVEYLOGISTIC procedure, 4253
SURVEYMEANS procedure, 4329
SURVEYREG procedure, 4375
TPHREG procedure, 4477
TTEST procedure, 4781
VARCOMP procedure, 4836

CLASS transformation
MODEL statement (TRANSREG), 4560

classification criterion
DISCRIM procedure, 1139
error rate estimation (DISCRIM), 1163

classification level
SURVEYREG procedure, 4391

classification table
LOGISTIC procedure, 2314, 2352, 2353, 2422

classification variable
SURVEYMEANS procedure, 4329, 4337, 4341

classification variables, 72
ANOVA procedure, 423, 451
CATMOD procedure, 864
GENMOD procedure, 1660
GLM procedure, 1784
GLMPOWER procedure, 1937, 1938
MIXED procedure, 2681
sort order of levels (GENMOD), 1625
SURVEYREG procedure, 4375
TRANSREG procedure, 4560, 4569
VARCOMP procedure, 4836

CLASSVAR= option
PROC MIANALYZE statement, 2615

CLB option
MODEL statement (REG), 3825
PROC CANCORR statement, 760

CLDIFF option
MEANS statement (ANOVA), 442
MEANS statement (GLM), 1766

CLEAR option
PLOT statement (REG), 3849

CLI option
MODEL statement (GLM), 1771
MODEL statement (REG), 3825
OUTPUT statement (TRANSREG), 4585

CLINE= option
PLOT statement (REG), 3845

CLIPFACTOR= option
BOXPLOT procedure, 497, 533

CLIPLEGEND= option
BOXPLOT procedure, 497

CLIPLEGPOS= option
BOXPLOT procedure, 497

CLIPSUBCHAR= option
BOXPLOT procedure, 498

CLIPSYMBOL= option
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BOXPLOT procedure, 498
CLIPSYMBOLHT= option

BOXPLOT procedure, 498
CLL= option

MODEL statement (TRANSREG), 4570
CLM option

MEANS statement (ANOVA), 442
MEANS statement (GLM), 1766
MODEL statement (GLM), 1771
MODEL statement (LOESS), 2232
MODEL statement (REG), 3825
OUTPUT statement (TRANSREG), 4585
PROC GAM statement, 1581
SCORE statement (LOESS), 2237
SCORE statement (LOGISTIC), 2324

CLODDS option
MODEL statement (SURVEYLOGISTIC), 4262

CLODDS= option
MODEL statement (LOGISTIC), 2308

CLOGIT function
RESPONSE statement (CATMOD), 853

closing all destinations
examples, ODS Graphics, 360

CLPARM option
MODEL statement (CATMOD), 842
MODEL statement (GLM), 1771
MODEL statement (SURVEYLOGISTIC), 4262
MODEL statement (SURVEYREG), 4380

CLPARM= option
MODEL statement (LOGISTIC), 2309

CLTYPE= option
BASELINE statement (PHREG), 3225
EXACT statement (LOGISTIC), 2302

cluster
centers, 1380, 1392
definition (MODECLUS), 2878
deletion, 1390
elliptical, 387
final, 1380
initial, 1380, 1381
mean, 1392
median, 1389, 1392
midrange, 1392
minimum distance separating, 1381
plotting (MODECLUS), 2878
seeds, 1380
SURVEYFREQ procedure, 4195
SURVEYLOGISTIC procedure, 4255
SURVEYMEANS procedure, 4329
SURVEYREG procedure, 4376

cluster analysis
disjoint, 1379
large data sets, 1379
robust, 1379, 1392
tree diagrams, 4743

cluster analysis (STDIZE)
standardizing, 4143

CLUSTER procedure,
See also TREE procedure

algorithms, 986
association measure, 957
average linkage, 957
categorical data, 957
centroid method, 957
clustering methods, 957, 975
complete linkage, 957
computational resources, 986
density linkage, 957, 966
Euclidean distances, 957
F statistics, 972, 984
FASTCLUS procedure, compared, 957
flexible-beta method, 957, 967, 968, 981
hierarchical clusters, 957
input data sets, 969
interval scale, 988
kth-nearest-neighbor method, 957
maximum likelihood, 957, 967
McQuitty’s similarity analysis , 957
median method, 957
memory requirements, 986
missing values, 987
non-Euclidean distances, 957
output data sets, 971, 990
output table names, 994
pseudoF andt statistics, 972
ratio scale, 988
single linkage, 957
size, shape, and correlation, 988
syntax, 966
test statistics, 968, 972, 973
ties, 987
time requirements, 986
TREE procedure, compared, 957
two-stage density linkage, 957
types of data sets, 957
using macros for many analyses, 1013
Ward’s minimum-variance method, 957
Wong’s hybrid method, 957

CLUSTER procedure, BY statement, 973
CLUSTER procedure, COPY statement, 973
CLUSTER procedure, FREQ statement, 974
CLUSTER procedure, ID statement, 974
CLUSTER procedure, PROC CLUSTER statement,

966
BETA= option, 968
CCC option, 968
DATA= option, 969
DIM= option, 969
HYBRID option, 969
K= option, 970
MODE= option, 970
NOEIGEN option, 970
NOID option, 970
NONORM option, 971
NOPRINT option, 971
NOSQUARE option, 971
NOTIE option, 971
OUTTREE= option, 971
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PENALTY= option, 971
PRINT= option, 971
PSEUDO= option, 972
R= option, 972
RMSSTD option, 972
RSQUARE option, 972
SIMPLE option, 972
STANDARD option, 972
TRIM= option, 972

CLUSTER procedure, RMSSTD statement, 974
CLUSTER procedure, VAR statement, 975
cluster sampling, 164
CLUSTER statement

SURVEYFREQ procedure, 4195
SURVEYLOGISTIC procedure, 4255
SURVEYMEANS procedure, 4329
SURVEYREG procedure, 4376

CLUSTER= option
PROC FASTCLUS statement, 1390
PROC MODECLUS statement, 2865

clustering, 957,
See also CLUSTER procedure
approximate covariance estimation, 387
average linkage, 966, 976
centroid method, 966, 976
complete linkage method, 966, 977
density linkage methods, 966, 967, 969, 970,

972, 977, 980, 982
disjoint clusters of variables, 4799
Gower’s method, 967, 981
hierarchical clusters of variables, 4799
maximum-likelihood method, 971, 980, 981
McQuitty’s similarity analysis, 967, 981
median method, 967, 981
methods affected by frequencies, 974
outliers in, 958, 972
penalty coefficient, 971
single linkage, 967, 982
smoothing parameters, 979
standardizing variables, 972
SURVEYFREQ procedure, 4203
transforming variables, 958
two-stage density linkage, 967
variables, 4799
Ward’s method, 967, 983
weighted average linkage, 967, 981

clustering and computing distance matrix
Correlation coefficients, example, 1283
Jaccard coefficients, example, 1278

clustering and scaling
DISTANCE procedure, example, 1253
MODECLUS procedure, 2856, 2857, 2874
STDIZE procedure, example, 4143

clustering criterion
FASTCLUS procedure, 1379, 1391, 1392

clustering methods
ACECLUS procedure, 405
FASTCLUS procedure, 1380, 1381
MODECLUS procedure, 2856, 2874

CLWT option
TABLES statement (SURVEYFREQ), 4199

CMALLOWS= option
PLOT statement (REG), 3845

CMF,
See cumulative mean function
PHREG procedure, 3224

CMH option
OUTPUT statement (FREQ), 1447
TABLES statement (FREQ), 1455

CMH1 option
OUTPUT statement (FREQ), 1447
TABLES statement (FREQ), 1455

CMH2 option
OUTPUT statement (FREQ), 1447
TABLES statement (FREQ), 1455

CMHCOR option
OUTPUT statement (FREQ), 1447

CMHGA option
OUTPUT statement (FREQ), 1447

CMHRMS option
OUTPUT statement (FREQ), 1447

CMLPREFIX= option
OUTPUT statement (TRANSREG), 4585

CMUPREFIX= option
OUTPUT statement (TRANSREG), 4585

CNEEDLES= option
MCMC statement (MI), 2525

COCHQ option
OUTPUT statement (FREQ), 1448

Cochran and Coxt approximation, 4775, 4780, 4785
COCHRAN option

PROC TTEST statement, 4780
Cochran’sQ test, 1493, 1499, 1548
Cochran-Armitage test for trend, 1490, 1543

continuity correction (MULTTEST), 2949
MULTTEST procedure, 2946, 2948, 2964
permutation distribution (MULTTEST), 2949
two-tailed test (MULTTEST), 2951

Cochran-Mantel-Haenszel statistics (FREQ), 1447,
1500,

See also chi-square tests
ANOVA (row mean scores) statistic, 1502
correlation statistic, 1501
examples, 1540
general association statistic, 1502

CODING= option
MODEL statement (GENMOD), 1637

COEF= option
PROC MDS statement, 2477

coefficient
alpha (FACTOR), 1337
of contrast (SURVEYREG), 4392
of determination (CALIS), 585
of estimate (SURVEYREG), 4393
of relationship (INBREED), 1977
of variation (SURVEYMEANS), 4340
redundancy (TRANSREG), 4590

coefficient of variation
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SURVEYFREQ procedure, 4214
COEFFICIENTS option

OUTPUT statement (TRANSREG), 4585
cohort studies, 1540

relative risk, 1489, 1507
COL option

TABLES statement (SURVEYFREQ), 4200
COLLECT option

PLOT statement (REG), 3849
COLLIN option

MODEL statement (REG), 3825
collinearity

REG procedure, 3895
COLLINOINT option

MODEL statement (REG), 3825
column proportions

SURVEYFREQ procedure, 4212
COLUMN= option

PROC CORRESP statement, 1075
combinations

generating with PLAN procedure, 3358
combining inferences

MI procedure, 2561
MIANALYZE procedure, 2624

common factor
defined for factor analysis, 1292

common factor analysis
common factor rotation, 1294
compared with principal component analysis,

1293
Harris component analysis, 1293
image component analysis, 1293
interpreting, 1293
salience of loadings, 1294

COMMONAXES option
PROC GAM statement, 1581

COMOR option
EXACT statement (FREQ), 1444

comparing
groups (GLM), 1804
means (TTEST), 4775, 4789
variances (TTEST), 4775, 4784, 4789

comparisonwise error rate (GLM), 1809
complementary log-log model

SURVEYLOGISTIC procedure, 4284
complete block design

example (ANOVA), 428
example (GLM), 1847

complete linkage
CLUSTER procedure, 966, 977

complete separation
LOGISTIC procedure, 2339
SURVEYLOGISTIC procedure, 4277

completely randomized design
examples, 461

COMPONENT option
FACTOR statement (CALIS), 607
PROC GAM statement, 1581

components

PLS procedure, 3367
compound symmetry structure

example (MIXED), 2733, 2789, 2794
MIXED procedure, 2721

COMPRESS option
PROC FREQ statement, 1441

computational details
Hessian matrix (CALIS), 589
KDE procedure, 2002
Lagrange multipliers (CALIS), 589
LIFEREG procedure, 2108
maximum likelihood method (VARCOMP),

4839
MIVQUE0 method (VARCOMP), 4839
MIXED procedure, 2772
restricted maximum likelihood method

(VARCOMP), 4840
SIM2D procedure, 4109
standard errors (CALIS), 589
SURVEYLOGISTIC procedure, 4282
SURVEYREG procedure, 4384
Type I method (VARCOMP), 4838
VARCOMP procedure, 4838, 4842

computational problems
CALIS procedure, 678
convergence (CALIS), 678
convergence (FASTCLUS), 1390
convergence (MIXED), 2774
identification (CALIS), 669, 680, 724, 726, 732,

741
negative eigenvalues (CALIS), 681
negative R-square (CALIS), 681
NLMIXED procedure, 3098
overflow (CALIS), 678
singular predicted model (CALIS), 680
time (CALIS), 681

computational resources
ACECLUS procedure, 410
CANCORR procedure, 768
CLUSTER procedure, 986
FACTOR procedure, 1335
FASTCLUS procedure, 1402
LIFEREG procedure, 2123
MODECLUS procedure, 2882
MULTTEST procedure, 2960
NLMIXED procedure, 3103
PRINCOMP procedure, 3611
ROBUSTREG procedure, 4012
VARCLUS procedure, 4818

COMPUTE statement
VARIOGRAM procedure, 4866

concordant observations, 1474
CONDITION= option

PROC MDS statement, 2477
conditional and unconditional simulation

SIM2D procedure, 4091
conditional data

MDS procedure, 2477
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conditional distributions of multivariate normal ran-
dom variables

SIM2D procedure, 4108
conditional logistic regression

LOGISTIC procedure, 2365
PHREG procedure, 3217, 3283

Conditional residuals
MIXED procedure, 2764

CONF option
PLOT statement (REG), 3845

CONFBAND= option
SURVIVAL statement (LIFETEST), 2169

confidence bands
LIFETEST procedure, 2169, 2176, 2205

Confidence intervals
LIFEREG procedure, 2115

confidence intervals
confidence coefficient (GENMOD), 1637
fitted values of the mean (GENMOD), 1641,

1669
individual observation (RSREG), 4042, 4043
means (ANOVA), 442
means (RSREG), 4042, 4043
means, power and sample size (POWER), 3432,

3438, 3448, 3456, 3463, 3473, 3512, 3522,
3532, 3563

model confidence interval (NLIN), 3029
pairwise differences (ANOVA), 442
parameter confidence interval (NLIN), 3028
profile likelihood (GENMOD), 1640, 1666
profile likelihood (LOGISTIC), 2314, 2315,

2345
TTEST procedure, 4780
Wald (GENMOD), 1643, 1667
Wald (LOGISTIC), 2319, 2346
Wald (SURVEYLOGISTIC), 4288

confidence intervals, FACTOR procedure, 1327
confidence level

baseline survivor function (PHREG), 3225
SURVEYMEANS procedure, 4323
SURVEYREG procedure, 4373

confidence limits
asymptotic (FREQ), 1475
baseline survivor function (PHREG), 3225, 3263
exact (FREQ), 1443
LIFETEST procedure, 2174, 2183, 2184, 2205
LOGISTIC procedure, 2350
MIXED procedure, 2674
SURVEYFREQ procedure, 4213
SURVEYMEANS procedure, 4340, 4342
SURVEYREG procedure, 4380
TRANSREG procedure, 4575, 4584, 4585,

4587, 4588
confidence limits, FACTOR procedure, 1327
configuration

MDS procedure, 2471
CONFTYPE= option

SURVIVAL statement (LIFETEST), 2169, 2191
conjoint analysis

TRANSREG procedure, 4581, 4593, 4690, 4694
conjugate

descent (NLMIXED), 3074
gradient (NLMIXED), 3072
gradient algorithm (CALIS), 577, 579–581, 665

connectedness method,
See single linkage

constant transformations
avoiding (PRINQUAL), 3673
avoiding (TRANSREG), 4603

constant variables
PRINQUAL procedure, 3673
TRANSREG procedure, 4578, 4604

constrained estimation
CALIS procedure, 565

constraints
boundary (CALIS), 565, 609, 675
boundary (MIXED), 2707, 2708
linear (CALIS), 565, 609, 676
modification indices (CALIS), 584
nonlinear (CALIS), 565, 610
ordered (CALIS), 675
program statements (CALIS), 565, 628, 630, 675
test indices (CALIS), 584

CONTAIN option
MODEL statement (MIXED), 2692, 2693

containment method
MIXED procedure, 2693

CONTENTS= option
TABLES statement (FREQ), 1455

CONTGY option
OUTPUT statement (FREQ), 1448

contingency coefficient, 1469, 1474
contingency tables, 72, 1431, 1450, 4196

CATMOD procedure, 816
continuity-adjusted chi-square, 1469, 1471
CONTINUITY= option

TEST statement (MULTTEST), 2947
CONTINUOUS option

PLOT statement (BOXPLOT), 498
continuous variables, 451, 1784

GENMOD procedure, 1660
continuous-by-class effects

MIXED procedure, 2746
model parameterization (GLM), 1790
specifying (GLM), 1785

continuous-nesting-class effects
MIXED procedure, 2745
model parameterization (GLM), 1789
specifying (GLM), 1785

%CONTOUR macro
DISCRIM procedure, 1201

contour plots
plots, ODS Graphics, 324, 360

CONTRAST keyword
REPEATED statement (ANOVA), 448

CONTRAST option
REPEATED statement (GLM), 1779, 1830

CONTRAST statement
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CATMOD procedure, 831
GENMOD procedure, 1631
GLM procedure, 1749
GLMPOWER procedure, 1937
LOGISTIC procedure, 2297
MIXED procedure, 2681
MULTTEST procedure, 2944
NLMIXED procedure, 3076
SURVEYLOGISTIC procedure, 4255
SURVEYREG procedure, 4376
TPHREG procedure, 4479

CONTRAST= option
ONEWAYANOVA statement (POWER), 3439

contrasts, 3076
comparing CATMOD and GLM, 833
GENMOD procedure, 1633
GLM procedure, 1749
MIXED procedure, 2681, 2685
power and sample size (GLMPOWER), 1934,

1937, 1950, 1951, 1956
power and sample size (POWER), 3438, 3439,

3442, 3513, 3536
repeated measurements (ANOVA), 447, 448
repeated measures (GLM), 1779
specifying (CATMOD), 831
SURVEYREG procedure, 4376, 4389

control
comparing treatments to (GLM), 1807, 1812

control charts, 23
CONTROL keyword

OUTPUT statement (LIFEREG), 2100
control sorting

SURVEYSELECT procedure, 4443, 4445
CONTROL statement

NLIN procedure, 3011
SURVEYSELECT procedure, 4443

CONVENIENT option
MODEL statement (TRANSREG), 4570

converge in EM algorithm
MI procedure, 2522

CONVERGE option
EM statement (MI), 2522
MODEL statement (TRANSREG), 4575

CONVERGE= option
MCMC statement (MI), 2527
MODEL statement (GENMOD), 1637
MODEL statement (LIFEREG), 2096
PROC ACECLUS statement, 404
PROC FACTOR statement, 1309
PROC FASTCLUS statement, 1390
PROC MDS statement, 2478
PROC NLIN statement, 3006
PROC PRINQUAL statement, 3653
REPEATED statement (GENMOD), 1647
TABLES statement (FREQ), 1456

convergence criterion
ACECLUS procedure, 404
CATMOD procedure, 842
GENMOD procedure, 1637, 1647

MDS procedure, 2478, 2480, 2481
MIXED procedure, 2674, 2675, 2749, 2775
profile likelihood (LOGISTIC), 2314

convergence in EM algorithm
MI procedure, 2527

convergence in MCMC
MI procedure, 2555, 2566

CONVERGENCE option
PROC ROBUSTREG statement, 3984, 3987

convergence problems
MIXED procedure, 2774
NLMIXED procedure, 3099

CONVERGEOBJ= option
PROC NLIN statement, 3007

CONVERGEPARM= option
PROC NLIN statement, 3007

CONVF option
PROC MIXED statement, 2675, 2749

CONVG option
PROC MIXED statement, 2675, 2749

CONVG= option
MODEL statement (LIFEREG), 2096

CONVH option
PROC MIXED statement, 2675, 2749

CONVH= option
MODEL statement (GENMOD), 1638

convolution
distribution (MULTTEST), 2950
KDE procedure, 2005

Cook’sD influence statistic, 1774, 4042
Cook’s D

MIXED procedure, 2768
Cook’s D for covariance parameters

MIXED procedure, 2768
Cook’s D plots

plots, ODS Graphics, 353
COOKD keyword

OUTPUT statement (GLM), 1774
COORDINATES option

OUTPUT statement (TRANSREG), 4586
COORDINATES statement

KRIGE2D procedure, 2039
SIM2D procedure, 4099
VARIOGRAM procedure, 4869

COPY statement
DISTANCE procedure, 1268
TREE procedure, 4755

CORE option
PROC MODECLUS statement, 2865

CORR option
LSMEANS statement (GENMOD), 1636
LSMEANS statement (MIXED), 2689
PROC CALIS statement, 584
PROC CANCORR statement, 760
PROC FACTOR statement, 1309
PROC NLMIXED statement, 3061
PROC REG statement, 3817
PROC VARCLUS statement, 4808

CORR procedure, 21
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CORR= option
ONECORR statement (POWER), 3427
PAIREDMEANS statement (POWER), 3450
REPEATED statement (GENMOD), 1648

CORRB option
MODEL statement (CATMOD), 842
MODEL statement (GENMOD), 1638
MODEL statement (LIFEREG), 2097
MODEL statement (LOGISTIC), 2309
MODEL statement (MIXED), 2692
MODEL statement (PHREG), 3233
MODEL statement (REG), 3825
MODEL statement (ROBUSTREG), 3989
MODEL statement (SURVEYLOGISTIC), 4262
PROC CANCORR statement, 760
REPEATED statement (GENMOD), 1647

CORRECT=NO option
PROC NPAR1WAY statement, 3156

correction for means
CANCORR procedure, 760

correlated data
GEE (GENMOD), 1611, 1672

correlated proportions,
See McNemar’s test

correlation
CANCORR procedure, 760
estimates (MIXED), 2713, 2716, 2720, 2791
length (VARIOGRAM), 4860
matrix (GENMOD), 1638, 1656
matrix (REG), 3817
matrix, estimated (CATMOD), 842
principal components, 3610, 3612
range (KRIGE2D), 2034

correlation coefficients
power and sample size (POWER), 3426, 3502,

3503
Correlation dissimilarity coefficient

DISTANCE procedure, 1271
Correlation similarity coefficient

DISTANCE procedure, 1271
correlation statistic, 1501
CORRELATIONS option

PROC PRINQUAL statement, 3653
CORRESP procedure, 1069

adjusted inertias, 1102
algorithm, 1097
analyse des correspondances, 1069
appropriate scoring, 1069
Best variables, 1104
binary design matrix, 1083
Burt table, 1076, 1084
coding, 1085
COLUMN= option, use, 1099
computational resources, 1096
correspondence analysis, 1069
doubling, 1085
dual scaling, 1069
fuzzy coding, 1085, 1087

geometry of distance between points, 1100,
1112, 1118

homogeneity analysis, 1069
inertia, definition, 1070
input tables and variables, 1072, 1082, 1083
matrix decompositions, 1079, 1100
matrix formulas for statistics, 1103
memory requirements, 1097
missing values, 1077, 1088, 1092
multiple correspondence analysis (MCA), 1076,

1101, 1123
ODS graph names, 1109
optimal scaling, 1069
optimal scoring, 1069
OUTC= data set, 1094
OUTF= data set, 1095
output data sets, 1094
output table names, 1108
partial contributions to inertia table, 1103
%PLOTIT macro, 1070, 1118, 1128
PROFILE= option, use, 1099
quantification method, 1069
reciprocal averaging, 1069
ROW= option, use, 1099
scalogram analysis, 1069
supplementary rows and columns, 1080, 1102
syntax, 1072
syntax, abbreviations, 1073
TABLES statement, use, 1072, 1081, 1088
time requirements, 1097
VAR statement, use, 1072, 1081, 1091

CORRESP procedure, BY statement, 1080
CORRESP procedure, ID statement, 1080
CORRESP procedure, PROC CORRESP statement,

1073
ALL option, 1074
BENZECRI option, 1074
BINARY option, 1074
CELLCHI2 option, 1074
COLUMN= option, 1075
CP option, 1075
CROSS= option, 1075
DATA= option, 1075
DEVIATION option, 1075
DIMENS= option, 1075
EXPECTED option, 1076
FREQOUT option, 1076
GREENACRE option, 1076
MCA option, 1076
MCA= option, 1101
MININERTIA= option, 1077
MISSING option, 1077
NOCOLUMN= option, 1077
NOPRINT option, 1077
NOROW= option, 1077
NVARS= option, 1077
OBSERVED option, 1078
OUTC= option, 1078
OUTF= option, 1078
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PRINT= option, 1078
PROFILE= option, 1078
ROW= option, 1079
RP option, 1079
SHORT option, 1079
SINGULAR= option, 1079
SOURCE option, 1079
UNADJUSTED option, 1079

CORRESP procedure, SUPPLEMENTARY state-
ment, 1080

CORRESP procedure, TABLES statement, 1081
CORRESP procedure, VAR statement, 1081
CORRESP procedure, WEIGHT statement, 1082
correspondence analysis

CORRESP procedure, 1069
CORRW option

REPEATED statement (GENMOD), 1647
CORRXY= option

POWER statement (GLMPOWER), 1939
COSAN model

CALIS procedure, 552, 591
specification, 560
structural model example (CALIS), 561

COSAN statement, CALIS procedure, 591
Cosine coefficient

DISTANCE procedure, 1272
counting process

PHREG procedure, 3241
COV option

LSMEANS statement (GENMOD), 1636
LSMEANS statement (GLM), 1756
LSMEANS statement (MIXED), 2689
MCMC statement (MI), 2524, 2529
MODEL statement (CATMOD), 842
PROC LATTICE statement, 2072
PROC NLMIXED statement, 3061
PROC PRINCOMP statement, 3604

COV statement, CALIS procedure, 604
COVAR option

PROC INBREED statement, 1973
COVAR= option

MODEL statement (RSREG), 4042
covariance

LATTICE procedure, 2075
parameter estimates (MIXED), 2674, 2676
parameter estimates, ratio (MIXED), 2680
parameters (MIXED), 2661
principal components, 3610, 3612
regression coefficients (SURVEYREG), 4392
SURVEYFREQ procedure, 4210

covariance coefficients,
See INBREED procedure

covariance matrix
for parameter estimates (CATMOD), 842
for response functions (CATMOD), 842
GENMOD procedure, 1638, 1656
NLMIXED procedure, 3101, 3106
PHREG procedure, 3222, 3233, 3245
REG procedure, 3817

singular (CATMOD), 887
symmetric and positive definite (SIM2D), 4107

COVARIANCE option
PROC ROBUSTREG statement, 3984, 3986
PROC CALIS statement, 572
PROC FACTOR statement, 1310
PROC LATTICE statement, 2072
PROC PRINCOMP statement, 3604
PROC PRINQUAL statement, 3653
PROC ROBUSTREG statement, 3987
PROC VARCLUS statement, 4809

covariance parameter estimates
MIXED procedure, 2750

Covariance similarity coefficient
DISTANCE procedure, 1271

covariance structure analysis model,
See COSAN model

covariance structures
examples (MIXED), 2723, 2782
MIXED procedure, 2664, 2721

covariates
GLMPOWER procedure, 1938–1941, 1951,

1956
MIXED procedure, 2743
model parameterization (GLM), 1787

COVARIATES= option
BASELINE statement (PHREG), 3224

covarimin method, 1291, 1318
COVB option

MODEL statement (CATMOD), 842
MODEL statement (GENMOD), 1638
MODEL statement (LIFEREG), 2097
MODEL statement (LOGISTIC), 2309
MODEL statement (MIXED), 2692
MODEL statement (PHREG), 3233
MODEL statement (REG), 3825
MODEL statement (ROBUSTREG), 3989
MODEL statement (SURVEYLOGISTIC), 4262
MODEL statement (SURVEYREG), 4380
REPEATED statement (GENMOD), 1647

COVB= option
PROC MIANALYZE statement, 2614

COVBI option
MODEL statement (MIXED), 2693

COVER= option
PROC FACTOR statement, 1310

coverage displays
FACTOR procedure, 1328

COVERLAY= option
PLOT statement (BOXPLOT), 498

COVERLAYCLIP= option
PLOT statement (BOXPLOT), 498

COVM option
PROC PHREG statement, 3221

COVOUT option
PROC LIFEREG statement, 2090
PROC LOGISTIC statement, 2290
PROC PHREG statement, 3221
PROC PROBIT statement, 3711
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PROC REG statement, 3817
PROC ROBUSTREG statement, 3983

COVRATIO
MIXED procedure, 2770

COVRATIO for covariance parameters
MIXED procedure, 2770

COVRATIO keyword
OUTPUT statement (GLM), 1774

COVRATIO statistic, 3899
COVS option

PROC PHREG statement, 3222
COVSANDWICH option

PROC PHREG statement, 3222
COVSING= option

NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 588
PROC NLMIXED statement, 3061

COVTEST option
PROC MIXED statement, 2676, 2750

COVTRACE
MIXED procedure, 2770

COVTRACE for covariance parameters
MIXED procedure, 2770

Cox regression analysis
PHREG procedure, 3219
semiparametric model (PHREG), 3215

CP option
MODEL statement (REG), 3825
PLOT statement (REG), 3845
PROC CORRESP statement, 1075

CPC option
OUTPUT statement (TRANSREG), 4586

CPREFIX= option
CLASS statement (LOGISTIC), 2295
CLASS statement (SURVEYLOGISTIC), 4253
CLASS statement (TPHREG), 4477
MODEL statement (TRANSREG), 4568, 4575

CPUCOUNT option
MODEL statement (ROBUSTREG), 3991

CQC option
OUTPUT statement (TRANSREG), 4586

CR= option
PROC MODECLUS statement, 2865

Cramer’sV statistic, 1469, 1474
Cramer-von Mises test

NPAR1WAY procedure, 3170
CRAMV option

OUTPUT statement (FREQ), 1448
Crawford-Ferguson family, 1291
Crawford-Ferguson method, 1317, 1318
CREF= option

MCMC statement (MI), 2525
Crime Rates Data, example

PRINCOMP procedure, 3619
CRITMIN= option

PROC MDS statement, 2482
CROSS option

PROC MODECLUS statement, 2865
cross validated density estimates

MODECLUS procedure, 2872
cross validation

DISCRIM procedure, 1163
PLS procedure, 3368, 3374, 3384

CROSS= option
PROC CORRESP statement, 1075

crossed effects
design matrix (CATMOD), 877
GENMOD procedure, 1660
MIXED procedure, 2744
model parameterization (GLM), 1788
specifying (ANOVA), 451, 452
specifying (CATMOD), 864
specifying (GLM), 1784

CROSSLIST option
PROC DISCRIM statement, 1147
PROC MODECLUS statement, 2865
TABLES statement (FREQ), 1456

CROSSLISTERR option
PROC DISCRIM statement, 1147

crossover designs
power and sample size (POWER), 3549

crossproducts matrix
REG procedure, 3917

crosstabulation (SURVEYFREQ)
tables, 4227

crosstabulation tables, 1431, 1450, 4196
SURVEYFREQ procedure, 4227

CROSSVALIDATE option
PROC DISCRIM statement, 1147

CRPANEL option
ASSESS statement (PHREG), 3224

CSTEP option
PROC ROBUSTREG statement, 3985

CSYMBOL= option
MCMC statement (MI), 2525, 2529

CTABLE option
MODEL statement (LOGISTIC), 2309

CTEXT= option
PLOT statement (BOXPLOT), 498
PLOT statement (REG), 3845

cubic clustering criterion, 970, 973
CLUSTER procedure, 968

CUMCOL option
TABLES statement (FREQ), 1457

cumulative baseline hazard function
PHREG procedure, 3257

cumulative distribution function, 2114, 3705
LIFETEST procedure, 2149

cumulative logit model
SURVEYLOGISTIC procedure, 4284

cumulative logits,
See also response functions
examples, (CATMOD), 869
specifying in CATMOD procedure, 853
using (CATMOD), 868

cumulative martingale residuals
PHREG procedure, 3223, 3266, 3271

cumulative mean function,
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See mean function
cumulative residuals, 1718, 1725
CURVE= option

TWOSAMPLESURVIVAL statement
(POWER), 3475

custom scoring coefficients, example
SCORE procedure, 4086

customizing
ODS graphs, 363, 369, 371, 373, 379
ODS styles, 345, 374, 376, 378

CUTOFF option
MODEL statement (ROBUSTREG), 3989

CUTOFF= option
PROC MDS statement, 2478

CV option
TABLES statement (SURVEYFREQ), 4200

CV= option
ONESAMPLEMEANS statement (POWER),

3434
PAIREDMEANS statement (POWER), 3450
PROC PLS statement, 3374
TWOSAMPLEMEANS statement (POWER),

3465
CVALS= option

OUTPUT statement (PLAN), 3344
CVREF= option

PLOT statement (BOXPLOT), 499
PLOT statement (REG), 3846

CVTEST= option
PROC PLS statement, 3375

CVWT option
TABLES statement (SURVEYFREQ), 4200

Czekanowski/Sorensen similarity coefficient
DISTANCE procedure, 1276

D
D option

MODEL statement (RSREG), 4042
PROC NPAR1WAY statement, 3156

DAMPSTEP option, 3097
PROC NLMIXED statement, 3061

DAMPSTEP= option
NLOPTIONS statement (CALIS), 622

DAPPROXIMATIONS option
OUTPUT statement (TRANSREG), 4586

DATA step, 21
DATA= option

PARMS statement (NLMIXED), 3078
PRIOR statement (MIXED), 2710
PROC ACECLUS statement, 404
PROC ANOVA statement, 433
PROC BOXPLOT statement, 487
PROC CALIS statement, 570
PROC CANCORR statement, 760
PROC CANDISC statement, 791
PROC CATMOD statement, 829
PROC CLUSTER statement, 969
PROC CORRESP statement, 1075
PROC DISCRIM statement, 1148

PROC DISTANCE statement, 1256
PROC FACTOR statement, 1310
PROC FASTCLUS statement, 1390
PROC FREQ statement, 1441
PROC GAM statement, 1564
PROC GENMOD statement, 1625
PROC GLM statement, 1745
PROC GLMMOD statement, 1914
PROC GLMPOWER statement, 1936
PROC INBREED statement, 1973
PROC KDE statement, 1996
PROC KRIGE2D statement, 2038
PROC LATTICE statement, 2072
PROC LIFEREG statement, 2090
PROC LIFETEST statement, 2160
PROC LOGISTIC statement, 2290
PROC MDS statement, 2478
PROC MI statement, 2519
PROC MIANALYZE statement, 2615
PROC MIXED statement, 2676
PROC MODECLUS statement, 2865
PROC MULTTEST statement, 2940
PROC NESTED statement, 2988
PROC NLIN statement, 3007
PROC NLMIXED statement, 3062
PROC NPAR1WAY statement, 3156
PROC ORTHOREG statement, 3201
PROC PHREG statement, 3222
PROC PLS statement, 3375
PROC PRINCOMP statement, 3605
PROC PRINQUAL statement, 3653
PROC PROBIT statement, 3712
PROC REG statement, 3817
PROC ROBUSTREG statement, 3983
PROC RSREG statement, 4040
PROC SCORE statement, 4072
PROC SIM2D statement, 4099
PROC STDIZE statement, 4130
PROC STEPDISC statement, 4166
PROC SURVEYFREQ statement, 4193
PROC SURVEYLOGISTIC statement, 4250
PROC SURVEYMEANS statement, 4323
PROC SURVEYREG statement, 4373
PROC SURVEYSELECT statement, 4433
PROC TPSPLINE statement, 4507
PROC TRANSREG statement, 4556
PROC TREE statement, 4750
PROC TTEST statement, 4780
PROC VARCLUS statement, 4809
PROC VARCOMP statement, 4835
PROC VARIOGRAM statement, 4865
SCORE statement (GAM), 1569
SCORE statement (LOGISTIC), 2324
SCORE statement (TPSPLINE), 4510

Davidon-Fletcher-Powell update, 3073
DDF= option

MODEL statement (MIXED), 2693
TABLES statement (SURVEYFREQ), 4200

DDFM= option
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MODEL statement (MIXED), 2693
DECIMALS= option

PROC MDS statement, 2478
decomposition of the SSCP matrix

ACECLUS procedure, 387
Default style

ODS styles, 333, 346
DEFAULT= option

UNITS statement (LOGISTIC), 2328
UNITS statement (SURVEYLOGISTIC), 4268

DEFF option
MODEL statement (SURVEYREG), 4380
TABLES statement (SURVEYFREQ), 4200

DEFFBOUND= option
MODEL statement (SURVEYLOGISTIC), 4265

DEGREE= option
MODEL statement (LOESS), 2232
MODEL statement (TRANSREG), 4567
TRANSFORM statement (PRINQUAL), 3665

degrees of freedom
CALIS procedure, 573, 576, 590, 676
FACTOR procedure, 1320
MI procedure, 2561
MIANALYZE procedure, 2625, 2627
models with class variables (GLM), 1791
NLMIXED procedure, 3062
SURVEYFREQ procedure, 4214
SURVEYMEANS procedure, 4340, 4344
SURVEYREG procedure, 4385
TRANSREG procedure, 4615

DELETE statement, REG procedure, 3820
delete variables (REG), 3820
DELETE= option

PROC FASTCLUS statement, 1390
deleting observations

REG procedure, 3903
DEMPHAS= option

PROC CALIS statement, 588
dendritic method,

See single linkage
dendrogram, 4743
density estimation

DISCRIM procedure, 1180, 1200
MODECLUS procedure, 2870

density function,
See probability density function

density linkage
CLUSTER procedure, 966, 967, 969, 970, 972,

977, 980, 982
DENSITY= option

PROC MODECLUS statement, 2866
dependent effect, definition, 451
DEPENDENT= option

OUTPUT statement (TRANSREG), 4587
DEPONLY option

MEANS statement (GLM), 1766
DEPSILON= option

COMPUTE statement (VARIOGRAM), 4867
DER option

PREDICT statement (NLMIXED), 3079
DER statement

NLIN procedure, 3011
DESCENDING option

CLASS statement (GENMOD), 1629
CLASS statement (LOGISTIC), 2295
CLASS statement (SURVEYLOGISTIC), 4253
CLASS statement (TPHREG), 4477
MODEL statement, 2305, 4259
PROC LOGISTIC statement, 2290
PROC TREE statement, 4750

DESCRIPTION= option
PLOT statement (BOXPLOT), 499
PLOT statement (GLMPOWER), 1945
PLOT statement (POWER), 3487
PLOT statement (REG), 3846
PROC LIFETEST statement, 2160
PROC TREE statement, 4750

descriptive statistics,
See also UNIVARIATE procedure
LOGISTIC procedure, 2294
PHREG procedure, 3223
SURVEYMEANS procedure, 4347

design effect
SURVEYFREQ procedure, 4215
SURVEYREG procedure, 4388

design matrix
formulas (CATMOD), 894
generation in CATMOD procedure, 876
GENMOD procedure, 1661
GLMMOD procedure, 1909, 1917, 1918
linear dependence in (GENMOD), 1661
TRANSREG procedure, 4586

design of experiments,
See experimental design

DESIGN option
MODEL statement (CATMOD), 842

design points, TPSPLINE procedure, 4499, 4517
design summary

SURVEYREG procedure, 4390
design-adjusted chi-square test

SURVEYFREQ procedure, 4216
DESIGN= option

OUTPUT statement (TRANSREG), 4586
DETAIL option

MODEL statement (TRANSREG), 4575
DETAILS option

MODEL statement (LOESS), 2232
MODEL statement (LOGISTIC), 2309
MODEL statement (PHREG), 3230
MODEL statement (REG), 3825
MTEST statement (REG), 3833
PROC PLS statement, 3375

determination index
CALIS procedure, 657

deviance
definition (GENMOD), 1615
GENMOD procedure, 1637
LOGISTIC procedure, 2308, 2316, 2354
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PROBIT procedure, 3745, 3760
scaled (GENMOD), 1656

deviance residuals
GENMOD procedure, 1670
LOGISTIC procedure, 2360
PHREG procedure, 3234, 3258, 3302

DEVIANCE statement, GENMOD procedure, 1633,
1646

DEVIATION option
PROC CORRESP statement, 1075
TABLES statement (FREQ), 1457

DEVIATIONS option
MODEL statement (TRANSREG), 4568

deviations-from-means coding
TRANSREG procedure, 4568, 4594, 4654,

4668, 4670
DF= option

CONTRAST statement (MIXED), 2684
CONTRAST statement (NLMIXED), 3076
ESTIMATE statement (MIXED), 2686
ESTIMATE statement (NLMIXED), 3077
LSMEANS statement (MIXED), 2690
MODEL statement (SURVEYREG), 4380
MODEL statement (TPSPLINE), 4508
PREDICT statement (NLMIXED), 3079
PROC NLMIXED statement, 3062
RANDOM statement (NLMIXED), 3080

DFBETA statistics
PHREG procedure, 3234, 3260

DFBETAS statistic (REG), 3900
DFBETAS statistics

LOGISTIC procedure, 2360
DFBETAS= option

OUTPUT statement (LOGISTIC), 2321
DFBW option

PROC MIXED statement, 2676
DFE= option

PROC CALIS statement, 572
DFFITS

MIXED procedure, 2768
DFFITS keyword

OUTPUT statement (GLM), 1774
DFFITS statistic

GLM procedure, 1774
REG procedure, 3899

DFMETHOD= option
MODEL statement (LOESS), 2233

DFMETHOD=APPROX(Cutoff= ) option
MODEL statement (LOESS), 2233

DFMETHOD=APPROX(Quantile= ) option
MODEL statement (LOESS), 2233

DFR= option
PROC CALIS statement, 572

DFREDUCE= option
PROC CALIS statement, 576

diagnostic statistics
REG procedure, 3896, 3897

DIAGNOSTICS option
MODEL statement (ROBUSTREG), 3989

diagnostics panels
plots, ODS Graphics, 322, 379

DIAHES option
PROC NLMIXED statement, 3062

diameter method,
See complete linkage

Dice coefficient
DISTANCE procedure, 1276

DIFCHISQ= option
OUTPUT statement (LOGISTIC), 2322

DIFDEV= option
OUTPUT statement (LOGISTIC), 2322

DIFF option
LSMEANS statement (GENMOD), 1636
LSMEANS statement (MIXED), 2690

difference between means
confidence intervals, 442

DIM= option
PROC CLUSTER statement, 969

DIMENS= option
PROC CORRESP statement, 1075

dimension coefficients
MDS procedure, 2471, 2472, 2477, 2482, 2483,

2488, 2489
DIMENSION= option

PROC MDS statement, 2478
PROC MODECLUS statement, 2866

dimensions
MIXED procedure, 2678

direct effects
design matrix (CATMOD), 879
specifying (CATMOD), 865

DIRECT option
MODEL statement (LOESS), 2233

direct product structure
MIXED procedure, 2721

DIRECT statement, CATMOD procedure, 835
DIRECTIONS statement

VARIOGRAM procedure, 4870
discordant observations, 1474
DISCPROPDIFF= option

PAIREDFREQ statement (POWER), 3444
DISCPROPORTIONS= option

PAIREDFREQ statement (POWER), 3444
DISCPROPRATIO= option

PAIREDFREQ statement (POWER), 3445
discrete logistic model

likelihood (PHREG), 3241
PHREG procedure, 3216, 3228, 3283

discrete variables,
See classification variables

DISCRIM option
MONOTONE statement (MI), 2531

DISCRIM procedure
background, 1156
Bayes’ theorem, 1157
bivariate density estimation, 1200
calibration data set, 1139, 1167
classification criterion, 1139
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computational resources, 1173
%CONTOUR macro, 1201
cross validation, 1163
density estimate, 1157, 1160, 1161, 1180, 1200
error rate estimation, 1163, 1165
input data sets, 1168, 1169
introductory example, 1140
kernel density estimates, 1191, 1212
memory requirements, 1174
missing values, 1156
nonparametric methods, 1158
ODS table names, 1178
optimal bandwidth, selection, 1162
output data sets, 1170, 1171
parametric methods, 1157
%PLOT macro, 1182
%PLOTIT macro, 1200
posterior probability, 1158, 1160, 1180, 1200
posterior probability error rate, 1163, 1165
quasi-inverse, 1164
resubstitution, 1163
squared distance, 1157, 1158
syntax, 1145
test set classification, 1163
time requirements, 1174
training data set, 1139
univariate density estimation, 1180

DISCRIM procedure, BY statement, 1153
DISCRIM procedure, CLASS statement, 1154
DISCRIM procedure, FREQ statement, 1154
DISCRIM procedure, ID statement, 1154
DISCRIM procedure, PRIORS statement, 1154
DISCRIM procedure, PROC DISCRIM statement,

1145
ALL option, 1147
ANOVA option, 1147
BCORR option, 1147
BCOV option, 1147
BSSCP option, 1147
CAN option, 1147
CANONICAL option, 1147
CANPREFIX= option, 1147
CROSSLIST option, 1147
CROSSLISTERR option, 1147
CROSSVALIDATE option, 1147
DATA= option, 1148
DISTANCE option, 1148
K= option, 1148
KERNEL= option, 1148
LIST option, 1148
LISTERR option, 1148
MAHALANOBIS option, 1148
MANOVA option, 1148
METHOD= option, 1148
METRIC= option, 1149
NCAN= option, 1149
NOCLASSIFY option, 1149
NOPRINT option, 1149
OUT= option, 1149

OUTCROSS= option, 1149
OUTD= option, 1150
OUTSTAT= option, 1150
PCORR option, 1150
PCOV option, 1150
POOL= option, 1150
POSTERR option, 1150
PSSCP option, 1151
R= option, 1151
SHORT option, 1151
SIMPLE option, 1151
SINGULAR= option, 1151
SLPOOL= option, 1151
STDMEAN option, 1152
TCORR option, 1152
TCOV option, 1152
TESTDATA= option, 1152
TESTLIST option, 1152
TESTLISTERR option, 1152
TESTOUT= option, 1152
TESTOUTD= option, 1152
THRESHOLD= option, 1152
TSSCP option, 1152
WCORR option, 1153
WCOV option, 1153
WSSCP option, 1153

DISCRIM procedure, TESTCLASS statement, 1155
DISCRIM procedure, TESTFREQ statement, 1155
DISCRIM procedure, TESTID statement, 1156
DISCRIM procedure, VAR statement, 1156
DISCRIM procedure, WEIGHT statement, 1156
discriminant analysis, 1139

canonical, 783, 1139
error rate estimation, 1140
misclassification probabilities, 1140
nonparametric methods, 1158
parametric methods, 1157
stepwise selection, 4157

discriminant function method
MI procedure, 2544

discriminant functions, 784
disjoint clustering, 1379–1381
dispersion parameter

estimation (GENMOD), 1614, 1657, 1665, 1666
GENMOD procedure, 1658
LOGISTIC procedure, 2354
PROBIT procedure, 3760
weights (GENMOD), 1650

displayed output
SURVEYSELECT procedure, 4458

DISPLAYINIT option
MCMC statement (MI), 2526

DISSIMILAR option
PROC TREE statement, 4750

dissimilarity data
MDS procedure, 2471, 2478, 2484

DIST = option
MODEL statement (GAM), 1567

DIST= option
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MODEL statement (GENMOD), 1638
ONECORR statement (POWER), 3427
ONESAMPLEMEANS statement (POWER),

3434
PAIREDFREQ statement (POWER), 3445
PAIREDMEANS statement (POWER), 3450
TWOSAMPLEMEANS statement (POWER),

3465
distance

between clusters (FASTCLUS), 1398
classification (VARIOGRAM), 4874
data (FASTCLUS), 1379
data (MDS), 2471
Euclidean (FASTCLUS), 1380

distance data
MDS procedure, 2478, 2484

DISTANCE data sets
CLUSTER procedure, 969

distance measures available in DISTANCE procedure,
See proximity measures

DISTANCE option
PROC CANDISC statement, 791
PROC DISCRIM statement, 1148
PROC FASTCLUS statement, 1390

DISTANCE procedure
absent-absent match, asymmetric binary vari-

able, 1250
absent-absent match, example, 1278
absolute level of measurement, definition, 1250
affine transformation, 1250
asymmetric binary variable, 1250
available levels of measurement, 1263
available options for the option list, 1264
Binary Lance and Williams nonmetric coeffi-

cient, 1276
Bray and Curtis coefficient, 1276
Canberra metric coefficient, 1272
Chebychev distance coefficient, 1272
chi-squared coefficient, 1273
Cityblock distance coefficient, 1272
computing distances with weights, 1267
Correlation dissimilarity coefficient, 1271
Correlation similarity coefficient, 1271
Cosine coefficient, 1272
Covariance similarity coefficient, 1271
Czekanowski/Sorensen similarity coefficient,

1276
Dice coefficient, 1276
Dot Product coefficient, 1273
Euclidean distance coefficient, 1271
examples, 1251, 1278, 1283
extension of binary variable, 1251
formatted values, 1277
formulas for proximity measures, 1270
frequencies, 1268
functional summary, 1255
fuzz factor, 1257
Generalized Euclidean distance coefficient, 1272
Gower’s dissimilarity coefficient, 1271

Gower’s similarity coefficient, 1270
Hamann coefficient, 1274
Hamming distance coefficient, 1274
identity transformation, 1250
initial estimates for A-estimates, 1257
interval level of measurement, 1250
Jaccard dissimilarity coefficient, 1276
Jaccard similarity coefficient, 1276
Kulcynski 1 coefficient, 1276
Lance-Williams nonmetric coefficient, 1272
levels of measurement, 1249
linear transformation, 1250
log-interval level of measurement, 1250
many-to-one transformation, 1249
Minkowski L(p) distance coefficient, 1272
missing values, 1261, 1262, 1267, 1276
monotone increasing transformation, 1249
nominal level of measurement, 1249
nominal variable, 1251
normalization, 1261, 1263
one-to-one transformation, 1249
ordinal level of measurement, 1249
output data sets, 1261, 1277
Overlap dissimilarity coefficient, 1273
Overlap similarity coefficient, 1273
phi-squared coefficient, 1273
Power distance coefficient, 1272
power transformation, 1250
ratio level of measurement, 1250
Roger and Tanimoto coefficient, 1274
Russell and Rao similarity coefficient, 1276
scaling variables, 1251
Shape distance coefficient, 1271
Similarity Ratio coefficient, 1272
Simple Matching coefficient, 1274
Simple Matching dissimilarity coefficient, 1274
Size distance coefficient, 1271
Sokal and Sneath 1 coefficient, 1274
Sokal and Sneath 3 coefficient, 1275
Squared Correlation dissimilarity coefficient,

1272
Squared Correlation similarity coefficient, 1272
Squared Euclidean distance coefficient, 1271
standardization methods, 1265
standardization with frequencies, 1268
standardization with weights, 1269
standardization, default methods, 1251, 1265
standardization, example, 1253
standardization, mandatory, 1251
strictly increasing transformation, 1249
summary of options, 1255
symmetric binary variable, 1250
transforming ordinal variables to interval, 1250
transforming ordinal variables to iterval, 1261
weights, 1267, 1269

DISTANCE procedure, BY statement, 1268
DISTANCE procedure, COPY statement, 1268
DISTANCE procedure, FREQ statement, 1268
DISTANCE procedure, ID statement, 1268
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DISTANCE procedure, PROC DISTANCE statement,
1255

ABSENT= option, 1256
ADD= option, 1256
DATA= option, 1256
FUZZ= option, 1257
INITIAL= option, 1257
METHOD= option, 1257
MULT= option, 1261
NOMISS, 1261
NORM option, 1261
OUT= option, 1261
OUTSDZ= option, 1261
PREFIX= option, 1261
RANKSCORE= option, 1261
REPLACE, 1262
REPONLY, 1262
SHAPE= option, 1262
SNORM option, 1263
UNDEF= option, 1263
VARDEF= option, 1263

DISTANCE procedure, VAR statement
ABSENT= option, 1266
MISSING= option, 1267
ORDER= option, 1267
WEIGHTS= option, 1267

DISTANCE procedure, WGT statement, 1269
distance tolerance

VARIOGRAM procedure, 4867
DISTANCE= option

MODEL statement (TPSPLINE), 4509
DISTRIBUTION= option

MODEL statement (LIFEREG), 2097
distributions

Gompertz, 3705
logistic, 3705
normal, 3705

DIVISOR= option
ESTIMATE statement (GLM), 1752
ESTIMATE statement (MIXED), 2686
ESTIMATE statement (SURVEYREG), 4379

DK= option
PROC MODECLUS statement, 2866

DOCK= option
PROC MODECLUS statement, 2866
PROC TREE statement, 4750

DOCUMENT destination, 361
examples, ODS Graphics, 361
ODS Graphics, 326, 335

DOCUMENT procedure, 361, 362
document paths, 362
examples, ODS Graphics, 361
LIST statement, 362
REPLAY statement, 362

Documents window, 361
dollar-unit sampling

SURVEYSELECT procedure, 4466
domain analysis

SURVEYFREQ procedure, 4205

SURVEYMEANS procedure, 4336, 4348
domain mean

SURVEYMEANS procedure, 4343
DOMAIN statement

SURVEYMEANS procedure, 4330
domain statistics

SURVEYMEANS procedure, 4342
domain total

SURVEYMEANS procedure, 4343
DOT product (SCORE), 4065
Dot Product coefficient

DISTANCE procedure, 1273
double arcsine test

MULTTEST procedure, 2951
double dogleg

algorithm (CALIS), 578, 579, 581, 665
method (NLMIXED), 3073

DR= option
PROC MODECLUS statement, 2866

DREPLACE option
OUTPUT statement (TRANSREG), 4587

DRIFT option
PROC FASTCLUS statement, 1390

DROPSQUARE= option
MODEL statement (LOESS), 2233

DSCALE
MODEL statement (GENMOD), 1642

dual scaling
CORRESP procedure, 1069

DUMMY option
MODEL statement (TRANSREG), 4575
PROC PRINQUAL statement, 3654

dummy variables
TRANSREG procedure, 4560, 4569, 4586

dummy variables example
TRANSREG procedure, 4654

DUNCAN option
MEANS statement (ANOVA), 442
MEANS statement (GLM), 1766

Duncan’s multiple range test, 442, 1766, 1814
Duncan-Waller test, 445, 1769, 1815

error seriousness ratio, 443, 1768
multiple comparison (ANOVA), 464

DUNNETT option
MEANS statement (ANOVA), 442
MEANS statement (GLM), 1766

Dunnett’s adjustment
GLM procedure, 1754
MIXED procedure, 2688

Dunnett’s test, 1766, 1767, 1812
one-tailed lower, 442, 1766
one-tailed upper, 442
two-tailed, 442

DUNNETTL option
MEANS statement (ANOVA), 442
MEANS statement (GLM), 1766

DUNNETTU option
MEANS statement (ANOVA), 442
MEANS statement (GLM), 1767
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DW option
MODEL statement (REG), 3826

DWPROB option
MODEL statement (REG), 3826

E
E option

CONTRAST statement (GENMOD), 1632
CONTRAST statement (GLM), 1749
CONTRAST statement (LOGISTIC), 2300
CONTRAST statement (MIXED), 2684
CONTRAST statement (SURVEYLOGISTIC),

4257
CONTRAST statement (SURVEYREG), 4377
CONTRAST statement (TPHREG), 4481
ESTIMATE statement (GENMOD), 1634
ESTIMATE statement (GLM), 1752
ESTIMATE statement (MIXED), 2686
ESTIMATE statement (SURVEYREG), 4379
LSMEANS statement (GENMOD), 1636
LSMEANS statement (GLM), 1756
LSMEANS statement (MIXED), 2690
MODEL statement (GLM), 1771
MODEL statement (MIXED), 2695
TEST statement (PHREG), 3238

E1 option
MODEL statement (GLM), 1771
MODEL statement (MIXED), 2695

E2 option
MODEL statement (GLM), 1771
MODEL statement (MIXED), 2695

E3 option
MODEL statement (GLM), 1771
MODEL statement (MIXED), 2696

E4 option
MODEL statement (GLM), 1771

E= effects
REPEATED statement (ANOVA), 450

E= option
CONTRAST statement (GLM), 1750
MANOVA statement (ANOVA), 437
MANOVA statement (GLM), 1759
MEANS statement (ANOVA), 443
MEANS statement (GLM), 1767
REPEATED statement (GLM), 1782

EARLY option
PROC MODECLUS statement, 2866

EBLUP
MIXED procedure, 2703

EBOPT option
PROC NLMIXED statement, 3062

EBSSFRAC option
PROC NLMIXED statement, 3062

EBSSTOL option
PROC NLMIXED statement, 3062

EBSTEPS option
PROC NLMIXED statement, 3062

EBSUBSTEPS option
PROC NLMIXED statement, 3062

EBTOL option
PROC NLMIXED statement, 3062

EBZSTART option
PROC NLMIXED statement, 3062

ECORR option
PROC NLMIXED statement, 3063

ECORRB option
REPEATED statement (GENMOD), 1647

ECOV option
PROC NLMIXED statement, 3063

ECOVB option
REPEATED statement (GENMOD), 1647

EDER option
PROC NLMIXED statement, 3063

EDF option
MODEL statement (REG), 3826
OUTPUT statement (NPAR1WAY), 3162
PLOT statement (REG), 3846
PROC NPAR1WAY statement, 3157
PROC REG statement, 3817

EDF tests
NPAR1WAY procedure, 3168

EDF= option
PROC CALIS statement, 572
PROC CANCORR statement, 760
PROC MIANALYZE statement, 2615

EFF option
PROC ROBUSTREG statement, 3986, 3988

effect
coding (TRANSREG), 4549, 4568, 4654, 4668,

4670
definition, 451, 864, 1784
name length (MIXED), 2678
specification (ANOVA), 451
specification (CATMOD), 864
specification (GENMOD), 1659
specification (GLM), 1784
testing (SURVEYREG), 4386, 4392

EFFECT Parameterization
SURVEYLOGISTIC procedure, 4270

effect size
power and sample size (POWER), 3485

EFFECT= modifier
INFLUENCE option, MODEL statement

(MIXED), 2697
effective sample size

LIFETEST procedure, 2172, 2173
EFFECTS option

MODEL statement (TRANSREG), 4568
EFFECTVAR= option

PROC MIANALYZE statement, 2614
Efron method

likelihood (PHREG), 3228, 3241
eigenvalues and eigenvectors

ACECLUS procedure, 398, 399, 406, 410–412
CANCORR procedure, 754, 769
PRINCOMP procedure, 3595, 3610–3612
RSREG procedure, 4050

EIGENVECTORS option
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PROC FACTOR statement, 1310
Einot and Gabriel’s multiple range test

ANOVA procedure, 444
examples (GLM), 1851
GLM procedure, 1768, 1815

Ekblom-Newton algorithm
FASTCLUS procedure, 1392

elementary linkage analysis,
See single linkage

EM algorithm
MI procedure, 2536, 2566

EM statement
MI procedure, 2522

empirical Bayes estimation
NLMIXED procedure, 3084

empirical best linear unbiased prediction
MIXED procedure, 2703

empirical distribution function
tests (NPAR1WAY), 3168

EMPIRICAL option
MIXED, 2676

empirical sandwich estimator
MIXED procedure, 2676

empty stratum
SURVEYMEANS procedure, 4334, 4344

ENDGRID option
PLOT statement (BOXPLOT), 499

ENTRYTIME= option
MODEL statement (PHREG), 3229

Epanechnikov kernel (DISCRIM), 1160
EPOINT transformation

MODEL statement (TRANSREG), 4561
EPSILON = option

MODEL statement (GAM), 1567
EPSILON= option

MODEL statement (CATMOD), 842
PROC MDS statement, 2479
PROC PLS statement, METHOD=PLS option,

3376
PROC PLS statement, MISSING=EM option,

3376
PROC VARCOMP statement, 4835

EPSSCORE = option
MODEL statement (GAM), 1567

EQCONS= option
PARMS statement (MIXED), 2707

EQKAP option
OUTPUT statement (FREQ), 1448

EQS program
CALIS procedure, 555

equal precision bands
LIFETEST procedure, 2169, 2178, 2205

equality
of means (TTEST), 4775, 4789
of variances (TTEST), 4775, 4784, 4789

equamax method, 1291, 1317, 1318
equivalence tests

power and sample size (POWER), 3432, 3438,
3448, 3456, 3463, 3472, 3510, 3511, 3520,
3521, 3530, 3531, 3549

