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1. Introduction                  

River delta systems are one of the environmental ecosystems most threatened by climate 

change and anthropogenic activity. While their low elevation gradients and fertile soil have made 

them optimal for human inhabitation and diverse ecologic growth, it also makes them susceptible 

to adverse effects of sea level rise, flooding, subsidence, and manmade structures such as dams, 

levees, and dikes. With more than 500 million people live on river delta systems [1], it is important 

to determine how deltas will respond to changing forcings to inform policy decisions.  

One particularly large and threatened delta that is the focus of this study, is the Ganges-

Brahmaputra-Meghna Delta (GBMD) on the southern coast of Bangladesh/West Bengal India. Not 

only is this delta home to over 170 million people [2], but it also hosts the largest continuous 

mangrove forest in the world, contains important marine and fluvial navigation pathways inland, 

and produces agricultural resources required for the maintenance of the rest of the region. Because 

of its importance, studies have been conducted on the GBMD to help us better understand how 

attributes of the delta network can be linked to known processes acting on the delta [3].  

The objective of this study is to improve upon analyses presented in Passalacqua’s 2013 

paper titled, “Geomorphic signatures of deltaic processes and vegetation: The Ganges-

Brahmaputra-Jamuna case study” by repeating the analyses using variations of ArcGIS functions, 

more recent satellite images, and an alternative method of channel extraction.  

This paper is organized as follows. Section 2 describes the aforementioned Passalacqua 

2013 paper’s data sources, methods, and conclusions. Section 3 outlines the alternative methods 

used in this paper that have been completed for the scope of this term project. Section 4 outlines 

the methods that have not yet been completed, but are part of my long term research goals.  Section 

5 draws conclusions from the study thus far by outlining some lessons learned and future work.  

2 Previous Study Summary           

Delta networks are difficult to characterize because of the uniqueness of each one, but one 

way to assess the overall delta is by looking at the land islands formed in and around delta’s 

channels. These islands are representative of the network because their characteristics reflect how 

sediment is transported and reflect the channel characteristics. In her 2013 article titled, 

“Geomorphic signatures of deltaic processes and vegetation: The Ganges-Brahmaputra-Jamuna 

case study” Passalacqua characterized the GBMD delta network based on several delta 

characterization metrics proposed originally by Edmonds et al [4]. This paper used a combination 

of Landsat Imagery, ArcGIS mapping tools, statistical analyses, and geological survey data to draw 

connections between delta metrics and the processes acting on the delta. Specifically, it looked at 

metrics of island area, shape factor, aspect ratio, oxbow density, channel width, and nearest-edge 

distance. 

2.1 Data Acquisition 

The first step in the original study was obtaining the aerial imagery required for analysis. 

This paper used Orthorectified Landsat Thematic Mapper (TM) Mosaics obtained from 

landcover.org. The two image tiles used to cover the entire study area (Figure 1) were prepared by 



Figure 1: (a) N-45-20 mosaic tile (b) N-46-20 mosaic tile (c) 

image used in original report 

The next step was to use ArcGIS methods to 

obtain the channel and island networks from the 

imagery. This was done by using unsupervised and 

supervised classifications. These respective 

techniques look at each pixel’s spectral signature and 

determine its ternary (deep water, vegetation cover, 

or soil) and binary (land or water) classification. The 

raw output of this method step can be seen in Figure 

2a and 2b. As one can see this technique results in a 

somewhat messy image of the channel. Spurious 

features were manually edited out and known conn-  

 

mosaicking separate images from the years 1987-1990 Landsat 5. The three bands used in this 

analysis were Band 2, Band 4, and Band 7.  

 

 

 

 

 

 

 

 

 

 

2.2 Channel Extraction 

 

 

 

 

 

 

 

 

 

 

 

ections from Google Earth imagery (Figure 2c) were manually entered in to create the final 

channel image in Figure 2d.  

