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Introduction

In 2004, scientists discovered that the abundances of a number of lipids known as branched 

GDGT's (glycerol dialkyl glycerol tetraethers) are strongly correlated with the mean annual 

temperature in soils [Hopmans et al., 2004].  It is believed that these compounds are membrane lipids 

produced by soil bacteria; as the temperature conditions change in the soil, the relative concentration of 

each of the nine branched GDGT's varies as the bacteria adapt to different conditions [Weijers et al., 

2006].  Because these lipids are very resistant to decomposition and have been found in extremely 

ancient sediments, these lipids show great potential for use as a proxy for past surface temperatures in 

geologic studies.

Previous work to calibrate this proxy for temperature reconstructions has relied on empirical 

calibrations between the measured concentrations of the nine branched GDGT's and mean annual 

temperature and soil pH from a number of soil samples across the globe [Peterse et al., 2012; Weijers  

et al., 2007].  Essentially, these studies experimented with a number of multivariate linear regressions 

between the measured GDGT abundances 

and these environmental factors, and 

determined which set of parameters 

produced the best-fit regression equation. 

This technique is powerful because it 

enables them to determine a correlation 

between these compounds and temperature 

across a diverse range of environments, 

soils, and climate conditions; however, 

because the actual mechanism by which the 

abundances of these compounds vary is 

unknown, it has been difficult to determine 

the best approach to improving the fit of this 

correlation.  In addition, because the 

reconstructed temperatures are calculated 

Figure 1: Plot of instrumental mean annual temperature 
(MAT) vs. the reconstructed value from the most recent  
calibration.  Note the wide scatter about the 1:1 line.  
This calibration has an r2 = 0.59.



through a purely empirical regression equation, it is unclear how to accurately report errors on these 

reconstructions.  For instance, if one were to use the standard deviations of the residuals from the 

calibration dataset, this would likely overestimate the error because this is also dependent on the 

number of points used in the regression. 

In my research, I am attempting to determine the magnitude of the effect of a number of sources 

of error that could be contributing to the scatter in the original regression.  The particular source of 

error that I am attempting to quantify for this project involves the differences between the temperature 

data used in the calibrations and the actual soil temperature. The empirical calibrations rely on weather 

station data for the correlations between the measured soil lipids and mean annual temperature; in some 

cases, the weather station is as far away as a hundred kilometers from the actual soil sample, which 

would make it unlikely to accurately reflect the temperature of the soil.  In addition, several works have 

noted that soil temperatures are frequently several degrees warmer than the air temperature due to the 

greater heat capacity of the ground [Quade et al., 2011].  In this my goal was to determine whether the 

fit improves substantially by using in-situ temperature data over using average temperatures from the 

nearest weather station, and whether we can improve the fit to station data by using more sophisticated 

interpolation techniques.

Methods

In order to constrain the actual temperature at each of our soil sampling sites, we buried a set of 

temperature loggers in 32 sites across an elevation transect of the Eastern Cordillera of Colombia.  The 

mean annual temperature (MAT) at the sites ranged from 10 degrees to 27 degrees, which covers about 

2/3 of the range of the original calibration dataset [Peterse et al., 2012].  We also have temperature data 

from the Colombian national weather service (IDEAM), which I used as the point dataset to test out 

different interpolation schemes.  This field setting represents a “worst-case” scenario for the use of the 

nearest weather station because of the mountainous terrain – any slight difference between the location 

of the soil sample and the weather station could result in large discrepancies in climate conditions.  In 

the original global dataset, we do not anticipate that the mismatch will be quite as serious because most 

sites are not in mountainous terrain.

In order to determine whether any of the interpolation schemes could eliminate the error due to 

site mismatch, I tried three different interpolation techniques in ArcGIS.  For each technique, I took the 

output raster and used the Sample Raster function to determine the interpolated value at each of my 

temperature logging sites.  I then exported the data as a new shapefile and then matched the contents of 

the .dbf file with my soil temperature data.  Then, I re-ran my regression with the new interpolated 



temperature data in order to determine whether the scatter in my calibration was significantly reduced.

Nearest Neighbor

In order to characterize the worst-case scenario, I first determined the temperature at each soil 

sampling site by picking the mean annual temperature measured at the nearest IDEAM weather station. 

For this, I used the “Near” method in the analysis toolbox, and it added columns to the attribute table 

containing the FID of the nearest IDEAM station; I then used a table join to extract the mean annual 

temperature at each of these sites as well.

Linear Interpolation

The simplest interpolation method that I used 

was a linear interpolation – this is exactly what the 

authors of the global calibration study did in order to 

correct sites where they suspected that site mismatch 

would be a significant problem.  In order to perform 

linear interpolation, I used the “Local Polynomial 

Interpolation” function in the Geostatistical Analyst 

toolbox, and selected a polynomial of order 1.  I left 

all of the other parameters as the ArcGIS default 

values.  This produced a reasonable-looking 

temperature map, with the temperatures appearing to 

follow the topography fairly closely.

