
 

Scientists collect data in order to learn about the processes and systems those data represent.  
Often they have prior ideas, called hypotheses, of how the systems behave.  One of the primary 
purposes of collecting data is to test whether those hypotheses can be substantiated, with 
evidence provided by the data.  Statistical tests are the most quantitative ways to determine 
whether hypotheses can be substantiated, or whether they must be modified or rejected outright. 

One important use of hypothesis tests is to evaluate and compare groups of data.  Water 
resources scientists have made such comparisons for years, sometimes without formal test 
procedures.  For example, water quality has been compared between two or more aquifers, and 
some statements made as to which are different.  Historic frequencies of exceeding some critical 
surface-water discharge have been compared with those observed over the most recent 10 years.  
Rather than using hypothesis tests, the results are sometimes expressed as the author's educated 
opinions -- "it is clear that development has increased well yield."  Hypothesis tests have at least 
two advantages over educated opinion:  

1)  they insure that every analyst of a data set using the same methods will arrive at 
the same result.  Computations can be checked on and agreed to by others. 

2)  they present a measure of the strength of the evidence (the p-value).  The 
decision to reject an hypothesis is augmented by the risk of that decision being 
incorrect.  

In this chapter hypothesis tests are classified based on when each is appropriate for use.  The 
basic structure of hypothesis testing is introduced.  The rank-sum test is used to illustrate this 
structure, as well as to illustrate the origin of tables of test statistic quantiles found in most 
statistics textbooks.  Finally, tests for normality are discussed.  Concepts and terminology found 
here will be used throughout the rest of the book. 

 

Chapter 4
Hypothesis Tests
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4.1   Classification of Hypothesis Tests 

The numerous varieties of hypothesis tests often cause unnecessary confusion to scientists.  
Tests can be classified into the five major types shown in figure 4.1, based on the measurement 
scales of the data being tested.  Within these types, the distributional shape of the data determine 
which of two major divisions of hypothesis tests, parametric or nonparametric, are appropriate 
for use.  Thus the data, along with the objectives of the study, determine which test procedure 
should be employed. 

The terms response variable and explanatory variable are used in the following discussion.  A 
response variable is one whose variation is being studied.  In the case of regression, for example, 
the response variable is sometimes called the "dependent variable" or "y variable".  An 
explanatory variable is one used to explain why and how the magnitude of the response variable 
changes.  With a t-test, for example, the explanatory variable consists of the two categories of 
data being tested. 
 

4.1.1   Classification Based on Measurement Scales 
In figure 4.1, five groupings of test procedures are represented by the five boxes.  Each differs 
only in the measurement scales of the response and explanatory variables under study.  The 
scales of measurement may be either continuous or categorical.  Both parametric and 
nonparametric tests may be found within a given box. 

Tests represented by the three boxes in the top row of figure 4.1 are all similar in that the 
response variable is measured on a continuous scale.  Examples of variables having a continuous 
scale are concentration, streamflow, porosity, and many of the other items measured by water 
resources scientists.  Tests represented by the two boxes along the bottom of figure 4.1, in 
contrast, have response variables measured only on a categorical or grouped measurement scale.  
These variables can only take on a finite, usually small, number of values.  They are often 
designated as letters or integer values.  Categorical variables used primarily as explanatory 
variables include aquifer type, month, land use group, and station number.  Categorical variables 
used as response variables include above/below a reporting limit (perhaps recorded as 0 or 1), 
presence or absence of a particular species, and low/medium/high risk of contamination. 

The top left box represents the two- and multi-sample hypothesis tests such as the rank-sum and 
t-tests.  The subject of Chapters 5 through 7, these tests determine whether a continuous 
response variable (such as concentration) differs in its central value among two or more grouped 
explanatory variables (such as aquifer unit).   

The top right box represents two often-used methods -- linear regression and correlation.  Both 
relate a continuous response variable (the dependent or y variable) to a continuous explanatory 
variable (the independent or x variable).  Examples include regression of the 100-year flood 
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magnitude versus basin characteristics, and correlations between concentrations of two chemical 
constituents.  Analysis of trends over time is a special case of this class of methods, where the 
explanatory variable of primary interest is time. 

The top center box is a blend of these two approaches, called analysis of covariance.  A 
continuous response variable is related to several explanatory variables, some of which are 
continuous and some categorical.  This is discussed in Chapter 11. 

The bottom left box represents a situation similar to that for use of t-tests or analysis of 
variance, except that the response variable is categorical.  Examples include determining whether 
the probability of finding a volatile organic above the reporting limit varies by land-use grouping.  
Contingency tables appropriately measure the association between two such categorical 
variables.  Further information is found in Chapter 14. 

