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PART 1:  RESOURCE MANAGEMENT MODELS 

1.  Introduction 
 

1.1  Systems Approach 
 
Planning, management and design are a critical element of sustainable economic development and 
expansion.  In the process of planning and design there is a need to critically analyze the true 
economic costs, benefits and environmental consequences of projects.  A lack of this analysis can 
often lead to a level of design quality which falls far short of optimal with respect to the utilization 
of scarce economic and natural resources and will not improve the ecological balance of systems in 
general. 
 
More recently, population shifts, industrial and political changes have led political leaders and 
planners to the conclusion that unlimited expansion and development are no longer the primary 
objectives in social and economic systems planning and design.  The single-objective, single-
purpose, single-facility project approach to solving problems that was so common in the past is 
unacceptable today and has been replaced by multi-objective, multi-purpose, multi-facility solutions 
at a large scale which must be not only technically feasible but socially, environmentally, 
economically, and politically feasible as well.  In most planning situations it is hard to see how all of 
these disparate components can be combined into system designs which meet prescribed and 
sometimes conflicting objectives and constraints imposed on a project. 
 
Systems analysis can aid in identifying those likely situations where a minimum investment of funds 
and energies will produce maximum gains in terms of resource allocations, economic development 
and environmental welfare.  Generally speaking, systems analysis is the art and science of 
disassembling complex phenomena into smaller, isolated, more readily understood, subsystems and 
analyzing the interactions between the subsystems and between the subsystems and the larger 
environment (Churchman, 1968).  This is a natural human process: examining a complex process by 
directing attention to the component parts and the relationships between the components.  Using 
systems analysis we can focus on the functioning of the components under the various conditions to 
which the system may be subjected.  In many situations, by focusing on the relationships and 
interactions between the components of complex systems, systems analysis can provide a means of 
sorting through the myriad of possible solutions to a problem and narrowing the search to a few 
potentially optimal ones in addition to determining and illustrating the consequences of these 
alternatives and the tradeoffs between conflicting objectives.  The central method used in water 
resource systems analysis is to couple the descriptions of physical and socioeconomic systems 
through the use of mathematical models. 
 
A system is a collection of components and their interrelationships forming an entity (e.g., a river 
basin) which is acted upon by external forces, influences or inputs (precipitation) and produces a 
specific effect or output (streamflow).  That is, a system is a set of objects which transforms an input 
into an output, the exact output produced depending on certain system properties or parameters (e.g., 
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soil types, vegetation, topography).  This transformation depends upon the parameters of the system 
and the design policies imposed on it.  Figure 1.1.1 displays a systems representation of a general 
groundwater system and illustrates the ideas of inputs, outputs, policy variables, and parameters.  
 
Systems analysis involves the construction and linkage of mathematical models of the physical and 
economic subsystems associated with resource allocation systems.  The purpose of constructing 
these models is to aid engineers, planners and decision makers in identifying and evaluating 
alternative designs and to determine which ones meet project objectives in an efficient manner.  
These mathematical models are able to predict a system’s response to different design alternatives 
and conditions.  The models are a set of mathematical expressions (partial or ordinary differential or 
algebraic equations) describing the physical, biological, chemical, and economic processes which 
take place in the system.   
 
Most systems models are based on statements of basic conservation laws (mass, energy, and 
momentum), but they can also be empirical or statistical.  Systems analysis models are generally 
broken down into two categories:  simulation models and optimization models.  
 

Groundwater System
Inputs
Subsurface inflows 
Natural recharge 
Precipitation 
Irrigation return flows

Parameters
Storage coefficient 
Porosity 
Transmissivity 
Leakage factor 
Dispersivity 
Kinetic reaction rates 
Adsorption parameters 
Ion exchange parameters

Outputs
Subsurfae outflows 
Base flow 
Evapotranspiration 
Phreatophytes

Policies
Pumping and injection locations, 
rates and concentrations 
Artificial recharge

 
 
Figure 1.1.1.  General diagram of a groundwater system showing inputs, outputs, parameters, and 
policies. (Adapted from Willis and Yeh, 1987, Fig. 1.5.) 
 
 

1.2  Simulation and Optimization Models 
 
Simulation models are used to predict a system’s response to a given design configuration with great 
accuracy and detail, and to identify the probable costs, benefits, and impacts of a project.  That is, 
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the simulation model predicts the outcome of a single, specified set of design or policy variables.  
However, the space of possible design and policy variable values is, in general, infinite.  Simulation 
models, while important tools for managing systems, do not identify or narrow the search for 
optimal policies or designs for a problem; they provide only localized information regarding the 
response of the system to one particular design alternative at a time.  Separate simulation model runs 
are required for each design or policy alternative considered.  In many situations the number of 
alternative designs is sufficiently large to preclude simulating each alternative and some other 
method is normally used to narrow the field of search. 
 
Optimization models provide a means of reducing the number of alternatives which need to be 
simulated in detail, i.e., screening them.  These models search the space of possible design variable 
values and identify an optimal design and/or operating policy for a given system design objective 
and set of constraints.  The sensitivity of the optimal solution to changes in the model parameters 
can be readily determined and tradeoffs between several conflicting objectives can also be calculated 
with most optimization models.  These models are usually extensions of simulation models and 
include as unknowns the design or operating variables (decision variables) of each alternative.  
These models include relationships which describe the state variables and costs or benefits of each 
alternative as a function of the decision variables.  Constraints are also included in the models to 
restrict the values of the design or state variables.  Optimization models are generally used for 
preliminary evaluation or screening of alternatives and to identify important data needs prior to 
extensive data collection and simulation modeling activities. 
 
 

1.3  Model Building Process 
 
The process of developing the mathematical simulation and optimization models which represent the 
system under investigation consists of several steps.  Referring to Figure 2, the first step, problem 
identification, is to identify the important elements of the system which pertain to the problem at 
hand and the interactions between the components.  That is, a general outline and purpose of the 
model must be established.  The analyst will need to identify the appropriate type of model for the 
system and the degree of accuracy needed given the time and resources available for modeling.  
Generally the simplest model with the least number of parameters which will produce reliable results 
in the time available is preferred.  In the next step, conceptualization and development, the 
mathematical description of the relationships identified previously are established.  In this step 
appropriate computational techniques are also determined and implemented for the problem.  
Calibration of the mathematical model is then performed to determine reliable estimates of the 
model parameters.  In this procedure the model outputs are compared with actual historical or 
measured outputs of the system and the parameters are adjusted until the model predicted and the 
measured values agree.  Then a model verification exercise is carried out in which an independent 
set of input data is used in the model and the predicted results are compared with measured outputs 
and if they are found to agree the model is considered to be verified and ready for use in simulation 
or optimization.   
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Problem identification, desc
simplification

Model development and
conceptualization

Model calibration and para
estimation

Model verification and sens
analysis

Model documentation 

Model application, polic
evaluation  

 
 
Figure 1.2.1.  General diagram of the steps in the model building process. (Adapted from Loucks et 
al., 1981, Fig. 9.1.) 
 

1.4  Book Organization 
 
This book is intended for use by beginning optimization modelers in science and engineering; and 
engineers and scientists performing research on the optimal use of resources for water, energy and 
agricultural problems.  Examples of optimization models from several technical areas of interest are 
covered in Part 1:  general equations solving, water resources management, agricultural 
management, canal design, power system design and management, heat transfer, and fluid flow.  
These models are presented for the purpose of introducing the reader to the possibilities of modeling 
these systems using optimization techniques.  There are certainly many additional application areas 
and techniques that could be covered, but the examples selected cover a wide enough range to 
introduce the reader to the topic.  Part 2 of the book covers many of the basics of the modeling 
language used in this book.  That language is the General Algebraic Modeling System (GAMS) a 
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high-level modeling system for mathematical programming problems (Brooke et al., 1998).  This 
section of the book is intended to provide the reader with sufficient information to construct simple 
models without having to read through the full language documentation.   
 
In our work we have found that the modeling languages are more useful than the other types of 
modeling packages such as LINGO (Schrage, 1999) since these products do not allow the easy 
construction of  general modeling structures such as those needed for solving differential equations.  
There are other high level modeling languages available that can be used for the same purpose, 
including AIMMS (Bisschop and Roelofs, 2001) and AMPL (Fourer et al., 1999).   
 
 
References 
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Exercises 
 

1. Discuss the need for benefit – cost analysis in planning and design of water resource 
projects.  What are some consequences of failing to provide adequate analysis in the 
planning process? 

2. What is “systems analysis” and how can it aid in the planning and design of water resources 
plrjects? 

3. What is the difference between “simulation” and “optimization 
 modeling?  Give an example when it might be more appropriate to use one rather than the 
other. 

4. In the model building process, why is it important to have independent data sets for the 
calibration and verification of a model? 

5. What is sensitivity analysis and how would you use the results of such an analysis to guide 
data collection efforts? 
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2.  Economic Analysis of Water Resources 

2.1  Cost – Benefit Analysis 
 

2.1.1  Choosing Among Feasible Alternatives 
 
Economic analysis, or the understanding and prediction of decision making under conditions of 
resource scarcity, plays a major role in the planning, design and management of sustainable water 
resource systems.  Allocation of water among competing uses to obtain an optimum value in terms 
of market or welfare measures is one of the main problems of water resources planners.  Price theory 
is very relevant where markets are operating efficiently, whereas welfare economics seeks to 
maximize human welfare in situations where desirable social gains and undesirable social costs are 
not fully accounted for in a profit maximizing, market economy (North, 1985).  Price theory and 
welfare economics tend to focus on static analyses of projects, whereas, financial analysis considers 
the time value of investments and decisions.  In this section, we will consider some aspects of 
financial analysis. 
 
Choice is governed by economic and financial feasibility and acceptability with respect to social and 
environmental impacts.  Here we want to consider investment analysis which serves as a guide for 
allocating resources between present and future consumption. The process consists of: 
 
 Identifying alternatives to be considered; 
 Predicting the consequences resulting from these alternatives; 
 Converting the consequences into some commensurable units (e.g., $’s); and 
 Choosing among the alternatives 
 
One project may produce one type of output, while another project produces another kind of output.  
In order to compare the projects and make investment decisions, common units must be used to 
express the outputs of each alternative before any comparison can be made.  Monetary units are the 
most commonly used units. 
 
Some projects will provide outputs in the near future and other projects may delay outputs for an 
appreciable time or distribute them uniformly over the project lifetime.  Outputs today do not have 
the same value as outputs tomorrow and the following observations are appropriate: 

 
• Investors often prefer early return on investments since it provides them with more flexibility 

in making future investment decisions; 
• Benefits and costs at different times should not be directly compared or combined, since they 

are not in common units; 
• Future benefits and costs must be multiplied by a factor that becomes progressively smaller 

for times further into the future.  This multiplicative factor is called the discount rate and it 
has a great impact on the alternative selected; 
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• Future benefits and costs are given more weight with lower discount rates and less weight 
with higher discount rates; and  

• Committing resources to one project may deny the possibility of investing in some other 
project.  This brings up the question of opportunity costs, or what must be foregone in order 
to undertake some alternative. 

 
One should always keep in mind that different points of view may be adopted in analyzing 
alternatives, e.g., project sponsors; people in a specific area or region; and an entire nation.  Each 
point of view may value benefits and costs differently and even define items differently (i.e., one 
person’s cost may be another person’s benefit.). 
  

2.1.2  Cost-effectiveness analysis 
 
A program is cost-effective if, on the basis of life cycle cost analysis of competing alternatives, it is 
determined to have the lowest costs expressed in present value terms for a given amount of benefits. 
Cost-effectiveness analysis is appropriate whenever it is unnecessary or impractical to consider the 
dollar value of the benefits provided by the alternatives under consideration. This is the case 
whenever (i) each alternative has the same annual benefits expressed in monetary terms; or (ii) each 
alternative has the same annual affects, but dollar values cannot be assigned to their benefits. 
Analysis of alternative defense systems often falls in this category (OMB, 1992).  

2.1.3  Benefit-cost analysis 
 
Financial benefit-cost analysis evaluates the effect of a project on the water sector or utility by 
providing projected balance, income, and sources and applications of fund statements (ADB, 2005). 
This can be distinguished from economic benefit-cost analysis which evaluates the project from the 
viewpoint of the entire economy.  In financial benefit-cost analysis, which we will consider here, the 
unit of analysis is the project and not the entire economy nor the entire water sector or utility.  
Therefore, it focuses on the additional financial benefits and costs to the water sector, attributable to 
the project. 
 
Benefit – Cost Analysis is a systematic quantitative method of assessing the desirability of 
government projects or policies when it is important to take a long view of future effects and a broad 
view of possible side-effects (OMB, 1992). 

 
• Both costs and benefits of a project must be measured and expressed in commensurable 

units; 
• It is the main analytical tool used to evaluate water resource and environmental decisions; 
• Benefits of an alternative are estimated and compared with the total costs that society would 

bear if that action were undertaken; and 
• Viewpoint is important - some groups are only concerned with benefits, others are concerned 

only with costs 
 
In benefit – cost analyses, any costs and benefits that are unaffected by which alternative is selected 
should be neglected.  That is, the differences between alternatives need only be considered. 
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Estimates of benefits and costs are typically uncertain because of imprecision in both underlying 
data and modeling assumptions. Because such uncertainty is basic to many analyses, its effects 
should be analyzed and reported (OMB, 1992). Uncertainty may exist in:  objectives, constraints, 
public response, technological change, or extreme events and recurrence. 
 

2.1.3.1  Interest Rate Calculations 
 
Consider investing $100 at a rate of 5%.  At the end of one year the value of the investment would 
be: 
 

105$)05.01(100$1 =+=   F
 

 
Similarly, at the end of 2 years, the value would be 
 

25.110$)05.01(100$)05.01(105$ 2
2 =+=+=   F

 

 
or, generalizing this, we have at the end of t years that an initial investment of $P would be worth 
 

t
t iP F )1( +=

 

 
Put another way, a single payment of Ft available t years in the future is worth  
 

t
t

i
FP 

)1( +
=  

 
and a series of (not necessarily equal) payments Ft available t years in the future is worth 
 

∑
= +

=
T

t
t

t

i
F P 

1 )1(
 

 
Example.  Assume that an initial investment of $50 disbursement at t=0 is required and that this will 
result in $200 receipt at t= 1 year and $150 receipt at t = 2 years with an interest rate of 7% annually 
(see figure). 
 



 
 9 

1 2

$50

$200 $150

0

 
 
What is the Present Value, P, of the given cash flow? 
 

2
2

1
1 )1()1()1( −−− ++++=++= ∑ iFiFCiFCP

t

t
t  

 
P = (                   ) + (                     ) + (                    ) 
 
P = (                   ) $ 
 
What is the Future Value of the given cash flow? 
 

2
1

1
2 )1()1( FiFiCF ++++= +  

 
F = (                   ) + (                     ) + (                    ) 
 
F = (                   ) $ 
 

2.1.4  Financial Analysis 
 
Financial analyses use cash flow analysis and discounting techniques in benefit-cost analyses to 
maximize the rate of return to capital.  Capital is the limiting factor here and maximizing profit is not 
necessarily achieved.  The basic principle is that an investment will be made if revenues in the future 
will repay the cost at a positive rate of interest (North, 1985). 
 
The standard criterion for deciding whether a government program can be justified on economic 
principles is net present value -- the discounted monetized value of expected net benefits (i.e., 
benefits minus costs). Net present value is computed by assigning monetary values to benefits and 
costs, discounting future benefits and costs using an appropriate discount rate, and subtracting the 
sum total of discounted costs from the sum total of discounted benefits. Discounting benefits and 
costs transforms gains and losses occurring in different time periods to a common unit of 
measurement. Programs with positive net present value increase social resources and are generally 
preferred. Programs with negative net present value should generally be avoided (OMB, 1992).   
 
The process proceeds as: 
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• Define each alternative and predict their consequences 
• Place monetary value on consequences 
• Select a discount rate 
• Convert time streams of benefits and costs 

o Construct cash flow diagrams 
o Convert values of costs and benefits at one date to equivalent values at the present (or 

another convenient) time.   
 

ttt CBNB −=  
where tNB  = Net benefits at time t  

tB  benefits at that time  

tC  costs at that time 
 
 The Present Value of net benefits is 

 

∑
+

=
=

T

t t
t

i

NB
 P 

1 )1(
 

 
Often it is convenient to convert a present value to an equivalent annual value.  For this we can use 
the Capital Recovery Factor (CRF) 
 

1)1(
)1(
−+

+
= T

T
T

i
iiCRF  

Then 
 

TCRFPA ⋅=  
 

2.1.5  Discount Rate 
 
In order to compute net present value, it is necessary to discount future benefits and costs. This 
discounting reflects the time value of money. Benefits and costs are worth more if they are 
experienced sooner. All future benefits and costs, including nonmonetized benefits and costs, should 
be discounted. The higher the discount rate, the lower is the present value of future cash flows. For 
typical investments, with costs concentrated in early periods and benefits following in later periods, 
raising the discount rate tends to reduce the net present value (OMB, 1992). 
 
The discount rate measures the rate at which current consumption will be sacrificed to ensure 
consumption (production) later.  Greater sacrifices mean more resources can be devoted to future 
production.  Alternatives discount rates include: 
 

• Zero; 
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• Interest paid to borrow funds for project financing; 
• Internal rate of return; 
• Market interest rate for risk free investments 

 Interest on recently issued government bonds having a maturity date approximately 
equal to the project life 

• Most productive investments (opportunity cost of capital) 
 If funds were committed to a project yielding the highest rate of return first, then to 

subsequent projects in order of rate of return, the IRR of the last project selected 
before funds run out is the MIRR 

• Interest paid on borrowed funds for governments using bond financing 
• US federal practice (Senate Doc. 97, 1962) 

 “Average rate of interest payable by the US Treasury on interest-bearing marketable 
securities outstanding at the end of the fiscal year preceding computation which had 
terms to maturity of 15 years or more” 

 
 See http://waterhome.tamu.edu/NRCSdata/PriceIndexes/Rates.htm for current and 

historic rates. 
 

2.1.6  Examples 
 
Example 1.  (after Linsley, et. al., 1979)  Two alternative plans are considered for a section of an 
aqueduct.  Plan A uses a tunnel, and Plan B uses a lined canal and steel flume.  Both plans yield the 
same revenues over the life of the project. 
 

  
Plan A Plan B 

 Tunnel Canal Canal 
lining 

Flume 

Life 100 yr 100 yr 20 yr 50 yr 
First cost $450,000 $120,000 $50,000 $90,000 
Annual O&M cost $4000 $10,500 

 
Interest rate = 6 % per year 
Study period = 100 years 
 
 Compare the equivalent annual costs of the two plans 
 

1)1(
)1(
−+

+
= N

N

i
iiCRF  

 
where i = 0.06 and N = 20, 50, and 100 years 
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Plan A 
Capital recovery cost for the tunnel $450,000 x 0.060177 $27,080 
Annual maintenance cost $4,000  
Total annual cost $31,080 

Plan B 
Capital recovery cost for canal $120,000 x 0.060177 $7,221 
Capital recovery cost for canal lining $50,000 x 0.087184 $4,359 
Capital recovery cost for flume $90,000 x 0.063444 $5,710 
Annual maintenance cost $10,500 
Total annual cost $27,790 

 
Total investment is $450,000 and $260,000, respectively, for the two projects.  Even though the 
annual O&M costs are lower for Plan A, the annual cost comparison tells us that the extra 
investment is not justified.  Thus Plan B should be selected. 
 
Where the capacity of the project is to be determined, we simply determine the project with the 
maximum net benefits (difference of benefits over costs).  That is: 
 

)()()( xCxBxNBMax −=  
 
where x is the capacity of the project.  Thus 
 

dx
xdC

dx
xdB )()(

=  

 
or 
 

1
)(
)(

=
xdC
xdB  

 
That is, we increase the capacity up to the point where the marginal (incremental) benefits just 
exceed the marginal (incremental) costs and then stop. 
 
Example 2.  (after North, 1985, Ex. 5-1) A flood control district can construct several alternative 
control works to alleviate flooding. These alternatives include the construction of dam A, dam B, 
and a system of levees C.  Each of these works can be built to function alone or together with any 
other or all other projects.  Thus we have a possibility of the following combinations:  ABC, A, B, 
C, AB, AC, and BC.  The life of each dam is 80 years and the life of the levee system is 60 years.  
The cost of capital is 4% .  Information on total investment, operation and maintainence costs, and 
average annual flood damages is given in the table.  Which flood control undertaking is the most 
economical? 
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Table.  Flood Control Project data 
Project Total Investment 

(million $) 
Annual Operation 
and Maintainence 

(thous. $) 

Average Annual 
Flood Damages 

(million $) 
A  6  90  1.10 
B  5  80  1.30 
C  6  100  0.70 
AB  11  170  0.90 
AC  10  190  0.40 
BC  9  180  0.50 
ABC  15  270  0.25 
Do nothing  0  0  2.00 
 
The annual investment costs can be computed for each alternative by multiplying the investiment 
cost by the appropriate capital recovery factor: 
 

1)1(
)1(
−+

+
= T

T
T

i
iiCRF  

 
where T = 80 years for dams and 60 for levees, respectively.  
 

Project Total 
Investment  

($ mln) 

CRF Annual 
Investment 

Costs  
($ mln) 

Annual 
Operation and 
Maintainence 

($ mln) 

Total 
Annual Cost 

($ mln) 

A  6  0.04181  0.251  0.090  0.341 
B  5  0.04181  0.209  0.080  0.289 
C  6  0.04420  0.265  0.100  0.365 
AB  11    0.460  0.170  0.630 
AC  10    0.516  0.190  0.706 
BC  9    0.474  0.180  0.654 
ABC  15    0.725  0.270  0.995 
 
The Incremental Benefit – Cost Ratio Method compares the additional benefit to the cost of any 
alternative compared to other alternatives to find the solution.  The procedure is: 
 

1. Discard any alternative with B/C < 1 
2. Rank order the alternatives from lowest to highest cost 
3. Compute the incremental benefit - cost ratio for the contender versus current best alternative. 

 If that ratio is greater than 1, contender becomes current best. 
4. Repeat until all alternatives have been tested.  Final current best is preferred alternative. 
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Comparison Project Benefits 
($ mln) 

Cost 
($ mln) 

B/C 
Ratio 

ΔB  
($ mln) 

ΔC 
($ mln) 

ΔB/ΔC Conclusion 

∅ → Β B 0.7 0.289 2.42 0.7 0.289 2.4 ∅ < Β 
B → A A 0.9 0.341 2.64 0.2 0.052 3.8 A > B 
C → A C 1.3 0.365 3.56 0.4 0.024 17 C > A 

AB → C AB 1.1 0.63 1.75 -0.2 0.265 -0.75 C > AB 
BC → C BC 1.5 0.654 2.29 0.2 0.289 0.69 C > BC 
AC → C AC 1.6 0.706 2.27 0.3 0.341 0.88 C > AC 

ABC → C ABC 1.75 0.995 1.76 0.45 0.63 0.71 C > ABC 
 
Example 3.  (after Mays and Tung, Example 2.2.1)  Determine the optimal scale of development 
of a hydroelectric project using benefit – cost analysis.  Various alternative size projects and 
corresponding benefits are shown in the table below. 
 

Scale 
(MW) 

Benefits
B 

 ($ mln)

Costs 
C 

($ 
mln) 

Net 
Benefits 

B - C 
($ mln) 

50 18.0 15.0 3.0 
60 21.0 17.4 3.6 
75 26.7 21.0 5.7 
90 29.8 23.4 6.4 
100 32.7 26.0 6.7 
125 38.5 32.5 6.0 
150 42.5 37.5 5.0 
200 50.0 50.0 0.0 

 
The following figures show plots of the (1) project benefits and costs versus capacity, and (2) project 
benefits versus costs.  Using a marginal analysis we find that the optimal capacity is 100 MW. 
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The incremental benefit – cost ratio method to find the same solution as before. 
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     Incremental  
 Comparison Scale (MW) B 

($ mln)
C 

($ mln)
ΔB 

($ mln)
ΔC 

($ mln)
ΔB/ΔC Conclusion

I ∅ → I 50 18.0 15.0 18 15 1.20 ∅ < I 
II I → II 60 21.0 17.4 3.0 2.4 1.25 II > I 
III II → III 75 26.7 21.0 5.7 3.6 1.58 III > II 
IV II → IV 90 29.8 23.4 3.1 2.4 1.29 IV > III 
V IV → V 100 32.7 26.0 2.9 2.6 1.11 V > IV 
VI V → VI 125 38.5 32.5 5.8 6.5 0.89 VI <V 
VII V → VII 150 42.5 37.5 9.8 11.5 0.85 VII < V 
VII V → VIII 200 50.0 50.0 17.3 24.0 0.72 VIII < V 
 

2.2  Demand for Water 
 

2.2.1  Introduction 
 
Consumers purchase goods produced by firms.  They have preferences for some goods over others 
and they choose purchases from a set of feasible options.  A utility function u(x) is a numerical 
representation of consumer preferences.  If one bundle of goods is preferred to another bundle, then 
it must have a higher utility.  Indifference curves are the level sets of a utility function (see Figure 
2.2.1.1). 
 

 

x1 

x2 

dx2

dx1

Better 
bundle area

Worse 
bundle area

Indifference curve 

x1* 

x2* 

Slope = 
MRS12 

u(x1,x2)

Budget line 

 
 

Figure 2.2.1.1.  Indifference curve. 
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Consider the case when there are 2 goods to choose from, x1 and x2.  If the consumer changes 
consumption by a small amount ),( 21 dxdx  but keeps utility constant, say at level uo, then 
 

 
0)( 2

2
1

1
=

∂
∂

+
∂
∂

= dx
x
udx

x
uxdu  (2.2.1.1) 

 
where 

 
2,1=

∂
∂

= i
x
uMU
i

i  (2.2.1.2)
 

 
is the marginal utility of good i or the change in utility due to a small change in xi.  Then using Eq. 
2.2.1.2 in Eq. 2.2.1.1, we can write  
 

 
12

2

1

1

2 MRS
MU
MU

dx
dx

==−  (2.2.1.3)
 

 
where MRSij is the marginal rate of substitution of good i for good j, that is, the rate at which a 
consumer can substitute good i for good j. 
 
 

2.2.2  Consumer’s Problem 
 
Consumers attempt to choose the best bundles of goods that they can afford.  If there are K goods, 
whose quantities are represented by the vector ),,( 1 Kxx L=x , available for consumption with unit 
prices ),,( 1 Kpp L=p  and the total amount of money available to the consumer is m, then the 
consumer must make choices between goods according to a budgetary constraint 
 

 
mxp

k
kk ≤∑=⋅

=

K

1

T xp  (2.2.2.1)
 

 
Consider the case of 2 goods.  The budgetary constraint 
 

 
mxpxp ≤+ 2211  (2.2.2.2)

  
separates the decision space into two regions: (1) a region containing those combinations of goods 
whose purchase would exceed the budget; and (2) a region where those combinations that would not 
exceed the budget (See Figure 2.2.2.1). The slope of the budget line ( ji pp /− ) is the rate at which 
the market will substitute good i for good j.   
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Figure 2.2.2.1.  The consumer’s budget set 
 
Now, in the general case of K goods, the consumer is faced with the problem 
 

 tosubject
)(Maximize xu
 (2.2.2.3)

 

 0≥
≤⋅

x
xp m

 (2.2.2.4)
 

 
That is, the consumer tries for maximize utility while satisfying the budget constraint.  Now, assume 
that the budget constraint (Eq. 2.2.2.4) holds as an equality (all funds are expended or one of the 
goods is actually a savings account) and that the levels of consumption are all positive.  Then we 
have the classical programming problem with a Lagrangian function 
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The first-order optimality conditions for this problem are 
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The first condition (Eq. 2.2.2.6) says that the ratio of the marginal utility to price is constant for all 
inputs 
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That is, a consumer chooses purchases of goods such that the ratio of marginal benefit (marginal 
utility) to marginal cost (price) is equal among all goods.  This ratio, with units of utility/$, is the 
value of the Lagrange multiplier (λ) which is also the ratio of the change in total utility for a change 
in income, or 
 

 m
u

∂
∂

=λ  (2.2.2.10)
 

 
If we write Eq. 2.2.2.9 for two goods, say goods i and j, we have 
 

 
ij

j

i

j

i MRS
p
p

MU
MU

==  (2.2.11)
 

 
which says that the slope of the budget line will equal the slope of the indifference curve. or the ratio 
of the marginal utilities of any two goods equals the ratio of their prices (See Figure 2.2.2.2).  
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Figure 2.2.2.2.  The consumer’s problem and solution. 

2.2.3  Demand 
 
The optimal solution to the consumer’s problem depends on income and prices so solving the 
problem (Eq. 2.2.2.3 and 2.2.2.4) results in an optimal level of consumption ( )m,*  * pxx =  which is 
a function of the prices and the available income.  This is the demand function.  A typical demand 
function is shown in Figure 2.2.3.1.  Often the inverse demand function, ( )m,*  xpp = , is used in 
analyses; this is simply the inverse of the demand function or price as a function of quantity and 
income.  Market demand is the aggregation of all of the individual consumers’ demands.  Market 
demand depends on prices and the distribution of income in the economy. 
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Figure 2.2.3.1.  Typical demand curve. 
 

2.2.4  Willingness-to-pay 
 
Demand is only real (or "effective") when it is accompanied by willingness to pay, in cash or 
kind, for the goods or services offered (Evans, 19921).  The value of a good to a person is what 
that person is willing, and able, to sacrifice for it (willingness-to-pay).  How do we measure what 
a person is willing to pay for a good?  Assume that a farmer has no irrigation water for 
production of a particular crop, but desires to purchase some water.  If one unit of water became 
available, how much would the farmer be willing to pay to obtain that unit of water, rather than 
have no water at all?  Suppose the farmer is willing to pay $38 for this first unit (see Figure 
2.4.1) even though (s)he would prefer to pay less.  Now, suppose that the farmer is willing to pay 
$26 for a second unit of water.  Further, suppose that the farmer is willing to pay $17 for a third 
unit.  According to the figure, at p* = $10 per unit, the farmer would purchase 4 units of water 
for a total cost of $40, but (s)he would have been willing to pay $93 for that water.  Thus, the 
farmer receives a surplus of $53 (consumer surplus) when purchasing the 4 units of water. 
 
Evans (1992) suggests three ways of determining willingness-to-pay from direct information in 
other, similar, situations and from survey information: 
 

• Indirect method, involves analyzing what others in similar circumstances to the target 
population are already paying for services;  

• Direct method (or contingent valuation method), involves asking people to say what they 
would be prepared to pay in the future for improved services; and 

                                                 
1 Evans, Phil, Paying the Piper: An overview of community financing of water and sanitation, Occasional Paper 18, IRC 
International Water and Sanitation Centre, The Hague, The Netherlands, April 1992 
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• Proxy measures, e.g., use of case studies of water vending to provide indicators of 
willingness to pay. 
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Figure 2.2.4.1.  Willingness-to-pay for each additional unit of water. 
 

If we assume that fractional amounts of a unit of a good can be purchased, then we obtain a 
continuous graph, as in Figure 2.2.4.2.  Marginal willingness-to-pay is the height of the curve.  Total 
willingness-to-pay is the sum of the heights of the rectangles between the origin and the particular 
consumption level, x, of interest.  In the case of the continuous curve, willingness-to-pay is the area 
under the curve from the origin and the particular consumption level of interest and this represents 
the gross benefit of purchasing this amount of the good.  The net-benefit from this purchase is the 
willingness-to-pay minus the cost or 
 

 **),(
*

0
xpdmpNB

x
−∫= ηη  (2.2.4.1)

 
 
which is termed the consumer’s surplus. 
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Figure 2.2.4.2.  Willingness-to-pay curve. 
 
Measuring benefit of water use in this manner requires that we can derive the demand curve for the 
water used for a particular purpose.  For marketed commodities with available information on prices 
and quantities we can: (1) derive a demand curve, (2) quantify willingness-to-pay, and (3) use WTP 
to represent benefits.  However, in many cases market prices may not exist, demands may not be 
revealed, and the change in benefits over time may be extremely uncertain.  Examples include (1) 
the benefits of preserving space for recreation, and (2) the benefits derived from damages prevented 
due to pollution controls.  If the physical damages of pollution can be identified and estimated, then 
a monetary value may be placed on them (for an example of applying this to the Aral Sea basin, see 
Anderson, 1997).  Sometimes it is possible to survey people to determine their willingness-to-pay 
for different environmental assets such as environmental preservation, damage reductions, and lower 
risks.  From these survey results we may be able to infer the valuation of the assets.  Indeed, we may 
also be able to infer these values from related markets where values are observable.   
 
The value of municipal water at its source minus any water utility costs is represented by the 
consumers' surplus.  The area under the demand curve for an increment from x1 to x2 is (Gibbons, 
1986) 
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2.2.5  Elasticity (of demand) 
 
The price elasticity of demand is a measure of how responsive consumers are to changes in price.  
The slope of the demand function ( )m,*  * pxx =  is 
 

 dp
dxslope =

 (2.2.5.1) 
 
This quantity depends on the units used to describe the inputs and price.  If we normalize this 
function, we obtain the price elasticity of demand 
 

 p
dp

x
dx

elasticity == ε

 (2.2.5.2) 
 
Consider the following example adapted from Merrett (1997).  Table 2.2.5.1 shows the quantity of 
water demanded for different prices along with the price elasticity of water at various increments.  
Figure 2.2.5.1 plots the demand function for water and illustrates the ranges of elastic and inelastic 
behavior.  Merrett (1997) proposes a cubic form for the demand function 
 
 dcxbxaxp +++= 23  (2.2.5.3) 
 
where a < 0, b > 0, c < 0, and d > 0.  He points out, at low quantities, higher prices for water have 
little effect due to the intense need for the water.  Similarly, at low quantities, higher prices for water 
have little effect due to the abundance of water.  In the middle quantities, changes in price produce 
significant changes in the quantity of water demanded. 
 
Price elasticity of municipal water demand was estimated (Gibbons, 1986) and in-house water use 
was found to be price-inelastic (= -0.23), while sprinkling use was found to be more elastic and 
differ between the Eastern US (= -1.6) and the Western US ( = -0.7).   
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Table 2.2.5.1.  Price Elasticity of Water (adapted from Merrett, 1997) 
Quantity Price ΔQ ΔP ε 

(m3/month) (per m3)    
700 6    

  300 -1 1.8 
1000 5    

  500 -1 1.67 
1500 4    

  500 -1 1 
2000 3    

  500 -1 0.6 
2500 2    

  300 -1 0.21 
2800 1    
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Figure 2.2.5.1.  Demand function for water. 
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2.2.6  Water Values in the US 
 
Table 2.2.6.1 shows data on the value of water for various uses within the United States [Frederrick 
et al. (1996). 

 
Table 2.2.6.1.  National Water Value by Use ($/af) [Frederrick et al. (1996)] 

  Average Median Min Max 
Instream Waste Disposal 3 1 0 12 
 Recreation/F&W 

Habitat 
48 5 0 2,642 

 Navigation 146 10 0 483 
 Hydropower 25 21 1 113 
Offstream Irrigation 75 40 0 1228 
 Industrial 282 132 28 802 
 Thermo Power 34 29 9 63 
 Domestic 194 97 37 573 
 
Table 2.2.6.2 shows data on the value of water for recreations and fish & wildlife uses within the 
United States and Table 2.2.6.3 shows the value of water use in irrigated agriculture. 
 

Table 2.2.6.2.  Water Values for Recreation/F&W Habitat ($/af) [Frederrick et al. (1996)] 
 Average Median Min Max 
Fishing 34 5 0 158 
Wildlife Refuge 24 6 1 44 
Fishing & Whitewater 1042 1505 6 3 
Whitewater 9 9 5 4 
Shoreline Recreation 19 19 17 2 
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Table 2.2.6.3.  Water Values by Crop ($/af) [Frederrick et al. (1996)] 
 Average Median 
Alfalfa 51 44 
Apples 151 151 
Barley 33 39 
Beans 58 58 
Carrots 550 550 
Corn 91 98 
Cotton 114 103 
Grain Sorgham 57 44 
Hay 36 36 
Hops 18 18 
Lettuce 208 208 
Melons 54 54 
Onions 40 40 
Pears 137 137 
Potatoes 710 784 
Rice 86 86 
Safflower 53 58 
Soybeans 121 127 
Sugar Beets 121 119 
Tomatoes 686 686 
Vegetables 206 206 
Wheat 51 47 
 
 

2.3  Supply of Water 

2.3.1  Introduction 
 
Firms produce outputs from various combinations of inputs.  The objective of a firm is to maximize 
profit subject to constraints imposed by technological capabilities.  As long as inputs are costly, we 
can limit our consideration to those combinations of inputs that will produce the maximum output for 
a given level of inputs.  This represents the boundary of the so-called production possibilities set and 
it is called the production function (see Figure 2.3.1.1) 
 
 )(xfy =  (2.3.1.1) 

 
Level curves of the production function are called isoquants where 0)( yf =x  and y0 is a fized level 
of output.  For a firm producing a single output (y) from two inputs (x1 and x2), the isoquants may 
look like those in Figure 2.3.1.2. 
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Figure 2.3.1.1.  Production function. 
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Figure 2.3.1.2.  Isoquants 

 
 
Suppose that a firm wants to increase the amount of one input and decrease the amount of another 
while maintaining production at a constant level of output 0)( yf =x .  So if production is to remain 
constant, we can write 
 

0
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where 
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 (2.3.1.2) 

 
is the marginal product or the additional output available from using an additional unit of input xi in 
the production process.  Now, from Equations 2.3.1.1 and 2.3.1.2, we have 
 

12
2

1

1

2 TRS
MP
MP

dx
dx

=−=  (2.3.1.3) 

 
where TRS12 is the technical rate of substitution.  That is, the rate at which x1 can replace x2 (see 
Figure 2.3.1.3).  TRS12 is the slope of the isoquant  021 ),( yxxf = . 
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Figure 2.3.1.3.  Technical rate of substitution. 

 
Revenue R is the amount of money that a firm receives for selling an amount y of a product for a 
particular price p: 
 

pyR =  (2.3.1.4) 
 

Marginal revenue is the change in revenue for a change in the output or the quantity sold 
 

dy
dpyp
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Example:  Consider the case of a linear inverse demand function: 
 

byayp −=)(  (2.3.1.6) 
 
Then, revenue is given by the quadratic function 
 

2byaypyR −==  (2.3.1.7) 
 
and marginal revenue, the derivative of revenue with respect to output, is 
 

bya
dy
dR 2−=  (2.3.1.8) 

 
Thus, the slope of the marginal revenue curve is twice as steep as that of the demand curve (see 
Figure 2.3.1.4).  
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Figure 2.3.1.4.  Marginal revenue and demand curves for a linear demand function. 

 
 
Profit is the difference between the revenue a firm receives and the cost that it incurs 
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2.3.2  The Firm’s Problem 
 
The firm’s problem is to maximize profit 
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=

N

n
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The first-order optimality conditions for this problem are 
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This condition says that the value of the marginal product (price times marginal product nxfp ∂∂ ) 
for input n must equal the price of that input (wn).  This tangency condition is illustrated in Figure 
2.3.2.1. 
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Figure 2.3.2.1.  Profit maximization. 

 
We can define a variant of the firm’s problem, where a firm strives to minimize its costs while 
producing a specified level of output (y0)  
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The Lagrangian in this case is  
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The first-order optimality conditions are 
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Writing the first condition for two products i and j, we have 
 

ij
j

i

j

i TRS
MP
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w
w

−==  (2.3.2.7) 

 
That is, the technical rate of substitution equals the price ratio.  The tangency condition for 
optimality in this case is illustrated in Figure 2.3.2.2. 
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Figure 2.3.2.2.  Cost minimization. 

 
 
The total cost of producing at output level, y, is  
 

{ })(:min)( xfyxwyTC rrr
=⋅=  (2.3.2.8) 

 
The firm’s total cost is comprised of fixed (FC) and variable (VC) costs  
 

)()( yVCFCyTC +=  (2.3.2.9) 
 
The firm’s average cost is the cost per unit to produce y units of output, or 
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y
yTCAC )(

=  (2.3.2.10) 

 
The firm's marginal cost is the cost of producing an additional unit of output 
 

dy
dVC

dy
dTCMC ==

 (2.3.2.11) 
 
Example:  How much water should a water industry firm sell (produce) and at what price?  The 
firm’s problem can be defined as 
 

)(Maximize yTCpy −  (2.3.2.12) 
 
The first-order optimality conditions are 
 

)()( yMCpy
dy
dpyMR =+=

 (2.3.2.13) 
 

Marginal Revenue = Marginal Cost 
 

An increase in output has two effects (1) adding p units to the benefits, and (2) causing the value 
placed on each unit of output to change by dydpp /=′ (Dorfman, 1962).  If the firm is competitive, 
then it has no market power, and 0==′ dydpp , and the price p is constant and fixed by the 
market.  In this case, the first-order conditions are 
 

MCp =
 (2.3.2.14) 

 
as illustrated in Figure 2.3.2.3. 
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Figure 2.3.2.3.  Average cost (AC), and Marginal cost (MC) curves. The optimal 
level of production occurs where the demand intersects the MC curve. 

 
However, if the firm is monopolistic, it is unlikely to take the output price as given, since the 
monopolistic firm recognizes its influence over market price.  The firm is free to choose the price 
and level of output so as to maximize its profit.  Since for a monopoly the price is not constant, but is 
a function of output, we have 
 

MCy+p
dy
dpMR ==  (2.3.2.15) 

 
If the monopolistic firm chooses to maximize profit, then its chosen price and level of output will 
be pM and yM in order to set MR = MC.  However, the firm knows that consumers are willing to pay 
a price p>MC (see Figure 2.3.2.4).  Since the MR curve lies below the demand curve, the 
monopolistic firm will produce (yM) which is less than the amount (yC) which a competitive firm 
would produce.  That is, the price will be higher and the output lower for the monopolistic firm.  
Government regulatory commissions often have substantial power over the prices charged by public 
utilities.  Without regulation, the firm will charge the price pM and produce yM.  By setting a 
maximum price of pC, the commission can make the monopolist increase output, thus making price 
and output correspond more closely to what they would be if the industry were organized 
competitively.  Commissions often set prices at the level at which it equals average cost.   
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Figure 2.3.2.4.  Optimal production level and price for a competitive firm and a monopolistic 

firm producing a good with a linear demand curve p(q) = a - bq. 
 

2.3.3  Crop Production Functions with Water  

2.3.3.1  Introduction 
 
The fundamental building block for the estimation of the demand for and value of water in the 
agricultural sector is a production function that relates crop production to the use of water and other 
inputs.  An ideal crop-water production model should be flexible enough to address issues at the 
crop, farm, or basin levels.  The production function should allow the assessment of policy-related 
problems, and results should be transferable between locations.  In addition, the model should be 
simple to operate, requiring a small data set; easily adjustable to various farming conditions; and 
sufficiently comprehensive to allow the estimation of externality effects.  In addition, the interaction 
between water quantity and quality and the water input/production output should be clearly defined 
(Dinar and Letey 1996).   

 
Existing modeling approaches to crop-water relationships (for example, surveys by Hanks 1983 and 
Vaux and Pruitt 1983) address economic, engineering, and biological aspects of the production 
process.  These surveys conclude that crop-water relationships are very complicated and that not all 
management issues have been fully addressed in one comprehensive model.  In the following, the 
advantages and disadvantages of alternative production functions are summarized. 
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2.3.3.2  Types of Production Function Models 
 
Four broad approaches to production functions can be identified:  
 

1. Evapotranspiration and transpiration models: 
2. Simulation models; 
3. Estimated models; and  
4. Hybrid models that combine aspects of the first three types.   

 
The following overview on production functions related to water use draws heavily on Dinar and 
Letey (1996), chapters 2 and 3, for the first three types of models. 
 

Evapotranspiration and Transpiration Models 
 
Evapotranspiration models are physical models that predict crop yield under varying conditions of 
salinity levels, soil moisture conditions, and irrigation strategies.  They assume a linear yield-
evapotranspiration relationship and are usually site-specific and very data intensive (see also Hanks 
and Hill 1980). 

 
A basic yield-seasonal evapotranspiration relationship is represented by: 

 
)/1(*1/ maxmax EEkcYY −−=  (2.3.2.1) 

 
where 

 Y = actual yield (ton/ha) 
 Ymax = maximum dry matter yield (ton/ha) 
 kc = crop coefficient 
 E = actual evapotranspiration (mm) 
 Emax = maximum evapotranspiration (mm) 

 
The parameter E can be estimated by  

 
doqrwE −−Δ++=  (2.3.2.2) 

 
where 

 w = applied water (mm) 
 r = rainfall (mm) 
 Δq = change in soil water storage (mm) 
 o = runoff 
 d = drainage 
 

Transpiration models use a similar approach but measurement of transpiration is more difficult 
because it is difficult to separate it from evaporation.  Although evapotranspiration and transpiration 
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models capture important aspects of crop-water relationships, they have limited ability to capture the 
impacts of non-water inputs, and are of limited use for policy analysis.  

 

Simulation Models 
 
Within the category of simulation models, Dinar and Letey (1996) distinguish between holistic 
simulation models, that simulate in detail the production process of one crop and specific models, 
that focus on one production input or the subsystems associated with a particular production input. 

 
Detailed, data-intensive holistic models have been developed for most of the basic crops and a series 
of other agricultural production features (e.g., peanuts potatoes, maize, soybeans, and spring wheat). 
 See also the CAMASE register, which currently includes more than 200 agro-ecosystem models or 
similar registers (CAMASE 1997).  COTMOD, a model for cotton, for example, can be used to 
simulate the effects of various irrigation schedules, fertilizer application rates, and other 
management practices on cotton yield (Marani 1988).  The relatively complicated data generation 
through field experiments and calibration procedures prevents the easy transferability of this model. 
 
Dinar and Letey (1996) specify a model, in which annual applied water, irrigation water salinity, 
published coefficients relating crop sensitivity to salinity, the relationship between yield and 
evapotranspiration, and the maximum evapotranspiration for the area are the input parameters.  
Outputs include crop yield, amount of drainage water, and salinity of the drainage water.  It is 
assumed that all nonwater-related inputs are applied at the optimum level.  Water is the only limiting 
factor in the production process. 

 

Estimated Production Function Models 
 
Estimated production functions are more flexible than other model types.  However, specification 
and estimation procedures must comply with plant-water relationships: (1) plant yield increases as 
water quantity increases beyond some minimum value; (2) yield possibly decreases in a zone of 
excessive water applications; (3) yields decrease as the initial level of soil salinity in the root zone or 
the salt concentration in the applied irrigation water increase beyond some minimum value; and (4) 
the final level of root zone soil salinity decreases with increasing irrigation quantities (except for 
possible increases, where relatively insufficient water quantities have been applied) (Dinar and 
Letey 1996).  In order to meet these requirements, polynomial functions have been applied in many 
production functions.  Dinar and Letey (1996) present the following quadratic polynomial form in 
the case of three production inputs:   
 

2
9

2
8

2
76543210max/ uasawausauwaswauasawaaYY +++⋅+⋅+⋅++++= (2.3.2.3) 

where 

 Y  = yield 
 Ymax  = maximum potential yield 
 w  = water application to potential evapotranspiration, 
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 s  = salinity of the irrigation water, 
 u  = irrigation uniformity, 
 ai  = estimated coefficients (i=1,..9) 
 

The quadratic form implies that an increase in the level of one of the decision variables results in a 
constant change in the level of the dependent variable up to a point.  Any further increase results in 
an opposite response (positive-diminishing marginal-productivity zone on the production surface), 
followed by a zone of negative marginal productivity.   

 

Hybrid Production Function Models 
 
Hybrid models, which draw on the strengths of each production function approach, may offer 
considerable advantages to the three types of approaches taken individually.  As noted above, each 
of the three basic methodologies for production functions have some weaknesses.  Particularly 
limiting may be the data requirements for any given approach.  It is likely that, for some 
relationships embodied in the model, available experimental and non-experimental data, especially 
on the interrelationships of water use, resource degradation, and production, may be inadequate.  
Several reasons can account for this.  Non-experimental data (cross-section and time series data) 
collected by government agencies or targeted surveys rarely can adequately measure or control for 
water and important environmental variables (like water table depth and soil and water quality).  
Generation of this type of data can also be difficult, expensive, and often impractical, if not 
impossible, to achieve. 

 
In many instances, however, data are not entirely absent.  If data are relatively sparse, the available 
observations may not be adequate for statistical analysis but can be useful in calibrating generalized 
versions of simulation models.  When important bio-physical and environmental variables in the 
study are inadequate or unavailable, simulation models can be used to generate pseudo-data.  
Pseudo-data are not true historical data, but rather are derived from process models replicating the 
real-world processes in computer experiments.  Observations are generated by repeatedly solving the 
model for different initial values, and by parametrically varying input or output quantities and 
values.  Simulation models are practical substitutes for complex biophysical experiments (or even 
non-experimental data), where it is often difficult to isolate the impacts of important policy, 
management, or environmental variables on output variables.  In simulation models, the analyst can 
control institutional, technological and environmental factors, which is not possible with real-world 
experiments. 
 

2.3.3.3  Example:  Production of wheat in the Maipo basin, Chile 
 
This example is adapted from Rosegrant et al. (2000).  In agricultural production, water is allocated 
to crops according to their water requirements and economic profitability.  Water demand can be 
determined in an optimization model based on empirical agronomic production functions for 
agriculture.  The relationship between crop yield and seasonal applied nonsaline water provides 
values of crop yield under various water application, irrigation technology, and irrigation water 
salinity.  The production function can be used directly used in an optimization model to calculate 
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crop yields with varying water application, salt concentration, and irrigation technology.  The crop 
yield (production) function is specified as follows: 
 

)]/ln()/([ max2max10max ExaExaayy ′+′+=  (2.3.3.1) 
 
where 

cbubba 2100 ++=  
cbubba 5431 ++=  (2.3.3.2) 
cbubba 8762 ++=  

 
and 

y   crop yield (metric tons [mt]/ha), 
ymax  maximum attainable yield (mt/ha) 
a0, a1, a 2   coefficients,  
b0 – b8   coefficients, 
x’   infiltrated water (mm) 
Emax  maximum evapotranspiration (mm) 
c     salt concentration in water application (dS/m).  Use the factor 1.14 to convert 

dS/m to g/L, and 
u     Christiensen Uniformity Coefficient (CUC). 

 
Uniformity (CUC) is used as a surrogate for both irrigation technology and irrigation management 
activities.  The CUC value varies from approximately 50 for flood irrigation, to 70 for furrow 
irrigation, 80 for sprinklers, and 90 for drip irrigation, and also varies with management activities.  
By including explicit representation of technology, the choice of water application technology can 
be determined endogenously.  The coefficients for the function in Eq. 2.3.3.1 as estimated by 
Rosegrant et al. (2000) are shown in Table 2.3.3.1.  Using these coefficients in Table 2.3.3.2. 
 

Table 2.3.3.1.  Coefficients for the Production Function. 
 

Coefficient Wheat   
B1 0.284973 B5 -0.81096
B2 1.153264 B6 0.030845
B3 0.183139 B7 0.141539
B4 -0.05615 B8 1.181461

  B9 -0.03203
 
 

Table 2.3.3.2.  Coefficients for the Production Function. 
 

Coefficient Wheat 
a0 1.037233
a1 -0.35431
a2 0.937176
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For the wheat produced in the Maipo basin in Chile, we have 
 

Emax = 535.5 mm/m2/yr  
ymax = 6 mt/ha 

 
A typical crop yield function for wheat in the Maipo river basin is shown in Figure 2.3.3.1 and the 
data are shown in Table 2.3.3.3.  In this figure and the table, the input, denoted x, is actually  
 

hamExx /000,10** 2
max′=  (2.3.3.3) 
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Figure 2.3.3.1.  Production function for wheat as a function of applied water  
(CUC=0.7, salinity = 0.7). 

 
In Fig. 2.3.3.1, it is evident that a certain amount of water must be applied to the crop before any 
production can result.  Output increases at an increasing rate as the first few units of input are added; 
it continues to increase at a decreasing rate at higher input levels (Law of Diminishing Returns). 
 
Average product is obtained by dividing the output by the input  
 

x
y

AP =  (2.3.3.4) 

 
and it measures the efficiency of the input used in the production.  Marginal product is the change in 
the output resulting from a unit increment in input, that is 
 

)( 2
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1
max x

a
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a
Y
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dyMP +==  (2.3.3.5) 
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AP and MP are shown in Fig. 2.3.3.2. 
 

0.000

0.001

0.001

0.002

0.002

0.003

0 5,000 10,000 15,000 20,000
Input, x (m3/ha)

A
P,

 M
P AP

MP

I II III

 
Figure 2.3.3.2.  Average and marginal productivities versus input. 

 
The production function can be broken into three regions, depending on the efficiency of resource 
use: 
 
Region I MP > AP, not enough input is being used 
 
If the product has value, input use should be increased until Region II is reached, since the physical 
efficiency of the input increases throughout Region I.  It is not reasonable to cease  using the input 
while efficiency is increasing. 
 
Region II MP is decreasing and MP < AP, just enough input is being used 
 
Region II defines the area of economic relevance and optimal input use must be in this range.  The 
exact level of production and resource use depend on the input and output prices. 
 
Region III MP < 0, too much input is being used 
 
Even if the input is free, it will not be used in this stage, since maximum output occurs at the 
boundary of Region II and further inputs simply decrease output. 
 
Table 2.3.3.3 includes the costs of production for this example.  Fixed costs, FC, are $100/ha and 
include ground preparation and other costs.  Variable cost, VC, is computed by multiplying the 
input, x, by the unit price of the input, w ($0.05/m3 in this example) 
  

wxVC =  (2.3.3.6) 
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The shape of the VC curve depends on the shape of the production function (see Fig. 2.3.3.3).  Total 
cost, TC, is simply the sum of FC and VC. 
 
Average costs (AC) follow in the same way that average production does, they are the costs divided 
by the amount of the output 
 

y
wx

y
VCAC ==  (2.3.3.7) 

 
Average variable cost (AC) is inversely related to the average product, attaining a minimum when 
AP is at a maximum.  When AC is decreasing, the efficiency of the input is increasing and efficiency 
is maximum when AC is minimum.  Marginal cost (MC) is the change in the cost per unit of input 
(see Fig. 2.3.3.4) 
 

dx
dy
w

dy
dVCMC ==  (2.3.3.8) 

 
This is the slope of the cost curve cost and its value is the cost of producing an additional unit of 
output. 
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Figure 2.3.3.3.  Fixed, variable and total costs versus output. 
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Figure 2.3.3.4.  Average and marginal costs and the point where p = MC. 

