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1.  Introduction 
 
An optimization problem (mathematical program) is to determine the values of a vector of 
decision variables  
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 (1.1) 
 
which optimize (maximize or minimize) the value of an objective function 
 

 ),x,,x f(x) f( nL21=x  (1.2) 
 
The decision variables must also satisfy a set of constraints X  which describe the system being 
optimized and any restrictions on the decision variables.  The decision vector x is feasible if   
 
 X iffeasibleis ∈xx  (1.3) 
 
The feasible region X, an n-dimensional subset of nR , is defined by the set of all feasible 
vectors.  An optimal solution *x  has the properties (for minimization): 
 
 (1)  X  *∈x   (1.4) 
 
 (2)  *   )(  *)( xxxx ≠∀≤ ff   (1.5) 
 
i.e., the solution is feasible and attains a value of the objective function which is less than or 
equal to the objective function value resulting from any other feasible vector. 
 

2.  General Mathematical Programming Problem 
 
The general mathematical programming problem can be stated as 
 

  X 

    
)f(

∈x

x
x

subject to

 maximize

 (2.1) 
 
In words this says,  
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maximize the objective function f(x) by choice of the decision variables x while 
ensuring that the optimal decision variables satisfy all of the constraints or 
restrictions of the problem 

 
The objective function of the math programming problem can be either a linear or nonlinear 
function of the decision variables.   
 
Note that: 
 )f(x maximize  (2.2) 
is equivalent to  

 0, minimize

or,0, maximize

<+

>+

b)bf(a

b)bf(a

x

x

 (2.3) 
 
That is, optimizing if a linear operator; multiplying by a scalar or adding a constant does not 
change the result and maximizing a negative is the same as minimizing a positive function. 
 

3.  Constraints 
 
The constraint set X  of the math program can consist of combinations of: 

 
(1) Linear equalities: 
 
 b Ax =  (3.1) 

 

 
m,i b xa i

n

j
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=  (3.2) 
 

where the nm, j, iaij LL 11 ==  are the elements of the matrix A, and b is a vector of right-
hand-side constants.  For a review of matrix arithmetic and notation, linear equalities and 
inequalities, please see Section 7.1. 

 
(2) Linear inequalities: 
 
 b Ax ≤  (3.3) 

 

 
m,i b xa i

n

j
jij L1

1
=≤∑

=  (3.4) 
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(3) Nonlinear inequalities: 
 
 0  xg ≤)(  (3.5) 

 

 
r,j  g j L1)( =≤ 0x

 (3.6) 
 

where the functions g(x)
 
are nonlinear functions of the decision variables. 

 
(4) Nonlinear equalities: 
 
 0  xh =)(  (3.7) 

 

 m,i  hi L1)( =≤ 0x  (3.8) 
 
where the functions h(x) are nonlinear functions of the decision variables. 
 

4.  Typical Forms of Math Programming Problems 
 
Different forms of the objective function and constraints give rise to different classes of 
mathematical programming problems: 
 

4.1  Linear Programming 
 
The objective function is linear and the constraints are linear equalities, inequalities, or both and 
non-negativity restrictions apply. 
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Example: 
 

135719
5976

5
tosubject

532  Maximize

321

321

321

321

≤+−

−=−+−
−≥−+

++

xxx
xxx

xxx

xxx

 



Math Programming 5 1/10/2003 

 
Of course this example has the difficulty of what to do with the absolute value.  
 
An inequality with an absolute value can be replaced by two inequalities, e.g.,  

 
bxg ≤)(  

 
can be replaced by replaced by  
 

bxgbxg −≥≤ )(and)(  
 
So our example can be converted to: 
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Note: An equation can be replaced by two inequalities of the opposite direction.  For example an 
equation 
 

bxg =)(  
 
can be replaced by replaced by  
 

bxgbxg ≥≤ )(and)(  
 
Often it is easier for programs to check the inequality condition rather than the strict equality 
condition. 
 