The bottom right box shows that a regression-type relationship can be developed for the case of 
a categorical response variable.  Perhaps the proportion of pesticide or other data below the 
reporting limit exceeds fifty percent, and it makes little sense to try to model mean or median 
concentrations.  Instead, the probability of finding a detectable concentration can be related to 
continuous variables such as population density, percent of impervious surface, irrigation 
intensities, etc.  This is done through the use of logistic regression, one subject of Chapter 15.  
Logistic regression can also incorporate categorical explanatory variables in a multiple regression 
context, making it the equivalent of analysis of covariance for categorical response variables. 
 

4.1.2   Classification Based on the Data Distribution 
Hypothesis tests which assume that the data have a particular distribution (usually a normal 
distribution, as in Fig. 1.2) are called parametric tests.  This is because the information 
contained in the data is summarized by parameters, usually the mean and standard deviation, and 
the test statistic is computed using these parameters.  This is an efficient process if the data truly 
follow the assumed distribution.  When they do not, however, the parameters may only poorly 
represent what is actually occurring in the data.  The resulting test can then reach an incorrect 
conclusion, usually because it lacks sensitivity (power) to detect real effects. 

Hypothesis tests not requiring the assumption that data follow a particular distribution  are 
called distribution-free or nonparametric tests.  Information is extracted from the data by 
comparing each value with all others (ranking the data) rather than by computing parameters.  A 
common misconception is that nonparametric tests "lose information" in comparison to 
parametric tests because nonparametric tests "discard" the data values.  Bradley (1968, p.13) 
responded to this misconception:  "Actually, the utilization of the additional sample information 
[in the parameters] is made possible by the additional population 'information' embodied in the 
parametric test's assumptions.  Therefore, the distribution-free test is discarding information 
only if the parametric test's assumptions are known to be true."  Rather than discarding 
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information, nonparametric tests efficiently extract information on the relative magnitudes 
(ranks) of data without collapsing the information into only a few simple statistics.  Both 
parametric and nonparametric tests will be presented in the upcoming chapters for each category 
of hypothesis tests. 
 

4.2   Structure of Hypothesis Tests 

Hypothesis tests are performed by following the structure discussed in the next six sections: 

STRUCTURE OF HYPOTHESIS TESTS 
 1)  Choose the appropriate test. 
 2)  Establish the null and alternate hypotheses. 
 3)  Decide on an acceptable error rate α. 
 4)  Compute the test statistic from the data. 
 5)  Compute the p-value. 
 6)  Reject the null hypothesis if p ≤ α. 

 

4.2.1   Choose the Appropriate Test 
Test procedures are selected based on the data characteristics and study objectives.  Figure 4.1 
presented the first selection criteria -- the measurement scales of the data.  The second criteria is 
the objective of the test.  Hypothesis tests are available to detect differences between central 
values of two groups, three or more groups, between spreads of data groups, and for covariance 
between two or more variables, among others.  For example, to compare central values of two 
independent groups of data, either the t-test or rank-sum test might be selected (see figure 4.2).  
Subsequent chapters are organized by test objectives, with several alternate tests discussed in 
each. 
 
The third selection criteria is the choice between parametric or nonparametric tests.  This should 
be based on the expected distribution of the data involved.  If similar data in the past were 
normally distributed, a parametric procedure would usually be selected.  If data were expected to 
be non-normal, or not enough is known to assume any specific distribution, nonparametric tests 
would be preferred.  The power of parametric tests to reject H0 when H0 is false can be quite 
low when applied to non-normal data, and type II errors commonly result (Bradley, 1968).  This 
loss of power is the primary concern when using parametric tests.   
 
Sometimes the choice of test is based on a prior test of normality for that particular data set.  If 
normality is rejected a nonparametric test is chosen.  Otherwise, a parametric test is used.  This 
can lead to two problems.  First, with small data sets it is difficult to reject the null hypothesis of 
normality because there is so little evidence on which to base a decision.  Tests based on little 
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data have little power.  Thus a parametric test might easily be used when the underlying data are 
actually non-normal.  Nonparametric tests are particularly appropriate for small data sets unless 
experience supports the assumption of normality.  Second, small departures from normality not 
large enough to detect with a test may be sufficiently large to weaken the power of parametric 
tests.  An example is given in Chapter 10.  For nearly-normal data, such as produced by power 
transformations to near-symmetry, the two classes of methods will often give the same result. 

Test procedures should be selected that have greater power for the types of data expected to be 
encountered.  Comparisons of the power of two test procedures, one parametric and one 
nonparametric, can be based on the tests' asymptotic relative efficiencies (ARE), a property of 
their behavior with large sample sizes (Bradley, 1968, p.58).  A test with larger ARE will have 
generally greater power.  For non-normal data the ARE of nonparametric tests can be many 
times those of parametric tests(Hollander and Wolfe, 1973).  Thus their power to reject H0 
when it is truly false is generally much higher in this case.  When data are produced by a normal 
distribution, nonparametric tests have generally lower (5-15%) ARE than parametric tests 
(Hollander and Wolfe, 1973).  Thus nonparametric tests are, in general, never much worse than 
their parametric counterparts in their ability to detect departures from the null hypothesis, and 
may be far, far better.  As an example, the rank-sum test has a larger ARE (more power) than 
the t-test for distributions containing outliers (Conover, 1980, p.225).  Kendall and Stuart (1979, 
p.540) show that for the gamma distribution (a skewed distribution commonly used in water 
resources) a moderate skew of 1.15 produces an ARE of greater than 1.25 for the rank-sum 
versus the t test.  As skewness increases, so does the ARE.  Therefore in the presence of 
skewness and outliers, precisely the characteristics commonly shown by water resources data, 
nonparametric tests exhibit greater power than do parametric tests. 