 

To determine the most profitable level of input, or the most profitable level of output, profit  
 

wxpy −=π  (2.3.3.9) 
 
is maximized, where w is the price of the produced good (wheat in this example and p = $230/mt).  
The problem is to find the level of x which maximizes this function.  The derivative with respect to 
input must be set equal to zero 
 

0=−= w
dx
dyp

dx
dπ  (2.3.3.10) 

 
We can rearrange this expression to yield 

 

p
w

dx
dy

=  (2.3.3.11) 

or 

dx
dy
wp =  (2.3.3.12) 

 
resulting in  
 

MCp =  (2.3.3.13) 
 
This condition is shown in Fig. 2.3.3.4.   
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Figure 2.3.3.5.  Profit versus output. 
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Table 2.3.3.3.  Various production and cost data for wheat. 
 

Input Product Ave. Prod. Marg. Prod. Fix. Cost Var. Cost Total Cost Ave. FC Ave. VC Ave. TC Marg. CostTotal Val. Prod. Profit 
X 

(m3/ha) 
Y 

(mt/ha) 
AP=Y/X 
(mt/m3) 

MP 
(mt/m3) 

TFC 
($) 

TVC 
($) 

TC 
($) 

AFC=FC/Y 
($/mt/ha) 

AVC=AC/Y
($/mt/ha) 

ATC=TC/Y
($/mt/ha) 

MC 
($/mt/ha)

TVP= py*Y 
($/ha) 

� 
($/ha) 

2142 0.22 1.030E-04 4.122E-04 100 107.1 207.1 453.1 485.3 938.3 938.3 50.8 -156.3 
3213 2.08 6.460E-04 1.518E-03 100 160.7 260.7 48.2 77.4 125.6 32.9 477.4 216.7 
4284 3.27 7.628E-04 1.005E-03 100 214.2 314.2 30.6 65.5 96.1 49.7 751.6 437.4 
5355 4.10 7.652E-04 7.094E-04 100 267.8 367.8 24.4 65.3 89.7 70.5 942.4 574.7 
6426 4.70 7.310E-04 5.167E-04 100 321.3 421.3 21.3 68.4 89.7 96.8 1080.4 659.1 
7497 5.14 6.855E-04 3.812E-04 100 374.9 474.9 19.5 72.9 92.4 131.2 1182.0 707.2 
8568 5.46 6.378E-04 2.807E-04 100 428.4 528.4 18.3 78.4 96.7 178.1 1256.9 728.5 
9639 5.70 5.916E-04 2.032E-04 100 482.0 582.0 17.5 84.5 102.1 246.0 1311.5 729.5 
10710 5.87 5.480E-04 1.416E-04 100 535.5 635.5 17.0 91.2 108.3 353.0 1349.9 714.4 
11781 5.98 5.076E-04 9.151E-05 100 589.1 689.1 16.7 98.5 115.2 546.4 1375.4 686.4 
12852 6.04 4.703E-04 4.992E-05 100 642.6 742.6 16.5 106.3 122.9 1001.6 1390.2 647.6 
13923 6.07 4.359E-04 1.486E-05 100 696.2 796.2 16.5 114.7 131.2 3365.0 1395.9 599.7 
14994 6.06 4.042E-04 -1.510E-05 100 749.7 849.7 16.5 123.7 140.2 -3311.3 1394.0 544.3 
16065 6.02 3.749E-04 -4.100E-05 100 803.3 903.3 16.6 133.4 150.0 -1219.7 1385.4 482.1 
17136 5.96 3.479E-04 -6.360E-05 100 856.8 956.8 16.8 143.7 160.5 -786.1 1371.1 414.3 
18207 5.88 3.228E-04 -8.351E-05 100 910.4 1010.4 17.0 154.9 171.9 -598.7 1351.7 341.3 
19278 5.77 2.995E-04 -1.012E-04 100 963.9 1063.9 17.3 167.0 184.3 -494.2 1327.8 263.9 
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2.3.4  Opportunity Cost 
 
Private firms operating in a market value productive resources as the cost to procure them in the 
market.  We need a somewhat broader concept of cost here.  The question we ask ourselves is:  
“What could have been produced with these productive inputs had they not been used in the current 
alternative?”  This is the opportunity cost of using the inputs in the current alternative being 
considered.  It is the maximum value of the other outputs we could have produced had we not used 
the resources to produce the item in question (Field, 1994).  Opportunity costs include the out-of-
pocket expense that the private firm operating in a competitive market considers, but they are 
broader than this. 
 
Example:  A manufacturing process may produce waste products that are discharged to a nearby 
stream.  Downstream these production residuals produce environmental damage, which are the real 
opportunity costs of the production process, even though they do not show up as costs in a profit-and 
loss statement. 

2.3.5  Average Cost Pricing  
 
The demand curve (D-D) of the consumers of a water utility and the utility's Average Cost (AC) and 
Marginal Cost (MC) curves are given in Figure 2.3.5.1.  Recall that the MC is less than the AC 
where the latter is declining and greater than AC where the latter is rising.  If a single price is 
charged so as to "cover" costs, while clearing the market, that price can only be equal to OT, since at 
a price OT, the quantity OA would be demanded, the production of which involves an average cost 
of OT.  At this solution, zero profits are earned; price equals unit cost.  But this is not the solution 
that corresponds to the best use of society's resources.  To see this, consider the units of output 
between OB and OA.  For each of these units the marginal cost--the additional cost of producing the 
unit considered--is greater than the amount anyone is willing to pay for the extra unit supplied---the 
consumers' marginal value in use (D-D, the marginal willingness to pay). The quantity OB is 
demanded at price OU, and, if any larger quantity is to be taken by consumers, the price will have to 
be reduced below OU.  But the marginal cost is higher than OU throughout the range being 
considered, which means that there are alternative uses of the resources entering into this MC which 
consumers value more highly than what those resources can produce in the use considered here.  The 
solution for best use of resources is to produce just up to the point where the MC begins to exceed 
the price that consumers are willing to pay for the additional unit produced; that is, the correct output 
is OB at the marginal-cost price OU.  (Hirshleifer et al., 1960) 
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Figure 2.5.1.  Average cost (AC), and Marginal cost (MC) curves. The optimal level 

of production occurs where the demand intersects the MC curve. 
 

2.3.6  Criteria for Decision Making 
 
Efficiency can be defined as an allocation of resources where the net benefits from the use of those 
resources is maximized.  Net benefits are the excess of benefits over costs.  How do we measure 
benefits and costs? 
 
Environmental goods and services have costs associated with them even when they are produced 
without human input.  Opportunity costs are the net benefits foregone because resources providing 
services can no longer be used in the next most beneficial use.  For example, consider a river.  
Possible uses include (1) white-water rafting, and (2) hydroelectric power production.  Constructing 
a dam for the purpose of power production would flood rapids that are used for the purpose of 
rafting.  The opportunity cost of saving the river for rafting is the net benefit of the power production 
that is foregone.  The marginal opportunity cost curve is the supply curve for a good in a competitive 
market.  The total cost equals the area under the marginal cost curve.  The net-benefits are the area 
under the demand curve above the supply (marginal cost) curve.  The net-benefits will be maximized 
when the output level and price are set at the point where the marginal benefit and marginal cost 
curves intersect. 
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This section is largely adapted from Hutchens and Mann2.  Figures 2.3.6.1 – 2.3.6.4 illustrate the 
roles of demand and supply functions, in the theoretical derivation of consumers' and producers' 
surpluses, and show the proportioning of each as a result of market interaction.  Figure 2.3.6.1 
presents a demand curve and the total utility derived by consumers in the consumption of quantity 
x0.  The negative slope of the demand curve is derived from the definition of demand, which states 
that for any commodity that can be purchased in a market, the quantity demanded in a given period 
of time varies inversely with the price, other things equal.  The demand curve consists of the locus of 
points of marginal utility associated with each incremental unit of a commodity consumed.  
Consequently, total utility is the integral represented by the area under the demand curve.   
 
The area under the demand curve within the points O, p1, A, and x0 represents the maximum amount 
consumers would be willing to pay for the consumption of x0 units of the commodity rather than go 
without it.  This maximum willingness to pay reflects the total utility or benefit to the consumer.  
However, resources were expended to produce that output and the value of those expended resources 
must be deducted from the total benefit to determine the net benefit.  Figure 2.3.6.2 illustrates the 
cost of resources (factors of production) required to produce x0.  The supply curve represents the 
locus of marginal cost associated with producing each increment of commodity x.  The integral of 
that function, represented by the area under the supply curve delineated by points O, p2, A, and x0, is 
the total value of the resources required to produce x0.  This cost represents the minimum amount 
that the producer will accept for x0 units and, therefore, the minimum amount that the consumer must 
pay. 
 

 Price, p 

Output, y 

Demand 

p1 

x0

Total
Utility 

A

0 
 

Figure 2.3.6.1.  Net-benefits for a linear demand function and constant marginal costs. 
 

                                                 
2 Hutchens, A.O., and P.C. Mann , Review of Water Pricing Policies, Institutions and Practices in Central Asia, 
Environmental Policy and Technology Project, US Agency for International Development, Almaty, Kazakhstan, 1998. 
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Figure 2.3.6.2.  Marginal Opportunity Cost Curve for a constant marginal costs. 

 
Figure 2.3.6.3 presents the results of superimposing Figure 2.3.6.2 onto Figure 2.3.6.1.  The total 
utility or benefit illustrated in Figure 2.3.6.1 minus the total factor cost in Figure 2.3.6.2 yields the 
total surplus net of resource costs delineated by p2, p2, A.  This, then, represents the difference 
between the maximum the consumer would be willing to pay rather than go without and the 
minimum he must pay in order to cover costs of production.  It can also be viewed as the total net 
benefit to society. 
 
The crucial issue of how this surplus or net benefit is shared or proportioned between producers and 
consumers is determined by the interaction of supply and demand in the market to determine the 
market price, which is illustrated in Figure 2.3.6.4.   The area O, p0, A, x0, represents the amount that 
the consumer actually pays and, also, the amount that the producer actually receives.  Therefore, the 
price line p0, A, divides the total surplus into the amount the consumer would have been willing to 
pay, but did not have to, (consumers' surplus) and the amount in excess of what the producer would 
have been willing to accept, but was able to realize more (producers' surplus).  Total costs shared in 
proportion to producers' and consumers' surpluses will be shared in proportion to benefits received, 
which satisfies the economic equity criterion.   For most commodities, this would be automatically 
taken care of if there were an open competitive market; however, water and the necessary 
infrastructure to control it tend to exhibit some common property inflexibility and irreversibility 
characteristics that hinder a purely competitive market reallocation of water. 
 
Output from the Egyptian Agricultural Sector Model (EASM) was used to derive estimates of 
consumers' and producers' surpluses under both financial and economic (free market) prices 
(Huchens and Mann, 1998).  A run of EASM89 model derived the following estimates of producers' 
and consumers' surpluses: 
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                    Base Case            Free Market  . 
           (1986)       (EASM89) 
 
 Consumers' surplus        10067       55        6767        32  
 Producers' surplus        8236       45         14662        68 
 Total surplus   18303     100%       21449      100% 
 
This shows that under 1986 financial price conditions, i.e., actual price controls and subsidies, 
consumers realized 55% and producers 45% of the "surplus value" in the agricultural sector.  Under 
free market conditions, i.e., elimination of price, area and procurement controls, consumption 
subsidies, input subsidies and trade barriers,  the proportions were estimated to be 32% consumers' 
surplus and 68% producers' surplus.  The point to be realized from this is that, under free market 
conditions where farmers are not restricted by production quotas and administratively set prices, 
they will realize financial benefits that will enable him to pay for water services. 
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Figure 2.3.6.3.  Maximum net-benefits for linear demand and constant marginal costs. 
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Figure 2.3.6.4.  Maximum net-benefits for linear demand and constant marginal costs. 

 

2.3.7  Externalities 
 
The exclusivity of property rights is often violated, e.g., when a decision maker does not bear all of 
the consequences of a decision.  Consider an example where a factory is producing a product and 
discharging waste to a nearby river.  A hotel downstream of the factory uses the river for recreation. 
 If there are different owners for the factory and the hotel, then an efficient use of the water in the 
river is not likely to occur.  That is, the factory owner may not bear the cost of reducing business at 
the hotel as a result of the production decisions and resulting effluent discharge.  The factory is 
likely to discharge too much effluent for a socially optimal solution. 
 
An externality exists whenever the welfare of some agent (firm or consumer) depends on its own 
activities and the activities of some other (external) agent as well.  In the above example, the 
additional cost to the hotel as a result of the factory discharge is an externality.  
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Figure 2.3.7.1.  Effect of externality on production. 

 

2.3.8  Production of Multiple Outputs 
 
Previously, we have dealt with the production of a single output from multiple inputs.  Suppose one 
input, x (water, say), can be used to produce two products, y1 (irrigation, say) and y2 (recreation, say) 
and that all other inputs to produce the outputs are fixed.  So, the resource manager must decide how 
much input to allocate to the production of each output.  If input x is unlimited, then the answer is 
found from equating the price of the input to the value of the marginal product of the input in 
production.  When the input is limited, then the optimum amount of input can not be used in 
production of each output. 
 
Production possibility curves (product transformation curves) represent the combinations of products 
that can be produced with a given set of inputs.  Each point on the curve represents combinations of 
outputs produced using equal amounts of the input.  A production possibility curve can be derived 
from two production functions (see Figure 2.3.8.6 and Table 2.3.8.1).  The production functions use 
the same input x (water).  Suppose that 10,000 m3/ha of water are available.  By using all 10,000 
units of input on y1, we can produce 5.8 mt/ha of wheat, or if all 10,000 units are used in y2, 7.5 
mt/ha of corn can be produced.  We can consider many combinations between these two extremes.  
These combinations represent some of the production possibilities for 10,000 units of input; they are 
presented in Table 2.3.8.1 and Figure 2.3.8.2. 
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Figure 2.3.8.1.  Production functions for wheat and corn. 

 
Table 2.3.8.1.  Production Functions for Wheat and Corn. 

 

Production functions  
for wheat and corn 

 Production Possibilities 
for x = 10000 m3/ha 

Water Wheat  Water Corn  Wheat Corn 
x 

(m3/ha) 
y1 

(mt/ha) 
 x 

(m3/ha) 
y2 

(mt/ha) 
 y1 

(mt/ha) 
y2 

(mt/ha) 
0 0.00  0 0.00  5.8 0.0 

536 0.00  883 0.00  5.6 0.0 
1071 0.00  1765 0.00  5.3 0.0 
1607 0.00  2648 0.00  4.9 0.5 
2142 0.22  3530 1.21  4.5 2.0 
3213 2.08  5295 3.87  3.8 3.5 
4284 3.27  7060 5.60  3.0 4.6 
5355 4.10  8825 6.83  1.8 5.5 
6426 4.70  10590 7.74  0.2 6.3 
7497 5.14  12355 8.43  0.0 6.9 
8568 5.46  14120 8.96  0.0 7.5 
9639 5.70  15885 9.37    
10710 5.87  17650 9.68    
11781 5.98  19415 9.91    
12852 6.04  21180 10.08    
13923 6.07  22945 10.19    
14994 6.06  24710 10.26    
16065 6.02  26475 10.28    
17136 5.96  28240 10.27    
18207 5.88  30005 10.23    
19278 5.77  31770 10.17    
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Figure 2.3.8.2.  Production possibilities curve for wheat and corn with input of 10,000 m3/ha of 

water. 
 
Now, let’s consider the problem of the farmer in this case.  The decision to be made is how to 
allocate the scarce resources, ),...,( 1 Jxx=x , to the production of various combinations of outputs, 

),...,( 1 Iyy=y .  The objective is to maximize the farm income while satisfying the constraints of 
the production function.  In general, we can write this problem as (Willis and Finney, 2000) 
 

0),(
tosubject

),(maximize

=xy

x
xy

f

U

 (2.3.8.1) 

 
Form the Lagrangian function 
 

),(),(),,( xyxyxy fUL λλ −=  (2.3.8.2) 
 
The optimality conditions are 
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Now, if the second of these equations is written for two products i and k, we have 
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but, from the total derivative of the production function, we have 
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where MRSi,k is the marginal rate of substitution of product i for product k which is the slope of the 
production possibilities curve, and 

iy
U

∂
∂  is the marginal benefit from producing an additional unit 

of product i, that it, its price pi.  Total revenue is the value of the output produced: 
 

2211 ypypTR +=  (2.3.8.9) 
 
For various given values of total revenue (TR) this relationship is a straight line (isorevenue line).  
The distance of the isorevenue line from the origin is determined by the value of TR.  As TR 
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increases the line moves away from the origin.  The slop of the isorevenue line is determined by the 
prices of the outputs. 
 
Total costs are constant for all combinations of outputs on the production possibility curve.  Profits 
will be maximized if the output combinations with the maximum TR is selected.  This will be 
achieved at the point where the slope of the isorevenue line and the production possibility curve 
coincide. 
 
Consider the case where  
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The optimality conditions are 
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Now, from the second and third equations, we have 
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but, from the total derivative of the production function, we have 
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so 
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Thus, we see from these results that the point of optimal production is where a line with slope equal 
to the ratio of the prices of the outputs is equal to the slope of the production possibilities curve.  
This is illustrated in Figure 3.8.2 for our example of wheat and corn production.  The prices are p1 = 
$230/mt (wheat) and p2 = $160/mt (corn).  The resulting outputs are 3.3 mt of wheat (which uses 
4284 m3/ha of water) and 4.2 mt/ha of corn (which uses 5606 m3/ha of water). The resulting total 
revenue is $1450/ha. 
 

2.4  Water Rights and Markets 

2.4.1  Introduction 
 
As the costs of water supply development increase it is increasingly important that supplies be 
allocated more efficiently than in the past.  Systems of water allocation with nontransferable water 
rights can lead to rigid, inflexible, and inefficient allocations of water (Gibbons, 1986; Howe et al., 
1986).  Several advantages of private ownership and market exchange over bureaucratic control and 
allocation of water often exist.  Markets have been established which have been successful in 
transferring water from low-valued to higher-valued uses over time (Rosegrant and Binswanger, 
1994), where value is defined as the maximum amount a user would be willing to pay for the use of 
water (Gibbons, 1986).  However, the establishment of water markets are often inhibited by the 
presence of externalities (third-party effects) such as increased pollution or changes in return flows.  
These effects must be accounted for in deciding a water right transfer and losing parties must be 
compensated for these effects (Howe, 1996). 
 
Water is a necessary and scarce resource for the sustenance of human society and culture.  However, 
the allocation of water to beneficial uses is a difficult problem, quite different from other resource 
allocation problems commonly considered in economics (Tregarthen, 1983).  The quantity of water 
available in a river basin will fluctuate year-to-year.  The interactions between surface water and 
groundwater are complex and not well known in many basins.  Economies of scale exist in 
developed storage and distribution systems, encouraging the development of large systems that may 
be inflexible and non-robust over the long run.  Externalities often exist and may require public 
sector intervention.  The consumptive use of water in many cases may lead to the degradation of in-
stream flow values and the loss of those benefits. 
 
Several policy options exist that may lead to increases in water use efficiency while reducing 
environmental degradation and releasing water for increasing demands in other economic sectors 
(Rosegrant and Binswanger, 1994): 
 
1. Technological solutions: (a) construction of new water resource systems, and (b) rehabilitation 

and modernization of existing systems, e.g., canal and drainage lining, and field drainage in 
irrigation systems.  
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2. Reform of public management of water resource systems: (a) modification of water 
distribution methods, (b) implementation of water pricing policies, and (c) reform of water 
management bureaucracies.  

 
3. Communal water resource system management which involve water users more directly in 

both the process of system management and improvement. 
 
4. Establishment of tradable property rights in water and development of markets in these 

rights.  Market allocation of resources may be efficient given well-defined and nonattenuated 
(completely specified, exclusive, transferable, and enforceable) initial property rights allocation 
and low transaction costs. 

 
Options 1 - 3 have been widely used by international lending institutions and national governments.  
Option 4 is somewhat new and is explored below. 
 

2.4.2  Water Rights 
 
Water law differs from country to country and within the US it varies from state to state.  
Traditionally, water law has been based on common law, but more recently it has shifted a bit 
toward legislative law.  Most common law is based on protecting the quantity, not the quality of 
water.  Common law is comprised of traditional legal aspects laid down by court decisions and it is 
based on precedent set by older cases.  Common law can be overturned as the needs of society 
change over time.  In the US, common law derives its legitimacy from the constitutions (US and 
States).  Legislative law, on the other hand, is comprised of statutory law, where the legislature 
passes laws that regulate water, and administrative law, where the legislature may enable 
administrative bodies to write rules and regulations that have the power of law. 
 
A well defined system of water rights is a necessary condition for the development of water markets. 
Water rights can be vested with individual citizens or with the government (local, state or national).  
Water rights are essentially a bundle of entitlements defining a water right owner's:  
 

1. rights;  
2. privileges; and  
3. limitations  

 
for the use of the water.  Water rights are generally treated as real property with the right holder 
having a usufructuary right to make use of the water but not a right to physical possession of the 
water (Hirshleifer, et al., 1960).  These rights must be well defined and exclusive to the person or 
entity owning them.  Such a system of water rights must completely specify the (Howe, et al., 1986):  
 

1. quantity of water that may be diverted;  
2. quantity of water that may be consumed;  
3. timing of the water delivery;  
4. quality of the delivered water;  
5. place of diversion; and  
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6. place of application.   
 
Changes in any of these characteristics will likely affect other water users in the basin or system.  
 
An efficient water rights structure should include: 
 
• Universality:  Rights must be privately owned, and entitlements must be completely specified. 
 
• Exclusivity:  Benefits and costs accrued as a result of owning and using the rights accrue to the 

owner (and only the owner).  This property of water rights is often violated, e.g., when a user 
does not bear all of the costs of a water allocation, creating an externality that is not paid for by 
the user.  An externality may exist whenever the welfare of some user depends on its own 
activities and the activities of some other user(s) as well. 

 
• Transferability:  The transfer of rights from one user to another must be entirely voluntary.  

The inability to transfer the rights would prevent the owner of the right from recognizing the true 
opportunity cost of the water, i.e., the value that another person may place on it.   

 
• Enforceability:  Right owners must be secure from involuntary seizure of their rights or 

encroachment on their rights. 
 
Usually, systems for water rights (implicit or explicit) fall into one of several categories (Howe, 
1996): 
 

• Non-tradable permits for water from undeveloped (natural) supplies 
Non-tradable permits or rights are typically specified by laws or regulations, they are for 
specific or defined periods and they are not tradable.  Problems associated with this type of 
arrangement include the fact that this method of water allocation does not consider the 
economic efficiency or equity of the use, and allocations may be inflexible and unresponsive 
to changes in social values. 

• Contracts for water from developed supplies 
Developed supplies usually provide storage and distribution facilities and water is allocated 
to customers by contracts (as opposed to non-tradable permits where water is distributed by 
water right).  Contracted water supply is usually for a specific use.  Problems associated with 
this type of arrangement include the fact that the economic efficiency or equity of the water 
use is not considered.   

 
In many cases, water demand is estimated from the projected requirement or need for water, that is, 
the farmer's ability to put water to use (Gardner, 1983).  This method of demand estimation results in 
a maximization of physical yield rather than profit or social benefits.  This can lead to the 
development of new water supplies rather than using economic incentives and market mechanisms 
to allocate water to its best uses.  Systems of this type are common in the states of California 
(Gardner, 1983) and Texas (TWDB, 1997). 

 
In other cases, a fixed cost per hectare of crop is charged for water.  This violates economic 
principles since the price is not related to the quantity of water applied or used, and there is little 
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incentive to conserve water.  This type of system is often justified by the difficulty and expense of 
determining how much water is delivered to a farm. 
 

2.4.2.1  Riparian water rights systems 
 
Under riparian water rights systems, the owner of land bordering a stream or lake has the right to 
take water for use on the land.  The right to use the water exists solely because of the relation of the 
land to the water and resides in the ownership of the land.  The first riparian user acquires no priority 
over those who may use the stream at a later date; the rights of upstream and downstream users are 
viewed as being coequal (Hirshleifer et al., 1960).   
 
Under riparian systems, the owners of lands bordering water bodies may have "reasonable use" of 
the waters, provided that the water is returned undiminished in quality or quantity (Howe et al., 
1986).  That is, the withdrawal must be reasonable with respect to the requirements of the other 
riparians.  The determination of what constitutes reasonable use is left to the courts.  A riparian right 
subject to the reasonable use doctrine has no guaranty to a definite quantity of water.  Under the 
riparian system, the transfer of water rights between competing uses by a market system is severely 
hampered (Hirshleifer et al., 1960).   
 
Riparian rights are most appropriate for humid regions.  Where water is truly scarce and/or where 
water quality problems are important, the riparian doctrine simply doesn't work (Howe, 1996). 
 

2.4.2.2  Appropriative water rights systems 
 
The doctrine of appropriation gives no preference to the use of water by riparian landowners. 
Appropriative (or prior) systems tend to exist in areas of water scarcity where users are located away 
from water bodies.  Scarcity means that each succeeding appropriation results in fewer or less 
valuable resources available for other users.  Scarce resources come to be appropriated in their 
natural state according to the principles of priority of right and beneficial use (Cuzan, 1983).   
 
The earliest water right on a given watercourse has preference over later users, "first in time means 
first in right."  Once the appropriation is granted, it becomes senior to subsequent appropriations.  In 
times of shortage senior or older rights have precedence over junior or newer rights.  That is, senior 
rights have first call on available water. Appropriative rights are a right to use, not a right to own, 
and the beneficial use of the water is required.  Beneficial use has been described as use of water in a 
useful industry or to supply a well-recognized want (Tregarthen, 1983).  In many cases, the owner of 
an appropriation may lose the right as a result of failure to put it to beneficial use.   

 
The two rules of appropriative water rights, priority and beneficial use, result in the separation of 
rights to water from the rights to land.  Persons can mobilize capital to build water supply works and 
transport water to wherever it is most productively used (Cuzan, 1983).  Appropriative rights may be 
a system in which rights are clearly defined and transferable subject to the stipulation of "no injury" 
(Tregarthen, 1983).  It is the severability of appropriative rights that causes them to be transferable. 
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Often under appropriative rights systems water is owned by the public and appropriators are granted 
the right to use the water but ownership of the resource remains with the state (Cuzan, 1983).  Often 
this state expropriation of water rights leads to a system of controls which makes it difficult for 
water to be transferred privately through sales.  These systems can generate pressure for monumental 
water schemes by governmental agencies which subsidize low-value water uses. 
 
Economic efficiency requires that the marginal value of water used be equal in each use, net of 
transport costs, and assuming that marginal values include both private and social benefits and costs 
(Gardner, 1983; Howe et al., 1986).  Assuming that water is homogeneous, i.e., no quality 
variations, water prices should vary among users only by the cost of moving it from one user to 
another (Hirshleifer, et al., 1960). 
 
Two main types appropriative rights systems are common: priority rights and proportional rights 
systems 

 

Priority rights 
 
Priority rights operate on the doctrine of "first in time, first in right."  If the flow in a river is 
sufficient to provide only x% of the water appropriated, then a call for water from the senior water 
rights holders can shut off diversions to the lowest (100 - x)% priority rights holders.  Senior water 
rights holders have less risk than junior rights holders, but senior rights holders may place a lower 
value on the last unit of water than junior rights holders.  In this case, a trade should occur, the 
senior rights holder selling water rights to junior rights holders, thus reducing the risk to the junior 
appropriators (Tregarthen, 1983).  Priority rights allow different degrees of water supply reliability 
to be purchased, but the heterogeneous nature of the rights makes it difficult to organize markets. 
 

Proportional rights 
 
A proportional rights system shares available water among users according to a set of percentages 
determined by the number of rights owned, e.g., if a user owns 10 rights out of 100, then the owner 
is entitled to 10% of available water.  Proportional rights systems require the purchase of more 
shares to reach any given level of assurance of water supply.  The homogeneity of proportional 
rights makes it much easier to create markets than under the priority system.   
 

2.4.3. Water Markets 

2.4.3.1  Right to divert or consume 
 

The right to transfer water may not be the amount of water appropriated to the use, but the "duty of 
water" at the point of use (Tregarthen, 1983).  This concept limits the transfer of water rights, based 
on the consumptive use by the seller and the prospective consumptive use of the buyer.  In many 
situations it is desirable to protect downstream users from a loss of water due to an upstream water 
rights trade.  When rights are transferred, the use of the water may change, and with it the amount of 
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water that is consumed.  The result may be a change in the amount of water available to downstream 
users.  Often it is desirable to limit transfers so that the amount of water consumed is not changed. 
Consider the following example adapted from Gisser and Johnson (1983) where there are three users 
along a river and flow into the system is 1000 units per time period (see Fig. 2.4.3.1.1).  User 1 
diverts S1 = 1000 units and has a return flow coefficient (R1) of 0.5, that is, User 1 consumes C1 = 
500 units of water.  Downstream, User 2 diverts S2 = 500 units and has a return flow coefficient (R2) 
of 0.5, and User 3 diverts S3 = 250 units and has a return flow coefficient (R3) of 0.5.  The total 
diversion is 1,750 units of water, a greater amount than the initial streamflow. 
 

 
Figure 2.4.3.1.1.  River system for water allocation. 

 
Now consider that User 1 decides to sell his/her entire diverted amount to another user outside the 
basin for $1.1 per unit.  The net result is that User 1 is no better off than before, but Users 2 and 3 
have been left without any water to divert and there is an overall net loss for the basin of $650 
 

 

User 
1 

S1=1000 R1*S1 
=0 

C1=(1-R1)*S1=1000 
B1(S1)=$1100 

User 
2 

User 
3 

1000ˆ =S  S  

S2=0 R2*S2=0 S3=0 R3*S3=0 

C2=(1-R2)*S2=0 
B2(S2)=$0 

C3=(1-R3)*S3=0 
B3(S3)=$0 

Total Diversion = 1,000 
Total Benefit=$1100 

User 
1 

S1=1000 R1*S1 
=500 

C1=(1-R1)*S1=500 
B1(S1)=$1000 

User 
2 

User 
3 

1000ˆ =S  S  

S2=500 R2*S2=250 S3=250 R3*S3=125

C2=(1-R2)*S2=250
B2(S2)=$500 

C3=(1-R3)*S3=125
B3(S3)=$250 

Total Diversion = 1,750 
Total Benefit=$1,750 



 

 
 63 

Figure 2.4..3.1.2.  River system for water allocation without consideration of consumptive 
use. 

 
An appropriator (user) may own a right to divert a given quantity of water but the user can only 
transfer this right according to the amount of water consumed.  Determining the consumptive use of 
water and the amount of water that returns to the river or canal can be difficult and costly.  Consider 
again the above example, but now User 1 decides to only sell the amount of his/her previous 
consumptive use (500 units) for a price of $1.1 per unit.  In this case the downstream users continue 
to receive their water and may divert as before. 
 

 
Figure 2.4.3.1.3.  River system for water allocation with consideration of consumptive use. 

 
Several authors have suggested that it is better to define water rights according to the consumptive 
use system rather than the diversion rights system.  Using the consumptive rights system the 
ownership of the right is clear, transfers do not require litigation, the incentive to conserve water 
exists, and this conservation leads to water that can be sold to downstream users (Tregarthen, 1983). 
 However, others have suggested that the diversionary rights system is preferable (Rosegrant et al. 
1995). 
 
The definition of the tradable portion of a water right depends on the method of handling return 
flows.  In California, the tradable portion is limited to consumptive use (consumptive right) with 
protection of third-party rights to return flows.  This method increases transaction costs because of 
the difficulty in measuring consumptive use and return flows.  Consumptive use is defined to be the 
actual evapotranspiration of crops plus any water lost to deep percolation.  Thus, the water available 
to trade includes water that would have been consumptively used and water that would be 
irretrievably lost to beneficial use.  In Chile and Mexico, rights are proportional to streamflow 
(diversionary right) and rights to return flow are retained by the water authority.  Return flows are 
made available to users at no charge, but no rights are assigned to these flows.  Changes in return 
flows due to water rights trades are not actionable.  This method has been demonstrated to reduce 
transaction costs.  So the tradable water is the full diversion right which is proportional to stream 
flow.   

User 
1 

S1=500 R1*S1 
=0 

C1=(1-R1)*S1=500 
B1(S1)=$550 

User 
2 

User 
3 

1000ˆ =S  S  

S2=500 R2*S2=250 S3=250 R3*S3=125

C2=(1-R2)*S2=250
B2(S2)=$500 

C3=(1-R3)*S3=125
B3(S3)=$250 

Total Diversion = 1,250 
Total Benefit=$1,300 
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What is the most appropriate method in developing countries?  The transaction costs of enforcing 
consumptive rights increase but they protect third-parties against adverse impacts from water trades. 
 If the lost benefits from not trading exceed the costs of adverse impact from lost return flows, then 
diversionary rights system is preferred.  In general, the diversionary rights system will be preferred 
in developing countries so as to prevent high transaction costs, thus preventing the development of 
markets. 
 

2.4.3.2  Tradable water rights markets 
 
Tradable water rights are rights to use water that can be transferred all or in part, separately from the 
transfer of land (Rosegrant et al., 1996).  Tradable water rights may be permanent, long-term, or 
even short-term.  Tradable water rights markets may be capable of allocating water more effectively 
than other more restrictive and centrally controlled systems.  Markets can operate most efficiently 
when the commodity being allocated is homogeneous (Howe et al., 1986).  Heterogeneity of uses 
leads to difficulty in organizing a market, transmitting information to users, and matching sellers and 
buyers.  Rights to water resources already exist in most countries (a) by custom, or (b) by law and 
regulation.  Establishing tradable rights is a matter of reforming existing systems.   
 

Characteristics of markets 
 
Several desirable characteristics for water allocation mechanisms (regional, river basin or irrigation 
district level) have been described by Howe (Howe et al., 1986; Howe, 1996): 
 
• Flexibility over time  

 
Water can be shifted from use to use and place to place as climate, demographics, and economic 
conditions change over time.  Short-term (responding to climatic factors) and long-term 
(responding to demographic and economic factors) flexibility is necessary.  It is important to 
note that not all water must be subject to reallocation, only a tradable margin must exist within 
each water-using area that is subject to low cost reallocation and this volume can be a relatively 
small part of the regional supply (Howe et al., 1986).  Flexibility allows equating the marginal 
values in the water's various uses (Howe et al., 1986; Gisser and Johnson, 1983). 

 
• Security of tenure for established users 
 

Water users must be assured of continued use or they will not invest in and maintain the water 
resource system.  This encourages long-term investments that generate positive net benefits.  In a 
market system, no one can be forced to sell. 

 
• Real opportunity costs of water 
 

Valuation of water at its opportunity cost, the maximum value of outputs that could have been 
produced had inputs not been used to produce the item in question (Field, 1994), provides 
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incentives for users to shift from inefficient water uses and methods to more highly valued, less 
water-intensive uses and methods.  Opportunity cost pricing can be implemented through the 
establishment of tradable water rights and development of markets in these rights (Rosegrant et 
al., 1996).  
 
Water is often a scarce input to production and it is frequently priced well below its value in use 
(Gardner, 1983).  Historically, the price of water, at most, has reflected the costs of its capture 
and distribution.  The control of low priced water can provide access to enormous profits in 
many cases.  A perpetual contract for the supply of water at a fixed price may fail to reflect 
changing opportunity costs involved in continued use.  Water is one input to agricultural 
production, other inputs include land, capital, energy, chemicals, and labor.  If production is to 
be profitable, all inputs used must be valued at least at their opportunity costs.  A price for water 
established in a market and the ability to sell water (transfer or trade water rights) recognizes the 
real opportunity costs of the water in the use being considered.  This prevents the acceptance of 
water uses that are less valuable than alternative uses. 
 
It is desirable to maximize the scope of a water rights market so that transactions take place over 
as wide a geographical area and among as wide a variety of users as possible, subject to 
transaction cost limitations. 

 
• Differentiated risk-bearing 
 

While old methods are familiar even if they are outmoded, new methods may increase 
uncertainty, even while they promise advantages.  Predictability of the outcome of the transfer 
process is necessary to ensure that long-term investments that generate positive net benefits are 
encouraged.  

 
• Fairness to participants 
 

Water users should not impose uncompensated costs (externalities) on other parties.  
Externalities occur whenever withdrawal, consumption, or quality changes by one user affect 
other water users.  Parties giving up water should be compensated and those injured by changes 
in allocations should be compensated.  Market transactions should guarantee fairness since no 
person will sell if they will not be made better off. 

 
• Protection of public values 
 

Some values may be of little concern to individual water users and they may not be adequately 
reflected in the market exchange and these must be protected by social oversight, e.g., water 
quality and instream flows (Howe, 1996).  Protection of public values will ensure that 
allocations will achieve the highest aggregate benefit level. 

 

Benefits of tradable water rights markets  
 
The benefits from establishing tradable water rights markets include (Rosegrant and Binswanger, 
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1994; Rosegrant et al., 1996): 
 
• Empowerment of water users by requiring their consent to any reallocation of water and 

compensation for any water transferred; 
 
• Security of tenure of water rights to the water users, which encourages investment in system 

efficiency improvements; 
 
• Induces users to consider the full opportunity cost of water, including its value in alternative 

uses, providing incentives to efficiently use water and gain additional income through the sale of 
saved water; 

 
• Provide incentives for users to take account of external costs imposed by their water use, 

reducing resource and environmental degradation; 
 
• Formalizes existing rights to water; and  
 
• Provides maximum flexibility in responding to changes in crop prices and water values. 
 

Constraints of tradable water rights markets 
 
Constraints to establishing tradable water rights markets leading to high transaction costs include 
(Rosegrant and Binswanger, 1994; Rosegrant et al., 1996): 
 
• The unique physical, technological and economic characteristics of water resources systems 

pose problems; 
 
• The variable nature of water flow makes achieving necessary certainty; and  
 
• Return flows from water use can generate environmental degradation.  Multiple reuse of water 

creates the likelihood of significant externalities imposed on third parties. 
 

Policy considerations of tradable water rights markets 
 
Policy considerations in developing tradable water rights markets include (Rosegrant et al., 1996): 
 
• Definition of a method of initial allocation of water rights.  This can be based on, among other 

things, historic water use (Chile and Mexico), fully appropriated existing rights (California); 
• Type of rights, prior or proportional appropriative rights:  Prior rights (California), Proportional 

(Chile and Mexico); 
• Consumptive use or diversionary treatment of return flows; 
• Indirect economic effects; 
• Environmental protection; 
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• Water user associations; 
• Infrastructure; 
• Public and private institutions; and 
• Regulations:  Excessive regulation leads to high transaction costs, inadequate regulation leads to 

third-party costs or environmental degradation 
 

2.4.3.3  Modeling tradable water rights markets 
 

There are two fundamental strategies for dealing with water scarcity in river basins, supply 
management and demand management; the former involves activities to locate, develop, and exploit 
new sources of water, and the latter addresses the incentives and mechanisms that promote water 
conservation and efficient use of water (Rosegrant et al., 2000).  Markets in tradable water rights can 
reduce information costs; increase farmer acceptance and participation; empower water users; and 
provide security and incentives for investments and for internalizing the external costs of water uses. 
 Market allocation can provide flexibility in response to water demands, permitting the selling and 
purchasing of water across sectors, across districts, and across time by opening opportunities for 
exchange where they are needed.  The outcomes of the exchange process reflect the water scarcity 
condition in the area with water flowing to the uses where its marginal value is highest (Rosegrant 
and Binswanger 1994; Rosegrant 1997). Markets also provide the foundation for water leasing and 
option contracts, which can quickly mitigate acute, short-term urban water shortages while 
maintaining the agricultural production base (Michelsen and Young 1993).   

 
Water trading in a basin is constrained by the hydrologic balance in the river basin network; 

water may be traded taking account of physical and technical constraints of the various users, 
reflecting their relative profitability in trading prices; water trades reflect water scarcity in the basin 
that is influenced by both basin inflows and the water use plans of the users (Rosegrant et al., 2000).  

 
The price that a water user would be willing to pay to acquire additional water must be 

determined for each user.  This can be achieved by determining a shadow price – water withdrawal 
relationship can determined for each user.  For this, a model must be run with varying water rights 
for each user as inputs and shadow prices or marginal values as output derived from the water 
balance equations (each user has a water balance equation in the model).  If necessary, these shadow 
prices can be averaged over all uses for each user to obtain one shadow price for each water supply 
level for user.  The Figure below shows the result of this for the problem of Exercise 1 below. 
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Figure 2.4.3.3.1.  Shadow price for water users. 

 
 
In the model of water trading, the objective is to maximize the combined benefits of all the users 
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where 

B  Total benefit to all water users; 
Bi Benefit to User i, a quadratic benefit function is assumed here with coefficients ai 

and bi; 
Si  Water withdrawal by user i; 
wtpi  Water trading price for user i; 
xi,j  Water sold by user i to user j; 

 
User i has access to water from water right or purchase 
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where wright is water allocated to a user under prescribed water rights.  Each user has shadow price 
for water which is a linear function of the amount of water demanded 
 

iiii Sbmamwtp +=  (2.4.3.3.3) 
 
No user is allowed to sell more water than their water right 
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i

j
ji wrightx ≤∑ ,  (2.4.3.3.4) 

 
Trades are unidirectional, that is, if a user buys water from another user, then they can not sell water 
to the same user 
 

0* ,, =ijji xx  (2.4.3.3.5) 

 

2.5  Exercises  
 
1.  You are working with the manager of an irrigation facility who is interested in installing a more 
efficient pumping system.  The proposed system costs $15,000 and you project that it will reduce the 
annual utility costs by $2,000.  After five years, you expect to upgrade the system for $4,000.  This 
upgrade is expected to further reduce utility costs by $1,000 annually.  The annual effective interest 
rate is 7% and the life of the system, after upgrade is 50 years.  What is the Present Value of the 
investment in the system? 
 
2.  You have a small excavation firm and wish to purchase a small backhoe.  Based on your research, 
you need to have $54,000 to purchase one used.  If your cost of capital is 0.50%/month and you 
want to recover your capital (on a Present Worth basis) in 20 months, how much profit must this 
backhoe generate each month. 
 
3. (after North, 1985, Exercise 5.8) A flood control district can construct a number of alternative 
control works to alleviate the flood pattern in that area.  These alternatives include dam A, dam B, 
and a levee system C.  The levee system can be built alone or in combination with dam A or B.  Both 
dams can not be built together but either one can function alone.  The lofe of each dam is 80 years 
and the life of the levee system is 60 years.  The cost of capital is 6 percent.  Information on total 
investment, operation and maintenance costs, and average annual flood damage is given below.  
What form of flood control would be the most economical? 
 
 

Table.  Flood Control Project data 
Project Total Investment 

(million $) 
Annual Operation 
and Maintainence 

(thous. $) 

Average Annual 
Flood Damages 

(million $) 
Dam A  6.2  93  1.10 
Dam B  5.3  89  1.40 
Levee C  6.7  110  0.80 
Do nothing  0  0  2.15 
 
4. (after Mays & Chung, 1992, Exercise 2.2.2) Four alternative projects can be used for developing a 
water supply for a community for the next 40 years.  Use the incremental benefit-cost method to 
compare and select an alternative.  Use a 6% interest rate. 
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Years Project A Project B Project C Project D 

Construction cost ($) 
0 40,000,000 30,000,000 20,000,000 10,000,000
10  10,000,000
20  10,000,000 20,000,000 10,000,000
30  10,000,000

Operation and Maintenance Cost ($) 
0-10 100,000 110,000 120,000 120,000
10-20 120,000 110,000 130,000 120,000
20-30 140,000 120,000 140,000 130,000
30-40 160,000 140,000 150,000 130,000
 
5. (after James and Lee, 1971, Problem 2.6) The three alternatives described below are available for 
supplying a community water supply for the next 50 years when all economic lives as well as the 
period of analysis terminates. 
 

Construction cost Project A Project B Project C 
Year 0 $20,000,000 $10,000,000 $15,000,000 
Year 20 0 10,000,000 12,000,000 
Year 35 0 10,000,000 0 

O&M cost    
Year 1-20 70,000 40,000 60,000 
Year 21-35 80,000 70,000 80,000 
Year 36-50 90,000 90,000 90,000 

 
Using $2,500,000 in benefits each year for each project, and a 4.5% discount rate where applicable, 
compare the projects using: 
 
a.  The present-worth method 
 
The present-worth method selects the project with the largest present worth of the discounted sum of 
benefits minus the costs over its life 
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where Ct is the cost and Bt is the benefit in year t, T is the period of analysis, and i is the discount 
rate. 
 
b.  The rate-of-return method 
 
The rate-of-return is the discount rate at which the present worth as defined above equals zero as 
found by trial and error. 
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c.  The benefit-cost ratio method 
 
The benefit-cost ratio PWb/PWc is the present worth of the benefits PWb divided by the present worth 
of the costs PWc.  Annual values can be used with out altering the ratio.   
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d.  The annual-cost method 
 
The annual-cost method converts all benefits and costs into equivalent uniform annual figures.   
 
 
6. (after Thuesen et al., 1977, Problem 10.20) The federal government is planning a hydroelectric 
project for a river basin.  In additionto the production of electric power, this project will provide 
flood control, irrigation, and recreation benefits.  The estimated benefits and costs that are expected 
to be derived from the three alternatives under consideration are listed below: 
 

Construction cost Project A Project B Project C 
Initial cost $25,000,000 $35,000,000 $50,000,000 
Annual benefits and costs    
Power sales $1,000,000 $1,200,000 $1,800,000 
Flood control savings 250,000 350,000 500,000 
Irrigation benefits 350,000 450,000 600,000 
Recreation benefits 100,000 200,000 350,000 
O&M costs 200,000 250,000 350,000 

 
The interest rate is 5% and the life of each of the projects is estimated to be 50 years. 
 
a.  Using the incremental benefit-cost method, determine which project should be selected. 
 
b.  Calculate the benefit cost ratio for each alternative.  Is the best alternative selected if the 
alternative with the maximum benefit cost ratio is chosen? 

 
c.  If the interest rate is 8%, what alternative would be chosen? 
 
7.  (After D. P. Loucks, Course Notes, Engineering Economics, Cornell University.) Three mutually 
exclusive water resources projects, A, B, and C, are under consideration.  Each project has a fixed 
initial cost (FCA, FCB, and FCC).  Their (unequal) useful lives are LA, LB, and LC, and during each 
year y of those lives they generate annual benefits of BAy, BBy, and BCy, and costs of CAy, CBy, and 
CCy.  Assume that an appropriate interest rate, r, has already been determined for this analysis.  
Show how you would calculate each project’s equivalent end-of-year annual benefits and costs, and 
based on these, their benefit-cost ratios. 
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8.  Find the optimal levels of two goods purchased by a consumer with a utility function  

                2
5.1

121 ),( xxxxu =   

and a budget constraint  

                10043 21 =+ xx  
 
9.  Agricultural production is described by the quadratic equation 

                 
2
iiiiii xcxbaq ++=  

where qi is the yield in hectares of crop i, ai, bi, and ci are parameters of the production 
functionfor crop i, and xi is the amount of water (m3) applied to crop i.  The unit cost of water is 
w; the unit market price of each crop is pi.  Develop a model, based on the theory of the firm, to 
determine the optimal water allocation to each crop.  What is the demand function for water 
assuming the production function is a concave function of xi (i.e., ci < 0). 
 
10.  (After Mays and Tung, 1992, Problem 2.4.1; 2.4.4; 2.4.5) 
 
(1)  For the production process in the following Table, determine and plot the total, average, and 
marginal product curves for nitrogen fertilizer given that water is fixed at x1 = 7 inches/acre. 
 
(2)  Determine and plot the cost curves for the production process.  Assume that water is fixed at 
7 inches per acre.  Use input prices of $2.50 per pound of nitrogen fertilizer and $10 per acre-
inch of water.  Plot average fixed cost (AFC), average variable cost (AVC), average total cost 
(ATC), and marginal cost (MC) on one plot.   
 
(3)  Determine the profit for various levels of output for the production process.  Assume that corn 
sells for $1.49 per bushel, and input prices are the same as in Part (2) and that irrigation water is 
fixed at 7 inches per acre.  How much corn should be produced?  How much nitrogen fertilizer is 
used in this production.  What it the value of total product that maximizes profit?. 
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Table.  Production Schedule of the Relationship Between Irrigation Water, Fertilizer & Yield 
(bushels per acre) of corn. 

          x1*                   
  x2** 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 1.8 5.0 9.0 13.2 17.0 19.8 21.0 20.0 16.2 9.0 0.0 0.0 0.0
20 0.0 5.0 12.8 22.2 32.0 41.0 48.0 51.8 51.2 45.0 32.0 11.0 0.0 0.0
30 0.0 9.0 22.2 37.8 54.0 69.0 81.0 88.2 88.0 81.0 63.0 33.0 0.0 0.0
40 0.0 13.2 32.0 54.0 76.8 98.0 115.2 126.0 128.0 118.8 96.0 57.2 0.0 0.0
50 0.0 17.0 41.0 69.0 98.0 125.0 147.0 161.0 164.0 153.0 125.0 77.0 6.0 0.0
60 0.0 19.8 48.0 81.0 115.2 147.0 172.8 189.0 192.0 178.2 144.0 85.8 0.0 0.0
70 0.0 21.0 51.8 88.2 126.0 161.0 189.0 205.8 207.2 189.0 147.0 77.0 0.0 0.0
80 0.0 20.0 51.2 88.0 128.0 164.0 192.0 207.2 204.8 180.0 128.0 44.0 0.0 0.0
90 0.0 16.2 45.0 81.0 118.8 153.0 178.2 189.0 180.0 145.8 81.0 0.0 0.0 0.0

100 0.0 9.0 32.0 63.0 96.0 125.0 144.0 147.0 128.0 81.0 0.0 0.0 0.0 0.0
110 0.0 0.0 11.0 33.0 57.2 77.0 85.8 77.0 44.0 0.0 0.0 0.0 0.0 0.0
120 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
130 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*   x1 = inches of water per acre 
** x2 = pounds of nitrogen fertilizer per acre 
 
11. (After Loucks et al., Problem 4.2).  Assume that a farmer’s demand for water q is a linear 
function of the price p, i.e., q(p) = a-bp, where a, b > 0.   
 
(1)  Calculate the farmer’s willingness-to-pay for a quantity of water q.   
 
(2)  If the cost of delivering a quantity of water q is C(q) = cq, c > 0, how much water should a 
public agency supply to maximize willingness-to-pay minus cost?   
 
(3)  If the local water district is owned and operated by a private firm whose objective is to 
maximize profit, how much water would they supply and how much would they earn?   
 
(4)  The farmer’s consumer surplus is their willingness-to-pay minus what they must pay for the 
resource.  Compare the farmer’s consumer surplus in the two cases.   
 
(5)  Does the farmer lose more than the private firm gains by moving from the social optimum to the 
point that maximizes the firm’s profit?   
 
(6)  Illustrate these relationships with a graph showing the demand curve and the unit cost c of 
water.  Label the firm’s profits and the farmer’s consumer surplus? 
 
12.  Given the production functions for wheat and corn in the Maipo basin of Chile shown in the 
following Table, determine a Production Possibility curve if x = 15,000 m3/ha of water is 
available.  If the prices are p1 = $230/mt (wheat) and p2 = $160/mt (corn), find the point of 
optimal production.  What are the resulting outputs and amounts of water used for wheat and 
corn. What is the resulting total revenue? 
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Table.  Production functions for wheat and corn. 

Production functions 
for wheat and corn 

Water Wheat  Water Corn 
x (m3/ha) y1 (mt/ha)  x (m3/ha) y2 (mt/ha) 

0 0.00  0 0.00 
536 0.00  883 0.00 
1071 0.00  1765 0.00 
1607 0.00  2648 0.00 
2142 0.22  3530 1.21 
3213 2.08  5295 3.87 
4284 3.27  7060 5.60 
5355 4.10  8825 6.83 
6426 4.70  10590 7.74 
7497 5.14  12355 8.43 
8568 5.46  14120 8.96 
9639 5.70  15885 9.37 

10710 5.87  17650 9.68 
11781 5.98  19415 9.91 
12852 6.04  21180 10.08 
13923 6.07  22945 10.19 
14994 6.06  24710 10.26 
16065 6.02  26475 10.28 
17136 5.96  28240 10.27 
18207 5.88  30005 10.23 
19278 5.77  31770 10.17 

 
13.  (After Willis and Finney, 2000, Example Problem 4-8) Water quality pollution is an 
example of an externality, i.e., a “harmful effect on one or more individuals that emenates from 
the action of a different person or firm” (Samuelson, 1973).  Downstream water users, for 
example, will have to treat water prior to use because of upstream firms don’t consider the 
externalities in their decision making process. 
 
A regional water management authority proposes to reduce point source wastewater discharges by 
imposing an effluent tax on each unit of waste discharged.  These effluent charges are a method of 
internalizing the externalities created by the discharges.  Investigate how the effluent charge affects 
the optimum production levels for a firm discharging waste.  Assume: 
 

1. the tax, τ, is expressed in $ per unit of output of the firm, q, and  
2. the pollution generated by the firm, P, is a linear function of the production level, P=δq. 

 
a.  Find the first order optimality conditions for the firm production. 
 
b.  What is the effect of the tax on marginal revenue and marginal cost? 
 

b.1  Plot a diagram of Price versus Quantity showing marginal revenue with and without the 
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tax (make whatever assumptions you need to to develop the graph). 
 
b.2  What is the difference between the point of intersection of the marginal cost curve and 

the marginal revenue curve with and without the tax? 
 
b.3  What is the difference in the production level with and without the tax? 
 

c.  What is the effect on the level of pollution produced with and without the tax? 
 
14.  A regional water management authority must pay an effluent tax on waste discharged.  Consider 
 

q    = firm’s output (units) 
qqp ηω −=)(   = price of the firm’s output ($/unit) 

2)( qqC γ=   = firm’s cost function ($) 
qqD βα +=)(  = firm’s pollution level (kg) 

cpt =    = pollution tax ($/kg of waste produced) 
 

ηωβαγ andpc ,,,,,  are just constants, but you and I do not know their values. 
 
Part A:  Suppose the firm is maximizing profits and price is given as p = constant (that is, 

0,)( === ηω andpqp ). 
 
(1) If the tax is zero (t = 0), what level of output (q) will the firm select? 
 
 (2) If the tax is not zero ( cpt = ), what level of output (q) will the firm select? 
 
Part B:  Suppose that the firm is socially conscious and wishes to maximize the benefits of the 
consumers and the inverse demand function (marginal willingness-to-pay) for its product is given by 

qqp ηω −=)( .  Be sure to continue considering the cost function in your model. 
 
(1) If the tax is zero (t=0), what level of output (q) will the firm select? 
 
(2) If the tax is not zero ( cpt = ), what level of output (q) will the firm select? 
 