4.2  Classical Programming   
 
The objective function is nonlinear and the constraints are nonlinear equalities. 
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 (4.2) 

 



Math Programming 6 1/10/2003 

Example: 
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4.3  Nonlinear Programming 
 
The objective function is linear or nonlinear and the constraints are linear or nonlinear equalities, 
inequalities, or both. 
 

 

0xg
0xh

x
x

≤
=

)(
)(

tosubject

)(Maximize f

 (4.3) 

 
Example: 
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5.  Types of Solutions 
 
Solutions to the general mathematical programming problem are classified as either global or 
local solutions depending upon certain characteristics of the solution.  A solution x* is a global 
solution (for maximization) if it is: 
 

1. Feasible; and  
2. Yields a value of the objective function less than or equal to that obtained by any other 

feasible vector, or 
 

 
Xff

X
∈∀≥

∈
xxx

x
)(*)(

and,*
 (5.1) 

 
A solution x* is a local solution (for maximization) if it is: 
 

1. Feasible; and  
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2. Yields a value of the objective function greater than or equal to that obtained by any 
feasible vector x sufficiently close to it, or 

 

 
*))(()(*)(

and,*
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εNXff
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 (5.2) 

 
In this case multiple optima may exist for the math program and we have only established that x* 
is the optimum within the neighborhood searched.  Extensive investigation of the program to 
find additional optima may be necessary. 
 
Sometimes we can establish the local or global nature of the solution to a math program.  The 
following two theorems give some examples. 
 
Weierstras Theorem:  (Sufficient conditions for a global solution) 

 
If X is non-empty and compact (closed and bounded) and f(x) is continuous on X, then f(x) 
has a global maximum either in the interior or on the boundary of X. 

 
Local - Global Theorem:  (Sufficient conditions for a local solution to be global) 

 
If X is a non-empty, compact and convex and f(x) is continuous on X and a concave 
(convex) function over X, then a local maximum is a global maximum. 

 
The Figure 5.1 shows a non-convex function defined over a convex feasible region so we have 
no assurance that local maxima are global maxima.  We must assume that they are local maxima.  
Figure 5.2 shows a concave (non-convex) function maximized over a convex constraint set, so 
we are assured that a local maximum is a global maximum (if we can find one) by the Local-
Global Theorem.   
 

 

x 

f( x ) 
Global Max

Global Min

Local Max

Local Min 

X 
 

Figure 5.1.  Illustration of global and local solutions. 
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x 

f( x ) 

Global Max

X 
 

Figure 5.2.  Concave function maximized over a convex constraint set 
 

6.  Classical Programming 
 

 )(Maximize x
x

f  (6.1) 

 0xh =)(
tosubject  (6.2) 

 

6.1  Unconstrained Scalar Case 
 
In this case, there are no constraints (Equation 6.2 is not present) and we consider only the 
objective function for a single decision variable, the scalar x 
 
 )(Maximize xf

x
 (6.1.1) 

 
The necessary conditions for a local minimum are 

 

 0)(
=

dx
xdf  (first-order conditions) (6.1.2) 

and  

 0)(
2

2
≤

dx
xfd  (second-order conditions)  (6.1.3) 

 
The first-order conditions represent an equation which can be solved for x* the optimal solution 
for the problem.   
 
But what if the decision variable was constrained to be greater than or equal to zero (non-
negativity restriction), e.g., 0≥x ?  In this case there are two possibilities, either (1) the solution 
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lies to the right of the origin and has an interior solution where the slope of the function is zero, 
or (2) or the solution lies on the boundary (at the origin) where x = 0 and the slope is negative.  
That is 
 

 




>==
==≤

0*if*at0
0*if*at0

xxx
xxx

dx
df  (6.1.4) 

 
This condition is often written as 
 

 *at0and,0 xx
dx
dfx

dx
df

==≤  (6.1.5) 

 

6.2  Unconstrained Vector Case 
 
In this case, again we have no constraints and we consider only the objective function for a 
vector of decision variables x 
 
 )(Maximize x

x
f  (6.2.1) 

 
The necessary conditions are  
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)()( ff   (first-order conditions) (6.2.3) 

 
which is actually n simultaneous nonlinear equations 
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The first-order conditions represent n - simultaneous equations which can be solved for x* the 
optimal solution for the problem.   
 