EQWKP option
OUTPUT statement (FREQ), 1448

ERR= option
MODEL statement (GENMOD), 1638

error rate estimation
DISCRIM procedure, 1163, 1165
discriminant analysis, 1140

error seriousness ratio
Waller-Duncan test, 443, 1768

error sum of squares clustering method,
See Ward’s method

ESTDATA= option
PROC CALIS statement, 570

estimability
GLM procedure, 1750
MIXED procedure, 2682

estimability checking
GENMOD procedure, 1632
LOGISTIC procedure, 2300
SURVEYLOGISTIC procedure, 4258
TPHREG procedure, 4481

estimable functions
checking (GLM), 1750
displaying (GLM), 1771
example (GLM), 1792
general form of, 1793
GLM procedure, 1751, 1752, 1758, 1773, 1792–

1794, 1796, 1797, 1803
MIXED procedure, 2702
printing (GLM), 1771
SURVEYREG procedure, 4378, 4393

ESTIMATE option
EXACT statement (LOGISTIC), 2301

ESTIMATE statement
GENMOD procedure, 1633
GLM procedure, 1751, 1801
MIXED procedure, 2685
NLMIXED procedure, 3077
SURVEYREG procedure, 4378

ESTIMATE= option
CONTRAST statement (CATMOD), 832
CONTRAST statement (LOGISTIC), 2300
CONTRAST statement (SURVEYLOGISTIC),

4258
CONTRAST statement (TPHREG), 4481

estimated population marginal means,
See least-squares means

ESTIMATES modifier
INFLUENCE option, MODEL statement

(MIXED), 2697
estimation

dispersion parameter (GENMOD), 1614
maximum likelihood (GENMOD), 1655
mixed model (MIXED), 2737
regression parameters (GENMOD), 1614

estimation criteria
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CALIS procedure, 646
estimation methods

CALIS procedure, 549, 574, 644–647
MIXED procedure, 2677

ETYPE option
LSMEANS statement (GLM), 1756

ETYPE= option
CONTRAST statement (GLM), 1750
MANOVA statement (GLM), 1760
MEANS statement (GLM), 1767
TEST statement (GLM), 1782

Euclidean distance coefficient
DISTANCE procedure, 1271

Euclidean distances, 969, 971, 1158, 1380
clustering, 957
MDS procedure, 2472, 2477, 2488

Euclidean length
STDIZE procedure, 4138

EVENLY option
MODEL statement (TRANSREG), 4567
TRANSFORM statement (PRINQUAL), 3665

event times
PHREG procedure, 3215, 3218

events/trials format for response
GENMOD procedure, 1636, 1653

EVENTSYMBOL= option
PROC LIFETEST statement, 2161

exact logistic regression
LOGISTIC procedure, 2300, 2369

exact method
likelihood (PHREG), 3228, 3240

EXACT option
OUTPUT statement (FREQ), 1448

EXACT statement
FREQ procedure, 1443
LOGISTIC procedure, 2300
NPAR1WAY procedure, 3159

exact tests
computational algorithms (FREQ), 1509
computational algorithms (NPAR1WAY), 3172
computational resources (FREQ), 1511
computational resources (NPAR1WAY), 3173
confidence limits, 1443
examples (NPAR1WAY), 3190, 3191
FREQ procedure, 1508, 1543
MONTE Carlo estimates (NPAR1WAY), 3174
network algorithm (FREQ), 1509
NPAR1WAY procedure, 3171
p-value, definitions, 1510, 3172
permutation test (MULTTEST), 2949

EXACTONLY option
PROC LOGISTIC statement, 2290

EXACTOPTIONS option
PROC LOGISTIC statement, 2291

examples, ODS Graphics, 352
axes labels, modifying, 368
closing all destinations, 360
customizing ODS graphs, 363, 369, 371, 373,

379

customizing styles, 374, 376, 378
DOCUMENT destination, 361
DOCUMENT procedure, 361
editing templates, 365
excluding graphs, 352
graph axes, swapping, 371
graph fonts, modifying, 374, 379
graph names, 352, 361
graph sizes, modifying, 378
graph titles, modifying, 368
grid lines, modifying, 373
HTML output, 321, 324, 330, 352
HTML output, with tool tips, 354
Journal style, 358
LaTeX output, 358
line colors, modifying, 369
line patterns, modifying, 369
line thickness, modifying, 376
marker symbols, modifying, 369
multiple destinations, 360
PDF output, 360
presentations, 356
referring to graphs, 330
relative paths, 359
replaying output, 361, 363, 369
RTF output, 356, 360
saving templates, 368
selecting graphs, 330, 352, 361
style attributes, modifying, 374, 376, 378
style elements, modifying, 374, 376, 378
TEMPLATE procedure, 363, 369, 371, 373, 379
tick marks, modifying, 373
trace record, 330, 352, 363

excluded observations
PRINQUAL procedure, 3657, 3674
TRANSREG procedure, 4605

excluding graphs
examples, ODS Graphics, 352
ODS Graphics, 330

exemplary data set
power and sample size (GLMPOWER), 1929,

1930, 1936, 1938, 1946, 1952
EXKNOTS= option

MODEL statement (TRANSREG), 4567
exogenous variables

CALIS procedure, 662
path diagram (CALIS), 664

EXP option
ESTIMATE statement (GENMOD), 1634

EXP transformation
MODEL statement (TRANSREG), 4562
TRANSFORM statement (MI), 2534
TRANSFORM statement (PRINQUAL), 3661

expected mean squares
computing, types (GLM), 1835
random effects, 1833

EXPECTED option
MODEL statement (GENMOD), 1638
PROC CORRESP statement, 1076
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TABLES statement (FREQ), 1457
TABLES statement (SURVEYFREQ), 4200

expected trend
MULTTEST procedure, 2951

expected weighted frequency
SURVEYFREQ procedure, 4215

experimental design, 23, 1901,
See also PLAN procedure
aliasing structure (GLM), 1897

experimentwise error rate (GLM), 1809
EXPEST option

MODEL statement (LOGISTIC), 2309
MODEL statement (SURVEYLOGISTIC), 4262

explicit intercept
TRANSREG procedure, 4605

exploratory data analysis, 22
exponential distribution

GENMOD procedure, 1704
exponential semivariogram model

KRIGE2D procedure, 2048, 2049
External studentization, 2763
external unfolding

MDS procedure, 2471
extreme value distribution

PROBIT procedure, 3757

F
–F– specification

MODEL statement (CATMOD), 840, 862
F statistics

CLUSTER procedure, 972, 984
GENMOD procedure, 1668

factor
defined for factor analysis, 1292

factor analysis
compared to component analysis, 1291, 1292

factor analysis model
CALIS procedure, 554, 606, 608
COSAN statement (CALIS), 593
identification (CALIS), 606
LINEQS statement (CALIS), 602
MATRIX statement (CALIS), 595
path diagram (CALIS), 599, 600
RAM statement (CALIS), 598
specification (CALIS), 560
structural model example (CALIS), 564

factor analytic structures
MIXED procedure, 2721

factor loadings
CALIS procedure, 641

factor parsimax method, 1291, 1317, 1318
FACTOR procedure, 1307

CALIS procedure, 567, 572, 606
computational resources, 1335
coverage displays, 1328
degrees of freedom, 1320
Heywood cases, 1333
number of factors extracted, 1312
OUT= data sets, 1316

output data sets, 1297, 1316
simplicity functions, 1294, 1316, 1329
syntax, 1307
time requirements, 1331
variances, 1320

FACTOR procedure, BY statement, 1320
FACTOR procedure, FREQ statement, 1321
FACTOR procedure, PARTIAL statement, 1322
FACTOR procedure, PRIORS statement, 1322
FACTOR procedure, PROC FACTOR statement, 1308

ALL option, 1309
ALPHA= option, 1309
CONVERGE= option, 1309
CORR option, 1309
COVARIANCE option, 1310
COVER= option, 1310
DATA= option, 1310
EIGENVECTORS option, 1310
FLAG= option, 1310
FUZZ= option, 1310
GAMMA= option, 1310
HEYWOOD option, 1311
HKPOWER= option, 1311
MAXITER= option, 1311
METHOD= option, 1311
MINEIGEN= option, 1312
MSA option, 1312
NFACTORS= option, 1313
NOBS= option, 1313
NOCORR option, 1313
NOINT option, 1313
NOPRINT option, 1313
NOPROMAXNORM option, 1313
NORM= option, 1313
NPLOT= option, 1314
OUT= option, 1314
OUTSTAT= option, 1314
PLOT option, 1314
POWER= option, 1314
PREPLOT option, 1314
PREROTATE= option, 1314
PRINT option, 1314
PRIORS= option, 1315
PROPORTION= option, 1316
RANDOM= option, 1316
RCONVERGE= option, 1316
REORDER option, 1316
RESIDUALS option, 1316
RITER= option, 1316
ROTATE= option, 1317
ROUND option, 1319
SCORE option, 1319
SCREE option, 1319
SE option, 1319
SIMPLE option, 1319
SINGULAR= option, 1319
TARGET= option, 1319
TAU= option, 1320
ULTRAHEYWOOD option, 1320
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VARDEF= option, 1320
WEIGHT option, 1320

FACTOR procedure, VAR statement, 1322
FACTOR procedure, WEIGHT statement, 1322
Factor rotation

with FACTOR procedure, 1298
factor rotation methods, 1291
factor scores

CALIS procedure, 641, 643, 687
displaying (CALIS), 687

factor scoring coefficients
FACTOR procedure, 4065
SCORE procedure, 4065, 4076

factor specification
REPEATED statement (GLM), 1778

FACTOR statement, CALIS procedure, 606
factor structure, 1298
factor-value-settings option

OUTPUT statement (PLAN), 3343
factors

PLAN procedure, 3339, 3340, 3348
PLS procedure, 3367

FACTORS statement
CATMOD procedure, 836
PLAN procedure, 3340

failure time
LIFEREG procedure, 2083

false discovery rate
adjustment (MULTTEST), 2959

false discovery rate (MULTTEST)
p-value adjustments, 2959

false negative, false positive rate
LOGISTIC procedure, 2314, 2353, 2422

fast Fourier transform
KDE procedure, 2007
MULTTEST procedure, 2950

FAST option
MODEL statement (LOGISTIC), 2309

FASTCLUS procedure
algorithm for updating cluster seeds, 1392
bin-sort algorithm, 1389
cluster deletion, 1390
clustering criterion, 1379, 1391, 1392
clustering methods, 1380, 1381
compared to other procedures, 1403
computational problems, convergence, 1390
computational resources, 1402
controlling iterations, 1393
convergence criterion, 1390
distance, 1379, 1380, 1398
DRIFT option, 1380
Ekblom-Newton algorithm, 1392
homotopy parameter, 1390
imputation of missing values, 1391
incompatibilities, 1397
iteratively reweighted least-squares, 1391
Lp clustering, 1379, 1391
MAXCLUSTERS= option, 1381
MEAN= data sets, 1394

memory requirements, 1402
Merle-Spath algorithm, 1392
missing values, 1380, 1381, 1391, 1393, 1397
Newton algorithm, 1392
OUT= data sets, 1398
outliers, 1379
output data sets, 1393, 1394, 1398
output table names, 1407
OUTSTAT= data set, 1394, 1400
RADIUS= option, 1381
random number generator, 1394
scale estimates, 1390, 1392, 1397, 1399, 1400
seed replacement, 1381, 1394
syntax, 1388
weighted cluster means, 1395

FASTCLUS procedure, BY statement, 1395
FASTCLUS procedure, FREQ statement, 1396
FASTCLUS procedure, ID statement, 1396
FASTCLUS procedure, PROC FASTCLUS statement,

1388
BINS= option, 1389
CLUSTER= option, 1390
CONVERGE= option, 1390
DATA= option, 1390
DELETE= option, 1390
DISTANCE option, 1390
DRIFT option, 1390
HC= option, 1390
HP= option, 1390
IMPUTE option, 1391
INSTAT= option, 1391
IRLS option, 1391
L= option, 1391
LEAST= option, 1391
LIST option, 1393
MAXCLUSTERS= option, 1388
MAXITER= option, 1393
MEAN= option, 1393
NOMISS option, 1393
NOPRINT option, 1394
OUT= option, 1394
OUTITER option, 1394
OUTS= option, 1394
OUTSEED= option, 1394
OUTSTAT= option, 1394
RADIUS= option, 1388
RANDOM= option, 1394
REPLACE= option, 1394
SEED= option, 1394
SHORT option, 1395
STRICT= option, 1395
SUMMARY option, 1395
VARDEF= option, 1395

FASTCLUS procedure, VAR statement, 1397
FASTCLUS procedure, WEIGHT statement, 1397
FCONV2= option

NLOPTIONS statement (CALIS), 618, 620
PROC NLMIXED statement, 3063

FCONV= option
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MODEL statement (LOGISTIC), 2310
MODEL statement (SURVEYLOGISTIC), 4262
NLOPTIONS statement (CALIS), 614, 617
PROC CALIS statement, 580
PROC NLMIXED statement, 3063

FD= option
PROC NLMIXED statement, 3064

FDCODE option
PROC CALIS statement, 589

FDHESSIAN= option
PROC NLMIXED statement, 3064

FDIGITS= option, 3092
NLOPTIONS statement (CALIS), 618
PROC NLMIXED statement, 3065

FDR option
PROC MULTTEST statement, 2940, 2959

FIADJUST option
PROC ROBUSTREG statement, 3985

fiducial limits, 3712, 3713, 3759
FILE= option

ODS HTML statement, 326
ODS PDF statement, 338, 360
ODS RTF statement, 338

FILLCHAR= option
PROC TREE statement, 4750

finite differencing
NLMIXED procedure, 3064, 3091

finite population correction (fpc)
SURVEYLOGISTIC procedure, 4280
SURVEYMEANS procedure, 4334

finite population correction factor, 165
first canonical variable, 783
first-order method

NLMIXED procedure, 3085
first-stage sampling unit, 165
Fisher combination

adjustment (MULTTEST), 2959
Fisher combination (MULTTEST)

p-value adjustments, 2959
Fisher exact test

MULTTEST procedure, 2944, 2946, 2954, 2975
Fisher information matrix

example (MIXED), 2796
MIXED procedure, 2750

FISHER option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448
TABLES statement (FREQ), 1457
TEST statement (MULTTEST), 2944, 2954,

2975
Fisher’s exact test

FREQ procedure, 1469, 1472, 1473
power and sample size (POWER), 3457, 3463,

3525
Fisher’s LSD test, 445, 1769
Fisher’s scoring method

GENMOD procedure, 1642, 1656
LOGISTIC procedure, 2317, 2318, 2336
MIXED procedure, 2674, 2680, 2774

SURVEYLOGISTIC procedure, 4264, 4265,
4276

Fisher’sz test for correlation
power and sample size (POWER), 3426, 3429,

3502, 3556
FISHER–C option

PROC MULTTEST statement, 2940, 2959
fit plots

plots, ODS Graphics, 322, 354
fit statistics

SURVEYREG procedure, 4390
FIT= option

PROC MDS statement, 2479
FITSTAT option

SCORE statement (LOGISTIC), 2325
fixed effects

MIXED procedure, 2663
sum-to-zero assumptions, 1835
VARCOMP procedure, 4831, 4837

fixed-effects model
VARCOMP procedure, 4837

fixed-effects parameters
MIXED procedure, 2661, 2732

fixed-radius kernels
MODECLUS procedure, 2870

FIXED= option
MODEL statement (VARCOMP), 4836

FLAG= option
PROC FACTOR statement, 1310

FLAT option
PRIOR statement (MIXED), 2710

Fleiss-Cohen weights, 1497
Fleming-HarringtonGρ test for homogeneity

LIFETEST procedure, 2150, 2168
flexible-beta method

CLUSTER procedure, 957, 967, 968, 981
floating point errors

NLMIXED procedure, 3098
FLOW option

PROC NLIN statement, 3008
PROC NLMIXED statement, 3065

folded formF statistic, 4775, 4784
FOLLOWUPTIME= option

TWOSAMPLESURVIVAL statement
(POWER), 3476

FONT= option
PLOT statement (BOXPLOT), 499

FORM= option
MODEL statement (KRIGE2D), 2042
SIMULATE statement (SIM2D), 4102

FORMAT= option
TABLES statement (FREQ), 1457

formatted values
DISTANCE procedure, 1277

FORMCHAR= option
PROC FREQ statement, 1441
PROC LIFETEST statement, 2161

FORMULA= option
PROC MDS statement, 2479



5012 � Syntax Index

formulas
CANCORR procedure, 765

forward selection
LOGISTIC procedure, 2317, 2340
PHREG procedure, 3229, 3264
REG procedure, 3800, 3873

Forward-Dolittle transformation, 1794
fraction of missing information

MI procedure, 2562
MIANALYZE procedure, 2625

fractional frequencies
PHREG procedure, 3227

fractional sample size
GLMPOWER procedure, 1947
POWER procedure, 3419, 3496

Frailty model example
NLMIXED procedure, 3128

Freeman-Halton test, 1473
Freeman-Tukey test

MULTTEST procedure, 2946, 2951, 2968
FREQ option

MODEL statement (CATMOD), 842
FREQ procedure

alpha level, 1445, 1453
binomial proportion, 1484, 1532
Bowker’s test of symmetry, 1493
Breslow-Day test, 1508
cell count data, 1464, 1527
chi-square tests, 1469–1471, 1530, 1535
Cochran’sQ test, 1493
Cochran-Mantel-Haenszel statistics, 1540
computation time, limiting, 1445
computational methods, 1509
computational resources, 1511, 1513
contingency coefficient, 1469
contingency table, 1535
continuity-adjusted chi-square, 1469, 1471
correlation statistic, 1501
Cramer’sV statistic, 1469
default tables, 1450
displayed output, 1517
exactp-values, 1510
EXACT statement, used with TABLES, 1446
exact tests, 1443, 1508, 1543
Fisher’s exact test, 1469
Friedman’s chi-square statistic, 1546
gamma statistic, 1474
general association statistic, 1502
grouping variables, 1465
input data sets, 1441, 1464
kappa coefficient, 1497, 1498
Kendall’s tau-b statistic, 1474
lambda asymmetric, 1474
lambda symmetric, 1474
likelihood-ratio chi-square test, 1469
Mantel-Haenszel chi-square test, 1469
McNemar’s test, 1493
measures of association, 1474
missing values, 1466

Monte Carlo estimation, 1443, 1445, 1512
multiway tables, 1518, 1520, 1521
network algorithm, 1509
odds ratio, 1488, 1503, 1504
ODS table names, 1524
one-way frequency tables, 1469, 1470, 1517,

1518, 1530
order of variables, 1442
output data sets, 1446, 1514–1516, 1527, 1538
output variable prefixes, 1516
OUTPUT, used with TABLES or EXACT, 1449
overall kappa coefficient, 1493
Pearson chi-square test, 1469, 1471
Pearson correlation coefficient, 1474
phi coefficient, 1469
polychoric correlation coefficient, 1474
relative risk, 1489, 1503, 1507
row mean scores statistic, 1502
scores, 1468
simple kappa coefficient, 1493
Somers’D statistics, 1474
Spearman rank correlation coefficient, 1474
statistical computations, 1468
stratified table, 1540
Stuart’s tau-c statistic, 1474
syntax, 1440
two-way frequency tables, 1470, 1471, 1535
uncertainty coefficients, 1474
weighted kappa coefficient, 1493

FREQ procedure, BY statement, 1443
FREQ procedure, EXACT statement, 1443

AGREE option, 1444
ALPHA= option, 1445
BINOMIAL option, 1444
CHISQ option, 1444, 1535
COMOR option, 1444
FISHER option, 1444
JT option, 1444
KAPPA option, 1444
LRCHI option, 1444
MAXTIME= option, 1445
MC option, 1445
MCNEM option, 1444
MEASURES option, 1444
MHCHI option, 1444
N= option, 1445
OR option, 1444, 1535
PCHI option, 1444
PCORR option, 1444
POINT option, 1445
SCORR option, 1444
SEED= option, 1445
TREND option, 1444, 1543
WTKAP option, 1444

FREQ procedure, OUTPUT statement, 1446
AGREE option, 1447
AJCHI option, 1447
ALL option, 1447
BDCHI option, 1447
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BINOMIAL option, 1447
CHISQ option, 1447
CMH option, 1447
CMH1 option, 1447
CMH2 option, 1447
CMHCOR option, 1447
CMHGA option, 1447
CMHRMS option, 1447
COCHQ option, 1448
CONTGY option, 1448
CRAMV option, 1448
EQKAP option, 1448
EQWKP option, 1448
EXACT option, 1448
FISHER option, 1448
GAMMA option, 1448
JT option, 1448
KAPPA option, 1448
KENTB option, 1448
LAMCR option, 1448
LAMDAS option, 1448
LAMRC option, 1448
LGOR option, 1448
LGRRC1 option, 1448
LGRRC2 option, 1448
LRCHI option, 1448, 1539
MCNEM option, 1448
MEASURES option, 1448
MHCHI option, 1448
MHOR option, 1448
MHRRC1 option, 1448
MHRRC2 option, 1448
N option, 1448
NMISS option, 1448
OR option, 1449
OUT= option, 1446
PCHI option, 1449, 1539
PCORR option, 1449
PHI option, 1449
PLCORR option, 1449
RDIF1 option, 1449
RDIF2 option, 1449
RELRISK option, 1449
RISKDIFF option, 1449
RISKDIFF1 option, 1449
RISKDIFF2 option, 1449
RRC1 option, 1449
RRC2 option, 1449
RSK1 option, 1449
RSK11 option, 1449
RSK12 option, 1449
RSK2 option, 1449
RSK21 option, 1449
RSK22 option, 1449
SCORR option, 1449
SMDCR option, 1449
SMDRC option, 1449
STUTC option, 1449
TREND option, 1449

TSYMM option, 1449
U option, 1449
UCR option, 1449
URC option, 1449
WTKAP option, 1449

FREQ procedure, PROC FREQ statement, 1441
COMPRESS option, 1441
DATA= option, 1441
FORMCHAR= option, 1441
NLEVELS option, 1442
NOPRINT option, 1442
ORDER= option, 1442
PAGE option, 1443

FREQ procedure, TABLES statement, 1450
ALL option, 1453
ALPHA= option, 1453
BDT option, 1453
BINOMIAL option, 1453, 1532
BINOMIALC option, 1454
CELLCHI2 option, 1454
CHISQ option, 1454, 1470, 1535
CL option, 1455
CMH option, 1455
CMH1 option, 1455
CMH2 option, 1455
CONTENTS= option, 1455
CONVERGE= option, 1456
CROSSLIST option, 1456
CUMCOL option, 1457
DEVIATION option, 1457
EXPECTED option, 1457
FISHER option, 1457
FORMAT= option, 1457
JT option, 1457
LIST option, 1457
MAXITER= option, 1458
MEASURES option, 1458
MISSING option, 1458
MISSPRINT option, 1458
NOCOL option, 1458
NOCUM option, 1458
NOFREQ option, 1458
NOPERCENT option, 1458
NOPRINT option, 1459
NOROW option, 1459
NOSPARSE option, 1459
NOWARN option, 1459
option, 1453
OUT= option, 1459
OUTCUM option, 1459
OUTEXPECT option, 1459, 1527
OUTPCT option, 1460
PLCORR option, 1460
PRINTKWT option, 1460
RELRISK option, 1460, 1535
RISKDIFF option, 1460
RISKDIFFC option, 1460
SCORES= option, 1461, 1547
SCOROUT option, 1461
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SPARSE option, 1461, 1527
TESTF= option, 1462, 1470
TESTP= option, 1462, 1470, 1530
TOTPCT option, 1462
TREND option, 1462, 1543

FREQ procedure, TEST statement, 1462
AGREE option, 1463
GAMMA option, 1463
KAPPA option, 1463
KENTB option, 1463
MEASURES option, 1463
PCORR option, 1463
SCORR option, 1463
SMDCR option, 1463, 1543
SMDRC option, 1463
STUTC option, 1463
WTKAP option, 1463

FREQ procedure, WEIGHT statement, 1463
ZEROS option, 1464

FREQ statement
and RMSSTD statement (CLUSTER), 974
ANOVA procedure, 436
CALIS procedure, 627
CANDISC procedure, 793
DISCRIM procedure, 1154
DISTANCE procedure, 1268
FACTOR procedure, 1321
GAM procedure, 1565
GENMOD procedure, 1634
GLM procedure, 1752
GLMMOD procedure, 1916
KDE procedure, 2001
LOGISTIC procedure, 2303
MI procedure, 2523
MODECLUS procedure, 2870
MULTTEST procedure, 2945
NPAR1WAY procedure, 3161
PHREG procedure, 3227
PRINCOMP procedure, 3607
PRINQUAL procedure, 3658
REG procedure, 3820
STDIZE procedure, 4135
STEPDISC procedure, 4169
SURVEYLOGISTIC procedure, 4258
TPSPLINE procedure, 4507
TRANSREG procedure, 4557
TREE procedure, 4755
TTEST procedure, 4781
VARCLUS procedure, 4813

FREQOUT option
PROC CORRESP statement, 1076

frequency tables, 1431, 1450, 4196
generating (CATMOD), 842, 845
input to CATMOD procedure, 861
one-way (FREQ), 1469, 1470, 1517, 1518, 1530
one-way (SURVEYFREQ), 4226
two-way (FREQ), 1470, 1471, 1535

frequency variable
LOGISTIC procedure, 2304

PRINQUAL procedure, 3658
programming statements (PHREG), 3235
SURVEYLOGISTIC procedure, 4258
TRANSREG procedure, 4557
value (PHREG), 3227

Friedman’s chi-square statistic, 1546
FSIZE= option

NLOPTIONS statement (CALIS), 618
PROC NLMIXED statement, 3065

FT option
TEST statement (MULTTEST), 2951, 2968

FTOL2= option
NLOPTIONS statement (CALIS), 618, 620

FTOL= option
NLOPTIONS statement (CALIS), 614, 617
PROC CALIS statement, 580

full sibs mating
INBREED procedure, 1981

full-rank coding
TRANSREG procedure, 4568

FULLX option
MODEL statement (MIXED), 2689, 2696

furthest neighbor clustering,
See complete linkage

FUZZ= option
PROC DISTANCE statement, 1257
PROC FACTOR statement, 1310
PROC STDIZE statement, 4130

fuzzy coding
CORRESP procedure, 1087

FWDLINK statement, GENMOD procedure, 1634,
1646

FWLS= option
PROC ROBUSTREG statement, 3983

G
G matrix

MIXED procedure, 2663, 2713, 2732, 2733,
2816

G option
RANDOM statement (MIXED), 2713

G-G epsilon, 1829
G2 inverse

NLIN procedure, 3025
G4 option

PROC NLIN statement, 3008
G4= option

NLOPTIONS statement (CALIS), 613
PROC CALIS statement, 576
PROC NLMIXED statement, 3065

GABRIEL option
MEANS statement (ANOVA), 443
MEANS statement (GLM), 1767

Gabriel’s multiple-comparison procedure
ANOVA procedure, 443
GLM procedure, 1767, 1811

GAM procedure, 1564
comparing PROC GAM with PROC LOESS,

1596
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Estimates from PROC GAM, 1579
generalized additive model with binary data,

1582
graphics, 1581
ODS graph names, 1581
ODS table names, 1580
Poisson regression analysis of component relia-

bility, 1589
syntax, 1564

GAM procedure, BY statement, 1564
GAM procedure, CLASS statement, 1565
GAM procedure, FREQ statement, 1565
GAM procedure, ID statement, 1565
GAM procedure, MODEL statement, 1566

ALPHA= option, 1567
DIST= option, 1567
EPSILON= option, 1567
EPSSCORE= option, 1567
ITPRINT option, 1567
MAXITER= option, 1567
MAXITSCORE= option, 1567
METHOD= option, 1568
NOTEST option, 1568

GAM procedure, OUTPUT statement, 1568
OUT= option, 1568

GAM procedure, PROC GAM statement, 1564
CLM option, 1581
COMMONAXES option, 1581
COMPONENT option, 1581
DATA= option, 1564
PLOTS= option, 1581
UNPACKPANELS option, 1581

GAM procedure, SCORE statement, 1569
DATA= option, 1569
OUT= option, 1569

gamma distribution, 2083, 2097, 2111
GENMOD procedure, 1652
NLMIXED procedure, 3077

GAMMA option
OUTPUT statement (FREQ), 1448
TEST statement (FREQ), 1463

gamma statistic, 1474, 1476
GAMMA= option

PROC FACTOR statement, 1310
Gaussian assumption

SIM2D procedure, 4091
Gaussian distribution

NLMIXED procedure, 3077
Gaussian random field

SIM2D procedure, 4091
Gaussian semivariogram model

KRIGE2D procedure, 2047, 2048
GC option

RANDOM statement (MIXED), 2713
GCI option

RANDOM statement (MIXED), 2713
GCONV2= option

NLOPTIONS statement (CALIS), 619
GCONV= option

MODEL statement (LOGISTIC), 2310
MODEL statement (SURVEYLOGISTIC), 4262
NLOPTIONS statement (CALIS), 614, 618, 620
PROC CALIS statement, 580
PROC NLMIXED statement, 3065

GCONVERGE= option
PROC MDS statement, 2480

GCORR option
RANDOM statement (MIXED), 2713

GCV function, TPSPLINE procedure, 4497, 4499,
4514, 4522

nonhomogeneous variance, 4514
GDATA= option

RANDOM statement (MIXED), 2713
GEE,

See Generalized Estimating Equations
Gehan test,

See Wilcoxon test for homogeneity
power and sample size (POWER), 3473, 3482,

3533
GENDER statement, INBREED procedure, 1975
general association statistic, 1502
general distribution

NLMIXED procedure, 3078
general linear structure

MIXED procedure, 2721
generalized Crawford-Ferguson family, 1291
generalized Crawford-Ferguson method, 1317, 1318
generalized cross validation function (GCV), 4497,

4522
generalized cyclic incomplete block design

generating with PLAN procedure, 3357
Generalized Estimating Equations (GEE), 1621, 1646,

1672, 1708, 1713
Generalized Euclidean distance coefficient

DISTANCE procedure, 1272
generalized inverse, 2740

MIXED procedure, 2684
NLIN procedure, 3025
NLMIXED procedure, 3065

generalized least squares,
See weighted least-squares estimation

generalized linear model
GENMOD procedure, 1612, 1613
theory (GENMOD), 1650

generalized logistic model
SURVEYLOGISTIC procedure, 4284

generalized logits,
See also response functions
examples (CATMOD), 869
formulas (CATMOD), 893
specifying in CATMOD procedure, 853
using (CATMOD), 868

generation (INBREED)
nonoverlapping, 1967, 1970, 1971
number, 1974
overlapping, 1967, 1969
variable, 1974

GENMOD procedure
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adjusted residuals, 1670
aliasing, 1620
bar (|) operator, 1660
binomial distribution, 1652
built-in link function, 1614
built-in probability distribution, 1614
classification variables, 1660
confidence intervals, 1637
confidence limits, 1636
continuous variables, 1660
contrasts, 1633
convergence criterion, 1637, 1647
correlated data, 1611, 1672
correlation matrix, 1638, 1656
correlations, least-squares means, 1636
covariance matrix, 1638, 1656
covariances, least-squares means, 1636
crossed effects, 1660
design matrix, 1661
deviance, 1637
deviance definition, 1615
deviance residuals, 1670
dispersion parameter, 1658
dispersion parameter estimation, 1614, 1665,

1666
dispersion parameter weights, 1650
effect specification, 1659
estimability, 1635
estimability checking, 1632
events/trials format for response, 1636, 1653
expected information matrix, 1656
exponential distribution, 1704
F statistics, 1668
Fisher’s scoring method, 1642, 1656
gamma distribution, 1652
GEE, 1611, 1621, 1646, 1672, 1708, 1711, 1713
Generalized Estimating Equations (GEE), 1611
generalized linear model, 1612, 1613
goodness of fit, 1656
gradient, 1655
Hessian matrix, 1655
information matrix, 1642
initial values, 1638, 1647
intercept, 1615, 1617, 1640
inverse Gaussian distribution, 1652
L matrices, 1635
Lagrange multiplier statistics, 1668
life data, 1701
likelihood residuals, 1670
linear model, 1612
linear predictor, 1611, 1612, 1618, 1661, 1689
link function, 1611, 1612, 1653
log-likelihood functions, 1654
log-linear models, 1616
logistic regression, 1697
main effects, 1660
maximum likelihood estimation, 1655

–MEAN– automatic variable, 1645
Model checking, 1718

model checking, 1725
multinomial distribution, 1653
multinomial models, 1671
negative binomial distribution, 1652
nested effects, 1660
Newton-Raphson algorithm, 1655
normal distribution, 1651
observed information matrix, 1656
offset, 1640, 1689
offset variable, 1617
ordinal data, 1704
output ODS graphics table names, 1695
output table names, 1693
overdispersion, 1659
Pearson residuals, 1670
Pearson’s chi-square, 1637, 1656, 1657
Poisson distribution, 1652
Poisson regression, 1616
polynomial effects, 1660
profile likelihood confidence intervals, 1640,

1666
programming statements, 1645
quasi-likelihood, 1659
raw residuals, 1669
regression parameters estimation, 1614
regressor effects, 1660
repeated measures, 1611, 1672
residuals, 1641, 1669, 1670

–RESP– automatic variable, 1645
scale parameter, 1653
scaled deviance, 1656
score statistics, 1668
singular contrast matrix, 1632
subpopulation, 1637
suppressing output, 1627
syntax, 1624
Type 1 analysis, 1615, 1665
Type 3 analysis, 1615, 1665
user-defined link function, 1634
variance function, 1614
Wald confidence intervals, 1643, 1667
working correlation matrix, 1647, 1648, 1672

–XBETA– automatic variable, 1645
GENMOD procedure, ASSESS statement, 1627
GENMOD procedure, BY statement, 1628
GENMOD procedure, CLASS statement, 1629

DESCENDING option, 1629
MISSING option, 1629
ORDER= option, 1629
PARAM= option, 1630
REF= option, 1630
TRUNCATE option, 1631

GENMOD procedure, CONTRAST statement, 1631
E option, 1632
SINGULAR= option, 1632
WALD option, 1633

GENMOD procedure, DEVIANCE statement, 1633,
1646

GENMOD procedure, ESTIMATE statement
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ALPHA= option, 1634
E option, 1634
EXP option, 1634

GENMOD procedure, FREQ statement, 1633, 1634
GENMOD procedure, FWDLINK statement, 1634,

1646
GENMOD procedure, INVLINK statement, 1635,

1646
GENMOD procedure, LSMEANS statement, 1635

ALPHA= option, 1635
CL option, 1636
CORR option, 1636
COV option, 1636
DIFF option, 1636
E option, 1636

GENMOD procedure, MODEL statement, 1636
AGGREGATE= option, 1637
ALPHA= option, 1637
CICONV= option, 1637
CL option, 1637
CODING= option, 1637
CONVERGE= option, 1637
CONVH= option, 1638
CORRB option, 1638
COVB option, 1638
DIST= option, 1638
ERR= option, 1638
EXPECTED option, 1638
INITIAL= option, 1638
INTERCEPT= option, 1639
ITPRINT option, 1639
LINK= option, 1639
LRCI option, 1640
MAXIT= option, 1640
NOINT option, 1640
NOSCALE option, 1640
OBSTATS option, 1640
OFFSET= option, 1640
PRED option, 1641
PREDICTED option, 1641
RESIDUALS option, 1641
SCALE= option, 1642
SCORING= option, 1642
SINGULAR= option, 1642
TYPE1 option, 1642
TYPE3 option, 1643
WALD option, 1643
WALDCI option, 1643
XVARS option, 1643

GENMOD procedure, OUTPUT statement, 1643
keyword= option, 1644
OUT= option, 1644

GENMOD procedure, PROC GENMOD statement,
1625

DATA= option, 1625
NAMELEN= option, 1625
ORDER= option, 1625
RORDER= option, 1626

GENMOD procedure, REPEATED statement, 1621,
1646

ALPHAINIT= option, 1646
CONVERGE= option, 1647
CORR= option, 1648
CORRB option, 1647
CORRW option, 1647
COVB option, 1647
ECORRB option, 1647
ECOVB option, 1647
INITIAL= option, 1647
INTERCEPT= option, 1647
LOGOR= option, 1647
MAXITER= option, 1648
MCORRB option, 1648
MCOVB option, 1648
MODELSE option, 1648
RUPDATE= option, 1648
SORTED option, 1648
SUBCLUSTER= option, 1648
SUBJECT= option, 1646
TYPE= option, 1648
V6CORR option, 1649
WITHIN= option, 1649
WITHINSUBJECT= option, 1649
YPAIR= option, 1649
ZDATA= option, 1649
ZROW= option, 1650

GENMOD procedure, SCWGT statement, 1650
GENMOD procedure, VARIANCE statement, 1650
GENMOD procedure, WEIGHT statement, 1650
Gentleman-Givens computational method, 3197
geometric anisotropy

KRIGE2D procedure, 2053–2055
GEOMETRICMEAN option

MODEL statement (TRANSREG), 4571
getting started

ODS Graphics, 321
GI option

RANDOM statement (MIXED), 2714
GLM Parameterization

SURVEYLOGISTIC procedure, 4271
GLM procedure

absorption of effects, 1747, 1799
aliasing structure, 1771, 1897
alpha level, 1755, 1765, 1771, 1775
at sign (@) operator, 1786
bar (|) operator, 1786
Bartlett’s test, 1767, 1819
Bonferroni adjustment, 1754
Brown and Forsythe’s test, 1767, 1819
canonical analysis, 1760
characteristic roots and vectors, 1759
compared to other procedures, 1734, 1776, 1833,

1885, 1901, 2664, 2985, 3197, 4033
comparing groups, 1804
computational method, 1840
computational resources, 1837
contrasts, 1749, 1779
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covariate values for least-squares means, 1755
disk space, 1746
Dunnett’s adjustment, 1754
effect specification, 1784
error effect, 1759
estimability, 1750–1752, 1758, 1773, 1793,

1803
estimable functions, 1792
ESTIMATE specification, 1801
homogeneity of variance tests, 1767, 1818
Hsu’s adjustment, 1754
hypothesis tests, 1781, 1792
interactive use, 1787
interactivity and BY statement, 1748
interactivity and missing values, 1787, 1837
introductory example, 1735
least-squares means (LS-means), 1753
Levene’s test for homogeneity of variance, 1767,

1819
means, 1763
means versus least-squares means, 1804
memory requirements, reduction of, 1747
missing values, 1745, 1759, 1822, 1837
model specification, 1784
multiple comparisons, least-squares means,

1754, 1757, 1806, 1808
multiple comparisons, means, 1765–1769, 1806,

1808
multiple comparisons, procedures, 1763
multivariate analysis of variance, 1745, 1759,

1823
nonstandard weights for least-squares means,

1756
O’Brien’s test, 1767
observed margins for least-squares means, 1756
ODS graph names, 1847
ODS table names, 1844
output data sets, 1773, 1840–1842
parameterization, 1787
positional requirements for statements, 1743
predicted population margins, 1753
Q effects, 1834
random effects, 1776, 1833
regression, quadratic, 1738
relation to GLMMOD procedure, 1909
repeated measures, 1777, 1825
Sidak’s adjustment, 1754
simple effects, 1758
simulation-based adjustment, 1754
singularity checking, 1750, 1752, 1758, 1772
sphericity tests, 1780, 1829
SSCP matrix for multivariate tests, 1759
statistical assumptions, 1783
summary of features, 1733
syntax, 1742
tests, hypothesis, 1749
transformations for MANOVA, 1759
transformations for repeated measures, 1779
Tukey’s adjustment, 1754

types of least-squares means comparisons, 1757
unbalanced analysis of variance, 1735, 1804,

1856
unbalanced design, 1735, 1804, 1833, 1856,

1882
weighted analysis, 1782
weighted means, 1820
Welch’s ANOVA, 1769
WHERE statement, 1787

GLM procedure, ABSORB statement, 1747
GLM procedure, BY statement, 1747
GLM procedure, CLASS statement, 1748

TRUNCATE option, 1749
GLM procedure, CONTRAST statement, 1749

E option, 1749
E= option, 1750
ETYPE= option, 1750
INTERCEPT effect, 1749, 1752
SINGULAR= option, 1750

GLM procedure, ESTIMATE statement, 1751
DIVISOR= option, 1752
E option, 1752
SINGULAR= option, 1752

GLM procedure, FREQ statement, 1752
GLM procedure, ID statement, 1753
GLM procedure, LSMEANS statement, 1753

ADJUST= option, 1754
ALPHA= option, 1755
AT option, 1755, 1822
BYLEVEL option, 1823
BYLEVEL options, 1756
CL option, 1756
COV option, 1756
E option, 1756
ETYPE option, 1756
NOPRINT option, 1756
OBSMARGINS option, 1756, 1822
OM option, 1756, 1822
OUT= option, 1757
PDIFF option, 1757
SINGULAR option, 1758
SLICE= option, 1758
STDERR option, 1758
TDIFF option, 1758

GLM procedure, MANOVA statement, 1759

–ALL – effect (H= option), 1759
CANONICAL option, 1760
E= option, 1759
ETYPE= option, 1760
H= option, 1759
HTYPE= option, 1760
INTERCEPT effect (H= option), 1759
M= option, 1759
MNAMES= option, 1760
MSTAT= option, 1761
ORTH option, 1761
PREFIX= option, 1760
PRINTE option, 1761
PRINTH option, 1761
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SUMMARY option, 1761
GLM procedure, MEANS statement, 1763, 1820

ALPHA= option, 1765
BON option, 1765
CLDIFF option, 1766
CLM option, 1766
DEPONLY option, 1766
DUNCAN option, 1766
DUNNETT option, 1766
DUNNETTL option, 1766
DUNNETTU option, 1767
E= option, 1767
ETYPE= option, 1767
GABRIEL option, 1767
GT2 option, 1767
HOVTEST option, 1767, 1818
HTYPE= option, 1768
KRATIO= option, 1768
LINES option, 1768
LSD option, 1768
NOSORT option, 1768
REGWQ option, 1768
SCHEFFE option, 1769
SIDAK option, 1769
SMM option, 1769
SNK option, 1769
T option, 1769
TUKEY option, 1769
WALLER option, 1769
WELCH option, 1769

GLM procedure, MODEL statement, 1770
ALIASING option, 1771, 1897
ALPHA= option, 1771
CLI option, 1771
CLM option, 1771
CLPARM option, 1771
E option, 1771
E1 option, 1771
E2 option, 1771
E3 option, 1771
E4 option, 1771
I option, 1772
INTERCEPT option, 1771
INVERSE option, 1772
NOINT option, 1772
NOUNI option, 1772
P option, 1772
SINGULAR= option, 1772
SOLUTION option, 1772
SS1 option, 1772
SS2 option, 1773
SS3 option, 1773
SS4 option, 1773
TOLERANCE option, 1773
XPX option, 1773
ZETA= option, 1773

GLM procedure, OUTPUT statement, 1773
ALPHA= option, 1775
COOKD keyword, 1774

COVRATIO keyword, 1774
DFFITS keyword, 1774
H keyword, 1774
keyword= option, 1773
LCL keyword, 1774
LCLM keyword, 1774
OUT= option, 1775
PREDICTED keyword, 1774
PRESS keyword, 1774
RESIDUAL keyword, 1774
RSTUDENT keyword, 1774
STDI keyword, 1774
STDP keyword, 1774
STDR keyword, 1774
STUDENT keyword, 1774
UCL keyword, 1775
UCLM keyword, 1775

GLM procedure, PROC GLM statement, 1745
ALPHA= option, 1745
DATA= option, 1745
MANOVA option, 1745
MULTIPASS option, 1746
NAMELEN= option, 1746
NOPRINT option, 1746
ORDER= option, 1746, 1803
OUTSTAT= option, 1747

GLM procedure, RANDOM statement, 1776
Q option, 1777, 1834
TEST option, 1777

GLM procedure, REPEATED statement, 1777
CANONICAL option, 1780
CONTRAST option, 1779, 1830
E= option, 1782
factor specification, 1778
H= option, 1782
HELMERT option, 1779, 1831
HTYPE= option, 1780
IDENTITY option, 1779, 1886
MEAN option, 1779, 1780, 1832
MSTAT= option, 1780
NOM option, 1780
NOU option, 1780
POLYNOMIAL option, 1779, 1831, 1878
PRINTE option, 1780, 1829
PRINTH option, 1780
PRINTM option, 1780
PRINTRV option, 1781
PROFILE option, 1779, 1832
SUMMARY option, 1781

GLM procedure, TEST statement, 1781
ETYPE= option, 1782
HTYPE= option, 1782

GLM procedure, WEIGHT statement, 1782
GLMMOD alternative

TRANSREG procedure, 4586, 4654
GLMMOD procedure

design matrix, 1909, 1917, 1918
input data sets, 1914
introductory example, 1909
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missing values, 1917, 1918
ODS table names, 1918
output data sets, 1915, 1917, 1918
relation to GLM procedure, 1909
screening experiments, 1923
syntax, 1913

GLMMOD procedure, BY statement, 1915
GLMMOD procedure, CLASS statement, 1916

TRUNCATE option, 1916
GLMMOD procedure, FREQ statement, 1916
GLMMOD procedure, MODEL statement, 1917

NOINT option, 1917
GLMMOD procedure, PROC GLMMOD statement,

1914
DATA= option, 1914
NAMELEN= option, 1914
NOPRINT option, 1914
ORDER= option, 1914
OUTDESIGN= option, 1915, 1918
OUTPARM= option, 1915, 1917
PREFIX= option, 1915
ZEROBASED option, 1915

GLMMOD procedure, WEIGHT statement, 1916
GLMPOWER procedure

actual power, 1946, 1947, 1953
alpha level, 1939
analysis of variance, 1930, 1951, 1956
ceiling sample size, 1947
compared to other procedures, 1930, 3412
computational methods, 1949
contrasts, 1934, 1937, 1950, 1951, 1956
covariates, class and continuous, 1938–1941,

1951, 1956
displayed output, 1947
exemplary data set, 1929, 1930, 1936, 1938,

1946, 1952
fractional sample size, 1947
introductory example, 1930
nominal power, 1946, 1947, 1953
number-lists, 1945
ODS table names, 1948
plots, 1930, 1936, 1942
positional requirements for statements, 1936
sample size adjustment, 1946
summary of statements, 1936
syntax, 1935
value lists, 1945

GLMPOWER procedure, CLASS statement, 1937
GLMPOWER procedure, CONTRAST statement,

1937
SINGULAR= option, 1937

GLMPOWER procedure, MODEL statement, 1938
GLMPOWER procedure, PLOT statement, 1942

DESCRIPTION= option, 1945
INTERPOL= option, 1942
KEY= option, 1942
MARKERS= option, 1943
MAX= option, 1943
MIN= option, 1943

NAME= option, 1945
NPOINTS= option, 1943
STEP= option, 1943
VARY option, 1944
X= option, 1944
XOPTS= option, 1944
Y= option, 1944
YOPTS= option, 1944

GLMPOWER procedure, POWER statement, 1939
ALPHA= option, 1939
CORRXY= option, 1939
NCOVARIATES= option, 1940
NFRACTIONAL option, 1940
NTOTAL= option, 1940
OUTPUTORDER= option, 1940
POWER= option, 1941
PROPVARREDUCTION= option, 1941
STDDEV= option, 1941

GLMPOWER procedure, PROC GLMPOWER state-
ment, 1936

DATA= option, 1936
PLOTONLY= option, 1936

GLMPOWER procedure, WEIGHT statement, 1938
global influence

LD statistic (PHREG), 3234, 3260
LMAX statistic (PHREG), 3234, 3261

global kriging
KRIGE2D procedure, 2034

global null hypothesis
PHREG procedure, 3218, 3246, 3269
score test (PHREG), 3229, 3274
TPHREG procedure, 4486

GLS option
MODEL statement (CATMOD), 846

GMSEP option
MODEL statement (REG), 3826
PLOT statement (REG), 3846

Gompertz distribution, 3705
goodness of fit

GENMOD procedure, 1656
GOUT= option

MCMC statement (MI), 2526
PROC BOXPLOT statement, 487
PROC LIFEREG statement, 2090
PROC LIFETEST statement, 2161
PROC PROBIT statement, 3712
PROC REG statement, 3817
PROC TREE statement, 4750

Gower’s dissimilarity coefficient
DISTANCE procedure, 1271

Gower’s method,
See also median method
CLUSTER procedure, 967, 981

Gower’s similarity coefficient
DISTANCE procedure, 1270

GPATH= option
ODS HTML statement, 336, 349
ODS LATEX statement, 337, 359

gradient
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CALIS procedure, 634, 664, 665
GENMOD procedure, 1655
LOGISTIC procedure, 2343
MIXED procedure, 2675, 2749
SURVEYLOGISTIC procedure, 4287

Graeco-Latin square
generating with PLAN procedure, 3345

graph axes, swapping
examples, ODS Graphics, 371

graph fonts, modifying
examples, ODS Graphics, 374, 379

graph names
examples, ODS Graphics, 352, 361
ODS Graphics, 330

graph sizes, modifying
examples, ODS Graphics, 378

graph template definitions
ODS Graphics, 338, 342, 365
Q-Q plots, 366

graph template language
ODS Graphics, 338, 342
TEMPLATE procedure, 342

graph titles, modifying
examples, ODS Graphics, 368

graphics,
See plots
examples (REG), 3948
high-resolution plots (REG), 3840
keywords (REG), 3841
options (REG), 3843
saving output (MI), 2526

graphics catalog, specifying
LIFEREG procedure, 2090
PROBIT procedure, 3712

graphics image files
base file names, 335
file names, 335
file types, 334, 336, 350
index counter, 335
ODS Graphics, 334
PostScript, 337, 358

GRAPHICS statement
LOGISTIC procedure, 2389

graphs,
See plots

GREENACRE option
PROC CORRESP statement, 1076

Greenhouse-Geisser epsilon, 1829
grid lines, modifying

examples, ODS Graphics, 373
grid search

example (MIXED), 2796
GRID statement

KRIGE2D procedure, 2040
SIM2D procedure, 4100

GRID= option
PLOT statement (BOXPLOT), 499
PRIOR statement (MIXED), 2710

GRIDDATA= option

GRID statement (KRIGE2D), 2040
GRID statement (SIM2D), 4100

GRIDL= option
BIVAR statement, 1998
UNIVAR statement, 1999

GRIDT= option
PRIOR statement (MIXED), 2711

GRIDU= option
BIVAR statement, 1998
UNIVAR statement, 1999

group average clustering,
See average linkage

GROUP option
CONTRAST statement (MIXED), 2684
ESTIMATE statement (MIXED), 2686

GROUP= option
RANDOM statement (MIXED), 2714
REPEATED statement (MIXED), 2717
STRATA statement (LIFETEST), 2167

grouped-name-lists
POWER procedure, 3490

grouped-number-lists
POWER procedure, 3490

GROUPLOSS= option
TWOSAMPLESURVIVAL statement

(POWER), 3476
GROUPLOSSEXPHAZARDS= option

TWOSAMPLESURVIVAL statement
(POWER), 3476

GROUPMEANS= option
ONEWAYANOVA statement (POWER), 3440
TWOSAMPLEMEANS statement (POWER),

3466
GROUPMEDLOSSTIMES= option

TWOSAMPLESURVIVAL statement
(POWER), 3476

GROUPMEDSURVTIMES= option
TWOSAMPLESURVIVAL statement

(POWER), 3476
GROUPNAMES= option

MODEL statement (REG), 3826
GROUPNS= option

ONEWAYANOVA statement (POWER), 3440
TWOSAMPLEFREQ statement (POWER),

3458
TWOSAMPLEMEANS statement (POWER),

3466
TWOSAMPLESURVIVAL statement

(POWER), 3477
GROUPPROPORTIONS= option

TWOSAMPLEFREQ statement (POWER),
3458

GROUPSTDDEVS= option
TWOSAMPLEMEANS statement (POWER),

3466
GROUPSURVEXPHAZARDS= option

TWOSAMPLESURVIVAL statement
(POWER), 3477

GROUPSURVIVAL= option
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TWOSAMPLESURVIVAL statement
(POWER), 3477

GROUPWEIGHTS= option
ONEWAYANOVA statement (POWER), 3440
TWOSAMPLEFREQ statement (POWER),

3458
TWOSAMPLEMEANS statement (POWER),

3466
TWOSAMPLESURVIVAL statement

(POWER), 3477
growth curve analysis

example (CATMOD), 933
example (MIXED), 2733

GSK models, 817
GT2 multiple-comparison method, 444, 1769, 1811
GT2 option

MEANS statement (GLM), 1767
GTOL2= option

NLOPTIONS statement (CALIS), 619
GTOL= option

NLOPTIONS statement (CALIS), 614, 618, 620
PROC CALIS statement, 580

H
H keyword

OUTPUT statement (GLM), 1774
H option

PROC ROBUSTREG statement, 3985
H-F epsilon, 1829
H= effects

REPEATED statement (ANOVA), 450
H= option

MANOVA statement (ANOVA), 437
MANOVA statement (GLM), 1759
OUTPUT statement (LOGISTIC), 2322
OUTPUT statement (NLIN), 3013
REPEATED statement (GLM), 1782

half-fraction design, analysis, 1895
half-width, confidence intervals, 3488
HALFWIDTH= option

ONESAMPLEMEANS statement (POWER),
3434

PAIREDMEANS statement (POWER), 3450
TWOSAMPLEMEANS statement (POWER),

3466
Hall-Wellner bands

LIFETEST procedure, 2169, 2177, 2205
Hamann coefficient

DISTANCE procedure, 1274
Hamming distance coefficient

DISTANCE procedure, 1274
Hannan-Quinn information criterion

MIXED procedure, 2676
Harris component analysis, 1291, 1293, 1311
Harris-Kaiser method, 1291, 1318
hat matrix, 3899

LOGISTIC procedure, 2359
HAXIS= option

PLOT statement (BOXPLOT), 499

PLOT statement (REG), 3846
PROC TREE statement, 4751

hazard function
baseline (PHREG), 3215, 3216
cumulative (PHREG), 3262
definition (PHREG), 3240
discrete (PHREG), 3228, 3240
LIFETEST procedure, 2149, 2214
PHREG procedure, 3215
rate (PHREG), 3284
ratio (PHREG), 3218, 3220

HAZARDRATIO= option
TWOSAMPLESURVIVAL statement

(POWER), 3477
hazards ratio

confidence interval (PHREG), 3233
confidence limits (PHREG), 3233, 3247, 3269
confidence limits (TPHREG), 4487
estimate (PHREG), 3247, 3269, 3284
estimate (TPHREG), 4487
PHREG procedure, 3218

HC= option
PROC FASTCLUS statement, 1390

HEIGHT statement
TREE procedure, 4755

HEIGHT= option
PLOT statement (BOXPLOT), 500
PROC TREE statement, 4751

HELMERT keyword
REPEATED statement (ANOVA), 448

HELMERT option
REPEATED statement (GLM), 1779, 1831

Hertzsprung-Russell Plot, example
MODECLUS procedure, 2923

HESCAL= option
NLOPTIONS statement (CALIS), 622
PROC NLMIXED statement, 3065

HESS option
PROC NLMIXED statement, 3066

HESSALG= option
PROC CALIS statement, 589

Hessian matrix
CALIS procedure, 589, 621, 622, 634, 647, 665
GENMOD procedure, 1655
LOGISTIC procedure, 2317, 2343
MIXED procedure, 2674, 2675, 2680, 2707,

2749, 2750, 2774, 2775, 2786, 2796
NLMIXED procedure, 3066
SURVEYLOGISTIC procedure, 4264, 4287

Hessian scaling
NLMIXED procedure, 3093

heterogeneity
example (MIXED), 2792
MIXED procedure, 2714, 2717

heterogeneous
AR(1) structure (MIXED), 2721
compound-symmetry structure (MIXED), 2721
covariance structures (MIXED), 2730
Toeplitz structure (MIXED), 2721
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heteroscedasticity
testing (REG), 3910

Heywood cases
FACTOR procedure, 1333

HEYWOOD option
FACTOR statement (CALIS), 607
PROC FACTOR statement, 1311

hierarchical clustering, 967, 980, 4801
hierarchical design

generating with PLAN procedure, 3353
hierarchical model

example (MIXED), 2810
hierarchy

LOGISTIC procedure, 2310
TPHREG procedure, 4475

HIERARCHY option
PROC VARCLUS statement, 4809

HIERARCHY= option
MODEL statement (LOGISTIC), 2310
MODEL statement (TPHREG), 4475

histograms
plots, ODS Graphics, 358

HISTORY option
MODEL statement (TRANSREG), 4576

HKPOWER= option
PROC FACTOR statement, 1311

HLM option
REPEATED statement (MIXED), 2717

HLPS option
REPEATED statement (MIXED), 2718

HM option
PROC MODECLUS statement, 2866

HMINOR= option
PLOT statement (BOXPLOT), 500

HOC option
PROC MULTTEST statement, 2940, 2959

Hochberg
adjustment (MULTTEST), 2959

Hochberg (MULTTEST)
p-value adjustments, 2959

Hochberg’s GT2 multiple-comparison method, 444,
1769, 1811

HOFFSET= option
PLOT statement (BOXPLOT), 500

HOLD= option
PARMS statement (MIXED), 2707

HOLM option
PROC MULTTEST statement, 2942

HOM option
PROC MULTTEST statement, 2940

Hommel
adjustment (MULTTEST), 2959

Hommel (MULTTEST)
p-value adjustments, 2959

HOMMEL option
PROC MULTTEST statement, 2959

homogeneity analysis
CORRESP procedure, 1069

homogeneity of variance tests, 443, 1767, 1818

Bartlett’s test (ANOVA), 443
Bartlett’s test (GLM), 1767, 1819
Brown and Forsythe’s test (ANOVA), 443
Brown and Forsythe’s test (GLM), 1767, 1819
DISCRIM procedure, 1150
examples, 1893
Levene’s test (ANOVA), 443
Levene’s test (GLM), 1767, 1819
O’Brien’s test (ANOVA), 443
O’Brien’s test (GLM), 1767
Welch’s ANOVA, 1819

homogeneity tests
LIFETEST procedure, 2149, 2154, 2178, 2200

homotopy parameter
FASTCLUS procedure, 1390

honestly significant difference test, 445, 1769, 1811,
1812

HORDISPLAY= option
PROC TREE statement, 4751

HORIZONTAL option
PROC TREE statement, 4751

Hosmer-Lemeshow test
LOGISTIC procedure, 2312, 2356
test statistic (LOGISTIC), 2357

Hotelling-Lawley trace, 437, 1759, 1828
Hotelling-Lawley-McKeon statistic

MIXED procedure, 2717
Hotelling-Lawley-Pillai-Samson statistic

MIXED procedure, 2718
HOUGAARD option

PROC NLIN statement, 3008
HOVTEST option

MEANS statement (ANOVA), 443
MEANS statement (GLM), 1767, 1818

Howe’s solution, 1297
HP= option

PROC FASTCLUS statement, 1390
HPAGES= option

PROC TREE statement, 4751
HPLOTS= option

PLOT statement (REG), 3849
HPROB= option

PROC PROBIT statement, 3712
HREF= option

PLOT statement (BOXPLOT), 500
PLOT statement (REG), 3846

HREFLABELS= option
PLOT statement (BOXPLOT), 501

HREFLABPOS= option
PLOT statement (BOXPLOT), 501

HSD test, 445, 1769, 1811, 1812
Hsu’s adjustment

GLM procedure, 1754
MIXED procedure, 2688

HSYMBOL= option
MCMC statement (MI), 2525, 2529

HTML destination
ODS Graphics, 326, 335

HTML output
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examples, ODS Graphics, 321, 324, 330, 352
ODS Graphics, 326, 334, 336