15.  The inverse demand curve for a depletable, nonrecyclable resource in year t is  
 

pt(qt) = a - bqt t = 1, 2, ..., T 
 
where qt is the amount of resource demanded in year t, pt is the price of the resource in year t, and 
a,b  > 0 are constants.  The marginal cost of extracting a unit of resource in any year is a constant ( = 
c ).  The total amount of resource available ( = Q ) is less than the amount needed to satisfy demand 
over a T year planning horizon.   
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(a) Determine the first order optimality conditions for resource extraction if the objective of the 
extraction is to balance the current and future uses of the resource by maximizing the present value 
of net benefits derived from the use of the resource over the T years.  Assume that the discount rate 
is i. 
 
(b)  Calculate numerical values for the optimal extraction rates ( = qt, t = 1,2, ..., T) if 
 T = 2, a  = 8, b  = 0.4, c  = 2, Q  = 20, i  = 0.10. 
 
 
16.  Part A.  Assume that stream flow ( Ŝ ) is 26 million m3 per unit of time and there is an interstate 
agreement ( S ) calling for 14.5 million m3 Also, initially there are two users on the river diverting S2 
and S3 million m3.  The benefits to each user are: 
 

User 2:  2
22

2
222222 5150)( SSSbSaSB −=+=  

User 3:  2
33

2
333333 6.018)( SSSbSaSB −=+=  

 
In addition, both users have the same return flow coefficient, 5.032 == RR .  Write an optimization 
model to determine an efficient allocation that results in maximizing the value of water use in the 
basin and respects the interstate compact.  What are the water allocations and the benefits to each 
user?   
 
Part B.  Now, assume that an additional user wants to divert S1 million m3 of water from the river.  
User 1’s benefit function is identical to User 2’s benefit, i.e.,  
 

User 1:  2
11

2
111111 5150)( SSSbSaSB −=+=  

 
User 1 also has a return coefficient of R1 = 0.5.  Modify your optimization model to determine a new 
efficient allocation that results in maximizing the value of water use for all three users in the basin 
and respects the interstate compact.  What are the water allocations and the benefits to each user?   
 
Part C.  Assume that the solution to Part A represents the initial water rights of Users 2 and 3, using 
the results obtained in Part B, what is the minimum payment that User 1 should pay to Users 2 and 3 
in order to divert water from the river?  What are the resulting net benefits to each of the three users? 
 
Part D.  Assume that the system described in Part B is modeled as a water market where users 1, 2, 
and 3 have water right allocations, 0.0, 4.0, and 7.5, respectively.  Develop a model which will 
determine the optimal use of water by each user, assuming that the users are free to trade their water 
rights according to the model structure described in the text above. 
 
17.  Lewis and Clark Lake is a large reservoir in South Dakota created on the Missouri River by the 
Gavins Point Dam.  It is located in an area where there are few natural bodies of water, and it has 
become very popular as a recreational area.  Suppose that 10,000 families are potential users of the 
lake for recreational purposes and that each family’s demand curve for recreational trips to the lake 
is as follows: 
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(1) If an ordinance were passed which limited each family to no more than 5 trips per year to 

the lake, what is the loss (in money terms) to each family? 
 

(2) If an ordinance were passed which allowed a family to use the lake for recreational purposes 
only if it purchased a permit for $75 a year, would it be worthwhile for each family to buy a 
permit, if it could not use the lake without the permit (and it could use the lake as much as it 
liked with one)? 

 
(3) How much is the consumer’s surplus from each family’s utilization of the lake if there is a 

charge of $8 for each trip to the lake? 
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18.  (after North, 1985) Part A.  Consider the following set of data regarding the production of 
lettuce  
 

Acre-inch 
water 

Production of 
lettuce 

Price of  
lettuce/head 

0 186 50 
1 698 25 
2 1185 20 
3 1648 18 
4 2085 17 
5 2496 16 
6 2883 15 
7 3245 14 
38 3582 13 
9 3895 12 
10 4184 10 
11 4442 8 
12 4679 6 
13 4891 4 

 
 Determine and plot a  schedule for: 
 

(1) Physical production (total, average, and marginal) 
 
(2) Cost functions (total, average, and marginal for both input and output) 
 
(3) Revenue functions (total, average, and marginal for both a competitive market price 

of 15 cents per head of lettuce and for the industry demand schedule given in column 3 
below) 

 
Part B.  What are the firm equilibrium positions for both the competitive and monopolistic price 
structures, demonstrating total revenues, total costs, and net revenues. 
 
Part C.  What are the optimum levels of production and resource use under both pricing 
structures when water costs $40/acre-inch and fixed costs are $160. 
 
19.  (After Linsley et al., 1079) The average annual damage from floods in a river basin is estimated 
to be $400,000.  Estimates have been made for several alternate proposals for flood mitigation 
works:  channel improvements (25 yr life), two mutually exclusive dams (A and B, 100 yr lives), and 
various combinations of these.  The table below shows the first cost, estimated annual damages, and 
the annual OM&R disbursements for each alternative, and the sum of the annual damages and 
annual costs. 
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Project 1st Cost $ Annual 
Damages, $ 

Annual 
OM&R 
Costs, $ 

Do nothing 0 400,000 0 
I.  Channel Improvement 500,000 250,000 100,000 
II.  Dam A 3,000,000 190,000 60,000 
III.  Dam B 4,000,000 125,000 80,000 
IV.  Dam A with Channel Improvements 3,500,000 100,000 160,000 
V.  Dam B with Channel Improvements 4,500,000 60,000 180,000 

 
a.  Compare the projects using an interest rate of 6 percent. 
b.  Compare the conclusions of the economic analysis with the interest rate of 3 percent used in Sec. 

13-9 of Linsley and Franzini, Water Resources Engineering, with the 6 percent rates used in your 
solution to Part (1).  What generalizations can you make regarding the influence of the interest 
rate on such studies? 

c.  Comment on the statement, “I would select the plan with the highest benefit cost ratio of all the 
plans.” 

d.  Comment on the statement, “I would select the plan with the highest possible benefits for which 
benefits are greater than costs.” 

 
20.  Assume that stream flow ( Ŝ ) is 26 million m3 per unit of time and there is an interstate 
agreement ( S ) calling for 14.5 million m3 Also, initially there are two users on the river diverting S2 
and S3 million m3.  The benefits to each user are: 
 

User 2:  2
22

2
222222 5150)( SSSbSaSB −=+=  

User 3:  2
33

2
333333 6.018)( SSSbSaSB −=+=  

 
In addition, both users have the same return flow coefficient, 5.032 == RR .  Write an optimization 
model to determine an efficient allocation that results in maximizing the value of water use in the 
basin and respects the interstate compact.  What are the water allocations and the benefits to each 
user?   
 
21.  Now, assume that an additional user wants to divert S1 million m3 of water from the river.  User 
1’s benefit function is identical to User 2’s benefit, i.e.,  
 

User 1:  2
11

2
111111 5150)( SSSbSaSB −=+=  

 
User 1 also has a return coefficient of R1 = 0.5.  Modify your optimization model to determine a new 
efficient allocation that results in maximizing the value of water use for all three users in the basin 
and respects the interstate compact.  What are the water allocations and the benefits to each user?   
 
22.  Assume that the solution to Part (1) represents the initial water rights of Users 2 and 3, using the 
results obtained in Part (2), what is the minimum payment that User 1 should pay to Users 2 and 3 in 
order to divert water from the river?  What are the resulting net benefits to each of the three users? 
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23.  Assume that the system described in Problem (2) is modeled as a water market where users 1, 2, 
and 3 have water right allocations, 0.0, 4.0, and 7.5, respectively.  Develop a model which will 
determine the optimal use of water by each user, assuming that the users are free to trade their water 
rights according to the model structure described in Section 3.2.5 above. 
 
24.  A flood control district can construct a number of alternative control works to alleviate a flood 
problem in the area.  These alternatives include dam A, dam B, and a levee system C.  The levee 
system can be built alone or in combinations with dam A or dam B.  Both dams can not be built 
together but either one can function alone.  The life of each dam is 80 years and the life of the levee 
system is 60 years.  The cost of capital (discount rate) is 6 percent.  Information total investment 
costs, operating and maintenance costs, and average annual flood damages is given below.  What 
form of flood control is preferred? 
 

Project Life 
(years) 

Total 
investment 
($1000) 

Annual operation 
and maintenance  
($1000) 

Average annual 
flood damages 
 ($1000) 

No control at all - 0 0 $2,150 
Dam A 80 $6,200 $93 $1,100 
Dam B 80 $5,300 $89 $1,400 
Levees C 60 $6,700 $110 $750 

 
25.  (after Grant et al., 1976, p. 138)  Just before a creek has its outlet into a salt water bay, it goes 
through an urban area.  Because there have been occasional floods that have caused damage to 
property in this area, a flood control project has been proposed.  Estimates have been made for two 
alternative designs, one involving channel improvements (CI) and the other involving a dam and 
reservoir (D & R).  Economic analysis is to be based on an estimated 50-year project life assuming 
zero terminal salvage value and using a discount rate of 6%. 
 The expected value of the annual cost due to flood damages is $480,000 with a continuation 
of the present condition of no flood control (NFC).   Alternative CI will reduce this figure to 
$105,000; alternative D&R will reduce it to $55,000.   
 Alternative CI has an estimated first cost of $2,900,000 and estimated annual maintenance 
costs of $35,000.  Alternative D&R has an estimated first cost of $5,300,000, and estimated annual 
operation and maintenance costs of $40,000.  Alternative D&R also has two types of adverse 
consequences related to the conservation of natural resources.  These are to be treated in the 
economic analysis as disbenefits (negative benefits).  The dam will cause damage to anadromous 
fisheries; this is priced at $28,000 per year.  The reservoir will cause a loss of land for agricultural 
purposes including grazing and crop raising; this is priced at $10,000 per year. 
 
Using Benefit – Cost analysis, which alternative is preferred? 
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3.  WATER MANAGEMENT IN RIVER SYSTEMS 

3.1  Allocation of Water to Users  
 (adapted from Loucks et al., 1981) 

 
Consider a situation where a total quantity of water R is to be allocated to a number of different  
uses.  Let the quantity of water allocated to each use be denoted by Iixi ,...,1, = .  The objective is to 
determine the allocations such that the total net benefits from all uses is maximized.  Consider an 
example where there are three uses I = 3, as shown in Figure 3.1. 
 

 R 

User 1 

S 

User 2 User 3 Reservoir 

x1 x2 x3

B1 B2
B3 

 
 

Figure 3.1.  Reservoir release example. 
 
The net-benefit resulting from an allocation of xi to use i  is (see Fig. 3.2) 
 

 3,2,1)( 2 =−= ixbxaxB iiiiii  (3.1.1) 
 
where ai  and bi  are given positive constants.   
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Figure 3.2.  Net-benefit function for user i. 

 

The three allocations xi are unknown decision variables.  The values that these variables can take on 
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are restricted between 0 (negative allocation is meaningless) and values whose sum, x1 + x2 + x3, 
does not exceed the available supply of water R minus a required instream flow S.  The optimization 
model is 
 

 xr    

)( 2∑ −
=

3

1i
iiii xbxa maximize  (3.1.2) 

 
 0  

3

1
=−+∑

=
RSx

subject to

i
i

 (3.1.3) 

 
The GAMS code to solve this problem is 
 

SETS      i / 1, 2, 3/ 
 
SCALAR    r RELEASE   /10.0/; 
 
PARAMETER  
a(i) /1 6.0, 2 7.0, 3 8.0/ 
b(i) /1 -1.0, 2 -1.5, 3 -0.5/; 
 
VARIABLES obj OBJECTIVE; 
 
POSITIVE VARIABLES x(i) USE, s DOWNSTREAM FLOW; 
 
S.lo=2.0; 
 
EQUATIONS objective, cap; 
 
objective..obj =E= SUM(i,a(i)*x(i)+b(i)*x(i)**2); 
 
cap..sum(i,x(i))+s-r =E= 0.0; 
 
MODEL user /ALL/ ; 
 
SOLVE user USING NLP MAXIMIZE obj ; 
 
FILE res /WaterUser.txt/ 
PUT res 
PUT 'Release         ', PUT r,     PUT / 
PUT 'Downstream flow ', PUT s.l,   PUT / 
PUT 'Objective       ', PUT obj.l, PUT // 
PUT 'i                  x(i) ' PUT / 
loop( (i), PUT i.TL,  PUT x.l(i), PUT /) 
PUT //, 'd(obj)/dr = ', PUT cap.m, PUT // 

 
In this model, we know that the allocations to the water users (xi) are non-negative, so we can define 
them as positive variables which allows the use of the exponentiation operator (**) in the benefit 
function.  Also, note the use of comments in the file.  This makes it easier for someone else to 
understand the model.  Two other GAMS operators are used in this model.  First is the ‘.lo’ operator, 
which is used to set a lower bound on the variable s of 2.0 units of flow.  The same effect could be 
achieved by defining a new equation as a lower bound constraint 
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EQUATIONS slo; 
slo..s =G= 2.0; 

 
However, computational savings are realized if the ‘.lo’ operator is used.  Upper bounds on variables 
can also be defined using the ‘.up’ operator with a variable.  Second, the sum operator is used in the 
objective function and in the resource constraint allowing us to construct the GAMS equations in the 
same form as the mathematical description of the model (Equations 3.1.2 and 3.1.3). 
 
The result for a release of R = 10 is 
 

Release                10.00 
Downstream flow         2.00 
Objective              41.41 
 
i                  x(i) 
1                   1.55 
2                   1.36 
3                   5.09 
 
 
d(obj)/dr =         2.91 

 
Figure 3.3 illustrates the result of running the model for various values of the reservoir release, r.  
Note that the water users continue to receive additional water up to the release of r = 15.33.  After 
that point users are experiencing declining revenue from the use of the water and they stop 
demanding additional units and the marginal value of additional release of water 0)( == drobjdλ . 
 This marginal value (Lagrange multiplier) is printed in the output file using the ‘.m’ operator. 
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Figure 3.3.  Release allocation to water users and downstream flow. 

 
 

3.2  Management of a Single Reservoir 
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Reservoir management is an important task for water managers throughout the world.  Models are 
often constructed to simulate or optimize the performance of reservoir operations a well as to design 
reservoir or the associated facilities (spillways, etc.).  In this section we consider two common tasks 
of reservoir modeling: (1) determining various coefficients of the functions that describe reservoir 
characteristics; and (2) the optimal mode of reservoir operation (storage volumes, elevations and 
releases) while satisfying downstream water demands. 
 
 

3.2.1  Estimating a Reservoir Storage – Elevation Relationship Using the Method of Lease 
Squares 
 
The objective for the first task is to find the coefficients (a, and b), for the function 
 
 bhhas )( 0−=  (3.2.1.1) 
 
where s is the storage volume in the reservoir (L3), h is the elevation of the water surface in the 
reservoir (L) and h0 is the elevation of the tailwater at the outlet of the reservoir (L).   In the 
estimation procedure, we use the method of least squares as indicated in the Section 2.2.  As in that 
case, the difference (or residual) between the model value s (given in Equation 3.2.1.1 and which 
depends on the unknown parameter values a, and b) and the observed value ŝ can be written as  
 

Iishhasse i
b

iiii ,...,2,1,ˆ]ˆ[ˆ 0 =−−=−=  (3.2.1.2) 
 
where  

i is the index of measurements (observed storage volumes and elevations); 
I is the total number of measurements; 
si is the i-th calculated storage volume in the reservoir;  

iŝ is the i-th observed storage volume in the reservoir; and 

iĥ  is the i-th observed water elevation in the reservoir. 
 
Numerical values of the coefficients are determined by minimizing the squared residuals 
 

( )∑
=

I

i
ieMinimize

1

2  (3.2.1.3) 

 
As an example, the volume and elevation data for Toktogul reservoir on the Naryn River in 
Kyrgyzstan are given the Table 3.2.1.1 and plotted in Figure 3.2.1.1. 
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Table 3.2.1.1 .  Storage and Surface Area Versus Water Surface Elevation Data for 
Toktogul Reservoir. 

Item 
 

Volume
 

(mln m3)

Elevation
 

(m) 

Surface 
area 

(km2) 
i S(i) h(i) A(i) 

1 0 759 0
2 78 767 9.75
3 118 771 10
4 321 783 16.917
5 405 786 27.999
6 779 795 41.555
7 1204 802 60.713
8 1885 810 85.124
9 2297 814 102.997

10 3921 827 124.922
11 5585 838 151.271
12 5750 839 164.984
13 7717 850 178.817
14 8690 855 194.596
15 10336 863 205.747
16 11198 867 215.495
17 13003 875 225.622
18 14676 882 238.997
19 16961 891 253.886
20 19458 900 277.441
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Figure 3.2.1.1.  Storage versus water surface elevation relations for Toktogul reservoir. 
 

The GAMS code for this model is shown below.  Note that upper bounds on the coefficients have 
been added to prevent exponentiation overflow. 

 
SETS 
i   /1*20/ 
 
SCALAR h0  Minimum Elevation  /758/ 
 
PARAMETER 
h(i) / 
1         759 
2         767 
3         771 
4         783 
5         786 
6         795 
7         802 
8         810 
9         814 
10        827 
11        838 
12        839 
13        850 
14        855 
15        863 
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16        867 
17        875 
18        882 
19        891 
20        900 
/; 
 
PARAMETER 
S_hat(i) / 
1             0 
2            78 
3           118 
4           321 
5           405 
6           779 
7          1204 
8          1885 
9          2297 
10         3921 
11         5585 
12         5750 
13         7717 
14         8690 
15        10336 
16        11198 
17        13003 
18        14676 
19        16961 
20        19458 
/; 
 
POSITIVE VARIABLES 
a, b; 
 
b.up=100; 
a.up=100; 
 
VARIABLES 
e(i), obj; 
 
EQUATIONS residual(i), objective; 
 
residual(i).. e(i) =E= a*(h(i)-h0)**b - S_hat(i); 
 
objective.. obj=E=sum(i,power(e(i),2)); 
 
MODEL hvs /ALL/; 
 
SOLVE hvs USING  NLP MINIMIZING obj; 
 
FILE res /River1a.txt/; 
PUT res 
PUT "Coefficients(a and b) in formula S = a*(h-h0)**b"/ ; 
PUT "a = ", a.L, "   b = ", b.L//; 
PUT "No.            Elevation   Volume(real)  Volume(calc)"/; 
LOOP(i,PUT i.TL,  h(i), S_hat(i), ((a.L*(h(i)-h0)**b.L))/;); 

 
The results are  
 

Coefficients(a and b) in formula S = a*(h-h0)**b 
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a =         0.36   b =         2.20 
 
No.            Elevation   Volume(real)  Volume(calc) 
1                 759.00        0.00        0.36 
2                 767.00       78.00       45.54 
3                 771.00      118.00      102.29 
4                 783.00      321.00      431.26 
5                 786.00      405.00      553.40 
6                 795.00      779.00     1021.84 
7                 802.00     1204.00     1496.13 
8                 810.00     1885.00     2160.78 
9                 814.00     2297.00     2543.50 
10                827.00     3921.00     4026.47 
11                838.00     5585.00     5575.47 
12                839.00     5750.00     5729.98 
13                850.00     7717.00     7583.03 
14                855.00     8690.00     8519.56 
15                863.00    10336.00    10142.62 
16                867.00    11198.00    11012.33 
17                875.00    13003.00    12869.53 
18                882.00    14676.00    14624.88 
19                891.00    16961.00    17062.84 
20                900.00    19458.00    19707.16 

 
A plot of the function versus the measured data are shown in Figure 3.2.1.1.  The same procedure 
can be used to develop the function for surface area as a function of storage volume.  The results are 
shown in Figure 3.2.1.2. 
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Figure 3.2.1.2.  Storage versus reservoir surface area relations for Toktogul reservoir. 

 
The model can be modified if the user would like to estimate 
 
 0)( hsah b +=  (3.2.1.4) 
 
In this case, the difference (or residual) between the model value h (given in Equation 3.2.1.4 and 
which depends on the unknown parameter values a, and b) and the observed value ĥ can be written 
as  
 

Iihhsahhe i
b

iiii ,...,2,1,ˆ)ˆ(ˆ 0 =−+=−=  (3.2.1.5) 
 
The necessary modifications to the model are in the residual equation and the output: 
 

residual(i).. e(i) =E= a*S_hat(i)**b + h0 -h(i); 
. 
. 
. 
PUT "No.            Elevation   Volume(real)  Elevation(calc)"/; 
LOOP(i,PUT i.TL,  h(i), S_hat(i), ((a.L*S_hat(i)**b.L+h0))/;); 

 
The results for the Toktogul reservoir example are: 
 

Coefficients(a and b) in formula h = a*S**b+h0 
a =         1.91   b =         0.43 
 
No.            Elevation   Volume(real)  Elevation(calc) 
1                 759.00        0.00      758.00 
2                 767.00       78.00      770.70 
3                 771.00      118.00      773.20 
4                 783.00      321.00      781.49 
5                 786.00      405.00      783.98 
6                 795.00      779.00      792.52 
7                 802.00     1204.00      799.72 
8                 810.00     1885.00      808.69 
9                 814.00     2297.00      813.24 
10                827.00     3921.00      827.69 
11                838.00     5585.00      839.27 
12                839.00     5750.00      840.30 
13                850.00     7717.00      851.53 
14                855.00     8690.00      856.48 
15                863.00    10336.00      864.19 
16                867.00    11198.00      867.95 
17                875.00    13003.00      875.33 
18                882.00    14676.00      881.67 
19                891.00    16961.00      889.70 
20                900.00    19458.00      897.80 
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3.2.2  Reservoir Operation 
 
In the second model, the optimal operation of the reservoir is computed given a series of inflows and 
downstream water demand targets.  Evaporation from the reservoir surface is calculated using the 
relation between storage volume and surface area is needed.  This function is plotted in Figure 
3.2.1.2.  A linear approximation to the surface area – volume relation is used between the dead 
storage and total storage levels (Loucks et al., 1981).  The model is 
 

 [ ]∑ −
=

T

t
tt drMinimize

1

2  (3.2.2.1) 

 subject to 
 Ttrqss ttttttt ,...,1)1()1( 1 =−−+−=+ − βαα  (3.2.2.2) 
 TtKst ,...,1=≤  (3.2.2.3) 

 TteA ta
t ,...,1

2
==α  (3.2.2.4) 

 TteA tt ,...,10 ==β  (3.2.2.5) 
 
where: 

st  Storage at the end of time period t, (L3); 
   st-1  Storage at the beginning of time period t, (L3); 
   qt  Inflow volume during time period t, (L3); 
  rt  Release volume time period t, (L3); 

et  Evaporation rate, (L); 
 dt  Demand, (L3); and 
 K Capacity (total storage) of reservoir, (L3) 
 
The GAMS code for the model is shown below. 
 

SCALAR K      /19500/; 
SCALAR S_min  /5500/; 
SCALAR beg_S  /15000/; 
 
SETS 
t   / t1*t12/; 
 
$include River1B_Q_Dry.inc 
$include River1B_D.inc 
$include River1B_Evap.inc 
 
POSITIVE VARIABLES 
S(t), R(t); 
 
S.UP(t)=K; 
S.LO(t)=S_min; 
 
VARIABLES 
obj; 
 
EQUATIONS  objective, balance(t); 



 

 
 91 

 
objective.. obj =E= SUM(t,power((R(t)-D(t)),2)); 
 
balance(t).. (1+a(t))*S(t) =E= (1-a(t))*beg_S $(ord(t) EQ 1) 
                             + (1-a(t))*S(t-1)$(ord(t) GT 1) 
                             + Q(t) - R(t)- b(t); 
 
MODEL Reservoir / ALL /; 
SOLVE Reservoir USING NLP MINIMIZING obj; 
 
FILE res /River1b.txt/; 
PUT res 
PUT "                 (mln.m3)    (mln.m3) (mln.m3)   (mln.m3)"/; 
PUT "                 Storage       Input   Release     Demand"/; 
PUT "t0          ", beg_S/; 
LOOP(t,PUT t.TL, S.L(t), Q(t), R.L(t), D(t) /;); 

 
Note that in this model we have used a couple of new GAMS operators.  First, the ‘$include’ 
operator is used to copy the contents of 3 data files containing: 
 
(1) inflow data, River1B_Q_Ave.inc: 

 
PARAMETER 
Q(t) inflow (million m3) 
* normal 
/ 
t1  426 
t2  399 
t3  523 
t4  875 
t5 2026 
t6 3626 
t7 2841 
t8 1469 
t9  821 
t10 600 
t11 458 
t12 413 
/; 

 
(2) demand data, River1B_D.inc: 

 
Parameter 
D(t) demand (million m3) 
/ 
t1  1699.5 
t2  1388.2 
t3  1477.6 
t4  1109.4 
t5   594.6 
t6   636.6 
t7  1126.1 
t8  1092.0 
t9   510.8 
t10  868.5 
t11 1049.8 
t12 1475.5 
/; 
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and (3) evaporation data, River1B_Evap.inc: 

 
Parameter 
a(t) evaporation coefficient 
/ 
t1  0.000046044 
t2  0.00007674 
t3  0.000180339 
t4  0.000391374 
t5  0.000602409 
t6  0.000648453 
t7  0.000656127 
t8  0.000548691 
t9  0.0003837 
t10 0.000145806 
t11 0.000103599 
t12 0.000053718 
/; 
 
Parameter 
b(t) evaporation coefficient 
/ 
t1   1.92 
t2   3.2 
t3   7.52 
t4  16.32 
t5  25.12 
t6  27.04 
t7  27.36 
t8  22.88 
t9  16.00 
t10  6.08 
t11  4.32 
t12  2.24 
/; 

 
into the model at the specified locations.  This allows easy input and maintenance of data with a 
spreadsheet and the ability to quickly change complex input conditions from one case to another.  
This is illustrated below where the results of running the model with the file River1B_Q_Dry.inc  

 
PARAMETER 
Q(t) inflow (million m3) 
* dry 
/ 
t1   375 
t2   361 
t3   448 
t4   518 
t5  1696 
t6  2246 
t7  2155 
t8  1552 
t9   756 
t10  531 
t11  438 
t12  343 
/; 
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as the inflow condition instead of the previously used average inflow condition. 

 
Second, the ‘$’ or ‘conditional’ operator is used in the ‘balance’ equation in conjunction with the 
‘ord’ operator to pick out the initial time period and make sure that the initial storage volume 
‘beg_s’ is used as the previous month’s storage.  The effect of this is that when the condition after 
the ‘$’ is true then the value before the ‘$’ sign is used, otherwise it is omitted.  The condition is that 
the ordinal value of the index of the set t must be 1 for the condition to be true in the first case or 
greater than 1 in the second case. 
 
The results from running the model using the average inflow conditions are: 
 

                 (mln.m3)    (mln.m3)   (mln.m3)    (mln.m3) 
                 Storage       Input     Release     Demand 
t0              15000.00 
t1              13723.26      426.00     1699.50     1699.50 
t2              12728.83      399.00     1388.20     1388.20 
t3              11762.29      523.00     1477.60     1477.60 
t4              11502.47      875.00     1109.40     1109.40 
t5              12894.05     2026.00      594.60      594.60 
t6              15837.78     3626.00      636.60      636.60 
t7              17503.44     2841.00     1126.10     1126.10 
t8              17838.17     1469.00     1092.00     1092.00 
t9              18118.57      821.00      510.80      510.80 
t10             17838.75      600.00      868.50      868.50 
t11             17239.00      458.00     1049.80     1049.80 
t12             16172.46      413.00     1475.50     1475.50 

 
and the results from running the model using the dry inflow conditions are: 

 
                 (mln.m3)    (mln.m3) (mln.m3)   (mln.m3) 
                 Storage       Input   Release     Demand 
t0              15000.00 
t1              13672.26      375.00     1699.50     1699.50 
t2              12639.84      361.00     1388.20     1388.20 
t3              11598.35      448.00     1477.60     1477.60 
t4              10981.79      518.00     1109.40     1109.40 
t5              12044.20     1696.00      594.60      594.60 
t6              13609.93     2246.00      636.60      636.60 
t7              14592.96     2155.00     1126.10     1126.10 
t8              15013.84     1552.00     1092.00     1092.00 
t9              15231.43      756.00      510.80      510.80 
t10             14883.46      531.00      868.50      868.50 
t11             14264.32      438.00     1049.80     1049.80 
t12             13128.11      343.00     1475.50     1475.50 

 
A comparison of the results from using the average and dry inflow conditions is illustrated in Figure 
3.2.2.1. 
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Figure 3.2.2.1.  Reservoir model results using both average and dry inflow conditions. 

 

3.3  Management of a River System 
 
Figure 3.3.1 represents a simple river system, which includes water sources, reservoirs, consumers, 
and an estuary.  It is desired to allocate the available water in such a way that demand is satisfied.  
The problem is based on graph theory, whereby conservative transport of water is carried out 
through a directed graph.  At the nodes of the graph water resources change according to certain 
rules.  For each type of node, the inflow (Win) and outflow (Wout) are calculated.  Win is calculated 
as the sum of all releases (Wout) from all upstream nodes of the node under consideration.  
Withdrawal of water to consumers is subtracted at nodes under consideration.  In this way a mass 
balance is maintained at each node in the system. 
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Figure 3.3.1.  Structure of a River Network for the Water Management Task 
 
Objective  
 

 
∑ ∑
n t tnDemand

tnDivertMaximize
),(

),(

 (3.3.1a) 
 
where  
 
 Divert(n,t)  Diversion of water for consumer n in time period t; 
 Demand(n,t)  Demand for water by consumer n in time period t; and 
 
This objective (percentage of met demand) is a linear objective and combined with the linear 
constraints presented below, results in a linear program.  An alternative to this objective is one in 
which deviations of diversions from demands are minimized, resulting in a nonlinear (quadratic) 
program and requiring the use of a NLP solver in GAMS. 
 
 [ ]∑ ∑ −

n t
tnDemandtnDivertMinimize 2),(),(  (3.3.1b) 

 
Constraints 
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Simple nodes (junctions and other control nodes) nnn ∈  and for each time period t, we have  
 
 ),(),(),( tnSupplytnQtnR

innoutn
+∑=∑

∈∈
  (3.3.2) 

 
where 

),( tnR  Release from node n in period t (L3).  Releases are summed over all 
downstream nodes (out) that receive water released from the node; 

),( tnQ  Inflow to node n in period t (L3).  Inflows are summed over all upstream 
nodes (in) that release water to the node. 

),( tnSupply  Source of water at node nsn ∈  and for each time period t.   
 
Irrigation nodes nrrn ∈ , we calculate return flow as 
 
 ∑=

∈inn
j tnQRtnR ),(*),(  (3.3.3) 

 
where jR  is the return flow ratio for node n. 
 
Reservoir nodes nln ∈ , water balances in time period t are calculated as 
 
 ∑−∑−=

∈∈ outninn
tnRtnQtnStnS ),(),()1,(),(  (3.3.4) 

 
where ),( tnS  is the volume of water in reservoir n at the end of time period t (L3); 
 
The GAMS code is shown below. 
 

SET n nodes 
/ Supply_1, Supply_2, 
  Simple_1*Simple_5, 
  Divert_1, Divert_2, 
  Res_1, Res_2, 
  Outlet /; 
 
ALIAS(n,n1); 
 
SET 
nn(n)     Simple nodes     /Simple_1*Simple_5/ 
ns(n)     Supply nodes     /Supply_1, Supply_2/ 
nr(n)     Water user nodes /Divert_1, Divert_2, Outlet/ 
nrr(n)    Irrigation nodes /Divert_1, Divert_2/ 
nl(n)     Reservoir nodes  /Res_1, Res_2/; 
 
SET n_from_n(n,n1)  node n gets water from node n1 (any node) 
/ Res_1.Supply_1, 
  Res_2.Supply_2, 
  Simple_1.Res_1, 
  Simple_1.Res_2, 
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  Simple_2.Simple_1, 
  Divert_1.Simple_2, 
  Simple_3.Simple_2, 
  Simple_3.Divert_1, 
  Simple_4.Simple_3, 
  Divert_2.Simple_4, 
  Simple_5.Simple_4, 
  Simple_5.Divert_2, 
  Outlet.Simple_5 /; 
 
SET n_to_nr(n,n1)  node n diverts water to node n1 (user node) 
/ Simple_2.Divert_1, 
  Simple_4.Divert_2, 
  Simple_5.Outlet /; 
 
SET t months /Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec /; 
 
PARAMETER beg_S(n)    initial storage 
/ Res_1  1000, 
  Res_2  300 /; 
 
PARAMETER Ret(n)    return flow coefficients 
/ Divert_1  0.5, 
  Divert_2  0.5, 
  Outlet    0.0 /; 
 
TABLE Supply(n,t) water supplies (m3 per sec) 
          Jan   Feb   Mar   Apr  May  Jun  Jul  Aug   Sep   Oct   Nov   Dec 
Supply_1  128   125   234   360  541  645  807  512   267   210   181   128 
Supply_2   39    39    52   121  168  144  105   78    49    44    45    39 
 
TABLE Demand(n,t) water demands (m3 per sec) 
         Jan  Feb  Mar  Apr     May   Jun    Jul    Aug   Sep  Oct  Nov  
Dec 
Divert_1   0    0    0  64.5  109.8 184.4  243.7  200.9  99.5    0    0    
0 
Divert_2   0    0    0  13.5   15.0  22.1   26.0   24.9  13.0    0    0    
0 
Outlet   500  500  500   100    100   100    100    500   500  500  500  
500 
 
POSITIVE VARIABLES 
Divert(n,t)   Diversions 
Q(n,t)        Inflows 
R(n,t)        Releases 
S(n,t)        Storages; 
 
VARIABLE obj; 
 
* Upper bound on diversions 
Divert.up(n,t) = Demand(n,t); 
 
* Upper bound of reservoirs 
S.up('Res_1' ,t    )    = 1000; 
S.up('Res_2' ,t    )    = 300; 
 
* Final storage of reservoirs 
S.lo('Res_1' ,'Dec' )    = 1000; 
S.lo('Res_2' ,'Dec' )    = 300; 
 
EQUATIONS 
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R_no(n,t)    Simple node 
R_ns(n,t)    Source node 
R_nr(n,t)    Irrigation node 
R_nl(n,t)    Reservoir node 
R_nn(n,t)    Simple node 
Objective; 
 
* Simple node:  Release = Inflow 
R_no(n,t)$(nn(n)).. R(n,t) =e= Q(n,t); 
 
* Source node:  Release = Supply 
R_ns(n,t)$(ns(n)).. R(n,t) =e= Supply(n,t); 
 
* Irrigation node:  Release = Return Flow = Percent of Diversion 
R_nr(n,t)$(nr(n)).. R(n,t) =e= ret(n)*Divert(n,t); 
 
* Reservoir node:  Release = Mass Balance 
R_nl(n,t)$(nl(n)).. S(n,t) =e= beg_S(n)$(ord(t) EQ 1) 
                            +  S(n,t-1)$(ord(t) GT 1) 
                            + Q(n,t)-R(n,t); 
 
* Simple node:  Inflow = Sum of Releases from Upstream - Sum of Diversions 
R_nn(n,t).. Q(n,t) =e= sum(n1$(n_from_n(n,n1)),R(n1,t)) 
                     - sum(n1$(n_to_nr(n,n1)),Divert(n1,t)); 
 
*Sum over Irrigation Diversions/Demands + Downstream Flow/Demand 
* objective.. obj =e= sum(t,sum(n$nr(n), (Divert(n,t)/(Demand(n,t)+1e-
9)))); 
 
*Sum over Irrigation Diversions/Demands + Downstream Flow/Demand 
objective.. obj=e=sum(t,sum(n$nr(n), power((Divert(n,t)-Demand(n,t)),2) )); 
 
MODEL Lakes /all/; 
 
*SOLVE Lakes USING LP MAXIMIZING obj; 
SOLVE Lakes USING NLP MINIMIZING obj; 
 
file res /River2.txt/ 
put res; 
put "Node   Divert_1 Demand_1 Divert_2 Demand_2   Outlet  Demand_O"/; 
loop((t),put t.TL:6, Divert.L('Divert_1',t):9.2, Demand('Divert_1',t):9.2, 
                     Divert.L('Divert_2',t):9.2, Demand('Divert_2',t):9.2, 
                  Divert.L('Outlet',t)  :9.2, Demand('Outlet',t)  :9.2 /;); 
 
put /"Reservoirs  "/; 
put "                Reservoir 1            Reservoir 2 "/; 
put "          Inflow Storage Release  Inflow Storage Release  "/; 
put "             Q-1     S-1     R-1     Q-2     S-2     R-2  "/; 
loop((t),put t.TL:8, Q.L('Res_1',t):8.1, S.L('Res_1',t):8.1, 
R.L('Res_1',t):8.1, 
                     Q.L('Res_2',t):8.1, S.L('Res_2',t):8.1, 
R.L('Res_2',t):8.1 /;); 

 
Note that in this model we have used a couple of new GAMS operators: 
 

1. Subsets of sets are used to partition the set of nodes into different types: simple nodes, supply 
nodes, water user nodes, irrigation nodes, and reservoir nodes.  This facilitates the 
construction of a general model where different nodes serve different functions in the 
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network and transform water flows or other properties in different ways. 
2. Alias is used to define another set of nodes exactly the same as the first set (n and n1).  That 

way the two sets can be used to refer to two different nodes simultaneously in a two-
dimensional set. 

3. Two-dimensional sets are used to establish the topology of the network.  That is, the 
upstream to downstream connections between nodes are identified in a two-dimensional set 
n_from_n(n,n1).  These connections are indicated by using the ‘dot’ operator between two 
members of the two sets, e.g., Res_1.Supply_1 where Res_1 is from set n and represents the 
node for reservoir 1 and Supply_1 is from set n1 and represents the node for water supply 1. 

 
In the example several parameters are specified that have a distinct effect on the solution: 
 

1. The capacities of the two reservoirs in the system, 1000 and 300 units, respectively. 
2. The initial volume of water stored in the reservoirs, both reservoirs at full capacity. 
3. The final volume of water required to be stored in the reservoirs, both reservoirs at full 

capacity.  
4. The instream flow requirement at the outlet, varies between 500 units in winter to 100 units 

in summer. 
 
All of these factors have a distinct and significant effect on the solution and the reader can modify 
them and rerun the model to see the effect. 
 
Using the nonlinear objective function, the results are: 
 

Node   Divert_1 Demand_1 Divert_2 Demand_2   Outlet  Demand_O 
Jan        0.00     0.00     0.00     0.00   500.00   500.00 
Feb        0.00     0.00     0.00     0.00   500.00   500.00 
Mar        0.00     0.00     0.00     0.00   500.00   500.00 
Apr       64.50    64.50    13.50    13.50   100.00   100.00 
May      109.80   109.80    15.00    15.00   100.00   100.00 
Jun      184.40   184.40    22.10    22.10   100.00   100.00 
Jul      243.70   243.70    26.00    26.00   100.00   100.00 
Aug      193.27   200.90    17.27    24.90   484.73   500.00 
Sep        6.00    99.50     0.00    13.00   313.00   500.00 
Oct        0.00     0.00     0.00     0.00   254.00   500.00 
Nov        0.00     0.00     0.00     0.00   226.00   500.00 
Dec        0.00     0.00     0.00     0.00   167.00   500.00 
 
                Reservoir 1            Reservoir 2 
          Inflow Storage Release  Inflow Storage Release 
             Q-1     S-1     R-1     Q-2     S-2     R-2 
Jan       128.00  382.00  746.00   39.00  168.00  171.00 
Feb       125.00  107.00  400.00   39.00  107.00  100.00 
Mar       234.00    0.00  341.00   52.00    0.00  159.00 
Apr       360.00    0.00  360.00  121.00    0.00  121.00 
May       541.00    0.00  541.00  168.00  156.00   12.00 
Jun       645.00  331.70  313.30  144.00  300.00    0.00 
Jul       807.00 1000.00  138.70  105.00  300.00  105.00 
Aug       512.00 1000.00  512.00   78.00  300.00   78.00 
Sep       267.00 1000.00  267.00   49.00  300.00   49.00 
Oct       210.00 1000.00  210.00   44.00  300.00   44.00 
Nov       181.00 1000.00  181.00   45.00  300.00   45.00 
Dec       128.00 1000.00  128.00   39.00  300.00   39.00 

 
The percent of the satisfied demand is illustrated in Figure 3.3.2 and the reservoir operation is shown 
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in Figure 3.3.3.  From these figures one can see the effect of requiring that the reservoirs return to 
the initial condition at the end of the year, stored water is not available to meet demand in September 
and downstream flow demands are unmet from July to December.  One interesting modification to 
the model would be to apply weight factors to the three different demands and see how varying the 
weights affects the solution. 
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Figure 3.3.2.  Demand satisfaction chart for river management example using nonlinear 

objective function. 
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Figure 3.3.3.  Reservoir storages and releases for river management example using 

nonlinear objective function. 
 
 
 
This example served as the basis for the development of the models of optimal management of water 
resources in river systems (see N. Kipshakbaev and A. Tasybaev, Vol. 2, Section 1.1, “Optimization 
of the Syrdarya Water and Energy Uses under Current Conditions: Kazakhstan Part,” McKinney, 
D.C. and A.K. Kenshimov (eds.), 2000 ). 
 
 

3.4  Onstream and Offstream Reservoir Management 
 
Consider the following example of solving a complex problem of using conditional operators with 
variables.  We have two reservoirs.  The first reservoir takes water from upstream (according to a 
hydrograph of inflows) and releases it to downstream demands (according to a schedule of 
demands).  The second reservoir receives water from the first reservoir through a valve that opens 
when the volume in the first reservoir exceeds the volume in the second reservoir.  The second 
reservoir sends water back to the first reservoir through a valve that opens when the volume in the 
first reservoir is insufficient to meet demands.  In this case, water from the second reservoir will 
make up the deficit of the first reservoir through the return valve.   
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This is not an abstract example, but it is taken from real life.  Tuyamuyun reservoir on the Amu 
Darya River in Central Asia is comprised of two parts: an onstream and an offstream part.  Water 
comes to the offstream part of the reservoir by gravity flow when the water level of the onstream 
part exceeds the water level of the offstream part.  On the other hand, water of the offstream 
reservoir comes to the onstream section when there is a shortage of irrigation water for agriculture.  
Water storage in the offstream reservoir is more preferable than in the onstream part, due to its 
structure.  Hence, preferential storage of water is achieved in the offstream part of the reservoir.   
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Figure 3.4.1.  On- and off-stream reservoir system diagram. 

 
The mathematical description of the problem can be written as:  
 
1) tttttt RQRQSS 22

1
11 +−−+= −  Balance equation for onstream reservoir (1) 

 
2) tttt RQSS 22

1
22 −+= −    Balance equation for offstream reservoir (2) 

 
3) 0and,0if 221 =>= tttt RQSS  Switch for flow from on- to off-stream 

 
 max,11min,1 SSS t <<  

 max,22min,2 SSS t <<  

 
 max0 QQt <<  

 max20 QRt <<  
 
 0if, 0

11 === tSSFQ tt  

 0if, 0
2222 === tSSFQ tt  
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4) ∑ tRMinimize 2  

where 
 Q - inflow to the streamflow reservoir, 
 R - release from the streamflow reservoir 
 Q2 - inflow to the streamflow reservoir, 
 R2 - release from the streamflow reservoir 
 S1 - storage volume in streamflow reservoir 
 S2 - storage volume in streamflow reservoir 
 
The third equation enters the calculation when the volumes in both reservoirs are equal.  Equation 4 
is the objective function which is to minimize the need for releases from the offstream reservoir.   
 
How can we model this situation in GAMS?  Since we can not take equation 3 out of the 
computation process using the conditional operator, we must eliminate its impact by isolating the 
elements of the equation through transforming it into an identity. 
 
SETS 
n reservoir  /tmgu,sult/; 
 
SETS 
t  time   / jan, feb, mar, apr, may, 
            jun, jul, aug, sep, oct, 
            nov, dec, eenndd / 
tt(t) /jan/  ; 
 
TABLE Q(n,t)  inflow to the onstream reservoir(mln.cub.m)     
          jan feb mar apr may jun jul aug sep oct nov dec  eenndd 
tmgu       128 125 234 360 541 645 807 512 267 210 981 928   250 
 
TABLE R(n,t) required releases from the onstream reservoir (mln.cub.m); 
          jan feb mar apr may jun jul aug sep oct nov dec  eenndd 
tmgu       111 111 111 500 222 700 333 333 333 333 333 333   200 
 
VARIABLES 
            Q2(t), 
            R2(t), 
            S(n,t), 
            obj; 
 
EQUATION 
balanc1(n,t),    water balance of the stream-flow reservoir; 
balanc2(n,t),    water balance of the offstream reservoir; 
rules1(n,t),     rules of filling the reservoirs; 
ben;             objective function; 
 
balanc1(n,t)$(not tt(t)).. 
           S('tmgu',t)-S('tmgu',t-1) 
        =e= 
           +Q('tmgu',t)-R('tmgu',t) 
           -Q2(t)+R2(t); 
 
balanc2(n,t)$(not tt(t)).. 
          S('sult',t)-S('sult',t-1) 
       =e= 
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          Q2(t)-R2(t); 
 
rules1(n,t)$(not tt(t)).. 
         (S('sult',t)-S('tmgu',t))     - 
         (S('sult',t)-S('tmgu',t))     * 
          (1.0-Q2(t) /(Q2(t)+0.00000001)) 
       =e= 
         0.0; 
 
ben.. obj =e= SUM(t$(not tt(t)),R2(t)); 
 
S.LO('tmgu ',t) = 1150; lower level of the stream-flow reservoir; 
S.UP('tmgu ',t) = 4590; upper level of the stream-flow reservoir; 
S.FX('tmgu ','jan') = 1200; initial level of the stream-flow reservoir; 
S.LO('sult ',t    ) = 100 ; lower level of the offstream reservoir; 
S.UP('sult ',t    ) = 4590; upper level of the offstream reservoir; 
S.FX('sult ','jan') = 1200; initial level of the offstream reservoir; 
R2.UP(t)= 1500;               upper limits of release from offstream; 
R2.LO(t)= 0.0;                lower limits of release from offstream; 
Q2.UP(t)= 1500;               upper limits of diversion to offstream; 
Q2.LO(t)= 0.0;                lower limits of diversion to offstream; 
Q2.L(t)= 0.00001;             initial stage of finding a solution; 
 
OPTION ITERLIM= 20000;        not more than 20000 iterations 
OPTION LIMROW =12;            list all estimated time intervals; 
OPTION OPTCR  =0.000001;      accuracy of optimal solution; 
 
OPTION nlp  =minos5; 
 
MODEL tmgu   /all/; 
 
SOLVE tmgu   USING  NLP MINIMIZING obj; 
 
PARAMETER A(t); 
A(t)=(1-(Q2.l(t)/(abs(Q2.l(t))+0.00001))); 
 
FILE res /River0.txt/ 
PUT res; 
PUT " objective = ",obj.l:10:5; 
PUT /"  =========balance ====================  "/; 
PUT "                                         "/; 
PUT " A       R2     Q2     S_sult    S_tmgu      Q    "; 
PUT "     R        in-out   dS-tmgu   dS-sult "/; 
LOOP((t)$(ord(t) ne card(t)), 
 PUT   A(t):5:2,R2.L(t):7:1,Q2.L(t):7:1,S.L('sult',t):10:1,S.L('tmgu',t):10:1, 
       Q('tmgu',t ):10:1,R('tmgu',t ):10:1,(Q('tmgu',t )-R('tmgu',t )):10:1, 
       (S.L('tmgu',t)-S.L('tmgu',t-1)):10:1,(S.L('sult',t)-S.L('sult',t-1)):10:1 
/;); 
 PUT " ===================================== "/; 
 
 
The result of the calculation will be represented in text file: 
 
objective =   21.50000 
  =========balance ==================== 
 
 A       R2     Q2     S_sult    S_tmgu      Q         R        in-out   dS-tmgu   dS-sult 
 0.50    0.0    0.0    1200.0    1200.0     128.0     111.0      17.0    1200.0    1200.0 
 0.00    0.0    7.0    1207.0    1207.0     125.0     111.0      14.0       7.0       7.0 
 0.00    0.0   61.5    1268.5    1268.5     234.0     111.0     123.0      61.5      61.5 
 1.00   21.5    0.0    1247.0    1150.0     360.0     500.0    -140.0    -118.5     -21.5 
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 0.00    0.0  111.0    1358.0    1358.0     541.0     222.0     319.0     208.0     111.0 
 1.00    0.0    0.0    1358.0    1303.0     645.0     700.0     -55.0     -55.0       0.0 
 0.00    0.0  209.5    1567.5    1567.5     807.0     333.0     474.0     264.5     209.5 
 0.00    0.0   89.5    1657.0    1657.0     512.0     333.0     179.0      89.5      89.5 
 1.00    0.0    0.0    1657.0    1591.0     267.0     333.0     -66.0     -66.0       0.0 
 1.00    0.0    0.0    1657.0    1468.0     210.0     333.0    -123.0    -123.0       0.0 
 0.00    0.0  229.5    1886.5    1886.5     981.0     333.0     648.0     418.5     229.5 
 0.00    0.0  297.5    2184.0    2184.0     928.0     333.0     595.0     297.5     297.5 
 ===================================== 
 
From the results we see that the offstream reservoir was used during the third time interval, when the 
stream-flow reservoir was incapable of covering the required release.   
 

3.5  Managing Water Quality in Streams 
 

SETS  i reaches /1*7/ 
SETS  k treatment levels /1*4/ 
 
ALIAS(i,i1); 
SET i_from_i(i,i1)  reach i gets water from node i1 (any node) 
/ 
3.1, 
3.2, 
5.3, 
5.4, 
6.5, 
7.6 
/; 
 
Parameter W(i) Waste input to plant (mg per L) 
/ 
1 248, 
2 408, 
3 240, 
4 1440, 
5 0, 
6 2180, 
7 279 
/; 
 
Parameter E_init(i)  Initial treatment level of plant 
/ 
1 0.67, 
2 0.30, 
3 0.30, 
4 0.30, 
5 0.0, 
6 0.30, 
7 0.30 
/; 
 
Parameter DO_Sat(i) Saturate DO level in reach (mg per L) 
/ 
1 10.20, 
2 9.95, 
3 9.00, 
4 9.70, 
5 9.00, 
6 8.35, 
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7 8.17 
/; 
 
Table C(i,k)  Treatment plant costs for various levels of treatment ($) 
       1             2             3             4 
1      0         22100         77500        120600 
2 630000        780000        987000       1170000 
3 210000        277500        323000        378000 
4 413000        523000        626000        698000 
5 0                  0             0             0 
6 500000        638000        790000        900000 
7 840000       1072000       1232500       1350000 
 
Parameter R(k) Possible treatment levels 
/ 
1 0.60, 
2 0.75, 
3 0.85, 
4 0.90 
/; 
 
Parameter Qw(i) Wastewater inflows (million m3) 
/ 
1 19, 
2 140, 
3 30, 
4 53, 
5 0, 
6 98, 
7 155 
/; 
 
Parameter Dw(i) DO deficit in wastewater inflow (mg per L) 
/ 
1 1.0, 
2 1.0, 
3 1.0, 
4 1.0, 
5 0.0, 
6 1.0, 
7 1.0 
/; 
 
Parameter Qi(i) Source inflow (million m3) 
/ 
1 5129, 
2 4883, 
4 1120 
/; 
 
Parameter Dmax(i) Maximum allowed DO deficit on reach (mg per L) 
/ 
1 3.2, 
2 2.45, 
3 2.00, 
4 3.75, 
5 2.50, 
6 2.35, 
7 4.17 
/; 
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Parameter Di(i) DO Deficit in source flow (mg per L) 
/ 
1 0.70, 
2 1.95, 
4 0.16 
/; 
 
Parameter Bi(i)  BOD level in source flow (mg per L) 
/ 
1 1.66, 
2 0.68, 
4 1.0 
/; 
 
Parameter k1(i)  Deoxygenation coefficient (day-1) 
/ 
1 0.93, 
2 0.58, 
3 0.68, 
4 0.49, 
5 0.90, 
6 0.69, 
7 0.16 
/; 
 
Parameter k2(i)  Coefficient (day-1) 
/ 
1 0.06, 
2 0.28, 
3 0.23, 
4 0.46, 
5 0.09, 
6 0.28, 
7 0.78 
/; 
 
Parameter k3(i)  Reaeration Coefficient (day-1) 
/ 
1 0.79, 
2 0.45, 
3 0.50, 
4 0.83, 
5 0.80, 
6 0.86, 
7 0.88 
/; 
 
Variables 
obj        Objective value; 
 
Positive variables 
E(i)       level of treatment, 
Bw(i)      BOD leaving treatment plant (mg per L), 
B(i)       BOD in reach (mg per L), 
D(i)       DO deficit in reach (mg per L), 
B_minus(i) BOD at beginning of reach (mg per L), 
D_minus(i) DO deficit at beginning of reach (mg per L), 
B_plus(i)  BOD at end of reach (mg per L), 
D_plus(i)  DO deficit at end of reach (mg per L), 
Q(i)       Flow in reach (million m3); 
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Integer variables 
Z(i,k)     integer variables indicating the level of treatment; 
 
E.l(i) = E_init(i); 
E.lo(i) = E_init(i); 
E.fx('5') = 0.0; 
 
Equations 
Objective, 
Zsum(i) Sum of integer variables, 
Treatment(i) Level of treatment in terms of available levels, 
BOD_Plant(i) Output BOD level of plant, 
Reach_Flow(i) FLow in reach, 
Reach_BOD(i) BOD in reach, 
Reach_DO(i) DO deficit in reach, 
BOD_Plus(i) BOD level at end of reach, 
DO_Plus(i) DO deficit level at end of reach, 
DO_Max(i) DO deficit constraint at begin of reach, 
DO_Plus_Max(i) DO deficit constraint at end of reach 
; 
 
Objective..      obj       =E= sum(k,sum(i,C(i,k)*Z(i,k))); 
 
Zsum(i)..        sum(k,Z(i,k)) =L= 1; 
 
Treatment(i)..   E(i)      =E= sum(k,R(k)*Z(i,k)); 
 
BOD_Plant(i)..   Bw(i)     =E= W(i)*(1.0-E(i)); 
 
Reach_Flow(i)..  Q(i)      =E= Qi(i)      +sum(i1$(i_from_i(i,i1)),Q(i1)) 
+Qw(i); 
 
Reach_BOD(i)..   B(i)*Q(i) =E= 
Bi(i)*Qi(i)+sum(i1$(i_from_i(i,i1)),B_plus(i1)*Q(i1))+Bw(i)*Qw(i); 
 
Reach_DO(i)..    D(i)*Q(i) =E= 
Di(i)*Qi(i)+sum(i1$(i_from_i(i,i1)),D_plus(i1)*Q(i1))+Dw(i)*Qw(i); 
 
BOD_Plus(i)..    B_plus(i) =E= B(i)*k1(i); 
 
DO_Plus(i)..     D_plus(i) =E= B(i)*k2(i)+D(i)*k3(i); 
 
DO_Max(i)..      D(i)      =L= Dmax(i); 
 
DO_Plus_Max(i).. D_Plus(i) =L= Dmax(i); 
 
Model waterquality /all/; 
 
Solve waterquality using MINLP minimizing obj; 
 
file WQ /WQ.txt/ 
put WQ 
put 'Site   E(i)' put / 
loop( i,  put i.tl, put E.l(i), put /) 
put / 
put 'Site   Q(i)' put / 
loop( i,  put i.tl, put Q.l(i), put /) 
put / 
put 'Site   Bw(i)' put / 
loop( i,  put i.tl, put Bw.l(i), put /) 
put / 
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put 'Site                B(i)   B_Plus(i)' put / 
loop( i,  put i.tl, put B.l(i), put B_Plus.l(i), put /) 
put / 
put 'Site                D(i)   D_Plus(i)     Dmax(i)       DO_Plus(i)' 
put / 
loop( i,  put i.tl, put D.l(i), put D_Plus.l(i), put Dmax(i), put 
(DO_Sat(i)-D_Plus.l(i)),put /) 
 

SOLUTION 
 
Site   E(i) 
1                   0.85 
2                   0.75 
3                   0.60 
4                   0.90 
5                   0.00 
6                   0.90 
7                   0.85 
 
Site   Q(i) 
1                5148.00 
2                5023.00 
3               10201.00 
4                1173.00 
5               11374.00 
6               11472.00 
7               11627.00 
 
Site   Bw(i) 
1                  37.20 
2                 102.00 
3                  96.00 
4                 144.00 
5                   0.00 
6                 218.00 
7                  41.85 
 
Site                B(i)   B_Plus(i) 
1                   1.79        1.67 
2                   3.50        2.03 
3                   2.12        1.44 
4                   7.46        3.66 
5                   1.67        1.50 
6                   3.35        2.31 
7                   2.84        0.45 
 
Site                D(i)   D_Plus(i)     Dmax(i)       DO_Plus(i) 
1                   0.70        0.66        3.20        9.54 
2                   1.92        1.85        2.45        8.10 
3                   1.25        1.11        2.00        7.89 
4                   0.20        3.60        3.75        6.10 
5                   1.37        1.24        2.50        7.76 
6                   1.24        2.01        2.35        6.34 
7                   1.99        3.97        4.17        4.20 

 

3.6  Exercises  
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1.  a.  Revise the model of Section 3.1 to solve the water user allocation problem where the objective 
function is given in Loucks et al., Problem 2.9.  Note that problem 2.9 does not include the 
downstream user and this component of the model will have to be take out.  The coefficients in the 
objective function will have to be changed to those specified in the problem (12, -1; 8, -1; and 18, -
3) and the release is equal to 10 and 15 units of water.  To show that the marginal values are all 
equal to the dual variable (Lagrange multiplier) for the constraint, note that this marginal value is 
printed in the solution report file.  You can plot the individual objectives, mark the points where the 
optimal solution occurs for each decision variable (xi) and compute the slope of the objective 
function there (the slopes should be the same for each decision variable). 

b.  Add a fourth user of water (x4) to the model of Section 3.1 and resolve problem 2.9.  The 
coefficients for the objective function are:  a4 = 15 and b4 = -2. 
 