But what if the decision variable was constrained to be greater than or equal to zero (non-
negativity restriction), e.g., x ≥ 0?  In this case there are two possibilities, either (1) the solution 
lies to the right of the origin and has an interior solution where the slope of the function is zero, 
or (2) or the solution lies on the boundary (at the origin) where x = 0 and the slope is negative.  
That is 
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for each j.  This condition is often written as 
 

 nj
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6.3  Constrained Vector Case - Single Constraint 
 
In this case, we consider the objective function for a vector of decision variables x, and a single 
constraint, h(x)=0 
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tosubject
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 (6.3.1) 

 
We can multiply the constraint by a variable or multiplier and subtract the resulting expression 
from the objective function to form what is known as the “Lagrangian” function 
 
 )]([)(),( xxx hfL λλ −=  (6.3.2) 
 
and then simply apply the methods of the previous case (unconstrained vector case).  Note that 
for a feasible vector the constraint must be satisfied, that is 
 
 0)( =xh  (6.3.3) 
and  
 )(),( xx fL =λ  (6.3.4) 
 
so we really have not changed the objective function as long as we remain feasible.  The 
necessary conditions (first-order) are  
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The first-order conditions represent n+1 simultaneous equations  
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which must be solved for the optimal values of x* and λ*. 
 
Example (adapted from Loucks et al., 1981, Section 2.6, pp. 23-28)   
 
Consider a situation where there is a total quantity of water R to be allocated to a number of 
different  uses.  Let the quantity of water to be allocated to each use be denoted by xi, i=1,…, I.  
The objective is to determine the quantity of water to be allocated to each use such that the total 
net benefits of all uses is maximized.  We will consider an example with three uses I = 3. 
 

 R 

User 1 

S 

User 2 User 3 Reservoir 

x1 x2 x3

B1 B2
B3 

 
 

Figure 6.4.1.  Reservoir release example. 
 
The net-benefit resulting from an allocation of xi to use i  is given by  

 
 3,2,1)( 2 =−= ixbxaxB iiiiii  (6.4.1) 
 
where ai and bi are given positive constants.  These net-benefit (benefit minus cost) functions are 
of the form shown in Figure 6.4.2. 
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Figure 6.4.2.  Net-benefit function for user i. 

 
The three allocation variables xi are unknown decision variables.  The values that these variables 
can take on are restricted between 0 (negative allocation is meaningless) and values whose sum, 
x1 + x2 + x3, does not exceed the available supply of water R minus the required downstream 
flow S.  The optimization model to maximize net-benefits can be written as 
 

 
 0  
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)(maximize
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 (6.4.2) 
The Lagrangian function is 
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2 λλx
 (6.4.3) 

 
There are now four unknowns in the problem, xi ,  i = 1, 2, 3 and λ .  Solution of the problem is 
obtained by applying the first-order conditions, setting the first partial derivatives of the 
Lagrangian function with respect to each of the variables equal to zero: 
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These equations are the necessary conditions for a local maximum or minimum ignoring the 
nonnegativity conditions.  Since the objective function involves the maximization of the sum of 
concave functions (functions whose slopes are decreasing), any local optima will also be the 
global maxima (by the Local-Global Theorem). 
 
The optimal solution of this problem is found by solving for each xi ,  i = 1, 2, 3 in terms of λ . 
 