One question which always arises is how non-normal must a distribution be in order for 
nonparametric tests to be preferred?  Blair and Higgins (1980) gave insight into this question.  
They mixed data from two normal distributions, 95 percent from one normal distribution and 5 
percent from a second normal distribution with quite different mean and standard deviation.  
Such a situation could easily be envisioned when data result from low to moderate discharges 
with occasional storm events, or from a series of wells where 5 percent are affected by a 
contaminant plume, etc.  A difference of 5 percent from truly normal may not be detectable by a 
graph or test for normality.  Yet when comparing two groups of this type, they found that the 
rank-sum test exhibited large advantages in power over the t-test.  As a result, data groups 
correctly discerned as different by the rank-sum test could be found "not significantly different" 
by the t-test.  Their paper is recommended for further detail and study. 

The greatest strengths of parametric procedures are in modeling and estimation, such as 
performed with regression.  Relationships among multiple variables can be described and tested 
which are difficult, if not nearly impossible, with nonparametric methods.  Statistical practice has 
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historically been dominated by parametric procedures, due largely to their computational 
elegance. 

Transformations are sometimes used to make data more normally distributed, prior to 
performing a parametric test.  There is no guarantee that a given transformation, such as taking 
logarithms, will produce data sufficiently close to a normal distribution.  Often several attempts 
to find a suitable transformation are required before the data appear approximately normal.  The 
primary pitfall in using transformations is that when two or more groups are to be compared, no 
single transformation may provide nearly-normal data simultaneously for all groups.  Groups 
whose right-skewness was solved by transformation may be offset by relatively symmetric 
groups which are now left-skewed.  When several tests are performed, such as trend tests at 
numerous locations, parametric tests might be appropriate in some cases but not in others.  
Comparisons of results across sites are more difficult when test procedures and/or 
transformations vary for each case.  Nonparametric tests allow the freedom to use the identical 
test procedure in all cases, without the requirement that the many individual data sets follow the 
same distribution.  Finally, transformations may produce nearly-symmetric data, but cannot 
compensate for a heavy-tailed distribution -- the presence of more data near the extremes than 
found in a normal distribution. 

It should be noted that there are actually three versions of most nonparametric tests: 
1. Exact test.  Exact versions of nonparametric tests provide results (in the form of  

p-values, defined soon) which are exactly correct .  They are computed by comparing the 
test statistic to a table of quantiles that is specific for the sample sizes present.  Therefore an 
extensive set of tables is required, one for every possible combination of sample sizes.  
When sample sizes are small, only the exact version will provide accurate results.   

2. Large sample approximation.  To avoid the necessity for large books filled with tables of 
test statistic quantiles, approximate p-values are obtained by assuming that the distribution 
of the test statistic can be approximated by some common distribution, such as the normal.  
This does not mean the data themselves follow that distribution, but only that the test 
statistic does.  For large sample sizes (30 or more observations per group, but sometimes 
less) this approximation is very accurate.  The test statistic is modified if necessary (often 
standardized by subtracting its mean, and dividing by its standard deviation), and then 
compared to a table of the common distribution to determine the p-value. 

 WARNING:  Computer software predominantly uses large sample approximations when 
reporting p-values, whether or not the sample sizes are sufficient to warrant using them.  For 
small sample sizes, p-values should be taken from exact tables rather than from the 
computer printout. 

3. Rank transformation test.  In this approximation, parametric procedures are computed not 
on the data themselves, but on the ranks of the data (smallest observation has rank=1, 
largest has rank=N).   Conover and Iman (1981) have shown this to adequately approximate 
many exact nonparametric tests for large samples sizes.  The rank-sum test would be 



104 Statistical Methods in Water Resources 

approximated in this fashion by computing a t-test on joint ranks of the data.  In fact, Iman 
and Conover (1983) use the name "rank-sum test" for just this procedure.  We would call 
this version a  
"t-test on ranks", reserving the traditional name for the first or second versions of the test 
and more accurately describing what was done.  Rank approximations are most useful when 
performing nonparametric tests using statistics packages which contain only parametric 
procedures.  They are also very useful for situations where there is no equivalent 
nonparametric analog, such as for multiple-factor analysis of variance. 

In figure 4.2, exact and rank transform tests are aligned with their parametric counterparts, as a 
guide to the use of hypothesis tests. 
 