2.3 Obtaining Metric Data 

Six delta metrics were obtained from the completed channel network: island area, island 

shape factor, island aspect ratio, nearest-edge distance, channel width, and oxbow density. Island 

area (𝐴) is an indicator of the channel connectivity, with smaller islands indicating high 

connectivity, and larger islands indicating areas of the delta with lower connectivity. Island shape 

factor (𝛽) is defined as the ratio(𝑃 √𝐴⁄ ), where P is the wetted perimeter. This metric is an  
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Figure 2: Manual channel network edits: (a) and (b) display the unedited raw classification output. (c) is the 

google earth imagery used to justify making the manual edits displayed in (d). 



indicator of how well drained an island is and the islands roughness. Island aspect ratio (𝛾) is 

defined by imagining the island as an ellipse with the same normalized second central moment as 

the island. Here the aspect ratio is the ratio of the major to the minor axis of this imagined ellipse, 

and is an indicator of the elongation of an island. The nearest-edge distance (L) is a measure of the 

shortest straight-line distance from a land pixel to a water pixel. If one looks at the maximum value 

of this for a particular island, the nearest-edge distance is an indicator of how available water is to 

the island. Channel width is defined as the minimum distance between channel edges, and the 

mean value for a channel is an indicator of the strength of the channel’s connection to the rest of 

the network. Oxbow density (O) is a measure of the presence of abandoned channels and oxbow 

lakes, and can be an indicator of the changes in channel location over time.  

2.4 Power-Law Analysis 

 The data for each of the metrics is statistically analyzed using methods outlined in the 

Clauset et al paper on “Power-Law Distribution in Empirical Data” [5].  According to Clauset 

2009, while some data can be characterized with a simple mean and variance using the normal 

probability distribution, other data is scale-free and does not have a distribution about a mean value 

that accurately reflects the data as a whole. This sort of data can be characterized by a power-law 

probability distribution displayed in Equation 1, 

𝑝(𝑥) ∝ 𝑥−𝛼                                                              (1) 

where x is the quantity being analyzed, p(x) is the probability of that value x occurring, and α is 

the scaling parameter. In actuality, entire datasets rarely exhibit power-law over their entire range, 

rather exhibit the behavior over certain ranges of x. Regions of a dataset that display power-law 

behavior can be identified by taking the log of both sides of equation 1 to get: 

log 𝑝(𝑥) = 𝛼 𝑙𝑜𝑔𝑥 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                (2) 

By graphing the data on a log-log scale, one can see that the linear region of the plot represents the 

region where power law applies, and that the slope of this linear region is equal to α. In the 

hypothetical dataset created in Figure 3, that this data behaves a power law distribution of 𝑝(𝑥) =
𝑥−2.5 for values of x greater than 10.  

  

 

 

 

 

 

 

 

 

Figure 3: Hypothetical probability distribution function graphed first on a normal scale, then on a log-log 

scale to highlight the linear region where power-law applies. 



 Breaks in power-law behavior indicate breaks in the characteristic scales of delta processes, 

so the value below which power-law no longer applies is a useful number to distinguish zones in 

a delta. In the report this minimum value was designated as xmin. The number of points that fall in 

the power-law region was designated as ntail.  The goodness-of-fit p-value of the dataset was 

designated as p.  For each of the outlined metrics, a value of xmin, α, ntail, and p was reported. 

2.5 Relating statistics to processes 

 Once values of xmin were chosen for each metric dataset, islands and channels with values 

lower than that xmin (falling outside the power law region) could be isolated and visualized in 

ArcGIS. By comparing the location of breaks in power law behavior to the known physiographic 

regions developed by the Geological Survey of Bangladesh [6] (Figure 4), relationships between 

the metric and the deltaic processes were created. The zones referenced in this figure are active, 

inactive, tidal, and mangrove. 

2.6 Results 

 It was found that island area 

distribution behaved power-law for 

values above an Amin of 1.96E7 m2. 