1a. (Adapted from Loucks (2004) Chapter 5, Section 4.1.3) Assume that the benefit each of three 
water-using firms (i = 1,2,3) receives is determined by the quantity of product it produces, yi, and 
the price per unit of the product that is charged, pi.  These products require water and water is the 
limiting resource.  The amount of product produced by each firm i is dependent on the amount of 
water, xi, allocated to it.   The demand functions are  

iiii ybap −=  

The associated cost functions are 

id
iii ycCost =  

The production functions    

if
iii xey =  

where the coefficients are given in the following table. 

 

Coefficient\Fir
m 

1 2 3 

a 12 20 28 
b 1 1.5 2.5 
c 3 5 6 
d 1.3 1.2 1.15
e 0.4 0.5 0.6 
f 0.9 0.8 0.7 

 

Write a GAMS model to find the optimal water allocations, production levels, and prices that 
together maximize the total net benefit obtained from all three firms.  The water allocations plus the 
amount that must remain in the river, R, cannot exceed the total amount of water Q available.   Solve 
the model for available levels of water (Q – R) of 10, 20, 30, 38, and 38.3 units (see Table 5.2 in 
Loucks (2004) for the table of answers). 
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2.  (Adapted from Loucks et al., Problem 2-29(a))  A reservoir storage-yield function defines the 
maximum constant reservoir release that is available during a period of operation.  Given a series of 
reservoir inflows, the yield from a reservoir is a function of the reservoir’s active storage capacity.    
The reservoir storage-yield function can be determined by solving the following linear program: 

TtKS

TTtRRQSS

R

t

tttt

,...,1

11;,...,1

tosubject

Maximize

1

=≤

=+=−−+=+
 

where R is the yield of the reservoir (constant release in each time period), St is the volume of water 
stored in the reservoir in each period, Qt is the inflow to the reservoir in each period, and Rt is the 
excess release (or spill) from the reservoir in each time period.  Use linear programming to derive an 
annual storage-yield function for a reservoir at a site having the following record of annual flows of 
5, 7, 8, 4, 3, 3, 2, 1, 3, 6, 8, 9, 3, 4, 9 units of flow.  Find the values of storage required for yields of 
2, 3, 3.5, 4, 4.5, and 5 units of flow. 

 
3.  Given 7 years of inflow values, the surface vs area data and relationship, and evaporation data for 
Toktogul reservoir in Kyrgyzstan (see Data Set 1), construct a storage-yield relationship for 
Toktogul.  Show that the result for one point on the storage-yield relationship curve is the same for 
"Max R - Given K" and "Min K - Given R". 
 
4.  Consider the river network illustrated in Figure 3.5.1 below.  The system contains one reservoir 
(Toktogul reservoir in Kyrgyzstan) and two irrigated zones (one in Uzbekistan and one in 
Kazakhstan).  Four different crops can be grown in each irrigation zone: cotton, wheat, rice, and 
Lucerne.  The profit per hectare for each crop is shown in Table 3.5.1 along with the maximum crop 
areas and the crop water requirements.  The capacity of the reservoir is 19,500 million m3, and the 
dead storage capacity is 5,500 million m3.  The initial storage volume is 14,000 million m3.  Write a 
GAMS model to determine the optimal mix of crops to be grown by each of the countries if the 
ending storage in the reservoir must be 13,000 million m3.  What impact does the ending storage 
volume have on the solution? 
 
Table 3.5.1.  Data for Rerervoir Operation Problem. 

Crop water demands (mm per month) 
Crop Jan Feb Mar  Apr May Jun Jul Aug Sep Oct Nov Dec 
Cotton 150 150 100 100 200 250 250 200 50 0 0 0 
Wheat 0 0 0 100 300 300 0 0 200 0 0 0 
Rice 0 0 0 450 700 800 800 700 50 0 0 0 
Lucerne 0 0 0 50 200 350 350 250 50 0 0 0 
 
Naryn River Inflow  Crop Profits  Maximum area per crop 

Month Inflow   Crop Profit   Crop Uzbekistan Kazakhstan 
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(Million m3) ($/ha) (ha) (ha) 
Jan 386  Cotton  350  Cotton 500,000 65,000 
Feb 346  Wheat   70  Wheat 500,000 30,000 
Mar 416  Rice  225  Rice 0 500,000 
Apr 713  Lucerne 50  Lucerne 50,000 500,000 
May 1532        
Jun 2373  Maximum total area  Return Flow Coefficient  
Jul 2157  Country Area(ha)  Country Coefficient  
Aug 1431  Uzbekistan 2,000,000  Uzbekistan 0.50  
Sep  798  Kazakhstan 2,000,000  Kazakhstan 0.50  
Oct  582        
Nov  487        
Dec  420        
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Figure 3.5.1.  River Network for Reservoir Operation Task 
 
3.5.  Consider the river network illustrated in Figure 3.5.1 below.  The system contains one long-
term (over-year) storage reservoir (Toktogul reservoir in Kyrgyzstan), four constant volume (pass-
through) reservoirs (Kurpsia, Tashkumur, Shamaldasai, and Uchkurgan, all in Kyrgyzstan), two 
irrigated zones (one in Uzbekistan and one in Kazakhstan).  The crop information and initial and 
final storage information is the same as in Problem 3.4 above.  Toktogul is the only reservoir in the 
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cascade for which the volume varies over time depending on the volume of water in storage.  The 
equation expressing the head across the turbines as a function of the reservoir water elevation and 
storage volume for Toktogul reservoir is 
 
 tail

b HtaSHtH −+= )()( 0  
 
where H0 is the elevation at dead storage, S(t) is the volume of water in storage at time t, a and b are 
coefficients, and Htail is the elevation of the water in the tail water of the reservoir.  The numerical 
values are given in Table 3.5.1.  For the other reservoirs in the cascade, the head across the turbines 
is a constant, given in the table.  Write a GAMS model to determine the optimal mix of crops to be 
grown by each of the countries if the ending storage in the reservoir must be 13,000 million m3.  In 
addition, compute the power generated from the releases of water. 
 
Table 3.5.1.  Data for Rerervoir Operation Problem with Power. 
Reservoir Efficiency Installed Capacity H0 HTail HConstant 
Toktogul 0.874 1200 758 720 - 
Kurpsai 0.874 800 - - 100 
Tashkumur 0.874 450 - - 53 
Shamaldasia 0.874 240 - - 18.5 
Uchkurgan 0.874 180 - - 28 
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Figure 3.5.1.  River network for reservoir operation fask, including power cascade 
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3.6.  Consider the river network illustrated in Figure 3.5.1 above.  Write a GAMS model to 
determine the optimal mix of crops to be grown by each of the countries if the ending storage in the 
reservoir must be 13,000 million m3.  In addition, the Kyrgyz power demand must be satisfied by a 
combination of hydropower, thermal power, and regional grid power transfers.  The total power 
produced is a combination of the hydropower produced, the thermal power generated by Kyrgyz 
power plants, and power transferred from the regional grid (see Figure 3.6.1) 
 

)()()()( tPtPtPtP transferhydrothermal ++=  
 
where in any month t, P(t) is the total power produced, Pthermal(t) is the thermal power produced, 
Phydro(t) is the hydropower produced, and Ptransfer(t) is the power transferred from the regional grid.   
 

 Naryn Cascade 
Hydropower 

Regional Grid Transfer 

Kyrgyz Demand 

Kyrgyz Thermal
Plants 

 
 

Figure 3.6.1.  Power network for reservoir operation fask, including power cascade 
 
The objective function can be formulated as  
 

∑ −++
+

−

∑ +=

t demtransfertransfer

hydrohydrothermalthermal
crops

tEtPtPC
tPCtPC

cropAcropAcropgmZ

})]()([)(*
)(*)(*{

)]()([*)(

2

22

 

 
where Chydro = 0.001 $/kWh is the cost to produce hydropower, Cthermal = 0.012 $/kWh is the cost to 
produce thermal power, Ctransfer = 0.013 $/kWh is the cost to transfer power to or from the regional 
grid.  The Kyrgyz power demand and the Kyrgyz thermal power generation capacity is limited 
according to the values in Table 3.6.1.   
 

Table 3.6.1.  Electricity Data for Rerervoir Operation Problem with Power. 
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  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Electricity Demand GWh 
161

4 
130

1 
131

8 881 609 
51
6 

52
9 528 

50
9 

69
7 

119
6 

152
2 

Thermal Generation (Max) GWh 
345 345 345 100 45 45 45 45 45 34

5 
345 345 

 
3.7.  (adapted from Loucks et al., Problem 5.14) Create and solve a GAMS model to find the 
solution which maximizes the total annual power production of the two reservoirs in series system 
shown in Figure 3.7.1.   
 

  

E2,t E1,t 

Q1,t 

Q2,t

R2,t R1,t 
S2,t S1,t 

K1 K2 

 
 

Figure 3.7.1.  Two reservoirs in series. 
 
The releases R1,t from the upstream reservoir (reservoir 1) plus the unregulated incremental flow Q2,t 
constitute the inflow to the downstream reservoir (reservoir 2).  The flows Q1,t into the upstream 
reservoir in each of four seasons along with the incremental flows Q2,t and constraints on reservoir 
releases are given in the accompanying two tables: 
 

Reservoir 1 (Upstream) 
Season t Inflow,  

tQ ,1  
Minimum Release, 

min
,1 tR  

Maximum Release 
Through Turbines 

max
,1 tR  

1 60 20 90 
2 40 30 90 
3 80 20 90 
4 120 20 90 

 
Reservoir 2 (Downstream) 

Season t Incremental Flow, 
tQ ,2  

Minimum Release, 
min
,2 tR  

Maximum Release 
Through Turbines, 

max
,2 tR  

1 50 30 140 
2 30 40 140 
3 60 30 140 
4 90 30 140 

 
Note that there is a limit on the quantity of water that can be released through the turbines for energy 
production in any season due to the limited capacity of the power plant and the desire to produce 
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hydropower during periods of peak demand. 
 
Additional information that affects the operation of the two reservoirs are limitations on the 
fluctuations in the pool levels (head) and the storage-head relationships: 
 

Item Reservoir 1 (Upstream) Reservoir 2 (Downstream) 
Maximum Head max

,1 th = 70 m max
,2 th = 90 m 

Minimum Head min
,1 th = 30 m min

,2 th = 60 m 
Capacity 1K = 150x106 m3 2K = 400x106 m3 

Storage - Head Relationship 64.0

1

,1max
,1,1,1 )( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

K
S

hSh t
ttt  

62.0

2

,2max
,2,2,2 )( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

K
S

hSh t
ttt  

 
Assume that the efficiencies of the hydropower units are both 70%, independent of either flow 
through the turbines or the head on the turbines.  In calculating the energy produced in any season, 
use the average head during that season 
 

2,1)],()([*5.0 1,,,,, =+= + iShShh tititititi  
 
 
3.8.  Assume that stream flow ( Ŝ ) is 26 million m3 per unit of time and there is an interstate 
agreement ( S ) calling for 14.5 million m3 Also, initially there are two users on the river diverting S2 
and S3 million m3.  The benefits to each user are: 
 

User 2:  2
22

2
222222 5150)( SSSbSaSB −=+=  

User 3:  2
33

2
333333 6.018)( SSSbSaSB −=+=  

 
In addition, both users have the same return flow coefficient, 5.032 == RR .  Write an optimization 
model to determine an efficient allocation that results in maximizing the value of water use in the 
basin and respects the interstate compact.  What are the water allocations and the benefits to each 
user?   
 
3.9.  Now, assume that an additional user wants to divert S1 million m3 of water from the river.  User 
1’s benefit function is identical to User 2’s benefit, i.e.,  
 

User 1:  2
11

2
111111 5150)( SSSbSaSB −=+=  

 
User 1 also has a return coefficient of R1 = 0.5.  Modify your optimization model to determine a new 
efficient allocation that results in maximizing the value of water use for all three users in the basin 
and respects the interstate compact.  What are the water allocations and the benefits to each user?   
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3.10.  Assume that the solution to Part (1) represents the initial water rights of Users 2 and 3, using 
the results obtained in Part (2), what is the minimum payment that User 1 should pay to Users 2 and 
3 in order to divert water from the river?  What are the resulting net benefits to each of the three 
users? 
 
3.11.  Assume that the system described in Problem (2) is modeled as a water market where users 1, 
2, and 3 have water right allocations, 0.0, 4.0, and 7.5, respectively.  Develop a model which will 
determine the optimal use of water by each user, assuming that the users are free to trade their water 
rights according to the model structure described in Section 3.2.5 above. 
 
3.12.   (from Loucks et al., 1981) A water user can withdraw water from a stream at a particular site 

where the cumulative distribution function of streamflow is F(q) = 
q

1+q  for q ≥ 0. The withdrawal x 

at that location must satisfy a chance constraint Pr{x≤ Q} ≥ p, or equivalently Pr{x≥ Q} ≤ 1-p.  
Write the deterministic equivalents for each of the following constraints: 

 
a) Pr{x≤ Q} ≥ 0.90 
  
b) Pr{x≥ Q} ≤ 0.80 
  
c) Pr{x≤ Q} ≤ 0.95 
  
d) Pr{x≥ Q} ≥ 0.75 

 
3.13.  (from Loucks et al., 1981) Assume that there are N years of monthly streamflow records for a 
particular site at which a reservoir is to be built and from these records the probability distributions 
of streamflows can be estimated at the reservoir site, Qty , and downstream, Qty*. 
 

  

Yty
Q

K

Q*
ty

 
(a) Develop a chance-constrained model for estimating the minimum active storage capacity K 

required for a single reservoir to obtain a maximum constant yield Y each month with 
approximately 90% chance of being equaled or exceeded in every month of any year.  

 
(b)  Develop a yield model for estimating the minimum active storage capacity K required for a 

single reservoir to obtain the maximum constant yield Y each month which is 90% reliable in 
any year. 

 
(c) Discuss the relative advantages and disadvantages of the two models developed in (a) and (b) 

above.  Indicate which, in your opinion, would be the better screening model to use for this 
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problem and why.  Typically, a screening model is an optimization model used to limit the 
number of possible designs considered for a particular project.  The “screened” candidate 
designs are then evaluated using an extensive and detailed simulation model of the water 
resource system 

 
3.14. Indicate whether the following are true or false 
 
a)  Hydroelectric power production is inversely proportional to the storage volume in a reservoir 

upstream of the turbines. 
 
b)  Reservoir storage volumes must be maintained below flood storage levels during all time periods 

not in the flood season. 
 
c)  The primary purpose of dead storage volume in a reservoir is to maintain downstream flows for 

fish and wildlife during extremely low flow periods. 
 
d)  Long-run benefits and losses from the operation of a water resources project are not affected by 

water flow or storage targets, whereas short-run benefits and losses are. 
 
e)  Minimizing the deviations of storage volumes from targets storage levels over a planning horizon 

is one possible purpose of a water resources project. 
 
f)  A typical constraint incorporated into a screening model for designing a reservoir is the 

maximization of hydroelectric power production. 
 
g)  When computing streamflow probabilities by a Markov chain no knowledge of previous 

streamflow values is required. 
 
 

4. OPTIMAL MANAGEMENT OF GROUNDWATER 

4.1  Finite-Difference Method 
 
Analytical solutions are difficult for situations where you have irregular boundaries, various 
different boundary conditions in a region, heterogeneous and anisotropic porous media properties, or 
multiple phases.  Often the aquifers and subsurface environments we want to model exhibit all of 
these characteristics.  So what can we do?  Numerical solutions to the governing equations of flow 
and mass transport in porous media provide a useful and convenient method of handling these 
complications.  In this section, we will discuss the most common technique used to model 
groundwater flow and mass transport, the finite-difference method. 
 

4.2  Numerical Differentiation 
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The forward Taylor series expansion of f(x) in the neighborhood of a point x is 
 

 L(x)+f
!

h(x)+f
!

h(x)+f f(x)+hf(x+h) ′′′′′′=
32

32
 (4.2.1) 

 
where h is a small number.  The backward Taylor series expansion of f(x) about x can be written as  
 

 L(x)+f
!

h(x)+f
!

h(x)-f
!

h(x)+f f(x)-hf(x-h) iv
432

432
′′′′′′=  (4.2.2) 

 
Solving the forward equation for the first derivative, f’(x), we have 
 

 L(x)+fh(x)-fh-
h

)f(x+h)-f(x (x) f ′′′′′=′
62

2
 (4.2.3) 

or 

 (h)+
h

-ff

(h)+
h

)f(x+h)-f(x (x) f

ii ϑ

ϑ

1+=

=′

 (4.2.4) 

 
where we will use the index notation ifxf =)(  and 1)( +=+ ifhxf  (see Figure 4.2.1). 

 

 

f(x) 

f(xi)= fi 

f(xi-1)= fi-1 

f(xi+1)= fi+1 

xi xi-1 xi+1 

Backward 

Forward 

Central 

Δx 

 
Figure 4.2.1.  Forward, backward and central finite-difference approximations. 

 
The error in this forward finite-difference approximation of the first derivative is 
 

)x(fh -(h) ′′=
2

ϑ  (4.2.5) 
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where hxxx +≤≤ .  Similarly, we can solve the backward equation for the first derivative and we 
get 
 

 (h)+
h

-ff

(h)+
h

h)f(x)-f(x (x) f

ii ϑ

ϑ

1−=

−
=′

 (4.2.6) 

 
which is a backward finite-difference approximation of the first derivative and it has the same (first-
order) error as the forward approximation. 
 

If we subtract the forward and backward Taylor series expressions, we have  

 

 L(x)+f
!

h(x)+fhx-h) =  f(x+h)-f( ′′′′
3

2
3

 (4.2.7) 

 
or, solving for f’(x) 
 

 )(h +
h
-ff

)(h +
h

-h)f(x+h)-f(x(x) = f 

ii 211

2

2

2

ϑ

ϑ

−+=

′

 (4.2.8) 

 
which is the central finite-difference approximation for the first derivative.  An expression for the 
second derivative can be obtained by adding the forward and backward Taylor series expansions 
 

 L(x)+f
!

h(x)+f
!

h(x)+f
!

h(x)+f f(x)+hf(x+h) iv
432

432
′′′′′′=  (4.2.8) 

and  

 L(x)+f
!

h(x)+f
!

h(x)-f
!

h(x)+f f(x)-hf(x-h) iv
432

432
′′′′′′=  (4.2.9) 

to get 

 L(x)+fh(x)+ff(x)+hx-h) =  f(x+h)+f( iv
12

2
4

2 ′′  (4.2.10) 

 
Solving for f’’(x), we have 
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 )(h+
h

+ff-f

 
h

)f(x)+f(x-hf(x+h)-(x) = f 

iii 2
2

11

2

2

2

ϑ−+=

′′

 (4.2.11) 

 

4.3  Grids and Discretrization 
 
With the finite-difference method the governing partial differential equation (PDE) is replaced by a 
numerical approximation.  In this process the continuous derivatives of the PDE are replaced by 
discrete approximations.  The result of this discretization is a set of simultaneous algebraic equations 
that must be solved for the values of the unknown variables at discrete locations in the modeled 
domain.  In order to accomplish the descretization process a mesh or grid must be defined that 
covers the domain.  The grid consists of a series of intersecting, orthogonal, straight lines such as is 
illustrated in Figure 4.3.1.  The unknown state variable(s) are then solved for at either the 
intersections of the gridlines (mesh-centered) or at the centers of the gridblocks (block-centered). 
 

 

i,j 

i,j+1 

i+1.j i-1,j 

i,j-1 

x,i 

y,j 

Domain 

Mesh

Node point 

Δx

Δy 

 
 

Figure 4.3.1.  Finite-difference mesh. 
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4.4  One-Dimensional Flow 

Steady-state flow 
 
Consider steady, one-dimensional flow in a confined aquifer shown in Figure 4.4.1.   
 

 

Δ x Δx Δx Δx Δx
i=0 i=1 i=2 i=3 i=4 i=5

Flow
h0 h5

Q1 Q2 Q3 Q4

 
 

Figure 4.4.1.  One-dimensional example aquifer. 
 
The governing equation is  
 

 Q
dx
dhT

dx
d

=⎟
⎠
⎞

⎜
⎝
⎛

 (4.4.1) 

 
where T [L2/T] is the transmissivity of the aquifer and Q(x) [L3/T/L2 = L/T] is the pumping rate per 
unit area of aquifer.  When the transmissivity is homogeneous, and we apply a finite-difference 
approximation to the second derivative, we have 
 

02121 =−
Δ

⎟
⎠
⎞

⎜
⎝
⎛−⎟
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∂
∂

 (4.4.2) 
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 (4.4.3) 
 

0)()( 1,1, =−−+− i,j,ji-i,jjii,j,ji+ji QhhBhhA
 (4.4.4) 

where 

22 x
TB,

x
TA i,ji,j

Δ

−
=

Δ
=

 (4.4.5) 
 
and Qi is the source/sink rate for a particular node or cell.  This finite-difference equation must be 
written for each node i where the head is unknown (nodes 1 – 4 in Figure 4.4.1). 
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Example - Steady Flow in a 1-D Homogeneous System 
(adapted from Mays and Tung, Problem 8.3.1) 
 
Consider the situation where the transmissivity of the aquifer is T = 1000 m2/day, the well are Δx = 
80m apart, the heads on the left- and right-hand boundaries are constant values of 40m and 35m, 
respectively.  The objective of the optimization model is to maximize the head distribution in the 
aquifer while supplying a minimum pumping rate of Demand = 500 m3/d/m2.  The optimization 
model can be written as 
 

535
040

4,...,10)()( 11

4

1

4

1

==
==
==−−+−

≥∑

∑

=

=

ih
ih
iQhhBhhA

DemandQ

toSubject

hMaximize

i
i

ii-iiii+i
i

i

i
i

 (4.4.6) 
 
The GAMS code for solving this model is  
 

SET 
         I    /1*4/; 
SCALAR 
         T    transmissivity      /1000/ 
         DX   cell width          /80/ 
         QMIN minimum pumping     /10/ 
         H0   left boundary head  /40/ 
         H5   right boundary head /35/ 
         a    constant            ; 
 
a=T/(DX*DX); 
 
VARIABLES 
         OBJ   objective function; 
 
POSITIVE VARIABLE 
         H(I)  head at well I 
         Q(I)  production rate at well I; 
 
EQUATIONS 
         FD(I)      Finite difference equation, 
         PRODRATE   Sum of pumping rates, 
         TOTALHEAD  Sum of heads; 
 
FD(I)..    a*H(I-1)$(ORD(I) gt 1) 
         - 2*a*H(I) 
         + a*H(I+1)$(ORD(I) lt 4) 
         - Q(I) 
     =E= - a*H0$(ORD(I) = 1) 
         - a*H5$(ORD(I) = 4); 
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PRODRATE..  sum(I,Q(I)) =G= QMIN; 
 
TOTALHEAD.. sum(I,H(I)) =E= OBJ 
 
MODEL GW1 /ALL/ ; 
 
SOLVE GW1 USING LP MAXIMIZING OBJ ; 
 
file GW1_Out /GW1.txt/ 
put GW1_Out 
put '                Head  Pumping',  put / 
loop( I, 
        put I.tl, 
        put H.l(I):8.1, 
        put Q.l(I):8.1, 
        put /) 

 
The solution of the model is: 
 

Node            Head   Pumping 
0              40.00     
1              11.00    3.96 
2               7.33    0.00 
3               3.67    0.00 
4               0.00    6.04 
5              35.00     

 
 

4.5  Two-Dimensional Flow 

Steady-State flow 
 
Consider the steady, two-dimensional flow in a confined aquifer shown in Figure 4.5.1.  The 
governing equation is  
 

( ) ( )

Q
y
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∂

∂
∂
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∂

−∂
+

∂
−∂

 (4.5.1) 

 
where T [L2/T] is the transmissivity of the aquifer and Q [L3/T/L2 = L/T] is the source/sink flow rate 
per unit area of aquifer.   
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Figure 4.5.1.  Two-dimensional example finite-difference grid. 

 
Considering the cell (i,j) (see Figure 4.5.2) we can see that the flows in and out of the cell are 
represented by Darcy’s Law written for aquifer flow.  When the transmissivity is homogeneous, and 
we apply a finite-difference approximation to the second derivatives, we have 
 

021212121 =−
Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
Δ

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

−+−+
i,j

/i.j/i.j.j/i.j/i Q
y

y
hT

y
hT

x

x
hT

x
hT

∂
∂

∂
∂

∂
∂

∂
∂

 (4.5.2) 
 

0

1111

=−
Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ

−

+
Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ

−

i,j

i,j-i,ji,ji,j+,ji-i,ji,j,ji+

Q
y

y
hh

T
y

hh
T

x
x
hh

T
x

hh
T

 (4.5.3) 
 

0)()()()( 1,1,1,1, =−−+−+−+− i,ji,j-i,jjii,ji,j+ji,ji-i,jjii,j,ji+ji QhhDhhChhBhhA
 (4.5.4) 

 
where 

2222 y
TD,

y
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TA i,ji,ji,ji,j
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Δ
=

Δ
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Δ
=

 (4.5.5) 
 
This equation must be solved for each node (i,j) on the interior of the solution domain. 
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Figure 4.5.2.  Finite-difference cell in two dimensional flow. 

 

Boundary Conditions 
 
Two types of boundary conditions are often encountered in groundwater flow problems:  
 
(1) Constant or prescribed head (Dirichlet) conditions  
 

11 ),,( Contyxfh =  (4.5.6) 
 
In the previous example, if we write out the finite-difference equation for each node (i,j) where the 
head is unknown (nodes (1,1) -  (4,4)), we have, e.g., at node (1,1) 
 

0)()()()( 1,10,11,11,11,12,11,11.01,11,11,1121,1 =−−+−+−+− QhhDhhChhBhhA ,  (4.5.7) 
 
where the heads h0,1 and h1,0 are known from the boundary conditions.   For node (2,3), we have 
 

0)()()()( 3,22,23,23,23,24,23,23,13,23,23,23,33,2 =−−+−+−+− QhhDhhChhBhhA  (4.5.8) 
 
(2) Prescribed flux (Neuman) conditions 
 

22 ),,( Contyxfqn =  (4.5.9) 
or 
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22 ),,( Contyxf
n
h

=
∂
∂  (4.5.10) 

 
Consider the case where we have constant head boundary conditions on the west and east sides of an 
aquifer and no-flow boundary conditions on the north and south sides as shown in Figure 4.5.3.   
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Figure 4.5.3.  Two-dimensional example with no-flow boundary conditions. 

 
The north and south side no-flow conditions can be written as 
 

 0and0
4,1,

==
== jiji dy

h
dy
h ∂∂

 (4.5.11) 

 
These conditions can easily be approximated by finite-differences, using a central difference 
approximation as 
 

 
0and0 4510 =

Δ

−
=

Δ
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y
hh

y
hh i,i,i,i,

 (4.5.12) 
or 
 4510 and i,i,i,i, hhhh ==  (4.5.13) 
 
The resulting finite-difference equations for nodes along these no-flow boundaries are: 
 
for j = 1 (south boundary): 
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0)()()()( 1011,121,1111,1111, =−−+−+−+− i,i,i,ii,i,i,i-i,ii,,i+i QhhDhhChhBhhA  (4.5.14) 

 
for j = 4 (north boundary): 
 

0)()()()( 4344,454,4144,4414, =−−+−+−+− i,i,i,ii,i,i,i-i,ii,,i+i QhhDhhChhBhhA  (4.5.15) 
 
Substituting in the boundary information, we have 
 
for j = 1 (south boundary): 
 

00)()()( 1121,1111,1111, =−+−+−+− i,i,i,i,i-i,ii,,i+i QhhChhBhhA  (4.5.16) 
 
for j = 4 (north boundary): 
 

0)(0)()( 4344,4144,4414, =−−++−+− i,i,i,i,i-i,ii,,i+i QhhDhhBhhA  (4.5.17) 
 

Example:  Steady Flow in 2-D Homogeneous System 
 
Consider the flow in the example aquifer shown in Figure 4.5.2, where the mesh size is 10m, 
western and eastern boundaries are held fixed at 100m and 50m respectively, the transmissivity 
is 200 m2/day, and the maximum pumping is limited to 40 m3/day/m2.  The optimization model 
for this problem can be written as 
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 (4.5.18) 
 
The GAMS code to solve this linear program is given below.  The reader should note that the 
grid orientation is rotated so that the origin is in the upper left-hand corner and the x axis runs 
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down the page. 
 

SETS 
        I row index of model cells        / I0*I10 / 
        J column index of model cells     / J0*J10 / 
 
SCALARS 
         DX    grid size x (m)                    /  10 / 
         DY    grid size y (m)                    /  10 / 
         HBW   boundary head west (m)             / 100 / 
         HBE   boundary head east (m)             / 100 / 
         HBN   boundary head north (m)            / 100 / 
         HBS   boundary head south (m)            / 100 / 
         DEM   water demand (1000 m3 per day)     / 400 / 
         QMAX  max pumping rate (m3 per d per m2) / 10 / 
         QMIN  min pumping rate (m3 per d per m2) /   0 / 
         T     Transmissivity m2 per day          / 200 / 
          ; 
 
* finite-difference coefficients 
PARAMETER 
        A(I,J)   finite-difference coefficient 
        B(I,J)   finite-difference coefficient 
        C(I,J)   finite-difference coefficient 
        D(I,J)   finite-difference coefficient; 
 
        A(I,J) =  T/(DX*DX) ; 
        B(I,J) = -T/(DX*DX) ; 
        C(I,J) =  T/(DY*DY) ; 
        D(I,J) = -T/(DY*DY) ; 
 
* finite-difference cell types 
TABLE CELL(I,J) cell type 
 
* -2 = north no-flow bndy 
* -1 = south no-flow bndy 
*  0 = interior cells 
*  1 = west fixed potential 
*  2 = east fixed potential 
*  3 = north fixed potential 
*  4 = south fixed potential 
 
    J0  J1  J2  J3  J4  J5  J6  J7  J8  J9 J10 
I0   1   3   3   3   3   3   3   3   3   3   2 
I1   1   0   0   0   0   0   0   0   0   0   2 
I2   1   0   0   0   0   0   0   0   0   0   2 
I3   1   0   0   0   0   0   0   0   0   0   2 
I4   1   0   0   0   0   0   0   0   0   0   2 
I5   1   0   0   0   0   0   0   0   0   0   2 
I6   1   0   0   0   0   0   0   0   0   0   2 
I7   1   0   0   0   0   0   0   0   0   0   2 
I8   1   0   0   0   0   0   0   0   0   0   2 
I9   1   0   0   0   0   0   0   0   0   0   2 
I10  1   4   4   4   4   4   4   4   4   4   2; 
 
* Use for fixed head all around 
*I0   1   3   3   3   3   3   3   3   3   3   2 
*I10  1   4   4   4   4   4   4   4   4   4   2; 
* Use for fixed head east and west 
*I0   1  -2  -2  -2  -2  -2  -2  -2  -2  -2   2 
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*I10  1  -1  -1  -1  -1  -1  -1  -1  -1  -1   2; 
 
VARIABLES 
        OBJ      objective value 
        Q(I,J)   pumping in cell ij [m3 per day] 
        ; 
 
POSITIVE VARIABLES 
        H(I,J)   head in cell ij 
        ; 
 
*        boundary conditions 
* Use for fixed head east and west 
         H.fx(I,J)$(CELL(I,J) = 1) = HBW ; 
         H.fx(I,J)$(CELL(I,J) = 2) = HBE ; 
* Use for fixed head all around 
         H.fx(I,J)$(CELL(I,J) = 3) = HBN ; 
         H.fx(I,J)$(CELL(I,J) = 4) = HBS ; 
 
*        maximum/minimum pumping contrtraints 
         Q.lo(I,J)$(CELL(I,J) le 0) = QMIN; 
         Q.up(I,J)$(CELL(I,J) le 0) = QMAX; 
 
EQUATIONS 
        CONT(I,J)     finite-difference continuity eqn. 
        DEMAND        demand constraint eqn. 
        TCOST         expected total cost ; 
 
*        continuity equation (including no-flow boundaries) 
CONT(I,J) .. 
     ( A(I,J)*(H(I+1,J)-H(I,J)) 
      +B(I,J)*(H(I,J)  -H(I-1,J)) 
      +C(I,J)*(H(I,J+1)-H(I,J)) 
      +D(I,J)*(H(I,J)  -H(I,J-1)))$(CELL(I,J) eq 0) 
 
    +( A(I,J)*(H(I+1,J)-H(I,J)) 
*      +B(I,J)*(H(I,J)  -H(I,J)) 
      +C(I,J)*(H(I,J+1)-H(I,J)) 
      +D(I,J)*(H(I,J)  -H(I,J-1)))$(CELL(I,J) eq -2) 
 
    +( 
*      A(I,J)*(H(I,J)  -H(I,J)) 
      +B(I,J)*(H(I,J)  -H(I-1,J)) 
      +C(I,J)*(H(I,J+1)-H(I,J)) 
      +D(I,J)*(H(I,J)  -H(I,J-1)))$(CELL(I,J) eq -1) 
      -Q(I,J) 
    =E= 0.0; 
 
*        demand constraint 
DEMAND ..  SUM((I,J), Q(I,J)) =E= DEM ; 
 
*        objective function 
TCOST ..  OBJ =E= (SUM((I,J), H(I,J))) ; 
 
MODEL PUMPING least-cost pumping model /ALL/ ; 
 
SOLVE PUMPING USING LP MAXIMIZING OBJ ; 
 
File GW2D /GW2D_output.txt/ 
Put GW2D; 
PUT ' Objective value = '; Put OBJ.l; 
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Put /; 
Put 'Pumping'/; Put '        '; 
Loop(J, Put J.tl:6;) Put /; 
Loop(I, Put I.tl:6; Loop(J, Put Q.L(I, J):6:1;); Put /;); 
Put /; 
Put 'Head'/; Put '        '; 
Loop(J,Put J.tl:6;) Put /; 
Loop(I, Put I.tl:6; Loop(J, Put H.L(I, J):6:1;); Put /;); 
Put /; 

 
The results of solving this model are shown in the following table and figure. 
 
Objective value =     11566.11 
Pumping 
        J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I1       0.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0   0.0 
I2       0.0  10.0  10.0   0.0   0.0   0.0   0.0   0.0  10.0  10.0   0.0 
I3       0.0  10.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  10.0   0.0 
I4       0.0  10.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  10.0   0.0 
I5       0.0  10.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  10.0   0.0 
I6       0.0  10.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  10.0   0.0 
I7       0.0  10.0  10.0   0.0   0.0   0.0   0.0   0.0  10.0  10.0   0.0 
I8       0.0  10.0  10.0  10.0   0.0   0.0   0.0  10.0  10.0  10.0   0.0 
I9       0.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0   0.0 
I10      0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Head 
        J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0     100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
I1     100.0  96.0  94.6  94.5  94.5  94.5  94.5  94.5  94.6  96.0 100.0 
I2     100.0  94.6  92.9  93.7  94.0  94.0  94.0  93.7  92.9  94.6 100.0 
I3     100.0  94.4  93.7  93.6  93.7  93.7  93.7  93.6  93.7  94.4 100.0 
I4     100.0  94.3  93.7  93.5  93.4  93.4  93.4  93.5  93.7  94.3 100.0 
I5     100.0  94.1  93.4  93.1  93.0  93.0  93.0  93.1  93.4  94.1 100.0 
I6     100.0  93.8  92.7  92.5  92.6  92.7  92.6  92.5  92.7  93.8 100.0 
I7     100.0  93.4  90.9  91.7  92.3  92.5  92.3  91.7  90.9  93.4 100.0 
I8     100.0  93.8  91.1  90.9  92.4  92.8  92.4  90.9  91.1  93.8 100.0 
I9     100.0  95.6  93.8  93.3  93.6  93.7  93.6  93.3  93.8  95.6 100.0 
I10    100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Heterogeneous Systems 
 

Consider the a steady, two-dimensional flow in a heterogeneous, anisotropic, confined aquifer.  The 
governing equation is (see Figure 4.5.3) 
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where Tx

 and Ty
 [L

2/T] are transmissivities in the x and y directions, respectively.  When we apply a 
finite-difference approximation to the derivatives, we have 
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Applying a finite difference approximation to the remaining derivatives results in 
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are the harmonic averages of the x- and y-direction transmissivities, respectively,  between cells (i,j) 
and (i+1,j) and between cells (i,j) and (i,j+1).   We can write this equation as 
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If no flow boundaries exist in the system, then appropriate modifications, as described in the 
previous section, must be made to this system of equations.   
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Aside: Note that for an unequal grid spacing ( 11 +− Δ≠Δ≠Δ iii xxx  and 11 +− Δ≠Δ≠Δ iii yyy ), then 
we write 
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where 2/1−Δ ix is the distance between the centers of cells (i-1, j) and (i,j), and 
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Example – Steady Flow in a 2-D Heterogeneous System 
 

SETS 
        I row index of model cells        / I0*I10 / 
        J column index of model cells     / J0*J10 / 
 
SCALARS 
         DX        grid size x (m)                / 10   / 
         DY        grid size y (m)                / 10   / 
         HBW       boundary head west (m)         / 100  / 
         HBE       boundary head east (m)         / 50   / 
         HBN       boundary head north (m)        / 100 / 
         HBS       boundary head south (m)        / 100 / 
         DEM       water demand (1000 m3 per day) / 1000 / 
         QMAX  max pumping rate (m3 per d per m2) / 1000   / 
         QMIN  min pumping rate (m3 per d per m2) /   0  / 
          ; 
 
TABLE T(I,J) isotropic transmissivity (m2 per day) 
 
     J0  J1  J2  J3  J4  J5  J6  J7  J8  J9 J10 
I0  205 185 190 175 160 185 195 190 175 160 165 
I1  205 185 190 175 160 185 195 190 175 160 165 
I2  260 235 215 200 175 185 195 190 175 160 165 
I3  255 250 230 205 150 185 195 190 175 160 165 
I4  210 225 220 195 145 185 195 190 175 160 165 
I5  185 195 190 175 160 185 195 190 175 160 165 
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I6  160 205 215 200 165 185 195 190 175 160 165 
I7  155 200 210 215 150 185 195 190 175 160 165 
I8  170 215 200 195 155 185 195 190 175 160 165 
I9  170 215 200 195 155 185 195 190 175 160 165 
I10 170 215 200 195 155 185 195 190 175 160 165 
; 
 
* finite-difference cell types 
TABLE CELL(I,J) cell type 
 
* -2 = north no-flow bndy 
* -1 = south no-flow bndy 
*  0 = interior cells 
*  1 = west fixed potential 
*  2 = east fixed potential 
*  3 = north fixed potential 
*  4 = south fixed potential 
 
    J0  J1  J2  J3  J4  J5  J6  J7  J8  J9 J10 
I0   1  -2  -2  -2  -2  -2  -2  -2  -2  -2   2 
I1   1   0   0   0   0   0   0   0   0   0   2 
I2   1   0   0   0   0   0   0   0   0   0   2 
I3   1   0   0   0   0   0   0   0   0   0   2 
I4   1   0   0   0   0   0   0   0   0   0   2 
I5   1   0   0   0   0   0   0   0   0   0   2 
I6   1   0   0   0   0   0   0   0   0   0   2 
I7   1   0   0   0   0   0   0   0   0   0   2 
I8   1   0   0   0   0   0   0   0   0   0   2 
I9   1   0   0   0   0   0   0   0   0   0   2 
I10  1  -1  -1  -1  -1  -1  -1  -1  -1  -1   2 
; 
 
* Use for fixed head all around 
*I0   1   3   3   3   3   3   3   3   3   3   2 
*I10  1   4   4   4   4   4   4   4   4   4   2 
* Use for fixed head east and west 
*I0   1  -2  -2  -2  -2  -2  -2  -2  -2  -2   2 
*I10  1  -1  -1  -1  -1  -1  -1  -1  -1  -1   2 
 
* finite-difference coefficients 
PARAMETER 
        A(I,J)   finite-difference coefficient 
        B(I,J)   finite-difference coefficient 
        C(I,J)   finite-difference coefficient 
        D(I,J)   finite-difference coefficient 
         ; 
 
        A(I,J) = 0.0; 
        B(I,J) = 0.0; 
        C(I,J) = 0.0; 
        D(I,J) = 0.0; 

        A(I,J) =  (2*T(I+1,J)*T(I,J)/(T(I+1,J)+T(I,J))/(DX*DX))$(ord(I) ne card(I)) 
                +(   T(I,J)/(DX*DX))$(ord(I) eq card(I)); 
        B(I,J) = (-2*T(I-1,J)*T(I,J)/(T(I-1,J)+T(I,J))/(DX*DX))$(ord(I) ne 0) 
                +(   T(I,J)/(DX*DX))$(ord(I) eq 0) ; 
        C(I,J) =  (2*T(I,J+1)*T(I,J)/(T(I,J+1)+T(I,J))/(DY*DY))$(ord(J) ne card(J)) 
                +(   T(I,J)/(DY*DY))$(ord(J) eq card(J)); 
        D(I,J) = (-2*T(I,J-1)*T(I,J)/(T(I,J-1)+T(I,J))/(DY*DY))$(ord(J) ne 0) 
                +(   T(I,J)/(DY*DY))$(ord(J) eq 0); 

 
VARIABLES 
        OBJ     total cost of pumping 
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         ; 
 
POSITIVE VARIABLES 
        Q(I,J)   pumping in cell ij [1000 m3 per day] 
        H(I,J)   head in cell ij 
         ; 
 
*        boundary conditions 
* Use for fixed head east and west 
         H.fx(I,J)$(CELL(I,J) = 1) = HBW ; 
         H.fx(I,J)$(CELL(I,J) = 2) = HBE ; 
* Use for fixed head all around 
         H.fx(I,J)$(CELL(I,J) = 3) = HBN ; 
         H.fx(I,J)$(CELL(I,J) = 4) = HBS ; 
 
* maximum/minimum pumping contrtraints 
         Q.lo(I,J)$(CELL(I,J) le 0) = QMIN; 
         Q.up(I,J)$(CELL(I,J) le 0) = QMAX; 
 
EQUATIONS 
        CONT(I,J)     finite-difference continuity eqn. 
        DEMAND        demand constraint eqn. 
        OBJECTIVE     objective function ; 
 
* continuity equation (including no-flow boundaries) 
CONT(I,J) .. 
     ( A(I,J)*(H(I+1,J)-H(I,J)) 
      +B(I,J)*(H(I,J)  -H(I-1,J)) 
      +C(I,J)*(H(I,J+1)-H(I,J)) 
      +D(I,J)*(H(I,J)  -H(I,J-1)))$(CELL(I,J) eq 0) 
    +( A(I,J)*(H(I+1,J)-H(I,J)) 
*     +B(I,J)*(H(I,J)  -H(I,J)) 
      +C(I,J)*(H(I,J+1)-H(I,J)) 
      +D(I,J)*(H(I,J)  -H(I,J-1)))$(CELL(I,J) eq -2) 
    +( 
*      A(I,J)*(H(I,J)  -H(I,J)) 
      +B(I,J)*(H(I,J)  -H(I-1,J)) 
      +C(I,J)*(H(I,J+1)-H(I,J)) 
      +D(I,J)*(H(I,J)  -H(I,J-1)))$(CELL(I,J) eq -1) 
      -Q(I,J) 
    =E= 0.0; 
 
* demand constraint 
DEMAND ..  SUM((I,J), Q(I,J)) =E= DEM ; 
 
* objective function (sum of pumping or cost of pumping) 
OBJECTIVE ..  OBJ =E= (SUM((I,J), H(I,J))) ; 
 
MODEL PUMPING least-cost pumping model /ALL/ ; 
 
SOLVE PUMPING USING LP MAXIMIZING OBJ ; 
 
File GW2D /GW2D_KXY_output.txt/ 
Put GW2D; 
PUT ' Objective value = '; Put OBJ.l; 
Put /; 
Put 'Pumping'/; Put '        '; 
Loop(J, Put J.tl:6;) Put /; 
Loop(I, Put I.tl:6; Loop(J, Put Q.L(I, J):6:1;); Put /;); 
Put /; 
Put 'Head'/; Put '        '; 
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Loop(J,Put J.tl:6;) Put /; 
Loop(I, Put I.tl:6; Loop(J, Put H.L(I, J):6:1;); Put /;); 
Put /; 

 
The results of running this model are: 
 
Objective value =      7014.44 
Pumping 
        J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I1       0.0 240.4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I2       0.0 318.3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I3       0.0 441.3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I4       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I5       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I6       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I7       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I8       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I9       0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
I10      0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Head 
        J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0     100.0  50.8  37.5  36.3  38.6  41.5  43.9  45.8  47.4  48.7  50.0 
I1     100.0  12.4  25.7  32.8  38.0  41.8  44.4  46.2  47.7  48.9  50.0 
I2     100.0   0.0  20.3  31.8  38.6  43.0  45.5  47.2  48.3  49.2  50.0 
I3     100.0   0.0  25.4  36.3  42.2  45.8  47.6  48.6  49.3  49.7  50.0 
I4     100.0  54.0  47.1  47.4  48.9  49.9  50.4  50.5  50.5  50.3  50.0 
I5     100.0  74.7  63.3  58.5  56.1  54.5  53.5  52.6  51.8  50.9  50.0 
I6     100.0  83.3  73.2  66.8  62.1  58.7  56.4  54.7  53.1  51.5  50.0 
I7     100.0  87.6  78.6  72.1  66.5  62.0  58.9  56.5  54.3  52.1  50.0 
I8     100.0  90.1  82.1  75.5  69.6  64.5  60.8  57.8  55.2  52.6  50.0 
I9     100.0  91.3  84.1  77.6  71.5  66.1  62.1  58.8  55.8  52.9  50.0 
I10    100.0  91.8  84.9  78.6  72.4  66.9  62.7  59.3  56.1  53.0  50.0 
 

4.6  Transient Problems 
 
In transient problems, time is added as an independent variable.  Therefore, we need to consider the 
rate of release or uptake of water from or to storage in an aquifer.  We also need to specify initial 
head conditions in the aquifer in order to find a solution of a problem. 
 
If we consider the transient, two-dimensional flow in a confined aquifer.  The governing equation is  
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where S is the aquifer storativity.  When the transmissivity and storativity are heterogeneous, and we 
apply a finite-difference approximation to the second derivatives on the left-hand-side of this 
equation, we have 
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Consider a backward finite difference approximation of the time difference on the right-hand-side 
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where t

jih , and 1
,
+t
jih are the heads in cell (i,j) at the time levels t, and t+Δt, respectively.  Now, we 

have not specified the time level where we are evaluating the LHS.  Using a weighted average of the 
LHS at the t and t+Δt levels, we have  
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where 10 ≤≤ θ .   
 
Various time-stepping schemes result from different selections of θ : e.g., Explicit Scheme: 0=θ ; 
and the Crank-Nicolson Scheme: 2/1=θ . 
 
