Mathematical Programming

Lecture Notes
CE 385D - McKinney

Water Resources Planning and Management

Department of Civil Engineering
The University of Texas at Austin

Section

1. Introduction

2. General Mathematical Programming Problem
3. Constraints

4. Typical Forms of Math Programming Problems
4.1 Linear Programming
4.2 Classical Programming
4.3 Nonlinear Programming

5. Types of Solutions

6. Classical Programming
6.1 Unconstrained Scalar Case
6.2 Unconstrained Vector Case
6.3 Constrained Vector Case - Single Constraint
6.5 Constrained Vector Case — Multiple Constraints
6.6 Nonlinear Programming and the Kuhn-Tucker Conditions

Exercises
References

Appendix A. Mathematics Review
A.1 Linear Algebra
A.2 Calculus
A.3 Vectors Calculus

Math Programming 1

page

—_
SO XL &N NN P AR W NN

—_—
N B

N
_—

W N NN
N O NN

1/10/2003



1. Introduction

An optimization problem (mathematical program) is to determine the values of a vector of
decision variables

f (1.1)

which optimize (maximize or minimize) the value of an objective function
Jx) = flxpxg. - x,) (1.2)

The decision variables must also satisfy a set of constraints X which describe the system being
optimized and any restrictions on the decision variables. The decision vector x is feasible if

xisfeasibleif x € X (1.3)

The feasible region X, an n-dimensional subset of R", is defined by the set of all feasible
vectors. An optimal solution x * has the properties (for minimization):

(1) x*eX (1.4)
2) f(x)<f(x)Vx#x* (1.5)
i.e., the solution is feasible and attains a value of the objective function which is less than or

equal to the objective function value resulting from any other feasible vector.

2. General Mathematical Programming Problem

The general mathematical programming problem can be stated as

maximize f(x)
x
subject to

xeX 2.1)

In words this says,
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maximize the objective function f(x) by choice of the decision variables x while
ensuring that the optimal decision variables satisfy all of the constraints or
restrictions of the problem

The objective function of the math programming problem can be either a linear or nonlinear
function of the decision variables.

Note that:

maximize f(x) (2.2)
is equivalent to

maximizea + bf(x), b>0, or

minimizea + bf(x), b<0 (2.3)

That is, optimizing if a linear operator; multiplying by a scalar or adding a constant does not
change the result and maximizing a negative is the same as minimizing a positive function.

3. Constraints

The constraint set X of the math program can consist of combinations of:

(1) Linear equalities:

Ax=b 3.1)
n

Zaijxj = bi i=1,---m

J=1 (3.2)

where the a;;, i=1---m, j=1---n are the elements of the matrix 4, and b is a vector of right-

hand-side constants. For a review of matrix arithmetic and notation, linear equalities and
inequalities, please see Section 7.1.

(2) Linear inequalities:

Ax<b (3.3)
n

2 a;x; < b i=l--m

J=1 (34)
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(3) Nonlinear inequalities:

g(x)<0 (3.5)
gij(x) <0 j=L--r (3.6)

where the functions g(x) are nonlinear functions of the decision variables.

(4) Nonlinear equalities:
=0 (3.7)

hi(x) <0 i=1-m (3.8)

where the functions A(x) are nonlinear functions of the decision variables.

4. Typical Forms of Math Programming Problems

Different forms of the objective function and constraints give rise to different classes of
mathematical programming problems:

4.1 Linear Programming

The objective function is linear and the constraints are linear equalities, inequalities, or both and
non-negativity restrictions apply.

Maximize ¢ - x
X

subject to 4.1)
Ax<b

x>0
Example:

Maximize 2x, +3x, +5x,
subject to

X, +Xx, —x3 =25

—6x, +7x, —9x; =5

19x, —=7x, +5x;| <13
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Of course this example has the difficulty of what to do with the absolute value.

An inequality with an absolute value can be replaced by two inequalities, e.g.,
lg(x)|<b
can be replaced by replaced by
g(x)<bandg(x)=-b
So our example can be converted to:

Maximize 2x, +3x, +5x,
subject to
X, +x,—x;=2-5
—6x, +7x, —9x; =5
19x, —7x, +5x, <13
19x, = 7x, +5x; =213

Note: An equation can be replaced by two inequalities of the opposite direction. For example an
equation

g(x)=b
can be replaced by replaced by
g(x)<bandg(x)=b

Often it is easier for programs to check the inequality condition rather than the strict equality
condition.