HTML output, with tool tips
examples, ODS Graphics, 354

HTML= option
PLOT statement (BOXPLOT), 501

HTYPE= option
MANOVA statement (GLM), 1760
MEANS statement (GLM), 1768
MODEL statement (MIXED), 2696
REPEATED statement (GLM), 1780
TEST statement (GLM), 1782

Huynh-Feldt
epsilon (GLM), 1829
structure (GLM), 1829
structure (MIXED), 2721

HYBRID option
and FREQ statement (CLUSTER), 974
and other options (CLUSTER), 970, 972
PROC CLUSTER statement, 969, 978

hypergeometric
distribution (MULTTEST), 2954
variance (MULTTEST), 2949

hypothesis tests
comparing adjusted means (GLM), 1758
contrasts (CATMOD), 831
contrasts (GLM), 1749
contrasts, examples (GLM), 1850, 1865, 1875
custom tests (ANOVA), 450
customized (GLM), 1781
exact (FREQ), 1443
for intercept (ANOVA), 446
for intercept (GLM), 1771
GLM procedure, 1792
incorrect hypothesis (CATMOD), 888
lack of fit (RSREG), 4046
MANOVA (GLM), 1824
mixed model (MIXED), 2742, 2751
multivariate (REG), 3910
nested design (NESTED), 2990
parametric, comparing means (TTEST), 4775,

4789
parametric, comparing variances (TTEST),

4775, 4789
random effects (GLM), 1777, 1833
REG procedure, 3832, 3858
repeated measures (GLM), 1827
TRANSREG procedure, 4615
Type I sum of squares (GLM), 1794
Type II sum of squares (GLM), 1796
Type III sum of squares (GLM), 1797
Type IV sum of squares (GLM), 1797

I
I option

MODEL statement (GLM), 1772
MODEL statement (REG), 3827

IAPPROXIMATIONS option
OUTPUT statement (TRANSREG), 4587

IC option
PROC MIXED statement, 2676

ID statement
BOXPLOT procedure, 517
CORRESP procedure, 1080
DISCRIM procedure, 1154
DISTANCE procedure, 1268
GAM procedure, 1565
GLM procedure, 1753
LOESS procedure, 2231
MDS procedure, 2486
MIXED procedure, 2687
MODECLUS procedure, 2870
NLIN procedure, 3012
NLMIXED procedure, 3077
PHREG procedure, 3227
PRINQUAL procedure, 3659
REG procedure, 3821
ROBUSTREG procedure, 3989
RSREG procedure, 4041
SURVEYSELECT procedure, 4443
TPSPLINE procedure, 4508
TRANSREG procedure, 4557
TREE procedure, 4755

id variables
TRANSREG procedure, 4557

IDCOLOR= option
PLOT statement (BOXPLOT), 501

IDCTEXT= option
PLOT statement (BOXPLOT), 502

ideal point model
TRANSREG procedure, 4593

ideal points
TRANSREG procedure, 4717

identification variables, 3077
IDENTITY keyword

REPEATED statement (ANOVA), 448
IDENTITY option

REPEATED statement (GLM), 1779, 1886
IDENTITY transformation

MODEL statement (TRANSREG), 4564
TRANSFORM statement (PRINQUAL), 3663

identity transformation
PRINQUAL procedure, 3663
TRANSREG procedure, 4564

IDFONT= option
PLOT statement (BOXPLOT), 502

IDHEIGHT= option
PLOT statement (BOXPLOT), 502

IDSYMBOL= option
PLOT statement (BOXPLOT), 502

IFACTOR= option
PRIOR statement (MIXED), 2711

ill-conditioned data
ORTHOREG procedure, 3197

image component analysis, 1291, 1293, 1311
image files,

see graphics image files
IMAGEFMT= option
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ODS GRAPHICS statement, 350
IMAGENAME= option

ODS GRAPHICS statement, 350
implicit intercept

TRANSREG procedure, 4605
imputation methods

MI procedure, 2539
imputation model

MI procedure, 2565
imputation of missing values

FASTCLUS procedure, 1391
IMPUTE option

PROC FASTCLUS statement, 1391
IMPUTE= option

MCMC statement (MI), 2526
imputer’s model

MI procedure, 2563
IN option

PLOT statement (REG), 3846
INAV= option

PROC MDS statement, 2480
INBREED procedure

coancestry, computing, 1978
coefficient of relationship, computing, 1977
covariance coefficients, 1967, 1969, 1971, 1973,

1975, 1977
covariance coefficients matrix, output, 1973
first parent, 1975
full sibs mating, 1981
generation number, 1974
generation variable, 1974
generation, nonoverlapping, 1967, 1970, 1971
generation, overlapping, 1967, 1969
inbreeding coefficients, 1967, 1969, 1973, 1975,

1978
inbreeding coefficients matrix, output, 1973
individuals, outputting coefficients, 1973
individuals, specifying, 1971, 1975
initial covariance value, 1976
initial covariance value, assigning, 1973
initial covariance value, specifying, 1969
kinship coefficient, 1977
last generation’s coefficients, output, 1973
mating, offspring and parent, 1981
mating, self, 1980
matings, output, 1975
monoecious population analysis, example, 1985
offspring, 1973, 1980
ordering observations, 1968
OUTCOV= data set, 1974, 1982
output table names, 1984
panels, 1982, 1989
pedigree analysis, 1967, 1968
pedigree analysis, example, 1987, 1989
population, monoecious, 1985
population, multiparous, 1973, 1977
population, nonoverlapping, 1974
population, overlapping, 1968, 1969, 1979
progeny, 1976, 1978, 1980, 1988

second parent, 1975
selective matings, output, 1975
specifying gender, 1971
syntax, 1972
theoretical correlation, 1977
unknown or missing parents, 1982
variables, unaddressed, 1976

INBREED procedure, BY statement, 1974
INBREED procedure, CLASS statement, 1974
INBREED procedure, GENDER statement, 1975
INBREED procedure, MATINGS statement, 1975
INBREED procedure, PROC INBREED statement,

1973
AVERAGE option, 1973
COVAR option, 1973
DATA= option, 1973
IND option, 1973
INDL option, 1973
INIT= option, 1973
MATRIX option, 1973
MATRIXL option, 1973
NOPRINT option, 1973
OUTCOV= option, 1973

INBREED procedure, VAR statement, 1975
INC= option

PROC TREE statement, 4751
INCLUDE= option

MODEL statement (LOGISTIC), 2311
MODEL statement (PHREG), 3230
MODEL statement (REG), 3827
MODEL statement (TPHREG), 4475
PROC STEPDISC statement, 4166

incomplete block design
generating with PLAN procedure, 3354, 3357

incomplete principal components
REG procedure, 3818, 3828

IND option
PROC INBREED statement, 1973

independent variable
defined (ANOVA), 423

individual difference models
MDS procedure, 2471

INDIVIDUAL option
MODEL statement (TRANSREG), 4576

INDL option
PROC INBREED statement, 1973

INDSCAL model
MDS procedure, 2471, 2477

inertia, definition
CORRESP procedure, 1070

INEST= data sets
LIFEREG procedure, 2121
ROBUSTREG procedure, 4011

INEST= option
MCMC statement (MI), 2526
PROC CALIS statement, 570
PROC LIFEREG statement, 2090
PROC LOGISTIC statement, 2292
PROC PROBIT statement, 3712
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PROC ROBUSTREG statement, 3983
PROC SURVEYLOGISTIC statement, 4251

inference
mixed model (MIXED), 2741
space, mixed model (MIXED), 2681, 2682,

2685, 2781
infinite likelihood

MIXED procedure, 2717, 2773, 2775
infinite parameter estimates

LOGISTIC procedure, 2313, 2338
SURVEYLOGISTIC procedure, 4263, 4277

Influence diagnostics details
MIXED procedure, 2765

influence diagnostics, details
MIXED procedure, 2763

INFLUENCE option
MODEL statement (LOGISTIC), 2311
MODEL statement (MIXED), 2696
MODEL statement (REG), 3827

Influence plots
MIXED procedure, 2760

influence statistics
REG procedure, 3898

INFO option
PROC MIXED statement, 2677

information criteria
MIXED procedure, 2676

information matrix, 3756
expected (GENMOD), 1656
LIFEREG procedure, 2083, 2084, 2108
observed (GENMOD), 1656

INHESSIAN option
PROC NLMIXED statement, 3066

INIT= option
PROC INBREED statement, 1973

INITEST option
PROC ROBUSTREG statement, 3988

INITH option
PROC ROBUSTREG statement, 3988

initial covariance value
assigning (INBREED), 1973
INBREED procedure, 1976
specifying (INBREED), 1969

initial estimates
ACECLUS procedure, 404
LIFEREG procedure, 2108

INITIAL option
EM statement (MI), 2522

initial seed
SURVEYSELECT procedure, 4441

initial seeds
FASTCLUS procedure, 1380, 1381, 1394

initial values
CALIS procedure, 550, 588, 590, 595, 597, 602,

661
GENMOD procedure, 1638, 1647
LOGISTIC procedure, 2376
MDS procedure, 2480–2484, 2491
MIXED procedure, 2706

SURVEYLOGISTIC procedure, 4280
INITIAL= option

MCMC statement (MI), 2527
MODEL statement (GENMOD), 1638
MODEL statement (LIFEREG), 2098
PROC ACECLUS statement, 404
PROC DISTANCE statement, 1257
PROC MDS statement, 2481
PROC STDIZE statement, 4131
PROC VARCLUS statement, 4809
REPEATED statement (GENMOD), 1647

initialization
random (PRINQUAL), 3673
TRANSREG procedure, 4602

INITITER= option
PROC PRINQUAL statement, 3654

INMODEL= option
PROC LOGISTIC statement, 2293

input data set
MI procedure, 2519, 2526, 2558

input data sets
MIANALYZE procedure, 2620

INRAM= option
PROC CALIS statement, 570

inset
LIFEREG procedure, 2092
PROBIT procedure, 3723

INSET statement
BOXPLOT procedure, 511
LIFEREG procedure, 2092
PROBIT procedure, 3723

INSETGROUP statement
BOXPLOT procedure, 514

insets
background color, 513, 515
background color of header, 513, 515
drop shadow color, 513
frame color, 513, 516
header text color, 513, 516
header text, specifying, 514, 516
positioning, details, 526–529
positioning, options, 513, 514, 516
suppressing frame, 514, 516
text color, 513, 516

instantaneous failure rate
PHREG procedure, 3240

INSTAT= option
PROC FASTCLUS statement, 1391

INSTEP= option, 3097
NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 581
PROC NLMIXED statement, 3066

INT option
PROC CANCORR statement, 760

integral approximations
NLMIXED procedure, 3070, 3084

intensity model,
See Andersen-Gill model

interaction effects
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MIXED procedure, 2744
model parameterization (GLM), 1788
quantitative (TRANSREG), 4594
specifying (ANOVA), 451, 452
specifying (CATMOD), 864
specifying (GLM), 1784
TRANSREG procedure, 4558, 4594

intercept
GENMOD procedure, 1615, 1617, 1640
hypothesis tests for (ANOVA), 446
hypothesis tests for (GLM), 1771
MIXED procedure, 2743
model parameterization (GLM), 1787
no intercept (TRANSREG), 4577

INTERCEPT effect
CONTRAST statement (GLM), 1749, 1752
MANOVA statement (ANOVA), 437
MANOVA statement, H= option (GLM), 1759

INTERCEPT option
MODEL statement (ANOVA), 446
MODEL statement (GLM), 1771
MODEL statement (MIXED), 2702
MODEL statement (PLS), 3378

INTERCEPT= option
MODEL statement (GENMOD), 1639
MODEL statement (LIFEREG), 2099
REPEATED statement (GENMOD), 1647

Internal studentization, 2763
INTERP= option

MODEL statement (LOESS), 2234
INTERPOL= option

PLOT statement (GLMPOWER), 1942
PLOT statement (POWER), 3483

interpretation
factor rotation, 1293

interpreting factors, elements to consider, 1294
interpreting output

VARCLUS procedure, 4818
interval determination

LIFETEST procedure, 2174
interval level of measurement

DISTANCE procedure, 1250
interval variable, 72
INTERVAL= option

PLOT statement (BOXPLOT), 502
INTERVALS= option

PROC LIFETEST statement, 2161
SURVIVAL statement (LIFETEST), 2168

intraclass correlation coefficient
MIXED procedure, 2791

INTSTART= option
BOXPLOT procedure, 503

INVAR statement, MDS procedure, 2486
INVAR= option

PROC CALIS statement, 570
inverse confidence limits

PROBIT procedure, 3712, 3761
inverse Gaussian distribution

GENMOD procedure, 1652

inverse matrix ofX′X
SURVEYREG procedure, 4391

INVERSE option
MODEL statement (GLM), 1772
MODEL statement (SURVEYREG), 4380

INVERSECL option
PROC PROBIT statement, 3712

INVLINK statement, GENMOD procedure, 1635,
1646

INWGT= option
PROC CALIS statement, 570

IPC analysis
REG procedure, 3818, 3828, 3916

IPLOTS option
MODEL statement (LOGISTIC), 2311

ipp plots
annotating, 3729
axes, color, 3729
font, specifying, 3729
options summarized by function, 3726
reference lines, options, 3729–3733
threshold lines, options, 3732

ippplot
PROBIT procedure, 3725

IPPPLOT statement
options summarized by function, 3726
PROBIT procedure, 3725

IREPLACE option
OUTPUT statement (TRANSREG), 4587

IRLS option
PROC FASTCLUS statement, 1391

ITDETAILS option
PROC MIXED statement, 2677
PROC NLMIXED statement, 3067

ITER= modifier
INFLUENCE option, MODEL statement

(MIXED), 2698
ITER= option

PROC MDS statement, 2481
iterated factor analysis, 1291
iteration history

NLMIXED procedure, 3067, 3104
iterations

history (MIXED), 2749
history (PHREG), 3233, 3269
history (TPHREG), 4486
PRINQUAL procedure, 3667
restarting (PRINQUAL), 3656, 3673
restarting (TRANSREG), 4602

ITERATIONS= option
MODEL statement (LOESS), 2234

iterative proportional fitting
estimation (CATMOD), 843
formulas (CATMOD), 896

ITPRINT option
EM statement (MI), 2523
MCMC statement (MI), 2527
MODEL statement, 3990
MODEL statement (CATMOD), 842
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MODEL statement (GAM), 1567
MODEL statement (GENMOD), 1639
MODEL statement (LIFEREG), 2099
MODEL statement (LOGISTIC), 2312
MODEL statement (PHREG), 3233
MODEL statement (SURVEYLOGISTIC), 4263
PROC ROBUSTREG statement, 3983

J
Jaccard dissimilarity coefficient

DISTANCE procedure, 1276
Jaccard similarity coefficient

DISTANCE procedure, 1276
JEFFREYS option

PRIOR statement (MIXED), 2710
JOIN= option

PROC MODECLUS statement, 2866
JOINCHAR= option

PROC TREE statement, 4752
JOINT function

RESPONSE statement (CATMOD), 853
JOINT option

EXACT statement (LOGISTIC), 2301
joint selection probabilities

SURVEYSELECT procedure, 4433
JOINTONLY option

EXACT statement (LOGISTIC), 2302
Jonckheere-Terpstra test, 1491
Journal style

examples, ODS Graphics, 358
ODS styles, 332, 333, 346

JP option
MODEL statement (REG), 3827
PLOT statement (REG), 3846

JT option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448
TABLES statement (FREQ), 1457

JTPROBS option
PROC SURVEYSELECT statement, 4433

K
k-means clustering, 1379, 1380
k-sample tests,

See homogeneity tests
k-th-nearest neighbor,

See also single linkage
See also density linkage
estimation (CLUSTER), 970, 972, 977

K0 option
PROC ROBUSTREG statement, 3988

K= option
and other options (CLUSTER), 969, 972
PROC CLUSTER statement, 970
PROC DISCRIM statement, 1148
PROC MODECLUS statement, 2867

Kaplan-Meier estimate,
See product-limit estimate

kappa coefficient, 1495, 1496

tests, 1498
weights, 1497

KAPPA option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448
TEST statement (FREQ), 1463

KDE, 1993
KDE procedure, 1993

bandwidth selection, 2008
binning, 2004
bivariate histogram, 2011
computational details, 2002
convolution, 2005
examples, 2012
fast Fourier transform, 2007
ODS graph names, 2010
options, 1996
output table names, 2009
syntax, 1996

KDE procedure, BIVAR statement, 1997
BIVSTATS option, 1998
BWM= option, 1998
GRIDL= option, 1998
GRIDU= option, 1998
LEVELS= option, 1998
NGRID= option, 1998
OUT= option, 1998
PLOTS= option, 2010
UNISTATS option, 1999

KDE procedure, BY statement, 2001
KDE procedure, FREQ statement, 2001
KDE procedure, PROC KDE statement, 1996

DATA= option, 1996
KDE procedure, UNIVAR statement, 1999

BWM= option, 1999
GRIDL= option, 1999
GRIDU= option, 1999
METHOD= option, 1999
NGRID= option, 2000
OUT= option, 2000
PLOTS= option, 2010
UNISTATS option, 2000

KDE procedure, WEIGHT statement, 2002
KEEP= modifier

INFLUENCE option, MODEL statement
(MIXED), 2699

Kendall’s tau-b statistic, 1474, 1477
KENTB option

OUTPUT statement (FREQ), 1448
TEST statement (FREQ), 1463

Kenward-Roger method
MIXED procedure, 2695

kernel density estimates
DISCRIM procedure, 1158, 1159, 1191, 1212
KDE procedure, 1993

KERNEL= option
PROC DISCRIM statement, 1148

KEY= option
PLOT statement (GLMPOWER), 1942



Syntax Index � 5029

PLOT statement (POWER), 3483
keyword-lists

POWER procedure, 3490
keyword= option

BASELINE statement (PHREG), 3224
OUTPUT statement (GENMOD), 1644
OUTPUT statement (GLM), 1773
OUTPUT statement (LIFEREG), 2100
OUTPUT statement (PHREG), 3234
OUTPUT statement (REG), 3834
OUTPUT statement (ROBUSTREG), 3991

KLOTZ option
EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3157

Klotz scores
NPAR1WAY procedure, 3168

knots
PRINQUAL procedure, 3665, 3666
TRANSREG procedure, 4567, 4568, 4571,

4613, 4678
KNOTS= option

MODEL statement (TRANSREG), 4568
TRANSFORM statement (PRINQUAL), 3665

Kolmogorov-Smirnov test
NPAR1WAY procedure, 3169

KRATIO= option
MEANS statement (ANOVA), 443
MEANS statement (GLM), 1768

KRIGE2D procedure, 2033
anisotropic models, 2053–2056
best linear unbiased prediction (BLUP), 2060
correlation range, 2034
discontinuity, 2051
effective range, 2047–2049
examples, 2062
exponential semivariogram model, 2048, 2049
Gaussian semivariogram model, 2047, 2048
geometric anisotropy, 2053–2055
global kriging, 2034
input data set, 2038
kriging with trend, 2058
local kriging, 2033, 2034
nested models, 2050, 2051
nugget effect, 2044, 2051, 2052
ordinary kriging, 2033, 2056–2060
OUTEST= data sets, 2060
OUTNBHD= data set, 2060, 2061
output data sets, 2039, 2060, 2061
power semivariogram model, 2049
rangeε, 2047
sill, 2047
spatial continuity, 2033
spatial covariance, 2034
spatial data, 2056
spatial random fields, 2057
spherical semivariogram model, 2046, 2047
syntax, 2037
visual fit of the variogram, 2045

zonal anisotropy, 2055
KRIGE2D procedure, COORDINATES statement,

2039
XCCORD= option, 2039
YCCORD= option, 2039

KRIGE2D procedure, GRID statement, 2040
GRIDDATA= option, 2040
X= option, 2040
XCOORD= option, 2040
Y= option, 2040
YCOORD= option, 2040

KRIGE2D procedure, MODEL statement, 2042
ANGLE= option, 2042
FORM= option, 2042
MDATA= option, 2043
NUGGET= option, 2044
RANGE= option, 2044
RATIO= option, 2044
SCALE= option, 2044
SINGULAR= option, 2044

KRIGE2D procedure, PREDICT statement, 2041
MAXPOINTS= option, 2041
MINPOINTS= option, 2041
NODECREMENT option, 2041
NOINCREMENT option, 2041
NUMPOINTS= option, 2042
RADIUS= option, 2042
VAR= option, 2042

KRIGE2D procedure, PROC KRIGE2D statement,
2038

DATA= option, 2038
OUTEST= option, 2039
OUTNBHD= option, 2039
SINGULARMSG= option, 2039

kriging
ordinary kriging (KRIGE2D), 2058
ordinary kriging (VARIOGRAM), 4851
with trend (KRIGE2D), 2058

kriging, ordinary
VARIOGRAM procedure, 4852

Kronecker product structure
MIXED procedure, 2721

Kruskal-Wallis test
NPAR1WAY procedure, 3166

KS option
EXACT statement (NPAR1WAY), 3160

Kuiper test
NPAR1WAY procedure, 3171

Kulcynski 1 coefficient
DISTANCE procedure, 1276

kurtosis
CALIS procedure, 549, 584, 588, 658, 660
displayed in CLUSTER procedure, 972

KURTOSIS option
PROC CALIS statement, 584

L
L matrices

MIXED procedure, 2681, 2687, 2742
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L95 option
MODEL statement (RSREG), 4042

L95= option
OUTPUT statement (NLIN), 3013

L95M option
MODEL statement (RSREG), 4042

L95M= option
OUTPUT statement (NLIN), 3013

L= option
PROC FASTCLUS statement, 1391

label collision avoidance, 351
ODS Graphics, 351

LABELANGLE= option
BOXPLOT procedure, 503

lack of fit tests, 3712, 3759
RSREG procedure, 4046

LACKFIT option
MODEL statement (LOGISTIC), 2312
MODEL statement (RSREG), 4042
PROC PROBIT statement, 3712

lag functionality
NLMIXED procedure, 3081

LAGDISTANCE= option
COMPUTE statement (VARIOGRAM), 4867

Lagrange multiplier
covariance matrix, 3030
NLMIXED procedure, 3093
statistics (GENMOD), 1668
test statistics (LIFEREG), 2110
test, modification indices (CALIS), 584, 673,

674
LAGTOLERANCE= option

COMPUTE statement (VARIOGRAM), 4867
lambda asymmetric, 1474, 1482
lambda symmetric, 1474, 1483
LAMBDA0= option

MODEL statement (TPSPLINE), 4509
LAMBDA= option

MODEL statement (TPSPLINE), 4509
MODEL statement (TRANSREG), 4571
TRANSFORM statement (MI), 2534

LAMCR option
OUTPUT statement (FREQ), 1448

LAMDAS option
OUTPUT statement (FREQ), 1448

LAMRC option
OUTPUT statement (FREQ), 1448

Lance-Williams flexible-beta method,
See flexible-beta method

Lance-Williams nonmetric coefficient
DISTANCE procedure, 1272

LANNOTATE= option
PROC LIFETEST statement, 2162

latent variables
CALIS procedure, 549, 601, 625
PLS procedure, 3367

latent vectors
PLS procedure, 3367

LATEX destination

ODS Graphics, 326, 335
LaTeX output

examples, ODS Graphics, 358
ODS Graphics, 334, 337

Latin square design
ANOVA procedure, 472
generating with PLAN procedure, 3356

lattice design
balanced square lattice (LATTICE), 2069
efficiency (LATTICE), 2071, 2075, 2078
partially balanced square lattice (LATTICE),

2069, 2076
rectangular lattice (LATTICE), 2069

lattice layouts
ODS Graphics, 381

LATTICE procedure, 2072
adjusted treatment means, 2075
ANOVA table, 2074
Block variable, 2069, 2072, 2073
compared to MIXED procedure, 2665
covariance, 2075
Group variable, 2069, 2072, 2073
lattice design efficiency, 2071, 2075
least significant differences, 2075
missing values, 2074
ODS table names, 2075
Rep variable, 2069, 2072, 2073
response variable, 2072
syntax, 2072
Treatmnt variable, 2069, 2072, 2073
variance of means, 2074

LATTICE procedure, BY statement, 2072
LATTICE procedure, PROC LATTICE statement,

2072
COV option, 2072
COVARIANCE option, 2072
DATA= option, 2072

LATTICE procedure, VAR statement, 2073
layout area

ODS Graphics, 342
LBOXES= option

PLOT statement (BOXPLOT), 503
LCDEACT= option

NLOPTIONS statement (CALIS), 623
PROC NLMIXED statement, 3067

LCEPSILON= option
NLOPTIONS statement (CALIS), 623
PROC NLMIXED statement, 3067

LCL keyword
OUTPUT statement (GLM), 1774

LCLM keyword
OUTPUT statement (GLM), 1774

LCOMPONENTS option
MODEL statement (MIXED), 2702

LCONF= option
MCMC statement (MI), 2525

LCONNECT= option
MCMC statement (MI), 2529

LCSINGULAR= option
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NLOPTIONS statement (CALIS), 623
PROC NLMIXED statement, 3067

LD statistic
PHREG procedure, 3234, 3260

LDATA= option
RANDOM statement (MIXED), 2714
REPEATED statement (MIXED), 2718

leader algorithm, 1380
LEAFCHAR= option

PROC TREE statement, 4752
least significant differences

LATTICE procedure, 2075
least-significant-difference test, 445, 1769
least-squares estimation

LIFEREG procedure, 2108
least-squares means

Bonferroni adjustment (GLM), 1754
Bonferroni adjustment (MIXED), 2688
BYLEVEL processing (MIXED), 2689
coefficient adjustment, 1822
compared to means (GLM), 1804
comparison types (GLM), 1757
comparison types (MIXED), 2690
construction of, 1820
covariate values (GLM), 1755
covariate values (MIXED), 2688
Dunnett’s adjustment (GLM), 1754
Dunnett’s adjustment (MIXED), 2688
examples (GLM), 1859, 1866
examples (MIXED), 2796, 2819
GLM procedure, 1753
Hsu’s adjustment (GLM), 1754
Hsu’s adjustment (MIXED), 2688
mixed model (MIXED), 2687
multiple comparisons adjustment (GLM), 1754,

1757
multiple comparisons adjustment (MIXED),

2687
nonstandard weights (GLM), 1756
nonstandard weights (MIXED), 2690
observed margins (GLM), 1756
observed margins (MIXED), 2690
Sidak’s adjustment (GLM), 1754
Sidak’s adjustment (MIXED), 2688
simple effects (GLM), 1758, 1817
simple effects (MIXED), 2691
simulation-based adjustment (GLM), 1754
simulation-based adjustment (MIXED), 2688
Tukey’s adjustment (GLM), 1754
Tukey’s adjustment (MIXED), 2688

LEAST= option
PROC FASTCLUS statement, 1391

Lee-Wei-Amato model
PHREG procedure, 3251, 3314

left truncation time
PHREG procedure, 3229, 3263

LEGEND= option
PLOT statement (REG), 3846

LENDGRID= option

PLOT statement (BOXPLOT), 503
less-than-full-rank model

TRANSREG procedure, 4569, 4672
level of measurement

MDS procedure, 2472, 2481
LEVEL= option

PROC MDS statement, 2481
PROC TREE statement, 4752

levels of measurement
DISTANCE procedure, 1249

levels, of class variable, 1784
LEVELS= option

BIVAR statement, 1998
Levenberg-Marquardt algorithm

CALIS procedure, 578, 581, 665
Levene’s test for homogeneity of variance

ANOVA procedure, 443
GLM procedure, 1767, 1819, 1893

Leverage
MIXED Procedure, 2767

leverage, 1774
TRANSREG procedure, 4587

LEVERAGE keyword
OUTPUT statement (ROBUSTREG), 3991

LEVERAGE option
MODEL statement, 3990

LEVERAGE= option
OUTPUT statement (TRANSREG), 4587

LGOR option
OUTPUT statement (FREQ), 1448

LGRID= option
PLOT statement (BOXPLOT), 504

LGRRC1 option
OUTPUT statement (FREQ), 1448

LGRRC2 option
OUTPUT statement (FREQ), 1448

LHREF= option
PLOT statement (BOXPLOT), 504
PLOT statement (REG), 3846

life data
GENMOD procedure, 1701

life-table estimate
LIFETEST procedure, 2149, 2186, 2211

lifereg analysis
insets, 2092

LIFEREG procedure, 2083
accelerated failure time models, 2083
censoring, 2094
computational details, 2108
computational resources, 2123
Confidence intervals, 2115
failure time, 2083
INEST= data sets, 2121
information matrix, 2083, 2084, 2108
initial estimates, 2108
inset, 2092
Lagrange multiplier test statistics, 2110
least-squares estimation, 2108
log-likelihood function, 2084, 2108
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log-likelihood ratio tests, 2084
main effects, 2108
maximum likelihood estimates, 2083
missing values, 2108
Newton-Raphson algorithm, 2083
OUTEST= data sets, 2121
output table names, 2124
predicted values, 2114
supported distributions, 2111
survival function, 2083, 2111
syntax, 2089
Tobit model, 2085, 2129
XDATA= data sets, 2122

LIFEREG procedure, BY statement, 2091
LIFEREG procedure, CLASS statement, 2092
LIFEREG procedure, INSET statement, 2092

keywords, 2092
LIFEREG procedure, MODEL statement, 2094

ALPHA= option, 2096
CONVERGE= option, 2096
CONVG= option, 2096
CORRB option, 2097
COVB option, 2097
DISTRIBUTION= option, 2097
INITIAL= option, 2098
INTERCEPT= option, 2099
ITPRINT option, 2099
MAXITER= option, 2099
NOINT option, 2099
NOLOG option, 2099
NOSCALE option, 2099
NOSHAPE1 option, 2099
SCALE= option, 2099
SHAPE1= option, 2099
SINGULAR= option, 2099

LIFEREG procedure, OUTPUT statement, 2100
CDF keyword, 2100
CENSORED keyword, 2100
CONTROL keyword, 2100
keyword= option, 2100
OUT= option, 2100
PREDICTED keyword, 2101
QUANTILES keyword, 2101
STD–ERR keyword, 2101
XBETA keyword, 2102

LIFEREG procedure, PPLOT statement
ANNOTATE= option, 2102
CAXIS= option, 2102
CCENSOR option, 2102
CENBIN, 2102
CENCOLOR option, 2102
CENSYMBOL option, 2103
CFIT= option, 2103
CFRAME= option, 2103
CGRID= option, 2103
CHREF= option, 2103
CTEXT= option, 2103
CVREF= option, 2103
DESCRIPTION= option, 2103

FONT= option, 2103
HCL, 2103
HEIGHT= option, 2103
HLOWER= option, 2104
HOFFSET= option, 2104
HREF= option, 2104
HREFLABELS= option, 2104
HREFLABPOS= option, 2104
HUPPER= option, 2104
INBORDER option, 2104
INTERTILE option, 2104
ITPRINTEM option, 2104
JITTER option, 2105
LFIT option, 2105
LGRID option, 2105
LHREF= option, 2105
LVREF= option, 2105
MAXITEM= option, 2105
NAME= option, 2105
NOCENPLOT option, 2105
NOCONF option, 2105
NODATA option, 2105
NOFIT option, 2105
NOFRAME option, 2105
NOGRID option, 2105
NOHLABEL option, 2105
NOHTICK option, 2106
NOPOLISH option, 2106
NOVLABEL option, 2106
NOVTICK option, 2106
NPINTERVALS option, 2106
PCTLIST option, 2106
PLOWER= option, 2106
PPOS option, 2106
PPOUT option, 2106
PRINTPROBS option, 2106
PROBLIST option, 2107
PUPPER= option, 2106
ROTATE option, 2107
SQUARE option, 2107
TOLLIKE option, 2107
TOLPROB option, 2107
VAXISLABEL= option, 2107
VREF= option, 2107
VREFLABELS= option, 2107
VREFLABPOS= option, 2107
WAXIS= option, 2107
WFIT= option, 2107
WGRID= option, 2108
WREFL= option, 2108

LIFEREG procedure, PROBPLOT statement, 2102
LIFEREG procedure, PROC LIFEREG statement,

2090
COVOUT option, 2090
DATA= option, 2090
GOUT= option, 2090
INEST= option, 2090
NAMELEN= option, 2090
NOPRINT option, 2090
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ORDER= option, 2090
OUTEST= option, 2091
XDATA= option, 2091

LIFEREG procedure, WEIGHT statement, 2108
LIFETEST procedure

arcsine-square root transform, 2205
arcsine-square root transformation, 2169, 2177
association tests, 2150, 2156, 2180, 2191, 2200
censored, 2186
computational formulas, 2171
confidence bands, 2169, 2176
confidence limits, 2174, 2183, 2184
cumulative distribution function, 2149
effective sample size, 2172, 2173
equal precision bands, 2178, 2205
Fleming-HarringtonGρ test for homogeneity,

2150, 2168
Hall-Wellner bands, 2177, 2205
hazard function, 2149, 2214
homogeneity tests, 2149, 2154, 2178, 2200
interval determination, 2174
life-table estimate, 2149, 2172, 2186, 2209,

2211
likelihood ratio test for homogeneity, 2150, 2179
lineprinter plots, 2159
log-log transformation, 2170, 2177
log-rank test for association, 2150, 2180
log-rank test for homogeneity, 2150, 2168, 2178
logarithmic transformation, 2170, 2177
logit transformation, 2170, 2177
median residual time, 2186
missing stratum values, 2166, 2167
missing values, 2171
modified Peto-Peto test for homogeneity, 2150,

2168
ODS graph names, 2191
ODS table names, 2188
output data sets, 2183
partial listing, 2165
Peto-Peto test for homogeneity, 2150, 2168
probability density function, 2149, 2214
product-limit estimate, 2149, 2171, 2185, 2191
stratified tests, 2150, 2155, 2156, 2158, 2167,

2180, 2187
survival distribution function, 2149, 2171
Tarone-Ware test for homogeneity, 2150, 2168
traditional high-resolution graphics, 2159
trend tests, 2150, 2168, 2179, 2187
Wilcoxon test for association, 2150, 2180
Wilcoxon test for homogeneity, 2150, 2168,

2178
LIFETEST procedure, BY statement, 2165
LIFETEST procedure, FREQ statement, 2166
LIFETEST procedure, ID statement, 2166
LIFETEST procedure, PROC LIFETEST statement,

2158
ALPHA= option, 2160
ALPHAQT= option, 2160
ANNOTATE= option, 2160

CENSOREDSYMBOL= option, 2160
DATA= option, 2160
DESCRIPTION= option, 2160
EVENTSYMBOL= option, 2161
FORMCHAR= option, 2161
GOUT= option, 2161
INTERVALS= option, 2161
LANNOTATE= option, 2162
LINEPRINTER option, 2162
MAXTIME= option, 2162
METHOD= option, 2162
MISSING option, 2163
NINTERVAL= option, 2163
NOCENSPLOT option, 2163
NOPRINT option, 2163
NOTABLE option, 2163
OUTSURV= option, 2163
OUTTEST= option, 2163
PLOTS= option, 2164
REDUCEOUT option, 2164
SINGULAR= option, 2164
TIMELIM= option, 2164
TIMELIST= option, 2165
WIDTH= option, 2165

LIFETEST procedure, STRATA statement, 2166
GROUP= option, 2167
MISSING option, 2167
NODETAIL option, 2167
NOTEST option, 2167
TEST= option, 2168
TREND option, 2168

LIFETEST procedure, SURVIVAL statement, 2168
ALPHA= option, 2168, 2191
BANDMAX= option, 2169, 2191
BANDMAXTIME= option, 2169
BANDMIN= option, 2169, 2191
BANDMINTIME= option, 2169
CONFBAND= option, 2169
CONFTYPE= option, 2169, 2191
INTERVALS= option, 2168
MAXTIME= option, 2191
OUT= option, 2170
PLOTS= option, 2190
REDUCEOUT option, 2168
STDERR option, 2170
TIMELIST= option, 2168

LIFETEST procedure, TEST statement, 2170
LIFETEST procedure, TIME statement, 2171
likelihood displacement

PHREG procedure, 3234, 3260
Likelihood distance

MIXED procedure, 2770
likelihood function, 3756
likelihood ratio chi-square test, 3756, 3759
likelihood ratio test, 2780

Bartlett’s modification, 1150
CALIS procedure, 653, 674
example (MIXED), 2794
mixed model (MIXED), 2741, 2743



5034 � Syntax Index

MIXED procedure, 2751
PHREG procedure, 3246, 3269
TPHREG procedure, 4486

likelihood ratio test for homogeneity
LIFETEST procedure, 2150

likelihood residuals
GENMOD procedure, 1670

likelihood-ratio chi-square test, 1469
power and sample size (POWER), 3457, 3463,

3525
likelihood-ratio test

chi-square (FREQ), 1471
LILPREFIX= option

OUTPUT statement (TRANSREG), 4587
LINCON statement, CALIS procedure, 609
line colors, modifying

examples, ODS Graphics, 369
line patterns, modifying

examples, ODS Graphics, 369
line printer plots

REG procedure, 3848, 3882
line thickness, modifying

examples, ODS Graphics, 376
line-search methods

NLMIXED procedure, 3066, 3067, 3096
linear discriminant function, 1139
linear equations model,

See LINEQS model
linear hypotheses

PHREG procedure, 3217, 3238, 3247
linear model

GENMOD procedure, 1612, 1613
linear models

CATMOD procedure, 814
compared with log-linear models, 817

linear predictor
GENMOD procedure, 1611, 1612, 1618, 1661,

1689
PHREG procedure, 3225, 3233, 3235, 3302,

3303
linear rank tests,

See association tests
linear regression

TRANSREG procedure, 4592
linear structural relationship model,

See LISREL model
linear structure

MIXED procedure, 2721
LINEAR transformation

MODEL statement (TRANSREG), 4563
TRANSFORM statement (PRINQUAL), 3662

linear transformation
PRINQUAL procedure, 3662
TRANSREG procedure, 4563, 4610

LINEPRINTER option
PROC LIFETEST statement, 2162
PROC REG statement, 3817
PROC TREE statement, 4752

LINEQS model

CALIS procedure, 553, 601
specification, 560
structural model example (CALIS), 558, 562

LINEQS statement, CALIS procedure, 601
LINES option

MEANS statement (ANOVA), 444
MEANS statement (GLM), 1768

LINES= option
PROC TREE statement, 4752

LINESEARCH= option, 3096
NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 580
PROC NLMIXED statement, 3067

link function
built-in (GENMOD), 1614, 1639
GENMOD procedure, 1611, 1612, 1653
LOGISTIC procedure, 2281, 2312, 2334, 2344
SURVEYLOGISTIC procedure, 4243, 4263,

4273
user-defined (GENMOD), 1634

LINK= option
MODEL statement (GENMOD), 1639
MODEL statement (LOGISTIC), 2312
MODEL statement (SURVEYLOGISTIC), 4263

LISREL model
CALIS procedure, 554
structural model example (CALIS), 559

LIST option
PROC DISCRIM statement, 1148
PROC FASTCLUS statement, 1393
PROC MODECLUS statement, 2867
PROC NLIN statement, 3008
PROC NLMIXED statement, 3068
PROC TREE statement, 4752
STRATA statement (SURVEYFREQ), 4196
STRATA statement (SURVEYLOGISTIC),

4266
STRATA statement (SURVEYMEANS), 4332
STRATA statement (SURVEYREG), 4381
TABLES statement (FREQ), 1457

LISTALL option
PROC NLIN statement, 3008

LISTCODE option
PROC NLIN statement, 3008
PROC NLMIXED statement, 3068

LISTDEP option
PROC NLIN statement, 3008

LISTDER option
PROC NLIN statement, 3008

LISTERR option
PROC DISCRIM statement, 1148

LIUPREFIX= option
OUTPUT statement (TRANSREG), 4587

LLINE= option
PLOT statement (REG), 3846

LMAX statistic
PHREG procedure, 3260

LMLPREFIX= option
OUTPUT statement (TRANSREG), 4588
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local influence
DFBETA statistics (PHREG), 3234, 3260
score residuals (PHREG), 3234, 3259
weighted score residuals (PHREG), 3260

local kriging
KRIGE2D procedure, 2034

LOCAL option
PROC MODECLUS statement, 2867

LOCAL= option
REPEATED statement (MIXED), 2718

LOCALW option
REPEATED statement (MIXED), 2719

LOESS procedure
approximate degrees of freedom, 2246
automatic smoothing parameter selection, 2243
data scaling, 2239
direct fitting method, 2240
graphics, 2250
introductory example, 2220
iterative reweighting, 2242
kd trees and blending, 2241
local polynomials, 2242
local weighting, 2242
missing values, 2238
ODS graph names, 2250
output data sets, 2238
output table names, 2248
scoring data sets, 2248
statistical inference, 2243

LOESS procedure, BY statement, 2230
LOESS procedure, ID statement, 2231
LOESS procedure, MODEL statement, 2231

ALL option, 2232
ALPHA= option, 2232
BUCKET= option, 2232
CLM= option, 2232
DEGREE= option, 2232
DETAILS option, 2232
DFMETHOD= option, 2233
DFMETHOD=APPROX(Cutoff= ) option, 2233
DFMETHOD=APPROX(Quantile= ) option,

2233
DIRECT option, 2233
DROPSQUARE= option, 2233
INTERP= option, 2234
ITERATIONS= option, 2234
RESIDUAL option, 2234
SCALE= option, 2234
SCALEDINDEP option, 2234
SELECT= option, 2234
SMOOTH= option, 2236
STD option, 2236
T option, 2236
TRACEL option, 2236

LOESS procedure, PROC LOESS statement, 2230
PLOTS option, 2250
PLOTS(MAXPOINTS=) option, 2250
UNPACKPANELS option, 2250

LOESS procedure, SCORE statement, 2236

CLM option, 2237
PRINT option, 2237
SCALEDINDEP option, 2237
STEPS option, 2237

LOESS procedure, WEIGHT statement, 2237
log likelihood

output data sets (LOGISTIC), 2294
log odds

LOGISTIC procedure, 2347
SURVEYLOGISTIC procedure, 4289

LOG option
MCMC statement (MI), 2525, 2529
PROC PROBIT statement, 3713

LOG transformation
MODEL statement (TRANSREG), 4562
TRANSFORM statement (MI), 2534
TRANSFORM statement (PRINQUAL), 3661

log-interval level of measurement
DISTANCE procedure, 1250

log-likelihood
functions (GENMOD), 1654

log-likelihood function
LIFEREG procedure, 2084, 2108
PROBIT procedure, 3756

log-likelihood ratio tests
LIFEREG procedure, 2084

log-linear models
CATMOD procedure, 814, 870, 1616
compared with linear models, 817
design matrix (CATMOD), 884
examples (CATMOD), 916, 919
GENMOD procedure, 1616
multiple populations (CATMOD), 872
one population (CATMOD), 871

log-linear variance model
MIXED procedure, 2718

log-log transformation
LIFETEST procedure, 2170, 2177

log-rank test
PHREG procedure, 3219

log-rank test for association
LIFETEST procedure, 2150

log-rank test for homogeneity
LIFETEST procedure, 2150, 2168, 2178
power and sample size (POWER), 3473, 3481,

3533, 3561
LOG10 option

PROC PROBIT statement, 3713
logarithmic transformation

LIFETEST procedure, 2170, 2177
LOGDETH option

PARMS statement (MIXED), 2707
logistic analysis

CATMOD procedure, 815, 868
caution (CATMOD), 870
examples (CATMOD), 933
ordinal data, 815

logistic distribution, 2083, 2097, 2111, 3705
PROBIT procedure, 3757
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LOGISTIC option
MONOTONE statement (MI), 2532

LOGISTIC procedure, 2289
Akaike’s information criterion, 2341
Bayes’ theorem, 2314
best subset selection, 2308
branch and bound algorithm, 2341
classification table, 2314, 2352, 2353, 2422
conditional logistic regression, 2365
confidence intervals, 2314, 2315, 2319, 2345,

2346
confidence limits, 2350
convergence criterion, 2308
customized odds ratio, 2328
descriptive statistics, 2294
deviance, 2308, 2316, 2354
DFBETAS diagnostic, 2360
dispersion parameter, 2354
displayed output, 2381
estimability checking, 2300
exact logistic regression, 2300, 2369
existence of MLEs, 2338
Fisher’s scoring method, 2317, 2318, 2336
goodness of fit, 2308, 2316
gradient, 2343
hat matrix, 2359
Hessian matrix, 2317, 2343
hierarchy, 2310
Hosmer-Lemeshow test, 2312, 2356, 2357
infinite parameter estimates, 2313
initial values, 2376
introductory example, 2284
link function, 2281, 2312, 2334, 2344
log odds, 2347
maximum likelihood algorithms, 2336
missing values, 2329
model fitting criteria, 2341
model hierarchy, 2283, 2310
model selection, 2306, 2317, 2340
multiple classifications, 2315
Newton-Raphson algorithm, 2317, 2318, 2336,

2338
odds ratio confidence limits, 2308, 2315
odds ratio estimation, 2347
ODS graph names, 2390
ODS table names, 2386
output data sets, 2294, 2374, 2376, 2377
output ROC data sets, 2378
overdispersion, 2316, 2354, 2355
Pearson’s chi-square, 2308, 2316, 2354
predicted probabilities, 2350
prior event probability, 2314, 2353, 2422
profile likelihood convergence criterion, 2314
rank correlation, 2350
regression diagnostics, 2359
residuals, 2360
response level ordering, 2305, 2329, 2330
reverse response level ordering, 2290
ROC curve, 2314, 2357

Schwarz criterion, 2341
score statistics, 2343
selection methods, 2306, 2317, 2340
singular contrast matrix, 2300
subpopulation, 2308, 2316, 2355
syntax, 2289
testing linear hypotheses, 2327, 2358
Williams’ method, 2355

LOGISTIC procedure, BY statement, 2294
LOGISTIC procedure, CLASS statement, 2295

CPREFIX= option, 2295
DESCENDING option, 2295
LPREFIX= option, 2295
MISSING option, 2296
ORDER= option, 2296
PARAM= option, 2296
REF= option, 2297
TRUNCATE option, 2297

LOGISTIC procedure, CONTRAST statement, 2297
ALPHA= option, 2300
E option, 2300
ESTIMATE= option, 2300
SINGULAR= option, 2300

LOGISTIC procedure, EXACT statement, 2300
ALPHA= option, 2301
CLTYPE= option, 2302
ESTIMATE option, 2301
JOINT option, 2301
JOINTONLY option, 2302
MIDPFACTOR= option, 2302
ONESIDED option, 2302
OUTDIST= option, 2302

LOGISTIC procedure, FREQ statement, 2303
LOGISTIC procedure, GRAPHICS statement, 2389
LOGISTIC procedure, MODEL statement, 2304

ABSFCONV option, 2308
AGGREGATE= option, 2308
ALPHA= option, 2308
BEST= option, 2308
CL option, 2319
CLODDS= option, 2308
CLPARM= option, 2309
CORRB option, 2309
COVB option, 2309
CTABLE option, 2309
DESCENDING option, 2305
DETAILS option, 2309
EXPEST option, 2309
FAST option, 2309
FCONV= option, 2310
GCONV= option, 2310
HIERARCHY= option, 2310
INCLUDE= option, 2311
INFLUENCE option, 2311
IPLOTS option, 2311
ITPRINT option, 2312
LACKFIT option, 2312
LINK= option, 2312
MAXFUNCTION= option, 2313
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MAXITER= option, 2313
MAXSTEP= option, 2313
NOCHECK option, 2313
NODESIGNPRINT= option, 2313
NODUMMYPRINT= option, 2313
NOFIT option, 2314
NOINT option, 2313
NOLOGSCALE option, 2314
OFFSET= option, 2314
ORDER= option, 2305
OUTROC= option, 2314
PARMLABEL option, 2314
PEVENT= option, 2314
PLCL option, 2314
PLCONV= option, 2314
PLRL option, 2315
PPROB= option, 2315
RIDGING= option, 2315
RISKLIMITS option, 2315
ROCEPS= option, 2315
RSQUARE option, 2315
SCALE= option, 2316
SELECTION= option, 2317
SEQUENTIAL option, 2317
SINGULAR= option, 2317
SLENTRY= option, 2317
SLSTAY= option, 2317
START= option, 2318
STB option, 2318
STOP= option, 2318
STOPRES option, 2318
TECHNIQUE= option, 2318
WALDCL option, 2319
WALDRL option, 2315
XCONV= option, 2319

LOGISTIC procedure, OUTPUT statement, 2319
ALPHA= option, 2322
C= option, 2321
CBAR= option, 2321
DFBETAS= option, 2321
DIFCHISQ= option, 2322
DIFDEV= option, 2322
H= option, 2322
LOWER= option, 2320
OUT= option, 2320
PREDICTED= option, 2320
PREDPROBS= option, 2320
RESCHI= option, 2322
RESDEV= option, 2322
STDXBETA = option, 2321
UPPER= option, 2321
XBETA= option, 2321

LOGISTIC procedure, PROC LOGISTIC statement,
2290

ALPHA= option, 2290
COVOUT option, 2290
DATA= option, 2290
DESCENDING option, 2290
EXACTONLY option, 2290

EXACTOPTIONS option, 2291
INEST= option, 2292
INMODEL= option, 2293
NAMELEN= option, 2293
NOCOV option, 2293
NOPRINT option, 2293
OUTDESIGN= option, 2293
OUTDESIGNONLY option, 2293
OUTEST= option, 2294
OUTMODEL= option, 2294
SIMPLE option, 2294

LOGISTIC procedure, SCORE statement
ALPHA= option, 2324
CLM option, 2324
DATA= option, 2324
FITSTAT option, 2325
OUT= option, 2325
OUTROC= option, 2325
PRIOR= option, 2325
PRIOREVENT= option, 2325
ROCEPS= option, 2325

LOGISTIC procedure, TEST statement, 2327
PRINT option, 2327

LOGISTIC procedure, UNITS statement, 2328
DEFAULT= option, 2328

LOGISTIC procedure, WEIGHT statement, 2328
NORMALIZE option, 2329

logistic regression, 3705,
See also LOGISTIC procedure
See also SURVEYLOGISTIC procedure
CATMOD procedure, 814, 869
examples (CATMOD), 911
GENMOD procedure, 1613, 1697

logistic regression method
MI procedure, 2546

LOGIT function
RESPONSE statement (CATMOD), 853

LOGIT transformation
MODEL statement (TRANSREG), 4562
TRANSFORM statement (MI), 2534
TRANSFORM statement (PRINQUAL), 3661

logit transformation
LIFETEST procedure, 2170, 2177

logits,
See adjacent-category logits
See also cumulative logits
See also generalized logits

LOGLIN statement
CATMOD procedure, 839

loglogistic distribution, 2083, 2097, 2111
LOGNLAMBDA0= option

MODEL statement (TPSPLINE), 4509
LOGNLAMBDA= option

MODEL statement (TPSPLINE), 4509
lognormal data

power and sample size (POWER), 3434, 3437,
3438, 3450, 3455, 3456, 3465, 3472, 3509,
3511, 3519, 3521, 3529, 3531, 3552

lognormal distribution, 2083, 2097, 2111
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LOGNOTE option
PROC MIXED statement, 2677
PROC NLMIXED statement, 3068

LOGNOTE= option
PRIOR statement (MIXED), 2711

LOGOR= option
REPEATED statement (GENMOD), 1647

LOGRBOUND= option
PRIOR statement (MIXED), 2711

long run times
NLMIXED procedure, 3098

Longley data set, 3197
LOWER= option

ONESAMPLEMEANS statement (POWER),
3434

OUTPUT statement (LOGISTIC), 2320
PAIREDMEANS statement (POWER), 3450
TWOSAMPLEMEANS statement (POWER),

3466
LOWERB= option

PARMS statement (MIXED), 2707
LOWERTAILED option

ESTIMATE statement (MIXED), 2686
TEST statement (MULTTEST), 2947

Lp clustering
FASTCLUS procedure, 1379

Lp clustering
FASTCLUS procedure, 1391

lpred plots
annotating, 3737
axes, color, 3737
font, specifying, 3737
reference lines, options, 3737–3739, 3741
threshold lines, options, 3740

lpredplot
PROBIT procedure, 3733

LPREDPLOT statement
options summarized by function, 3734
PROBIT procedure, 3733

LPREFIX= option
CLASS statement (LOGISTIC), 2295
CLASS statement (SURVEYLOGISTIC), 4253
CLASS statement (TPHREG), 4477
MODEL statement (TRANSREG), 4568, 4576

LR statistics
MI procedure, 2555

LRCHI option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448, 1539

LRCHISQ option
TABLES statement (SURVEYFREQ), 4200

LRCHISQ1 option
TABLES statement (SURVEYFREQ), 4200

LRCI option
MODEL statement (GENMOD), 1640

LREF= option
MCMC statement (MI), 2525

LS-means,
See least-squares means

lsd (least significant differences)
LATTICE procedure, 2075

LSD option
MEANS statement (ANOVA), 444, 445
MEANS statement (GLM), 1768

LSD test, 1769
LSMEANS statement

GLM procedure, 1753
MIXED procedure, 2687

LSPRECISION= option
NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 581
PROC NLMIXED statement, 3068

LVREF= option
PLOT statement (BOXPLOT), 504
PLOT statement (REG), 3846

M
M= option

MANOVA statement (ANOVA), 437
MANOVA statement (GLM), 1759
MODEL statement (TPSPLINE), 4509

MAC method
PRINQUAL procedure, 3643, 3669

MACRO option
OUTPUT statement (TRANSREG), 4588

macros
TRANSREG procedure, 4588

Mahalanobis distance, 791, 1158
CANDISC procedure, 804

MAHALANOBIS option
PROC DISCRIM statement, 1148

main effects
design matrix (CATMOD), 877
GENMOD procedure, 1660
LIFEREG procedure, 2108
MIXED procedure, 2744
model parameterization (GLM), 1788
specifying (ANOVA), 451, 452
specifying (CATMOD), 864
specifying (GLM), 1784
TRANSREG procedure, 4558, 4594

MAKE statement
MIXED procedure, 2757

Mallows’ Cp selection
REG procedure, 3875

manifest variables
CALIS procedure, 549

Mann-Whitney-Wilcoxon test
NPAR1WAY procedure, 3166

MANOVA,
See multivariate analysis of variance
CANDISC procedure, 786

MANOVA option
PROC ANOVA statement, 433
PROC DISCRIM statement, 1148
PROC GLM statement, 1745

MANOVA statement
ANOVA procedure, 436
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GLM procedure, 1759
Mantel-Haenszel chi-square test, 1469, 1472
Mantel-Haenszel test

log-rank test (PHREG), 3219
MAR

MI procedure, 2537, 2564
MARGINAL function

RESPONSE statement (CATMOD), 853
marginal probabilities,

See also response functions
specifying in CATMOD procedure, 853

Marginal residuals
MIXED procedure, 2764

marker symbols, modifying
examples, ODS Graphics, 369

MARKERS= option
PLOT statement (GLMPOWER), 1943
PLOT statement (POWER), 3484

martingale residuals
PHREG procedure, 3234, 3258, 3302

matched comparisons,
See paired comparisons

Matern covariance structure
MIXED procedure, 2721

mating
offspring and parent (INBREED), 1981
self (INBREED), 1980

MATINGS statement, INBREED procedure, 1975
matrix

decompositions (CORRESP), 1079, 1100
factor, defined for factor analysis (FACTOR),

1292
inversion (CALIS), 647
multiplication (SCORE), 4065
names, default (CALIS), 608
notation, theory (MIXED), 2731
properties, COSAN model (CALIS), 592

MATRIX option
PROC INBREED statement, 1973

matrix properties
COSAN model (CALIS), 592

MATRIX statement
CALIS procedure, 593
MDS procedure, 2486

MATRIX statement (CALIS)
factor analysis model, 595

MATRIXL option
PROC INBREED statement, 1973

MAX= option
PLOT statement (GLMPOWER), 1943
PLOT statement (POWER), 3484
PREDICT statement (KRIGE2D), 2041

MAXCLUSTERS= option
PROC FASTCLUS statement, 1388
PROC MODECLUS statement, 2867
PROC VARCLUS statement, 4810

MAXEIGEN= option
PROC VARCLUS statement, 4810

MAXFUNC= option

NLOPTIONS statement (CALIS), 614, 616
PROC CALIS statement, 582
PROC MIXED statement, 2677
PROC NLMIXED statement, 3069

MAXFUNCTION= option
MODEL statement (LOGISTIC), 2313

MAXHEIGHT= option
PROC TREE statement, 4752

maximum average correlation method
PRINQUAL procedure, 3643, 3669

maximum likelihood
algorithms (LOGISTIC), 2336
algorithms (SURVEYLOGISTIC), 4275
estimates (LIFEREG), 2083
estimates (LOGISTIC), 2338
estimates (SURVEYLOGISTIC), 4277
estimation (CATMOD), 817, 843, 895
estimation (GENMOD), 1655
hierarchical clustering (CLUSTER), 967, 971,

980, 981
NLMIXED procedure, 3048

maximum likelihood estimation
mixed model (MIXED), 2738

maximum likelihood factor analysis, 1291, 1311
with FACTOR procedure, 1297, 1298

maximum method,
See complete linkage

MAXIMUM option
RIDGE statement (RSREG), 4044

maximum total variance method
PRINQUAL procedure, 3643

MAXIMUM= option
PROC MI statement, 2519

MAXIT= option
MODEL statement (GENMOD), 1640

MAXITER = option
MODEL statement (GAM), 1567

MAXITER= option
EM statement (MI), 2523
MCMC statement (MI), 2527
MODEL statement (CATMOD), 842
MODEL statement (LIFEREG), 2099
MODEL statement (LOGISTIC), 2313
MODEL statement (PHREG), 3232
MODEL statement (SURVEYLOGISTIC), 4263
MODEL statement (TRANSREG), 4576
NLOPTIONS statement (CALIS), 614, 616
PROC ACECLUS statement, 405
PROC CALIS statement, 582
PROC FACTOR statement, 1311
PROC FASTCLUS statement, 1393
PROC MDS statement, 2481
PROC MIXED statement, 2677
PROC NLIN statement, 3008
PROC NLMIXED statement, 3069
PROC PLS statement, METHOD=PLS option,

3375
PROC PLS statement, MISSING=EM option,

3376
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PROC PRINQUAL statement, 3654
PROC ROBUSTREG statement

(ROBUSTREG), 3984, 3987, 3988
PROC VARCLUS statement, 4810
PROC VARCOMP statement, 4835
REPEATED statement (GENMOD), 1648
TABLES statement (FREQ), 1458

MAXITSCORE = option
MODEL statement (GAM), 1567

MAXLAGS= option
COMPUTE statement (VARIOGRAM), 4867

MAXPANELS= option
PLOT statement (BOXPLOT), 504

MAXSEARCH= option
PROC VARCLUS statement, 4810

MAXSIZE= option
PROC SURVEYSELECT statement, 4433

MAXSTEP option
MODEL statement (REG), 3827

MAXSTEP= option
MODEL statement (LOGISTIC), 2313
MODEL statement (PHREG), 3230
PROC NLMIXED statement, 3069
PROC STEPDISC statement, 4166

