
GIS in Water Resources Exercise #4 Solution

1. Report the main stream length, total stream length, basin area and drainage density for the Logan River Basin as determined from NHDPlus flowlines. Report the total stream length and drainage density for the Logan River Basin as determined from NHD_HighRes flowlines. Comment on the differences. For each drainage density calculate the average overland flow distance water originating on a hillslope has to travel before reaching a stream. [Hint: Refer to slide 24 from TauDem WatershedDelineation.pptx in lecture 10.] Comment on the differences.

Logan River Main Stream length is from the following

52.6 km is the sum of lengths reported by NHDPlus. 53109 m = 53.1 km is from Shape_Length evaluated using the coordinate system of the Basemap feature dataset. I will use the latter for consistency with basin area computed in this coordinate system.

🖽 LoganMain 🔠 LoganMain_Statistics 🗰			III NHD	PlusV2_Sta	atistics ×		
Fie	eld: 📰 New	🕎 Delete 📗	Calculate	Select	ion: 🕂	Zoom To	Switch
⊿	OBJECTID	FREQUENCY	SUM_shape	Length			
	1	198	383112	.083368			

Total stream length is from

Basin area is from

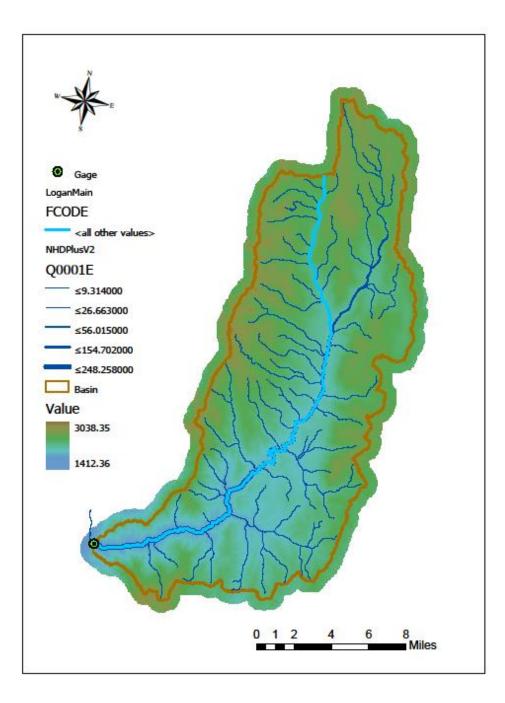
DPlusV2_Statistics			asin X			
Zoc	om To 🛛 🖓 Switch	70	Clear 🔉	Colete Colete		
	Data Resolution		Area So	quare Kilometers	Shape_Length	Shape_Area
d	30.0			555.4494	176755.774249	555449399.825291

Drainage density is total stream length/basin area Overland Flow Distance is 1 /(2* Drainage density) Summary Table using NHDPlus data

	m	km
Main stream length	53109	53.1
Total stream length (L _T)	383112	383.1
Basin area	555449399 m ²	555.45 km ²
Drainage density (L _T /A)	0.000690 m ⁻¹	0.690 km ⁻¹
Overland Flow Distance	724.638 m	0.725 km

Total stream length using NHD_HighRes data is from the following

III NHDPlusV2	HR 🎹 NH	HDPIusV2HR_	Statistics	\times
Field: 賱 New	🕎 Delete 📗	Calculate	Selecti	on: 🍕
⊿ OBJECTID	FREQUENCY	SUM_shape	Length	
1	659	636620	.742843	