4.2.2   Establish the Null and Alternate Hypotheses 
The null and alternate hypotheses should be established prior to collecting data.  These 
hypotheses are a concise summary of the study objectives, and will keep those objectives in 
focus during data collection. 

The null hypothesis (H0) is what is assumed to be true about the system under study 
prior to data collection, until indicated otherwise.  It usually states the "null" situation -- no 
difference between groups, no relation between variables.  One may "suspect", "hope", or "root 
for" either the null or alternate hypothesis, depending on one's vantage point.  But the null 
hypothesis is what is assumed true until the data indicate that it is likely to be false.  For example, 
an engineer may test the hypothesis that wells upgradient and downgradient of a hazardous 
waste site have the same concentrations of some contaminant.  They may "hope" that 
downgradient concentrations are higher (the company gets a new remediation project), or that 
they are the same (the company did the original site design!).  In either case, the null hypothesis 
assumed to be true is the same:  concentrations are similar in both groups of wells.   

The alternate hypothesis (H1) is the situation anticipated to be true if the evidence (the 
data) show that the null hypothesis is unlikely.  It is in some cases just the negation of H0, 
such as "the 100-year flood is not equal to the design value."  H1 may also be more specific than 
just the negation of H0 -- "the 100-year flood is greater than the design value."  Alternate 
hypotheses come in two general types:  one-sided, and two-sided.  Their associated hypothesis 
tests are called one-sided and two-sided tests.  These are often confused and misapplied. 

Two-sided tests occur when evidence in either direction from the null hypothesis (larger or 
smaller, positive or negative) would cause the null hypothesis to be rejected in favor of the 
alternate hypothesis.  For example, if evidence that "the 100-year flood is smaller than the design 
value" or "the 100-year flood is greater than the design value" would both cause doubt about the 
null hypothesis, the test is two-sided.  Most tests in water resources are of this kind. 
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 PARAMETRIC  NONPARAMETRIC  RANK TRANSFORM  
  [exact] [approximation] 

 
Two Independent Data Groups  (Chapter 5) 

two-sample t-test 
 
 

rank sum test 
or  Mann-Whitney 

or  Wilcoxon-Mann-Whitney 

t-test on ranks 
 
 

 
 

Matched Pairs of Data  (Chapter 6) 
paired t-test 

 
(Wilcoxon) 

signed-rank test 
t-test on signed ranks 

 
 
 

More than Two Independent Data Groups  (Chapter 7) 
1-way  Analysis Of Variance 

(ANOVA) 
Kruskal-Wallis test 

 
1-way ANOVA on ranks

 
 
 

More than Two Dependent Data Groups  (Chapter 7) 
Analysis Of Variance 
without replication 

Friedman test 
 

2-way ANOVA on ranks
 

 
 

Correlation between Two Continuous Variables  (Chapter 8) 
Pearson's r 

or  linear correlation 
Kendall 's tau Spearman's rho 

(Pearson's r on ranks) 
 
 

Relation between Two Continuous Variables  (Chapters 9, 10) 
Linear Regression 
test for slope = 0 

Mann-Kendall  
test for slope = 0 

regression on ranks: 
test for monotonic 

change 

Figure 4.2   Guide to the classification of some hypothesis tests 
 

One-sided tests occur when departures in only one direction from the null hypothesis  
would cause the null hypothesis to be rejected in favor of the alternate hypothesis.  With 

ejswibas


ejswibas
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one-sided tests, it is considered supporting evidence for H0 should the data indicate differences 
opposite in direction to the alternate hypothesis.  For example, suppose only evidence that the 
100-year flood is greater than the previous design value is of interest, as only then must the 
culvert be replaced.  The null hypothesis would be stated as "the 100-year flood is less-than or 
equal to the design flood", while the alternate hypothesis is that "the 100-year flood exceeds the 
design value."  Any evidence that the 100-year flood is smaller than the design value is 
considered evidence for H0.  

If it cannot be stated prior to looking at any data that departures from H0 in only one 
direction are of interest, a two-sided test should be performed.  If one simply wants to look 
for differences between two streams or two aquifers or two time periods, then a two-sided test is 
appropriate.  It is not appropriate to look at the data, find that group A is considerably larger in 
value than group B, and perform a one-sided test that group A is larger.  This would be ignoring 
the real possibility that had group B been larger there would have been interest in that situation 
as well.  Examples in water resources where one-sided tests would be appropriate are: 

1. testing for decreased annual floods or downstream sediment loads after 
completion of a flood-control dam, 

2. testing for decreased nutrient loads or concentrations due to a new sewage 
treatment plant or best management practice, 

3. testing for an increase in concentration when comparing a suspected 
contaminated site to an upstream or upgradient control site. 