MAXSUBIT= option
PROC NLIN statement, 3008

MAXTIME= option
EXACT statement (FREQ), 1445
EXACT statement (NPAR1WAY), 3160
NLOPTIONS statement (CALIS), 616
PROC LIFETEST statement, 2162
PROC NLMIXED statement, 3070
SURVIVAL statement (LIFETEST), 2191

MC option
EXACT statement (FREQ), 1445
EXACT statement (NPAR1WAY), 3160

MCA option
PROC CORRESP statement, 1076

MCA= option, PROC CORRESP statement, 1101
MCAR

MI procedure, 2537
MCF

PHREG procedure, 3225
MCMC method

MI procedure, 2547
MCMC monotone-data imputation

MI procedure, 2565
MCMC statement

MI procedure, 2523
MCNEM option

EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448

McNemar’s test, 1493, 1494
power and sample size (POWER), 3443, 3447,

3448, 3516, 3517
MCONVERGE= option

PROC MDS statement, 2481
MCORRB option

REPEATED statement (GENMOD), 1648

MCOVB option
REPEATED statement (GENMOD), 1648

McQuitty’s similarity analysis
CLUSTER procedure, 967

MDATA= option
MODEL statement (KRIGE2D), 2043
SIMULATE statement (SIM2D), 4102

MDFFITS
MIXED procedure, 2768

MDFFITS for covariance parameters
MIXED procedure, 2769

MDPREF analysis
PRINQUAL procedure, 3678

MDPREF option
PROC PRINQUAL statement, 3654

MDS procedure
alternating least squares, 2476
analyzing data in groups, 2485
asymmetric data, 2484
badness of fit, 2479, 2482, 2483, 2489, 2490
conditional data, 2477
configuration, 2471, 2482, 2483, 2489
convergence criterion, 2478, 2480, 2481
coordinates, 2482, 2483, 2488, 2489
data weights, 2487
dimension coefficients, 2471, 2472, 2477, 2482,

2483, 2488, 2489
dissimilarity data, 2471, 2478, 2484
distance data, 2471, 2478, 2484
Euclidean distances, 2472, 2477, 2488
external unfolding, 2471
individual difference models, 2471
INDSCAL model, 2471, 2477
initial values, 2480–2484, 2491
measurement level, 2472, 2481
metric multidimensional scaling, 2471
missing values, 2492
multidimensional scaling, 2471
nonmetric multidimensional scaling, 2471, 2472
normalization of the estimates, 2492
optimal transformations, 2472, 2481
output table names, 2497
partitions, 2477, 2488
plot of configuration, 2504, 2505
plot of dimension coefficients, 2504, 2506
plot of linear fit, 2503
%PLOTIT macro, 2474
plots, 2474
proximity data, 2471, 2478, 2484
residuals, 2483, 2487, 2488, 2491, 2503
similarity data, 2471, 2478, 2484
stress formula, 2479, 2480, 2489
subject weights, 2471, 2477
syntax, 2475
three-way multidimensional scaling, 2471
ties, 2485
transformations, 2472, 2481, 2482, 2484, 2487–

2489
transformed data, 2491
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transformed distances, 2491
unfolding, 2471
weighted Euclidean distance, 2472, 2477, 2488
weighted Euclidean model, 2471, 2477
weighted least squares, 2487

MDS procedure, BY statement, 2485
MDS procedure, ID statement, 2486
MDS procedure, INVAR statement, 2486
MDS procedure, MATRIX statement, 2486
MDS procedure, PROC MDS statement, 2476

ALTERNATE= option, 2476
COEF= option, 2477
CONDITION= option, 2477
CONVERGE= option, 2478
CRITMIN= option, 2482
CUTOFF= option, 2478
DATA= option, 2478
DECIMALS= option, 2478
DIMENSION= option, 2478
EPSILON= option, 2479
FIT= option, 2479
FORMULA= option, 2479
GCONVERGE= option, 2480
INAV= option, 2480
INITIAL= option, 2481
ITER= option, 2481
LEVEL= option, 2481
MAXITER= option, 2481
MCONVERGE= option, 2481
MINCRIT= option, 2482
NEGATIVE option, 2482
NONORM option, 2482
NOPHIST option, 2482
NOPRINT option, 2482
NOULB option, 2482
OCOEF option, 2482
OCONFIG option, 2482
OCRIT option, 2482
OTRANS option, 2482
OUT= option, 2482
OUTFIT= option, 2483
OUTITER option, 2482
OUTRES= option, 2483
OVER= option, 2483
PCOEF option, 2483
PCONFIG option, 2483
PDATA option, 2483
PFINAL option, 2483
PFIT option, 2483
PFITROW option, 2483
PINAVDATA option, 2483
PINEIGVAL option, 2483
PINEIGVEC option, 2483
PININ option, 2484
PINIT option, 2484
PITER option, 2484
PTRANS option, 2484
RANDOM= option, 2484
RIDGE= option, 2484

SHAPE= option, 2484
SIMILAR= option, 2484
SINGULAR= option, 2485
UNTIE option, 2485

MDS procedure, VAR statement, 2486
MDS procedure, WEIGHT statement, 2487
MEAN function

RESPONSE statement (CATMOD), 853
mean function

PHREG procedure, 3224, 3226, 3244, 3245,
3253, 3255

MEAN keyword
REPEATED statement (ANOVA), 448

MEAN option
MCMC statement (MI), 2524, 2529
REPEATED statement (GLM), 1779, 1780,

1832
TEST statement (MULTTEST), 2955, 2968

mean per element
SURVEYMEANS procedure, 4337

mean separation tests,
See multiple comparison procedures

MEAN statement
SIM2D procedure, 4105

mean survival time
time limit (LIFETEST), 2164

MEAN= data sets
FASTCLUS procedure, 1393, 1394

MEAN= option
ONESAMPLEMEANS statement (POWER),

3434
PROC FASTCLUS statement, 1393

MEANDIFF= option
PAIREDMEANS statement (POWER), 3450
TWOSAMPLEMEANS statement (POWER),

3467
MEANRATIO= option

PAIREDMEANS statement (POWER), 3450
TWOSAMPLEMEANS statement (POWER),

3467
means

ANOVA procedure, 440
compared to least-squares means (GLM), 1804
displayed in CLUSTER procedure, 972
GLM procedure, 1763
power and sample size (POWER), 3432, 3448,

3463, 3471, 3526
SURVEYMEANS procedure, 4337
weighted (GLM), 1820

MEANS option
OUTPUT statement (TRANSREG), 4590

MEANS procedure, 21
MEANS statement

ANOVA procedure, 440
GLM procedure, 1763

means, difference between
independent samples, 4775, 4789
paired observations, 4775

measurement level
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MDS procedure, 2472, 2481
measures of agreement, 1493
MEASURES option

EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448
TABLES statement (FREQ), 1458
TEST statement (FREQ), 1463

MEC option
OUTPUT statement (TRANSREG), 4590

median
cluster, 1389, 1392
method (CLUSTER), 967, 981

MEDIAN option
EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3157

median residual time
LIFETEST procedure, 2186

median scores
NPAR1WAY procedure, 3167

Medical Expenditure Panel Survey (MEPS)
SURVEYLOGISTIC procedure, 4302

Mehta and Patel, network algorithm, 1509, 3172
memory requirements

ACECLUS procedure, 410
CLUSTER procedure, 986
FACTOR procedure, 1335
FASTCLUS procedure, 1402
MIXED procedure, 2775
reduction of (ANOVA), 434
reduction of (GLM), 1747
VARCLUS procedure, 4818

memory usage
SIM2D procedure, 4110

Merle-Spath algorithm
FASTCLUS procedure, 1392

METHOD= < ( options )>
PROC ROBUSTREG statement, 3984

METHOD= option
BASELINE statement (PHREG), 3226
MODEL statement (GAM), 1568
MODEL statement (TRANSREG), 4576
ONESAMPLEFREQ statement (POWER), 3430
OUTPUT statement (PHREG), 3235
PAIREDFREQ statement (POWER), 3445
PROC ACECLUS statement, 405
PROC CALIS statement, 574
PROC DISCRIM statement, 1148
PROC DISTANCE statement, 1257
PROC FACTOR statement, 1311
PROC LIFETEST statement, 2162
PROC MIXED statement, 2677, 2783
PROC MODECLUS statement, 2867
PROC NLIN statement, 3008
PROC NLMIXED statement, 3070
PROC PLS statement, 3375
PROC PRINQUAL statement, 3654
PROC STDIZE statement, 4131
PROC STEPDISC statement, 4166

PROC SURVEYSELECT statement, 4434
PROC VARCOMP statement, 4835
UNIVAR statement, 1999

METHOD= specification
PROC CLUSTER statement, 966

methods of estimation
VARCOMP procedure, 4831, 4842

metric multidimensional scaling
MDS procedure, 2471

METRIC= option
PROC ACECLUS statement, 405
PROC DISCRIM statement, 1149

MGV method
PRINQUAL procedure, 3643

MHCHI option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1448

MHOR option
OUTPUT statement (FREQ), 1448

MHRRC1 option
OUTPUT statement (FREQ), 1448

MHRRC2 option
OUTPUT statement (FREQ), 1448

MI procedure
adjusted degrees of freedom, 2562
analyst’s model, 2563
approximate Bayesian bootstrap, 2543
arbitrary missing pattern, 2539
autocorrelation function plot, 2557
Bayes’ theorem, 2547
Bayesian inference, 2547
between-imputation variance, 2561
bootstrap, 2527
combining inferences, 2561
converge in EM algorithm, 2522
convergence in EM algorithm, 2527
convergence in MCMC, 2555, 2566
degrees of freedom, 2561
discriminant function method, 2544
EM algorithm, 2536, 2566
fraction of missing information, 2562
imputation methods, 2539
imputation model, 2565
imputer’s model, 2563
input data set, 2519, 2526, 2558
introductory example, 2513
logistic regression method, 2546
LR statistics, 2555
MAR, 2537, 2564
MCAR, 2537
MCMC method, 2547
MCMC monotone-data imputation, 2565
missing at random, 2537, 2564
monotone missing pattern, 2538
multiple imputation efficiency, 2562
multivariate normality assumption, 2565
number of imputations, 2565
ODS graph names, 2567
ODS table names, 2566
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output data sets, 2520, 2528, 2559
output parameter estimates, 2528
parameter simulation, 2564
predictive mean matching method, 2542
producing monotone missingness, 2552
propensity score method, 2543, 2565
random number generators, 2520
regression method, 2541, 2565
relative efficiency, 2562
relative increase in variance, 2562
saving graphics output, 2526
singularity, 2521
Summary of Issues in Multiple Imputation, 2564
suppressing output, 2520
syntax, 2517
time-series plot, 2556
total variance, 2561
transformation, 2533
within-imputation variance, 2561
worst linear function of parameters, 2556

MI procedure, BY statement, 2521
MI procedure, CLASS statement, 2522
MI procedure, EM statement, 2522

CONVERGE option, 2522
INITIAL= option, 2522
ITPRINT option, 2523
MAXITER= option, 2523
OUT= option, 2523
OUTEM= option, 2523
OUTITER= option, 2523
output data sets, 2523
XCONV option, 2522

MI procedure, FREQ statement, 2523
MI procedure, MCMC statement, 2523

ACFPLOT option, 2524, 2567
BOOTSTRAP option, 2527
CCONF= option, 2525
CCONNECT= option, 2529
CFRAME= option, 2525, 2529
CHAIN= option, 2526
CNEEDLES= option, 2525
CONVERGE= option, 2527
COV option, 2524, 2529
CREF= option, 2525
CSYMBOL= option, 2525, 2529
DISPLAYINIT option, 2526
GOUT= option, 2526
HSYMBOL= option, 2525, 2529
IMPUTE= option, 2526
INEST= option, 2526
INITIAL= option, 2527
ITPRINT option, 2527
LCONF= option, 2525
LCONNECT= option, 2529
LOG option, 2525, 2529
LREF= option, 2525
MAXITER= option, 2527
MEAN option, 2524, 2529
NBITER= option, 2528

NITER= option, 2528
NLAG= option, 2525
OUTEST= option, 2528
OUTITER= option, 2528
PRIOR= option, 2528
START= option, 2528
SYMBOL= option, 2525, 2529
TIMEPLOT option, 2529, 2567
TITLE= option, 2525, 2529
WCONF= option, 2526
WCONNECT= option, 2530
WLF option, 2524, 2529, 2530
WNEEDLES= option, 2526
WREF= option, 2526
XCONV= option, 2527

MI procedure, MONOTONE statement, 2530
DISCRIM option, 2531
LOGISTIC option, 2532
PROPENSITY option, 2533
REG option, 2532
REGPMM option, 2532
REGPREDMEANMATCH option, 2532
REGRESSION option, 2532

MI procedure, PROC MI statement, 2518
ALPHA= option, 2519
DATA= option, 2519
MAXIMUM= option, 2519
MINIMUM= option, 2519
MINMAXITER= option, 2519
MU0= option, 2519
NIMPUTE= option, 2520
NOPRINT option, 2520
OUT= option, 2520
ROUND= option, 2520
SEED option, 2520
SIMPLE, 2521
SINGULAR option, 2521
THETA0= option, 2519

MI procedure, TRANSFORM statement, 2533
BOXCOX transformation, 2533
C= option, 2534
EXP transformation, 2534
LAMBDA= option, 2534
LOG transformation, 2534
LOGIT transformation, 2534
POWER transformation, 2534

MI procedure, VAR statement, 2534
MIANALYZE procedure

adjusted degrees of freedom, 2625
average relative increase in variance, 2627
between-imputation covariance matrix, 2626
between-imputation variance, 2624
combining inferences, 2624
degrees of freedom, 2625, 2627
fraction of missing information, 2625
input data sets, 2620
introductory example, 2610
multiple imputation efficiency, 2626
multivariate inferences, 2626
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ODS table names, 2631
relative efficiency, 2626
relative increase in variance, 2625
syntax, 2613
testing linear hypotheses, 2618, 2628
total covariance matrix, 2627
total variance, 2625
within-imputation covariance matrix, 2626
within-imputation variance, 2624

MIANALYZE procedure, BY statement, 2616
MIANALYZE procedure, CLASS statement, 2617
MIANALYZE procedure, MODELEFFECTS state-

ment, 2617
MIANALYZE procedure, PROC MIANALYZE state-

ment, 2614
ALPHA= option, 2614
BCOV option, 2614
CLASSVAR= option, 2615
COVB= option, 2614
DATA= option, 2615
EDF= option, 2615
EFFECTVAR= option, 2614
MU0= option, 2616
MULT option, 2615
PARMINFO= option, 2615
PARMS= option, 2615
TCOV option, 2616
THETA0= option, 2616
WCOV option, 2616
XPXI= option, 2616

MIANALYZE procedure, STDERR statement, 2617
MIANALYZE procedure, TEST statement, 2618

BCOV option, 2619
MULT option, 2619
TCOV option, 2619
WCOV option, 2619

MIDPFACTOR= option
EXACT statement (LOGISTIC), 2302

MIN= option
PLOT statement (GLMPOWER), 1943
PLOT statement (POWER), 3484

MINC= option
PROC VARCLUS statement, 4810

MINCLUSTERS= option
PROC VARCLUS statement, 4810

MINCRIT= option
PROC MDS statement, 2482

MINEIGEN= option
PROC FACTOR statement, 1312

MINHEIGHT= option
PROC TREE statement, 4752

minimum generalized variance method
PRINQUAL procedure, 3643

MINIMUM option
RIDGE statement (RSREG), 4044

MINIMUM= option
PROC MI statement, 2519

MININERTIA= option
PROC CORRESP statement, 1077

MINITER= option
NLOPTIONS statement (CALIS), 616
PROC NLMIXED statement, 3070

Minkowski metric
STDIZE procedure, 4138

Minkowski L(p) distance coefficient
DISTANCE procedure, 1272

MINMAXITER= option
PROC MI statement, 2519

MINPOINTS= option
PREDICT statement (KRIGE2D), 2041

MINSIZE= option
PROC SURVEYSELECT statement, 4436

misclassification probabilities
discriminant analysis, 1140

MISS= option
MODEL statement (CATMOD), 844

MISSBREAK option
PLOT statement (BOXPLOT), 504

missing at random
MI procedure, 2537, 2564

missing level combinations
MIXED procedure, 2748

MISSING option
CLASS statement (GENMOD), 1629
CLASS statement (LOGISTIC), 2296
CLASS statement (TPHREG), 4477
PROC CORRESP statement, 1077
PROC LIFETEST statement, 2163
PROC NPAR1WAY statement, 3157
PROC SURVEYFREQ statement, 4193
PROC SURVEYLOGISTIC statement, 4251
PROC SURVEYMEANS statement, 4323
STRATA statement (LIFETEST), 2167
STRATA statement (PHREG), 3237
TABLES statement (FREQ), 1458

missing stratum values
LIFETEST procedure, 2166, 2167

missing values
ACECLUS procedure, 409
and interactivity (GLM), 1787
CANCORR procedure, 765
character (PRINQUAL), 3662
CLUSTER procedure, 987
DISTANCE procedure, 1261, 1262, 1267, 1276
FASTCLUS procedure, 1380, 1381, 1391, 1393,

1397
LIFEREG procedure, 2108
LIFETEST procedure, 2171
LOGISTIC procedure, 2329
MDS procedure, 2492
MODECLUS procedure, 2883
MULTTEST procedure, 2960
NPAR1WAY procedure, 3162
PHREG procedure, 3228, 3236, 3286
PRINCOMP procedure, 3608
PRINQUAL procedure, 3655, 3667, 3674
PROBIT procedure, 3755
SCORE procedure, 4074
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STDIZE procedure, 4131, 4133
strata variables (PHREG), 3237
SURVEYFREQ procedure, 4205
SURVEYLOGISTIC procedure, 4251, 4268
SURVEYMEANS procedure, 4323, 4333, 4358
SURVEYREG procedure, 4382
SURVEYSELECT procedure, 4445
TRANSREG procedure, 4578, 4599, 4600, 4605
TREE procedure, 4756
VARCOMP procedure, 4837

MISSING= option
MODEL statement (CATMOD), 844
PROC PLS statement, 3376
PROC STDIZE statement, 4131
VAR statement, 1267

MISSPRINT option
TABLES statement (FREQ), 1458

mixed model
unbalanced (GLM), 1882
VARCOMP procedure, 4837

mixed model (MIXED),
See also MIXED procedure
estimation, 2737
formulation, 2732
hypothesis tests, 2742, 2751
inference, 2741
inference space, 2681, 2682, 2685, 2781
least-squares means, 2687
likelihood ratio test, 2741, 2743
linear model, 2661
maximum likelihood estimation, 2738
notation, 2663
objective function, 2749
parameterization, 2743
predicted values, 2687
restricted maximum likelihood, 2779
theory, 2731
Wald test, 2741, 2786

mixed model equations
example (MIXED), 2796
MIXED procedure, 2678, 2739

MIXED Procedure
Leverage, 2767
PRESS Residual, 2766
PRESS Statistic, 2766

MIXED procedure, 2672,
See also mixed model
2D geometric anisotropic structure, 2721
Akaike’s information criterion, 2676, 2740,

2750
Akaike’s information criterion (finite sample

corrected version) , 2676, 2750
ante-dependence structure, 2721
ARIMA procedure, compared, 2665
ARMA structure, 2721
assumptions, 2661
asymptotic covariance, 2674
at sign (@) operator, 2745, 2819
AUTOREG procedure, compared, 2665

autoregressive structure, 2721, 2788
banded Toeplitz structure, 2721
bar (|) operator, 2743, 2745, 2819
basic features, 2662
Bayesian analysis, 2708
between-within method, 2693
BLUE, 2740
BLUP, 2740, 2809
Bonferroni adjustment, 2688
boundary constraints, 2707, 2708, 2773
Box plots, 2762
BYLEVEL processing of LSMEANS, 2689
CALIS procedure, compared, 2665
Cholesky root, 2704, 2764, 2772
class level, 2678
classification variables, 2681
compound symmetry structure, 2721, 2733,

2789, 2794
computational details, 2772
computational order, 2773
Conditional residuals, 2764
confidence interval, 2686, 2713
confidence limits, 2674, 2685, 2689, 2692, 2713
containment method, 2693
continuous effects, 2714, 2715, 2717, 2721
continuous-by-class effects, 2746
continuous-nesting-class effects, 2745
contrasted SAS procedures, 1735, 1833, 1885,

2664, 2665, 2985
contrasts, 2681, 2685
convergence criterion, 2674, 2675, 2749, 2775
convergence problems, 2774
Cook’s D, 2768
Cook’s D for covariance parameters, 2768
correlation estimates, 2713, 2716, 2720, 2791
correlations of least-squares means, 2689
covariance parameter estimates, 2674, 2676,

2750
covariance parameter estimates, ratio, 2680
covariance parameters, 2661
covariance structures, 2664, 2721, 2723, 2782
covariances of least-squares means, 2689
covariate values for LSMEANS, 2688
covariates, 2743
COVRATIO, 2770
COVRATIO for covariance parameters, 2770
COVTRACE, 2770
COVTRACE for covariance parameters, 2770
CPU requirements, 2776
crossed effects, 2744
degrees of freedom, 2682, 2684–2687, 2690,

2693, 2705, 2742, 2747, 2751, 2774, 2809
DFFITS, 2768
dimensions, 2677, 2678
direct product structure, 2721
Dunnett’s adjustment, 2688
EBLUPs, 2715, 2740, 2801, 2817
effect name length, 2678
empirical best linear unbiased prediction, 2703
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empirical sandwich estimator, 2676
estimability, 2682–2684, 2686, 2687, 2691,

2704, 2705, 2742, 2748
estimable functions, 2702
estimation methods, 2677
factor analytic structures, 2721
Fisher information matrix, 2750, 2796
Fisher’s scoring method, 2674, 2680, 2774
fitting information, 2750, 2751
fixed effects, 2663
fixed-effects parameters, 2661, 2705, 2732
fixed-effects variance matrix, 2705
function evaluations, 2677
G matrix, 2712
general linear structure, 2721
generalized inverse, 2684, 2740
gradient, 2675, 2749
grid search, 2706, 2796
growth curve analysis, 2733
Hannan-Quinn information criterion, 2676
Hessian matrix, 2674, 2675, 2680, 2707, 2749,

2750, 2774, 2775, 2786, 2796
heterogeneity, 2714, 2717, 2792
heterogeneous AR(1) structure, 2721
heterogeneous compound-symmetry structure,

2721
heterogeneous covariance structures, 2730
heterogeneous Toeplitz structure, 2721
hierarchical model, 2810
Hotelling-Lawley-McKeon statistic, 2717
Hotelling-Lawley-Pillai-Sampson statistic, 2718
Hsu’s adjustment, 2688
Huynh-Feldt structure, 2721
infinite likelihood, 2717, 2773, 2775
Influence diagnostics details, 2765
INFLUENCE option, 2696
Influence plots, 2760
information criteria, 2676
initial values, 2706
input data sets, 2676
interaction effects, 2744
intercept, 2743
intercept effect, 2703, 2713
intraclass correlation coefficient, 2791
introductory example, 2665
iterations, 2677, 2749
Kenward-Roger method, 2695
Kronecker product structure, 2721
L matrices, 2681, 2687, 2742
LATTICE procedure, compared, 2665
least-square means, 2796
least-squares means, 2690, 2819
Likelihood distance, 2770
likelihood ratio test, 2751
linear structure, 2721
log-linear variance model, 2718
main effects, 2744
MAKE statement in Version 6, 2757
Marginal residuals, 2764

Matern covariance structure, 2721
matrix notation, 2731
MDFFITS, 2768
MDFFITS for covariance parameters, 2769
memory requirements, 2775
missing level combinations, 2748
mixed linear model, 2661
mixed model, 2732
mixed model equations, 2678, 2739, 2796
mixed model theory, 2731
model information, 2678
model selection, 2740
multilevel model, 2810
multiple comparisons of least-squares means,

2687, 2690
multiple tables, 2754
multivariate tests, 2717
nested effects, 2745
nested error structure, 2814
NESTED procedure, compared, 2665
Newton-Raphson algorithm, 2738
non-full-rank parameterization, 2664, 2718,

2747
nonstandard weights for LSMEANS, 2690
nugget effect, 2718
Oblique projector, 2767
observed margins for LSMEANS, 2690
ODS graph names, 2762
ODS Graphics, 2757
ODS table names, 2752
ordering of effects, 2679, 2746
over-parameterization, 2744
parameter constraints, 2707, 2773
parameterization, 2743
Pearson Residual, 2704
pharmaceutical stability, example, 2810
Plots of leave-one-out-estimates, 2760
plotting the likelihood, 2801
polynomial effects, 2743
power-of-the-mean model, 2718
predicted means, 2704
predicted value confidence intervals, 2692
predicted values, 2703, 2796
prior density, 2709
profiling residual variance, 2679, 2708, 2718,

2738, 2772
R matrix, 2716, 2720
random coefficients, 2788, 2810
random effects, 2663, 2712
random-effects parameter, 2715
random-effects parameters, 2662, 2732
regression effects, 2743
rejection sampling, 2711
repeated measures, 2662, 2716, 2782
Residual diagnostics details, 2763
residual method, 2694
Residual plots, 2758
residual variance tolerance, 2705
restricted maximum likelihood (REML), 2662
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ridging, 2680, 2738
sandwich estimator, 2676
Satterthwaite method, 2694
Scaled Residual, 2705
Scaled residuals, 2764
Schwarz’s Bayesian information criterion, 2676,

2740, 2750
scoring, 2674, 2680, 2774
Sidak’s adjustment, 2688
simple effects, 2691
simulation-based adjustment, 2688
singularities, 2775
spatial anisotropic exponential structure, 2721
spatial covariance structures, 2722, 2723, 2730,

2774
split-plot design, 2734, 2777
standard linear model, 2663
statement positions, 2672
Studentized Residual, 2704
Studentized residuals, 2768
subject effect, 2683, 2715, 2721, 2776, 2782
summary of commands, 2672
sweep operator, 2768, 2772
syntax, 2672
table names, 2752
test components, 2702
Toeplitz structure, 2721, 2819
TSCSREG procedure, compared, 2665
Tukey’s adjustment, 2688
Type 1 estimation, 2677
Type 2 estimation, 2677
Type 3 estimation, 2677
Type I testing, 2696
Type II testing, 2696
Type III testing, 2696, 2751
unstructuredR matrix, 2720
unstructured correlations, 2721
unstructured covariance matrix, 2721
VARCOMP procedure, example, 2795
variance components, 2662, 2721
variance ratios, 2707, 2714
Wald test, 2750, 2751
weighted LSMEANS, 2690
weighting, 2730
zero design columns, 2696
zero variance component estimates, 2774

MIXED procedure, BY statement, 2680
MIXED procedure, CLASS statement, 2681, 2748

TRUNCATE option, 2681
MIXED procedure, CONTRAST statement, 2681

CHISQ option, 2684
DF= option, 2684
E option, 2684
GROUP option, 2684
SINGULAR= option, 2684
SUBJECT option, 2685

MIXED procedure, ESTIMATE statement, 2685
ALPHA= option, 2685
CL option, 2685

DF= option, 2686
DIVISOR= option, 2686
E option, 2686
GROUP option, 2686
LOWERTAILED option, 2686
SINGULAR= option, 2686
SUBJECT option, 2686
UPPERTAILED option, 2686

MIXED procedure, ID statement, 2687
MIXED procedure, LSMEANS statement, 2687, 2796

ADJUST= option, 2687
ALPHA= option, 2688
AT MEANS option, 2688
AT option, 2688, 2689
BYLEVEL option, 2689, 2691
CL option, 2689
CORR option, 2689
COV option, 2689
DF= option, 2690
DIFF option, 2690
E option, 2690
OBSMARGINS option, 2690
PDIFF option, 2690, 2691
SINGULAR= option, 2691
SLICE= option, 2691

MIXED procedure, MAKE statement, 2757
MIXED procedure, MODEL statement, 2692

ALPHAP= option, 2692
CHISQ option, 2692
CL option, 2692
CONTAIN option, 2692, 2693
CORRB option, 2692
COVB option, 2692
COVBI option, 2693
DDF= option, 2693
DDFM= option, 2693
E option, 2695
E1 option, 2695
E2 option, 2695
E3 option, 2696
FULLX option, 2689, 2696
HTYPE= option, 2696
Influence diagnostics, 2700
INFLUENCE option, 2696
INTERCEPT option, 2702
LCOMPONENTS option, 2702
NOCONTAIN option, 2703
NOINT option, 2703, 2743
NOTEST option, 2703
ORDER= option, 2747
OUTP= option, 2796
OUTPRED= option, 2703
OUTPREDM= option, 2704
RESIDUAL option, 2704, 2764
SINGCHOL= option, 2704
SINGRES= option, 2705
SINGULAR= option, 2704
SOLUTION option, 2705, 2747
VCIRY option, 2705, 2764



5048 � Syntax Index

XPVIX option, 2705
XPVIXI option, 2705
ZETA= option, 2705

MIXED procedure, MODEL statement, INFLUENCE
option

EFFECT=, 2697
ESTIMATES, 2697
ITER=, 2698
KEEP=, 2699
SELECT=, 2699
SIZE=, 2699

MIXED procedure, PARMS statement, 2706, 2796
EQCONS= option, 2707
HOLD= option, 2707
LOGDETH option, 2707
LOWERB= option, 2707
NOBOUND option, 2707
NOITER option, 2708
NOPROFILE option, 2708
OLS option, 2708
PARMSDATA= option, 2708
PDATA= option, 2708
RATIOS option, 2708
UPPERB= option, 2708

MIXED procedure, PRIOR statement, 2708
ALG= option, 2710
BDATA= option, 2710
DATA= option, 2710
FLAT option, 2710
GRID= option, 2710
GRIDT= option, 2711
IFACTOR= option, 2711
JEFFREYS option, 2710
LOGNOTE= option, 2711
LOGRBOUND= option, 2711
NSAMPLE= option, 2711
NSEARCH= option, 2711
OUT= option, 2711
OUTG= option, 2711
OUTGT= option, 2711
PSEARCH option, 2711
PTRANS option, 2712
SEED= option, 2712
SFACTOR= option, 2712
TDATA= option, 2712
TRANS= option, 2712
UPDATE= option, 2712

MIXED procedure, PROC MIXED statement, 2674
ABSOLUTE option, 2674, 2749
ALPHA= option, 2674
ASYCORR option, 2674
ASYCOV option, 2674, 2796
CL= option, 2674
CONVF option, 2675, 2749
CONVG option, 2675, 2749
CONVH option, 2675, 2749
COVTEST option, 2676, 2750
DATA= option, 2676
DFBW option, 2676

IC option, 2676
INFO option, 2677
ITDETAILS option, 2677
LOGNOTE option, 2677
MAXFUNC= option, 2677
MAXITER= option, 2677
METHOD= option, 2677, 2783
MMEQ option, 2678, 2796
MMEQSOL option, 2678, 2796
NAMELEN= option, 2678
NOBOUND option, 2678
NOCLPRINT option, 2678
NOINFO option, 2678
NOITPRINT option, 2679
NOPROFILE option, 2679, 2738
ORD option, 2679
ORDER= option, 2679, 2744
RATIO option, 2680, 2750
RIDGE= option, 2680
SCORING= option, 2680
SIGITER option, 2680
UPDATE option, 2680

MIXED procedure, RANDOM statement, 2664, 2712,
2777

ALPHA= option, 2713
CL option, 2713
G option, 2713
GC option, 2713
GCI option, 2713
GCORR option, 2713
GDATA= option, 2713
GI option, 2714
GROUP= option, 2714
LDATA= option, 2714
NOFULLZ option, 2714
RATIOS option, 2714
SOLUTION option, 2715
SUBJECT= option, 2683, 2715
TYPE= option, 2715
V option, 2716
VC option, 2716
VCI option, 2716
VCORR option, 2716
VI option, 2716

MIXED procedure, REPEATED statement, 2664,
2716, 2783

GROUP= option, 2717
HLM option, 2717
HLPS option, 2718
LDATA= option, 2718
LOCAL= option, 2718
LOCALW option, 2719
NONLOCALW option, 2720
R option, 2720
RC option, 2720
RCI option, 2720
RCORR option, 2720
RI option, 2720
SSCP option, 2720
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SUBJECT= option, 2721
TYPE= option, 2721

MIXED procedure, WEIGHT statement, 2730
ML factor analysis

and computer time, 1297
and confidence intervals, 1294, 1297, 1327
and multivariate normal distribution, 1297
and standard errors, 1297

ML option
MODEL statement (CATMOD), 843

MMEQ option
PROC MIXED statement, 2678, 2796

MMEQSOL option
PROC MIXED statement, 2678, 2796

MNAMES= option
MANOVA statement (ANOVA), 438
MANOVA statement (GLM), 1760

modal clusters
density estimation (CLUSTER), 970

modal region, definition, 2878
MODE= option

PROC CLUSTER statement, 970
PROC MODECLUS statement, 2867

MODECLUS procedure
analyzing data in groups, 2857, 2874
cascaded density estimates, 2873
clustering methods, 2856, 2874
clusters, definition, 2878
clusters, plotting, 2878
compared with other procedures, 2856
cross validated density estimates, 2872
density estimation, 2870
example using GPLOT procedure, 2916, 2923
example using TRACE option, 2927
example using TRANSPOSE procedure, 2912
fixed-radius kernels, 2870
functional summary, 2862
Hertzsprung-Russell Plot, example, 2923
JOIN option, discussion, 2880
modal region, 2878
neighborhood distribution function (NDF), defi-

nition, 2878
nonparametric clustering methods, 2855
output data sets, 2883
p-value computation, 2877
plotting samples from univariate distributions,

2889
population clusters, risks of estimating, 2877
saddle test, definition, 2879
scaling variables, 2856
significance tests, 2916
standardizing, 2856
summary of options, 2862
syntax, 2862
variable-radius kernels, 2870

MODECLUS procedure, BY statement, 2869
MODECLUS procedure, FREQ statement, 2870
MODECLUS procedure, ID statement, 2870

MODECLUS procedure, PROC MODECLUS state-
ment, 2862

ALL option, 2865
AM option, 2865
BOUNDARY option, 2865
CASCADE= option, 2865
CK= option, 2865
CLUSTER= option, 2865
CORE option, 2865
CR= option, 2865
CROSS option, 2865
CROSSLIST option, 2865
DATA= option, 2865
DENSITY= option, 2866
DIMENSION= option, 2866
DK= option, 2866
DOCK= option, 2866
DR= option, 2866
EARLY option, 2866
HM option, 2866
JOIN= option, 2866
K= option, 2867
LIST option, 2867
LOCAL option, 2867
MAXCLUSTERS= option, 2867
METHOD= option, 2867
MODE= option, 2867
NEIGHBOR option, 2868
NOPRINT option, 2868
NOSUMMARY option, 2868
OUT= option, 2868
OUTCLUS= option, 2868
OUTLENGTH= option, 2868
OUTSUM= option, 2868
POWER= option, 2868
R= option, 2869
SHORT option, 2869
SIMPLE option, 2869
STANDARD option, 2869
SUM option, 2869
TEST option, 2869
THRESHOLD= option, 2869
TRACE option, 2869

MODECLUS procedure, VAR statement, 2870
model

fit summary (REG), 3896
fitting criteria (LOGISTIC), 2341
fitting criteria (SURVEYLOGISTIC), 4279
hierarchy (LOGISTIC), 2283, 2310
hierarchy (TPHREG), 4473, 4475
information (MIXED), 2678
parameterization (GLM), 1787
specification (ANOVA), 451
specification (GLM), 1784
specification (NLMIXED, 3077

model assessment, 1718, 1725
PHREG procedure, 3223, 3265, 3271, 3318

model checking, 1718, 1725
model selection
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entry (PHREG), 3230
examples (REG), 3924
LOGISTIC procedure, 2306, 2317, 2340
MIXED procedure, 2740
PHREG procedure, 3216, 3229, 3264
REG procedure, 3800, 3873, 3876, 3877
removal (PHREG), 3230

MODEL statement
ANOVA procedure, 445
CATMOD procedure, 840
GAM procedure, 1566
GENMOD procedure, 1636
GLM procedure, 1770
GLMMOD procedure, 1917
GLMPOWER procedure, 1938
KRIGE2D procedure, 2042
LIFEREG procedure, 2094
LOESS procedure, 2231
LOGISTIC procedure, 2304
MIXED procedure, 2692
NLIN procedure, 3012
NLMIXED procedure, 3077
ORTHOREG procedure, 3203
PHREG procedure, 3227
PLS procedure, 3378
REG procedure, 3821
ROBUSTREG procedure, 3989
RSREG procedure, 4041
SURVEYLOGISTIC procedure, 4258
SURVEYREG procedure, 4379
TPHREG procedure, 4474
TPSPLINE procedure, 4508
TRANSREG procedure, 4557
VARCOMP procedure, 4836

MODEL= option
MULTREG statement (POWER), 3422
ONECORR statement (POWER), 3427

MODELEFFECTS statement
MIANALYZE procedure, 2617

MODELFONT option
PLOT statement (REG), 3846

MODELHT option
PLOT statement (REG), 3847

MODELLAB option
PLOT statement (REG), 3847

MODELSE option
REPEATED statement (GENMOD), 1648

modification indices
CALIS procedure, 576, 649, 673
constraints (CALIS), 584
displaying (CALIS), 687
Lagrange multiplier test (CALIS), 584, 673, 674
Wald test (CALIS), 584, 674

MODIFICATION option
PROC CALIS statement, 584

modified Peto-Peto test for homogeneity
LIFETEST procedure, 2150, 2168

modified ridit scores, 1469
Modifiers of INFLUENCE option

MODEL statement (MIXED), 2696
monoecious population analysis

example (INBREED), 1985
monotone

regression function (TRANSREG), 4629
transformations (TRANSREG), 4593

monotone missing pattern
MI procedure, 2538

MONOTONE statement
MI procedure, 2530

MONOTONE transformation
MODEL statement (TRANSREG), 4563
TRANSFORM statement (PRINQUAL), 3662

MONOTONE= option
MODEL statement (TRANSREG), 4577
PROC PRINQUAL statement, 3654

monotonic
transformation (PRINQUAL), 3662, 3663
transformation (TRANSREG), 4563, 4564,

4610
transformation, B-spline (PRINQUAL), 3662
transformation, B-spline (TRANSREG), 4563,

4611
Monte Carlo estimation

FREQ procedure, 1443, 1445, 1512
NPAR1WAY procedure, 3174

MOOD option
EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3157

Mood scores
NPAR1WAY procedure, 3168

MORALS method
TRANSREG procedure, 4576

mortality test
MULTTEST procedure, 2952, 2972

MPAIRS= option
PROC ACECLUS statement, 405

MPC option
OUTPUT statement (TRANSREG), 4590

MQC option
OUTPUT statement (TRANSREG), 4590

MRC option
OUTPUT statement (TRANSREG), 4590

MREDUNDANCY option
OUTPUT statement (TRANSREG), 4590

MSA option
PROC FACTOR statement, 1312

MSE
SURVEYREG procedure, 4388

MSE option
MODEL statement (REG), 3827
PLOT statement (REG), 3847

MSINGULAR= option
NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 590
PROC NLMIXED statement, 3070

MSPLINE transformation
MODEL statement (TRANSREG), 4563
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TRANSFORM statement (PRINQUAL), 3662
MSTAT= option

MANOVA statement (ANOVA), 438
MANOVA statement (GLM), 1761
REPEATED statement (ANOVA), 448
REPEATED statement (GLM), 1780

MTEST statement
REG procedure, 3832

MTV method
PRINQUAL procedure, 3643

MU0= option
PROC MI statement, 2519
PROC MIANALYZE statement, 2616

MULT option
PROC MIANALYZE statement, 2615
TEST statement (MIANALYZE), 2619

MULT= option
PROC DISTANCE statement, 1261
PROC STDIZE statement, 4131

multicollinearity
REG procedure, 3895

multidimensional preference analysis
PRINQUAL procedure, 3678, 3688

multidimensional scaling
MDS procedure, 2471
metric (MDS), 2471
nonmetric (MDS), 2471, 2472
three-way (MDS), 2471

multilevel model
example (MIXED), 2810

multilevel response, 3759
multinomial

distribution (GENMOD), 1653
models (GENMOD), 1671

MULTIPASS option
PROC ANOVA statement, 433
PROC GLM statement, 1746
PROC PHREG statement, 3222

multiple classifications
cutpoints (LOGISTIC), 2315

multiple comparison procedures, 1806,
See also multiple comparisons of means
See also multiple comparisons of least-squares

means
GLM procedure, 1763
multiple-stage tests, 1814
pairwise (GLM), 1807
recommendations, 1816
with a control (GLM), 1807, 1812

multiple comparisons adjustment (MIXED)
least-squares means, 2687

multiple comparisons of least-squares means,
See also multiple comparison procedures
GLM procedure, 1754, 1757, 1808
interpretation, 1816
MIXED procedure, 2687, 2690

multiple comparisons of means,
See also multiple comparison procedures
ANOVA procedure, 440

Bonferronit test, 441, 1765
Duncan’s multiple range test, 442, 1766
Dunnett’s test, 442, 1766, 1767
error mean square, 443, 1767
examples, 1847
Fisher’s LSD test, 445, 1769
Gabriel’s procedure, 443, 1767
GLM procedure, 1806, 1808
GT2 method, 444, 1769
interpretation, 1816
Ryan-Einot-Gabriel-Welsch test, 444, 1768
Scheffé’s procedure, 444, 1769
Sidak’s adjustment, 444, 1769
SMM, 444, 1769
Student-Newman-Keuls test, 444, 1769
Tukey’s studentized range test, 445, 1769
Waller-Duncan method, 443
Waller-Duncan test, 445, 1769

multiple correspondence analysis (MCA)
CORRESP procedure, 1076, 1101, 1123

multiple destinations
examples, ODS Graphics, 360

multiple imputation efficiency
MI procedure, 2562
MIANALYZE procedure, 2626

multiple imputations analysis, 2511, 2609
multiple R-square

SURVEYREG procedure, 4387
multiple redundancy coefficients

TRANSREG procedure, 4590
multiple regression

TRANSREG procedure, 4593
multiple tables

MIXED procedure, 2754
multiple-stage tests, 1814,

See multiple comparison procedures
MULTIPLEGROUP option

PROC VARCLUS statement, 4811
multiplicative hazards model,

See Andersen-Gill model
multistage sampling, 165
multivariate analysis of variance, 433, 436

CANDISC procedure, 786
examples (GLM), 1868
GLM procedure, 1745, 1759, 1823
hypothesis tests (GLM), 1824
partial correlations, 1824

multivariate general linear hypothesis, 1824
multivariate inferences

MIANALYZE procedure, 2626
multivariate multiple regression

TRANSREG procedure, 4593
multivariate normality assumption

MI procedure, 2565
multivariate tests

MIXED procedure, 2717
REG procedure, 3910
repeated measures, 1828

multiway tables
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SURVEYFREQ procedure, 4227
MULTREG statement

POWER procedure, 3421
MULTTEST procedure, 2939

adjustedp-value, 2935, 2956
Bonferroni adjustment, 2939, 2956
bootstrap adjustment, 2938, 2939, 2957
Cochran-Armitage test, 2946, 2948, 2951, 2964
computational resources, 2960
convolution distribution, 2950
displayed output, 2963
double arcsine test, 2951
expected trend, 2951
false discovery rate adjustment, 2959
fast Fourier transform, 2950
Fisher combination adjustment, 2959
Fisher exact test, 2944, 2946, 2954
Freeman-Tukey test, 2946, 2951, 2968
Hochberg adjustment, 2959
Hommel adjustment, 2959
introductory example, 2936
linear trend test, 2949
missing values, 2960
ODS table names, 2963
output data sets, 2961
p-value adjustments, 2935, 2956
permutation adjustment, 2942, 2957, 2975
Peto test, 2946, 2952, 2972
resampled data sets, 2962
Sidak’s adjustment, 2942, 2956
statistical tests, 2948
stepdown methods, 2957
strata weights, 2951
syntax, 2939
t test, 2946, 2955, 2968

MULTTEST procedure, BY statement, 2943
MULTTEST procedure, CLASS statement, 2943

TRUNCATE option, 2944
MULTTEST procedure, CONTRAST statement, 2944
MULTTEST procedure, FREQ statement, 2945
MULTTEST procedure, PROC MULTTEST state-

ment, 2939
BONFERRONI option, 2939, 2956
BOOTSTRAP option, 2937, 2939, 2957, 2968
CENTER option, 2939
DATA= option, 2940
FDR option, 2940, 2959
FISHER–C option, 2940, 2959
HOC option, 2940, 2959
HOLM option, 2942
HOM option, 2940
HOMMEL option, 2959
NOCENTER option, 2940
NOPRINT option, 2940
NOTABLES option, 2940
NOZEROS option, 2940
NSAMPLE= option, 2940
ORDER= option, 2940, 2975
OUT= option, 2941, 2961

OUTPERM= option, 2941, 2962, 2964
OUTSAMP= option, 2941, 2962, 2968
PDATA= option, 2941
PERMUTATION option, 2942, 2957, 2964,

2975
PVALS option, 2942
SEED= option, 2942
SIDAK option, 2942, 2956, 2972
STEPBON option, 2942
STEPBOOT option, 2942
STEPPERM option, 2942
STEPSID option, 2942, 2972

MULTTEST procedure, STRATA statement, 2945
WEIGHT= option, 2946, 2951

MULTTEST procedure, TEST statement, 2946
BINOMIAL option, 2947
CA option, 2948, 2964
CONTINUITY= option, 2947
FISHER option, 2944, 2954, 2975
FT option, 2951, 2968
LOWERTAILED option, 2947
MEAN option, 2955, 2968
PERMUTATION= option, 2947, 2949, 2950,

2964
PETO option, 2952, 2972
TIME= option, 2947
UPPERTAILED option, 2947

Murthy’s method
SURVEYSELECT procedure, 4454

N
N option

OUTPUT statement (FREQ), 1448
N= option

EXACT statement (FREQ), 1445
EXACT statement (NPAR1WAY), 3160
FACTOR statement (CALIS), 607
PROC ACECLUS statement, 405
PROC PRINCOMP statement, 3605
PROC PRINQUAL statement, 3655
PROC SURVEYLOGISTIC statement, 4252
PROC SURVEYMEANS statement, 4326
PROC SURVEYREG statement, 4374

NAME statement
TREE procedure, 4756

name-lists
POWER procedure, 3490

NAME= option
MODEL statement (TRANSREG), 4571
PLOT statement (BOXPLOT), 504
PLOT statement (GLMPOWER), 1945
PLOT statement (POWER), 3487
PLOT statement (REG), 3847
PROC TREE statement, 4752
TRANSFORM statement (PRINQUAL), 3666

NAMELEN= option
PROC ANOVA statement, 433
PROC CATMOD statement, 829
PROC GENMOD statement, 1625
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PROC GLM statement, 1746
PROC GLMMOD statement, 1914
PROC LIFEREG statement, 2090
PROC LOGISTIC statement, 2293
PROC MIXED statement, 2678
PROC PROBIT statement, 3713
PROC ROBUSTREG statement, 3983
PROC SURVEYLOGISTIC statement, 4251

NARROW option
PROC SIM2D statement, 4099

natural response rate, 3705, 3707, 3711, 3713
NBEST option

PROC ROBUSTREG statement, 3986
NBITER= option

MCMC statement (MI), 2528
NCAN= option

MODEL statement (TRANSREG), 4577
PROC CANCORR statement, 760
PROC CANDISC statement, 791
PROC DISCRIM statement, 1149

NCLUSTERS= option
PROC TREE statement, 4752

NCOVARIATES= option
POWER statement (GLMPOWER), 1940

NDIRECTIONS= option
COMPUTE statement (VARIOGRAM), 4868

nearest centroid sorting, 1380
nearest neighbor method,

See also single linkage
DISCRIM procedure, 1158, 1161

negative binomial distribution
GENMOD procedure, 1652
NLMIXED procedure, 3078

NEGATIVE option
PROC MDS statement, 2482

negative variance components
VARCOMP procedure, 4838

NEIGHBOR option
PROC MODECLUS statement, 2868

neighborhood distribution function (NDF), definition
MODECLUS procedure, 2878

Nelder-Mead simplex, 3073
nested design, 2985

error terms, 2991
generating with PLAN procedure, 3353
hypothesis tests (NESTED), 2990

nested effects
design matrix (CATMOD), 878
GENMOD procedure, 1660
MIXED procedure, 2745
model parameterization (GLM), 1789
specifying (ANOVA), 451, 453
specifying (CATMOD), 864
specifying (GLM), 1785

nested error structure
MIXED procedure, 2814

nested models
KRIGE2D procedure, 2050, 2051
VARIOGRAM procedure, 4871

NESTED procedure
analysis of covariation, 2990
compared to other procedures, 1735, 2665, 2985
computational method, 2991
input data sets, 2988
introductory example, 2986
missing values, 2990
ODS table names, 2994
random effects, 2990
syntax, 2988
unbalanced design, 2990

NESTED procedure, BY statement, 2988
NESTED procedure, CLASS statement, 2989

TRUNCATE option, 2989
NESTED procedure, PROC NESTED statement, 2988

AOV option, 2988
DATA= option, 2988

NESTED procedure, VAR statement, 2989
nested-by-value effects

specifying (CATMOD), 865
network algorithm, 1509, 3172
Newman-Keuls’ multiple range test, 444, 1769, 1814
Newton algorithm

FASTCLUS procedure, 1392
Newton-Raphson algorithm

CALIS procedure, 578, 580, 581, 665
GENMOD procedure, 1655
iteration (PHREG), 3222
LIFEREG procedure, 2083
LOGISTIC procedure, 2317, 2318, 2336, 2338
method (PHREG), 3245
MIXED procedure, 2738
NLMIXED procedure, 3073
PROBIT procedure, 3756
SURVEYLOGISTIC procedure, 4264, 4265,

4277
NFAC= option

PROC PLS statement, 3376
NFACTORS= option

PROC FACTOR statement, 1313
NFRACTIONAL option

MULTREG statement (POWER), 3422
ONECORR statement (POWER), 3427
ONESAMPLEMEANS statement (POWER),

3434
ONEWAYANOVA statement (POWER), 3440
PAIREDFREQ statement (POWER), 3445
PAIREDMEANS statement (POWER), 3451
POWER statement (GLMPOWER), 1940
TWOSAMPLEFREQ statement (POWER),

3459
TWOSAMPLEMEANS statement (POWER),

3467
TWOSAMPLESURVIVAL statement

(POWER), 3477
NFRACTIONAL= option

ONESAMPLEFREQ statement (POWER), 3430
NFULLPREDICTORS= option

MULTREG statement (POWER), 3423
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NGRID= option
BIVAR statement, 1998
UNIVAR statement, 2000

NHCLASSES= option
COMPUTE statement (VARIOGRAM), 4868

NIMPUTE= option
PROC MI statement, 2520

NINTERVAL= option
PROC LIFETEST statement, 2163

NITER= option
MCMC statement (MI), 2528
PROC PLS statement, 3374

NKNOTS= option
MODEL statement (TRANSREG), 4568
TRANSFORM statement (PRINQUAL), 3666

NLAG= option
MCMC statement (MI), 2525

NLEGEND option
PLOT statement (BOXPLOT), 505

NLEVELS option
PROC FREQ statement, 1442

NLIN procedure
analytic derivatives, 3011, 3017
automatic derivatives, 3017
close-to-linear, 3019
confidence interval, 3013, 3014, 3028, 3029
convergence, 3022
convergence criterion, 3006
cross-referencing variables, 3010
debugging execution, 3008
derivatives, 3011, 3017
displayed output, 3006
G2 inverse, 3025
G4 inverse, 3008
Gauss iterative method, 3008
Gauss-Newton method, 3024, 3027
generalized inverse, 3025
gradient method, 3024, 3025
Hessian, 3026, 3030
Hougaard’s measure, 3008, 3019
imposing bounds, 3010
incompatibilities, 3031, 3032
initial values, 3015
iteratively reweighted least squares example,

3038
Lagrange multiplier, 3010
Lagrange multipliers, covariance matrix, 3030
Marquardt iterative method, 3008, 3024, 3027
maximum iterations, 3008
maximum subiterations, 3008
mean square error specification, 3009
missing values, 3020
model confidence interval, 3029
model.variable syntax, 3012
Newton iterative method, 3008, 3024, 3026
object convergence measure, 3003
output table names, 3033
parameter confidence interval, 3028
parameter covariance matrix, 3029

PPC convergence measure, 3003
predicted values, output, 3014
R convergence measure, 3003
residual values, output, 3014
retaining variables, 3011, 3016
RPC convergence measure, 3003
segmented model example, 3034
singularity criterion, 3009
skewness, 3004, 3008, 3019
SMETHOD=GOLDEN step size search, 3028
special variables, 3020
standard error, 3014
steepest descent method, 3024, 3025
step size search, 3028
syntax, 3004
troubleshooting, 3022
tuning display of iteration computation, 3009
weighted regression, 3021

NLIN procedure, BOUNDS statement, 3010
NLIN procedure, BY statement, 3011
NLIN procedure, CONTROL statement, 3011
NLIN procedure, DER statement, 3011
NLIN procedure, ID statement, 3012
NLIN procedure, MODEL statement, 3012
NLIN procedure, OUTPUT statement, 3013

H= option, 3013
L95= option, 3013
L95M= option, 3013
OUT= option, 3013
PARMS= option, 3013
PREDICTED= option, 3014
RESIDUAL= option, 3014
SSE= option, 3014
STDI= option, 3014
STDP= option, 3014
STDR= option, 3014
STUDENT= option, 3014
U95= option, 3014
U95M= option, 3014
WEIGHT= option, 3014

NLIN procedure, PARAMETERS statement, 3014
NLIN procedure, PROC NLIN statement, 3005

BEST= option, 3006
CONVERGE= option, 3006
CONVERGEOBJ= option, 3007
CONVERGEPARM= option, 3007
DATA= option, 3007
FLOW option, 3008
G4 option, 3008
HOUGAARD option, 3008
LIST option, 3008
LISTALL option, 3008
LISTCODE option, 3008
LISTDEP option, 3008
LISTDER option, 3008
MAXITER= option, 3008
MAXSUBIT= option, 3008
METHOD= option, 3008
NOHALVE option, 3009
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NOITPRINT option, 3009
NOPRINT option, 3009
OUTEST= option, 3009
PRINT option, 3009
RHO= option, 3009
SAVE option, 3009
SIGSQ= option, 3009
SINGULAR= option, 3009
SMETHOD= option, 3009
TAU= option, 3010
TRACE option, 3010
XREF option, 3010

NLIN procedure, program statements, 3016
NLIN procedure, RETAIN statement, 3016
NLINCON statement, CALIS procedure, 610
NLMIXED procedure, 3057

Accelerated failure time model, 3128
active set methods, 3093
adaptive Gaussian quadrature, 3084
additional estimates, 3076, 3106
alpha level, 3061
arrays, 3074
assumptions, 3083
Bernoulli distribution, 3077
binary distribution, 3077
binomial distribution, 3077
bounds, 3075
compared with other SAS procedures and

macros, 3048
computational problems, 3098
computational resources, 3103
contrasts, 3076
convergence criteria, 3060, 3065, 3087
convergence problems, 3099
covariance matrix, 3061, 3101, 3106
degrees of freedom, 3062
empirical Bayes estimation, 3084
empirical Bayes options, 3062
finite differencing, 3064, 3091
first-order method, 3085
fit statistics, 3106
floating point errors, 3098
Frailty model example, 3128
functional convergence criteria, 3063
gamma distribution, 3077
Gaussian distribution, 3077
general distribution, 3078
generalized inverse, 3065
growth curve example, 3049
Hessian matrix, 3066
Hessian scaling, 3065, 3093
integral approximations, 3070, 3084
iteration history, 3067, 3104
lag functionality, 3081
Lagrange multiplier, 3093
line-search methods, 3066, 3067, 3096
logistic-normal example, 3053
long run times, 3098
maximum likelihood, 3048

negative binomial distribution, 3078
normal distribution, 3077, 3080
notation, 3083
ODS table names, 3107
optimization techniques, 3072, 3086
options summary, 3058
overflows, 3098
parameter estimates, 3106
parameter rescaling, 3098
parameter specification, 3078
pharmakokinetics example, 3107
Poisson distribution, 3078
Poisson-normal example, 3124
precision, 3101
prediction, 3079, 3102
probit-normal-binomial example, 3114
probit-normal-ordinal example, 3118
programming statements, 3081
projected gradient, 3093
projected Hessian, 3093
quadrature options, 3071
random effects, 3079
references, 3138
replicate subjects, 3080
singularity tolerances, 3072
sorting of input data set, 3062, 3079
stationary point, 3100
step length options, 3096
syntax, 3057
syntax summary, 3057
termination criteria, 3060, 3087
update methods, 3073

NLMIXED procedure, ARRAY statement, 3074
NLMIXED procedure, BOUNDS statement, 3075
NLMIXED procedure, BY statement, 3076
NLMIXED procedure, CONTRAST statement, 3076

DF= option, 3076
NLMIXED procedure, ESTIMATE statement, 3077

ALPHA= option, 3077
DF= option, 3077

NLMIXED procedure, ID statement, 3077
NLMIXED procedure, MODEL statement, 3077
NLMIXED procedure, PARMS statement, 3078

BEST= option, 3078
DATA= option, 3078

NLMIXED procedure, PREDICT statement, 3079
ALPHA= option, 3079
DER option, 3079
DF= option, 3079

NLMIXED procedure, PROC NLMIXED statement
ABSCONV= option, 3060
ABSFCONV= option, 3060
ABSGCONV= option, 3060
ABSXCONV= option, 3060
ALPHA= option, 3061
ASINGULAR= option, 3061
CFACTOR= option, 3061
CORR option, 3061
COV option, 3061
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COVSING= option, 3061
DAMPSTEP option, 3061
DATA= option, 3062
DF= option, 3062
DIAHES option, 3062
EBOPT option, 3062
EBSSFRAC option, 3062
EBSSTOL option, 3062
EBSTEPS option, 3062
EBSUBSTEPS option, 3062
EBTOL option, 3062
EBZSTART option, 3062
ECORR option, 3063
ECOV option, 3063
EDER option, 3063
FCONV2= option, 3063
FCONV= option, 3063
FD= option, 3064
FDHESSIAN= option, 3064
FDIGITS= option, 3065
FLOW option, 3065
FSIZE= option, 3065
G4= option, 3065
GCONV= option, 3065
HESCAL= option, 3065
HESS option, 3066
INHESSIAN option, 3066
INSTEP= option, 3066
ITDETAILS option, 3067
LCDEACT= option, 3067
LCEPSILON= option, 3067
LCSINGULAR= option, 3067
LINESEARCH= option, 3067
LIST option, 3068
LISTCODE option, 3068
LOGNOTE option, 3068
LSPRECISION= option, 3068
MAXFUNC= option, 3069
MAXITER= option, 3069
MAXSTEP= option, 3069
MAXTIME= option, 3070
METHOD= option, 3070
MINITER= option, 3070
MSINGULAR= option, 3070
NOAD option, 3071
NOADSCALE option, 3071
OPTCHECK option, 3071
OUTQ= option, 3071
QFAC option, 3071
QMAX option, 3071
QPOINTS option, 3071
QSCALEFAC option, 3071
QTOL option, 3071
RESTART option, 3072
SEED option, 3072
SINGCHOL= option, 3072
SINGHESS= option, 3072
SINGSWEEP= option, 3072
SINGVAR option, 3072