 3,2,1
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a
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i
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λ
 (6.4.5) 

 
Then solve for λ  by substituting the xi ,  i = 1, 2, 3 into the constraint 
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and solve for λ 
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Hence knowing R, S, ai  and bi  this last equation can be solved for λ .  Substitution of this value 
into the equation for the xi ,  i = 1, 2, 3, we can solve for the optimal allocations, provided that all 
of the allocations are nonnegative. 
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6.5  Constrained Vector Case – Multiple Constraints 
 
In this case, we consider the objective function for a vector of decision variables x, and a vector 
of constraints, h(x)=0 
 

 
0xh

x
x

=)(
tosubject

)(Maximize f

 (6.5.1) 

 
We can multiply the constraints by a vector of variables or multipliers ),...,,( 21 mλλλλ = or 

)(xh⋅λ  and subtract the resulting expression from the objective function to form what is known 
as the “Lagrangian” function 
 

 ∑
=

−=⋅−=
m

i
ii )(hffL

1
)()()(),( xxxhxx λλλ  (6.5.2) 

 
and then simply apply the methods of the previous case (unconstrained vector case).  The 
necessary conditions (first-order) are  
 
 0xhxx, =∇⋅−∇=∇ )()()( xxx fL λλ  (6.5.3) 
 
or 

 0)]()([
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∂
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i
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hffL
xxx
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and 
 0x, =∇ )( λλ L  (6.5.5) 
or 
 0xh =)(  (6.5.6) 
 
The first-order conditions (Eq. 6.5.4 and Eq. 6.5.6) represent n+m simultaneous equations must 
be solved for the optimal values of the vectors of decision variables and the Lagrange 
multipliers, x* and λ*. 
 
Example (after Haith, 1982, Example 4-2):   
 
Solve the following optimization problem using Lagrange multipliers. 
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The last three constraints must be turned into equalities in order to use Classical Programming to 
solve the problem.  Introduce three new variables, s1, s2, and s3 
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These slack variables (difference between the left and right sides) are always introduced on the 
side of the inequality that the inequality sign points toward.   
 
The “Lagrangian” function is 
 
 )()()1025(2),( 2
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The first-order optimality conditions are  
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Equations 6.10c-e require that λi or si be equal to zero.  There can be several solutions to the 
problem depending on whether one or another of the λi or si are equal to zero. 
 

6.6  Nonlinear Programming and the Kuhn-Tucker Conditions 
 
In this case, we consider the objective function for a vector of decision variables x, a vector of 
equality constraints, h(x)=0, and a vector of inequality constraints, g(x)≤0 
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We can multiply the constraints by vectors of variables or multipliers ),...,,( 21 mλλλλ = or 

)(xh⋅λ  and ),...,,( 21 ruuu=u or )(xgu ⋅  and subtract the resulting expression from the 
objective function to form what is known as the “Lagrangian” function 
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and then simply apply the methods of the previous case (unconstrained vector case).  The 
necessary conditions (first-order) are the Kuhn-Tucker Conditions 
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Exercises 
 
1.  (after Mays and Chung, 1992, Exercise 3.4.5) Water is available at supply points 1, 2, and 3 
in quantities 4, 8, and 12 thousand units, respectively.  All of this water must be shipped to 
destinations A, B, C, D, and E, which have requirements of 1, 2, 3, 8, and 10 thousand units, 
respectively.  The following table gives the cost of shipping one unit of water from the given 
supply point to the given destination.  Find the shipping schedule which minimizes the total cost 
of transportation. 
 

Destination  
Source A B C D E 

1 7 10 5 4 12
2 3 2 0 9 1 
3 8 13 11 6 14

 

A

B

C

D

E

1

2

3
Supply Destination

A

B

C

D

E

1

2

3
Supply Destination

 
 
2.  (adapted from Mays and Tung, 1992, Exercise 3.1.1) Solve the following Linear Program 
 

135719
5976

5
tosubject

532  Maximize

321

321

321

321

≤+−

−=−+−
−≥−+

++

xxx
xxx

xxx

xxx

 



Math Programming 18 1/10/2003 

 
3.  (adapted from Mays and Tung, 1992, Exercise 3.2.1)  Consider the following Linear Program 
 

1823
6
4

tosubject
53  Maximize

21

2

1

21

≤+
≤
≤

+

xx
x
x

xx

 

 
(a) Graph the feasible region for the problem. 

 
(b) Solve the problem graphically. 