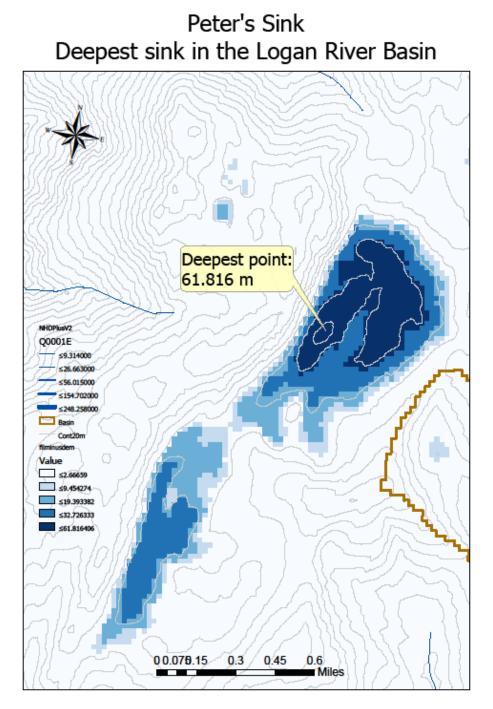

Summary Table using NHDPlusHighResolution data

	m	km
Total stream length (L _T)	636620.7	636.62
Basin area	555449399 m ²	555.45 km ²
Drainage density (L_T/A)	0.001146 m ⁻¹	1.146 km ⁻¹
Overland Flow Distance	436.30 m	0.436 km

Comments:

The NHDPlus is derived from what is referred to as the medium resolution national hydrography dataset, which is generally used for coarser scale work. In contrast, the NHD_HighRes is generated from a high resolution hydrography data set which contains more detailed stream network, resulting in higher drainage density compared to NHDPlus. The overland flow distance is inversely related with the drainage density, so the higher overland flow distance in the NHD_HighRes results in a lower drainage density than in NHDPlus.

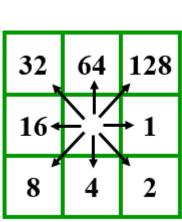
2. Prepare a layout showing the topography, Basin Outline, NHDPlusv streams and Logan River Main stem stream for the Logan River Basin. Include a scale bar and North arrow and appropriate title, labeling and legend so that the map is self-describing.

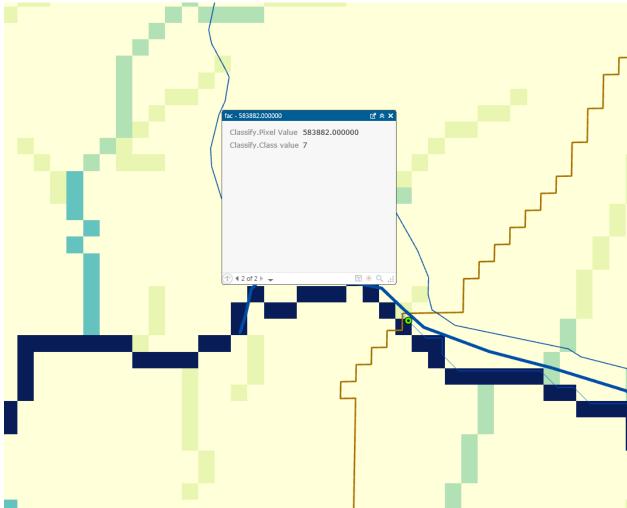


3. The number of columns and rows, grid cell size, minimum and maximum elevation values in the Logan DEM.

Information is from dem properties

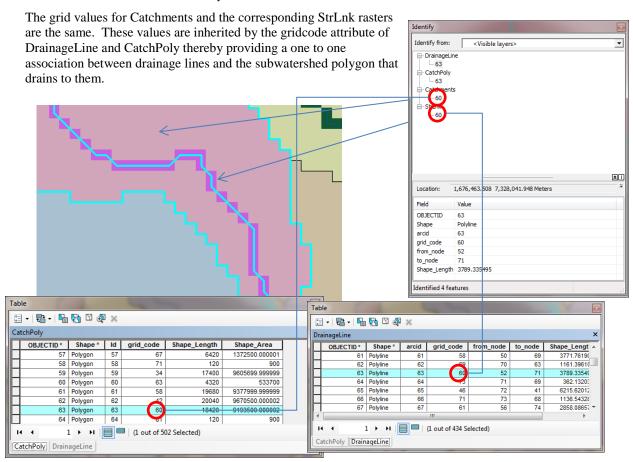
Layer Properties: dem	ı				Х
General Metadata	✓ Data Source				🛎 🕯
Source	Data Type	File Geodatabase Ra	aster		
Elevation	Database	G:\pjruess\giswr201	6\Ex4\Ex4_projec	t\Ex4_project.gdl	o
Cache	Dataset	dem			
Joins	Vertical Units	Meter			
Relates	✓ Raster Inform	nation			
	Columns	968	ר		
	Rows	1466	J		
	Number of Ba	inds 1			
	Cell Size X	30.9220	809813712		
	Cell Size Y	30.9220	809813711		
	Uncompresse	d Size 5.41 MB			Ŧ
				ОК	Cancel
Value					
303	38.35				
	L2.36				
▲ NED3	30m				