START option, 3072
TECHNIQUE= option, 3072, 3073
TRACE option, 3073
UPDATE= option, 3073, 3074
VSINGULAR= option, 3074
XCONV= option, 3074
XSIZE= option, 3074

NLMIXED procedure, RANDOM statement, 3079
ALPHA= option, 3080
DF= option, 3080
OUT= option, 3080

NLMIXED procedure, REPLICATE statement, 3080
NLOPTIONS statement, CALIS procedure, 611
NMARKERS= option

PROC STDIZE statement, 4131
NMAX= option

PROC SURVEYSELECT statement, 4437
NMIN= option

PROC SURVEYSELECT statement, 4437
NMISS option

OUTPUT statement (FREQ), 1448
NOAD option

PROC NLMIXED statement, 3071
NOADJDF option

PROC CALIS statement, 590
NOADSCALE option

PROC NLMIXED statement, 3071
NOANOVA option

MODEL statement (RSREG), 4042
NOBOUND option

PARMS statement (MIXED), 2707
PROC MIXED statement, 2678

NOBS= option
PROC CALIS statement, 572
PROC FACTOR statement, 1313

NOBYREF option
PLOT statement (BOXPLOT), 505

NOCENSPLOT option
PROC LIFETEST statement, 2163

NOCENTER option
PROC MULTTEST statement, 2940
PROC PLS statement, 3376

NOCHART option
BOXPLOT procedure, 505

NOCHECK option
MODEL statement (LOGISTIC), 2313
MODEL statement (SURVEYLOGISTIC), 4263
PROC PRINQUAL statement, 3655

NOCLASSIFY option
PROC DISCRIM statement, 1149

NOCLPRINT option
PROC MIXED statement, 2678

NOCODE option
MODEL statement (RSREG), 4042

NOCOL option
TABLES statement (FREQ), 1458

NOCOLLAPSE option
STRATA statement (SURVEYREG), 4381

NOCOLLECT option
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PLOT statement (REG), 3850
NOCOLUMN= option

PROC CORRESP statement, 1077
NOCONTAIN option

MODEL statement (MIXED), 2703
NOCORR option

PROC FACTOR statement, 1313
NOCOV option

PROC LOGISTIC statement, 2293
NOCUM option

TABLES statement (FREQ), 1458
NOCVSTDIZE option

PROC PLS statement, 3376
NODECREMENT option

PREDICT statement (KRIGE2D), 2041
NODESIGN option

MODEL statement (CATMOD), 845
NODESIGNPRINT= option

MODEL statement (LOGISTIC), 2313
MODEL statement (SURVEYLOGISTIC), 4264
MODEL statement (TPHREG), 4476

NODETAIL option
STRATA statement (LIFETEST), 2167

NODIAG option
PROC CALIS statement, 576

NODUMMYPRINT= option
MODEL statement (LOGISTIC), 2313
MODEL statement (SURVEYLOGISTIC), 4264
MODEL statement (TPHREG), 4476

NOEIGEN option
PROC CLUSTER statement, 970

NOEIGNUM option
NLOPTIONS statement (CALIS), 623

NOFILL option
CONTRAST statement (SURVEYREG), 4377
ESTIMATE statement (SURVEYREG), 4379

NOFIT option
MODEL statement (LOGISTIC), 2314
MODEL statement (PHREG), 3229

NOFRAME option
PLOT statement (BOXPLOT), 505

NOFREQ option
TABLES statement (FREQ), 1458
TABLES statement (SURVEYFREQ), 4201

NOFULLZ option
RANDOM statement (MIXED), 2714

NOGOODFIT option
MODEL statement (ROBUSTREG), 3990

NOHALVE option
PROC NLIN statement, 3009

NOHLABEL option
PLOT statement (BOXPLOT), 505

NOHLF option
NLOPTIONS statement (CALIS), 621

NOID option
PROC CLUSTER statement, 970

NOINCREMENT option
PREDICT statement (KRIGE2D), 2041

NOINFO option

PROC MIXED statement, 2678
NOINT option

MODEL statement (CATMOD), 845
MODEL statement (GENMOD), 1640
MODEL statement (GLM), 1772
MODEL statement (GLMMOD), 1917
MODEL statement (LIFEREG), 2099
MODEL statement (LOGISTIC), 2313
MODEL statement (MIXED), 2703, 2743
MODEL statement (ORTHOREG), 3203
MODEL statement (REG), 3827
MODEL statement (ROBUSTREG), 3990
MODEL statement (SURVEYLOGISTIC), 4264
MODEL statement (SURVEYREG), 4380
MODEL statement (TRANSREG), 4577
MULTREG statement (POWER), 3423
PROC CALIS statement, 573
PROC CANCORR statement, 760
PROC FACTOR statement, 1313
PROC PRINCOMP statement, 3605
PROC VARCLUS statement, 4811

NOITER option
MODEL statement (CATMOD), 845
PARMS statement (MIXED), 2708

NOITPRINT option
PROC MIXED statement, 2679
PROC NLIN statement, 3009

NOLINE option
PLOT statement (REG), 3847

NOLIST option
PAINT statement (REG), 3838
REWEIGHT statement (REG), 3856

NOLOG option
MODEL statement (LIFEREG), 2099

NOLOGSCALE option
MODEL statement (LOGISTIC), 2314

NOM option
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1780

NOMEAN option
BASELINE statement (PHREG), 3226

nominal level of measurement
DISTANCE procedure, 1249

nominal power
GLMPOWER procedure, 1946, 1947, 1953
POWER procedure, 3419, 3494, 3496

nominal variable
DISTANCE procedure, 1251

nominal variables, 72,
See also classification variables

NOMISS option
MODEL statement (TRANSREG), 4578
PROC DISTANCE statement, 1261
PROC FASTCLUS statement, 1393
PROC PRINQUAL statement, 3655
PROC STDIZE statement, 4131

NOMOD option
PROC CALIS statement, 584

NOMODEL option
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PLOT statement (REG), 3847
non-full-rank models

REG procedure, 3893
non-full-rank parameterization

MIXED procedure, 2664, 2718, 2747
noninferiority

power and sample size (POWER), 3552
nonlinear

mixed models (NLMIXED), 3047
regression functions (TRANSREG), 4593, 4628
transformations (TRANSREG), 4593

NONLOCALW option
REPEATED statement (MIXED), 2720

nonmetric multidimensional scaling
MDS procedure, 2471, 2472

nonoptimal transformations
PRINQUAL procedure, 3661
TRANSREG procedure, 4562

NONORM option
PROC CLUSTER statement, 971
PROC MDS statement, 2482

nonparametric clustering methods
MODECLUS procedure, 2855

nonparametric discriminant analysis, 1158
nonparametric regression

TPSPLINE procedure, 4497
nonparametric tests

NPAR1WAY procedure, 3145
NOOPTIMAL option

MODEL statement (RSREG), 4042
NOOVERLAYLEGEND option

PLOT statement (BOXPLOT), 505
NOPARM option

MODEL statement (CATMOD), 845
NOPERCENT option

TABLES statement (FREQ), 1458
TABLES statement (SURVEYFREQ), 4201

NOPHIST option
PROC MDS statement, 2482

NOPREDVAR option
MODEL statement (CATMOD), 845

NOPRINT option
FACTOR statement (PLAN), 3340
LSMEANS statement (GLM), 1756
MODEL statement (CATMOD), 845
MODEL statement (REG), 3827
MODEL statement (RSREG), 4042
MODEL statement (TRANSREG), 4578
PROC ACECLUS statement, 405
PROC ANOVA statement, 433
PROC CALIS statement, 584
PROC CANCORR statement, 761
PROC CANDISC statement, 791
PROC CATMOD statement, 829
PROC CLUSTER statement, 971
PROC CORRESP statement, 1077
PROC DISCRIM statement, 1149
PROC FACTOR statement, 1313
PROC FASTCLUS statement, 1394

PROC FREQ statement, 1442
PROC GLM statement, 1746
PROC GLMMOD statement, 1914
PROC INBREED statement, 1973
PROC LIFEREG statement, 2090
PROC LIFETEST statement, 2163
PROC LOGISTIC statement, 2293
PROC MDS statement, 2482
PROC MI statement, 2520
PROC MODECLUS statement, 2868
PROC MULTTEST statement, 2940
PROC NLIN statement, 3009
PROC NPAR1WAY statement, 3157
PROC ORTHOREG statement, 3201
PROC PHREG statement, 3222
PROC PLS statement, 3377
PROC PRINCOMP statement, 3605
PROC PRINQUAL statement, 3655
PROC PROBIT statement, 3713
PROC REG statement, 3817
PROC RSREG statement, 4040
PROC SURVEYSELECT statement, 4437
PROC TREE statement, 4753
PROC VARCLUS statement, 4811
RIDGE statement (RSREG), 4044
TABLES statement (FREQ), 1459
TABLES statement (SURVEYFREQ), 4201

NOPROFILE option
MODEL statement (CATMOD), 845
PARMS statement (MIXED), 2708
PROC MIXED statement, 2679, 2738

NOPROMAXNORM option
PROC FACTOR statement, 1313

NORESPONSE option
MODEL statement (CATMOD), 845

NORESTOREMISSING option
OUTPUT statement (TRANSREG), 4590

NORM option
FACTOR statement (CALIS), 607
PROC DISTANCE statement, 1261
PROC STDIZE statement, 4131

NORM= option
PROC FACTOR statement, 1313

normal distribution, 2083, 2097, 2111, 3705
GENMOD procedure, 1651
NLMIXED procedure, 3077, 3080
PROBIT procedure, 3757

normal kernel (DISCRIM), 1159
normalization of the estimates

MDS procedure, 2492
NORMALIZE option

WEIGHT statement (LOGISTIC), 2329
WEIGHT statement (PHREG), 3239

NOROW option
TABLES statement (FREQ), 1459

NOROW= option
PROC CORRESP statement, 1077

NOSCALE option
MODEL statement (GENMOD), 1640
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MODEL statement (LIFEREG), 2099
PROC PLS statement, 3377

NOSCORES option
OUTPUT statement (TRANSREG), 4590

NOSERIFS option
PLOT statement (BOXPLOT), 505

NOSHAPE1 option
MODEL statement (LIFEREG), 2099

NOSORT option
MEANS statement (ANOVA), 444
MEANS statement (GLM), 1768
PROC SURVEYLOGISTIC statement, 4251

NOSPARSE option
TABLES statement (FREQ), 1459
TABLES statement (SURVEYFREQ), 4201

NOSQUARE option
algorithms used (CLUSTER), 986
PROC CLUSTER statement, 969, 971

NOSTAT option
PLOT statement (REG), 3847

NOSTD option
PROC SCORE statement, 4072
TABLES statement (SURVEYFREQ), 4201

NOSTDERR option
PROC CALIS statement, 587

NOSUMMARY option
PROC MODECLUS statement, 2868
PROC PHREG statement, 3222
PROC SURVEYFREQ statement, 4193

NOTABLE option
PROC LIFETEST statement, 2163

NOTABLES option
PROC MULTTEST statement, 2940

NOTCHES option
PLOT statement (BOXPLOT), 505

NOTEST option
MODEL statement (GAM), 1568
MODEL statement (MIXED), 2703
STRATA statement (LIFETEST), 2167

NOTICKREP option
PLOT statement (BOXPLOT), 506

NOTIE option
PROC CLUSTER statement, 971

NOTOTAL option
TABLES statement (SURVEYFREQ), 4201

NOTRUNCATE option
FREQ statement (PHREG), 3227

NOU option
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1780

NOULB option
PROC MDS statement, 2482

NOUNI option
MODEL statement (ANOVA), 446
MODEL statement (GLM), 1772

NOVANGLE option
PLOT statement (BOXPLOT), 506

NOVARIOGRAM option
COMPUTE statement (VARIOGRAM), 4869

NOWARN option
TABLES statement (FREQ), 1459

NOWT option
TABLES statement (SURVEYFREQ), 4201

NOZEROCONSTANT option
OUTPUT statement (TRANSREG), 4578

NOZEROS option
PROC MULTTEST statement, 2940

NP option
PLOT statement (REG), 3847

NPAIRS= option
PAIREDFREQ statement (POWER), 3445
PAIREDMEANS statement (POWER), 3451

NPANELPOS= option
PLOT statement (BOXPLOT), 506

NPAR1WAY procedure
alpha level, 3160
Ansari-Bradley scores, 3168
Brown-Mood test, 3167
compared to other procedures, 1735
computational methods, 3172
computational resources, 3173
Cramer-von Mises test, 3170
EDF tests, 3168
exactp-values, 3172
exact tests, 3171
introductory example, 3145
Klotz scores, 3168
Kolmogorov-Smirnov test, 3169
Kruskal-Wallis test, 3166
Kuiper test, 3171
Mann-Whitney-Wilcoxon test, 3166
median scores, 3167
missing values, 3162
Monte Carlo estimation, 3174
Mood scores, 3168
network algorithm, 3172
ODS table names, 3184
one-way ANOVA tests, 3165
output data set, 3161, 3175, 3176
permutation test, 3157, 3166
Pitman’s test, 3157, 3166
rank tests, 3163
Savage scores, 3167
scores, 3166
Siegel-Tukey scores, 3167
statistical computations, 3163
summary of commands, 3155
syntax, 3155
tied values, 3163
Van der Waerden scores, 3167
Wilcoxon scores, 3166

NPAR1WAY procedure, BY statement, 3158
NPAR1WAY procedure, EXACT statement, 3159

AB option, 3160
ALPHA= option, 3160
KLOTZ option, 3160
KS option, 3160
MAXTIME= option, 3160
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MC option, 3160
MEDIAN option, 3160
MOOD option, 3160
N= option, 3160
POINT option, 3161
SAVAGE option, 3160
SCORES= option, 3160
SEED= option, 3161
ST option, 3160
VW option, 3160
WILCOXON option, 3160

NPAR1WAY procedure, FREQ statement, 3161
NPAR1WAY procedure, OUTPUT statement, 3161

AB option, 3162
EDF option, 3162
KLOTZ option, 3162
MEDIAN option, 3162
MOOD option, 3162
OUT= option, 3161
output statistics, 3161
SAVAGE option, 3162
SCORES= option, 3162
ST option, 3162
VW option, 3162
WILCOXON option, 3162

NPAR1WAY procedure, PROC NPAR1WAY state-
ment, 3155

AB option, 3156
ANOVA option, 3156
CORRECT=NO option, 3156
D option, 3156
DATA= option, 3156
EDF option, 3157
KLOTZ option, 3157
MEDIAN option, 3157
MISSING option, 3157
MOOD option, 3157
NOPRINT option, 3157
SAVAGE option, 3157
SCORES= option, 3157
ST option, 3157
VW option, 3158
WILCOXON option, 3158

NPAR1WAY procedure, VAR statement, 3162
NPARTIALVARS= option

ONECORR statement (POWER), 3427
NPATHS= option

ASSESS statement (PHREG), 3224
NPERGROUP= option

ONEWAYANOVA statement (POWER), 3440
TWOSAMPLEFREQ statement (POWER),

3459
TWOSAMPLEMEANS statement (POWER),

3467
TWOSAMPLESURVIVAL statement

(POWER), 3478
NPLOT= option

PROC FACTOR statement, 1314
NPOINTS= option

PLOT statement (GLMPOWER), 1943
PLOT statement (POWER), 3485

NREDUCEDPREDICTORS= option
MULTREG statement (POWER), 3423

NREP option
PROC ROBUSTREG statement, 3986, 3987

NSAMPLE= option
PRIOR statement (MIXED), 2711
PROC MULTTEST statement, 2940

NSEARCH= option
PRIOR statement (MIXED), 2711

NSUBINTERVAL= option
TWOSAMPLESURVIVAL statement

(POWER), 3478
NTEST= option

PROC PLS statement, 3374
NTESTPREDICTORS= option

MULTREG statement (POWER), 3423
NTICK= option

PROC TREE statement, 4753
NTOTAL= option

MULTREG statement (POWER), 3423
ONECORR statement (POWER), 3427
ONESAMPLEFREQ statement (POWER), 3430
ONESAMPLEMEANS statement (POWER),

3435
ONEWAYANOVA statement (POWER), 3440
POWER statement (GLMPOWER), 1940
TWOSAMPLEFREQ statement (POWER),

3459
TWOSAMPLEMEANS statement (POWER),

3467
TWOSAMPLESURVIVAL statement

(POWER), 3478
nugget effect

KRIGE2D procedure, 2044, 2051, 2052
MIXED procedure, 2718
VARIOGRAM procedure, 4871

NUGGET= option
MODEL statement (KRIGE2D), 2044
SIMULATE statement (SIM2D), 4104

null hypothesis, 3488
NULLCONTRAST= option

ONEWAYANOVA statement (POWER), 3441
NULLCORR= option

ONECORR statement (POWER), 3428
NULLDIFF= option

PAIREDMEANS statement (POWER), 3451
TWOSAMPLEMEANS statement (POWER),

3467
NULLDISCPROPRATIO= option

PAIREDFREQ statement (POWER), 3445
NULLMEAN= option

ONESAMPLEMEANS statement (POWER),
3435

NULLODDSRATIO= option
TWOSAMPLEFREQ statement (POWER),

3459
NULLPROPORTION= option
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ONESAMPLEFREQ statement (POWER), 3430
NULLPROPORTIONDIFF= option

TWOSAMPLEFREQ statement (POWER),
3459

NULLRATIO= option
PAIREDMEANS statement (POWER), 3451
TWOSAMPLEMEANS statement (POWER),

3467
NULLRELATIVERISK= option

TWOSAMPLEFREQ statement (POWER),
3459

number of imputations
MI procedure, 2565

number-lists
GLMPOWER procedure, 1945
POWER procedure, 3490

NUMPOINTS= option
PREDICT statement (KRIGE2D), 2042

NUMREAL= option
SIMULATE statement (SIM2D), 4101

NVALS= option
OUTPUT statement (PLAN), 3344

NVARS= option
PROC CORRESP statement, 1077

O
O’Brien’s test for homogeneity of variance

ANOVA procedure, 443
GLM procedure, 1767

objective function
mixed model (MIXED), 2749

oblimin method, 1291, 1318
oblique component analysis, 4799
Oblique projector

MIXED procedure, 2767
oblique transformation, 1294, 1298
OBSERVED option

PROC CORRESP statement, 1078
OBSMARGINS option

LSMEANS statement (GLM), 1756, 1822
LSMEANS statement (MIXED), 2690

OBSTATS option
MODEL statement (GENMOD), 1640

OCOEF option
PROC MDS statement, 2482

OCONFIG option
PROC MDS statement, 2482

OCRIT option
PROC MDS statement, 2482

odds ratio
adjusted, 1503
Breslow-Day test, 1508
case-control studies, 1488, 1503, 1504
confidence limits (LOGISTIC), 2308, 2315
confidence limits (SURVEYLOGISTIC), 4262
customized (LOGISTIC), 2328
customized (SURVEYLOGISTIC), 4267
estimation (LOGISTIC), 2347
estimation (SURVEYLOGISTIC), 4288

logit estimate, 1504
Mantel-Haenszel estimate, 1503
power and sample size (POWER), 3457, 3462,

3523, 3524
ODDSRATIO= option

TWOSAMPLEFREQ statement (POWER),
3459

ODS
and templates, 274
compatibility with Version 6, 280
creating an output data set, 292
default behavior, 273
exclusion list, 276
interactive procedures, 277
NOPRINT option interaction, 279
ODS Graphics, 319
output formats, 273
output table names, 274
path names, 275
run-group processing, 277
selection list, 276, 289
Statistical Graphics Using ODS, 319
suppressing displayed output, 279
TEMPLATE procedure, 303, 309
templates, 278
trace record, 275
with Results window, 277
with SAS Explorer, 277

ODS–ALL – CLOSE statement, 360
ODS destinations

ODS Graphics, 334
ODS DOCUMENT statement, 361
ODS examples

concatenating data sets, 299
creating an output data set, 294, 297
excluding output, 291
GLMMOD procedure, 1924
HTML output, 281, 282
links in HTML output, 308, 311
modifying templates, 307
ODS and the GCHART procedure, 312
ORTHOREG procedure, 3206
output table names, 284, 295
PLS procedure, 3394, 3396, 3405
run-group processing, 299
selecting output, 287

ODS EXCLUDE statement, 276, 291, 330, 354
PERSIST option, 291, 292

ODS graph names
ANOVA procedure, 460
CORRESP procedure, 1109
GAM procedure, 1581
GLM procedure, 1847
KDE procedure, 2010
LIFETEST procedure, 2191
LOESS procedure, 2250
LOGISTIC procedure, 2390
MI procedure, 2567
MIXED procedure, 2762
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PHREG procedure, 3271
PRINCOMP procedure, 3613
PRINQUAL procedure, 3677
REG procedure, 3923
ROBUSTREG procedure, 4014

ODS graph templates
displaying templates, 339
editing templates, 340
graph definitions, 338, 342, 365
graph template language, 338, 342
locating templates, 339
reverting to default templates, 341, 369
saving templates, 340
style definitions, 338, 344
table definitions, 338
template definitions, 338
using customized templates, 341

ODS Graphics, 319
DOCUMENT destination, 326, 335
examples, 352
excluding graphs, 330
getting started, 321
graph names, 330
graph template definitions, 338, 342, 365
graph template language, 338, 342
graphics image files, 334
graphics image files, names, 335
graphics image files, PostScript, 337
graphics image files, types, 334, 336, 350
HTML destination, 326, 335
HTML output, 326, 334, 336
index counter, 335
introductory examples, 321, 324
label collision avoidance, 351
LATEX destination, 326, 335
LaTeX output, 334, 337
lattice layouts, 381
layout area, 342
MIXED procedure, 2757
ODS destinations, 334
overlaid layouts, 368, 373, 381
PCL destination, 326, 335
PDF destination, 326, 335
PDF output, 338
plot options, 324
PostScript output, 338
PS destination, 326, 335
referring to graphs, 330
requesting graphs, 321, 324
reseting index counter, 335
RTF destination, 326, 335
RTF output, 326, 338
saving graphics image files, 336
selecting graphs, 330
supported operating environments, 348
supported procedures, 348
viewing graphs, 327

ODS GRAPHICS statement, 321, 324, 349
ANTIALIAS= option, 349

IMAGEFMT= option, 336, 337, 350, 354
IMAGENAME= option, 335, 350
OFF, 322, 349
ON, 322, 349
options, 349
RESET option, 335, 350

ODS HTML statement, 283, 291, 322
FILE= option, 326
GPATH= option, 336, 349
NEWFILE option, 313
PATH= option, 336, 349
STYLE= option, 332, 375, 378, 379
URL= suboption, 337

ODS LATEX statement, 337
GPATH= option, 337, 359
PATH= option, 337, 359
STYLE= option, 358
URL= suboption, 359

ODS LISTING statement, 361
ODS MARKUP statement

TAGSET= option, 337
ODS output

destinations, 274, 276, 298
objects, 273

ODS output files, 326
ODS OUTPUT statement, 292, 294, 296, 299

data set options, 297, 298
MATCH–ALL option, 299
PERSIST option, 299, 302

ODS path, 340, 341, 346
ODS PATH statement, 279, 341

RESET option, 342
SHOW option, 340

ODS PDF statement, 338
FILE= option, 338, 360
ID= option, 360

ODS RTF statement, 326, 356, 360
FILE= option, 338

ODS SELECT statement, 276, 287, 330, 331, 353
ODS SHOW statement, 279, 288, 292
ODS Statistical Graphics,

see ODS Graphics
ODS styles, 332

Analysis style, 333
attributes, 344
customizing, 345, 374, 376, 378
Default style, 333, 346
definitions, 344
elements, 344
Journal style, 332, 333, 346
Rtf style, 346
specifying, 332
specifying a default, 346
Statistical style, 333

ODS table names
SURVEYLOGISTIC procedure, 4295
SURVEYREG procedure, 4394
SURVEYSELECT procedure, 4460
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ODS TRACE statement, 275, 284, 286, 296, 330, 339,
352, 363

listing interleaved with trace record, 285
LISTING option, 275, 284, 331

offset
GENMOD procedure, 1640, 1689

offset variable
GENMOD procedure, 1617
PHREG procedure, 3229

OFFSET= option
MODEL statement (GENMOD), 1640
MODEL statement (LOGISTIC), 2314
MODEL statement (PHREG), 3229
MODEL statement (SURVEYLOGISTIC), 4264

offspring
INBREED procedure, 1973, 1980

OLS option
PARMS statement (MIXED), 2708

OM option
LSMEANS statement (GLM), 1756, 1822

OM= option
PROC CALIS statement, 577

OMETHOD= option
NLOPTIONS statement (CALIS), 613
PROC CALIS statement, 577

one-samplet-test, 4775
power and sample size (POWER), 3412, 3432,

3437, 3508–3510
one-way ANOVA

power and sample size (POWER), 3438, 3442,
3443, 3513, 3536

one-way ANOVA tests
NPAR1WAY procedure, 3165

ONECORR statement
POWER procedure, 3426

ONESAMPLEFREQ statement
POWER procedure, 3429

ONESAMPLEMEANS statement
POWER procedure, 3432

ONESIDED option
EXACT statement (LOGISTIC), 2302

ONEWAY option
MODEL statement (CATMOD), 845

ONEWAYANOVA statement
POWER procedure, 3438

online documentation, 21
operations research, 23
OPSCORE transformation

MODEL statement (TRANSREG), 4563
TRANSFORM statement (PRINQUAL), 3662

OPTC option
PROC PROBIT statement, 3711, 3713

OPTCHECK option
PROC NLMIXED statement, 3071

optimal
scaling (TRANSREG), 4609
scoring (PRINQUAL), 3662
scoring (TRANSREG), 4563, 4610
transformations (MDS), 2472, 2481

transformations (PRINQUAL), 3662
transformations (TRANSREG), 4563

optimization
CALIS procedure, 550, 577, 622, 664
conjugate gradient (CALIS), 577, 579–581, 665
double dogleg (CALIS), 578, 579, 581, 665
history (CALIS), 668
initial values (CALIS), 661, 666
Levenberg-Marquardt (CALIS), 578, 581, 665
line search (CALIS), 580, 671
memory problems (CALIS), 666
Newton-Raphson (CALIS), 578, 580, 581, 665
nonlinear constraints (CALIS), 666
quasi-Newton (CALIS), 578–581, 665, 666
step length (CALIS), 672
techniques (NLMIXED), 3072, 3086
termination criteria (CALIS), 611, 615–620
trust region (CALIS), 578, 581, 665
update method (CALIS), 579

OPTION statement
ROBUSTREG procedure, 3989

options
CDFPLOT statement (PROBIT), 3715
IPPPLOT statement (PROBIT), 3726
LPREDPLOT statement (PROBIT), 3734
PREDPPLOT statement (PROBIT), 3747

OR option
EXACT statement (FREQ), 1444, 1535
OUTPUT statement (FREQ), 1449

ORD option
PROC MIXED statement, 2679

order of variables
SURVEYFREQ procedure, 4193

order statistics,
See RANK procedure

ORDER= option
CLASS statement (GENMOD), 1629
CLASS statement (LOGISTIC), 2296
CLASS statement (SURVEYLOGISTIC), 4253
CLASS statement (TPHREG), 4477
MODEL statement, 2305, 4260
MODEL statement (MIXED), 2747
MODEL statement (TRANSREG), 4569, 4578
OUTPUT statement (PHREG), 3235
PROC ANOVA statement, 433
PROC CATMOD statement, 829
PROC FREQ statement, 1442
PROC GENMOD statement, 1625
PROC GLM statement, 1746, 1803
PROC GLMMOD statement, 1914
PROC LIFEREG statement, 2090
PROC MIXED statement, 2679, 2744
PROC MULTTEST statement, 2940, 2975
PROC ORTHOREG statement, 3201
PROC PROBIT statement, 3713
PROC ROBUSTREG statement, 3983
PROC SURVEYFREQ statement, 4193
PROC SURVEYMEANS statement, 4323
VAR statement, 1267
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ORDERED option
OUTPUT statement (PLAN), 3344
PROC PLAN statement, 3339

ordering observations
INBREED procedure, 1968

ordinal level of measurement
DISTANCE procedure, 1249

ordinal model
CATMOD procedure, 869
GENMOD procedure, 1704

ORDINAL Parameterization
SURVEYLOGISTIC procedure, 4271

ordinal variable, 72
ordinal variables

transformed to interval (RANKSCORE= ), 1261
ordinary kriging

KRIGE2D procedure, 2033, 2056–2060
ORIGINAL option

MODEL statement (TRANSREG), 4566
TRANSFORM statement (PRINQUAL), 3664

ORTH option
MANOVA statement (ANOVA), 438
MANOVA statement (GLM), 1761

ORTHEFFECT Parameterization
SURVEYLOGISTIC procedure, 4272

orthoblique rotation, 4800
orthogonal polynomial contrasts, 448
orthogonal transformation, 1294, 1298
orthomax method, 1291, 1317
orthonormalizing transformation matrix

ANOVA procedure, 438
GLM procedure, 1761

ORTHORDINAL Parameterization
SURVEYLOGISTIC procedure, 4272

ORTHOREG procedure
compared to other procedures, 3197
input data sets, 3201
introductory example, 3197
missing values, 3203
ODS table names, 3204
output data sets, 3202, 3203
syntax, 3200

ORTHOREG procedure, BY statement, 3202
ORTHOREG procedure, CLASS statement, 3202

TRUNCATE option, 3203
ORTHOREG procedure, MODEL statement, 3203

NOINT option, 3203
ORTHOREG procedure, PROC ORTHOREG state-

ment, 3201
DATA= option, 3201
NOPRINT option, 3201
ORDER= option, 3201
OUTEST= option, 3202
SINGULAR= option, 3202

ORTHOREG procedure, WEIGHT statement, 3203
ORTHOTHERM Parameterization

SURVEYLOGISTIC procedure, 4272
ORTHPOLY Parameterization

SURVEYLOGISTIC procedure, 4273

ORTHREF Parameterization
SURVEYLOGISTIC procedure, 4273

OTRANS option
PROC MDS statement, 2482

OUT= data sets
ACECLUS procedure, 409
CANCORR procedure, 761, 766
FACTOR procedure, 1316, 1325
FASTCLUS procedure, 1398
PRINCOMP procedure, 3609
SCORE procedure, 4075
TREE procedure, 4756

OUT= option
BASELINE statement (PHREG), 3224
BIVAR statement, 1998
EM statement (MI), 2523
LSMEANS statement (GLM), 1757
OUTPUT statement (FREQ), 1446
OUTPUT statement (GAM), 1568
OUTPUT statement (GENMOD), 1644
OUTPUT statement (GLM), 1775
OUTPUT statement (LIFEREG), 2100
OUTPUT statement (LOGISTIC), 2320
OUTPUT statement (NLIN), 3013
OUTPUT statement (NPAR1WAY), 3161
OUTPUT statement (PHREG), 3233
OUTPUT statement (PLAN), 3343
OUTPUT statement (REG), 3834
OUTPUT statement (ROBUSTREG), 3990
OUTPUT statement (TPSPLINE), 4510
OUTPUT statement (TRANSREG), 4582
PRIOR statement (MIXED), 2711
PROC ACECLUS statement, 406
PROC CANCORR statement, 761
PROC CANDISC statement, 791
PROC DISCRIM statement, 1149
PROC DISTANCE statement, 1261
PROC FACTOR statement, 1314
PROC FASTCLUS statement, 1394
PROC MDS statement, 2482
PROC MI statement, 2520
PROC MODECLUS statement, 2868
PROC MULTTEST statement, 2941, 2961
PROC PRINCOMP statement, 3605
PROC PRINQUAL statement, 3655
PROC RSREG statement, 4040
PROC SCORE statement, 4072
PROC STDIZE statement, 4132
PROC SURVEYSELECT statement, 4437
PROC TREE statement, 4753
RANDOM statement (NLMIXED), 3080
RESPONSE statement (CATMOD), 854
SCORE statement (GAM), 1569
SCORE statement (LOGISTIC), 2325
SCORE statement (TPSPLINE), 4510
SURVIVAL statement (LIFETEST), 2170
TABLES statement (FREQ), 1459
UNIVAR statement, 2000

OUTALL option
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PROC SURVEYSELECT statement, 4437
OUTBOX= option

BOXPLOT procedure, 506
OUTC= option

PROC CORRESP statement, 1078
OUTCLUS= option

PROC MODECLUS statement, 2868
OUTCOV= option

PROC INBREED statement, 1973
OUTCROSS= option

PROC DISCRIM statement, 1149
OUTCUM option

TABLES statement (FREQ), 1459
OUTD= option

PROC DISCRIM statement, 1150
OUTDESIGN= option

PROC GLMMOD statement, 1915, 1918
PROC LOGISTIC statement, 2293

OUTDESIGNONLY option
PROC LOGISTIC statement, 2293

OUTDIST= data set
VARIOGRAM procedure, 4851, 4865, 4878,

4880
OUTDIST= option

EXACT statement (LOGISTIC), 2302
OUTDISTANCE= option

PROC VARIOGRAM statement, 4865
OUTEM= option

EM statement (MI), 2523
OUTEST= data sets

KRIGE2D procedure, 2060
LIFEREG procedure, 2121
ROBUSTREG procedure, 4011

OUTEST= option
MCMC statement (MI), 2528
PROC CALIS statement, 570
PROC KRIGE2D statement, 2039
PROC LIFEREG statement, 2091
PROC LOGISTIC statement, 2294
PROC NLIN statement, 3009
PROC ORTHOREG statement, 3202
PROC PHREG statement, 3222
PROC PROBIT statement, 3714
PROC REG statement, 3817
PROC ROBUSTREG statement, 3984
RESPONSE statement (CATMOD), 854

OUTEXPECT option
TABLES statement (FREQ), 1459, 1527

OUTF= option
PROC CORRESP statement, 1078

OUTFIT= option
PROC MDS statement, 2483

OUTG= option
PRIOR statement (MIXED), 2711

OUTGT= option
PRIOR statement (MIXED), 2711

OUTHIGHHTML= option
BOXPLOT procedure, 507

OUTHISTORY= option

BOXPLOT procedure, 507
OUTHITS option

PROC SURVEYSELECT statement, 4438
OUTITER option

PROC FASTCLUS statement, 1394
PROC MDS statement, 2482

OUTITER= option
EM statement (MI), 2523
MCMC statement (MI), 2528

OUTJAC option
PROC CALIS statement, 571

OUTLENGTH= option
PROC MODECLUS statement, 2868

OUTLIER keyword
OUTPUT statement (ROBUSTREG), 3991

outliers
FASTCLUS procedure, 1379
MODECLUS procedure, 2872

OUTLOWHTML= option
BOXPLOT procedure, 507

OUTMODEL= option
PROC LOGISTIC statement, 2294

OUTNBHD= data set
KRIGE2D procedure, 2060, 2061

OUTNBHD= option
PROC KRIGE2D statement, 2039

OUTP= option
MODEL statement (MIXED), 2796

OUTPAIR= data set
VARIOGRAM procedure, 4851, 4866, 4881

OUTPAIR= option
PROC VARIOGRAM statement, 4866

OUTPARM= option
PROC GLMMOD statement, 1915, 1917

OUTPCT option
TABLES statement (FREQ), 1460

OUTPDISTANCE= option
COMPUTE statement (VARIOGRAM), 4869

OUTPERM= option
PROC MULTTEST statement, 2941, 2962, 2964

OUTPRED= option
MODEL statement (MIXED), 2703

OUTPREDM= option
MODEL statement (MIXED), 2704

output data set
SCORE procedure, 4072, 4075
SURVEYMEANS procedure, 4321, 4345

output data sets
ACECLUS procedure, 409
CALIS procedure, 634
CANCORR procedure, 761, 766
CLUSTER procedure, 971
FACTOR procedure, 1297, 1316, 1325
FASTCLUS procedure, 1393, 1394, 1398
KRIGE2D procedure, 2039, 2060, 2061
LIFETEST procedure, 2183
LOGISTIC procedure, 2374, 2376, 2377
MI procedure, 2520, 2528, 2559
MI procedure, EM statement, 2523
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MODECLUS procedure, 2883
MULTTEST procedure, 2961, 2962
OUTCOV= data set (INBREED), 1974, 1982
PRINQUAL procedure, 3669
SIM2D procedure, 4099, 4110
SURVEYSELECT procedure, 4456
TREE procedure, 4756
VARCLUS procedure, 4811, 4816

output ODS graphics table names
GENMOD procedure, 1695
PHREG procedure, 3271

output parameter estimates
MI procedure, 2528

output ROC data sets
LOGISTIC procedure, 2378

OUTPUT statement
FREQ procedure, 1446
GAM procedure, 1568
GENMOD procedure, 1643
GLM procedure, 1773
LIFEREG procedure, 2100
LOGISTIC procedure, 2319
NLIN procedure, 3013
NPAR1WAY procedure, 3161
PHREG procedure, 3233
PLAN procedure, 3343
PLS procedure, 3379
REG procedure, 3833
ROBUSTREG procedure, 3990
TPSPLINE procedure, 4510
TRANSREG procedure, 4582

output table names
ACECLUS procedure, 412
CALIS procedure, 688
CANCORR procedure, 771
CLUSTER procedure, 994
FASTCLUS procedure, 1407
GENMOD procedure, 1693
INBREED procedure, 1984
KDE procedure, 2009
LIFEREG procedure, 2124
MDS procedure, 2497
MODECLUS procedure, 2888
PRINCOMP procedure, 3613
PRINQUAL procedure, 3677
PROBIT procedure, 3765
ROBUSTREG procedure, 4012
SURVEYFREQ procedure, 4230
SURVEYLOGISTIC procedure, 4295
SURVEYMEANS procedure, 4349
SURVEYREG procedure, 4394
SURVEYSELECT procedure, 4460
TREE procedure, 4757
VARCLUS procedure, 4820

OUTPUTORDER= option
MULTREG statement (POWER), 3423
ONECORR statement (POWER), 3428
ONESAMPLEFREQ statement (POWER), 3430

ONESAMPLEMEANS statement (POWER),
3435

ONEWAYANOVA statement (POWER), 3441
PAIREDFREQ statement (POWER), 3445
PAIREDMEANS statement (POWER), 3451
POWER statement (GLMPOWER), 1940
TWOSAMPLEFREQ statement (POWER),

3459
TWOSAMPLEMEANS statement (POWER),

3468
TWOSAMPLESURVIVAL statement

(POWER), 3478
OUTQ= data set, 3071
OUTQ= option

PROC NLMIXED statement, 3071
OUTR= option

RIDGE statement (RSREG), 4044
OUTRAM= option

PROC CALIS statement, 571
OUTRES= option

PROC MDS statement, 2483
OUTROC= option

MODEL statement (LOGISTIC), 2314
SCORE statement (LOGISTIC), 2325

OUTS= option
PROC FASTCLUS statement, 1394

OUTSAMP= option
PROC MULTTEST statement, 2941, 2962, 2968

OUTSDZ= option
PROC DISTANCE statement, 1261

OUTSEB option
MODEL statement (REG), 3828
PROC REG statement, 3817

OUTSEED option
PROC SURVEYSELECT statement, 4438

OUTSEED= option
PROC FASTCLUS statement, 1394

OUTSIM= data set
SIM2D procedure, 4110

OUTSIM= option
PROC SIM2D statement, 4099

OUTSIZE option
PROC SURVEYSELECT statement, 4438

OUTSORT= option
PROC SURVEYSELECT statement, 4438

OUTSSCP= option
PROC REG statement, 3818

OUTSTAT= data sets
CANCORR procedure, 766
FACTOR procedure, 1325

OUTSTAT= option
PROC ACECLUS statement, 406
PROC ANOVA statement, 434
PROC CALIS statement, 571
PROC CANCORR statement, 761
PROC CANDISC statement, 791
PROC DISCRIM statement, 1150
PROC FACTOR statement, 1314
PROC FASTCLUS statement, 1394
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PROC GLM statement, 1747
PROC PRINCOMP statement, 3605
PROC STDIZE statement, 4132
PROC VARCLUS statement, 4811

OUTSTB option
MODEL statement (REG), 3828
PROC REG statement, 3818

OUTSUM= option
PROC MODECLUS statement, 2868

OUTSURV= option
PROC LIFETEST statement, 2163

OUTTEST= option
PROC LIFETEST statement, 2163
PROC TRANSREG statement, 4556

OUTTREE= option
PROC CLUSTER statement, 971
PROC VARCLUS statement, 4811

OUTVAR= data set
VARIOGRAM procedure, 4866, 4877

OUTVAR= option
PROC CALIS statement, 570
PROC VARIOGRAM statement, 4866

OUTVIF option
MODEL statement (REG), 3828
PROC REG statement, 3818

OUTWGT= option
PROC CALIS statement, 571

over-parameterization
MIXED procedure, 2744

OVER= option
PROC MDS statement, 2483

overall kappa coefficient, 1493, 1498
overdispersion

GENMOD procedure, 1659
LOGISTIC procedure, 2316, 2354, 2355
PROBIT procedure, 3745

overflows
NLMIXED procedure, 3098

overlaid layouts
ODS Graphics, 368, 373, 381

Overlap dissimilarity coefficient
DISTANCE procedure, 1273

overlap of data points
LOGISTIC procedure, 2339
SURVEYLOGISTIC procedure, 4278

Overlap similarity coefficient
DISTANCE procedure, 1273

OVERLAY option
PLOT statement (REG), 3847, 3850

OVERLAY= option
PLOT statement (BOXPLOT), 507

OVERLAYCLIPSYM= option
BOXPLOT procedure, 507

OVERLAYCLIPSYMHT= option
BOXPLOT procedure, 507

OVERLAYHTML= option
PLOT statement (BOXPLOT), 507

OVERLAYID= option
BOXPLOT procedure, 507

OVERLAYLEGLAB= option
PLOT statement (BOXPLOT), 507

OVERLAYSYM= option
PLOT statement (BOXPLOT), 507

OVERLAYSYMHT= option
PLOT statement (BOXPLOT), 508

P
P option

MODEL statement (GLM), 1772
MODEL statement (REG), 3828

P-P plots
REG procedure, 3917, 3953

p-value adjustments
Bonferroni (MULTTEST), 2939, 2956
bootstrap (MULTTEST), 2938, 2939, 2957,

2968
false discovery rate (MULTTEST), 2959
Fisher combination (MULTTEST), 2959
Hochberg (MULTTEST), 2959
Hommel (MULTTEST), 2959
MULTTEST procedure, 2935, 2956
permutation (MULTTEST), 2942, 2957, 2975
Sidak (MULTTEST), 2942, 2956, 2972

p-value computation
MODECLUS procedure, 2877

P= option
PROC ACECLUS statement, 406

PAGE option
PROC FREQ statement, 1443
PROC SURVEYFREQ statement, 4194

PAGENUM= option
PLOT statement (BOXPLOT), 508

PAGENUMPOS= option
PLOT statement (BOXPLOT), 508

PAGES= option
PROC TREE statement, 4753

PAINT statement
REG procedure, 3835

painting line-printer plots
REG procedure, 3889

paired comparisons, 4775, 4793
paired proportions,

See McNemar’s test
PAIRED statement

TTEST procedure, 4782
pairedt test, 4782

power and sample size (POWER), 3448, 3455,
3518, 3519

paired-differencet test, 4775,
pairedt test

PAIREDCVS= option
PAIREDMEANS statement (POWER), 3452

PAIREDFREQ statement
POWER procedure, 3443

PAIREDMEANS statement
POWER procedure, 3448

PAIREDMEANS= option
PAIREDMEANS statement (POWER), 3452



5068 � Syntax Index

PAIREDSTDDEVS= option
PAIREDMEANS statement (POWER), 3452

pairwise comparisons
GLM procedure, 1807

PALL option
NLOPTIONS statement (CALIS), 621
PROC CALIS statement, 584

panels
INBREED procedure, 1982, 1989

PARAM= option
CLASS statement (GENMOD), 1630
CLASS statement (LOGISTIC), 2296
CLASS statement (SURVEYLOGISTIC), 4254
CLASS statement (TPHREG), 4478
MODEL statement (CATMOD), 845

parameter constraints
MIXED procedure, 2707, 2773

parameter estimates
covariance matrix (CATMOD), 842
example (REG), 3877
NLMIXED procedure, 3106
PHREG procedure, 3220, 3222, 3223, 3269
REG procedure, 3919
TPHREG procedure, 4486, 4487

parameter rescaling
NLMIXED procedure, 3098

parameter simulation
MI procedure, 2564

parameter specification
NLMIXED procedure, 3078

PARAMETER= option
MODEL statement (TRANSREG), 4566
TRANSFORM statement (PRINQUAL), 3664

Parameterization
SURVEYLOGISTIC procedure, 4270

parameterization
CATMOD, 845
mixed model (MIXED), 2743
MIXED procedure, 2743
of models (GLM), 1787

PARAMETERS statement
CALIS procedure, 624
NLIN procedure, 3014

parametric discriminant analysis, 1157
PARENT statement

TREE procedure, 4756
Pareto charts, 23
PARMINFO= option

PROC MIANALYZE statement, 2615
PARMLABEL option

MODEL statement (LOGISTIC), 2314
MODEL statement (SURVEYLOGISTIC), 4264

PARMS statement
MIXED procedure, 2706, 2796
NLMIXED procedure, 3078

PARMS= option
OUTPUT statement (NLIN), 3013
PROC MIANALYZE statement, 2615

PARMSDATA= option

PARMS statement (MIXED), 2708
parsimax method, 1291, 1317, 1318
partial canonical correlation, 752
partial correlation

CANCORR procedure, 761, 762, 764
principal components, 3612

partial correlations
multivariate analysis of variance, 1824
power and sample size (POWER), 3426, 3429,

3502, 3503, 3556
partial least squares, 3367, 3380
partial likelihood

PHREG procedure, 3215, 3216, 3240, 3241,
3243

partial listing
product-limit estimate (LIFETEST), 2165

PARTIAL option
MODEL statement (REG), 3828

partial regression leverage plots
REG procedure, 3901

PARTIAL statement
CALIS procedure, 627
FACTOR procedure, 1322
PRINCOMP procedure, 3608
VARCLUS procedure, 4813

PARTIALCORR= option
MULTREG statement (POWER), 3424

partially balanced square lattice
LATTICE procedure, 2069

PARTIALR2 option
MODEL statement (REG), 3828

partitions
MDS procedure, 2477, 2488

passive observations
PRINQUAL procedure, 3674
TRANSREG procedure, 4605

path diagram (CALIS)
exogenous variables, 664
factor analysis model, 599, 600
structural model example, 555, 600

PATH= option
ODS HTML statement, 336, 349
ODS LATEX statement, 337, 359

PC option
MODEL statement (REG), 3828
PLOT statement (REG), 3847

PCHI option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1449, 1539

PCL destination
ODS Graphics, 326, 335

PCOEF option
PROC MDS statement, 2483

PCOMIT= option
MODEL statement (REG), 3828
PROC REG statement, 3818

PCONFIG option
PROC MDS statement, 2483

PCORR option



Syntax Index � 5069

EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1449
PROC CALIS statement, 584
PROC CANCORR statement, 761
PROC CANDISC statement, 791
PROC DISCRIM statement, 1150
PROC STEPDISC statement, 4167
TEST statement (FREQ), 1463

PCORR1 option
MODEL statement (REG), 3829

PCORR2 option
MODEL statement (REG), 3829

PCOV option
PROC CANDISC statement, 791
PROC DISCRIM statement, 1150
PROC STEPDISC statement, 4167

PCOVES option
PROC CALIS statement, 585

PCRPJAC option
NLOPTIONS statement (CALIS), 621

PCTLDEF= option
PLOT statement (BOXPLOT), 508
PROC STDIZE statement, 4132

PCTLMTD option
PROC STDIZE statement, 4132

PCTLPTS option
PROC STDIZE statement, 4132

PDATA option
PROC MDS statement, 2483

PDATA= option
PARMS statement (MIXED), 2708
PROC MULTTEST statement, 2941

PDETERM option
PROC CALIS statement, 585

PDF,
See probability density function

PDF destination
ODS Graphics, 326, 335

PDF output
examples, ODS Graphics, 360
ODS Graphics, 338

PDIFF option
LSMEANS statement (GLM), 1757
LSMEANS statement (MIXED), 2690, 2691

Pearson chi-square test, 1469, 1471, 3712, 3759
power and sample size (POWER), 3457, 3462,

3524
Pearson correlation coefficient, 1474, 1479
Pearson correlation statistics

power and sample size (POWER), 3426, 3502,
3503, 3556

Pearson Residual
MIXED procedure, 2704

Pearson residuals
GENMOD procedure, 1670
LOGISTIC procedure, 2360

Pearson’s chi-square
GENMOD procedure, 1637, 1656, 1657
LOGISTIC procedure, 2308, 2316, 2354

PROBIT procedure, 3742, 3745, 3760
pedigree analysis

example (INBREED), 1987, 1989
INBREED procedure, 1967, 1968

penalized least squares, TPSPLINE procedure, 4497,
4498, 4518

PENALTY= option
PROC CLUSTER statement, 971

PERCENT= option
PROC ACECLUS statement, 406
PROC VARCLUS statement, 4811

PERFORMANCE statement
ROBUSTREG procedure, 3991

permutation
adjustment (MULTTEST), 2942, 2957
generating with PLAN procedure, 3358

permutation (MULTTEST)
p-value adjustments, 2942, 2957, 2975

PERMUTATION option
PROC MULTTEST statement, 2942, 2957,

2964, 2975
permutation test

NPAR1WAY procedure, 3157, 3166
PERMUTATION= option

TEST statement (MULTTEST), 2947, 2949,
2950, 2964

PESTIM option
PROC CALIS statement, 585

PETO option
TEST statement (MULTTEST), 2952, 2972

Peto test
MULTTEST procedure, 2946, 2952, 2972

Peto-Peto test for homogeneity
LIFETEST procedure, 2150, 2168

Peto-Peto-Prentice,
See Peto-Peto test for homogeneity

PEVENT= option
MODEL statement (LOGISTIC), 2314

PFINAL option
PROC MDS statement, 2483

PFIT option
PROC MDS statement, 2483

PFITROW option
PROC MDS statement, 2483

PH option
ASSESS statement (PHREG), 3223

pharmaceutical stability
example (MIXED), 2810

pharmakokinetics example
NLMIXED procedure, 3107

phenogram, 4743
PHESSIAN option

NLOPTIONS statement (CALIS), 621
phi coefficient, 1469, 1474
PHI option

OUTPUT statement (FREQ), 1449
phi-squared coefficient

DISTANCE procedure, 1273
PHISTORY option
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NLOPTIONS statement (CALIS), 621
PHREG procedure

Andersen-Gill model, 3216, 3243, 3253
baseline hazard function, 3216
BASELINE statistics, 3224, 3225
branch and bound algorithm, 3265, 3279
Breslow likelihood, 3228
case weight, 3239
case-control studies, 3217, 3228, 3280
conditional logistic regression, 3217, 3283
continuous time scale, 3216, 3228, 3284
counting process, 3241
covariance matrix, 3222, 3233, 3245
Cox regression analysis, 3215, 3219
cumulative baseline hazard function, 3257
cumulative martingale residuals, 3223, 3266,

3271
DATA step statements, 3220, 3221, 3236, 3288
descriptive statistics, 3223
DFBETA statistics, 3234
discrete logistic model, 3216, 3228, 3283
disk space, 3222
displayed output, 3268
Efron likelihood, 3228
event times, 3215, 3218
exact likelihood, 3228
fractional frequencies, 3227
global influence, 3234, 3260
global null hypothesis, 3218, 3246, 3269
hazard function, 3215, 3240
hazards ratio, 3218, 3247
hazards ratio confidence interval, 3233
iteration history, 3233, 3269
Lee-Wei-Amato model, 3251, 3314
left truncation time, 3229, 3263
likelihood displacement, 3234, 3260
likelihood ratio test, 3246, 3269
linear hypotheses, 3217, 3238, 3247
linear predictor, 3225, 3233, 3235, 3302, 3303
local influence, 3234, 3260
log-rank test, 3219
Mantel-Haenszel test, 3219
mean function, 3224, 3226, 3244, 3245, 3253,

3255
missing values, 3228, 3236, 3286
missing values as strata, 3237
model assessment, 3223, 3265, 3271, 3318
model selection, 3216, 3229, 3230, 3264
ODS graph names, 3271
ODS table names, 3270
offset variable, 3229
output ODS graphics table names, 3271
OUTPUT statistics, 3234, 3235
parameter estimates, 3220, 3222, 3223, 3269
partial likelihood, 3215, 3216, 3240, 3241, 3243
Prentice-Williams-Peterson model, 3255
programming statements, 3220–3222, 3235,

3236, 3288
proportional hazards model, 3215, 3220, 3228

rate function, 3243, 3253
rate/mean model, 3243, 3253
recurrent events, 3216, 3224–3226, 3243
residual chi-square, 3231
residuals, 3234, 3235, 3257–3260, 3302
response variable, 3218, 3283
risk set, 3220, 3240, 3241, 3288
risk weights, 3229
score test, 3229, 3231, 3246, 3269, 3274, 3276
selection methods, 3216, 3229, 3264
singularity criterion, 3232
standard error, 3233, 3235, 3269
standard error ratio, 3269
standardized score process, 3267, 3271
step halving, 3245
strata variables, 3237
stratified analysis, 3216, 3237
survival distribution function, 3239
survival times, 3215, 3281, 3283
survivor function, 3215, 3225, 3235, 3239, 3240,

3261, 3299
syntax, 3221
ties, 3216, 3219, 3228, 3241, 3268
time-dependent covariates, 3216, 3220, 3222,

3224, 3233, 3236
Wald test, 3238, 3246, 3247, 3269, 3284
Wei-Lin-Weissfeld model, 3248

PHREG procedure, ASSESS statement, 3223
CRPANEL option, 3224
NPATHS= option, 3224
PH option, 3223
PROPORTIONALHAZARDS option, 3223
RESAMPLE option, 3224
RESAMPLE= option, 3224
SEED= option, 3224
VAR= option, 3223

PHREG procedure, BASELINE statement, 3224
ALPHA= option, 3225
CLTYPE= option, 3225
COVARIATES= option, 3224
keyword= option, 3224
METHOD= option, 3226
NOMEAN option, 3226
OUT= option, 3224

PHREG procedure, BY statement, 3226
PHREG procedure, FREQ statement, 3227

NOTRUNCATE option, 3227
PHREG procedure, ID statement, 3227
PHREG procedure, MODEL statement, 3227

ALPHA= option, 3233
BEST= option, 3229
CORRB option, 3233
COVB option, 3233
DETAILS option, 3230
ENTRYTIME= option, 3229
INCLUDE= option, 3230
ITPRINT option, 3233
MAXITER= option, 3232
MAXSTEP= option, 3230
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NOFIT option, 3229
OFFSET= option, 3229
RISKLIMITS option, 3233
SELECTION= option, 3229
SEQUENTIAL option, 3230
SINGULAR= option, 3232
SLENTRY= option, 3230
SLSTAY= option, 3230
START= option, 3230
STOP= option, 3231
STOPRES option, 3231
TIES= option, 3228

PHREG procedure, OUTPUT statement, 3233
keyword= option, 3234
METHOD= option, 3235
ORDER= option, 3235
OUT= option, 3233

PHREG procedure, PROC PHREG statement, 3221
COVM option, 3221
COVOUT option, 3221
COVS option, 3222
COVSANDWICH option, 3222
DATA= option, 3222
MULTIPASS option, 3222
NOPRINT option, 3222
NOSUMMARY option, 3222
OUTEST= option, 3222
SIMPLE option, 3223

PHREG procedure, STRATA statement, 3237
MISSING option, 3237

PHREG procedure, TEST statement, 3238
AVERAGE option, 3238
E option, 3238
PRINT option, 3239

PHREG procedure, WEIGHT statement, 3239
NORMALIZE option, 3239

piecewise polynomial splines
TRANSREG procedure, 4561, 4614

Pillai’s trace, 437, 1759, 1828
PINAVDATA option

PROC MDS statement, 2483
PINEIGVAL option

PROC MDS statement, 2483
PINEIGVEC option

PROC MDS statement, 2483
PININ option

PROC MDS statement, 2484
PINIT option

NLOPTIONS statement (CALIS), 621
PROC MDS statement, 2484

PINITIAL option
PROC CALIS statement, 585

PITER option
PROC MDS statement, 2484

Pitman’s test
NPAR1WAY procedure, 3157, 3166

PJACPAT option
PROC CALIS statement, 586

PJTJ option

NLOPTIONS statement (CALIS), 621
PLAN procedure

combinations, 3358
compared to other procedures, 3335
factor, selecting levels for, 3339, 3340
factor-value-setting specification, 3343, 3344
generalized cyclic incomplete block design,

3357
hierarchical design, 3353
incomplete block design, 3354, 3357
input data sets, 3339, 3343
introductory example, 3336
Latin square design, 3356
nested design, 3353
ODS table names, 3352
output data sets, 3339, 3343, 3346, 3347
permutations, 3358
random number generators, 3339
randomizing designs, 3347, 3351
specifying factor structures, 3348
split-plot design, 3352
syntax, 3339
treatments, specifying, 3345
using interactively, 3346

PLAN procedure, FACTOR statement
NOPRINT option, 3340

PLAN procedure, FACTORS statement, 3340
PLAN procedure, OUTPUT statement, 3343

CVALS= option, 3344
factor-value-settings option, 3343
NVALS= option, 3344
ORDERED option, 3344
OUT= option, 3343
RANDOM option, 3344

PLAN procedure, PROC PLAN statement, 3339
ORDERED option, 3339
SEED option, 3339

PLAN procedure, TREATMENTS statement, 3345
PLATCOV option

PROC CALIS statement, 586
PLCL option

MODEL statement (LOGISTIC), 2314
PLCONV= option

MODEL statement (LOGISTIC), 2314
PLCORR option

OUTPUT statement (FREQ), 1449
TABLES statement (FREQ), 1460

%PLOT macro
DISCRIM procedure, 1182

PLOT option
PROC FACTOR statement, 1314

plot options
ODS Graphics, 324

PLOT statement
BOXPLOT procedure, 488
GLMPOWER procedure, 1942
POWER procedure, 3483
REG procedure, 3839

%PLOTIT macro, 808
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CORRESP procedure, 1070, 1118, 1128
DISCRIM procedure, 1200
MDS procedure, 2474
PRINCOMP procedure, 3615, 3617, 3625
PRINQUAL procedure, 3678, 3687
TRANSREG procedure, 4617, 4717, 4718

PLOTONLY= option
PROC GLMPOWER statement, 1936
PROC POWER statement, 3421

plots
examples (REG), 3948
high-resolution (REG), 3840
keywords (REG), 3841
likelihood (MIXED), 2801
line printer (REG), 3848, 3882
MDS procedure, 2474
of configuration (MDS), 2504, 2505
of dimension coefficients (MDS), 2504, 2506
of linear fit (MDS), 2503
options (REG), 3843, 3844
power and sample size (GLMPOWER), 1930,

1936, 1942
power and sample size (POWER), 3412, 3420,

3421, 3483, 3566
PLOTS option

PROC LOESS statement, 2250, 3923
PLOTS(MAXPOINTS=) option

PROC LOESS statement, 2250
PROC REG statement, 3923

plots, ODS Graphics
box plots, 355
contour plots, 324, 360
Cook’s D plots, 353
diagnostics panels, 322, 379
fit plots, 322, 354
histograms, 358
Q-Q plots, 361, 363, 368, 370, 372, 373, 375,