One of the mst common is the Fully Implicit Scheme: 1=θ  
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where 
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F i,j

i,j Δ
=  (4.6.7) 

 

Example:  Transient Flow in 2-D Homogeneous System 
 

SETS 
    I        row index of model cells           /I0*I10 / 
    J        column index of model cells        /J0*J10 / 
    L        time index                         /L0*L12/ 
 
SCALARS 
    DX       grid size x (m)                    /10/ 
    DY       grid size y (m)                    /10/ 
    DT       time step size t (s) a month       /2.628E6/ 
    S        storage coefficient                /0.002/ 
    HBW      boundary head west (m)             / 100 / 
    HBE      boundary head east (m)             / 50  / 
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    HBN      boundary head north (m)            / 100 / 
    HBS      boundary head south (m)            / 100 / 
    H0       initial head  (m)                  / 100 / 
    QMAX     max pumping rate (m3 per d per m2) / 40 / 
    QMIN     min pumping rate (m3 per d per m2) /   0 / 
         ; 
 
PARAMETER 
    DEM(L)   water demand  (1000 m3 per day); 
    DEM(L) = 100*ord(L); 
 
TABLE T(I,J) isotropic transmissivity (m2 per day) 
 
     J0  J1  J2  J3  J4  J5  J6  J7  J8  J9 J10 
I0  205 185 190 175 160 185 195 190 175 160 165 
I1  205 185 190 175 160 185 195 190 175 160 165 
I2  260 235 215 200 175 185 195 190 175 160 165 
I3  255 250 230 205 150 185 195 190 175 160 165 
I4  210 225 220 195 145 185 195 190 175 160 165 
I5  185 195 190 175 160 185 195 190 175 160 165 
I6  160 205 215 200 165 185 195 190 175 160 165 
I7  155 200 210 215 150 185 195 190 175 160 165 
I8  170 215 200 195 155 185 195 190 175 160 165 
I9  170 215 200 195 155 185 195 190 175 160 165 
I10 170 215 200 195 155 185 195 190 175 160 165; 
 
* finite-difference cell types 
TABLE CELL(I,J) cell type 
 
* -2 = north no-flow bndy 
* -1 = south no-flow bndy 
*  0 = interior cells 
*  1 = west fixed potential 
*  2 = east fixed potential 
*  3 = north fixed potential 
*  4 = south fixed potential 
 
    J0  J1  J2  J3  J4  J5  J6  J7  J8  J9 J10 
I0   1  -2  -2  -2  -2  -2  -2  -2  -2  -2   2 
I1   1   0   0   0   0   0   0   0   0   0   2 
I2   1   0   0   0   0   0   0   0   0   0   2 
I3   1   0   0   0   0   0   0   0   0   0   2 
I4   1   0   0   0   0   0   0   0   0   0   2 
I5   1   0   0   0   0   0   0   0   0   0   2 
I6   1   0   0   0   0   0   0   0   0   0   2 
I7   1   0   0   0   0   0   0   0   0   0   2 
I8   1   0   0   0   0   0   0   0   0   0   2 
I9   1   0   0   0   0   0   0   0   0   0   2 
I10  1  -1  -1  -1  -1  -1  -1  -1  -1  -1   2; 
 
* Use for fixed head all around 
*I0   1   3   3   3   3   3   3   3   3   3   2 
*I10  1   4   4   4   4   4   4   4   4   4   2; 
* Use for fixed head east and west 
*I0   1  -2  -2  -2  -2  -2  -2  -2  -2  -2   2 
*I10  1  -1  -1  -1  -1  -1  -1  -1  -1  -1   2; 
 
* finite-difference coefficients 
PARAMETER 
        A(I,J)   finite-difference coefficient 
        B(I,J)   finite-difference coefficient 
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        C(I,J)   finite-difference coefficient 
        D(I,J)   finite-difference coefficient 
         ; 
 
        A(I,J) = 0.0; 
        B(I,J) = 0.0; 
        C(I,J) = 0.0; 
        D(I,J) = 0.0; 
A(I,J) =  (2*T(I+1,J)*T(I,J)/(T(I+1,J)+T(I,J))/(DX*DX))$(ord(I) ne card(I)) 
                +(   T(I,J)/(DX*DX))$(ord(I) eq card(I)); 
B(I,J) = (-2*T(I-1,J)*T(I,J)/(T(I-1,J)+T(I,J))/(DX*DX))$(ord(I) ne 0) 
                +(   T(I,J)/(DX*DX))$(ord(I) eq 0) ; 
C(I,J) =  (2*T(I,J+1)*T(I,J)/(T(I,J+1)+T(I,J))/(DY*DY))$(ord(J) ne card(J)) 
                +(   T(I,J)/(DY*DY))$(ord(J) eq card(J)); 
D(I,J) = (-2*T(I,J-1)*T(I,J)/(T(I,J-1)+T(I,J))/(DY*DY))$(ord(J) ne 0) 
                +(   T(I,J)/(DY*DY))$(ord(J) eq 0); 
 
SCALAR 
        F        finite-difference coefficient; 
        F = S/DT ; 
 
 
VARIABLES 
        OBJ     Objective value; 
 
POSITIVE VARIABLES 
        Q(I,J,L) pumping in cell ij in period L [1000 m3 per 
day][decision] 
        H(I,J,L) head in cell ij in period L 
        ; 
 
*        initial conditions 
         H.fx(I,J,'L0')$(CELL(I,J) le 0) = H0 ; 
 
*        boundary conditions 
* Use for fixed head east and west 
         H.fx(I,J,L)$(CELL(I,J) = 1) = HBW ; 
         H.fx(I,J,L)$(CELL(I,J) = 2) = HBE ; 
* Use for fixed head all around 
         H.fx(I,J,L)$(CELL(I,J) = 3) = HBN ; 
         H.fx(I,J,L)$(CELL(I,J) = 4) = HBS ; 
 
* maximum/minimum pumping contrtraints 
         Q.lo(I,J,L)$(CELL(I,J) le 0) = QMIN; 
         Q.up(I,J,L)$(CELL(I,J) le 0) = QMAX; 
         Q.lo(I,J,L)$(CELL(I,J) gt 0) = QMIN; 
         Q.up(I,J,L)$(CELL(I,J) gt 0) = QMIN; 
 
EQUATIONS 
        CONT(I,J,L)    finite-difference continuity eqn. for period L 
        DEMAND(L)      demand constraint eqn. for period L 
        OBJECTIVE      objective function; 
 
* continuity equation (including no-flow boundaries) 
CONT(I,J,L) .. 
     ( A(I,J)*(H(I+1,J,L+1)-H(I,J,L+1)) 
      +B(I,J)*(H(I,J,L+1)-H(I-1,J,L+1)) 
      +C(I,J)*(H(I,J+1,L+1)-H(I,J,L+1)) 
      +D(I,J)*(H(I,J,L+1)-H(I,J-1,L+1)) 
      -F*     (H(I,J,L+1))             )$(CELL(I,J) eq 0) 
    +( A(I,J)*(H(I+1,J,L+1)-H(I,J,L+1)) 
      +C(I,J)*(H(I,J+1,L+1)-H(I,J,L+1)) 
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      +D(I,J)*(H(I,J,L+1)-H(I,J-1,L+1)) 
      -F*     (H(I,J,L+1))             )$(CELL(I,J) eq -2) 
    +( B(I,J)*(H(I,J,L+1)-H(I-1,J,L+1)) 
      +C(I,J)*(H(I,J+1,L+1)-H(I,J,L+1)) 
      +D(I,J)*(H(I,J,L+1)-H(I,J-1,L+1)) 
      -F     *(H(I,J,L+1))             )$(CELL(I,J) eq -1) 
      -Q(I,J,L+1) 
    =E= -F*    H(I,J,L); 
 
* demand constraint 
DEMAND(L) ..  SUM((I,J), Q(I,J,L)) =G= DEM(L); 
 
* objective function (sum of pumping or cost of pumping) 
OBJECTIVE ..  OBJ =E= (SUM((I,J,L), Q(I,J,L))) ; 
 
MODEL PUMPING /ALL/ ; 
SOLVE PUMPING USING LP MINIMIZING OBJ ; 
 
File GW2DT /GW2DT_output.txt/ 
Put GW2DT; 
PUT ' Objective = '; Put OBJ.l; Put /; 
Put 'Pumping'/; Put '        '; 
Loop(L,PUT ' Time = '; Put L.tl:6; PUT ' Demand = '; Put DEM(L):6; Put /; 
PUT ' '; Loop(J, Put J.tl:6;) Put /; 
Loop(I, Put I.tl:6; Loop(J, Put Q.L(I, J,L):6:0;); Put /;);); 
Put 'Head'/; Put '        '; 
Loop(J, Put J.tl:6;) Put /; 
Loop(L, PUT ' Time = '; Put L.tl:6; Put /; 
PUT ' '; Loop(J, Put J.tl:6;) Put /; 
Loop(I, Put I.tl:6; Loop(J, Put H.L(I, J, L):6:0;); Put /;);); 

 
The results of running this model are: 

 
Objective =      9100.00 
Pumping 
         Time = L0     Demand = 100.00 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0         0    40    40    20     0     0     0     0     0     0     0 
I1         0     0     0     0     0     0     0     0     0     0     0 
I2         0     0     0     0     0     0     0     0     0     0     0 
I3         0     0     0     0     0     0     0     0     0     0     0 
I4         0     0     0     0     0     0     0     0     0     0     0 
I5         0     0     0     0     0     0     0     0     0     0     0 
I6         0     0     0     0     0     0     0     0     0     0     0 
I7         0     0     0     0     0     0     0     0     0     0     0 
I8         0     0     0     0     0     0     0     0     0     0     0 
I9         0     0     0     0     0     0     0     0     0     0     0 
I10        0     0     0     0     0     0     0     0     0     0     0 
 Time = L1     Demand = 200.00 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0         0     0     0     0    40    40     0     0     0     0     0 
I1         0     0     0     0     0     0     0    40     0     0     0 
I2         0     0     0     0     0     0     0     0     0     0     0 
I3         0     0     0     0    40     0     0     0     0     0     0 
I4         0     0     0     0     0     0     0     0     0     0     0 
I5         0     0     0     0     0     0     0     0     0     0     0 
I6         0     0     0     0     0     0     0     0     0     0     0 
I7         0     0     0     0     0     0     0     0     0     0     0 
I8         0     0     0     0     0     0     0     0     0     0     0 
I9         0     0     0     0     0     0     0     0     0     0     0 
I10        0     0     0    40     0     0     0     0     0     0     0 
 Time = L2     Demand = 300.00 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
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I0         0     0     0     0     0     0     0     0     0     0     0 
I1         0     0     0     0     0     0     0     0     0     0     0 
I2         0     0     0     0     0     0     0     0     0     0     0 
I3         0     0     0     0     0     0     0     0     0     0     0 
I4         0     0     0     0     0     0     0     0     0     0     0 
I5         0     0     0     0     0    20     0     0     0     0     0 
I6         0     0     0     0     0    40     0     0     0     0     0 
I7         0     0     0    40     0     0     0    40     0     0     0 
I8         0     0     0     0     0    40     0     0     0     0     0 
I9         0     0     0     0     0     0     0     0     0     0     0 
I10        0     0     0     0    40    40     0    40     0     0     0 
 Time = L3     Demand = 400.00 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0         0     0     0    40     0    40     0     0     0     0     0 
I1         0     0     0     0     0     0     0     0     0     0     0 
I2         0     0     0     0     0    40     0     0     0     0     0 
I3         0     0     0     0     0    40     0     0     0     0     0 
I4         0     0     0     0    40     0     0    40     0     0     0 
I5         0     0     0     0     0    40     0     0     0     0     0 
I6         0     0     0     0     0    40     0     0     0     0     0 
I7         0     0     0    40     0    40     0     0     0     0     0 
I8         0     0     0     0     0     0     0     0     0     0     0 
I9         0     0     0     0     0     0     0     0     0     0     0 
I10        0     0     0     0     0     0     0     0     0     0     0 
Time = L12    Demand = 1.3E+3 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0         0     0     0    40    15     0     0    28     0     0     0 
I1         0     0    40     0    21     0     0    27     0     0     0 
I2         0     0    40    40    15     0     0    25     0     0     0 
I3         0     0    40    40    15     0     0    21     0    25     0 
I4         0     0    40     0    23     0     0    17     0    40     0 
I5         0     0    40     0    24     0     0    16     0    40     0 
I6         0     0    40     0    24     0     0    15     0    40     0 
I7         0     0    40    40    16     0     0    15     0    40     0 
I8         0     0    40     0    23     0     0    14     0    40     0 
I9         0     0    40     0    26     0     0    14     0    40     0 
I10        0     0    40     0    27     0     0    14     0    40     0 
Head 
        J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
 Time = L0 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0       100   100   100   100   100   100   100   100   100   100    50 
I1       100   100   100   100   100   100   100   100   100   100    50 
I2       100   100   100   100   100   100   100   100   100   100    50 
I3       100   100   100   100   100   100   100   100   100   100    50 
I4       100   100   100   100   100   100   100   100   100   100    50 
I5       100   100   100   100   100   100   100   100   100   100    50 
I6       100   100   100   100   100   100   100   100   100   100    50 
I7       100   100   100   100   100   100   100   100   100   100    50 
I8       100   100   100   100   100   100   100   100   100   100    50 
I9       100   100   100   100   100   100   100   100   100   100    50 
I10      100   100   100   100   100   100   100   100   100   100    50 
 Time = L1 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0       100    88    76    61    40    34    38    39    43    47    50 
I1       100    89    77    65    51    44    42    37    43    47    50 
I2       100    90    79    68    56    50    47    45    46    48    50 
I3       100    91    81    70    55    54    52    50    49    50    50 
I4       100    91    82    73    64    59    55    53    52    51    50 
I5       100    91    83    76    68    62    59    56    53    52    50 
I6       100    91    84    77    70    65    61    57    55    52    50 
I7       100    91    84    78    71    66    62    58    56    53    50 
I8       100    91    84    77    71    66    62    59    56    53    50 
I9       100    91    82    74    69    65    62    59    56    53    50 
I10      100    90    80    67    67    65    62    59    56    53    50 
 Time = L2 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
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I0       100    93    86    79    72    66    62    58    55    52    50 
I1       100    93    86    79    72    65    61    57    55    52    50 
I2       100    93    85    77    70    64    59    56    53    52    50 
I3       100    92    84    76    67    60    56    53    52    51    50 
I4       100    90    81    72    63    54    51    50    49    49    50 
I5       100    89    78    67    56    45    45    45    46    48    50 
I6       100    86    74    61    50    37    38    39    42    46    50 
I7       100    85    70    54    45    35    33    30    38    44    50 
I8       100    84    70    55    41    28    30    31    36    43    50 
I9       100    84    69    54    38    27    26    28    34    42    50 
I10      100    83    68    51    27    18    21    20    31    41    50 
 Time = L3 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0       100    83    65    44    36    24    30    34    39    44    50 
I1       100    84    68    52    39    30    31    34    39    44    50 
I2       100    85    70    55    40    25    30    33    38    44    50 
I3       100    86    71    56    39    25    29    32    37    44    50 
I4       100    85    71    55    34    28    29    27    36    44    50 
I5       100    85    71    56    40    26    30    33    39    44    50 
I6       100    85    71    56    43    28    33    37    41    45    50 
I7       100    85    71    54    46    33    38    40    43    47    50 
I8       100    86    74    62    53    45    44    44    45    48    50 
I9       100    88    77    66    58    51    48    47    47    48    50 
I10      100    88    78    68    60    53    50    48    48    49    50 
Time = L12 
 J0    J1    J2    J3    J4    J5    J6    J7    J8    J9    J10 
I0       100    68    36     9     0     0     0     0    15    32    50 
I1       100    67    31    12     0     0     0     0    15    31    50 
I2       100    66    30     8     0     0     0     0    14    30    50 
I3       100    66    30     9     0     0     0     0    11    23    50 
I4       100    65    30    14     0     0     0     0     9    19    50 
I5       100    64    29    14     0     0     0     0     9    17    50 
I6       100    62    28    13     0     0     0     0     8    17    50 
I7       100    61    27     9     0     0     0     0     8    17    50 
I8       100    62    28    13     0     0     0     0     8    17    50 
I9       100    63    29    15     0     0     0     0     8    17    50 
I10      100    63    30    16     0     0     0     0     8    17    50 

 

4.7  Exercises 
 
1. (Adapted from Mays and Tung, 1992, prob. 8.4.3).  Consider an undeveloped, homogeneous, 
isotropic, confined aquifer of large areal extent in which there are L potential production wells 
located at points [( , ), , ..., ]x y Ll l l = 1  and K points at which water levels are to be observed 
[( , ), , ..., ]x y k Kk k = 1 .  For steady-state flow in the aquifer, the Theim equation can be used to 
predict the drawdown sk at the control points due to the pumping Ql at the production wells 
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where skl is the drawdown at point k due to pumping at well l alone, and  
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T is the transmissivity of the aquifer, Rl is the radius of influence of the l -th well, and  
 

( ) ( )22
lll yyxxr kkk −+−=  

 
A management model with the objective of maximizing the total withdrawal from the aquifer while 
meeting specified upper bound constraints on the drawdown at the control points and upper and 
lower bounds on the pumping rates is  
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Consider the situation (shown in the Figure) of three production wells (L=3) and five control points 
(K=5) a transmissivity of 5,000 gal/day/ft2, and a radius of influence for each well of 700 ft.  
Additional data related to the problem are listed in the Table P4.1.1 and the response coefficients akl 
are listed in the Table P4.1.2. 
 

 800 ft 200 ft 

800 ft

200 ft

Control point Well 

s1 

s4 

s2 

s3 

s5 

Q2Q1

Q3

 
 

Figure P4.1.1.  Aquifer for steady-state pumping optimization example. 
 
 



 

 
 144 

Table P4.1.1.  Distance (ft.) between well l  and control point k. 
rk,l 

 
Well 

 
 

k = 1 

 
Control 

2 

 
Point 

3 

 
 
4 

 
 
5 

Production 
Capacity, 

Ql
up 

(gal/day) 
l =  1 282.8 632.5 282.8 848.5 632.5 200,000 
 2 632.5 282.8 282.8 632.5 848.5 200,000 
 3 721.1 721.1 200 565.7 565.7 200,000 
Max. Allowable 
Drawdown, sk* 

(ft) 

 
7 

 
7 

 
15 

 
7 

 
7 

 

 
Table P4.1.2.  Response matrix A (x10-5) for 5 control points and 3 production wells. 

 
ak,l  Well  

Control 
Pt. 

l = 1 2 3 

k =  1 2.885x10-5 3.228 x10-6 0 
 2 3.228 x10-6 2.885x10-5 0 
 3 2.885x10-5 2.885x10-5 3.988 x10-5 
 4 0 3.228 x10-6 6.781 x10-6 
 5 3.228 x10-6 0 6.781 x10-6 

 
Formulate and solve this model in GAMS to find the optimal puming rates for each well. 
 
2.  One-dimensional problem 
 
3.  Two-dimensional, steady-state problem 
 
4.  Two-dimensional, transient problem 
 

5. OPTIMAL SELECTION OF AGRICULTURAL CROPS 
(Alex Meuraus) 

THIS SECTION STILL NEEDS EDITING 
   Task: 
The task of agricultural crop selection is a difficult one that can be Modeled in GAMS.  Assume that 
the following is known: 
 

1. Types of crops available for planting; 
2. Modeling period (one year, using a time step of one month) 
3. Irrigation water demands for each crop for each month 
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4. Stress coefficient for each crop for each month indicating the yield decrease of a 
given crop for a deficit of irrigation water in each time interval; 

5. Price for each crop; 
6. Yield for each crop; 
7. Proposed area for planting crops; and 
8. Available irrigation water hydrograph. 

 
The model is to determine: 
 

1. The amount of land to be allocated to each crop; and  
2. The irrigation water required for each crop. 

 
Objective: Maximize proceeds from the yield sales for each crop 
 
The mathematical model is represented by the equations: 
 

∑ ∏ ⎥
⎦

⎤
⎢
⎣

⎡
=

p t

tpl

tpWd
tpWrpYpspCR

),(

),(
),(*)(*)(*)(  

 
SopS

p
<∑ )(  

 
)(),( tWotpWr

p
<∑  

 
where 

p  crop type 
t  time index (month) 
S(p)  area for crop p 
Wr(p,t)  delivery of water for each crop in each time period; 
Wd(p,t) demand for water for each crop in each time period; 
l(p,t)  stress coefficient for each crop in each time period; 
So  total area of land available; 
Wo(t)  hydrograph of available water; 
C(p)  price for crop p;  
S(p)  area planted with crop p; and 
Y(p)  yield of crop p 

 
The GAMS code for the model is: 
 

SETS p  crops  / cotton, rice, wheat, maize, others / 
     t  month  / jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec / 
 
TABLE wd(p,t) water demand (mill m3 per ha) 
           jan  feb  mar  apr  may   jun   jul  aug  sep  oct  nov  dec 
cotton                         1.2   1.2   1.2  1.2 
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rice                           2.9   2.8   2.9  2.8  2.6 
wheat                          0.8   0.8   0.9  0.8  0.7 
maize                          1.8   1.9   1.9  1.8  1.8 
others                         1.1   1.1   1.1  1.1  1.1 
 
TABLE l(p,t) stress coefficients 
           jan  feb  mar  apr   may   jun   jul  aug  sep  oct  nov  dec 
cotton                          1.0   1.0   1.0  0.9 
rice                            0.9   0.8   0.9  0.8  0.6 
wheat                           0.8   0.8   0.9  0.8  0.7 
maize                           0.8   0.9   0.9  0.8  0.8 
others                          1.0   1.0   1.0  1.0  1.0 
 
PARAMETERS 
   C(p)  (price $ per c)     / cotton 3, rice 5, wheat 7, maize 
11,others 60/ 
   Y(p)  (yield c per ha)    / cotton 2, rice 3, wheat 4, maize  5, 
others 3/ 
   wo(t) (water available mill m3 per month); 
*          computed as a uniform number between numbers 900 - 1100. 
   wo(t) = UNIFORM(900,1100); 
 
SCALAR So land available / 1000 /; 
 
VARIABLES  obj  revenue  ($); 
 
POSITIVE VARIABLES 
   S(p) cultivated land (ha) 
   wr(p,t) water delivered (mill m3 per ha); 
 
* Upper bound on Delivered water 
wr.UP(p,t) = wd(p,t); 
 
* Initial guesses for cultivated land and delivered water 
S.L(p) = So/CARD(p); 
wr.L(p,t)  = wo(t); 
 
EQUATION   ben      Objective function 
           land     land balance (ha) 
           water(t) water balance (ha); 
 
ben.. obj =E= 
sum(p,C(p)*S(p)*Y(p)*prod(t$wd(p,t),(wr(p,t)/wd(p,t))**l(p,t))); 
 
* Limit on cultivated land 
land.. sum(p, S(p)) =L= So; 
 
* Limit on irrigation water 
water(t).. sum(p, S(p)*wr(p,t)) =L= wo(t); 
 
MODEL crop / ALL /; 
 
SOLVE crop USING NLP MAXIMiZING obj; 
 
FILE res /Crop1.txt/; 
PUT res 
PUT "Revenue = ", obj.L//; 
PUT "Crop               Land"/; 
LOOP(p,PUT p.TL,  s.l(p)/;); 
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The results of running the model are: 
 

Revenue =    149626.12 
 
Crop               Land 
cotton             33.40 
rice                0.00 
wheat               0.00 
maize               0.00 
others            830.38 

 
 

6. OPTIMAL DEVELOPMENT OF CANALS 
THIS SECTION STILL NEEDS EDITING 

 
*Grid points 
set x /x1*x20/; 
set y /y1*y20/; 
 
SET INSIDE(X,Y); 
INSIDE(X,Y)=YES$((ord(x)<card(x))and(ord(y)<card(y))); 
 
* Topography of grid 
TABLE zp(x,y) 
       y1     y2     y3    y4    y5     y6      y7     y8   y9    y10   y11  y12  y13  y14  y15  
y16  y17  y18  y19  y20 
x1    1.1    1.1    1.1   1.1  -99.  -99.1   -99.1  -97.1  -89.  -99.  -90.  1.1  1.1  1.1  1.1  
1.1  1.1  1.1  1.1  1.1 
x2    1.2    1.2    1.2   1.2  -99.  -98.2   -99.2  -98.2  -69.  -89.  -90.  1.2  1.2  1.2  1.2  
1.2  1.2  1.2  1.2  1.2 
x3    1.3    1.3    1.3   1.3  -91.  -97.3   -99.3  -97.3  -49.  -79.  -8.3  8.3  1.3  8.3  1.3  
1.3  1.3  1.3  1.3  1.3 
x4    1.4    1.4    1.4   1.4  -91.  -67.4   -99.4  -67.4  -35.  -68.  -8.4  8.4  1.4  8.4  1.4  
1.4  1.4  1.4  1.4  1.4 
x5    1.5    1.5    8.5   1.5  -91.  -67.5   -99.5  -57.5  -25.  -57.  -8.5  8.5  1.5  8.5  1.5  
1.5  1.5  1.5  1.5  1.5 
x6    1.6    1.6    8.6   2.6   1.6  -37.6   -79.6  -47.6  -15.  -46.  -8.6  8.6  8.6  8.6  1.6  
1.6  1.6  1.6  1.6  1.6 
x7    -3     1.7    8.7   8.7   8.7  -23.7   -49.7  -33.7  -15.  -35.  -8.7  8.7  8.7  8.7  1.7  
1.7  1.7  1.7  1.7  1.7 
x8    -10    -9     8.8   8.8   8.8  -16.8   -22.8  -12.8  -10.  -14.  -0.8  1.8  0.8  8.8  8.8  
1.8  1.8  1.8  1.8  1.8 
x9    -39    -39    8.9   8.9   8.9  -10.9    -5.9   -7.9   -9.  -5.9  0.9  0.9  0.9   8.9  8.9  
1.9  1.9  1.9  1.9  1.9 
x10   -99    -79   -8.8   8.8   8.8  -10.8    -8.8   -8.8   -8.  -8.8  0.8  0.8  0.8   0.8  8.8  
1.8  1.8  1.8  1.8  1.8 
x11   -39    -39    1.7   8.7   8.7   -8.7    -8.7   -8.7   -8.  -8.7  0.7  0.7  0.7   0.7  8.7  
1.7  1.7  1.7  1.7  1.7 
x12   -9     9.6    1.6   1.6   8.6   -8.6     8.6    8.6   1.6  -9.6  0.6  0.6  0.6   0.6  8.6  
3.6  1.6  1.6  1.6  1.6 
x13   -3     9.5    1.5   1.5   8.5   8.5      8.5    8.5   1.5  -9.5  0.5  0.5  1.5   0.5  8.5  
3.5  1.5  1.5  1.5  1.5 
x14   1.4    1.4    1.4   1.4   8.4   1.4      1.4    8.4   1.4  -9.4  0.4  0.4  1.4   0.4  8.4  
3.4  1.4  1.4  1.4  1.4 
x15   1.3    1.3    1.3   1.3   8.3   1.3      1.3   -8.3   1.3  -9.3  -1.3  0.3  1.3  1.3  8.3  
1.3  1.3  1.3  1.3  1.3 
x16   1.2    1.2    1.2   1.2   8.2   8.2      8.2   -8.2   1.2  -9.2  -2.2  1.2  1.2  1.2  8.2  
1.2  1.2  1.2  1.2  1.2 
x17   1.1    1.1    1.1   1.1   8.1   8.1      8.1   -8.1  -1.1  -9.1  -3.1  1.1  1.1  1.1  1.1  
1.1  1.1  1.1  1.1  1.1 
x18   1.2    1.2    1.2   1.2   1.2   1.2      1.2   -6.2  -9.2  -9.2  -4.2  1.2  1.2  1.2  1.2  
1.2  1.2  1.2  1.2  1.2 
x19   1.3    1.3    1.3   1.3   1.3   1.3      1.3   -7.3  -9.3  -9.3  -5.3  1.3  1.3  1.3  1.3  
1.3  1.3  1.3  1.3  1.3 
x20   1.4    1.4    1.4   1.4   1.4   1.4      1.4   -8.4  -9.4  -9.4  -6.4  1.4  1.4  1.4  1.4  
1.4  1.4  1.4  1.4  1.4 



 

 
 148 

; 
 
PARAMETER START_END(X,Y); 
          START_END(X,Y)=0; 
          START_END('X4','Y3')= 1; 
          START_END('X13','Y18')=-1; 
 
VARIABLE Dx(x,y), Dy(x,y), obj; 
 
EQUATION first(x,y), ben; 
 
first(x,y)$(INSIDE(x,y)).. START_END(X,Y) =E= (dx(x+1,y)-dx(x,y)) 
                                            + (dy(x,y+1)-dy(x,y)); 
 
ben.. obj =e=  1000* sum((x,y)$(INSIDE(x,y)), 
                         (30-zp(x,y)) * (sqrt(dy(x,y)*dy(x,y)+0.00001)) 
                       + (30-zp(x,y)) * (sqrt(dx(x,y)*dx(x,y)+0.00001))); 
 
dx.up(x,y)=1; 
dy.up(x,y)=1; 
 
dx.lo(x,y)=-1; 
dy.lo(x,y)=-1; 
 
dx.fx('x1',y)=0;   dy.fx('x1',y)=0; 
dx.fx(x,'y1')=0;   dy.fx(x,'y1')=0; 
dx.fx('x20',y)=0;  dy.fx('x20',y)=0; 
dx.fx(x,'y20')=0;  dy.fx(x,'y20')=0; 
 
MODEL Canal /all/; 
 
SOLVE Canal using   NLP MINIMIZING obj; 
 
FILE res /Canal.txt/ 
PUT res; 
PUT " Objective function= "; PUT obj.l; 
PUT /; 
 
PARAMETER no_yes(x,y); 
no_yes(x,y)= 
              -START_END(X,Y)+ 
               SQRT(dx.l(x+1,y)*dx.l(x+1,y)+0.000001 )+ 
               SQRT(dx.l(x,y)  *dx.l(x,y)  +0.000001 )+ 
               SQRT(dy.l(x,y+1)*dy.l(x,y+1)+0.000001 )+ 
               SQRT(dy.l(x,y)  *dy.l(x,y)  +0.000001 ) 
                ; 
 
PUT "Canal yes_no"; PUT /; 
LOOP(X, 
LOOP(Y, PUT no_yes(X,Y):5:1; ); PUT /; 
    ); 
 
PUT "level of earth";PUT /; 
LOOP(X, 
LOOP(Y, PUT zp(X,Y):7:2; ); PUT /; 
    ); 
PUT /; 
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The results of the moel are: 
 

Objective function=    664152.36 
Canal yes_no 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  2.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  2.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  2.0  0.1  0.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  1.9  0.2  0.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  1.8  1.8  1.8  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.1  1.9  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.1  1.9  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  1.9  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  1.9  1.9  1.9  1.9  1.9  1.9  1.9  1.9  1.9  1.9  1.9  1.9  1.9  2.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
level of earth 
   1.10   1.10   1.10   1.10 -99.00 -99.10 -99.10 -97.10 -89.00 -99.00 -90.00   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10 
   1.20   1.20   1.20   1.20 -99.00 -98.20 -99.20 -98.20 -69.00 -89.00 -90.00   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20 
   1.30   1.30   1.30   1.30 -91.00 -97.30 -99.30 -97.30 -49.00 -79.00  -8.30   8.30   1.30   8.30   1.30   1.30   1.30   1.30   1.30   1.30 
   1.40   1.40   1.40   1.40 -91.00 -67.40 -99.40 -67.40 -35.00 -68.00  -8.40   8.40   1.40   8.40   1.40   1.40   1.40   1.40   1.40   1.40 
   1.50   1.50   8.50   1.50 -91.00 -67.50 -99.50 -57.50 -25.00 -57.00  -8.50   8.50   1.50   8.50   1.50   1.50   1.50   1.50   1.50   1.50 
   1.60   1.60   8.60   2.60   1.60 -37.60 -79.60 -47.60 -15.00 -46.00  -8.60   8.60   8.60   8.60   1.60   1.60   1.60   1.60   1.60   1.60 
  -3.00   1.70   8.70   8.70   8.70 -23.70 -49.70 -33.70 -15.00 -35.00  -8.70   8.70   8.70   8.70   1.70   1.70   1.70   1.70   1.70   1.70 
 -10.00  -9.00   8.80   8.80   8.80 -16.80 -22.80 -12.80 -10.00 -14.00  -0.80   1.80   0.80   8.80   8.80   1.80   1.80   1.80   1.80   1.80 
 -39.00 -39.00   8.90   8.90   8.90 -10.90  -5.90  -7.90  -9.00  -5.90   0.90   0.90   0.90   8.90   8.90   1.90   1.90   1.90   1.90   1.90 
 -99.00 -79.00  -8.80   8.80   8.80 -10.80  -8.80  -8.80  -8.00  -8.80   0.80   0.80   0.80   0.80   8.80   1.80   1.80   1.80   1.80   1.80 
 -39.00 -39.00   1.70   8.70   8.70  -8.70  -8.70  -8.70  -8.00  -8.70   0.70   0.70   0.70   0.70   8.70   1.70   1.70   1.70   1.70   1.70 
  -9.00   9.60   1.60   1.60   8.60  -8.60   8.60   8.60   1.60  -9.60   0.60   0.60   0.60   0.60   8.60   3.60   1.60   1.60   1.60   1.60 
  -3.00   9.50   1.50   1.50   8.50   8.50   8.50   8.50   1.50  -9.50   0.50   0.50   1.50   0.50   8.50   3.50   1.50   1.50   1.50   1.50 
   1.40   1.40   1.40   1.40   8.40   1.40   1.40   8.40   1.40  -9.40   0.40   0.40   1.40   0.40   8.40   3.40   1.40   1.40   1.40   1.40 
   1.30   1.30   1.30   1.30   8.30   1.30   1.30  -8.30   1.30  -9.30  -1.30   0.30   1.30   1.30   8.30   1.30   1.30   1.30   1.30   1.30 
   1.20   1.20   1.20   1.20   8.20   8.20   8.20  -8.20   1.20  -9.20  -2.20   1.20   1.20   1.20   8.20   1.20   1.20   1.20   1.20   1.20 
   1.10   1.10   1.10   1.10   8.10   8.10   8.10  -8.10  -1.10  -9.10  -3.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10 
   1.20   1.20   1.20   1.20   1.20   1.20   1.20  -6.20  -9.20  -9.20  -4.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20 
   1.30   1.30   1.30   1.30   1.30   1.30   1.30  -7.30  -9.30  -9.30  -5.30   1.30   1.30   1.30   1.30   1.30   1.30   1.30   1.30   1.30 
   1.40   1.40   1.40   1.40   1.40   1.40   1.40  -8.40  -9.40  -9.40  -6.40   1.40   1.40   1.40   1.40   1.40   1.40   1.40   1.40   1.40 
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7.  PROBLEMS OF POWER NETWORKS  

7.1  Problem of Power Generation, Distribution, and Consumption 
 
Consider a power network comprised of two groups: the first group with power generation facilities 
and the second group for power consumption.  The power transmission lines can be used to transfer 
power to consumers.  Figure 7.1.1 shows a network with power generation and power consumption 
nodes.   
 

U1

UZB

R2
A3

U5
KIR

A6

R4

R8
R7

 
 

Fig. 7.1.1.  Energy and Electricity Tasks Schematic 
 
 
The power generation at node U5 (a5) is 100. 
The power consumption at node R4 (a4) is 80. 
The power consumption at node R8 (a8) is 30. 
The power consumption at node R2 (a2) is 10. 
The power transferred from node R8 (a8) to node a6 is 100. 
The power transferred from node R2 (a2) to node a3 is 50. 
 
The power transfer in all lines of the network and the power generation at the node U1 (a1) are to be 
determined.  It is known that the power generation at this node is less than 900. 
 
This problem is similar to the problem connected with power generation and power transfer between 
the nodes countries in the Central Asian network.  The essence of the problem becomes clear 
assuming that "a1" refers to the set UZB (Uzbekistan), and "a5" to another set KIR (Kyrgyzstan).  
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Besides, there is a condition on specified power transfer through the transmission lines of the 
network. 
 
Consider the laws characteristic for the model: 
 
1) The net flow through a regular junction is 0: 
 

∑=∑
outgoingmincomingm

mninmi ),(),(  

 
2) Flow from the first node in the direction of a second node of the circuit does not change.  

However, it has a "-" symbol for the first node, and "+" for the second node: 
 

),(),( mninmi −=  
 
3) Flow transferred through a power generating node is increased by the value of the generated 

power: 
 

)(),(),( nemninmi
outgoingmincomingm

=∑−∑  

 
4) Flow transferred through a power consumption node is decreased by the value of the consumed 

power: 
 

)(),(),( nrmninmi
outgoingmincomingm

−=∑−∑  

 
In the equations:  
 
 i(m,n)  power flow from node m to node n, 
            e(n)     power generation at node n; 
            r(n)     power consumption at node n; 
 
On the basis of these equations we can show that the total power generation is equal to the total 
power consumption. 

 
SETS 
m  /a1,a2,a3,a4,a5,a6,a7,a8   / 
 
alias(m,m1); 
 
SETS 
mr(m)  consumers        /a2,a8,a4,a7/ 
me(m)  producers        /a1,A5/ 
m0(m)  junctions        /a3,a6/ 
 
m_and_m1(m,m1) all nodes and their connections / 
a1.a2, a1.a8, 
a2.a1, a2.a3, 
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a3.a2, a3.a4, a3.a7 
a4.a3, a4.a5, 
a5.a4, a5.a6, 
a6.a5, a6.a8, a6.a7, 
a7.a3, a7.a6, 
a8.a1, a8.a6        / 
 
VARIABLES 
e(m),     power generation 
r(m),     power consumption 
i(m,m1),  power flow 
obj; 
 
equation 
coni(m,m1), 
conu0(m), 
conue(m), 
conur(m), 
ben; 
 
* All nodes 
coni(m,m1)..         i(m,m1) =e= -i(m1,m)  ; 
* Junction nodes 
conu0(m)$(m0(m))..   sum(m1$(m_and_m1(m,m1)),i(m,m1)) =e=   0     ; 
* Generation nodes 
conue(m)$(me(m))..   sum(m1$(m_and_m1(m,m1)),i(m,m1)) =e=   e(m)  ; 
* COnsumption nodes 
conur(m)$(mr(m))..   sum(m1$(m_and_m1(m,m1)),i(m,m1))  =e=  -r(m)  ; 
 
ben..           obj =E= 1; 
 
e.up('a1')=         900; 
e.lo('a1')=           0; 
 
e.fx('a5')=         100; 
 
i.fx('a8','a6')=100; 
i.fx('a2','a3')= 50; 
 
r.fx('a4')= 80; 
r.fx('a8')= 30; 
r.fx('a2')= 10; 
 
MODEL VAN /ALL/; 
SOLVE VAN USING NLP MinimaZING obj; 
 
file res /odc1.txt/ 
put res; 
put " I  Power Flow " /; 
put "             "; 
loop(m, put m.tl:10; ); 
        put /; 
loop(m, put m.tl:10; 
        loop(m1, put i.l(m,m1):10:1; ); 
        put /;); 
put /; 
put /; 
put " U  Generation " /; 
put "          "; 
loop(m, put m.tl:10; ); 
put /; 
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put "      "; 
loop(m, put e.l(m):10:1; ); 
put /; 
put /; 
put " R  Consumption" /; 
put "          "; 
loop(m, put m.tl:10; ); 
put /; 
put "      "; 
loop(m, put r.l(m):10:1; ); 
put /; 

 
The results are: 

 
I  Power Flow 
             a1        a2        a3        a4        a5        a6        a7        a8 
a1           0.0      60.0       0.0       0.0       0.0       0.0       0.0     130.0 
a2         -60.0       0.0      50.0       0.0       0.0       0.0       0.0       0.0 
a3           0.0     -50.0       0.0     -30.6       0.0       0.0      80.6       0.0 
a4           0.0       0.0      30.6       0.0    -110.6       0.0       0.0       0.0 
a5           0.0       0.0       0.0     110.6       0.0     -10.6       0.0       0.0 
a6           0.0       0.0       0.0       0.0      10.6       0.0      89.4    -100.0 
a7           0.0       0.0     -80.6       0.0       0.0     -89.4       0.0       0.0 
a8        -130.0       0.0       0.0       0.0       0.0     100.0       0.0       0.0 
 
 U  Generation 
          a1        a2        a3        a4        a5        a6        a7        a8 
        190.0       0.0       0.0       0.0     100.0       0.0       0.0       0.0 
 
 R  Consumption 
          a1        a2        a3        a4        a5        a6        a7        a8 
          0.0      10.0       0.0      80.0       0.0       0.0     170.0      30.0 

 
This example served as the basis for the development of the model of water-energy market designed 
by Kyrgyzenergo (see A. Zyryanov and E. Antipova, Vol. 2, Section 2.1, “Optimization of the 
Syrdarya Water and Energy Uses under Current Conditions,” McKinney, D.C. and A.K. Kenshimov 
(eds.), 2000 ). 
 
 

7.2  Defining Voltage and Strength of Current in Direct-Current Circuit  
 
The problem considered here is to determine the unknown variables of a direct current  circuit of any 
configuration comprised of power sources and resistances.  Kirkoff’s and Ohm’s laws are used in the 
model:   
 

• Kirkoff’s law:  the sum of currents in each of the nodes is equal to zero.   
• Ohm’s law:  the decrease in voltage across a resistor is proportional to the 

resistance multiplied by the current. 
 
Consider the scheme shown in Figure 7.2.1. 

 
SETS 
m   /a1,a2,a3,a4,a5,a6,a7,a8   / 
alias(m,m1); 
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alias(m,m2); 
 
sets 
mr(m)  consumers    /a2,a8,a4,a7/ 
me(m)  generators   /a1,a5/ 
m0(m)  junctions    /a3,a6/ 
 
m_and_m1(m,m1)         connection 
/ 
a1.a2, a1.a8, 
a2.a1, a2.a3, 
a3.a2, a3.a4, a3.a7 
a4.a3, a4.a5, 
a5.a4, a5.a6, 
a6.a5, a6.a8, a6.a7, 
a7.a3, a7.a6, 
a8.a1, a8.a6   / 
 
m1_m_m2(m1,m,m2); 
m1_m_m2(m1,m,m2)= yes$(m_and_m1(m1,m) and m_and_m1(m,m2)); 
m1_m_m2(m1,m,m1)$m1_m_m2(m1,m,m1)= no; 
   
* If there is a connection between the "m", "m1" and "m2",  
* then there is a connection between "m", "i1" and "m2". 
* However, if "m1" coincides with "m2",  
* it is not a double connection 
* but a connection based on the principle "TO- FROM".   
* It is excluded from the whole set of triple connections.   
 
VARIABLES 
* Current source 
e(m), 
 
* Resistors 
r(m), 
 
* Voltages between nodes 
u(m,m1), 
 
* Currents between nodes 
i(m,m1), 
 
obj; 
 
EQUATION 
* Calculate currents 
coni(m,m1), 
 
* Calculate voltages 
conu(m,m1), 
 
* Kirchhoff ‘s Law  
ii(m), 
 
* Ohm’s Law for junction nodes  
uu_0(m1,m,m2), 
 
* Ohm’s Law for supply nodes  
uu_e(m1,m,m2), 
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* Ohm’s Law for resistor nodes  
uu_r(m1,m,m2), 
 
ben; 
 
* Kirchhoff ‘s Law  
ii(m)..           sum(m1$m_and_m1(m,m1),i(m,m1)) =e= 0; 
 
* Calculate currents 
coni(m,m1)..      i(m,m1) =e= -i(m1,m)  ; 
 
* Calculate voltages 
conu(m,m1)..      u(m,m1) =e=  u(m1,m)  ; 
 
* Ohm’s Law for junction nodes  
uu_0(m1,m,m2)$m0(m).. 
    0  =e=  (u(m,m1)-u(m,m2))$m1_m_m2(m1,m,m2); 
 
* Ohm’s Law for supply nodes  
uu_e(m1,m,m2)$(me(m)$(m1_m_m2(m1,m,m2)$( ord(m1) gt  ord(m2)))).. 
    u(m,m1)-u(m,m2) =e= e(m); 
 
* Ohm’s Law for resistor nodes  
uu_r(m1,m,m2)$(mr(m)$m1_m_m2(m1,m,m2)).. 
    u(m,m1)-u(m,m2) =e= -r(m)*i(m,m1); 
 
ben..           obj =E=i('a1','a8')*i('a1','a8'); 
 
e.up(m)=         100; 
e.lo(m)=        -100; 
r.up(m)=         100; 
r.lo(m)=        -100; 
i.l(m,m1)$m_and_m1(m,m1)=    -1 ; 
i.up(m,m1)=         100; 
i.lo(m,m1)=        -100; 
u.up(m,m1)=         100; 
u.lo(m,m1)=        -100; 
 
r.fx('a2')= 10; 
r.fx('a4')= 20; 
r.fx('a7')= 40; 
 
e.fx('a1')=20; 
e.fx('a5')=40; 
 
i.fx('a1','a2')=    0.125; 
 
MODEL VAN /ALL/; 
SOLVE VAN USING NLP MINIMIZING obj; 
 
file res /odc2.txt/ 
put res; 
put " m_AND_m1" /; 
loop(m,  put m.tl:6; 
         loop(m1, put M_and_M1(M,M1):7; ); 
put /;); 
put /; 
put " m_m_M1" /; 
loop(m1, 
     loop(m, 
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         loop(m2, put M1_m_M2(m1,M,M2):7; ); 
put /;); 
put /;); 
put " I amper  " /; 
put "          "; 
loop(m, put m.tl:7; ); 
put /; 
loop(m,  put m.tl:6; 
         loop(m1, put i.l(M,m1):7:3; ); 
put /;); 
put /; 
put " U volt " /; 
put "          "; 
loop(m, put m.tl:7; ); 
put /; 
loop(m,  put m.tl:6; 
         loop(m1, put u.l(M,m1):7:1; ); 
put /;); 
put /; 
put " E volt on supplies " /; 
put "          "; 
loop(m, put m.tl:6; );put /; 
put "      "; 
loop(m, put e.l(m):6:2; );put /; 
put /; 
put " R - resisters  " /; 
put "          "; 
loop(m, put m.tl:6; );put /; 
put "      "; 
loop(m, put r.l(m):6:2; );put /; 

 
The results are: 
 

I amper 
          a1     a2     a3     a4     a5     a6     a7     a8 
a1      0.000  0.125  0.000  0.000  0.000  0.000  0.000 -0.125 
a2     -0.125  0.000  0.125  0.000  0.000  0.000  0.000  0.000 
a3      0.000 -0.125  0.000  0.750  0.000  0.000 -0.625  0.000 
a4      0.000  0.000 -0.750  0.000  0.750  0.000  0.000  0.000 
a5      0.000  0.000  0.000 -0.750  0.000  0.750  0.000  0.000 
a6      0.000  0.000  0.000  0.000 -0.750  0.000  0.625  0.125 
a7      0.000  0.000  0.625  0.000  0.000 -0.625  0.000  0.000 
a8      0.125  0.000  0.000  0.000  0.000 -0.125  0.000  0.000 
 
 U volt 
          a1     a2     a3     a4     a5     a6     a7     a8 
a1        0.0  -10.4    0.0    0.0    0.0    0.0    0.0    9.6 
a2      -10.4    0.0  -11.6    0.0    0.0    0.0    0.0    0.0 
a3        0.0  -11.6    0.0  -11.6    0.0    0.0  -11.6    0.0 
a4        0.0    0.0  -11.6    0.0  -26.6    0.0    0.0    0.0 
a5        0.0    0.0    0.0  -26.6    0.0   13.4    0.0    0.0 
a6        0.0    0.0    0.0    0.0   13.4    0.0   13.4   13.4 
a7        0.0    0.0  -11.6    0.0    0.0   13.4    0.0    0.0 
a8        9.6    0.0    0.0    0.0    0.0   13.4    0.0    0.0 
 
 E volt on supplies 
          a1    a2    a3    a4    a5    a6    a7    a8 
       20.00  0.00  0.00  0.00 40.00  0.00  0.00  0.00 
 
 R - resisters 
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          a1    a2    a3    a4    a5    a6    a7    a8 
        0.00 10.00  0.00 20.00  0.00  0.00 40.00 30.00 

 
This example served as the basis for the development of the models on power networks (see S. 
Zaitseva, Sh. Khisoriev, and A. Savitsky, Vol. 2, Section 3.2, “Optimization of Electric Mode of 
Energy Systems Operation,” McKinney, D.C. and A.K. Kenshimov (eds.), 2000 ). 
 
 

7.3  Passing a Complex Electrical Signal 
 
In the previous electricity examples we considered direct and alternating current in complex 
electrical circuits.  However, the alternating current and voltage in these examples only varied 
sinusoidally.  Sometimes, it is necessary to deal with circuits in which the pulses of current are not 
sine waves.  The solution of such tasks is complicated.  In this section, we solve this problem using 
GAMS, in the hope that it is useful in construction of more complicated models consisting of 
capacity, inductivity and other electronic devices and possibly microchips.  First we describe the 
governing equations which are necessary to solve the task. 
 
Ohm’s Law.  The voltage drop across a resistor is proportional to the current: 
 

jijiji RIVV ,,=−  
where  

Vi, Vj  Voltage at points i and j [volt]; 
Ii,j Current flowing between points i and j [amper]; and 
Ri,j Resistance between points i and j [ohm] 

 
Kirchoff’s Law.  The sum of currents into or out of any point is zero: 
 

current)ofsourceanot(i0, iI
j

ji ∀=∑  

 
Current source.  For a source of current we have a difference in potentials: 
 

jiji EVV ,=−  

 
where Ei,j voltage at points i and j on either side of the source of current. 
 
Capacitor.  Charge accumulation causes a voltage increases across a capacitor inversely 
proportional to the capacitance: 
 

CtICQV // ∂=∂=∂  
where  

∂ Differential, 
Q Charge [coul], 
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C Capacity [farad], 
t Time [sec], 

or 

C
I

t
V

=
∂
∂  

 
Here, we deal with capacitors in networks and the accumulation of charge on one plate causes 
accumulationof on the opposite plate and the voltages on both sides are equal.  As a result of the 
presence of two plates in the capacitor, we may substitute a factor of 2 in the right hand side of the 
previous equation.  However if the electrical capacity device does not contain 2 plates then the factor 
of 2 is not required, e.g., if there is an situation with a body capable of accumulating charge on the 
surface and subsequently giving it back.   
 
Inductor.  Current change produces a potential difference proportional to inductivity: 
 

jj VV
t
I

−=
∂
∂  

 
where L is inductivity [henry]. 
 
Consider the following electrical circuit 
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Figure 7.3.1.  Simple circuit. 

 
where  

L = 0.023 henry,  
C = 0.000023 faraday,  
R2 = 5 ohm,  
R7 =  7 ohm, 
R8 = 11 ohm, 
ω = 18,840 hertz , 
E = )sin(34 tω  volt 
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Or in complex form 
jE 35 +=  

   
The task can be solved by the method attributed to Gauss.  We shall receive the system of equations 
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or in matrix form 
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with solution 
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or 
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The GAMS model for this example is: 
     

SETS 
T / k1*k40 / 
M / a1*a8  / 
 
Parameters Volt(T), Cap(M), Ind(M); 
Volt(T)  = SIN((ord(T)-1)/card(T) * 2 * 3.14)$(ord(T) gt 0); 
Cap(M)   = -23/1000000000*18840*40/6.28 * 2; 
Ind(M)   =   23/1000*18840*40/6.28; 
 
Alias(M, M1); 
Alias(M, M2); 
 
Sets 
ML(M)            inductivity      /a3/ 
MC(M)            capacity         /a4/ 
MR(M)            resisters        /a2, a7, a8/ 
ME(M)            electro supplies /a1/ 
M0(M)            nodes            /a5, a6/ 
M_and_M1(M, M1) connection 
                    /a1.a2, a1.a5, a2.a1, a2.a6, a3.a8, a3.a5, 
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                     a4.a7, a4.a5, a5.a4, a5.a3, a5.a1, a6.a2, 
                     a6.a7, a6.a8, a7.a4, a7.a6, a8.a6, a8.a3 / 
M1_M_M2(M1, M, M2); 
M1_M_M2(M1, M, M2) = yes$(M_and_M1(M1, M) and M_and_M1(M, M2)); 
M1_M_M2(M1, M, M1)$M1_M_M2(M1, M, M1) = no; 
 
Parameter E(M); 
Parameter R(M); 
E('a1') = sqrt(34); 
R('a2') =  5; 
R('a7') =  7; 
R('a8') = 11; 
 
VARIABLES 
*         E(M), 
*         R(M), 
         V(M, M1, T), 
         I(M, M1, T), 
         OBJ; 
 
* E.fx('a1') = sqrt(34); 
* R.fx('a2') =  5; 
* R.fx('a7') =  7; 
* R.fx('a8') = 11; 
 
EQUATION 
         ConI(M, M1, T), 
         ConU(M, M1, T), 
         I_I(M, T), 
         V_0(M1, M, M2, T), 
         V_E(M1, M, M2, T), 
         V_R(M1, M, M2, T), 
         V_L(M, M1, M2, T), 
         V_C(M, M1, T), 
         V_C1(M1, M, M2, T), 
         BEN; 
 
I_I(M, T)..  sum(M1$M_and_M1(M, M1), I(M,M1,T)) =e= 0; 
* Kirchoff law 
 
ConI(M,M1,T)..  I(M,M1,T) =e= -I(M1,M,T); 
* If there is a connection between units M and M1 
 
ConU(M,M1,T).. V(M,M1,T) =e= V(M1,M,T); 
* Potential on connection between units does not vary, 
* Or, no resistance on wires connecting elements 
 
V_E(M1,M,M2,T)$(ME(M)$(M1_M_M2(M1,M,M2)$(ord(M1) gt ord(M2)))).. 
 
            E(M)*Volt(T) =e= V(M,M1,T) - V(M,M2,T); 
* Source units have a potential difference 
 
V_0(M1,M,M2,T)$((M0(M)) and (M1_M_M2(M1, M, M2))).. 
 
            V(M, M2, T) =e= V(M, M1, T); 
* For simple units there is no power failure, 
* Simple units are junctions 
 
V_R(M1,M,M2,T)$((MR(M)) and (M1_M_M2(M1,M,M2))  
                        and (ord(M2) gt ord(M1))).. 
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            V(M1,M,T) - V(M2,M,T) =e= -I(M,M1,T)*R(M); 
* Ohm's Law: the power loss is proportional 
* to product of current and resistance 
 
V_C1(M1,M,M2,T)$((MC(M)) and (M1_M_M2(M1,M,M2))).. 
 
            V(M1,M,T) =e= -V(M2,M,T); 
* the plates of the condenser always have 
* equal but opposite potential on the plates 
 
V_C(M,M1,T)$((MC(M)) and (M_and_M1(M, M1))).. 
 
        V(M,M1,T) - V(M,M1, T -- 1) =e= + I(M,M1,T)/Cap(M); 
* Increase in potential on a plate 
* of the condenser is proportional to current 
 
V_L(M1,M,M2,T)$((Ml(M)) and (M1_M_M2(M1,M,M2))  
                        and (ord(M2) gt ord(M1))).. 
 
   V(M1,M,T) - V(M2,M,T) =e= -Ind(M)*(I(M,M1,T)-I(M,M1,T -- 1)); 
* Differences in voltage across inductor is 
* proportional to the change in current, 
 
Ben.. OBJ =e= 1; 
 
MODEL IVAN / all /; 
SOLVE IVAN USING LP minimizing obj; 

 
The results of solving this model are: 

 
Solution from GAUSS proceedure 
 I Ic Il 
   0.0109   0.0025   0.0134   5.3230 
 Solution from GAMS 
 I Ic Il 
   0.0110   0.0026   0.0134   5.2353 
 
 I amper 
 a1     a2     a3     a4     a5     a6     a7     a8 
a1      0.000  0.010  0.000  0.000 -0.010  0.000  0.000  0.000 
a2     -0.010  0.000  0.000  0.000  0.000  0.010  0.000  0.000 
a3      0.000  0.000  0.000  0.000  0.013  0.000  0.000 -0.013 
a4      0.000  0.000  0.000  0.000 -0.003  0.000  0.003  0.000 
a5      0.010  0.000 -0.013  0.003  0.000  0.000  0.000  0.000 
a6      0.000 -0.010  0.000  0.000  0.000  0.000 -0.003  0.013 
a7      0.000  0.000  0.000 -0.003  0.000  0.003  0.000  0.000 
a8      0.000  0.000  0.013  0.000  0.000 -0.013  0.000  0.000 
 
U Volt 
 a1     a2     a3     a4     a5     a6     a7     a8 
a1      0.000 -0.069  0.000  0.000  0.074  0.000  0.000  0.000 
a2     -0.069  0.000  0.000  0.000  0.000 -0.077  0.000  0.000 
a3      0.000  0.000  0.000  0.000  0.074  0.000  0.000 -0.099 
a4      0.000  0.000  0.000  0.000  0.074  0.000 -0.074  0.000 
a5      0.074  0.000  0.074  0.074  0.000  0.000  0.000  0.000 
a6      0.000 -0.077  0.000  0.000  0.000  0.000 -0.077 -0.077 
a7      0.000  0.000  0.000 -0.074  0.000 -0.077  0.000  0.000 
a8      0.000  0.000 -0.099  0.000  0.000 -0.077  0.000  0.000 
 
E Volt on supplies 
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 a1    a2    a3    a4    a5    a6    a7    a8 
   5.83  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
 
 R - resisters 
 a1    a2    a3    a4    a5    a6    a7    a8 
   0.00  5.00  0.00  0.00  0.00  0.00  7.00 11.00 
!________________!___________________________ __________________________________! 
!   Supply       !             Current       !                 Voltage          ! 
!     A1         ! A2-A6,    A6-A7,     A6-A8!       V8-V3      V4-V7    V4-V5  ! 
!________________!___________________________ __________________________________! 
! Time Voltage   !  Amp       Amp        Amp !        Volt       Volt     Volt  ! 
!________________!___________________________!__________________________________! 
  1.00    0.0000   0.0108   -0.0026     0.0133      -0.1825   -0.0179    0.0179 
  2.00    0.9117   0.0104   -0.0025     0.0129      -0.6329   -0.4731    0.4731 
  3.00    1.8010   0.0098   -0.0024     0.0122      -1.0677   -0.9163    0.9163 
  4.00    2.6460   0.0089   -0.0023     0.0112      -1.4763   -1.3370    1.3370 
  5.00    3.4258   0.0078   -0.0021     0.0099      -1.8486   -1.7248    1.7248 
  6.00    4.1215   0.0064   -0.0019     0.0084      -2.1754   -2.0702    2.0702 
  7.00    4.7157   0.0050   -0.0016     0.0066      -2.4487   -2.3646    2.3646 
  8.00    5.1939   0.0034   -0.0013     0.0047      -2.6618   -2.6009    2.6009 
  9.00    5.5444   0.0017   -0.0010     0.0027      -2.8093   -2.7732    2.7732 
 10.00    5.7585   0.0000   -0.0006     0.0006      -2.8878   -2.8773    2.8773 
 11.00    5.8310  -0.0017   -0.0002    -0.0015      -2.8952   -2.9106    2.9106 
 12.00    5.7600  -0.0034    0.0002    -0.0036      -2.8315   -2.8723    2.8723 
 13.00    5.5473  -0.0050    0.0006    -0.0056      -2.6980   -2.7634    2.7634 
 14.00    5.1982  -0.0064    0.0010    -0.0074      -2.4982   -2.5864    2.5864 
 15.00    4.7212  -0.0077    0.0013    -0.0091      -2.2369   -2.3459    2.3459 
 16.00    4.1280  -0.0089    0.0016    -0.0105      -1.9206   -2.0476    2.0476 
 17.00    3.4334  -0.0098    0.0019    -0.0117      -1.5571   -1.6990    1.6990 
 18.00    2.6542  -0.0104    0.0022    -0.0126      -1.1553   -1.3086    1.3086 
 19.00    1.8098  -0.0108    0.0023    -0.0132      -0.7250   -0.8860    0.8860 
 20.00    0.9209  -0.0110    0.0025    -0.0134      -0.2769   -0.4416    0.4416 
 21.00    0.0093  -0.0108    0.0025    -0.0133       0.1780    0.0136   -0.0136 
 22.00   -0.9025  -0.0104    0.0025    -0.0129       0.6286    0.4686   -0.4686 
 23.00   -1.7921  -0.0098    0.0024    -0.0122       1.0636    0.9120   -0.9120 
 24.00   -2.6377  -0.0089    0.0023    -0.0112       1.4726    1.3329   -1.3329 
 25.00   -3.4183  -0.0078    0.0021    -0.0099       1.8453    1.7211   -1.7211 
 26.00   -4.1149  -0.0065    0.0019    -0.0084       2.1726    2.0670   -2.0670 
 27.00   -4.7102  -0.0050    0.0016    -0.0066       2.4464    2.3620   -2.3620 
 28.00   -5.1897  -0.0034    0.0013    -0.0047       2.6601    2.5989   -2.5989 
 29.00   -5.5415  -0.0018    0.0010    -0.0027       2.8084    2.7718   -2.7718 
 30.00   -5.7570  -0.0001    0.0006    -0.0006       2.8876    2.8766   -2.8766 
 31.00   -5.8309   0.0017    0.0002     0.0015       2.8957    2.9107   -2.9107 
 32.00   -5.7614   0.0033   -0.0002     0.0035       2.8327    2.8731   -2.8731 
 33.00   -5.5501   0.0049   -0.0006     0.0055       2.6999    2.7648   -2.7648 
 34.00   -5.2024   0.0064   -0.0010     0.0074       2.5008    2.5886   -2.5886 
 35.00   -4.7266   0.0077   -0.0013     0.0090       2.2401    2.3487   -2.3487 
 36.00   -4.1346   0.0088   -0.0016     0.0105       1.9243    2.0510   -2.0510 
 37.00   -3.4409   0.0097   -0.0019     0.0117       1.5612    1.7028   -1.7028 
 38.00   -2.6625   0.0104   -0.0022     0.0125       1.1597    1.3128   -1.3128 
 39.00   -1.8186   0.0108   -0.0023     0.0131       0.7297    0.8905   -0.8905 
 40.00   -0.9300   0.0109   -0.0025     0.0134       0.2817    0.4462   -0.4462 
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Figure 7.3.2.  Results of simple circuit example: (a) voltage, (b) current. 
 