4.2 Classical Programming

The objective function is nonlinear and the constraints are nonlinear equalities.
Maximize f(x)
X

subject to (4.2)
h(x)=0
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Example:

Minimize (x, —1)* +(x, —2)°
subject to

x,—2x,=0

4.3 Nonlinear Programming

The objective function is linear or nonlinear and the constraints are linear or nonlinear equalities,
inequalities, or both.

Maximize f(x)
X

SubjeCt to (43)
h(x)=0
g(x)<0

Example:

Maximize ln(x  + 1) +x,
subject to
2x, +x, <3

x,20,x,20

5. Types of Solutions

Solutions to the general mathematical programming problem are classified as either global or
local solutions depending upon certain characteristics of the solution. A solution x* is a global
solution (for maximization) if it is:

1. Feasible; and
2. Yields a value of the objective function less than or equal to that obtained by any other
feasible vector, or

x*e X, and

f(x*) = f(x) VxeX (5.1)

A solution x* is a local solution (for maximization) if it is:

1. Feasible; and
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2. Yields a value of the objective function greater than or equal to that obtained by any
feasible vector x sufficiently close to it, or

x*e X,and

5.2
f(x*) 2> f(x) Vxe(XnxeN,(x*)) (5-2)
In this case multiple optima may exist for the math program and we have only established that x*
is the optimum within the neighborhood searched. Extensive investigation of the program to
find additional optima may be necessary.

Sometimes we can establish the local or global nature of the solution to a math program. The
following two theorems give some examples.

Weierstras Theorem: (Sufficient conditions for a global solution)

If X is non-empty and compact (closed and bounded) and f{(x) is continuous on X, then f{x)
has a global maximum either in the interior or on the boundary of X.

Local - Global Theorem: (Sufficient conditions for a local solution to be global)

If X is a non-empty, compact and convex and f(x) is continuous on X and a concave
(convex) function over X, then a local maximum is a global maximum.

The Figure 5.1 shows a non-convex function defined over a convex feasible region so we have
no assurance that local maxima are global maxima. We must assume that they are local maxima.
Figure 5.2 shows a concave (non-convex) function maximized over a convex constraint set, so
we are assured that a local maximum is a global maximum (if we can find one) by the Local-
Global Theorem.

f(x)
A Global Max

Local Max

Global Min

Local Min

X >

Figure 5.1. Illustration of global and local solutions.
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ftx)

Global Max

P x

X >

Figure 5.2. Concave function maximized over a convex constraint set

6. Classical Programming

Maximize f(x) (6.1)
bject t
subjec I?(x) 0 6.2)

6.1 Unconstrained Scalar Case

In this case, there are no constraints (Equation 6.2 is not present) and we consider only the
objective function for a single decision variable, the scalar x

Maximize f(x) (6.1.1)

The necessary conditions for a local minimum are

@ =0 (first-order conditions) (6.1.2)
X
and
2
Lgx) <0 (second-order conditions) (6.1.3)
dx

The first-order conditions represent an equation which can be solved for x* the optimal solution
for the problem.

But what if the decision variable was constrained to be greater than or equal to zero (non-
negativity restriction), e.g., x > 0? In this case there are two possibilities, either (1) the solution
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lies to the right of the origin and has an interior solution where the slope of the function is zero,
or (2) or the solution lies on the boundary (at the origin) where x = 0 and the slope is negative.
That is

df [<0 atx=x* ifx*=0

E{:o atx=x* ifx*>0 (6.1.4)
This condition is often written as

iSO, and x£=0 at x=x%* (6.1.5)

dx dx

6.2 Unconstrained Vector Case

In this case, again we have no constraints and we consider only the objective function for a
vector of decision variables x

Maximize f(x) (6.2.1)
The necessary conditions are

Vf(x)=—""= 6f (x) =0 (first-order conditions) (6.2.3)

which is actually #» simultaneous nonlinear equations

I (x) ]
Oox,
Vi(x)=| : |[=0 (6.2.4)
I (x)

The first-order conditions represent n - simultaneous equations which can be solved for x* the
optimal solution for the problem.