377–379
residual plots, 322
scatter plots, 343, 351
surface plots, 324, 360

PLOTS= option
BIVAR statement, 2010
PROC GAM statement, 1581
PROC LIFETEST statement, 2164
SURVIVAL statement (LIFETEST), 2190
UNIVAR statement, 2010

plotting samples from univariate distributions
MODECLUS procedure, 2889

PLRL option
MODEL statement (LOGISTIC), 2315

PLS procedure
algorithms, 3375
centering, 3386
compared to other procedures, 3367
components, 3367
computation method, 3375
cross validation, 3368, 3384
cross validation method, 3374

examples, 3388
factors, 3367
factors, selecting the number of, 3370
introductory example, 3368
latent variables, 3367
latent vectors, 3367
missing values, 3376
ODS table names, 3388
outlier detection, 3398
output data sets, 3379
output keywords, 3379
partial least squares regression, 3367, 3380
predicting new observations, 3373
principal components regression, 3367, 3381
reduced rank regression, 3367, 3381
scaling, 3386
SIMPLS method, 3380
syntax, 3374
test set validation, 3384, 3400

PLS procedure, BY statement, 3377
PLS procedure, CLASS statement, 3378

TRUNCATE option, 3378
PLS procedure, MODEL statement, 3378

INTERCEPT option, 3378
SOLUTION option, 3379

PLS procedure, OUTPUT statement, 3379
PLS procedure, PROC PLS statement, 3374

ALGORITHM= option, 3375
CENSCALE option, 3374
CV= option, 3374
CVTEST= option, 3375
DATA= option, 3375
DETAILS option, 3375
METHOD= option, 3375
MISSING= option, 3376
NFAC= option, 3376
NITER= option, 3374
NOCENTER option, 3376
NOCVSTDIZE option, 3376
NOPRINT option, 3377
NOSCALE option, 3377
NTEST= option, 3374
PVAL= option, 3375
SEED= option, 3374, 3375
STAT= option, 3375
VARSCALE option, 3377

PLS procedure, PROC PLS statement,
METHOD=PLS option

EPSILON= option, 3376
MAXITER= option, 3375

PLS procedure, PROC PLS statement, MISSING=EM
option

EPSILON= option, 3376
MAXITER= option, 3376

PNLCJAC option
NLOPTIONS statement (CALIS), 621

point models
TRANSREG procedure, 4605

POINT option
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EXACT statement (FREQ), 1445
EXACT statement (NPAR1WAY), 3161

POINT transformation
MODEL statement (TRANSREG), 4561

Poisson distribution
GENMOD procedure, 1652
NLMIXED procedure, 3078

Poisson regression
GENMOD procedure, 1613, 1616

Poisson-normal example
NLMIXED procedure, 3124

POLY Parameterization
SURVEYLOGISTIC procedure, 4271

polychoric correlation coefficient, 1460, 1474, 1482
polynomial effects

GENMOD procedure, 1660
MIXED procedure, 2743
model parameterization (GLM), 1787
specifying (GLM), 1784

POLYNOMIAL keyword
REPEATED statement (ANOVA), 448

polynomial model
GLMMOD procedure, 1909

POLYNOMIAL option
REPEATED statement (GLM), 1779, 1831,

1878
POLYNOMIAL Parameterization

SURVEYLOGISTIC procedure, 4271
polynomial regression

REG procedure, 3804
polynomial-spline basis

TRANSREG procedure, 4561, 4614
POOL= option

PROC DISCRIM statement, 1150
pooled stratum

SURVEYREG procedure, 4389
pooled within-cluster covariance matrix

definition, 388
population

profile (CATMOD), 820
total (SURVEYLOGISTIC), 4252, 4280
total (SURVEYMEANS), 4326, 4334
total (SURVEYREG), 4374, 4382

population (INBREED)
monoecious, 1985
multiparous, 1973, 1977
nonoverlapping, 1974
overlapping, 1968, 1969, 1979

population clusters
risks of estimating (MODECLUS), 2877

population profile, 73
POPULATION statement, CATMOD procedure, 848
population total

SURVEYFREQ procedure, 4194, 4204
POS= option

PROC TREE statement, 4753
posterior probability

DISCRIM procedure, 1200
error rate estimation (DISCRIM), 1165

POSTERR option
PROC DISCRIM statement, 1150

PostScript
graphics image files, 358

PostScript output
ODS Graphics, 338

power
overview of power concepts (POWER), 3488
See GLMPOWER procedure, 1929
See POWER procedure, 3411

power curves,
See plots

Power distance coefficient
DISTANCE procedure, 1272

POWER procedure
AB/BA crossover designs, 3549
actual alpha, 3496
actual power, 3419, 3494, 3496
actual prob(width), 3496
analysis of variance, 3438, 3442, 3443, 3513,

3536
analysis statements, 3420
binomial proportion tests, 3429, 3432, 3504–

3506, 3541
bioequivalence, 3510, 3511, 3520, 3521, 3530,

3531, 3549
ceiling sample size, 3419, 3496
compared to other procedures, 1930, 3412
computational methods, 3498
computational resources, 3498
confidence intervals for means, 3432, 3438,

3448, 3456, 3463, 3473, 3512, 3522, 3532,
3563

contrasts, analysis of variance, 3438, 3439,
3442, 3513, 3536

correlated proportions, 3443, 3447, 3448, 3516,
3517

correlation, 3426, 3502, 3503, 3556
crossover designs, 3549
displayed output, 3496
effect size, 3485
equivalence tests, 3432, 3438, 3448, 3456, 3463,

3472, 3510, 3511, 3520, 3521, 3530, 3531,
3549

Fisher’s exact test, 3457, 3463, 3525
Fisher’sz test for correlation, 3426, 3429, 3502,

3556
fractional sample size, 3419, 3496
Gehan test, 3473, 3482, 3533
grouped-name-lists, 3490
grouped-number-lists, 3490
introductory example, 3412
keyword-lists, 3490
likelihood-ratio chi-square test, 3457, 3463,

3525
log-rank test for comparing survival curves,

3473, 3481, 3533, 3561
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lognormal data, 3434, 3437, 3438, 3450, 3455,
3456, 3465, 3472, 3509, 3511, 3519, 3521,
3529, 3531, 3552

McNemar’s test, 3443, 3447, 3448, 3516, 3517
name-lists, 3490
nominal power, 3419, 3494, 3496
noninferiority, 3552
notation for formulas, 3498
number-lists, 3490
odds ratio, 3457, 3462, 3523, 3524
ODS table names, 3497
one-samplet test, 3412, 3432, 3437, 3508, 3509
one-way ANOVA, 3438, 3442, 3443, 3513, 3536
overview of power concepts, 3488
paired proportions, 3443, 3447, 3448, 3516,

3517
pairedt test, 3448, 3455, 3518, 3519
partial correlation, 3426, 3429, 3502, 3503, 3556
Pearson chi-square test, 3457, 3462, 3524
Pearson correlation, 3426, 3429, 3502, 3503,

3556
plots, 3412, 3420, 3421, 3483, 3566
regression, 3421, 3425, 3500, 3556
relative risk, 3457, 3462, 3523, 3524
sample size adjustment, 3494
summary of analyses, 3488
summary of statements, 3420
survival analysis, 3473, 3481, 3533
syntax, 3420
t test for correlation, 3426, 3429, 3503
t tests, 3432, 3437, 3448, 3455, 3463, 3471,

3508, 3509, 3518, 3526, 3529, 3566
Tarone-Ware test, 3473, 3483, 3533
two-samplet test, 3415, 3463, 3471, 3472, 3526,

3527, 3529, 3566
value lists, 3490
z test, 3429, 3432, 3505, 3506

POWER procedure, MULTREG statement, 3421
ALPHA= option, 3422
MODEL= option, 3422
NFRACTIONAL option, 3422
NFULLPREDICTORS= option, 3423
NOINT option, 3423
NREDUCEDPREDICTORS= option, 3423
NTESTPREDICTORS= option, 3423
NTOTAL= option, 3423
OUTPUTORDER= option, 3423
PARTIALCORR= option, 3424
POWER= option, 3424
RSQUAREDIFF= option, 3424
RSQUAREFULL= option, 3424
RSQUAREREDUCED= option, 3425
TEST= option, 3425

POWER procedure, ONECORR statement, 3426
ALPHA= option, 3427
CORR= option, 3427
DIST= option, 3427
MODEL= option, 3427
NFRACTIONAL option, 3427

NPARTIALVARS= option, 3427
NTOTAL= option, 3427
NULLCORR= option, 3428
OUTPUTORDER= option, 3428
POWER= option, 3428
TEST= option, 3428

POWER procedure, ONESAMPLEFREQ statement,
3429

ALPHA= option, 3430
METHOD= option, 3430
NFRACTIONAL= option, 3430
NTOTAL= option, 3430
NULLPROPORTION= option, 3430
OUTPUTORDER= option, 3430
POWER= option, 3431
PROPORTION= option, 3431
SIDES= option, 3431
TEST= option, 3431

POWER procedure, ONESAMPLEMEANS
statement, 3432

ALPHA= option, 3434
CI= option, 3434
CV= option, 3434
DIST= option, 3434
HALFWIDTH= option, 3434
LOWER= option, 3434
MEAN= option, 3434
NFRACTIONAL option, 3434
NTOTAL= option, 3435
NULLMEAN= option, 3435
OUTPUTORDER= option, 3435
POWER= option, 3435
PROBTYPE= option, 3436
PROBWIDTH= option, 3436
SIDES= option, 3436
STDDEV= option, 3436
TEST= option, 3437
UPPER= option, 3437

POWER procedure, ONEWAYANOVA statement,
3438

ALPHA= option, 3439
CONTRAST= option, 3439
GROUPMEANS= option, 3440
GROUPNS= option, 3440
GROUPWEIGHTS= option, 3440
NFRACTIONAL option, 3440
NPERGROUP= option, 3440
NTOTAL= option, 3440
NULLCONTRAST= option, 3441
OUTPUTORDER= option, 3441
POWER= option, 3441
SIDES= option, 3441
STDDEV= option, 3442
TEST= option, 3442

POWER procedure, PAIREDFREQ statement, 3443
ALPHA= option, 3444
DISCPROPDIFF= option, 3444
DISCPROPORTIONS= option, 3444
DISCPROPRATIO= option, 3445
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DIST= option, 3445
METHOD= option, 3445
NFRACTIONAL option, 3445
NPAIRS= option, 3445
NULLDISCPROPRATIO= option, 3445
OUTPUTORDER= option, 3445
POWER= option, 3446
REFPROPORTION= option, 3446
SIDES= option, 3446
TEST= option, 3446
TOTALPROPDISC= option, 3447

POWER procedure, PAIREDMEANS statement,
3448

ALPHA= option, 3449
CI= option, 3449
CORR= option, 3450
CV= option, 3450
DIST= option, 3450
HALFWIDTH= option, 3450
LOWER= option, 3450
MEANDIFF= option, 3450
MEANRATIO= option, 3450
NFRACTIONAL option, 3451
NPAIRS= option, 3451
NULLDIFF= option, 3451
NULLRATIO= option, 3451
OUTPUTORDER= option, 3451
PAIREDCVS= option, 3452
PAIREDMEANS= option, 3452
PAIREDSTDDEVS= option, 3452
POWER= option, 3452
PROBTYPE= option, 3452
PROBWIDTH= option, 3453
SIDES= option, 3453
STDDEV= option, 3453
TEST= option, 3454
UPPER= option, 3454

POWER procedure, PLOT statement, 3483
DESCRIPTION= option, 3487
INTERPOL= option, 3483
KEY= option, 3483
MARKERS= option, 3484
MAX= option, 3484
MIN= option, 3484
NAME= option, 3487
NPOINTS= option, 3485
STEP= option, 3485
VARY option, 3485
X= option, 3485
XOPTS= option, 3486
Y= option, 3487
YOPTS= option, 3487

POWER procedure, PROC POWER statement, 3421
PLOTONLY= option, 3421

POWER procedure, TWOSAMPLEFREQ statement,
3457

ALPHA= option, 3458
GROUPNS= option, 3458
GROUPPROPORTIONS= option, 3458

GROUPWEIGHTS= option, 3458
NFRACTIONAL option, 3459
NPERGROUP= option, 3459
NTOTAL= option, 3459
NULLODDSRATIO= option, 3459
NULLPROPORTIONDIFF= option, 3459
NULLRELATIVERISK= option, 3459
ODDSRATIO= option, 3459
OUTPUTORDER= option, 3459
POWER= option, 3460
PROPORTIONDIFF= option, 3460
REFPROPORTION= option, 3460
RELATIVERISK= option, 3460
SIDES= option, 3461
TEST= option, 3461

POWER procedure, TWOSAMPLEMEANS
statement, 3463

ALPHA= option, 3465
CI= option, 3465
CV= option, 3465
DIST= option, 3465
GROUPMEANS= option, 3466
GROUPNS= option, 3466
GROUPSTDDEVS= option, 3466
GROUPWEIGHTS= option, 3466
HALFWIDTH= option, 3466
LOWER= option, 3466
MEANDIFF= option, 3467
MEANRATIO= option, 3467
NFRACTIONAL option, 3467
NPERGROUP= option, 3467
NTOTAL= option, 3467
NULLDIFF= option, 3467
NULLRATIO= option, 3467
OUTPUTORDER= option, 3468
POWER= option, 3468
PROBTYPE= option, 3468
PROBWIDTH= option, 3469
SIDES= option, 3469
STDDEV= option, 3469
TEST= option, 3470
UPPER= option, 3470

POWER procedure, TWOSAMPLESURVIVAL state-
ment, 3473

ACCRUALTIME= option, 3474
ALPHA= option, 3475
CURVE= option, 3475
FOLLOWUPTIME= option, 3476
GROUPLOSS= option, 3476
GROUPLOSSEXPHAZARDS= option, 3476
GROUPMEDLOSSTIMES= option, 3476
GROUPMEDSURVTIMES= option, 3476
GROUPNS= option, 3477
GROUPSURVEXPHAZARDS= option, 3477
GROUPSURVIVAL= option, 3477
GROUPWEIGHTS= option, 3477
HAZARDRATIO= option, 3477
NFRACTIONAL option, 3477
NPERGROUP= option, 3478
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NSUBINTERVAL= option, 3478
NTOTAL= option, 3478
OUTPUTORDER= option, 3478
POWER= option, 3479
REFSURVEXPHAZARD= option, 3479
REFSURVIVAL= option, 3479
SIDES= option, 3479
TEST= option, 3480
TOTALTIME= option, 3480

power semivariogram model
KRIGE2D procedure, 2049

POWER statement
GLMPOWER procedure, 1939

POWER transformation
MODEL statement (TRANSREG), 4562
TRANSFORM statement (MI), 2534
TRANSFORM statement (PRINQUAL), 3661

power-of-the-mean model
MIXED procedure, 2718

POWER= option
MULTREG statement (POWER), 3424
ONECORR statement (POWER), 3428
ONESAMPLEFREQ statement (POWER), 3431
ONESAMPLEMEANS statement (POWER),

3435
ONEWAYANOVA statement (POWER), 3441
PAIREDFREQ statement (POWER), 3446
PAIREDMEANS statement (POWER), 3452
POWER statement (GLMPOWER), 1941
PROC FACTOR statement, 1314
PROC MODECLUS statement, 2868
TWOSAMPLEFREQ statement (POWER),

3460
TWOSAMPLEMEANS statement (POWER),

3468
TWOSAMPLESURVIVAL statement

(POWER), 3479
PP option

PROC ACECLUS statement, 406
PPC convergence measure, 3030
pplot plots

annotating, 2102
axes, color, 2102
font, specifying, 2103
reference lines, options, 2103–2105, 2107

PPREFIX option
OUTPUT statement (TRANSREG), 4591

PPROB= option
MODEL statement (LOGISTIC), 2315

PPS, 161
PPS sampling

SURVEYSELECT procedure, 4463
PPS sampling, with replacement

SURVEYSELECT procedure, 4451
PPS sampling, without replacement

SURVEYSELECT procedure, 4449
PPS sequential sampling

SURVEYSELECT procedure, 4452
PPS systematic sampling

SURVEYSELECT procedure, 4451
PR2ENTRY= option

PROC STEPDISC statement, 4167
PR2STAY= option

PROC STEPDISC statement, 4167
precision

NLMIXED procedure, 3101
precision, confidence intervals, 3488
PRED option

MODEL statement (GENMOD), 1641
PLOT statement (REG), 3847

PRED= option
MODEL statement (CATMOD), 845

PREDET option
PROC CALIS statement, 586

PREDICT option
MODEL statement (CATMOD), 845
MODEL statement (RSREG), 4042
PROC SCORE statement, 4072

PREDICT statement
NLMIXED procedure, 3079

PREDICT statement (KRIGE2D), 2041
PREDICTED keyword

OUTPUT statement (GLM), 1774
OUTPUT statement (LIFEREG), 2101
OUTPUT statement (ROBUSTREG), 3991

predicted means
MIXED procedure, 2704

predicted model matrix
CALIS procedure, 643, 644, 663
displaying (CALIS), 683
singular (CALIS), 680

PREDICTED option
MODEL statement (GENMOD), 1641
OUTPUT statement (TRANSREG), 4591

predicted population margins
GLM procedure, 1753

predicted probabilities
LOGISTIC procedure, 2350

predicted probability plots
annotating, 3750
axes, color, 3750
font, specifying, 3750
options summarized by function, 3748
reference lines, options, 3750–3752, 3754
threshold lines, options, 3753

predicted residual sum of squares
RSREG procedure, 4042

predicted value confidence intervals
MIXED procedure, 2692

predicted values
example (MIXED), 2796
LIFEREG procedure, 2114
mixed model (MIXED), 2687
MIXED procedure, 2703
NLIN procedure, 3014
REG procedure, 3876, 3879
response functions (CATMOD), 845

PREDICTED= option
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OUTPUT statement (LOGISTIC), 2320
OUTPUT statement (NLIN), 3014

prediction
example (REG), 3924
NLMIXED procedure, 3079, 3102

predictive mean matching method
MI procedure, 2542

predpplot
PROBIT procedure, 3746

PREDPPLOT statement
options summarized by function, 3748
PROBIT procedure, 3746

PREDPROBS= option
OUTPUT statement (LOGISTIC), 2320

preference mapping
TRANSREG procedure, 4593, 4717

preference models
TRANSREG procedure, 4586

prefix name
LINEQS statement (CALIS), 602
MATRIX statement (CALIS), 594
RAM statement (CALIS), 598
STD statement (CALIS), 603

PREFIX= option
MANOVA statement (ANOVA), 438
MANOVA statement (GLM), 1760
PROC ACECLUS statement, 406
PROC CANDISC statement, 792
PROC DISTANCE statement, 1261
PROC GLMMOD statement, 1915
PROC PRINCOMP statement, 3606
PROC PRINQUAL statement, 3655

preliminary clusters
definition (CLUSTER), 978
using in CLUSTER procedure, 969

Prentice-Williams-Peterson model
PHREG procedure, 3255

PREPLOT option
PROC FACTOR statement, 1314

PREROTATE= option
PROC FACTOR statement, 1314

presentations
examples, ODS Graphics, 356

PRESS keyword
OUTPUT statement (GLM), 1774

PRESS option
MODEL statement (REG), 3829
MODEL statement (RSREG), 4042
PROC REG statement, 3818

PRESS residual
MIXED Procedure, 2766

PRESS statistic, 1774
MIXED Procedure, 2766
RSREG procedure, 4042

prevalence test
MULTTEST procedure, 2952, 2972

primary sampling unit (PSUs), 165
primary sampling units (PSUs)

SURVEYLOGISTIC procedure, 4281

SURVEYMEANS procedure, 4335
SURVEYREG procedure, 4383

PRIMAT option
PROC CALIS statement, 586

principal component analysis, 1291
compared with common factor analysis, 1293
PRINQUAL procedure, 3668
with FACTOR procedure, 1295

principal components,
See also PRINCOMP procedure
definition, 3595
interpreting eigenvalues, 3621
partialling out variables, 3608
properties of, 3595, 3596
regression (PLS), 3367, 3381
rotating, 3611
using weights, 3608

principal factor analysis
with FACTOR procedure, 1296

PRINCOMP procedure
CALIS procedure, 567
computational resources, 3611
correction for means, 3605
Crime Rates Data, example, 3619
DATA= data set, 3609
eigenvalues and eigenvectors, 3595, 3610–3612
examples, 3614, 3626
input data set, 3605
ODS graph names, 3613
output data sets, 3605, 3609–3611
output table names, 3613
OUTSTAT= data set, 3609
%PLOTIT macro, 3615, 3617, 3625
replace missing values, example, 3626
SCORE procedure, 3611
suppressing output, 3605
syntax, 3604
weights, 3608

PRINCOMP procedure, BY statement, 3607
PRINCOMP procedure, FREQ statement, 3607
PRINCOMP procedure, PARTIAL statement, 3608
PRINCOMP procedure, PROC PRINCOMP state-

ment, 3604
COV option, 3604
COVARIANCE option, 3604
DATA= option, 3605
N= option, 3605
NOINT option, 3605
NOPRINT option, 3605
OUT= option, 3605
OUTSTAT= option, 3605
PREFIX= option, 3606
SING= option, 3606
SINGULAR= option, 3606
STANDARD option, 3606
STD option, 3606
VARDEF= option, 3606

PRINCOMP procedure, VAR statement, 3608
PRINCOMP procedure, WEIGHT statement, 3608
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PRINQUAL procedure
biplot, 3678
casewise deletion, 3655
character OPSCORE variables, 3673
constant transformations, avoiding, 3673
constant variables, 3673
excluded observations, 3657, 3674
frequency variable, 3658
identity transformation, 3663
iterations, 3656, 3667, 3673
knots, 3665, 3666
linear transformation, 3662
MAC method, 3643, 3669
maximum average correlation method, 3643,

3669
maximum total variance method, 3643
MDPREF analysis, 3678
MGV method, 3643
minimum generalized variance method, 3643
missing character values, 3662
missing values, 3655, 3667, 3674
monotonic B-spline transformation, 3662
monotonic transformation, 3662, 3663
MTV method, 3643
multidimensional preference analysis, 3678,

3688
nonoptimal transformations, 3661
ODS graph names, 3677
optimal scoring, 3662
optimal transformations, 3662
output data sets, 3669
output table names, 3677
passive observations, 3674
%PLOTIT macro, 3678, 3687
principal component analysis, 3668
random initializations, 3673
reflecting the transformation, 3666
renaming variables, 3666
reusing variables, 3666
smoothing spline transformation, 3663
spline t-options, 3665
spline transformation, 3662
standardization, 3672
syntax, 3651
transformation options, 3663
variable names, 3672
weight variable, 3667

PRINQUAL procedure, BY statement, 3658
PRINQUAL procedure, FREQ statement, 3658
PRINQUAL procedure, ID statement, 3659
PRINQUAL procedure, PROC PRINQUAL

statement, 3651
APPROXIMATIONS option, 3653
APREFIX= option, 3652
CCONVERGE= option, 3653
CHANGE= option, 3653
CONVERGE= option, 3653
CORRELATIONS option, 3653
COVARIANCE option, 3653

DATA= option, 3653
DUMMY option, 3654
INITITER= option, 3654
MAXITER= option, 3654
MDPREF option, 3654
METHOD= option, 3654
MONOTONE= option, 3654
N= option, 3655
NOCHECK option, 3655
NOMISS option, 3655
NOPRINT option, 3655
OUT= option, 3655
PREFIX= option, 3655
REFRESH= option, 3656
REITERATE option, 3656
REPLACE option, 3656
SCORES option, 3656
SINGULAR= option, 3656
STANDARD option, 3656
TPREFIX= option, 3657
TSTANDARD= option, 3657
TYPE= option, 3657
UNTIE= option, 3658

PRINQUAL procedure, TRANSFORM statement,
3659

ARSIN transformation, 3661
DEGREE= option, 3665
EVENLY option, 3665
EXP transformation, 3661
IDENTITY transformation, 3663
KNOTS= option, 3665
LINEAR transformation, 3662
LOG transformation, 3661
LOGIT transformation, 3661
MONOTONE transformation, 3662
MSPLINE transformation, 3662
NAME= option, 3666
NKNOTS= option, 3666
OPSCORE transformation, 3662
ORIGINAL option, 3664
PARAMETER= option, 3664
POWER transformation, 3661
RANK transformation, 3662
REFLECT option, 3666
SM= option, 3665
SPLINE transformation, 3662
SSPLINE transformation, 3663
TSTANDARD= option, 3666
UNTIE transformation, 3663

PRINQUAL procedure, WEIGHT statement, 3667
PRINT option

MTEST statement (REG), 3833
NLOPTIONS statement (CALIS), 622
PROC CALIS statement, 586
PROC FACTOR statement, 1314
PROC NLIN statement, 3009
SCORE statement (LOESS), 2237
TEST statement (LOGISTIC), 2327
TEST statement (PHREG), 3239
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TEST statement (REG), 3858
TEST statement (SURVEYLOGISTIC), 4267

PRINT statement, REG procedure, 3851
PRINT= option

PROC CLUSTER statement, 971
PROC CORRESP statement, 1078

PRINTE option
MANOVA statement (ANOVA), 438
MANOVA statement (GLM), 1761
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1780, 1829

PRINTH option
MANOVA statement (ANOVA), 439
MANOVA statement (GLM), 1761
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1780

PRINTKWT option
TABLES statement (FREQ), 1460

PRINTM option
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1780

PRINTRV option
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1781

prior density
MIXED procedure, 2709

prior event probability
LOGISTIC procedure, 2314, 2353, 2422

PRIOR statement
MIXED procedure, 2708

PRIOR= option
MCMC statement (MI), 2528
SCORE statement (LOGISTIC), 2325

PRIOREVENT= option
SCORE statement (LOGISTIC), 2325

PRIORS statement
DISCRIM procedure, 1154
FACTOR procedure, 1322

PRIORS= option
PROC FACTOR statement, 1315

PRIVEC option
PROC CALIS statement, 586

PROB option
MODEL statement (CATMOD), 846

probability density function
LIFETEST procedure, 2149, 2214

probability distribution
built-in (GENMOD), 1614, 1638
exponential family (GENMOD), 1650
user-defined (GENMOD), 1633

probability sampling,
see also SURVEYSELECT procedure

PROBIT, 3705
probit analysis

insets, 3724
probit equation, 3705, 3759
probit model

SURVEYLOGISTIC procedure, 4285
PROBIT procedure, 3705

Abbot’s formula, 3755
binary response data, 3705, 3706, 3759
cdfplot, 3715
deviance, 3745, 3760
deviance statistic, 3759
dispersion parameter, 3760
extreme value distribution , 3757
goodness-of-fit, 3743, 3745
goodness-of-fit tests, 3712, 3743, 3759
inset, 3723
inverse confidence limits, 3761
ippplot, 3725
log-likelihood function, 3756
logistic distribution, 3757
lpredplot, 3733
maximum-likelihood estimates, 3705
missing values, 3755
models, 3759
multilevel response data, 3705, 3706, 3759
natural response rate, 3706
Newton-Raphson algorithm, 3756
normal distribution, 3757
output table names, 3765
overdispersion, 3745
Pearson chi-square, 3759
Pearson’s chi-square, 3742, 3745, 3760
predpplot, 3746
subpopulation, 3742, 3745, 3761
syntax, 3710
threshold response rate, 3706
tolerance distribution, 3761

PROBIT procedure, BY statement, 3714
PROBIT procedure, CDFPLOT statement, 3715

ANNOTATE= option, 3718
CAXIS= option, 3718
CFIT= option, 3718
CFRAME= option, 3718
CGRID= option, 3719
CHREF= option, 3719
CLABBOX= option, 3719
CTEXT= option, 3719
CVREF= option, 3719
DESCRIPTION= option, 3719
FONT= option, 3719
HAXIS= option, 3719
HEIGHT= option, 3719
HLOWER= option, 3720
HOFFSET= option, 3720
HREF= option, 3720
HREFLABELS= option, 3720
HREFLABPOS= option, 3720
HUPPER= option, 3720
INBORDER option, 3720
LEVEL option, 3720
LFIT option, 3721
LGRID option, 3721
LHREF= option, 3721
LVREF= option, 3721
NAME= option, 3721
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NOFIT option, 3721
NOFRAME option, 3721
NOGRID option, 3721
NOHLABEL option, 3721
NOHTICK option, 3721
NOTHRESH option, 3721
NOVLABEL option, 3721
NOVTICK option, 3721
options, 3715
THRESHLABPOS= option, 3721
VAR= option, 3715
VAXIS= option, 3722
VAXISLABEL= option, 3722
VLOWER= option, 3722
VREF= option, 3722
VREFLABELS= option, 3722
VREFLABPOS= option, 3722
VUPPER= option, 3722
WAXIS= option, 3723
WFIT= option, 3723
WGRID= option, 3723
WREFL= option, 3723

PROBIT procedure, CLASS statement, 3723
PROBIT procedure, INSET statement, 3723, 3724

keywords, 3724
PROBIT procedure, IPPPLOT statement, 3725

ANNOTATE= option, 3729
CAXIS= option, 3729
CFIT= option, 3729
CFRAME= option, 3729
CGRID= option, 3729
CHREF= option, 3729
CTEXT= option, 3729
CVREF= option, 3729
DESCRIPTION= option, 3729
FONT= option, 3729
HAXIS= option, 3730
HEIGHT= option, 3730
HLOWER= option, 3730
HOFFSET= option, 3730
HREF= option, 3730
HREFLABELS= option, 3730
HREFLABPOS= option, 3730
HUPPER= option, 3730
INBORDER option, 3731
LFIT option, 3731
LGRID option, 3731
LHREF= option, 3731
LVREF= option, 3731
NAME= option, 3731
NOCONF option, 3731
NODATA option, 3731
NOFIT option, 3731
NOFRAME option, 3731
NOGRID option, 3731
NOHLABEL option, 3732
NOHTICK option, 3732
NOTHRESH option, 3732
NOVLABEL option, 3732

NOVTICK option, 3732
options, 3726
THRESHLABPOS= option, 3732
VAR= option, 3725
VAXIS= option, 3732
VAXISLABEL= option, 3732
VLOWER= option, 3732
VREF= option, 3732
VREFLABELS= option, 3733
VREFLABPOS= option, 3733
VUPPER= option, 3733
WAXIS= option, 3733
WFIT= option, 3733
WGRID= option, 3733
WREFL= option, 3733

PROBIT procedure, LPREDPLOT statement, 3733
ANNOTATE= option, 3737
CAXIS= option, 3737
CFIT= option, 3737
CFRAME= option, 3737
CGRID= option, 3737
CHREF= option, 3737
CTEXT= option, 3737
CVREF= option, 3737
DESCRIPTION= option, 3737
FONT= option, 3737
HAXIS= option, 3738
HEIGHT= option, 3738
HLOWER= option, 3738
HOFFSET= option, 3738
HREF= option, 3738
HREFLABELS= option, 3738
HREFLABPOS= option, 3738
HUPPER= option, 3738
INBORDER option, 3739
LEVEL option, 3739
LFIT option, 3739
LGRID option, 3739
LHREF= option, 3739
LVREF= option, 3739
NAME= option, 3739
NOCONF option, 3739
NODATA option, 3739
NOFIT option, 3740
NOFRAME option, 3740
NOGRID option, 3740
NOHLABEL option, 3740
NOHTICK option, 3740
NOTHRESH option, 3740
NOVLABEL option, 3740
NOVTICK option, 3740
options, 3734
THRESHLABPOS= option, 3740
VAR= option, 3733
VAXIS= option, 3740
VAXISLABEL= option, 3740
VLOWER= option, 3740
VREF= option, 3741
VREFLABELS= option, 3741
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VREFLABPOS= option, 3741
VUPPER= option, 3741
WAXIS= option, 3741
WFIT= option, 3741
WGRID= option, 3741
WREFL= option, 3741

PROBIT procedure, MODEL statement, 3741
AGGREGATE= option, 3742
ALPHA= option, 3743
CONVERGE option, 3743
CORRB option, 3743
COVB option, 3743
DISTRIBUTION= option, 3743
HPROB= option, 3743
INITIAL option, 3744
INTERCEPT= option, 3744
INVERSECL option, 3744
ITPRINT option, 3744
MAXITER= option, 3745
NOINT option, 3745
SCALE= option, 3745
SINGULAR= option, 3745

PROBIT procedure, OUTPUT statement, 3745
PROBIT procedure, PREDPLOT statement

LEVEL option, 3752
PROBIT procedure, PREDPPLOT statement, 3746

ANNOTATE= option, 3750
CAXIS= option, 3750
CFIT= option, 3750
CFRAME= option, 3750
CGRID= option, 3750
CHREF= option, 3750
CTEXT= option, 3750
CVREF= option, 3750
DESCRIPTION= option, 3750
FONT= option, 3750
HAXIS= option, 3751
HEIGHT= option, 3751
HLOWER= option, 3751
HOFFSET= option, 3751
HREF= option, 3751
HREFLABELS= option, 3751
HREFLABPOS= option, 3751
HUPPER= option, 3751
INBORDER option, 3752
LFIT option, 3752
LGRID option, 3752
LHREF= option, 3752
LVREF= option, 3752
NAME= option, 3752
NOCONF option, 3752
NODATA option, 3752
NOFIT option, 3753
NOFRAME option, 3753
NOGRID option, 3753
NOHLABEL option, 3753
NOHTICK option, 3753
NOTHRESH option, 3753
NOVLABEL option, 3753

NOVTICK option, 3753
options, 3747
THRESHLABPOS= option, 3753
VAR= option, 3747
VAXIS= option, 3753
VAXISLABEL= option, 3753
VLOWER= option, 3753
VREF= option, 3754
VREFLABELS= option, 3754
VREFLABPOS= option, 3754
VUPPER= option, 3754
WAXIS= option, 3754
WFIT= option, 3754
WGRID= option, 3754
WREFL= option, 3754

PROBIT procedure, PROC PROBIT statement, 3711
COVOUT option, 3711
DATA= option, 3712
GOUT= option, 3712
HPROB= option, 3712
INEST= option, 3712
INVERSECL option, 3712
LACKFIT option, 3712
LOG option, 3713
LOG10 option, 3713
NAMELEN= option, 3713
NOPRINT option, 3713
OPTC option, 3711, 3713
ORDER=option, 3713
OUTEST= option, 3714
XDATA= option, 3714

PROBIT procedure, WEIGHT statement, 3754
probit-normal-binomial example

NLMIXED procedure, 3114
probit-normal-ordinal example

NLMIXED procedure, 3118
PROBPLOT statement

LIFEREG procedure, 2102
PROBT option

PROC CANCORR statement, 761
PROBTYPE= option

ONESAMPLEMEANS statement (POWER),
3436

PAIREDMEANS statement (POWER), 3452
TWOSAMPLEMEANS statement (POWER),

3468
PROBWIDTH= option

ONESAMPLEMEANS statement (POWER),
3436

PAIREDMEANS statement (POWER), 3453
TWOSAMPLEMEANS statement (POWER),

3469
PROC ACECLUS statement,

See ACECLUS procedure
PROC ANOVA statement,

See ANOVA procedure
PROC BOXPLOT statement,

See BOXPLOT procedure
PROC CALIS statement,
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See CALIS procedure
PROC CANCORR statement,

See CANCORR procedure
PROC CANDISC statement,

See CANDISC procedure
PROC CATMOD statement,

See CATMOD procedure
PROC CLUSTER statement,

See CLUSTER procedure
PROC CORRESP statement,

See CORRESP procedure
PROC DISCRIM statement,

See DISCRIM procedure
PROC DISTANCE statement,

See DISTANCE procedure
PROC FACTOR statement,

See FACTOR procedure
PROC FASTCLUS statement,

See FASTCLUS procedure
PROC FREQ statement,

See FREQ procedure
PROC GAM statement,

See GAM procedure
PROC GENMOD statement,

See GENMOD procedure
PROC GLM statement,

See GLM procedure
PROC GLMMOD statement,

See GLMMOD procedure
PROC GLMPOWER statement,

See GLMPOWER procedure
PROC INBREED statement,

See INBREED procedure
PROC KDE statement,

See KDE procedure
PROC KRIGE2D statement,

See KRIGE2D procedure
PROC LATTICE statement,

See LATTICE procedure
PROC LIFEREG statement,

See LIFEREG procedure
PROC LIFETEST statement,

See LIFETEST procedure
PROC LOESS statement,

See LOESS procedure
PROC LOGISTIC statement,

See LOGISTIC procedure
PROC MDS statement,

See MDS procedure
PROC MI statement,

See MI procedure
PROC MIANALYZE statement,

See MIANALYZE procedure
PROC MIXED statement,

See MIXED procedure
PROC MODECLUS statement,

See MODECLUS procedure
PROC MULTTEST statement,

See MULTTEST procedure

PROC NESTED statement,
See NESTED procedure

PROC NLIN statement,
See NLIN procedure

PROC NPAR1WAY statement,
See NPAR1WAY procedure

PROC ORTHOREG statement,
See ORTHOREG procedure

PROC PHREG statement,
See PHREG procedure

PROC PLAN statement,
See PLAN procedure

PROC PLS statement,
See PLS procedure

PROC POWER statement,
See POWER procedure

PROC PRINCOMP statement,
See PRINCOMP procedure

PROC PRINQUAL statement,
See PRINQUAL procedure

PROC PROBIT statement,
See PROBIT procedure

PROC REG statement,
See REG procedure

PROC ROBUSTREG statement,
ROBUSTREG procedure

PROC RSREG statement,
See RSREG procedure

PROC SCORE statement,
See SCORE procedure

PROC SIM2D statement,
See SIM2D procedure

PROC STDIZE statement,
See STDIZE procedure

PROC STEPDISC statement,
See STEPDISC procedure

PROC SURVEYFREQ statement, 4193,
See SURVEYFREQ procedure

PROC SURVEYLOGISTIC statement,
See SURVEYLOGISTIC procedure

PROC SURVEYMEANS statement,
See SURVEYMEANS procedure

PROC SURVEYREG statement,
See SURVEYREG procedure

PROC SURVEYSELECT statement, 4430,
See SURVEYSELECT procedure

PROC TPHREG statement,
See TPHREG procedure

PROC TPSPLINE statement,
See TPSPLINE procedure

PROC TRANSREG statement,
See TRANSREG procedure

PROC TREE statement,
See TREE procedure

PROC TTEST
See TTEST procedure, 4780

PROC VARCLUS statement,
See VARCLUS procedure

PROC VARCOMP statement,
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See VARCOMP procedure
PROC VARIOGRAM statement,

See VARIOGRAM procedure
Procrustean method, 1291
Procrustes rotation, 1318
producing monotone missingness

MI procedure, 2552
product-limit estimate

LIFETEST procedure, 2149, 2171, 2185
PROFILE keyword

REPEATED statement (ANOVA), 448
profile likelihood confidence intervals

GENMOD procedure, 1666
PROFILE option

MODEL statement (CATMOD), 846
REPEATED statement (GLM), 1779, 1832

profile, population and response, 72, 73
CATMOD procedure, 820

PROFILE= option
FACTORS statement (CATMOD), 837
PROC CORRESP statement, 1078
REPEATED statement (CATMOD), 851

profiling residual variance
MIXED procedure, 2772

progeny
INBREED procedure, 1976, 1978, 1980, 1988

programming statements
constraints (CALIS), 565, 628, 630, 675
differentiation (CALIS), 589
GENMOD procedure, 1645
NLMIXED procedure, 3081
PHREG procedure, 3220, 3222, 3235, 3236

projected gradient
NLMIXED procedure, 3093

projected Hessian
NLMIXED procedure, 3093

promax method, 1291, 1318
PROPENSITY option

MONOTONE statement (MI), 2533
propensity score method

MI procedure, 2543, 2565
proportion estimation

SURVEYMEANS procedure, 4341
PROPORTION= option

ONESAMPLEFREQ statement (POWER), 3431
PROC ACECLUS statement, 406
PROC FACTOR statement, 1316
PROC VARCLUS statement, 4811

proportional hazards model
assumption (PHREG), 3220
distribution (LIFEREG), 2111
PHREG procedure, 3215, 3228

proportional odds model
SURVEYLOGISTIC procedure, 4284

proportional rates/means model,
See rate/mean model

PROPORTIONALHAZARDS option
ASSESS statement (PHREG), 3223

PROPORTIONDIFF= option

TWOSAMPLEFREQ statement (POWER),
3460

proportions
SURVEYFREQ procedure, 4210

PROPVARREDUCTION= option
POWER statement (GLMPOWER), 1941

prospective power, 1929, 3411
prospective study, 1540
proximity data

MDS procedure, 2471, 2478, 2484
proximity measures

available methods for computing (DISTANCE),
1257

formulas(DISTANCE), 1270
PS destination

ODS Graphics, 326, 335
PSCALE

MODEL statement (GENMOD), 1642
PSEARCH option

PRIOR statement (MIXED), 2711
pseudoF andt statistics

CLUSTER procedure, 972
PSEUDO= option

PROC CLUSTER statement, 972
PSHORT option

PROC CALIS statement, 587
PSPLINE transformation

MODEL statement (TRANSREG), 4561
PSSCP option

PROC CANDISC statement, 792
PROC DISCRIM statement, 1151
PROC STEPDISC statement, 4167

PSTAT option
PROC STDIZE statement, 4133

PSUMMARY option
PROC CALIS statement, 587

PTRANS option
PRIOR statement (MIXED), 2712
PROC MDS statement, 2484

PVAL= option
PROC PLS statement, 3375

PVALS option
PROC MULTTEST statement, 2942

PWEIGHT option
PROC CALIS statement, 587

Q
Q option

RANDOM statement (GLM), 1777, 1834
Q-Q plots

graph template definitions, 366
plots, ODS Graphics, 361, 363, 368, 370, 372,

373, 375, 377–379
REG procedure, 3917, 3953

QFAC option
PROC NLMIXED statement, 3071

QMAX option
PROC NLMIXED statement, 3071

QPOINT transformation
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MODEL statement (TRANSREG), 4561
QPOINTS option

PROC NLMIXED statement, 3071
QQ option

PROC ACECLUS statement, 406
QSCALEFAC option

PROC NLMIXED statement, 3071
QTOL option

PROC NLMIXED statement, 3071
quadratic discriminant function, 1139
quadratic forms for fixed effects

displaying (GLM), 1777
quadratic regression, 1738
quadrature options

NLMIXED procedure, 3071
qualitative variables, 72,

See classification variables
REG procedure, 3943

quantal response data, 3705
quantification method

CORRESP procedure, 1069
quantile computation

STDIZE procedure, 4119, 4139
QUANTILES keyword

OUTPUT statement (LIFEREG), 2101
quartimax method, 1291, 1317, 1318
quartimin method, 1291, 1319
quasi-complete separation

LOGISTIC procedure, 2339
SURVEYLOGISTIC procedure, 4278

quasi-independence model, 919
quasi-inverse, 1164
quasi-likelihood

GENMOD procedure, 1659
quasi-Newton, 3073
quasi-Newton algorithm

CALIS procedure, 578–581, 665, 666

R
R convergence measure, 3030
R matrix

MIXED procedure, 2663, 2732, 2733
R option

MODEL statement (REG), 3829
REPEATED statement (MIXED), 2720

R-notation, 1794
R-square statistic

CLUSTER procedure, 972
LOGISTIC procedure, 2315, 2342
SURVEYLOGISTIC procedure, 4264, 4280

R2 improvement
REG procedure, 3874, 3875

R2 selection
REG procedure, 3875

R= option
and other options (CLUSTER), 969, 970, 972
PROC CLUSTER statement, 972
PROC DISCRIM statement, 1151
PROC MODECLUS statement, 2869

PROC SURVEYLOGISTIC statement, 4251
PROC SURVEYMEANS statement, 4324
PROC SURVEYREG statement, 4374

radius of sphere of support, 972
RADIUS= option

NLOPTIONS statement (CALIS), 614
PREDICT statement (KRIGE2D), 2042
PROC CALIS statement, 583
PROC FASTCLUS statement, 1388
RIDGE statement (RSREG), 4044

RAM model
CALIS procedure, 553, 596
specification, 560
structural model example (CALIS), 557, 563

RAM statement, CALIS procedure, 596
random coefficients

example (MIXED), 2788, 2810
random effects

expected mean squares, 1833
GLM procedure, 1776, 1833
MIXED procedure, 2663, 2712
NESTED procedure, 2990
NLMIXED procedure, 3079
VARCOMP procedure, 4831, 4837

random effects model,
See also nested design
VARCOMP procedure, 4837

random initializations
TRANSREG procedure, 4602

random number generators
MI procedure, 2520
PLAN procedure, 3339

RANDOM option
OUTPUT statement (PLAN), 3344

random sampling,
see also SURVEYSELECT procedure

RANDOM statement
GLM procedure, 1776
MIXED procedure, 2712
NLMIXED procedure, 3079

random-effects parameters
MIXED procedure, 2662, 2732

RANDOM= option
PROC CALIS statement, 590
PROC FACTOR statement, 1316
PROC FASTCLUS statement, 1394
PROC MDS statement, 2484
PROC VARCLUS statement, 4812

randomization of designs
using PLAN procedure, 3351

randomized complete block design
example, 1847

rangeε
KRIGE2D procedure, 2047

RANGE= option
MODEL statement (KRIGE2D), 2044
SIMULATE statement (SIM2D), 4104

rank correlation
LOGISTIC procedure, 2350
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SURVEYLOGISTIC procedure, 4292
rank order typal analysis,

See complete linkage
RANK procedure, 21

order statistics, 21
rank scores, 1469
rank tests

NPAR1WAY procedure, 3163
RANK transformation

MODEL statement (TRANSREG), 4563
TRANSFORM statement (PRINQUAL), 3662

RANKSCORE= option
PROC DISTANCE statement, 1261

Rao-Scott chi-square test
SURVEYFREQ procedure, 4216

Rao-Scott likelihood ratio test
SURVEYFREQ procedure, 4219

rate function
PHREG procedure, 3243, 3253

rate/mean model
PHREG procedure, 3243, 3253

RATE= option
PROC SURVEYFREQ statement, 4194
PROC SURVEYLOGISTIC statement, 4251
PROC SURVEYMEANS statement, 4324
PROC SURVEYREG statement, 4374

ratio
SURVEYMEANS procedure, 4330, 4339

ratio analysis
SURVEYMEANS procedure, 4330, 4339, 4348

ratio level of measurement
DISTANCE procedure, 1250

RATIO option
PROC MIXED statement, 2680, 2750

RATIO statement
SURVEYMEANS procedure, 4330

RATIO= option
MODEL statement (KRIGE2D), 2044
SIMULATE statement (SIM2D), 4104

RATIOS option
PARMS statement (MIXED), 2708
RANDOM statement (MIXED), 2714

raw residuals
GENMOD procedure, 1669

RC option
REPEATED statement (MIXED), 2720

RCI option
REPEATED statement (MIXED), 2720

RCONVERGE= option
FACTOR statement (CALIS), 607
PROC FACTOR statement, 1316

RCORR option
REPEATED statement (MIXED), 2720

RDF= option
PROC CALIS statement, 572
PROC CANCORR statement, 761

RDIF1 option
OUTPUT statement (FREQ), 1449

RDIF2 option

OUTPUT statement (FREQ), 1449
RDPREFIX= option

OUTPUT statement (TRANSREG), 4591
READ function

RESPONSE statement (CATMOD), 853
receiver operating characteristic

LOGISTIC procedure, 2378
reciprocal averaging

CORRESP procedure, 1069
reciprocal causation

CALIS procedure, 585
rectangular lattice

LATTICE procedure, 2069
rectangular table

SURVEYMEANS procedure, 4324
recurrent events

PHREG procedure, 3216, 3224–3226, 3243
RED option

PROC CANCORR statement, 761
reduced rank regression, 3367

PLS procedure, 3381
REDUCEOUT option

PROC LIFETEST statement, 2164
SURVIVAL statement (LIFETEST), 2168

reduction notation, 1794
redundancy analysis

CANCORR procedure, 752
standardized variables (TRANSREG), 4591
TRANSREG procedure, 4576, 4590, 4593, 4606

REDUNDANCY option
PROC CANCORR statement, 761

REDUNDANCY= option
OUTPUT statement (TRANSREG), 4591

REF Parameterization
SURVEYLOGISTIC procedure, 4272

REF= option
CLASS statement (GENMOD), 1630
CLASS statement (LOGISTIC), 2297
CLASS statement (SURVEYLOGISTIC), 4254
CLASS statement (TPHREG), 4478

reference level
TRANSREG procedure, 4569

REFERENCE Parameterization
SURVEYLOGISTIC procedure, 4272

reference structure, 1298
reference-cell coding

TRANSREG procedure, 4569, 4594, 4664, 4666
REFERENCE= option

MODEL statement (TRANSREG), 4579
OUTPUT statement (TRANSREG), 4591

references, 1288
referring to graphs

examples, ODS Graphics, 330
ODS Graphics, 330

REFINE option
PROC ROBUSTREG statement, 3987

REFIT statement, REG procedure, 3852
refitting models

REG procedure, 3905
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REFLECT option
MODEL statement (TRANSREG), 4572
TRANSFORM statement, 3666

reflecting the transformation
PRINQUAL procedure, 3666
TRANSREG procedure, 4572

REFPROPORTION= option
PAIREDFREQ statement (POWER), 3446
TWOSAMPLEFREQ statement (POWER),

3460
REFRESH= option

PROC PRINQUAL statement, 3656
REFSURVEXPHAZARD= option

TWOSAMPLESURVIVAL statement
(POWER), 3479

REFSURVIVAL= option
TWOSAMPLESURVIVAL statement

(POWER), 3479
REG option

MONOTONE statement (MI), 2532
REG procedure

adding variables, 3819
adjusted R2 selection, 3875
alpha level, 3816
annotations, 3816, 3844
ANOVA table, 3918
autocorrelation, 3915
backward elimination, 3800, 3874
collinearity, 3895
compared to other procedures, 1735, 3197
computational methods, 3917
correlation matrix, 3817
covariance matrix, 3817
crossproducts matrix, 3917
delete variables, 3820
deleting observations, 3903
diagnostic statistics, 3896, 3897
dictionary of options, 3844
forward selection, 3800, 3873
graphics, 3923
graphics examples, 3948
graphics keywords and options, 3841, 3843
graphics plots, high-resolution, 3840
heteroscedasticity, testing, 3910
hypothesis tests, 3832, 3858
incomplete principal components, 3818, 3828
influence statistics, 3898
input data sets, 3860
interactive analysis, 3812, 3869
introductory example, 3800
IPC analysis, 3818, 3828, 3916
line printer plots, 3848, 3882
Mallows’ Cp selection, 3875
missing values, 3859
model fit summary statistics, 3896
model selection, 3800, 3873, 3876, 3877, 3924
multicollinearity, 3895
multivariate tests, 3910
new regressors, 3860

non-full-rank models, 3893
ODS graph names, 3923
ODS table names, 3920
output data sets, 3863, 3868
P-P plots, 3917, 3953
painting line-printer plots, 3889
parameter estimates, 3877, 3919
partial regression leverage plots, 3901
plot keywords and options, 3841, 3843, 3844
plots, high-resolution, 3840
polynomial regression, 3804
predicted values, 3876, 3879, 3924
Q-Q plots, 3917, 3953
qualitative variables, 3943
R2 improvement, 3874, 3875
R2 selection, 3875
refitting models, 3905
residual values, 3879
restoring weights, 3906
reweighting observations, 3903
ridge regression, 3818, 3829, 3848, 3916, 3956
singularities, 3917
stepwise selection, 3800, 3874
summary statistics, 3896
sweep algorithm, 3917
syntax, 3813
time series data, 3915
variance inflation factors (VIF), 3818, 3958

REG procedure, ADD statement, 3819
REG procedure, BY statement, 3819
REG procedure, DELETE statement, 3820
REG procedure, FREQ statement, 3820
REG procedure, ID statement, 3821
REG procedure, MODEL statement, 3821

ACOV option, 3823
ADJRSQ option, 3824
AIC option, 3824
ALL option, 3824
ALPHA= option, 3824
B option, 3824
BEST= option, 3824
BIC option, 3824
CLB option, 3825
CLI option, 3825
CLM option, 3825
COLLIN option, 3825
COLLINOINT option, 3825
CORRB option, 3825
COVB option, 3825
CP option, 3825
DETAILS option, 3825
DW option, 3826
DWPROB option, 3826
EDF option, 3826
GMSEP option, 3826
GROUPNAMES= option, 3826
I option, 3827
INCLUDE= option, 3827
INFLUENCE option, 3827
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JP option, 3827
MAXSTEP option, 3827
MSE option, 3827
NOINT option, 3827
NOPRINT option, 3827
OUTSEB option, 3828
OUTSTB option, 3828
OUTVIF option, 3828
P option, 3828
PARTIAL option, 3828
PARTIALR2 option, 3828
PC option, 3828
PCOMIT= option, 3828
PCORR1 option, 3829
PCORR2 option, 3829
PRESS option, 3829
R option, 3829
RIDGE= option, 3829
RMSE option, 3829
RSQUARE option, 3829
SBC option, 3829
SCORR1 option, 3830
SCORR2 option, 3830
SELECTION= option, 3800, 3830
SEQB option, 3830
SIGMA= option, 3830
SINGULAR= option, 3830
SLENTRY= option, 3831
SLSTAY= option, 3831
SP option, 3831
SPEC option, 3831
SS1 option, 3831
SS2 option, 3831
SSE option, 3831
START= option, 3831
STB option, 3831
STOP= option, 3832
TOL option, 3832
VIF option, 3832
XPX option, 3832

REG procedure, MTEST statement, 3832
CANPRINT option, 3833
DETAILS option, 3833
PRINT option, 3833

REG procedure, OUTPUT statement, 3833
keyword= option, 3834
OUT= option, 3834

REG procedure, PAINT statement, 3835
ALLOBS option, 3837
NOLIST option, 3838
RESET option, 3838
STATUS option, 3838
SYMBOL= option, 3838
UNDO option, 3838

REG procedure, PLOT statement, 3839
AIC option, 3844
ANNOTATE= option, 3844
BIC option, 3844
CAXIS= option, 3844

CFRAME= option, 3844
CHOCKING= option, 3845
CHREF= option, 3845
CLEAR option, 3849
CLINE= option, 3845
CMALLOWS= option, 3845
COLLECT option, 3849
CONF option, 3845
CP option, 3845
CTEXT= option, 3845
CVREF= option, 3846
DESCRIPTION= option, 3846
EDF option, 3846
GMSEP option, 3846
HAXIS= option, 3846
HPLOTS= option, 3849
HREF= option, 3846
IN option, 3846
JP option, 3846
LEGEND= option, 3846
LHREF= option, 3846
LLINE= option, 3846
LVREF= option, 3846
MODELFONT option, 3846
MODELHT option, 3847
MODELLAB option, 3847
MSE option, 3847
NAME= option, 3847
NOCOLLECT option, 3850
NOLINE option, 3847
NOMODEL option, 3847
NOSTAT option, 3847
NP option, 3847
OVERLAY option, 3847, 3850
PC option, 3847
PRED option, 3847
RIDGEPLOT option, 3848
SBC option, 3848
SP option, 3848
SSE option, 3848
STATFONT option, 3848
STATHT option, 3848
summary of options, 3841, 3843
SYMBOL= option, 3850
USEALL option, 3848
VAXIS= option, 3848
VPLOTS= option, 3851
VREF= option, 3848

REG procedure, PRINT statement, 3851
REG procedure, PROC REG statement, 3815

ALL option, 3816
ALPHA= option, 3816
ANNOTATE= option, 3816
CORR option, 3817
COVOUT option, 3817
DATA= option, 3817
EDF option, 3817
GOUT= option, 3817
LINEPRINTER option, 3817
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NOPRINT option, 3817
OUTEST= option, 3817
OUTSEB option, 3817
OUTSSCP= option, 3818
OUTSTB option, 3818
OUTVIF option, 3818
PCOMIT= option, 3818
PLOTS option, 3923
PLOTS(MAXPOINTS=) option, 3923
PRESS option, 3818
RIDGE= option, 3818
RSQUARE option, 3819
SIMPLE option, 3819
SINGULAR= option, 3819
TABLEOUT option, 3819
UNPACKPANELS option, 3923
USSCP option, 3819

REG procedure, REFIT statement, 3852
REG procedure, RESTRICT statement, 3852
REG procedure, REWEIGHT statement, 3854

ALLOBS option, 3856
NOLIST option, 3856
RESET option, 3856
STATUS option, 3857
UNDO option, 3857
WEIGHT= option, 3857

REG procedure, TEST statement, 3858
PRINT option, 3858

REG procedure, VAR statement, 3859
REG procedure, WEIGHT statement, 3859
REGPMM option

MONOTONE statement (MI), 2532
REGPREDMEANMATCH option

MONOTONE statement (MI), 2532
regression

analysis (REG), 3799
CATMOD procedure, 815
examples (GLM), 1853
ill-conditioned data, 3197
MODEL statements (GLM), 1785
nonparametric, 4497
ORTHOREG procedure, 3197
partial least squares (PROC PLS), 3367, 3380
power and sample size (POWER), 3421, 3425,

3500, 3556
principal components (PROC PLS), 3367, 3381
quadratic (GLM), 1738
reduced rank (PROC PLS), 3367, 3381
semiparametric models, 4497, 4500
smoothing splines, 4497

regression coefficients
CANCORR procedure, 759
covariance (SURVEYREG), 4392
SURVEYREG procedure, 4384, 4392
using with SCORE procedure, 4066

regression diagnostics
LOGISTIC procedure, 2359

regression effects
MIXED procedure, 2743

model parameterization (GLM), 1787
specifying (GLM), 1784

regression estimator
SURVEYREG procedure, 4400, 4407

regression method
MI procedure, 2541, 2565

REGRESSION option
MONOTONE statement (MI), 2532

regression parameter estimates, example
SCORE procedure, 4081

regression table
TRANSREG procedure, 4580

regressor effects
GENMOD procedure, 1660

REGWQ option
MEANS statement (ANOVA), 444
MEANS statement (GLM), 1768

REITERATE option
MODEL statement (TRANSREG), 4579
PROC PRINQUAL statement, 3656

rejection sampling
MIXED procedure, 2711

relative efficiency
MI procedure, 2562
MIANALYZE procedure, 2626

relative increase in variance
MI procedure, 2562
MIANALYZE procedure, 2625

relative paths, 337
examples, ODS Graphics, 359

relative risk, 1503
cohort studies, 1489
logit estimate, 1507
Mantel-Haenszel estimate, 1507
power and sample size (POWER), 3457, 3462,

3523, 3524
RELATIVERISK= option

TWOSAMPLEFREQ statement (POWER),
3460

RELRISK option
OUTPUT statement (FREQ), 1449
TABLES statement (FREQ), 1460, 1535

REML,
See restricted maximum likelihood

renaming and reusing variables
PRINQUAL procedure, 3666

REORDER option
PROC FACTOR statement, 1316

REP= option
PROC SURVEYSELECT statement, 4438

REPEAT option
PLOT statement (BOXPLOT), 508

repeated measures
ANOVA procedure, 446
CATMOD procedure, 815, 850, 873
contrasts (GLM), 1779
data organization (GLM), 1825
doubly-multivariate design, 1886
examples (CATMOD), 925, 930, 933, 937
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examples (GLM), 1781, 1877
GEE (GENMOD), 1611, 1672
GLM procedure, 1777, 1825
hypothesis tests (GLM), 1827, 1830
MIXED procedure, 2662, 2716, 2782
more than one factor (ANOVA), 446, 449
more than one factor (GLM), 1830
multiple populations (CATMOD, 875
one population (CATMOD), 873
RESPONSE statement (CATMOD), 873
specifying factors (CATMOD), 851
transformations, 1830–1832