 
(c) How much can the nonbinding constraints be reduced without changing the feasibility of 

the optimal solution? 
 

(d) What is the range of the objective function coefficient of x2 so that the optimal solution 
remains feasible? 

 
4.  (after Haith, 1982, Example 5-1)  1000 ha of farmland surrounding a lake is available for two 
crops.  Each hectare of crop 1 loses 0.9 kg/yr of pesticide to the lake, and the corresponding loss 
from crop 2 is 0.5 kg/yr.  Total pesticide losses are not allowed to exceed 632.5 kg/yr.  Crop 
returns are $300 and $150/ha for crops 1 and 2, respectively.  Costs for crops are estimated to be 
$160 and $50/ha for crops 1 and 2, respectively.   
 

(a) Determine the cropping combination that maximizes farmer profits subject to a constraint 
on the pesticide losses into the lake. 

 
(b) If crop returns decrease to $210/ha for crop 1, what is the optimal solution? 
 
(c) If crop returns increase to $380/ha for crop 1, what is the optimal solution? 

 
5.  (after Haith, 1982, Exercise 5-1)  A metal refining factory has a capacity of 10x 104 kg/week, 
produces waste at the rate of 3 kg/kg of product, contined in a wastewater at a concentration of 2 
kg/m3.  The factory’s waste treatment plant operates at a constant efficiency of 0.85 and has a 
capacity of 8x104 m3/week. Wastewater is discharged into a river, and the effluent standard is 
100,000 kg/week.  There is also an effluent charge of $1000/104 kg discharged.  Treatment costs 
are $1000/104 m3, product sales price is $10,000/104 kg, and production costs are $6850/104 kg.   
 

(a) Construct a linear program that can be used to solve this wastewater problem.  Solve the 
model graphically.   

 
(b) If the effluent charge is raised to $2000/104 kg, how much will the waste discharge be 

reduced? 
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6.  (after Haith, 1982, Exercise 5-9)  A standard of 1 kg/103m3 has been set as the maximum 
allowable concentration for a substance in a river.  Three major dischargers of the substance are 
located along the river as shown in the figure.  The river has a flow of 500,000 m3/day and an 
ambient concentration of the regulated substance of 0.2 kg/103m3 upstream of the first 
discharger.  The three waste sources presently discharge 100, 100m, and 1600 kg/day of the 
regulated substance, resulting in violations of the standard in the river.  The substance is not 
conserved in the river, but decays at a rate of K=0.03 km-1.  Thus is C1 and C2 are the 
concentrations of the substance immediately after the discharge points 1 and 2, respectively, the 
concentrations at any point L km downstream of discharge 1 (L < 10) is C1e-KL.  Similarly, the 
concentration L km downstream of discharge 2 (L < 15) is C2e-KL.  The cost of removing the 
substance from the wastewater is $10X/1000 m3 where X is the fraction of the substance 
removed.  Use LP to determine an optimal treatment program for the regulated substance. 
 

1 2 3

River
300 103 m3/day
0.2 kg/103 m3

100 103 m3/day
10 kg/103 m3

50 103 m3/day
20 kg/103 m3

200 103 m3/day
8 kg/103 m3

Flow
Discharge

10 km 15 km

1 2 3

River
300 103 m3/day
0.2 kg/103 m3

100 103 m3/day
10 kg/103 m3

50 103 m3/day
20 kg/103 m3

200 103 m3/day
8 kg/103 m3

Flow
Discharge

10 km 15 km

 
 
7.  (after Haith, 1982, Example 4-1)  Solve the following optimization problem using Lagrange 
multipliers. 
 