 

4.2.3   Decide on an Acceptable Error Rate α 
The α-value, or significance level, is the probability of incorrectly rejecting the null hypothesis 
(rejecting H0 when it is in fact true, called a "Type I error").  Figure 4.3 shows that this is one of 
four possible outcomes of an hypothesis test.  The significance level is the risk of a Type I error 
deemed acceptable by the decision maker.  It is a "management tool" dependent not on the data, 
but on the objectives of the study.  Statistical tradition uses a default of 5% (0.05) for α, but 
there is no reason why other values should not be used.  Suppose that an expensive cleanup 
process will be mandated if the null hypothesis of "no contamination" is rejected, for example.  
The α-level for this test might be set very small (such as 1%) in order to minimize the chance of 
needless cleanup costs.  On the other hand, suppose the test was simply a first cut at classifying 
sites into "high" and "low" values prior to further analysis of the "high" sites.  In this case the α-
level might be set to 0.10 or 0.20, so that all sites with high values would likely be retained for 
further study. 
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Unknown True Situation 
 H0 is true H0 is false 

D
ec

is
io

n

 

 Fail to 
 Reject Correct decision Type II error 
 H0  Prob(correct decision) = 1−α Prob(Type II error) = β 
 
 
 Reject Type I error Correct decision 
 H0 Prob (Type I error) = α Prob (correct decision) = 1−β 
  Significance level Power 
  

Figure 4.3   Four possible results of hypothesis testing 
 

Since α represents one type of error, why not keep it as small as possible?  One way to do this 
would be to never reject H0 -- α would then equal zero.  Unfortunately this would lead to large 
errors of a second type -- failing to reject H0 when it was in fact false.  This second type of error 
is called a Type II error, or lack of power (Fig. 4.3).  Both errors are of concern to practitioners, 
and both will have some finite probability of occurrence unless decisions to "always reject" or 
"never reject" are made.  Once a decision is made as to an acceptable Type I risk α, two steps 
can be taken to concurrently reduce the risk of Type II error β: 

1.   Increase the sample size n. 
2.   Use the test procedure with the greatest power for the type of data being analyzed. 

 
For water quality applications, null hypotheses are usually of "no contamination".  Situations 
with low power mean that actual contamination may not be detected.  This happens with 
simplistic formulas for determining sample sizes (Kupper and Hafner, 1989).  Instead, 
probabilities of Type II errors should be considered when setting sample size.  Power is also 
sacrificed when data having the characteristics outlined in Chapter 1 are analyzed with tests 
requiring a normal distribution.  Power loss increases as skewness and the number of outliers 
increase. 
 

4.2.4   Compute the Test Statistic from the Data 
Test statistics summarize the information contained in the data.  If the test statistic is not 
unusually different from what is expected to occur if the null hypothesis is true, the null 
hypothesis is not rejected.  However, if the test statistic is a value unlikely to occur when H0 is 
true, the null hypothesis is rejected.  The p-value measures how unlikely the test statistic is when 
H0 is true. 
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4.2.5   Compute the p-value 
The p-value is the probability of obtaining the computed test statistic, or one even less likely, 
when the null hypothesis is true.  It is derived from the data, concisely expressing the evidence 
against the null hypothesis contained in the data.  It measures the "believability" of the null 
hypothesis.  The smaller the p-value, the less likely is the observed test statistic when H0 is true, 
and the stronger the evidence for rejection of the null hypothesis.  The p-value is also called the 
"attained significance level", the significance level attained by the data.   

How do p-values differ from α levels?  The α-level does not depend on the data, but states the 
risk of making a Type I error that is acceptable a priori to the scientist or manager.  The α-level is 
the critical value which allows a "yes/no" decision to be made -- the treatment plant has 
improved water quality, nitrate concentrations in the well exceed standards, etc..  The p-value 
provides more information -- the strength of the scientific evidence.  Reporting the p-value 
allows someone with a different risk tolerance (different α) to make their own yes/no decision. 

For example, consider a test of whether upgradient and downgradient wells have the same 
expected contaminant concentrations.  If downgradient wells show evidence of higher 
concentrations, some form of remediation will be required.  Data are collected, and a test 
statistic calculated.  A decision to reject at α=0.01 is a statement that "remediation is warranted 
as long as there is less than a 1 percent chance that the observed data would occur when 
upgradient and downgradient wells actually had the same concentration."  This level of risk was 
settled on as acceptable, so that 1 percent of the time remediation would be performed when in 
fact it is not required.  Reporting only "reject" or "not reject" would prevent the audience from 
distinguishing a case that is barely able to reject (p=0.009) from one in which H0 is virtually 
certain to be untrue (p=0.0001).  Reporting a p-value of 0.02, for example, would allow a later 
decision by someone with a greater tolerance of unnecessary cleanup (α = 5 percent, perhaps) to 
decide for remediation. 
 

4.2.6   Make the Decision to Reject H0 or Not 
 

Reject H0 when:  p-value < α-level. 