But what if the decision variable was constrained to be greater than or equal to zero (non-
negativity restriction), e.g., x > 0? In this case there are two possibilities, either (1) the solution
lies to the right of the origin and has an interior solution where the slope of the function is zero,
or (2) or the solution lies on the boundary (at the origin) where x = 0 and the slope is negative.
That is
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of |0 atx=x* ifx;:0 (6.2.5)

ox; [=0 atx=x* ifx; >0 o
for eachj. This condition is often written as

iﬁo, and xizo j=1l..n (6.2.6)

Ox ! Ox

J J

6.3 Constrained Vector Case - Single Constraint

In this case, we consider the objective function for a vector of decision variables x, and a single
constraint, /(x)=0
Maximize f(x)

subject to (6.3.1)
h(x)=0

We can multiply the constraint by a variable or multiplier and subtract the resulting expression
from the objective function to form what is known as the “Lagrangian” function

L(x,2) = £(x) - A[h(x)] (6.3.2)

and then simply apply the methods of the previous case (unconstrained vector case). Note that
for a feasible vector the constraint must be satisfied, that is

h(x)=0 (6.3.3)
and
L(x,4) = f(x) (6.3.4)

so we really have not changed the objective function as long as we remain feasible. The
necessary conditions (first-order) are

oL _ o/ () =AM _f ok

22 ox ox ox (6.3.5)
—=h(x)=0
Y] (x)

The first-order conditions represent n+/ simultaneous equations
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g o

0
Oox, Ox,
o 0
ox, ox,
: (6.3.6)
I _on
ox, ox,
h(x)=0

which must be solved for the optimal values of x* and A*.
Example (adapted from Loucks et al., 1981, Section 2.6, pp. 23-28)

Consider a situation where there is a total quantity of water R to be allocated to a number of
different uses. Let the quantity of water to be allocated to each use be denoted by x;, i=1,..., I.
The objective is to determine the quantity of water to be allocated to each use such that the total
net benefits of all uses is maximized. We will consider an example with three uses / = 3.

Reservoir

Figure 6.4.1. Reservoir release example.

The net-benefit resulting from an allocation of x; to use i is given by

B.(x.)=a.x —b.x> i=123 6.4.1
l( 1) 1 1 1 1

where a; and b; are given positive constants. These net-benefit (benefit minus cost) functions are
of the form shown in Figure 6.4.2.
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Figure 6.4.2. Net-benefit function for user i.

The three allocation variables x; are unknown decision variables. The values that these variables
can take on are restricted between 0 (negative allocation is meaningless) and values whose sum,
x| + xp + x3, does not exceed the available supply of water R minus the required downstream

flow S. The optimization model to maximize net-benefits can be written as

3
maximize z (a,x, —bx})
i=1

X
subject to
3
D> x,+S-R=0
) (6.4.2)
The Lagrangian function is
3 3
L(x,2)=> (ax, —bl.xf)—/’t(in + S—RJ
i=l i=1 (6.4.3)
There are now four unknowns in the problem, x;, i=12,3 and 4. Solution of the problem is

obtained by applying the first-order conditions, setting the first partial derivatives of the
Lagrangian function with respect to each of the variables equal to zero:
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oL

—=a,-2bx,-1=0

ox,

a—L:az—2b2x2—l=0

o, (6.4.4)
a—L:a3 —2bx; —A=0

Ox,4

a—L:xl+xz+x3+S—R=O

oA

These equations are the necessary conditions for a local maximum or minimum ignoring the
nonnegativity conditions. Since the objective function involves the maximization of the sum of
concave functions (functions whose slopes are decreasing), any local optima will also be the
global maxima (by the Local-Global Theorem).

The optimal solution of this problem is found by solving for each x;, i=1,2,3 in terms of 4.
= A
x =2 i=123 (6.4.5)
2b;
Then solve for A4 by substituting the x;, i =1,2,3 into the constraint
3
>x;+S-R=0
i=1 (6.4.6)
3 4.-2
U= 5§ R=0 (6.4.7)
i=1 2b;

and solve for A

(6.4.8)

Hence knowing R, S, a; and b; this last equation can be solved for 4. Substitution of this value
into the equation for the x;, i=1,2,3, we can solve for the optimal allocations, provided that all
of the allocations are nonnegative.
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6.5 Constrained Vector Case — Multiple Constraints

In this case, we consider the objective function for a vector of decision variables x, and a vector
of constraints, h(x)=0
Maximize f(x)

subject to (6.5.1)
h(x)=0

We can multiply the constraints by a vector of variables or multipliers 4 =(4;,45,...,4,,) or
A-h(x) and subtract the resulting expression from the objective function to form what is known
as the “Lagrangian” function

L(x,2) = f(x) = A-h(x) = f(x) - ﬁﬂ,-hf(x) (6.5.2)

and then simply apply the methods of the previous case (unconstrained vector case). The
necessary conditions (first-order) are

V. L(x, )=V f(x)=A-V h(x)=0 (6.5.3)
or

OL _ ) =4k o _ 5, ki _, (6.5.4)

ox ox ox -] Ox
and

V,L(x,A)=0 (6.5.5)
or

h(x) =0 (6.5.6)

The first-order conditions (Eq. 6.5.4 and Eq. 6.5.6) represent n+m simultaneous equations must
be solved for the optimal values of the vectors of decision variables and the Lagrange
multipliers, x* and A*.

