Name: \qquad
GIS in Water Resources Midterm Exam
Fall 2014
There are four questions on this exam. Please do all four. They are not all of equal weight.

Question 1. Earth Location and Distance (20\%)

(a) Define the term Latitude and illustrate your definition using a diagram

(b) Define the term Longitude and illustrate your definition using a diagram

(c) How tall is Texas? Two points, A and B are shown on the map in Question 2. Point A is at $\left(36.5^{\circ} \mathrm{N}, 100^{\circ} \mathrm{W}\right)$, point B is at $\left(28.85^{\circ} \mathrm{N}, 97.4^{\circ} \mathrm{W}\right)$. If the radius of the earth is 3959 miles, what is the north-south distance in miles between points A and B ?

Question 2. Map Projection and Coordinate Systems (20\%)

NAD_1927_Texas_Statewide_Mapping_System	Geographic Coordinate System: GCS_North_American_1927
WKID: 3080 Authority: EPSG	Angular Unit: Degree (0.0174532925199433)
	Prime Meridian: Greenwich (0.0)
Projection: Lambert_Conformal_Conic	Datum: D_North_American_1927
False_Easting: 3000000.0	Spheroid: Clarke_1866
False_Northing: 3000000.0	Semimajor Axis: 6378206.4
Central_Meridian: -100.0	Semiminor Axis: 6356583.799998981
Standard_Parallel_1: 27.41666666666667	Inverse Flattening: 294.9786982
Standard_Parallel_2: 34.9166666666666	
Latitude_Of_Origin: 31.1666666666667	
Linear Unit: Foot (0.3048)	

A map of Texas and a set of map projection parameters for the state are given above.
(a) Please draw and label on the map: the central meridian, the latitude of origin, and the two standard parallels.
(b) Give the numerical values (in degrees and minutes) for $\left(\phi_{0}, \lambda_{0}\right)$:
(c) Give the numerical values for $\left(\mathrm{X}_{0}, \mathrm{Y}_{0}\right)$:
(d) What earth datum is used?
(e) What spheroid is used?
(f) What map projection is used?
(g) What are the distance units in the coordinate system?

Question 3. Watershed Analysis (30\%)

The following map shows a Thiessen Polygon analysis of mean annual precipitation for Plum Creek Watershed in Texas. Map units are in meters.

The identify query above shows that the Gage Adjusted Flow E for the outlet stream is $\mathbf{1 3 9 . 6}$ $\mathbf{f t}^{3} / \mathbf{s}$. This is an average annual flow.

Following is the ThiessenSubIntesect attribute table obtained from intersecting the Thiessen Polygon layer with Subwatershed layer

Following is the Subwatershed attribute table

a) Prepare a table showing the gaged precipitation (inches) and the area associated with the gage (km^{2})

Gage	Precipitation (in)	Area (km $\mathbf{k m}^{\mathbf{2}}$	

b) Calculate the areal averaged mean annual precipitation over Plum Creek in inches.
c) Calculate the annual average volume of precipitation received by Plum Creek in ft^{3} $(1 \mathrm{~km}=3281 \mathrm{ft})$
d) Calculate the annual average volume (inft^{3}) of streamflow from Plum Creek based on Gage Adjusted Flow E. (1 day = 86,400 sec, 1 year = 365.25 days $)$
e) Calculate the fraction of mean annual rainfall that is manifested as runoff (i.e. the runoff ratio) for Plum Creek based on this information.

Question 4. Raster Analysis of DEMs (30\%)

The following diagram gives elevation values on a $\mathbf{2 5} \mathbf{m}$ DEM grid.
a) Identify any pits and indicate the elevation to which they need to be raised to drain the DEM.

13	13	13	11	12	11
13	14	12	10	12	10
13	14	9	12	15	14
14	15	14	16	15	14
14	14	13	14	14	13

b) Calculate the D8 flow direction and show arrows for the flow direction for grid cells in the inner bold 3×4 box on the diagram below.

Flow Direction

c) Indicate which cell in the above grid has the steepest hydrologic (D8) slope and calculate the value of this slope.
d) Calculate the flow accumulation for all cells in the inner block using the ESRI convention of number of grid cells draining in to each grid cell. Show numbers for the flow accumulation on the diagram below

Flow Accumulation

e) On the above flow accumulation diagram draw a border around the watershed draining to and including the grid cell in the inner block with largest flow accumulation. What is the area of this watershed (square meters)?
f) Following is a Soil Type Grid and associated soil type and available soil water storage table

Soil Grid Code

2	2	2	1	1	1
2	2	2	1	1	1
2	1	1	2	2	2
1	1	2	2	2	2
1	1	2	2	2	2

Soil Type Attribute Table

Soil Grid Code	Soil Type	Available soil water storage (cm)
1	Loam	27
2	Sand	14

(i) Calculate the percentage of each soil type in the watershed you delineated in (e) above
(ii) Calculate the volume of available soil water storage in the watershed you delineated in (e) above in $\mathrm{m}^{3}(1 \mathrm{~m}=100 \mathrm{~cm})$