Kriging

As a more sophisticated interpolation 

technique, I used Kriging (Spatial Analyst Toolbox) 

with a search radius of 12 and all parameters set to 

their default values in ArcGIS.  As with the Linear 

Interpolation function, the interpolated field looks 

quite reasonable, and looks similar to the results 

obtained by linear interpolation.

Figure 2: Shaded color map of the linearly  
interpolated MAT values.

Figure 3: Shaded color map of temperatures 
interpolated by Kriging.



Spline

Of the three interpolation methods, the 

spline gave the most unreasonable-looking 

temperature field.  I used the default 12-point 

model for the spline, and the interpolated surface 

had some very strange bulls-eye features that had 

little to do with the elevation of the surface.  Not 

surprisingly, this interpolation technique did not 

yield good fits to our data.

Results/Discussion

After resampling the mean annual temperature at each of my logger sites, I did a multivariate 

linear regression between the 9 branched GDGT's and the mean annual temperature.  I calculated the 

correlation coefficient for each model, and compared it to the model fit for the in-situ temperature 

Figure 4: Color-shaded map of mean annual 
temperatures interpolated by splines.

Figure 5: Plot of the instrumental MAT against the reconstructed MAT using each of the  
different interploation methods.



loggers.  I found that linear interpolation actually did the best job of matching the instrumental data, 

fitting the data with an r2 = 0.87, and minimal structure to the residuals.   Interestingly, Kriging 

produced a fit with a higher correlation coefficient than the in-situ temperature loggers, but it 

consistently resulted in reconstructed values that under-estimated the true soil temperature.  This may 

be reflecting the fact that soil temperatures are generally warmer than the mean annual air temperature; 

even if there is a strong linear correlation with air temperature, it will be offset slightly from the true 

soil temperature.  As expected, both the nearest neighbor approach and the spline interpolation resulted 

in significantly more scatter in their calibration fits, and therefore are not methods that I would 

recommend for use in global calibrations.  However, it should be noted that the errors associated with 

using the nearest temperature station are likely to be much larger than they would be in the global 

dataset, due to the significant differences in elevation between our sampling sites and the IDEAM 

weather stations.

In addition, I also plotted 

the interpolated values against the 

actual in-situ data in order to try to 

determine how closely the 

interpolated data matches the 

instrumental data.  Interestingly, 

there are still significant 

discrepancies between the 

instrumental and interpolated data, 

even though the GDGT correlations 

for linear interpolation and Kriging 

are similar to what we get for the 

in-situ temperature loggers.  This 

suggests that the remaining 

differences between the linearly 

interpolated data and the in-situ 

measurements are not contributing 

significantly to the scatter in the relationship between measured GDGT abundances and mean annual 

temperature; that scatter appears to be coming from other sources.

Figure 6: Plot of the interpolated temperatures at each site against  
the in-situ measurement.



Application to the Global Dataset

One of the aims of this work was to determine if there were any specific techniques that could 

be used to reduce the error in the calibration of the global dataset.  To this end, I downloaded the global 

calibration database of measured GDGT abundances and station data from the NOAA GHCN (Global 

Historical Climatology Network) in order to check whether interpolation of the global temperature sites 

could improve the calibration.  Based on my experiences with the Colombia dataset, I decided to try 

Kriging and linear interpolation, because they had been the most successful with the Colombia data.

Figure 7: Linearly interpolated temperature values from NOAA GHCN data for the  
global soil calibration dataset.

Figure 8: Temperature values interpolated by Kriging from the NOAA GHCN dataset.



As  before, the interpolation schemes both performed well – in this case, however, we do not have in-

situ temperature data, so I was attempting to see if the calibration could be improved by using one of 

these interpolation schemes.  As it turned out, they did not perform significantly better than the data 

already being used in the study.  Below is a table of the different correlations that I tried and their 

correlation coefficients.

R2 Correlation 
Coefficient

Temperatures from Peterse et al., 
2012 0.622

Linearly interpolated values 0.637
Values interpolated by Kriging 0.632

As you can see from the values in the table, the two interpolation techniques only marginally improved 

the quality of the fit over the original dataset, suggesting that the temperature data was already a fairly 

good match.

Conclusions

After trying several different interpolation techniques for comparison with the in-situ 

temperature loggers in Colombia, it seems that simple linear interpolation is sufficient to produce 

temperature data that fits the measured GDGT abundances equally well.  In addition, this observation is 

confirmed by my investigation of the global dataset, which shows no significant improvement in the 

goodness of fit with the two interpolation schemes.  This suggests that site mismatch is not actually a 

significant source of scatter in our calibration; it seems that the scatter may be due to other  natural 

factors such as seasonality biases, and other confounding factors.  For future work, I plan to incorporate 

models of soil temperature as a function of the air temperature and mean annual solar insolation in 

order to more accurately represent the soil temperature.
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