Example (after Haith, 1982, Example 4-2):

Solve the following optimization problem using Lagrange multipliers.
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Maximize x12 +2x —x%
subject to
S5x; +2x, <10
x120

X2Z

(6.5.7)

The last three constraints must be turned into equalities in order to use Classical Programming to

solve the problem. Introduce three new variables, 51, 52, and s3

5x1+2xy +s12 =10
xl—S%:0

x2—S32 =0

(6.5.8)

These slack variables (difference between the left and right sides) are always introduced on the

side of the inequality that the inequality sign points toward.

The “Lagrangian” function is
_ .2 2 2 2 2
L(x,/l) =X +2x1 —X) —/11(5x1 +2X2 + 58] —10)—12()61 —Sz)—ﬂg(Xz —S3)

The first-order optimality conditions are

oL

a—=2x1 +2—511 —ﬂle =0
X1

OL

—=-2x, —241xy — X
o 2 1X2 —A3X2
a—L:—2/11s1 =0

6S1

6—L = 21252 =0

6S2

a—L=213S3 =0

6S3

OL

— =5x; +2x +s2—10
611 1 2 1
oL 2

—=x1—-55=0
o, %2
a—Lz)62—532:O
03
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Equations 6.10c-e require that A; or s; be equal to zero. There can be several solutions to the
problem depending on whether one or another of the 4; or s; are equal to zero.

6.6 Nonlinear Programming and the Kuhn-Tucker Conditions

In this case, we consider the objective function for a vector of decision variables x, a vector of
equality constraints, #(x)=0, and a vector of inequality constraints, g(x)<0

Maximize f(x)
X

subject to (6.6.1)
h(x)=10
g(x)<0

We can multiply the constraints by vectors of variables or multipliers 4 =(4;,4,,...,4,,)or

A-h(x) and w=(uj,uy,...,u,)or u-g(x) and subtract the resulting expression from the
objective function to form what is known as the “Lagrangian” function

L(x, A ) = £(x) - g:lll-hi(x) - ﬁl g (%) (6.62)
i= j=

and then simply apply the methods of the previous case (unconstrained vector case). The
necessary conditions (first-order) are the Kuhn-Tucker Conditions

m . og ;
o z;tl.%_ 3 ujiSO
axk i=1 6xk j=1 8xk
at x=x*, for k=1,...,n (6.6.3)
m . og i
8xk i=1 8xk j=1 8xk
g;(x*)<0
for j=1,.,r (6.6.4)
u;g;(x*)=0
hi(x*) =0, for i=1,.,m (6.6.5)
ES
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Exercises

1. (after Mays and Chung, 1992, Exercise 3.4.5) Water is available at supply points 1, 2, and 3
in quantities 4, 8, and 12 thousand units, respectively. All of this water must be shipped to
destinations A, B, C, D, and E, which have requirements of 1, 2, 3, 8, and 10 thousand units,
respectively. The following table gives the cost of shipping one unit of water from the given
supply point to the given destination. Find the shipping schedule which minimizes the total cost
of transportation.

Destination
Source  A|B |C |D|E
1 711015 |4 |12
2 312 10 (911
3 8 |13|11]6 |14

N
A
O O] |® >

3 N

Supply Destination

2. (adapted from Mays and Tung, 1992, Exercise 3.1.1) Solve the following Linear Program

Maximize 2x, +3x, 4+ 5x,
subject to
X, +x,—x3;=2-5
—6x, +7x, —9x; =5
[19x, = 7x, + 5x,| <13
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3. (adapted from Mays and Tung, 1992, Exercise 3.2.1) Consider the following Linear Program

Maximize 3xj +5x,
subject to

x1 <4

Xy <6

3x; +2xy <18

(a) Graph the feasible region for the problem.
(b) Solve the problem graphically.

(c¢) How much can the nonbinding constraints be reduced without changing the feasibility of
the optimal solution?

(d) What is the range of the objective function coefficient of x2 so that the optimal solution
remains feasible?

4. (after Haith, 1982, Example 5-1) 1000 ha of farmland surrounding a lake is available for two
crops. Each hectare of crop 1 loses 0.9 kg/yr of pesticide to the lake, and the corresponding loss
from crop 2 is 0.5 kg/yr. Total pesticide losses are not allowed to exceed 632.5 kg/yr. Crop
returns are $300 and $150/ha for crops 1 and 2, respectively. Costs for crops are estimated to be
$160 and $50/ha for crops 1 and 2, respectively.