102
65.03

tosubject
10205.0   Maximize

32

321

332
2
1

=+
=+−

++

xx
xxx

xxxx

 

 
8.  (after Haith, 1982, Exercise 4-1)  Solve the following optimization problem using Lagrange 
multipliers (Classical programming) 
 

42
103

tosubject

64   Maximize

32

321

3
32

2
1

=+
=++

++

xx
xxx

xxx
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9.  (after Haith, 1982, Exercise 4-2)  Solve the following optimization problem using Lagrange 
multipliers (Classical programming) 
 

0
66

tosubject
4   Maximize

1

21

2
21

≥
=−

−−

x
xx

xe x

 

 
10.  (after Willis, 2002)  A waste storage facility consists of a right circular cylinder of radius 5 
units and a conical cap.  The volume of the storage facility is V.  Determine H, the height of the 
storage facility, and h, the height of the conical cap, such that the total surface area is minimized.  
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Appendix A.  Mathematics Review 

A.1  Linear Algebra 

A.1.1  Introduction 
 
An important tool in many areas of scientific and engineering analysis and computation is matrix 
theory or linear algebra.  A wide variety of problems lead ultimately to the need to solve a linear 
system of equations Ax = b.  There are two general approaches to the solution of linear systems.   

A.1.2  Matrix Notation 

A matrix is an array of real numbers.  Consider an (m x n) matrix A
rr

 with m rows and n columns:  
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n
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A

 (A.1.2.1) 
 
The horizontal elements of the matrix are the rows and the vertical elements are the columns.  
The first subscript of an element designates the row, and the second subscript designates the 
column.  A row matrix (or row vector) is a matrix with one row, i.e., the dimension m = 1.  For 
example 
 

 ( )nrrrr  L321=r  (A.1.2.2) 
 
A column vector is a matrix with only one column, e.g.,  
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 (A.1.2.3) 
 
When the row and column dimensions of a matrix are equal (m = n) then the matrix is called 
square 
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 (A.1.2.4) 
 
The transpose of the (m x n) matrix A is the (n x m)  



Math Programming 23 1/10/2003 

 

 
















=

mnnn

m
m

T

aaa

aaa
aaa

  

L
OM

L

21

22212
12111

A

 (A.1.2.5) 
 
A symmetric matrix is one where AT = A.  An example of a symmetric matrix is 
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 (A.1.2.6) 

 
A diagonal matrix is a square matrix where elements off the main diagonal are all zero 
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 (A.1.2.7) 
 
An identity matrix is a diagonal matrix where all the elements are one’s 
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 (A.1.2.8) 
 
An upper triangular matrix is one where all the elements below the main diagonal are zero 
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 (A.1.2.9) 
 
A lower triangular matrix is one where all the elements above the main diagonal are zero 
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A.1.3  Matrix Arithmetic 
 
Two (m x n) matrices A and B are equal if and only if each of their elements are equal.  That is 
 
 A = B if and only if aij = bij for i = 1,...,m and j = 1,...,n (A.1.3.1) 
 
The addition of vectors and matrices is allowed whenever the dimensions are the same.  The sum 
of two (m x 1) column vectors a and b is 
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 (A.1.3.2) 
 
Example: 
 

Let )4,2,3,1( −=u  and )2,1,5,3( −−=v .  Then 
 

)2,1,2,4()24,12,53,31( =−−+−+=+ vu  
 

)20,10,15,5()4*5,2*5),3(*5,1*5(5 −=−=u  
 

)14,7,21,7()6,3,15,9()8,4,6,2(32 −−=−−+−=− vu  
 
The sum of two (m x n) matrices A and B is 
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Multiplication of a matrix A by a scalar α  is defined as  
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The product of two matrices A and B is defined only if the number of columns of A is equal to 
the number of rows of B.  If A is (n x p) and B is (p x m), the product is an (n x m) matrix C  
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The ij element of the matrix C is given by  
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That is the cij element is obtained by adding the products of the individual elements of the i-th 
row of the first matrix by the j-th column of the second matrix (i.e., “row-by-column”).  The 
following figure shows an easy way to check if two matrices are compatible for multiplication 
and what the dimensions of the resulting matrix will be: 
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Matrix division is not a defined operation.  The identity matrix has the property that IA=A and 
AI = A. If A is an (n x n) square matrix and there is a matrix X with the property that  
 
 AX = I (A.1.3.8) 
 
where I is the identity matrix, then the matrix X is defined to be the inverse of A and is denoted 
A-1.  That is  
 