All characteristics of the circuit can enter the model as variables.  That is, the sizes and caracteristics 
of resistors and capacitors can be decision variables.  This example is solved for a sine function 
input: 
 

Volt(t) = SIN((ord(t)-1)/card(t)*2*3.14)$(ord(t) gt 0); 
 
Actually, the model can handle a pulse of any form.  Readers can change  
 

(ord(t) gt 0) to (ord(t) gt 25) 
 
and see how the pulse of current behaves in the circuit.   
 
In the following example we shall show that the elementary task opens a whole area of tasks related 
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to electrical circuits.  The equations of the resistor, the capacitor and inductor are the elementary 
converters of the input signal, but it is possible to include in the circuit diodes, transistors and 
microcircuits.  For example, we shall illustrate this by adding a diode to the circuit.   Diodes have the 
property that for current in one direction there is a resistance distinct from resistance to current in the 
opposite direction.  As a rule these resistances differ by orders of magnitude.   
 
To test this model we consider a "bridge" problem (Figure 3) where a sinusoidal signal is changed 
into a positive electricity flow. 
 

A

B

R2

R1

d4d3

d1d2

A

B

R2

R1

d4d3

d1d2

 
Figure 7.3.3.  Bridge circuit. 

 
From a source of alternating current, a sinusoudal wave of voltage is produced, causing a sine wave 
current in the circuit.  Current flowing from left to right through resistor R1 will go through diode d1 

 R2  d3 and come back to the source at point A.  If the current moves along the bottom from the 
source, it will pass through d4  R2  d1.  In the model, we must enter a new set determining the 
direction of current passing through diodes in the circuit.  We name it (see Figure 4) 
 

direct(M,M1) / a3.a8, a7.a10, a11.a8, a4.a6/ 
 
We must also add the equation responsible for directing the current flow in the diodes: 
 

V_D_V(M1,M,M2,t)$((MD(M))and(M1_M_M2(M1,M,M2))and(direct(M,M1))) 
 
.. V(M1,M,T) - V(M2,M,T)  
   =e= 2000*(sqrt(I(M,M1,T)*I(M,M1,T)) - I(M,M1,T))/2; 
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Figure 7.3.4.  New circuit with diodes as bridge. 
 
This equation has three conditions: 
 
1. MD(M)    Condition of belonging to the group of diodes; 
2. M1_M_M2(M1,M,M2)  Condition of existence of a connection between units M1 and M2 

through unit M; and 
3. direct(M,M1) Condition that M  M1 is the direction of the diode. 
 
The left side of the equation indicates the voltage drop across the unit.  The right part is zero for 
positive current and double its size for negative current.   
 
In table #  the currents going through the bridge through first second branch and resistance are 
shown.  The complete agreement of known values with the decision received is visible in GAMS.  
From the table it is seen that the current goes and on “closed” branch of diodes reducing efficiency 
the straightening “bridge”-network. By other computing methods the so thin phenomenon is difficult 
to compute.  If the user enters something other than a sine wave signal other methods will not be 
able to solve the problem. 
 
In fig. #  is shown sine of a source of a current and currents in branhes of the “bridge” circuit.  The 
reader can add to the resistor of the bridge capacity and inductance thus increasing the quality of the 
straightened signal.  In the objective function it is possible to enter a parameter of quality of the 
output of the signal and to find capacity and inductance needed to achieve this quality.  Tasks of thia 
type are very difficult to solve in other  languages. The model presented here provides a great 
opportunity for solving these problems.  Once again, we emphasize that from a number of simple 
examples the creation of large computing systems practical experiments is possible.  
 
 

7.4  Alternating Current Circuits 
 
The elementary model of circuits with a constant current was discussed above.  It is possible to 
consider circuits with a sine wave current.  This example was elaborate by Ivan Savitsky. 
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For this task we use the laws Ohm and Kirchoff.  The difference is that they are written in the complex 
form and there are imaginary parts for current, voltage and resistance.  To the usual, or active, resistance 
is added an implicit, or reactive, resistance.  The resistance is the reaction of the circuit to the varying 
characteristics of the current (voltage and current). 
 
Capacitor.  The implicit resistance of a capacitor is given by  
 

Cj
RC ω

1
=  

 
Inductor.  Implicit resistance of an inductor is given by  
 

LjRL ω=  
 
where 

ω  Frequency of fluctuations of the variable power supply; 
L, C Capacitors and inductors; and 
j Imaginary unit, 1− . 

 
Active resistance is the real part of the complex resistance, and implicit resistance is the imaginary part.  
Active resistance is only the real part, and the imaginary part of this type of resistance is zero.  
Capacitative and inductive resistance is formed only by the imaginary part of the complex numbers. 
 
Ohm’s Law: 

)(*1 ωjZIVV ii =− −  
where 

Vi complex potential on one side of an object; 
Vi-1 complex potential on the other side of an object; 
I complex current; and 
Z(jω) complex resistance. 

 
Kirchoff’s Law: 

 
The sum of complex currents flowing into a unit and leaving a unit must equal zero.  That is, the sum of 
real currents and the sum of imaginary currents on each unit must equal zero.  The law reflecting 
invariancy and interconnection of the network as one system is 
 

nmmn II −=  
 
The current leaving unit m to point n is the current which comes into point n from unit m.  The mark (+) 
indicates outflow from a unit, and (-) indicates inflow  to unit.  For a source of current the difference of 
voltage is equal to the voltage of the source.  For resistors, the resistance is given by Ohm’s law.  The 
voltages are not equal on each side, but the current entering is equal to that leaving.  For junctions, the 
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voltage of all connections are equal among themselves. 
 
Consider the electrical circuit shown in Figure 7.4.1. 
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Figure 7.4.1.  Electrical circuit. 
 
In this circuit, we have the following characteristics of the components: 
 

Sources:   E8 = 20 + 30j; E9 = 30 – 10j (amp);   
Capacitors:  C6 = 30; C7 = 40 (farad); 
Resistors:  R1 = 10; R2 = 20; R3 = 30; R4 = 40; and R5 = 50 (ohm); 

 
Let's make the equations on a method of planimetric currents for 1,2,3-circle lines: 
 

94
7

225
7

433

7
43321134

76
222

82222111

)1()1(

0)1()11(

)(

ER
Cj

IR
Cj

RI

Cj
RIRIRR

CjCj
RI

ERIRRI

=+−++

=+−−++++

=−+

ωω

ωωω
 

or 

jIjIjI
IjIjI

jII

1030)50090()50040(0
0)50040()66.116690(20

30202030

332211

332211

2211

−=−+−−
=−−−+−

+=−
 

 
which can be written in the following form: 
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Solving the given system of the equations for the frequency of an alternating current with ω = 50 (Hertz) 
gives: 
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Then 
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The GAMS model for this example is: 
 

SETS 
M /A1*A16/; 
 
Alias(M,M1); 
Alias(M,M2); 
 
Sets 
         MR(M)  resistors   /a1*a7/ 
         ME(M)  sources     /a8*a9/ 
         M0(M)  nodes       /a10*a16/ 
         M_to_M1(M1,M2)  connections near batery 
                         /a12.a11 
                          a16.a15/ 
         M_and_M1(M,M1)  connections 
/ 
A1.A10, A1.A11, A2.A10, A2.A12, A3.A10, A3.A16, A4.A14, A4.A16, A5.A13 
A5.A15, A6.A12, A6.A13, A7.A13, A7.A14, A8.A11, A8.A12, A9.A16, A9.A15 
A10.A1, A10.A2, A10.A3, A11.A1, A11.A8, A12.A2, A12.A8, A12.A6, A13.A5 
A13.A6, A13.A7, A14.A4, A14.A7, A15.A5, A15.A9, A16.A3, A16.A4, A16.A9 
/ 
 
         M1_M_M2(M1,M,M2); 
         M1_M_M2(M1,M,M2)  =yes$(M_and_M1(M1,M) and M_and_M1(M,M2)); 
         M1_M_M2(M1,M,M1)$M1_M_M2(M1,M,M1)  = no; 
 
Variables 
         E_d(M)    real supplies, 
         E_k(M)    implicit supplies, 
         R_d(M)    real resistance, 
         R_k(M)    implicit resistance, 
         V_d(M,M1) real voltage, 
         V_k(M,M1) implicit voltage, 
         I_d(M,M1) real current, 
         I_k(M,M1) implicit current, 
         OBJ; 
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I_d.up(M,M1)  =    1000; 
I_d.lo(M,M1)  =   -1000; 
V_d.up(M,M1)  =    1000; 
V_d.lo(M,M1)  =   -1000; 
 
R_d.FX('a1')= 10; 
R_d.FX('a2')= 20; 
R_d.FX('a3')= 30; 
R_d.FX('a4')= 40; 
R_d.FX('a5')= 50; 
R_d.FX('a6')=  0; 
R_d.FX ('a7')= 0; 
R_k.FX('a1')=  0; 
R_k.FX('a2')=  0; 
R_k.FX('a3')=  0; 
R_k.FX('a4')=  0; 
R_k.FX('a5')=  0; 
R_k.FX('a6')= -666.6666; 
R_k.FX('a7')= -500; 
E_d.FX('a8')=  20; 
E_d.FX('a9')=  30; 
E_k.FX('a8')=  30; 
E_k.FX('a9')= -10; 
 
Equation 
         ConI_d(M,M1), 
         ConV_d(M,M1), 
         II_d(M), 
         V_0_d(M1,M,M2), 
         V_E_d(M1,M,M2), 
         V_R_d(M1,M,M2), 
         ConI_k(M,M1), 
         ConV_k(M,M1), 
         II_k(M), 
         V_0_k(M1,M,M2), 
         V_E_k(M1,M,M2), 
         V_R_k(M1,M,M2), 
         BEN; 
* 
II_d(M)..       sum(m1$m_and_m1(M,M1),I_d(M,M1)) =e= 0; 
ConI_d(M,M1)..  I_d(M,M1) =e= -I_d(M1,M); 
ConV_d(M,M1)..  V_d(M,M1) =e=  V_d(M1,M); 
 
V_0_d(M1,M,M2)$m0(M).. 
 
     0 =e= (V_d(M,M1)-V_d(M,M2))$M1_M_M2(M1,M,M2); 
 
V_E_d(M1,M,M2)$(ME(M)$(M1_M_M2(M1,M,M2)$(M_to_M1(M1,M2)))).. 
 
     V_d(M,M1)-V_d(M,M2) =e= e_d(M); 
 
V_R_d(M1,M,M2)$(MR(M)$M1_M_M2(M1,M,M2)).. 
 
     V_d(M,M1)-V_d(M,M2) =e= -(R_d(M)*I_d(M,M1)-R_k(M)*I_k(M,M1)); 
 
* 
II_k(M)..       sum(m1$m_and_m1(M,M1),I_k(M,M1)) =e= 0; 
ConI_k(M,M1)..  I_k(M,M1) =e= -I_k(M1,M)  ; 
ConV_k(M,M1)..  V_k(M,M1) =e=  V_k(M1,M)  ; 
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V_0_k(M1,M,M2)$M0(M).. 
 
     0 =e= (V_k(M,M1)-V_k(M,M2)) $M1_M_M2(M1,M,M2); 
 
V_E_k(M1,M,M2)$(ME(M)$(M1_M_M2(M1,M,M2)$(M_to_M1(M1,M2)))).. 
 
     V_k(M,M1)-V_k(M,M2) =e= e_k(M); 
 
V_R_k(M1,M,M2)$(MR(M) $M1_M_M2(M1,M,M2)).. 
 
     V_k(M,M1)-V_k(M,M2) =e= -(R_d(M)*I_k(M,M1)+R_k(M)*I_d(M,M1)); 
* 
BEN..      OBJ =E=1; 
 
MODEL VAN /ALL/; 
Option nlp = Minos5; 
SOLVE VAN USING NLP maximizing OBJ; 
 

The results given in Tables 1 and 2 show that the GAMS model produces the same result as the Gauss 
method solution.  
 



 

 
 171 

Table 1.  Current I (amp, real part) 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 

A1 0 0 0 0 0 0 0 0 0 -0.66 0.66 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0.67 0 -0.67 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 -0.04 
A5 0 0 0 0 0 0 0 0 0 0 0 0 -0.03 0 0.03 0 
A6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0.04 -0.04 0 0 
A8 0 0 0 0 0 0 0 0 0 0 -0.66 0.66 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.03 0.03 
A10 0.66 -0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 -0.66 0 0 0 0 0 0 0.66 0 0 0 0 0 0 0 0 
A12 0 0.67 0 0 0 0 0 -0.66 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0.03 0 -0.04 0 0 0 0 0 0 0 0 0 
A14 0 0 0 -0.04 0 0 0.04 0 0 0 0 0 0 0 0 0 
A15 0 0 0 0 -0.03 0 0 0 0.03 0 0 0 0 0 0 0 
A16 0 0 0 0.04 0 0 0 0 -0.03 0 0 0 0 0 0 0 

Current I (amp, implicit part) 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 

A1 0 0 0 0 0 0 0 0 0 -1.04 1.04 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0.98 0 -0.98 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0 -0.06 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 -0.05 
A5 0 0 0 0 0 0 0 0 0 0 0 0 -0.12 0 0.12 0 
A6 0 0 0 0 0 0 0 0 0 0 0 -0.06 0.06 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0.05 -0.05 0 0 
A8 0 0 0 0 0 0 0 0 0 0 -1.04 1.04 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.12 0.12 
A10 1.04 -0.98 -0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 -1.04 0 0 0 0 0 0 1.04 0 0 0 0 0 0 0 0 
A12 0 0.98 0 0 0 0.06 0 -1.04 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0.12 -0.06 -0.05 0 0 0 0 0 0 0 0 0 
A14 0 0 0 -0.05 0 0 0.05 0 0 0 0 0 0 0 0 0 
A15 0 0 0 0 -0.12 0 0 0 0.12 0 0 0 0 0 0 0 
A16 0 0 0.06 0.05 0 0 0 0 -0.12 0 0 0 0 0 0 0 
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Table 2.  Voltage V (volt, real part) 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 

A1 0 0 0 0 0 0 0 0 0 0.08 -6.56 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0.08 0 13.44 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0.08 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.44 0 0 
A5 0 0 0 0 0 0 0 0 0 0 0 0 -28.34 0 -30 0 
A6 0 0 0 0 0 0 0 0 0 0 0 13.44 -28.34 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 -28.34 -1.44 0 0 
A8 0 0 0 0 0 0 0 0 0 0 -6.56 13.44 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -30 0 
A10 0.08 0.08 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 -6.56 0 0 0 0 0 0 -6.56 0 0 0 0 0 0 0 0 
A12 0 13.44 0 0 0 13.44 0 13.44 0 0 0 0 0 0 0 0 
A13 0 0 0 0 -28.34 -28.34 -28.34 0 0 0 0 0 0 0 0 0 
A14 0 0 0 -1.44 0 0 -1.44 0 0 0 0 0 0 0 0 0 
A15 0 0 0 0 -30 0 0 0 -30 0 0 0 0 0 0 0 
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Voltage V (volt, implicit part) 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 

A1 0 0 0 0 0 0 0 0 0 -11.88 -22.3 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 -11.88 0 7.7 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 -11.88 0 0 0 0 0 -10 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 -12.15 0 -10 
A5 0 0 0 0 0 0 0 0 0 0 0 0 5.82 0 0 0 
A6 0 0 0 0 0 0 0 0 0 0 0 7.7 5.82 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 5.82 -12.15 0 0 
A8 0 0 0 0 0 0 0 0 0 0 -22.3 7.7 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 
A10 -11.88 -11.88 -11.88 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 -22.3 0 0 0 0 0 0 -22.3 0 0 0 0 0 0 0 0 
A12 0 7.7 0 0 0 7.7 0 7.7 0 0 0 0 0 0 0 0 
A13 0 0 0 0 5.82 5.82 5.82 0 0 0 0 0 0 0 0 0 
A14 0 0 0 -12.15 0 0 -12.15 0 0 0 0 0 0 0 0 0 
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A16 0 0 -10 -10 0 0 0 0 -10 0 0 0 0 0 0 0 
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8. Optimal Solution of Heat Tranfer Problems 
 
Many tasks, e.g., river and electrical networks, are obviously two-dimensional, but they were 
represented by one-dimensional systems as analogues in the equations.  In this chapter we consider 
tasks which are not one-dimensional and some which are time dependent.  For each example, along 
with the solution, we shall consider some additional options and operators of GAMS. 
 
 

8.1  Background 
 
The basic equation for the task is conservation of energy, as follows; 
 

ITcV
t
Tc

+∇⋅∇=
∂

∂ )]([)( ρρ
 

 
 where 
 

t time (sec),  
c specific heat capacity of substance (cal/(kg - degree), 
p density of substance of (kg/m3), 
T temperature of substance (degree), 
V thermal conductivity (m2/sec),   
I point source of heat (cal/(m3sec). 

 
Consider the task of solving this problem in a rectangular area in which there is a source of heat in 
the lower right-hand corner.  On the boundary of the area the temperature is fixed 
 

boundarytheon),(for),(0 yxyxTT =  
 
If the situation is steady state, then no characteristics of the problem change with time.  In this 
example, the thermal conductivity V is heterogeneous in the solution domain (see Figure 8.1).  There 
is a symmetric zone at the center of the solution area where V becomes larger than in the rest of the 
area.  In view of these assumptions the governing equation becomes 
 

0)]([ =+∇⋅∇ ITcV ρ  

 
If c and ρ do not vary spatially, this equation becomes  
 

0)( =+∇⋅∇
ρc
ITV  
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Figure 8.1.1.  Solution domain for heat transfer problem. 

 
 
This equation is difficult to solve due to the heterogeneity of the thermal conductivity (as opposed to 

0/ =+∇⋅∇ ρcITV ).  Also, the transient equation  
 

t
T

c
ITV

∂
∂

=+∇⋅∇
ρ

)(  

                      
 is much easier and more commonly solved.  A stationary solution to the transient equation is found 
by using a large number of iterations under stationary boundary conditions.  After many iterations 
the influence of the initial conditions becomes very small and 0→∂∂ tT .  In any case, the 
differential operators must be approximated by algebraic analogues and a conservative scheme of 
solving the resulting system of algebraic equations must be used.   
 
In this example we consider construction of the analog on a grid in more detail.  In subsequent 
eamples we will not concentrate on this aspect as much.  First, we subdivide the rectangular area into 
some number of small rectangles with sides parallel to the x and y axes.  The result is a number of 
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intersection points refered to as nodes (see Figure 1 where a system of 20x20 nodes is illustrated).  
This system of rectangles allows to us construct algebraic analogs for the differential operators 

)(⋅∇  and )(∇ . 
 
The basic problem of constructing algebraic analogues of the differential operators is the 
preservation of invariancy.  That is, the solution must not depend on the orientation of the coordinate 
axes, and symmetric areas under symmetric boundary conditions should result in symmetric 
solutions.   
 
One of the variants of the differential operator in the previous equation can be derived using the well 
known formula from vector analysis 
 

BaBaBa ∇⋅∇+∇⋅∇=∇⋅∇ )()(  
 
which gives us the new equation: 
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Or using a finite difference approximation 
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8.2  Stationary temperature field in a rectangular area  
 
Consider a stationary temperature field in a rectangular area with heterogeneous thermal 
conductivity and a point source of heat and fixed temperature on the boundaries of the solution 
domain. 
 

SET X /I1*I20/; 
SET Y /J1*J20/; 
 
* boundary location determination 
SET bound(X,Y); 
    bound(X,Y)        =yes; 
    bound('I1','J10') =no; 
    bound('I20','J10')=no; 
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SET inside(X,Y); 
    inside(X,Y)                  =yes; 
    inside(X,Y)$(ord(X)=1)       =no; 
    inside(X,Y)$(ord(X)=card(X)) =no; 
    inside(X,Y)$(ord(Y)=1)       =no; 
    inside(X,Y)$(ord(Y)=card(Y)) =no; 
 
* temperature supply determination 
PARAMETER SUPPLY(X,Y); 
          SUPPLY(X,Y)          := 0; 
          SUPPLY('I17','J17')  := 10000; 
 
* parameters determination 
SCALAR dx /0.1/; 
SCALAR dy /0.1/; 
 
TABLE V(X,Y) 
     J1   J2   J3   J4   J5   J6   J7   J8   J9   J10  J11  J12  J13  J14  J15  J16  J17  J18  J19  J20 
I1  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I2  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I3  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I4  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I6  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I7  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I8  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I9  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I10 0.5  0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0   1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I11 0.5  0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0   1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I12 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  1.0   1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5 
I13 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  1.0   1.0  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5 
I14 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5 
I15 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5 
I16 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  1.0  1.0  1.0  1.0  0.5  0.5  0.5 
I17 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  1.0  1.0  1.0  0.5  0.5  0.5 
I18 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I19 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I20 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 

 
*      MODEL  DESCRIPTION 
VARIABLES 

obj 
T(X,Y); 

 
******* Variables limits ********* 
T.lo(X,Y) =-100.0; 
T.up(X,Y) = 200; 
T.l(X,Y)  = 0; 
 
******* Boundary Conditions ****** 
T.fx(X,Y)$(ord(X)=1)       = 0.0; 
T.fx(X,Y)$(ord(X)=card(X)) = 0.0; 
T.fx(X,Y)$(ord(Y)=1)       = 0.0; 
T.fx(X,Y)$(ord(Y)=card(Y)) = 0.0; 
 
T.fx('I1','J10')  = 100; 
T.fx('I1','J11')  = 100; 
T.fx('I10','J1')  = 100; 
T.fx('I11','J1')  = 100; 
 
EQUATION 

TEMP(X,Y) 
ben; 

 
TEMP(X,Y)$(inside(X,Y)).. supply(X,Y) 
        +  V(X,Y)*( T(X-1,Y)-2*T(X,Y)+T(X+1,Y))/dx/dx 
        +  V(X,Y)*( T(X,Y-1)-2*T(X,Y)+T(X,Y+1))/dy/dy 
        + (V(X,Y+1)-V(X,Y-1))* (T(X,Y+1)-T(X,Y-1))/dy/dy/2.0 
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        + (V(X+1,Y)-V(X-1,Y))* (T(X+1,Y)-T(X-1,Y))/dx/dx/2.0 
        =e= 0; 
 
ben.. obj =e= sum(X,T(X,'J2')); 
 
********************************** 
MODEL temper /all/; 
SOLVE temper using nlp minimazing obj; 
 
*************************************************************** 
file res1 /heat_2.txt/ 
file res2 /heat_2.dat/ 
put res1; 
put obj.l; put /; 
loop(X,  put X.tl:6;loop(Y, put T.l(X,Y):6:2; );put /;);put /; 
          put " inside 20  " /; 
 loop(X,  put X.tl:6;loop(Y, put inside(X,Y):6; );put /;); 
          put " inside 20  " /; 
 loop(X,  put X.tl:6;loop(Y, put supply(X,Y):6; );put /;); 
put res2; 
loop(X,loop(Y, put T.l(X,Y):4:0; );put /;);put /; 

 
The solution of the model is: 
 
   0   0   0   0   0   0   0   0   0 100 100   0   0   0   0   0   0   0   0   0 
   0   1   1   2   3   4   6  11  21  51  51  21  11   6   4   3   2   1   1   0 
   0   1   3   4   6   8  11  15  22  32  32  22  15  10   7   5   4   2   1   0 
   0   2   4   6   8  11  13  17  21  23  23  21  17  13  10   8   5   4   2   0 
   0   3   6   8  11  13  15  18  21  22  22  21  18  15  12   9   7   5   2   0 
   0   4   8  11  13  15  17  19  21  22  22  21  19  16  14  11   8   5   3   0 
   0   6  11  13  15  17  19  20  22  22  22  22  20  18  15  12  10   6   3   0 
   0  11  15  17  18  19  20  21  22  22  23  23  22  20  17  14  11   8   4   0 
   0  21  22  21  21  21  22  22  23  23  23  23  23  22  19  16  13   9   5   0 
 100  51  32  23  22  22  22  22  23  23  24  24  24  24  22  19  15  11   5   0 
 100  51  32  23  22  22  22  23  23  24  25  25  26  27  25  22  18  13   7   0 
   0  21  22  21  21  21  22  23  23  24  25  26  28  29  29  27  22  16   8   0 
   0  11  15  17  18  19  20  22  23  24  26  28  29  31  33  33  28  21  11   0 
   0   6  10  13  15  16  18  20  22  24  27  29  31  33  36  37  37  27  14   0 
   0   4   7  10  12  14  15  17  19  22  25  29  33  36  39  42  44  37  18   0 
   0   3   5   8   9  11  12  14  16  19  22  27  33  37  42  48  54  45  21   0 
   0   2   4   5   7   8  10  11  13  15  18  22  28  37  44  54  78  52  22   0 
   0   1   2   4   5   5   6   8   9  11  13  16  21  27  37  45  52  34  16   0 
   0   1   1   2   2   3   3   4   5   5   7   8  11  14  18  21  22  16   8   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

 
The symmetry of the problem and the boundary conditions results in the symmetric solution.  The 
solution of the model is written to the file “*.dat”, which serves as an input file for the program 
which graphically displays the solution (see Figure 8.2.1).  In this figure all isolines of temperature 
are symmetric, a necessary condition of the solution.  
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Figure 8.2.1.  Solution to heat transport problem with fixed boundary conditions. 
 
Next, we consider the possibility of finding a solution for other types of boundary conditions.  
Consider a problem where heat flow, not temperature, is given on the borders of the solution area, 
e.g., if the borders are made from insulating material.  In this case  
 

boundarytheon
n

yxT 0),(
=

∂
∂  

 
where n is the unit normal vector to border of the solution area.  The governing equation is  
 

0)( =+∇⋅∇
ρc
ITV  

 
Several difficulties present themselves immediately in this case: 
 

1)  The previous algebraic analogue of the differential equation is not conservative; 
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2)  The existence of insulating boundaries contradicts the heat conductivity equation; and 
3)  The internal source of heat should balance the flow of heat through the borders. 

 
That is, a stationary solution can not exist within insulated borders around an area containing an 
internal source of heat.  The temperature in the region should constantly grow and its stabilization 
will not occur.  To solve this problem it is necessary: 
 

1)   To reconstruct algebraic analog of the differential operators; 
2)   To alter the objective function; and 
3)   To make a boundary condition which is more realistic.  

 
The boundary condition is modified as 
 

boundarytheons
n

yxT
=

∂
∂ ),(  

 
where s is a given heat flux on the boundary. 
 
Assume that outside the solution domain the environment has large thermal conductivity.  As a 
result of this, at any point on the border there will be a larger temperature than that of the nearby 
external points, this will result in heat currents in the external area moving parallel to the borders.  
From the external area there will be sufficient hear capacity to maintain the temperature on the 
border. 
 
Let's copy the algebraic approximation of the differential operators in the conservative form.  The 
algebraic approximation of the conservative form allows no opportunity for sources or sinks of heat 
resulting from the apoximation of the differential operators.  Thus, considering the governing 
equation  
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The given temperature should be minimized during the search for the solution 
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),(0 yxTMinimize  
 
To guarantee conservation of energy in the solution it is necessary to calculate heat flows through 
the borders of the solution domain and to compare them with the source of heat inside the domain.  
Conservative methods for solving the differential equation should conserve the source of heat inside 
the solution domain by heat flow through the borders of the area.  In the model, inequalities enter the 
solution when the flow of heat is directed from the solution domain to the external environment. 
 

8.3  Stationary Temperature Field in a Rectangular Area with Border Heat 
Flow  
 
Consider a ttationary temperature field in a rectangular area with heterogeneous thermal 
conductivity and a point source of heat and heat flows through the borders of the solution domain. 
 

SET X /I1*I20/; 
 
ALIAS (X,Y); 
***************************************************** 
*   Determine boundary location 
* 
*   Determine type of boundary conditions 
 
SET bound(X,Y); 
    bound(X,Y)       =yes; 
    bound('I1','I10')=no; 
    bound('I1','I11')=no; 
    bound('I10','I1')=no; 
    bound('I11','I1')=no; 
 
*   Determine zone for heat transport equation 
SET inside(X,Y); 
 inside(X,Y)                  =yes; 
 inside(X,Y)$(ord(X)=1)       =no; 
 inside(X,Y)$(ord(X)=card(X)) =no; 
 inside(X,Y)$(ord(Y)=1)       =no; 
 inside(X,Y)$(ord(Y)=card(Y)) =no; 
 
*   Determine parameters 
SCALAR dx     step  in X direction  /0.1/ 
       dy     step  in Y direction  /0.1/ ; 
 
*   Determine heat supply 
PARAMETER SUPPLY(X,Y); 
          SUPPLY(X,Y)        :=0; 
          SUPPLY('I17','I17'):=100/dx/dy; 
 
TABLE V(X,Y)    thermal conductivity distribution 
     I1   I2   I3   I4   I5   I6   I7   I8   I9   I10  I11  I12 I13  I14  I15  I16  I17  I18  I19  I20 
I1  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I2  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I3  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I4  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I6  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I7  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I8  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I9  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
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I10 0.5  0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0   1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I11 0.5  0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0   1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I12 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  1.0   1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5  0.5  0.5 
I13 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  1.0   1.0  1.0  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5 
I14 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5  0.5 
I15 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5 
I16 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  1.0  1.0  1.0  1.0  1.0  0.5  0.5  0.5 
I17 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  1.0  1.0  1.0  0.5  0.5  0.5 
I18 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I19 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I20 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5   0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 ; 
 

******************************** 
*      MODEL  DESCRIPTION 
******************************** 
 
VARIABLES 
         obj 
         Q 
         T(X,Y); 
 
******* limitation ********* 
T.lo(X,Y)  =-100.0; 
T.up(X,Y)  = 200; 
T.l(X,Y)  = 0; 
Q.lo  = 0; 
 
******* boundary conditions ****** 
T.fx('I1','I10')  = 100; 
T.fx('I1','I11')  = 100; 
T.fx('I10','I1')  = 100; 
T.fx('I11','I1')  = 100; 
 
EQUATION 
         TEMP(X,Y)  main equation 
 
         f1(X,Y)    boundary condition dt:dn 
         f2(X,Y)    boundary condition dt:dn 
         f3(X,Y)    boundary condition dt:dn 
         f4(X,Y)    boundary condition dt:dn 
 
         fp1(X,Y)   boundary condition t 
         fp2(X,Y)   boundary condition t 
         fp3(X,Y)   boundary condition t 
         fp4(X,Y)   boundary condition t 
 
         ben        benefit equation 
         ; 
 
***************main equation********************************** 
TEMP(X,Y)$(inside(X,Y)).. 
 
            (( V(X+1,Y)+V(X,Y))*(T(X+1,Y)-T(X,Y)) 
           -(  V(X,Y)+V(X-1,Y))*(T(X,Y)-T(X-1,Y)))/dx/dx/2.0 
           +(( V(X,Y+1)+V(X,Y))*(T(X,Y+1)-T(X,Y)) 
           -(  V(X,Y-1)+V(X,Y))*(T(X,Y)-T(X,Y-1)))/dy/dy/2.0 
           +   supply(X,Y) 
           =e= 0.0 
            ; 
 
**************equation which determines dT/dn******** 
f1(X,Y)$((ord(X)=1      $bound(X,Y))).. T(X+1,Y)-T(X,Y)   =G= 0; 
f2(X,Y)$((ord(X)=card(X)$bound(X,Y))).. T(X,Y)  -T(X-1,Y) =L= 0; 
f3(X,Y)$((ord(Y)=1      $bound(X,Y))).. T(X,Y+1)-T(X,Y)   =G= 0; 
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f4(X,Y)$((ord(Y)=card(Y)$bound(X,Y))).. T(X,Y)  -T(X,Y-1) =L= 0; 
 
**************equation which determines T on outside bndy****** 
fp1(X,Y)$((ord(X)=1      $bound(X,Y))).. T(X,Y) =e= Q; 
fp2(X,Y)$((ord(X)=card(X)$bound(X,Y))).. T(X,Y) =e= Q; 
fp3(X,Y)$((ord(Y)=1      $bound(X,Y))).. T(X,Y) =e= Q; 
fp4(X,Y)$((ord(Y)=card(Y)$bound(X,Y))).. T(X,Y) =e= Q; 
 
*************************************************************** 
ben.. obj=e=Q; 
 
********************************** 
MODEL heat4 /all/; 
SOLVE heat4 using nlp minimizing obj; 
 
**************************************************************** 
FILE res1 /heat_4.txt/ 
FILE res2 /heat_4.dat/ 
 
**************************************************************** 
*     You can see the flow through the boundaries 
*     from equations in the model 
 
PARAMETER 
         x_left(X), x_right(X), 
         y_top(Y),  y_bottom(Y), 
         total, 
         total_x1, total_x2, 
         total_y1, total_y2, 
         t_supply; 
 
x_left(X)   =  (T.l('I2',X)  -T.l('I1',X) )*(V('I1',X) +V('I2',X) )/dx/2; 
x_right(X)  = -(T.l('I20',X) -T.l('I19',X))*(V('I20',X)+V('I19',X))/dx/2; 
y_top(Y)    =  (T.l(Y,'I2')  -T.l(Y,'I1') )*(V(Y,'I1') +V(Y,'I2') )/dy/2; 
y_bottom(Y) = -(T.l(Y,'I20') -T.l(Y,'I19'))*(V(Y,'I20')+V(Y,'I19'))/dy/2; 
 
total_x1 = sum(X,x_left(X))*dy; 
total_x2 = sum(X,x_right(X))*dy; 
total_y1 = sum(Y,y_top(Y))*dx; 
total_y2 = sum(Y,y_bottom(Y))*dx; 
total    = sum(Y,y_top(Y))*dx  + sum(Y,y_bottom(Y))*dx 
          +sum(X,x_left(X))*dy + sum(X,x_right(X))*dy; 
t_supply = supply('I17','I17')*dx*dy; 

 
The results are plotted in the following figure. 
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Figure 8.3.1.  Solution of the heat transport problem minimizing the boundary temperature. 

 
Part of the results file are  
 

obj function                       =         0.00 
 temperature on boundary           =         0.00 
 inside heat supply                =       100.00 
 total heat transport              =       100.00 
 total heat transport x1 boundary  =        -2.98 
 total heat transport x2 boundary  =        52.98 
 total heat transport y1 boundary  =        -2.98 
 total heat transport y2 boundary  =        52.98 
heat transport  left   direction 
  0.0   3.3   6.6  10.0  14.1  19.9  29.9  50.9 102.9 -246.4 -246.6  
102.2  49.8  28.4  18.0  12.0   8.1   5.0   2.4   0.0 
heat transport  top    direction 
  0.0   3.3   6.6  10.0  14.1  19.9  29.9  50.9 102.9 -246.4 -246.6  
102.2  49.8  28.4  18.0  12.0   8.1   5.0   2.4   0.0 
heat transport  right  direction 
  0.0   2.4   4.7   6.6   8.3   9.8  11.2  12.9  14.9  17.6  21.3   
 26.7  34.5  45.4  60.3  76.2  84.6  61.6  30.8   0.0 
 heat transport  botton direction 
  0.0   2.4   4.7   6.6   8.3   9.8  11.2  12.9  14.9  17.6  21.3   
 26.7  34.5  45.4  60.3  76.2  84.6  61.6  30.8   0.0 

 
The symmetry of the results, is due to the invariancy of the equation, its algebraic analogue, the 
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symmetry of the solution domain, the field of conductivity and the symmetry of the boundary 
conditions.  The equality of the internal source of heat and the total flow of heat through borders of 
the area demonstrate the conservatism of the method.   
 
If we change the problem from one of minimization to one of maximization, we will receive a new 
solution strongly distinguished from the previous one.  Part of that solution file is reproduced below 
and the temperature solution is shown in Figure 8.3.2. 
 
In this case the temperature of external environment has appeared equal 103.38.  But in this case, 
through all borders the thermal flow is directed to the outside.  In the previous case on two sides we 
saw two powerful concentrated flows of heat directed into the area and compensatory currents of 
heat on other sides outside.  In both cases, the flow of heat is balanced with the internal source of 
heat.    
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Figure 8.3.2.  Solution of the heat transport problem maximizing the boundary temperature. 

 
obj function                       =       103.38 
 temperature on boundary           =       103.38 
 inside heat supply                =       100.00 
 total heat transport              =       100.00 
 total heat transport x1 boundary  =         4.53 
 total heat transport x2 boundary  =        45.47 
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 total heat transport y1 boundary  =         4.53 
 total heat transport y2 boundary  =        45.47 
 heat transport left direction 
  0.0   0.3   0.7   1.0   1.3   1.5   1.6   1.4   0.0   
 12.1  12.3   0.4   2.0   2.4   2.4   2.2   1.8   1.2   0.6   0.0 
 heat transport top direction 
  0.0   0.3   0.7   1.0   1.3   1.5   1.6   1.4   0.0   
 12.1  12.3   0.4   2.0   2.4   2.4   2.2   1.8   1.2   0.6   0.0 
 heat transport right direction 
  0.0   0.6   1.3   2.1   2.9   4.0   5.3   7.0   9.1   
 12.1  16.2  21.9  29.9  41.3  56.4  72.8  82.0  59.9  29.9   0.0 
 heat transport botton direction 
  0.0   0.6   1.3   2.1   2.9   4.0   5.3   7.0   9.1  12.1   
 16.2  21.9  29.9  41.3  56.4  72.8  82.0  59.9  29.9   0.0 

 
 

8.4  Time Dependent Temperature Field  
 
Consider a time dependent temperature field in a rectangular area with heterogeneous thermal 
conductivity and a point source of heat and heat flows through the borders of the solution domain. 
 
In GAMS we can search for the solution in a cyclic, or time marching, process, in which each 
sulution is used as the beginning of the search for the following solution and strongly influences it.  
For this purpose the LOOP operator can be used.  Inside the body of the LOOP operator the 
SOLVE command is executed repreatedly until a maximum number of cycles ahs been completed.  
In the following example, this method is applied to the problem of finding time dependent 
temperature fields. 
 
Let a point source of heat begins to work in the solution domain at the initial time.  Heat from the 
source is distributed over the solution domain according to the transient heat transport equation  
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The solution method consists of calculating changes in the temperature field inside the solution 
domain. 
 
We shall compute the termperature solution for only one time step; however, it will be computed on 
the basis of the previous temperature field.  After the current period temperature field is computed 
from the previous time period it is saved for use in the next time step. 
 

SET  X             /I1*I20 /; 
SET  time          /t1*t1 /; 
Alias(X,Y); 
 
* Determination of solution domain 
 
SET      Inside(X,Y); 
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         Inside(X,Y)                    = yes; 
         Inside(X,Y)$(ord(X) = 1)       = no; 
         Inside(X,Y)$(ord(X) = card(X)) = no; 
         Inside(X,Y)$(ord(Y) = 1)       = no; 
         Inside(X,Y)$(ord(Y) = card(Y)) = no; 
 
* Parameter determination 
Scalar heat accumulation in one time step   /0.0/; 
Scalar dx step for space in X directions    /0.1/; 
Scalar dy step for space in Y directions    /0.1/; 
Scalar dt step for time                     /0.1/; 
 
* Temperature supply determination 
Parameter past_T(X,Y); 
          past_T(X,Y)        = 0; 
Parameter SUPPLY(X,Y); 
          SUPPLY(X,Y)        = 0; 
          SUPPLY('I10','I11'):= 10/dx/dy; 
 
* Thermal conductivity 
Table V(X,Y) temperature conductivity distribution 
 
     I1  I2  I3  I4  I5  I6  I7  I8  I9  I10  I11  I12  I13  I14  I15  I16  I17  I18  I19  I20 
I1  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I2  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I3  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I4  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I5  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I6  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I7  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I8  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I9  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I10 0.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5  1.5  1.5  1.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I11 0.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5  1.5  1.5  1.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I13 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I14 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I16 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I17 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I18 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I19 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
I20 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5; 

 
* MODEL DESCRIPTION 
VARIABLES 
         T(X,Y) field of temperature 
         Q     Temperature on boundaries 
         Obj   Objective function; 
 
EQUATION 
         TEMP(X,Y) Main equation of heat transport 
         F1(X,Y)  Boundary computation dt:dn 
         F2(X,Y)  Boundary computation dt:dn 
         F3(X,Y)  Boundary computation dt:dn 
         F4(X,Y)  Boundary computation dt:dn 
         Fp1(X,Y) Boundary computation t 
         Fp2(X,Y) Boundary computation t 
         Fp3(X,Y) Boundary computation t 
         Fp4(X,Y) Boundary computation t 
         Ben      Benefit equation; 
 
* Main equation 
TEMP(X,Y)$(inside(X,Y)).. 
         T(X,Y)-Past_T(X,Y) =e= 
         dt*(Supply(X,Y) 
             +( (V(X+1,Y)+V(X,Y))  *(T(X+1,Y)-T(X,Y)) 
             -(V(X,Y)  +V(X-1,Y))*(T(X,Y)  -T(X-1,Y))) 
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              /dx/dx/2.0 
             +( (V(X,Y+1)+V(X,Y))*(T(X,Y+1)-T(X,Y)) 
             -(V(X,Y-1)+V(X,Y))*(T(X,Y)  -T(X,Y-1))) 
              /dy/dy/2.0); 
 
* Equation which determines dT/dn 
F1(X,Y)$((ord(X) = 1))..        T(X+1,Y)-T(X,Y) =g= 0; 
F2(X,Y)$((ord(X) = card(X)))..  T(X,Y)-T(X-1,Y) =l= 0; 
F3(X,Y)$((ord(Y) = 1))..        T(X,Y+1)-T(X,Y) =g= 0; 
F4(X,Y)$((ord(Y) = card(Y)))..  T(X,Y)-T(X,Y-1) =l= 0; 
 
* Equation which determines temperature on boundary 
Fp1(X,Y)$((ord(X) = 1 ))..      T(X,Y) =e= Q; 
Fp2(X,Y)$((ord(X) = card(X))).. T(X,Y) =e= Q; 
Fp3(X,Y)$((ord(Y) = 1 ))..      T(X,Y) =e= Q; 
Fp4(X,Y)$((ord(Y) = card(Y))).. T(X,Y) =e= Q; 
 
* Objective function 
Ben.. Obj =e= Q; 
 
* Limit of temperature inside and on boundaries 
T.lo(X,Y) =  0.0; 
T.up(X,Y) = 1000; 
Q.l       =  0.0; 
 
**************************************************************** 
MODEL flow /all /; 
 
* Output file 
File res1 /flow.txt/ 
Put res1; 
 
* Below is the cycle of computation 
*************************************************************** 
LOOP (time, 
      SOLVE flow using nlp minimizing obj; 
 
      PUT " Time interval = "; PUT time.tl:20; PUT /; 
      LOOP (X,PUT X.tl:6; 
           LOOP (Y,PUT T.l(X,Y):6:1;);PUT /; 
      ); PUT /; 
      Heat = Heat + sum( (X,Y),(T.l(X,Y)-Past_T(X,Y)))*dx*dy; 
      Past_T(X,Y) = T.l(X,Y); 
     ); 

 
Let's consider more in detail the structure of the main LOOP over time in the model.  Each pass 
through the loop executes the GAMS SOLVER defining a new temperature field for the moment t.  
The algorithm uses an implicit approach where all variables belonging to the current time period are 
unknown.  Considering the model further, the temperature field T(X,Y) is determined based on the 
values from the previous time step Past_T(X,Y).  In the loop the current period temperature field is 
transferred to the previous temperature field.  Then, the change in heat quantity in the domain is 
computed for the current time step.  The amount of heat leaving the solution domain plus the amount 
of heat accumulated in the domain must be equal to the amount generated by the heat source.   
 
Below is a fragment of the output file containing an account of the balance of heat for one time step: 
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Obj function                      = 0.00 
Temperature on boundary           = 0.00 
Heat storage                      = 0.93 
 Inside heat supply               = 1.00 
 Total heat transport             = 0.068 
 Total heat transport x1 boundary = 0.01696 
 Total heat transport x2 boundary = 0.01277 
 Total heat transport y1 boundary = 0.02165 
 Total heat transport y2 boundary = 0.01766 

 
The resulting temperature field for the third time period is illustrated in Figure. 8.4.1. 
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Figure 8.4.1.  Solution of the transient heat transport problem after three time steps. 

 
 
 

9. Optimal Solution of Fluid Flow Problems 
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9.1  Background 
 
In this section, we consider solving some tasks of hydrodynamics.  The governing equations for 
these examples are the conservation of linear momentum of a viscous, incompressible fluid in 
horizontal plane area 
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y-direction component  
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In addition to these equations we need the equation of conservation of mass (continuity eqaution) for 
the fluid 
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where 
Vx x component of velocity [m/sec], 
Vy   y component of velocity [m/sec], 
P   Pressure [Pa], 
μ   kinematic viscosity [m2/sec], 
ρ   fluid density [kg/m3] 

 
These equations apply to the case where the viscosity is constant and the fluid weight acts 
perpendicularly to the x-y plane, and, consequently, the gravitational force is absent from the 
equations.  The liquid is considered incompressible, which complicates the search for the solution. 
 

9.2  Stationary Flow of an Incompressible Fluid in a Rectangular Area  
 
Consider a stationary flow of an incompressible fluid in a rectangular area with given inflow of fluid 
on the borders of solution domain.  
 
Consider a rectangular area with zones of inflow and outflow of water on two opposite sides.  In the 
zone of inflow of water, the boundary condition is: 
 

sec]/[5.0 mVx =  and sec]/[0 mVy =  
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On the other sides of the rectangle, we have the so-called "no-slip" condition: 
 

sec]/[0 mVx =  and sec]/[0 mVy =  
 
In water outflow zone, the boundary condition is 
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x

Vx  and 0=yV  

 
The given boundary conditions ensure a parallel output of fluid from the solution domain.  This 
situation is illustrated in Figure 9.2.1. 
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Figure 9.2.1.  Flow domain for diffuser example. 
 
Now, consider the finite difference analogs of the differential equations.  We must divide the 
solution domain into small rectangles using a grid of parallel lines and give each intersection point 
appropriate indices (i,j).  At each point we will compute fluid velocity.   The third equation presents 
some difficulty, since it is not a time evolutionary form. 
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We compute velocity not at the points, but on the lines connecting the points. On lines parallel to the 
x axis we compute Vx, and on lines parallel to the y axis we calculate Vy. 
 
Using this it is possible to make the following approximation for the continuity equation has the 
finite difference analog 
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Pressure (P) is computed at the node points (i,j) of each line, where the pressure gradient is 
determined from the velocity.  That is,  
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The diffusive terms are computed as 
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Details of the finite difference grid are illustrated in Figure 9.2.3. 
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Figure 9.2.3.  Finite-difference cell in two dimensional flow. 

 
An attempt to solve the above system of the equations will be unsuccessful.  It is not always possible 
to aproximate differentials by a finte difference, since there are errors introduced by the algebraic 
aproximations.  Considering the initial system of equations, we notice that the first and second 
equations contain velocity components which are connected by P∇ .  If P is not connected with 
boundary conditions, all apoximation errors will leave the solution domain through the borders.  In 
the third equation, the velocity vector components are in strong contact with the boundary 
conditions.  That is, in the calculation of the continuity equation we expect errors at each point. 
 
In connection with this difficulty, we write the equation in a slightly different (relaxed) form. 
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where δ is the error in the apoximation which must be minimized in the solution. 
 
The final system of equations to solve is: 
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with finite difference analogs: 
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The GAMS model is: 
 

SET   X /u1*u15 /; 
SET   Y /u1*u20 /; 
SET   Yout(Y) /u5*u16 /; 
 
* Determination of zone for water movement equation 
SET Inside(X,Y); 
    Inside(X,Y)                    = yes; 
    Inside(X,Y)$(ord(X) = 1)       = no; 
    Inside(X,Y)$(ord(X) = card(X)) = no; 
    Inside(X,Y)$(ord(Y) = 1)       = no; 
    Inside(X,Y)$(ord(Y) = card(Y)) = no; 
 
* Determination of parameters 
Scalar     dx  step space in X directions m        /1/; 
Scalar     dy  step space in Y directions m        /1/; 
Scalar     r   density of fluid kg per m3       /1000/; 
Parameter  m(X,Y)  kinematic viscosity of fluid m2 per sec; 
           m(X,Y):= 0.005; 
 
Variables 
         Obj           Objective 
         D(X,Y)        Error 
         P(X,Y)        Pressure 
         Vx(X,Y)       x-direction velocity 
         Vy(X,Y)       y-direction velocity 
         Vdx(Y)        delta Vx at the outlet; 
 
*  Variable Bounds 
         Vx.up(X,Y)   =  1.5; 
         Vx.lo(X,Y)   = -1.5; 
         Vx.l(X,Y)    =  0.5; 
         Vy.up(X,Y)   =  1.0; 
         Vy.lo(X,Y)   = -1.0; 
         Vy.l(X,Y)    =  0.0; 
         D.lo(X,Y)    =  0.0; 
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         D.up(X,Y)    =  0.0000005; 
         Vy.l(X,Y)    =  0.0; 
         Vy.l(X,Y)$(inside(X,Y)) = 0.0000001; 
         P.up(X,Y)    =  2000; 
         P.lo(X,Y)    = -2000; 
         P.l(X,Y)     =  0.000001; 
 
*  Imposed Boundary conditions 
         Vx.lo('u1',Y)      = 0.5; 
         Vx.fx('u15',Y)     = 0.5; 
         Vx.fx(X,'u1')      = 0; 
         Vx.fx(X,'u20')     = 0; 
         Vx.fx('u1','u2')   = 0; 
         Vx.fx('u1','u3')   = 0; 
         Vx.fx('u1','u4')   = 0; 
         Vx.fx('u1','u17')  = 0; 
         Vx.fx('u1','u18')  = 0; 
         Vx.fx('u1','u19')  = 0; 
         Vx.fx('u15','u2')  = 0; 
         Vx.fx('u15','u3')  = 0; 
         Vx.fx('u15','u4')  = 0; 
         Vx.fx('u15','u17') = 0; 
         Vx.fx('u15','u18') = 0; 
         Vx.fx('u15','u19') = 0; 
         Vy.fx('u1',Y)      = 0; 
         Vy.fx(X,'u1')      = 0; 
         Vy.fx(X,'u20')     = 0; 
         Vy.fx('u15',Y)     = 0; 
 
Equation 
         For_Vx(X,Y)   main equation 1 
         For_Vy(X,Y)   main equation 2 
         Div_Vxy(X,Y)  main equation 3 clear equation of balance 
         Vx_Vx(Y)      outflow zone where determine outflow for X 
         Ben           Objective function; 
 
For_Vx(X,Y)$(Inside(X,Y)).. 
         (P(X+1,Y)-P(X,Y))/(r*dx) =e= 
         m(X,Y)*((Vx(X+1,Y)-2*Vx(X,Y)+Vx(X-1,Y))/(dx*dx) 
                +(Vx(X,Y+1)-2*Vx(X,Y)+Vx(X,Y-1))/(dy*dy)); 
 
For_Vy(X,Y)$(Inside(X,Y)).. 
         (P(X,Y+1)-p(X,Y))/(r*dy) =e= 
         m(X,Y)*((Vy(X+1,Y)-2*Vy(X,Y)+Vy(X-1,Y))/(dx*dx) 
                +(Vy(X,Y+1)-2*Vy(X,Y)+Vy(X,Y-1))/(dy*dy)); 
 
Div_Vxy(X,Y)$((ord(X) > 1)$(ord(Y) > 1)).. 
         (Vx(X-1,Y)-Vx(X,Y))/dx + (Vy(X,Y-1)-Vy(X,Y))/dy 
               =e= D(X,Y); 
 
Vx_Vx(Y).. Vdx(Y) =e= Vx('u15',Y)-Vx('u14',Y); 
 
Ben..   Obj =e= SUM(Y$Yout(Y), Vdx(Y)*Vdx(Y)) 
               +SUM((X,Y),(D(X,Y)*D(X,Y))); 
 
Model flow1 /ALL/; 
Solve flow1 using nlp minimizing obj; 
 

Figure 9.2.4 illustrates the velocity field in the solution domain.  The points are the nodes of the 
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finite difference grid and the tails point in the direction of flow away from the point.  Figure 9.2.5 
shows three cross-sections of x-direction velocity, Vx. 
 