(a) Determine the cropping combination that maximizes farmer profits subject to a constraint
on the pesticide losses into the lake.

(b) If crop returns decrease to $210/ha for crop 1, what is the optimal solution?
(c) If crop returns increase to $380/ha for crop 1, what is the optimal solution?

5. (after Haith, 1982, Exercise 5-1) A metal refining factory has a capacity of 10x 10* kg/week,
produces waste at the rate of 3 kg/kg of product, contined in a wastewater at a concentration of 2
kg/m’. The factory’s waste treatment plant operates at a constant efficiency of 0.85 and has a
capacity of 8x10* m’/week. Wastewater is discharged into a river, and the effluent standard is
100,000 kg/week. There is also an effluent charge of $1000/10* kg discharged. Treatment costs
are $1000/10* m®, product sales price is $10,000/10* kg, and production costs are $6850/10* kg.

(a) Construct a linear program that can be used to solve this wastewater problem. Solve the
model graphically.

(b) If the effluent charge is raised to $2000/10* kg, how much will the waste discharge be
reduced?
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6. (after Haith, 1982, Exercise 5-9) A standard of 1 kg/ 10°m’ has been set as the maximum
allowable concentration for a substance in a river. Three major dischargers of the substance are
located along the river as shown in the figure. The river has a flow of 500,000 m*/day and an
ambient concentration of the regulated substance of 0.2 kg/10°m’ upstream of the first
discharger. The three waste sources presently discharge 100, 100m, and 1600 kg/day of the
regulated substance, resulting in violations of the standard in the river. The substance is not
conserved in the river, but decays at a rate of k=0.03 km”. Thus is C; and C, are the
concentrations of the substance immediately after the discharge points 1 and 2, respectively, the
concentrations at any point L km downstream of discharge 1 (L < 10) is C;e™*. Similarly, the
concentration L km downstream of discharge 2 (L < 15) is Coe™*. The cost of removing the
substance from the wastewater is $10X/1000 m® where X is the fraction of the substance
removed. Use LP to determine an optimal treatment program for the regulated substance.

10 km 15k
» e T )
I~ dh !
300 108 m3/day
0.2 kg/103 m3 —» River
Flow 100 10° m¥/day 50 108 m3/day 200 103 m3/day
Discharge 10 kg/10° m3 20 kg/10% m3 8 kg/10% m®

7. (after Haith, 1982, Example 4-1) Solve the following optimization problem using Lagrange
multipliers.

Maximize 0.5x +20xyx3 +10x;3
subject to

x; —=3x7 +0.5x3 =6

Xy +2x3 =10

8. (after Haith, 1982, Exercise 4-1) Solve the following optimization problem using Lagrange
multipliers (Classical programming)

Maximize 4x12 + Xy + 6x§’
subject to
x) +3xy +x3 =10
Xy +2x3 =4

Math Programming 19 1/10/2003



9. (after Haith, 1982, Exercise 4-2) Solve the following optimization problem using Lagrange
multipliers (Classical programming)

Maximize 4e ™! — x%
subject to
6x; —xy =6
x120

10. (after Willis, 2002) A waste storage facility consists of a right circular cylinder of radius 5
units and a conical cap. The volume of the storage facility is V. Determine H, the height of the
storage facility, and 4, the height of the conical cap, such that the total surface area is minimized.
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Appendix A. Mathematics Review

A.1 Linear Algebra

A.1.1 Introduction

An important tool in many areas of scientific and engineering analysis and computation is matrix
theory or linear algebra. A wide variety of problems lead ultimately to the need to solve a linear
system of equations Ax = b. There are two general approaches to the solution of linear systems.

A.1.2 Matrix Notation

A matrix is an array of real numbers. Consider an (m x n) matrix A with m rows and »n columns:

a a2 aiz o Ay
A = a:Zl azy dj3 . aZ:n
Aml Am2  9u3 -+ Ay (A.1.2.1)

The horizontal elements of the matrix are the rows and the vertical elements are the columns.
The first subscript of an element designates the row, and the second subscript designates the
column. A row matrix (or row vector) is a matrix with one row, i.e., the dimension m = 1. For
example

r=0 n o o) (A.1.2.2)
A column vector is a matrix with only one column, e.g.,

€l

m (A.1.2.3)

When the row and column dimensions of a matrix are equal (m = n) then the matrix is called
square

a ap Ap
A =|% 2 a2p
@nt Gn2 7 Gan (A.1.2.4)

The transpose of the (m x n) matrix A is the (n x m)
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A G20 " Amn (A.1.2.5)

. . T . .o
A symmetric matrix is one where 4" = A. An example of a symmetric matrix is