The small islands outside this 

minimum threshold were mostly 

located in the tidal region, 

particularly in the mangrove region 

subset. The largest islands were 

mostly located in the inactive 

region of the delta. Island shape 

factor distribution behaved power-

law for values above a βmin of 13.7. 

The less rough islands with smaller 

values of β were located in the same 

regions as the islands of smaller 

area, indicating a relationship 

between island area and island 

shape factor. Island aspect ratio 

distribution behaved power-law for 

values above a γmin of 2.7. Islands 

with high aspect ratios and large elongation were found to mainly be along the largest channels 

and main branches of the delta. The nearest-edge-distance distribution behaved power-law for 

values above an Lmin of 1.154E3 m. The areas with L values outside of this range were found 

mostly in the tidal region and mangrove forests.  

Channel width was analyzed in a slightly different fashion than the preceding metrics. In 

order to assess the sensitivity of the preceding metrics to changing forcing on the system, the 

weakest channels (smallest width channels below a set 57 m threshold were removed from the 

system. It was found that when the weakest links were removed, the inactive zone of the delta 

behaved as one large island. Oxbow density distribution power law parameters were not analyzed, 

however, simply by mapping their locations, it could be seen that oxbow lakes almost exclusively 

Figure 4: Recreated zones of the GBMD based on the Geological 

Survey of Bangladesh 



occurred in the inactive zone. This finding suggested that oxbows are more likely to form in 

regions with weak channel connections.  

The paper concludes that the delta can be separated into lower regions of active flow and 

sediment transport, and upper regions of lower flow and sediment transport, and that the active 

region can be characterized by high channel density, small islands, good drainage, and short 

nearest-edge distances [3]. These conclusions were reached based off of Landsat data from 1990, 

by using ArcGIS to extract the channel network, and by using MATLAB functions to calculate 

metrics. The rest of this paper will focus on my personal efforts to create alternative methods to 

accomplish the same goals as Passalacqua’s 2013 paper, and compare the results. Specifically, 

counter to the previous paper, I will do this by using more recent Landsat data, using Rivamap 

automated channel extraction methods to obtain the channel network, and exploring some different 

ArcGIS methods for metric calculation.  

 

3. Completed Methods           

3.1 Data Acquisition 

 Because of the plethora of Landsat data variations available online, there were many 

options of aerial imagery for my analysis. The first option explored was the Orthorectified 

Enhanced Thematic Mapper (ETM+) Mosaics from Landsat 7. These images used the same bands 

as the original study; however, they were mosaicked at a more recent time from 1999-2001 images, 

and they have a higher pixel resolution than the original Landsat 5 images. Unfortunately, as one 

can see in Figure 5, the available updated Enhanced Thematic Mapper mosaics didn’t cover the 

entirety of the study region outlined in red, and therefore could not be used in isolation.  

As a work-around to this issue, I used clipping, 

conditional classification, composite, and mosaicking 

techniques in ArcGIS to attempt to join 13 available 

TIFF images (Figure 6) into one manually mosaicked 

image that covered the entire study area. Although my 

efforts were relatively successful, the resulting image 

had mismatched stretch values and was unnecessarily 

time consuming.  

 

 

 

 

 

 

 

Figure 5: (above) Two ETM+ mosaic tiles from 

1999-2001 that potentially could have been 
used in this study but didn’t cover entire study 

area shown in red. 