REPEATED statement
ANOVA procedure, 446
CATMOD procedure, 850
GENMOD procedure, 1621, 1646
GLM procedure, 1777
MIXED procedure, 2716, 2783

REPLACE option
OUTPUT statement (TRANSREG), 4592
PROC DISTANCE statement, 1262
PROC PRINQUAL statement, 3656
PROC STDIZE statement, 4133

REPLACE= option
PROC FASTCLUS statement, 1394

replaying output
examples, ODS Graphics, 361, 363, 369

REPLICATE statement
NLMIXED procedure, 3080

replicate subjects
NLMIXED procedure, 3080

replicated sampling
SURVEYSELECT procedure, 4438, 4460

REPONLY option
PROC DISTANCE statement, 1262
PROC STDIZE statement, 4133

requesting graphs
ODS Graphics, 321, 324

RESAMPLE option
ASSESS statement (PHREG), 3224

RESAMPLE= option
ASSESS statement (PHREG), 3224

resampled data sets
MULTTEST procedure, 2962

RESCHI= option
OUTPUT statement (LOGISTIC), 2322

RESDEV= option
OUTPUT statement (LOGISTIC), 2322

RESET option
ODS GRAPHICS statement, 350
PAINT statement (REG), 3838
REWEIGHT statement (REG), 3856

reseting index counter
ODS Graphics, 335

residual chi-square
PHREG procedure, 3231

RESIDUAL keyword
OUTPUT statement (GLM), 1774
OUTPUT statement (ROBUSTREG), 3991

residual maximum likelihood (REML)
MIXED procedure, 2738, 2779

RESIDUAL option
MIXED procedure, MODEL statement, 2764
MODEL statement (LOESS), 2234
MODEL statement (MIXED), 2704
MODEL statement (RSREG), 4043
PROC SCORE statement, 4072

Residual plots
MIXED procedure, 2758

residual plots
plots, ODS Graphics, 322

RESIDUAL= option
OUTPUT statement (NLIN), 3014
PROC CALIS statement, 587

residuals
and partial correlation (PRINCOMP), 3609
CALIS procedure, 650
deviance (PHREG), 3234, 3258, 3302
GENMOD procedure, 1641, 1669, 1670
LOGISTIC procedure, 2360
martingale (PHREG), 3234, 3258, 3302
MDS procedure, 2483, 2487, 2488, 2491, 2503
NLIN procedure, 3014
partial correlation (PRINCOMP), 3608
prefix (CALIS), 601
prefix (TRANSREG), 4591
REG procedure, 3879
Schoenfeld (PHREG), 3234, 3258
score (PHREG), 3234, 3259
weighted Schoenfeld (PHREG), 3235, 3259
weighted score (PHREG), 3260

RESIDUALS option
MODEL statement (GENMOD), 1641
OUTPUT statement (TRANSREG), 4592
PROC FACTOR statement, 1316

residuals, details
MIXED procedure, 2763

response functions (CATMOD), 852, 854–856, 859,
862, 901, 906, 944

covariance matrix, 842
formulas, 892
identifying with FACTORS statement, 836
predicted values, 845
related to design matrix, 877, 879
variance formulas, 892

–RESPONSE– keyword
MODEL statement (CATMOD), 836, 839, 840,

842, 850, 864, 870, 873, 881, 882, 884,
888, 898

response level ordering
LOGISTIC procedure, 2290, 2305, 2329, 2330
SURVEYLOGISTIC procedure, 4259, 4269,

4270
response profile, 73

CATMOD procedure, 820
RESPONSE statement

CATMOD procedure, 852
response surfaces, 4033
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canonical analysis, interpreting, 4046
covariates, 4050
experiments, 4045
plotting, 4048
ridge analysis, 4047

response variable, 451, 1784
PHREG procedure, 3218, 3235, 3283
sort order of levels (GENMOD), 1626

–RESPONSE–= option
FACTORS statement (CATMOD), 837

–RESPONSE–= option
REPEATED statement (CATMOD), 851

RESTART option
PROC NLMIXED statement, 3072

RESTART= option
NLOPTIONS statement (CALIS), 623

restoring weights
REG procedure, 3906

RESTRICT statement
CATMOD procedure, 859
REG procedure, 3852

restricted maximum likelihood
MIXED procedure, 2662, 2738, 2779

restrictions
of parameters (CATMOD), 859

resubstitution
DISCRIM procedure, 1163

RETAIN statement
NLIN procedure, 3016

reticular action model,
See RAM model

retrospective power, 1929, 3411
reverse response level ordering

LOGISTIC procedure, 2290, 2305, 2329, 2330
SURVEYLOGISTIC procedure, 4259, 4269,

4270
REWEIGHT statement, REG procedure, 3854
reweighting observations

REG procedure, 3903
RHO= option

PROC NLIN statement, 3009
RI option

REPEATED statement (MIXED), 2720
ridge analysis

RSREG procedure, 4047
ridge regression

REG procedure, 3818, 3829, 3848, 3916, 3956
RIDGE statement

RSREG procedure, 4043
RIDGE= option

MODEL statement (REG), 3829
PROC CALIS statement, 573
PROC MDS statement, 2484
PROC MIXED statement, 2680
PROC REG statement, 3818

RIDGEPLOT option
PLOT statement (REG), 3848

ridging
MIXED procedure, 2680, 2738

RIDGING= option
MODEL statement (LOGISTIC), 2315
MODEL statement (SURVEYLOGISTIC), 4264

ridit scores, 1469
risk set

PHREG procedure, 3220, 3240, 3241, 3288
risk weights

PHREG procedure, 3229
RISKDIFF option

OUTPUT statement (FREQ), 1449
TABLES statement (FREQ), 1460

RISKDIFF1 option
OUTPUT statement (FREQ), 1449

RISKDIFF2 option
OUTPUT statement (FREQ), 1449

RISKDIFFC option
TABLES statement (FREQ), 1460

RISKLIMITS option
MODEL statement (LOGISTIC), 2315
MODEL statement (PHREG), 3233

risks and risk differences, 1486
RITER= option

FACTOR statement (CALIS), 607
PROC FACTOR statement, 1316

RMSE option
MODEL statement (REG), 3829

RMSSTD option
PROC CLUSTER statement, 972

RMSSTD statement
and FREQ statement (CLUSTER), 974

robust
cluster analysis, 1379, 1392
estimators (STDIZE), 4138

ROBUST option
COMPUTE statement (VARIOGRAM), 4869

ROBUSTREG procedure, 3971
computational resources, 4012
INEST= data sets, 4011
ODS graph names, 4014
OUTEST= data sets, 4011
output table names, 4012
syntax, 3982

ROBUSTREG procedure, BY statement, 3988
ROBUSTREG procedure, CLASS statement, 3989
ROBUSTREG procedure, ID statement, 3989
ROBUSTREG procedure, MODEL statement, 3989

ALPHA= option, 3989
CORRB option, 3989
COVB option, 3989
CPUCOUNT option, 3991
CUTOFF option, 3989
DIAGNOSTICS option, 3989
ITPRINT option, 3990
LEVERAGE option, 3990
NOGOODFIT option, 3990
NOINT option, 3990
SINGULAR= option, 3990

ROBUSTREG procedure, OPTIONS statement, 3989
ROBUSTREG procedure, OUTPUT statement, 3990
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keyword= option, 3991
LEVEARAGE keyword, 3991
OUT= option, 3990
OUTLIER keyword, 3991
PREDICTED keyword, 3991
RESIDUAL keyword, 3991
SRESIDUAL keyword, 3991
STD–ERR keyword, 3991
XBETA keyword, 3991

ROBUSTREG procedure, PERFORMANCE state-
ment, 3991

ROBUSTREG procedure, PROC ROBUSTREG state-
ment, 3983

BIASTEST option, 3987
CHIF option, 3986, 3987
CONVERGENCE option, 3984, 3987
COVARIANCE option, 3984, 3986
COVOUT option, 3983
CSTEP option, 3985
DATA= option, 3983
EFF option, 3986, 3988
H option, 3985
IADJUST option, 3985
INEST= option, 3983
INITEST option, 3988
INITH option, 3988
ITPRINT option, 3983
K0 option, 3988
MAXITER= option, 3984, 3987, 3988
NAMELEN= option, 3983
NBEST option, 3986
NREP option, 3986, 3987
ORDER= option, 3983
OUTEST= option, 3984
PLOT= option, 4014
REFINE option, 3987
SCALE option, 3984
SUBANALYSIS option, 3986
SUBGROUPSIZE option, 3986
SUBSETSIZE option, 3987
TOLERANCE option, 3987
WEIGHTFUNCTION option, 3985
WLS= option, 3983

ROBUSTREG procedure, TEST statement, 3992
ROBUSTREG procedure, WEIGHT statement, 3992
ROBUSTREG procedure,PROC ROBUSTREG state-

ment
COVARIANCE option, 3987
SEED option, 3984

ROC curve
LOGISTIC procedure, 2314, 2357

ROCEPS= option
MODEL statement (LOGISTIC), 2315
SCORE statement (LOGISTIC), 2325

Roger and Tanimoto coefficient
DISTANCE procedure, 1274

Root MSE
SURVEYREG procedure, 4388

ROOT= option

PROC TREE statement, 4753
RORDER= option

PROC GENMOD statement, 1626
ROTATE= option

FACTOR statement (CALIS), 607
PROC FACTOR statement, 1317

rotating principal components, 3611
ROUND option

PROC FACTOR statement, 1319
ROUND= option

PROC MI statement, 2520
row mean scores statistic, 1502
ROW option

TABLES statement (SURVEYFREQ), 4201
row proportions

SURVEYFREQ procedure, 4212
ROW= option

PROC CORRESP statement, 1079
Roy’s maximum root, 437, 1759, 1828
RP option

PROC CORRESP statement, 1079
RPC convergence measure, 3030
RPREFIX= option

OUTPUT statement (TRANSREG), 4592
RRC1 option

OUTPUT statement (FREQ), 1449
RRC2 option

OUTPUT statement (FREQ), 1449
RSK1 option

OUTPUT statement (FREQ), 1449
RSK11 option

OUTPUT statement (FREQ), 1449
RSK12 option

OUTPUT statement (FREQ), 1449
RSK2 option

OUTPUT statement (FREQ), 1449
RSK21 option

OUTPUT statement (FREQ), 1449
RSK22 option

OUTPUT statement (FREQ), 1449
RSQUARE option

MODEL statement (LOGISTIC), 2315
MODEL statement (REG), 3829
MODEL statement (SURVEYLOGISTIC), 4264
PROC CLUSTER statement, 972
PROC REG statement, 3819

RSQUAREDIFF= option
MULTREG statement (POWER), 3424

RSQUAREFULL= option
MULTREG statement (POWER), 3424

RSQUAREREDUCED= option
MULTREG statement (POWER), 3425

RSREG procedure
coding variables, 4047, 4052
compared to other procedures, 1735, 4033
computational methods, 4050
confidence intervals, 4042, 4043
Cook’sD influence statistic, 4042
covariates, 4034
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eigenvalues, 4050
eigenvectors, 4050
factor variables, 4034
input data sets, 4040, 4041
introductory example, 4034
missing values, 4048
ODS table names, 4054
output data sets, 4040, 4044, 4051, 4052
PRESS statistic, 4042
response variables, 4034
ridge analysis, 4047
syntax, 4039

RSREG procedure, BY statement, 4040
RSREG procedure, ID statement, 4041
RSREG procedure, MODEL statement, 4041

ACTUAL option, 4041
BYOUT option, 4041
COVAR= option, 4042
D option, 4042
L95 option, 4042
L95M option, 4042
LACKFIT option, 4042
NOANOVA option, 4042
NOCODE option, 4042
NOOPTIMAL option, 4042
NOPRINT option, 4042
PREDICT option, 4042
PRESS option, 4042
RESIDUAL option, 4043
U95 option, 4043
U95M option, 4043

RSREG procedure, PROC RSREG statement, 4039
DATA= option, 4040
NOPRINT option, 4040
OUT= option, 4040

RSREG procedure, RIDGE statement, 4043
CENTER= option, 4043
MAXIMUM option, 4044
MINIMUM option, 4044
NOPRINT option, 4044
OUTR= option, 4044
RADIUS= option, 4044

RSREG procedure, WEIGHT statement, 4044
RSTUDENT keyword

OUTPUT statement (GLM), 1774
RTF destination

ODS Graphics, 326, 335
RTF output

examples, ODS Graphics, 356, 360
ODS Graphics, 326, 338

Rtf style
ODS styles, 346

RUPDATE= option
REPEATED statement (GENMOD), 1648

Russell and Rao similarity coefficient
DISTANCE procedure, 1276

Ryan’s multiple range test, 444, 1768, 1815
examples, 1851

S
S convergence measure, 3030
S option

PROC CANCORR statement, 761
saddle test, definition

MODECLUS procedure, 2879
salience of loadings, FACTOR procedure, 1294, 1327
SALPHA= option

NLOPTIONS statement (CALIS), 614
PROC CALIS statement, 583

Sampford’s method
SURVEYSELECT procedure, 4455

sample design
SURVEYFREQ procedure, 4203

sample selection methods
SURVEYSELECT procedure, 4446

sample size
CATMOD procedure, 887
overview of power concepts (POWER), 3488
See GLMPOWER procedure, 1929
See POWER procedure, 3411
SURVEYSELECT procedure, 4440

sample size adjustment
GLMPOWER procedure, 1946
POWER procedure, 3494

sample survey analysis, ordinal data, 816
sampling fraction, 165
sampling frame, 164
sampling rate, 165

SURVEYFREQ procedure, 4194, 4204
SURVEYLOGISTIC procedure, 4251, 4280
SURVEYMEANS procedure, 4324, 4334
SURVEYREG procedure, 4374, 4382
SURVEYSELECT procedure, 4439

sampling unit, 164
sampling weight, 165
sampling zeros

and log-linear analyses (CATMOD), 871
and structural zeros (CATMOD), 888

SAMPRATE= option
PROC SURVEYSELECT statement, 4439

SAMPSIZE= option
PROC SURVEYSELECT statement, 4440

sandwich estimator
MIXED procedure, 2676

SAS Companion, 327, 336, 348
SAS current folder, 327
SAS data set

DATA step, 21
summarizing, 21, 22

SAS Registry, 327, 346
SAS Registry Editor, 346
SAS Results Viewer, 327, 336
SAS/ETS software, 22
SAS/GRAPH software, 22
SAS/IML software, 22
SAS/INSIGHT software, 22
SAS/OR software, 23
SAS/QC software, 23
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Satterthwaite method
MIXED procedure, 2694

Satterthwaitet test
power and sample size (POWER), 3463, 3472,

3527
Satterthwaite’s approximation, 4775, 4785

testing random effects, 1835
SAVAGE option

EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3157

Savage scores
NPAR1WAY procedure, 3167

SAVE option
PROC NLIN statement, 3009

saving graphics image files
ODS Graphics, 336

saving templates
examples, ODS Graphics, 368

sawtooth power function, 3541
SBC option

MODEL statement (REG), 3829
PLOT statement (REG), 3848

scale estimates
FASTCLUS procedure, 1390, 1392, 1397, 1399,

1400
SCALE option

PROC ROBUSTREG statement, 3984
scale parameter

GENMOD procedure, 1653
SCALE= option

MODEL statement (GENMOD), 1642
MODEL statement (KRIGE2D), 2044
MODEL statement (LIFEREG), 2099
MODEL statement (LOESS), 2234
MODEL statement (LOGISTIC), 2316
MODEL statement (PROBIT), 3745
SIMULATE statement (SIM2D), 4104

Scaled Residual
MIXED procedure, 2705

Scaled residuals
MIXED procedure, 2764

SCALEDINDEP option
MODEL statement (LOESS), 2234
Score statement (LOESS), 2237

scaling variables
DISTANCE procedure, 1251
MODECLUS procedure, 2856
STDIZE procedure, 4143

scalogram analysis
CORRESP procedure, 1069

scatter plots
plots, ODS Graphics, 343, 351

Scheffé’s multiple-comparison procedure, 1810
SCHEFFE option

MEANS statement (ANOVA), 444
MEANS statement (GLM), 1769

Scheffé’s multiple-comparison procedure, 444
Scheffé’s multiple-comparison procedure, 1769

Schoenfeld residuals
PHREG procedure, 3234, 3258

Schwarz criterion
LOGISTIC procedure, 2341
SURVEYLOGISTIC procedure, 4279

Schwarz’s Bayesian information criterion
example (MIXED), 2780, 2794, 2823
MIXED procedure, 2676, 2740, 2750

SCORE option
PROC FACTOR statement, 1319

SCORE procedure
CALIS procedure, 571, 586, 643
computational resources, 4075
examples, 4067, 4075
input data set, 4072
OUT= data sets, 4075
output data set, 4072, 4075
PRINCOMP procedure, 3611
regression parameter estimates from REG proce-

dure, 4074
scoring coefficients, 4065
syntax, 4071

SCORE procedure, BY statement, 4073
SCORE procedure, ID statement, 4074
SCORE procedure, PROC SCORE statement, 4072

DATA= option, 4072
NOSTD option, 4072
OUT= option, 4072
PREDICT option, 4072
RESIDUAL option, 4072
SCORE= option, 4072
TYPE= option, 4072

SCORE procedure, VAR statement, 4074
score residuals

PHREG procedure, 3234, 3259
SCORE statement

LOESS procedure, 2236
SCORE statement, GAM procedure, 1569
SCORE statement, TPSPLINE procedure, 4510
score statistics

GENMOD procedure, 1668
LOGISTIC procedure, 2343
SURVEYLOGISTIC procedure, 4287

score test
PHREG procedure, 3229, 3231, 3246, 3269,

3274, 3276
TPHREG procedure, 4486

score variables
interpretation (SCORE), 4074

SCORE= option
PROC SCORE statement, 4072

scores
NPAR1WAY procedure, 3166

SCORES option
PROC PRINQUAL statement, 3656

SCORES= option
EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3157
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TABLES statement (FREQ), 1461, 1547
scoring

MIXED procedure, 2674, 2680, 2774
scoring coefficients (SCORE), 4065
SCORING= option

MODEL statement (GENMOD), 1642
PROC MIXED statement, 2680

SCOROUT option
TABLES statement (FREQ), 1461

SCORR option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1449
TEST statement (FREQ), 1463

SCORR1 option
MODEL statement (REG), 3830

SCORR2 option
MODEL statement (REG), 3830

SCREE option
PROC FACTOR statement, 1319

scree plot, 1336
screening design, analysis, 1895
screening experiments

GLMMOD procedure, 1923
SCWGT statement

GENMOD procedure, 1650
SDF,

See survival distribution function
SE option

PROC FACTOR statement, 1319
SEB option

PROC CANCORR statement, 761
SEED option

PROC MI statement, 2520
PROC NLMIXED statement, 3072
PROC PLAN statement, 3339
PROC ROBUSTREG statement

(ROBUSTREG), 3984
SEED statement

VARCLUS procedure, 4814
SEED= option

ASSESS statement (PHREG), 3224
EXACT statement (FREQ), 1445
EXACT statement (NPAR1WAY), 3161
PRIOR statement (MIXED), 2712
PROC FASTCLUS statement, 1394
PROC MULTTEST statement, 2942
PROC PLS statement, 3374, 3375
PROC SURVEYSELECT statement, 4441
SIMULATE statement (SIM2D), 4104

SELECT= modifier
INFLUENCE option, MODEL statement

(MIXED), 2699
SELECT= option

MODEL statement (LOESS), 2234
SELECTALL option

PROC SURVEYSELECT statement, 4442
selecting graphs

examples, ODS Graphics, 330, 352, 361
ODS Graphics, 330

selection methods,
See model selection

SELECTION= option
MODEL statement (LOGISTIC), 2317
MODEL statement (PHREG), 3229
MODEL statement (REG), 3830
REG procedure, MODEL statement, 3800

semiparametric model
PHREG procedure, 3215

semipartial correlation
CANCORR procedure, 762
formula (CLUSTER), 984

semivariogram
computation (VARIOGRAM), 4876, 4877
empirical (or experimental) (VARIOGRAM),

4856, 4858
robust (VARIOGRAM), 4861, 4869, 4877

sensitivity
CATMOD procedure, 941

SEPARATORS= option
MODEL statement (TRANSREG), 4569, 4579

SEQB option
MODEL statement (REG), 3830

SEQUENTIAL option
MODEL statement (LOGISTIC), 2317
MODEL statement (PHREG), 3230

sequential random sampling
SURVEYSELECT procedure, 4448

serpentine sorting
SURVEYSELECT procedure, 4445

SFACTOR= option
PRIOR statement (MIXED), 2712

Shape distance coefficient
DISTANCE procedure, 1271

SHAPE1= option
MODEL statement (LIFEREG), 2099

SHAPE= option
PROC DISTANCE statement, 1262
PROC MDS statement, 2484

Shewhart control charts, 23
SHORT option

MODEL statement (TRANSREG), 4579
PROC ACECLUS statement, 407
PROC CALIS statement, 587
PROC CANCORR statement, 761
PROC CANDISC statement, 792
PROC CORRESP statement, 1079
PROC DISCRIM statement, 1151
PROC FASTCLUS statement, 1395
PROC MODECLUS statement, 2869
PROC STEPDISC statement, 4167
PROC VARCLUS statement, 4812

Sidak (MULTTEST)
p-value adjustments, 2942, 2956, 2972

SIDAK option
MEANS statement (ANOVA), 444
MEANS statement (GLM), 1769
PROC MULTTEST statement, 2942, 2956, 2972

Sidak’st test, 1769, 1810
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Sidak’s adjustment
GLM procedure, 1754
MIXED procedure, 2688
MULTTEST procedure, 2942, 2956, 2972

Sidak’s inequality, 444
SIDES= option

ONESAMPLEFREQ statement (POWER), 3431
ONESAMPLEMEANS statement (POWER),

3436
ONEWAYANOVA statement (POWER), 3441
PAIREDFREQ statement (POWER), 3446
PAIREDMEANS statement (POWER), 3453
TWOSAMPLEFREQ statement (POWER),

3461
TWOSAMPLEMEANS statement (POWER),

3469
TWOSAMPLESURVIVAL statement

(POWER), 3479
Siegel-Tukey scores

NPAR1WAY procedure, 3167
SIGITER option

PROC MIXED statement, 2680
SIGMA= option

MODEL statement (REG), 3830
significance level

CALIS procedure, 588
entry (PHREG), 3230
hazards ratio confidence interval (PHREG),

3233
removal (PHREG), 3230, 3277

significance tests
MODECLUS procedure, 2876, 2916

SIGSQ= option
PROC NLIN statement, 3009

sill
KRIGE2D procedure, 2047

SIM2D procedure, 4091
Cholesky root, 4107
computational details, 4109
conditional and unconditional simulation, 4091
conditional distributions of multivariate normal

random variables, 4108
examples, 4092, 4111
Gaussian assumption, 4091
Gaussian random field, 4091
LU decomposition, 4106
memory usage, 4110
output data sets, 4099, 4110
OUTSIM= data set, 4110
quadratic form, 4108
simulation of spatial random fields, 4106–4109
syntax, 4097

SIM2D procedure, COORDINATES statement, 4099
XCOORD= option, 4100
YCOORD= option, 4100

SIM2D procedure, GRID statement, 4100
GRIDDATA= option, 4100
X= option, 4100
XCCORD= option, 4101

Y= option, 4100
YCOORD= option, 4101

SIM2D procedure, MEAN statement, 4105
SIM2D procedure, PROC SIM2D statement, 4099

DATA= option, 4099
NARROW option, 4099
OUTSIM= option, 4099

SIM2D procedure, SIMULATE statement, 4101
ANGLE= option, 4102
FORM= option, 4102
MDATA= option, 4102
NUGGET= option, 4104
NUMREAL= option, 4101
RANGE= option, 4104
RATIO= option, 4104
SCALE= option, 4104
SEED= option, 4104
SINGULAR= option, 4104
VAR= option, 4101

SIMILAR option
PROC TREE statement, 4753

SIMILAR= option
PROC MDS statement, 2484

similarity data
MDS procedure, 2471, 2478, 2484

Similarity Ratio coefficient
DISTANCE procedure, 1272

simple cluster-seeking algorithm, 1381
simple effects

GLM procedure, 1758, 1817
MIXED procedure, 2691

simple kappa coefficient, 1493, 1495
Simple Matching coefficient

DISTANCE procedure, 1274
Simple Matching dissimilarity coefficient

DISTANCE procedure, 1274
SIMPLE option

PROC CALIS statement, 587
PROC CANCORR statement, 761
PROC CANDISC statement, 792
PROC CLUSTER statement, 972
PROC DISCRIM statement, 1151
PROC FACTOR statement, 1319
PROC LOGISTIC statement, 2294
PROC MI statement, 2521
PROC MODECLUS statement, 2869
PROC PHREG statement, 3223
PROC REG statement, 3819
PROC STEPDISC statement, 4167
PROC VARCLUS statement, 4812

simple random cluster sampling
SURVEYREG procedure, 4397

simple random sampling
SURVEYMEANS procedure, 4315
SURVEYREG procedure, 4365, 4395
SURVEYSELECT procedure, 4423, 4447

simplicity functions
CALIS procedure, 607
FACTOR procedure, 1294, 1316, 1329
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SIMPLS method
PLS procedure, 3380

SIMULATE statement (SIM2D), 4101
simulation of spatial random fields

SIM2D procedure, 4106–4109
simulation-based adjustment

GLM procedure, 1754
MIXED procedure, 2688

SING= option
PROC CANCORR statement, 762
PROC PRINCOMP statement, 3606

SINGCHOL= option
MODEL statement (MIXED), 2704
PROC NLMIXED statement, 3072

SINGHESS= option
PROC NLMIXED statement, 3072

single linkage
CLUSTER procedure, 967, 982

SINGRES= option
MODEL statement (MIXED), 2705

SINGSWEEP= option
PROC NLMIXED statement, 3072

SINGULAR option
CONTRAST statement (GLM), 1750
LSMEANS statement (GLM), 1758
PROC MI statement, 2521

SINGULAR= option
CONTRAST statement (GENMOD), 1632
CONTRAST statement (GLMPOWER), 1937
CONTRAST statement (LOGISTIC), 2300
CONTRAST statement (MIXED), 2684
CONTRAST statement (SURVEYLOGISTIC),

4258
CONTRAST statement (SURVEYREG), 4377
CONTRAST statement (TPHREG), 4481
ESTIMATE statement (GLM), 1752
ESTIMATE statement (MIXED), 2686
ESTIMATE statement (SURVEYREG), 4379
LSMEANS statement (MIXED), 2691
MODEL statement (GENMOD), 1642
MODEL statement (GLM), 1772
MODEL statement (KRIGE2D), 2044
MODEL statement (LIFEREG), 2099
MODEL statement (LOGISTIC), 2317
MODEL statement (MIXED), 2704
MODEL statement (PHREG), 3232
MODEL statement (REG), 3830
MODEL statement (ROBUSTREG), 3990
MODEL statement (SURVEYLOGISTIC), 4264
MODEL statement (TRANSREG), 4579
NLOPTIONS statement (CALIS), 614
PROC ACECLUS statement, 407
PROC CALIS statement, 590
PROC CANCORR statement, 762
PROC CANDISC statement, 792
PROC CORRESP statement, 1079
PROC DISCRIM statement, 1151
PROC FACTOR statement, 1319
PROC LIFETEST statement, 2164

PROC MDS statement, 2485
PROC NLIN statement, 3009
PROC ORTHOREG statement, 3202
PROC PRINCOMP statement, 3606
PROC PRINQUAL statement, 3656
PROC REG statement, 3819
PROC STEPDISC statement, 4167
SIMULATE statement (SIM2D), 4104

singularities
MIXED procedure, 2775
REG procedure, 3917

singularity
MI procedure, 2521

singularity checking
CANCORR procedure, 762
GLM procedure, 1750, 1752, 1758, 1772

singularity criterion
CALIS procedure, 590
contrast matrix (GENMOD), 1632
contrast matrix (LOGISTIC), 2300
contrast matrix (SURVEYLOGISTIC), 4258
contrast matrix (TPHREG), 4481
covariance matrix (CALIS), 588, 590, 591
information matrix (GENMOD), 1642
PHREG procedure, 3232
TRANSREG procedure, 4579

singularity level
SURVEYREG procedure, 4377, 4379

singularity tolerances
NLMIXED procedure, 3072

SINGULARMSG= option
PROC KRIGE2D statement, 2039

SINGVAR option
PROC NLMIXED statement, 3072

Size distance coefficient
DISTANCE procedure, 1271

SIZE statement
SURVEYSELECT procedure, 4443

SIZE= modifier
INFLUENCE option, MODEL statement

(MIXED), 2699
skewness

CALIS procedure, 658
displayed in CLUSTER procedure, 972

SKIPHLABELS= option
PLOT statement (BOXPLOT), 509

SLENTRY= option
MODEL statement (LOGISTIC), 2317
MODEL statement (PHREG), 3230
MODEL statement (REG), 3831
PROC STEPDISC statement, 4167

SLICE= option
LSMEANS statement (GLM), 1758
LSMEANS statement (MIXED), 2691

SLMW= option
PROC CALIS statement, 590

SLPOOL= option
PROC DISCRIM statement, 1151

SLSTAY= option
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MODEL statement (LOGISTIC), 2317
MODEL statement (PHREG), 3230
MODEL statement (REG), 3831
PROC STEPDISC statement, 4167

SM= option
MODEL statement (TRANSREG), 4566
TRANSFORM statement, 3665

SMC option
PROC CANCORR statement, 762

SMDCR option
OUTPUT statement (FREQ), 1449
TEST statement (FREQ), 1463, 1543

SMDRC option
OUTPUT statement (FREQ), 1449
TEST statement (FREQ), 1463

SMETHOD= option
PROC CALIS statement, 580
PROC NLIN statement, 3009

SMM multiple-comparison method, 444, 1769, 1811
SMM option

MEANS statement (ANOVA), 444
MEANS statement (GLM), 1769

SMOOTH transformation
MODEL statement (TRANSREG), 4563

SMOOTH= option
MODEL statement (LOESS), 2236

smoothing parameter
cluster analysis, 979
MODECLUS procedure, 2864, 2871
optimal (DISCRIM), 1162

smoothing parameter, default
MODECLUS procedure, 2872

smoothing spline transformation
PRINQUAL procedure, 3663
TRANSREG procedure, 4564, 4596

SNK option
MEANS statement (ANOVA), 444
MEANS statement (GLM), 1769

SNORM option
PROC DISTANCE statement, 1263
PROC STDIZE statement, 4133

Sokal and Sneath 1 coefficient
DISTANCE procedure, 1274

Sokal and Sneath 3 coefficient
DISTANCE procedure, 1275

SOLUTION option
MODEL statement (GLM), 1772
MODEL statement (MIXED), 2705, 2747
MODEL statement (PLS), 3379
MODEL statement (SURVEYREG), 4380
RANDOM statement (MIXED), 2715

Somers’D statistics, 1474, 1478
SORT option

PROC TREE statement, 4754
SORT= option

PROC SURVEYSELECT statement, 4442
SORTED option

REPEATED statement (GENMOD), 1648
SOURCE option

PROC CORRESP statement, 1079
SOURCE statement

TEMPLATE procedure, 339, 345, 367
SP option

MODEL statement (REG), 3831
PLOT statement (REG), 3848

SPACES= option
PROC TREE statement, 4754

spacing
STDIZE procedure, 4139

SPARSE option
TABLES statement (FREQ), 1461, 1527

spatial anisotropic exponential structure
MIXED procedure, 2721

spatial covariance structures
examples (MIXED), 2723
MIXED procedure, 2722, 2730, 2774

spatial prediction
VARIOGRAM procedure, 4851, 4852

SPCORR option
PROC CANCORR statement, 762

Spearman rank correlation coefficient, 1474, 1480
SPEC option

MODEL statement (REG), 3831
specificity

CATMOD procedure, 941
spherical semivariogram model

KRIGE2D procedure, 2046, 2047
sphericity tests, 449, 1780, 1881
spline t-options

PRINQUAL procedure, 3665
TRANSREG procedure, 4566

SPLINE transformation
MODEL statement (TRANSREG), 4564
TRANSFORM statement (PRINQUAL), 3662

spline transformation
PRINQUAL procedure, 3662
TRANSREG procedure, 4564, 4611

splines
Bayesian confidence intervals, 4513
goodness of fit, 4514
regression model, 4497, 4513, 4518
thin-plate smoothing, 4497
TPSPLINE procedure, 4497
TRANSREG procedure, 4560, 4561, 4614,

4637, 4678, 4709
split-plot design

ANOVA procedure, 451, 470, 472, 475
generating with PLAN procedure, 3352
MIXED procedure, 2734, 2777

SPRECISION= option
PROC CALIS statement, 581, 583

SQPCORR option
PROC CANCORR statement, 762

SQSPCORR option
PROC CANCORR statement, 762

square root difference cloud
VARIOGRAM procedure, 4882

Squared Correlation dissimilarity coefficient
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DISTANCE procedure, 1272
Squared Correlation similarity coefficient

DISTANCE procedure, 1272
Squared Euclidean distance coefficient

DISTANCE procedure, 1271
squared multiple correlation

CALIS procedure, 657, 686
CANCORR procedure, 762

squared partial correlation
CANCORR procedure, 762

squared semipartial correlation
CANCORR procedure, 762
formula (CLUSTER), 984

SRESIDUAL keyword
OUTPUT statement (ROBUSTREG), 3991

SS1 option
MODEL statement (GLM), 1772
MODEL statement (REG), 3831

SS2 option
MODEL statement (GLM), 1773
MODEL statement (REG), 3831
MODEL statement (TRANSREG), 4580

SS3 option
MODEL statement (GLM), 1773

SS4 option
MODEL statement (GLM), 1773

SSCP matrix
displaying, for multivariate tests, 438, 439
for multivariate tests, 437
for multivariate tests (GLM), 1759, 1761

SSCP option
REPEATED statement (MIXED), 2720

SSE option
MODEL statement (REG), 3831
PLOT statement (REG), 3848

SSE= option
OUTPUT statement (NLIN), 3014

SSPLINE transformation
MODEL statement (TRANSREG), 4564
TRANSFORM statement (PRINQUAL), 3663

ST option
EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3157

STACKING option
PROC SURVEYMEANS statement, 4324

stacking table
SURVEYMEANS procedure, 4324

standard deviation
CLUSTER procedure, 972
SURVEYMEANS procedure, 4341

standard error
PHREG procedure, 3225, 3233, 3235, 3269
SURVEYMEANS procedure, 4338
TPHREG procedure, 4487

standard error of ratio
SURVEYMEANS procedure, 4339

standard error ratio
PHREG procedure, 3269

TPHREG procedure, 4487
standard linear model

MIXED procedure, 2663
STANDARD option

PROC CLUSTER statement, 972
PROC MODECLUS statement, 2869
PROC PRINCOMP statement, 3606
PROC PRINQUAL statement, 3656

STANDARD procedure, 21
standardized values, 21

standardization
comparisons between DISTANCE and STDIZE

procedures, 1251
standardized score process

PHREG procedure, 3267, 3271
standardizing

cluster analysis (STDIZE), 4143
CLUSTER procedure, 972
MODECLUS procedure, 2856
raw data (SCORE), 4066
redundancy variables (TRANSREG), 4591
TRANSREG procedure, 4572
values (STANDARD), 21
values (STDIZE), 4119

star (*) operator
TRANSREG procedure, 4558

START option
PROC NLMIXED statement, 3072

START= option
MCMC statement (MI), 2528
MODEL statement (LOGISTIC), 2318
MODEL statement (PHREG), 3230
MODEL statement (REG), 3831
MODEL statement (TPHREG), 4475
PROC CALIS statement, 590
PROC STEPDISC statement, 4167

STAT= option
PROC PLS statement, 3375

STATFONT option
PLOT statement (REG), 3848

STATHT option
PLOT statement (REG), 3848

stationary point
NLMIXED procedure, 3100

statistic-keywords
SURVEYMEANS procedure, 4326

statistical
assumptions (GLM), 1783
quality control, 23
tests (MULTTEST), 2948

statistical computation
SURVEYMEANS procedure, 4336

statistical computations
SURVEYFREQ procedure, 4206

Statistical Graphics Using ODS,
see ODS Graphics

Statistical style
ODS styles, 333

STATS option
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PROC SURVEYSELECT statement, 4443
STATUS option

PAINT statement (REG), 3838
REWEIGHT statement (REG), 3857

STB option
MODEL statement (LOGISTIC), 2318
MODEL statement (REG), 3831
MODEL statement (SURVEYLOGISTIC), 4264
PROC CANCORR statement, 762

STD option
MODEL statement (LOESS), 2236
PROC PRINCOMP statement, 3606

STD option (MODECLUS), 2856
STD statement, CALIS procedure, 603
STD= option (DISTANCE), 1265
STD–ERR keyword

OUTPUT statement (LIFEREG), 2101
OUTPUT statement (ROBUSTREG), 3991

STDDEV= option
ONESAMPLEMEANS statement (POWER),

3436
ONEWAYANOVA statement (POWER), 3442
PAIREDMEANS statement (POWER), 3453
POWER statement (GLMPOWER), 1941
TWOSAMPLEMEANS statement (POWER),

3469
STDERR option

LSMEANS statement (GLM), 1758
PROC CALIS statement, 587
SURVIVAL statement (LIFETEST), 2170

STDERR statement
MIANALYZE procedure, 2617

STDI keyword
OUTPUT statement (GLM), 1774

STDI= option
OUTPUT statement (NLIN), 3014

STDIZE procedure
AGK estimate, 4139
analyzing data in groups, 4134
Andrew’s wave estimate, 4139
breakdown point and efficiency, 4138
comparisons of quantile computation,

PCTLMTD option, 4139
computational methods, PCTLDEF option, 4140
Euclidean length, 4138
examples, 4119, 4143
final output value, 4119
formulas for statistics, 4138
fuzz factor, 4130
Huber’s estimate, 4139
initial estimates for A estimates, 4131
input data set (METHOD=IN()), 4137
methods resistant to clustering, 4138
methods resistant to outliers, 4124, 4138
Minkowski metric, 4138
missing values, 4131, 4133, 4141
normalization, 4131, 4133
one-pass quantile computations, 4139
OUT= data set, 4130, 4141

output data sets, 4132, 4141
output table names, 4142
OUTSTAT= data set, 4141
quantile computation, 4119, 4139
robust estimators, 4138
spacing, 4139
standardization methods, 4119, 4136
standardization with weights, 4135
syntax, 4129
Tukey’s biweight estimate, 4127, 4139
tuning constant, 4127, 4137
unstandardization, 4133
weights, 4135

STDIZE procedure, BY statement, 4134
STDIZE procedure, FREQ statement, 4135
STDIZE procedure, LOCATION statement, 4135
STDIZE procedure, PROC STDIZE statement, 4129

ADD= option, 4130
DATA= option, 4130
FUZZ= option, 4130
INITIAL= option, 4131
METHOD= option, 4131
MISSING= option, 4131
MULT= option, 4131
NMARKERS= option, 4131
NOMISS option, 4131
NORM option, 4131
OUT= option, 4132
OUTSTAT= option, 4132
PCTLDEF= option, 4132
PCTLMTD option, 4132
PCTLPTS option, 4132
PSTAT option, 4133
REPLACE option, 4133
REPONLY option, 4133
SNORM option, 4133
UNSTD option, 4133
VARDEF option, 4133

STDIZE procedure, SCALE statement, 4135
STDIZE procedure, VAR statement, 4135
STDIZE procedure, WGT statement, 4135
STDMEAN option

PROC CANDISC statement, 792
PROC DISCRIM statement, 1152
PROC STEPDISC statement, 4168

STDP keyword
OUTPUT statement (GLM), 1774

STDP= option
OUTPUT statement (NLIN), 3014

STDR keyword
OUTPUT statement (GLM), 1774

STDR= option
OUTPUT statement (NLIN), 3014

STDXBETA= option
OUTPUT statement (LOGISTIC), 2321

step halving
PHREG procedure, 3245

step length
CALIS procedure, 581
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step length options
NLMIXED procedure, 3096

STEP= option
PLOT statement (GLMPOWER), 1943
PLOT statement (POWER), 3485

STEPBON option
PROC MULTTEST statement, 2942

STEPBOOT option
PROC MULTTEST statement, 2942

STEPDISC procedure
average squared canonical correlation, 4173
computational resources, 4171
input data sets, 4170
introductory example, 4158
memory requirements, 4171
methods, 4157
missing values, 4170
ODS table names, 4174
Pillai’s trace, 4173
stepwise selection, 4159
syntax, 4165
time requirements, 4171
tolerance, 4173
Wilks’ lambda, 4173

STEPDISC procedure, BY statement, 4168
STEPDISC procedure, CLASS statement, 4169
STEPDISC procedure, FREQ statement, 4169
STEPDISC procedure, PROC STEPDISC statement,

4165
ALL option, 4166
BCORR option, 4166
BCOV option, 4166
BSSCP option, 4166
DATA= option, 4166
INCLUDE= option, 4166
MAXSTEP= option, 4166
METHOD= option, 4166
PCORR option, 4167
PCOV option, 4167
PR2ENTRY= option, 4167
PR2STAY= option, 4167
PSSCP option, 4167
SHORT option, 4167
SIMPLE option, 4167
SINGULAR= option, 4167
SLENTRY= option, 4167
SLSTAY= option, 4167
START= option, 4167
STDMEAN option, 4168
STOP= option, 4168
TCORR option, 4168
TCOV option, 4168
TSSCP option, 4168
WCORR option, 4168
WCOV option, 4168
WSSCP option, 4168

STEPDISC procedure, VAR statement, 4169
STEPDISC procedure, WEIGHT statement, 4169
stepdown methods

GLM procedure, 1814
MULTTEST procedure, 2957, 2972

STEPPERM option
PROC MULTTEST statement, 2942

STEPS option
SCORE statement (LOESS), 2237

STEPSID option
PROC MULTTEST statement, 2942, 2972

stepwise discriminant analysis, 4157
stepwise selection

LOGISTIC procedure, 2317, 2341, 2391
PHREG procedure, 3229, 3265, 3272
REG procedure, 3800, 3874
STEPDISC procedure, 4159

STOP= option
MODEL statement (LOGISTIC), 2318
MODEL statement (PHREG), 3231
MODEL statement (REG), 3832
MODEL statement (TPHREG), 4475
PROC STEPDISC statement, 4168

STOPRES option
MODEL statement (LOGISTIC), 2318
MODEL statement (PHREG), 3231

stored data algorithm, 986
stored distance algorithms, 986
strata

SURVEYFREQ procedure, 4196
SURVEYLOGISTIC procedure, 4266
SURVEYMEANS procedure, 4332
SURVEYREG procedure, 4381

STRATA statement
MULTTEST procedure, 2945
SURVEYFREQ procedure, 4196
SURVEYLOGISTIC procedure, 4266
SURVEYMEANS procedure, 4332
SURVEYREG procedure, 4381
SURVEYSELECT procedure, 4444

STRATA statement, PHREG procedure, 3237
strata variables

PHREG procedure, 3237
programming statements (PHREG), 3235

strata weights
MULTTEST procedure, 2951

stratification
SURVEYFREQ procedure, 4196, 4203
SURVEYLOGISTIC procedure, 4266
SURVEYMEANS procedure, 4332, 4346
SURVEYREG procedure, 4381, 4391

stratified analysis
FREQ procedure, 1431, 1450
PHREG procedure, 3216, 3237

stratified cluster sample
SURVEYMEANS procedure, 4350

stratified sampling, 164
SURVEYMEANS procedure, 4318
SURVEYREG procedure, 4368, 4401
SURVEYSELECT procedure, 4425, 4444

stratified table
example, 1540
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stratified tests
LIFETEST procedure, 2150, 2155, 2156, 2158,

2167, 2180, 2187
stratum collapse

SURVEYREG procedure, 4388, 4411
stress formula

MDS procedure, 2479, 2480, 2489
STRICT= option

PROC FASTCLUS statement, 1395
strip-split-plot design

ANOVA procedure, 475
STRUCTEQ statement, CALIS procedure, 625
structural equation (CALIS)

definition, 585, 625, 658
dependent variables, 625
models, 552

structural model example (CALIS), 555
COSAN model, 561
factor analysis model, 564
LINEQS model, 558, 562
LISREL model, 559
path diagram, 555, 600
RAM model, 557, 563

Stuart’s tau-c statistic, 1474, 1478
STUDENT keyword

OUTPUT statement (GLM), 1774
Student’s multiple range test, 444, 1769, 1814
STUDENT= option

OUTPUT statement (NLIN), 3014
Studentized maximum modulus

pairwise comparisons, 444, 1769, 1811
Studentized Residual

MIXED procedure, 2704
studentized residual, 1774, 3899
Studentized residuals

external, 2768
internal, 2768
MIXED procedure, 2768

STUTC option
OUTPUT statement (FREQ), 1449
TEST statement (FREQ), 1463

style attributes, modifying
examples, ODS Graphics, 374, 376, 378

style elements, modifying
examples, ODS Graphics, 374, 376, 378

STYLE= option, 332
ODS HTML statement, 332, 375, 378, 379
ODS LATEX statement, 358

SUBANALYSIS option
PROC ROBUSTREG statement, 3986

SUBCLUSTER= option
REPEATED statement (GENMOD), 1648

subdomain analysis
SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336

subgroup analysis
SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336

SUBGROUP statement

SURVEYMEANS procedure, 4330
SUBGROUPSIZE option

PROC ROBUSTREG statement, 3986
subject effect

MIXED procedure, 2683, 2715, 2721, 2776,
2782

SUBJECT option
CONTRAST statement (MIXED), 2685
ESTIMATE statement (MIXED), 2686

subject weights
MDS procedure, 2471, 2477

SUBJECT= option
RANDOM statement (MIXED), 2683, 2715
REPEATED statement (GENMOD), 1646
REPEATED statement (MIXED), 2721

subpopulation
GENMOD procedure, 1637
LOGISTIC procedure, 2308, 2316, 2355
PROBIT procedure, 3742, 3745, 3761

subpopulation analysis
SURVEYFREQ procedure, 4205
SURVEYMEANS procedure, 4336

SUBSETSIZE option
PROC ROBUSTREG statement, 3987

SUM option
PROC MODECLUS statement, 2869

sum-to-zero assumptions, 1835
summary of commands

MIXED procedure, 2672
SUMMARY option

MANOVA statement (ANOVA), 439
MANOVA statement (GLM), 1761
PROC CALIS statement, 587
PROC FASTCLUS statement, 1395
PROC VARCLUS statement, 4812
REPEATED statement (ANOVA), 449
REPEATED statement (GLM), 1781

summary statistics
REG procedure, 3896

sums of squares
GLM procedure, 1772, 1773
Type II (GLM), 1773
Type II (TRANSREG), 4580

SUPPLEMENTARY statement
CORRESP procedure, 1080

supported operating environments
ODS Graphics, 348

supported procedures
ODS Graphics, 348

suppressing output
CANCORR procedure, 761
GENMOD procedure, 1627
MI procedure, 2520

surface plots
plots, ODS Graphics, 324, 360

surface trend
VARIOGRAM procedure, 4854

survey data analysis, 161
survey sampling, 161,
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see also SURVEYFREQ procedure
see also SURVEYMEANS procedure
see also SURVEYREG procedure
see also SURVEYSELECT procedure
cluster sampling, 164
data analysis, 4185
descriptive statistics, 4315
finite population correction factor, 165
first-stage sampling unit, 165
fpc, 165
multistage sampling, 165
population, 164
population total, 165
PPS, 161
primary sampling units (PSUs), 165
regression analysis, 4365
sample selection, 4421
sampling fraction, 165
sampling frame, 164
sampling rate, 165
sampling unit, 164
sampling weight, 165
stratified sampling, 164
survey weight, 165
SURVEYMEANS procedure, 167
SURVEYREG procedure, 167
SURVEYSELECT procedure, 167
variance estimation, 166

survey weight, 165
SURVEYFREQ procedure, 159, 4185

alpha level, 4199
chi-square test, 4216
cluster, 4195
clustering, 4203
coefficient of variation, 4214
column proportions, 4212
confidence limits, 4213
covariance, 4210
crosstabulation tables, 4227
data summary table, 4225
default tables, 4197
degrees of freedom, 4214
design effect, 4215
design-adjusted chi-square test, 4216
displayed output, 4225
domain analysis, 4205
expected weighted frequency, 4215
introductory example, 4185
missing values, 4205
multiway tables, 4227
ODS table names, 4230
one-way frequency tables, 4226
order of variables, 4193
output table names, 4230
population total, 4194, 4204
proportions, 4210
Rao-Scott chi-square test, 4216
Rao-Scott likelihood ratio test, 4219
row proportions, 4212

sample design, 4203
sampling rate, 4194, 4204
statistical computations, 4206
statistical test tables, 4229
strata, 4196
stratification, 4196, 4203
stratum information table, 4225
subdomain analysis, 4205
subgroup analysis, 4205
subpopulation analysis, 4205
syntax, 4192
Taylor series method, 4206
totals, 4209
unequal weighting, 4204
Wald chi-square test, 4221
Wald log-linear chi-square test, 4223

SURVEYFREQ procedure, BY statement, 4195
SURVEYFREQ procedure, CLUSTER statement,

4195
SURVEYFREQ procedure, PROC SURVEYFREQ

statement, 4193
DATA= option, 4193
MISSING option, 4193
NOSUMMARY option, 4193
ORDER= option, 4193
PAGE option, 4194
RATE= option, 4194
TOTAL= option, 4194

SURVEYFREQ procedure, STRATA statement, 4196
LIST option, 4196

SURVEYFREQ procedure, TABLES statement, 4196
ALPHA= option, 4199
CHISQ option, 4199
CHISQ1 option, 4199
CL option, 4199
CLWT option, 4199
COL option, 4200
CV option, 4200
CVWT option, 4200
DDF= option, 4200
DEFF option, 4200
EXPECTED option, 4200
LRCHISQ option, 4200
LRCHISQ1 option, 4200
NOFREQ option, 4201
NOPERCENT option, 4201
NOPRINT option, 4201
NOSPARSE option, 4201
NOSTD option, 4201
NOTOTAL option, 4201
NOWT option, 4201
ROW option, 4201
TESTP= option, 4202
VAR option, 4202
VARWT option, 4202
WCHISQ option, 4202
WLLCHISQ option, 4202
WTFREQ option, 4202

SURVEYFREQ procedure, WEIGHT statement, 4203
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SURVEYLOGISTIC procedure, 159, 4250
Akaike’s information criterion, 4279
cluster, 4255
computational details, 4282
confidence intervals, 4288
convergence criterion, 4261–4263
customized odds ratio, 4267
displayed output, 4292
EFFECT Parameterization, 4270
estimability checking, 4258
existence of MLEs, 4277
first-stage sampling rate, 4251
Fisher’s scoring method, 4264, 4265, 4276
GLM Parameterization, 4271
gradient, 4287
Hessian matrix, 4264, 4287
infinite parameter estimates, 4263
initial values, 4280
link function, 4243, 4263, 4273
log odds, 4289
maximum likelihood algorithms, 4275
Medical Expenditure Panel Survey (MEPS),

4302
missing values, 4251, 4268
model fitting criteria, 4279
Newton-Raphson algorithm, 4264, 4265, 4277
odds ratio confidence limits, 4262
odds ratio estimation, 4288
ORDINAL Parameterization, 4271
ORTHEFFECT Parameterization, 4272
ORTHORDINAL Parameterization, 4272
ORTHOTHERM Parameterization, 4272
ORTHPOLY Parameterization, 4273
ORTHREF Parameterization, 4273
output table names, 4295
Parameterization, 4270
POLY Parameterization, 4271
POLYNOMIAL Parameterization, 4271
population total, 4252, 4280
primary sampling units (PSUs), 4281
rank correlation, 4292
REF Parameterization, 4272
REFERENCE Parameterization, 4272
response level ordering, 4270
reverse response level ordering, 4259, 4269
sampling rate, 4251, 4280
Schwarz criterion, 4279
score statistics, 4287
singular contrast matrix, 4258
strata, 4266
stratification, 4266
syntax, 4250
testing linear hypotheses, 4266, 4288
Variance Estimation, 4282

SURVEYLOGISTIC procedure, BY statement, 4252
SURVEYLOGISTIC procedure, CLASS statement,

4253
CPREFIX= option, 4253
DESCENDING option, 4253

LPREFIX= option, 4253
ORDER= option, 4253
PARAM= option, 4254
REF= option, 4254

SURVEYLOGISTIC procedure, CLUSTER
statement, 4255

SURVEYLOGISTIC procedure, CONTRAST state-
ment, 4255

ALPHA= option, 4257
E option, 4257
ESTIMATE= option, 4258
SINGULAR= option, 4258

SURVEYLOGISTIC procedure, FREQ statement,
4258

SURVEYLOGISTIC procedure, MODEL statement,
4258

ABSFCONV option, 4261
ADJBOUND= option, 4265
ALPHA= option, 4262
CLODDS option, 4262
CLPARM option, 4262
CORRB option, 4262
COVB option, 4262
DEFFBOUND= option, 4265
DESCENDING option, 4259
EXPEST option, 4262
FCONV= option, 4262
GCONV= option, 4262
ITPRINT option, 4263
LINK= option, 4263
MAXITER= option, 4263
NOCHECK option, 4263
NODESIGNPRINT= option, 4264
NODUMMYPRINT= option, 4264
NOINT option, 4264
OFFSET= option, 4264
ORDER= option, 4260
PARMLABEL option, 4264
RIDGING= option, 4264
RSQUARE option, 4264
SINGULAR= option, 4264
STB option, 4264
TECHNIQUE= option, 4265
VADJUST= option, 4265
XCONV= option, 4265

SURVEYLOGISTIC procedure, PROC
SURVEYLOGISTIC statement, 4250

ALPHA= option, 4250
DATA= option, 4250
INEST= option, 4251
MISSING option, 4251
N= option, 4252
NAMELEN= option, 4251
NOSORT option, 4251
R= option, 4251
RATE= option, 4251
TOTAL= option, 4252

SURVEYLOGISTIC procedure, STRATA statement,
4266
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LIST option, 4266
SURVEYLOGISTIC procedure, TEST statement,

4266
PRINT option, 4267

SURVEYLOGISTIC procedure, UNITS statement,
4267

DEFAULT= option, 4268
SURVEYMEANS procedure, 159, 4315

categorical variable, 4329, 4337, 4341
class level, 4346
cluster, 4329
coefficient of variation, 4340
confidence level, 4323
confidence limits, 4340, 4342
data summary, 4346
degrees of freedom, 4340, 4344
denominator variable, 4330
descriptive statistics, 4347
domain analysis, 4336, 4348
domain mean, 4343
domain statistics, 4342
domain total, 4343
domain variable, 4330
empty stratum, 4334, 4344
estimated frequency, 4341
estimated total, 4341
first-stage sampling rate, 4324
indicator variable, 4337
mean per element, 4337
means, 4337
missing values, 4323, 4333, 4358
numerator variable, 4330
ODS table names, 4349
output data set, 4321, 4345
output table names, 4349
population total, 4326, 4334
primary sampling units (PSUs), 4335
proportion estimation, 4341
ratio, 4330, 4339
ratio analysis, 4330, 4339, 4348
rectangular table, 4324
sampling rate, 4324, 4334
simple random sampling, 4315
stacking table, 4324
standard deviation of the total, 4341
standard error of ratio, 4339
standard error of the mean, 4338
statistic-keywords, 4326
statistical computation, 4336
strata, 4332
stratification, 4332, 4346
stratified cluster sample, 4350
stratified sampling, 4318
subdomain analysis, 4336
subgroup analysis, 4336
subpopulation analysis, 4336
syntax, 4322
t test, 4339
valid observation, 4346

variance of the mean, 4338
variance of the total, 4341

SURVEYMEANS procedure, BY statement, 4328
SURVEYMEANS procedure, CLASS statement,

4329
SURVEYMEANS procedure, CLUSTER statement,

4329
SURVEYMEANS procedure, DOMAIN statement,

4330
SURVEYMEANS procedure, PROC

SURVEYMEANS statement, 4323
ALPHA= option, 4323
DATA= option, 4323
MISSING option, 4323
N= option, 4326
ORDER= option, 4323
R= option, 4324
RATE= option, 4324
STACKING option, 4324
TOTAL= option, 4326

SURVEYMEANS procedure, RATIO statement, 4330
SURVEYMEANS procedure, STRATA statement,

4332
LIST option, 4332

SURVEYMEANS procedure, VAR statement, 4332
SURVEYMEANS procedure, WEIGHT statement,

4333
SURVEYREG procedure, 159, 4365

ADJRSQ, 4380
Adjusted R-square, 4387
analysis of contrasts, 4393
analysis of variance, 4387
ANOVA, 4380, 4387, 4392
classification level, 4391
classification variables, 4375
cluster, 4376
coefficients of contrast, 4392
coefficients of estimate, 4393
computational details, 4384
confidence level, 4373
confidence limits, 4380
contrasts, 4376, 4389
data summary, 4390
degrees of freedom, 4385
design effect, 4388
design summary, 4390
effect testing, 4386, 4392
estimable functions, 4378, 4393
first-stage sampling rate, 4374
inverse matrix ofX′X, 4391
missing values, 4382
MSE, 4388
multiple R-square, 4387
output data set, 4372, 4393
output table names, 4394
pooled stratum, 4389
population total, 4374, 4382
primary sampling units (PSUs), 4383
regression coefficients, 4384, 4392
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regression estimator, 4400, 4407
Root MSE, 4388
sampling rate, 4374, 4382
simple random cluster sampling, 4397
simple random sampling, 4365, 4395
singularity level, 4377, 4379
strata, 4381
stratification, 4381, 4391
stratified sampling, 4368, 4401
stratum collapse, 4388, 4411
syntax, 4373
variance estimation, 4385
Wald test, 4386, 4389
X′X matrix, 4391

SURVEYREG procedure, BY statement, 4375
SURVEYREG procedure, CLASS statement, 4375
SURVEYREG procedure, CLUSTER statement, 4376
SURVEYREG procedure, CONTRAST statement,

4376
E option, 4377
NOFILL option, 4377
SINGULAR= option, 4377

SURVEYREG procedure, ESTIMATE statement,
4378

DIVISOR= option, 4379
E option, 4379
NOFILL option, 4379
SINGULAR= option, 4379

SURVEYREG procedure, MODEL statement, 4379
ADJRSQ option, 4380
ANOVA option, 4380
CLPARM option, 4380
COVB option, 4380
DEFF option, 4380
INVERSE option, 4380
NOINT option, 4380
SOLUTION option, 4380
VADJUST= option, 4381
XPX option, 4381

SURVEYREG procedure, MODEL statement
(SURVEYREG)

DF= option, 4380
SURVEYREG procedure, PROC SURVEYREG

statement, 4373
ALPHA= option, 4373
DATA= option, 4373
N= option, 4374
R= option, 4374
RATE= option, 4374
TOTAL= option, 4374
TRUNCATE option, 4374

SURVEYREG procedure, STRATA statement, 4381
LIST option, 4381
NOCOLLAPSE option, 4381