When the p-value is less than the decision criteria (the α-level), H0 is rejected.  When the p-
value is greater than α, H0 is not rejected.  The null hypothesis is never "accepted", or proven 
to be true.  It is assumed to be true until proven otherwise, and is "not rejected" when there is 
insufficient evidence to do so. 
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4.3   The Rank-Sum Test as an Example of Hypothesis Testing 

Suppose that aquifers X and Y are sampled to determine whether the concentrations of a 
contaminant in the aquifers are similar or different.  This is a test for differences in location or 
central value, and will be covered in detail in Chapter 5.  Two samples xi are taken from aquifer 
X (n=2), and 5 samples yi from aquifer Y (m=5) for a total of 7 samples (N = n+m = 7).  Also 
suppose that there is a prior reason to believe that X values tend to be lower than Y values:  
aquifer X is deeper, and is likely to be uncontaminated.  The null hypothesis (H0) and alternative 
hypothesis (H1) of this one-sided test are as follows:   

 H0:   xi and yi are samples from the same distribution, or  
 H0:   Prob (xi ≥ yi ) = 0.5.   

 H1:   xi is from a distribution which is generally lower that of yi, or  
 H1:   Prob (xi ≥ yi ) < 0.5. 

Remember that with one-sided tests such as this one, data indicating differences opposite in 
direction to H1 (xi frequently larger than yi) are considered supporting evidence for H0.  With 
one-sided tests we can only be interested in departures from H0 in one direction.   

Having established the null and alternate hypotheses, an acceptable error rate α must be set.  As 
in a court of law, innocence is assumed (i.e. concentrations are identical) unless evidence is 
collected to show "beyond a reasonable doubt" that aquifer Y has higher concentrations (i.e. that 
differences observed are not likely to have occurred by chance alone).  The "reasonable doubt" 
is set by α, the significance level. 

If the t-test were to be considered as the test procedure, each data group should be tested for 
normality.  However, sample sizes of 2 and 5 are too small for a reliable test of normality.  Thus 
the nonparametric rank-sum test is appropriate.  This test procedure entails ranking all 7 values 
(lowest concentration has rank=1, highest has rank=7) and summing the ranks of the 2 values 
from the population with the smaller sample size (X).  This rank-sum is the statistic W used in 
the exact test.   

Next, W would be computed and compared to a table of test statistic quantiles to determine the 
p-value.  Where do these tables come from?  We will derive the table for sample sizes 2 and 5 as 
an example. 

What are the possible values W may take, given that the null hypothesis is true?  The collection 
of all of the possible outcomes of W defines its distribution, and therefore composes the table of 
rank-sum test statistic quantiles.  Shown below are all the possible combinations of ranks of the 
two x values. 
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 1,2 1,3 1,4 1,5 1,6 1,7 
  2,3 2,4 2,5 2,6 2,7 
   3,4 3,5 3,6 3,7 
    4,5 4,6 4,7 
     5,6 5,7 
      6,7 

If H0 is true, each of the 21 possible outcomes must be equally likely.  That is,  it is just as likely 
for the two x's to be ranks 1 and 2, or 3 and 5, or 1 and 7, etc.  Each one of the outcomes results 
in a value of W, the sum of the two ranks.  The 21 W values corresponding to the above 
outcomes are 
 
 3 4 5 6 7 8 
  5 6 7 8 9 
   7 8 9 10 
    9 10 11 
     11 12 
      13 

The expected value of W is the mean (and median) of the above values, or 8.  Given that each 
outcome is equally likely when H0 is true, the probability of each possible W value is:  
 
 W 3 4 5 6 7 8 9 10 11 12 13 
 Prob(W) 1/21 1/21 2/21 2/21 3/21 3/21 3/21 2/21 2/21 1/21 1/21 
 
What if the data collected produced 2 x values having ranks 1 and 4?  Then W would be 5, lower 
than the expected value E [W] = 8.  If H1 were true rather than H0, W would tend toward low 
values.  What is the probability that W would be as low as 5 or lower if H0 were true?  It is the 
sum of the probabilities for W = 3, 4, and 5, or 4/21 = 0.190 (see figure 4.4).  This number is 
the p-value for the test statistic of 5.  It says that the chance of a departure from E [W] of at 
least this magnitude occurring when H0 is true is 0.190, which is not very uncommon (about 1 
chance in 5).  Thus the evidence against H0 is not too convincing.  If the ranks of the 2 x values 
had been 1 and 2, then W = 3 and the p-value would be 1/21 = 0.048.  This result is much less 
likely than the previous case but is still not extremely rare.  In fact, due to such a small sample 
size the test can never result in a highly compelling case for rejecting H0.  Adding more data 
would make it possible to attain lower p-values, providing a stronger case against H0. 
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figure 4.4   Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5. 

The p-value for a one-sided test equals the area shaded. 

