GIS in Water Resources Exercise #3 Solution

Part 1. 1.1 Hand Calculations

(i) The standard ESRI surface slope function

Grid size	10	m	Diagonal dis	stance=	14.142 m		
47.5	48	47.7	50.6	48.3	dz/dx=	-0.125	
45.1	45.8	46.8	48.6	47.6	dz/dy=	-0.0900	
45	46.1	46.4	47.9	47.4			
45.4	46.1	47	48.6	47.7	rise/run=	0.154029	
					Slope=	0.152828	radians
						8.756408	degree
					Aspect	-2.19482	radians
						-125.754	degree
			Result as ar	ngle clockwi	se from North	234.2461	degree

(This is an Excel Object so you can click on it to see the formulas)

(ii) The 8 direction pour point model

ii) D8	Center cell	46.8					
		With cells S	lope				
	Slope 1	48.6	-0.180		Directio	n Encodi	ng
	Slope 128	50.6	-0.269		32	64	128
	Slope 64	47.7	-0.090		16	Ť	1
	Slope 32	48	-0.085		8	4	2
	Slope 16	45.8	0.100	Maximum s	slope to o	cell in dir	ection 16
	Slope 8	46.1	0.049				
	Slope 4	46.4	0.040				
	Slope 2	47.9	-0.078				

(This is an Excel Object so you can click on it to see the formulas)

Note that the steepest 8 direction pour point model slope in direction 64 is: $\frac{\text{center cell} - \text{side cell 16}}{\text{cell size}} = \frac{46.8 - 45.8}{10} = 0.10$

cell size

D8 slope = **0.10** D8 flow direction = 16

1.2. Verifying calculations using ArcGIS

The values at cell A of Slope = 15.4%, Aspect = 234.25 deg, PercDrop = 10% and FlowDir=16 correspond to the hand calculations.

Other values are obtained similarly from identifying values in the ArcMap output.

rucie of the ells compared quantities					
Cell	А	В			
Slope	15.403	11.159			
Aspect	234.25	274.50			
Hydrologic Slope (Percentage drop)	10%	4.24%			
Flow Direction	16	32			

Table of ArcGIS computed quantities

Note that for the Cell B above ArcGIS (at least my version) reports 3.3%, so if students report 3.3% they should not be penalized. This appears to be a bug in ArcGIS, because based on the elevation values the percentage drop is 4.24%.

1.3 Model Builder model to do the above

This tool is available on <u>http://www.neng.usu.edu/dtarb/giswr/2011/Ex3.tbx</u> if you want to download and look at it.

Table	of data	ranges f	rom r	nodel (output	using	the	file	demo.	asc
1 uoro	or unin	runges i	10III I	nouci	ouipui	using	une	m	actino.	ube

0	0	
Grid	Minimum	Maximum
Flow Direction	1	128
Hydrologic Slope (percentage drop)	0.067%	146.67%
Slope	0	148.79%
Aspect (degrees from north)	-1	360

-1 for aspect is used to represent flat grid cells

Part 2.

Projecting the DEM

General Source Key Met	adata Extent Display Symbology	
Property	Value	
🗉 Raster Informatio	n	=
Columns and Rows	4079, 2598	
Number of Bands	1	
Cell Size (X, Y)	30, 30	
Uncompressed Size	40.43 MB	
Format	TIFF	
Source Type	Elevation	
Pixel Type	floating point	
Pixel Depth	32 Bit	-
Data Source		
Data Type: Folder: Raster:	File System Raster C: \Users\dtarb\Scratch\Ex3\ projdem.tif	~

4079 columns, 2598 rows. The cell size is 30 m. The minimum and maximum elevations in the projected DEM 'projdem' are shown below.

Exploring the DEM

Highest elevation point in the San Marcos DEM

Contours and Hillshade

The layout above uses 80 m contours and the hillshade effect associated with the DEM to illustrate the San Marcos Topography. The Basin boundary (red) and subwatersheds (black) are shown.

Zonal Average Calculation

		Elevation	Elevation
HydroID	Name	Range (m)	mean (m)
330	Plum Ck at Lockhart, Tx	137.2	189.9
331	Blanco Rv at Wimberley, Tx	372.8	418.6
332	Blanco Rv nr Kyle, Tx	212.3	288.6
333	San Marcos Rv at San Marcos, Tx	218.3	266.2
334	Plum Ck nr Luling, Tx	115.2	152.0
335	San Marcos Rv at Luling, Tx	310.7	183.5

The subwatershed with highest mean elevation is Blanco at Wimberley (Note the point with the highest elevation is near the upper end of this subwatershed). The largest elevation range is found in the Blanco at Wimberley subwatershed too.