Figure 6: (right) 13 individual ETM+ images 

covering whole study area 



Although using Landsat 5 data for my study would have made the methods very 

comparable, for the sake of getting the most up to date imagery, I opted to use data from Landsat 

8 instead. Additionally, Landsat 8’s raw Band 3 and Band 6 wavelengths are exactly in the range 

of required values for the Rivamap channel extraction tool, removing the need for extra image 

processing. I obtained this imagery using Google Earth Engine Code Editor, an online tool that 

uses Google servers to run scripts you enter yourself. Figure 7 displays the code I used to extract 

the two bands of Landsat 8 imagery, clip it to the study area, and send the resulting files to my 

own Google Drive account. This code contains parts directly from the sample scripts provided by 

the site and others, and parts edited personally by me. At the end of this step, I was left with two 

TIFF files, one of Landsat 8 Band 3 (green 0.53-0.59 µm) and one of Landsat 8 Band 6 (short 

wave infrared, 1.57-1.65 µm) that could then be used in the Rivamap tool to create a channel 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Rivamap Channel Network Extraction 

 Rivamap is a tool developed by Leo Isikdogan that extracts channel networks from remote 

sensed imagery. This is done by employing a multiscale singularity index that responds strongly 

to curvilinear structures and weakly to edges [7]. The input to this tool are two TIFF bands of 

wavelength 0.53-0.59 µm and 1.57-1.65 µm, and the outputs of the tool are a binary raster TIFF 

file of the channel network, and a CSV file with columns for width (pixels), latitude (northing), 

and longitude (easting). This is accomplished through combining a series of functions created in 

each of Rivamap’s included modules.  

Figure 7: google earth 

engine code. Lines 1-6 

select Landsat to use 

and the range of image 

dates to include. Lines 

8-10 select only bands 3 
and 6 and composite 

them into one file. Lines 

12-13 display the bands 

on the site map for 

visualization purposes. 

Lines 15-17 define the 

area over which to clip 

the compiled images. 

Lines 19-25 export the 

completed file to 

designated google drive 

account. 



 Rivamap is available in a MATLAB format and a Python format. Because the MATLAB 

format is stated on the website as being unmaintained, for this study I worked with the python 

version. Slight adjustments to the code and my system had to be made to make the code (written 

in python 2.7) compatible with my python 3.5 operating system. After loading Landsat 8 bands 3 

and 6 into the script, the following raster image output was achieved (Figure 8). 

 

 

 
Figure 8: Raster TIFF output file from the Rivamap tool. 



3.3 Import into ArcGIS  

By loading the CSV of channel centerlines into ArcGIS as a table, you can easily add the 

centerline points to the map as XY data (Figure 9). When one zooms in on some of the more 

indistinguishable channel centerlines of the delta (Figure 9c), the power of the Rivamap tool to 

extract channels from murky images accurately (Figure 9d) is evident.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By adding the width column as an attribute, converting the width from pixels to meters by 

multiplying by the cell size of 30, and buffering the points using the width field as the indicator 

for buffer distance, I was able to create the following image of the channel network (Figure 10). 

 

Figure 9: (a) channel centerline points for entire study area, (b) zoomed in section of points file, (c) 

example of an area where channels are harder to distinguish and (d) a demonstration of Rivamap’s 

capability to extract channel from regions like this. 

a b 

c d 



 

 

At this point in my work I realized a fundamental mistake that precluded me from making 

any additional analysis on the actual data for the time being. Although it could be seen by 

overlaying the CSV points on top of the TIFF band images that the centerline points did accurately 

depict the centers of the channels, when I began to examine the buffer channels I created, I saw an 

error emerging. As you can see in Figure 11, as one moves down from North to South in the 

network, the Rivamap channel output becomes less and less accurate to the TIFF image. This error 

can be attributed to the fact that I neglected to project the two input bands to the Rivamap before 

running the program. 

Figure 10: Output from assigning each channel centerline point a buffer equal to its associated width attribute. 
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The bands were in a geographic coordinate system, and they should have been projected into WGS 

1984 UTM Zone 45N before being used in the script. Had I done this, I would have also been able 

to import the resulting raster file directly into ArcGIS and create a shapefile from it using the raster 

to polygon tool. This would have simplified the channel creation in ArcGIS, and reduced some of 

the error associated with the buffer method used in this report.  