This example has considered only the one-sided p-value, which is appropriate when there is 
some prior notion that x should be smaller than y (or the reverse).  Quite often the situation is 
that there is no prior notion of which should be lower.  In this case a two-sided test must be 
done.  The two-sided test has the same null hypothesis as was stated above, but H1 is now that 
xi and yi are from different distributions, or 
 H1:   Prob (xi ≥ yi ) ≠ 0.5.  

Suppose that W for the two-sided test were found to be 5.  The p-value equals the probability 
that W will differ from E [W] by this much or more, in either direction.  It is  
 Prob (W ≤ 5) + Prob (W ≥ 11).   (see figure 4.5) 
Where did the 11 come from?  It is just as far from E [W] = 8 as is 5.  The two-sided  
p-value therefore equals 8/21 = 0.381, twice the one-sided p-value.  Symbolically we could state:  
 Prob ( W− E [W] ≥ 3) = 8/21.  

To summarize the subject of p-values:  they describe how "far" the observed test statistic is from 
that expected to occur if the null hypothesis were true.  They are the probability of being that far 
or farther given that the null hypothesis is true.  The lower the p-value the stronger is the 
case against the null hypothesis. 

Now, lets look at an α-level approach.  Return to the original problem, the case of a one-sided 
test.  Assume α is set equal to 0.1.  This corresponds to a critical value for W, call it W*, such 
that Prob (W ≤ W*) = α.  Whenever W≤W*, H0 is rejected with no more than a 0.1 frequency 
of error if H0 were always true.  However, because W can only take on discrete, in fact integer, 
values as seen above, a W* which exactly satisfies the equation is not usually available.  Instead 
the largest possible W* such that Prob (W ≤ W*) ≤ α is used. 
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Figure 4.5   Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5. 

The p-value for a two sided-test equals the area shaded. 
 

Searching the above table of possible W values and their probabilities, W* = 4 because Prob (W 
≤ 4) = 0.095 ≤ 0.1.  Note the "lumpiness" of the relationship between α and W*.  If α =0.09 
had been selected then W* would be 3.  This lumpiness can be avoided by reporting p-values 
rather than only "reject" or "not reject". 

For a two-sided test a pair of critical values WU* and WL* is needed, where  
 Prob (W ≤ WL*) + Prob (W ≥ WU*) ≤ α  and  WU*− E [W] = E [W] − WL*.   
These upper and lower critical values of W are symmetrical around E [W] such that the 
probability of W falling on or outside of these critical levels is as close as possible to α, without 
exceeding it, under the assumption that H0 is true.  In the case at hand, if  
α = 0.1, then WL*= 3 and WU*= 13 because  
 Prob (W ≤ 3) + Prob (W ≥ 13) = 0.048 + 0.048 = 0.095 ≤ 0.1. 
Note that for a two-sided test, the critical values are farther from the expected value than in a 
one-sided test at the same α level. 

It should be recognized that p-values are also influenced by sample size.  For a given magnitude 
of difference between the x and y data, and a given amount of variability in the data, p values 
will tend to be smaller when the sample size is large.  In the extreme case where vast amounts of 
data are available, it is a virtual certainty that p values will be small even if the differences 
between x and y are what might be called "of no practical significance." 

Most statistical tables are set up for one-sided tests.  That is, the rejection region α or the p-
value is given in only one direction.  When a two-sided test at significance level α is 
performed, the tables must be entered using α/2.  In this way rejection can occur with a 
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probability of α/2 on either side, and an overall probability of α.  Similarly, tabled p-values 
must be doubled to get p-values for a two-sided test.  Modern statistical software often 
reports p-values with its output, eliminating the need for tables.  Be sure to know whether it is 
one-sided or two-sided p-values being reported. 
 

4.4   Tests for Normality 

The primary reason to test whether data follow a normal distribution is to determine if  
parametric test procedures may be employed.  The null hypothesis for all tests of normality is 
that the data are normally distributed.  Rejection of H0 says that this is doubtful.  Failure to 
reject H0, however, does not prove that the data do follow a normal distribution, especially for 
small sample sizes.  It simply says normality cannot be rejected with the evidence at hand.  Use 
of a larger α-level (say 0.1) will increase the power to detect non-normality, especially for small 
sample sizes, and is recommended when testing for normality.  

The test for normality used in this book is the probability plot correlation coefficient (PPCC) 
test discussed by Looney and Gulledge (1985a).  Remember from Chapter 2 that the more 
normal a data set is, the closer it plots to a straight line on a normal probability plot.  To test for 
normality, this linearity is tested by computing the linear correlation coefficient between data 
and their normal quantiles (or "normal scores", the linear scale on a probability plot).  Samples 
from a normal distribution will have a correlation coefficient very close to 1.0.  As data depart 
from normality, their correlation coefficient will decrease below 1.  To perform a test of H0: the 
data are normal versus  H1: they are not, the correlation coefficient (r) between the data and 
their normal quantiles is tested to see if it is significantly less than 1.  For a sample size of n, if r 
is smaller than the critical value r* of table B3 for the desired α-level, reject H0.  Looney and 
Gulledge (1985b) have shown this table, developed using the Blom plotting position, is also 
valid for other plotting positions except the Weibull position i/(n+1).  In order to use one 
plotting position for all functions in this book, the Cunnane plotting position was adopted as 
explained in Chapter 2. 

