CRWR Online Report 95-1

Hydrologic Data Development System

by

Peter Neil Hynd Smith, P.E., B.Eng.

and

David R. Maidment, Ph.D.

Principal Investigator

August 1995

CENTER FOR RESEARCH IN WATER RESOURCES

Bureau of Engineering Research .The University of Texas at Austin J.J.Pickle Research Campus . Austin, TX 78712-4497

This document is available online via World Wide Web at http://civil.ce.utexas.edu/centers/crwr/reports/online.html

Acknowledgments

First, and foremost, I must express my heartfelt appreciation and admiration for my wife, Ellen, and our three children Brittany, Jordan, and Brendan for their support and sacrifices during an arduous time for me.

I am eternally grateful to Dr. David Maidment for his direction, encouragement, and enthusiasm of this work. From the outset, he made me feel like a welcome member of his team and provided me with advice on a personal and academic level.

This work was made possible by the Senior Management team of the Texas Department of Transportation to whom I extend my sincere gratitude. Also, I convey my thanks to the following TxDOT personnel for their invaluable support: Judy Skeen and Dan Wyly of the Information Systems Division, Marilyn Dell and Roger El Khoury of the Engineering Professional Development office, and Jay Vose of the Design Division.

July 19, 1995

ABSTRACT

Hydrologic Data Development System

by

Peter Neil Hynd Smith, M.S.E. The University of Texas at Austin, 1995 SUPERVISOR: David R. Maidment

The Hydrologic Data Development System (HDDS) is a package of spatial data and menu-driven programs that allows user-interactive determination of hydrologic parameters and estimation of flood frequency relationships for the design of highway drainage structures. The program employs Arc/Info, a commercial geographic information system.

A data base was developed to cover the extent of Texas at a scale of 1:2,000,000 and a smaller sample area of Northeast Texas at a scale of 1:250,000. The data include digital elevation models, major highways, soil characteristics, design rainfall depth/frequency/duration, land use, stream gauge sites, and other themes. New tables were developed to spatially relate soil characteristics and land use to runoff coefficients used in the Soil Conservation Service Runoff Curve Number method.

Spatial analysis techniques were employed to define watershed outlets and determine important hydrologic parameters. The system delineates drainage boundaries and flow paths using relevant digital elevation data, and overlays other data layers to determine parameters such as average watershed slope, time of concentration, area-weighted runoff curve numbers, and area-weighted design rainfall. Input files can be established and submitted to THYSYS, the Texas Department of Transportation hydraulic program, to determine flood frequency relationships. The results can then be used for the design of drainage structures.

Table of Contents

1.	Introduction			9
	1.1	Hydrol	ogic Data Development System	10
	1.2	Outline		11
2.	Literat	ure Revi	ew and Questionnaire	13
3.	Basic	Basic Concepts		
	3.1	Geographic Information Systems		16
		3.1.1	Arc/Info Vector Modelling	17
		3.1.2	Cell-based Processing in Grid	20
		3.1.3	Vector Analysis versus Cell-based Processing	25
		3.1.4	Triangular Irregular Networks	26
		3.1.5	Arc Macro Language and Interface Programming	27
	3.2	Elemer	nts of Geodesy	28
		3.2.1	Geometry of Earth's Shape	29
		3.2.2	Gravity and the Geoid	31
		3.2.3	Horizontal Positioning and Horizontal Datum	35
		3.2.4	Vertical Positioning and Vertical Datum	38
		3.2.5	Coordinate Systems and Map Projections	40
	3.3 Hydrologic Methods		ogic Methods	51
		3.3.1	Regional Regression Equations	51
		3.3.2	Estimation of Peak Discharge from Stream Gauge Data	55
		3.3.3	Soil Conservation Service Runoff Curve Number Method	57
4.	Methods			76
	4.1	Data Acquisition and Development		76
	4.2	HDDS Technical Procedures		102
		4.2.1	Database Design	102
		4.2.2	Program Components	104
5.	Application			131
	5.1	User In	istructions	131
	5.2	Sample Application		142

6.	Resu	Results	
7.	Assessment and Conclusion		153
	7.1	Software	153
	7.2	Spatial Data	154
	7.3	HDDS Procedures	155
	7.4	Limitations and Future Needs	156
	7.5	Conclusion	157
Appe	endix A -	Hydrologic Data Development System Coding	159
Appe	endix B -	Metadata for Arc/Info Format Highway Vector Coverage	219
Appe	endix C -	Questionnaire Summary of Responses	224
Bibli	ography		233
Vita			235

List of Tables

3-1	Reference Ellipsoid Parameters	38
3-2	Projection Parameters	50
3-3	Rural Regression Equations for Texas Hydrologic Regions	53
3-4	Regression Equations Limitations	54
3-5	Design 24-hour Rainfall for Texas Counties	66
3-6	Runoff Curve Numbers for Urban Areas	71
3-7	Runoff Curve Numbers for Cultivated Agricultural Land	72
3-8	Runoff Curve Numbers for Other Agricultural Land	73
3-9	Runoff Curve Numbers for Arid and Semi-arid Rangelands	74
3-10	Rainfall Groups for Antecedent Soil Moisture Conditions	75
4-1	Comparison of Sources of Paper Data and Digital Data	78
4-2	Data Sources for HDDS	79
4-3	Database Coverages	80
4-4	Anderson Level I and Level II Land Use Codes	85
4-5	Sample of Hydrologic Soil Group Data	87
4-6	Estimated Runoff Curve Numbers (RCN) and Velocity Coefficients	99
4-7	Calculated velocity coefficients	101
4-8	Coverages Created in HDDS	130
6-1	Polygon Attribute Tables for watershed (gtmpa) and subareas (gsuba)	145

List of Figures

3-1	Basic vector analysis processes	20
3-2	Example of a local function	23
3-3	Example of a focal function	23
3-4	Example of a zonal function	24
3-5	Example of a global function	25
3-6	Representation of features in ARC and GRID	26
3-7	The graticule and parameters of the ellipsoid	31
3-8	Effect of elevation on scale	40
3-9	Projection surfaces	44
3-10	Distortion of scale in the Lambert Conformal Conic Projection	46
3-11	Hydrologic regions in Texas for regional regression equations	52
3-12	Typical discharge versus frequency curves	57
3-13	SCS dimensionless unit hydrograph	58
3-14	Soil Conservation Service 24-hour rainfall distribution	61
3-15	Velocities for estimating time of concentration	63
4-1	HDDS coverage of hydrologic regions in Texas for regional	
	regression equations	89
4-2	Distribution of design 24-hour 100-year rainfall in Texas	90
4-3	Extent of 1:2 M scale data	94
4-4	Processing of DEM grid	95
4-5	Database layout for Hydrologic Data Development System	103
4-6	HDDS Main Menu Options	105
4-7	Menu layout for defining land use and velocity	106
4-8	Menu layout for gage mover	107
4-9	Locating the watershed outfall (pour point)	112
4-10	Determination of drainage area	114
4-11	Method of flow path determination	116
5-1	Sample menu and display screen	133
6-1	Major drainage basins of Texas	147

6-2	Subareas of the North Sulphur River above State Highway 24	148
6-3	Soils in the North Sulphur River watershed	149
6-4	Hydrologic soil groups in the North Sulphur River watershed	150
6-5	Image of land use grid for North Sulphur River watershed	151
6-6	Stream gages in the Upper Trinity River basin	152