4= G %j (A.1.2.6)

A diagonal matrix is a square matrix where elements off the main diagonal are all zero

m (A.1.2.7)

(A.1.2.8)

An upper triangular matrix is one where all the elements below the main diagonal are zero

a; ap a,
4 = as, a,,
0 G (A.1.2.9)

A lower triangular matrix is one where all the elements above the main diagonal are zero

ai, 0
4 = ay dy
G G2 Do (A.1.2.10)
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A.1.3 Matrix Arithmetic
Two (m x n) matrices A and B are equal if and only if each of their elements are equal. That is
A=Bifandonly ifg;=b;fori=1,.,mandj=1,...,n (A.1.3.1)

The addition of vectors and matrices is allowed whenever the dimensions are the same. The sum
of two (m x 1) column vectors a and b is

a, b, a, + b
a4+ b= a, + b, _ a, +b,
a,) \by a, b, (A.13.2)

Example:

Let u =(1,-3,2,4) and v =(3,5,—1,-2). Then
u+v=>10+3,-3+52-1,4-2)=(4,2,1,2)
Su=(5*15%(-3),5%2,5%4) = (5,-15,10,20)
2u —3v=(2,-6,48) +(-9,-15,3,6) = (-7,-21,7,14)

The sum of two (m x n) matrices 4 and B is

a, ap a, b, b, by,
a a a b
21 2 1 21 2 |
A+ B=|" . R I . S
aml amZ amn bml me bmn
a, +b, a,+b, - a,+Db,
| 4n T by ay + by a,, + b,
aml + bml am2 + bm2 amn + bmn (A 1 3 3)
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Multiplication of a matrix 4 by a scalar @ is defined as

aall Ocalz aaln
od = a‘.lzl ad . aa,,
oa,, oa,, ... oa,, (A.134)

The product of two matrices A and B is defined only if the number of columns of 4 is equal to
the number of rows of B. If 4 is (n X p) and B is (p x m), the product is an (n x m) matrix C

a, a, - a,\b, b, In
C = AB - ay a4y a, | by by b,
a,, a,, ... a, \b, b, .. b

aby+--+a,b, a\b,+--+a,b, - ab,+--+a,b,,

_ ayb, +--+ayb,, —a,b,+--+a,b,, ayb,, +---+a,b,,

amlbll +”.+alnbml amlbIZ +”.+amnbm2 amlbln +”.+amnbmn
(A.1.3.5)

The ij element of the matrix C is given by
P
¢; = D ab,

k=1 (A.1.3.6)

That is the ¢;; element is obtained by adding the products of the individual elements of the i-th
row of the first matrix by the j-th column of the second matrix (i.e., “row-by-column’). The

following figure shows an easy way to check if two matrices are compatible for multiplication
and what the dimensions of the resulting matrix will be:

Crum = Aup By (A13.7)
Example:

Let a =(a,,a,,~,a,) and b=| |, then
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bl

b
)
a-b=(a,,a,,-,a,) : =ab +ab,+---+a,b,
bn
Example:
a4y o 4y, b,
a a a
21 2 2
Let A=| : " land b= , then
anl anZ ann bn
a; dp a,, | b a,b +ayb, +---a,b,
Ay Ay ot Gy, | by a,b, +ay,b, +---a,,b,
Ab = . . =
anl anZ T ann bn anlbl + an2b2 t-- annbn

Matrix division is not a defined operation. The identity matrix has the property that J4=A and
Al = A.If A is an (n X n) square matrix and there is a matrix X with the property that

AX=1 (A.1.3.8)

where [ is the identity matrix, then the matrix X is defined to be the inverse of 4 and is denoted
A, Thatis

AA' =Tand A'A=1 (A.1.3.9)

The inverse of a (2 x 2) matrix 4 can be represented simply as

4 1 [azz a12:|
Ay —Apdy | =4y 4y (A.1.3.10)

Example
I A 2 1 hen A 1 2 —1 2/3 —-1/3
= t = =
) 20) -1 -1 2| |-1/3 2/3
A.1.4 Systems of Linear Equations

Consider the linear system of equations
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Ax=b (A.1.4.1)

where A4 is an (n X n) matrix, b is a column vector of constants, called the right-hand-side, and x
is the unknown solution vector to be determined. This system can be written out as

a, dp a,, | *i b,
ay Ay Ay || X2 | b,
anl anZ ann xn bn
(A.1.4.2)

Performing the matrix multiplication and writing each equation out separately, we have

a,x, + a,x, + - + a,x, = b
a, X, + ayx, + -+ + a,,x, = b,
a,X, + apX, + - +a,x, = b, (A.1.4.32)

This system can also be written in the following manner

Zal_jxj =b i=1-n
J=l (A.1.4.3b)

A formal way to obtain a solution using matrix algebra is to multiply each side of the equation by
the inverse of 4 to yield

A'Ax=A4""b (A.1.4.4)
or, since A4~ =1

x=A"b (A.1.4.5)

Thus, we have obtained the solution to the system of equations. Unfortunately, this is not a very
efficient way of solving the system of equations. We will discuss more efficient ways in the
following sections.