6. Calculation of Area Average Precipitation using Thiessen Polygons

HydroID	Name	Precipitation (in)
330	Plum Ck at Lockhart, Tx	36.37
331	Blanco Rv at Wimberley, Tx	37.83
332	Blanco Rv nr Kyle, Tx	40.48
333	San Marcos Rv at San Marcos, Tx	40.48
334	Plum Ck nr Luling, Tx	36.52
335	San Marcos Rv at Luling, Tx	37.59

The highest mean precipitation is found for the San Marcos River at San Marcos and Blanco River near Kyle watersheds. These are identical, because they are both in the same polygon.

7. Estimate basin average mean annual precipitation using Spatial Interpolation/Surface fitting

HydroID	Name	Mean Precip (in) by Tension Spline
330	Plum Ck at Lockhart, Tx	36.22
331	Blanco Rv at Wimberley, Tx	37.89
332	Blanco Rv nr Kyle, Tx	39.79
333	San Marcos Rv at San Marcos, Tx	39.66
334	Plum Ck nr Luling, Tx	36.46
335	San Marcos Rv at Luling, Tx	37.99

Blanco Rv nr Kyle, TX has the highest mean precipitation estimated from Tension Spline Interpolation.

Runoff Coefficients

The following map shows stream gages at the outlet of each subwatershed

This indicates the following subwatersheds which comprise each watershed

Watershed	Subwatersheds
Plum Ck at Lockhart, TX	Plum Ck at Lockhart, TX
Blanco Rv at Wimberley, TX	Blanco Rv at Wimberley, TX
Blanco Rv nr Kyle, TX	Blanco Rv nr Kyle, TX
	Blanco Rv at Wimberley, TX
San Marcos Rv at San Marcos, TX	San Marcos Rv at San Marcos, TX
Plum Ck nr Luling, TX	Plum Ck nr Luling, TX
	Plum Ck at Lockhart, TX
San Marcos Rv at Luling, TX	Blanco Rv nr Kyle, TX
	Blanco Rv at Wimberley, TX
	San Marcos Rv at San Marcos, TX
	San Marcos Rv at Luling, TX

Runoff ratio calculations are in the following spreadsheet (embedded object so you can see calculations in electronic version)

Subwatershed Precip from Thiessen Polygons

				Precip
			Mean Precip	Volume
#	Name	Area (m^2)	(in)	(ft^3)
1	Plum Ck at Lockhart, Tx	2.91E+08	36.37	9.485E+09
2	Blanco Rv at Wimberley, Tx	9.21E+08	37.83	3.125E+10
3	Blanco Rv nr Kyle, Tx	1.49E+08	40.48	5.416E+09
4	San Marcos Rv at San Marcos, Tx	1.27E+08	40.48	4.599E+09
5	Plum Ck nr Luling, Tx	5.21E+08	36.52	1.708E+10
6	San Marcos Rv at Luling, Tx	9.8E+08	37.59	3.305E+10

Watersheds

				Subwater-	Precip	
				sheds that	volume	
			Flow Volume	comprise	subwater-	Runoff
#	Name	Flow (cfs)	(ft^3)	watershed	shed sum	ratio
1	Plum Ck at Lockhart, Tx	49.00	1546322400	1	9485325535	0.16302
2	Blanco Rv at Wimberley, Tx	142.00	4481179200	2	3.1254E+10	0.14338
3	Blanco Rv nr Kyle, Tx	165.00	5207004000	2, 3	3.667E+10	0.14200
4	San Marcos Rv at San Marcos, Tx	176.00	5554137600	4	4598624672	1.20778
5	Plum Ck nr Luling, Tx	114.00	3597566400	1, 5	2.6562E+10	0.13544
6	San Marcos Rv at Luling, Tx	408.00	12875500800	2, 3, 4, 6	7.4322E+10	0.17324

In the top table Precip volume is Mean precip * Area divided by $12 \ge 0.3048^2$ to obtain volume in ft^3 . In the bottom table Flow volume is obtained from flow in cfs by multiplying by 365.25*24*3600*3600. The subwatersheds that comprise each watershed are identified and precip volume obtained by summing these. Runoff ratio is then flow volume/precip volume.

The runoff ratio for the San Marcos river at San Marcos is anomalously high due to flow from springs that are fed by precipitation that recharges the Edwards Aquifer outside the watershed. This anomalous high flow attenuates downstream. Plum Creek at Lockhart is also in the vicinity of where the Edwards aquifer outcrops and has a slightly higher runoff ratio so likely gets some spring contributions too. Over all the other watersheds, runoff ratio is pretty consistent between 0.11 and 0.15, which seems about right for this region.