 
 

Figure 9.2.4.  Flow field for flow from diffuser. 
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Figure 9.2.5. Three cross-sections of x-direction velocity, Vx. 

 
This task has been solved using a numerical method and it can also be solved by potential thorey.  
Below we illustrate an example which can not be solved by analytical methods, however, the 
solution of the task by numerical methods is possible. 
 

9.3  Stationary flow of water in a rectangular area in the presence of an 
obstacle  
 
Consider a stationary flow of water in a rectangular area in the presence of an obstacle and 
complete account of hydrodynamic pressure and forces of inertia. 
 
Let's consider a rectangular area.  On the top edge of the area an inflow of water with a velocity of 
0.5 m/sec occurs.  The same flow leaves the area through the bottom edge of the region.  The 
boundary conditions are the same as in the previous example.  However, tn the middle of solution 
domain there is a symmetrically located obstacle, around which the fluid is compelled to flow.  The 
equations governing flow in this case are the same as before and the only addition is the definition of 
the obstacle in the middle of the solution domain. 
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Figure 9.3.1.  Flow domain for obstacle example. 
 
The GAMS code for the model is: 
 

SET X  /1*20/; 
SET Y  /1*20/; 
 
* Determination of zone for water movement 
SET vyside(X,Y); 
SET vxside(X,Y); 
    Vxside(X,Y)                     = yes; 
    Vxside(X,Y)$(ord(X) = 1)        = no; 
    Vxside(X,Y)$(ord(X) = card(X))  = no; 
    Vxside(X,Y)$(ord(Y) = 1)        = no; 
    Vxside(X,Y)$(ord(Y) = card(Y))  = no; 
    Vyside(X,Y) = Vxside(X,Y); 
    Vxside('10','10')             = no; 
    Vxside('10','11')             = no; 
 
* Parameter determination 
Scalar    dx  step space in X directions /1/; 
Scalar    dy  step space in Y directions /1/; 
Scalar    r   density of fluid kg per m3 /1000/; 



 

 198

Parameter m(X,Y) kinematic viscosity of fluid m2 per sec; 
          m(X,Y):= 0.05; 
 
* MODEL DESCRIPTION * 
Variables 
         Obj 
         D(X,Y)        error 
         P(X,Y)        Pressure 
         Vx(X,Y)       x-direction velocity 
         Vy(X,Y)       y-direction velocity 
         ; 
 
* Variable limits 
D.lo(X,Y) = 0; 
D.up(X,Y) = 7.50; 
P.up(X,Y) = 20000; 
P.lo(X,Y) =-20000; 
P.l(X,Y) =  0.0; 
Vx.l(X,Y) = 0.0; 
Vy.l(X,Y) = 0.0; 
Vy.l(X,Y)$(Vxside(X,Y)) = 0.0; 
 
* Boundary conditions * 
Vx.fx( '1',Y) = 0.5; 
Vx.fx('20',Y) = 0.5; 
Vx.fx(X, '1') = 0; 
Vx.fx(X,'20') = 0; 
Vy.fx( '1',Y) = 0; 
Vy.fx('20',Y) = 0; 
Vy.fx(X, '1') = 0; 
Vy.fx(X,'20') = 0; 
 
* Fence description * 
Vx.fx('10','10') = 0; 
Vx.fx('10','11') = 0; 
 
Equation 
         For_Vx(X,Y)    main equation 1 
         For_Vy(X,Y)    main equation 2 
         Div_Vxy(X,Y)   main equation 3 clear equation of balance 
         Ben              benefit equation; 
 
Div_Vxy(X,Y)$((ord(X) > 1)$(ord(Y) > 1)).. 
 
   (Vx(X,Y)-Vx(X-1,Y))/dx + (Vy(X,Y)-Vy(X,Y-1))/dy =e= D(X,Y); 
 
For_Vx(X,Y)$(Vxside(X,Y)).. 
* Upwind scheme for inertial terms 
*          Vx(X,Y)*(Vx(X+1,Y)-Vx(X-1,Y))/(2*dx) 
*   +0.25*(Vy(X+1,Y-1)+Vy(X+1,Y)+Vy(X,Y-1)+Vy(X,Y)) 
*        *(Vx(X,Y+1)-Vx(X,Y-1))/(2*dy) 
*   +(P(X+1,Y)-P(X,Y))/(r*dx) 
*   =e= 
*   m(X,Y)*((Vx(X+1,Y)-2*Vx(X,Y)+Vx(X-1,Y))/(dx*dx) 
*          +(Vx(X,Y+1)-2*Vx(X,Y)+Vx(X,Y-1))/(dy*dy)); 
 
For_Vy(X,Y)$(Vyside(X,Y)).. 
* Upwind scheme for inertial terms 
*    0.25*(Vx(X-1,Y+1)+Vx(X-1,Y)+Vx(X,Y+1)+Vx(X,Y)) 



 

 199

*        *(Vy(X+1,Y)-Vy(X-1,Y))/(2*dy) 
*         +Vy(X,Y)*(Vy(X,Y+1)-Vy(X,Y-1))/(2*dy) 
*   +(P(X,Y+1)-P(X,Y))/(r*dy) 
*   =e= 
*   m(X,Y)*((Vy(X+1,Y)-2*Vy(X,Y)+Vy(X-1,Y))/(dx*dx) 
*          +(Vy(X,Y+1)-2*Vy(X,Y)+Vy(X,Y-1))/(dy*dy)); 
 
Ben.. 
   Obj =e=  sum((X,Y),d(X,Y)*d(X,Y)); 
 
model flow2 /ALL/; 
* Solve flow2 using nlp minimizing obj; 
Option nlp = minos5; 
*Option nlp = conopt2; 
flow2.WORKSPACE=10; 
Solve flow2 using nlp minimizing obj; 

 
Figure 9.3.2 shows the flow field for this example.  One can notice the flow of fluid around the 
obstacle and the high degree of recirculating flow behind the object.  Figure 7 shows cross-sections 
of x-direction velocity before the obstacle, at the level of the obstacle and after the obstacle. 
 

 
 

Figure 9.3.2.  Flow field for fence example without initerial effects. 
 



 

 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Y

X

U10
U1
U4

 
Figure 9.3.3.  Three cross-sections of x-direction velocity, Vx. 

 
The user will notice that the inertial terms of the equations are switched in the GAMS code.  The 
user can include these terms in model by removing the asterisks from the code.  The inertial terms 
are computed using the “marker and cell” method (Peyret and Taylor, 1985) 
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Figure 9.3.4.  Flow field for fence example with initerial effects. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Y

X

u10
u1
u4

 
Figure 9.3.5. Three cross-sections of x-direction velocity, Vx, with intierial effects. 
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Comparing results of the models in which the inertial forces are taken into account indicates their 
influence.  In one case return flow of the fluid is present (see Figure 8) and in the other it is not 
present (see Figure 6).  There can also be a question about the asymmetry of the aproximations for 
the inertial terms.  However, the velocities are determined not at cell centers, but on cell faces, and 
for these are symmetric.  On the basis of the above elementary examples it is possible to construct a 
model of transient movement of fluids using the approach described in the secition on heat transfer. 
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PART 2:  THE GAMS LANGUAGE 
 

10.  INTRODUCTION 
 
 
The General Algebraic Modeling System (GAMS) is designed to facilitate the work of modelers, 
who create mathematical models of real processes around us.  Like other languages of this type, 
GAMS relieves modelers of the necessity to design algorithms to solve models, in addition to 
developing the models themselves.  Thus, the major functional objective of GAMS is to design 
algorithms for mathematical models.  However, it does not mean that this system can be used only 
for mathematical models with algebraic equations.  Those who are acquainted with methods of 
solving partial differential equations (PDEs) know that numerical methods for solving PDEs always 
result in systems of algebraic equations which must be solved according to some iterative algorithm. 
 Thus, the applicability of GAMS is wide.  In this Tutorial, models and programs using the GAMS 
language are presented that allow users to develop their own models.  This Tutorial should be 
supplemented by the official GAMS Guide and Tutorials (Brooke et al., 1997).   
 

10.1  Installation 
 
Detailed instructions for how to install GAMS on your computer are contained in Appendix C.  
Periodic updates to these instructions can be found on the GAMS website (www.gams.com). 
 
Installation requires a system capable of working in the Windows mode and its characteristics 
should not be less than those of a standard PC computer. 
 
The user should be able to state a mathematical problem correctly.  That is, formulation of all logical 
interrelations of the problem and features of its behavior, especially in extreme cases.  GAMS cannot 
think for you.  It can only help you to solve mathematical problems if they are stated correctly.  If, 
for some reason, the model does not give correct results, generally, the mistake is not a GAMS 
mistake.  Try to find the mistake in your own model formulation.  If you do not manage to find the 
mistake at first, have a rest and try to find it again.  Check your model for mistakes (the theoretical 
part plus formulation in the GAMS language).  However, in some cases, and in the Tutorials there is 
such an example, GAMS can provide you with a decision which is not optimal.  That is, you should 
be ready for many contingencies.  Although in most cases, you will get what you seek.   
 
You should know how to use a text editor in the Windows mode on your computer.  You can use 
any other text editor in any other system, but the editor you use should be able to create text files.  
The Windows Notepad editor is very apt. 
 
There are two sources on information GAMS and GAMS models: 
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1. Books and tutorials (the list is at the end of the Tutorials); 
2. The internal library of the GAMS models supplied with the main GAMS package.  It is in the 

subdirectory MODLIB.  The library is created automatically as the package is installed on your 
computer.  In the library, there are more than 150 models with necessary comments.  These 
models are all operable.  All models are text files, which can be printed by any editor. 

 

10.2  Nonlinear Algebraic Equations  

10.2.1  Solution of Algebraic Equations  
(adapted from G. Kovalenko) 

 
The problem of solving simultaneous equations (both linear and nonlinear) is often faced in science 
and engineering.  GAMS is very well suited to solving systems of nonlinear algebraic equations f(x) 
= 0.  The only difficulty is connected with defining all roots if there are multiple roots to an 
equation.  For example, consider a system of two equations:  
 

03),( 22
1 =−= yxyxf  (10.2.1.1) 

013),( 32
2 =−−= xxyyxf  (10.2.1.2) 

 
where we would like to find the values of x, such that f1(x) = 0 and f2(x) = 0.   
 
To solve the problem, we can enter the equations as constraints in a GAMS model and set the 
objective function equal to any constant, say 1.0.   
 
A simple GAMS model to solve this problem is  
 

GAMS Model 
VARIABLES x, y, obj; 
EQUATIONS Eq1, Eq2, Objective; 
 
Eq1.. 0 =E= 3*x*x - y*y; 
Eq2.. 0 =E= 3*x*y*y - x*x*x - 1; 
Objective.. obj =E= 0; 
 
x.L = 0.01; 
y.L = 0.01; 
 
MODEL Eq /ALL/ 
SOLVE Eq USING NLP MINIMIZING obj; 
 
FILE res /Eq1.txt/ 
PUT  res; 
put  "Solution x =  ", put x.l, put /; 
put  "Solution y =  ", put y.l, put /; 
 
RESULTS 
Solution x1 =          0.50 
Solution x2 =          0.87 
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In this model 3 variables are defined, x, y and obj.  All these variables are allowed to take on any 
vales, positive or negative.  In addition, there are 3 equations defined in the model, Eq1, Eq2 and 
Objective.  Eq1 is the same as f1(x) above and Eq2 is the same as f2(x).  The model is comprised 
of all the defined equations, as shown in the model statement.  Since f2(x) is a nonlinear 
(quadratic) equation, the model is solved using a nonlinear programming solver (MINOS), as 
specified in the solve statement. 
 
In this model a very simple output file is generated with only two lines of text.  The output file is 
first defined as Eq1.txt using the file command and then the model output is directed to that file 
using the put commands.  In GAMS, several output file can be defined if desired and output 
directed to each file. 
 
Note that in the model the exponentiation operator (**) is avoided.  This is because x**n is 
calculated inside GAMS as exp[n*log(x)]. This operation is not defined when x takes on 
negative values (which is will, see below), and an error will result.  In this case, if the exponent 
is known to be an integer, a function call, power(x,n), can be used instead. 
 
Figure 10.2.1.1 shows a plot of the solution in this case.  The first two lines are functions with points 
of intersection to be found.  The third line is the distance between the functions depending on x 
which is a plot of the variable obj.  It can be seen that this system has two roots: x'  =-4.162 and x"  = 
2.162. 
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Fig. 10.2.1.1.  Chart for the Task of Solution of Equations 
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When the above model is solved by GAMS the solution (x1, x2) = (0.50, 0.87) is obtained.  In 
order to obtain the solution (x1, x2) = (0.50, -0.87) you must change the initial guess of the 
solution from (x1, x2) = (0.01, 0.01) to (x1, x2) = (0.01, -0.01).   
 
The model described above can be generalized somewhat so that the data are more easily identified 
and available for editing.  This is done using the GAMS notion of scalars and the coefficients of the 
equations are given names corresponding to those in Equations 10.2.1.1 and 10.2.1.2.  Thus, the 
model is rewritten as 
 

SCALAR A /3/, B /-1/, C /0/, D /3/, E /-1/, F /-1/, G /0/; 
 
VARIABLES x, y, obj; 
EQUATIONS Eq1, Eq2, Objective; 
 
Eq1.. A*x*x + B*y*y =E= C; 
Eq2.. D*x*y*y + E*x*x*x + F =E= G; 
 
x.L = 0.01; 
y.L = 0.01; 
 
Objective.. obj =E= 0; 
 
MODEL Eq /ALL/ 
SOLVE Eq USING NLP MINIMIZING obj; 
 
FILE res /Eq1.txt/ 
PUT  res; 
put  "Solution x =  ", put x.l, put /; 
put  "Solution y =  ", put y.l, put /; 
 

10.2.2  Method of Least Squares for Arbitrary Functions  
(adapted from O.N. Tikhonova) 

 
Suppose that three independent variables (x1, x2, x3) are retated in a complex function with a fourth, 
dependent variable (y).  The function relating these four variables has been defined on the basis of a 
physical phenomenon under study as 
 

( )
2

23

2
1

ye
x
c

x
bxay −+−−=  (10.2.2.1) 

 
where a, b, and c are unknown coefficients.  Measurements of the four variables have been made at 
8 different times.  The difference (or residual) between the model value y (given in Equation 2.2.1 
and which depends on the unknown parameter values a, b, and c) and the observed value )(ˆ ty can be 
written as  
 

)(ˆ)()( tytyte −=  (10.2.2.2) 
 
Numerical values of the coefficients can be determined by minimizing the squared residuals 
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[ ]∑
=
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1
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t

teMinimize  (10.2.2.3) 

 
In this case, suppose we have the following data 
 

Table 10.2.2.1.  Data for Least Squares Estimation. 
 Time 
 1 2 3 4 5 6 7 8 

x1 2 3 3 3 5 5 6 7 
x2 30 60 70 60 80 90 100 100 
x3 1 6 7 3 5 9 8 17 

)(ˆ ty  10 20 20 20 40 50 60 70 
 
In this case we will need to introduce the notion of sets and parameters into the GAMS model.   Sets 
are a way of defining indices in GAMS and we need one for time in this problem.  Consider the 
following model developed in the GAMS language: 
 

SETS t  / 1, 2, 3, 4, 5, 6, 7, 8 /; 
 
PARAMETER x1(t) /1 2, 2 3, 3 3, 4 3, 5 5, 6 5, 7 6, 8 7/; 
PARAMETER x2(t) /1 30, 2 60, 3 70, 4 60, 5 80, 6 90, 7 100, 8 100/; 
PARAMETER x3(t) /1 1, 2 6, 3 7, 4 3, 5 5, 6 9, 7 8, 8 17/; 
PARAMETER y_hat(t) /1 10, 2 20, 3 30, 4 20, 5 40, 6 50, 7 60, 8 70/; 
 
VARIABLES 
a, b, c, y(t), e(t), obj; 
 
EQUATION mod(t), residual(t), objective; 
 
mod(t).. a*x1(t)*x1(t)-b/x3(t)-c/x2(t)+EXP(-y(t)*y(t)) =E= y(t); 
 
residual(t).. e(t) =E= y(t)-y_hat(t); 
 
objective.. obj=E=sum(t,power(e(t),2)); 
 
MODEL Leastsq / ALL /; 
 
SOLVE Leastsq USING NLP MINIMIZING obj; 
 
FILE res /Eq2.txt/ 
PUT res; 
PUT "    t                x(1,t)   x(2,t)     x(3,t)     y(t)     
y_hat(t)"/; 
LOOP((t),PUT t.TL, x1(t), x2(t), x3(t), y.L(t), y_hat(t)/;); 
PUT /"         a          b           c"/; 
PUT a.L, b.L, c.L; 

 
In this model an output file is generated which prints a table of values in rows and columns.  The 
model output is directed to that file using the put commands.  The header for the table is printed 
first and then a loop cycles over each value of x1(t), x2(t), x3(t), y(t), and )(ˆ ty  printing one line 
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for each value of t.  In GAMS, several output file can be defined if desired and output directed to 
each file. 
 
 
The results are: 
 

   t                x1(t)     x2(t)     x3(t)     y(t)    y_hat(t) 
   1                  2.0      30.0       1.0      10.2      10.0 
   2                  3.0      60.0       6.0      26.5      20.0 
   3                  3.0      70.0       7.0      24.5      30.0 
   4                  3.0      60.0       3.0      20.5      20.0 
   5                  5.0      80.0       5.0      41.5      40.0 
   6                  5.0      90.0       9.0      43.0      50.0 
   7                  6.0     100.0       8.0      55.8      60.0 
   8                  7.0     100.0      17.0      75.6      70.0 
 
         a          b           c 
        1.33       36.27    -1234.14 

 

10.2.3  Exercises  

 

1.  Add the following constraint: 

y ≥ 100 - 50x 

to the model of section 2.1 and resolve.  Verify that you still obtain the same solution.  What has 
happened to the "feasible" region of possible solutions by adding this constraint? 

 

2.  Modify the output of the model of section 2.2 to print the percent error in the model calculations, 
where the error is defined as 

[y_hat(t) - y(t)]/y_hat(t)*100 
 
3.  Solve the following set of nonlinear equations using the method of Section 1. Algebraic 
Equations 

 
4.  Consider the system of simultaneous, nonlinear equations 
 

f x x x x

f x x x x x
1 1 2 1

2
2
2

2 1 2 1 2
2

1
3

3 0

3 1 0

( , )

( , )

= − =

= − − =
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(a)  In very general terms (don’t plug any number in yet!), what is the formula for Newton’s 
method for 2 nonlinear equations?  That is x( )k + =1 L, and how do you get it. 

 
(b)  For the two equations given above, show the system of equations which must be solved in order 
to apply Newton’s method (Don’t plug in any numbers yet, just write down the equations using the 
functions from the Equation above.) 
 
(c )  Start with k=0, and x x1

0)
2
0) 1( (= = , what is the system of linear equations that you must solve to 

obtain x x1
1

2
1( ) ( )= ?  What is the solution to that system of linear equations? 

 
(d)  Now, knowing x( )1  you can calculate x( )2  for k = 2 in a similar manner.  What is the system of 
linear equations that you must solve to obtain x x1

2
2
2( ) ( )= ?  What is the solution to that system of 

linear equations? 
 
Continuing in this manner, the method will converge to the solution 
 

x

x
1

2

0 5

0 5 3

=

=

.

.
 

 
(e)  Draw a simple flowchart illustrating your algorithm for solving these equation. 
 
5.  Solve the following simultaneous set of nonlinear equations:  

 

 
 

11.  INTRODUCTORY INFORMATION 

11.1  Model Structure 
 
Each model in the GAMS language may have its own distinctions.  It can be comprised of groups of 
alternating models, which are linked together only through a small number of common variables or 
parameters.  However, most models have a structure in the form shown in Table 11.1.1.   
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Table 11.1.1.   
Structure of a GAMS Model. 

1. SETS Structures consisting of a complex of indices or names 
Declaration of fact of existence 
Determination of relations between individual structures

2. DATA 
 
 

PARAMETERS, TABLES, SCALARS  
Declaration of fact of existence 
Determination of values of input parameters 
Preliminary computations 

3. VARIABLES 
 
 

Variables or arrays of variables 
Declaration with assigning a type of variable 
Declaration of limits for possible changes, initial level 

4. EQUATIONS 
 
 

Equations or complexes and arrays of equations 
Declaration with assigning a name 
Recording of equations in the GAMS language 

5. MODEL, SOLVE Model and methods of solution  
6. OUTPUT Output of information into a separate file 

 
During model execution, information is displayed on the screen for any solution circumstances.  The 
compilation results of the model and computations are automatically sent to a special "LIST" file.  
This file has the same name as the file of the reference model, but a different extension – “LST”.  
Whatever happens, whether the computation is right or wrong, the file “*.lst” automatically appears 
in the same directory as the file “*.gms”.  Depending on the situation, the contents of this file may 
differ from that given below, but the basis remains.   
 
1. Reprinting of the model 
2. Map of interrelations of parameters and variables 
3. Information on equations 
4. Information on the solution status 
5. Information on the obtained solution 
 
Before describing basic rules of the GAMS language, we will give some brief information about 
features of the language.  No equation, variable or their interrelationship can be used until they have 
been declared in the zone of STATEMENTS (items 2 and 3 in Table 11.1.1).  These statements can 
be formed in quite an arbitrary style.  We will use this arbitrariness in the examples below.  The 
GAMS language does not distinguish between capital and lowercase letters of the alphabet.  In this 
case, it is useful to observe the GAMS rules.  Capitals are used for function words, small letters are 
used to form the model’s own meaning.  GAMS accepts comments using only the English alphabet 
(in the Russian version of this document, comments in Russian appear in italics but should not 
appear in the model for execution).   
 

11.2  Comments in Models 
 
There are three main methods of introducing comments and elucidation's in the body of a GAMS 
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model. 
 
1. If a line begins with the “ * ”symbol, the contents of the line are treated as a comment. 

For example,  
 

*plants (plants) 
 

2. A program section beginning with the line $ONTEXT and ending with the line $OFFTEXT is a 
comment.  The above functional words begin with the first symbol of the line. 

 
$ONTEXT; 
-  -  -  -  -  -  -  -  -  - 
This guide is for a scientist who knows the Russian language.   
+  +  +  +  +  +  +  +  +  + 
$OFFTEXT; 

 
The user can introduce comments in the bodies of GAMS declarations.  In the Russian language 
version of this document, comments typed in a smaller font remind the user about the necessity to 
change them in the working program for comments in English or any other language using the Latin 
alphabet.  For instance, the State Language in the Republic of Uzbekistan is based on the Latin 
alphabet and simplifies the use of comments in GAMS.  On the other hand, the language of the 
Russian Federation uses the Cyrillic alphabet and this alphabet can not be used for comments in 
GAMS. 
 

11.3  Declarations and Definitions 
 
For most structures in the GAMS language, there are two types of statements: 
 

1. DECLARATION – assignment of a name and possibly a value to a stated parameter, and 
2. DEFINITION – calculation using previously defined parameters or structures 

 
Parameters always require DECLARATIONS.  Assignment of numerical values to parameters is not 
always compulsory.  However, equations always require both declaration and definition.   
DEFINITION of equations means the construction of their mathematical structure, and for 
parameters it means their direct computation.  While numerical interrelations are specified in the 
body of an equation, the order of equation definition does not matter.  There is no such notion as 
“first equation”, ”second equation” and so on.  For parameters and constants simultaneous 
declaration and definition in one operation is possible.  Examples are given below. 
 
For a series of GAMS structures, it is possible to use long names.  However, it is better to limit 
yourself to 8 letters.  All names of structures in the GAMS language must begin with a letter and can 
contain digits or a limited number of other symbols (maximum possible number is shown in the 
examples). 
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11.4  Terms, Symbols and Reserved Words 
 
Every programming language, including GAMS, has keywords which have special meaning.  
Therefore, they cannot be used in the names of variables and parameters.  For example, the name 
ASSIGN can not be used for any variable, because GAMS will read this as a keyword with special 
meaning, note it as improperly used, and show that an error has occurred.  Table 11.4.1 is a list of 
GAMS keywords. 
 

Table 11.4.1 
Keywords in GAMS. 

Abort acronym Acronyms Alias all and 
assign binary Card Display eps eq 
equation equations Ge Gt inf integer 
Le loop Lt Maximizing minimizing model 
models na Ne  negative not 
options or Ord Parameter parameters positive 
Prod scalar Scalars Set sets smax 
Smin sos1 Sos2 Sum system table 
Using variable Variables Or yes repeat 
Until while If Then else semicont 
semiint file Files Putpage puttl free 
No option Solve For   

 
Table 11.2.2 

Special Combinations of Symbols and Their Meaning. 
=l= Less -- previous in cycle 
=g= More ++ next in cycle 
=n= not equal ** involution  
arithmetic +,-,/,*   
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Table 11.2.3 
Symbols and Their Usage. 

A to Z Alphabet - minus 
a to z Alphabet ( ) parentheses 
& Ampersand [ ] brackets 
* Asterisk {} braces 
@ at  % percent 
\ Slash From 0 to 9  digits 
: Colon # number 
, Comma ? question mark 
$ Dollar ; semicolon 
. Period ' quotation marks, single 
+ Plus / virgule 
" quotation marks, double_ Underlining  
= Equals ! exclamation point 
< is less than ^ diacritic mark (over a vowel) 
> is more than   

 
 
 

12.  VARIABLES 

12.1  Types and Declaration 
 
Variables are the major object with which GAMS operates.  To define a list of variables we use the 
functional word VARIABLE.  There are five types of variables as indicated in Table 124.1.1. 
 

Table 12.1.1 
Type of Defining Variables in GAMS. 

VARIABLE Variables belong to the entire set of real numbers from “minus” 
infinity to “plus” infinity 

POSITIVE VARIABLE 
 

Positive variables belong to the entire set of positive real numbers 
from zero to “plus” infinity 

NEGATIVE VARIABLES 
 

Negative variables belong to the entire set of negative real 
numbers from zero to “minus” infinity 

INTEGER VARIABLES 
 

Integer variables belong to the entire set of positive integers  

BINARY VARIABLES 
 

Binary variables are Integer variables that can take the value of 1 
or 0 only 

 
VARIABLES can be zero-dimensional or multidimensional.  The dimensions are determined by the 
availability and number of indices.  The declaration of variables is based on the following principle.  
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For example, consider the variables from the nonlinear equation model in Section 2.1: 
 

VARIABLES x, y1, y2, obj; 
 

These are all aero-dimensional (scalar) variables.  Variables are included in equations along with 
parameters and constants.  Variables are always defined in the solution process.  However, users and 
modelers are twice faced with variables when they make up a model.  The first time, they face 
variables while declaring them and the second time in the equations.   
 

12.2  Bounds of Variables, Initial and Fixed Values 
 
In most models some variables have bounds on their values.  For instance, if some variables are 
declared as positive, then “zero” is the lower boundary.  The same boundary exists for negative 
variables, but “zero” is their maximum possible value.  In addition, other boundaries can be defined 
with the help of specific suffixes on variables (see Table 12.2.1). 
 

Table 12.2.1 
Main Suffixes. 

Suffix Description 
.L Value (level) 
.LO Lower boundary 
.UP Upper boundary 
.FX Fixed value 
.m Dual value 

 
GAMS begins the search of variables for a solution from a boundary of the allowable area of values, 
most often from zero.  However, zero is a dangerous value which should be avoided if possible. 
 
Examples show best how suffixes act. 
 

 
S.lo=2.0; 
 

defines the lower bound on instream flow in the water user model of Section 3.1. 
 

b.up=100; 
 
defines the upper bound of the coefficient b in the reservoir example of Section 3.2. 
 

put  "Solution x =  ", put x.l, put /; 
 
indicates that the value (level) of the variable x should be printed in the nonlinear equation example 
of Section 2.1. 
 
In general, the more the user constricts the boundaries of variable values, the sooner a solution will 
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be obained.  However, you should not constrict the boundaries of search too much, because in 
complicated models you may have the situation where there is no area left to search for solutions at 
all.  Namely, there may be systems of equations in which one variable is within the boundaries 
allowed by the user, but the second variable is certain to be in an unallowed area.  Usually, the 
consequences of calculating such systems are grave. 
 
 

13.  EQUATIONS 
 
The block of equations in GAMS models consists of two parts:  
 

1. Declaration of the names of equations 
2. Definition of the equations  

 

13.1  Declaration of Equations 
 
Declaration of equation names is similar to the declaration of SETs or PARAMETERs.  The 
similarity is in the fact that a list and comments are allowed and recommended.  The syntax of 
declaring equation names is as follows: 
 

EQUATION   name  comment ; 
 
EQUATION is a keyword which must appear before the name of each equation if there is semicolon 
at the end of the line.  It can be found only one time at the beginning of a list of equation names.  
Commas separate different names of equations in a row or one row is assigned for each name. 
 
The name can include two parts:  
 

• an identifier of the name of the equation, and  
• indices in parentheses.   

 
The identifier (name) of an equation may include no more than 10 symbols and must always begin 
with a letter.  Indices can be either letters or digits representing SETS.  Comments may not be more 
than 80 symbols long and should be on the row where the identifier is located.  Consider the 
example of the equations from the model for solving nonlinear equations presented in Section 2.1 
 

EQUATIONS Eq1, Eq2, Objective; 
 
This declares three scalar equations, the first equation is named Eq1, the second Eq2, and the third 
objective. 
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13.2  Definition of Equations 
 
The definition of equation structures is a mathematical peculiarity in the GAMS language.  The 
syntax for defining equations in GAMS is as follows: 
 

name..  expression // special relation character // expression; 
 
First, we have name (the name of the equation) as shown in the list of declared equation names, then 
two periods “..” follow separating the name of the equation and the expression of the equation.  The 
expression of the equation is an algebraic statement using allowed GAMS algebraic operations.  The 
equation must contain a relation operator, such as: 
 

=E= right hand side is equal to the left hand side 
=G= right hand side is greater than or equal to the left hand side 
=L= right part is less than or equal to the left hand side 

 
The user must carefully balance the number of open and closed brackets.  An equation can occupy 
an unlimited number of rows.  Spaces can be used for obvious and convenient comprehension.  
Equations, once defined, cannot be changed or redefined in a later portion of a model.  If such 
necessity arises, it is essential to introduce a new equation with a new name.   
 
However, it is possible to change the number of estimated elements of the equation by changing the 
data which the equation uses.  In addition, you can exclude part of an equation by using logical 
conditions ($ operator) in the name of an equation or in the computation part of an equation.  Again, 
consider the scalar equations from the model in Section 2.1 
 

EQUATIONS Eq1, Eq2, Objective; 
 
Eq1.. y1 =E= 10*x*x+10*x+10; 
Eq2.. y2 =E= -10*x+100; 
Objective.. obj =E= (y1-y2)*(y1-y2); 

 
Scalar equations are often encountered while making up optimization models.  The examples written 
above are scalar equations.  They contain only scalar variables.  However, scalar equations can 
contain index variables and use index operators.  For example, consider the equations form the 
model of water users presented in Section 3.1 
 

EQUATIONS objective, cap; 
 
objective..obj =E= SUM(i,a(i)*x(i)+b(i)*x(i)**2); 
 
cap..sum(i,x(i))+s-r =E= 0.0; 

 
In this case the names of the equations are scalar, and the equations use the index SET ‘i’.  After 
summing, the index disappears and the equations are scalar.  Correspondence between the 
dimensions of the name and left and right parts of equations is essential in constructing models.   
 
Index (vector) equations differ from scalar equations only in the closer correspondence between the 
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dimensions of the equation’s left and right parts.  SETs which take a position in an equation to the 
left of the “..” and immediately after the name of an equation, can be considered as control indices, 
because the equation will be solved for all possible values of the indices.  Consider the model of 
least squares estimation presented in Section 2.2  

 
EQUATION mod(t), residual(t), objective; 
 
mod(t).. a*x1(t)*x1(t)-b/x3(t)-c/x2(t)+EXP(-y(t)*y(t)) =E= y(t); 
 
residual(t).. e(t) =E= y(t)-y_hat(t); 
 
objective.. obj=E=sum(t,power(e(t),2)); 

 
The equation “objective” is a scalar equation, but the equations “mod(t)” and “residual(t)” are index 
equations indexed on the SET “t” and they will be solved for every value of the set.   
 
Each GAMS model must contain at least one scalar variable (the value of an objective function 
being optimized) and one scalar equation (the objective function).  GAMS can optimize only a scalar 
variable.  
 
 

13.3  Using Symbols as Indices in Equations 
 
Very often, it is necessary to use symbols (e.g., values of SETs or indices) in equations.  This can be 
done using quotation marks.  As an example, consider the establishment of upper bounds (capacity) 
on reservoir 1 storage in the model of river system management in Section 3.3 
 

S.up('Res_1' ,t) = 1000; 
 
The bound will be set only for reservoir ‘Res_1’.  In this instance, SET t in the variable s(‘Res_1’,t) 
is defined for all twelve months.   
 
 

13.4  Assembling a Model 
 
After all the SETS, PARAMETERS, VARIABLES, and EQUATIONS of a model have been 
declared a system (called a MODEL) can be formed from a collection of equations and given a 
name.  When all the declared equations are included in the model, the syntax of declaring the model 
is as follows: 
 

MODEL name comment /ALL/; 
 
For example: 

 
MODEL Lakes /all/; 
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The model is named "Lakes", and the keyword ALL means that the model includes all of the 
equations.  Sometimes, the user may want to create numerous variants of equations and unite them in 
groups, forming different models with distinct names and they may have various optimization 
objectives.   
 
 

13.5  Solving a Model 
 
Once a model has been defined, the next step is to solve it.  This is ordered by including a SOLVE 
statement in the model.  Consider the example of the river system management model in Section 3.3 
 

SOLVE Lakes USING NLP MINIMIZING obj; 
 
The SOLVE statement contains 6 parts:  
 

1. The word SOLVE (required); 
2. The previously defined name of the model (Lakes) (required but the name is user defined);  
3. The word USING  (required); 
4. The type of “solver” to use in the solution (NLP in this case, required but the name is user 

defined).  See Table 13.5.1 for a list of available solvers; 
5. The word MINIMIZING or MAXIMIZING  (required); and   
6. The name of a scalar variable (obj in this case) to be optimized (required but the name is user 

defined) 
 

Table 13.5.1 
Types of Solvers in GAMS (abbreviated list). 

Type of Solver  Description 
LP Linear programming.  The model cannot contain nonlinear or discrete 

(binary and integer) variables. 
NLP Nonlinear programming.  In the model, nonlinear forms must be 

continuous functions and the model may not contain discrete variables.
MIP Mixed integer programming.  Similar to RMIP, but the requirements of 

discreteness of variables and equations are stringent.  Discrete 
variables must take discrete values within boundaries. 

MINLP Mixed integer nonlinear programming.  The same characteristics as for 
RMINLP, but the requirements of discreteness are very stringent. 

 
 

14.  OUTPUT TO TEXT FILES 

14.1  Declaration of Output Files 
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GAMS allows writing information about the model and its solution to text files.  In addition, a text 
output file “model_name.LST” will always be produced.  This file is created automatically, but its 
format is not entirely useful for analysis purposes.  For display of specific information in this file, 
the DISPLAY operator can be used.  This operator is best appreciate by studying it in examples.  This 
operator can be useful when testing programs, since it is possible to display information in the 
quickest way.  However, there is an opportunity to create additional output files.  The following is 
the full syntax for defining output text files 
 

FILE pointer_name comments / external_filename / 
 
where FILE is a keyword used to define files;  
 pointer_name is a pointer used by GAMS model to direct output to the 

external text file external_ filename; 
 external_filename is an external text file which receives the output from GAMS. 

 
GAMS allows working with a set of output files, but you should read about it in the main GAMS 
User Guide. 
 
Consider the model for solving a set of nonlinear equations in Section 2.1 

 
FILE res /Eq1.txt/ 

 
where res is a pointer to the external file named “Eq1.txt”; and  
 Eq1.txt is the text file that will receive the model output. 
 
The pointer to the output file is named res in the model and it directs information into the file 
Eq1.txt.   
 
 

14.2  Output of Information 
 
The PUT operator is used for both assigning the name of the “current_file” to a declared text file and 
writing information into this file.  The general syntax of the PUT operator is 
 

put  Filename_1  elements; 
 
Consider the model from Section 2.1 again as an example 
 

PUT  res; 
put  "Solution x =  ", put x.l, put /; 

 
This example shows how the pointer res is associated with the external text file Eq1.txt.  In the first 
line, the output is directed into the file associated with the pointer res.  In the next line, some text 
and the value (level) of the variable x is inserted into the file.   
 



 

 220

Sometimes, it is necessary to output the value of parameters or tables.  This usually requires the use 
fo the LOOP function.  Consider the example from the least swuares model of Section 2.2 
 

PUT " t   x(1,t)   x(2,t)     x(3,t)     y(t)     y_hat(t)"/; 
LOOP((t),PUT t.TL, x1(t), x2(t), x3(t), y.L(t), y_hat(t)/;); 

 
Where the first line prints a header at the top of a table and the second line loops through all the 
vales of the set t and prints the value of t, x1(t), x2(t), x3(t), y.L(t), and y_hat(t).  Note that the 
variable y needs the suffix “.L” after it, but the parameter y_hat does not.  This is because y_hat is a 
defined data whose “level” is not determined by GAMS. 
 
 
 

15.  SETS 

15.1  Set Naming and Declaration 
 
SETS are a major item in the GAMS language.  SETS can be used to construct connections between 
variables and equations in models.  SETS are the equivalent of indices in a typical programming 
language.  Usually, ordinals function as indices, for instance “first”, “second”, etc.  In GAMS, 
indices have names, written through a combination of letters and digits, without spaces.  On the one 
hand, these are ordinals, but on the other hand, they have names.  A set name must begin with either 
a letter or a digit, but the next symbol can be a letter, digit or the marks “+” and “-”.  For example: 
 

Jlobest  1999  1972-73 
ROKETer  D6H83  Navruz-99 

 
The next example illustrates using SETS in the GAMS language 
 

SETS  i  plants          / Tashkent, Almaty/ 
      j  consumers       / Tokyo, London, Moscow/; 

 
GAMS  remembers the sequence of elements in a SET.  For instance here, Almaty is second among 
i, and Moscow is third among j.  The group of SETS begins with the word SETS and ends with the 
semicolon symbol “;”.  It is possible to declare the same information in the model through two 
individual groups: 
 

SET       i  plants      / Tashkent, Almaty /; 
SET       j  consumers   / Tokyo, London , Moscow /; 

 
Symbols “/” separate lists of SET elements.  SET Element in a list are separated by commas.  It is 
possible to write a comment between the SET name and the slashes, but all comments must fit on 
one row.      
 
GAMS models can be very large and contain an enormous number of structures.  One GAMS option 
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that eases the definition of elements of a SET is shown in the example below 
 

SET t  year    /1965, 1966, 1967, ...    ...   ... 1998, 1999/; 
 
A different, and shorter, way to accomplish this in GAMS is 
 

SET t  year    /1965*1999/; 
 
Sometimes in models, we may want to define two identical SETS 
 

SET   j  station  / Toktogul, Uchkurgan, Charvak, Chardara /; 
SET   k  station  / Toktogul, Uchkurgan, Charvak, Chardara /; 

 
Simultaneous definition of the same SET under different names is useful when the modeler wants to 
use the SET element interrelations in a model.  To avoid repetition, two sets can be made identical 
by using the “ALIAS” command.  For example 
  

SET   j  station  / Toktogul, Uchkurgan, Charvak, Chardara /; 
ALIAS(j,k); 

 
That is, the set j was created and assigned members, and the set k was created and made identical to 
the set j. 
 
In GAMS, it is possible to define subsets of sets.  Consider the model of water management from 
Section 3.3 with the river network as shown in Figure 15.1.1 below.   
 



 

 222

 Supply 1 Supply 2

Simple 1

Simple 2

Simple 3

Simple 4

Simple 5

Outlet

Reservoir 1 Reservoir 2

Divert 1

Divert 2

 
 

Figure 15.1.1.  Structure of a River Network for the Water Management Task 
 
The set of nodes in the river system is defined as 
 

SET  n nodes 
/ 
Supply_1, Supply_2, 
Simple_1*Simple_5, 
Divert_1, Divert_2, 
Res_1, Res_2, 
Outlet /; 

 
and five subsets of this set are created which have various characteristics such as junctions, water 
sources, water users, irrigation zones, and reservoirs 
 

SET 
nn(n)     Simple nodes     /Simple_1*Simple_5/ 
ns(n)     Supply nodes     /Supply_1, Supply_2/ 
nr(n)     Water user nodes /Divert_1, Divert_2, Outlet/ 
nrr(n)    Irrigation nodes /Divert_1, Divert_2/ 
nl(n)     Reservoir nodes  /Res_1, Res_2/; 
        

In this example, n is a collection of nodes in the modeling network, i.e., a list of objects to be used in 
the model.  The subsets nn, ns, nr, nrr, and nl are subsets of the set n which have various 
geographical significance as specified in the name (which is a comment and GAMS ignores this).   



 

 223

Among the objects are simple (junction) nodes, nn, water sources (supplies) nodes, ns, water users, 
nr, irrigation nodes, nrr, and reservoir nodes, nl.  ns(n) is a subset of flow sources, elements of 
which, Supply_1, and Supply_2.  The same is true for the subsets of water users nr(n) and reservoirs 
nl(n).  Note, that the subset nr( ) does not include all elements of set n, but only a part of them.   
 
 

15.2  SET Operations 
 
Operations can be performed on sets using the symbols 
 

+,     -,      *,      not 
 
Symbol “ + ” performs the set union operation 
 

s3(n) = s1(n) + s2(n); 
 
The set s3(n) is the set equal to all elements in s1(n) and all elements in s2(n   
 
Operator “*” performs the set intersection operation; only the elements included in both set A and 
set B belong to the intersection of the sets A and B 
 

s3(n)  = s1(n) * s2(n); 
 
s3(n) is a set consisting of the elements which are both in s1(n) and in s2(n). 
 
The symbol "NOT" performs the set complement operation 
 

s3(n) = NOT s1(n); 
 
The set s3(n) consists of elements included in n, but not in s1(n).  That is, all elements in s1(n) are 
deleted in s3(n).   
 
Operator "-" performs the operation of difference of sets.  This set consists of elements, which 
belong to set A but not set B 
 

s3(n) = s1(n) - s2(n); 
 
s3(n) is a set consisting of elements which are members of s1(n), but not members of s2(n).   
 
 

15.3  Defining Multivariable Indices 
 
Multidimensional SETS are often useful in modeling, especially when connections between set 
elements are important components of the system being considered.   In a multidimensional set, the 
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indices of the set elements are separated by commas.  Again, consider the model of water 
management from Section 3.3 with the river network as shown in Figure 12.1.1 above.  A portion of 
the GAMS code which defines a two-dimensional set in this model is 
 

ALIAS(n,n1); 
 
SET 
n_from_n(n,n1)  node n gets water from node n1 (any node) 
/ 
Res_1.Supply_1, 
Res_2.Supply_2, 
Simple_1.Res_1, 
Simple_1.Res_2, 
Simple_2.Simple_1, 
Divert_1.Simple_2, 
Simple_3.Simple_2, 
Simple_3.Divert_1, 
Simple_4.Simple_3, 
Divert_2.Simple_4, 
Simple_5.Simple_4, 
Simple_5.Divert_2, 
Outlet.Simple_5 
/; 
 

Here, the set n1, which is identical to set n, is created using the “ALIAS” command.  Then the two-
dimensional set n_from_n(n,n1) is created which contains all of the downstream to upstream 
connections in the network.  That is, it shows where each node in the system gets water from.  The 
set elements are comprised of one element from the first set, n, and one element from the second set, 
n1, separate by a period.  For example, the first element is Res_1.Supply_1 which indicates that 
reservoir 1 gets water from water supply 1, and so on.  This set is used in the model to determine the 
sources of water for any node in the system. 
 
As another example, consider the set of main reservoirs on the Syrdarya River in Central Asia 
 

SET  r  reservoirs  / Toktogul, Kairakum, Andijan, Charvak, Chardara /; 
 
Each reservoir is located in one of the four countries (Kyrgyzstan, Uzbekistan, Tajikistan, or 
Kazakhstan) of the Syrdarya Basin.  We can represent these countries as another set 
 

SET  c  country     / Kyrgyzstan, Uzbekistan, Tajikistan, Kazakhstan /; 
 
Then a two-dimentsional set can be created to associate each reservoir with its country, viz., 
 

SET  r_to_c(r,c)   reservoir_to_country 
    / Toktogul.Kyrgyzstan,  
      Kairakum.Tajikistan,  
      Andijan.Uzbekistan,  
      Charvak.Uzbekistan,  
      Chardara.Kazakhstan /; 

 
The previous example was an example of ONE-TO-ONE mapping.  We may also have MANY-TO-
MANY mappings in GAMS.  Examples of this construction in the GAMS language can be found in 
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the Gams Language Guide. 
 
 

15.4  ORD( ) and CARD( ) Operators 
 
The GAMS compiler memorizes index names of a set as well as their sequence of definition.  If the 
sequence of a set is arranged once, it will remain that way for other cases.   
 

15.4.1  ORD( ) Operator 
 
The ORD operator returns an ordinal number equal to the index position in a set.  Here are some 
examples showing how the ORD operator is used. 
 

SET t      /100*120/ 
PARAMETER  val(t); 
val(t) = ORD(t); 

 
The result of the operator will be the following:  

 
val('100') = 1; 
val('101') = 2,  
… 
val('120') = 21 

 

15.4.2  CARD( ) Operator 
 
The CARD operator returns an ordinal number equal to the number of elements in a set.  For 
example:   
 

SET  t     /45*68/ 
PARAMETER  s;   
s = CARD(t); 

 
The result will be that the CARD( ) operator is assigned the value 24 (the number of values from 45 
to 68, inclusive).  The CARD( ) operator is frequently used for initiating and canceling computation 
at the final stage. Consider the example  
 

c.fx(t)$( ORD(t) = CARD(t) ) = demand(t); 
 
which shows that when the value of the index t is equation to the number of items in the set, i.e., the 
last value, the value of the variable c is fixed equal to the parameter demand(t). 
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15.5  LAG and LEAD Operators  
 
Operators LAG and LEAD are used for correlating an element of a set with the next or preceding 
element of the set.  GAMS has two variants of LAG and LEAD operators: 
 

9. Linear LAG and LEAD operators (+, -) 
10. Circular LAG and LEAD operators (++, --). 

 
The difference between these two types of operators is in the method of processing at the initial and 
final points of the sequence.  In circular operators, after the final element of the sequence, there 
comes the first, while in linear operators sets are broken.   
 

15.5.1  Linear LAG and LEAD Operators  
 
Linear LAG and LEAD operators (+, -) are very convenient for modeling time periods that are not 
cycled.  A particular year is an example if the user does not want the initial values to be identical 
with the final ones.  For example, it is unlikely that the initial storage of a long-term reservoir will be 
identical to its ending storage.  GAMS can differentiate linear operators (+, -) from arithmetic 
operators according to the context.   
 
Consider the following example from the reservoir operation model in Section 3.2.2 that illustrates 
application of linear LAG operator 
 

balance(t).. (1+a(t))*S(t) =E= (1-a(t))*beg_S $(ord(t) EQ 1) 
                             + (1-a(t))*S(t-1)$(ord(t) GT 1) 
                             + Q(t) - R(t)- b(t); 
 

In this case, when the index t = 1, the initial storage (beg_s) of the reservoir is used in the balance 
equation, but when the index t > 1 the variable storage is used in the calsulation.  
 
 

15.5.2  Circular LAG and LEAD Operators  
 
When circular LAG and LEAD operators are used the initial and final values of sets are adjacent, i.e. 
the "first-1" is "final", the "last +2" is the "first +1", etc.  The circular LAG and LEAD operators 
(++, - -) are convenient for modeling cycled periods of time.  A particular year is an example, if the 
user wants the initial values to be identical with the final ones.  For example, often the initial storage 
of a seasonal reservoir is to be identical with its end storage.  Naturally, January is the month 
following December despite changing years.  This is illusteadte using the previous example, where it 
is not desired to specify the intial storage volume of the reservoir 
 

balance(t).. (1+a(t))*S(t) =E= (1-a(t))*S(t--1) + Q(t) - R(t)- b(t); 
 



 

 227

That is, the storage value for time period t =card(t)+1 it is set equal to the value 1.   This formulation 
of the equation will lead to a long-term, stationary solution for the model whch is independent of the 
initial storage condition of the reservoir (Loucks et al., 1981, Sec 2.8.1). 
 
The operators LEAD and LAG can be used in assignments.  Use of operators LAG and LEAD on the 
left side of the assignment is called an "index" while the use of it on the right side is called 
"assignment" and includes definition of the area of assignment.   
 
The LAG and LEAD operators can be used in equations.  Principles defined above for these operators 
are true for equations.  The location of operators LAG and LEAD in the body of the equation is very 
important.  LAG and LEAD operators located on the left side of the symbol ".." are modifications of 
the area for defining equations.  They become indicators if located on the right side of the symbol 
"..".  If their conditions are not met, they disappear.    
 

16.  SCALARS, PARAMETERS, AND TABLES  

16.1  General Rules 
 
The major working elements of the GAMS language are identifiers: names given to sets, 
parameters, variables, models, etc.  Identifiers are required to start with a letter followed by up to 
9 letters or digits (total length is 10 characters).  Examples of inadmissible identifiers include 
 

15    $rhs       0ie        ewoifkoioiiio           ueru&wc 
 
Digital data are contained in arrays (zero, scalar, or multidimensional matrices called parameters in 
GAMS).  The SETs, described above, can play the role of indices for these arrays.  To declare an 
array to contain data values, we use the functional words:  
 

SCALAR   (zero-dimensional),  
PARAMETER  (one-dimensional), and  
TABLE   (multidimensional).   

 
Parameters are declared in a free format with the following general structure 
 

Parameter a(i,j)  input-output matrix 
 

where  Parameter    data-type-keyword  (required) 
 a     identifier  (required) 
 (i,j)     domain list (optional) 
 input-output matrix   text (optional) 
 
Scalars are defined similarly but without the domain list.  Tables are simply multi-dimensional 
versions of parameters.   
 
The assignment of numerical values to parameters can be carried out in two ways: 
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1) Assignment, and 
2) Computation. 

 

16.2  Data Entry Through Assignment 
 
As an example of how to enter numerical values in a GAMS model, consider the model for solving a 
set of nonlinear equations in Section 2.1.  The coefficients of the set of equations are defined using 
SCALARS 
 

SCALAR A /10/, B /10/, C /10/, M /-10/, N /100/; 
 

Parameters A, B, C, D, M, and N are used in the model as zero dimensional parameters (scalars).  
The values are assigned simultaneously upon declaration (statement of fact of existence) of the 
scalars.   
 
The sequence of declaration and definition of numerical values for one-dimensional arrays 
(PARAMETERS) is a bit different.  Conside the model of least squares estimation from Section 2.2  
 

SETS t  / 1, 2, 3, 4, 5, 6, 7, 8 /; 
 
PARAMETER x1(t)  /1 2, 2 3, 3 3, 4 3, 5 5, 6 5, 7 6, 8 7/; 
 

In this example, declaration and definition occur simultaneously.  Each pair of values of the index t 
and the parameter x1(t) are separated by commas and the entire list is enclosed in slashes.   
 
The following example from the model of river management in Section 3.3 illustrates data entry to a 
TABLE at the moment of definition: 

 
SET n nodes  
/ Supply_1, Supply_2, 
  Simple_1*Simple_5, 
  Divert_1, Divert_2, 
  Res_1, Res_2, 
  Outlet /; 
 
SET t months / Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec /; 

 
TABLE Supply(n,t) water supplies (m3 per sec) 
          Jan   Feb   Mar   Apr  May  Jun  Jul  Aug   Sep   Oct   Nov   Dec 
Supply_1  128   125   234   360  541  645  807  512   267   210   181   128 
Supply_2   39    39    52   121  168  144  105   78    49    44    45    39 
 

In this example, the water supply to each of two sources is defined as a table with two rows, one for 
each supply, and twelve columns, one for each month.  If some cells are missing from a table, it 
means that the value of the array for the corresponding complex of indices is not defined.  However, 
if this element of the array is used in further computations, it will be considered as equal to zero.  
Note that only two of the elements of the SET n are used in the table (the source nodes Supply_1 and 
Supply_2), the rows of the table for the other elements are not defined, but we can still use the SET n 
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later in computations as if each node might have a source of water associated with it.   
 
 

16.3  Data Entry Through Computation 
 
After declaration, parameter values may be computed later in the model.  Determination of data 
through direct computation or assignment following the initial definition is possible and sometimes 
useful.  Consider the model of two-dimensional groundwater flow in Section 4.5 where the finite-
difference coefficients are computed as parameters 
 

PARAMETER 
        A(I,J)   finite-difference coefficient 
        B(I,J)   finite-difference coefficient 
        C(I,J)   finite-difference coefficient 
        D(I,J)   finite-difference coefficient; 
 
        A(I,J) =  T/(DX*DX) ; 
        B(I,J) = -T/(DX*DX) ; 
        C(I,J) =  T/(DY*DY) ; 
        D(I,J) = -T/(DY*DY) ; 

 
Note the lack of any instructions as to which index values of I or J should be used in the calculation. 
 GAMS carries out these computations for all indices I and J which are defined through the SET 
operator.  If you need to assign or compute a specific value of one or a small group of elements of an 
array, you can do this as follows, for example: 
 

c( 'Tashkent', 'Fergana' )  =  f * 0.001 ; 
c( 'Tashkent', 'Chinaz' )   =  20 * 0.001 ; 

 
To organize computations within some limits of the variables i and j, you can use subsets as 
discussed previously 
 
A collection of standard logical and mathematical functions may be used in GAMS models for 
assignment or computation purposes.  The reader is referred to the GAMS Users Manual for 
descriptions of these functions.  Besides those standard functions, two special functions are available 
for the user:   
 

SUM(..., ...)  
PROD(..., ...) 

 
An example of the SUM function is given in the objective function of the least squares estimation 
model in Section 2.2 

 
objective.. obj=E=sum(t,power(e(t),2)); 
 

This means that the value of "obj" will be assigned the algebraic sum of all elements of the 
unidimensional array "e(t)" summed over the entire range of indices "t".    
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An example of the PROD function is 
 

t(i) = PROD(j,b(i,j));  
 
This means that in the unidimensional array "t( )" each element, indexed by "i", will be defined as a 
product of elements of the two-dimensional array "b( )" on "j" with the fixed related index “i”. 
 
 

17.  CONDITIONAL OPERATOR ($) 

17.1  General Statements 
 
This section considers the conditional operator ($), which is one of the strongest features of the 
GAMS language.  This operator provides the ability to guide calculations or definitions with logical 
conditions.  The general format of the operator is 
 

item$(condition)  
 
and this can be read "fulfill the item if the condition is true", where the condition is of logical 
character capable of acquiring Boolean values (true or false, existence or nonexistence).  Conditions 
may not contain variables.  However, the use of suffixes on variables (e.g., .L or .M) is allowed in $ 
operations, but this transfers the variables into constant values.     
 