 AA-1 = I and A-1A = I  (A.1.3.9) 
 
The inverse of a (2 x 2) matrix A can be represented simply as 
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Example 
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A.1.4  Systems of Linear Equations 
 
Consider the linear system of equations 
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 bAx   =  (A.1.4.1) 
 
where A is an (n x n) matrix, b is a column vector of constants, called the right-hand-side, and x 
is the unknown solution vector to be determined.  This system can be written out as  
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Performing the matrix multiplication and writing each equation out separately, we have 
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 (A.1.4.3a) 
This system can also be written in the following manner 
 

 
n,i b xa i

n

j
jij L1

1
==∑

=  (A.1.4.3b) 
 
A formal way to obtain a solution using matrix algebra is to multiply each side of the equation by 
the inverse of A  to yield 
 
 bAAxA 11   −− =  (A.1.4.4) 
 
or, since IAA   1 =−  
 
 bA x 1−=  (A.1.4.5) 
 
Thus, we have obtained the solution to the system of equations.  Unfortunately, this is not a very 
efficient way of solving the system of equations.  We will discuss more efficient ways in the 
following sections. 
 
Example:  Consider the following two equations in two unknowns: 
 

2  2x  x
18  2x  3x

21

21

=+−
=+

 

 
Solve the first equation for x2   
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9
2
3

12   x  x +
−

=  

 
which is a straight line with an intercept of 9 and a slope of (-3/2).  Now, solve the second 
equation for x2 
 

1
2
1

12   x  x +=  

 
which is also a straight line, but with an intercept of 1 and a slope of (1/2).  These lines are 
plotted in the following Figure.  The solution is the intersection of the two lines at x1 = 4 and x2 = 
3. 
 
 

 

2 

4 

6 

8 

2 4 6 8 x1

x 2 

3x1 + 2x2 = 18

-x1 + 2x2 = 2

Solut ion: x1 = 4 ; x2 = 3

 
 

Figure A.1.4.1.  Graphical solution of two simultaneous linear equations. 
 
Each linear equation  
 

 ininii  b x a   x a xa =+++ L2211  (A.1.4.6) 
 
represents a hyperplane in an n-dimensional Euclidean space (Rn), and the system of equations 
Ax = b represents m hyperplanes.  The solution of the system of equations is the intersection of 
all of the m hyperplanes, and can be 

 - the empty set (no solution) 
 - a point (unique solution) 
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 - a line (non-unique solution) 
 - a plane (non-unique solution) 
 

A.1.5  Systems of Linear Inequalities 
 
A system of m linear inequalities in n unknowns can be written as  
 
 bAx   ≤  (A.1.5.1) 
or 
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This system of inequalities can also be written in the following manner 
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=  (A.1.5.2b) 
 
Each linear inequality 
 

 ininii  b x a   x a xa ≤+++ L2211  (A.1.5.3) 
 
represents a half-space in Rn, and the system of inequalities Ax ≤ b represents the intersection of 
m half-spaces which is a polyhedral convex set or, if bounded, a polyhedron. 
 

A.2  Calculus 

A.2.1  Functions 
 
A function )(xf  of n variables can be written as 
 
 )(xfy =  (A.2.1.1) 
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A linear function of n variables is written as 
 

 nn

n

i
ii xcxcxcxcfy +++==⋅== ∑
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L2211
1

)( xcx  (A.2.1.3) 

 
where c  is a vector of coefficients.   
 

A.2.2  Sets, Neighborhoods and Distance 
 
The distance between two points x  and y  in Rn is defined as  
 

 ∑
=

−=
n

i
ii yxd

1

2)(),( yx  (A.2.2.1) 

 
A neighborhood around a point x  in Rn is defined as the set of all points y  less than some 
distance ε  from the point x  or 
 
 { }εε <∈= ),(:)( yxyx dRN n  (A.2.2.2) 
 
A closed set is a set which contains all of the points on its boundary, for example a closed 
interval on the real line (R1).  In a bounded set, the distance between two points contained in the 
set is finite.  A compact set is closed and bounded, examples are any finite interval [a,b] on the 
real line or any bounded sphere in R3.   
 