Example: Consider the following two equations in two unknowns:

3x, +2x, =18
-X,+2x,=2

Solve the first equation for x,
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xzz_?xl+9

which is a straight line with an intercept of 9 and a slope of (-3/2). Now, solve the second
equation for x,

x225x1+1

which is also a straight line, but with an intercept of 1 and a slope of (1/2). These lines are
plotted in the following Figure. The solution is the intersection of the two lines at x; =4 and x; =
3.

Solution: Xy = 4; Xy = 3

|
|
|
|
|
|
|
T

Figure A.1.4.1. Graphical solution of two simultaneous linear equations.

Each linear equation

a,x, + a,x, + -+ + a,x, = b, (A.1.4.6)

m--n l

represents a hyperplane in an n-dimensional Euclidean space (R"), and the system of equations
Ax = b represents m hyperplanes. The solution of the system of equations is the intersection of
all of the m hyperplanes, and can be

- the empty set (no solution)
- a point (unique solution)
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- a line (non-unique solution)
- a plane (non-unique solution)

A.1.5 Systems of Linear Inequalities

A system of m linear inequalities in » unknowns can be written as

Ax<b (A.1.5.1)
or

a,x, + a,x, + -+ +a,x, <b

a, X, + a,x, + -+ + a,x, <b,

AnX, + a,%, + - +a,x, <b, (A.1.5.2a)

This system of inequalities can also be written in the following manner

Za[jxj <b i=1l--n
/=l (A.1.5.2b)

Each linear inequality

a,x, + a,x, + - +a,x, < b, (A.15.3)

represents a half-space in R”, and the system of inequalities Ax < b represents the intersection of
m half-spaces which is a polyhedral convex set or, if bounded, a polyhedron.

A.2 Calculus

A.2.1 Functions

A function f(x) of n variables can be written as

y = f(x) (A.2.1.1)
X

x=| : |eR" (columnvector), y eR' (scalar) (A.2.1.2)
X

n
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A linear function of » variables is written as
y=f(x)=c-x= Zcixl. =c X, +e,x, ++c, X, (A.2.1.3)
i=1
where ¢ is a vector of coefficients.

A.2.2 Sets, Neighborhoods and Distance

The distance between two points x and y in R” is defined as

d(x,y) = ,/Zn‘,(xi -y’ (A2.2.1)

A neighborhood around a point x in R” is defined as the set of all points y less than some

distance ¢ from the point x or
N, (x)={yeR" :d(x,y) < | (A.2.2.2)

A closed set is a set which contains all of the points on its boundary, for example a closed
interval on the real line (R/). In a bounded set, the distance between two points contained in the
set is finite. A compact set is closed and bounded, examples are any finite interval [a,b] on the
real line or any bounded sphere in R3.

A set Sis a convex set if for any two points x and y in the set, the point
z=ax+(-a)y (A.2.2.3)

is also in the set for all a, where 0 <a < 1. That is, all weighted averages of two points in the set
are also points in the set. For example, all points on a line segment joining two points in a
convex set are also in the set. Straight lines, hyperplanes, closed halfspaces are all convex sets.
Figure 2 below illustrates a convex and a non-convex set. A real valued function f(x) defined on
a convex set S is a convex function if given any two points x and y in S,

flaf () +A-a)f(n]<af (x)+(1-a) f(y) (A.2.2.4)

for all a, where 0 <a < 1. Figure 3 illustrates the fact that the line segment joining two points in
a convex function does not lie below the function. Figure 4 shows general examples of convex
and non-convex (or concave) functions. An example of a convex function is a parabola which
opens upward. Linear functions (lines, planes, hyperplanes, half-spaces) are both convex and
non-convex functions.
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//—/; ‘ .
X
convex

Figure A.2.2.1. General diagram of convex and non-convex sets.

f(x)
A
foop-----== afx) + (1-a)fy)
() fomemeees S REEEEE :
' flax+ (1-ay)
: ' ' > x
X ax+ (l-ay y
« |
X
Figure A.2.2.2. General diagram of a convex function.
f(x)
A
Convex
Concave
P x