To illustrate this test, probability plots of the unit well yield data from Chapter 2 are shown in 
figures 4.6 and 4.7.  For the valleys without fracturing, r = 0.805, the correlation coefficient 
between yi and Zp in the left-hand side of Table 4.1.  

From table B3 with n=12, if r is below the α = 0.05 critical value of r* = .928, normality is 
rejected.  Therefore normality is rejected for the yields without fractures at α = 0.05.   A p-value 
for this test would be <0.005, as r=0.805 is less than the tabled r* of 0.876 for α=0.005.  Note 
the nonlinearity of the data on the probability plot (figure 4.6).  For the yields with fracturing, 
n=13, r* is 0.932 at α = 0.05, and the PPCC r = 0.943;  therefore fail to reject normality at 
α=0.05.  The p-value for the yields with fracturing is just under 0.10 (normality would barely be 
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rejected at α=0.10).  The probability plot, figure 4.7, shows a closer adherence to a straight line 
than for figure 4.6. 

Table 4.1.  Unit well yields (in gal/min/ft) in Virginia   (Wright, 1985) 
yi = yield  Zp = normal quantile 

 valleys without fracturing valleys with fracturing 
   yi  Zp   yi  Zp   yi  Zp   yi  Zp   yi  Zp   yi  Zp  
0.001  −1.65 0.030  −.31 0.10 .52 0.020  −1.69 0.16  −.39 0.40 .39 
0.003  −1.13 0.040 −.10 0.454 .80 0.031  −1.17 0.16 −.19 0.44 .60 
0.007 −0.80 0.041 .10 0.49 1.13 0.086 −0.85 0.18 .00 0.51  .85 
0.020  −0.52 0.077 .31 1.02 1.65 0.13  −0.60 0.30 .19 0.72 1.17 
          0.95 1.69 
 

Computer packages use several methods for testing normality.  Several are based on probability 
plots.  The most common is perhaps the Shapiro-Wilk test, as its power to detect non-normality 
is as good or better than other tests (Shapiro et al., 1968).  A table of quantiles for this test 
statistic is available for n < 50 (Conover, 1980).  Shapiro and Francia (1972) developed a 
modification of the Shapiro-Wilk test useful for all sample sizes.  It is essentially identical to the 
PPCC test, as it is the r2 for a regression between the data and their normal scores.  Therefore p-
values and power characteristics for the two tests should be essentially the same. 

Tests for normality not related to probability plots include the Kolmogorov and chi-square tests, 
described in more detail by Conover (1980).  Both are general tests that may be used for data 
which are ordinal (data recorded only as low/medium/high, etc) but do not possess a 
continuous scale.  This makes them less powerful than the probability plot tests, however, for 
the specific purpose of testing continuous data for normality (Shapiro et al., 1968).  

The important advantage of the PPCC test is its graphical analog, the probability plot, which 
visually illustrates its results.  The probability plot itself provides information on how the data 
depart from normality, something not provided by any test statistic.  

To make the PPCC test easy to perform by hand, normal quantiles for the Cunnane plotting 
positions of table B1 are listed in table B2 of the Appendix.  For the n=12 yields without 
fracturing, for example, the upper six quantiles are easily found in the table.  Lower quantiles are 
mirror images around zero of the upper quantiles, and so equal the upper values multiplied by 
−1.  Table B2 quantiles were computed by first calculating the Cunnane plotting position to 
more significant digits than found in table B1,  and then looking up the corresponding normal 
quantiles in a table of the normal distribution.   
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Figure 4.6   Probability plot for the yields without fracturing, with PPCC r 

 
Figure 4.7   Probability plot for the yields with fracturing, with PPCC r 
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Exercises 

4.1 The following are annual streamflows for the Green R. at Munfordville, KY.  Beginning 
in 1969 the stream was regulated by a reservoir.  

  before after 
  1950 4910  1960  2340     1969 1350 

 1951 3660  1961 2600     1970 2350 
 1952 3910  1962  3410     1971 3140 
 1953  1750   1963  1870     1972 3060 
 1954 1050  1964  1730    1973  3630  
 1955 2670  1965  2730     1974 3890 
 1956  2880  1966  1550     1975  3780  
 1957 2600   1967  4060    1976  3180  
 1958  3520  1968  2870    1977  2260 
 1959  1730        1978  3430 
         1979  5290  
         1980  2870 

 
Test both before and after data sets for normality using the PPCC test.  If either are non-
normal, transform the data and re-test in order to find a scale which appears to be close 
to a normal distribution. 

 
4.2 Test the arsenic data and transformed data of Exercise 2.2 for normality.  