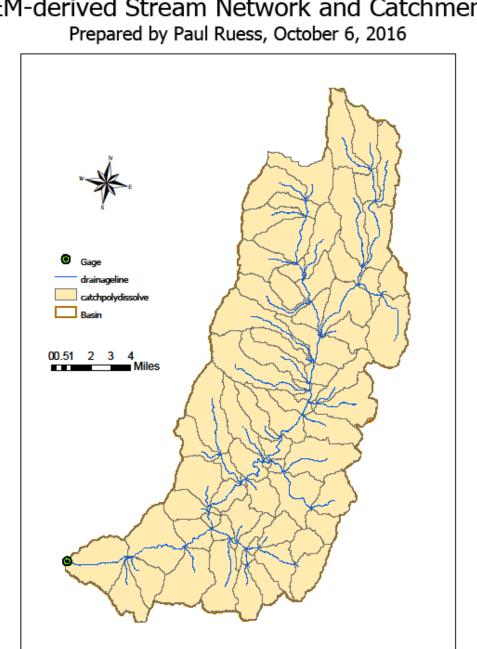

Number of rows: 968 Number of columns: 1466 Cell Size: 30.922 m Min Elevation: 1412.4 m Max Elevation 3038.35 m 4. A layout showing the deepest sink in the Logan River basin. Report the depth of the deepest sink as determined by fil-dem.


The depth of Peter Sink, the deepest sink is 61.82 m

5. Make a screen capture of the attribute table of fdr and give an interpretation for the values in the Value field using a sketch.

4	OBJECTID	Value	Count	
	1	1	120956	_
	2	2	89371	
	3	4	94949	
	4	8	79385	
	5	16	112715	
	б	32	74291	
	7	64	71737	
	8	128	79816	


6. Report the drainage area of the Logan River basin in both number of 30.92 m grid cells and km² as estimated by flow accumulation. Report the area of the Logan River basin in km² as calculated by the arcgis.com watershed function. Report the area of the Logan River basin in km² as reported by the USGS for the Logan River stream site. Discuss reasons for any differences.


Flow accumulation: 583882 grid cells = 558.2 km² AreaSqKm reported by ArcGIS.com watershed function = 555.45 km² USGS Area 214 mi² = 554 km²

These differences are small and arise due to rounding and small difference in flow directions along the edges of the watershed.

7. Describe (with simple illustrations) the relationship between StrLnk, DrainageLine, Catchment and CatchPoly attribute and grid values. What is the unique identifier in each that allows them to be relationally associated?

8. Prepare a layout showing the stream network and catchments delineated directly from the DEM.

DEM-derived Stream Network and Catchments

9. Report the total stream length, basin area, and drainage density for the Logan River Basin as determined from the DEM delineated streams. Comment on the differences between this drainage density and the NHD/NHDPlus drainage densities.

Stream Length:

⊿ OBJECTID	FREQUENCY	SUM_Shape_Length
1	81	208453.968901

Basin Area:

4	OBJECTID	FREQUENCY	SUM_Shape_Area
	1	81	558272389.136529

Drainage Density:

0.000373 m⁻¹

Summary:

Source	Shape Length (km)	Shape Area (km ²)	Drainage Density (km ⁻¹)
DEM	208.453	558.272	0.373
NHDPlus	383.11	555.45	0.690
NHDPlus_HighRes	636.62	555.45	1.146

Comment:

The sum of lengths for the DEM-derived stream network is smaller than that of the NHDPlus datasets due to the flow accumulation threshold of 5000 used to define the streams. The area, in contrast, is slightly larger, and these differences together result in a significantly lower drainage density for the Logan River Basin. Note that if the stream definition threshold were lowered, the stream length would increase, subsequently increasing the drainage density as well.