Figure A.2.2.3. General diagram of a convex function and a concave function.
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A.2.3 Derivatives

The derivative of a function of a single scalar variable f{(x) is defined as

f'(x)=

Y _ iy L+ A= () (A23.1)
dx A0 Ax

The partial derivatives of a function f of the variables x and y are defined as

g: lim f(X+Ax9y)_f(xﬂy)

ax Ax—0 Ax

A232
¥ Sy eA) - () (A2
ay Ay—0 Ay

That is, to find the partial derivative of a multivariable function with respect to one independent
variable x;, regard all other independent variables as fixed and find the usual derivative with
respect to x;. The partial derivative of a function of several variables f{x) with respect to a
particular component of x, x;, evaluated at a point x° is

o _of(x)
Ox. Ox.

1 1

(A.2.3.3)

x°

The partial derivative of f{x) with respect to the vector x is a row vector of partial derivatives of
the function or the gradient vector

/A N/
Vf(x) = [8}61 - } (A.2.3.4)

n

A.3 Vectors Calculus
A.3.1 Coordinate Systems
Typical coordinate systems used in groundwater problems include: Rectangular: x, y, z; and

Cylindrical: r, 8 z where x = rcos@ and y = rsiné. Let A be a vector function of (x, y, z) or (7,
0, z), respectively, then

A=Ai+ A j+Ak=Ar+A4,0+Ak (A3.1.1)

where (i, j, k) and (r, 6, k) are unit vectors in the (x, y, z) or (, 6, z) directions, respectively.
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A.3.2 Basic Operators

The gradient operator, del (from the Greek nabla) or V, is defined in rectangular coordinates as

the vector

ox
v =%

0

oy
a()
L Oz |

a(.) j+ o0 (A.3.2.1)

y 0z

The major operators: Gradient, “del” or ,V(-); Divergence, “div”’ or V -(:); and Laplacian, “del

dot del” or V-V(-)=V?(-) can be defined in the rectangular and cylindrical coordinate systems

as:
Gradient (Rectangular) V(:) = o0 i+ o0) Jj+ o) k (A.3.2.2)
Ox 0 0z
. o) 10(),, 90)
Cylindrical) V() =—r+——=0+—k A323
(Cy ) V() Py L ( )
A. OA
Divergence (Rectangular) V- A = 04y +—2 4 4, (A.3.2.4)
ox Oy 0Oz
Proof:
voa=| 29,905 00 i a j+ k]
ox oy 0z 7
=%i-i+—yi-j+aAzi~k
ox 0. ox
+8A P 0A, i
Y JJ P J
04
k-i+ yk-j+aAZk-k
0z 0z
04 04
=—>1)+—=(0)+—=(0
. @ . (0) " (0)
A 04, A
0+ 2@+ L)
oy Oy y
A 04
o+ 0+ Ly
Z 0z 0z
04, 04,
= +
ox Oy
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10(4,) 104, o4,

Cylindrical) V- A4 = A3.25
(Cylindrical) r or r 00 oz ( )
2 2
Laplacian (Rectangular) V-V(-) = V?(-) = 8 () 88 (2) aa(z) (A.3.2.6)
z
2 @ZA 2
e.g., V~VA:V2A=8€X 2y+816212
Ox oy 0z
(Cylindrical) VV(.):vZ(-):li(r a(-)) L& O, °() (A.3.2.7)

ror oOr 2802 82

A
e.g., V-VszzA:li(raA*Hiza ;’+afz
ror or re 00 Oz

A.3.3 Various Groundwater Relations

The Piezometric head, # = p/y +z, is a scalar quantity and the gradient of this quantity is a
column vector

Vh=|— =i+ = j+—k (A.3.3.1)

The hydraulic conductivity, K, is a tensor whose common form in three dimensions is

=

S O

(A3.3.2)

S O
O\<NO
=

z

The term K -Vh is the product of the matrix K with the vector VA or (using “row by column”
multiplication)

o] [ o]
K. 0 0 ox * ox
kvi=| o K, o |-k, P ok Pk, Pk D (A3323)
¢ oy " Oy " Ox " oy 0z
0 0 K. ||a oh
on K. <
Loz | " 0Oz
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Now V- K -Vh is the dot product of the vector V() with the vector K - Vi or

0| [ o
Oox T Ox
vk |20 ||
oy oy
20 || x o
oz || "oz

_ 5(‘)i+5(‘)j+a(')k , KX@HK @Jq[(zﬁk (A.3.3.4)
Ox oy Oz Ox " oy Oz

2,22k, %) 2(,2)
ox ox) oy "oy oz Oz
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