 Although the width data was inaccurate and unusable, I continued to make progress 

towards my more long term research goals by testing and creating a hypothetical workflow for 

how I will continue once I get corrected channel width information. These methods are explored 

in the following section. 

 

4. Planned ArcGIS Metric Analyses          

 As explained in section 2.2, channel extraction often results in spurious features and 

incomplete channel linkages. The Rivamap tool was not an exception to these errors. For example, 

in Figure 12, an incomplete channel from the created channel network is displayed.  

 

 

 

 

Figure 11: Channel width increasing error compared to TIFF imagery with decreasing latitude. 

Figure 12: Image of the island network with and without manual channel connections. Green lines 

represent the model interpretation. Red lines represent connections that can be seen in ground truth data. 



Were this channel linked as can be seen from the imagery and the red lines manually added for the 

purposes of this example, the area would be depicted as four separate islands with small shape 

factors; However, because of the connection error and the failure of the tool to recognize some 

smaller channels, it will be analyzed as one island with a large shape factor as shown in green. To 

resolve this issue, similar to the original study, I would have to manually edit all of the errors by 

comparing the satellite imagery to the mapped channels. This is a very tedious and long task and 

will not be a part of the scope of my project. Because of this, the metrics of island area, island 

shape factor, island aspect ratio, and oxbow density are not included in the analysis. However, the 

remaining two metrics, channel width and nearest-edge distance, do not depend on the complete 

closure of the channels, and can both be examined if the accurate channel feature class and island 

feature classes are created.  

 The reminder of this section is dedicated to outlining ArcGIS methods for creating channel 

and island features from the raster Rivamap output, ArcGIS methods for obtaining nearest-edge-

distance values, and methods to replicate the distribution analyses. As stated, the channel map 

created in this study was not usable, so the remainder of this paper will use fictitious simplified 

channel images created by myself to emphasize points and do a sort of “proof of concept” for my 

proposed methods. 

4.1 Channel and Island Feature Class Creation 

 As mentioned, the raster output to the Rivamap tool could be directly converted to a 

polygon using the raster to polygon ArcGIS tool. One method to create islands from this newly 

created channel polygon that I explored was by using the union spatial analysis tool in ArcGIS. 

This tool allows you to calculate the geometric union of polygons. If I were to create a boundary 

around the entire delta network (shown in red Figure 13) and union it with the channel network 

(shown in blue Figure 13), the result is three features: one representing the old channels, one being 

linear clips of where the channels crossed the boundary, and one being the outline of the white 

space in Figure 13a. By erasing the first two features, you are left with just the area representing 

the islands (shown in green figure 13b). This is delivered as one single feature, but by using the 

multipart to singlepart ArcGIS tool, the polygons can be separated and made ready for statistical 

analysis.  

 

 

 

 

 

 

Figure 13: (a) Hypothetical channel network polygon with border of area in red (b) result of the union 

analysis is creation of island polygons in green (c) result of adding centroid geometry point to each island for 

nearest-edge-distance assessment. 

a b c 



4.2 Nearest-edge-distance Calculation 

 While the original paper uses MATLAB functions to obtain data on the nearest edge 

distance for all pixel points on an island, and then only returns and analyzes the maximum value 

for the island, an alternative method is to only focus on the maximum distance from the start to 

cut down on computation time. This can be done by recognizing that the largest value of nearest-

edge-distance will occur at the point on an island furthest from the channel, at the islands centroid.  

 Using the add geometry attribute tool with the newly created island feature class, the 

centroid points of each of the islands can be added, first to the attribute table of the island polygons, 

and then to the map as their own set of points (Figure 13c). The nearest-edge-distance for each of 

the points (corresponding to a particular island), can be calculated using the near table tool. This 

tool returns a table of calculated distances between features, so by having the centroid points 

feature class as input, and the as the channels as a near feature, a value of nearest-edge distance 

for each point is created (Figure 14). It is important when creating the centroid points separate 

class that one includes the island object ID as a field, so that the results of the near tool can be 

joined back to the island feature class for later analysis.  