The essence of the $ operator can be explained by considering the following example 
 

if (b > 1.5), then a = 2; 
 
which can be written in the GAMS language as follows  
 

a$( b > 1.5 ) = 2; 
 
If the condition in the parathenses ‘b > 1.5’ is not fulfilled then the assignment ‘= 2’ is not executed.  
 

17.2  Embedded $ Conditions 
 
Conditions can be embedded or nested in structures.  The term $(condition1$(condition2)) can be 
read as $(condition1 and condition2).  That is, the first and second conditions must be fulfilled 
simultaneously before the assignment will take place.  When using embedded $ conditions all 
expressions following the $ sign must be inserted into a pair of parentheses.   
 
Consider the following example:  
 

d(i)$( w $q ) = v(i); 
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where i, d, and w are sets, while q and v(i) are parameters.  The assignment will be executed for 
elements d(i) for which simultaneously the values of w and q have true values.  The operator given 
above can be rewritten as follows: 
 

d(i)$( w AND q ) = v(i); 
 
 

17.3  Conditional Assignment 
 
The example given above was connected with conditional assignment.  In this example, the $ 
condition was on the left side of the assignment.  The effect of the $ condition depends on its 
position with regard to the equal sign.  The assignment is not fulfilled if the logical conditions are 
not satisfied.  This means that values of parameters on the left will remain unchanged for those 
indices where conditions are not fulfilled.   
 
If the parameters of the left side of the assignment are not numerically determined, their values will 
be equal to 0, since the logical conditions are not satisfied.  The $ operator is very useful for cases 
when it is necessary to avoid dividing by zero. For example: 
 

r(i)$( z(i) NE 0 ) = 1./z(i); 
 
The z(i) parameter was defined in the model and the operator is used to calculate r(i) without making 
mistakes.  If any value associated with z(i) is equal to 0, the assignment will not be executed and the 
preceding value for r(i) will persist.  If  (i) was not initialized before, then all indices with z(i) 
equaling 0, will be assigned 0 value.  If z(i) was not defined for cases when it equaled 0, then the 
assignment above can be written as follows: 
 

r(i)$z(i)  =  1./z(i); 
 
 

17.4  Conditional Computation 
 
Assignment is always executed when the assignment operator appears with a $ condition on the right 
side of the assignment operator (equal sign).  If the logical condition is not fulfilled, then the 
parameter or the variable will be transformed into 0, even if it was equal to some number previously. 
  For example  
 

x = 20$(y > 7.5); 
     
which means 
 

if (y > 7.5)  then (x=20),  else (x=0) 
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Another example is from reservoir management model of Section 3.2 
 
balance(t).. (1+a(t))*S(t) =E= (1-a(t))*beg_S $(ord(t) EQ 1) 
                             + (1-a(t))*S(t-1)$(ord(t) GT 1) 
                             + Q(t) - R(t)- b(t); 
 

In this case, when the index t = 1, the initial storage (beg_s) of the reservoir is used in the balance 
equation, otherwise it is omitted.  Similarly when the index t > 1 the variable S(t-1) is used in the 
calculation, otherwise it is omitted.  
 

17.5  Conditional Indexing 
 
Another useful application of the $ condition is the control of index operations.  For example 
 

a  =  SUM( i$(n(i)), b(i)); 
 
The operator calculates the sum of b(i) for all i for which the parameter n(i) has a true value. 
 
Another example of using $ operator is the correlation of SET-to-SET operations.  The river 
management model of Section 3.3 uses the set n_from_n(n,n1) which defines the upstream to 
downstream connections in the flow network.  When computing the flow balance for nodes in the 
network, it is necessary to know which upstream nodes contribute to the inflow of a node n under 
consideration.  This is accomplished by summing over all nodes n1 which are upstream from node n 
in the n_from_n(n,n1) set.  That is 
 

* Simple node:  Inflow = Sum of Releases from Upstream - Sum of Diversions 
R_nn(n,t).. Q(n,t) =e= sum(n1$(n_from_n(n,n1)),R(n1,t)) 
                     - sum(n1$(n_to_nr(n,n1)),Divert(n1,t)); 

   
Similarly, in this equation, the sum of all water flowing from the node n to downstream nodes n1 is 
accomplished by conditioning the sum on the set n_to_nr(n,n1). 
 

17.6  Conditional Equations  
 
The $ operator is also used for managing the definition of equations.  $ control of equation definition 
 restricts the number of equations included in the model.  Consider the following example from the 
river system management model in Section 3.3 
 

* Reservoir node:  Release = Mass Balance 
R_nl(n,t)$(nl(n)).. S(n,t) =e= beg_S(n)$(ord(t) EQ 1) 
                            +  S(n,t-1)$(ord(t) GT 1) 
                            + Q(n,t)-R(n,t); 
 

The equation R_nl(n,t) is conditioned by the expression $( nl(t) ).  The equation is included for the 
indeces n and t if the calculation node, n, refers to a member of nl(t), the set of reservoirs. 
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17.7  Special Constructions for Conditional Variables  
 
One of the main difficulties of using $ operators is that they are prohibited from use with variables 
computed during the optimization process.  Suppose we have to solve a problem with the equations: 
 

⎪⎩

⎪
⎨
⎧ <=

otherwisex
xxy 3

2 0if  

 
where x, and y  are variables.  We have the following structure of computation  
 

VARIABLES y, x; 
EQUATION  first; 
first.. y  =E=  (x*x)$(x < 0) + (x*x*x)$(x > 0); 
MODEL andre /ALL/; 
SOLVE andre USING NLP MINIMIZING y; 

 
The GAMS compiler will inform you of an error made by using the $ operator with variables.   
 

**** THE FOLLOWING NLP ERRORS WERE DETECTED IN MODEL ANDR: 
**** 53 IN EQUATION FIRST      .. ENDOG $ OPERATION 
**** 53 IN EQUATION FIRST      .. ENDOG $ OPERATION 

 
However, using the feature of the computer to define a square root as positive value, the necessary 
result can be achieved by using the following construction 
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or in the GAMS language 
 

first.. y =e= (x*x)*(0.5*(sqrt(x*x)-x)/(sqrt(x*x)+0.000001)) 
                 + (x*x*x)*(0.5*(sqrt(x*x)+x)/(sqrt(x*x)+0.000001)); 

 
 

18.  ADDITIONAL OPERATORS 
 
GAMS has a number of other operators frequently used in other programming languages.  This 
section discusses these operators and their use. There operators are:  
 
1)  LOOP - cycle operator;   
2)  IF-ELSE - conditional operator; 
3)  FOR  - cycle operator; and   
4)  WHILE  - conditional cycle operator.   
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18.1  Loop Operator 
 
The LOOP operator is often used with the PUT operator for printing out and displaying information 
on the screen or in files.  The operator has the following syntax: 
 

LOOP (control_ area [$(condition)] operator {; operator}); 
 
If control_area contains more than one set, then parentheses are needed.  The LOOP operator 
provides performance of the operator within the cycle limits for each index of the set in turn.  The 
sequence of operations is determined by the sequence of indices.  LOOP is a general type of index 
operation.  The cycle set can be controlled by the $ operator, but it must be static or embedded.  The 
cycles can be controlled by more than one set.  However, it is impossible to declare or solve 
equations within the LOOP operator.  It is not allowed to transform control sets within the body of 
the cycle.  
     
Consider the following hypothetical case of the integration model:  
 

SET  x  / d15*d25 / 
PARAMETER  nachalo(x)  / d15 423 / 
           differ(x)   / d15  58.4, d16  47.7, d17  68.8 
                         d18  46.5, d19  57.9,  d20  46.9 
                         d21  64.5, d22  65.4,  d23  34.7 
                         d24  76.4, d25  34.4/; 

     
The LOOP operator can be used to compute increasing sums: 
 

LOOP(x, nachalo(x+1)  =  nachalo(x)  +  differ(x)); 
 
Only one operator and one control set - x is presented here within the cycle operation area 
 

nachalo(x+1) = nachalo(x) + differ(x)   
 
Consider the following example used in the algorithm of the Newton method for extracting a square 
root.  In practice, the imbedded function SQRT() is used.  However, in this case, we show  the 
functioning of LOOP operator using a program from the GMAS Language Guide.   
 
The method is:  
 
if x is an approximate square root of v, then (x+v/x) - 2*x = 0 
 
The GAMS code is: 
 

SET              i number of iterations is 100      /i-1*i-100/; 
PARAMETER        x(i); 
SCALARS 
     v           number whose square root is sought /23.456/ 
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     sqrtval     answer 
     err         error /1.0/ 
     tol         error tolerance /1.0e-06/; 
 
x("i-1")  =  v/2 ; 
 
loop(i$(err > tol), 
            x(i+1) = 0.5*(x(i) + v/x(i)); 
            sqrtval = x(i+1); 
            err  = ABS (x(i+1) - x(i))/x(i+1) 
       ); 
 
ABORT$(err>tol) "square root not found" 
 
DISPLAY "square root found",sqrtval, x; 

 
The result: 
 
     19 square root found 
     19 PARAMETER sqrtval              =        4.843  answer 
     19 PARAMETER x 
 

i-1 11.728,    i-2  6.864,    i-3  5.141,    i-4  4.852 
i-5  4.843,    i-6  4.843,    i-7  4.843 

 
In this example the user can see the use of the ABORT operator, which is used for fail-safe 
canceling of computation.  
 
 

18.2  IF-ELSE Operator  
 
The IF-ELSE operator is useful for transferring from one operator to another.  In some cases, it can 
be written down as a set of $ conditions.  The IF operator can be used for making GAMS code more 
understandable.   
 
The optional "ELSE" part allows formulating the traditional construction "IF-THEN-ELSE".  The 
following syntax is for the "IF-THEN-ELSE" operator: 
 

if (condition, 
operators; 

{condition ELSEIF, operators} 
 [operators ELSE;]  

); 
 
Note, the braces and brackets are not required, but can be used.  "Condition" means logical 
conditions described in the paragraph on conditional operations of GAMS. 
 
Declaration or definition of equations can not be performed within the IF operator. Consider the 
following set of operators taken from the GAMS Language Guide: 
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p(i)$(f <= 0) = -1; 
p(i)$(f >  0)  and (f < 1)) = p(i)**2; 
p(i)$(f >  1) = p(i)**3; 
q(j)$(f <= 0) = -1; 
q(j)$(f >  0)  and (f < 1)) = q(j)**2; 
q(j)$(f >  1) = q(j)**3; 

 
the same can be expressed through the IF-ELSEIF-ELSE operators: 
 

IF (f <= 0, 
    p(i) = -1; 
    q(j) = -1; 
ELSEIF ((f > 0) AND (f < 1)), 
    p(i) = p(i)**2; 
    q(j) = q(j)**2; 
ELSE 
    p(i) = p(i)**3; 
    q(j) = q(j)**3;          
); 

 
The body of the IF operator can contain the SOLVE operator.  Consider the following example of 
the model from the GAMS Language Guide: 
 

IF  (ml.MODELSTAT EQ 4), 
*     the model ml is undefined; 
*     change the conditions on the boundaries of x and solve it again; 
      x.up(j) = 2*x.up(j) ; 
      SOLVE ml USING LP MINIMIZING  lop; 
ELSE IF (ml.MODELSTAT NE 1),  
      ABORT "error occurred in solving the model ml";);); 

 
The user can see a new suffix ".MODELSTAT" here.  Its meaning is quite transparent and its 
numerical value is relevant to situations raised in the process of solving the problem.  A complete 
list of situations is given in the GAMS Language Guide. 
 

18.3  WHILE Operator  
 
WHILE operator is used for cycling the process of calculation before the execution of some logical 
condition.  The syntax of the WHILE operator is the following: 
 

while ((condition)), 
operators; 

); 
 
As with the FOR operator, declaration and definition of equations can not be done in the WHILE 
operator.  However, the WHILE operator can be used for control of the SOLVE operator.  Consider 
the following part of a GAMS program that is randomly looking for the global optimum of a non-
convex function.  The example is taken from the GAMS Language Guide: 
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SCALAR  count;   
count = 1; 
SCALAR  globmin;   
globmin = INF; 
OPTION  BRATIO = 1; 
 
WHILE ((count  LE  1000), 
        x.l(j) = UNIFORM(0,1); 
        SOLVE ml  USING  lp  MINIMIZING  obj; 
        IF  (obj.l  LE  globmin, 
                 globmin = obj.l; 
                 globinit(j)  = x.l(j); 
             );   
        count = count +1;   
); 

 
In this example, the non-convex model is solved for 1000 randomly taken numbers, while the global 
solution is found through constant comparison.   
 
Model [PRIME] from the GAMS model library illustrates the use of the WHILE operator in an 
example with simple generation of numbers less than 200.   
 
 

18.4  FOR Operator  
 
The FOR operator is used to repeat a bloc of operators. It has the following syntax:   
 

FOR  (i = initial TO final [BY step], 
operators; 

); 
 
Note that i is not a set, but a numerical parameter.  The step defines the growth of i after each 
repetition of the FOR loop.  The initial, final and step values do not have to be integer-valued.  The 
initial and final values can be positive or negative real numbers.  The step must be a positive real 
number.   
 
The FOR operator can be used to control the SOLVE operator.  Consider the following example 
from the GAMS program randomly studying a non-convex function for finding a global optimum. 
The example is taken from the GAMS Language Guide: 
 

SCALAR i; 
SCALAR globmin;  
globmin = inf; 
OPTION  BRATIO = 1; 
 
FOR (i = 1 TO 1000, 
         x.l(j)  =  UNIFORM(0,1); 
         SOLVE ml  USING  NLP  MINIMIZING  obj ; 
         IF  (obj.l  LE globmin, 
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              globmin = obj.L ; 
              globinit(j)  =  x.L(j);    
         );   
); 

 
In this example, the non-convex function is examined for 1000 randomly taken points, while the 
global solution is found through comparison.  The use of real numbers as initial and final values of 
the cycle and steps, is shown in the following example:  
 

FOR (s  =  -18.4  TO  10.3  BY 6.1, DISPLAY s; ); 
 
Resulting printout of the file will contain the following lines:  
 

   1 PARAMETER  S         =  -18.400 
   2 PARAMETER  S         =  -12.300 
   3 PARAMETER  S         =  -6.200 
   4 PARAMETER  S         =  -0.100 
   5 PARAMETER  S         =  +6.000 
   6 PARAMETER  S         =  -12.100 

 
Note, that S was increased by the GAMS compiler 6.1 during each cycle until it exceeded 10.3. 
 



 

 

References 
 
 
Brooke, A., D. Kendrick, A. Meeraus, and R. Raman, GAMS Language Guide, RELEASE 2.25, 
Version 92, GAMS Development Corporation, Washington D.C., 1997 
 
Cuzan, A.G., Appropriators Versus Expropriators: The Political Economy of Water in the West, in 
Water Rights:  Scarce Resource Allocation, Bureaucracy, and the Environment, T.L. Anderson (ed.), 
Pacific Institute for Public Policy Research, San Francisco, pp. 13-43, 1983. 
 
Dinar, A., and J. Letey, Modeling Economic Management and Policy Issues of Water in Irrigated 
Agriculture, Praeger, Westport, 1996. 
 
Field B.C., Environmental Economics: An Introduction, McGraw Hill Publishers, New York, 1994 
 
Gardner, B.D., Water Pricing and Rent Seeking in California Agriculture, in Water Rights:  Scarce 
Resource Allocation, Bureaucracy, and the Environment, T.L. Anderson (ed.), Pacific Institute for 
Public Policy Research, San Francisco, pp. 83-116, 1983. 
 
Gibbons, D. C., The Economic Value of Water, Resources for the Future, Washington D.C., 1986. 
 
Gisser, M., and R.N. Johnson, Institutional Restrictions on the Transfer of Water Rights and the 
Survival of an Agency, in Water Rights:  Scarce Resource Allocation, Bureaucracy, and the 
Environment, T.L. Anderson (ed.), Pacific Institute for Public Policy Research, San Francisco, pp. 
137-165, 1983. 
 
Hirshleifer, J., J. C. De Haven, and J. W. Milliman, Water Supply:  Economics, Technology, and 
Policy, Univ of Chicago Press, Chicago, 1960. 
 
Howe, C.W., Protecting Public Values under Tradable Water Permit Systems: Efficiency and Equity 
Considerations, Environment and Behavior Program, Institute of Behavioral Science, University of 
Colorado, Boulder, Dec. 1996. 
 
Howe, C.W., D.R. Schurmeier, and W.D. Shaw, Jr. Innovative Approaches to Water Allocation: The 
Potential for Water Markets, Water Resources Research, 22(4): 439-445, 1986. 
 
Loucks, D.P., J.R. Stedinger, and D.A. Haith, Water Resource Systems Planning and Analysis, 
Prentice Hall, Englewood Cliffs, 1981. 
 
McKinney, D.C. and X. Cai, Multiobjective Water Resource Allocation Model for Toktogul 
Reservoir, Technical Report, US Agency for International Development, Environmental Policy and 
Technology Project, Central Asia Regional EPT Office, Almaty, Kazakstan, April, 1997. 
 



 

 

McKinney, D.C. and A.K. Kenshimov (eds.), Optimization of the Use of Water and Energy 
Resources in the Syrdarya Basin Under Current Conditions, Technical Report, US Agency for 
International Development, Environmental Policies and Institutions for Central Asia (EPIC) 
Program, Almaty, Kazakstan, 2000. 
 
Michelsen, A.M. and R.A. Young, Optioning agricultural water rights for urban water supplies 
during drought, American Journal of Agricultural Economics 75(11): 1010-1020, 1993. 
 
Pearce, D. W., and R. K. Turner, Economics of natural Resources and the Environment, Johns 
Hopkins University Press, Baltimore, 1990. 
 
Rosegrant, M.W., Water resources in the twenty-first century: Challenges and implications for 
action, Food, Agriculture, and the Environment Discussion Paper No. 20, Washington, D.C., IFPRI, 
1997. 
 
Rosegrant, M.W., and H.P. Binswanger, Markets in Tradable Water Rights:  Potential for Efficiency 
Gains in Developing Country Water Resource Allocation, World Development, 22(11):1613-1625, 
1994. 
 
Rosegrant, M.W., R. Gazmuri Schleyer, and S.N. Yadav, Water Policy for Efficient Agricultural 
Diversification:  Market Based Approaches, Food Policy, 20(3):203-223, 1995. 
 
Rosegrant, M.W., C. Ringler, D.C. McKinney, X. Cai, A. Keller, and G. Donoso, Integrated 
economic-hydrologic water modeling at the basin scale: the Maipo river basin. Agricultural 
Economics, Vol.24, No.1, pp.33-46, 2000. 
 
Savitsky A.G. Optimal control of water, land and hydropower resources in Central Asia region by 
modern modelling technologies help. Material ICID, Portigal, Lisbon, September 1998. (13 p.) 
 
TWDB, Texas Water Development Board, Water for Texas: Today and Tomorrow, Austin, Texas, 
1997. 
 
Tregarthen, T.D., Water in Colorado: Fear and Loathing in the Marketplace, in Water Rights:  
Scarce Resource Allocation, Bureaucracy, and the Environment, T.L. Anderson (ed.), Pacific 
Institute for Public Policy Research, San Francisco, pp. 119-136, 1983. 

 
Anderson, R. C., Environmental Damage Assessment of the Aral Sea Disaster, Issue Paper No. 1, 
USAID Environmental Policy and Technology Project, Almaty Kazakhstan, 1997. 
 
CAMASE, Register of Agro-ecosystem models, 1997. < http:/ / camase/ aboutreg.html>. 
 
Cuzan, A.G., Appropriators Versus Expropriators: The Political Economy of Water in the West, in 
Water Rights:  Scarce Resource Allocation, Bureaucracy, and the Environment, T.L. Anderson (ed.), 



 

 

Pacific Institute for Public Policy Research, San Francisco, pp. 13-43, 1983. 
 
Dinar, A., and J. Letey, Modeling Economic Management and Policy Issues of Water in Irrigated 
Agriculture, Praeger, Westport, 1996. 
 
Dorfman, in Maas, A. et al., Design of Water Resource Systems, Harvard, Cambridge, 1962 
 
Field B.C., Environmental Economics: An Introduction, McGraw Hill Publishers, New York, 1994 
 
Frederick, K.D., T. Vandenberg, and J. Hanson, Economic Values of Freshwater in the United 
States, Discussion Paper 97-03, Resources for the Future, Washington D.C., 1996. 
 
Gardner, B.D., Water Pricing and Rent Seeking in California Agriculture, in Water Rights:  Scarce 
Resource Allocation, Bureaucracy, and the Environment, T.L. Anderson (ed.), Pacific Institute for 
Public Policy Research, San Francisco, pp. 83-116, 1983. 
 
Gibbons, D. C., The Economic Value of Water, Resources for the Future, Washington D.C., 1986. 
 
Gisser, M., and R.N. Johnson, Institutional Restrictions on the Transfer of Water Rights and the 
Survival of an Agency, in Water Rights:  Scarce Resource Allocation, Bureaucracy, and the 
Environment, T.L. Anderson (ed.), Pacific Institute for Public Policy Research, San Francisco, pp. 
137-165, 1983. 
 
Hanks, R.J. 1983. Yield and water use relationships: An overview. In Limitations to efficient water 
use in crop production, eds. H.M. Taylor, W.R. Jordan and T.R. Sinclair. Madison, Wisc.: American 
Society of Agronomy. 
 
Hanks, R.J. and R.W. Hill. 1980. Modeling crop response to irrigation in relation to soils, climate 
and salinity. Oxford: Pergamon. 
 
Hirshleifer, J., J. C. De Haven, and J. W. Milliman, Water Supply:  Economics, Technology, and 
Policy, Univ of Chicago Press, Chicago, 1960. 
 
Howe, C.W., Protecting Public Values under Tradable Water Permit Systems: Efficiency and Equity 
Considerations, Environment and Behavior Program, Institute of Behavioral Science, University of 
Colorado, Boulder, Dec. 1996. 
 
Howe, C.W., D.R. Schurmeier, and W.D. Shaw, Jr. Innovative Approaches to Water Allocation: The 
Potential for Water Markets, Water Resources Research, 22(4): 439-445, 1986. 
 
Huchens, A.O., and P.C. Mann, Review of Water Pricing Policies, Institutions and Practices in 
Central Asia, Environmental Policy and Technology Project, USAID, Almaty, Kazakhstan, 1998. 
 
James, L.D., and R.R. Lee, Economics of Water Resources, McGraw-Hill Book Co., New York, 
1971 



 

 

 
Linsley, R.K., and J.B. Franzini, Water Resources Engineering, McGraw-Hill, Inc., New York, 1979 
 
Loucks, D. P. J. R. Stedinger, and D. A. Haith, Water Resource Systems Planning and Analysis, 
Prentice Hall, Englewood Cliffs, 1981  
 
Marani, A. 1988. COTMOD – A model to optimize cotton response to irrigation and nitrogen. In 
Optimal yield management, ed. D. Rymon. Brookfield: Avebury. 
 
Mays, L.W., and Y-K, Tung, Hydrosystems Engineering and Management, McGraw Hill, 1992 
Merrett, S., Introduction to the Economics of Water Resources, UCL Press Limited, London, 1997. 
 
Michelsen, A.M. and R.A. Young, Optioning agricultural water rights for urban water supplies 
during drought, American Journal of Agricultural Economics 75(11): 1010-1020, 1993. 
 
North, R. M. Economics and Financing, Chapter 5 in Viessman, W. Jr. and C. Welty, Water 
Management: Technology and Institutions, Harper & Row, Publishers, New York 1985. 
 
Office of Management and Budget (OMB), Guidelines and Discount Rates for Benefit-Cost 
Analysis of Federal Programs Circular No. A-94 (Revised; Transmittal Memo No. 64), October 29, 
1992 (http://www.whitehouse.gov/omb/circulars/a094/a094.html) 
 
Pearce, D. W., and R. K. Turner, Economics of natural Resources and the Environment, Johns 
Hopkins University Press, Baltimore, 1990. 
 
Rosegrant, M.W., Water resources in the twenty-first century: Challenges and implications for 
action, Food, Agriculture, and the Environment Discussion Paper No. 20, Washington, D.C., IFPRI, 
1997. 
 
Rosegrant, M.W., and H.P. Binswanger, Markets in Tradable Water Rights:  Potential for Efficiency 
Gains in Developing Country Water Resource Allocation, World Development, 22(11):1613-1625, 
1994. 
 
Rosegrant, M.W., R. Gazmuri Schleyer, and S.N. Yadav, Water Policy for Efficient Agricultural 
Diversification:  Market Based Approaches, Food Policy, 20(3):203-223, 1995. 
 
Rosegrant, M.W., C. Ringler, D.C. McKinney, X. Cai, A. Keller, and G. Donoso, Integrated 
economic-hydrologic water modeling at the basin scale: the Maipo river basin. Agricultural 
Economics, Vol.24, No.1, pp.33-46, 2000. 
 
Senate Document 97 of the Eighty-seventh Congress on May 29, 1962, as amended by the Federal 
Register December 24, 1968 (33 F.R. 19170; 18 C.F.R. 704.39). 
 
Thuesen, H.G., W.J. Fabrycky, and G.J. Thuesen, Engineering Economy, Prentice Hall Publishers, 
Englewood Cliffs, 1977. 



 

 

 
Texas Water Development Board (TWDB), Water for Texas: Today and Tomorrow, Austin, Texas, 
1997. 
 
Tregarthen, T.D., Water in Colorado: Fear and Loathing in the Marketplace, in Water Rights:  
Scarce Resource Allocation, Bureaucracy, and the Environment, T.L. Anderson (ed.), Pacific 
Institute for Public Policy Research, San Francisco, pp. 119-136, 1983. 
 
Vaux, H.J. and W.O. Pruitt. 1983. Crop-water production functions. In Advances in irrigation, ed. D. 
Hillel. New York: Academic Press. 
 
Willis, R. L. and B. A. Finney, Environmental Systems Engineering and Economics, Environmental 
Resources Engineering, Humboldt State Univ., Arcata, 2000 
 



 

 

APPENDIX A.  MATHEMATICAL PROGRAMMING: A 
BRIEF REVIEW 

 

A.1  Introduction 
 
An optimization problem (mathematical program) is to determine the values of a vector of decision 
variables  
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which optimize (maximize or minimize) the value of an objective function 
 

),x,,x f(x) f( nL21=x  (1.2) 
 
The decision variables must also satisfy a set of constraints X  which describe the system being 
optimized and any restrictions on the decision variables.  The decision vector x is feasible if   
 

X iffeasibleis ∈xx  (1.3) 
 
The feasible region X, an n-dimensional subset of nR , is defined by the set of all feasible vectors.  
An optimal solution *x  has the properties (for minimization): 
 
 X  *∈x   (1.4) 
and 
 *   )(  *)( xxxx ≠∀≤ ff   (1.5) 
 
i.e., the solution is feasible and attains a value of the objective function which is less than or equal to 
the objective function value resulting from any other feasible vector. 
 

A.2  General Mathematical Programming Problem 
 



 

 

The general mathematical programming problem can be stated as 
 

  X 

    
)f(

∈x

x
x

subject to

 Maximize

 (2.1) 
 
In words this says,  
 

maximize the objective function f(x) by choice of the decision variables x while 
ensuring that the optimal decision variables satisfy all of the constraints or 
restrictions of the problem 

 
The objective function of the math programming problem can be either a linear or nonlinear function 
of the decision variables.   
 
Note that: 
 
 )f(x Maximize  (2.2) 
 
is equivalent to  
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That is, optimizing if a linear operator; multiplying by a scalar or adding a constant does not change 
the result and maximizing a negative is the same as minimizing a positive function. 
 

A.3  Constraints 
 
The constraint set X  of the math program can consist of combinations of: 
 
(1) Linear equalities: 
 
 b Ax =  (3.1) 
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where the nm, j, iaij LL 11 ==  are the elements of the matrix A, and b is a vector of right-hand-



 

 

side constants. 
 

(2) Linear inequalities: 
 
 b Ax ≤  (3.3) 
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(3) Nonlinear inequalities: 
 
 0  xg ≤)(  (3.5) 
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where the functions g(x)
 
are nonlinear functions of the decision variables. 

 
(4) Nonlinear equalities: 
 
 0  xh =)(  (3.7) 

 m,i  hi L1)( =≤ 0x  (3.8) 
 
where the functions h(x) are nonlinear functions of the decision variables. 
 

A.4  Typical Forms of Math Programming Problems 
 
Different forms of the objective function and constraints give rise to different classes of 
mathematical programming problems: 
 

A.4.1  Linear Programming 
 
The objective function is linear and the constraints are linear equalities, inequalities, or both and 
non-negativity restrictions apply. 
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Example: 
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Of course this example has the difficulty of what to do with the absolute value.  An inequality with 
an absolute value can be replaced by two inequalities, e.g.,  
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can be replaced by replaced by  
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So our example can be converted to: 
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Note: An equation can be replaced by two inequalities of the opposite direction.  For example an 
equation 
 

bxg =)(  
 
can be replaced by replaced by  
 

bxgbxg ≥≤ )(and)(  
 
Often it is easier for programs to check the inequality condition rather than the strict equality 
condition. 
 

A.4.2  Classical Programming   
 



 

 

The objective function is nonlinear and the constraints are nonlinear equalities. 
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A.4.3  Nonlinear Programming 
 
The objective function is linear or nonlinear and the constraints are linear or nonlinear equalities, 
inequalities, or both. 
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A.5  Types of Solutions 
 
Solutions to the general mathematical programming problem are classified as either global or local 
solutions depending upon certain characteristics of the solution.  A solution x* is a global solution 
(for maximization) if it is: 
 

1. Feasible; and  



 

 

2. Yields a value of the objective function less than or equal to that obtained by any other 
feasible vector, or 
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A solution x* is a local solution (for maximization) if it is: 
 

1. Feasible; and  
2. Yields a value of the objective function greater than or equal to that obtained by any feasible 

vector x sufficiently close to it, or 
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In this case multiple optima may exist for the math program and we have only established that x* is 
the optimum within the neighborhood searched.  Extensive investigation of the program to find 
additional optima may be necessary. 
 
Sometimes we can establish the local or global nature of the solution to a math program.  The 
following two theorems give some examples. 
 
Weierstras Theorem:  (Sufficient conditions for a global solution) 

 
If X is non-empty and compact (closed and bounded) and f(x) is continuous on X, then f(x) has a 
global maximum either in the interior or on the boundary of X. 

 
Local - Global Theorem:  (Sufficient conditions for a local solution to be global) 

 
If X is a non-empty, compact and convex and f(x) is continuous on X and a concave (convex) 
function over X, then a local maximum is a global maximum. 

 
The Figure 5.1 shows a non-convex function defined over a convex feasible region so we have no 
assurance that local maxima are global maxima.  We must assume that they are local maxima.  
Figure 5.2 shows a concave (non-convex) function maximized over a convex constraint set, so we 
are assured that a local maximum is a global maximum (if we can find one) by the Local-Global 
Theorem.   
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Figure 5.1.  Illustration of global and local solutions. 
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Figure 5.2.  Concave function maximized over a convex constraint set 
 

A.6  Classical Programming 
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A.6.1  Unconstrained Scalar Case 
 
In this case, there are no constraints (Equation 6.2 is not present) and we consider only the objective 
function for a single decision variable, the scalar x 
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The necessary conditions for a local minimum are 
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 (first-order conditions) (6.1.2) 

and  
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 (second-order conditions)  (6.1.3) 
 
The first-order conditions represent an equation which can be solved for x* the optimal solution for 
the problem.   
 
But what if the decision variable was constrained to be greater than or equal to zero (non-negativity 
restriction), e.g., 0≥x ?  In this case there are two possibilities, either (1) the solution lies to the 
right of the origin and has an interior solution where the slope of the function is zero, or (2) or the 
solution lies on the boundary (at the origin) where x = 0 and the slope is negative.  That is 
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This condition is often written as 
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A.6.2  Unconstrained Vector Case 
 
In this case, again we have no constraints and we consider only the objective function for a vector of 
decision variables x 
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The necessary conditions are  
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which is actually n simultaneous nonlinear equations 
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The first-order conditions represent n - simultaneous equations which can be solved for x* the 
optimal solution for the problem.   
 
But what if the decision variable was constrained to be greater than or equal to zero (non-negativity 
restriction), e.g., x ≥ 0?  In this case there are two possibilities, either (1) the solution lies to the right 
of the origin and has an interior solution where the slope of the function is zero, or (2) or the solution 
lies on the boundary (at the origin) where x = 0 and the slope is negative.  That is 
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for each j.  This condition is often written as 
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A.6.3  Constrained Vector Case - Single Constraint 
 
In this case, we consider the objective function for a vector of decision variables x, and a single 
constraint, h(x)=0 
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We can multiply the constraint by a variable or multiplier and subtract the resulting expression from 
the objective function to form what is known as the “Lagrangian” function 
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and then simply apply the methods of the previous case (unconstrained vector case).  Note that for a 



 

 

feasible vector the constraint must be satisfied, that is 
 
 0)( =xh  (6.3.3) 
and  
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so we really have not changed the objective function as long as we remain feasible.  The necessary 
conditions (first-order) are  
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The first-order conditions represent n+1 simultaneous equations  
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which must be solved for the optimal values of x* and λ*. 
 

A.6.4  Example 
 (adapted from Loucks et al., 1981, Section 2.6, pp. 23-28)   
 
Consider a situation where there is a total quantity of water R to be allocated to a number of different 
 uses.  Let the quantity of water to be allocated to each use be denoted by xi, i=1,…, I.  The objective 
is to determine the quantity of water to be allocated to each use such that the total net benefits of all 
uses is maximized.  We will consider an example with three uses I = 3. 
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Figure 6.4.1.  Reservoir release example. 
 
The net-benefit resulting from an allocation of xi to use i  is given by  
 

 3,2,1)( 2 =−= ixbxaxB iiiiii  (6.4.1) 
 
where ai and bi are given positive constants.  These net-benefit (benefit minus cost) functions are of 
the form shown in Figure 6.4.2. 
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Figure 6.4.2.  Net-benefit function for user i. 
 

The three allocation variables xi are unknown decision variables.  The values that these variables can 
take on are restricted between 0 (negative allocation is meaningless) and values whose sum, 
x1 + x2 + x3, does not exceed the available supply of water R minus the required downstream flow S. 
 The optimization model to maximize net-benefits can be written as 
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The Lagrangian function is 
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There are now four unknowns in the problem, xi ,  i = 1, 2, 3 and λ .  Solution of the problem is 
obtained by applying the first-order conditions, setting the first partial derivatives of the Lagrangian 
function with respect to each of the variables equal to zero: 
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These equations are the necessary conditions for a local maximum or minimum ignoring the 
nonnegativity conditions.  Since the objective function involves the maximization of the sum of 
concave functions (functions whose slopes are decreasing), any local optima will also be the global 
maxima (by the Local-Global Theorem). 
 
The optimal solution of this problem is found by solving for each xi ,  i = 1, 2, 3 in terms of λ . 
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Then solve for λ  by substituting the xi ,  i = 1, 2, 3 into the constraint 
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and solve for λ 
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Hence knowing R, S, ai  and bi  this last equation can be solved for λ .  Substitution of this value into 
the equation for the xi ,  i = 1, 2, 3, we can solve for the optimal allocations, provided that all of the 
allocations are nonnegative. 
 

A.6.5  Constrained Vector Case – Multiple Constraints 
 
In this case, we consider the objective function for a vector of decision variables x, and a vector of 
constraints, h(x)=0 
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We can multiply the constraints by a vector of variables or multipliers ),...,,( 21 mλλλλ = or )(xh⋅λ  
and subtract the resulting expression from the objective function to form what is known as the 
“Lagrangian” function 
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and then simply apply the methods of the previous case (unconstrained vector case).  The necessary 
conditions (first-order) are  
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and 

 0x, =∇ )( λλ L  (6.5.5) 
or 
 0xh =)(  (6.5.6) 
 
The first-order conditions (Eq. 6.5.4 and Eq. 6.5.6) represent n+m simultaneous equations must be 
solved for the optimal values of the vectors of decision variables and the Lagrange multipliers, x* 
and λ*. 
 
Example (after Haith, 1982, Example 4-2):   
 
Solve the following optimization problem using Lagrange multipliers. 
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The last three constraints must be turned into equalities in order to use Classical Programming to 
solve the problem.  Introduce three new variables, s1, s2, and s3 
 

 0

0

1025

2
32

2
21

2
121

=−

=−

=++

sx

sx

sxx

 (6.5.8) 
 
These slack variables (difference between the left and right sides) are always introduced on the 
side of the inequality that the inequality sign points toward.   
 
The “Lagrangian” function is 
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The first-order optimality conditions are  
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Equations 6.10c-e require that λi or si be equal to zero.  There can be several solutions to the 
problem depending on whether one or another of the λi or si are equal to zero. 
 

A.6.6  Nonlinear Programming and the Kuhn-Tucker Conditions 
 
In this case, we consider the objective function for a vector of decision variables x, a vector of 
equality constraints, h(x)=0, and a vector of inequality constraints, g(x)≤0 
 

 0xg
0xh

x
x

≤
=

)(
)(

tosubject

)(Maximize f

 (6.6.1) 
 
We can multiply the constraints by vectors of variables or multipliers ),...,,( 21 mλλλλ = or )(xh⋅λ  
and ),...,,( 21 ruuu=u or )(xgu ⋅  and subtract the resulting expression from the objective function 
to form what is known as the “Lagrangian” function 
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and then simply apply the methods of the previous case (unconstrained vector case).  The necessary 



 

 

conditions (first-order) are the Kuhn-Tucker Conditions 
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 mihi ,...,1for,0*)( ==x  (6.6.5) 
 

 
rju
nkx

j
k

,...,1,0
,...,1,0*

=≥
=≥

 (6.6.6) 
 

A.7  Exercises 
 
1.  (after Mays and Chung, 1992, Exercise 3.4.5) Water is available at supply points 1, 2, and 3 in 
quantities 4, 8, and 12 thousand units, respectively.  All of this water must be shipped to destinations 
A, B, C, D, and E, which have requirements of 1, 2, 3, 8, and 10 thousand units, respectively.  The 
following table gives the cost of shipping one unit of water from the given supply point to the given 
destination.  Find the shipping schedule which minimizes the total cost of transportation. 
 

Destination  
Source A B C D E 

1 7 10 5 4 12
2 3 2 0 9 1 
3 8 13 11 6 14
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2.  (adapted from Mays and Tung, 1992, Exercise 3.1.1) Solve the following Linear Program 
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3.  (adapted from Mays and Tung, 1992, Exercise 3.2.1)  Consider the following Linear Program 
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(a) Graph the feasible region for the problem. 

 
(b) Solve the problem graphically. 

 
(c) How much can the nonbinding constraints be reduced without changing the feasibility of the 

optimal solution? 
 

(d) What is the range of the objective function coefficient of x2 so that the optimal solution 
remains feasible? 

 
4.  (after Haith, 1982, Example 5-1)  1000 ha of farmland surrounding a lake is available for two 



 

 

crops.  Each hectare of crop 1 loses 0.9 kg/yr of pesticide to the lake, and the corresponding loss 
from crop 2 is 0.5 kg/yr.  Total pesticide losses are not allowed to exceed 632.5 kg/yr.  Crop returns 
are $300 and $150/ha for crops 1 and 2, respectively.  Costs for crops are estimated to be $160 and 
$50/ha for crops 1 and 2, respectively.   
 

(a) Determine the cropping combination that maximizes farmer profits subject to a constraint on 
the pesticide losses into the lake. 

 
(b) If crop returns decrease to $210/ha for crop 1, what is the optimal solution? 
 
(c) If crop returns increase to $380/ha for crop 1, what is the optimal solution? 

 
5.  (after Haith, 1982, Exercise 5-1)  A metal refining factory has a capacity of 10x 104 kg/week, 
produces waste at the rate of 3 kg/kg of product, contined in a wastewater at a concentration of 2 
kg/m3.  The factory’s waste treatment plant operates at a constant efficiency of 0.85 and has a 
capacity of 8x104 m3/week. Wastewater is discharged into a river, and the effluent standard is 
100,000 kg/week.  There is also an effluent charge of $1000/104 kg discharged.  Treatment costs are 
$1000/104 m3, product sales price is $10,000/104 kg, and production costs are $6850/104 kg.   
 

(a) Construct a linear program that can be used to solve this wastewater problem.  Solve the 
model graphically.   

 
(b) If the effluent charge is raised to $2000/104 kg, how much will the waste discharge be 

reduced? 
 
6.  (after Haith, 1982, Exercise 5-9)  A standard of 1 kg/103m3 has been set as the maximum 
allowable concentration for a substance in a river.  Three major dischargers of the substance are 
located along the river as shown in the figure.  The river has a flow of 500,000 m3/day and an 
ambient concentration of the regulated substance of 0.2 kg/103m3 upstream of the first discharger.  
The three waste sources presently discharge 100, 100m, and 1600 kg/day of the regulated substance, 
resulting in violations of the standard in the river.  The substance is not conserved in the river, but 
decays at a rate of K=0.03 km-1.  Thus is C1 and C2 are the concentrations of the substance 
immediately after the discharge points 1 and 2, respectively, the concentrations at any point L km 
downstream of discharge 1 (L < 10) is C1e-KL.  Similarly, the concentration L km downstream of 
discharge 2 (L < 15) is C2e-KL.  The cost of removing the substance from the wastewater is 
$10X/1000 m3 where X is the fraction of the substance removed.  Use LP to determine an optimal 
treatment program for the regulated substance. 
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7.  (after Haith, 1982, Example 4-1)  Solve the following optimization problem using Lagrange 
multipliers. 
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8.  (after Haith, 1982, Exercise 4-1)  Solve the following optimization problem using Lagrange 
multipliers (Classical programming) 
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9.  (after Haith, 1982, Exercise 4-2)  Solve the following optimization problem using Lagrange 
multipliers (Classical programming) 
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10a.  (after Revelle et al., 1997)  A vertical cylindrical steel tank of height h and diameter d is to be 
constructed.  The tank is open at the top, and it is known that the bottom must be twice as thick as 
the side thickness, t.  Determine the dimensions of the minimum cost tank of volume k, where the 
weight of the material represents the total cost of the tank. 
 
10b.  (after Willis, 2002)  A waste storage facility consists of a right circular cylinder of radius 5 
units and a conical cap.  The volume of the storage facility is V.  Determine H, the height of the 



 

 

storage facility, and h, the height of the conical cap, such that the total surface area is minimized.  
 
11.  (after Taha, 1997)  Find the maximum value of the following function 
 

2
3

2
2

2
13231111 2),,( xxxxxxxxxxf −−−++=  

 
12.  (after Taha, 1997)  Consider the problem 
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Appendix B.  Mathematics Review 

B.1  Linear Algebra 

B.1.1  Introduction 
 
An important tool in many areas of scientific and engineering analysis and computation is matrix 
theory or linear algebra.  A wide variety of problems lead ultimately to the need to solve a linear 
system of equations Ax = b.  There are two general approaches to the solution of linear systems.   

B.1.2  Matrix Notation 

A matrix is an array of real numbers.  Consider an (m x n) matrix A
rr

 with m rows and n columns:  
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 (A.1.2.1) 
 
The horizontal elements of the matrix are the rows and the vertical elements are the columns.  The 
first subscript of an element designates the row, and the second subscript designates the column.  A 
row matrix (or row vector) is a matrix with one row, i.e., the dimension m = 1.  For example 
 

 ( )nrrrr  L321=r  (A.1.2.2) 
 
A column vector is a matrix with only one column, e.g.,  
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When the row and column dimensions of a matrix are equal (m = n) then the matrix is called square 
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The transpose of the (m x n) matrix A is the (n x m)  
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A symmetric matrix is one where AT = A.  An example of a symmetric matrix is 
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A diagonal matrix is a square matrix where elements off the main diagonal are all zero 
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An identity matrix is a diagonal matrix where all the elements are one’s 
 

 
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

10

1
01

  
O

I

 (A.1.2.8) 
 
An upper triangular matrix is one where all the elements below the main diagonal are zero 
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A lower triangular matrix is one where all the elements above the main diagonal are zero 
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B.1.3  Matrix Arithmetic 
 
Two (m x n) matrices A and B are equal if and only if each of their elements are equal.  That is 
 
 A = B if and only if aij = bij for i = 1,...,m and j = 1,...,n (A.1.3.1) 
 
The addition of vectors and matrices is allowed whenever the dimensions are the same.  The sum of 
two (m x 1) column vectors a and b is 
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Example: 
 

Let )4,2,3,1( −=u  and )2,1,5,3( −−=v .  Then 
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The sum of two (m x n) matrices A and B is 
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Multiplication of a matrix A by a scalar α  is defined as  
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The product of two matrices A and B is defined only if the number of columns of A is equal to the 
number of rows of B.  If A is (n x p) and B is (p x m), the product is an (n x m) matrix C  
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The ij element of the matrix C is given by  
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That is the cij element is obtained by adding the products of the individual elements of the i-th row of 
the first matrix by the j-th column of the second matrix (i.e., “row-by-column”).  The following 
figure shows an easy way to check if two matrices are compatible for multiplication and what the 
dimensions of the resulting matrix will be: 
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Matrix division is not a defined operation.  The identity matrix has the property that IA=A and AI = 
A. If A is an (n x n) square matrix and there is a matrix X with the property that  
 

AX=I (A.1.3.8) 
 
where I is the identity matrix, then the matrix X is defined to be the inverse of A and is denoted A-1.  
That is  
 

AA-1=I  and  A-1A=I (A.1.3.9) 
 
The inverse of a (2 x 2) matrix A can be represented simply as 
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B.1.4  Systems of Linear Equations 
 



 

 

Consider the linear system of equations 
 
 bAx   =  (A.1.4.1) 
 
where A is an (n x n) matrix, b is a column vector of constants, called the right-hand-side, and x is 
the unknown solution vector to be determined.  This system can be written out as  
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Performing the matrix multiplication and writing each equation out separately, we have 
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This system can also be written in the following manner 
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A formal way to obtain a solution using matrix algebra is to multiply each side of the equation by the 
inverse of A  to yield 
 

 bAAxA 11   −− =  (A.1.4.4) 
 
or, since IAA   1 =−  
 

 bA x 1−=  (A.1.4.5) 
 
Thus, we have obtained the solution to the system of equations.  Unfortunately, this is not a very 
efficient way of solving the system of equations.  We will discuss more efficient ways in the 
following sections. 
 
Example:  Consider the following two equations in two unknowns: 
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Solve the first equation for x2   
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which is a straight line with an intercept of 9 and a slope of (-3/2).  Now, solve the second equation 
for x2 
 

1
2
1

12   x  x +=  

 
which is also a straight line, but with an intercept of 1 and a slope of (1/2).  These lines are plotted in 
the following Figure.  The solution is the intersection of the two lines at x1 = 4 and x2 = 3. 
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Figure B.1.4.1.  Graphical solution of two simultaneous linear equations. 
 
Each linear equation  
 

 ininii  b x a   x a xa =+++ L2211  (A.1.4.6) 
 
represents a hyperplane in an n-dimensional Euclidean space (Rn), and the system of equations Ax = 



 

 

b represents m hyperplanes.  The solution of the system of equations is the intersection of all of the 
m hyperplanes, and can be 

 - the empty set (no solution) 
 - a point (unique solution) 
 - a line (non-unique solution) 
 - a plane (non-unique solution) 
 

B.1.5  Systems of Linear Inequalities 
 
A system of m linear inequalities in n unknowns can be written as  
 
 bAx   ≤  (A.1.5.1) 
or 
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This system of inequalities can also be written in the following manner 
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Each linear inequality 
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represents a half-space in Rn, and the system of inequalities Ax ≤ b represents the intersection of m 
half-spaces which is a polyhedral convex set or, if bounded, a polyhedron. 
 

B.2  Calculus 

B.2.1  Functions 
 
A function )(xf  of n variables can be written as 
 
 )(xfy =  (A.2.1.1) 
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A linear function of n variables is written as 
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where c  is a vector of coefficients.   
 

B.2.2  Sets, Neighborhoods and Distance 
 
The distance between two points x  and y  in Rn is defined as  
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A neighborhood around a point x  in Rn is defined as the set of all points y  less than some distance 
ε  from the point x  or 
 

 { }εε <∈= ),(:)( yxyx dRN n
 (A.2.2.2) 

 
A closed set is a set which contains all of the points on its boundary, for example a closed interval on 
the real line (R1).  In a bounded set, the distance between two points contained in the set is finite.  A 
compact set is closed and bounded, examples are any finite interval [a,b] on the real line or any 
bounded sphere in R3.   
 
A set S is a convex set if for any two points x and y in the set, the point  
 
 yxz )1( aa −+=  (A.2.2.3)  
 
is also in the set for all a, where 0 ≤ a ≤ 1.  That is, all weighted averages of two points in the set are 
also points in the set.  For example, all points on a line segment joining two points in a convex set 
are also in the set.  Straight lines, hyperplanes, closed halfspaces are all convex sets.  Figure 2 below 
illustrates a convex and a non-convex set.  A real valued function f(x) defined on a convex set S is a 
convex function if given any two points x and y in S, 
 
 )()1()()]()1()([ yxyx faaffaaff −+≤−+  (A.2.2.4) 



 

 

 
for all a, where 0 ≤ a ≤ 1.  Figure 3 illustrates the fact that the line segment joining two points in a 
convex function does not lie below the function.  Figure 4 shows general examples of convex and 
non-convex (or concave) functions.  An example of a convex function is a parabola which opens 
upward.  Linear functions (lines, planes, hyperplanes, half-spaces) are both convex and non-convex 
functions.  
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Figure A.2.2.1.  General diagram of convex and non-convex sets. 
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Figure A.2.2.2.  General diagram of a convex function. 
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Figure A.2.2.3.  General diagram of a convex function and a concave function. 

 

B.2.3  Derivatives 
 
The derivative of a function of a single scalar variable f(x) is defined as 
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The partial derivatives of a function f of the variables x and y are defined as 
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That is, to find the partial derivative of a multivariable function with respect to one independent 
variable xi, regard all other independent variables as fixed and find the usual derivative with respect 
to xi.  The partial derivative of a function of several variables f(x) with respect to a particular 
component of x, xi, evaluated at a point xo is 
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The partial derivative of f(x) with respect to the vector x is a row vector of partial derivatives of the 
function or the gradient vector 
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B.3  Vectors Calculus 

B.3.1  Coordinate Systems 
 
Typical coordinate systems used in groundwater problems include: Rectangular:   x, y, z; and 
Cylindrical:    r, θ, z where x = rcosθ  and y = rsinθ.  Let A be a vector function of (x, y, z) or (r, θ, 
z), respectively, then 
 

 kθrkjiA zrzyx AAAAAA ++=++= θ  (A.3.1.1) 
 
where (i, j, k) and (r, θ, k) are unit vectors in the (x, y, z) or (r, θ, z) directions, respectively. 
 

B.3.2  Basic Operators 
 
The gradient operator, del (from the Greek nabla) or ∇ , is defined in rectangular coordinates as the 
vector 
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 (A.3.2.1) 
 
The major operators: Gradient, “del” or , )(⋅∇ ; Divergence, “div” or )(⋅⋅∇ ; and Laplacian, “del dot 
del” or )()( 2 ⋅∇=⋅∇⋅∇  can be defined in the rectangular and cylindrical coordinate systems as: 
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Divergence  
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Proof: 
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Laplacian 
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e.g.,  
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B.3.3  Various Groundwater Relations 
 



 

 

The Piezometric head, zph += γ/ , is a scalar quantity and the gradient of this quantity is a column 
vector 
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The hydraulic conductivity, K, is a tensor whose common form in three dimensions is 
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The term h∇⋅K  is the product of the matrix K with the vector h∇  or (using “row by column” 
multiplication)  
 

kjiK
z
hK

y
hK

x
hK

z
hK

y
hK
x
hK

z
h
y
h
x
h

K
K

K
h zyx

z

y

x

z

y

x

∂
∂

+
∂
∂

+
∂
∂

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∇⋅

00
00
00

 (A.3.3.3) 
 
Now h∇⋅⋅∇ K  is the dot product of the vector )(⋅∇  with the vector h∇⋅K  or 
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APPENDIX C.  GAMS INSTALLATION 
 

C.1  Introduction 
 

1.  Run setup.exe: In most cases, you will run the file \systems\win\setup.exe directly from the GAMS 
distribution CD. There are many ways to do this; for example, you can use the Windows Explorer to browse 
the CD; open the \systems\win directory and double click setup.exe. The setup program will first prompt you 
for the name of the directory in which to install GAMS. We call this directory the ‘GAMS directory’. You 
may accept the default choice or pick another directory. Please remember that if you want to install two 
different versions of GAMS, they should be in separate directories (for example c:\gams and c:\gams old). 
The GAMS software will be installed in the directory you choose.  

2. Copy the license file: If no license file is found in the GAMS directory, you will be prompted for one 
during the installation. If you are not sure if you have a license file, or do not have it yet, choose ‘No’ when 
asked if you wish to copy a license file. You can always do this later. If no valid license file is found, GAMS 
will still function in demonstration mode and will only solve small problems. For example, all demonstration 
and student systems are shipped without a license. If you have a license file that you wish to copy to the 
GAMS directory at this time, answer ‘Yes’ to the license file prompt. You will now be given the opportunity 
to browse the file system and find the license file you wish to copy. For example, if your system came with a 
license file on a diskette, browse to the A: drive and select gamslice.txt. When you have found the correct file, 
choose ‘open’ to perform the copy.  

3. Create project files: If this is the first installation of GAMS with the GAMS IDE on your system, setup will 
create a default GAMS project in a subdirectory of the WINDOWS directory. If this is not the first such 
installation, your existing GAMS projects will be preserved.  

4. Choose default solvers: Run the GAMS IDE by double clicking gamside.exe from the GAMS directory. To 
view or edit the default solvers, choose File ! Options ! Solvers from the IDE. You can accept the existing 
defaults if you wish, but most users will want to pick default solvers for each model type. It is a good idea to 
review the solver defaults when installing a new GAMS system or when updating a license file.  

5. Run a few models to test the GAMS system: The online help for the IDE (Help  Help Topics  Guided 
Tour) describes how to copy a model from the GAMS model library, run it, and view the solution. To test 
your installation, run the following models from the GAMS model library:  
 

LP: trnsport (objective value: 153.675)  
NLP: chenery (objective value: 1058.9)  
MIP: bid (optimal solution: 15210109.512)  
MINLP: procsel (optimal solution: 1.9231)  
MCP: scarfmcp (no objective function)  
MPSGE: scarfmge (no objective function)  

If there are any problems during these test runs, read the section on Troubleshooting.   