A set S is a convex set if for any two points x and y in the set, the point  
 
 yxz )1( aa −+=  (A.2.2.3)  
 
is also in the set for all a, where 0 ≤ a ≤ 1.  That is, all weighted averages of two points in the set 
are also points in the set.  For example, all points on a line segment joining two points in a 
convex set are also in the set.  Straight lines, hyperplanes, closed halfspaces are all convex sets.  
Figure 2 below illustrates a convex and a non-convex set.  A real valued function f(x) defined on 
a convex set S is a convex function if given any two points x and y in S, 
 
 )()1()()]()1()([ yxyx faaffaaff −+≤−+  (A.2.2.4) 
 
for all a, where 0 ≤ a ≤ 1.  Figure 3 illustrates the fact that the line segment joining two points in 
a convex function does not lie below the function.  Figure 4 shows general examples of convex 
and non-convex (or concave) functions.  An example of a convex function is a parabola which 
opens upward.  Linear functions (lines, planes, hyperplanes, half-spaces) are both convex and 
non-convex functions.  
 



Math Programming 31 1/10/2003 

x

x
y

y

convex

non-convex

 
 

Figure A.2.2.1.  General diagram of convex and non-convex sets. 
 

 

yx ax + (1-a)y

X

x 

f( x ) 

f( a x +  (1-a) y ) 

f( x ) 

f( y ) 

af(x) + (1-a)f(y)

 
 

Figure A.2.2.2.  General diagram of a convex function. 
 

 

x 

f( x ) 

Convex 
Concave

 
Figure A.2.2.3.  General diagram of a convex function and a concave function. 
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A.2.3  Derivatives 
 
The derivative of a function of a single scalar variable f(x) is defined as 
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The partial derivatives of a function f of the variables x and y are defined as 
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That is, to find the partial derivative of a multivariable function with respect to one independent 
variable xi, regard all other independent variables as fixed and find the usual derivative with 
respect to xi.  The partial derivative of a function of several variables f(x) with respect to a 
particular component of x, xi, evaluated at a point xo is 
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The partial derivative of f(x) with respect to the vector x is a row vector of partial derivatives of 
the function or the gradient vector 
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A.3  Vectors Calculus 

A.3.1  Coordinate Systems 
 
Typical coordinate systems used in groundwater problems include: Rectangular:   x, y, z; and 
Cylindrical:    r, θ, z where x = rcosθ  and y = rsinθ.  Let A be a vector function of (x, y, z) or (r, 
θ, z), respectively, then 
 
 kθrkjiA zrzyx AAAAAA ++=++= θ  (A.3.1.1) 
 
where (i, j, k) and (r, θ, k) are unit vectors in the (x, y, z) or (r, θ, z) directions, respectively. 
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A.3.2  Basic Operators 
 
The gradient operator, del (from the Greek nabla) or ∇ , is defined in rectangular coordinates as 
the vector 
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The major operators: Gradient, “del” or , )(⋅∇ ; Divergence, “div” or )(⋅⋅∇ ; and Laplacian, “del 
dot del” or )()( 2 ⋅∇=⋅∇⋅∇  can be defined in the rectangular and cylindrical coordinate systems 
as: 
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Divergence (Rectangular) 
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 (Cylindrical) 
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Laplacian (Rectangular) 2
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   e.g.,  2
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A.3.3  Various Groundwater Relations 
 
The Piezometric head, zph += γ/ , is a scalar quantity and the gradient of this quantity is a 
column vector 
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The hydraulic conductivity, K, is a tensor whose common form in three dimensions is 
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The term h∇⋅K  is the product of the matrix K with the vector h∇  or (using “row by column” 
multiplication)  
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Now h∇⋅⋅∇ K  is the dot product of the vector )(⋅∇  with the vector h∇⋅K  or 
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