4.3 Distribution Analyses 

       While the methods outlined in this 

subsection are not markedly different than the 

original study, they will be described 

nonetheless for completeness sake.  

First, to analyze channel width in a 

similar fashion to the study, I will remove 

channels less than 57 meters wide and see how 

the network changes compared to the original 

study. Here, the buffer method of channel 

visualization described in section 3.3 becomes 

useful. While importing the raster TIFF output 

of python directly into ArcGIS and using the 

raster to polygon tool, you are left with a single 

feature where widths at individual channels are 

lost. If you use the buffer method, the 

individual widths of each centerline point are 

preserved. By selecting only points with 

channel width attribute over the chosen 

threshold and exporting them to new feature 

classes, different versions of the channel 

network can be easily created and interpreted.  

 The nearest-edge-distances for each island can be exported in a table from ArcGIS and 

opened in Excel (or any similar calculation software). By creating a histogram and appropriately 

sized bins, a distribution function of the data can be created. Like in the original study, by graphing 

the data on a log-log scale, the linear region that follows power-law behavior can be isolated, and 

the xmin can be chosen. This xmin value can be interpreted visually just by looking where the linear 

Figure 14: Sample output nearest distance for example 

islands 



region seems to start, but this method adds a certain level of subjective error to the analysis. An 

alternative approach is to use the Kolmogorov-Smirnov (KS) statistic as a measure of the 

difference between the probability distributions of the observed data and the fitted model. By 

simply choosing the xmin value that minimizes the summed difference between the two lines, an 

ideal xmin can be obtained [5]. All of these new parameters for the nearest-edge-distance power-

law distribution (xmin, α, ntail, and p) can be compared to the original study values to see what 

changes the different methods posed in this paper have caused.  

5. Conclusions             

 This term project objective was to explore alternative methods to potentially make 

improvements upon the work done in Passalacqua’s 2013 report “Geomorphic signatures of deltaic 

processes and vegetation: The Ganges-Brahmaputra-Jamuna case study.” My term project is not 

intended as a critique of the methods chosen in the original paper in the slightest, rather, it is more 

so a potential update recommended due to the continuously evolving nature of the GIS and remote 

sensed imagery fields as a whole.  The original paper was submitted in January of 2013, but the 

improved Landsat 8 data only became available in February of 2013. Similarly, there have been 

countless updates to the ArcGIS software in the past three years that have improved upon its 

functions. Finally, the automated channel extraction techniques of Rivamap were not created by 

Leo Isikdogan until November of 2015. There is no guarantee by any means that the methods I 

have proposed will improve the original analysis or return different results, but completion of this 

study in over the next few months will answer that question.  

 In terms of future work required, I will need to implement all of the methods outlined in 

section 4 of this paper. Additionally, I think that it would be very useful to compare the channel 

extraction techniques (unsupervised/supervised classification vs. Rivamap) on the same Landsat 

data source to see what the differences are between the two. In his paper [7] Isikdogan contrasts 

his model results to the ground truth and shows that Rivamap results are “comparable with the 

ground truth,” but I think it could be useful to compare it to a different extraction technique as well 

to see which method is better.  

 This term project was very beneficial to me personally. I enjoyed re-visiting writing code 

and exploring the ArcGIS software capabilities. Next time I may make more effort to perform 

some of the large dataset operations on more powerful computers to cut back on some of the 

processing time. I’d like to thank my advisor Dr. Passalacqua for her guidance and for giving me 

the inspiration for this study. I’d also like to thank Leo Isikdogan for promptly answering my 

endless stream of questions about installing the Rivamap modules.  Lastly, thank you to the course 

instructor Dr. Maidment for his advice. Although I only needed his help sparingly, his small hints 

to use the buffer tool for channel creation and the union tool for island creation were large in their 

impact.  
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