SURVEYREG procedure, WEIGHT statement, 4382
SURVEYSELECT procedure, 167, 4421

Brewer’s method, 4453
certainty size measure, 4432
Chromy’s method, 4448, 4452

control sorting, 4443, 4445
displayed output, 4458
dollar-unit sampling, 4466
initial seed, 4441
introductory example, 4422
joint selection probabilities, 4433
maximum size measure, 4433
minimum size measure, 4436
missing values, 4445
Murthy’s method, 4454
output data sets, 4456
output table names, 4460
PPS sampling, 4463
PPS sampling, with replacement, 4451
PPS sampling, without replacement, 4449
PPS sequential sampling, 4452
PPS systematic sampling, 4451
replicated sampling, 4438, 4460
Sampford’s method, 4455
sample selection methods, 4446
sample size, 4440
sampling rate, 4439
sequential random sampling, 4448
serpentine sorting, 4445
simple random sampling, 4423, 4447
stratified sampling, 4425, 4444
syntax, 4430
systematic random sampling, 4448
unrestricted random sampling, 4447

SURVEYSELECT procedure, CONTROL statement,
4443

SURVEYSELECT procedure, ID statement, 4443
SURVEYSELECT procedure, PROC

SURVEYSELECT statement, 4430
CERTSIZE= option, 4432
DATA= option, 4433
JTPROBS option, 4433
MAXSIZE= option, 4433
METHOD= option, 4434
MINSIZE= option, 4436
NMAX= option, 4437
NMIN= option, 4437
NOPRINT option, 4437
OUT= option, 4437
OUTALL option, 4437
OUTHITS option, 4438
OUTSEED option, 4438
OUTSIZE option, 4438
OUTSORT= option, 4438
REP= option, 4438
SAMPRATE= option, 4439
SAMPSIZE= option, 4440
SEED= option, 4441
SELECTALL option, 4442
SORT= option, 4442
STATS option, 4443

SURVEYSELECT procedure, SIZE statement, 4443
SURVEYSELECT procedure, STRATA statement,

4444
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survival analysis
power and sample size (POWER), 3473, 3481,

3533
survival distribution function

LIFETEST procedure, 2149, 2171, 2184
PHREG procedure, 3239

survival function
LIFEREG procedure, 2083, 2111

survival models, parametric, 2083
survival times

PHREG procedure, 3215, 3281, 3283
survivor function,

See survival distribution function
definition (PHREG), 3239
estimates (LOGISTIC), 2460
estimates (PHREG), 3225, 3235, 3261, 3299
PHREG procedure, 3215, 3235, 3240

sweep algorithm
REG procedure, 3917

SYMBOL= option
MCMC statement (MI), 2525, 2529
PAINT statement (REG), 3838
PLOT statement (REG), 3850

SYMBOLLEGEND= option
PLOT statement (BOXPLOT), 509

SYMBOLORDER= option
PLOT statement (BOXPLOT), 509

symmetric and positive definite (SIM2D)
covariance matrix, 4107

symmetric binary variable
DISTANCE procedure, 1250

syntax
ROBUSTREG procedure, 3982

systematic random sampling
SURVEYSELECT procedure, 4448

T
T option

MEANS statement (GLM), 1769
MODEL statement (LOESS), 2236
PROC CANCORR statement, 762

t statistic
approximate, 4784
for equality of means, 4783

t test
MULTTEST procedure, 2946, 2955, 2968
power and sample size (POWER), 3432, 3437,

3448, 3455, 3463, 3471, 3508, 3509, 3518,
3526

SURVEYMEANS procedure, 4339
t test for correlation

power and sample size (POWER), 3426, 3429,
3503

t value
CALIS procedure, 649
displaying (CALIS), 686

t-square statistic
CLUSTER procedure, 972, 984

T= option

PROC ACECLUS statement, 407
table names

MIXED procedure, 2752
table scores, 1469
TABLEOUT option

PROC REG statement, 3819
tables

crosstabulation (SURVEYFREQ), 4227
frequency and crosstabulation (FREQ), 1431,

1450
frequency and crosstabulation

(SURVEYFREQ), 4196
multiway, 1518, 1520, 1521
one-way frequency, 1517, 1518
one-way frequency (SURVEYFREQ), 4226
one-way, tests, 1469, 1470
two-way, tests, 1470, 1471

TABLES statement
CORRESP procedure, 1081
FREQ procedure, 1450
SURVEYFREQ procedure, 4196

TABLES statement, use
CORRESP procedure, 1072

TABULATE procedure, 22
TARGET= option

PROC FACTOR statement, 1319
Tarone’s adjustment

Breslow-Day test, 1508
Tarone-Ware test for homogeneity

LIFETEST procedure, 2150, 2168
power and sample size (POWER), 3473, 3483,

3533
TAU= option

PROC FACTOR statement, 1320
PROC NLIN statement, 3010

Taylor series method
SURVEYFREQ procedure, 4206

TCORR option
PROC CANDISC statement, 792
PROC DISCRIM statement, 1152
PROC STEPDISC statement, 4168

TCOV option
PROC CANDISC statement, 792
PROC DISCRIM statement, 1152
PROC MIANALYZE statement, 2616
PROC STEPDISC statement, 4168
TEST statement (MIANALYZE), 2619

TDATA= option
PRIOR statement (MIXED), 2712

TDIFF option
LSMEANS statement (GLM), 1758

TDPREFIX= option
OUTPUT statement (TRANSREG), 4592

TECHNIQUE= option
MODEL statement (LOGISTIC), 2318
MODEL statement (SURVEYLOGISTIC), 4265
NLOPTIONS statement (CALIS), 613
PROC CALIS statement, 577
PROC NLMIXED statement, 3072
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Template Editor window, 340, 365
TEMPLATE procedure, 343

examples, ODS Graphics, 363, 369, 371, 373,
379

graph template language, 342
SOURCE statement, 339, 345, 367

TEMPLATE procedure, SOURCE statement
FILE= option, 340

template stores, 338
Sashelp.Tmplmst, 338, 341, 345, 346, 365
Sasuser.Templat, 340, 341, 346
user-defined, 341, 342

templates
displaying contents of template, 278
in SASUSER library, 278
modifying, 278, 303, 309
style templates, 279
table templates, 279
TEMPLATE procedure, 278

Templates window, 339, 340, 345, 365
termination criteria (CALIS),

See optimization
test components

MIXED procedure, 2702
test indices

constraints (CALIS), 584
TEST option

MODEL statement (TRANSREG), 4580
PROC MODECLUS statement, 2869
RANDOM statement (GLM), 1777

test set classification
DISCRIM procedure, 1163

test set validation
PLS procedure, 3384

TEST statement
ANOVA procedure, 450
FREQ procedure, 1462
GLM procedure, 1781
LOGISTIC procedure, 2327
MIANALYZE procedure, 2618
MULTTEST procedure, 2946
PHREG procedure, 3238
REG procedure, 3858
ROBUSTREG procedure, 3992
SURVEYLOGISTIC procedure, 4266

TEST= option
MULTREG statement (POWER), 3425
ONECORR statement (POWER), 3428
ONESAMPLEFREQ statement (POWER), 3431
ONESAMPLEMEANS statement (POWER),

3437
ONEWAYANOVA statement (POWER), 3442
PAIREDFREQ statement (POWER), 3446
PAIREDMEANS statement (POWER), 3454
STRATA statement (LIFETEST), 2168
TWOSAMPLEFREQ statement (POWER),

3461
TWOSAMPLEMEANS statement (POWER),

3470

TWOSAMPLESURVIVAL statement
(POWER), 3480

TESTCLASS statement, DISCRIM procedure, 1155
TESTDATA= option

PROC DISCRIM statement, 1152
TESTF= option

TABLES statement (FREQ), 1462, 1470
TESTFREQ statement, DISCRIM procedure, 1155
TESTID statement, DISCRIM procedure, 1156
testing linear hypotheses

LOGISTIC procedure, 2327, 2358
MIANALYZE procedure, 2618, 2628
SURVEYLOGISTIC procedure, 4266, 4288

TESTLIST option
PROC DISCRIM statement, 1152

TESTLISTERR option
PROC DISCRIM statement, 1152

TESTOUT= option
PROC DISCRIM statement, 1152

TESTOUTD= option
PROC DISCRIM statement, 1152

TESTP= option
TABLES statement (FREQ), 1462, 1470, 1530
TABLES statement (SURVEYFREQ), 4202

tests, hypothesis
examples (GLM), 1850
GLM procedure, 1749

tetrachoric correlation coefficient, 1460, 1482
theoretical correlation

INBREED procedure, 1977
THETA0= option

PROC MI statement, 2519
PROC MIANALYZE statement, 2616

thin-plate smoothing splines, 4497
bootstrap, 4531, 4535
large data sets, 4527
theoretical foundation, 4511

three-way multidimensional scaling
MDS procedure, 2471

threshold response rate, 3705
THRESHOLD= option

PROC ACECLUS statement, 407
PROC DISCRIM statement, 1152
PROC MODECLUS statement, 2869

tick marks, modifying
examples, ODS Graphics, 373

TICKPOS= option
PROC TREE statement, 4754

ties
checking for in CLUSTER procedure, 971
MDS procedure, 2485
PHREG procedure, 3216, 3219, 3228, 3241,

3268
TPHREG procedure, 4486

TIES= option
MODEL statement (PHREG), 3228

time requirements
ACECLUS procedure, 411
CLUSTER procedure, 986
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FACTOR procedure, 1331, 1335
VARCLUS procedure, 4815, 4818

time series data
REG procedure, 3915

time-dependent covariates
PHREG procedure, 3216, 3220, 3222, 3224,

3233, 3236
time-series plot

MI procedure, 2556
TIME= option

TEST statement (MULTTEST), 2947
TIMELIM= option

PROC LIFETEST statement, 2164
TIMELIST= option

PROC LIFETEST statement, 2165
SURVIVAL statement (LIFETEST), 2168

TIMEPLOT option
MCMC statement (MI), 2529, 2567

TIPREFIX option
OUTPUT statement (TRANSREG), 4592

TITLE= option
FACTORS statement (CATMOD), 837
LOGLIN statement (CATMOD), 839
MCMC statement (MI), 2525, 2529
MODEL statement (CATMOD), 846
REPEATED statement (CATMOD), 852
RESPONSE statement (CATMOD), 854

Tobit model
LIFEREG procedure, 2085, 2129

Toeplitz structure
example (MIXED), 2819
MIXED procedure, 2721

TOL option
MODEL statement (REG), 3832

TOLERANCE option
MODEL statement (GLM), 1773
PROC ROBUSTREG statement, 3987

total covariance matrix
MIANALYZE procedure, 2627

total variance
MI procedure, 2561
MIANALYZE procedure, 2625

TOTAL= option
PROC SURVEYFREQ statement, 4194
PROC SURVEYLOGISTIC statement, 4252
PROC SURVEYMEANS statement, 4326
PROC SURVEYREG statement, 4374

TOTALPROPDISC= option
PAIREDFREQ statement (POWER), 3447

totals
SURVEYFREQ procedure, 4209

TOTALTIME= option
TWOSAMPLESURVIVAL statement

(POWER), 3480
TOTEFF option

PROC CALIS statement, 587
TOTPANELS= option

PLOT statement (BOXPLOT), 509
TOTPCT option

TABLES statement (FREQ), 1462
TPHREG procedure

displayed output, 4486
estimability checking, 4481
global null hypothesis, 4486
hierarchy, 4475
iteration history, 4486
likelihood ratio test, 4486
miscellaneous changes from PROC PHREG,

4485
model hierarchy, 4473, 4475
ODS table names, 4488
parameter estimates, 4486, 4487
score test, 4486
singular contrast matrix, 4481
standard error, 4487
standard error ratio, 4487
syntax, 4474
ties, 4486
Wald test, 4486

TPHREG procedure, CLASS statement, 4477
CPREFIX= option, 4477
DESCENDING option, 4477
LPREFIX= option, 4477
MISSING option, 4477
ORDER= option, 4477
PARAM= option, 4478
REF= option, 4478

TPHREG procedure, CONTRAST statement, 4479
ALPHA= option, 4481
E option, 4481
ESTIMATE= option, 4481
SINGULAR= option, 4481

TPHREG procedure, MODEL statement, 4474
HIERARCHY= option, 4475
INCLUDE= option, 4475
NODESIGNPRINT= option, 4476
NODUMMYPRINT= option, 4476
START= option, 4475
STOP= option, 4475

TPHREG procedure, PROC TPHREG statement,
4474

TPREFIX= option
PROC PRINQUAL statement, 3657

TPSPLINE procedure
bootstrap, 4531, 4535
computational formulas, 4511
large data sets, 4527
nonhomogeneous variance, 4514
ODS table names, 4515
partial spline model, 4515
smoothing parameter, 4514
smoothing penalty, 4525
syntax, 4506

TPSPLINE procedure, BY statement, 4507
TPSPLINE procedure, FREQ statement, 4507
TPSPLINE procedure, ID statement, 4508
TPSPLINE procedure, MODEL statement, 4508

ALPHA= option, 4508
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DF= option, 4508
DISTANCE= option, 4509
LAMBDA0= option, 4509
LAMBDA= option, 4509
LOGNLAMBDA0= option, 4509
LOGNLAMBDA= option, 4509
M= option, 4509

TPSPLINE procedure, OUTPUT statement, 4510
OUT= option, 4510

TPSPLINE procedure, PROC TPSPLINE statement,
4507

DATA= option, 4507
TPSPLINE procedure, SCORE statement, 4510

DATA= option, 4510
OUT= option, 4510

TRACE option
PROC MODECLUS statement, 2869
PROC NLIN statement, 3010
PROC NLMIXED statement, 3073
PROC VARCLUS statement, 4812

trace record
examples, ODS Graphics, 330, 352, 363

trace W method,
See Ward’s method

TRACEL option
MODEL statement (LOESS), 2236

traditional high-resolution graphics
LIFETEST procedure, 2159

traditional high-resolution graphics (LIFETEST),
2159

catalog, 2161
description, 2160
global annotate, 2160
local annotate, 2162

training data set
DISCRIM procedure, 1139

TRANS= option
PRIOR statement (MIXED), 2712

TRANSFORM statement
MI procedure, 2533

TRANSFORM statement (PRINQUAL)
ARSIN transformation, 3661
DEGREE= option, 3665
EVENLY option, 3665
EXP transformation, 3661
IDENTITY transformation, 3663
KNOTS= option, 3665
LINEAR transformation, 3662
LOG transformation, 3661
LOGIT transformation, 3661
MONOTONE transformation, 3662
MSPLINE transformation, 3662
NAME= option, 3666
NKNOTS= option, 3666
OPSCORE transformation, 3662
ORIGINAL option, 3664
PARAMETER= option, 3664
POWER transformation, 3661
RANK transformation, 3662

SPLINE transformation, 3662
SSPLINE transformation, 3663
TSTANDARD= option, 3666
UNTIE transformation, 3663

TRANSFORM statement, PRINQUAL procedure,
3659

transformation
MI procedure, 2533

transformation matrix
orthonormalizing, 438, 1761

transformation options
PRINQUAL procedure, 3663
TRANSREG procedure, 4564

transformation standardization
TRANSREG procedure, 4572

transformations
affine(DISTANCE), 1250
ANOVA procedure, 448
cluster analysis, 958
for multivariate ANOVA, 437, 1759
identity(DISTANCE), 1250
linear(DISTANCE), 1250
many-to-one(DISTANCE), 1249
MDS procedure, 2472, 2481, 2482, 2484, 2487–

2489
monotone increasing(DISTANCE), 1249
oblique, 1294, 1298
one-to-one(DISTANCE), 1249
orthogonal, 1294, 1298
power(DISTANCE), 1250
repeated measures, 1830–1832
strictly increasing(DISTANCE), 1249

transformations for repeated measures
GLM procedure, 1779

transformed data
MDS procedure, 2491

transformed distances
MDS procedure, 2491

transforming ordinal variables to interval
DISTANCE procedure, 1250

TRANSREG procedure
additive models, 4574
algorithms, 4576
alpha level, 4574
ANOVA, 4650
ANOVA codings, 4662
ANOVA table, 4580, 4615
ANOVA table in OUTTEST= data set, 4626
asterisk (*) operator, 4558
at sign (@) operator, 4558
B-spline basis, 4560, 4614
bar (|) operator, 4558
Box Cox Example, 4721
Box Cox transformations, 4595
Box-Cox alpha, 4570
Box-Cox convenient lambda, 4570
Box-Cox convenient lambda list, 4570
Box-Cox geometric mean, 4571
Box-Cox lambda, 4571
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Box-Cox parameter, 4566
CANALS method, 4576
canonical correlation, 4584, 4593
canonical variables, 4584
casewise deletion, 4578
cell-means coding, 4569, 4594, 4662
center-point coding, 4568, 4668, 4670
centering, 4675
character OPSCORE variables, 4604
choice experiments, 4660
CLASS variables, prefix, 4575
classification variables, 4560, 4569
coefficients, redundancy, 4590
confidence limits, 4575
confidence limits, individual, 4585
confidence limits, mean, 4585
confidence limits, prefix, 4584, 4585, 4587,

4588
conjoint analysis, 4581, 4593, 4690, 4694
constant transformations, avoiding, 4603
constant variables, 4578, 4604
degrees of freedom, 4615
dependent variable list, 4588
dependent variable name, 4587
design matrix, 4586
details of model, 4575
deviations-from-means coding, 4568, 4594,

4654, 4668, 4670
displaying iteration histories, 4576
dummy variables, 4560, 4569, 4586
dummy variables example, 4654
duplicate variable names, 4626
effect coding, 4549, 4568, 4654, 4668, 4670
excluded observations, 4605
excluding nonscore observations, 4581
expansions, 4560
explicit intercept, 4605
frequency variable, 4557
full-rank coding, 4568
GLMMOD alternative, 4586, 4654
history, iteration, 4576
hypothesis tests, 4580, 4615
id variables, 4557
ideal point model, 4593
ideal points, 4717
identity transformation, 4564
implicit intercept, 4605
independent variable list, 4588
individaul model fitting, 4576
initialization, 4575
interaction effects, 4558, 4594
interactions, quantitative, 4594
intercept, 4605
intercept, none, 4577
iterations, 4601
iterations, maximum number of, 4576
iterations, restarting, 4579, 4602
knots, 4567, 4568, 4613, 4678
less-than-full-rank model, 4569, 4594, 4672

leverage, 4587
limiting displayed output, 4579
linear regression, 4592
linear transformation, 4563, 4610
macros, 4588
main effects, 4558, 4594
maximum redundancy analysis, 4576
METHOD=MORALS rolled output data set,

4622
METHOD=MORALS variable names, 4626
metric conjoint analysis, 4694
missing value restoration option, 4590
missing values, 4576, 4578, 4599, 4600, 4605
monotone regression function, 4629
monotone transformations, 4593
monotonic B-spline transformation, 4563, 4611
monotonic transformation, ties not preserved,

4564, 4610
monotonic transformation, ties preserved, 4563,

4610
MORALS dependent variable name, 4587
MORALS method, 4576
multiple redundancy coefficients, 4590
multiple regression, 4593
multivariate multiple regression, 4593
names of variables, 4571
nonlinear regression functions, 4593, 4628
nonlinear transformations, 4593
nonmetric conjoint analysis, 4690
nonoptimal transformations, 4562
optimal scaling, 4609
optimal scoring, 4563, 4610
optimal transformations, 4563
order of CLASS levels, 4569, 4578
OUT= data set, 4582, 4623
output table names, 4676
OUTTEST= data set, 4556
part-worth utilities, 4691
passive observations, 4605
piecewise polynomial splines, 4561, 4614
%PLOTIT macro, 4617, 4717, 4718
point models, 4605
polynomial-spline basis, 4561, 4614
predicted values, 4591
preference mapping, 4593, 4717
preference models, 4586
prefix, canonical variables, 4584, 4585
prefix, redundancy variables, 4592
prefix, residuals, 4591
redundancy analysis, 4576, 4590, 4592, 4593,

4606
redundancy analysis, standardization, 4591
reference level, 4569, 4579, 4591
reference-cell coding, 4569, 4594, 4664, 4666
regression table, 4580
regression table in OUTTEST= data set, 4626
reiteration, 4579, 4602
renaming and reusing variables, 4571
residuals, 4592
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residuals, prefix, 4591
separate regression functions, 4633
short output, 4579
singularity criterion, 4579
smoothing spline transformation, 4564
smoothing splines, 4596
spline t-options, 4566
spline transformation, 4564, 4611
splines, 4560, 4561, 4614, 4637, 4678, 4709
standardization, redundancy variables, 4591
standardization, transformation, 4572, 4580
star (*) operator, 4558
syntax, 4553
transformation options, 4564
transformation standardization, 4572, 4580
Type II sums of squares, 4580
types of observations, 4581
utilities, 4581, 4691, 4694
utilities in OUTTEST= data set, 4626
variable list macros, 4588
variable names, 4625
vector preference models, 4586
weight variable, 4592

–TYPE– , 4623
TRANSREG procedure, BY statement, 4556
TRANSREG procedure, FREQ statement, 4557
TRANSREG procedure, ID statement, 4557
TRANSREG procedure, MODEL statement, 4557

ADDITIVE option, 4574
AFTER option, 4571
ALPHA= option, 4570, 4574
ARSIN transformation, 4562
Box-Cox transformation, 4562
BSPLINE transformation, 4560
CCONVERGE= option, 4574
CENTER option, 4571
CL option, 4575
CLASS transformation, 4560
CLL= option, 4570
CONVENIENT option, 4570
CONVERGE option, 4575
CPREFIX= option, 4568, 4575
DEGREE= option, 4567
DETAIL option, 4575
DEVIATIONS option, 4568
DUMMY option, 4575
EFFECTS option, 4568
EPOINT transformation, 4561
EVENLY option, 4567
EXKNOTS= option, 4567
EXP transformation, 4562
GEOMETRICMEAN option, 4571
HISTORY option, 4576
IDENTITY transformation, 4564
INDIVIDUAL option, 4576
KNOTS= option, 4568
LAMBDA= option, 4571
LINEAR transformation, 4563
LOG transformation, 4562

LOGIT transformation, 4562
LPREFIX= option, 4568, 4576
MAXITER= option, 4576
METHOD= option, 4576
MONOTONE transformation, 4563
MONOTONE= option, 4577
MSPLINE transformation, 4563
NAME= option, 4571
NCAN= option, 4577
NKNOTS= option, 4568
NOINT option, 4577
NOMISS option, 4578
NOPRINT option, 4578
OPSCORE transformation, 4563
ORDER= option, 4569, 4578
ORIGINAL option, 4566
PARAMETER= option, 4566
POINT transformation, 4561
POWER transformation, 4562
PSPLINE transformation, 4561
QPOINT transformation, 4561
RANK transformation, 4563
REFERENCE= option, 4579
REFLECT option, 4572
REITERATE option, 4579
SEPARATORS= option, 4569, 4579
SHORT option, 4579
SINGULAR= option, 4579
SM= option, 4566
SMOOTH transformation, 4563
SPLINE transformation, 4564
SS2 option, 4580
SSPLINE transformation, 4564
TEST option, 4580
TSTANDARD= option, 4572, 4580
TYPE= option, 4581
UNTIE transformation, 4564
UNTIE= option, 4581
UTILITIES option, 4581
Z option, 4572
ZERO= option, 4569

TRANSREG procedure, OUTPUT statement, 4582
ADPREFIX= option, 4584
AIPREFIX option, 4584
APPROXIMATIONS option, 4584
CANONICAL option, 4584
CCC option, 4584
CDPREFIX= option, 4584
CEC option, 4584
CILPREFIX= option, 4584
CIPREFIX= option, 4585
CIUPREFIX= option, 4585
CLI option, 4585
CLM option, 4585
CMLPREFIX= option, 4585
CMUPREFIX= option, 4585
COEFFICIENTS option, 4585
COORDINATES option, 4586
CPC option, 4586



5112 � Syntax Index

CQC option, 4586
DAPPROXIMATIONS option, 4586
DEPENDENT= option, 4587
DESIGN= option, 4586
DREPLACE option, 4587
IAPPROXIMATIONS option, 4587
IREPLACE option, 4587
LEVERAGE= option, 4587
LILPREFIX= option, 4587
LIUPREFIX= option, 4587
LMLPREFIX= option, 4588
MACRO option, 4588
MEANS option, 4590
MEC option, 4590
MPC option, 4590
MQC option, 4590
MRC option, 4590
MREDUNDANCY option, 4590
NORESTOREMISSING option, 4590
NOSCORES option, 4590
NOZEROCONSTANT option, 4578
OUT= option, 4582
PPREFIX option, 4591
PREDICTED option, 4591
RDPREFIX= option, 4591
REDUNDANCY= option, 4591
REFERENCE= option, 4591
REPLACE option, 4592
RESIDUALS option, 4592
RPREFIX= option, 4592
TDPREFIX= option, 4592
TIPREFIX option, 4592

TRANSREG procedure, PROC TRANSREG state-
ment, 4553

DATA= option, 4556
OUTTEST= option, 4556

TRANSREG procedure, WEIGHT statement, 4592
treatments in a design

specifying in PLAN procedure, 3345
TREATMENTS statement

PLAN procedure, 3345
tree diagram

binary tree, 4743
branch, 4743
children, 4743
definitions, 4743
leaves, 4743
node, 4743
parent, 4743
root, 4743

tree diagrams
cluster analysis, 4743

TREE procedure, 4743
missing values, 4756
OUT= data sets, 4756
output data sets, 4756
output table names, 4757
syntax, 4748

TREE procedure, BY statement, 4754

TREE procedure, COPY statement, 4755
TREE procedure, FREQ statement, 4755
TREE procedure, HEIGHT statement, 4755
TREE procedure, ID statement, 4755
TREE procedure, NAME statement, 4756
TREE procedure, PARENT statement, 4756
TREE procedure, PROC TREE statement, 4748

CFRAME= option, 4750
DATA= option, 4750
DESCENDING option, 4750
DESCRIPTION= option, 4750
DISSIMILAR option, 4750
DOCK= option, 4750
FILLCHAR= option, 4750
GOUT= option, 4750
HAXIS= option, 4751
HEIGHT= option, 4751
HORDISPLAY= option, 4751
HORIZONTAL option, 4751
HPAGES= option, 4751
INC= option, 4751
JOINCHAR= option, 4752
LEAFCHAR= option, 4752
LEVEL= option, 4752
LINEPRINTER option, 4752
LINES= option, 4752
LIST option, 4752
MAXHEIGHT= option, 4752
MINHEIGHT= option, 4752
NAME= option, 4752
NCLUSTERS= option, 4752
NOPRINT option, 4753
NTICK= option, 4753
OUT= option, 4753
PAGES= option, 4753
POS= option, 4753
ROOT= option, 4753
SIMILAR option, 4753
SORT option, 4754
SPACES= option, 4754
TICKPOS= option, 4754
TREECHAR= option, 4754
VAXIS= option, 4754
VPAGES= option, 4754

TREECHAR= option
PROC TREE statement, 4754

TREND option
EXACT statement (FREQ), 1444, 1543
OUTPUT statement (FREQ), 1449
STRATA statement (LIFETEST), 2168
TABLES statement (FREQ), 1462, 1543

trend test, 1490, 1543
trend tests

LIFETEST procedure, 2150, 2168, 2179, 2187
TRIM= option

and other options, 969
and other options (CLUSTER), 969, 970, 972
PROC CLUSTER statement, 969, 972

triweight kernel (DISCRIM), 1160
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TRUNCATE option
CLASS statement, 2681
CLASS statement (ANOVA), 436
CLASS statement (GENMOD), 1631
CLASS statement (GLM), 1749
CLASS statement (GLMMOD), 1916
CLASS statement (LOGISTIC), 2297
CLASS statement (MULTTEST), 2944
CLASS statement (NESTED), 2989
CLASS statement (ORTHOREG), 3203
CLASS statement (PLS), 3378
PROC SURVEYREG statement, 4374

trust region (TR), 3073
trust region algorithm

CALIS procedure, 578, 581, 665
TSSCP option

PROC CANDISC statement, 792
PROC DISCRIM statement, 1152
PROC STEPDISC statement, 4168

TSTANDARD= option
MODEL statement (TRANSREG), 4572, 4580
PROC PRINQUAL statement, 3657
TRANSFORM statement (PRINQUAL), 3666

TSYMM option
OUTPUT statement (FREQ), 1449

TTEST procedure
alpha level, 4780
Cochran and Coxt approximation, 4775, 4780,

4785
compared to other procedures, 1735
computational method, 4783
confidence intervals, 4780
input data set, 4783
introductory example, 4776
missing values, 4783
ODS table names, 4789
paired comparisons, 4775, 4793
pairedt test, 4782
paired-differencet test, 4775
Satterthwaite’s approximation, 4775, 4785
syntax, 4779
uniformly most powerful unbiased test, 4786

TTEST procedure, BY statement, 4780
TTEST procedure, CLASS statement, 4781
TTEST procedure, FREQ statement, 4781
TTEST procedure, PAIRED statement, 4782
TTEST procedure, PROC TTEST statement, 4780

ALPHA= option, 4780
CI= option, 4780
COCHRAN option, 4780
DATA= option, 4780

TTEST procedure, VAR statement, 4782
TTEST procedure, WEIGHT statement, 4783
Tucker and Lewis’s Reliability Coefficient, 1337
TUKEY option

MEANS statement (ANOVA), 445
MEANS statement (GLM), 1769

Tukey’s adjustment
GLM procedure, 1754

MIXED procedure, 2688
Tukey’s studentized range test, 445, 1769, 1811, 1812
Tukey-Kramer test, 445, 1769, 1811, 1812
TURNHLABELS option

PLOT statement (BOXPLOT), 509
2D geometric anisotropic structure

MIXED procedure, 2721
two-samplet-test, 4775, 4789

power and sample size (POWER), 3415, 3463,
3471, 3472, 3526, 3527, 3529, 3566

two-stage density linkage
CLUSTER procedure, 967, 982

TWOSAMPLEFREQ statement
POWER procedure, 3457

TWOSAMPLEMEANS statement
POWER procedure, 3463

TWOSAMPLESURVIVAL statement
POWER procedure, 3473

Type 1 analysis
GENMOD procedure, 1615, 1665

Type 1 error, 3488
Type 1 error rate

repeated multiple comparisons, 1808
Type 1 estimation

MIXED procedure, 2677
Type 2 error, 3488
Type 2 estimation

MIXED procedure, 2677
Type 3 analysis

GENMOD procedure, 1615, 1665
Type 3 estimation

MIXED procedure, 2677
Type H covariance structure, 1829
Type I sum of squares

computing in GLM, 1835
displaying (GLM), 1772
estimable functions for, 1771
estimable functions for (GLM), 1794
examples, 1858

Type I testing
MIXED procedure, 2696

Type II sum of squares
computing in GLM, 1835
displaying (GLM), 1773
estimable functions for, 1771
estimable functions for (GLM), 1796
examples, 1858

Type II sums of squares
TRANSREG procedure, 4580

Type II testing
MIXED procedure, 2696

Type III sum of squares
displaying (GLM), 1773
estimable functions for, 1771
estimable functions for (GLM), 1797
examples, 1858

Type III testing
MIXED procedure, 2696, 2751

Type IV sum of squares
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computing in GLM, 1835
displaying (GLM), 1773
estimable functions for, 1771
estimable functions for (GLM), 1797
examples, 1858

TYPE1 option
MODEL statement (GENMOD), 1642

TYPE3 option
MODEL statement (GENMOD), 1643

TYPE= data sets
FACTOR procedure, 1325

TYPE= option
MODEL statement (TRANSREG), 4581
PROC PRINQUAL statement, 3657
PROC SCORE statement, 4072
RANDOM statement (MIXED), 2715
REPEATED statement (GENMOD), 1648
REPEATED statement (MIXED), 2721

U
U option

OUTPUT statement (FREQ), 1449
U95 option

MODEL statement (RSREG), 4043
U95= option

OUTPUT statement (NLIN), 3014
U95M option

MODEL statement (RSREG), 4043
U95M= option

OUTPUT statement (NLIN), 3014
UCL keyword

OUTPUT statement (GLM), 1775
UCLM keyword

OUTPUT statement (GLM), 1775
UCORR option

PROC CALIS statement, 573
UCOV option

PROC CALIS statement, 573
UCR option

OUTPUT statement (FREQ), 1449
ultra-Heywood cases, FACTOR procedure, 1333
ULTRAHEYWOOD option

PROC FACTOR statement, 1320
ultrametric, definition, 985
UNADJUSTED option

PROC CORRESP statement, 1079
unbalanced data

caution (ANOVA), 423
unbalanced design

GLM procedure, 1735, 1804, 1833, 1856, 1882
NESTED procedure, 2990

uncertainty coefficients, 1474, 1483, 1484
UNDEF= option

PROC DISTANCE statement, 1263
UNDO option

PAINT statement (REG), 3838
REWEIGHT statement (REG), 3857

unequal weighting
SURVEYFREQ procedure, 4204

unfolding
MDS procedure, 2471

uniform kernel (DISCRIM), 1159
uniform-kernel estimation

CLUSTER procedure, 972, 978
uniformly most powerful unbiased test

TTEST procedure, 4786
unique factor

defined for factor analysis, 1292
UNISTATS option

BIVAR statement, 1999
UNIVAR statement, 2000

UNITS statement, LOGISTIC procedure, 2328
UNITS statement, SURVEYLOGISTIC procedure,

4267
UNIVAR statement

KDE procedure, 1999
univariate distributions, example

MODECLUS procedure, 2889
UNIVARIATE procedure, 22
univariate tests

repeated measures, 1828, 1829
unknown or missing parents

INBREED procedure, 1982
UNPACKPANELS option

PROC GAM statement, 1581
PROC LOESS statement, 2250
PROC REG statement, 3923

unrestricted random sampling
SURVEYSELECT procedure, 4447

unsquared Euclidean distances, 969, 971
UNSTD option

PROC STDIZE statement, 4133
unstructured correlations

MIXED procedure, 2721
unstructured covariance matrix

MIXED procedure, 2721
UNTIE option

PROC MDS statement, 2485
UNTIE transformation

MODEL statement (TRANSREG), 4564
TRANSFORM statement (PRINQUAL), 3663

UNTIE= option
MODEL statement (TRANSREG), 4581
PROC PRINQUAL statement, 3658

unweighted least-squares factor analysis, 1291
unweighted pair-group clustering,

See average linkage
See centroid method

update methods
NLMIXED procedure, 3073

UPDATE option
PROC MIXED statement, 2680

UPDATE= option
NLOPTIONS statement (CALIS), 613
PRIOR statement (MIXED), 2712
PROC CALIS statement, 579
PROC NLMIXED statement, 3073

UPGMA,
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See average linkage
UPGMC,

See centroid method
UPPER= option

ONESAMPLEMEANS statement (POWER),
3437

OUTPUT statement (LOGISTIC), 2321
PAIREDMEANS statement (POWER), 3454
TWOSAMPLEMEANS statement (POWER),

3470
UPPERB= option

PARMS statement (MIXED), 2708
UPPERTAILED option

ESTIMATE statement (MIXED), 2686
TEST statement (MULTTEST), 2947

URC option
OUTPUT statement (FREQ), 1449

URL= suboption
ODS HTML statement, 337
ODS LATEX statement, 359

USEALL option
PLOT statement (REG), 3848

USSCP option
PROC REG statement, 3819

utilities
TRANSREG procedure, 4691, 4694

UTILITIES option
MODEL statement (TRANSREG), 4581

V
V matrix

MIXED procedure, 2716
V option

RANDOM statement (MIXED), 2716
V6CORR option

REPEATED statement (GENMOD), 1649
VADJUST= option

MODEL statement (SURVEYLOGISTIC), 4265
MODEL statement (SURVEYREG), 4381

valid observation
SURVEYMEANS procedure, 4346

value lists
GLMPOWER procedure, 1945
POWER procedure, 3490

Van der Waerden scores
NPAR1WAY procedure, 3167

VAR option
TABLES statement (SURVEYFREQ), 4202

VAR statement
CALIS procedure, 627
CANDISC procedure, 794
CORRESP procedure, 1081
DISCRIM procedure, 1156
FACTOR procedure, 1322
INBREED procedure, 1975
LATTICE procedure, 2073
MDS procedure, 2486
MI procedure, 2534
MODECLUS procedure, 2870

NESTED procedure, 2989
NPAR1WAY procedure, 3162
PRINCOMP procedure, 3608
REG procedure, 3859
STDIZE procedure, 4135
STEPDISC procedure, 4169
SURVEYMEANS procedure, 4332
TTEST procedure, 4782
VARCLUS procedure, 4814
VARIOGRAM procedure, 4870

VAR statement, use
CORRESP procedure, 1072

VAR= option
ASSESS statement (PHREG), 3223
CDFPLOT statement (PROBIT), 3715
IPPPLOT statement (PROBIT), 3725
LPREDPLOT statement (PROBIT), 3733
PREDICT statement (KRIGE2D), 2042
PREDPPLOT statement (PROBIT), 3747
SIMULATE statement (SIM2D), 4101

VARCLUS procedure,
See also TREE procedure
alternating least-squares, 4800
analyzing data in groups, 4813
centroid component, 4802, 4808
cluster components, 4799
cluster splitting, 4800, 4806, 4810, 4811
cluster, definition, 4799
computational resources, 4818
controlling number of clusters, 4810
eigenvalues, 4800, 4810
how to choose options, 4815
initializing clusters, 4809
interpreting output, 4818
iterative reassignment, 4800
MAXCLUSTERS= option, using, 4815
MAXEIGEN= option, using, 4815
memory requirements, 4818
missing values, 4814
multiple group component analysis, 4811
nearest component sorting phase, 4800
number of clusters, 4800, 4806, 4810, 4811
orthoblique rotation, 4800, 4809
output data sets, 4811, 4816
output table names, 4820
OUTSTAT= data set, 4811, 4816
OUTTREE= data set, 4817
PROPORTION= option, using, 4815
search phase, 4800
splitting criteria, 4800, 4806, 4810, 4811
stopping criteria, 4806
syntax, 4806
time requirements, 4815, 4818
TYPE=CORR data set, 4816

VARCLUS procedure, BY statement, 4813
VARCLUS procedure, FREQ statement, 4813
VARCLUS procedure, PARTIAL statement, 4813
VARCLUS procedure, PROC VARCLUS statement,

4806



5116 � Syntax Index

CENTROID option, 4808
CORR option, 4808
COVARIANCE option, 4809
DATA= option, 4809
HIERARCHY option, 4809
INITIAL= option, 4809
MAXCLUSTERS= option, 4810
MAXEIGEN= option, 4810
MAXITER= option, 4810
MAXSEARCH= option, 4810
MINC= option, 4810
MINCLUSTERS= option, 4810
MULTIPLEGROUP option, 4811
NOINT option, 4811
NOPRINT option, 4811
OUTSTAT= option, 4811
OUTTREE= option, 4811
PERCENT= option, 4811
PROPORTION= option, 4811
RANDOM= option, 4812
SHORT option, 4812
SIMPLE option, 4812
SUMMARY option, 4812
TRACE option, 4812
VARDEF= option, 4812

VARCLUS procedure, SEED statement, 4814
VARCLUS procedure, VAR statement, 4814
VARCLUS procedure, WEIGHT statement, 4814
VARCOMP procedure, 4834

classification variables, 4836
compared to MIXED procedure, 2664, 2665
compared to other procedures, 1735
computational details, 4838
dependent variables, 4831, 4836
example (MIXED), 2795
fixed effects, 4831, 4837
fixed-effects model, 4837
introductory example, 4832
methods of estimation, 4831, 4842
missing values, 4837
mixed model, 4837
negative variance components, 4838
ODS table names, 4840
random effects, 4831, 4837
random-effects model, 4837
relationship to PROC MIXED, 4841
syntax, 4834
variability, 4832
variance component, 4838

VARCOMP procedure, BY statement, 4835
VARCOMP procedure, CLASS statement, 4836
VARCOMP procedure, MODEL statement, 4836

FIXED= option, 4836
VARCOMP procedure, PROC VARCOMP statement,

4835
DATA= option, 4835
EPSILON= option, 4835
MAXITER= option, 4835
METHOD= option, 4835

VARDEF option
PROC STDIZE statement, 4133

VARDEF= option
PROC CALIS statement, 573
PROC DISTANCE statement, 1263
PROC FACTOR statement, 1320
PROC FASTCLUS statement, 1395
PROC PRINCOMP statement, 3606
PROC VARCLUS statement, 4812

variability
VARCOMP procedure, 4832

variable (PHREG)
censoring, 3218

variable importance for projection, 3396
variable list macros

TRANSREG procedure, 4588
variable selection

CALIS procedure, 662
discriminant analysis, 4157

variable-radius kernels
MODECLUS procedure, 2870

variable-reduction method, 4799
variables,

See also classification variables
frequency (PRINQUAL), 3658
renaming (PRINQUAL), 3666
reusing (PRINQUAL), 3666
weight (PRINQUAL), 3667

variables, unaddressed
INBREED procedure, 1976

variance component
VARCOMP procedure, 4838

variance components, 2985
MIXED procedure, 2662, 2721

Variance Estimation
SURVEYLOGISTIC procedure, 4282

variance estimation, 166
SURVEYREG procedure, 4385

variance function
GENMOD procedure, 1614

variance inflation factors (VIF)
REG procedure, 3818, 3958

variance of means
LATTICE procedure, 2074

variance of the mean
SURVEYMEANS procedure, 4338

variance of the total
SURVEYMEANS procedure, 4341

variance ratios
MIXED procedure, 2707, 2714

VARIANCE statement, GENMOD procedure, 1650
variances

FACTOR procedure, 1320
ratio of, 4775, 4784, 4789

variances, test for equal, 1150
varimax method, 1291, 1317, 1318
VARIOGRAM procedure, 4851

angle classes, 4866, 4868, 4870, 4872, 4873
angle tolerance, 4866, 4868, 4870, 4872, 4873
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anisotropic models, 4871
bandwidth, 4866, 4870, 4875
continuity measures, 4851
contour map, 4856
correlation length, 4860
cutoff distance, 4869
DATA= data set, 4865
distance classification, 4874
distance interval, 4856
empirical (or experimental) semivariogram,

4858
examples, 4852, 4882
histogram of pairwise distances, 4856
input data set, 4865
intervals, number of, 4856
kriging, ordinary, 4852
nested models, 4871
nugget effect, 4871
ordinary kriging, 4851
OUTDIST= data set, 4851, 4865, 4878, 4880
OUTPAIR= data set, 4851, 4866, 4881
output data sets, 4851, 4865, 4866, 4877–4881
OUTVAR= data set, 4866, 4877
pairwise distances, 4851, 4856, 4867
predicted values, 4852
semivariogram computation, 4876, 4877
semivariogram robust, 4877
semivariogram, empirical, 4856
semivariogram, robust, 4861, 4869, 4877
spatial continuity, 4851
spatial prediction, 4851, 4852
square root difference cloud, 4882
standard errors, 4852
surface plot, 4856
surface trend, 4854
syntax, 4864

VARIOGRAM procedure, COMPUTE statement,
4866

ANGLETOLERANCE= option, 4866
BANDWIDTH= option, 4866
DEPSILON= option, 4867
LAGDISTANCE= option, 4867
LAGTOLERANCE= option, 4867
MAXLAGS= option, 4867
NDIRECTIONS= option, 4868
NHCLASSES= option, 4868
NOVARIOGRAM option, 4869
OUTPDISTANCE= option, 4869
ROBUST option, 4869

VARIOGRAM procedure, COORDINATES
statement, 4869

XCOORD= option, 4869
YCOORD= option, 4869

VARIOGRAM procedure, DIRECTIONS statement,
4870

VARIOGRAM procedure, PROC VARIOGRAM
statement, 4865

DATA= option, 4865
OUTDISTANCE= option, 4865

OUTPAIR= option, 4866
OUTVAR= option, 4866

VARIOGRAM procedure, VAR statement, 4870
VARNAMES statement, CALIS procedure, 625
VARSCALE option

PROC PLS statement, 3377
VARWT option

TABLES statement (SURVEYFREQ), 4202
VARY option

PLOT statement (GLMPOWER), 1944
PLOT statement (POWER), 3485

VAXIS= option
PLOT statement (BOXPLOT), 509
PLOT statement (REG), 3848
PROC TREE statement, 4754

VC option
RANDOM statement (MIXED), 2716

VCI option
RANDOM statement (MIXED), 2716

VCIRY option
MIXED procedure, MODEL statement, 2764
MODEL statement (MIXED), 2705

VCORR option
RANDOM statement (MIXED), 2716

VDEP option
PROC CANCORR statement, 762

vector preference models
TRANSREG procedure, 4586

VERSION= option
NLOPTIONS statement (CALIS), 624

VFORMAT= option
BOXPLOT procedure, 510

VI option
RANDOM statement (MIXED), 2716

viewing graphs
ODS Graphics, 327

VIF,
See variance inflation factors

VIF option
MODEL statement (REG), 3832

VIP, 3396
visual fit of the variogram

KRIGE2D procedure, 2045
VMINOR= option

PLOT statement (BOXPLOT), 510
VN= option

PROC CANCORR statement, 762
VNAME= option

PROC CANCORR statement, 762
VOFFSET= option

PLOT statement (BOXPLOT), 510
VP= option

PROC CANCORR statement, 762
VPAGES= option

PROC TREE statement, 4754
VPLOTS= option

PLOT statement (REG), 3851
VPREFIX= option

PROC CANCORR statement, 762
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VREF= option
PLOT statement (BOXPLOT), 510
PLOT statement (REG), 3848

VREFLABELS= option
PLOT statement (BOXPLOT), 510

VREFLABPOS= option
PLOT statement (BOXPLOT), 511

VREG option
PROC CANCORR statement, 763

VSINGULAR= option
NLOPTIONS statement (CALIS), 615
PROC CALIS statement, 591
PROC NLMIXED statement, 3074

VW option
EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3158

VZERO option
PLOT statement (BOXPLOT), 511

W
Wald chi-square test

SURVEYFREQ procedure, 4221
Wald log-linear chi-square test

SURVEYFREQ procedure, 4223
WALD option

CONTRAST statement (GENMOD), 1633
MODEL statement (GENMOD), 1643

Wald test
mixed model (MIXED), 2741, 2786
MIXED procedure, 2750, 2751
modification indices (CALIS), 584, 674
PHREG procedure, 3238, 3246, 3247, 3269,

3284
probability limit (CALIS), 590
PROBIT procedure, 3756
SURVEYREG procedure, 4386, 4389
TPHREG procedure, 4486

WALDCI option
MODEL statement (GENMOD), 1643

WALDCL option
MODEL statement (LOGISTIC), 2319

WALDRL option
MODEL statement (LOGISTIC), 2315

WALLER option
MEANS statement (ANOVA), 445
MEANS statement (GLM), 1769

Waller-Duncan test, 445, 1769, 1815
error seriousness ratio, 443, 1768
examples, 1851
multiple comparison (ANOVA), 464

Wampler data set, 3208
Ward’s minimum-variance method

CLUSTER procedure, 967, 983
WAXIS= option

PLOT statement (BOXPLOT), 511
WCHISQ option

TABLES statement (SURVEYFREQ), 4202
WCONF= option

MCMC statement (MI), 2526
WCONNECT= option

MCMC statement (MI), 2530
WCORR option

PROC CANDISC statement, 792
PROC DISCRIM statement, 1153
PROC STEPDISC statement, 4168

WCOV option
PROC CANDISC statement, 792
PROC DISCRIM statement, 1153
PROC MIANALYZE statement, 2616
PROC STEPDISC statement, 4168
TEST statement (MIANALYZE), 2619

WDEP option
PROC CANCORR statement, 763

Wei-Lin-Weissfeld model
PHREG procedure, 3248

Weibull distribution, 2083, 2097, 2111
WEIGHT option

PROC FACTOR statement, 1320
WEIGHT statement

CALIS procedure, 627
CANDISC procedure, 794
CATMOD procedure, 860
CORRESP procedure, 1082
DISCRIM procedure, 1156
FACTOR procedure, 1322
FREQ procedure, 1463
GENMOD procedure, 1650
GLM procedure, 1782
GLMMOD procedure, 1916
GLMPOWER procedure, 1938
KDE procedure, 2002
LIFEREG procedure, 2108
LOESS procedure, 2237
LOGISTIC procedure, 2328
MDS procedure, 2487
MIXED procedure, 2730
ORTHOREG procedure, 3203
PHREG procedure, 3239
PRINCOMP procedure, 3608
PRINQUAL procedure, 3667
REG procedure, 3859
ROBUSTREG procedure, 3992
RSREG procedure, 4044
STEPDISC procedure, 4169
SURVEYFREQ procedure, 4203
SURVEYMEANS procedure, 4333
SURVEYREG procedure, 4382
TRANSREG procedure, 4592
TTEST procedure, 4783
VARCLUS procedure, 4814

weight variable
PRINQUAL procedure, 3667

WEIGHT= option
OUTPUT statement (NLIN), 3014
REWEIGHT statement (REG), 3857
STRATA statement (MULTTEST), 2946, 2951

weighted average linkage
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CLUSTER procedure, 967, 981
weighted Euclidean distance

MDS procedure, 2472, 2477, 2488
weighted Euclidean model

MDS procedure, 2471, 2477
weighted kappa coefficient, 1493, 1496
weighted least squares

CATMOD procedure, 817, 846
formulas (CATMOD), 894
MDS procedure, 2487
normal equations (GLM), 1783

weighted means
GLM procedure, 1820

weighted pair-group methods,
See McQuitty’s similarity analysis
See median method

weighted product-moment correlation coefficients
CANCORR procedure, 764

weighted Schoenfeld residuals
PHREG procedure, 3235, 3259

weighted score residuals
PHREG procedure, 3260

weighted-group method,
See centroid method

WEIGHTFUNCTIONT option
PROC ROBUSTREG statement, 3985

weighting
MIXED procedure, 2730

weighting variables
FACTOR procedure, 1333

WEIGHTS= option
VAR statement, 1267

WELCH option
MEANS statement (ANOVA), 445
MEANS statement (GLM), 1769

Welcht test
power and sample size (POWER), 3463, 3472,

3527
Welch’s ANOVA, 445, 1769

homogeneity of variance tests, 1819
using homogeneity of variance tests, 1893

Welsch’s multiple range test, 444, 1768, 1815
examples, 1851

WGRID= option
PLOT statement (BOXPLOT), 511

WGT statement
DISTANCE procedure, 1269
STDIZE procedure, 4135

WHERE statement
ANOVA procedure, 454
GLM procedure, 1787

width, confidence intervals, 3488
WIDTH= option

PROC LIFETEST statement, 2165
WILCOXON option

EXACT statement (NPAR1WAY), 3160
OUTPUT statement (NPAR1WAY), 3162
PROC NPAR1WAY statement, 3158

Wilcoxon scores

NPAR1WAY procedure, 3166
Wilcoxon test for association

LIFETEST procedure, 2150
Wilcoxon test for homogeneity

LIFETEST procedure, 2150, 2168, 2178
Wilks’ criterion, 437, 1759
Wilks’ lambda, 1828
Williams’ method

overdispersion (LOGISTIC), 2355
windowing environment, 327, 338
within-cluster SSCP matrix

ACECLUS procedure, 387
within-imputation covariance matrix

MIANALYZE procedure, 2626
within-imputation variance

MI procedure, 2561
MIANALYZE procedure, 2624

within-subject factors
repeated measures, 1777, 1828

WITHIN= option
REPEATED statement (GENMOD), 1649

WITHINSUBJECT= option
REPEATED statement (GENMOD), 1649

WLF option
MCMC statement (MI), 2524, 2529, 2530

WLLCHISQ option
TABLES statement (SURVEYFREQ), 4202

WLS option
MODEL statement (CATMOD), 846

WN= option
PROC CANCORR statement, 763

WNAME= option
PROC CANCORR statement, 763

WNEEDLES= option
MCMC statement (MI), 2526

Wong’s hybrid method
CLUSTER procedure, 969, 978

working correlation matrix
GENMOD procedure, 1647, 1648, 1672

worst linear function of parameters
MI procedure, 2556

WOVERLAY= option
PLOT statement (BOXPLOT), 511

WP= option
PROC CANCORR statement, 763

WPENALTY= option
PROC CALIS statement, 576

WPGMA,
See McQuitty’s similarity analysis

WPGMC,
See median method

WPREFIX= option
PROC CANCORR statement, 763

WREF= option
MCMC statement (MI), 2526

WREG option
PROC CANCORR statement, 762

WRIDGE= option
PROC CALIS statement, 577
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WSSCP option
PROC CANDISC statement, 793
PROC DISCRIM statement, 1153
PROC STEPDISC statement, 4168

WTFREQ option
TABLES statement (SURVEYFREQ), 4202

WTKAP option
EXACT statement (FREQ), 1444
OUTPUT statement (FREQ), 1449
TEST statement (FREQ), 1463

X
X= option

GRID statement (KRIGE2D), 2040
GRID statement (SIM2D), 4100
PLOT statement (GLMPOWER), 1944
PLOT statement (POWER), 3485

XBETA keyword
OUTPUT statement (LIFEREG), 2102
OUTPUT statement (ROBUSTREG), 3991

XBETA= option
OUTPUT statement (LOGISTIC), 2321

XCONV option
EM statement (MI), 2522

XCONV= option
MCMC statement (MI), 2527
MODEL statement (LOGISTIC), 2319
MODEL statement (SURVEYLOGISTIC), 4265
NLOPTIONS statement (CALIS), 619
PROC NLMIXED statement, 3074

XCOORD= option
COORDINATES statement (KRIGE2D), 2039
COORDINATES statement (SIM2D), 4100
COORDINATES statement (VARIOGRAM),

4869
GRID statement (KRIGE2D), 2040
GRID statement (SIM2D), 4101

XDATA= data sets
LIFEREG procedure, 2122

XDATA= option
PROC LIFEREG statement, 2091
PROC PROBIT statement, 3714

XOPTS= option
PLOT statement (GLMPOWER), 1944
PLOT statement (POWER), 3486

XPVIX option
MODEL statement (MIXED), 2705

XPVIXI option
MODEL statement (MIXED), 2705

XPX option
MODEL statement (CATMOD), 846
MODEL statement (GLM), 1773
MODEL statement (REG), 3832
MODEL statement (SURVEYREG), 4381

XPXI= option
PROC MIANALYZE statement, 2616

XREF option
PROC NLIN statement, 3010

XSIZE= option

NLOPTIONS statement (CALIS), 619
PROC NLMIXED statement, 3074

XTOL= option
NLOPTIONS statement (CALIS), 619

XVARS option
MODEL statement (GENMOD), 1643

Y
Y= option

GRID statement (KRIGE2D), 2040
GRID statement (SIM2D), 4100
PLOT statement (GLMPOWER), 1944
PLOT statement (POWER), 3487

YCOORD= option
COORDINATES statement (KRIGE2D), 2039
COORDINATES statement (SIM2D), 4100
COORDINATES statement (VARIOGRAM),

4869
GRID statement (KRIGE2D), 2040
GRID statement (SIM2D), 4101

YOPTS= option
PLOT statement (GLMPOWER), 1944
PLOT statement (POWER), 3487

YPAIR= option
REPEATED statement (GENMOD), 1649

Yule’s Q statistic, 1476

Z
Z option

MODEL statement (TRANSREG), 4572
z scores

TRANSREG procedure, 4572
z test

power and sample size (POWER), 3429, 3432,
3505, 3506

ZDATA= option
REPEATED statement (GENMOD), 1649

zero variance component estimates
MIXED procedure, 2774

ZERO= option
MODEL statement (CATMOD), 846
MODEL statement (TRANSREG), 4569

ZEROBASED option
PROC GLMMOD statement, 1915

ZEROES= option
MODEL statement (CATMOD), 846

ZEROS option
WEIGHT statement (FREQ), 1464

zeros, structural and random
FREQ procedure, 1499

zeros, structural and sampling
CATMOD procedure, 888
examples (CATMOD), 919, 924

ZEROS= option
MODEL statement (CATMOD), 846

ZETA= option
MODEL statement (GLM), 1773
MODEL statement (MIXED), 2705

zonal anisotropy
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KRIGE2D procedure, 2055
ZROW= option

REPEATED statement (GENMOD), 1650





Your Turn 

If you have comments or suggestions about SAS/STAT® 9.1 User’s Guide, please 
send them to us on a photocopy of this page or send us electronic mail. 

For comments about this book, please return the photocopy to 

SAS Publishing 
SAS Campus Drive 
Cary, NC 27513 
E-mail: yourturn@sas.com 

For suggestions about the software, please return the photocopy to 

SAS Institute Inc. 
Technical Support Division 
SAS Campus Drive 
Cary, NC 27513 
E-mail: suggest@sas.com 




	Table of Contents
	Acknowlegments
	What's New in SAS/STAT 9 and 9.1
	Introduction
	Introduction to Regression Procedures
	Introduction to Analysis of Variance Procedures
	Introduction to Categorical Data Analysis Procedures
	Introduction to Multivariate Procedures
	Introduction to Discriminant Procedures
	Introduction to Clustering Procedures
	Introduction to Scoring, Standardization, and Ranking Procedures
	Introduction to Survival Analysis Procedures
	Introduction to Survey Procedures
	The Four Types of Estimable Functions
	Introduction to Nonparametric Analysis
	Introduction to Structural Equation Modeling
	Using the Output Delivery System
	Statistical Graphics Using ODS (Experimental)
	The ACECLUS Procedure
	The ANOVA Procedure
	The BOXPLOT Procedure
	The CALIS Procedure
	The CANCORR Procedure
	The CANDISC Procedure
	The CATMOD Procedure
	The CLUSTER Procedure
	The CORRESP Procedure
	The DISCRIM Procedure
	The DISTANCE Procedure
	The FACTOR Procedure
	The FASTCLUS Procedure
	The FREQ Procedure
	The GAM Procedure
	The GENMOD Procedure
	The GLM Procedure
	The GLMMOD Procedure
	The GLMPOWER Procedure
	The INBREED Procedure
	The KDE Procedure
	The KRIGE2D Procedure
	The LATTICE Procedure
	The LIFEREG Procedure
	The LIFETEST Procedure
	The LOESS Procedure
	The LOGISTIC Procedure
	The MDS Procedure
	The MI Procedure
	The MIANALYZE Procedure
	The MIXED Procedure
	The MODECLUS Procedure
	The MULTTEST Procedure
	The NESTED Procedure
	The NLIN Procedure
	The NLMIXED Procedure
	The NPAR1WAY Procedure
	The ORTHOREG Procedure
	The PHREG Procedure
	The PLAN Procedure
	The PLS Procedure
	The POWER Procedure
	The PRINCOMP Procedure
	The PRINQUAL Procedure
	The PROBIT Procedure
	The REG Procedure
	The ROBUSTREG Procedure
	The RSREG Procedure
	The SCORE Procedure
	The SIM2D Procedure
	The STDIZE Procedure
	The STEPDISC Procedure
	The SURVEYFREQ Procedure
	The SURVEYLOGISTIC Procedure
	The SURVEYMEANS Procedure
	The SURVEYREG Procedure
	The SURVEYSELECT Procedure
	The TPHREG Procedure (Experimental)
	The TPSPLINE Procedure
	The TRANSREG Procedure
	The TREE Procedure
	The TTEST Procedure
	The VARCLUS Procedure
	The VARCOMP Procedure
	The VARIOGRAM Procedure
	Appendix A: Special SAS Data Sets
	Appendix B: Using the %PLOTIT Macro
	Subject Index
	Syntax Index



